tcp_bbr: reset full pipe detection on loss recovery undo
[linux-2.6-block.git] / net / ipv4 / tcp_input.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
02c30a84 9 * Authors: Ross Biro
1da177e4
LT
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 44 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
e905a9ed 52 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 53 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 54 * work without delayed acks.
1da177e4
LT
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
63 */
64
afd46503
JP
65#define pr_fmt(fmt) "TCP: " fmt
66
1da177e4 67#include <linux/mm.h>
5a0e3ad6 68#include <linux/slab.h>
1da177e4
LT
69#include <linux/module.h>
70#include <linux/sysctl.h>
a0bffffc 71#include <linux/kernel.h>
ad971f61 72#include <linux/prefetch.h>
5ffc02a1 73#include <net/dst.h>
1da177e4
LT
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
e1c8a607 78#include <linux/errqueue.h>
5941521c 79#include <trace/events/tcp.h>
60e2a778 80#include <linux/static_key.h>
1da177e4 81
ab32ea5d 82int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
1da177e4 83
1da177e4
LT
84#define FLAG_DATA 0x01 /* Incoming frame contained data. */
85#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
86#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
87#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
88#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
89#define FLAG_DATA_SACKED 0x20 /* New SACK. */
90#define FLAG_ECE 0x40 /* ECE in this ACK */
291a00d1 91#define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
31770e34 92#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
e33099f9 93#define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
2e605294 94#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
564262c1 95#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
df92c839 96#define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
cadbd031 97#define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
12fb3dd9 98#define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
d0e1a1b5 99#define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
1da177e4
LT
100
101#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
102#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
d09b9e60 103#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
1da177e4
LT
104#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
105
1da177e4 106#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 107#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 108
e662ca40
YC
109#define REXMIT_NONE 0 /* no loss recovery to do */
110#define REXMIT_LOST 1 /* retransmit packets marked lost */
111#define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
112
0b9aefea
MRL
113static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
114 unsigned int len)
dcb17d22
MRL
115{
116 static bool __once __read_mostly;
117
118 if (!__once) {
119 struct net_device *dev;
120
121 __once = true;
122
123 rcu_read_lock();
124 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
0b9aefea
MRL
125 if (!dev || len >= dev->mtu)
126 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
127 dev ? dev->name : "Unknown driver");
dcb17d22
MRL
128 rcu_read_unlock();
129 }
130}
131
e905a9ed 132/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 133 * real world.
e905a9ed 134 */
056834d9 135static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
1da177e4 136{
463c84b9 137 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 138 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 139 unsigned int len;
1da177e4 140
e905a9ed 141 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
142
143 /* skb->len may jitter because of SACKs, even if peer
144 * sends good full-sized frames.
145 */
056834d9 146 len = skb_shinfo(skb)->gso_size ? : skb->len;
463c84b9 147 if (len >= icsk->icsk_ack.rcv_mss) {
dcb17d22
MRL
148 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
149 tcp_sk(sk)->advmss);
0b9aefea
MRL
150 /* Account for possibly-removed options */
151 if (unlikely(len > icsk->icsk_ack.rcv_mss +
152 MAX_TCP_OPTION_SPACE))
153 tcp_gro_dev_warn(sk, skb, len);
1da177e4
LT
154 } else {
155 /* Otherwise, we make more careful check taking into account,
156 * that SACKs block is variable.
157 *
158 * "len" is invariant segment length, including TCP header.
159 */
9c70220b 160 len += skb->data - skb_transport_header(skb);
bee7ca9e 161 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
1da177e4
LT
162 /* If PSH is not set, packet should be
163 * full sized, provided peer TCP is not badly broken.
164 * This observation (if it is correct 8)) allows
165 * to handle super-low mtu links fairly.
166 */
167 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 168 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
169 /* Subtract also invariant (if peer is RFC compliant),
170 * tcp header plus fixed timestamp option length.
171 * Resulting "len" is MSS free of SACK jitter.
172 */
463c84b9
ACM
173 len -= tcp_sk(sk)->tcp_header_len;
174 icsk->icsk_ack.last_seg_size = len;
1da177e4 175 if (len == lss) {
463c84b9 176 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
177 return;
178 }
179 }
1ef9696c
AK
180 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
181 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
183 }
184}
185
463c84b9 186static void tcp_incr_quickack(struct sock *sk)
1da177e4 187{
463c84b9 188 struct inet_connection_sock *icsk = inet_csk(sk);
95c96174 189 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4 190
056834d9
IJ
191 if (quickacks == 0)
192 quickacks = 2;
463c84b9
ACM
193 if (quickacks > icsk->icsk_ack.quick)
194 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
195}
196
1b9f4092 197static void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 198{
463c84b9
ACM
199 struct inet_connection_sock *icsk = inet_csk(sk);
200 tcp_incr_quickack(sk);
201 icsk->icsk_ack.pingpong = 0;
202 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
203}
204
205/* Send ACKs quickly, if "quick" count is not exhausted
206 * and the session is not interactive.
207 */
208
2251ae46 209static bool tcp_in_quickack_mode(struct sock *sk)
1da177e4 210{
463c84b9 211 const struct inet_connection_sock *icsk = inet_csk(sk);
2251ae46 212 const struct dst_entry *dst = __sk_dst_get(sk);
a2a385d6 213
2251ae46
JM
214 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
215 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
1da177e4
LT
216}
217
735d3831 218static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
bdf1ee5d 219{
056834d9 220 if (tp->ecn_flags & TCP_ECN_OK)
bdf1ee5d
IJ
221 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
222}
223
735d3831 224static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d
IJ
225{
226 if (tcp_hdr(skb)->cwr)
227 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
228}
229
735d3831 230static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
bdf1ee5d
IJ
231{
232 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
233}
234
735d3831 235static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
bdf1ee5d 236{
b82d1bb4 237 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
7a269ffa 238 case INET_ECN_NOT_ECT:
bdf1ee5d 239 /* Funny extension: if ECT is not set on a segment,
7a269ffa
ED
240 * and we already seen ECT on a previous segment,
241 * it is probably a retransmit.
242 */
243 if (tp->ecn_flags & TCP_ECN_SEEN)
bdf1ee5d 244 tcp_enter_quickack_mode((struct sock *)tp);
7a269ffa
ED
245 break;
246 case INET_ECN_CE:
9890092e
FW
247 if (tcp_ca_needs_ecn((struct sock *)tp))
248 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
249
aae06bf5
ED
250 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
251 /* Better not delay acks, sender can have a very low cwnd */
252 tcp_enter_quickack_mode((struct sock *)tp);
253 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
254 }
9890092e
FW
255 tp->ecn_flags |= TCP_ECN_SEEN;
256 break;
7a269ffa 257 default:
9890092e
FW
258 if (tcp_ca_needs_ecn((struct sock *)tp))
259 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
7a269ffa 260 tp->ecn_flags |= TCP_ECN_SEEN;
9890092e 261 break;
bdf1ee5d
IJ
262 }
263}
264
735d3831
FW
265static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
266{
267 if (tp->ecn_flags & TCP_ECN_OK)
268 __tcp_ecn_check_ce(tp, skb);
269}
270
271static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 272{
056834d9 273 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
bdf1ee5d
IJ
274 tp->ecn_flags &= ~TCP_ECN_OK;
275}
276
735d3831 277static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 278{
056834d9 279 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
bdf1ee5d
IJ
280 tp->ecn_flags &= ~TCP_ECN_OK;
281}
282
735d3831 283static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
bdf1ee5d 284{
056834d9 285 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
a2a385d6
ED
286 return true;
287 return false;
bdf1ee5d
IJ
288}
289
1da177e4
LT
290/* Buffer size and advertised window tuning.
