fib_trie: Fall back to slen update on inflate/halve failure
[linux-2.6-block.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
06ef921d 84#define MAX_STAT_DEPTH 32
19baf839 85
19baf839 86#define KEYLENGTH (8*sizeof(t_key))
19baf839 87
19baf839
RO
88typedef unsigned int t_key;
89
64c9b6fb
AD
90#define IS_TNODE(n) ((n)->bits)
91#define IS_LEAF(n) (!(n)->bits)
2373ce1c 92
e9b44019 93#define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
9f9e636d 94
64c9b6fb
AD
95struct tnode {
96 t_key key;
97 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
98 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
5405afd1 99 unsigned char slen;
64c9b6fb 100 struct tnode __rcu *parent;
37fd30f2 101 struct rcu_head rcu;
adaf9816
AD
102 union {
103 /* The fields in this struct are valid if bits > 0 (TNODE) */
104 struct {
105 unsigned int full_children; /* KEYLENGTH bits needed */
106 unsigned int empty_children; /* KEYLENGTH bits needed */
107 struct tnode __rcu *child[0];
108 };
109 /* This list pointer if valid if bits == 0 (LEAF) */
110 struct hlist_head list;
111 };
19baf839
RO
112};
113
114struct leaf_info {
115 struct hlist_node hlist;
116 int plen;
5c74501f 117 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
19baf839 118 struct list_head falh;
5c74501f 119 struct rcu_head rcu;
19baf839
RO
120};
121
19baf839
RO
122#ifdef CONFIG_IP_FIB_TRIE_STATS
123struct trie_use_stats {
124 unsigned int gets;
125 unsigned int backtrack;
126 unsigned int semantic_match_passed;
127 unsigned int semantic_match_miss;
128 unsigned int null_node_hit;
2f36895a 129 unsigned int resize_node_skipped;
19baf839
RO
130};
131#endif
132
133struct trie_stat {
134 unsigned int totdepth;
135 unsigned int maxdepth;
136 unsigned int tnodes;
137 unsigned int leaves;
138 unsigned int nullpointers;
93672292 139 unsigned int prefixes;
06ef921d 140 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 141};
19baf839
RO
142
143struct trie {
adaf9816 144 struct tnode __rcu *trie;
19baf839 145#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 146 struct trie_use_stats __percpu *stats;
19baf839 147#endif
19baf839
RO
148};
149
ff181ed8 150static void resize(struct trie *t, struct tnode *tn);
c3059477
JP
151static size_t tnode_free_size;
152
153/*
154 * synchronize_rcu after call_rcu for that many pages; it should be especially
155 * useful before resizing the root node with PREEMPT_NONE configs; the value was
156 * obtained experimentally, aiming to avoid visible slowdown.
157 */
158static const int sync_pages = 128;
19baf839 159
e18b890b 160static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 161static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 162
64c9b6fb
AD
163/* caller must hold RTNL */
164#define node_parent(n) rtnl_dereference((n)->parent)
0a5c0475 165
64c9b6fb
AD
166/* caller must hold RCU read lock or RTNL */
167#define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
0a5c0475 168
64c9b6fb 169/* wrapper for rcu_assign_pointer */
adaf9816 170static inline void node_set_parent(struct tnode *n, struct tnode *tp)
b59cfbf7 171{
adaf9816
AD
172 if (n)
173 rcu_assign_pointer(n->parent, tp);
06801916
SH
174}
175
64c9b6fb
AD
176#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
177
178/* This provides us with the number of children in this node, in the case of a
179 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 180 */
98293e8d 181static inline unsigned long tnode_child_length(const struct tnode *tn)
06801916 182{
64c9b6fb 183 return (1ul << tn->bits) & ~(1ul);
06801916 184}
2373ce1c 185
98293e8d
AD
186/* caller must hold RTNL */
187static inline struct tnode *tnode_get_child(const struct tnode *tn,
188 unsigned long i)
b59cfbf7 189{
0a5c0475 190 return rtnl_dereference(tn->child[i]);
b59cfbf7
ED
191}
192
98293e8d
AD
193/* caller must hold RCU read lock or RTNL */
194static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
195 unsigned long i)
19baf839 196{
0a5c0475 197 return rcu_dereference_rtnl(tn->child[i]);
19baf839
RO
198}
199
e9b44019
AD
200/* To understand this stuff, an understanding of keys and all their bits is
201 * necessary. Every node in the trie has a key associated with it, but not
202 * all of the bits in that key are significant.
203 *
204 * Consider a node 'n' and its parent 'tp'.
205 *
206 * If n is a leaf, every bit in its key is significant. Its presence is
207 * necessitated by path compression, since during a tree traversal (when
208 * searching for a leaf - unless we are doing an insertion) we will completely
209 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
210 * a potentially successful search, that we have indeed been walking the
211 * correct key path.
212 *
213 * Note that we can never "miss" the correct key in the tree if present by
214 * following the wrong path. Path compression ensures that segments of the key
215 * that are the same for all keys with a given prefix are skipped, but the
216 * skipped part *is* identical for each node in the subtrie below the skipped
217 * bit! trie_insert() in this implementation takes care of that.
218 *
219 * if n is an internal node - a 'tnode' here, the various parts of its key
220 * have many different meanings.
221 *
222 * Example:
223 * _________________________________________________________________
224 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
225 * -----------------------------------------------------------------
226 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
227 *
228 * _________________________________________________________________
229 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
230 * -----------------------------------------------------------------
231 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
232 *
233 * tp->pos = 22
234 * tp->bits = 3
235 * n->pos = 13
236 * n->bits = 4
237 *
238 * First, let's just ignore the bits that come before the parent tp, that is
239 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
240 * point we do not use them for anything.
241 *
242 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
243 * index into the parent's child array. That is, they will be used to find
244 * 'n' among tp's children.
245 *
246 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
247 * for the node n.
248 *
249 * All the bits we have seen so far are significant to the node n. The rest
250 * of the bits are really not needed or indeed known in n->key.
251 *
252 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
253 * n's child array, and will of course be different for each child.
254 *
255 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
256 * at this point.
257 */
19baf839 258
f5026fab
DL
259static const int halve_threshold = 25;
260static const int inflate_threshold = 50;
345aa031 261static const int halve_threshold_root = 15;
80b71b80 262static const int inflate_threshold_root = 30;
2373ce1c
RO
263
264static void __alias_free_mem(struct rcu_head *head)
19baf839 265{
2373ce1c
RO
266 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
267 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
268}
269
2373ce1c 270static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 271{
2373ce1c
RO
272 call_rcu(&fa->rcu, __alias_free_mem);
273}
91b9a277 274
37fd30f2 275#define TNODE_KMALLOC_MAX \
adaf9816 276 ilog2((PAGE_SIZE - sizeof(struct tnode)) / sizeof(struct tnode *))
91b9a277 277
37fd30f2 278static void __node_free_rcu(struct rcu_head *head)
387a5487 279{
adaf9816 280 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2
AD
281
282 if (IS_LEAF(n))
283 kmem_cache_free(trie_leaf_kmem, n);
284 else if (n->bits <= TNODE_KMALLOC_MAX)
285 kfree(n);
286 else
287 vfree(n);
387a5487
SH
288}
289
37fd30f2
AD
290#define node_free(n) call_rcu(&n->rcu, __node_free_rcu)
291
2373ce1c 292static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 293{
bceb0f45 294 kfree_rcu(leaf, rcu);
19baf839
RO
295}
296
8d965444 297static struct tnode *tnode_alloc(size_t size)
f0e36f8c 298{
2373ce1c 299 if (size <= PAGE_SIZE)
8d965444 300 return kzalloc(size, GFP_KERNEL);
15be75cd 301 else
7a1c8e5a 302 return vzalloc(size);
15be75cd 303}
2373ce1c 304
adaf9816 305static struct tnode *leaf_new(t_key key)
2373ce1c 306{
adaf9816 307 struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c 308 if (l) {
64c9b6fb
AD
309 l->parent = NULL;
310 /* set key and pos to reflect full key value
311 * any trailing zeros in the key should be ignored
312 * as the nodes are searched
313 */
314 l->key = key;
5405afd1 315 l->slen = 0;
e9b44019 316 l->pos = 0;
64c9b6fb
AD
317 /* set bits to 0 indicating we are not a tnode */
318 l->bits = 0;
319
2373ce1c
RO
320 INIT_HLIST_HEAD(&l->list);
321 }
322 return l;
323}
324
325static struct leaf_info *leaf_info_new(int plen)
326{
327 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
328 if (li) {
329 li->plen = plen;
5c74501f 330 li->mask_plen = ntohl(inet_make_mask(plen));
2373ce1c
RO
331 INIT_LIST_HEAD(&li->falh);
332 }
333 return li;
334}
335
a07f5f50 336static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 337{
37fd30f2 338 size_t sz = offsetof(struct tnode, child[1 << bits]);
f0e36f8c 339 struct tnode *tn = tnode_alloc(sz);
64c9b6fb
AD
340 unsigned int shift = pos + bits;
341
342 /* verify bits and pos their msb bits clear and values are valid */
343 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 344
91b9a277 345 if (tn) {
64c9b6fb 346 tn->parent = NULL;
5405afd1 347 tn->slen = pos;
19baf839
RO
348 tn->pos = pos;
349 tn->bits = bits;
e9b44019 350 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
19baf839
RO
351 tn->full_children = 0;
352 tn->empty_children = 1<<bits;
353 }
c877efb2 354
a034ee3c 355 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
adaf9816 356 sizeof(struct tnode *) << bits);
19baf839
RO
357 return tn;
358}
359
e9b44019 360/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
361 * and no bits are skipped. See discussion in dyntree paper p. 6
362 */
adaf9816 363static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
19baf839 364{
e9b44019 365 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
366}
367
ff181ed8
AD
368/* Add a child at position i overwriting the old value.
369 * Update the value of full_children and empty_children.
