fib_trie: Update insert and delete to make use of tp from find_node
[linux-2.6-block.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
06ef921d 84#define MAX_STAT_DEPTH 32
19baf839 85
95f60ea3
AD
86#define KEYLENGTH (8*sizeof(t_key))
87#define KEY_MAX ((t_key)~0)
19baf839 88
19baf839
RO
89typedef unsigned int t_key;
90
64c9b6fb
AD
91#define IS_TNODE(n) ((n)->bits)
92#define IS_LEAF(n) (!(n)->bits)
2373ce1c 93
e9b44019 94#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
9f9e636d 95
64c9b6fb
AD
96struct tnode {
97 t_key key;
98 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
99 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
5405afd1 100 unsigned char slen;
64c9b6fb 101 struct tnode __rcu *parent;
37fd30f2 102 struct rcu_head rcu;
adaf9816
AD
103 union {
104 /* The fields in this struct are valid if bits > 0 (TNODE) */
105 struct {
95f60ea3
AD
106 t_key empty_children; /* KEYLENGTH bits needed */
107 t_key full_children; /* KEYLENGTH bits needed */
adaf9816
AD
108 struct tnode __rcu *child[0];
109 };
110 /* This list pointer if valid if bits == 0 (LEAF) */
79e5ad2c 111 struct hlist_head leaf;
adaf9816 112 };
19baf839
RO
113};
114
19baf839
RO
115#ifdef CONFIG_IP_FIB_TRIE_STATS
116struct trie_use_stats {
117 unsigned int gets;
118 unsigned int backtrack;
119 unsigned int semantic_match_passed;
120 unsigned int semantic_match_miss;
121 unsigned int null_node_hit;
2f36895a 122 unsigned int resize_node_skipped;
19baf839
RO
123};
124#endif
125
126struct trie_stat {
127 unsigned int totdepth;
128 unsigned int maxdepth;
129 unsigned int tnodes;
130 unsigned int leaves;
131 unsigned int nullpointers;
93672292 132 unsigned int prefixes;
06ef921d 133 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 134};
19baf839
RO
135
136struct trie {
adaf9816 137 struct tnode __rcu *trie;
19baf839 138#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 139 struct trie_use_stats __percpu *stats;
19baf839 140#endif
19baf839
RO
141};
142
ff181ed8 143static void resize(struct trie *t, struct tnode *tn);
c3059477
JP
144static size_t tnode_free_size;
145
146/*
147 * synchronize_rcu after call_rcu for that many pages; it should be especially
148 * useful before resizing the root node with PREEMPT_NONE configs; the value was
149 * obtained experimentally, aiming to avoid visible slowdown.
150 */
151static const int sync_pages = 128;
19baf839 152
e18b890b 153static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 154static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 155
64c9b6fb
AD
156/* caller must hold RTNL */
157#define node_parent(n) rtnl_dereference((n)->parent)
0a5c0475 158
64c9b6fb
AD
159/* caller must hold RCU read lock or RTNL */
160#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
0a5c0475 161
64c9b6fb 162/* wrapper for rcu_assign_pointer */
adaf9816 163static inline void node_set_parent(struct tnode *n, struct tnode *tp)
b59cfbf7 164{
adaf9816
AD
165 if (n)
166 rcu_assign_pointer(n->parent, tp);
06801916
SH
167}
168
64c9b6fb
AD
169#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
170
171/* This provides us with the number of children in this node, in the case of a
172 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 173 */
98293e8d 174static inline unsigned long tnode_child_length(const struct tnode *tn)
06801916 175{
64c9b6fb 176 return (1ul << tn->bits) & ~(1ul);
06801916 177}
2373ce1c 178
98293e8d
AD
179/* caller must hold RTNL */
180static inline struct tnode *tnode_get_child(const struct tnode *tn,
181 unsigned long i)
b59cfbf7 182{
0a5c0475 183 return rtnl_dereference(tn->child[i]);
b59cfbf7
ED
184}
185
98293e8d
AD
186/* caller must hold RCU read lock or RTNL */
187static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
188 unsigned long i)
19baf839 189{
0a5c0475 190 return rcu_dereference_rtnl(tn->child[i]);
19baf839
RO
191}
192
e9b44019
AD
193/* To understand this stuff, an understanding of keys and all their bits is
194 * necessary. Every node in the trie has a key associated with it, but not
195 * all of the bits in that key are significant.
196 *
197 * Consider a node 'n' and its parent 'tp'.
198 *
199 * If n is a leaf, every bit in its key is significant. Its presence is
200 * necessitated by path compression, since during a tree traversal (when
201 * searching for a leaf - unless we are doing an insertion) we will completely
202 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
203 * a potentially successful search, that we have indeed been walking the
204 * correct key path.
205 *
206 * Note that we can never "miss" the correct key in the tree if present by
207 * following the wrong path. Path compression ensures that segments of the key
208 * that are the same for all keys with a given prefix are skipped, but the
209 * skipped part *is* identical for each node in the subtrie below the skipped
210 * bit! trie_insert() in this implementation takes care of that.
211 *
212 * if n is an internal node - a 'tnode' here, the various parts of its key
213 * have many different meanings.
214 *
215 * Example:
216 * _________________________________________________________________
217 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
218 * -----------------------------------------------------------------
219 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
220 *
221 * _________________________________________________________________
222 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
223 * -----------------------------------------------------------------
224 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
225 *
226 * tp->pos = 22
227 * tp->bits = 3
228 * n->pos = 13
229 * n->bits = 4
230 *
231 * First, let's just ignore the bits that come before the parent tp, that is
232 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
233 * point we do not use them for anything.
234 *
235 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
236 * index into the parent's child array. That is, they will be used to find
237 * 'n' among tp's children.
238 *
239 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
240 * for the node n.
241 *
242 * All the bits we have seen so far are significant to the node n. The rest
243 * of the bits are really not needed or indeed known in n->key.
244 *
245 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
246 * n's child array, and will of course be different for each child.
247 *
248 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
249 * at this point.
250 */
19baf839 251
f5026fab
DL
252static const int halve_threshold = 25;
253static const int inflate_threshold = 50;
345aa031 254static const int halve_threshold_root = 15;
80b71b80 255static const int inflate_threshold_root = 30;
2373ce1c
RO
256
257static void __alias_free_mem(struct rcu_head *head)
19baf839 258{
2373ce1c
RO
259 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
260 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
261}
262
2373ce1c 263static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 264{
2373ce1c
RO
265 call_rcu(&fa->rcu, __alias_free_mem);
266}
91b9a277 267
37fd30f2 268#define TNODE_KMALLOC_MAX \
adaf9816 269 ilog2((PAGE_SIZE - sizeof(struct tnode)) / sizeof(struct tnode *))
91b9a277 270
37fd30f2 271static void __node_free_rcu(struct rcu_head *head)
387a5487 272{
adaf9816 273 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2
AD
274
275 if (IS_LEAF(n))
276 kmem_cache_free(trie_leaf_kmem, n);
277 else if (n->bits <= TNODE_KMALLOC_MAX)
278 kfree(n);
279 else
280 vfree(n);
387a5487
SH
281}
282
37fd30f2
AD
283#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)
284
8d965444 285static struct tnode *tnode_alloc(size_t size)
f0e36f8c 286{
2373ce1c 287 if (size <= PAGE_SIZE)
8d965444 288 return kzalloc(size, GFP_KERNEL);
15be75cd 289 else
7a1c8e5a 290 return vzalloc(size);
15be75cd 291}
2373ce1c 292
95f60ea3
AD
293static inline void empty_child_inc(struct tnode *n)
294{
295 ++n->empty_children ? : ++n->full_children;
296}
297
298static inline void empty_child_dec(struct tnode *n)
299{
300 n->empty_children-- ? : n->full_children--;
301}
302
d5d6487c 303static struct tnode *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 304{
adaf9816 305 struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c 306 if (l) {
64c9b6fb
AD
307 l->parent = NULL;
308 /* set key and pos to reflect full key value
309 * any trailing zeros in the key should be ignored
310 * as the nodes are searched
311 */
312 l->key = key;
d5d6487c 313 l->slen = fa->fa_slen;
e9b44019 314 l->pos = 0;
64c9b6fb
AD
315 /* set bits to 0 indicating we are not a tnode */
316 l->bits = 0;
317
d5d6487c 318 /* link leaf to fib alias */
79e5ad2c 319 INIT_HLIST_HEAD(&l->leaf);
d5d6487c 320 hlist_add_head(&fa->fa_list, &l->leaf);
2373ce1c
RO
321 }
322 return l;
323}
324
a07f5f50 325static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 326{
95f60ea3 327 size_t sz = offsetof(struct tnode, child[1ul << bits]);
f0e36f8c 328 struct tnode *tn = tnode_alloc(sz);
64c9b6fb
AD
329 unsigned int shift = pos + bits;
330
331 /* verify bits and pos their msb bits clear and values are valid */
332 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 333
91b9a277 334 if (tn) {
64c9b6fb 335 tn->parent = NULL;
5405afd1 336 tn->slen = pos;
19baf839
RO
337 tn->pos = pos;
338 tn->bits = bits;
e9b44019 339 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
95f60ea3
AD
340 if (bits == KEYLENGTH)
341 tn->full_children = 1;
342 else
343 tn->empty_children = 1ul << bits;
19baf839 344 }
c877efb2 345
a034ee3c 346 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
adaf9816 347 sizeof(struct tnode *) << bits);
19baf839
RO
348 return tn;
349}
350
e9b44019 351/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
352 * and no bits are skipped. See discussion in dyntree paper p. 6
353 */
adaf9816 354static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
19baf839 355{
e9b44019 356 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
357}
358
ff181ed8
AD
359/* Add a child at position i overwriting the old value.
360 * Update the value of full_children and empty_children.