291 *
292 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
293 */
294
6ae70532 295static void tcp_sndbuf_expand(struct sock *sk)
1da177e4 296{
6ae70532 297 const struct tcp_sock *tp = tcp_sk(sk);
77bfc174 298 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
6ae70532
ED
299 int sndmem, per_mss;
300 u32 nr_segs;
301
302 /* Worst case is non GSO/TSO : each frame consumes one skb
303 * and skb->head is kmalloced using power of two area of memory
304 */
305 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
306 MAX_TCP_HEADER +
307 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
308
309 per_mss = roundup_pow_of_two(per_mss) +
310 SKB_DATA_ALIGN(sizeof(struct sk_buff));
311
312 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
313 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
314
315 /* Fast Recovery (RFC 5681 3.2) :
316 * Cubic needs 1.7 factor, rounded to 2 to include
317 * extra cushion (application might react slowly to POLLOUT)
318 */
77bfc174
YC
319 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
320 sndmem *= nr_segs * per_mss;
1da177e4 321
06a59ecb 322 if (sk->sk_sndbuf < sndmem)
356d1833 323 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
1da177e4
LT
324}
325
326/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
327 *
328 * All tcp_full_space() is split to two parts: "network" buffer, allocated
329 * forward and advertised in receiver window (tp->rcv_wnd) and
330 * "application buffer", required to isolate scheduling/application
331 * latencies from network.
332 * window_clamp is maximal advertised window. It can be less than
333 * tcp_full_space(), in this case tcp_full_space() - window_clamp
334 * is reserved for "application" buffer. The less window_clamp is
335 * the smoother our behaviour from viewpoint of network, but the lower
336 * throughput and the higher sensitivity of the connection to losses. 8)
337 *
338 * rcv_ssthresh is more strict window_clamp used at "slow start"
339 * phase to predict further behaviour of this connection.
340 * It is used for two goals:
341 * - to enforce header prediction at sender, even when application
342 * requires some significant "application buffer". It is check #1.
343 * - to prevent pruning of receive queue because of misprediction
344 * of receiver window. Check #2.
345 *
346 * The scheme does not work when sender sends good segments opening
caa20d9a 347 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
348 * in common situations. Otherwise, we have to rely on queue collapsing.
349 */
350
351/* Slow part of check#2. */
9e412ba7 352static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 353{
9e412ba7 354 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 355 /* Optimize this! */
94f0893e 356 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
356d1833 357 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1da177e4
LT
358
359 while (tp->rcv_ssthresh <= window) {
360 if (truesize <= skb->len)
463c84b9 361 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
362
363 truesize >>= 1;
364 window >>= 1;
365 }
366 return 0;
367}
368
cf533ea5 369static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
1da177e4 370{
9e412ba7
IJ
371 struct tcp_sock *tp = tcp_sk(sk);
372
1da177e4
LT
373 /* Check #1 */
374 if (tp->rcv_ssthresh < tp->window_clamp &&
375 (int)tp->rcv_ssthresh < tcp_space(sk) &&
b8da51eb 376 !tcp_under_memory_pressure(sk)) {
1da177e4
LT
377 int incr;
378
379 /* Check #2. Increase window, if skb with such overhead
380 * will fit to rcvbuf in future.
381 */
94f0893e 382 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
056834d9 383 incr = 2 * tp->advmss;
1da177e4 384 else
9e412ba7 385 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
386
387 if (incr) {
4d846f02 388 incr = max_t(int, incr, 2 * skb->len);
056834d9
IJ
389 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
390 tp->window_clamp);
463c84b9 391 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
392 }
393 }
394}
395
396/* 3. Tuning rcvbuf, when connection enters established state. */
1da177e4
LT
397static void tcp_fixup_rcvbuf(struct sock *sk)
398{
e9266a02 399 u32 mss = tcp_sk(sk)->advmss;
e9266a02 400 int rcvmem;
1da177e4 401
85f16525
YC
402 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
403 tcp_default_init_rwnd(mss);
e9266a02 404
b0983d3c
ED
405 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
406 * Allow enough cushion so that sender is not limited by our window
407 */
4540c0cf 408 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
b0983d3c
ED
409 rcvmem <<= 2;
410
e9266a02 411 if (sk->sk_rcvbuf < rcvmem)
356d1833 412 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
1da177e4
LT
413}
414
caa20d9a 415/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
416 * established state.
417 */
10467163 418void tcp_init_buffer_space(struct sock *sk)
1da177e4 419{
0c12654a 420 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
1da177e4
LT
421 struct tcp_sock *tp = tcp_sk(sk);
422 int maxwin;
423
424 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
425 tcp_fixup_rcvbuf(sk);
426 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
6ae70532 427 tcp_sndbuf_expand(sk);
1da177e4
LT
428
429 tp->rcvq_space.space = tp->rcv_wnd;
9a568de4 430 tcp_mstamp_refresh(tp);
645f4c6f 431 tp->rcvq_space.time = tp->tcp_mstamp;
b0983d3c 432 tp->rcvq_space.seq = tp->copied_seq;
1da177e4
LT
433
434 maxwin = tcp_full_space(sk);
435
436 if (tp->window_clamp >= maxwin) {
437 tp->window_clamp = maxwin;
438
0c12654a 439 if (tcp_app_win && maxwin > 4 * tp->advmss)
1da177e4 440 tp->window_clamp = max(maxwin -
0c12654a 441 (maxwin >> tcp_app_win),
1da177e4
LT
442 4 * tp->advmss);
443 }
444
445 /* Force reservation of one segment. */
0c12654a 446 if (tcp_app_win &&
1da177e4
LT
447 tp->window_clamp > 2 * tp->advmss &&
448 tp->window_clamp + tp->advmss > maxwin)
449 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
450
451 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
c2203cf7 452 tp->snd_cwnd_stamp = tcp_jiffies32;
1da177e4
LT
453}
454
1da177e4 455/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 456static void tcp_clamp_window(struct sock *sk)
1da177e4 457{
9e412ba7 458 struct tcp_sock *tp = tcp_sk(sk);
6687e988 459 struct inet_connection_sock *icsk = inet_csk(sk);
356d1833 460 struct net *net = sock_net(sk);
1da177e4 461
6687e988 462 icsk->icsk_ack.quick = 0;
1da177e4 463
356d1833 464 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
326f36e9 465 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
b8da51eb 466 !tcp_under_memory_pressure(sk) &&
180d8cd9 467 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
326f36e9 468 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
356d1833 469 net->ipv4.sysctl_tcp_rmem[2]);
1da177e4 470 }
326f36e9 471 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
056834d9 472 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
1da177e4
LT
473}
474
40efc6fa
SH
475/* Initialize RCV_MSS value.
476 * RCV_MSS is an our guess about MSS used by the peer.
477 * We haven't any direct information about the MSS.
478 * It's better to underestimate the RCV_MSS rather than overestimate.
479 * Overestimations make us ACKing less frequently than needed.
