tcp: switch internal pacing timer to CLOCK_TAI
[linux-block.git] / net / ipv4 / tcp_bbr.c
CommitLineData
0f8782ea
NC
1/* Bottleneck Bandwidth and RTT (BBR) congestion control
2 *
3 * BBR congestion control computes the sending rate based on the delivery
4 * rate (throughput) estimated from ACKs. In a nutshell:
5 *
6 * On each ACK, update our model of the network path:
7 * bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8 * min_rtt = windowed_min(rtt, 10 seconds)
9 * pacing_rate = pacing_gain * bottleneck_bandwidth
10 * cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
11 *
12 * The core algorithm does not react directly to packet losses or delays,
13 * although BBR may adjust the size of next send per ACK when loss is
14 * observed, or adjust the sending rate if it estimates there is a
15 * traffic policer, in order to keep the drop rate reasonable.
16 *
9b9375b5
NC
17 * Here is a state transition diagram for BBR:
18 *
19 * |
20 * V
21 * +---> STARTUP ----+
22 * | | |
23 * | V |
24 * | DRAIN ----+
25 * | | |
26 * | V |
27 * +---> PROBE_BW ----+
28 * | ^ | |
29 * | | | |
30 * | +----+ |
31 * | |
32 * +---- PROBE_RTT <--+
33 *
34 * A BBR flow starts in STARTUP, and ramps up its sending rate quickly.
35 * When it estimates the pipe is full, it enters DRAIN to drain the queue.
36 * In steady state a BBR flow only uses PROBE_BW and PROBE_RTT.
37 * A long-lived BBR flow spends the vast majority of its time remaining
38 * (repeatedly) in PROBE_BW, fully probing and utilizing the pipe's bandwidth
39 * in a fair manner, with a small, bounded queue. *If* a flow has been
40 * continuously sending for the entire min_rtt window, and hasn't seen an RTT
41 * sample that matches or decreases its min_rtt estimate for 10 seconds, then
42 * it briefly enters PROBE_RTT to cut inflight to a minimum value to re-probe
43 * the path's two-way propagation delay (min_rtt). When exiting PROBE_RTT, if
44 * we estimated that we reached the full bw of the pipe then we enter PROBE_BW;
45 * otherwise we enter STARTUP to try to fill the pipe.
46 *
0f8782ea
NC
47 * BBR is described in detail in:
48 * "BBR: Congestion-Based Congestion Control",
49 * Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
50 * Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
51 *
52 * There is a public e-mail list for discussing BBR development and testing:
53 * https://groups.google.com/forum/#!forum/bbr-dev
54 *
218af599
ED
55 * NOTE: BBR might be used with the fq qdisc ("man tc-fq") with pacing enabled,
56 * otherwise TCP stack falls back to an internal pacing using one high
57 * resolution timer per TCP socket and may use more resources.
0f8782ea
NC
58 */
59#include <linux/module.h>
60#include <net/tcp.h>
61#include <linux/inet_diag.h>
62#include <linux/inet.h>
63#include <linux/random.h>
64#include <linux/win_minmax.h>
65
66/* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
67 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
68 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
69 * Since the minimum window is >=4 packets, the lower bound isn't
70 * an issue. The upper bound isn't an issue with existing technologies.
71 */
72#define BW_SCALE 24
73#define BW_UNIT (1 << BW_SCALE)
74
75#define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */
76#define BBR_UNIT (1 << BBR_SCALE)
77
78/* BBR has the following modes for deciding how fast to send: */
79enum bbr_mode {
80 BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
81 BBR_DRAIN, /* drain any queue created during startup */
82 BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
9b9375b5 83 BBR_PROBE_RTT, /* cut inflight to min to probe min_rtt */
0f8782ea
NC
84};
85
86/* BBR congestion control block */
87struct bbr {
88 u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */
89 u32 min_rtt_stamp; /* timestamp of min_rtt_us */
90 u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */
91 struct minmax bw; /* Max recent delivery rate in pkts/uS << 24 */
92 u32 rtt_cnt; /* count of packet-timed rounds elapsed */
93 u32 next_rtt_delivered; /* scb->tx.delivered at end of round */
9a568de4 94 u64 cycle_mstamp; /* time of this cycle phase start */
0f8782ea
NC
95 u32 mode:3, /* current bbr_mode in state machine */
96 prev_ca_state:3, /* CA state on previous ACK */
97 packet_conservation:1, /* use packet conservation? */
0f8782ea 98 round_start:1, /* start of packet-timed tx->ack round? */
0f8782ea
NC
99 idle_restart:1, /* restarting after idle? */
100 probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */
fb998862 101 unused:13,
0f8782ea
NC
