mm, fs, dax: handle layout changes to pinned dax mappings
[linux-block.git] / net / ipv4 / tcp_input.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
02c30a84 9 * Authors: Ross Biro
1da177e4
LT
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 44 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
e905a9ed 52 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 53 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 54 * work without delayed acks.
1da177e4
LT
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
63 */
64
afd46503
JP
65#define pr_fmt(fmt) "TCP: " fmt
66
1da177e4 67#include <linux/mm.h>
5a0e3ad6 68#include <linux/slab.h>
1da177e4
LT
69#include <linux/module.h>
70#include <linux/sysctl.h>
a0bffffc 71#include <linux/kernel.h>
ad971f61 72#include <linux/prefetch.h>
5ffc02a1 73#include <net/dst.h>
1da177e4
LT
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
e1c8a607 78#include <linux/errqueue.h>
5941521c 79#include <trace/events/tcp.h>
60e2a778 80#include <linux/static_key.h>
1da177e4 81
ab32ea5d 82int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
1da177e4 83
1da177e4
LT
84#define FLAG_DATA 0x01 /* Incoming frame contained data. */
85#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
86#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
87#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
88#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
89#define FLAG_DATA_SACKED 0x20 /* New SACK. */
90#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 91#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
31770e34 92#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 93#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 94#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 95#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 96#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 97#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 98#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 99#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
eb36be0f 100#define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
1da177e4
LT
101
102#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
d09b9e60 104#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
1da177e4
LT
105#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
106
1da177e4 107#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 108#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 109
e662ca40
YC
110#define REXMIT_NONE 0 /* no loss recovery to do */
111#define REXMIT_LOST 1 /* retransmit packets marked lost */
112#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
113
0b9aefea
MRL
114static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
115 unsigned int len)
dcb17d22
MRL
116{
117 static bool __once __read_mostly;
118
119 if (!__once) {
120 struct net_device *dev;
121
122 __once = true;
123
124 rcu_read_lock();
125 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
126 if (!dev || len >= dev->mtu)
127 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
128 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
129 rcu_read_unlock();
130 }
131}
132
e905a9ed 133/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 134 * real world.
e905a9ed 135 */
056834d9 136static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 137{
463c84b9 138 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 139 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 140 unsigned int len;
1da177e4 141
e905a9ed 142 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
143
144 /* skb->len may jitter because of SACKs, even if peer
145 * sends good full-sized frames.
146 */
056834d9 147 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 148 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
149 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
150 tcp_sk(sk)->advmss);
0b9aefea
MRL
151 /* Account for possibly-removed options */
152 if (unlikely(len > icsk->icsk_ack.rcv_mss +
153 MAX_TCP_OPTION_SPACE))
154 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
155 } else {
156 /* Otherwise, we make more careful check taking into account,
157 * that SACKs block is variable.
158 *
159 * "len" is invariant segment length, including TCP header.
160 */
9c70220b 161 len += skb->data - skb_transport_header(skb);
bee7ca9e 162 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
163 /* If PSH is not set, packet should be
164 * full sized, provided peer TCP is not badly broken.
165 * This observation (if it is correct 8)) allows
166 * to handle super-low mtu links fairly.
167 */
168 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 169 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
170 /* Subtract also invariant (if peer is RFC compliant),
171 * tcp header plus fixed timestamp option length.
172 * Resulting "len" is MSS free of SACK jitter.
173 */
463c84b9
ACM
174 len -= tcp_sk(sk)->tcp_header_len;
175 icsk->icsk_ack.last_seg_size = len;
1da177e4 176 if (len == lss) {
463c84b9 177 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
178 return;
179 }
180 }
1ef9696c
AK
181 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 183 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
184 }
185}
186
463c84b9 187static void tcp_incr_quickack(struct sock *sk)
1da177e4 188{
463c84b9 189 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 190 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 191
056834d9
IJ
192 if (quickacks == 0)
193 quickacks = 2;
463c84b9
ACM
194 if (quickacks > icsk->icsk_ack.quick)
195 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
196}
197
1b9f4092 198static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 199{
463c84b9
ACM
200 struct inet_connection_sock *icsk = inet_csk(sk);
201 tcp_incr_quickack(sk);
202 icsk->icsk_ack.pingpong = 0;
203 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
204}
205
206/* Send ACKs quickly, if "quick" count is not exhausted
207 * and the session is not interactive.
208 */
209
2251ae46 210static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 211{
463c84b9 212 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 213 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 214
2251ae46
JM
215 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
216 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
217}
218
735d3831 219static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 220{
056834d9 221 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
222 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
223}
224
735d3831 225static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
226{
227 if (tcp_hdr(skb)->cwr)
228 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
229}
230
735d3831 231static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
232{
233 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
234}
235
735d3831 236static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 237{
b82d1bb4 238 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 239 case INET_ECN_NOT_ECT:
bdf1ee5d 240 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
241 * and we already seen ECT on a previous segment,
242 * it is probably a retransmit.
243 */
244 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 245 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
246 break;
247 case INET_ECN_CE:
9890092e
FW
248 if (tcp_ca_needs_ecn((struct sock *)tp))
249 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
250
aae06bf5
ED
251 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
252 /* Better not delay acks, sender can have a very low cwnd */
253 tcp_enter_quickack_mode((struct sock *)tp);
254 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
255 }
9890092e
FW
256 tp->ecn_flags |= TCP_ECN_SEEN;
257 break;
7a269ffa 258 default:
9890092e
FW
259 if (tcp_ca_needs_ecn((struct sock *)tp))
260 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 261 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 262 break;
bdf1ee5d
IJ
263 }
264}
265
735d3831
FW
266static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
267{
268 if (tp->ecn_flags & TCP_ECN_OK)
269 __tcp_ecn_check_ce(tp, skb);
270}
271
272static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 273{
056834d9 274 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
275 tp->ecn_flags &= ~TCP_ECN_OK;
276}
277
735d3831 278static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 279{
056834d9 280 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
281 tp->ecn_flags &= ~TCP_ECN_OK;
282}
283
735d3831 284static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 285{
056834d9 286 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
287 return true;
288 return false;
bdf1ee5d
IJ
289}
290
1da177e4
LT
291/* Buffer size and advertised window tuning.