480 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
481 */
482void tcp_initialize_rcv_mss(struct sock *sk)
483{
cf533ea5 484 const struct tcp_sock *tp = tcp_sk(sk);
40efc6fa
SH
485 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
486
056834d9 487 hint = min(hint, tp->rcv_wnd / 2);
bee7ca9e 488 hint = min(hint, TCP_MSS_DEFAULT);
40efc6fa
SH
489 hint = max(hint, TCP_MIN_MSS);
490
491 inet_csk(sk)->icsk_ack.rcv_mss = hint;
492}
4bc2f18b 493EXPORT_SYMBOL(tcp_initialize_rcv_mss);
40efc6fa 494
1da177e4
LT
495/* Receiver "autotuning" code.
496 *
497 * The algorithm for RTT estimation w/o timestamps is based on
498 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
631dd1a8 499 * <http://public.lanl.gov/radiant/pubs.html#DRS>
1da177e4
LT
500 *
501 * More detail on this code can be found at
631dd1a8 502 * <http://staff.psc.edu/jheffner/>,
1da177e4
LT
503 * though this reference is out of date. A new paper
504 * is pending.
505 */
506static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
507{
645f4c6f 508 u32 new_sample = tp->rcv_rtt_est.rtt_us;
1da177e4
LT
509 long m = sample;
510
511 if (m == 0)
512 m = 1;
513
514 if (new_sample != 0) {
515 /* If we sample in larger samples in the non-timestamp
516 * case, we could grossly overestimate the RTT especially
517 * with chatty applications or bulk transfer apps which
518 * are stalled on filesystem I/O.
519 *
520 * Also, since we are only going for a minimum in the
31f34269 521 * non-timestamp case, we do not smooth things out
caa20d9a 522 * else with timestamps disabled convergence takes too
1da177e4
LT
523 * long.
524 */
525 if (!win_dep) {
526 m -= (new_sample >> 3);
527 new_sample += m;
18a223e0
NC
528 } else {
529 m <<= 3;
530 if (m < new_sample)
531 new_sample = m;
532 }
1da177e4 533 } else {
caa20d9a 534 /* No previous measure. */
1da177e4
LT
535 new_sample = m << 3;
536 }
537
645f4c6f 538 tp->rcv_rtt_est.rtt_us = new_sample;
1da177e4
LT
539}
540
541static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
542{
645f4c6f
ED
543 u32 delta_us;
544
9a568de4 545 if (tp->rcv_rtt_est.time == 0)
1da177e4
LT
546 goto new_measure;
547 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
548 return;
9a568de4 549 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
645f4c6f 550 tcp_rcv_rtt_update(tp, delta_us, 1);
1da177e4
LT
551
552new_measure:
553 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
645f4c6f 554 tp->rcv_rtt_est.time = tp->tcp_mstamp;
1da177e4
LT
555}
556
056834d9
IJ
557static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
558 const struct sk_buff *skb)
1da177e4 559{
463c84b9 560 struct tcp_sock *tp = tcp_sk(sk);
9a568de4 561
1da177e4
LT
562 if (tp->rx_opt.rcv_tsecr &&
563 (TCP_SKB_CB(skb)->end_seq -
9a568de4
ED
564 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
565 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
566 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
567
568 tcp_rcv_rtt_update(tp, delta_us, 0);
569 }
1da177e4
LT
570}
571
572/*
573 * This function should be called every time data is copied to user space.
574 * It calculates the appropriate TCP receive buffer space.
575 */
576void tcp_rcv_space_adjust(struct sock *sk)
577{
578 struct tcp_sock *tp = tcp_sk(sk);
579 int time;
b0983d3c 580 int copied;
e905a9ed 581
86323850 582 tcp_mstamp_refresh(tp);
9a568de4 583 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
645f4c6f 584 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
1da177e4 585 return;
e905a9ed 586
b0983d3c
ED
587 /* Number of bytes copied to user in last RTT */
588 copied = tp->copied_seq - tp->rcvq_space.seq;
589 if (copied <= tp->rcvq_space.space)
590 goto new_measure;
591
592 /* A bit of theory :
593 * copied = bytes received in previous RTT, our base window
594 * To cope with packet losses, we need a 2x factor
595 * To cope with slow start, and sender growing its cwin by 100 %
596 * every RTT, we need a 4x factor, because the ACK we are sending
597 * now is for the next RTT, not the current one :
598 * <prev RTT . ><current RTT .. ><next RTT .... >
599 */
600
4540c0cf 601 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
b0983d3c
ED
602 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
603 int rcvwin, rcvmem, rcvbuf;
1da177e4 604
b0983d3c
ED
605 /* minimal window to cope with packet losses, assuming
606 * steady state. Add some cushion because of small variations.
607 */
608 rcvwin = (copied << 1) + 16 * tp->advmss;
1da177e4 609
b0983d3c
ED
610 /* If rate increased by 25%,
611 * assume slow start, rcvwin = 3 * copied
612 * If rate increased by 50%,
613 * assume sender can use 2x growth, rcvwin = 4 * copied
614 */
615 if (copied >=
616 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
617 if (copied >=
618 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
619 rcvwin <<= 1;
620 else
621 rcvwin += (rcvwin >> 1);
622 }
1da177e4 623
b0983d3c 624 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
94f0893e 625 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
b0983d3c 626 rcvmem += 128;
1da177e4 627
356d1833
ED
628 rcvbuf = min(rcvwin / tp->advmss * rcvmem,
629 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
b0983d3c
ED
630 if (rcvbuf > sk->sk_rcvbuf) {
631 sk->sk_rcvbuf = rcvbuf;
1da177e4 632
b0983d3c
ED
633 /* Make the window clamp follow along. */
634 tp->window_clamp = rcvwin;
1da177e4
LT
635 }
636 }
b0983d3c 637 tp->rcvq_space.space = copied;
e905a9ed 638
1da177e4
LT
639new_measure:
640 tp->rcvq_space.seq = tp->copied_seq;
645f4c6f 641 tp->rcvq_space.time = tp->tcp_mstamp;
1da177e4
LT
642}
643
644/* There is something which you must keep in mind when you analyze the
645 * behavior of the tp->ato delayed ack timeout interval. When a
646 * connection starts up, we want to ack as quickly as possible. The
647 * problem is that "good" TCP's do slow start at the beginning of data
648 * transmission. The means that until we send the first few ACK's the
649 * sender will sit on his end and only queue most of his data, because
650 * he can only send snd_cwnd unacked packets at any given time. For
651 * each ACK we send, he increments snd_cwnd and transmits more of his
652 * queue. -DaveM
653 */
9e412ba7 654static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 655{
9e412ba7 656 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 657 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
658 u32 now;
659
463c84b9 660 inet_csk_schedule_ack(sk);
1da177e4 661
463c84b9 662 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
663
664 tcp_rcv_rtt_measure(tp);
e905a9ed 665
70eabf0e 666 now = tcp_jiffies32;
1da177e4 667
463c84b9 668 if (!icsk->icsk_ack.ato) {
1da177e4
LT
669 /* The _first_ data packet received, initialize
670 * delayed ACK engine.
671 */
463c84b9
ACM
672 tcp_incr_quickack(sk);
673 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 674 } else {
463c84b9 675 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4 676
056834d9 677 if (m <= TCP_ATO_MIN / 2) {
1da177e4 678 /* The fastest case is the first. */
463c84b9
ACM
679 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
680 } else if (m < icsk->icsk_ack.ato) {
681 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
682 if (icsk->icsk_ack.ato > icsk->icsk_rto)
683 icsk->icsk_ack.ato = icsk->icsk_rto;
684 } else if (m > icsk->icsk_rto) {
caa20d9a 685 /* Too long gap. Apparently sender failed to
1da177e4
LT
686 * restart window, so that we send ACKs quickly.
