Merge branch 'for-rmk' of git://git.marvell.com/orion
[linux-2.6-block.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
457c4cbc 74#include <net/net_namespace.h>
19baf839
RO
75#include <net/ip.h>
76#include <net/protocol.h>
77#include <net/route.h>
78#include <net/tcp.h>
79#include <net/sock.h>
80#include <net/ip_fib.h>
81#include "fib_lookup.h"
82
06ef921d 83#define MAX_STAT_DEPTH 32
19baf839 84
19baf839 85#define KEYLENGTH (8*sizeof(t_key))
19baf839 86
19baf839
RO
87typedef unsigned int t_key;
88
89#define T_TNODE 0
90#define T_LEAF 1
91#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
92#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
91b9a277
OJ
94#define IS_TNODE(n) (!(n->parent & T_LEAF))
95#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
96
97struct node {
91b9a277 98 unsigned long parent;
8d965444 99 t_key key;
19baf839
RO
100};
101
102struct leaf {
91b9a277 103 unsigned long parent;
8d965444 104 t_key key;
19baf839 105 struct hlist_head list;
2373ce1c 106 struct rcu_head rcu;
19baf839
RO
107};
108
109struct leaf_info {
110 struct hlist_node hlist;
2373ce1c 111 struct rcu_head rcu;
19baf839
RO
112 int plen;
113 struct list_head falh;
114};
115
116struct tnode {
91b9a277 117 unsigned long parent;
8d965444 118 t_key key;
112d8cfc
ED
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
e0f7cb8c 126 struct tnode *tnode_free;
15be75cd 127 };
91b9a277 128 struct node *child[0];
19baf839
RO
129};
130
131#ifdef CONFIG_IP_FIB_TRIE_STATS
132struct trie_use_stats {
133 unsigned int gets;
134 unsigned int backtrack;
135 unsigned int semantic_match_passed;
136 unsigned int semantic_match_miss;
137 unsigned int null_node_hit;
2f36895a 138 unsigned int resize_node_skipped;
19baf839
RO
139};
140#endif
141
142struct trie_stat {
143 unsigned int totdepth;
144 unsigned int maxdepth;
145 unsigned int tnodes;
146 unsigned int leaves;
147 unsigned int nullpointers;
93672292 148 unsigned int prefixes;
06ef921d 149 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 150};
19baf839
RO
151
152struct trie {
91b9a277 153 struct node *trie;
19baf839
RO
154#ifdef CONFIG_IP_FIB_TRIE_STATS
155 struct trie_use_stats stats;
156#endif
19baf839
RO
157};
158
19baf839 159static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
160static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
161 int wasfull);
19baf839 162static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
163static struct tnode *inflate(struct trie *t, struct tnode *tn);
164static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
165/* tnodes to free after resize(); protected by RTNL */
166static struct tnode *tnode_free_head;
c3059477
JP
167static size_t tnode_free_size;
168
169/*
170 * synchronize_rcu after call_rcu for that many pages; it should be especially
171 * useful before resizing the root node with PREEMPT_NONE configs; the value was
172 * obtained experimentally, aiming to avoid visible slowdown.
173 */
174static const int sync_pages = 128;
19baf839 175
e18b890b 176static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 177static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 178
06801916
SH
179static inline struct tnode *node_parent(struct node *node)
180{
b59cfbf7
ED
181 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
182}
183
184static inline struct tnode *node_parent_rcu(struct node *node)
185{
186 struct tnode *ret = node_parent(node);
06801916 187
06801916
SH
188 return rcu_dereference(ret);
189}
190
6440cc9e
SH
191/* Same as rcu_assign_pointer
192 * but that macro() assumes that value is a pointer.