292 *
293 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
294 */
295
6ae70532 296static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 297{
6ae70532 298 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 299 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
300 int sndmem, per_mss;
301 u32 nr_segs;
302
303 /* Worst case is non GSO/TSO : each frame consumes one skb
304 * and skb->head is kmalloced using power of two area of memory
305 */
306 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
307 MAX_TCP_HEADER +
308 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
309
310 per_mss = roundup_pow_of_two(per_mss) +
311 SKB_DATA_ALIGN(sizeof(struct sk_buff));
312
313 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
314 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
315
316 /* Fast Recovery (RFC 5681 3.2) :
317 * Cubic needs 1.7 factor, rounded to 2 to include
a9a08845 318 * extra cushion (application might react slowly to EPOLLOUT)
6ae70532 319 */
77bfc174
YC
320 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
321 sndmem *= nr_segs * per_mss;
1da177e4 322
06a59ecb 323 if (sk->sk_sndbuf < sndmem)
356d1833 324 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
1da177e4
LT
325}
326
327/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
328 *
329 * All tcp_full_space() is split to two parts: "network" buffer, allocated
330 * forward and advertised in receiver window (tp->rcv_wnd) and
331 * "application buffer", required to isolate scheduling/application
332 * latencies from network.
333 * window_clamp is maximal advertised window. It can be less than
334 * tcp_full_space(), in this case tcp_full_space() - window_clamp
335 * is reserved for "application" buffer. The less window_clamp is
336 * the smoother our behaviour from viewpoint of network, but the lower
337 * throughput and the higher sensitivity of the connection to losses. 8)
338 *
339 * rcv_ssthresh is more strict window_clamp used at "slow start"
340 * phase to predict further behaviour of this connection.
341 * It is used for two goals:
342 * - to enforce header prediction at sender, even when application
343 * requires some significant "application buffer". It is check #1.
344 * - to prevent pruning of receive queue because of misprediction
345 * of receiver window. Check #2.
346 *
347 * The scheme does not work when sender sends good segments opening
caa20d9a 348 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
349 * in common situations. Otherwise, we have to rely on queue collapsing.
350 */
351
352/* Slow part of check#2. */
9e412ba7 353static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 354{
9e412ba7 355 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 356 /* Optimize this! */
94f0893e 357 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
356d1833 358 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
359
360 while (tp->rcv_ssthresh <= window) {
361 if (truesize <= skb->len)
463c84b9 362 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
363
364 truesize >>= 1;
365 window >>= 1;
366 }
367 return 0;
368}
369
cf533ea5 370static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 371{
9e412ba7
IJ
372 struct tcp_sock *tp = tcp_sk(sk);
373
1da177e4
LT
374 /* Check #1 */
375 if (tp->rcv_ssthresh < tp->window_clamp &&
376 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 377 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
378 int incr;
379
380 /* Check #2. Increase window, if skb with such overhead
381 * will fit to rcvbuf in future.
382 */
94f0893e 383 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
056834d9 384 incr = 2 * tp->advmss;
1da177e4 385 else
9e412ba7 386 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
387
388 if (incr) {
4d846f02 389 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
390 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
391 tp->window_clamp);
463c84b9 392 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
393 }
394 }
395}
396
397/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
398static void tcp_fixup_rcvbuf(struct sock *sk)
399{
e9266a02 400 u32 mss = tcp_sk(sk)->advmss;
e9266a02 401 int rcvmem;
1da177e4 402
85f16525
YC
403 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
404 tcp_default_init_rwnd(mss);
e9266a02 405
b0983d3c
ED
406 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
407 * Allow enough cushion so that sender is not limited by our window
408 */
4540c0cf 409 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
b0983d3c
ED
410 rcvmem <<= 2;
411
e9266a02 412 if (sk->sk_rcvbuf < rcvmem)
356d1833 413 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1da177e4
LT
414}
415
caa20d9a 416/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
417 * established state.
418 */
10467163 419void tcp_init_buffer_space(struct sock *sk)
1da177e4 420{
0c12654a 421 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
1da177e4
LT
422 struct tcp_sock *tp = tcp_sk(sk);
423 int maxwin;
424
425 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
426 tcp_fixup_rcvbuf(sk);
427 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 428 tcp_sndbuf_expand(sk);
1da177e4
LT
429
430 tp->rcvq_space.space = tp->rcv_wnd;
9a568de4 431 tcp_mstamp_refresh(tp);
645f4c6f 432 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 433 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
434
435 maxwin = tcp_full_space(sk);
436
437 if (tp->window_clamp >= maxwin) {
438 tp->window_clamp = maxwin;
439
0c12654a 440 if (tcp_app_win && maxwin > 4 * tp->advmss)
1da177e4 441 tp->window_clamp = max(maxwin -
0c12654a 442 (maxwin >> tcp_app_win),
1da177e4
LT
443 4 * tp->advmss);
444 }
445
446 /* Force reservation of one segment. */
0c12654a 447 if (tcp_app_win &&
1da177e4
LT
448 tp->window_clamp > 2 * tp->advmss &&
449 tp->window_clamp + tp->advmss > maxwin)
450 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
451
452 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 453 tp->snd_cwnd_stamp = tcp_jiffies32;
1da177e4
LT
454}
455
1da177e4 456/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 457static void tcp_clamp_window(struct sock *sk)
1da177e4 458{
9e412ba7 459 struct tcp_sock *tp = tcp_sk(sk);
6687e988 460 struct inet_connection_sock *icsk = inet_csk(sk);
356d1833 461 struct net *net = sock_net(sk);
1da177e4 462
6687e988 463 icsk->icsk_ack.quick = 0;
1da177e4 464
356d1833 465 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
326f36e9 466 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 467 !tcp_under_memory_pressure(sk) &&
180d8cd9 468 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9 469 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
356d1833 470 net->ipv4.sysctl_tcp_rmem[2]);
1da177e4 471 }
326f36e9 472 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 473 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
474}
475
40efc6fa
SH
476/* Initialize RCV_MSS value.
477 * RCV_MSS is an our guess about MSS used by the peer.
478 * We haven't any direct information about the MSS.
479 * It's better to underestimate the RCV_MSS rather than overestimate.
480 * Overestimations make us ACKing less frequently than needed.
481 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
482 */
483void tcp_initialize_rcv_mss(struct sock *sk)
484{
cf533ea5 485 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
486 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
487
056834d9 488 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 489 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
490 hint = max(hint, TCP_MIN_MSS);
491
492 inet_csk(sk)->icsk_ack.rcv_mss = hint;
493}
4bc2f18b 494EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 495
1da177e4
LT
496/* Receiver "autotuning" code.