687 */
463c84b9 688 tcp_incr_quickack(sk);
3ab224be 689 sk_mem_reclaim(sk);
1da177e4
LT
690 }
691 }
463c84b9 692 icsk->icsk_ack.lrcvtime = now;
1da177e4 693
735d3831 694 tcp_ecn_check_ce(tp, skb);
1da177e4
LT
695
696 if (skb->len >= 128)
9e412ba7 697 tcp_grow_window(sk, skb);
1da177e4
LT
698}
699
1da177e4
LT
700/* Called to compute a smoothed rtt estimate. The data fed to this
701 * routine either comes from timestamps, or from segments that were
702 * known _not_ to have been retransmitted [see Karn/Partridge
703 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
704 * piece by Van Jacobson.
705 * NOTE: the next three routines used to be one big routine.
706 * To save cycles in the RFC 1323 implementation it was better to break
707 * it up into three procedures. -- erics
708 */
740b0f18 709static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
1da177e4 710{
6687e988 711 struct tcp_sock *tp = tcp_sk(sk);
740b0f18
ED
712 long m = mrtt_us; /* RTT */
713 u32 srtt = tp->srtt_us;
1da177e4 714
1da177e4
LT
715 /* The following amusing code comes from Jacobson's
716 * article in SIGCOMM '88. Note that rtt and mdev
717 * are scaled versions of rtt and mean deviation.
e905a9ed 718 * This is designed to be as fast as possible
1da177e4
LT
719 * m stands for "measurement".
720 *
721 * On a 1990 paper the rto value is changed to:
722 * RTO = rtt + 4 * mdev
723 *
724 * Funny. This algorithm seems to be very broken.
725 * These formulae increase RTO, when it should be decreased, increase
31f34269 726 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
727 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
728 * does not matter how to _calculate_ it. Seems, it was trap
729 * that VJ failed to avoid. 8)
730 */
4a5ab4e2
ED
731 if (srtt != 0) {
732 m -= (srtt >> 3); /* m is now error in rtt est */
733 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
1da177e4
LT
734 if (m < 0) {
735 m = -m; /* m is now abs(error) */
740b0f18 736 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4
LT
737 /* This is similar to one of Eifel findings.
738 * Eifel blocks mdev updates when rtt decreases.
739 * This solution is a bit different: we use finer gain
740 * for mdev in this case (alpha*beta).
741 * Like Eifel it also prevents growth of rto,
742 * but also it limits too fast rto decreases,
743 * happening in pure Eifel.
744 */
745 if (m > 0)
746 m >>= 3;
747 } else {
740b0f18 748 m -= (tp->mdev_us >> 2); /* similar update on mdev */
1da177e4 749 }
740b0f18
ED
750 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
751 if (tp->mdev_us > tp->mdev_max_us) {
752 tp->mdev_max_us = tp->mdev_us;
753 if (tp->mdev_max_us > tp->rttvar_us)
754 tp->rttvar_us = tp->mdev_max_us;
1da177e4
LT
755 }
756 if (after(tp->snd_una, tp->rtt_seq)) {
740b0f18
ED
757 if (tp->mdev_max_us < tp->rttvar_us)
758 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
1da177e4 759 tp->rtt_seq = tp->snd_nxt;
740b0f18 760 tp->mdev_max_us = tcp_rto_min_us(sk);
1da177e4
LT
761 }
762 } else {
763 /* no previous measure. */
4a5ab4e2 764 srtt = m << 3; /* take the measured time to be rtt */
740b0f18
ED
765 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
766 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
767 tp->mdev_max_us = tp->rttvar_us;
1da177e4
LT
768 tp->rtt_seq = tp->snd_nxt;
769 }
740b0f18 770 tp->srtt_us = max(1U, srtt);
1da177e4
LT
771}
772
95bd09eb
ED
773static void tcp_update_pacing_rate(struct sock *sk)
774{
775 const struct tcp_sock *tp = tcp_sk(sk);
776 u64 rate;
777
778 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
43e122b0
ED
779 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
780
781 /* current rate is (cwnd * mss) / srtt
782 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
783 * In Congestion Avoidance phase, set it to 120 % the current rate.
784 *
785 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
786 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
787 * end of slow start and should slow down.
788 */
789 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
23a7102a 790 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
43e122b0 791 else
c26e91f8 792 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
95bd09eb
ED
793
794 rate *= max(tp->snd_cwnd, tp->packets_out);
795
740b0f18
ED
796 if (likely(tp->srtt_us))
797 do_div(rate, tp->srtt_us);
95bd09eb 798
a9da6f29 799 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
ba537427
ED
800 * without any lock. We want to make sure compiler wont store
801 * intermediate values in this location.
802 */
a9da6f29
MR
803 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
804 sk->sk_max_pacing_rate));
95bd09eb
ED
805}
806
1da177e4
LT
807/* Calculate rto without backoff. This is the second half of Van Jacobson's
808 * routine referred to above.
809 */
f7e56a76 810static void tcp_set_rto(struct sock *sk)
1da177e4 811{
463c84b9 812 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
813 /* Old crap is replaced with new one. 8)
814 *
815 * More seriously:
816 * 1. If rtt variance happened to be less 50msec, it is hallucination.
817 * It cannot be less due to utterly erratic ACK generation made
818 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
819 * to do with delayed acks, because at cwnd>2 true delack timeout
820 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 821 * ACKs in some circumstances.
1da177e4 822 */
f1ecd5d9 823 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
1da177e4
LT
824
825 /* 2. Fixups made earlier cannot be right.
826 * If we do not estimate RTO correctly without them,
827 * all the algo is pure shit and should be replaced
caa20d9a 828 * with correct one. It is exactly, which we pretend to do.
1da177e4 829 */
1da177e4 830
ee6aac59
IJ
831 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
832 * guarantees that rto is higher.
833 */
f1ecd5d9 834 tcp_bound_rto(sk);
1da177e4
LT
835}
836
cf533ea5 837__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1da177e4
LT
838{
839 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
840
22b71c8f 841 if (!cwnd)
442b9635 842 cwnd = TCP_INIT_CWND;
1da177e4
LT
843 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
844}
845
564262c1 846/* Take a notice that peer is sending D-SACKs */
e60402d0
IJ
847static void tcp_dsack_seen(struct tcp_sock *tp)
848{
ab56222a 849 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1f255691 850 tp->rack.dsack_seen = 1;
e60402d0
IJ
851}
852
737ff314
YC
853/* It's reordering when higher sequence was delivered (i.e. sacked) before
854 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
855 * distance is approximated in full-mss packet distance ("reordering").
856 */
857static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
858 const int ts)
1da177e4 859{
6687e988 860 struct tcp_sock *tp = tcp_sk(sk);
737ff314
YC
861 const u32 mss = tp->mss_cache;
862 u32 fack, metric;
40b215e5 863
737ff314
YC
864 fack = tcp_highest_sack_seq(tp);
865 if (!before(low_seq, fack))
6f5b24ee
SHY
866 return;
867
737ff314
YC
868 metric = fack - low_seq;
869 if ((metric > tp->reordering * mss) && mss) {
1da177e4 870#if FASTRETRANS_DEBUG > 1
91df42be
JP
871 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
872 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
873 tp->reordering,
737ff314 874 0,
91df42be
JP
875 tp->sacked_out,
876 tp->undo_marker ? tp->undo_retrans : 0);
1da177e4 877#endif
737ff314
YC
878 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
879 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1da177e4 880 }
eed530b6 881
4f41b1c5 882 tp->rack.reord = 1;
2d2517ee 883 /* This exciting event is worth to be remembered. 8) */
737ff314
YC
884 NET_INC_STATS(sock_net(sk),
885 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1da177e4
LT
886}
887
006f582c 888/* This must be called before lost_out is incremented */
c8c213f2
IJ
889static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
890{
51456b29 891 if (!tp->retransmit_skb_hint ||
c8c213f2
IJ
892 before(TCP_SKB_CB(skb)->seq,
893 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
006f582c 894 tp->retransmit_skb_hint = skb;
c8c213f2
IJ
895}
896
0682e690
NC
897/* Sum the number of packets on the wire we have marked as lost.