361 */
362static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
19baf839 363{
21d1f11d 364 struct tnode *chi = tnode_get_child(tn, i);
ff181ed8 365 int isfull, wasfull;
19baf839 366
98293e8d 367 BUG_ON(i >= tnode_child_length(tn));
0c7770c7 368
95f60ea3 369 /* update emptyChildren, overflow into fullChildren */
19baf839 370 if (n == NULL && chi != NULL)
95f60ea3
AD
371 empty_child_inc(tn);
372 if (n != NULL && chi == NULL)
373 empty_child_dec(tn);
c877efb2 374
19baf839 375 /* update fullChildren */
ff181ed8 376 wasfull = tnode_full(tn, chi);
19baf839 377 isfull = tnode_full(tn, n);
ff181ed8 378
c877efb2 379 if (wasfull && !isfull)
19baf839 380 tn->full_children--;
c877efb2 381 else if (!wasfull && isfull)
19baf839 382 tn->full_children++;
91b9a277 383
5405afd1
AD
384 if (n && (tn->slen < n->slen))
385 tn->slen = n->slen;
386
cf778b00 387 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
388}
389
69fa57b1
AD
390static void update_children(struct tnode *tn)
391{
392 unsigned long i;
393
394 /* update all of the child parent pointers */
395 for (i = tnode_child_length(tn); i;) {
396 struct tnode *inode = tnode_get_child(tn, --i);
397
398 if (!inode)
399 continue;
400
401 /* Either update the children of a tnode that
402 * already belongs to us or update the child
403 * to point to ourselves.
404 */
405 if (node_parent(inode) == tn)
406 update_children(inode);
407 else
408 node_set_parent(inode, tn);
409 }
410}
411
412static inline void put_child_root(struct tnode *tp, struct trie *t,
413 t_key key, struct tnode *n)
836a0123
AD
414{
415 if (tp)
416 put_child(tp, get_index(key, tp), n);
417 else
418 rcu_assign_pointer(t->trie, n);
419}
420
fc86a93b 421static inline void tnode_free_init(struct tnode *tn)
0a5c0475 422{
fc86a93b
AD
423 tn->rcu.next = NULL;
424}
425
426static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
427{
428 n->rcu.next = tn->rcu.next;
429 tn->rcu.next = &n->rcu;
430}
0a5c0475 431
fc86a93b
AD
432static void tnode_free(struct tnode *tn)
433{
434 struct callback_head *head = &tn->rcu;
435
436 while (head) {
437 head = head->next;
438 tnode_free_size += offsetof(struct tnode, child[1 << tn->bits]);
439 node_free(tn);
440
441 tn = container_of(head, struct tnode, rcu);
442 }
443
444 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
445 tnode_free_size = 0;
446 synchronize_rcu();
0a5c0475 447 }
0a5c0475
ED
448}
449
69fa57b1
AD
450static void replace(struct trie *t, struct tnode *oldtnode, struct tnode *tn)
451{
452 struct tnode *tp = node_parent(oldtnode);
453 unsigned long i;
454
455 /* setup the parent pointer out of and back into this node */
456 NODE_INIT_PARENT(tn, tp);
457 put_child_root(tp, t, tn->key, tn);
458
459 /* update all of the child parent pointers */
460 update_children(tn);
461
462 /* all pointers should be clean so we are done */
463 tnode_free(oldtnode);
464
465 /* resize children now that oldtnode is freed */
466 for (i = tnode_child_length(tn); i;) {
467 struct tnode *inode = tnode_get_child(tn, --i);
468
469 /* resize child node */
470 if (tnode_full(tn, inode))
471 resize(t, inode);
472 }
473}
474
ff181ed8 475static int inflate(struct trie *t, struct tnode *oldtnode)
19baf839 476{
69fa57b1
AD
477 struct tnode *tn;
478 unsigned long i;
e9b44019 479 t_key m;
19baf839 480
0c7770c7 481 pr_debug("In inflate\n");
19baf839 482
e9b44019 483 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 484 if (!tn)
ff181ed8 485 return -ENOMEM;
2f36895a 486
69fa57b1
AD
487 /* prepare oldtnode to be freed */
488 tnode_free_init(oldtnode);
489
12c081a5
AD
490 /* Assemble all of the pointers in our cluster, in this case that
491 * represents all of the pointers out of our allocated nodes that
492 * point to existing tnodes and the links between our allocated
493 * nodes.
2f36895a 494 */
12c081a5 495 for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
69fa57b1
AD
496 struct tnode *inode = tnode_get_child(oldtnode, --i);
497 struct tnode *node0, *node1;
498 unsigned long j, k;
c877efb2 499
19baf839 500 /* An empty child */
adaf9816 501 if (inode == NULL)
19baf839
RO
502 continue;
503
504 /* A leaf or an internal node with skipped bits */
adaf9816 505 if (!tnode_full(oldtnode, inode)) {
e9b44019 506 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
507 continue;
508 }
509
69fa57b1
AD
510 /* drop the node in the old tnode free list */
511 tnode_free_append(oldtnode, inode);
512
19baf839 513 /* An internal node with two children */
19baf839 514 if (inode->bits == 1) {
12c081a5
AD
515 put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
516 put_child(tn, 2 * i, tnode_get_child(inode, 0));
91b9a277 517 continue;
19baf839
RO
518 }
519
91b9a277 520 /* We will replace this node 'inode' with two new
12c081a5 521 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
522 * original children. The two new nodes will have
523 * a position one bit further down the key and this
524 * means that the "significant" part of their keys
525 * (see the discussion near the top of this file)
526 * will differ by one bit, which will be "0" in
12c081a5 527 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
528 * moving the key position by one step, the bit that
529 * we are moving away from - the bit at position
12c081a5
AD
530 * (tn->pos) - is the one that will differ between
531 * node0 and node1. So... we synthesize that bit in the
532 * two new keys.
91b9a277 533 */
12c081a5
AD
534 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
535 if (!node1)
536 goto nomem;
69fa57b1 537 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 538
69fa57b1 539 tnode_free_append(tn, node1);
12c081a5
AD
540 if (!node0)
541 goto nomem;
542 tnode_free_append(tn, node0);
543
544 /* populate child pointers in new nodes */
545 for (k = tnode_child_length(inode), j = k / 2; j;) {
546 put_child(node1, --j, tnode_get_child(inode, --k));
547 put_child(node0, j, tnode_get_child(inode, j));
548 put_child(node1, --j, tnode_get_child(inode, --k));
549 put_child(node0, j, tnode_get_child(inode, j));
550 }
19baf839 551
12c081a5
AD
552 /* link new nodes to parent */
553 NODE_INIT_PARENT(node1, tn);
554 NODE_INIT_PARENT(node0, tn);
2f36895a 555
12c081a5
AD
556 /* link parent to nodes */
557 put_child(tn, 2 * i + 1, node1);
558 put_child(tn, 2 * i, node0);
559 }
2f36895a 560
69fa57b1
AD
561 /* setup the parent pointers into and out of this node */
562 replace(t, oldtnode, tn);
12c081a5 563
ff181ed8 564 return 0;
2f80b3c8 565nomem:
fc86a93b
AD
566 /* all pointers should be clean so we are done */
567 tnode_free(tn);
ff181ed8 568 return -ENOMEM;
19baf839
RO
569}
570
ff181ed8 571static int halve(struct trie *t, struct tnode *oldtnode)
19baf839 572{
69fa57b1 573 struct tnode *tn;
12c081a5 574 unsigned long i;
19baf839 575
0c7770c7 576 pr_debug("In halve\n");
c877efb2 577
e9b44019 578 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 579 if (!tn)
ff181ed8 580 return -ENOMEM;
2f36895a 581
69fa57b1
AD
582 /* prepare oldtnode to be freed */
583 tnode_free_init(oldtnode);
584
12c081a5
AD
585 /* Assemble all of the pointers in our cluster, in this case that
586 * represents all of the pointers out of our allocated nodes that
587 * point to existing tnodes and the links between our allocated
588 * nodes.
2f36895a 589 */
12c081a5 590 for (i = tnode_child_length(oldtnode); i;) {
69fa57b1
AD
591 struct tnode *node1 = tnode_get_child(oldtnode, --i);
592 struct tnode *node0 = tnode_get_child(oldtnode, --i);
593 struct tnode *inode;
2f36895a 594
12c081a5
AD
595 /* At least one of the children is empty */
596 if (!node1 || !node0) {
597 put_child(tn, i / 2, node1 ? : node0);
598 continue;
599 }
c877efb2 600
2f36895a 601 /* Two nonempty children */
12c081a5
AD
602 inode = tnode_new(node0->key, oldtnode->pos, 1);
603 if (!inode) {
604 tnode_free(tn);
605 return -ENOMEM;
2f36895a 606 }
12c081a5 607 tnode_free_append(tn, inode);
2f36895a 608
12c081a5
AD
609 /* initialize pointers out of node */
610 put_child(inode, 1, node1);
611 put_child(inode, 0, node0);
612 NODE_INIT_PARENT(inode, tn);
613
614 /* link parent to node */
615 put_child(tn, i / 2, inode);
2f36895a 616 }
19baf839 617
69fa57b1
AD
618 /* setup the parent pointers into and out of this node */
619 replace(t, oldtnode, tn);
ff181ed8
AD
620
621 return 0;
19baf839
RO
622}
623
95f60ea3
AD
624static void collapse(struct trie *t, struct tnode *oldtnode)
625{
626 struct tnode *n, *tp;
627 unsigned long i;
628
629 /* scan the tnode looking for that one child that might still exist */
630 for (n = NULL, i = tnode_child_length(oldtnode); !n && i;)
631 n = tnode_get_child(oldtnode, --i);
632
633 /* compress one level */
634 tp = node_parent(oldtnode);
635 put_child_root(tp, t, oldtnode->key, n);
636 node_set_parent(n, tp);
637
638 /* drop dead node */
639 node_free(oldtnode);
640}
641
5405afd1
AD
642static unsigned char update_suffix(struct tnode *tn)
643{
644 unsigned char slen = tn->pos;
645 unsigned long stride, i;
646
647 /* search though the list of children looking for nodes that might
648 * have a suffix greater than the one we currently have. This is
649 * why we start with a stride of 2 since a stride of 1 would
650 * represent the nodes with suffix length equal to tn->pos
651 */
652 for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
653 struct tnode *n = tnode_get_child(tn, i);
654
655 if (!n || (n->slen <= slen))
656 continue;
657
658 /* update stride and slen based on new value */
659 stride <<= (n->slen - slen);
660 slen = n->slen;
661 i &= ~(stride - 1);
662
663 /* if slen covers all but the last bit we can stop here
664 * there will be nothing longer than that since only node
665 * 0 and 1 << (bits - 1) could have that as their suffix
666 * length.