102 lt_is_sampling:1, /* taking long-term ("LT") samples now? */
103 lt_rtt_cnt:7, /* round trips in long-term interval */
104 lt_use_bw:1; /* use lt_bw as our bw estimate? */
105 u32 lt_bw; /* LT est delivery rate in pkts/uS << 24 */
106 u32 lt_last_delivered; /* LT intvl start: tp->delivered */
107 u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp */
108 u32 lt_last_lost; /* LT intvl start: tp->lost */
109 u32 pacing_gain:10, /* current gain for setting pacing rate */
110 cwnd_gain:10, /* current gain for setting cwnd */
c589e69b
NC
111 full_bw_reached:1, /* reached full bw in Startup? */
112 full_bw_cnt:2, /* number of rounds without large bw gains */
0f8782ea 113 cycle_idx:3, /* current index in pacing_gain cycle array */
32984565
NC
114 has_seen_rtt:1, /* have we seen an RTT sample yet? */
115 unused_b:5;
0f8782ea
NC
116 u32 prior_cwnd; /* prior cwnd upon entering loss recovery */
117 u32 full_bw; /* recent bw, to estimate if pipe is full */
118};
119
120#define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */
121
122/* Window length of bw filter (in rounds): */
123static const int bbr_bw_rtts = CYCLE_LEN + 2;
124/* Window length of min_rtt filter (in sec): */
125static const u32 bbr_min_rtt_win_sec = 10;
126/* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
127static const u32 bbr_probe_rtt_mode_ms = 200;
128/* Skip TSO below the following bandwidth (bits/sec): */
129static const int bbr_min_tso_rate = 1200000;
130
131/* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
132 * that will allow a smoothly increasing pacing rate that will double each RTT
133 * and send the same number of packets per RTT that an un-paced, slow-starting
134 * Reno or CUBIC flow would:
135 */
136static const int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1;
137/* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
138 * the queue created in BBR_STARTUP in a single round:
139 */
140static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
141/* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
142static const int bbr_cwnd_gain = BBR_UNIT * 2;
143/* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
144static const int bbr_pacing_gain[] = {
145 BBR_UNIT * 5 / 4, /* probe for more available bw */
146 BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */
147 BBR_UNIT, BBR_UNIT, BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */
148 BBR_UNIT, BBR_UNIT, BBR_UNIT /* without creating excess queue... */
149};
150/* Randomize the starting gain cycling phase over N phases: */
151static const u32 bbr_cycle_rand = 7;
152
153/* Try to keep at least this many packets in flight, if things go smoothly. For
154 * smooth functioning, a sliding window protocol ACKing every other packet
155 * needs at least 4 packets in flight:
156 */
157static const u32 bbr_cwnd_min_target = 4;
158
159/* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
160/* If bw has increased significantly (1.25x), there may be more bw available: */
161static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
162/* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
163static const u32 bbr_full_bw_cnt = 3;
164
165/* "long-term" ("LT") bandwidth estimator parameters... */
166/* The minimum number of rounds in an LT bw sampling interval: */
167static const u32 bbr_lt_intvl_min_rtts = 4;
168/* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
169static const u32 bbr_lt_loss_thresh = 50;
170/* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
171static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
172/* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
173static const u32 bbr_lt_bw_diff = 4000 / 8;
174/* If we estimate we're policed, use lt_bw for this many round trips: */
175static const u32 bbr_lt_bw_max_rtts = 48;
176
5490b32d
KY
177static void bbr_check_probe_rtt_done(struct sock *sk);
178
0f8782ea
NC
179/* Do we estimate that STARTUP filled the pipe? */
180static bool bbr_full_bw_reached(const struct sock *sk)
181{
182 const struct bbr *bbr = inet_csk_ca(sk);
183
c589e69b 184 return bbr->full_bw_reached;
0f8782ea
NC
185}
186
187/* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
188static u32 bbr_max_bw(const struct sock *sk)
189{
190 struct bbr *bbr = inet_csk_ca(sk);
191
192 return minmax_get(&bbr->bw);
193}
194
195/* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
196static u32 bbr_bw(const struct sock *sk)
197{
198 struct bbr *bbr = inet_csk_ca(sk);
199
200 return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
201}
202
203/* Return rate in bytes per second, optionally with a gain.
