net: reintroduce missing rcu_assign_pointer() calls
[linux-2.6-block.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
5a0e3ad6 74#include <linux/slab.h>
70c71606 75#include <linux/prefetch.h>
bc3b2d7f 76#include <linux/export.h>
457c4cbc 77#include <net/net_namespace.h>
19baf839
RO
78#include <net/ip.h>
79#include <net/protocol.h>
80#include <net/route.h>
81#include <net/tcp.h>
82#include <net/sock.h>
83#include <net/ip_fib.h>
84#include "fib_lookup.h"
85
06ef921d 86#define MAX_STAT_DEPTH 32
19baf839 87
19baf839 88#define KEYLENGTH (8*sizeof(t_key))
19baf839 89
19baf839
RO
90typedef unsigned int t_key;
91
92#define T_TNODE 0
93#define T_LEAF 1
94#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
95#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
96
91b9a277
OJ
97#define IS_TNODE(n) (!(n->parent & T_LEAF))
98#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839 99
b299e4f0 100struct rt_trie_node {
91b9a277 101 unsigned long parent;
8d965444 102 t_key key;
19baf839
RO
103};
104
105struct leaf {
91b9a277 106 unsigned long parent;
8d965444 107 t_key key;
19baf839 108 struct hlist_head list;
2373ce1c 109 struct rcu_head rcu;
19baf839
RO
110};
111
112struct leaf_info {
113 struct hlist_node hlist;
114 int plen;
5c74501f 115 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
19baf839 116 struct list_head falh;
5c74501f 117 struct rcu_head rcu;
19baf839
RO
118};
119
120struct tnode {
91b9a277 121 unsigned long parent;
8d965444 122 t_key key;
112d8cfc
ED
123 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
124 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
125 unsigned int full_children; /* KEYLENGTH bits needed */
126 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
127 union {
128 struct rcu_head rcu;
129 struct work_struct work;
e0f7cb8c 130 struct tnode *tnode_free;
15be75cd 131 };
0a5c0475 132 struct rt_trie_node __rcu *child[0];
19baf839
RO
133};
134
135#ifdef CONFIG_IP_FIB_TRIE_STATS
136struct trie_use_stats {
137 unsigned int gets;
138 unsigned int backtrack;
139 unsigned int semantic_match_passed;
140 unsigned int semantic_match_miss;
141 unsigned int null_node_hit;
2f36895a 142 unsigned int resize_node_skipped;
19baf839
RO
143};
144#endif
145
146struct trie_stat {
147 unsigned int totdepth;
148 unsigned int maxdepth;
149 unsigned int tnodes;
150 unsigned int leaves;
151 unsigned int nullpointers;
93672292 152 unsigned int prefixes;
06ef921d 153 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 154};
19baf839
RO
155
156struct trie {
0a5c0475 157 struct rt_trie_node __rcu *trie;
19baf839
RO
158#ifdef CONFIG_IP_FIB_TRIE_STATS
159 struct trie_use_stats stats;
160#endif
19baf839
RO
161};
162
b299e4f0
DM
163static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
164static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 165 int wasfull);
b299e4f0 166static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
167static struct tnode *inflate(struct trie *t, struct tnode *tn);
168static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
169/* tnodes to free after resize(); protected by RTNL */
170static struct tnode *tnode_free_head;
c3059477
JP
171static size_t tnode_free_size;
172
173/*
174 * synchronize_rcu after call_rcu for that many pages; it should be especially
175 * useful before resizing the root node with PREEMPT_NONE configs; the value was
176 * obtained experimentally, aiming to avoid visible slowdown.
177 */
178static const int sync_pages = 128;
19baf839 179
e18b890b 180static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 181static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 182
0a5c0475
ED
183/*
184 * caller must hold RTNL
185 */
186static inline struct tnode *node_parent(const struct rt_trie_node *node)
06801916 187{
0a5c0475
ED
188 unsigned long parent;
189
190 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
191
192 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
b59cfbf7
ED
193}
194
0a5c0475
ED
195/*
196 * caller must hold RCU read lock or RTNL
197 */
198static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
b59cfbf7 199{
0a5c0475
ED
200 unsigned long parent;
201
202 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
203 lockdep_rtnl_is_held());
06801916 204
0a5c0475 205 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
06801916
SH
206}
207
cf778b00 208/* Same as rcu_assign_pointer
6440cc9e
SH
209 * but that macro() assumes that value is a pointer.
210 */
b299e4f0 211static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
06801916 212{
6440cc9e
SH
213 smp_wmb();
214 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 215}
2373ce1c 216
0a5c0475
ED
217/*
218 * caller must hold RTNL
219 */
220static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
b59cfbf7
ED
221{
222 BUG_ON(i >= 1U << tn->bits);
2373ce1c 223
0a5c0475 224 return rtnl_dereference(tn->child[i]);
b59cfbf7
ED
225}
226
0a5c0475
ED
227/*
228 * caller must hold RCU read lock or RTNL
229 */
230static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
19baf839 231{
0a5c0475 232 BUG_ON(i >= 1U << tn->bits);
19baf839 233
0a5c0475 234 return rcu_dereference_rtnl(tn->child[i]);
19baf839
RO
235}
236
bb435b8d 237static inline int tnode_child_length(const struct tnode *tn)
19baf839 238{
91b9a277 239 return 1 << tn->bits;
19baf839
RO
240}
241
3b004569 242static inline t_key mask_pfx(t_key k, unsigned int l)
ab66b4a7
SH
243{
244 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
245}
246
3b004569 247static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
19baf839 248{
91b9a277 249 if (offset < KEYLENGTH)
19baf839 250 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 251 else
19baf839
RO
252 return 0;
253}
254
255static inline int tkey_equals(t_key a, t_key b)
256{
c877efb2 257 return a == b;
19baf839
RO
258}
259
260static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
261{
c877efb2
SH
262 if (bits == 0 || offset >= KEYLENGTH)
263 return 1;
91b9a277
OJ
264 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
265 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 266}
19baf839
RO
267
268static inline int tkey_mismatch(t_key a, int offset, t_key b)
269{
270 t_key diff = a ^ b;
271 int i = offset;
272
c877efb2
SH
273 if (!diff)
274 return 0;
275 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
276 i++;
277 return i;
278}
279
19baf839 280/*
e905a9ed
YH
281 To understand this stuff, an understanding of keys and all their bits is
282 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
283 all of the bits in that key are significant.
284
285 Consider a node 'n' and its parent 'tp'.
286
e905a9ed
YH
287 If n is a leaf, every bit in its key is significant. Its presence is
288 necessitated by path compression, since during a tree traversal (when
289 searching for a leaf - unless we are doing an insertion) we will completely
290 ignore all skipped bits we encounter. Thus we need to verify, at the end of
291 a potentially successful search, that we have indeed been walking the
19baf839
RO
292 correct key path.
293
e905a9ed
YH
294 Note that we can never "miss" the correct key in the tree if present by
295 following the wrong path. Path compression ensures that segments of the key
296 that are the same for all keys with a given prefix are skipped, but the
297 skipped part *is* identical for each node in the subtrie below the skipped
298 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
299 call to tkey_sub_equals() in trie_insert().
300
e905a9ed 301 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
302 have many different meanings.
303
e905a9ed 304 Example:
19baf839
RO
305 _________________________________________________________________
306 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
307 -----------------------------------------------------------------
e905a9ed 308 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
309
310 _________________________________________________________________
311 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
312 -----------------------------------------------------------------
313 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
314
315 tp->pos = 7
316 tp->bits = 3
317 n->pos = 15
91b9a277 318 n->bits = 4
19baf839 319
e905a9ed
YH
320 First, let's just ignore the bits that come before the parent tp, that is
321 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
322 not use them for anything.
323
324 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 325 index into the parent's child array. That is, they will be used to find
19baf839
RO
326 'n' among tp's children.
327
328 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
329 for the node n.
330
e905a9ed 331 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
332 of the bits are really not needed or indeed known in n->key.
333
e905a9ed 334 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 335 n's child array, and will of course be different for each child.
e905a9ed 336
c877efb2 337
19baf839
RO
338 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
339 at this point.