193 */
06801916
SH
194static inline void node_set_parent(struct node *node, struct tnode *ptr)
195{
6440cc9e
SH
196 smp_wmb();
197 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 198}
2373ce1c 199
b59cfbf7
ED
200static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
201{
202 BUG_ON(i >= 1U << tn->bits);
2373ce1c 203
b59cfbf7
ED
204 return tn->child[i];
205}
206
207static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 208{
b59cfbf7 209 struct node *ret = tnode_get_child(tn, i);
19baf839 210
b59cfbf7 211 return rcu_dereference(ret);
19baf839
RO
212}
213
bb435b8d 214static inline int tnode_child_length(const struct tnode *tn)
19baf839 215{
91b9a277 216 return 1 << tn->bits;
19baf839
RO
217}
218
ab66b4a7
SH
219static inline t_key mask_pfx(t_key k, unsigned short l)
220{
221 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
222}
223
19baf839
RO
224static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
225{
91b9a277 226 if (offset < KEYLENGTH)
19baf839 227 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 228 else
19baf839
RO
229 return 0;
230}
231
232static inline int tkey_equals(t_key a, t_key b)
233{
c877efb2 234 return a == b;
19baf839
RO
235}
236
237static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
238{
c877efb2
SH
239 if (bits == 0 || offset >= KEYLENGTH)
240 return 1;
91b9a277
OJ
241 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
242 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 243}
19baf839
RO
244
245static inline int tkey_mismatch(t_key a, int offset, t_key b)
246{
247 t_key diff = a ^ b;
248 int i = offset;
249
c877efb2
SH
250 if (!diff)
251 return 0;
252 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
253 i++;
254 return i;
255}
256
19baf839 257/*
e905a9ed
YH
258 To understand this stuff, an understanding of keys and all their bits is
259 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
260 all of the bits in that key are significant.
261
262 Consider a node 'n' and its parent 'tp'.
263
e905a9ed
YH
264 If n is a leaf, every bit in its key is significant. Its presence is
265 necessitated by path compression, since during a tree traversal (when
266 searching for a leaf - unless we are doing an insertion) we will completely
267 ignore all skipped bits we encounter. Thus we need to verify, at the end of
268 a potentially successful search, that we have indeed been walking the
19baf839
RO
269 correct key path.
270
e905a9ed
YH
271 Note that we can never "miss" the correct key in the tree if present by
272 following the wrong path. Path compression ensures that segments of the key
273 that are the same for all keys with a given prefix are skipped, but the
274 skipped part *is* identical for each node in the subtrie below the skipped
275 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
276 call to tkey_sub_equals() in trie_insert().
277
e905a9ed 278 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
279 have many different meanings.
280
e905a9ed 281 Example:
19baf839
RO
282 _________________________________________________________________
283 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
284 -----------------------------------------------------------------
e905a9ed 285 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
286
287 _________________________________________________________________
288 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
289 -----------------------------------------------------------------
290 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
291
292 tp->pos = 7
293 tp->bits = 3
294 n->pos = 15
91b9a277 295 n->bits = 4
19baf839 296
e905a9ed
YH
297 First, let's just ignore the bits that come before the parent tp, that is
298 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
299 not use them for anything.
300
301 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 302 index into the parent's child array. That is, they will be used to find
19baf839
RO
303 'n' among tp's children.
304
305 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
306 for the node n.
307
e905a9ed 308 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
309 of the bits are really not needed or indeed known in n->key.
310
e905a9ed 311 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 312 n's child array, and will of course be different for each child.
e905a9ed 313
c877efb2 314
19baf839
RO
315 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
316 at this point.