204 * The order here is chosen carefully to avoid overflow of u64. This should
205 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
206 */
207static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
208{
cadefe5f
ED
209 unsigned int mss = tcp_sk(sk)->mss_cache;
210
211 if (!tcp_needs_internal_pacing(sk))
212 mss = tcp_mss_to_mtu(sk, mss);
213 rate *= mss;
0f8782ea
NC
214 rate *= gain;
215 rate >>= BBR_SCALE;
216 rate *= USEC_PER_SEC;
217 return rate >> BW_SCALE;
218}
219
f19fd62d
NC
220/* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
221static u32 bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
222{
223 u64 rate = bw;
224
225 rate = bbr_rate_bytes_per_sec(sk, rate, gain);
226 rate = min_t(u64, rate, sk->sk_max_pacing_rate);
227 return rate;
228}
229
79135b89
NC
230/* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
231static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
232{
233 struct tcp_sock *tp = tcp_sk(sk);
32984565 234 struct bbr *bbr = inet_csk_ca(sk);
79135b89
NC
235 u64 bw;
236 u32 rtt_us;
237
238 if (tp->srtt_us) { /* any RTT sample yet? */
239 rtt_us = max(tp->srtt_us >> 3, 1U);
32984565 240 bbr->has_seen_rtt = 1;
79135b89
NC
241 } else { /* no RTT sample yet */
242 rtt_us = USEC_PER_MSEC; /* use nominal default RTT */
243 }
244 bw = (u64)tp->snd_cwnd * BW_UNIT;
245 do_div(bw, rtt_us);
246 sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
247}
248
0f8782ea
NC
249/* Pace using current bw estimate and a gain factor. In order to help drive the
250 * network toward lower queues while maintaining high utilization and low
251 * latency, the average pacing rate aims to be slightly (~1%) lower than the
252 * estimated bandwidth. This is an important aspect of the design. In this
253 * implementation this slightly lower pacing rate is achieved implicitly by not
254 * including link-layer headers in the packet size used for the pacing rate.
255 */
256static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
257{
32984565
NC
258 struct tcp_sock *tp = tcp_sk(sk);
259 struct bbr *bbr = inet_csk_ca(sk);
f19fd62d 260 u32 rate = bbr_bw_to_pacing_rate(sk, bw, gain);
0f8782ea 261
32984565
NC
262 if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
263 bbr_init_pacing_rate_from_rtt(sk);
4aea287e 264 if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
0f8782ea
NC
265 sk->sk_pacing_rate = rate;
266}
267
dcb8c9b4
ED
268/* override sysctl_tcp_min_tso_segs */
269static u32 bbr_min_tso_segs(struct sock *sk)
0f8782ea 270{
dcb8c9b4 271 return sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
0f8782ea
NC
272}
273
71abf467 274static u32 bbr_tso_segs_goal(struct sock *sk)
0f8782ea
NC
275{
276 struct tcp_sock *tp = tcp_sk(sk);
dcb8c9b4
ED
277 u32 segs, bytes;
278
279 /* Sort of tcp_tso_autosize() but ignoring
280 * driver provided sk_gso_max_size.
281 */
282 bytes = min_t(u32, sk->sk_pacing_rate >> sk->sk_pacing_shift,
283 GSO_MAX_SIZE - 1 - MAX_TCP_HEADER);
284 segs = max_t(u32, bytes / tp->mss_cache, bbr_min_tso_segs(sk));
0f8782ea 285
71abf467 286 return min(segs, 0x7FU);
0f8782ea
NC
287}
288
289/* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
290static void bbr_save_cwnd(struct sock *sk)
291{
292 struct tcp_sock *tp = tcp_sk(sk);
293 struct bbr *bbr = inet_csk_ca(sk);
294
295 if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
296 bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */
297 else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
298 bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
299}
300
301static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
302{
303 struct tcp_sock *tp = tcp_sk(sk);
304 struct bbr *bbr = inet_csk_ca(sk);
305
306 if (event == CA_EVENT_TX_START && tp->app_limited) {
307 bbr->idle_restart = 1;
308 /* Avoid pointless buffer overflows: pace at est. bw if we don't
309 * need more speed (we're restarting from idle and app-limited).
310 */
311 if (bbr->mode == BBR_PROBE_BW)
312 bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
5490b32d
KY
313 else if (bbr->mode == BBR_PROBE_RTT)
314 bbr_check_probe_rtt_done(sk);
0f8782ea
NC
315 }
316}
317
318/* Find target cwnd. Right-size the cwnd based on min RTT and the
319 * estimated bottleneck bandwidth:
320 *
321 * cwnd = bw * min_rtt * gain = BDP * gain
322 *
323 * The key factor, gain, controls the amount of queue. While a small gain
324 * builds a smaller queue, it becomes more vulnerable to noise in RTT
325 * measurements (e.g., delayed ACKs or other ACK compression effects). This
326 * noise may cause BBR to under-estimate the rate.
327 *
328 * To achieve full performance in high-speed paths, we budget enough cwnd to
329 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
330 * - one skb in sending host Qdisc,
331 * - one skb in sending host TSO/GSO engine
332 * - one skb being received by receiver host LRO/GRO/delayed-ACK engine
333 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
334 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
335 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
336 * full even with ACK-every-other-packet delayed ACKs.