340
341*/
342
0c7770c7 343static inline void check_tnode(const struct tnode *tn)
19baf839 344{
0c7770c7 345 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
346}
347
f5026fab
DL
348static const int halve_threshold = 25;
349static const int inflate_threshold = 50;
345aa031 350static const int halve_threshold_root = 15;
80b71b80 351static const int inflate_threshold_root = 30;
2373ce1c
RO
352
353static void __alias_free_mem(struct rcu_head *head)
19baf839 354{
2373ce1c
RO
355 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
356 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
357}
358
2373ce1c 359static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 360{
2373ce1c
RO
361 call_rcu(&fa->rcu, __alias_free_mem);
362}
91b9a277 363
2373ce1c
RO
364static void __leaf_free_rcu(struct rcu_head *head)
365{
bc3c8c1e
SH
366 struct leaf *l = container_of(head, struct leaf, rcu);
367 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 368}
91b9a277 369
387a5487
SH
370static inline void free_leaf(struct leaf *l)
371{
372 call_rcu_bh(&l->rcu, __leaf_free_rcu);
373}
374
2373ce1c 375static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 376{
bceb0f45 377 kfree_rcu(leaf, rcu);
19baf839
RO
378}
379
8d965444 380static struct tnode *tnode_alloc(size_t size)
f0e36f8c 381{
2373ce1c 382 if (size <= PAGE_SIZE)
8d965444 383 return kzalloc(size, GFP_KERNEL);
15be75cd 384 else
7a1c8e5a 385 return vzalloc(size);
15be75cd 386}
2373ce1c 387
15be75cd
SH
388static void __tnode_vfree(struct work_struct *arg)
389{
390 struct tnode *tn = container_of(arg, struct tnode, work);
391 vfree(tn);
f0e36f8c
PM
392}
393
2373ce1c 394static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 395{
2373ce1c 396 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444 397 size_t size = sizeof(struct tnode) +
b299e4f0 398 (sizeof(struct rt_trie_node *) << tn->bits);
f0e36f8c
PM
399
400 if (size <= PAGE_SIZE)
401 kfree(tn);
15be75cd
SH
402 else {
403 INIT_WORK(&tn->work, __tnode_vfree);
404 schedule_work(&tn->work);
405 }
f0e36f8c
PM
406}
407
2373ce1c
RO
408static inline void tnode_free(struct tnode *tn)
409{
387a5487
SH
410 if (IS_LEAF(tn))
411 free_leaf((struct leaf *) tn);
412 else
550e29bc 413 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
414}
415
e0f7cb8c
JP
416static void tnode_free_safe(struct tnode *tn)
417{
418 BUG_ON(IS_LEAF(tn));
7b85576d
JP
419 tn->tnode_free = tnode_free_head;
420 tnode_free_head = tn;
c3059477 421 tnode_free_size += sizeof(struct tnode) +
b299e4f0 422 (sizeof(struct rt_trie_node *) << tn->bits);
e0f7cb8c
JP
423}
424
425static void tnode_free_flush(void)
426{
427 struct tnode *tn;
428
429 while ((tn = tnode_free_head)) {
430 tnode_free_head = tn->tnode_free;
431 tn->tnode_free = NULL;
432 tnode_free(tn);
433 }
c3059477
JP
434
435 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
436 tnode_free_size = 0;
437 synchronize_rcu();
438 }
e0f7cb8c
JP
439}
440
2373ce1c
RO
441static struct leaf *leaf_new(void)
442{
bc3c8c1e 443 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
444 if (l) {
445 l->parent = T_LEAF;
446 INIT_HLIST_HEAD(&l->list);
447 }
448 return l;
449}
450
451static struct leaf_info *leaf_info_new(int plen)
452{
453 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
454 if (li) {
455 li->plen = plen;
5c74501f 456 li->mask_plen = ntohl(inet_make_mask(plen));
2373ce1c
RO
457 INIT_LIST_HEAD(&li->falh);
458 }
459 return li;
460}
461
a07f5f50 462static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 463{
b299e4f0 464 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
f0e36f8c 465 struct tnode *tn = tnode_alloc(sz);
19baf839 466
91b9a277 467 if (tn) {
2373ce1c 468 tn->parent = T_TNODE;
19baf839
RO
469 tn->pos = pos;
470 tn->bits = bits;
471 tn->key = key;
472 tn->full_children = 0;
473 tn->empty_children = 1<<bits;
474 }
c877efb2 475
a034ee3c 476 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
b299e4f0 477 sizeof(struct rt_trie_node) << bits);
19baf839
RO
478 return tn;
479}
480
19baf839
RO
481/*
482 * Check whether a tnode 'n' is "full", i.e. it is an internal node
483 * and no bits are skipped. See discussion in dyntree paper p. 6
484 */
485
b299e4f0 486static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
19baf839 487{
c877efb2 488 if (n == NULL || IS_LEAF(n))
19baf839
RO
489 return 0;
490
491 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
492}
493
a07f5f50 494static inline void put_child(struct trie *t, struct tnode *tn, int i,
b299e4f0 495 struct rt_trie_node *n)
19baf839
RO
496{
497 tnode_put_child_reorg(tn, i, n, -1);
498}
499
c877efb2 500 /*
19baf839
RO
501 * Add a child at position i overwriting the old value.
502 * Update the value of full_children and empty_children.
503 */
504
b299e4f0 505static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 506 int wasfull)
19baf839 507{
0a5c0475 508 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
19baf839
RO
509 int isfull;
510
0c7770c7
SH
511 BUG_ON(i >= 1<<tn->bits);
512
19baf839
RO
513 /* update emptyChildren */
514 if (n == NULL && chi != NULL)
515 tn->empty_children++;
516 else if (n != NULL && chi == NULL)
517 tn->empty_children--;
c877efb2 518
19baf839 519 /* update fullChildren */
91b9a277 520 if (wasfull == -1)
19baf839
RO
521 wasfull = tnode_full(tn, chi);
522
523 isfull = tnode_full(tn, n);
c877efb2 524 if (wasfull && !isfull)
19baf839 525 tn->full_children--;
c877efb2 526 else if (!wasfull && isfull)
19baf839 527 tn->full_children++;
91b9a277 528
c877efb2 529 if (n)
06801916 530 node_set_parent(n, tn);
19baf839 531
cf778b00 532 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
533}
534
80b71b80 535#define MAX_WORK 10
b299e4f0 536static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
537{
538 int i;
2f80b3c8 539 struct tnode *old_tn;
e6308be8
RO
540 int inflate_threshold_use;
541 int halve_threshold_use;
80b71b80 542 int max_work;
19baf839 543
e905a9ed 544 if (!tn)
19baf839
RO
545 return NULL;
546
0c7770c7
SH
547 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
548 tn, inflate_threshold, halve_threshold);
19baf839
RO
549
550 /* No children */
551 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 552 tnode_free_safe(tn);
19baf839
RO
553 return NULL;
554 }
555 /* One child */
556 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 557 goto one_child;
c877efb2 558 /*
19baf839
RO
559 * Double as long as the resulting node has a number of
560 * nonempty nodes that are above the threshold.
561 */
562
563 /*
c877efb2
SH
564 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
565 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 566 * Telecommunications, page 6:
c877efb2 567 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
568 * children in the *doubled* node is at least 'high'."
569 *
c877efb2
SH
570 * 'high' in this instance is the variable 'inflate_threshold'. It
571 * is expressed as a percentage, so we multiply it with
572 * tnode_child_length() and instead of multiplying by 2 (since the
573 * child array will be doubled by inflate()) and multiplying
574 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 575 * multiply the left-hand side by 50.
c877efb2
SH
576 *
577 * The left-hand side may look a bit weird: tnode_child_length(tn)
578 * - tn->empty_children is of course the number of non-null children
579 * in the current node. tn->full_children is the number of "full"
19baf839 580 * children, that is non-null tnodes with a skip value of 0.
c877efb2 581 * All of those will be doubled in the resulting inflated tnode, so
19baf839 582 * we just count them one extra time here.
c877efb2 583 *
19baf839 584 * A clearer way to write this would be:
c877efb2 585 *
19baf839 586 * to_be_doubled = tn->full_children;
c877efb2 587 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
588 * tn->full_children;
589 *
590 * new_child_length = tnode_child_length(tn) * 2;
591 *
c877efb2 592 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
593 * new_child_length;
594 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
595 *
596 * ...and so on, tho it would mess up the while () loop.
597 *
19baf839
RO
598 * anyway,
599 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
600 * inflate_threshold
c877efb2 601 *
19baf839
RO
602 * avoid a division:
603 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
604 * inflate_threshold * new_child_length
c877efb2 605 *
19baf839 606 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 607 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 608 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 609 *
19baf839 610 * expand new_child_length:
c877efb2 611 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 612 * tn->full_children) >=
19baf839 613 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 614 *
19baf839 615 * shorten again:
c877efb2 616 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 617 * tn->empty_children) >= inflate_threshold *
19baf839 618 * tnode_child_length(tn)
c877efb2 619 *
19baf839
RO
620 */
621
622 check_tnode(tn);
c877efb2 623
e6308be8
RO
624 /* Keep root node larger */
625
b299e4f0 626 if (!node_parent((struct rt_trie_node *)tn)) {
80b71b80
JL
627 inflate_threshold_use = inflate_threshold_root;
628 halve_threshold_use = halve_threshold_root;
a034ee3c 629 } else {
e6308be8 630 inflate_threshold_use = inflate_threshold;
80b71b80
JL
631 halve_threshold_use = halve_threshold;
632 }
e6308be8 633
80b71b80
JL
634 max_work = MAX_WORK;
635 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
636 50 * (tn->full_children + tnode_child_length(tn)
637 - tn->empty_children)
638 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 639
2f80b3c8
RO
640 old_tn = tn;
641 tn = inflate(t, tn);
a07f5f50 642
2f80b3c8
RO
643 if (IS_ERR(tn)) {
644 tn = old_tn;
2f36895a
RO
645#ifdef CONFIG_IP_FIB_TRIE_STATS
646 t->stats.resize_node_skipped++;
647#endif
648 break;
649 }
19baf839
RO
650 }
651
652 check_tnode(tn);
653
80b71b80 654 /* Return if at least one inflate is run */
a034ee3c 655 if (max_work != MAX_WORK)
b299e4f0 656 return (struct rt_trie_node *) tn;
80b71b80 657
19baf839
RO
658 /*
659 * Halve as long as the number of empty children in this
660 * node is above threshold.
661 */
2f36895a 662
80b71b80
JL
663 max_work = MAX_WORK;
664 while (tn->bits > 1 && max_work-- &&
19baf839 665 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 666 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 667
2f80b3c8
RO
668 old_tn = tn;
669 tn = halve(t, tn);
670 if (IS_ERR(tn)) {
671 tn = old_tn;
2f36895a
RO
672#ifdef CONFIG_IP_FIB_TRIE_STATS
673 t->stats.resize_node_skipped++;
674#endif
675 break;
676 }
677 }
19baf839 678
c877efb2 679
19baf839 680 /* Only one child remains */
80b71b80
JL
681 if (tn->empty_children == tnode_child_length(tn) - 1) {
682one_child:
19baf839 683 for (i = 0; i < tnode_child_length(tn); i++) {
b299e4f0 684 struct rt_trie_node *n;
19baf839 685
0a5c0475 686 n = rtnl_dereference(tn->child[i]);
2373ce1c 687 if (!n)
91b9a277 688 continue;
91b9a277
OJ
689
690 /* compress one level */
691
06801916 692 node_set_parent(n, NULL);
e0f7cb8c 693 tnode_free_safe(tn);
91b9a277 694 return n;
19baf839 695 }
80b71b80 696 }
b299e4f0 697 return (struct rt_trie_node *) tn;
19baf839
RO
698}
699
0a5c0475
ED
700
701static void tnode_clean_free(struct tnode *tn)
702{
703 int i;
704 struct tnode *tofree;
705
706 for (i = 0; i < tnode_child_length(tn); i++) {
707 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
708 if (tofree)
709 tnode_free(tofree);
710 }
711 tnode_free(tn);
712}
713
2f80b3c8 714static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 715{
19baf839
RO
716 struct tnode *oldtnode = tn;
717 int olen = tnode_child_length(tn);
718 int i;
719
0c7770c7 720 pr_debug("In inflate\n");
19baf839
RO
721
722 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
723
0c7770c7 724 if (!tn)
2f80b3c8 725 return ERR_PTR(-ENOMEM);
2f36895a
RO
726
727 /*
c877efb2
SH
728 * Preallocate and store tnodes before the actual work so we
729 * don't get into an inconsistent state if memory allocation
730 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
731 * of tnode is ignored.