370 */
371static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
19baf839 372{
21d1f11d 373 struct tnode *chi = tnode_get_child(tn, i);
ff181ed8 374 int isfull, wasfull;
19baf839 375
98293e8d 376 BUG_ON(i >= tnode_child_length(tn));
0c7770c7 377
19baf839
RO
378 /* update emptyChildren */
379 if (n == NULL && chi != NULL)
380 tn->empty_children++;
381 else if (n != NULL && chi == NULL)
382 tn->empty_children--;
c877efb2 383
19baf839 384 /* update fullChildren */
ff181ed8 385 wasfull = tnode_full(tn, chi);
19baf839 386 isfull = tnode_full(tn, n);
ff181ed8 387
c877efb2 388 if (wasfull && !isfull)
19baf839 389 tn->full_children--;
c877efb2 390 else if (!wasfull && isfull)
19baf839 391 tn->full_children++;
91b9a277 392
5405afd1
AD
393 if (n && (tn->slen < n->slen))
394 tn->slen = n->slen;
395
cf778b00 396 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
397}
398
69fa57b1
AD
399static void update_children(struct tnode *tn)
400{
401 unsigned long i;
402
403 /* update all of the child parent pointers */
404 for (i = tnode_child_length(tn); i;) {
405 struct tnode *inode = tnode_get_child(tn, --i);
406
407 if (!inode)
408 continue;
409
410 /* Either update the children of a tnode that
411 * already belongs to us or update the child
412 * to point to ourselves.
413 */
414 if (node_parent(inode) == tn)
415 update_children(inode);
416 else
417 node_set_parent(inode, tn);
418 }
419}
420
421static inline void put_child_root(struct tnode *tp, struct trie *t,
422 t_key key, struct tnode *n)
836a0123
AD
423{
424 if (tp)
425 put_child(tp, get_index(key, tp), n);
426 else
427 rcu_assign_pointer(t->trie, n);
428}
429
fc86a93b 430static inline void tnode_free_init(struct tnode *tn)
0a5c0475 431{
fc86a93b
AD
432 tn->rcu.next = NULL;
433}
434
435static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
436{
437 n->rcu.next = tn->rcu.next;
438 tn->rcu.next = &n->rcu;
439}
0a5c0475 440
fc86a93b
AD
441static void tnode_free(struct tnode *tn)
442{
443 struct callback_head *head = &tn->rcu;
444
445 while (head) {
446 head = head->next;
447 tnode_free_size += offsetof(struct tnode, child[1 << tn->bits]);
448 node_free(tn);
449
450 tn = container_of(head, struct tnode, rcu);
451 }
452
453 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
454 tnode_free_size = 0;
455 synchronize_rcu();
0a5c0475 456 }
0a5c0475
ED
457}
458
69fa57b1
AD
459static void replace(struct trie *t, struct tnode *oldtnode, struct tnode *tn)
460{
461 struct tnode *tp = node_parent(oldtnode);
462 unsigned long i;
463
464 /* setup the parent pointer out of and back into this node */
465 NODE_INIT_PARENT(tn, tp);
466 put_child_root(tp, t, tn->key, tn);
467
468 /* update all of the child parent pointers */
469 update_children(tn);
470
471 /* all pointers should be clean so we are done */
472 tnode_free(oldtnode);
473
474 /* resize children now that oldtnode is freed */
475 for (i = tnode_child_length(tn); i;) {
476 struct tnode *inode = tnode_get_child(tn, --i);
477
478 /* resize child node */
479 if (tnode_full(tn, inode))
480 resize(t, inode);
481 }
482}
483
ff181ed8 484static int inflate(struct trie *t, struct tnode *oldtnode)
19baf839 485{
69fa57b1
AD
486 struct tnode *tn;
487 unsigned long i;
e9b44019 488 t_key m;
19baf839 489
0c7770c7 490 pr_debug("In inflate\n");
19baf839 491
e9b44019 492 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 493 if (!tn)
ff181ed8 494 return -ENOMEM;
2f36895a 495
69fa57b1
AD
496 /* prepare oldtnode to be freed */
497 tnode_free_init(oldtnode);
498
12c081a5
AD
499 /* Assemble all of the pointers in our cluster, in this case that
500 * represents all of the pointers out of our allocated nodes that
501 * point to existing tnodes and the links between our allocated
502 * nodes.
2f36895a 503 */
12c081a5 504 for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
69fa57b1
AD
505 struct tnode *inode = tnode_get_child(oldtnode, --i);
506 struct tnode *node0, *node1;
507 unsigned long j, k;
c877efb2 508
19baf839 509 /* An empty child */
adaf9816 510 if (inode == NULL)
19baf839
RO
511 continue;
512
513 /* A leaf or an internal node with skipped bits */
adaf9816 514 if (!tnode_full(oldtnode, inode)) {
e9b44019 515 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
516 continue;
517 }
518
69fa57b1
AD
519 /* drop the node in the old tnode free list */
520 tnode_free_append(oldtnode, inode);
521
19baf839 522 /* An internal node with two children */
19baf839 523 if (inode->bits == 1) {
12c081a5
AD
524 put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
525 put_child(tn, 2 * i, tnode_get_child(inode, 0));
91b9a277 526 continue;
19baf839
RO
527 }
528
91b9a277 529 /* We will replace this node 'inode' with two new
12c081a5 530 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
531 * original children. The two new nodes will have
532 * a position one bit further down the key and this
533 * means that the "significant" part of their keys
534 * (see the discussion near the top of this file)
535 * will differ by one bit, which will be "0" in
12c081a5 536 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
537 * moving the key position by one step, the bit that
538 * we are moving away from - the bit at position
12c081a5
AD
539 * (tn->pos) - is the one that will differ between
540 * node0 and node1. So... we synthesize that bit in the
541 * two new keys.
91b9a277 542 */
12c081a5
AD
543 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
544 if (!node1)
545 goto nomem;
69fa57b1 546 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 547
69fa57b1 548 tnode_free_append(tn, node1);
12c081a5
AD
549 if (!node0)
550 goto nomem;
551 tnode_free_append(tn, node0);
552
553 /* populate child pointers in new nodes */
554 for (k = tnode_child_length(inode), j = k / 2; j;) {
555 put_child(node1, --j, tnode_get_child(inode, --k));
556 put_child(node0, j, tnode_get_child(inode, j));
557 put_child(node1, --j, tnode_get_child(inode, --k));
558 put_child(node0, j, tnode_get_child(inode, j));
559 }
19baf839 560
12c081a5
AD
561 /* link new nodes to parent */
562 NODE_INIT_PARENT(node1, tn);
563 NODE_INIT_PARENT(node0, tn);
2f36895a 564
12c081a5
AD
565 /* link parent to nodes */
566 put_child(tn, 2 * i + 1, node1);
567 put_child(tn, 2 * i, node0);
568 }
2f36895a 569
69fa57b1
AD
570 /* setup the parent pointers into and out of this node */
571 replace(t, oldtnode, tn);
12c081a5 572
ff181ed8 573 return 0;
2f80b3c8 574nomem:
fc86a93b
AD
575 /* all pointers should be clean so we are done */
576 tnode_free(tn);
ff181ed8 577 return -ENOMEM;
19baf839
RO
578}
579
ff181ed8 580static int halve(struct trie *t, struct tnode *oldtnode)
19baf839 581{
69fa57b1 582 struct tnode *tn;
12c081a5 583 unsigned long i;
19baf839 584
0c7770c7 585 pr_debug("In halve\n");
c877efb2 586
e9b44019 587 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 588 if (!tn)
ff181ed8 589 return -ENOMEM;
2f36895a 590
69fa57b1
AD
591 /* prepare oldtnode to be freed */
592 tnode_free_init(oldtnode);
593
12c081a5
AD
594 /* Assemble all of the pointers in our cluster, in this case that
595 * represents all of the pointers out of our allocated nodes that
596 * point to existing tnodes and the links between our allocated
597 * nodes.
2f36895a 598 */
12c081a5 599 for (i = tnode_child_length(oldtnode); i;) {
69fa57b1
AD
600 struct tnode *node1 = tnode_get_child(oldtnode, --i);
601 struct tnode *node0 = tnode_get_child(oldtnode, --i);
602 struct tnode *inode;
2f36895a 603
12c081a5
AD
604 /* At least one of the children is empty */
605 if (!node1 || !node0) {
606 put_child(tn, i / 2, node1 ? : node0);
607 continue;
608 }
c877efb2 609
2f36895a 610 /* Two nonempty children */
12c081a5
AD
611 inode = tnode_new(node0->key, oldtnode->pos, 1);
612 if (!inode) {
613 tnode_free(tn);
614 return -ENOMEM;
2f36895a 615 }
12c081a5 616 tnode_free_append(tn, inode);
2f36895a 617
12c081a5
AD
618 /* initialize pointers out of node */
619 put_child(inode, 1, node1);
620 put_child(inode, 0, node0);
621 NODE_INIT_PARENT(inode, tn);
622
623 /* link parent to node */
624 put_child(tn, i / 2, inode);
2f36895a 625 }
19baf839 626
69fa57b1
AD
627 /* setup the parent pointers into and out of this node */
628 replace(t, oldtnode, tn);
ff181ed8
AD
629
630 return 0;
19baf839
RO
631}
632
5405afd1
AD
633static unsigned char update_suffix(struct tnode *tn)
634{
635 unsigned char slen = tn->pos;
636 unsigned long stride, i;
637
638 /* search though the list of children looking for nodes that might
639 * have a suffix greater than the one we currently have. This is
640 * why we start with a stride of 2 since a stride of 1 would
641 * represent the nodes with suffix length equal to tn->pos
642 */
643 for (i = 0, stride = 0x2ul ; i < tnode_child_length(tn); i += stride) {
644 struct tnode *n = tnode_get_child(tn, i);
645
646 if (!n || (n->slen <= slen))
647 continue;
648
649 /* update stride and slen based on new value */
650 stride <<= (n->slen - slen);
651 slen = n->slen;
652 i &= ~(stride - 1);
653
654 /* if slen covers all but the last bit we can stop here
655 * there will be nothing longer than that since only node
656 * 0 and 1 << (bits - 1) could have that as their suffix
657 * length.
658 */
659 if ((slen + 1) >= (tn->pos + tn->bits))
660 break;
661 }
662
663 tn->slen = slen;
664
665 return slen;
666}
667
f05a4819
AD
668/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
669 * the Helsinki University of Technology and Matti Tikkanen of Nokia
670 * Telecommunications, page 6:
671 * "A node is doubled if the ratio of non-empty children to all
672 * children in the *doubled* node is at least 'high'."
673 *
674 * 'high' in this instance is the variable 'inflate_threshold'. It
675 * is expressed as a percentage, so we multiply it with
676 * tnode_child_length() and instead of multiplying by 2 (since the
677 * child array will be doubled by inflate()) and multiplying
678 * the left-hand side by 100 (to handle the percentage thing) we
679 * multiply the left-hand side by 50.