337 */
338static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
339{
340 struct bbr *bbr = inet_csk_ca(sk);
341 u32 cwnd;
342 u64 w;
343
344 /* If we've never had a valid RTT sample, cap cwnd at the initial
345 * default. This should only happen when the connection is not using TCP
346 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
347 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
348 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
349 */
350 if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
351 return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/
352
353 w = (u64)bw * bbr->min_rtt_us;
354
355 /* Apply a gain to the given value, then remove the BW_SCALE shift. */
356 cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
357
358 /* Allow enough full-sized skbs in flight to utilize end systems. */
71abf467 359 cwnd += 3 * bbr_tso_segs_goal(sk);
0f8782ea
NC
360
361 /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
362 cwnd = (cwnd + 1) & ~1U;
363
383d4709
NC
364 /* Ensure gain cycling gets inflight above BDP even for small BDPs. */
365 if (bbr->mode == BBR_PROBE_BW && gain > BBR_UNIT)
366 cwnd += 2;
367
0f8782ea
NC
368 return cwnd;
369}
370
371/* An optimization in BBR to reduce losses: On the first round of recovery, we
372 * follow the packet conservation principle: send P packets per P packets acked.
373 * After that, we slow-start and send at most 2*P packets per P packets acked.
374 * After recovery finishes, or upon undo, we restore the cwnd we had when
375 * recovery started (capped by the target cwnd based on estimated BDP).
376 *
377 * TODO(ycheng/ncardwell): implement a rate-based approach.
378 */
379static bool bbr_set_cwnd_to_recover_or_restore(
380 struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
381{
382 struct tcp_sock *tp = tcp_sk(sk);
383 struct bbr *bbr = inet_csk_ca(sk);
384 u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
385 u32 cwnd = tp->snd_cwnd;
386
387 /* An ACK for P pkts should release at most 2*P packets. We do this
388 * in two steps. First, here we deduct the number of lost packets.
389 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
390 */
391 if (rs->losses > 0)
392 cwnd = max_t(s32, cwnd - rs->losses, 1);
393
394 if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
395 /* Starting 1st round of Recovery, so do packet conservation. */
396 bbr->packet_conservation = 1;
397 bbr->next_rtt_delivered = tp->delivered; /* start round now */
398 /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
399 cwnd = tcp_packets_in_flight(tp) + acked;
400 } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
401 /* Exiting loss recovery; restore cwnd saved before recovery. */
fb998862 402 cwnd = max(cwnd, bbr->prior_cwnd);
0f8782ea
NC
403 bbr->packet_conservation = 0;
404 }
405 bbr->prev_ca_state = state;
406
0f8782ea
NC
407 if (bbr->packet_conservation) {
408 *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
409 return true; /* yes, using packet conservation */
410 }
411 *new_cwnd = cwnd;
412 return false;
413}
414
415/* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
416 * has drawn us down below target), or snap down to target if we're above it.
417 */
418static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
419 u32 acked, u32 bw, int gain)
420{
421 struct tcp_sock *tp = tcp_sk(sk);
422 struct bbr *bbr = inet_csk_ca(sk);
8e995bf1 423 u32 cwnd = tp->snd_cwnd, target_cwnd = 0;
0f8782ea
NC
424
425 if (!acked)
8e995bf1 426 goto done; /* no packet fully ACKed; just apply caps */
0f8782ea
NC
427
428 if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
429 goto done;
430
431 /* If we're below target cwnd, slow start cwnd toward target cwnd. */
432 target_cwnd = bbr_target_cwnd(sk, bw, gain);
433 if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */
434 cwnd = min(cwnd + acked, target_cwnd);
435 else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
436 cwnd = cwnd + acked;
437 cwnd = max(cwnd, bbr_cwnd_min_target);
438
439done:
440 tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */
441 if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
442 tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
443}
444
445/* End cycle phase if it's time and/or we hit the phase's in-flight target. */
446static bool bbr_is_next_cycle_phase(struct sock *sk,
447 const struct rate_sample *rs)
448{
449 struct tcp_sock *tp = tcp_sk(sk);
450 struct bbr *bbr = inet_csk_ca(sk);
451 bool is_full_length =
9a568de4 452 tcp_stamp_us_delta(tp->delivered_mstamp, bbr->cycle_mstamp) >
0f8782ea
NC
453 bbr->min_rtt_us;
454 u32 inflight, bw;
455
456 /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
457 * use the pipe without increasing the queue.
458 */
459 if (bbr->pacing_gain == BBR_UNIT)
460 return is_full_length; /* just use wall clock time */
461
462 inflight = rs->prior_in_flight; /* what was in-flight before ACK? */
463 bw = bbr_max_bw(sk);
464
465 /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
466 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
467 * small (e.g. on a LAN). We do not persist if packets are lost, since
468 * a path with small buffers may not hold that much.