732 */
91b9a277
OJ
733
734 for (i = 0; i < olen; i++) {
a07f5f50 735 struct tnode *inode;
2f36895a 736
a07f5f50 737 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
738 if (inode &&
739 IS_TNODE(inode) &&
740 inode->pos == oldtnode->pos + oldtnode->bits &&
741 inode->bits > 1) {
742 struct tnode *left, *right;
ab66b4a7 743 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 744
2f36895a
RO
745 left = tnode_new(inode->key&(~m), inode->pos + 1,
746 inode->bits - 1);
2f80b3c8
RO
747 if (!left)
748 goto nomem;
91b9a277 749
2f36895a
RO
750 right = tnode_new(inode->key|m, inode->pos + 1,
751 inode->bits - 1);
752
e905a9ed 753 if (!right) {
2f80b3c8
RO
754 tnode_free(left);
755 goto nomem;
e905a9ed 756 }
2f36895a 757
b299e4f0
DM
758 put_child(t, tn, 2*i, (struct rt_trie_node *) left);
759 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
2f36895a
RO
760 }
761 }
762
91b9a277 763 for (i = 0; i < olen; i++) {
c95aaf9a 764 struct tnode *inode;
b299e4f0 765 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
766 struct tnode *left, *right;
767 int size, j;
c877efb2 768
19baf839
RO
769 /* An empty child */
770 if (node == NULL)
771 continue;
772
773 /* A leaf or an internal node with skipped bits */
774
c877efb2 775 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 776 tn->pos + tn->bits - 1) {
a07f5f50
SH
777 if (tkey_extract_bits(node->key,
778 oldtnode->pos + oldtnode->bits,
779 1) == 0)
19baf839
RO
780 put_child(t, tn, 2*i, node);
781 else
782 put_child(t, tn, 2*i+1, node);
783 continue;
784 }
785
786 /* An internal node with two children */
787 inode = (struct tnode *) node;
788
789 if (inode->bits == 1) {
0a5c0475
ED
790 put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
791 put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
19baf839 792
e0f7cb8c 793 tnode_free_safe(inode);
91b9a277 794 continue;
19baf839
RO
795 }
796
91b9a277
OJ
797 /* An internal node with more than two children */
798
799 /* We will replace this node 'inode' with two new
800 * ones, 'left' and 'right', each with half of the
801 * original children. The two new nodes will have
802 * a position one bit further down the key and this
803 * means that the "significant" part of their keys
804 * (see the discussion near the top of this file)
805 * will differ by one bit, which will be "0" in
806 * left's key and "1" in right's key. Since we are
807 * moving the key position by one step, the bit that
808 * we are moving away from - the bit at position
809 * (inode->pos) - is the one that will differ between
810 * left and right. So... we synthesize that bit in the
811 * two new keys.
812 * The mask 'm' below will be a single "one" bit at
813 * the position (inode->pos)
814 */
19baf839 815
91b9a277
OJ
816 /* Use the old key, but set the new significant
817 * bit to zero.
818 */
2f36895a 819
91b9a277
OJ
820 left = (struct tnode *) tnode_get_child(tn, 2*i);
821 put_child(t, tn, 2*i, NULL);
2f36895a 822
91b9a277 823 BUG_ON(!left);
2f36895a 824
91b9a277
OJ
825 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
826 put_child(t, tn, 2*i+1, NULL);
19baf839 827
91b9a277 828 BUG_ON(!right);
19baf839 829
91b9a277
OJ
830 size = tnode_child_length(left);
831 for (j = 0; j < size; j++) {
0a5c0475
ED
832 put_child(t, left, j, rtnl_dereference(inode->child[j]));
833 put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
19baf839 834 }
91b9a277
OJ
835 put_child(t, tn, 2*i, resize(t, left));
836 put_child(t, tn, 2*i+1, resize(t, right));
837
e0f7cb8c 838 tnode_free_safe(inode);
19baf839 839 }
e0f7cb8c 840 tnode_free_safe(oldtnode);
19baf839 841 return tn;
2f80b3c8 842nomem:
0a5c0475
ED
843 tnode_clean_free(tn);
844 return ERR_PTR(-ENOMEM);
19baf839
RO
845}
846
2f80b3c8 847static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
848{
849 struct tnode *oldtnode = tn;
b299e4f0 850 struct rt_trie_node *left, *right;
19baf839
RO
851 int i;
852 int olen = tnode_child_length(tn);
853
0c7770c7 854 pr_debug("In halve\n");
c877efb2
SH
855
856 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 857
2f80b3c8
RO
858 if (!tn)
859 return ERR_PTR(-ENOMEM);
2f36895a
RO
860
861 /*
c877efb2
SH
862 * Preallocate and store tnodes before the actual work so we
863 * don't get into an inconsistent state if memory allocation
864 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
865 * of tnode is ignored.
866 */
867
91b9a277 868 for (i = 0; i < olen; i += 2) {
2f36895a
RO
869 left = tnode_get_child(oldtnode, i);
870 right = tnode_get_child(oldtnode, i+1);
c877efb2 871
2f36895a 872 /* Two nonempty children */
0c7770c7 873 if (left && right) {
2f80b3c8 874 struct tnode *newn;
0c7770c7 875
2f80b3c8 876 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
877
878 if (!newn)
2f80b3c8 879 goto nomem;
0c7770c7 880
b299e4f0 881 put_child(t, tn, i/2, (struct rt_trie_node *)newn);
2f36895a 882 }
2f36895a 883
2f36895a 884 }
19baf839 885
91b9a277
OJ
886 for (i = 0; i < olen; i += 2) {
887 struct tnode *newBinNode;
888
19baf839
RO
889 left = tnode_get_child(oldtnode, i);
890 right = tnode_get_child(oldtnode, i+1);
c877efb2 891
19baf839
RO
892 /* At least one of the children is empty */
893 if (left == NULL) {
894 if (right == NULL) /* Both are empty */
895 continue;
896 put_child(t, tn, i/2, right);
91b9a277 897 continue;
0c7770c7 898 }
91b9a277
OJ
899
900 if (right == NULL) {
19baf839 901 put_child(t, tn, i/2, left);
91b9a277
OJ
902 continue;
903 }
c877efb2 904
19baf839 905 /* Two nonempty children */
91b9a277
OJ
906 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
907 put_child(t, tn, i/2, NULL);
91b9a277
OJ
908 put_child(t, newBinNode, 0, left);
909 put_child(t, newBinNode, 1, right);
910 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 911 }
e0f7cb8c 912 tnode_free_safe(oldtnode);
19baf839 913 return tn;
2f80b3c8 914nomem:
0a5c0475
ED
915 tnode_clean_free(tn);
916 return ERR_PTR(-ENOMEM);
19baf839
RO
917}
918
772cb712 919/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
920 via get_fa_head and dump */
921
772cb712 922static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 923{
772cb712 924 struct hlist_head *head = &l->list;
19baf839
RO
925 struct hlist_node *node;
926 struct leaf_info *li;
927
2373ce1c 928 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 929 if (li->plen == plen)
19baf839 930 return li;
91b9a277 931
19baf839
RO
932 return NULL;
933}
934
a07f5f50 935static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 936{
772cb712 937 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 938
91b9a277
OJ
939 if (!li)
940 return NULL;
c877efb2 941
91b9a277 942 return &li->falh;
19baf839
RO
943}
944
945static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
946{
e905a9ed
YH
947 struct leaf_info *li = NULL, *last = NULL;
948 struct hlist_node *node;
949
950 if (hlist_empty(head)) {
951 hlist_add_head_rcu(&new->hlist, head);
952 } else {
953 hlist_for_each_entry(li, node, head, hlist) {
954 if (new->plen > li->plen)
955 break;
956
957 last = li;
958 }
959 if (last)
960 hlist_add_after_rcu(&last->hlist, &new->hlist);
961 else
962 hlist_add_before_rcu(&new->hlist, &li->hlist);
963 }
19baf839
RO
964}
965
2373ce1c
RO
966/* rcu_read_lock needs to be hold by caller from readside */
967
19baf839
RO
968static struct leaf *
969fib_find_node(struct trie *t, u32 key)
970{
971 int pos;
972 struct tnode *tn;
b299e4f0 973 struct rt_trie_node *n;
19baf839
RO
974
975 pos = 0;
a034ee3c 976 n = rcu_dereference_rtnl(t->trie);
19baf839
RO
977
978 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
979 tn = (struct tnode *) n;
91b9a277 980
19baf839 981 check_tnode(tn);
91b9a277 982
c877efb2 983 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 984 pos = tn->pos + tn->bits;
a07f5f50
SH
985 n = tnode_get_child_rcu(tn,
986 tkey_extract_bits(key,
987 tn->pos,
988 tn->bits));
91b9a277 989 } else
19baf839
RO
990 break;
991 }
992 /* Case we have found a leaf. Compare prefixes */
993
91b9a277
OJ
994 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
995 return (struct leaf *)n;
996
19baf839
RO
997 return NULL;
998}
999
7b85576d 1000static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 1001{
19baf839 1002 int wasfull;
3ed18d76 1003 t_key cindex, key;
06801916 1004 struct tnode *tp;
19baf839 1005
3ed18d76
RO
1006 key = tn->key;
1007
b299e4f0 1008 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
19baf839
RO
1009 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1010 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
1011 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1012
1013 tnode_put_child_reorg((struct tnode *)tp, cindex,
b299e4f0 1014 (struct rt_trie_node *)tn, wasfull);
91b9a277 1015
b299e4f0 1016 tp = node_parent((struct rt_trie_node *) tn);
008440e3 1017 if (!tp)
cf778b00 1018 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
008440e3 1019
e0f7cb8c 1020 tnode_free_flush();
06801916 1021 if (!tp)
19baf839 1022 break;
06801916 1023 tn = tp;
19baf839 1024 }
06801916 1025
19baf839 1026 /* Handle last (top) tnode */
7b85576d 1027 if (IS_TNODE(tn))
a07f5f50 1028 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1029
cf778b00 1030 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
7b85576d 1031 tnode_free_flush();
19baf839
RO
1032}
1033
2373ce1c
RO
1034/* only used from updater-side */
1035
fea86ad8 1036static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1037{
1038 int pos, newpos;
1039 struct tnode *tp = NULL, *tn = NULL;
b299e4f0 1040 struct rt_trie_node *n;
19baf839
RO
1041 struct leaf *l;
1042 int missbit;
c877efb2 1043 struct list_head *fa_head = NULL;
19baf839
RO
1044 struct leaf_info *li;
1045 t_key cindex;
1046
1047 pos = 0;
0a5c0475 1048 n = rtnl_dereference(t->trie);
19baf839 1049
c877efb2
SH
1050 /* If we point to NULL, stop. Either the tree is empty and we should
1051 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1052 * and we should just put our new leaf in that.
c877efb2
SH
1053 * If we point to a T_TNODE, check if it matches our key. Note that
1054 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1055 * not be the parent's 'pos'+'bits'!
1056 *
c877efb2 1057 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1058 * the index from our key, push the T_TNODE and walk the tree.
1059 *
1060 * If it doesn't, we have to replace it with a new T_TNODE.