680 *
681 * The left-hand side may look a bit weird: tnode_child_length(tn)
682 * - tn->empty_children is of course the number of non-null children
683 * in the current node. tn->full_children is the number of "full"
684 * children, that is non-null tnodes with a skip value of 0.
685 * All of those will be doubled in the resulting inflated tnode, so
686 * we just count them one extra time here.
687 *
688 * A clearer way to write this would be:
689 *
690 * to_be_doubled = tn->full_children;
691 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
692 * tn->full_children;
693 *
694 * new_child_length = tnode_child_length(tn) * 2;
695 *
696 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
697 * new_child_length;
698 * if (new_fill_factor >= inflate_threshold)
699 *
700 * ...and so on, tho it would mess up the while () loop.
701 *
702 * anyway,
703 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
704 * inflate_threshold
705 *
706 * avoid a division:
707 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
708 * inflate_threshold * new_child_length
709 *
710 * expand not_to_be_doubled and to_be_doubled, and shorten:
711 * 100 * (tnode_child_length(tn) - tn->empty_children +
712 * tn->full_children) >= inflate_threshold * new_child_length
713 *
714 * expand new_child_length:
715 * 100 * (tnode_child_length(tn) - tn->empty_children +
716 * tn->full_children) >=
717 * inflate_threshold * tnode_child_length(tn) * 2
718 *
719 * shorten again:
720 * 50 * (tn->full_children + tnode_child_length(tn) -
721 * tn->empty_children) >= inflate_threshold *
722 * tnode_child_length(tn)
723 *
724 */
ff181ed8 725static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
f05a4819
AD
726{
727 unsigned long used = tnode_child_length(tn);
728 unsigned long threshold = used;
729
730 /* Keep root node larger */
ff181ed8 731 threshold *= tp ? inflate_threshold : inflate_threshold_root;
f05a4819
AD
732 used += tn->full_children;
733 used -= tn->empty_children;
734
735 return tn->pos && ((50 * used) >= threshold);
736}
737
ff181ed8 738static bool should_halve(const struct tnode *tp, const struct tnode *tn)
f05a4819
AD
739{
740 unsigned long used = tnode_child_length(tn);
741 unsigned long threshold = used;
742
743 /* Keep root node larger */
ff181ed8 744 threshold *= tp ? halve_threshold : halve_threshold_root;
f05a4819
AD
745 used -= tn->empty_children;
746
747 return (tn->bits > 1) && ((100 * used) < threshold);
748}
749
cf3637bb 750#define MAX_WORK 10
ff181ed8 751static void resize(struct trie *t, struct tnode *tn)
cf3637bb 752{
ff181ed8
AD
753 struct tnode *tp = node_parent(tn), *n = NULL;
754 struct tnode __rcu **cptr;
a80e89d4 755 int max_work = MAX_WORK;
cf3637bb 756
cf3637bb
AD
757 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
758 tn, inflate_threshold, halve_threshold);
759
ff181ed8
AD
760 /* track the tnode via the pointer from the parent instead of
761 * doing it ourselves. This way we can let RCU fully do its
762 * thing without us interfering
763 */
764 cptr = tp ? &tp->child[get_index(tn->key, tp)] : &t->trie;
765 BUG_ON(tn != rtnl_dereference(*cptr));
766
cf3637bb
AD
767 /* No children */
768 if (tn->empty_children > (tnode_child_length(tn) - 1))
769 goto no_children;
770
771 /* One child */
772 if (tn->empty_children == (tnode_child_length(tn) - 1))
773 goto one_child;
cf3637bb 774
f05a4819
AD
775 /* Double as long as the resulting node has a number of
776 * nonempty nodes that are above the threshold.
cf3637bb 777 */
a80e89d4 778 while (should_inflate(tp, tn) && max_work) {
ff181ed8 779 if (inflate(t, tn)) {
cf3637bb
AD
780#ifdef CONFIG_IP_FIB_TRIE_STATS
781 this_cpu_inc(t->stats->resize_node_skipped);
782#endif
783 break;
784 }
ff181ed8 785
a80e89d4 786 max_work--;
ff181ed8 787 tn = rtnl_dereference(*cptr);
cf3637bb
AD
788 }
789
790 /* Return if at least one inflate is run */
791 if (max_work != MAX_WORK)
ff181ed8 792 return;
cf3637bb 793
f05a4819 794 /* Halve as long as the number of empty children in this
cf3637bb
AD
795 * node is above threshold.
796 */
a80e89d4 797 while (should_halve(tp, tn) && max_work) {
ff181ed8 798 if (halve(t, tn)) {
cf3637bb
AD
799#ifdef CONFIG_IP_FIB_TRIE_STATS
800 this_cpu_inc(t->stats->resize_node_skipped);
801#endif
802 break;
803 }
cf3637bb 804
a80e89d4 805 max_work--;
ff181ed8
AD
806 tn = rtnl_dereference(*cptr);
807 }
cf3637bb
AD
808
809 /* Only one child remains */
810 if (tn->empty_children == (tnode_child_length(tn) - 1)) {
811 unsigned long i;
812one_child:
813 for (i = tnode_child_length(tn); !n && i;)
814 n = tnode_get_child(tn, --i);
815no_children:
816 /* compress one level */
ff181ed8
AD
817 put_child_root(tp, t, tn->key, n);
818 node_set_parent(n, tp);
819
820 /* drop dead node */
fc86a93b
AD
821 tnode_free_init(tn);
822 tnode_free(tn);
5405afd1
AD
823 return;
824 }
825
826 /* Return if at least one deflate was run */
827 if (max_work != MAX_WORK)
828 return;
829
830 /* push the suffix length to the parent node */
831 if (tn->slen > tn->pos) {
832 unsigned char slen = update_suffix(tn);
833
834 if (tp && (slen > tp->slen))
835 tp->slen = slen;
cf3637bb 836 }
cf3637bb
AD
837}
838
772cb712 839/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
840 via get_fa_head and dump */
841
adaf9816 842static struct leaf_info *find_leaf_info(struct tnode *l, int plen)
19baf839 843{
772cb712 844 struct hlist_head *head = &l->list;
19baf839
RO
845 struct leaf_info *li;
846
b67bfe0d 847 hlist_for_each_entry_rcu(li, head, hlist)
c877efb2 848 if (li->plen == plen)
19baf839 849 return li;
91b9a277 850
19baf839
RO
851 return NULL;
852}
853
adaf9816 854static inline struct list_head *get_fa_head(struct tnode *l, int plen)
19baf839 855{
772cb712 856 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 857
91b9a277
OJ
858 if (!li)
859 return NULL;
c877efb2 860
91b9a277 861 return &li->falh;
19baf839
RO
862}
863
5405afd1
AD
864static void leaf_pull_suffix(struct tnode *l)
865{
866 struct tnode *tp = node_parent(l);
867
868 while (tp && (tp->slen > tp->pos) && (tp->slen > l->slen)) {
869 if (update_suffix(tp) > l->slen)
870 break;
871 tp = node_parent(tp);
872 }
873}
874
875static void leaf_push_suffix(struct tnode *l)
19baf839 876{
5405afd1
AD
877 struct tnode *tn = node_parent(l);
878
879 /* if this is a new leaf then tn will be NULL and we can sort
880 * out parent suffix lengths as a part of trie_rebalance
881 */
882 while (tn && (tn->slen < l->slen)) {
883 tn->slen = l->slen;
884 tn = node_parent(tn);
885 }
886}
887
888static void remove_leaf_info(struct tnode *l, struct leaf_info *old)
889{
890 struct hlist_node *prev;
891
892 /* record the location of the pointer to this object */
893 prev = rtnl_dereference(hlist_pprev_rcu(&old->hlist));
894
895 /* remove the leaf info from the list */
896 hlist_del_rcu(&old->hlist);
897
898 /* if we emptied the list this leaf will be freed and we can sort
899 * out parent suffix lengths as a part of trie_rebalance
900 */
901 if (hlist_empty(&l->list))
902 return;
903
904 /* if we removed the tail then we need to update slen */
905 if (!rcu_access_pointer(hlist_next_rcu(prev))) {
906 struct leaf_info *li = hlist_entry(prev, typeof(*li), hlist);
907
908 l->slen = KEYLENGTH - li->plen;
909 leaf_pull_suffix(l);
910 }
911}
912
913static void insert_leaf_info(struct tnode *l, struct leaf_info *new)
914{
915 struct hlist_head *head = &l->list;
e905a9ed 916 struct leaf_info *li = NULL, *last = NULL;
e905a9ed
YH
917
918 if (hlist_empty(head)) {
919 hlist_add_head_rcu(&new->hlist, head);
920 } else {
b67bfe0d 921 hlist_for_each_entry(li, head, hlist) {
e905a9ed
YH
922 if (new->plen > li->plen)
923 break;
924
925 last = li;
926 }
927 if (last)
1d023284 928 hlist_add_behind_rcu(&new->hlist, &last->hlist);
e905a9ed
YH
929 else
930 hlist_add_before_rcu(&new->hlist, &li->hlist);
931 }
5405afd1
AD
932
933 /* if we added to the tail node then we need to update slen */
934 if (!rcu_access_pointer(hlist_next_rcu(&new->hlist))) {
935 l->slen = KEYLENGTH - new->plen;
936 leaf_push_suffix(l);
937 }
19baf839
RO
938}
939
2373ce1c 940/* rcu_read_lock needs to be hold by caller from readside */
adaf9816 941static struct tnode *fib_find_node(struct trie *t, u32 key)
19baf839 942{
adaf9816 943 struct tnode *n = rcu_dereference_rtnl(t->trie);
939afb06
AD
944
945 while (n) {
946 unsigned long index = get_index(key, n);
947
948 /* This bit of code is a bit tricky but it combines multiple
949 * checks into a single check. The prefix consists of the
950 * prefix plus zeros for the bits in the cindex. The index
951 * is the difference between the key and this value. From
952 * this we can actually derive several pieces of data.
b3832117 953 * if (index & (~0ul << bits))
939afb06 954 * we have a mismatch in skip bits and failed
b3832117
AD
955 * else
956 * we know the value is cindex
939afb06 957 */
b3832117 958 if (index & (~0ul << n->bits))
939afb06
AD
959 return NULL;
960
961 /* we have found a leaf. Prefixes have already been compared */
962 if (IS_LEAF(n))
19baf839 963 break;
19baf839 964
21d1f11d 965 n = tnode_get_child_rcu(n, index);
939afb06 966 }
91b9a277 967
939afb06 968 return n;
19baf839
RO
969}
970
7b85576d 971static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 972{
06801916 973 struct tnode *tp;
19baf839 974
ff181ed8
AD
975 while ((tp = node_parent(tn)) != NULL) {
976 resize(t, tn);
06801916 977 tn = tp;
19baf839 978 }
06801916 979
19baf839 980 /* Handle last (top) tnode */
7b85576d 981 if (IS_TNODE(tn))
ff181ed8 982 resize(t, tn);
19baf839
RO
983}
984
2373ce1c
RO
985/* only used from updater-side */
986
fea86ad8 987static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839 988{
c877efb2 989 struct list_head *fa_head = NULL;
836a0123 990 struct tnode *l, *n, *tp = NULL;
19baf839 991 struct leaf_info *li;
19baf839 992
836a0123
AD
993 li = leaf_info_new(plen);
994 if (!li)
995 return NULL;
996 fa_head = &li->falh;
997
0a5c0475 998 n = rtnl_dereference(t->trie);
19baf839 999
c877efb2
SH
1000 /* If we point to NULL, stop. Either the tree is empty and we should
1001 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1002 * and we should just put our new leaf in that.