898 * There are two cases we care about here:
899 * a) Packet hasn't been marked lost (nor retransmitted),
900 * and this is the first loss.
901 * b) Packet has been marked both lost and retransmitted,
902 * and this means we think it was lost again.
903 */
904static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
905{
906 __u8 sacked = TCP_SKB_CB(skb)->sacked;
907
908 if (!(sacked & TCPCB_LOST) ||
909 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
910 tp->lost += tcp_skb_pcount(skb);
911}
912
41ea36e3
IJ
913static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
914{
915 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
916 tcp_verify_retransmit_hint(tp, skb);
917
918 tp->lost_out += tcp_skb_pcount(skb);
0682e690 919 tcp_sum_lost(tp, skb);
41ea36e3
IJ
920 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
921 }
922}
923
4f41b1c5 924void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
006f582c
IJ
925{
926 tcp_verify_retransmit_hint(tp, skb);
927
0682e690 928 tcp_sum_lost(tp, skb);
006f582c
IJ
929 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
930 tp->lost_out += tcp_skb_pcount(skb);
931 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
932 }
933}
934
1da177e4
LT
935/* This procedure tags the retransmission queue when SACKs arrive.
936 *
937 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
938 * Packets in queue with these bits set are counted in variables
939 * sacked_out, retrans_out and lost_out, correspondingly.
940 *
941 * Valid combinations are:
942 * Tag InFlight Description
943 * 0 1 - orig segment is in flight.
944 * S 0 - nothing flies, orig reached receiver.
945 * L 0 - nothing flies, orig lost by net.
946 * R 2 - both orig and retransmit are in flight.
947 * L|R 1 - orig is lost, retransmit is in flight.
948 * S|R 1 - orig reached receiver, retrans is still in flight.
949 * (L|S|R is logically valid, it could occur when L|R is sacked,
950 * but it is equivalent to plain S and code short-curcuits it to S.
951 * L|S is logically invalid, it would mean -1 packet in flight 8))
952 *
953 * These 6 states form finite state machine, controlled by the following events:
954 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
955 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
974c1236 956 * 3. Loss detection event of two flavors:
1da177e4
LT
957 * A. Scoreboard estimator decided the packet is lost.
958 * A'. Reno "three dupacks" marks head of queue lost.
974c1236 959 * B. SACK arrives sacking SND.NXT at the moment, when the
1da177e4
LT
960 * segment was retransmitted.
961 * 4. D-SACK added new rule: D-SACK changes any tag to S.
962 *
963 * It is pleasant to note, that state diagram turns out to be commutative,
964 * so that we are allowed not to be bothered by order of our actions,
965 * when multiple events arrive simultaneously. (see the function below).
966 *
967 * Reordering detection.
968 * --------------------
969 * Reordering metric is maximal distance, which a packet can be displaced
970 * in packet stream. With SACKs we can estimate it:
971 *
972 * 1. SACK fills old hole and the corresponding segment was not
973 * ever retransmitted -> reordering. Alas, we cannot use it
974 * when segment was retransmitted.
975 * 2. The last flaw is solved with D-SACK. D-SACK arrives
976 * for retransmitted and already SACKed segment -> reordering..
977 * Both of these heuristics are not used in Loss state, when we cannot
978 * account for retransmits accurately.
5b3c9882
IJ
979 *
980 * SACK block validation.
981 * ----------------------
982 *
983 * SACK block range validation checks that the received SACK block fits to
984 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
985 * Note that SND.UNA is not included to the range though being valid because
0e835331
IJ
986 * it means that the receiver is rather inconsistent with itself reporting
987 * SACK reneging when it should advance SND.UNA. Such SACK block this is
988 * perfectly valid, however, in light of RFC2018 which explicitly states
989 * that "SACK block MUST reflect the newest segment. Even if the newest
990 * segment is going to be discarded ...", not that it looks very clever
991 * in case of head skb. Due to potentional receiver driven attacks, we
992 * choose to avoid immediate execution of a walk in write queue due to
993 * reneging and defer head skb's loss recovery to standard loss recovery
994 * procedure that will eventually trigger (nothing forbids us doing this).
5b3c9882
IJ
995 *
996 * Implements also blockage to start_seq wrap-around. Problem lies in the
997 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
998 * there's no guarantee that it will be before snd_nxt (n). The problem
999 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1000 * wrap (s_w):
1001 *
1002 * <- outs wnd -> <- wrapzone ->
1003 * u e n u_w e_w s n_w
1004 * | | | | | | |
1005 * |<------------+------+----- TCP seqno space --------------+---------->|
1006 * ...-- <2^31 ->| |<--------...
1007 * ...---- >2^31 ------>| |<--------...
1008 *
1009 * Current code wouldn't be vulnerable but it's better still to discard such
1010 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1011 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1012 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1013 * equal to the ideal case (infinite seqno space without wrap caused issues).
1014 *
1015 * With D-SACK the lower bound is extended to cover sequence space below
1016 * SND.UNA down to undo_marker, which is the last point of interest. Yet
564262c1 1017 * again, D-SACK block must not to go across snd_una (for the same reason as
5b3c9882
IJ
1018 * for the normal SACK blocks, explained above). But there all simplicity
1019 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1020 * fully below undo_marker they do not affect behavior in anyway and can
1021 * therefore be safely ignored. In rare cases (which are more or less
1022 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1023 * fragmentation and packet reordering past skb's retransmission. To consider
1024 * them correctly, the acceptable range must be extended even more though
1025 * the exact amount is rather hard to quantify. However, tp->max_window can
1026 * be used as an exaggerated estimate.
1da177e4 1027 */
a2a385d6
ED
1028static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1029 u32 start_seq, u32 end_seq)
5b3c9882
IJ
1030{
1031 /* Too far in future, or reversed (interpretation is ambiguous) */
1032 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
a2a385d6 1033 return false;
5b3c9882
IJ
1034
1035 /* Nasty start_seq wrap-around check (see comments above) */
1036 if (!before(start_seq, tp->snd_nxt))
a2a385d6 1037 return false;
5b3c9882 1038
564262c1 1039 /* In outstanding window? ...This is valid exit for D-SACKs too.
5b3c9882
IJ
1040 * start_seq == snd_una is non-sensical (see comments above)
1041 */
1042 if (after(start_seq, tp->snd_una))
a2a385d6 1043 return true;
5b3c9882
IJ
1044
1045 if (!is_dsack || !tp->undo_marker)
a2a385d6 1046 return false;
5b3c9882
IJ
1047
1048 /* ...Then it's D-SACK, and must reside below snd_una completely */
f779b2d6 1049 if (after(end_seq, tp->snd_una))
a2a385d6 1050 return false;
5b3c9882
IJ
1051
1052 if (!before(start_seq, tp->undo_marker))
a2a385d6 1053 return true;
5b3c9882
IJ
1054
1055 /* Too old */
1056 if (!after(end_seq, tp->undo_marker))
a2a385d6 1057 return false;
5b3c9882
IJ
1058
1059 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1060 * start_seq < undo_marker and end_seq >= undo_marker.