667 */
668 if ((slen + 1) >= (tn->pos + tn->bits))
669 break;
670 }
671
672 tn->slen = slen;
673
674 return slen;
675}
676
f05a4819
AD
677/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
678 * the Helsinki University of Technology and Matti Tikkanen of Nokia
679 * Telecommunications, page 6:
680 * "A node is doubled if the ratio of non-empty children to all
681 * children in the *doubled* node is at least 'high'."
682 *
683 * 'high' in this instance is the variable 'inflate_threshold'. It
684 * is expressed as a percentage, so we multiply it with
685 * tnode_child_length() and instead of multiplying by 2 (since the
686 * child array will be doubled by inflate()) and multiplying
687 * the left-hand side by 100 (to handle the percentage thing) we
688 * multiply the left-hand side by 50.
689 *
690 * The left-hand side may look a bit weird: tnode_child_length(tn)
691 * - tn->empty_children is of course the number of non-null children
692 * in the current node. tn->full_children is the number of "full"
693 * children, that is non-null tnodes with a skip value of 0.
694 * All of those will be doubled in the resulting inflated tnode, so
695 * we just count them one extra time here.
696 *
697 * A clearer way to write this would be:
698 *
699 * to_be_doubled = tn->full_children;
700 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
701 * tn->full_children;
702 *
703 * new_child_length = tnode_child_length(tn) * 2;
704 *
705 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
706 * new_child_length;
707 * if (new_fill_factor >= inflate_threshold)
708 *
709 * ...and so on, tho it would mess up the while () loop.
710 *
711 * anyway,
712 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
713 * inflate_threshold
714 *
715 * avoid a division:
716 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
717 * inflate_threshold * new_child_length
718 *
719 * expand not_to_be_doubled and to_be_doubled, and shorten:
720 * 100 * (tnode_child_length(tn) - tn->empty_children +
721 * tn->full_children) >= inflate_threshold * new_child_length
722 *
723 * expand new_child_length:
724 * 100 * (tnode_child_length(tn) - tn->empty_children +
725 * tn->full_children) >=
726 * inflate_threshold * tnode_child_length(tn) * 2
727 *
728 * shorten again:
729 * 50 * (tn->full_children + tnode_child_length(tn) -
730 * tn->empty_children) >= inflate_threshold *
731 * tnode_child_length(tn)
732 *
733 */
ff181ed8 734static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
f05a4819
AD
735{
736 unsigned long used = tnode_child_length(tn);
737 unsigned long threshold = used;
738
739 /* Keep root node larger */
ff181ed8 740 threshold *= tp ? inflate_threshold : inflate_threshold_root;
f05a4819 741 used -= tn->empty_children;
95f60ea3 742 used += tn->full_children;
f05a4819 743
95f60ea3
AD
744 /* if bits == KEYLENGTH then pos = 0, and will fail below */
745
746 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
747}
748
ff181ed8 749static bool should_halve(const struct tnode *tp, const struct tnode *tn)
f05a4819
AD
750{
751 unsigned long used = tnode_child_length(tn);
752 unsigned long threshold = used;
753
754 /* Keep root node larger */
ff181ed8 755 threshold *= tp ? halve_threshold : halve_threshold_root;
f05a4819
AD
756 used -= tn->empty_children;
757
95f60ea3
AD
758 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
759
760 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
761}
762
763static bool should_collapse(const struct tnode *tn)
764{
765 unsigned long used = tnode_child_length(tn);
766
767 used -= tn->empty_children;
768
769 /* account for bits == KEYLENGTH case */
770 if ((tn->bits == KEYLENGTH) && tn->full_children)
771 used -= KEY_MAX;
772
773 /* One child or none, time to drop us from the trie */
774 return used < 2;
f05a4819
AD
775}
776
cf3637bb 777#define MAX_WORK 10
ff181ed8 778static void resize(struct trie *t, struct tnode *tn)
cf3637bb 779{
95f60ea3 780 struct tnode *tp = node_parent(tn);
ff181ed8 781 struct tnode __rcu **cptr;
a80e89d4 782 int max_work = MAX_WORK;
cf3637bb 783
cf3637bb
AD
784 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
785 tn, inflate_threshold, halve_threshold);
786
ff181ed8
AD
787 /* track the tnode via the pointer from the parent instead of
788 * doing it ourselves. This way we can let RCU fully do its
789 * thing without us interfering
790 */
791 cptr = tp ? &tp->child[get_index(tn->key, tp)] : &t->trie;
792 BUG_ON(tn != rtnl_dereference(*cptr));
793
f05a4819
AD
794 /* Double as long as the resulting node has a number of
795 * nonempty nodes that are above the threshold.
cf3637bb 796 */
a80e89d4 797 while (should_inflate(tp, tn) && max_work) {
ff181ed8 798 if (inflate(t, tn)) {
cf3637bb
AD
799#ifdef CONFIG_IP_FIB_TRIE_STATS
800 this_cpu_inc(t->stats->resize_node_skipped);
801#endif
802 break;
803 }
ff181ed8 804
a80e89d4 805 max_work--;
ff181ed8 806 tn = rtnl_dereference(*cptr);
cf3637bb
AD
807 }
808
809 /* Return if at least one inflate is run */
810 if (max_work != MAX_WORK)
ff181ed8 811 return;
cf3637bb 812
f05a4819 813 /* Halve as long as the number of empty children in this
cf3637bb
AD
814 * node is above threshold.
815 */
a80e89d4 816 while (should_halve(tp, tn) && max_work) {
ff181ed8 817 if (halve(t, tn)) {
cf3637bb
AD
818#ifdef CONFIG_IP_FIB_TRIE_STATS
819 this_cpu_inc(t->stats->resize_node_skipped);
820#endif
821 break;
822 }
cf3637bb 823
a80e89d4 824 max_work--;
ff181ed8
AD
825 tn = rtnl_dereference(*cptr);
826 }
cf3637bb
AD
827
828 /* Only one child remains */
95f60ea3
AD
829 if (should_collapse(tn)) {
830 collapse(t, tn);
5405afd1
AD
831 return;
832 }
833
834 /* Return if at least one deflate was run */
835 if (max_work != MAX_WORK)
836 return;
837
838 /* push the suffix length to the parent node */
839 if (tn->slen > tn->pos) {
840 unsigned char slen = update_suffix(tn);
841
842 if (tp && (slen > tp->slen))
843 tp->slen = slen;
cf3637bb 844 }
cf3637bb
AD
845}
846
d5d6487c 847static void leaf_pull_suffix(struct tnode *tp, struct tnode *l)
5405afd1 848{
5405afd1
AD
849 while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
850 if (update_suffix(tp) > l->slen)
851 break;
852 tp = node_parent(tp);
853 }
854}
855
d5d6487c 856static void leaf_push_suffix(struct tnode *tn, struct tnode *l)
19baf839 857{
5405afd1
AD
858 /* if this is a new leaf then tn will be NULL and we can sort
859 * out parent suffix lengths as a part of trie_rebalance
860 */
861 while (tn && (tn->slen < l->slen)) {
862 tn->slen = l->slen;
863 tn = node_parent(tn);
864 }
865}
866
2373ce1c 867/* rcu_read_lock needs to be hold by caller from readside */
d4a975e8 868static struct tnode *fib_find_node(struct trie *t, struct tnode **tn, u32 key)
19baf839 869{
d4a975e8 870 struct tnode *pn = NULL, *n = rcu_dereference_rtnl(t->trie);
939afb06
AD
871
872 while (n) {
873 unsigned long index = get_index(key, n);
874
875 /* This bit of code is a bit tricky but it combines multiple
876 * checks into a single check. The prefix consists of the
877 * prefix plus zeros for the bits in the cindex. The index
878 * is the difference between the key and this value. From
879 * this we can actually derive several pieces of data.
d4a975e8 880 * if (index >= (1ul << bits))
939afb06 881 * we have a mismatch in skip bits and failed
b3832117
AD
882 * else
883 * we know the value is cindex
d4a975e8
AD
884 *
885 * This check is safe even if bits == KEYLENGTH due to the
886 * fact that we can only allocate a node with 32 bits if a
887 * long is greater than 32 bits.
939afb06 888 */
d4a975e8
AD
889 if (index >= (1ul << n->bits)) {
890 n = NULL;
891 break;
892 }
939afb06
AD
893
894 /* we have found a leaf. Prefixes have already been compared */
895 if (IS_LEAF(n))
19baf839 896 break;
19baf839 897
d4a975e8 898 pn = n;
21d1f11d 899 n = tnode_get_child_rcu(n, index);
939afb06 900 }
91b9a277 901
d4a975e8
AD
902 *tn = pn;
903
939afb06 904 return n;
19baf839
RO
905}
906
02525368
AD
907/* Return the first fib alias matching TOS with
908 * priority less than or equal to PRIO.