469 */
470 if (bbr->pacing_gain > BBR_UNIT)
471 return is_full_length &&
472 (rs->losses || /* perhaps pacing_gain*BDP won't fit */
473 inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
474
475 /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
476 * probing didn't find more bw. If inflight falls to match BDP then we
477 * estimate queue is drained; persisting would underutilize the pipe.
478 */
479 return is_full_length ||
480 inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
481}
482
483static void bbr_advance_cycle_phase(struct sock *sk)
484{
485 struct tcp_sock *tp = tcp_sk(sk);
486 struct bbr *bbr = inet_csk_ca(sk);
487
488 bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
489 bbr->cycle_mstamp = tp->delivered_mstamp;
3aff3b4b
NC
490 bbr->pacing_gain = bbr->lt_use_bw ? BBR_UNIT :
491 bbr_pacing_gain[bbr->cycle_idx];
0f8782ea
NC
492}
493
494/* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
495static void bbr_update_cycle_phase(struct sock *sk,
496 const struct rate_sample *rs)
497{
498 struct bbr *bbr = inet_csk_ca(sk);
499
3aff3b4b 500 if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs))
0f8782ea
NC
501 bbr_advance_cycle_phase(sk);
502}
503
504static void bbr_reset_startup_mode(struct sock *sk)
505{
506 struct bbr *bbr = inet_csk_ca(sk);
507
508 bbr->mode = BBR_STARTUP;
509 bbr->pacing_gain = bbr_high_gain;
510 bbr->cwnd_gain = bbr_high_gain;
511}
512
513static void bbr_reset_probe_bw_mode(struct sock *sk)
514{
515 struct bbr *bbr = inet_csk_ca(sk);
516
517 bbr->mode = BBR_PROBE_BW;
518 bbr->pacing_gain = BBR_UNIT;
519 bbr->cwnd_gain = bbr_cwnd_gain;
520 bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
521 bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */
522}
523
524static void bbr_reset_mode(struct sock *sk)
525{
526 if (!bbr_full_bw_reached(sk))
527 bbr_reset_startup_mode(sk);
528 else
529 bbr_reset_probe_bw_mode(sk);
530}
531
532/* Start a new long-term sampling interval. */
533static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
534{
535 struct tcp_sock *tp = tcp_sk(sk);
536 struct bbr *bbr = inet_csk_ca(sk);
537
9a568de4 538 bbr->lt_last_stamp = div_u64(tp->delivered_mstamp, USEC_PER_MSEC);
0f8782ea
NC
539 bbr->lt_last_delivered = tp->delivered;
540 bbr->lt_last_lost = tp->lost;
541 bbr->lt_rtt_cnt = 0;
542}
543
544/* Completely reset long-term bandwidth sampling. */
545static void bbr_reset_lt_bw_sampling(struct sock *sk)
546{
547 struct bbr *bbr = inet_csk_ca(sk);
548
549 bbr->lt_bw = 0;
550 bbr->lt_use_bw = 0;
551 bbr->lt_is_sampling = false;
552 bbr_reset_lt_bw_sampling_interval(sk);
553}
554
555/* Long-term bw sampling interval is done. Estimate whether we're policed. */
556static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
557{
558 struct bbr *bbr = inet_csk_ca(sk);
559 u32 diff;
560
561 if (bbr->lt_bw) { /* do we have bw from a previous interval? */
562 /* Is new bw close to the lt_bw from the previous interval? */
563 diff = abs(bw - bbr->lt_bw);
564 if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
565 (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
566 bbr_lt_bw_diff)) {
567 /* All criteria are met; estimate we're policed. */
568 bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */
569 bbr->lt_use_bw = 1;
570 bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */
571 bbr->lt_rtt_cnt = 0;
572 return;
573 }
574 }
575 bbr->lt_bw = bw;
576 bbr_reset_lt_bw_sampling_interval(sk);
577}
578
579/* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
580 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
581 * explicitly models their policed rate, to reduce unnecessary losses. We
582 * estimate that we're policed if we see 2 consecutive sampling intervals with
583 * consistent throughput and high packet loss. If we think we're being policed,
584 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
585 */
586static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
587{
588 struct tcp_sock *tp = tcp_sk(sk);
589 struct bbr *bbr = inet_csk_ca(sk);
590 u32 lost, delivered;
591 u64 bw;
9a568de4 592 u32 t;
0f8782ea
NC
593
594 if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */
595 if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
596 ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
597 bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */
598 bbr_reset_probe_bw_mode(sk); /* restart gain cycling */
599 }
600 return;
601 }
602
603 /* Wait for the first loss before sampling, to let the policer exhaust
604 * its tokens and estimate the steady-state rate allowed by the policer.