1061 */
1062 return !before(start_seq, end_seq - tp->max_window);
1063}
1064
a2a385d6
ED
1065static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1066 struct tcp_sack_block_wire *sp, int num_sacks,
1067 u32 prior_snd_una)
d06e021d 1068{
1ed83465 1069 struct tcp_sock *tp = tcp_sk(sk);
d3e2ce3b
HH
1070 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1071 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
a2a385d6 1072 bool dup_sack = false;
d06e021d
DM
1073
1074 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
a2a385d6 1075 dup_sack = true;
e60402d0 1076 tcp_dsack_seen(tp);
c10d9310 1077 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
d06e021d 1078 } else if (num_sacks > 1) {
d3e2ce3b
HH
1079 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1080 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
d06e021d
DM
1081
1082 if (!after(end_seq_0, end_seq_1) &&
1083 !before(start_seq_0, start_seq_1)) {
a2a385d6 1084 dup_sack = true;
e60402d0 1085 tcp_dsack_seen(tp);
c10d9310 1086 NET_INC_STATS(sock_net(sk),
de0744af 1087 LINUX_MIB_TCPDSACKOFORECV);
d06e021d
DM
1088 }
1089 }
1090
1091 /* D-SACK for already forgotten data... Do dumb counting. */
6e08d5e3 1092 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
d06e021d
DM
1093 !after(end_seq_0, prior_snd_una) &&
1094 after(end_seq_0, tp->undo_marker))
1095 tp->undo_retrans--;
1096
1097 return dup_sack;
1098}
1099
a1197f5a 1100struct tcp_sacktag_state {
737ff314 1101 u32 reord;
31231a8a
KKJ
1102 /* Timestamps for earliest and latest never-retransmitted segment
1103 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1104 * but congestion control should still get an accurate delay signal.
1105 */
9a568de4
ED
1106 u64 first_sackt;
1107 u64 last_sackt;
b9f64820 1108 struct rate_sample *rate;
740b0f18 1109 int flag;
75c119af 1110 unsigned int mss_now;
a1197f5a
IJ
1111};
1112
d1935942
IJ
1113/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1114 * the incoming SACK may not exactly match but we can find smaller MSS
1115 * aligned portion of it that matches. Therefore we might need to fragment
1116 * which may fail and creates some hassle (caller must handle error case
1117 * returns).
832d11c5
IJ
1118 *
1119 * FIXME: this could be merged to shift decision code
d1935942 1120 */
0f79efdc 1121static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
a2a385d6 1122 u32 start_seq, u32 end_seq)
d1935942 1123{
a2a385d6
ED
1124 int err;
1125 bool in_sack;
d1935942 1126 unsigned int pkt_len;
adb92db8 1127 unsigned int mss;
d1935942
IJ
1128
1129 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1130 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1131
1132 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1133 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
adb92db8 1134 mss = tcp_skb_mss(skb);
d1935942
IJ
1135 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1136
adb92db8 1137 if (!in_sack) {
d1935942 1138 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1139 if (pkt_len < mss)
1140 pkt_len = mss;
1141 } else {
d1935942 1142 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
adb92db8
IJ
1143 if (pkt_len < mss)
1144 return -EINVAL;
1145 }
1146
1147 /* Round if necessary so that SACKs cover only full MSSes
1148 * and/or the remaining small portion (if present)
1149 */
1150 if (pkt_len > mss) {
1151 unsigned int new_len = (pkt_len / mss) * mss;
b451e5d2 1152 if (!in_sack && new_len < pkt_len)
adb92db8 1153 new_len += mss;
adb92db8
IJ
1154 pkt_len = new_len;
1155 }
b451e5d2
YC
1156
1157 if (pkt_len >= skb->len && !in_sack)
1158 return 0;
1159
75c119af
ED
1160 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1161 pkt_len, mss, GFP_ATOMIC);
d1935942
IJ
1162 if (err < 0)
1163 return err;
1164 }
1165
1166 return in_sack;
1167}
1168
cc9a672e
NC
1169/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1170static u8 tcp_sacktag_one(struct sock *sk,
1171 struct tcp_sacktag_state *state, u8 sacked,
1172 u32 start_seq, u32 end_seq,
740b0f18 1173 int dup_sack, int pcount,
9a568de4 1174 u64 xmit_time)
9e10c47c 1175{
6859d494 1176 struct tcp_sock *tp = tcp_sk(sk);
9e10c47c
IJ
1177
1178 /* Account D-SACK for retransmitted packet. */
1179 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6e08d5e3 1180 if (tp->undo_marker && tp->undo_retrans > 0 &&
cc9a672e 1181 after(end_seq, tp->undo_marker))
9e10c47c 1182 tp->undo_retrans--;
737ff314
YC
1183 if ((sacked & TCPCB_SACKED_ACKED) &&
1184 before(start_seq, state->reord))
1185 state->reord = start_seq;
9e10c47c
IJ
1186 }
1187
1188 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
cc9a672e 1189 if (!after(end_seq, tp->snd_una))
a1197f5a 1190 return sacked;
9e10c47c
IJ
1191
1192 if (!(sacked & TCPCB_SACKED_ACKED)) {
d2329f10 1193 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
659a8ad5 1194
9e10c47c
IJ
1195 if (sacked & TCPCB_SACKED_RETRANS) {
1196 /* If the segment is not tagged as lost,
1197 * we do not clear RETRANS, believing
1198 * that retransmission is still in flight.
1199 */
1200 if (sacked & TCPCB_LOST) {
a1197f5a 1201 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
f58b22fd
IJ
1202 tp->lost_out -= pcount;
1203 tp->retrans_out -= pcount;
9e10c47c
IJ
1204 }
1205 } else {
1206 if (!(sacked & TCPCB_RETRANS)) {
1207 /* New sack for not retransmitted frame,
1208 * which was in hole. It is reordering.
1209 */
cc9a672e 1210 if (before(start_seq,
737ff314
YC
1211 tcp_highest_sack_seq(tp)) &&
1212 before(start_seq, state->reord))
1213 state->reord = start_seq;
1214
e33099f9
YC
1215 if (!after(end_seq, tp->high_seq))
1216 state->flag |= FLAG_ORIG_SACK_ACKED;
9a568de4
ED
1217 if (state->first_sackt == 0)
1218 state->first_sackt = xmit_time;
1219 state->last_sackt = xmit_time;
9e10c47c
IJ
1220 }
1221
1222 if (sacked & TCPCB_LOST) {
a1197f5a 1223 sacked &= ~TCPCB_LOST;
f58b22fd 1224 tp->lost_out -= pcount;
9e10c47c
IJ
1225 }
1226 }
1227
a1197f5a
IJ
1228 sacked |= TCPCB_SACKED_ACKED;
1229 state->flag |= FLAG_DATA_SACKED;
f58b22fd 1230 tp->sacked_out += pcount;
ddf1af6f 1231 tp->delivered += pcount; /* Out-of-order packets delivered */
9e10c47c 1232
9e10c47c 1233 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
713bafea 1234 if (tp->lost_skb_hint &&
cc9a672e 1235 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
f58b22fd 1236 tp->lost_cnt_hint += pcount;
9e10c47c
IJ
1237 }
1238
1239 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1240 * frames and clear it. undo_retrans is decreased above, L|R frames
1241 * are accounted above as well.