1061 *
c877efb2
SH
1062 * If we point to a T_LEAF, it might or might not have the same key
1063 * as we do. If it does, just change the value, update the T_LEAF's
1064 * value, and return it.
19baf839
RO
1065 * If it doesn't, we need to replace it with a T_TNODE.
1066 */
1067
1068 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1069 tn = (struct tnode *) n;
91b9a277 1070
c877efb2 1071 check_tnode(tn);
91b9a277 1072
c877efb2 1073 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1074 tp = tn;
91b9a277 1075 pos = tn->pos + tn->bits;
a07f5f50
SH
1076 n = tnode_get_child(tn,
1077 tkey_extract_bits(key,
1078 tn->pos,
1079 tn->bits));
19baf839 1080
06801916 1081 BUG_ON(n && node_parent(n) != tn);
91b9a277 1082 } else
19baf839
RO
1083 break;
1084 }
1085
1086 /*
1087 * n ----> NULL, LEAF or TNODE
1088 *
c877efb2 1089 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1090 */
1091
91b9a277 1092 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1093
1094 /* Case 1: n is a leaf. Compare prefixes */
1095
c877efb2 1096 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1097 l = (struct leaf *) n;
19baf839 1098 li = leaf_info_new(plen);
91b9a277 1099
fea86ad8
SH
1100 if (!li)
1101 return NULL;
19baf839
RO
1102
1103 fa_head = &li->falh;
1104 insert_leaf_info(&l->list, li);
1105 goto done;
1106 }
19baf839
RO
1107 l = leaf_new();
1108
fea86ad8
SH
1109 if (!l)
1110 return NULL;
19baf839
RO
1111
1112 l->key = key;
1113 li = leaf_info_new(plen);
1114
c877efb2 1115 if (!li) {
387a5487 1116 free_leaf(l);
fea86ad8 1117 return NULL;
f835e471 1118 }
19baf839
RO
1119
1120 fa_head = &li->falh;
1121 insert_leaf_info(&l->list, li);
1122
19baf839 1123 if (t->trie && n == NULL) {
91b9a277 1124 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1125
b299e4f0 1126 node_set_parent((struct rt_trie_node *)l, tp);
19baf839 1127
91b9a277 1128 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
b299e4f0 1129 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
91b9a277
OJ
1130 } else {
1131 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1132 /*
1133 * Add a new tnode here
19baf839
RO
1134 * first tnode need some special handling
1135 */
1136
1137 if (tp)
91b9a277 1138 pos = tp->pos+tp->bits;
19baf839 1139 else
91b9a277
OJ
1140 pos = 0;
1141
c877efb2 1142 if (n) {
19baf839
RO
1143 newpos = tkey_mismatch(key, pos, n->key);
1144 tn = tnode_new(n->key, newpos, 1);
91b9a277 1145 } else {
19baf839 1146 newpos = 0;
c877efb2 1147 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1148 }
19baf839 1149
c877efb2 1150 if (!tn) {
f835e471 1151 free_leaf_info(li);
387a5487 1152 free_leaf(l);
fea86ad8 1153 return NULL;
91b9a277
OJ
1154 }
1155
b299e4f0 1156 node_set_parent((struct rt_trie_node *)tn, tp);
19baf839 1157
91b9a277 1158 missbit = tkey_extract_bits(key, newpos, 1);
b299e4f0 1159 put_child(t, tn, missbit, (struct rt_trie_node *)l);
19baf839
RO
1160 put_child(t, tn, 1-missbit, n);
1161
c877efb2 1162 if (tp) {
19baf839 1163 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50 1164 put_child(t, (struct tnode *)tp, cindex,
b299e4f0 1165 (struct rt_trie_node *)tn);
91b9a277 1166 } else {
cf778b00 1167 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
19baf839
RO
1168 tp = tn;
1169 }
1170 }
91b9a277
OJ
1171
1172 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1173 pr_warning("fib_trie"
1174 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1175 tp, tp->pos, tp->bits, key, plen);
91b9a277 1176
19baf839 1177 /* Rebalance the trie */
2373ce1c 1178
7b85576d 1179 trie_rebalance(t, tp);
f835e471 1180done:
19baf839
RO
1181 return fa_head;
1182}
1183
d562f1f8
RO
1184/*
1185 * Caller must hold RTNL.
1186 */
16c6cf8b 1187int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1188{
1189 struct trie *t = (struct trie *) tb->tb_data;
1190 struct fib_alias *fa, *new_fa;
c877efb2 1191 struct list_head *fa_head = NULL;
19baf839 1192 struct fib_info *fi;
4e902c57
TG
1193 int plen = cfg->fc_dst_len;
1194 u8 tos = cfg->fc_tos;
19baf839
RO
1195 u32 key, mask;
1196 int err;
1197 struct leaf *l;
1198
1199 if (plen > 32)
1200 return -EINVAL;
1201
4e902c57 1202 key = ntohl(cfg->fc_dst);
19baf839 1203
2dfe55b4 1204 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1205
91b9a277 1206 mask = ntohl(inet_make_mask(plen));
19baf839 1207
c877efb2 1208 if (key & ~mask)
19baf839
RO
1209 return -EINVAL;
1210
1211 key = key & mask;
1212
4e902c57
TG
1213 fi = fib_create_info(cfg);
1214 if (IS_ERR(fi)) {
1215 err = PTR_ERR(fi);
19baf839 1216 goto err;
4e902c57 1217 }
19baf839
RO
1218
1219 l = fib_find_node(t, key);
c877efb2 1220 fa = NULL;
19baf839 1221
c877efb2 1222 if (l) {
19baf839
RO
1223 fa_head = get_fa_head(l, plen);
1224 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1225 }
1226
1227 /* Now fa, if non-NULL, points to the first fib alias
1228 * with the same keys [prefix,tos,priority], if such key already
1229 * exists or to the node before which we will insert new one.
1230 *
1231 * If fa is NULL, we will need to allocate a new one and
1232 * insert to the head of f.
1233 *
1234 * If f is NULL, no fib node matched the destination key
1235 * and we need to allocate a new one of those as well.
1236 */
1237
936f6f8e
JA
1238 if (fa && fa->fa_tos == tos &&
1239 fa->fa_info->fib_priority == fi->fib_priority) {
1240 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1241
1242 err = -EEXIST;
4e902c57 1243 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1244 goto out;
1245
936f6f8e
JA
1246 /* We have 2 goals:
1247 * 1. Find exact match for type, scope, fib_info to avoid
1248 * duplicate routes
1249 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1250 */
1251 fa_match = NULL;
1252 fa_first = fa;
1253 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1254 list_for_each_entry_continue(fa, fa_head, fa_list) {
1255 if (fa->fa_tos != tos)
1256 break;
1257 if (fa->fa_info->fib_priority != fi->fib_priority)
1258 break;
1259 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1260 fa->fa_info == fi) {
1261 fa_match = fa;
1262 break;
1263 }
1264 }
1265
4e902c57 1266 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1267 struct fib_info *fi_drop;
1268 u8 state;
1269
936f6f8e
JA
1270 fa = fa_first;
1271 if (fa_match) {
1272 if (fa == fa_match)
1273 err = 0;
6725033f 1274 goto out;
936f6f8e 1275 }
2373ce1c 1276 err = -ENOBUFS;
e94b1766 1277 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1278 if (new_fa == NULL)
1279 goto out;
19baf839
RO
1280
1281 fi_drop = fa->fa_info;
2373ce1c
RO
1282 new_fa->fa_tos = fa->fa_tos;
1283 new_fa->fa_info = fi;
4e902c57 1284 new_fa->fa_type = cfg->fc_type;
19baf839 1285 state = fa->fa_state;
936f6f8e 1286 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1287
2373ce1c
RO
1288 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1289 alias_free_mem_rcu(fa);
19baf839
RO
1290
1291 fib_release_info(fi_drop);
1292 if (state & FA_S_ACCESSED)
76e6ebfb 1293 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1294 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1295 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1296
91b9a277 1297 goto succeeded;
19baf839
RO
1298 }
1299 /* Error if we find a perfect match which
1300 * uses the same scope, type, and nexthop
1301 * information.
1302 */
936f6f8e
JA
1303 if (fa_match)
1304 goto out;
a07f5f50 1305
4e902c57 1306 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1307 fa = fa_first;
19baf839
RO
1308 }
1309 err = -ENOENT;
4e902c57 1310 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1311 goto out;
1312
1313 err = -ENOBUFS;
e94b1766 1314 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1315 if (new_fa == NULL)
1316 goto out;
1317
1318 new_fa->fa_info = fi;
1319 new_fa->fa_tos = tos;
4e902c57 1320 new_fa->fa_type = cfg->fc_type;
19baf839 1321 new_fa->fa_state = 0;
19baf839
RO
1322 /*
1323 * Insert new entry to the list.