605 * Starting samples earlier includes bursts that over-estimate the bw.
606 */
607 if (!bbr->lt_is_sampling) {
608 if (!rs->losses)
609 return;
610 bbr_reset_lt_bw_sampling_interval(sk);
611 bbr->lt_is_sampling = true;
612 }
613
614 /* To avoid underestimates, reset sampling if we run out of data. */
615 if (rs->is_app_limited) {
616 bbr_reset_lt_bw_sampling(sk);
617 return;
618 }
619
620 if (bbr->round_start)
621 bbr->lt_rtt_cnt++; /* count round trips in this interval */
622 if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
623 return; /* sampling interval needs to be longer */
624 if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
625 bbr_reset_lt_bw_sampling(sk); /* interval is too long */
626 return;
627 }
628
629 /* End sampling interval when a packet is lost, so we estimate the
630 * policer tokens were exhausted. Stopping the sampling before the
631 * tokens are exhausted under-estimates the policed rate.
632 */
633 if (!rs->losses)
634 return;
635
636 /* Calculate packets lost and delivered in sampling interval. */
637 lost = tp->lost - bbr->lt_last_lost;
638 delivered = tp->delivered - bbr->lt_last_delivered;
639 /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
640 if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
641 return;
642
643 /* Find average delivery rate in this sampling interval. */
9a568de4
ED
644 t = div_u64(tp->delivered_mstamp, USEC_PER_MSEC) - bbr->lt_last_stamp;
645 if ((s32)t < 1)
646 return; /* interval is less than one ms, so wait */
647 /* Check if can multiply without overflow */
648 if (t >= ~0U / USEC_PER_MSEC) {
0f8782ea
NC
649 bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */
650 return;
651 }
9a568de4 652 t *= USEC_PER_MSEC;
0f8782ea
NC
653 bw = (u64)delivered * BW_UNIT;
654 do_div(bw, t);
655 bbr_lt_bw_interval_done(sk, bw);
656}
657
658/* Estimate the bandwidth based on how fast packets are delivered */
659static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
660{
661 struct tcp_sock *tp = tcp_sk(sk);
662 struct bbr *bbr = inet_csk_ca(sk);
663 u64 bw;
664
665 bbr->round_start = 0;
666 if (rs->delivered < 0 || rs->interval_us <= 0)
667 return; /* Not a valid observation */
668
669 /* See if we've reached the next RTT */
670 if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
671 bbr->next_rtt_delivered = tp->delivered;
672 bbr->rtt_cnt++;
673 bbr->round_start = 1;
674 bbr->packet_conservation = 0;
675 }
676
677 bbr_lt_bw_sampling(sk, rs);
678
679 /* Divide delivered by the interval to find a (lower bound) bottleneck
680 * bandwidth sample. Delivered is in packets and interval_us in uS and
681 * ratio will be <<1 for most connections. So delivered is first scaled.
682 */
683 bw = (u64)rs->delivered * BW_UNIT;
684 do_div(bw, rs->interval_us);
685
686 /* If this sample is application-limited, it is likely to have a very
687 * low delivered count that represents application behavior rather than
688 * the available network rate. Such a sample could drag down estimated
689 * bw, causing needless slow-down. Thus, to continue to send at the
690 * last measured network rate, we filter out app-limited samples unless
691 * they describe the path bw at least as well as our bw model.
692 *
693 * So the goal during app-limited phase is to proceed with the best
694 * network rate no matter how long. We automatically leave this
695 * phase when app writes faster than the network can deliver :)
696 */
697 if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
698 /* Incorporate new sample into our max bw filter. */
699 minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
700 }
701}
702
703/* Estimate when the pipe is full, using the change in delivery rate: BBR
704 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
705 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
706 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
707 * higher rwin, 3: we get higher delivery rate samples. Or transient
708 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
709 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
710 */
711static void bbr_check_full_bw_reached(struct sock *sk,
712 const struct rate_sample *rs)
713{
714 struct bbr *bbr = inet_csk_ca(sk);
715 u32 bw_thresh;
716
717 if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
718 return;
719
720 bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
721 if (bbr_max_bw(sk) >= bw_thresh) {
722 bbr->full_bw = bbr_max_bw(sk);
723 bbr->full_bw_cnt = 0;
724 return;
725 }
726 ++bbr->full_bw_cnt;
c589e69b 727 bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
0f8782ea
NC
728}
729
730/* If pipe is probably full, drain the queue and then enter steady-state. */
731static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
732{
733 struct bbr *bbr = inet_csk_ca(sk);
734
735 if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
736 bbr->mode = BBR_DRAIN; /* drain queue we created */
737 bbr->pacing_gain = bbr_drain_gain; /* pace slow to drain */
738 bbr->cwnd_gain = bbr_high_gain; /* maintain cwnd */
53794570
YS
739 tcp_sk(sk)->snd_ssthresh =
740 bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT);
0f8782ea
NC
741 } /* fall through to check if in-flight is already small: */
742 if (bbr->mode == BBR_DRAIN &&
743 tcp_packets_in_flight(tcp_sk(sk)) <=
744 bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
745 bbr_reset_probe_bw_mode(sk); /* we estimate queue is drained */
746}
747
fb998862
KY
748static void bbr_check_probe_rtt_done(struct sock *sk)
749{
750 struct tcp_sock *tp = tcp_sk(sk);
751 struct bbr *bbr = inet_csk_ca(sk);
752
753 if (!(bbr->probe_rtt_done_stamp &&
754 after(tcp_jiffies32, bbr->probe_rtt_done_stamp)))
755 return;
756
757 bbr->min_rtt_stamp = tcp_jiffies32; /* wait a while until PROBE_RTT */
758 tp->snd_cwnd = max(tp->snd_cwnd, bbr->prior_cwnd);
759 bbr_reset_mode(sk);
760}
761
0f8782ea
NC
762/* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
763 * periodically drain the bottleneck queue, to converge to measure the true
764 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
765 * small (reducing queuing delay and packet loss) and achieve fairness among
766 * BBR flows.