19baf839 1003 *
836a0123
AD
1004 * If we hit a node with a key that does't match then we should stop
1005 * and create a new tnode to replace that node and insert ourselves
1006 * and the other node into the new tnode.
19baf839 1007 */
836a0123
AD
1008 while (n) {
1009 unsigned long index = get_index(key, n);
19baf839 1010
836a0123
AD
1011 /* This bit of code is a bit tricky but it combines multiple
1012 * checks into a single check. The prefix consists of the
1013 * prefix plus zeros for the "bits" in the prefix. The index
1014 * is the difference between the key and this value. From
1015 * this we can actually derive several pieces of data.
1016 * if !(index >> bits)
1017 * we know the value is child index
1018 * else
1019 * we have a mismatch in skip bits and failed
1020 */
1021 if (index >> n->bits)
19baf839 1022 break;
19baf839 1023
836a0123
AD
1024 /* we have found a leaf. Prefixes have already been compared */
1025 if (IS_LEAF(n)) {
1026 /* Case 1: n is a leaf, and prefixes match*/
5405afd1 1027 insert_leaf_info(n, li);
836a0123
AD
1028 return fa_head;
1029 }
19baf839 1030
836a0123 1031 tp = n;
21d1f11d 1032 n = tnode_get_child_rcu(n, index);
19baf839 1033 }
19baf839 1034
836a0123
AD
1035 l = leaf_new(key);
1036 if (!l) {
1037 free_leaf_info(li);
fea86ad8 1038 return NULL;
f835e471 1039 }
19baf839 1040
5405afd1 1041 insert_leaf_info(l, li);
19baf839 1042
836a0123
AD
1043 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1044 *
1045 * Add a new tnode here
1046 * first tnode need some special handling
1047 * leaves us in position for handling as case 3
1048 */
1049 if (n) {
1050 struct tnode *tn;
19baf839 1051
e9b44019 1052 tn = tnode_new(key, __fls(key ^ n->key), 1);
c877efb2 1053 if (!tn) {
f835e471 1054 free_leaf_info(li);
37fd30f2 1055 node_free(l);
fea86ad8 1056 return NULL;
91b9a277
OJ
1057 }
1058
836a0123
AD
1059 /* initialize routes out of node */
1060 NODE_INIT_PARENT(tn, tp);
1061 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1062
836a0123
AD
1063 /* start adding routes into the node */
1064 put_child_root(tp, t, key, tn);
1065 node_set_parent(n, tn);
e962f302 1066
836a0123 1067 /* parent now has a NULL spot where the leaf can go */
e962f302 1068 tp = tn;
19baf839 1069 }
91b9a277 1070
836a0123
AD
1071 /* Case 3: n is NULL, and will just insert a new leaf */
1072 if (tp) {
1073 NODE_INIT_PARENT(l, tp);
1074 put_child(tp, get_index(key, tp), l);
1075 trie_rebalance(t, tp);
1076 } else {
1077 rcu_assign_pointer(t->trie, l);
1078 }
2373ce1c 1079
19baf839
RO
1080 return fa_head;
1081}
1082
d562f1f8
RO
1083/*
1084 * Caller must hold RTNL.
1085 */
16c6cf8b 1086int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1087{
1088 struct trie *t = (struct trie *) tb->tb_data;
1089 struct fib_alias *fa, *new_fa;
c877efb2 1090 struct list_head *fa_head = NULL;
19baf839 1091 struct fib_info *fi;
4e902c57
TG
1092 int plen = cfg->fc_dst_len;
1093 u8 tos = cfg->fc_tos;
19baf839
RO
1094 u32 key, mask;
1095 int err;
adaf9816 1096 struct tnode *l;
19baf839
RO
1097
1098 if (plen > 32)
1099 return -EINVAL;
1100
4e902c57 1101 key = ntohl(cfg->fc_dst);
19baf839 1102
2dfe55b4 1103 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1104
91b9a277 1105 mask = ntohl(inet_make_mask(plen));
19baf839 1106
c877efb2 1107 if (key & ~mask)
19baf839
RO
1108 return -EINVAL;
1109
1110 key = key & mask;
1111
4e902c57
TG
1112 fi = fib_create_info(cfg);
1113 if (IS_ERR(fi)) {
1114 err = PTR_ERR(fi);
19baf839 1115 goto err;
4e902c57 1116 }
19baf839
RO
1117
1118 l = fib_find_node(t, key);
c877efb2 1119 fa = NULL;
19baf839 1120
c877efb2 1121 if (l) {
19baf839
RO
1122 fa_head = get_fa_head(l, plen);
1123 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1124 }
1125
1126 /* Now fa, if non-NULL, points to the first fib alias
1127 * with the same keys [prefix,tos,priority], if such key already
1128 * exists or to the node before which we will insert new one.
1129 *
1130 * If fa is NULL, we will need to allocate a new one and
1131 * insert to the head of f.
1132 *
1133 * If f is NULL, no fib node matched the destination key
1134 * and we need to allocate a new one of those as well.
1135 */
1136
936f6f8e
JA
1137 if (fa && fa->fa_tos == tos &&
1138 fa->fa_info->fib_priority == fi->fib_priority) {
1139 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1140
1141 err = -EEXIST;
4e902c57 1142 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1143 goto out;
1144
936f6f8e
JA
1145 /* We have 2 goals:
1146 * 1. Find exact match for type, scope, fib_info to avoid
1147 * duplicate routes
1148 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1149 */
1150 fa_match = NULL;
1151 fa_first = fa;
1152 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1153 list_for_each_entry_continue(fa, fa_head, fa_list) {
1154 if (fa->fa_tos != tos)
1155 break;
1156 if (fa->fa_info->fib_priority != fi->fib_priority)
1157 break;
1158 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1159 fa->fa_info == fi) {
1160 fa_match = fa;
1161 break;
1162 }
1163 }
1164
4e902c57 1165 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1166 struct fib_info *fi_drop;
1167 u8 state;
1168
936f6f8e
JA
1169 fa = fa_first;
1170 if (fa_match) {
1171 if (fa == fa_match)
1172 err = 0;
6725033f 1173 goto out;
936f6f8e 1174 }
2373ce1c 1175 err = -ENOBUFS;
e94b1766 1176 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1177 if (new_fa == NULL)
1178 goto out;
19baf839
RO
1179
1180 fi_drop = fa->fa_info;
2373ce1c
RO
1181 new_fa->fa_tos = fa->fa_tos;
1182 new_fa->fa_info = fi;
4e902c57 1183 new_fa->fa_type = cfg->fc_type;
19baf839 1184 state = fa->fa_state;
936f6f8e 1185 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1186
2373ce1c
RO
1187 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1188 alias_free_mem_rcu(fa);
19baf839
RO
1189
1190 fib_release_info(fi_drop);
1191 if (state & FA_S_ACCESSED)
4ccfe6d4 1192 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b8f55831
MK
1193 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1194 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1195
91b9a277 1196 goto succeeded;
19baf839
RO
1197 }
1198 /* Error if we find a perfect match which
1199 * uses the same scope, type, and nexthop
1200 * information.
1201 */
936f6f8e
JA
1202 if (fa_match)
1203 goto out;
a07f5f50 1204
4e902c57 1205 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1206 fa = fa_first;
19baf839
RO
1207 }
1208 err = -ENOENT;
4e902c57 1209 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1210 goto out;
1211
1212 err = -ENOBUFS;
e94b1766 1213 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1214 if (new_fa == NULL)
1215 goto out;
1216
1217 new_fa->fa_info = fi;
1218 new_fa->fa_tos = tos;
4e902c57 1219 new_fa->fa_type = cfg->fc_type;
19baf839 1220 new_fa->fa_state = 0;
19baf839
RO
1221 /*
1222 * Insert new entry to the list.