909 */
79e5ad2c
AD
910static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
911 u8 tos, u32 prio)
02525368
AD
912{
913 struct fib_alias *fa;
914
915 if (!fah)
916 return NULL;
917
56315f9e 918 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
919 if (fa->fa_slen < slen)
920 continue;
921 if (fa->fa_slen != slen)
922 break;
02525368
AD
923 if (fa->fa_tos > tos)
924 continue;
925 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
926 return fa;
927 }
928
929 return NULL;
930}
931
7b85576d 932static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 933{
06801916 934 struct tnode *tp;
19baf839 935
d5d6487c
AD
936 while (tn) {
937 tp = node_parent(tn);
ff181ed8 938 resize(t, tn);
06801916 939 tn = tp;
19baf839 940 }
19baf839
RO
941}
942
2373ce1c 943/* only used from updater-side */
d5d6487c
AD
944static int fib_insert_node(struct trie *t, struct tnode *tp,
945 struct fib_alias *new, t_key key)
19baf839 946{
d5d6487c 947 struct tnode *n, *l;
19baf839 948
d5d6487c 949 l = leaf_new(key, new);
79e5ad2c 950 if (!l)
d5d6487c
AD
951 return -ENOMEM;
952
953 /* retrieve child from parent node */
954 if (tp)
955 n = tnode_get_child(tp, get_index(key, tp));
956 else
957 n = rcu_dereference_rtnl(t->trie);
19baf839 958
836a0123
AD
959 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
960 *
961 * Add a new tnode here
962 * first tnode need some special handling
963 * leaves us in position for handling as case 3
964 */
965 if (n) {
966 struct tnode *tn;
19baf839 967
e9b44019 968 tn = tnode_new(key, __fls(key ^ n->key), 1);
c877efb2 969 if (!tn) {
37fd30f2 970 node_free(l);
d5d6487c 971 return -ENOMEM;
91b9a277
OJ
972 }
973
836a0123
AD
974 /* initialize routes out of node */
975 NODE_INIT_PARENT(tn, tp);
976 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 977
836a0123
AD
978 /* start adding routes into the node */
979 put_child_root(tp, t, key, tn);
980 node_set_parent(n, tn);
e962f302 981
836a0123 982 /* parent now has a NULL spot where the leaf can go */
e962f302 983 tp = tn;
19baf839 984 }
91b9a277 985
836a0123 986 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c
AD
987 NODE_INIT_PARENT(l, tp);
988 put_child_root(tp, t, key, l);
989 trie_rebalance(t, tp);
990
991 return 0;
992}
993
994static int fib_insert_alias(struct trie *t, struct tnode *tp,
995 struct tnode *l, struct fib_alias *new,
996 struct fib_alias *fa, t_key key)
997{
998 if (!l)
999 return fib_insert_node(t, tp, new, key);
1000
1001 if (fa) {
1002 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1003 } else {
d5d6487c
AD
1004 struct fib_alias *last;
1005
1006 hlist_for_each_entry(last, &l->leaf, fa_list) {
1007 if (new->fa_slen < last->fa_slen)
1008 break;
1009 fa = last;
1010 }
1011
1012 if (fa)
1013 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1014 else
1015 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1016 }
2373ce1c 1017
d5d6487c
AD
1018 /* if we added to the tail node then we need to update slen */
1019 if (l->slen < new->fa_slen) {
1020 l->slen = new->fa_slen;
1021 leaf_push_suffix(tp, l);
1022 }
1023
1024 return 0;
19baf839
RO
1025}
1026
d5d6487c 1027/* Caller must hold RTNL. */
16c6cf8b 1028int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839 1029{
d4a975e8 1030 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1031 struct fib_alias *fa, *new_fa;
d4a975e8 1032 struct tnode *l, *tp;
19baf839 1033 struct fib_info *fi;
79e5ad2c
AD
1034 u8 plen = cfg->fc_dst_len;
1035 u8 slen = KEYLENGTH - plen;
4e902c57 1036 u8 tos = cfg->fc_tos;
d4a975e8 1037 u32 key;
19baf839 1038 int err;
19baf839 1039
5786ec60 1040 if (plen > KEYLENGTH)
19baf839
RO
1041 return -EINVAL;
1042
4e902c57 1043 key = ntohl(cfg->fc_dst);
19baf839 1044
2dfe55b4 1045 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1046
d4a975e8 1047 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1048 return -EINVAL;
1049
4e902c57
TG
1050 fi = fib_create_info(cfg);
1051 if (IS_ERR(fi)) {
1052 err = PTR_ERR(fi);
19baf839 1053 goto err;
4e902c57 1054 }
19baf839 1055
d4a975e8 1056 l = fib_find_node(t, &tp, key);
79e5ad2c 1057 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
19baf839
RO
1058
1059 /* Now fa, if non-NULL, points to the first fib alias
1060 * with the same keys [prefix,tos,priority], if such key already
1061 * exists or to the node before which we will insert new one.
1062 *
1063 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1064 * insert to the tail of the section matching the suffix length
1065 * of the new alias.
19baf839
RO
1066 */
1067
936f6f8e
JA
1068 if (fa && fa->fa_tos == tos &&
1069 fa->fa_info->fib_priority == fi->fib_priority) {
1070 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1071
1072 err = -EEXIST;
4e902c57 1073 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1074 goto out;
1075
936f6f8e
JA
1076 /* We have 2 goals:
1077 * 1. Find exact match for type, scope, fib_info to avoid
1078 * duplicate routes
1079 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1080 */
1081 fa_match = NULL;
1082 fa_first = fa;
56315f9e 1083 hlist_for_each_entry_from(fa, fa_list) {
79e5ad2c 1084 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
936f6f8e
JA
1085 break;
1086 if (fa->fa_info->fib_priority != fi->fib_priority)
1087 break;
1088 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1089 fa->fa_info == fi) {
1090 fa_match = fa;
1091 break;
1092 }
1093 }
1094
4e902c57 1095 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1096 struct fib_info *fi_drop;
1097 u8 state;
1098
936f6f8e
JA
1099 fa = fa_first;
1100 if (fa_match) {
1101 if (fa == fa_match)
1102 err = 0;
6725033f 1103 goto out;
936f6f8e 1104 }
2373ce1c 1105 err = -ENOBUFS;
e94b1766 1106 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1107 if (new_fa == NULL)
1108 goto out;
19baf839
RO
1109
1110 fi_drop = fa->fa_info;
2373ce1c
RO
1111 new_fa->fa_tos = fa->fa_tos;
1112 new_fa->fa_info = fi;
4e902c57 1113 new_fa->fa_type = cfg->fc_type;
19baf839 1114 state = fa->fa_state;
936f6f8e 1115 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1116 new_fa->fa_slen = fa->fa_slen;
19baf839 1117
56315f9e 1118 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
2373ce1c 1119 alias_free_mem_rcu(fa);
19baf839
RO
1120
1121 fib_release_info(fi_drop);
1122 if (state & FA_S_ACCESSED)
4ccfe6d4 1123 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1124 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1125 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1126
91b9a277 1127 goto succeeded;
19baf839
RO
1128 }
1129 /* Error if we find a perfect match which
1130 * uses the same scope, type, and nexthop
1131 * information.
1132 */
936f6f8e
JA
1133 if (fa_match)
1134 goto out;
a07f5f50 1135
4e902c57 1136 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1137 fa = fa_first;
19baf839
RO
1138 }
1139 err = -ENOENT;
4e902c57 1140 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1141 goto out;
1142
1143 err = -ENOBUFS;
e94b1766 1144 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1145 if (new_fa == NULL)
1146 goto out;
1147
1148 new_fa->fa_info = fi;
1149 new_fa->fa_tos = tos;
4e902c57 1150 new_fa->fa_type = cfg->fc_type;
19baf839 1151 new_fa->fa_state = 0;
79e5ad2c 1152 new_fa->fa_slen = slen;
19baf839 1153
9b6ebad5 1154 /* Insert new entry to the list. */
d5d6487c
AD
1155 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1156 if (err)
1157 goto out_free_new_fa;
19baf839 1158
21d8c49e
DM
1159 if (!plen)
1160 tb->tb_num_default++;
1161
4ccfe6d4 1162 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1163 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1164 &cfg->fc_nlinfo, 0);
19baf839
RO
1165succeeded:
1166 return 0;
f835e471
RO
1167
1168out_free_new_fa:
1169 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1170out:
1171 fib_release_info(fi);
91b9a277 1172err:
19baf839
RO
1173 return err;
1174}
1175
9f9e636d
AD
1176static inline t_key prefix_mismatch(t_key key, struct tnode *n)
1177{
1178 t_key prefix = n->key;
1179
1180 return (key ^ prefix) & (prefix | -prefix);
1181}
1182
345e9b54 1183/* should be called with rcu_read_lock */
22bd5b9b 1184int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1185 struct fib_result *res, int fib_flags)
19baf839 1186{
9f9e636d 1187 struct trie *t = (struct trie *)tb->tb_data;
8274a97a
AD
1188#ifdef CONFIG_IP_FIB_TRIE_STATS
1189 struct trie_use_stats __percpu *stats = t->stats;
1190#endif
9f9e636d
AD
1191 const t_key key = ntohl(flp->daddr);
1192 struct tnode *n, *pn;
79e5ad2c 1193 struct fib_alias *fa;
9f9e636d 1194 t_key cindex;
91b9a277 1195
2373ce1c 1196 n = rcu_dereference(t->trie);
c877efb2 1197 if (!n)
345e9b54 1198 return -EAGAIN;
19baf839
RO
1199
1200#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1201 this_cpu_inc(stats->gets);
19baf839
RO
1202#endif
1203
adaf9816 1204 pn = n;
9f9e636d
AD
1205 cindex = 0;
1206
1207 /* Step 1: Travel to the longest prefix match in the trie */
1208 for (;;) {
1209 unsigned long index = get_index(key, n);
1210
1211 /* This bit of code is a bit tricky but it combines multiple
1212 * checks into a single check. The prefix consists of the
1213 * prefix plus zeros for the "bits" in the prefix. The index
1214 * is the difference between the key and this value. From
1215 * this we can actually derive several pieces of data.
b3832117 1216 * if (index & (~0ul << bits))
9f9e636d 1217 * we have a mismatch in skip bits and failed
b3832117
AD
1218 * else
1219 * we know the value is cindex
9f9e636d 1220 */
b3832117 1221 if (index & (~0ul << n->bits))
9f9e636d 1222 break;
19baf839 1223
9f9e636d
AD
1224 /* we have found a leaf. Prefixes have already been compared */
1225 if (IS_LEAF(n))
a07f5f50 1226 goto found;
19baf839 1227
9f9e636d
AD
1228 /* only record pn and cindex if we are going to be chopping
1229 * bits later. Otherwise we are just wasting cycles.