767 *
768 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
769 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
770 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
771 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
772 * re-enter the previous mode. BBR uses 200ms to approximately bound the
773 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
774 *
775 * Note that flows need only pay 2% if they are busy sending over the last 10
776 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
777 * natural silences or low-rate periods within 10 seconds where the rate is low
778 * enough for long enough to drain its queue in the bottleneck. We pick up
779 * these min RTT measurements opportunistically with our min_rtt filter. :-)
780 */
781static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
782{
783 struct tcp_sock *tp = tcp_sk(sk);
784 struct bbr *bbr = inet_csk_ca(sk);
785 bool filter_expired;
786
787 /* Track min RTT seen in the min_rtt_win_sec filter window: */
2660bfa8 788 filter_expired = after(tcp_jiffies32,
0f8782ea
NC
789 bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
790 if (rs->rtt_us >= 0 &&
e4286603
YC
791 (rs->rtt_us <= bbr->min_rtt_us ||
792 (filter_expired && !rs->is_ack_delayed))) {
0f8782ea 793 bbr->min_rtt_us = rs->rtt_us;
2660bfa8 794 bbr->min_rtt_stamp = tcp_jiffies32;
0f8782ea
NC
795 }
796
797 if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
798 !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
799 bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */
800 bbr->pacing_gain = BBR_UNIT;
801 bbr->cwnd_gain = BBR_UNIT;
802 bbr_save_cwnd(sk); /* note cwnd so we can restore it */
803 bbr->probe_rtt_done_stamp = 0;
804 }
805
806 if (bbr->mode == BBR_PROBE_RTT) {
807 /* Ignore low rate samples during this mode. */
808 tp->app_limited =
809 (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
810 /* Maintain min packets in flight for max(200 ms, 1 round). */
811 if (!bbr->probe_rtt_done_stamp &&
812 tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
2660bfa8 813 bbr->probe_rtt_done_stamp = tcp_jiffies32 +
0f8782ea
NC
814 msecs_to_jiffies(bbr_probe_rtt_mode_ms);
815 bbr->probe_rtt_round_done = 0;
816 bbr->next_rtt_delivered = tp->delivered;
817 } else if (bbr->probe_rtt_done_stamp) {
818 if (bbr->round_start)
819 bbr->probe_rtt_round_done = 1;
fb998862
KY
820 if (bbr->probe_rtt_round_done)
821 bbr_check_probe_rtt_done(sk);
0f8782ea
NC
822 }
823 }
e6e6a278
NC
824 /* Restart after idle ends only once we process a new S/ACK for data */
825 if (rs->delivered > 0)
826 bbr->idle_restart = 0;
0f8782ea
NC
827}
828
829static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
830{
831 bbr_update_bw(sk, rs);
832 bbr_update_cycle_phase(sk, rs);
833 bbr_check_full_bw_reached(sk, rs);
834 bbr_check_drain(sk, rs);
835 bbr_update_min_rtt(sk, rs);
836}
837
838static void bbr_main(struct sock *sk, const struct rate_sample *rs)
839{
840 struct bbr *bbr = inet_csk_ca(sk);
841 u32 bw;
842
843 bbr_update_model(sk, rs);
844
845 bw = bbr_bw(sk);
846 bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
0f8782ea
NC
847 bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
848}
849
850static void bbr_init(struct sock *sk)
851{
852 struct tcp_sock *tp = tcp_sk(sk);
853 struct bbr *bbr = inet_csk_ca(sk);
0f8782ea
NC
854
855 bbr->prior_cwnd = 0;
53794570 856 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
0f8782ea
NC
857 bbr->rtt_cnt = 0;
858 bbr->next_rtt_delivered = 0;
859 bbr->prev_ca_state = TCP_CA_Open;
860 bbr->packet_conservation = 0;
861
862 bbr->probe_rtt_done_stamp = 0;
863 bbr->probe_rtt_round_done = 0;
864 bbr->min_rtt_us = tcp_min_rtt(tp);