1223 */
1224
c877efb2 1225 if (!fa_head) {
fea86ad8
SH
1226 fa_head = fib_insert_node(t, key, plen);
1227 if (unlikely(!fa_head)) {
1228 err = -ENOMEM;
f835e471 1229 goto out_free_new_fa;
fea86ad8 1230 }
f835e471 1231 }
19baf839 1232
21d8c49e
DM
1233 if (!plen)
1234 tb->tb_num_default++;
1235
2373ce1c
RO
1236 list_add_tail_rcu(&new_fa->fa_list,
1237 (fa ? &fa->fa_list : fa_head));
19baf839 1238
4ccfe6d4 1239 rt_cache_flush(cfg->fc_nlinfo.nl_net);
4e902c57 1240 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1241 &cfg->fc_nlinfo, 0);
19baf839
RO
1242succeeded:
1243 return 0;
f835e471
RO
1244
1245out_free_new_fa:
1246 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1247out:
1248 fib_release_info(fi);
91b9a277 1249err:
19baf839
RO
1250 return err;
1251}
1252
9f9e636d
AD
1253static inline t_key prefix_mismatch(t_key key, struct tnode *n)
1254{
1255 t_key prefix = n->key;
1256
1257 return (key ^ prefix) & (prefix | -prefix);
1258}
1259
345e9b54 1260/* should be called with rcu_read_lock */
22bd5b9b 1261int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1262 struct fib_result *res, int fib_flags)
19baf839 1263{
9f9e636d 1264 struct trie *t = (struct trie *)tb->tb_data;
8274a97a
AD
1265#ifdef CONFIG_IP_FIB_TRIE_STATS
1266 struct trie_use_stats __percpu *stats = t->stats;
1267#endif
9f9e636d
AD
1268 const t_key key = ntohl(flp->daddr);
1269 struct tnode *n, *pn;
345e9b54 1270 struct leaf_info *li;
9f9e636d 1271 t_key cindex;
91b9a277 1272
2373ce1c 1273 n = rcu_dereference(t->trie);
c877efb2 1274 if (!n)
345e9b54 1275 return -EAGAIN;
19baf839
RO
1276
1277#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1278 this_cpu_inc(stats->gets);
19baf839
RO
1279#endif
1280
adaf9816 1281 pn = n;
9f9e636d
AD
1282 cindex = 0;
1283
1284 /* Step 1: Travel to the longest prefix match in the trie */
1285 for (;;) {
1286 unsigned long index = get_index(key, n);
1287
1288 /* This bit of code is a bit tricky but it combines multiple
1289 * checks into a single check. The prefix consists of the
1290 * prefix plus zeros for the "bits" in the prefix. The index
1291 * is the difference between the key and this value. From
1292 * this we can actually derive several pieces of data.
b3832117 1293 * if (index & (~0ul << bits))
9f9e636d 1294 * we have a mismatch in skip bits and failed
b3832117
AD
1295 * else
1296 * we know the value is cindex
9f9e636d 1297 */
b3832117 1298 if (index & (~0ul << n->bits))
9f9e636d 1299 break;
19baf839 1300
9f9e636d
AD
1301 /* we have found a leaf. Prefixes have already been compared */
1302 if (IS_LEAF(n))
a07f5f50 1303 goto found;
19baf839 1304
9f9e636d
AD
1305 /* only record pn and cindex if we are going to be chopping
1306 * bits later. Otherwise we are just wasting cycles.
91b9a277 1307 */
5405afd1 1308 if (n->slen > n->pos) {
9f9e636d
AD
1309 pn = n;
1310 cindex = index;
91b9a277 1311 }
19baf839 1312
21d1f11d 1313 n = tnode_get_child_rcu(n, index);
9f9e636d
AD
1314 if (unlikely(!n))
1315 goto backtrace;
1316 }
19baf839 1317
9f9e636d
AD
1318 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1319 for (;;) {
1320 /* record the pointer where our next node pointer is stored */
1321 struct tnode __rcu **cptr = n->child;
19baf839 1322
9f9e636d
AD
1323 /* This test verifies that none of the bits that differ
1324 * between the key and the prefix exist in the region of
1325 * the lsb and higher in the prefix.
91b9a277 1326 */
5405afd1 1327 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1328 goto backtrace;
91b9a277 1329
9f9e636d
AD
1330 /* exit out and process leaf */
1331 if (unlikely(IS_LEAF(n)))
1332 break;
91b9a277 1333
9f9e636d
AD
1334 /* Don't bother recording parent info. Since we are in
1335 * prefix match mode we will have to come back to wherever
1336 * we started this traversal anyway
91b9a277 1337 */
91b9a277 1338
9f9e636d 1339 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1340backtrace:
19baf839 1341#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1342 if (!n)
1343 this_cpu_inc(stats->null_node_hit);
19baf839 1344#endif
9f9e636d
AD
1345 /* If we are at cindex 0 there are no more bits for
1346 * us to strip at this level so we must ascend back
1347 * up one level to see if there are any more bits to
1348 * be stripped there.
1349 */
1350 while (!cindex) {
1351 t_key pkey = pn->key;
1352
1353 pn = node_parent_rcu(pn);
1354 if (unlikely(!pn))
345e9b54 1355 return -EAGAIN;
9f9e636d
AD
1356#ifdef CONFIG_IP_FIB_TRIE_STATS
1357 this_cpu_inc(stats->backtrack);
1358#endif
1359 /* Get Child's index */
1360 cindex = get_index(pkey, pn);
1361 }
1362
1363 /* strip the least significant bit from the cindex */
1364 cindex &= cindex - 1;
1365
1366 /* grab pointer for next child node */
1367 cptr = &pn->child[cindex];
c877efb2 1368 }
19baf839 1369 }
9f9e636d 1370
19baf839 1371found:
9f9e636d 1372 /* Step 3: Process the leaf, if that fails fall back to backtracing */
345e9b54
AD
1373 hlist_for_each_entry_rcu(li, &n->list, hlist) {
1374 struct fib_alias *fa;
1375
1376 if ((key ^ n->key) & li->mask_plen)
1377 continue;
1378
1379 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1380 struct fib_info *fi = fa->fa_info;
1381 int nhsel, err;
1382
1383 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1384 continue;
1385 if (fi->fib_dead)
1386 continue;
1387 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1388 continue;
1389 fib_alias_accessed(fa);
1390 err = fib_props[fa->fa_type].error;
1391 if (unlikely(err < 0)) {
1392#ifdef CONFIG_IP_FIB_TRIE_STATS
1393 this_cpu_inc(stats->semantic_match_passed);
1394#endif
1395 return err;
1396 }
1397 if (fi->fib_flags & RTNH_F_DEAD)
1398 continue;
1399 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1400 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1401
1402 if (nh->nh_flags & RTNH_F_DEAD)
1403 continue;
1404 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1405 continue;
1406
1407 if (!(fib_flags & FIB_LOOKUP_NOREF))
1408 atomic_inc(&fi->fib_clntref);
1409
1410 res->prefixlen = li->plen;
1411 res->nh_sel = nhsel;
1412 res->type = fa->fa_type;
1413 res->scope = fi->fib_scope;
1414 res->fi = fi;
1415 res->table = tb;
1416 res->fa_head = &li->falh;
1417#ifdef CONFIG_IP_FIB_TRIE_STATS
1418 this_cpu_inc(stats->semantic_match_passed);
1419#endif
1420 return err;
1421 }
1422 }
1423
1424#ifdef CONFIG_IP_FIB_TRIE_STATS
1425 this_cpu_inc(stats->semantic_match_miss);
1426#endif
1427 }
1428 goto backtrace;
19baf839 1429}
6fc01438 1430EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1431
9195bef7
SH
1432/*
1433 * Remove the leaf and return parent.
1434 */
adaf9816 1435static void trie_leaf_remove(struct trie *t, struct tnode *l)
19baf839 1436{
64c9b6fb 1437 struct tnode *tp = node_parent(l);
c877efb2 1438
9195bef7 1439 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1440
c877efb2 1441 if (tp) {
836a0123 1442 put_child(tp, get_index(l->key, tp), NULL);
7b85576d 1443 trie_rebalance(t, tp);
836a0123 1444 } else {
a9b3cd7f 1445 RCU_INIT_POINTER(t->trie, NULL);
836a0123 1446 }
19baf839 1447
37fd30f2 1448 node_free(l);
19baf839
RO
1449}
1450
d562f1f8
RO
1451/*
1452 * Caller must hold RTNL.
1453 */
16c6cf8b 1454int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1455{
1456 struct trie *t = (struct trie *) tb->tb_data;
1457 u32 key, mask;
4e902c57
TG
1458 int plen = cfg->fc_dst_len;
1459 u8 tos = cfg->fc_tos;
19baf839
RO
1460 struct fib_alias *fa, *fa_to_delete;
1461 struct list_head *fa_head;
adaf9816 1462 struct tnode *l;
91b9a277
OJ
1463 struct leaf_info *li;
1464
c877efb2 1465 if (plen > 32)
19baf839
RO
1466 return -EINVAL;
1467
4e902c57 1468 key = ntohl(cfg->fc_dst);
91b9a277 1469 mask = ntohl(inet_make_mask(plen));
19baf839 1470
c877efb2 1471 if (key & ~mask)
19baf839
RO
1472 return -EINVAL;
1473
1474 key = key & mask;
1475 l = fib_find_node(t, key);
1476
c877efb2 1477 if (!l)
19baf839
RO
1478 return -ESRCH;
1479
ad5b3102
IM
1480 li = find_leaf_info(l, plen);
1481
1482 if (!li)
1483 return -ESRCH;
1484
1485 fa_head = &li->falh;
19baf839
RO
1486 fa = fib_find_alias(fa_head, tos, 0);
1487
1488 if (!fa)
1489 return -ESRCH;
1490
0c7770c7 1491 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1492
1493 fa_to_delete = NULL;
936f6f8e
JA
1494 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1495 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1496 struct fib_info *fi = fa->fa_info;
1497
1498 if (fa->fa_tos != tos)
1499 break;
1500
4e902c57
TG
1501 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1502 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1503 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1504 (!cfg->fc_prefsrc ||
1505 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1506 (!cfg->fc_protocol ||
1507 fi->fib_protocol == cfg->fc_protocol) &&
1508 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1509 fa_to_delete = fa;
1510 break;
1511 }
1512 }
1513
91b9a277
OJ
1514 if (!fa_to_delete)
1515 return -ESRCH;
19baf839 1516
91b9a277 1517 fa = fa_to_delete;
4e902c57 1518 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1519 &cfg->fc_nlinfo, 0);
91b9a277 1520
2373ce1c 1521 list_del_rcu(&fa->fa_list);
19baf839 1522
21d8c49e
DM
1523 if (!plen)
1524 tb->tb_num_default--;
1525
91b9a277 1526 if (list_empty(fa_head)) {
5405afd1 1527 remove_leaf_info(l, li);
91b9a277 1528 free_leaf_info(li);
2373ce1c 1529 }
19baf839 1530
91b9a277 1531 if (hlist_empty(&l->list))
9195bef7 1532 trie_leaf_remove(t, l);
19baf839 1533
91b9a277 1534 if (fa->fa_state & FA_S_ACCESSED)
4ccfe6d4 1535 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1536
2373ce1c
RO
1537 fib_release_info(fa->fa_info);
1538 alias_free_mem_rcu(fa);
91b9a277 1539 return 0;
19baf839
RO
1540}
1541
ef3660ce 1542static int trie_flush_list(struct list_head *head)
19baf839
RO
1543{
1544 struct fib_alias *fa, *fa_node;
1545 int found = 0;
1546
1547 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1548 struct fib_info *fi = fa->fa_info;
19baf839 1549
2373ce1c
RO
1550 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1551 list_del_rcu(&fa->fa_list);
1552 fib_release_info(fa->fa_info);
1553 alias_free_mem_rcu(fa);
19baf839
RO
1554 found++;
1555 }
1556 }
1557 return found;
1558}
1559
adaf9816 1560static int trie_flush_leaf(struct tnode *l)
19baf839
RO
1561{
1562 int found = 0;
1563 struct hlist_head *lih = &l->list;
b67bfe0d 1564 struct hlist_node *tmp;
19baf839
RO
1565 struct leaf_info *li = NULL;
1566
b67bfe0d 1567 hlist_for_each_entry_safe(li, tmp, lih, hlist) {
ef3660ce 1568 found += trie_flush_list(&li->falh);
19baf839
RO
1569
1570 if (list_empty(&li->falh)) {
2373ce1c 1571 hlist_del_rcu(&li->hlist);
19baf839
RO
1572 free_leaf_info(li);
1573 }
1574 }
1575 return found;
1576}
1577
82cfbb00
SH
1578/*
1579 * Scan for the next right leaf starting at node p->child[idx]
1580 * Since we have back pointer, no recursion necessary.