1324 */
1325
c877efb2 1326 if (!fa_head) {
fea86ad8
SH
1327 fa_head = fib_insert_node(t, key, plen);
1328 if (unlikely(!fa_head)) {
1329 err = -ENOMEM;
f835e471 1330 goto out_free_new_fa;
fea86ad8 1331 }
f835e471 1332 }
19baf839 1333
21d8c49e
DM
1334 if (!plen)
1335 tb->tb_num_default++;
1336
2373ce1c
RO
1337 list_add_tail_rcu(&new_fa->fa_list,
1338 (fa ? &fa->fa_list : fa_head));
19baf839 1339
76e6ebfb 1340 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1341 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1342 &cfg->fc_nlinfo, 0);
19baf839
RO
1343succeeded:
1344 return 0;
f835e471
RO
1345
1346out_free_new_fa:
1347 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1348out:
1349 fib_release_info(fi);
91b9a277 1350err:
19baf839
RO
1351 return err;
1352}
1353
772cb712 1354/* should be called with rcu_read_lock */
5b470441 1355static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
22bd5b9b 1356 t_key key, const struct flowi4 *flp,
ebc0ffae 1357 struct fib_result *res, int fib_flags)
19baf839 1358{
19baf839
RO
1359 struct leaf_info *li;
1360 struct hlist_head *hhead = &l->list;
1361 struct hlist_node *node;
c877efb2 1362
2373ce1c 1363 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
3be0686b 1364 struct fib_alias *fa;
a07f5f50 1365
5c74501f 1366 if (l->key != (key & li->mask_plen))
19baf839
RO
1367 continue;
1368
3be0686b
DM
1369 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1370 struct fib_info *fi = fa->fa_info;
1371 int nhsel, err;
a07f5f50 1372
22bd5b9b 1373 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
3be0686b 1374 continue;
37e826c5 1375 if (fa->fa_info->fib_scope < flp->flowi4_scope)
3be0686b
DM
1376 continue;
1377 fib_alias_accessed(fa);
1378 err = fib_props[fa->fa_type].error;
1379 if (err) {
19baf839 1380#ifdef CONFIG_IP_FIB_TRIE_STATS
1fbc7843 1381 t->stats.semantic_match_passed++;
3be0686b 1382#endif
1fbc7843 1383 return err;
3be0686b
DM
1384 }
1385 if (fi->fib_flags & RTNH_F_DEAD)
1386 continue;
1387 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1388 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1389
1390 if (nh->nh_flags & RTNH_F_DEAD)
1391 continue;
22bd5b9b 1392 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
3be0686b
DM
1393 continue;
1394
1395#ifdef CONFIG_IP_FIB_TRIE_STATS
1396 t->stats.semantic_match_passed++;
1397#endif
5c74501f 1398 res->prefixlen = li->plen;
3be0686b
DM
1399 res->nh_sel = nhsel;
1400 res->type = fa->fa_type;
37e826c5 1401 res->scope = fa->fa_info->fib_scope;
3be0686b
DM
1402 res->fi = fi;
1403 res->table = tb;
1404 res->fa_head = &li->falh;
1405 if (!(fib_flags & FIB_LOOKUP_NOREF))
5c74501f 1406 atomic_inc(&fi->fib_clntref);
3be0686b
DM
1407 return 0;
1408 }
1409 }
1410
1411#ifdef CONFIG_IP_FIB_TRIE_STATS
1412 t->stats.semantic_match_miss++;
19baf839 1413#endif
19baf839 1414 }
a07f5f50 1415
2e655571 1416 return 1;
19baf839
RO
1417}
1418
22bd5b9b 1419int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1420 struct fib_result *res, int fib_flags)
19baf839
RO
1421{
1422 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1423 int ret;
b299e4f0 1424 struct rt_trie_node *n;
19baf839 1425 struct tnode *pn;
3b004569 1426 unsigned int pos, bits;
22bd5b9b 1427 t_key key = ntohl(flp->daddr);
3b004569 1428 unsigned int chopped_off;
19baf839 1429 t_key cindex = 0;
3b004569 1430 unsigned int current_prefix_length = KEYLENGTH;
91b9a277 1431 struct tnode *cn;
874ffa8f 1432 t_key pref_mismatch;
91b9a277 1433
2373ce1c 1434 rcu_read_lock();
91b9a277 1435
2373ce1c 1436 n = rcu_dereference(t->trie);
c877efb2 1437 if (!n)
19baf839
RO
1438 goto failed;
1439
1440#ifdef CONFIG_IP_FIB_TRIE_STATS
1441 t->stats.gets++;
1442#endif
1443
1444 /* Just a leaf? */
1445 if (IS_LEAF(n)) {
5b470441 1446 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
a07f5f50 1447 goto found;
19baf839 1448 }
a07f5f50 1449
19baf839
RO
1450 pn = (struct tnode *) n;
1451 chopped_off = 0;
c877efb2 1452
91b9a277 1453 while (pn) {
19baf839
RO
1454 pos = pn->pos;
1455 bits = pn->bits;
1456
c877efb2 1457 if (!chopped_off)
ab66b4a7
SH
1458 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1459 pos, bits);
19baf839 1460
b902e573 1461 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1462
1463 if (n == NULL) {
1464#ifdef CONFIG_IP_FIB_TRIE_STATS
1465 t->stats.null_node_hit++;
1466#endif
1467 goto backtrace;
1468 }
1469
91b9a277 1470 if (IS_LEAF(n)) {
5b470441 1471 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
2e655571 1472 if (ret > 0)
91b9a277 1473 goto backtrace;
a07f5f50 1474 goto found;
91b9a277
OJ
1475 }
1476
91b9a277 1477 cn = (struct tnode *)n;
19baf839 1478
91b9a277
OJ
1479 /*
1480 * It's a tnode, and we can do some extra checks here if we
1481 * like, to avoid descending into a dead-end branch.
1482 * This tnode is in the parent's child array at index
1483 * key[p_pos..p_pos+p_bits] but potentially with some bits
1484 * chopped off, so in reality the index may be just a
1485 * subprefix, padded with zero at the end.
1486 * We can also take a look at any skipped bits in this
1487 * tnode - everything up to p_pos is supposed to be ok,
1488 * and the non-chopped bits of the index (se previous
1489 * paragraph) are also guaranteed ok, but the rest is
1490 * considered unknown.
1491 *
1492 * The skipped bits are key[pos+bits..cn->pos].
1493 */
19baf839 1494
91b9a277
OJ
1495 /* If current_prefix_length < pos+bits, we are already doing
1496 * actual prefix matching, which means everything from
1497 * pos+(bits-chopped_off) onward must be zero along some
1498 * branch of this subtree - otherwise there is *no* valid
1499 * prefix present. Here we can only check the skipped
1500 * bits. Remember, since we have already indexed into the
1501 * parent's child array, we know that the bits we chopped of
1502 * *are* zero.
1503 */
19baf839 1504
a07f5f50
SH
1505 /* NOTA BENE: Checking only skipped bits
1506 for the new node here */
19baf839 1507
91b9a277
OJ
1508 if (current_prefix_length < pos+bits) {
1509 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1510 cn->pos - current_prefix_length)
1511 || !(cn->child[0]))
91b9a277
OJ
1512 goto backtrace;
1513 }
19baf839 1514
91b9a277
OJ
1515 /*
1516 * If chopped_off=0, the index is fully validated and we
1517 * only need to look at the skipped bits for this, the new,
1518 * tnode. What we actually want to do is to find out if
1519 * these skipped bits match our key perfectly, or if we will
1520 * have to count on finding a matching prefix further down,
1521 * because if we do, we would like to have some way of
1522 * verifying the existence of such a prefix at this point.
1523 */
19baf839 1524
91b9a277
OJ
1525 /* The only thing we can do at this point is to verify that
1526 * any such matching prefix can indeed be a prefix to our
1527 * key, and if the bits in the node we are inspecting that
1528 * do not match our key are not ZERO, this cannot be true.
1529 * Thus, find out where there is a mismatch (before cn->pos)
1530 * and verify that all the mismatching bits are zero in the
1531 * new tnode's key.
1532 */
19baf839 1533
a07f5f50
SH
1534 /*
1535 * Note: We aren't very concerned about the piece of
1536 * the key that precede pn->pos+pn->bits, since these
1537 * have already been checked. The bits after cn->pos
1538 * aren't checked since these are by definition
1539 * "unknown" at this point. Thus, what we want to see
1540 * is if we are about to enter the "prefix matching"
1541 * state, and in that case verify that the skipped
1542 * bits that will prevail throughout this subtree are
1543 * zero, as they have to be if we are to find a
1544 * matching prefix.
91b9a277
OJ
1545 */
1546
874ffa8f 1547 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
91b9a277 1548
a07f5f50
SH
1549 /*
1550 * In short: If skipped bits in this node do not match
1551 * the search key, enter the "prefix matching"
1552 * state.directly.
91b9a277
OJ
1553 */
1554 if (pref_mismatch) {
874ffa8f 1555 int mp = KEYLENGTH - fls(pref_mismatch);
91b9a277 1556
874ffa8f 1557 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
91b9a277
OJ
1558 goto backtrace;
1559
1560 if (current_prefix_length >= cn->pos)
1561 current_prefix_length = mp;
c877efb2 1562 }
a07f5f50 1563
91b9a277
OJ
1564 pn = (struct tnode *)n; /* Descend */
1565 chopped_off = 0;
1566 continue;
1567
19baf839
RO
1568backtrace:
1569 chopped_off++;
1570
1571 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1572 while ((chopped_off <= pn->bits)
1573 && !(cindex & (1<<(chopped_off-1))))
19baf839 1574 chopped_off++;
19baf839
RO
1575
1576 /* Decrease current_... with bits chopped off */
1577 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1578 current_prefix_length = pn->pos + pn->bits
1579 - chopped_off;
91b9a277 1580
19baf839 1581 /*
c877efb2 1582 * Either we do the actual chop off according or if we have
19baf839
RO
1583 * chopped off all bits in this tnode walk up to our parent.
1584 */
1585
91b9a277 1586 if (chopped_off <= pn->bits) {
19baf839 1587 cindex &= ~(1 << (chopped_off-1));
91b9a277 1588 } else {
b299e4f0 1589 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
06801916 1590 if (!parent)
19baf839 1591 goto failed;
91b9a277 1592
19baf839 1593 /* Get Child's index */
06801916
SH
1594 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1595 pn = parent;
19baf839
RO
1596 chopped_off = 0;
1597
1598#ifdef CONFIG_IP_FIB_TRIE_STATS
1599 t->stats.backtrack++;
1600#endif
1601 goto backtrace;
c877efb2 1602 }
19baf839
RO
1603 }
1604failed:
c877efb2 1605 ret = 1;
19baf839 1606found:
2373ce1c 1607 rcu_read_unlock();
19baf839
RO
1608 return ret;
1609}
6fc01438 1610EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1611
9195bef7
SH
1612/*
1613 * Remove the leaf and return parent.
1614 */
1615static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1616{
b299e4f0 1617 struct tnode *tp = node_parent((struct rt_trie_node *) l);
c877efb2 1618
9195bef7 1619 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1620
c877efb2 1621 if (tp) {
9195bef7 1622 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1623 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1624 trie_rebalance(t, tp);
91b9a277 1625 } else
a9b3cd7f 1626 RCU_INIT_POINTER(t->trie, NULL);
19baf839 1627
387a5487 1628 free_leaf(l);
19baf839
RO
1629}
1630
d562f1f8
RO
1631/*
1632 * Caller must hold RTNL.