497 *
498 * The algorithm for RTT estimation w/o timestamps is based on
499 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 500 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
501 *
502 * More detail on this code can be found at
631dd1a8 503 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
504 * though this reference is out of date. A new paper
505 * is pending.
506 */
507static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
508{
645f4c6f 509 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
510 long m = sample;
511
1da177e4
LT
512 if (new_sample != 0) {
513 /* If we sample in larger samples in the non-timestamp
514 * case, we could grossly overestimate the RTT especially
515 * with chatty applications or bulk transfer apps which
516 * are stalled on filesystem I/O.
517 *
518 * Also, since we are only going for a minimum in the
31f34269 519 * non-timestamp case, we do not smooth things out
caa20d9a 520 * else with timestamps disabled convergence takes too
1da177e4
LT
521 * long.
522 */
523 if (!win_dep) {
524 m -= (new_sample >> 3);
525 new_sample += m;
18a223e0
NC
526 } else {
527 m <<= 3;
528 if (m < new_sample)
529 new_sample = m;
530 }
1da177e4 531 } else {
caa20d9a 532 /* No previous measure. */
1da177e4
LT
533 new_sample = m << 3;
534 }
535
645f4c6f 536 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
537}
538
539static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
540{
645f4c6f
ED
541 u32 delta_us;
542
9a568de4 543 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
544 goto new_measure;
545 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
546 return;
9a568de4 547 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
9ee11bd0
WW
548 if (!delta_us)
549 delta_us = 1;
645f4c6f 550 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
551
552new_measure:
553 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 554 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
555}
556
056834d9
IJ
557static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
558 const struct sk_buff *skb)
1da177e4 559{
463c84b9 560 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 561
1da177e4
LT
562 if (tp->rx_opt.rcv_tsecr &&
563 (TCP_SKB_CB(skb)->end_seq -
9a568de4
ED
564 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
565 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
9ee11bd0 566 u32 delta_us;
9a568de4 567
9ee11bd0
WW
568 if (!delta)
569 delta = 1;
570 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
9a568de4
ED
571 tcp_rcv_rtt_update(tp, delta_us, 0);
572 }
1da177e4
LT
573}
574
575/*
576 * This function should be called every time data is copied to user space.
577 * It calculates the appropriate TCP receive buffer space.
578 */
579void tcp_rcv_space_adjust(struct sock *sk)
580{
581 struct tcp_sock *tp = tcp_sk(sk);
607065ba 582 u32 copied;
1da177e4 583 int time;
e905a9ed 584
86323850 585 tcp_mstamp_refresh(tp);
9a568de4 586 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 587 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 588 return;
e905a9ed 589
b0983d3c
ED
590 /* Number of bytes copied to user in last RTT */
591 copied = tp->copied_seq - tp->rcvq_space.seq;
592 if (copied <= tp->rcvq_space.space)
593 goto new_measure;
594
595 /* A bit of theory :
596 * copied = bytes received in previous RTT, our base window
597 * To cope with packet losses, we need a 2x factor
598 * To cope with slow start, and sender growing its cwin by 100 %
599 * every RTT, we need a 4x factor, because the ACK we are sending
600 * now is for the next RTT, not the current one :
601 * <prev RTT . ><current RTT .. ><next RTT .... >
602 */
603
4540c0cf 604 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
b0983d3c 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
607065ba 606 int rcvmem, rcvbuf;
c3916ad9 607 u64 rcvwin, grow;
1da177e4 608
b0983d3c
ED
609 /* minimal window to cope with packet losses, assuming
610 * steady state. Add some cushion because of small variations.
611 */
607065ba 612 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
1da177e4 613
c3916ad9
ED
614 /* Accommodate for sender rate increase (eg. slow start) */
615 grow = rcvwin * (copied - tp->rcvq_space.space);
616 do_div(grow, tp->rcvq_space.space);
617 rcvwin += (grow << 1);
1da177e4 618
b0983d3c 619 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
94f0893e 620 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
b0983d3c 621 rcvmem += 128;
1da177e4 622
607065ba
ED
623 do_div(rcvwin, tp->advmss);
624 rcvbuf = min_t(u64, rcvwin * rcvmem,
625 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
b0983d3c
ED
626 if (rcvbuf > sk->sk_rcvbuf) {
627 sk->sk_rcvbuf = rcvbuf;
1da177e4 628
b0983d3c 629 /* Make the window clamp follow along. */
02db5571 630 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
1da177e4
LT
631 }
632 }
b0983d3c 633 tp->rcvq_space.space = copied;
e905a9ed 634
1da177e4
LT
635new_measure:
636 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 637 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
638}
639
640/* There is something which you must keep in mind when you analyze the
641 * behavior of the tp->ato delayed ack timeout interval. When a
642 * connection starts up, we want to ack as quickly as possible. The
643 * problem is that "good" TCP's do slow start at the beginning of data
644 * transmission. The means that until we send the first few ACK's the
645 * sender will sit on his end and only queue most of his data, because
646 * he can only send snd_cwnd unacked packets at any given time. For
647 * each ACK we send, he increments snd_cwnd and transmits more of his
648 * queue. -DaveM
649 */
9e412ba7 650static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 651{
9e412ba7 652 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 653 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
654 u32 now;
655
463c84b9 656 inet_csk_schedule_ack(sk);
1da177e4 657
463c84b9 658 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
659
660 tcp_rcv_rtt_measure(tp);
e905a9ed 661
70eabf0e 662 now = tcp_jiffies32;
1da177e4 663
463c84b9 664 if (!icsk->icsk_ack.ato) {
1da177e4
LT
665 /* The _first_ data packet received, initialize
666 * delayed ACK engine.
667 */
463c84b9
ACM
668 tcp_incr_quickack(sk);
669 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 670 } else {
463c84b9 671 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 672
056834d9 673 if (m <= TCP_ATO_MIN / 2) {
1da177e4 674 /* The fastest case is the first. */
463c84b9
ACM
675 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
676 } else if (m < icsk->icsk_ack.ato) {
677 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
678 if (icsk->icsk_ack.ato > icsk->icsk_rto)
679 icsk->icsk_ack.ato = icsk->icsk_rto;
680 } else if (m > icsk->icsk_rto) {
caa20d9a 681 /* Too long gap. Apparently sender failed to
1da177e4
LT
682 * restart window, so that we send ACKs quickly.