1581 */
adaf9816 1582static struct tnode *leaf_walk_rcu(struct tnode *p, struct tnode *c)
19baf839 1583{
82cfbb00 1584 do {
98293e8d 1585 unsigned long idx = c ? idx = get_index(c->key, p) + 1 : 0;
2373ce1c 1586
98293e8d 1587 while (idx < tnode_child_length(p)) {
82cfbb00 1588 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1589 if (!c)
91b9a277
OJ
1590 continue;
1591
aab515d7 1592 if (IS_LEAF(c))
adaf9816 1593 return c;
82cfbb00
SH
1594
1595 /* Rescan start scanning in new node */
adaf9816 1596 p = c;
82cfbb00 1597 idx = 0;
19baf839 1598 }
82cfbb00
SH
1599
1600 /* Node empty, walk back up to parent */
adaf9816 1601 c = p;
a034ee3c 1602 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1603
1604 return NULL; /* Root of trie */
1605}
1606
adaf9816 1607static struct tnode *trie_firstleaf(struct trie *t)
82cfbb00 1608{
adaf9816 1609 struct tnode *n = rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1610
1611 if (!n)
1612 return NULL;
1613
1614 if (IS_LEAF(n)) /* trie is just a leaf */
adaf9816 1615 return n;
82cfbb00
SH
1616
1617 return leaf_walk_rcu(n, NULL);
1618}
1619
adaf9816 1620static struct tnode *trie_nextleaf(struct tnode *l)
82cfbb00 1621{
adaf9816 1622 struct tnode *p = node_parent_rcu(l);
82cfbb00
SH
1623
1624 if (!p)
1625 return NULL; /* trie with just one leaf */
1626
adaf9816 1627 return leaf_walk_rcu(p, l);
19baf839
RO
1628}
1629
adaf9816 1630static struct tnode *trie_leafindex(struct trie *t, int index)
71d67e66 1631{
adaf9816 1632 struct tnode *l = trie_firstleaf(t);
71d67e66 1633
ec28cf73 1634 while (l && index-- > 0)
71d67e66 1635 l = trie_nextleaf(l);
ec28cf73 1636
71d67e66
SH
1637 return l;
1638}
1639
1640
d562f1f8
RO
1641/*
1642 * Caller must hold RTNL.
1643 */
16c6cf8b 1644int fib_table_flush(struct fib_table *tb)
19baf839
RO
1645{
1646 struct trie *t = (struct trie *) tb->tb_data;
adaf9816 1647 struct tnode *l, *ll = NULL;
82cfbb00 1648 int found = 0;
19baf839 1649
82cfbb00 1650 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1651 found += trie_flush_leaf(l);
19baf839
RO
1652
1653 if (ll && hlist_empty(&ll->list))
9195bef7 1654 trie_leaf_remove(t, ll);
19baf839
RO
1655 ll = l;
1656 }
1657
1658 if (ll && hlist_empty(&ll->list))
9195bef7 1659 trie_leaf_remove(t, ll);
19baf839 1660
0c7770c7 1661 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1662 return found;
1663}
1664
4aa2c466
PE
1665void fib_free_table(struct fib_table *tb)
1666{
8274a97a
AD
1667#ifdef CONFIG_IP_FIB_TRIE_STATS
1668 struct trie *t = (struct trie *)tb->tb_data;
1669
1670 free_percpu(t->stats);
1671#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1672 kfree(tb);
1673}
1674
a07f5f50
SH
1675static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1676 struct fib_table *tb,
19baf839
RO
1677 struct sk_buff *skb, struct netlink_callback *cb)
1678{
1679 int i, s_i;
1680 struct fib_alias *fa;
32ab5f80 1681 __be32 xkey = htonl(key);
19baf839 1682
71d67e66 1683 s_i = cb->args[5];
19baf839
RO
1684 i = 0;
1685
2373ce1c
RO
1686 /* rcu_read_lock is hold by caller */
1687
1688 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1689 if (i < s_i) {
1690 i++;
1691 continue;
1692 }
19baf839 1693
15e47304 1694 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1695 cb->nlh->nlmsg_seq,
1696 RTM_NEWROUTE,
1697 tb->tb_id,
1698 fa->fa_type,
be403ea1 1699 xkey,
19baf839
RO
1700 plen,
1701 fa->fa_tos,
64347f78 1702 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1703 cb->args[5] = i;
19baf839 1704 return -1;
91b9a277 1705 }
19baf839
RO
1706 i++;
1707 }
71d67e66 1708 cb->args[5] = i;
19baf839
RO
1709 return skb->len;
1710}
1711
adaf9816 1712static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
a88ee229 1713 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1714{
a88ee229 1715 struct leaf_info *li;
a88ee229 1716 int i, s_i;
19baf839 1717
71d67e66 1718 s_i = cb->args[4];
a88ee229 1719 i = 0;
19baf839 1720
a88ee229 1721 /* rcu_read_lock is hold by caller */
b67bfe0d 1722 hlist_for_each_entry_rcu(li, &l->list, hlist) {
a88ee229
SH
1723 if (i < s_i) {
1724 i++;
19baf839 1725 continue;
a88ee229 1726 }
91b9a277 1727
a88ee229 1728 if (i > s_i)
71d67e66 1729 cb->args[5] = 0;
19baf839 1730
a88ee229 1731 if (list_empty(&li->falh))
19baf839
RO
1732 continue;
1733
a88ee229 1734 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1735 cb->args[4] = i;
19baf839
RO
1736 return -1;
1737 }
a88ee229 1738 i++;
19baf839 1739 }
a88ee229 1740
71d67e66 1741 cb->args[4] = i;
19baf839
RO
1742 return skb->len;
1743}
1744
16c6cf8b
SH
1745int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1746 struct netlink_callback *cb)
19baf839 1747{
adaf9816 1748 struct tnode *l;
19baf839 1749 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1750 t_key key = cb->args[2];
71d67e66 1751 int count = cb->args[3];
19baf839 1752
2373ce1c 1753 rcu_read_lock();
d5ce8a0e
SH
1754 /* Dump starting at last key.
1755 * Note: 0.0.0.0/0 (ie default) is first key.
1756 */
71d67e66 1757 if (count == 0)
d5ce8a0e
SH
1758 l = trie_firstleaf(t);
1759 else {
71d67e66
SH
1760 /* Normally, continue from last key, but if that is missing
1761 * fallback to using slow rescan
1762 */
d5ce8a0e 1763 l = fib_find_node(t, key);
71d67e66
SH
1764 if (!l)
1765 l = trie_leafindex(t, count);
d5ce8a0e 1766 }
a88ee229 1767
d5ce8a0e
SH
1768 while (l) {
1769 cb->args[2] = l->key;
a88ee229 1770 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1771 cb->args[3] = count;
a88ee229 1772 rcu_read_unlock();
a88ee229 1773 return -1;
19baf839 1774 }
d5ce8a0e 1775
71d67e66 1776 ++count;
d5ce8a0e 1777 l = trie_nextleaf(l);
71d67e66
SH
1778 memset(&cb->args[4], 0,
1779 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1780 }
71d67e66 1781 cb->args[3] = count;
2373ce1c 1782 rcu_read_unlock();
a88ee229 1783
19baf839 1784 return skb->len;
19baf839
RO
1785}
1786
5348ba85 1787void __init fib_trie_init(void)
7f9b8052 1788{
a07f5f50
SH
1789 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1790 sizeof(struct fib_alias),
bc3c8c1e
SH
1791 0, SLAB_PANIC, NULL);
1792
1793 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
adaf9816 1794 max(sizeof(struct tnode),
bc3c8c1e
SH
1795 sizeof(struct leaf_info)),
1796 0, SLAB_PANIC, NULL);
7f9b8052 1797}
19baf839 1798
7f9b8052 1799
5348ba85 1800struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1801{
1802 struct fib_table *tb;
1803 struct trie *t;
1804
19baf839
RO
1805 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1806 GFP_KERNEL);
1807 if (tb == NULL)
1808 return NULL;
1809
1810 tb->tb_id = id;
971b893e 1811 tb->tb_default = -1;
21d8c49e 1812 tb->tb_num_default = 0;
19baf839
RO
1813
1814 t = (struct trie *) tb->tb_data;
8274a97a
AD
1815 RCU_INIT_POINTER(t->trie, NULL);
1816#ifdef CONFIG_IP_FIB_TRIE_STATS
1817 t->stats = alloc_percpu(struct trie_use_stats);
1818 if (!t->stats) {
1819 kfree(tb);
1820 tb = NULL;
1821 }
1822#endif
19baf839 1823
19baf839
RO
1824 return tb;
1825}
1826
cb7b593c
SH
1827#ifdef CONFIG_PROC_FS
1828/* Depth first Trie walk iterator */
1829struct fib_trie_iter {
1c340b2f 1830 struct seq_net_private p;
3d3b2d25 1831 struct fib_table *tb;
cb7b593c 1832 struct tnode *tnode;
a034ee3c
ED
1833 unsigned int index;
1834 unsigned int depth;
cb7b593c 1835};
19baf839 1836
adaf9816 1837static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1838{
98293e8d 1839 unsigned long cindex = iter->index;
cb7b593c 1840 struct tnode *tn = iter->tnode;
cb7b593c 1841 struct tnode *p;
19baf839 1842
6640e697
EB
1843 /* A single entry routing table */
1844 if (!tn)
1845 return NULL;
1846
cb7b593c
SH
1847 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1848 iter->tnode, iter->index, iter->depth);
1849rescan:
98293e8d 1850 while (cindex < tnode_child_length(tn)) {
adaf9816 1851 struct tnode *n = tnode_get_child_rcu(tn, cindex);
19baf839 1852
cb7b593c
SH
1853 if (n) {
1854 if (IS_LEAF(n)) {
1855 iter->tnode = tn;
1856 iter->index = cindex + 1;
1857 } else {
1858 /* push down one level */
adaf9816 1859 iter->tnode = n;
cb7b593c
SH
1860 iter->index = 0;
1861 ++iter->depth;
1862 }
1863 return n;
1864 }
19baf839 1865
cb7b593c
SH
1866 ++cindex;
1867 }
91b9a277 1868
cb7b593c 1869 /* Current node exhausted, pop back up */
adaf9816 1870 p = node_parent_rcu(tn);
cb7b593c 1871 if (p) {
e9b44019 1872 cindex = get_index(tn->key, p) + 1;
cb7b593c
SH
1873 tn = p;
1874 --iter->depth;
1875 goto rescan;
19baf839 1876 }
cb7b593c
SH
1877
1878 /* got root? */
1879 return NULL;
19baf839
RO
1880}
1881
adaf9816 1882static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 1883 struct trie *t)
19baf839 1884{
adaf9816 1885 struct tnode *n;
5ddf0eb2 1886
132adf54 1887 if (!t)
5ddf0eb2
RO
1888 return NULL;
1889
1890 n = rcu_dereference(t->trie);
3d3b2d25 1891 if (!n)
5ddf0eb2 1892 return NULL;
19baf839 1893
3d3b2d25 1894 if (IS_TNODE(n)) {
adaf9816 1895 iter->tnode = n;