1633 */
16c6cf8b 1634int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1635{
1636 struct trie *t = (struct trie *) tb->tb_data;
1637 u32 key, mask;
4e902c57
TG
1638 int plen = cfg->fc_dst_len;
1639 u8 tos = cfg->fc_tos;
19baf839
RO
1640 struct fib_alias *fa, *fa_to_delete;
1641 struct list_head *fa_head;
1642 struct leaf *l;
91b9a277
OJ
1643 struct leaf_info *li;
1644
c877efb2 1645 if (plen > 32)
19baf839
RO
1646 return -EINVAL;
1647
4e902c57 1648 key = ntohl(cfg->fc_dst);
91b9a277 1649 mask = ntohl(inet_make_mask(plen));
19baf839 1650
c877efb2 1651 if (key & ~mask)
19baf839
RO
1652 return -EINVAL;
1653
1654 key = key & mask;
1655 l = fib_find_node(t, key);
1656
c877efb2 1657 if (!l)
19baf839
RO
1658 return -ESRCH;
1659
1660 fa_head = get_fa_head(l, plen);
1661 fa = fib_find_alias(fa_head, tos, 0);
1662
1663 if (!fa)
1664 return -ESRCH;
1665
0c7770c7 1666 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1667
1668 fa_to_delete = NULL;
936f6f8e
JA
1669 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1670 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1671 struct fib_info *fi = fa->fa_info;
1672
1673 if (fa->fa_tos != tos)
1674 break;
1675
4e902c57
TG
1676 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1677 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1678 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1679 (!cfg->fc_prefsrc ||
1680 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1681 (!cfg->fc_protocol ||
1682 fi->fib_protocol == cfg->fc_protocol) &&
1683 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1684 fa_to_delete = fa;
1685 break;
1686 }
1687 }
1688
91b9a277
OJ
1689 if (!fa_to_delete)
1690 return -ESRCH;
19baf839 1691
91b9a277 1692 fa = fa_to_delete;
4e902c57 1693 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1694 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1695
1696 l = fib_find_node(t, key);
772cb712 1697 li = find_leaf_info(l, plen);
19baf839 1698
2373ce1c 1699 list_del_rcu(&fa->fa_list);
19baf839 1700
21d8c49e
DM
1701 if (!plen)
1702 tb->tb_num_default--;
1703
91b9a277 1704 if (list_empty(fa_head)) {
2373ce1c 1705 hlist_del_rcu(&li->hlist);
91b9a277 1706 free_leaf_info(li);
2373ce1c 1707 }
19baf839 1708
91b9a277 1709 if (hlist_empty(&l->list))
9195bef7 1710 trie_leaf_remove(t, l);
19baf839 1711
91b9a277 1712 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1713 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1714
2373ce1c
RO
1715 fib_release_info(fa->fa_info);
1716 alias_free_mem_rcu(fa);
91b9a277 1717 return 0;
19baf839
RO
1718}
1719
ef3660ce 1720static int trie_flush_list(struct list_head *head)
19baf839
RO
1721{
1722 struct fib_alias *fa, *fa_node;
1723 int found = 0;
1724
1725 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1726 struct fib_info *fi = fa->fa_info;
19baf839 1727
2373ce1c
RO
1728 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1729 list_del_rcu(&fa->fa_list);
1730 fib_release_info(fa->fa_info);
1731 alias_free_mem_rcu(fa);
19baf839
RO
1732 found++;
1733 }
1734 }
1735 return found;
1736}
1737
ef3660ce 1738static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1739{
1740 int found = 0;
1741 struct hlist_head *lih = &l->list;
1742 struct hlist_node *node, *tmp;
1743 struct leaf_info *li = NULL;
1744
1745 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1746 found += trie_flush_list(&li->falh);
19baf839
RO
1747
1748 if (list_empty(&li->falh)) {
2373ce1c 1749 hlist_del_rcu(&li->hlist);
19baf839
RO
1750 free_leaf_info(li);
1751 }
1752 }
1753 return found;
1754}
1755
82cfbb00
SH
1756/*
1757 * Scan for the next right leaf starting at node p->child[idx]
1758 * Since we have back pointer, no recursion necessary.
1759 */
b299e4f0 1760static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
19baf839 1761{
82cfbb00
SH
1762 do {
1763 t_key idx;
c877efb2 1764
c877efb2 1765 if (c)
82cfbb00 1766 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1767 else
82cfbb00 1768 idx = 0;
2373ce1c 1769
82cfbb00
SH
1770 while (idx < 1u << p->bits) {
1771 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1772 if (!c)
91b9a277
OJ
1773 continue;
1774
82cfbb00 1775 if (IS_LEAF(c)) {
0a5c0475 1776 prefetch(rcu_dereference_rtnl(p->child[idx]));
82cfbb00 1777 return (struct leaf *) c;
19baf839 1778 }
82cfbb00
SH
1779
1780 /* Rescan start scanning in new node */
1781 p = (struct tnode *) c;
1782 idx = 0;
19baf839 1783 }
82cfbb00
SH
1784
1785 /* Node empty, walk back up to parent */
b299e4f0 1786 c = (struct rt_trie_node *) p;
a034ee3c 1787 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1788
1789 return NULL; /* Root of trie */
1790}
1791
82cfbb00
SH
1792static struct leaf *trie_firstleaf(struct trie *t)
1793{
a034ee3c 1794 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1795
1796 if (!n)
1797 return NULL;
1798
1799 if (IS_LEAF(n)) /* trie is just a leaf */
1800 return (struct leaf *) n;
1801
1802 return leaf_walk_rcu(n, NULL);
1803}
1804
1805static struct leaf *trie_nextleaf(struct leaf *l)
1806{
b299e4f0 1807 struct rt_trie_node *c = (struct rt_trie_node *) l;
b902e573 1808 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1809
1810 if (!p)
1811 return NULL; /* trie with just one leaf */
1812
1813 return leaf_walk_rcu(p, c);
19baf839
RO
1814}
1815
71d67e66
SH
1816static struct leaf *trie_leafindex(struct trie *t, int index)
1817{
1818 struct leaf *l = trie_firstleaf(t);
1819
ec28cf73 1820 while (l && index-- > 0)
71d67e66 1821 l = trie_nextleaf(l);
ec28cf73 1822
71d67e66
SH
1823 return l;
1824}
1825
1826
d562f1f8
RO
1827/*
1828 * Caller must hold RTNL.
1829 */
16c6cf8b 1830int fib_table_flush(struct fib_table *tb)
19baf839
RO
1831{
1832 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1833 struct leaf *l, *ll = NULL;
82cfbb00 1834 int found = 0;
19baf839 1835
82cfbb00 1836 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1837 found += trie_flush_leaf(l);
19baf839
RO
1838
1839 if (ll && hlist_empty(&ll->list))
9195bef7 1840 trie_leaf_remove(t, ll);
19baf839
RO
1841 ll = l;
1842 }
1843
1844 if (ll && hlist_empty(&ll->list))
9195bef7 1845 trie_leaf_remove(t, ll);
19baf839 1846
0c7770c7 1847 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1848 return found;
1849}
1850
4aa2c466
PE
1851void fib_free_table(struct fib_table *tb)
1852{
1853 kfree(tb);
1854}
1855
a07f5f50
SH
1856static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1857 struct fib_table *tb,
19baf839
RO
1858 struct sk_buff *skb, struct netlink_callback *cb)
1859{
1860 int i, s_i;
1861 struct fib_alias *fa;
32ab5f80 1862 __be32 xkey = htonl(key);
19baf839 1863
71d67e66 1864 s_i = cb->args[5];
19baf839
RO
1865 i = 0;
1866
2373ce1c
RO
1867 /* rcu_read_lock is hold by caller */
1868
1869 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1870 if (i < s_i) {
1871 i++;
1872 continue;
1873 }
19baf839
RO
1874
1875 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1876 cb->nlh->nlmsg_seq,
1877 RTM_NEWROUTE,
1878 tb->tb_id,
1879 fa->fa_type,
be403ea1 1880 xkey,
19baf839
RO
1881 plen,
1882 fa->fa_tos,
64347f78 1883 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1884 cb->args[5] = i;
19baf839 1885 return -1;
91b9a277 1886 }
19baf839
RO
1887 i++;
1888 }
71d67e66 1889 cb->args[5] = i;
19baf839
RO
1890 return skb->len;
1891}
1892
a88ee229
SH
1893static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1894 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1895{
a88ee229
SH
1896 struct leaf_info *li;
1897 struct hlist_node *node;
1898 int i, s_i;
19baf839 1899
71d67e66 1900 s_i = cb->args[4];
a88ee229 1901 i = 0;
19baf839 1902
a88ee229
SH
1903 /* rcu_read_lock is hold by caller */
1904 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1905 if (i < s_i) {
1906 i++;
19baf839 1907 continue;
a88ee229 1908 }
91b9a277 1909
a88ee229 1910 if (i > s_i)
71d67e66 1911 cb->args[5] = 0;
19baf839 1912
a88ee229 1913 if (list_empty(&li->falh))
19baf839
RO
1914 continue;
1915
a88ee229 1916 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1917 cb->args[4] = i;
19baf839
RO
1918 return -1;
1919 }
a88ee229 1920 i++;
19baf839 1921 }
a88ee229 1922
71d67e66 1923 cb->args[4] = i;
19baf839
RO
1924 return skb->len;
1925}
1926
16c6cf8b
SH
1927int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1928 struct netlink_callback *cb)
19baf839 1929{
a88ee229 1930 struct leaf *l;
19baf839 1931 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1932 t_key key = cb->args[2];
71d67e66 1933 int count = cb->args[3];
19baf839 1934
2373ce1c 1935 rcu_read_lock();
d5ce8a0e
SH
1936 /* Dump starting at last key.
1937 * Note: 0.0.0.0/0 (ie default) is first key.