683 */
463c84b9 684 tcp_incr_quickack(sk);
3ab224be 685 sk_mem_reclaim(sk);
1da177e4
LT
686 }
687 }
463c84b9 688 icsk->icsk_ack.lrcvtime = now;
1da177e4 689
735d3831 690 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
691
692 if (skb->len >= 128)
9e412ba7 693 tcp_grow_window(sk, skb);
1da177e4
LT
694}
695
1da177e4
LT
696/* Called to compute a smoothed rtt estimate. The data fed to this
697 * routine either comes from timestamps, or from segments that were
698 * known _not_ to have been retransmitted [see Karn/Partridge
699 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
700 * piece by Van Jacobson.
701 * NOTE: the next three routines used to be one big routine.
702 * To save cycles in the RFC 1323 implementation it was better to break
703 * it up into three procedures. -- erics
704 */
740b0f18 705static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 706{
6687e988 707 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
708 long m = mrtt_us; /* RTT */
709 u32 srtt = tp->srtt_us;
1da177e4 710
1da177e4
LT
711 /* The following amusing code comes from Jacobson's
712 * article in SIGCOMM '88. Note that rtt and mdev
713 * are scaled versions of rtt and mean deviation.
e905a9ed 714 * This is designed to be as fast as possible
1da177e4
LT
715 * m stands for "measurement".
716 *
717 * On a 1990 paper the rto value is changed to:
718 * RTO = rtt + 4 * mdev
719 *
720 * Funny. This algorithm seems to be very broken.
721 * These formulae increase RTO, when it should be decreased, increase
31f34269 722 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
723 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
724 * does not matter how to _calculate_ it. Seems, it was trap
725 * that VJ failed to avoid. 8)
726 */
4a5ab4e2
ED
727 if (srtt != 0) {
728 m -= (srtt >> 3); /* m is now error in rtt est */
729 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
730 if (m < 0) {
731 m = -m; /* m is now abs(error) */
740b0f18 732 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
733 /* This is similar to one of Eifel findings.
734 * Eifel blocks mdev updates when rtt decreases.
735 * This solution is a bit different: we use finer gain
736 * for mdev in this case (alpha*beta).
737 * Like Eifel it also prevents growth of rto,
738 * but also it limits too fast rto decreases,
739 * happening in pure Eifel.
740 */
741 if (m > 0)
742 m >>= 3;
743 } else {
740b0f18 744 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 745 }
740b0f18
ED
746 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
747 if (tp->mdev_us > tp->mdev_max_us) {
748 tp->mdev_max_us = tp->mdev_us;
749 if (tp->mdev_max_us > tp->rttvar_us)
750 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
751 }
752 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
753 if (tp->mdev_max_us < tp->rttvar_us)
754 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 755 tp->rtt_seq = tp->snd_nxt;
740b0f18 756 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
757 }
758 } else {
759 /* no previous measure. */
4a5ab4e2 760 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
761 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
762 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
763 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
764 tp->rtt_seq = tp->snd_nxt;
765 }
740b0f18 766 tp->srtt_us = max(1U, srtt);
1da177e4
LT
767}
768
95bd09eb
ED
769static void tcp_update_pacing_rate(struct sock *sk)
770{
771 const struct tcp_sock *tp = tcp_sk(sk);
772 u64 rate;
773
774 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
775 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
776
777 /* current rate is (cwnd * mss) / srtt
778 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
779 * In Congestion Avoidance phase, set it to 120 % the current rate.
780 *
781 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
782 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
783 * end of slow start and should slow down.
784 */
785 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
23a7102a 786 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
43e122b0 787 else
c26e91f8 788 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
789
790 rate *= max(tp->snd_cwnd, tp->packets_out);
791
740b0f18
ED
792 if (likely(tp->srtt_us))
793 do_div(rate, tp->srtt_us);
95bd09eb 794
a9da6f29 795 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
ba537427
ED
796 * without any lock. We want to make sure compiler wont store
797 * intermediate values in this location.
798 */
a9da6f29
MR
799 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
800 sk->sk_max_pacing_rate));
95bd09eb
ED
801}
802
1da177e4
LT
803/* Calculate rto without backoff. This is the second half of Van Jacobson's
804 * routine referred to above.
805 */
f7e56a76 806static void tcp_set_rto(struct sock *sk)
1da177e4 807{
463c84b9 808 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
809 /* Old crap is replaced with new one. 8)
810 *
811 * More seriously:
812 * 1. If rtt variance happened to be less 50msec, it is hallucination.
813 * It cannot be less due to utterly erratic ACK generation made
814 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
815 * to do with delayed acks, because at cwnd>2 true delack timeout
816 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 817 * ACKs in some circumstances.
1da177e4 818 */
f1ecd5d9 819 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
820
821 /* 2. Fixups made earlier cannot be right.
822 * If we do not estimate RTO correctly without them,
823 * all the algo is pure shit and should be replaced
caa20d9a 824 * with correct one. It is exactly, which we pretend to do.
1da177e4 825 */
1da177e4 826
ee6aac59
IJ
827 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
828 * guarantees that rto is higher.
829 */
f1ecd5d9 830 tcp_bound_rto(sk);
1da177e4
LT
831}
832
cf533ea5 833__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
834{
835 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
836
22b71c8f 837 if (!cwnd)
442b9635 838 cwnd = TCP_INIT_CWND;
1da177e4
LT
839 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
840}
841
564262c1 842/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
843static void tcp_dsack_seen(struct tcp_sock *tp)
844{
ab56222a 845 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1f255691 846 tp->rack.dsack_seen = 1;
e60402d0
IJ
847}
848
737ff314
YC
849/* It's reordering when higher sequence was delivered (i.e. sacked) before
850 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
851 * distance is approximated in full-mss packet distance ("reordering").
852 */
853static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
854 const int ts)
1da177e4 855{
6687e988 856 struct tcp_sock *tp = tcp_sk(sk);
737ff314
YC
857 const u32 mss = tp->mss_cache;
858 u32 fack, metric;
40b215e5 859
737ff314
YC
860 fack = tcp_highest_sack_seq(tp);
861 if (!before(low_seq, fack))
6f5b24ee
SHY
862 return;
863
737ff314
YC
864 metric = fack - low_seq;
865 if ((metric > tp->reordering * mss) && mss) {
1da177e4 866#if FASTRETRANS_DEBUG > 1
91df42be
JP
867 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
868 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
869 tp->reordering,
737ff314 870 0,
91df42be
JP
871 tp->sacked_out,
872 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 873#endif
737ff314
YC
874 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
875 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1da177e4 876 }
eed530b6 877
4f41b1c5 878 tp->rack.reord = 1;
2d2517ee 879 /* This exciting event is worth to be remembered. 8) */
737ff314
YC
880 NET_INC_STATS(sock_net(sk),
881 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1da177e4
LT
882}
883
006f582c 884/* This must be called before lost_out is incremented */
c8c213f2
IJ
885static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
886{
51456b29 887 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
888 before(TCP_SKB_CB(skb)->seq,
889 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 890 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
891}
892
0682e690
NC
893/* Sum the number of packets on the wire we have marked as lost.