3d3b2d25
SH
1896 iter->index = 0;
1897 iter->depth = 1;
1898 } else {
1899 iter->tnode = NULL;
1900 iter->index = 0;
1901 iter->depth = 0;
91b9a277 1902 }
3d3b2d25
SH
1903
1904 return n;
cb7b593c 1905}
91b9a277 1906
cb7b593c
SH
1907static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1908{
adaf9816 1909 struct tnode *n;
cb7b593c 1910 struct fib_trie_iter iter;
91b9a277 1911
cb7b593c 1912 memset(s, 0, sizeof(*s));
91b9a277 1913
cb7b593c 1914 rcu_read_lock();
3d3b2d25 1915 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 1916 if (IS_LEAF(n)) {
93672292 1917 struct leaf_info *li;
93672292 1918
cb7b593c
SH
1919 s->leaves++;
1920 s->totdepth += iter.depth;
1921 if (iter.depth > s->maxdepth)
1922 s->maxdepth = iter.depth;
93672292 1923
adaf9816 1924 hlist_for_each_entry_rcu(li, &n->list, hlist)
93672292 1925 ++s->prefixes;
cb7b593c 1926 } else {
98293e8d 1927 unsigned long i;
cb7b593c
SH
1928
1929 s->tnodes++;
adaf9816
AD
1930 if (n->bits < MAX_STAT_DEPTH)
1931 s->nodesizes[n->bits]++;
06ef921d 1932
21d1f11d 1933 for (i = tnode_child_length(n); i--;) {
adaf9816 1934 if (!rcu_access_pointer(n->child[i]))
cb7b593c 1935 s->nullpointers++;
98293e8d 1936 }
19baf839 1937 }
19baf839 1938 }
2373ce1c 1939 rcu_read_unlock();
19baf839
RO
1940}
1941
cb7b593c
SH
1942/*
1943 * This outputs /proc/net/fib_triestats
1944 */
1945static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 1946{
a034ee3c 1947 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 1948
cb7b593c
SH
1949 if (stat->leaves)
1950 avdepth = stat->totdepth*100 / stat->leaves;
1951 else
1952 avdepth = 0;
91b9a277 1953
a07f5f50
SH
1954 seq_printf(seq, "\tAver depth: %u.%02d\n",
1955 avdepth / 100, avdepth % 100);
cb7b593c 1956 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 1957
cb7b593c 1958 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
adaf9816 1959 bytes = sizeof(struct tnode) * stat->leaves;
93672292
SH
1960
1961 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
1962 bytes += sizeof(struct leaf_info) * stat->prefixes;
1963
187b5188 1964 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 1965 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 1966
06ef921d
RO
1967 max = MAX_STAT_DEPTH;
1968 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 1969 max--;
19baf839 1970
cb7b593c 1971 pointers = 0;
f585a991 1972 for (i = 1; i < max; i++)
cb7b593c 1973 if (stat->nodesizes[i] != 0) {
187b5188 1974 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
1975 pointers += (1<<i) * stat->nodesizes[i];
1976 }
1977 seq_putc(seq, '\n');
187b5188 1978 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 1979
adaf9816 1980 bytes += sizeof(struct tnode *) * pointers;
187b5188
SH
1981 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
1982 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 1983}
2373ce1c 1984
cb7b593c 1985#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 1986static void trie_show_usage(struct seq_file *seq,
8274a97a 1987 const struct trie_use_stats __percpu *stats)
66a2f7fd 1988{
8274a97a
AD
1989 struct trie_use_stats s = { 0 };
1990 int cpu;
1991
1992 /* loop through all of the CPUs and gather up the stats */
1993 for_each_possible_cpu(cpu) {
1994 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
1995
1996 s.gets += pcpu->gets;
1997 s.backtrack += pcpu->backtrack;
1998 s.semantic_match_passed += pcpu->semantic_match_passed;
1999 s.semantic_match_miss += pcpu->semantic_match_miss;
2000 s.null_node_hit += pcpu->null_node_hit;
2001 s.resize_node_skipped += pcpu->resize_node_skipped;
2002 }
2003
66a2f7fd 2004 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2005 seq_printf(seq, "gets = %u\n", s.gets);
2006 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2007 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2008 s.semantic_match_passed);
2009 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2010 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2011 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2012}
66a2f7fd
SH
2013#endif /* CONFIG_IP_FIB_TRIE_STATS */
2014
3d3b2d25 2015static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2016{
3d3b2d25
SH
2017 if (tb->tb_id == RT_TABLE_LOCAL)
2018 seq_puts(seq, "Local:\n");
2019 else if (tb->tb_id == RT_TABLE_MAIN)
2020 seq_puts(seq, "Main:\n");
2021 else
2022 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2023}
19baf839 2024
3d3b2d25 2025
cb7b593c
SH
2026static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2027{
1c340b2f 2028 struct net *net = (struct net *)seq->private;
3d3b2d25 2029 unsigned int h;
877a9bff 2030
d717a9a6 2031 seq_printf(seq,
a07f5f50
SH
2032 "Basic info: size of leaf:"
2033 " %Zd bytes, size of tnode: %Zd bytes.\n",
adaf9816 2034 sizeof(struct tnode), sizeof(struct tnode));
d717a9a6 2035
3d3b2d25
SH
2036 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2037 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2038 struct fib_table *tb;
2039
b67bfe0d 2040 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2041 struct trie *t = (struct trie *) tb->tb_data;
2042 struct trie_stat stat;
877a9bff 2043
3d3b2d25
SH
2044 if (!t)
2045 continue;
2046
2047 fib_table_print(seq, tb);
2048
2049 trie_collect_stats(t, &stat);
2050 trie_show_stats(seq, &stat);
2051#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2052 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2053#endif
2054 }
2055 }
19baf839 2056
cb7b593c 2057 return 0;
19baf839
RO
2058}
2059
cb7b593c 2060static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2061{
de05c557 2062 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2063}
2064
9a32144e 2065static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2066 .owner = THIS_MODULE,
2067 .open = fib_triestat_seq_open,
2068 .read = seq_read,
2069 .llseek = seq_lseek,
b6fcbdb4 2070 .release = single_release_net,
cb7b593c
SH
2071};
2072
adaf9816 2073static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2074{
1218854a
YH
2075 struct fib_trie_iter *iter = seq->private;
2076 struct net *net = seq_file_net(seq);
cb7b593c 2077 loff_t idx = 0;
3d3b2d25 2078 unsigned int h;
cb7b593c 2079
3d3b2d25
SH
2080 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2081 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2082 struct fib_table *tb;
cb7b593c 2083
b67bfe0d 2084 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
adaf9816 2085 struct tnode *n;
3d3b2d25
SH
2086
2087 for (n = fib_trie_get_first(iter,
2088 (struct trie *) tb->tb_data);
2089 n; n = fib_trie_get_next(iter))
2090 if (pos == idx++) {
2091 iter->tb = tb;
2092 return n;
2093 }
2094 }
cb7b593c 2095 }
3d3b2d25 2096
19baf839
RO
2097 return NULL;
2098}
2099
cb7b593c 2100static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2101 __acquires(RCU)
19baf839 2102{
cb7b593c 2103 rcu_read_lock();
1218854a 2104 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2105}
2106
cb7b593c 2107static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2108{
cb7b593c 2109 struct fib_trie_iter *iter = seq->private;
1218854a 2110 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2111 struct fib_table *tb = iter->tb;
2112 struct hlist_node *tb_node;
2113 unsigned int h;
adaf9816 2114 struct tnode *n;
cb7b593c 2115
19baf839 2116 ++*pos;
3d3b2d25
SH
2117 /* next node in same table */
2118 n = fib_trie_get_next(iter);
2119 if (n)
2120 return n;
19baf839 2121
3d3b2d25
SH
2122 /* walk rest of this hash chain */
2123 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2124 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2125 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2126 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2127 if (n)
2128 goto found;
2129 }
19baf839 2130
3d3b2d25
SH
2131 /* new hash chain */
2132 while (++h < FIB_TABLE_HASHSZ) {
2133 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2134 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2135 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2136 if (n)
2137 goto found;
2138 }
2139 }
cb7b593c 2140 return NULL;
3d3b2d25
SH
2141
2142found:
2143 iter->tb = tb;
2144 return n;
cb7b593c 2145}
19baf839 2146
cb7b593c 2147static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2148 __releases(RCU)
19baf839 2149{
cb7b593c
SH
2150 rcu_read_unlock();
2151}
91b9a277 2152
cb7b593c
SH
2153static void seq_indent(struct seq_file *seq, int n)
2154{
a034ee3c
ED
2155 while (n-- > 0)
2156 seq_puts(seq, " ");
cb7b593c 2157}
19baf839 2158
28d36e37 2159static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2160{
132adf54 2161 switch (s) {
cb7b593c
SH
2162 case RT_SCOPE_UNIVERSE: return "universe";
2163 case RT_SCOPE_SITE: return "site";
2164 case RT_SCOPE_LINK: return "link";
2165 case RT_SCOPE_HOST: return "host";
2166 case RT_SCOPE_NOWHERE: return "nowhere";
2167 default:
28d36e37 2168 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2169 return buf;
2170 }
2171}
19baf839 2172
36cbd3dc 2173static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2174 [RTN_UNSPEC] = "UNSPEC",
2175 [RTN_UNICAST] = "UNICAST",
2176 [RTN_LOCAL] = "LOCAL",
2177 [RTN_BROADCAST] = "BROADCAST",
2178 [RTN_ANYCAST] = "ANYCAST",
2179 [RTN_MULTICAST] = "MULTICAST",
2180 [RTN_BLACKHOLE] = "BLACKHOLE",
2181 [RTN_UNREACHABLE] = "UNREACHABLE",
2182 [RTN_PROHIBIT] = "PROHIBIT",
2183 [RTN_THROW] = "THROW",
2184 [RTN_NAT] = "NAT",
2185 [RTN_XRESOLVE] = "XRESOLVE",
2186};
19baf839 2187
a034ee3c 2188static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2189{
cb7b593c
SH
2190 if (t < __RTN_MAX && rtn_type_names[t])
2191 return rtn_type_names[t];
28d36e37 2192 snprintf(buf, len, "type %u", t);
cb7b593c 2193 return buf;
19baf839
RO
2194}
2195
cb7b593c
SH
2196/* Pretty print the trie */
2197static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2198{
cb7b593c 2199 const struct fib_trie_iter *iter = seq->private;
adaf9816 2200 struct tnode *n = v;
c877efb2 2201
3d3b2d25
SH
2202 if (!node_parent_rcu(n))
2203 fib_table_print(seq, iter->tb);
095b8501 2204
cb7b593c 2205 if (IS_TNODE(n)) {
adaf9816 2206 __be32 prf = htonl(n->key);
91b9a277 2207
e9b44019
AD
2208 seq_indent(seq, iter->depth-1);
2209 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2210 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2211 n->full_children, n->empty_children);
cb7b593c 2212 } else {
1328042e 2213 struct leaf_info *li;
adaf9816 2214 __be32 val = htonl(n->key);
cb7b593c
SH
2215
2216 seq_indent(seq, iter->depth);
673d57e7 2217 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2218
adaf9816 2219 hlist_for_each_entry_rcu(li, &n->list, hlist) {
1328042e
SH
2220 struct fib_alias *fa;
2221
2222 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2223 char buf1[32], buf2[32];
2224
2225 seq_indent(seq, iter->depth+1);
2226 seq_printf(seq, " /%d %s %s", li->plen,
2227 rtn_scope(buf1, sizeof(buf1),
37e826c5 2228 fa->fa_info->fib_scope),
1328042e
SH
2229 rtn_type(buf2, sizeof(buf2),
2230 fa->fa_type));
2231 if (fa->fa_tos)
b9c4d82a 2232 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2233 seq_putc(seq, '\n');
cb7b593c
SH
2234 }
2235 }
19baf839 2236 }
cb7b593c 2237
19baf839
RO
2238 return 0;
2239}
2240
f690808e 2241static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2242 .start = fib_trie_seq_start,
2243 .next = fib_trie_seq_next,
2244 .stop = fib_trie_seq_stop,
2245 .show = fib_trie_seq_show,
19baf839
RO
2246};
2247
cb7b593c 2248static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2249{
1c340b2f
DL
2250 return seq_open_net(inode, file, &fib_trie_seq_ops,
2251 sizeof(struct fib_trie_iter));
19baf839
RO
2252}
2253
9a32144e 2254static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2255 .owner = THIS_MODULE,
2256 .open = fib_trie_seq_open,
2257 .read = seq_read,
2258 .llseek = seq_lseek,
1c340b2f 2259 .release = seq_release_net,
19baf839
RO
2260};
2261
8315f5d8
SH
2262struct fib_route_iter {
2263 struct seq_net_private p;
2264 struct trie *main_trie;
2265 loff_t pos;
2266 t_key key;
2267};
2268
adaf9816 2269static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
8315f5d8 2270{
adaf9816 2271 struct tnode *l = NULL;
8315f5d8
SH
2272 struct trie *t = iter->main_trie;
2273
2274 /* use cache location of last found key */
2275 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2276 pos -= iter->pos;
2277 else {
2278 iter->pos = 0;
2279 l = trie_firstleaf(t);
2280 }
2281
2282 while (l && pos-- > 0) {
2283 iter->pos++;
2284 l = trie_nextleaf(l);
2285 }
2286
2287 if (l)
2288 iter->key = pos; /* remember it */
2289 else
2290 iter->pos = 0; /* forget it */
2291
2292 return l;
2293}
2294
2295static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2296 __acquires(RCU)
2297{
2298 struct fib_route_iter *iter = seq->private;
2299 struct fib_table *tb;
2300
2301 rcu_read_lock();
1218854a 2302 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2303 if (!tb)
2304 return NULL;
2305
2306 iter->main_trie = (struct trie *) tb->tb_data;
2307 if (*pos == 0)
2308 return SEQ_START_TOKEN;
2309 else
2310 return fib_route_get_idx(iter, *pos - 1);
2311}
2312
2313static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2314{
2315 struct fib_route_iter *iter = seq->private;
adaf9816 2316 struct tnode *l = v;
8315f5d8
SH
2317
2318 ++*pos;
2319 if (v == SEQ_START_TOKEN) {
2320 iter->pos = 0;
2321 l = trie_firstleaf(iter->main_trie);
2322 } else {
2323 iter->pos++;
2324 l = trie_nextleaf(l);
2325 }
2326
2327 if (l)
2328 iter->key = l->key;
2329 else
2330 iter->pos = 0;
2331 return l;
2332}
2333
2334static void fib_route_seq_stop(struct seq_file *seq, void *v)
2335 __releases(RCU)
2336{
2337 rcu_read_unlock();
2338}
2339
a034ee3c 2340static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2341{
a034ee3c 2342 unsigned int flags = 0;
19baf839 2343
a034ee3c
ED
2344 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2345 flags = RTF_REJECT;
cb7b593c
SH
2346 if (fi && fi->fib_nh->nh_gw)
2347 flags |= RTF_GATEWAY;
32ab5f80 2348 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2349 flags |= RTF_HOST;
2350 flags |= RTF_UP;
2351 return flags;
19baf839
RO
2352}
2353
cb7b593c
SH
2354/*
2355 * This outputs /proc/net/route.
2356 * The format of the file is not supposed to be changed
a034ee3c 2357 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2358 * legacy utilities
2359 */
2360static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2361{
adaf9816 2362 struct tnode *l = v;
1328042e 2363 struct leaf_info *li;
19baf839 2364
cb7b593c
SH
2365 if (v == SEQ_START_TOKEN) {
2366 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2367 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2368 "\tWindow\tIRTT");
2369 return 0;
2370 }
19baf839 2371
b67bfe0d 2372 hlist_for_each_entry_rcu(li, &l->list, hlist) {
cb7b593c 2373 struct fib_alias *fa;
32ab5f80 2374 __be32 mask, prefix;
91b9a277 2375
cb7b593c
SH
2376 mask = inet_make_mask(li->plen);
2377 prefix = htonl(l->key);
19baf839 2378
cb7b593c 2379 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2380 const struct fib_info *fi = fa->fa_info;
a034ee3c 2381 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2382
cb7b593c
SH
2383 if (fa->fa_type == RTN_BROADCAST
2384 || fa->fa_type == RTN_MULTICAST)
2385 continue;
19baf839 2386
652586df
TH
2387 seq_setwidth(seq, 127);
2388
cb7b593c 2389 if (fi)
5e659e4c
PE
2390 seq_printf(seq,
2391 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
652586df 2392 "%d\t%08X\t%d\t%u\t%u",
cb7b593c
SH
2393 fi->fib_dev ? fi->fib_dev->name : "*",
2394 prefix,
2395 fi->fib_nh->nh_gw, flags, 0, 0,
2396 fi->fib_priority,
2397 mask,
a07f5f50
SH
2398 (fi->fib_advmss ?
2399 fi->fib_advmss + 40 : 0),
cb7b593c 2400 fi->fib_window,
652586df 2401 fi->fib_rtt >> 3);
cb7b593c 2402 else
5e659e4c
PE
2403 seq_printf(seq,
2404 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
652586df 2405 "%d\t%08X\t%d\t%u\t%u",
cb7b593c 2406 prefix, 0, flags, 0, 0, 0,
652586df 2407 mask, 0, 0, 0);
19baf839 2408
652586df 2409 seq_pad(seq, '\n');
cb7b593c 2410 }
19baf839
RO
2411 }
2412
2413 return 0;
2414}
2415
f690808e 2416static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2417 .start = fib_route_seq_start,
2418 .next = fib_route_seq_next,
2419 .stop = fib_route_seq_stop,
cb7b593c 2420 .show = fib_route_seq_show,
19baf839
RO
2421};
2422
cb7b593c 2423static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2424{
1c340b2f 2425 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2426 sizeof(struct fib_route_iter));
19baf839
RO
2427}
2428
9a32144e 2429static const struct file_operations fib_route_fops = {
cb7b593c
SH
2430 .owner = THIS_MODULE,
2431 .open = fib_route_seq_open,
2432 .read = seq_read,
2433 .llseek = seq_lseek,
1c340b2f 2434 .release = seq_release_net,
19baf839
RO
2435};
2436
61a02653 2437int __net_init fib_proc_init(struct net *net)
19baf839 2438{
d4beaa66 2439 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2440 goto out1;
2441
d4beaa66
G
2442 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2443 &fib_triestat_fops))
cb7b593c
SH
2444 goto out2;
2445
d4beaa66 2446 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2447 goto out3;
2448
19baf839 2449 return 0;
cb7b593c
SH
2450
2451out3:
ece31ffd 2452 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2453out2:
ece31ffd 2454 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2455out1:
2456 return -ENOMEM;
19baf839
RO
2457}
2458
61a02653 2459void __net_exit fib_proc_exit(struct net *net)
19baf839 2460{
ece31ffd
G
2461 remove_proc_entry("fib_trie", net->proc_net);
2462 remove_proc_entry("fib_triestat", net->proc_net);
2463 remove_proc_entry("route", net->proc_net);
19baf839
RO
2464}
2465
2466#endif /* CONFIG_PROC_FS */