91b9a277 1230 */
5405afd1 1231 if (n->slen > n->pos) {
9f9e636d
AD
1232 pn = n;
1233 cindex = index;
91b9a277 1234 }
19baf839 1235
21d1f11d 1236 n = tnode_get_child_rcu(n, index);
9f9e636d
AD
1237 if (unlikely(!n))
1238 goto backtrace;
1239 }
19baf839 1240
9f9e636d
AD
1241 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1242 for (;;) {
1243 /* record the pointer where our next node pointer is stored */
1244 struct tnode __rcu **cptr = n->child;
19baf839 1245
9f9e636d
AD
1246 /* This test verifies that none of the bits that differ
1247 * between the key and the prefix exist in the region of
1248 * the lsb and higher in the prefix.
91b9a277 1249 */
5405afd1 1250 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1251 goto backtrace;
91b9a277 1252
9f9e636d
AD
1253 /* exit out and process leaf */
1254 if (unlikely(IS_LEAF(n)))
1255 break;
91b9a277 1256
9f9e636d
AD
1257 /* Don't bother recording parent info. Since we are in
1258 * prefix match mode we will have to come back to wherever
1259 * we started this traversal anyway
91b9a277 1260 */
91b9a277 1261
9f9e636d 1262 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1263backtrace:
19baf839 1264#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1265 if (!n)
1266 this_cpu_inc(stats->null_node_hit);
19baf839 1267#endif
9f9e636d
AD
1268 /* If we are at cindex 0 there are no more bits for
1269 * us to strip at this level so we must ascend back
1270 * up one level to see if there are any more bits to
1271 * be stripped there.
1272 */
1273 while (!cindex) {
1274 t_key pkey = pn->key;
1275
1276 pn = node_parent_rcu(pn);
1277 if (unlikely(!pn))
345e9b54 1278 return -EAGAIN;
9f9e636d
AD
1279#ifdef CONFIG_IP_FIB_TRIE_STATS
1280 this_cpu_inc(stats->backtrack);
1281#endif
1282 /* Get Child's index */
1283 cindex = get_index(pkey, pn);
1284 }
1285
1286 /* strip the least significant bit from the cindex */
1287 cindex &= cindex - 1;
1288
1289 /* grab pointer for next child node */
1290 cptr = &pn->child[cindex];
c877efb2 1291 }
19baf839 1292 }
9f9e636d 1293
19baf839 1294found:
9f9e636d 1295 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1296 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1297 struct fib_info *fi = fa->fa_info;
1298 int nhsel, err;
345e9b54 1299
79e5ad2c
AD
1300 if (((key ^ n->key) >= (1ul << fa->fa_slen)) &&
1301 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
345e9b54 1302 continue;
79e5ad2c
AD
1303 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1304 continue;
1305 if (fi->fib_dead)
1306 continue;
1307 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1308 continue;
1309 fib_alias_accessed(fa);
1310 err = fib_props[fa->fa_type].error;
1311 if (unlikely(err < 0)) {
345e9b54 1312#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1313 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1314#endif
79e5ad2c
AD
1315 return err;
1316 }
1317 if (fi->fib_flags & RTNH_F_DEAD)
1318 continue;
1319 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1320 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1321
1322 if (nh->nh_flags & RTNH_F_DEAD)
1323 continue;
1324 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
345e9b54 1325 continue;
79e5ad2c
AD
1326
1327 if (!(fib_flags & FIB_LOOKUP_NOREF))
1328 atomic_inc(&fi->fib_clntref);
1329
1330 res->prefixlen = KEYLENGTH - fa->fa_slen;
1331 res->nh_sel = nhsel;
1332 res->type = fa->fa_type;
1333 res->scope = fi->fib_scope;
1334 res->fi = fi;
1335 res->table = tb;
1336 res->fa_head = &n->leaf;
345e9b54 1337#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1338 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1339#endif
79e5ad2c 1340 return err;
345e9b54 1341 }
9b6ebad5 1342 }
345e9b54 1343#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1344 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1345#endif
345e9b54 1346 goto backtrace;
19baf839 1347}
6fc01438 1348EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1349
d5d6487c
AD
1350static void fib_remove_alias(struct trie *t, struct tnode *tp,
1351 struct tnode *l, struct fib_alias *old)
1352{
1353 /* record the location of the previous list_info entry */
1354 struct hlist_node **pprev = old->fa_list.pprev;
1355 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1356
1357 /* remove the fib_alias from the list */
1358 hlist_del_rcu(&old->fa_list);
1359
1360 /* if we emptied the list this leaf will be freed and we can sort
1361 * out parent suffix lengths as a part of trie_rebalance
1362 */
1363 if (hlist_empty(&l->leaf)) {
1364 put_child_root(tp, t, l->key, NULL);
1365 node_free(l);
1366 trie_rebalance(t, tp);
1367 return;
1368 }
1369
1370 /* only access fa if it is pointing at the last valid hlist_node */
1371 if (*pprev)
1372 return;
1373
1374 /* update the trie with the latest suffix length */
1375 l->slen = fa->fa_slen;
1376 leaf_pull_suffix(tp, l);
1377}
1378
1379/* Caller must hold RTNL. */
16c6cf8b 1380int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1381{
1382 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1383 struct fib_alias *fa, *fa_to_delete;
d4a975e8 1384 struct tnode *l, *tp;
79e5ad2c 1385 u8 plen = cfg->fc_dst_len;
79e5ad2c 1386 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1387 u8 tos = cfg->fc_tos;
1388 u32 key;
91b9a277 1389
79e5ad2c 1390 if (plen > KEYLENGTH)
19baf839
RO
1391 return -EINVAL;
1392
4e902c57 1393 key = ntohl(cfg->fc_dst);
19baf839 1394
d4a975e8 1395 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1396 return -EINVAL;
1397
d4a975e8 1398 l = fib_find_node(t, &tp, key);
c877efb2 1399 if (!l)
19baf839
RO
1400 return -ESRCH;
1401
79e5ad2c 1402 fa = fib_find_alias(&l->leaf, slen, tos, 0);
19baf839
RO
1403 if (!fa)
1404 return -ESRCH;
1405
0c7770c7 1406 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1407
1408 fa_to_delete = NULL;
56315f9e 1409 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1410 struct fib_info *fi = fa->fa_info;
1411
79e5ad2c 1412 if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
19baf839
RO
1413 break;
1414
4e902c57
TG
1415 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1416 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1417 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1418 (!cfg->fc_prefsrc ||
1419 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1420 (!cfg->fc_protocol ||
1421 fi->fib_protocol == cfg->fc_protocol) &&
1422 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1423 fa_to_delete = fa;
1424 break;
1425 }
1426 }
1427
91b9a277
OJ
1428 if (!fa_to_delete)
1429 return -ESRCH;
19baf839 1430
d5d6487c 1431 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1432 &cfg->fc_nlinfo, 0);
91b9a277 1433
21d8c49e
DM
1434 if (!plen)
1435 tb->tb_num_default--;
1436
d5d6487c 1437 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1438
d5d6487c 1439 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1440 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1441
d5d6487c
AD
1442 fib_release_info(fa_to_delete->fa_info);
1443 alias_free_mem_rcu(fa_to_delete);
91b9a277 1444 return 0;
19baf839
RO
1445}
1446
8be33e95
AD
1447/* Scan for the next leaf starting at the provided key value */
1448static struct tnode *leaf_walk_rcu(struct tnode **tn, t_key key)
19baf839 1449{
8be33e95
AD
1450 struct tnode *pn, *n = *tn;
1451 unsigned long cindex;
82cfbb00 1452
8be33e95
AD
1453 /* record parent node for backtracing */
1454 pn = n;
1455 cindex = n ? get_index(key, n) : 0;
82cfbb00 1456
8be33e95
AD
1457 /* this loop is meant to try and find the key in the trie */
1458 while (n) {
1459 unsigned long idx = get_index(key, n);
82cfbb00 1460
8be33e95
AD
1461 /* guarantee forward progress on the keys */
1462 if (IS_LEAF(n) && (n->key >= key))
1463 goto found;
1464 if (idx >= (1ul << n->bits))
1465 break;
82cfbb00 1466
8be33e95
AD
1467 /* record parent and next child index */
1468 pn = n;
1469 cindex = idx;
82cfbb00 1470
8be33e95
AD
1471 /* descend into the next child */
1472 n = tnode_get_child_rcu(pn, cindex++);
1473 }
82cfbb00 1474
8be33e95
AD
1475 /* this loop will search for the next leaf with a greater key */
1476 while (pn) {
1477 /* if we exhausted the parent node we will need to climb */
1478 if (cindex >= (1ul << pn->bits)) {
1479 t_key pkey = pn->key;
82cfbb00 1480
8be33e95
AD
1481 pn = node_parent_rcu(pn);
1482 if (!pn)
1483 break;
82cfbb00 1484
8be33e95
AD
1485 cindex = get_index(pkey, pn) + 1;
1486 continue;
1487 }
82cfbb00 1488
8be33e95
AD
1489 /* grab the next available node */
1490 n = tnode_get_child_rcu(pn, cindex++);
1491 if (!n)
1492 continue;
19baf839 1493
8be33e95
AD