894 * There are two cases we care about here:
895 * a) Packet hasn't been marked lost (nor retransmitted),
896 * and this is the first loss.
897 * b) Packet has been marked both lost and retransmitted,
898 * and this means we think it was lost again.
899 */
900static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
901{
902 __u8 sacked = TCP_SKB_CB(skb)->sacked;
903
904 if (!(sacked & TCPCB_LOST) ||
905 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
906 tp->lost += tcp_skb_pcount(skb);
907}
908
41ea36e3
IJ
909static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
910{
911 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
912 tcp_verify_retransmit_hint(tp, skb);
913
914 tp->lost_out += tcp_skb_pcount(skb);
0682e690 915 tcp_sum_lost(tp, skb);
41ea36e3
IJ
916 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
917 }
918}
919
4f41b1c5 920void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
921{
922 tcp_verify_retransmit_hint(tp, skb);
923
0682e690 924 tcp_sum_lost(tp, skb);
006f582c
IJ
925 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
926 tp->lost_out += tcp_skb_pcount(skb);
927 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
928 }
929}
930
1da177e4
LT
931/* This procedure tags the retransmission queue when SACKs arrive.
932 *
933 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
934 * Packets in queue with these bits set are counted in variables
935 * sacked_out, retrans_out and lost_out, correspondingly.
936 *
937 * Valid combinations are:
938 * Tag InFlight Description
939 * 0 1 - orig segment is in flight.
940 * S 0 - nothing flies, orig reached receiver.
941 * L 0 - nothing flies, orig lost by net.
942 * R 2 - both orig and retransmit are in flight.
943 * L|R 1 - orig is lost, retransmit is in flight.
944 * S|R 1 - orig reached receiver, retrans is still in flight.
945 * (L|S|R is logically valid, it could occur when L|R is sacked,
946 * but it is equivalent to plain S and code short-curcuits it to S.
947 * L|S is logically invalid, it would mean -1 packet in flight 8))
948 *
949 * These 6 states form finite state machine, controlled by the following events:
950 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
951 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 952 * 3. Loss detection event of two flavors:
1da177e4
LT
953 * A. Scoreboard estimator decided the packet is lost.
954 * A'. Reno "three dupacks" marks head of queue lost.
974c1236 955 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
956 * segment was retransmitted.
957 * 4. D-SACK added new rule: D-SACK changes any tag to S.
958 *
959 * It is pleasant to note, that state diagram turns out to be commutative,
960 * so that we are allowed not to be bothered by order of our actions,
961 * when multiple events arrive simultaneously. (see the function below).
962 *
963 * Reordering detection.
964 * --------------------
965 * Reordering metric is maximal distance, which a packet can be displaced
966 * in packet stream. With SACKs we can estimate it:
967 *
968 * 1. SACK fills old hole and the corresponding segment was not
969 * ever retransmitted -> reordering. Alas, we cannot use it
970 * when segment was retransmitted.
971 * 2. The last flaw is solved with D-SACK. D-SACK arrives
972 * for retransmitted and already SACKed segment -> reordering..
973 * Both of these heuristics are not used in Loss state, when we cannot
974 * account for retransmits accurately.
5b3c9882
IJ
975 *
976 * SACK block validation.
977 * ----------------------
978 *
979 * SACK block range validation checks that the received SACK block fits to
980 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
981 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
982 * it means that the receiver is rather inconsistent with itself reporting
983 * SACK reneging when it should advance SND.UNA. Such SACK block this is
984 * perfectly valid, however, in light of RFC2018 which explicitly states
985 * that "SACK block MUST reflect the newest segment. Even if the newest
986 * segment is going to be discarded ...", not that it looks very clever
987 * in case of head skb. Due to potentional receiver driven attacks, we
988 * choose to avoid immediate execution of a walk in write queue due to
989 * reneging and defer head skb's loss recovery to standard loss recovery
990 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
991 *
992 * Implements also blockage to start_seq wrap-around. Problem lies in the
993 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
994 * there's no guarantee that it will be before snd_nxt (n). The problem
995 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
996 * wrap (s_w):
997 *
998 * <- outs wnd -> <- wrapzone ->
999 * u e n u_w e_w s n_w
1000 * | | | | | | |
1001 * |<------------+------+----- TCP seqno space --------------+---------->|
1002 * ...-- <2^31 ->| |<--------...
1003 * ...---- >2^31 ------>| |<--------...
1004 *
1005 * Current code wouldn't be vulnerable but it's better still to discard such
1006 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1007 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1008 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1009 * equal to the ideal case (infinite seqno space without wrap caused issues).
1010 *
1011 * With D-SACK the lower bound is extended to cover sequence space below
1012 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1013 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1014 * for the normal SACK blocks, explained above). But there all simplicity
1015 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1016 * fully below undo_marker they do not affect behavior in anyway and can
1017 * therefore be safely ignored. In rare cases (which are more or less
1018 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1019 * fragmentation and packet reordering past skb's retransmission. To consider
1020 * them correctly, the acceptable range must be extended even more though
1021 * the exact amount is rather hard to quantify. However, tp->max_window can
1022 * be used as an exaggerated estimate.
1da177e4 1023 */
a2a385d6
ED
1024static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1025 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1026{
1027 /* Too far in future, or reversed (interpretation is ambiguous) */
1028 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1029 return false;
5b3c9882
IJ
1030
1031 /* Nasty start_seq wrap-around check (see comments above) */
1032 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1033 return false;
5b3c9882 1034
564262c1 1035 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1036 * start_seq == snd_una is non-sensical (see comments above)
1037 */
1038 if (after(start_seq, tp->snd_una))
a2a385d6 1039 return true;
5b3c9882
IJ
1040
1041 if (!is_dsack || !tp->undo_marker)
a2a385d6 1042 return false;
5b3c9882
IJ
1043
1044 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1045 if (after(end_seq, tp->snd_una))
a2a385d6 1046 return false;
5b3c9882
IJ
1047
1048 if (!before(start_seq, tp->undo_marker))
a2a385d6 1049 return true;
5b3c9882
IJ
1050
1051 /* Too old */
1052 if (!after(end_seq, tp->undo_marker))
a2a385d6 1053 return false;
5b3c9882
IJ
1054
1055 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1056 * start_seq < undo_marker and end_seq >= undo_marker.