1242 */
a1197f5a
IJ
1243 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1244 sacked &= ~TCPCB_SACKED_RETRANS;
f58b22fd 1245 tp->retrans_out -= pcount;
9e10c47c
IJ
1246 }
1247
a1197f5a 1248 return sacked;
9e10c47c
IJ
1249}
1250
daef52ba
NC
1251/* Shift newly-SACKed bytes from this skb to the immediately previous
1252 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1253 */
f3319816
ED
1254static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1255 struct sk_buff *skb,
a2a385d6
ED
1256 struct tcp_sacktag_state *state,
1257 unsigned int pcount, int shifted, int mss,
1258 bool dup_sack)
832d11c5
IJ
1259{
1260 struct tcp_sock *tp = tcp_sk(sk);
daef52ba
NC
1261 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1262 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
832d11c5
IJ
1263
1264 BUG_ON(!pcount);
1265
4c90d3b3
NC
1266 /* Adjust counters and hints for the newly sacked sequence
1267 * range but discard the return value since prev is already
1268 * marked. We must tag the range first because the seq
1269 * advancement below implicitly advances
1270 * tcp_highest_sack_seq() when skb is highest_sack.
1271 */
1272 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
59c9af42 1273 start_seq, end_seq, dup_sack, pcount,
9a568de4 1274 skb->skb_mstamp);
b9f64820 1275 tcp_rate_skb_delivered(sk, skb, state->rate);
4c90d3b3
NC
1276
1277 if (skb == tp->lost_skb_hint)
0af2a0d0
NC
1278 tp->lost_cnt_hint += pcount;
1279
832d11c5
IJ
1280 TCP_SKB_CB(prev)->end_seq += shifted;
1281 TCP_SKB_CB(skb)->seq += shifted;
1282
cd7d8498
ED
1283 tcp_skb_pcount_add(prev, pcount);
1284 BUG_ON(tcp_skb_pcount(skb) < pcount);
1285 tcp_skb_pcount_add(skb, -pcount);
832d11c5
IJ
1286
1287 /* When we're adding to gso_segs == 1, gso_size will be zero,
1288 * in theory this shouldn't be necessary but as long as DSACK
1289 * code can come after this skb later on it's better to keep
1290 * setting gso_size to something.
1291 */
f69ad292
ED
1292 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1293 TCP_SKB_CB(prev)->tcp_gso_size = mss;
832d11c5
IJ
1294
1295 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
51466a75 1296 if (tcp_skb_pcount(skb) <= 1)
f69ad292 1297 TCP_SKB_CB(skb)->tcp_gso_size = 0;
832d11c5 1298
832d11c5
IJ
1299 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1300 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1301
832d11c5
IJ
1302 if (skb->len > 0) {
1303 BUG_ON(!tcp_skb_pcount(skb));
c10d9310 1304 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
a2a385d6 1305 return false;
832d11c5
IJ
1306 }
1307
1308 /* Whole SKB was eaten :-) */
1309
92ee76b6
IJ
1310 if (skb == tp->retransmit_skb_hint)
1311 tp->retransmit_skb_hint = prev;
92ee76b6
IJ
1312 if (skb == tp->lost_skb_hint) {
1313 tp->lost_skb_hint = prev;
1314 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1315 }
1316
5e8a402f 1317 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
a643b5d4 1318 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
5e8a402f
ED
1319 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1320 TCP_SKB_CB(prev)->end_seq++;
1321
832d11c5
IJ
1322 if (skb == tcp_highest_sack(sk))
1323 tcp_advance_highest_sack(sk, skb);
1324
cfea5a68 1325 tcp_skb_collapse_tstamp(prev, skb);
9a568de4
ED
1326 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1327 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
b9f64820 1328
75c119af 1329 tcp_rtx_queue_unlink_and_free(skb, sk);
832d11c5 1330
c10d9310 1331 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
111cc8b9 1332
a2a385d6 1333 return true;
832d11c5
IJ
1334}
1335
1336/* I wish gso_size would have a bit more sane initialization than
1337 * something-or-zero which complicates things
1338 */
cf533ea5 1339static int tcp_skb_seglen(const struct sk_buff *skb)
832d11c5 1340{
775ffabf 1341 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
832d11c5
IJ
1342}
1343
1344/* Shifting pages past head area doesn't work */
cf533ea5 1345static int skb_can_shift(const struct sk_buff *skb)
832d11c5
IJ
1346{
1347 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1348}
1349
1350/* Try collapsing SACK blocks spanning across multiple skbs to a single
1351 * skb.
1352 */
1353static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
a1197f5a 1354 struct tcp_sacktag_state *state,
832d11c5 1355 u32 start_seq, u32 end_seq,
a2a385d6 1356 bool dup_sack)
832d11c5
IJ
1357{
1358 struct tcp_sock *tp = tcp_sk(sk);
1359 struct sk_buff *prev;
1360 int mss;
1361 int pcount = 0;
1362 int len;
1363 int in_sack;
1364
1365 if (!sk_can_gso(sk))
1366 goto fallback;
1367
1368 /* Normally R but no L won't result in plain S */
1369 if (!dup_sack &&
9969ca5f 1370 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
832d11c5
IJ
1371 goto fallback;
1372 if (!skb_can_shift(skb))
1373 goto fallback;
1374 /* This frame is about to be dropped (was ACKed). */
1375 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1376 goto fallback;
1377
1378 /* Can only happen with delayed DSACK + discard craziness */
75c119af
ED
1379 prev = skb_rb_prev(skb);
1380 if (!prev)
832d11c5 1381 goto fallback;
832d11c5
IJ
1382
1383 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1384 goto fallback;
1385
a643b5d4
MKL
1386 if (!tcp_skb_can_collapse_to(prev))
1387 goto fallback;
1388
832d11c5
IJ
1389 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1390 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1391
1392 if (in_sack) {
1393 len = skb->len;
1394 pcount = tcp_skb_pcount(skb);
775ffabf 1395 mss = tcp_skb_seglen(skb);
832d11c5
IJ
1396
1397 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1398 * drop this restriction as unnecessary
1399 */
775ffabf 1400 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1401 goto fallback;
1402 } else {
1403 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1404 goto noop;
1405 /* CHECKME: This is non-MSS split case only?, this will
1406 * cause skipped skbs due to advancing loop btw, original
1407 * has that feature too
1408 */
1409 if (tcp_skb_pcount(skb) <= 1)
1410 goto noop;
1411
1412 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1413 if (!in_sack) {
1414 /* TODO: head merge to next could be attempted here
1415 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1416 * though it might not be worth of the additional hassle
1417 *
1418 * ...we can probably just fallback to what was done
1419 * previously. We could try merging non-SACKed ones
1420 * as well but it probably isn't going to buy off
1421 * because later SACKs might again split them, and
1422 * it would make skb timestamp tracking considerably
1423 * harder problem.
1424 */
1425 goto fallback;
1426 }
1427
1428 len = end_seq - TCP_SKB_CB(skb)->seq;
1429 BUG_ON(len < 0);
1430 BUG_ON(len > skb->len);
1431
1432 /* MSS boundaries should be honoured or else pcount will
1433 * severely break even though it makes things bit trickier.