1938 */
71d67e66 1939 if (count == 0)
d5ce8a0e
SH
1940 l = trie_firstleaf(t);
1941 else {
71d67e66
SH
1942 /* Normally, continue from last key, but if that is missing
1943 * fallback to using slow rescan
1944 */
d5ce8a0e 1945 l = fib_find_node(t, key);
71d67e66
SH
1946 if (!l)
1947 l = trie_leafindex(t, count);
d5ce8a0e 1948 }
a88ee229 1949
d5ce8a0e
SH
1950 while (l) {
1951 cb->args[2] = l->key;
a88ee229 1952 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1953 cb->args[3] = count;
a88ee229 1954 rcu_read_unlock();
a88ee229 1955 return -1;
19baf839 1956 }
d5ce8a0e 1957
71d67e66 1958 ++count;
d5ce8a0e 1959 l = trie_nextleaf(l);
71d67e66
SH
1960 memset(&cb->args[4], 0,
1961 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1962 }
71d67e66 1963 cb->args[3] = count;
2373ce1c 1964 rcu_read_unlock();
a88ee229 1965
19baf839 1966 return skb->len;
19baf839
RO
1967}
1968
5348ba85 1969void __init fib_trie_init(void)
7f9b8052 1970{
a07f5f50
SH
1971 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1972 sizeof(struct fib_alias),
bc3c8c1e
SH
1973 0, SLAB_PANIC, NULL);
1974
1975 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1976 max(sizeof(struct leaf),
1977 sizeof(struct leaf_info)),
1978 0, SLAB_PANIC, NULL);
7f9b8052 1979}
19baf839 1980
7f9b8052 1981
5348ba85 1982struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1983{
1984 struct fib_table *tb;
1985 struct trie *t;
1986
19baf839
RO
1987 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1988 GFP_KERNEL);
1989 if (tb == NULL)
1990 return NULL;
1991
1992 tb->tb_id = id;
971b893e 1993 tb->tb_default = -1;
21d8c49e 1994 tb->tb_num_default = 0;
19baf839
RO
1995
1996 t = (struct trie *) tb->tb_data;
c28a1cf4 1997 memset(t, 0, sizeof(*t));
19baf839 1998
19baf839
RO
1999 return tb;
2000}
2001
cb7b593c
SH
2002#ifdef CONFIG_PROC_FS
2003/* Depth first Trie walk iterator */
2004struct fib_trie_iter {
1c340b2f 2005 struct seq_net_private p;
3d3b2d25 2006 struct fib_table *tb;
cb7b593c 2007 struct tnode *tnode;
a034ee3c
ED
2008 unsigned int index;
2009 unsigned int depth;
cb7b593c 2010};
19baf839 2011
b299e4f0 2012static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2013{
cb7b593c 2014 struct tnode *tn = iter->tnode;
a034ee3c 2015 unsigned int cindex = iter->index;
cb7b593c 2016 struct tnode *p;
19baf839 2017
6640e697
EB
2018 /* A single entry routing table */
2019 if (!tn)
2020 return NULL;
2021
cb7b593c
SH
2022 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2023 iter->tnode, iter->index, iter->depth);
2024rescan:
2025 while (cindex < (1<<tn->bits)) {
b299e4f0 2026 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2027
cb7b593c
SH
2028 if (n) {
2029 if (IS_LEAF(n)) {
2030 iter->tnode = tn;
2031 iter->index = cindex + 1;
2032 } else {
2033 /* push down one level */
2034 iter->tnode = (struct tnode *) n;
2035 iter->index = 0;
2036 ++iter->depth;
2037 }
2038 return n;
2039 }
19baf839 2040
cb7b593c
SH
2041 ++cindex;
2042 }
91b9a277 2043
cb7b593c 2044 /* Current node exhausted, pop back up */
b299e4f0 2045 p = node_parent_rcu((struct rt_trie_node *)tn);
cb7b593c
SH
2046 if (p) {
2047 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2048 tn = p;
2049 --iter->depth;
2050 goto rescan;
19baf839 2051 }
cb7b593c
SH
2052
2053 /* got root? */
2054 return NULL;
19baf839
RO
2055}
2056
b299e4f0 2057static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 2058 struct trie *t)
19baf839 2059{
b299e4f0 2060 struct rt_trie_node *n;
5ddf0eb2 2061
132adf54 2062 if (!t)
5ddf0eb2
RO
2063 return NULL;
2064
2065 n = rcu_dereference(t->trie);
3d3b2d25 2066 if (!n)
5ddf0eb2 2067 return NULL;
19baf839 2068
3d3b2d25
SH
2069 if (IS_TNODE(n)) {
2070 iter->tnode = (struct tnode *) n;
2071 iter->index = 0;
2072 iter->depth = 1;
2073 } else {
2074 iter->tnode = NULL;
2075 iter->index = 0;
2076 iter->depth = 0;
91b9a277 2077 }
3d3b2d25
SH
2078
2079 return n;
cb7b593c 2080}
91b9a277 2081
cb7b593c
SH
2082static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2083{
b299e4f0 2084 struct rt_trie_node *n;
cb7b593c 2085 struct fib_trie_iter iter;
91b9a277 2086
cb7b593c 2087 memset(s, 0, sizeof(*s));
91b9a277 2088
cb7b593c 2089 rcu_read_lock();
3d3b2d25 2090 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2091 if (IS_LEAF(n)) {
93672292
SH
2092 struct leaf *l = (struct leaf *)n;
2093 struct leaf_info *li;
2094 struct hlist_node *tmp;
2095
cb7b593c
SH
2096 s->leaves++;
2097 s->totdepth += iter.depth;
2098 if (iter.depth > s->maxdepth)
2099 s->maxdepth = iter.depth;
93672292
SH
2100
2101 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2102 ++s->prefixes;
cb7b593c
SH
2103 } else {
2104 const struct tnode *tn = (const struct tnode *) n;
2105 int i;
2106
2107 s->tnodes++;
132adf54 2108 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2109 s->nodesizes[tn->bits]++;
2110
cb7b593c
SH
2111 for (i = 0; i < (1<<tn->bits); i++)
2112 if (!tn->child[i])
2113 s->nullpointers++;
19baf839 2114 }
19baf839 2115 }
2373ce1c 2116 rcu_read_unlock();
19baf839
RO
2117}
2118
cb7b593c
SH
2119/*
2120 * This outputs /proc/net/fib_triestats
2121 */
2122static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2123{
a034ee3c 2124 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2125
cb7b593c
SH
2126 if (stat->leaves)
2127 avdepth = stat->totdepth*100 / stat->leaves;
2128 else
2129 avdepth = 0;
91b9a277 2130
a07f5f50
SH
2131 seq_printf(seq, "\tAver depth: %u.%02d\n",
2132 avdepth / 100, avdepth % 100);
cb7b593c 2133 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2134
cb7b593c 2135 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2136 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2137
2138 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2139 bytes += sizeof(struct leaf_info) * stat->prefixes;
2140
187b5188 2141 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2142 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2143
06ef921d
RO
2144 max = MAX_STAT_DEPTH;
2145 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2146 max--;
19baf839 2147
cb7b593c
SH
2148 pointers = 0;
2149 for (i = 1; i <= max; i++)
2150 if (stat->nodesizes[i] != 0) {
187b5188 2151 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2152 pointers += (1<<i) * stat->nodesizes[i];
2153 }
2154 seq_putc(seq, '\n');
187b5188 2155 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2156
b299e4f0 2157 bytes += sizeof(struct rt_trie_node *) * pointers;
187b5188
SH
2158 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2159 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2160}
2373ce1c 2161
cb7b593c 2162#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2163static void trie_show_usage(struct seq_file *seq,
2164 const struct trie_use_stats *stats)
2165{
2166 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2167 seq_printf(seq, "gets = %u\n", stats->gets);
2168 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2169 seq_printf(seq, "semantic match passed = %u\n",
2170 stats->semantic_match_passed);
2171 seq_printf(seq, "semantic match miss = %u\n",
2172 stats->semantic_match_miss);
2173 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2174 seq_printf(seq, "skipped node resize = %u\n\n",
2175 stats->resize_node_skipped);
cb7b593c 2176}
66a2f7fd
SH
2177#endif /* CONFIG_IP_FIB_TRIE_STATS */
2178
3d3b2d25 2179static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2180{
3d3b2d25
SH
2181 if (tb->tb_id == RT_TABLE_LOCAL)
2182 seq_puts(seq, "Local:\n");
2183 else if (tb->tb_id == RT_TABLE_MAIN)
2184 seq_puts(seq, "Main:\n");
2185 else
2186 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2187}
19baf839 2188
3d3b2d25 2189
cb7b593c
SH
2190static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2191{
1c340b2f 2192 struct net *net = (struct net *)seq->private;
3d3b2d25 2193 unsigned int h;
877a9bff 2194
d717a9a6 2195 seq_printf(seq,
a07f5f50
SH
2196 "Basic info: size of leaf:"
2197 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2198 sizeof(struct leaf), sizeof(struct tnode));
2199
3d3b2d25
SH
2200 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2201 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2202 struct hlist_node *node;
2203 struct fib_table *tb;
2204
2205 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2206 struct trie *t = (struct trie *) tb->tb_data;
2207 struct trie_stat stat;
877a9bff 2208
3d3b2d25
SH
2209 if (!t)
2210 continue;
2211
2212 fib_table_print(seq, tb);
2213
2214 trie_collect_stats(t, &stat);
2215 trie_show_stats(seq, &stat);
2216#ifdef CONFIG_IP_FIB_TRIE_STATS
2217 trie_show_usage(seq, &t->stats);
2218#endif
2219 }
2220 }
19baf839 2221
cb7b593c 2222 return 0;
19baf839
RO
2223}
2224
cb7b593c 2225static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2226{
de05c557 2227 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2228}
2229
9a32144e 2230static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2231 .owner = THIS_MODULE,
2232 .open = fib_triestat_seq_open,
2233 .read = seq_read,
2234 .llseek = seq_lseek,
b6fcbdb4 2235 .release = single_release_net,
cb7b593c
SH
2236};
2237
b299e4f0 2238static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2239{
1218854a
YH
2240 struct fib_trie_iter *iter = seq->private;
2241 struct net *net = seq_file_net(seq);
cb7b593c 2242 loff_t idx = 0;
3d3b2d25 2243 unsigned int h;
cb7b593c 2244
3d3b2d25
SH
2245 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2246 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2247 struct hlist_node *node;
2248 struct fib_table *tb;
cb7b593c 2249
3d3b2d25 2250 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
b299e4f0 2251 struct rt_trie_node *n;
3d3b2d25
SH
2252
2253 for (n = fib_trie_get_first(iter,
2254 (struct trie *) tb->tb_data);
2255 n; n = fib_trie_get_next(iter))
2256 if (pos == idx++) {
2257 iter->tb = tb;
2258 return n;
2259 }
2260 }
cb7b593c 2261 }
3d3b2d25 2262
19baf839
RO
2263 return NULL;
2264}
2265
cb7b593c 2266static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2267 __acquires(RCU)
19baf839 2268{
cb7b593c 2269 rcu_read_lock();
1218854a 2270 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2271}
2272
cb7b593c 2273static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2274{
cb7b593c 2275 struct fib_trie_iter *iter = seq->private;
1218854a 2276 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2277 struct fib_table *tb = iter->tb;
2278 struct hlist_node *tb_node;
2279 unsigned int h;
b299e4f0 2280 struct rt_trie_node *n;
cb7b593c 2281
19baf839 2282 ++*pos;