1057 */
1058 return !before(start_seq, end_seq - tp->max_window);
1059}
1060
a2a385d6
ED
1061static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1062 struct tcp_sack_block_wire *sp, int num_sacks,
1063 u32 prior_snd_una)
d06e021d 1064{
1ed83465 1065 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1066 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1067 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1068 bool dup_sack = false;
d06e021d
DM
1069
1070 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1071 dup_sack = true;
e60402d0 1072 tcp_dsack_seen(tp);
c10d9310 1073 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1074 } else if (num_sacks > 1) {
d3e2ce3b
HH
1075 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1076 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1077
1078 if (!after(end_seq_0, end_seq_1) &&
1079 !before(start_seq_0, start_seq_1)) {
a2a385d6 1080 dup_sack = true;
e60402d0 1081 tcp_dsack_seen(tp);
c10d9310 1082 NET_INC_STATS(sock_net(sk),
de0744af 1083 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1084 }
1085 }
1086
1087 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1088 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1089 !after(end_seq_0, prior_snd_una) &&
1090 after(end_seq_0, tp->undo_marker))
1091 tp->undo_retrans--;
1092
1093 return dup_sack;
1094}
1095
a1197f5a 1096struct tcp_sacktag_state {
737ff314 1097 u32 reord;
31231a8a
KKJ
1098 /* Timestamps for earliest and latest never-retransmitted segment
1099 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1100 * but congestion control should still get an accurate delay signal.
1101 */
9a568de4
ED
1102 u64 first_sackt;
1103 u64 last_sackt;
b9f64820 1104 struct rate_sample *rate;
740b0f18 1105 int flag;
75c119af 1106 unsigned int mss_now;
a1197f5a
IJ
1107};
1108
d1935942
IJ
1109/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1110 * the incoming SACK may not exactly match but we can find smaller MSS
1111 * aligned portion of it that matches. Therefore we might need to fragment
1112 * which may fail and creates some hassle (caller must handle error case
1113 * returns).
832d11c5
IJ
1114 *
1115 * FIXME: this could be merged to shift decision code
d1935942 1116 */
0f79efdc 1117static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1118 u32 start_seq, u32 end_seq)
d1935942 1119{
a2a385d6
ED
1120 int err;
1121 bool in_sack;
d1935942 1122 unsigned int pkt_len;
adb92db8 1123 unsigned int mss;
d1935942
IJ
1124
1125 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1126 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1127
1128 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1129 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1130 mss = tcp_skb_mss(skb);
d1935942
IJ
1131 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1132
adb92db8 1133 if (!in_sack) {
d1935942 1134 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1135 if (pkt_len < mss)
1136 pkt_len = mss;
1137 } else {
d1935942 1138 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1139 if (pkt_len < mss)
1140 return -EINVAL;
1141 }
1142
1143 /* Round if necessary so that SACKs cover only full MSSes
1144 * and/or the remaining small portion (if present)
1145 */
1146 if (pkt_len > mss) {
1147 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1148 if (!in_sack && new_len < pkt_len)
adb92db8 1149 new_len += mss;
adb92db8
IJ
1150 pkt_len = new_len;
1151 }
b451e5d2
YC
1152
1153 if (pkt_len >= skb->len && !in_sack)
1154 return 0;
1155
75c119af
ED
1156 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1157 pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1158 if (err < 0)
1159 return err;
1160 }
1161
1162 return in_sack;
1163}
1164
cc9a672e
NC
1165/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1166static u8 tcp_sacktag_one(struct sock *sk,
1167 struct tcp_sacktag_state *state, u8 sacked,
1168 u32 start_seq, u32 end_seq,
740b0f18 1169 int dup_sack, int pcount,
9a568de4 1170 u64 xmit_time)
9e10c47c 1171{
6859d494 1172 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c
IJ
1173
1174 /* Account D-SACK for retransmitted packet. */
1175 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1176 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1177 after(end_seq, tp->undo_marker))
9e10c47c 1178 tp->undo_retrans--;
737ff314
YC
1179 if ((sacked & TCPCB_SACKED_ACKED) &&
1180 before(start_seq, state->reord))
1181 state->reord = start_seq;
9e10c47c
IJ
1182 }
1183
1184 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1185 if (!after(end_seq, tp->snd_una))
a1197f5a 1186 return sacked;
9e10c47c
IJ
1187
1188 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1189 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1190
9e10c47c
IJ
1191 if (sacked & TCPCB_SACKED_RETRANS) {
1192 /* If the segment is not tagged as lost,
1193 * we do not clear RETRANS, believing
1194 * that retransmission is still in flight.
1195 */
1196 if (sacked & TCPCB_LOST) {
a1197f5a 1197 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1198 tp->lost_out -= pcount;
1199 tp->retrans_out -= pcount;
9e10c47c
IJ
1200 }
1201 } else {
1202 if (!(sacked & TCPCB_RETRANS)) {
1203 /* New sack for not retransmitted frame,
1204 * which was in hole. It is reordering.
1205 */
cc9a672e 1206 if (before(start_seq,
737ff314
YC
1207 tcp_highest_sack_seq(tp)) &&
1208 before(start_seq, state->reord))
1209 state->reord = start_seq;
1210
e33099f9
YC
1211 if (!after(end_seq, tp->high_seq))
1212 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1213 if (state->first_sackt == 0)
1214 state->first_sackt = xmit_time;
1215 state->last_sackt = xmit_time;
9e10c47c
IJ
1216 }
1217
1218 if (sacked & TCPCB_LOST) {
a1197f5a 1219 sacked &= ~TCPCB_LOST;
f58b22fd 1220 tp->lost_out -= pcount;
9e10c47c
IJ
1221 }
1222 }
1223
a1197f5a
IJ
1224 sacked |= TCPCB_SACKED_ACKED;
1225 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1226 tp->sacked_out += pcount;
ddf1af6f 1227 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1228
9e10c47c 1229 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
713bafea 1230 if (tp->lost_skb_hint &&
cc9a672e 1231 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1232 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1233 }
1234
1235 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1236 * frames and clear it. undo_retrans is decreased above, L|R frames
1237 * are accounted above as well.