2660bfa8 865 bbr->min_rtt_stamp = tcp_jiffies32;
0f8782ea
NC
866
867 minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */
868
32984565 869 bbr->has_seen_rtt = 0;
79135b89 870 bbr_init_pacing_rate_from_rtt(sk);
0f8782ea 871
0f8782ea
NC
872 bbr->round_start = 0;
873 bbr->idle_restart = 0;
c589e69b 874 bbr->full_bw_reached = 0;
0f8782ea
NC
875 bbr->full_bw = 0;
876 bbr->full_bw_cnt = 0;
9a568de4 877 bbr->cycle_mstamp = 0;
0f8782ea
NC
878 bbr->cycle_idx = 0;
879 bbr_reset_lt_bw_sampling(sk);
880 bbr_reset_startup_mode(sk);
218af599
ED
881
882 cmpxchg(&sk->sk_pacing_status, SK_PACING_NONE, SK_PACING_NEEDED);
0f8782ea
NC
883}
884
885static u32 bbr_sndbuf_expand(struct sock *sk)
886{
887 /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
888 return 3;
889}
890
891/* In theory BBR does not need to undo the cwnd since it does not
892 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
893 */
894static u32 bbr_undo_cwnd(struct sock *sk)
895{
2f6c498e
NC
896 struct bbr *bbr = inet_csk_ca(sk);
897
898 bbr->full_bw = 0; /* spurious slow-down; reset full pipe detection */
899 bbr->full_bw_cnt = 0;
600647d4 900 bbr_reset_lt_bw_sampling(sk);
0f8782ea
NC
901 return tcp_sk(sk)->snd_cwnd;
902}
903
904/* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
905static u32 bbr_ssthresh(struct sock *sk)
906{
907 bbr_save_cwnd(sk);
53794570 908 return tcp_sk(sk)->snd_ssthresh;
0f8782ea
NC
909}
910
911static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
912 union tcp_cc_info *info)
913{
914 if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
915 ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
916 struct tcp_sock *tp = tcp_sk(sk);
917 struct bbr *bbr = inet_csk_ca(sk);
918 u64 bw = bbr_bw(sk);
919
920 bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
921 memset(&info->bbr, 0, sizeof(info->bbr));
922 info->bbr.bbr_bw_lo = (u32)bw;
923 info->bbr.bbr_bw_hi = (u32)(bw >> 32);
924 info->bbr.bbr_min_rtt = bbr->min_rtt_us;
925 info->bbr.bbr_pacing_gain = bbr->pacing_gain;
926 info->bbr.bbr_cwnd_gain = bbr->cwnd_gain;
927 *attr = INET_DIAG_BBRINFO;
928 return sizeof(info->bbr);
929 }
930 return 0;
931}
932
933static void bbr_set_state(struct sock *sk, u8 new_state)
934{
935 struct bbr *bbr = inet_csk_ca(sk);
936
937 if (new_state == TCP_CA_Loss) {
938 struct rate_sample rs = { .losses = 1 };
939
940 bbr->prev_ca_state = TCP_CA_Loss;
941 bbr->full_bw = 0;
942 bbr->round_start = 1; /* treat RTO like end of a round */
943 bbr_lt_bw_sampling(sk, &rs);
944 }
945}
946
947static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
948 .flags = TCP_CONG_NON_RESTRICTED,
949 .name = "bbr",
950 .owner = THIS_MODULE,
951 .init = bbr_init,
952 .cong_control = bbr_main,
953 .sndbuf_expand = bbr_sndbuf_expand,
954 .undo_cwnd = bbr_undo_cwnd,
955 .cwnd_event = bbr_cwnd_event,
956 .ssthresh = bbr_ssthresh,
dcb8c9b4 957 .min_tso_segs = bbr_min_tso_segs,
0f8782ea
NC
958 .get_info = bbr_get_info,
959 .set_state = bbr_set_state,
960};
961
962static int __init bbr_register(void)
963{
964 BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
965 return tcp_register_congestion_control(&tcp_bbr_cong_ops);
966}
967
968static void __exit bbr_unregister(void)
969{
970 tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
971}
972
973module_init(bbr_register);
974module_exit(bbr_unregister);
975
976MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
977MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
978MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
979MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
980MODULE_LICENSE("Dual BSD/GPL");
981MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");