1434 * Optimize common case to avoid most of the divides
1435 */
1436 mss = tcp_skb_mss(skb);
1437
1438 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1439 * drop this restriction as unnecessary
1440 */
775ffabf 1441 if (mss != tcp_skb_seglen(prev))
832d11c5
IJ
1442 goto fallback;
1443
1444 if (len == mss) {
1445 pcount = 1;
1446 } else if (len < mss) {
1447 goto noop;
1448 } else {
1449 pcount = len / mss;
1450 len = pcount * mss;
1451 }
1452 }
1453
4648dc97
NC
1454 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1455 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1456 goto fallback;
1457
832d11c5
IJ
1458 if (!skb_shift(prev, skb, len))
1459 goto fallback;
f3319816 1460 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
832d11c5
IJ
1461 goto out;
1462
1463 /* Hole filled allows collapsing with the next as well, this is very
1464 * useful when hole on every nth skb pattern happens
1465 */
75c119af
ED
1466 skb = skb_rb_next(prev);
1467 if (!skb)
832d11c5 1468 goto out;
832d11c5 1469
f0bc52f3 1470 if (!skb_can_shift(skb) ||
f0bc52f3 1471 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
775ffabf 1472 (mss != tcp_skb_seglen(skb)))
832d11c5
IJ
1473 goto out;
1474
1475 len = skb->len;
1476 if (skb_shift(prev, skb, len)) {
1477 pcount += tcp_skb_pcount(skb);
f3319816
ED
1478 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1479 len, mss, 0);
832d11c5
IJ
1480 }
1481
1482out:
832d11c5
IJ
1483 return prev;
1484
1485noop:
1486 return skb;
1487
1488fallback:
c10d9310 1489 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
832d11c5
IJ
1490 return NULL;
1491}
1492
68f8353b
IJ
1493static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1494 struct tcp_sack_block *next_dup,
a1197f5a 1495 struct tcp_sacktag_state *state,
68f8353b 1496 u32 start_seq, u32 end_seq,
a2a385d6 1497 bool dup_sack_in)
68f8353b 1498{
832d11c5
IJ
1499 struct tcp_sock *tp = tcp_sk(sk);
1500 struct sk_buff *tmp;
1501
75c119af 1502 skb_rbtree_walk_from(skb) {
68f8353b 1503 int in_sack = 0;
a2a385d6 1504 bool dup_sack = dup_sack_in;
68f8353b 1505
68f8353b
IJ
1506 /* queue is in-order => we can short-circuit the walk early */
1507 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1508 break;
1509
00db4124 1510 if (next_dup &&
68f8353b
IJ
1511 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1512 in_sack = tcp_match_skb_to_sack(sk, skb,
1513 next_dup->start_seq,
1514 next_dup->end_seq);
1515 if (in_sack > 0)
a2a385d6 1516 dup_sack = true;
68f8353b
IJ
1517 }
1518
832d11c5
IJ
1519 /* skb reference here is a bit tricky to get right, since
1520 * shifting can eat and free both this skb and the next,
1521 * so not even _safe variant of the loop is enough.
1522 */
1523 if (in_sack <= 0) {
a1197f5a
IJ
1524 tmp = tcp_shift_skb_data(sk, skb, state,
1525 start_seq, end_seq, dup_sack);
00db4124 1526 if (tmp) {
832d11c5
IJ
1527 if (tmp != skb) {
1528 skb = tmp;
1529 continue;
1530 }
1531
1532 in_sack = 0;
1533 } else {
1534 in_sack = tcp_match_skb_to_sack(sk, skb,
1535 start_seq,
1536 end_seq);
1537 }
1538 }
1539
68f8353b
IJ
1540 if (unlikely(in_sack < 0))
1541 break;
1542
832d11c5 1543 if (in_sack) {
cc9a672e
NC
1544 TCP_SKB_CB(skb)->sacked =
1545 tcp_sacktag_one(sk,
1546 state,
1547 TCP_SKB_CB(skb)->sacked,
1548 TCP_SKB_CB(skb)->seq,
1549 TCP_SKB_CB(skb)->end_seq,
1550 dup_sack,
59c9af42 1551 tcp_skb_pcount(skb),
9a568de4 1552 skb->skb_mstamp);
b9f64820 1553 tcp_rate_skb_delivered(sk, skb, state->rate);
e2080072
ED
1554 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1555 list_del_init(&skb->tcp_tsorted_anchor);
68f8353b 1556
832d11c5
IJ
1557 if (!before(TCP_SKB_CB(skb)->seq,
1558 tcp_highest_sack_seq(tp)))
1559 tcp_advance_highest_sack(sk, skb);
1560 }
68f8353b
IJ
1561 }
1562 return skb;
1563}
1564
75c119af
ED
1565static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1566 struct tcp_sacktag_state *state,
1567 u32 seq)
1568{
1569 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1570 struct sk_buff *skb;
75c119af
ED
1571
1572 while (*p) {
1573 parent = *p;
1574 skb = rb_to_skb(parent);
1575 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1576 p = &parent->rb_left;
1577 continue;
1578 }
1579 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1580 p = &parent->rb_right;
1581 continue;
1582 }
75c119af
ED
1583 return skb;
1584 }
1585 return NULL;
1586}
1587
68f8353b 1588static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
a1197f5a
IJ
1589 struct tcp_sacktag_state *state,
1590 u32 skip_to_seq)
68f8353b 1591{
75c119af
ED
1592 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1593 return skb;
d152a7d8 1594
75c119af 1595 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
68f8353b
IJ
1596}
1597
1598static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1599 struct sock *sk,
1600 struct tcp_sack_block *next_dup,
a1197f5a
IJ
1601 struct tcp_sacktag_state *state,
1602 u32 skip_to_seq)
68f8353b 1603{
51456b29 1604 if (!next_dup)
68f8353b
IJ
1605 return skb;
1606
1607 if (before(next_dup->start_seq, skip_to_seq)) {
a1197f5a
IJ
1608 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1609 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1610 next_dup->start_seq, next_dup->end_seq,
1611 1);
68f8353b
IJ
1612 }
1613
1614 return skb;
1615}
1616
cf533ea5 1617static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
68f8353b
IJ
1618{
1619 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1620}
1621
1da177e4 1622static int
cf533ea5 1623tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
196da974 1624 u32 prior_snd_una, struct tcp_sacktag_state *state)
1da177e4
LT
1625{
1626 struct tcp_sock *tp = tcp_sk(sk);
cf533ea5
ED
1627 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1628 TCP_SKB_CB(ack_skb)->sacked);
fd6dad61 1629 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
4389dded 1630 struct tcp_sack_block sp[TCP_NUM_SACKS];
68f8353b
IJ
1631 struct tcp_sack_block *cache;
1632 struct sk_buff *skb;
4389dded 1633 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
fd6dad61 1634 int used_sacks;
a2a385d6 1635 bool found_dup_sack = false;
68f8353b 1636 int i, j;
fda03fbb 1637 int first_sack_index;
1da177e4 1638
196da974 1639 state->flag = 0;
737ff314 1640 state->reord = tp->snd_nxt;
a1197f5a 1641
737ff314 1642 if (!tp->sacked_out)
6859d494 1643 tcp_highest_sack_reset(sk);
1da177e4 1644
1ed83465 1645 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
d06e021d 1646 num_sacks, prior_snd_una);
b9f64820 1647 if (found_dup_sack) {
196da974 1648 state->flag |= FLAG_DSACKING_ACK;
b9f64820
YC
1649 tp->delivered++; /* A spurious retransmission is delivered */
1650 }
6f74651a
BE
1651
1652 /* Eliminate too old ACKs, but take into
1653 * account more or less fresh ones, they can
1654 * contain valid SACK info.
1655 */
1656 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1657 return 0;
1658