1238 */
a1197f5a
IJ
1239 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1240 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1241 tp->retrans_out -= pcount;
9e10c47c
IJ
1242 }
1243
a1197f5a 1244 return sacked;
9e10c47c
IJ
1245}
1246
daef52ba
NC
1247/* Shift newly-SACKed bytes from this skb to the immediately previous
1248 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1249 */
f3319816
ED
1250static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1251 struct sk_buff *skb,
a2a385d6
ED
1252 struct tcp_sacktag_state *state,
1253 unsigned int pcount, int shifted, int mss,
1254 bool dup_sack)
832d11c5
IJ
1255{
1256 struct tcp_sock *tp = tcp_sk(sk);
daef52ba
NC
1257 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1258 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1259
1260 BUG_ON(!pcount);
1261
4c90d3b3
NC
1262 /* Adjust counters and hints for the newly sacked sequence
1263 * range but discard the return value since prev is already
1264 * marked. We must tag the range first because the seq
1265 * advancement below implicitly advances
1266 * tcp_highest_sack_seq() when skb is highest_sack.
1267 */
1268 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1269 start_seq, end_seq, dup_sack, pcount,
9a568de4 1270 skb->skb_mstamp);
b9f64820 1271 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1272
1273 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1274 tp->lost_cnt_hint += pcount;
1275
832d11c5
IJ
1276 TCP_SKB_CB(prev)->end_seq += shifted;
1277 TCP_SKB_CB(skb)->seq += shifted;
1278
cd7d8498
ED
1279 tcp_skb_pcount_add(prev, pcount);
1280 BUG_ON(tcp_skb_pcount(skb) < pcount);
1281 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1282
1283 /* When we're adding to gso_segs == 1, gso_size will be zero,
1284 * in theory this shouldn't be necessary but as long as DSACK
1285 * code can come after this skb later on it's better to keep
1286 * setting gso_size to something.
1287 */
f69ad292
ED
1288 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1289 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1290
1291 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1292 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1293 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1294
832d11c5
IJ
1295 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1296 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1297
832d11c5
IJ
1298 if (skb->len > 0) {
1299 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1300 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1301 return false;
832d11c5
IJ
1302 }
1303
1304 /* Whole SKB was eaten :-) */
1305
92ee76b6
IJ
1306 if (skb == tp->retransmit_skb_hint)
1307 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1308 if (skb == tp->lost_skb_hint) {
1309 tp->lost_skb_hint = prev;
1310 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1311 }
1312
5e8a402f 1313 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1314 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1315 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1316 TCP_SKB_CB(prev)->end_seq++;
1317
832d11c5
IJ
1318 if (skb == tcp_highest_sack(sk))
1319 tcp_advance_highest_sack(sk, skb);
1320
cfea5a68 1321 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1322 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1323 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1324
75c119af 1325 tcp_rtx_queue_unlink_and_free(skb, sk);
832d11c5 1326
c10d9310 1327 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1328
a2a385d6 1329 return true;
832d11c5
IJ
1330}
1331
1332/* I wish gso_size would have a bit more sane initialization than
1333 * something-or-zero which complicates things
1334 */
cf533ea5 1335static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1336{
775ffabf 1337 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1338}
1339
1340/* Shifting pages past head area doesn't work */
cf533ea5 1341static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1342{
1343 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1344}
1345
1346/* Try collapsing SACK blocks spanning across multiple skbs to a single
1347 * skb.
1348 */
1349static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1350 struct tcp_sacktag_state *state,
832d11c5 1351 u32 start_seq, u32 end_seq,
a2a385d6 1352 bool dup_sack)
832d11c5
IJ
1353{
1354 struct tcp_sock *tp = tcp_sk(sk);
1355 struct sk_buff *prev;
1356 int mss;
1357 int pcount = 0;
1358 int len;
1359 int in_sack;
1360
832d11c5
IJ
1361 /* Normally R but no L won't result in plain S */
1362 if (!dup_sack &&
9969ca5f 1363 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1364 goto fallback;
1365 if (!skb_can_shift(skb))
1366 goto fallback;
1367 /* This frame is about to be dropped (was ACKed). */
1368 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1369 goto fallback;
1370
1371 /* Can only happen with delayed DSACK + discard craziness */
75c119af
ED
1372 prev = skb_rb_prev(skb);
1373 if (!prev)
832d11c5 1374 goto fallback;
832d11c5
IJ
1375
1376 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1377 goto fallback;
1378
a643b5d4
MKL
1379 if (!tcp_skb_can_collapse_to(prev))
1380 goto fallback;
1381
832d11c5
IJ
1382 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1383 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1384
1385 if (in_sack) {
1386 len = skb->len;
1387 pcount = tcp_skb_pcount(skb);
775ffabf 1388 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1389
1390 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1391 * drop this restriction as unnecessary
1392 */
775ffabf 1393 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1394 goto fallback;
1395 } else {
1396 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1397 goto noop;
1398 /* CHECKME: This is non-MSS split case only?, this will
1399 * cause skipped skbs due to advancing loop btw, original
1400 * has that feature too
1401 */
1402 if (tcp_skb_pcount(skb) <= 1)
1403 goto noop;
1404
1405 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1406 if (!in_sack) {
1407 /* TODO: head merge to next could be attempted here
1408 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1409 * though it might not be worth of the additional hassle
1410 *
1411 * ...we can probably just fallback to what was done
1412 * previously. We could try merging non-SACKed ones
1413 * as well but it probably isn't going to buy off
1414 * because later SACKs might again split them, and
1415 * it would make skb timestamp tracking considerably
1416 * harder problem.
1417 */
1418 goto fallback;
1419 }
1420
1421 len = end_seq - TCP_SKB_CB(skb)->seq;
1422 BUG_ON(len < 0);
1423 BUG_ON(len > skb->len);
1424
1425 /* MSS boundaries should be honoured or else pcount will
1426 * severely break even though it makes things bit trickier.