3d3b2d25
SH
2283 /* next node in same table */
2284 n = fib_trie_get_next(iter);
2285 if (n)
2286 return n;
19baf839 2287
3d3b2d25
SH
2288 /* walk rest of this hash chain */
2289 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2290 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2291 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2292 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2293 if (n)
2294 goto found;
2295 }
19baf839 2296
3d3b2d25
SH
2297 /* new hash chain */
2298 while (++h < FIB_TABLE_HASHSZ) {
2299 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2300 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2301 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2302 if (n)
2303 goto found;
2304 }
2305 }
cb7b593c 2306 return NULL;
3d3b2d25
SH
2307
2308found:
2309 iter->tb = tb;
2310 return n;
cb7b593c 2311}
19baf839 2312
cb7b593c 2313static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2314 __releases(RCU)
19baf839 2315{
cb7b593c
SH
2316 rcu_read_unlock();
2317}
91b9a277 2318
cb7b593c
SH
2319static void seq_indent(struct seq_file *seq, int n)
2320{
a034ee3c
ED
2321 while (n-- > 0)
2322 seq_puts(seq, " ");
cb7b593c 2323}
19baf839 2324
28d36e37 2325static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2326{
132adf54 2327 switch (s) {
cb7b593c
SH
2328 case RT_SCOPE_UNIVERSE: return "universe";
2329 case RT_SCOPE_SITE: return "site";
2330 case RT_SCOPE_LINK: return "link";
2331 case RT_SCOPE_HOST: return "host";
2332 case RT_SCOPE_NOWHERE: return "nowhere";
2333 default:
28d36e37 2334 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2335 return buf;
2336 }
2337}
19baf839 2338
36cbd3dc 2339static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2340 [RTN_UNSPEC] = "UNSPEC",
2341 [RTN_UNICAST] = "UNICAST",
2342 [RTN_LOCAL] = "LOCAL",
2343 [RTN_BROADCAST] = "BROADCAST",
2344 [RTN_ANYCAST] = "ANYCAST",
2345 [RTN_MULTICAST] = "MULTICAST",
2346 [RTN_BLACKHOLE] = "BLACKHOLE",
2347 [RTN_UNREACHABLE] = "UNREACHABLE",
2348 [RTN_PROHIBIT] = "PROHIBIT",
2349 [RTN_THROW] = "THROW",
2350 [RTN_NAT] = "NAT",
2351 [RTN_XRESOLVE] = "XRESOLVE",
2352};
19baf839 2353
a034ee3c 2354static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2355{
cb7b593c
SH
2356 if (t < __RTN_MAX && rtn_type_names[t])
2357 return rtn_type_names[t];
28d36e37 2358 snprintf(buf, len, "type %u", t);
cb7b593c 2359 return buf;
19baf839
RO
2360}
2361
cb7b593c
SH
2362/* Pretty print the trie */
2363static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2364{
cb7b593c 2365 const struct fib_trie_iter *iter = seq->private;
b299e4f0 2366 struct rt_trie_node *n = v;
c877efb2 2367
3d3b2d25
SH
2368 if (!node_parent_rcu(n))
2369 fib_table_print(seq, iter->tb);
095b8501 2370
cb7b593c
SH
2371 if (IS_TNODE(n)) {
2372 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2373 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2374
1d25cd6c 2375 seq_indent(seq, iter->depth-1);
673d57e7
HH
2376 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2377 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2378 tn->empty_children);
e905a9ed 2379
cb7b593c
SH
2380 } else {
2381 struct leaf *l = (struct leaf *) n;
1328042e
SH
2382 struct leaf_info *li;
2383 struct hlist_node *node;
32ab5f80 2384 __be32 val = htonl(l->key);
cb7b593c
SH
2385
2386 seq_indent(seq, iter->depth);
673d57e7 2387 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2388
2389 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2390 struct fib_alias *fa;
2391
2392 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2393 char buf1[32], buf2[32];
2394
2395 seq_indent(seq, iter->depth+1);
2396 seq_printf(seq, " /%d %s %s", li->plen,
2397 rtn_scope(buf1, sizeof(buf1),
37e826c5 2398 fa->fa_info->fib_scope),
1328042e
SH
2399 rtn_type(buf2, sizeof(buf2),
2400 fa->fa_type));
2401 if (fa->fa_tos)
b9c4d82a 2402 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2403 seq_putc(seq, '\n');
cb7b593c
SH
2404 }
2405 }
19baf839 2406 }
cb7b593c 2407
19baf839
RO
2408 return 0;
2409}
2410
f690808e 2411static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2412 .start = fib_trie_seq_start,
2413 .next = fib_trie_seq_next,
2414 .stop = fib_trie_seq_stop,
2415 .show = fib_trie_seq_show,
19baf839
RO
2416};
2417
cb7b593c 2418static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2419{
1c340b2f
DL
2420 return seq_open_net(inode, file, &fib_trie_seq_ops,
2421 sizeof(struct fib_trie_iter));
19baf839
RO
2422}
2423
9a32144e 2424static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2425 .owner = THIS_MODULE,
2426 .open = fib_trie_seq_open,
2427 .read = seq_read,
2428 .llseek = seq_lseek,
1c340b2f 2429 .release = seq_release_net,
19baf839
RO
2430};
2431
8315f5d8
SH
2432struct fib_route_iter {
2433 struct seq_net_private p;
2434 struct trie *main_trie;
2435 loff_t pos;
2436 t_key key;
2437};
2438
2439static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2440{
2441 struct leaf *l = NULL;
2442 struct trie *t = iter->main_trie;
2443
2444 /* use cache location of last found key */
2445 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2446 pos -= iter->pos;
2447 else {
2448 iter->pos = 0;
2449 l = trie_firstleaf(t);
2450 }
2451
2452 while (l && pos-- > 0) {
2453 iter->pos++;
2454 l = trie_nextleaf(l);
2455 }
2456
2457 if (l)
2458 iter->key = pos; /* remember it */
2459 else
2460 iter->pos = 0; /* forget it */
2461
2462 return l;
2463}
2464
2465static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2466 __acquires(RCU)
2467{
2468 struct fib_route_iter *iter = seq->private;
2469 struct fib_table *tb;
2470
2471 rcu_read_lock();
1218854a 2472 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2473 if (!tb)
2474 return NULL;
2475
2476 iter->main_trie = (struct trie *) tb->tb_data;
2477 if (*pos == 0)
2478 return SEQ_START_TOKEN;
2479 else
2480 return fib_route_get_idx(iter, *pos - 1);
2481}
2482
2483static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2484{
2485 struct fib_route_iter *iter = seq->private;
2486 struct leaf *l = v;
2487
2488 ++*pos;
2489 if (v == SEQ_START_TOKEN) {
2490 iter->pos = 0;
2491 l = trie_firstleaf(iter->main_trie);
2492 } else {
2493 iter->pos++;
2494 l = trie_nextleaf(l);
2495 }
2496
2497 if (l)
2498 iter->key = l->key;
2499 else
2500 iter->pos = 0;
2501 return l;
2502}
2503
2504static void fib_route_seq_stop(struct seq_file *seq, void *v)
2505 __releases(RCU)
2506{
2507 rcu_read_unlock();
2508}
2509
a034ee3c 2510static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2511{
a034ee3c 2512 unsigned int flags = 0;
19baf839 2513
a034ee3c
ED
2514 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2515 flags = RTF_REJECT;
cb7b593c
SH
2516 if (fi && fi->fib_nh->nh_gw)
2517 flags |= RTF_GATEWAY;
32ab5f80 2518 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2519 flags |= RTF_HOST;
2520 flags |= RTF_UP;
2521 return flags;
19baf839
RO
2522}
2523
cb7b593c
SH
2524/*
2525 * This outputs /proc/net/route.
2526 * The format of the file is not supposed to be changed
a034ee3c 2527 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2528 * legacy utilities
2529 */
2530static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2531{
cb7b593c 2532 struct leaf *l = v;
1328042e
SH
2533 struct leaf_info *li;
2534 struct hlist_node *node;
19baf839 2535
cb7b593c
SH
2536 if (v == SEQ_START_TOKEN) {
2537 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2538 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2539 "\tWindow\tIRTT");
2540 return 0;
2541 }
19baf839 2542
1328042e 2543 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2544 struct fib_alias *fa;
32ab5f80 2545 __be32 mask, prefix;
91b9a277 2546
cb7b593c
SH
2547 mask = inet_make_mask(li->plen);
2548 prefix = htonl(l->key);
19baf839 2549
cb7b593c 2550 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2551 const struct fib_info *fi = fa->fa_info;
a034ee3c 2552 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2553 int len;
19baf839 2554
cb7b593c
SH
2555 if (fa->fa_type == RTN_BROADCAST
2556 || fa->fa_type == RTN_MULTICAST)
2557 continue;
19baf839 2558
cb7b593c 2559 if (fi)
5e659e4c
PE
2560 seq_printf(seq,
2561 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2562 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2563 fi->fib_dev ? fi->fib_dev->name : "*",
2564 prefix,
2565 fi->fib_nh->nh_gw, flags, 0, 0,
2566 fi->fib_priority,
2567 mask,
a07f5f50
SH
2568 (fi->fib_advmss ?
2569 fi->fib_advmss + 40 : 0),
cb7b593c 2570 fi->fib_window,
5e659e4c 2571 fi->fib_rtt >> 3, &len);
cb7b593c 2572 else
5e659e4c
PE
2573 seq_printf(seq,
2574 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2575 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2576 prefix, 0, flags, 0, 0, 0,
5e659e4c 2577 mask, 0, 0, 0, &len);
19baf839 2578
5e659e4c 2579 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2580 }
19baf839
RO
2581 }
2582
2583 return 0;
2584}
2585
f690808e 2586static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2587 .start = fib_route_seq_start,
2588 .next = fib_route_seq_next,
2589 .stop = fib_route_seq_stop,
cb7b593c 2590 .show = fib_route_seq_show,
19baf839
RO
2591};
2592
cb7b593c 2593static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2594{
1c340b2f 2595 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2596 sizeof(struct fib_route_iter));
19baf839
RO
2597}
2598
9a32144e 2599static const struct file_operations fib_route_fops = {
cb7b593c
SH
2600 .owner = THIS_MODULE,
2601 .open = fib_route_seq_open,
2602 .read = seq_read,
2603 .llseek = seq_lseek,
1c340b2f 2604 .release = seq_release_net,
19baf839
RO
2605};
2606
61a02653 2607int __net_init fib_proc_init(struct net *net)
19baf839 2608{
61a02653 2609 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2610 goto out1;
2611
61a02653
DL
2612 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2613 &fib_triestat_fops))
cb7b593c
SH
2614 goto out2;
2615
61a02653 2616 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2617 goto out3;
2618
19baf839 2619 return 0;
cb7b593c
SH
2620
2621out3:
61a02653 2622 proc_net_remove(net, "fib_triestat");
cb7b593c 2623out2:
61a02653 2624 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2625out1:
2626 return -ENOMEM;
19baf839
RO
2627}
2628
61a02653 2629void __net_exit fib_proc_exit(struct net *net)
19baf839 2630{
61a02653
DL
2631 proc_net_remove(net, "fib_trie");
2632 proc_net_remove(net, "fib_triestat");
2633 proc_net_remove(net, "route");
19baf839
RO
2634}
2635
2636#endif /* CONFIG_PROC_FS */