1494 /* no need to compare keys since we bumped the index */
1495 if (IS_LEAF(n))
1496 goto found;
71d67e66 1497
8be33e95
AD
1498 /* Rescan start scanning in new node */
1499 pn = n;
1500 cindex = 0;
1501 }
ec28cf73 1502
8be33e95
AD
1503 *tn = pn;
1504 return NULL; /* Root of trie */
1505found:
1506 /* if we are at the limit for keys just return NULL for the tnode */
1507 *tn = (n->key == KEY_MAX) ? NULL : pn;
1508 return n;
71d67e66
SH
1509}
1510
8be33e95 1511/* Caller must hold RTNL. */
16c6cf8b 1512int fib_table_flush(struct fib_table *tb)
19baf839 1513{
7289e6dd
AD
1514 struct trie *t = (struct trie *)tb->tb_data;
1515 struct hlist_node *tmp;
1516 struct fib_alias *fa;
1517 struct tnode *n, *pn;
1518 unsigned long cindex;
1519 unsigned char slen;
82cfbb00 1520 int found = 0;
19baf839 1521
7289e6dd
AD
1522 n = rcu_dereference(t->trie);
1523 if (!n)
1524 goto flush_complete;
19baf839 1525
7289e6dd
AD
1526 pn = NULL;
1527 cindex = 0;
1528
1529 while (IS_TNODE(n)) {
1530 /* record pn and cindex for leaf walking */
1531 pn = n;
1532 cindex = 1ul << n->bits;
1533backtrace:
1534 /* walk trie in reverse order */
1535 do {
1536 while (!(cindex--)) {
1537 t_key pkey = pn->key;
1538
1539 n = pn;
1540 pn = node_parent(n);
1541
1542 /* resize completed node */
1543 resize(t, n);
1544
1545 /* if we got the root we are done */
1546 if (!pn)
1547 goto flush_complete;
1548
1549 cindex = get_index(pkey, pn);
1550 }
1551
1552 /* grab the next available node */
1553 n = tnode_get_child(pn, cindex);
1554 } while (!n);
1555 }
1556
1557 /* track slen in case any prefixes survive */
1558 slen = 0;
1559
1560 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1561 struct fib_info *fi = fa->fa_info;
1562
1563 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1564 hlist_del_rcu(&fa->fa_list);
1565 fib_release_info(fa->fa_info);
1566 alias_free_mem_rcu(fa);
1567 found++;
1568
1569 continue;
64c62723
AD
1570 }
1571
7289e6dd 1572 slen = fa->fa_slen;
19baf839
RO
1573 }
1574
7289e6dd
AD
1575 /* update leaf slen */
1576 n->slen = slen;
1577
1578 if (hlist_empty(&n->leaf)) {
1579 put_child_root(pn, t, n->key, NULL);
1580 node_free(n);
1581 } else {
d5d6487c 1582 leaf_pull_suffix(pn, n);
64c62723 1583 }
19baf839 1584
7289e6dd
AD
1585 /* if trie is leaf only loop is completed */
1586 if (pn)
1587 goto backtrace;
1588flush_complete:
0c7770c7 1589 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1590 return found;
1591}
1592
4aa2c466
PE
1593void fib_free_table(struct fib_table *tb)
1594{
8274a97a
AD
1595#ifdef CONFIG_IP_FIB_TRIE_STATS
1596 struct trie *t = (struct trie *)tb->tb_data;
1597
1598 free_percpu(t->stats);
1599#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1600 kfree(tb);
1601}
1602
79e5ad2c
AD
1603static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
1604 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1605{
79e5ad2c 1606 __be32 xkey = htonl(l->key);
19baf839 1607 struct fib_alias *fa;
79e5ad2c 1608 int i, s_i;
19baf839 1609
79e5ad2c 1610 s_i = cb->args[4];
19baf839
RO
1611 i = 0;
1612
2373ce1c 1613 /* rcu_read_lock is hold by caller */
79e5ad2c 1614 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1615 if (i < s_i) {
1616 i++;
1617 continue;
1618 }
19baf839 1619
15e47304 1620 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1621 cb->nlh->nlmsg_seq,
1622 RTM_NEWROUTE,
1623 tb->tb_id,
1624 fa->fa_type,
be403ea1 1625 xkey,
9b6ebad5 1626 KEYLENGTH - fa->fa_slen,
19baf839 1627 fa->fa_tos,
64347f78 1628 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1629 cb->args[4] = i;
19baf839
RO
1630 return -1;
1631 }
a88ee229 1632 i++;
19baf839 1633 }
a88ee229 1634
71d67e66 1635 cb->args[4] = i;
19baf839
RO
1636 return skb->len;
1637}
1638
16c6cf8b
SH
1639int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1640 struct netlink_callback *cb)
19baf839 1641{
8be33e95
AD
1642 struct trie *t = (struct trie *)tb->tb_data;
1643 struct tnode *l, *tp;
d5ce8a0e
SH
1644 /* Dump starting at last key.
1645 * Note: 0.0.0.0/0 (ie default) is first key.
1646 */
8be33e95
AD
1647 int count = cb->args[2];
1648 t_key key = cb->args[3];
a88ee229 1649
8be33e95
AD
1650 rcu_read_lock();
1651
1652 tp = rcu_dereference_rtnl(t->trie);
1653
1654 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1655 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1656 cb->args[3] = key;
1657 cb->args[2] = count;
a88ee229 1658 rcu_read_unlock();
a88ee229 1659 return -1;
19baf839 1660 }
d5ce8a0e 1661
71d67e66 1662 ++count;
8be33e95
AD
1663 key = l->key + 1;
1664
71d67e66
SH
1665 memset(&cb->args[4], 0,
1666 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1667
1668 /* stop loop if key wrapped back to 0 */
1669 if (key < l->key)
1670 break;
19baf839 1671 }
8be33e95 1672
2373ce1c 1673 rcu_read_unlock();
a88ee229 1674
8be33e95
AD
1675 cb->args[3] = key;
1676 cb->args[2] = count;
1677
19baf839 1678 return skb->len;
19baf839
RO
1679}
1680
5348ba85 1681void __init fib_trie_init(void)
7f9b8052 1682{
a07f5f50
SH
1683 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1684 sizeof(struct fib_alias),
bc3c8c1e
SH
1685 0, SLAB_PANIC, NULL);
1686
1687 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
79e5ad2c 1688 sizeof(struct tnode),
bc3c8c1e 1689 0, SLAB_PANIC, NULL);
7f9b8052 1690}
19baf839 1691
7f9b8052 1692
5348ba85 1693struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1694{
1695 struct fib_table *tb;
1696 struct trie *t;
1697
19baf839
RO
1698 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1699 GFP_KERNEL);
1700 if (tb == NULL)
1701 return NULL;
1702
1703 tb->tb_id = id;
971b893e 1704 tb->tb_default = -1;
21d8c49e 1705 tb->tb_num_default = 0;
19baf839
RO
1706
1707 t = (struct trie *) tb->tb_data;
8274a97a
AD
1708 RCU_INIT_POINTER(t->trie, NULL);
1709#ifdef CONFIG_IP_FIB_TRIE_STATS
1710 t->stats = alloc_percpu(struct trie_use_stats);
1711 if (!t->stats) {
1712 kfree(tb);
1713 tb = NULL;
1714 }
1715#endif
19baf839 1716
19baf839
RO
1717 return tb;
1718}
1719
cb7b593c
SH
1720#ifdef CONFIG_PROC_FS
1721/* Depth first Trie walk iterator */
1722struct fib_trie_iter {
1c340b2f 1723 struct seq_net_private p;
3d3b2d25 1724 struct fib_table *tb;
cb7b593c 1725 struct tnode *tnode;
a034ee3c
ED
1726 unsigned int index;
1727 unsigned int depth;
cb7b593c 1728};
19baf839 1729
adaf9816 1730static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1731{
98293e8d 1732 unsigned long cindex = iter->index;
cb7b593c 1733 struct tnode *tn = iter->tnode;
cb7b593c 1734 struct tnode *p;
19baf839 1735
6640e697
EB
1736 /* A single entry routing table */
1737 if (!tn)
1738 return NULL;
1739
cb7b593c
SH
1740 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1741 iter->tnode, iter->index, iter->depth);
1742rescan:
98293e8d 1743 while (cindex < tnode_child_length(tn)) {
adaf9816 1744 struct tnode *n = tnode_get_child_rcu(tn, cindex);
19baf839 1745
cb7b593c
SH
1746 if (n) {
1747 if (IS_LEAF(n)) {
1748 iter->tnode = tn;
1749 iter->index = cindex + 1;
1750 } else {
1751 /* push down one level */
adaf9816 1752 iter->tnode = n;
cb7b593c
SH
1753 iter->index = 0;
1754 ++iter->depth;
1755 }
1756 return n;
1757 }
19baf839 1758
cb7b593c
SH
1759 ++cindex;
1760 }
91b9a277 1761
cb7b593c 1762 /* Current node exhausted, pop back up */
adaf9816 1763 p = node_parent_rcu(tn);
cb7b593c 1764 if (p) {
e9b44019 1765 cindex = get_index(tn->key, p) + 1;
cb7b593c
SH
1766 tn = p;
1767 --iter->depth;
1768 goto rescan;
19baf839 1769 }
cb7b593c
SH
1770
1771 /* got root? */
1772 return NULL;
19baf839
RO
1773}
1774
adaf9816 1775static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 1776 struct trie *t)
19baf839 1777{
adaf9816 1778 struct tnode *n;
5ddf0eb2 1779
132adf54 1780 if (!t)
5ddf0eb2
RO
1781 return NULL;
1782
1783 n = rcu_dereference(t->trie);
3d3b2d25 1784 if (!n)
5ddf0eb2 1785 return NULL;
19baf839 1786
3d3b2d25 1787 if (IS_TNODE(n)) {
adaf9816 1788 iter->tnode = n;
3d3b2d25
SH
1789 iter->index = 0;
1790 iter->depth = 1;
1791 } else {
1792 iter->tnode = NULL;
1793 iter->index = 0;
1794 iter->depth = 0;
91b9a277 1795 }
3d3b2d25
SH
1796
1797 return n;
cb7b593c 1798}
91b9a277 1799
cb7b593c
SH
1800static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1801{
adaf9816 1802 struct tnode *n;
cb7b593c 1803 struct fib_trie_iter iter;
91b9a277 1804
cb7b593c 1805 memset(s, 0, sizeof(*s));
91b9a277 1806
cb7b593c 1807 rcu_read_lock();
3d3b2d25 1808 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 1809 if (IS_LEAF(n)) {
79e5ad2c 1810 struct fib_alias *fa;
93672292 1811
cb7b593c
SH
1812 s->leaves++;
1813 s->totdepth += iter.depth;
1814 if (iter.depth > s->maxdepth)