1427 * Optimize common case to avoid most of the divides
1428 */
1429 mss = tcp_skb_mss(skb);
1430
1431 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1432 * drop this restriction as unnecessary
1433 */
775ffabf 1434 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1435 goto fallback;
1436
1437 if (len == mss) {
1438 pcount = 1;
1439 } else if (len < mss) {
1440 goto noop;
1441 } else {
1442 pcount = len / mss;
1443 len = pcount * mss;
1444 }
1445 }
1446
4648dc97
NC
1447 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1448 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1449 goto fallback;
1450
832d11c5
IJ
1451 if (!skb_shift(prev, skb, len))
1452 goto fallback;
f3319816 1453 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1454 goto out;
1455
1456 /* Hole filled allows collapsing with the next as well, this is very
1457 * useful when hole on every nth skb pattern happens
1458 */
75c119af
ED
1459 skb = skb_rb_next(prev);
1460 if (!skb)
832d11c5 1461 goto out;
832d11c5 1462
f0bc52f3 1463 if (!skb_can_shift(skb) ||
f0bc52f3 1464 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1465 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1466 goto out;
1467
1468 len = skb->len;
1469 if (skb_shift(prev, skb, len)) {
1470 pcount += tcp_skb_pcount(skb);
f3319816
ED
1471 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1472 len, mss, 0);
832d11c5
IJ
1473 }
1474
1475out:
832d11c5
IJ
1476 return prev;
1477
1478noop:
1479 return skb;
1480
1481fallback:
c10d9310 1482 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1483 return NULL;
1484}
1485
68f8353b
IJ
1486static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1487 struct tcp_sack_block *next_dup,
a1197f5a 1488 struct tcp_sacktag_state *state,
68f8353b 1489 u32 start_seq, u32 end_seq,
a2a385d6 1490 bool dup_sack_in)
68f8353b 1491{
832d11c5
IJ
1492 struct tcp_sock *tp = tcp_sk(sk);
1493 struct sk_buff *tmp;
1494
75c119af 1495 skb_rbtree_walk_from(skb) {
68f8353b 1496 int in_sack = 0;
a2a385d6 1497 bool dup_sack = dup_sack_in;
68f8353b 1498
68f8353b
IJ
1499 /* queue is in-order => we can short-circuit the walk early */
1500 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1501 break;
1502
00db4124 1503 if (next_dup &&
68f8353b
IJ
1504 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1505 in_sack = tcp_match_skb_to_sack(sk, skb,
1506 next_dup->start_seq,
1507 next_dup->end_seq);
1508 if (in_sack > 0)
a2a385d6 1509 dup_sack = true;
68f8353b
IJ
1510 }
1511
832d11c5
IJ
1512 /* skb reference here is a bit tricky to get right, since
1513 * shifting can eat and free both this skb and the next,
1514 * so not even _safe variant of the loop is enough.
1515 */
1516 if (in_sack <= 0) {
a1197f5a
IJ
1517 tmp = tcp_shift_skb_data(sk, skb, state,
1518 start_seq, end_seq, dup_sack);
00db4124 1519 if (tmp) {
832d11c5
IJ
1520 if (tmp != skb) {
1521 skb = tmp;
1522 continue;
1523 }
1524
1525 in_sack = 0;
1526 } else {
1527 in_sack = tcp_match_skb_to_sack(sk, skb,
1528 start_seq,
1529 end_seq);
1530 }
1531 }
1532
68f8353b
IJ
1533 if (unlikely(in_sack < 0))
1534 break;
1535
832d11c5 1536 if (in_sack) {
cc9a672e
NC
1537 TCP_SKB_CB(skb)->sacked =
1538 tcp_sacktag_one(sk,
1539 state,
1540 TCP_SKB_CB(skb)->sacked,
1541 TCP_SKB_CB(skb)->seq,
1542 TCP_SKB_CB(skb)->end_seq,
1543 dup_sack,
59c9af42 1544 tcp_skb_pcount(skb),
9a568de4 1545 skb->skb_mstamp);
b9f64820 1546 tcp_rate_skb_delivered(sk, skb, state->rate);
e2080072
ED
1547 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1548 list_del_init(&skb->tcp_tsorted_anchor);
68f8353b 1549
832d11c5
IJ
1550 if (!before(TCP_SKB_CB(skb)->seq,
1551 tcp_highest_sack_seq(tp)))
1552 tcp_advance_highest_sack(sk, skb);
1553 }
68f8353b
IJ
1554 }
1555 return skb;
1556}
1557
75c119af
ED
1558static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1559 struct tcp_sacktag_state *state,
1560 u32 seq)
1561{
1562 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1563 struct sk_buff *skb;
75c119af
ED
1564
1565 while (*p) {
1566 parent = *p;
1567 skb = rb_to_skb(parent);
1568 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1569 p = &parent->rb_left;
1570 continue;
1571 }
1572 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1573 p = &parent->rb_right;
1574 continue;
1575 }
75c119af
ED
1576 return skb;
1577 }
1578 return NULL;
1579}
1580
68f8353b 1581static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1582 struct tcp_sacktag_state *state,
1583 u32 skip_to_seq)
68f8353b 1584{
75c119af
ED
1585 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1586 return skb;
d152a7d8 1587
75c119af 1588 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
68f8353b
IJ
1589}
1590
1591static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1592 struct sock *sk,
1593 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1594 struct tcp_sacktag_state *state,
1595 u32 skip_to_seq)
68f8353b 1596{
51456b29 1597 if (!next_dup)
68f8353b
IJ
1598 return skb;
1599
1600 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1601 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1602 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1603 next_dup->start_seq, next_dup->end_seq,
1604 1);
68f8353b
IJ
1605 }
1606
1607 return skb;
1608}
1609
cf533ea5 1610static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1611{
1612 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1613}
1614
1da177e4 1615static int
cf533ea5 1616tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1617 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1618{
1619 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1620 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1621 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1622 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1623 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1624 struct tcp_sack_block *cache;
1625 struct sk_buff *skb;
4389dded 1626 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1627 int used_sacks;
a2a385d6 1628 bool found_dup_sack = false;
68f8353b 1629 int i, j;
fda03fbb 1630 int first_sack_index;
1da177e4 1631
196da974 1632 state->flag = 0;
737ff314 1633 state->reord = tp->snd_nxt;
a1197f5a 1634
737ff314 1635 if (!tp->sacked_out)
6859d494 1636 tcp_highest_sack_reset(sk);
1da177e4 1637
1ed83465 1638 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1639 num_sacks, prior_snd_una);
b9f64820 1640 if (found_dup_sack) {
196da974 1641 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1642 tp->delivered++; /* A spurious retransmission is delivered */
1643 }
6f74651a
BE
1644
1645 /* Eliminate too old ACKs, but take into
1646 * account more or less fresh ones, they can
1647 * contain valid SACK info.
1648 */
1649 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1650 return 0;
1651