1815 s->maxdepth = iter.depth;
93672292 1816
79e5ad2c 1817 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 1818 ++s->prefixes;
cb7b593c 1819 } else {
cb7b593c 1820 s->tnodes++;
adaf9816
AD
1821 if (n->bits < MAX_STAT_DEPTH)
1822 s->nodesizes[n->bits]++;
30cfe7c9 1823 s->nullpointers += n->empty_children;
19baf839 1824 }
19baf839 1825 }
2373ce1c 1826 rcu_read_unlock();
19baf839
RO
1827}
1828
cb7b593c
SH
1829/*
1830 * This outputs /proc/net/fib_triestats
1831 */
1832static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 1833{
a034ee3c 1834 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 1835
cb7b593c
SH
1836 if (stat->leaves)
1837 avdepth = stat->totdepth*100 / stat->leaves;
1838 else
1839 avdepth = 0;
91b9a277 1840
a07f5f50
SH
1841 seq_printf(seq, "\tAver depth: %u.%02d\n",
1842 avdepth / 100, avdepth % 100);
cb7b593c 1843 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 1844
cb7b593c 1845 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
adaf9816 1846 bytes = sizeof(struct tnode) * stat->leaves;
93672292
SH
1847
1848 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 1849 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 1850
187b5188 1851 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 1852 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 1853
06ef921d
RO
1854 max = MAX_STAT_DEPTH;
1855 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 1856 max--;
19baf839 1857
cb7b593c 1858 pointers = 0;
f585a991 1859 for (i = 1; i < max; i++)
cb7b593c 1860 if (stat->nodesizes[i] != 0) {
187b5188 1861 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
1862 pointers += (1<<i) * stat->nodesizes[i];
1863 }
1864 seq_putc(seq, '\n');
187b5188 1865 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 1866
adaf9816 1867 bytes += sizeof(struct tnode *) * pointers;
187b5188
SH
1868 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
1869 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 1870}
2373ce1c 1871
cb7b593c 1872#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 1873static void trie_show_usage(struct seq_file *seq,
8274a97a 1874 const struct trie_use_stats __percpu *stats)
66a2f7fd 1875{
8274a97a
AD
1876 struct trie_use_stats s = { 0 };
1877 int cpu;
1878
1879 /* loop through all of the CPUs and gather up the stats */
1880 for_each_possible_cpu(cpu) {
1881 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
1882
1883 s.gets += pcpu->gets;
1884 s.backtrack += pcpu->backtrack;
1885 s.semantic_match_passed += pcpu->semantic_match_passed;
1886 s.semantic_match_miss += pcpu->semantic_match_miss;
1887 s.null_node_hit += pcpu->null_node_hit;
1888 s.resize_node_skipped += pcpu->resize_node_skipped;
1889 }
1890
66a2f7fd 1891 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
1892 seq_printf(seq, "gets = %u\n", s.gets);
1893 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 1894 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
1895 s.semantic_match_passed);
1896 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
1897 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
1898 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 1899}
66a2f7fd
SH
1900#endif /* CONFIG_IP_FIB_TRIE_STATS */
1901
3d3b2d25 1902static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 1903{
3d3b2d25
SH
1904 if (tb->tb_id == RT_TABLE_LOCAL)
1905 seq_puts(seq, "Local:\n");
1906 else if (tb->tb_id == RT_TABLE_MAIN)
1907 seq_puts(seq, "Main:\n");
1908 else
1909 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 1910}
19baf839 1911
3d3b2d25 1912
cb7b593c
SH
1913static int fib_triestat_seq_show(struct seq_file *seq, void *v)
1914{
1c340b2f 1915 struct net *net = (struct net *)seq->private;
3d3b2d25 1916 unsigned int h;
877a9bff 1917
d717a9a6 1918 seq_printf(seq,
a07f5f50
SH
1919 "Basic info: size of leaf:"
1920 " %Zd bytes, size of tnode: %Zd bytes.\n",
adaf9816 1921 sizeof(struct tnode), sizeof(struct tnode));
d717a9a6 1922
3d3b2d25
SH
1923 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1924 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
1925 struct fib_table *tb;
1926
b67bfe0d 1927 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
1928 struct trie *t = (struct trie *) tb->tb_data;
1929 struct trie_stat stat;
877a9bff 1930
3d3b2d25
SH
1931 if (!t)
1932 continue;
1933
1934 fib_table_print(seq, tb);
1935
1936 trie_collect_stats(t, &stat);
1937 trie_show_stats(seq, &stat);
1938#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1939 trie_show_usage(seq, t->stats);
3d3b2d25
SH
1940#endif
1941 }
1942 }
19baf839 1943
cb7b593c 1944 return 0;
19baf839
RO
1945}
1946
cb7b593c 1947static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 1948{
de05c557 1949 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
1950}
1951
9a32144e 1952static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
1953 .owner = THIS_MODULE,
1954 .open = fib_triestat_seq_open,
1955 .read = seq_read,
1956 .llseek = seq_lseek,
b6fcbdb4 1957 .release = single_release_net,
cb7b593c
SH
1958};
1959
adaf9816 1960static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 1961{
1218854a
YH
1962 struct fib_trie_iter *iter = seq->private;
1963 struct net *net = seq_file_net(seq);
cb7b593c 1964 loff_t idx = 0;
3d3b2d25 1965 unsigned int h;
cb7b593c 1966
3d3b2d25
SH
1967 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1968 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 1969 struct fib_table *tb;
cb7b593c 1970
b67bfe0d 1971 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
adaf9816 1972 struct tnode *n;
3d3b2d25
SH
1973
1974 for (n = fib_trie_get_first(iter,
1975 (struct trie *) tb->tb_data);
1976 n; n = fib_trie_get_next(iter))
1977 if (pos == idx++) {
1978 iter->tb = tb;
1979 return n;
1980 }
1981 }
cb7b593c 1982 }
3d3b2d25 1983
19baf839
RO
1984 return NULL;
1985}
1986
cb7b593c 1987static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 1988 __acquires(RCU)
19baf839 1989{
cb7b593c 1990 rcu_read_lock();
1218854a 1991 return fib_trie_get_idx(seq, *pos);
19baf839
RO
1992}
1993
cb7b593c 1994static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 1995{
cb7b593c 1996 struct fib_trie_iter *iter = seq->private;
1218854a 1997 struct net *net = seq_file_net(seq);
3d3b2d25
SH
1998 struct fib_table *tb = iter->tb;
1999 struct hlist_node *tb_node;
2000 unsigned int h;
adaf9816 2001 struct tnode *n;
cb7b593c 2002
19baf839 2003 ++*pos;
3d3b2d25
SH
2004 /* next node in same table */
2005 n = fib_trie_get_next(iter);
2006 if (n)
2007 return n;
19baf839 2008
3d3b2d25
SH
2009 /* walk rest of this hash chain */
2010 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2011 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2012 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2013 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2014 if (n)
2015 goto found;
2016 }
19baf839 2017
3d3b2d25
SH
2018 /* new hash chain */
2019 while (++h < FIB_TABLE_HASHSZ) {
2020 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2021 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2022 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2023 if (n)
2024 goto found;
2025 }
2026 }
cb7b593c 2027 return NULL;
3d3b2d25
SH
2028
2029found:
2030 iter->tb = tb;
2031 return n;
cb7b593c 2032}
19baf839 2033
cb7b593c 2034static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2035 __releases(RCU)
19baf839 2036{
cb7b593c
SH
2037 rcu_read_unlock();
2038}
91b9a277 2039
cb7b593c
SH
2040static void seq_indent(struct seq_file *seq, int n)
2041{
a034ee3c
ED
2042 while (n-- > 0)
2043 seq_puts(seq, " ");
cb7b593c 2044}
19baf839 2045
28d36e37 2046static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2047{
132adf54 2048 switch (s) {
cb7b593c
SH
2049 case RT_SCOPE_UNIVERSE: return "universe";
2050 case RT_SCOPE_SITE: return "site";
2051 case RT_SCOPE_LINK: return "link";
2052 case RT_SCOPE_HOST: return "host";
2053 case RT_SCOPE_NOWHERE: return "nowhere";
2054 default:
28d36e37 2055 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2056 return buf;
2057 }
2058}
19baf839 2059
36cbd3dc 2060static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2061 [RTN_UNSPEC] = "UNSPEC",
2062 [RTN_UNICAST] = "UNICAST",
2063 [RTN_LOCAL] = "LOCAL",
2064 [RTN_BROADCAST] = "BROADCAST",
2065 [RTN_ANYCAST] = "ANYCAST",
2066 [RTN_MULTICAST] = "MULTICAST",
2067 [RTN_BLACKHOLE] = "BLACKHOLE",
2068 [RTN_UNREACHABLE] = "UNREACHABLE",
2069 [RTN_PROHIBIT] = "PROHIBIT",
2070 [RTN_THROW] = "THROW",
2071 [RTN_NAT] = "NAT",
2072 [RTN_XRESOLVE] = "XRESOLVE",
2073};
19baf839 2074
a034ee3c 2075static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2076{
cb7b593c
SH
2077 if (t < __RTN_MAX && rtn_type_names[t])
2078 return rtn_type_names[t];
28d36e37 2079 snprintf(buf, len, "type %u", t);
cb7b593c 2080 return buf;
19baf839
RO
2081}
2082
cb7b593c
SH
2083/* Pretty print the trie */
2084static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2085{
cb7b593c 2086 const struct fib_trie_iter *iter = seq->private;
adaf9816 2087 struct tnode *n = v;
c877efb2 2088
3d3b2d25
SH
2089 if (!node_parent_rcu(n))
2090 fib_table_print(seq, iter->tb);
095b8501 2091
cb7b593c 2092 if (IS_TNODE(n)) {
adaf9816 2093 __be32 prf = htonl(n->key);
91b9a277 2094
e9b44019
AD
2095 seq_indent(seq, iter->depth-1);
2096 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2097 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2098 n->full_children, n->empty_children);
cb7b593c 2099 } else {
adaf9816 2100 __be32 val = htonl(n->key);
79e5ad2c 2101 struct fib_alias *fa;
cb7b593c
SH
2102
2103 seq_indent(seq, iter->depth);
673d57e7 2104 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2105
79e5ad2c
AD
2106 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2107 char buf1[32], buf2[32];
2108
2109 seq_indent(seq, iter->depth + 1);
2110 seq_printf(seq, " /%zu %s %s",
2111 KEYLENGTH - fa->fa_slen,
2112 rtn_scope(buf1, sizeof(buf1),
2113 fa->fa_info->fib_scope),
2114 rtn_type(buf2, sizeof(buf2),
2115 fa->fa_type));
2116 if (fa->fa_tos)
2117 seq_printf(seq, " tos=%d", fa->fa_tos);
2118 seq_putc(seq, '\n');
cb7b593c 2119 }
19baf839 2120 }
cb7b593c 2121
19baf839
RO
2122 return 0;
2123}
2124
f690808e 2125static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2126 .start = fib_trie_seq_start,
2127 .next = fib_trie_seq_next,
2128 .stop = fib_trie_seq_stop,
2129 .show = fib_trie_seq_show,
19baf839
RO
2130};
2131
cb7b593c 2132static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2133{
1c340b2f
DL
2134 return seq_open_net(inode, file, &fib_trie_seq_ops,
2135 sizeof(struct fib_trie_iter));
19baf839
RO
2136}
2137
9a32144e 2138static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2139 .owner = THIS_MODULE,
2140 .open = fib_trie_seq_open,
2141 .read = seq_read,
2142 .llseek = seq_lseek,
1c340b2f 2143 .release = seq_release_net,
19baf839
RO
2144};
2145
8315f5d8
SH
2146struct fib_route_iter {
2147 struct seq_net_private p;
8be33e95
AD
2148 struct fib_table *main_tb;
2149 struct tnode *tnode;
8315f5d8
SH
2150 loff_t pos;
2151 t_key key;
2152};
2153
adaf9816 2154static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
8315f5d8 2155{
8be33e95
AD
2156 struct fib_table *tb = iter->main_tb;
2157 struct tnode *l, **tp = &iter->tnode;
2158 struct trie *t;
2159 t_key key;
8315f5d8 2160
8be33e95
AD
2161 /* use cache location of next-to-find key */
2162 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2163 pos -= iter->pos;
8be33e95
AD
2164 key = iter->key;
2165 } else {
2166 t = (struct trie *)tb->tb_data;
2167 iter->tnode = rcu_dereference_rtnl(t->trie);
8315f5d8 2168 iter->pos = 0;
8be33e95 2169 key = 0;
8315f5d8
SH
2170 }
2171
8be33e95
AD
2172 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2173 key = l->key + 1;
8315f5d8 2174 iter->pos++;
8be33e95
AD
2175
2176 if (pos-- <= 0)
2177 break;
2178
2179 l = NULL;
2180
2181 /* handle unlikely case of a key wrap */
2182 if (!key)
2183 break;
8315f5d8
SH
2184 }
2185
2186 if (l)
8be33e95 2187 iter->key = key; /* remember it */
8315f5d8
SH
2188 else
2189 iter->pos = 0; /* forget it */
2190
2191 return l;
2192}
2193
2194static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2195 __acquires(RCU)
2196{
2197 struct fib_route_iter *iter = seq->private;
2198 struct fib_table *tb;
8be33e95 2199 struct trie *t;
8315f5d8
SH
2200
2201 rcu_read_lock();
8be33e95 2202
1218854a 2203 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2204 if (!tb)
2205 return NULL;
2206
8be33e95
AD
2207 iter->main_tb = tb;
2208
2209 if (*pos != 0)
2210 return fib_route_get_idx(iter, *pos);
2211
2212 t = (struct trie *)tb->tb_data;
2213 iter->tnode = rcu_dereference_rtnl(t->trie);
2214 iter->pos = 0;
2215 iter->key = 0;
2216
2217 return SEQ_START_TOKEN;
8315f5d8
SH
2218}
2219
2220static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2221{
2222 struct fib_route_iter *iter = seq->private;
8be33e95
AD
2223 struct tnode *l = NULL;
2224 t_key key = iter->key;
8315f5d8
SH
2225
2226 ++*pos;
8be33e95
AD
2227
2228 /* only allow key of 0 for start of sequence */
2229 if ((v == SEQ_START_TOKEN) || key)
2230 l = leaf_walk_rcu(&iter->tnode, key);
2231
2232 if (l) {
2233 iter->key = l->key + 1;
8315f5d8 2234 iter->pos++;
8be33e95
AD
2235 } else {
2236 iter->pos = 0;
8315f5d8
SH
2237 }
2238
8315f5d8
SH
2239 return l;
2240}
2241
2242static void fib_route_seq_stop(struct seq_file *seq, void *v)
2243 __releases(RCU)
2244{
2245 rcu_read_unlock();
2246}
2247
a034ee3c 2248static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2249{
a034ee3c 2250 unsigned int flags = 0;
19baf839 2251
a034ee3c
ED
2252 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2253 flags = RTF_REJECT;
cb7b593c
SH
2254 if (fi && fi->fib_nh->nh_gw)
2255 flags |= RTF_GATEWAY;
32ab5f80 2256 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2257 flags |= RTF_HOST;
2258 flags |= RTF_UP;
2259 return flags;
19baf839
RO
2260}
2261
cb7b593c
SH
2262/*
2263 * This outputs /proc/net/route.
2264 * The format of the file is not supposed to be changed
a034ee3c 2265 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2266 * legacy utilities
2267 */
2268static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2269{
79e5ad2c 2270 struct fib_alias *fa;
adaf9816 2271 struct tnode *l = v;
9b6ebad5 2272 __be32 prefix;
19baf839 2273
cb7b593c
SH
2274 if (v == SEQ_START_TOKEN) {
2275 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2276 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2277 "\tWindow\tIRTT");
2278 return 0;
2279 }
19baf839 2280
9b6ebad5
AD
2281 prefix = htonl(l->key);
2282
79e5ad2c
AD
2283 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2284 const struct fib_info *fi = fa->fa_info;
2285 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2286 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2287
79e5ad2c
AD
2288 if ((fa->fa_type == RTN_BROADCAST) ||
2289 (fa->fa_type == RTN_MULTICAST))
2290 continue;
19baf839 2291
79e5ad2c
AD
2292 seq_setwidth(seq, 127);
2293
2294 if (fi)
2295 seq_printf(seq,
2296 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2297 "%d\t%08X\t%d\t%u\t%u",
2298 fi->fib_dev ? fi->fib_dev->name : "*",
2299 prefix,
2300 fi->fib_nh->nh_gw, flags, 0, 0,
2301 fi->fib_priority,
2302 mask,
2303 (fi->fib_advmss ?
2304 fi->fib_advmss + 40 : 0),
2305 fi->fib_window,
2306 fi->fib_rtt >> 3);
2307 else
2308 seq_printf(seq,
2309 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2310 "%d\t%08X\t%d\t%u\t%u",
2311 prefix, 0, flags, 0, 0, 0,
2312 mask, 0, 0, 0);
19baf839 2313
79e5ad2c 2314 seq_pad(seq, '\n');
19baf839
RO
2315 }
2316
2317 return 0;
2318}
2319
f690808e 2320static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2321 .start = fib_route_seq_start,
2322 .next = fib_route_seq_next,
2323 .stop = fib_route_seq_stop,
cb7b593c 2324 .show = fib_route_seq_show,
19baf839
RO
2325};
2326
cb7b593c 2327static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2328{
1c340b2f 2329 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2330 sizeof(struct fib_route_iter));
19baf839
RO
2331}
2332
9a32144e 2333static const struct file_operations fib_route_fops = {
cb7b593c
SH
2334 .owner = THIS_MODULE,
2335 .open = fib_route_seq_open,
2336 .read = seq_read,
2337 .llseek = seq_lseek,
1c340b2f 2338 .release = seq_release_net,
19baf839
RO
2339};
2340
61a02653 2341int __net_init fib_proc_init(struct net *net)
19baf839 2342{
d4beaa66 2343 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2344 goto out1;
2345
d4beaa66
G
2346 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2347 &fib_triestat_fops))
cb7b593c
SH
2348 goto out2;
2349
d4beaa66 2350 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2351 goto out3;
2352
19baf839 2353 return 0;
cb7b593c
SH
2354
2355out3:
ece31ffd 2356 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2357out2:
ece31ffd 2358 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2359out1:
2360 return -ENOMEM;
19baf839
RO
2361}
2362
61a02653 2363void __net_exit fib_proc_exit(struct net *net)
19baf839 2364{
ece31ffd
G
2365 remove_proc_entry("fib_trie", net->proc_net);
2366 remove_proc_entry("fib_triestat", net->proc_net);
2367 remove_proc_entry("route", net->proc_net);
19baf839
RO
2368}
2369
2370#endif /* CONFIG_PROC_FS */