317
318*/
319
0c7770c7 320static inline void check_tnode(const struct tnode *tn)
19baf839 321{
0c7770c7 322 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
323}
324
f5026fab
DL
325static const int halve_threshold = 25;
326static const int inflate_threshold = 50;
345aa031 327static const int halve_threshold_root = 15;
80b71b80 328static const int inflate_threshold_root = 30;
2373ce1c
RO
329
330static void __alias_free_mem(struct rcu_head *head)
19baf839 331{
2373ce1c
RO
332 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
333 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
334}
335
2373ce1c 336static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 337{
2373ce1c
RO
338 call_rcu(&fa->rcu, __alias_free_mem);
339}
91b9a277 340
2373ce1c
RO
341static void __leaf_free_rcu(struct rcu_head *head)
342{
bc3c8c1e
SH
343 struct leaf *l = container_of(head, struct leaf, rcu);
344 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 345}
91b9a277 346
387a5487
SH
347static inline void free_leaf(struct leaf *l)
348{
349 call_rcu_bh(&l->rcu, __leaf_free_rcu);
350}
351
2373ce1c 352static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 353{
2373ce1c 354 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
355}
356
2373ce1c 357static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 358{
2373ce1c 359 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
360}
361
8d965444 362static struct tnode *tnode_alloc(size_t size)
f0e36f8c 363{
2373ce1c 364 if (size <= PAGE_SIZE)
8d965444 365 return kzalloc(size, GFP_KERNEL);
15be75cd
SH
366 else
367 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
368}
2373ce1c 369
15be75cd
SH
370static void __tnode_vfree(struct work_struct *arg)
371{
372 struct tnode *tn = container_of(arg, struct tnode, work);
373 vfree(tn);
f0e36f8c
PM
374}
375
2373ce1c 376static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 377{
2373ce1c 378 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
379 size_t size = sizeof(struct tnode) +
380 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
381
382 if (size <= PAGE_SIZE)
383 kfree(tn);
15be75cd
SH
384 else {
385 INIT_WORK(&tn->work, __tnode_vfree);
386 schedule_work(&tn->work);
387 }
f0e36f8c
PM
388}
389
2373ce1c
RO
390static inline void tnode_free(struct tnode *tn)
391{
387a5487
SH
392 if (IS_LEAF(tn))
393 free_leaf((struct leaf *) tn);
394 else
550e29bc 395 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
396}
397
e0f7cb8c
JP
398static void tnode_free_safe(struct tnode *tn)
399{
400 BUG_ON(IS_LEAF(tn));
7b85576d
JP
401 tn->tnode_free = tnode_free_head;
402 tnode_free_head = tn;
c3059477
JP
403 tnode_free_size += sizeof(struct tnode) +
404 (sizeof(struct node *) << tn->bits);
e0f7cb8c
JP
405}
406
407static void tnode_free_flush(void)
408{
409 struct tnode *tn;
410
411 while ((tn = tnode_free_head)) {
412 tnode_free_head = tn->tnode_free;
413 tn->tnode_free = NULL;
414 tnode_free(tn);
415 }
c3059477
JP
416
417 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
418 tnode_free_size = 0;
419 synchronize_rcu();
420 }
e0f7cb8c
JP
421}
422
2373ce1c
RO
423static struct leaf *leaf_new(void)
424{
bc3c8c1e 425 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
426 if (l) {
427 l->parent = T_LEAF;
428 INIT_HLIST_HEAD(&l->list);
429 }
430 return l;
431}
432
433static struct leaf_info *leaf_info_new(int plen)
434{
435 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
436 if (li) {
437 li->plen = plen;
438 INIT_LIST_HEAD(&li->falh);
439 }
440 return li;
441}
442
a07f5f50 443static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 444{
8d965444 445 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 446 struct tnode *tn = tnode_alloc(sz);
19baf839 447
91b9a277 448 if (tn) {
2373ce1c 449 tn->parent = T_TNODE;
19baf839
RO
450 tn->pos = pos;
451 tn->bits = bits;
452 tn->key = key;
453 tn->full_children = 0;
454 tn->empty_children = 1<<bits;
455 }
c877efb2 456
8d965444
ED
457 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
458 (unsigned long) (sizeof(struct node) << bits));
19baf839
RO
459 return tn;
460}
461
19baf839
RO
462/*
463 * Check whether a tnode 'n' is "full", i.e. it is an internal node
464 * and no bits are skipped. See discussion in dyntree paper p. 6
465 */
466
bb435b8d 467static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 468{
c877efb2 469 if (n == NULL || IS_LEAF(n))
19baf839
RO
470 return 0;
471
472 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
473}
474
a07f5f50
SH
475static inline void put_child(struct trie *t, struct tnode *tn, int i,
476 struct node *n)
19baf839
RO
477{
478 tnode_put_child_reorg(tn, i, n, -1);
479}
480
c877efb2 481 /*
19baf839
RO
482 * Add a child at position i overwriting the old value.
483 * Update the value of full_children and empty_children.
484 */
485
a07f5f50
SH
486static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
487 int wasfull)
19baf839 488{
2373ce1c 489 struct node *chi = tn->child[i];
19baf839
RO
490 int isfull;
491
0c7770c7
SH
492 BUG_ON(i >= 1<<tn->bits);
493
19baf839
RO
494 /* update emptyChildren */
495 if (n == NULL && chi != NULL)
496 tn->empty_children++;
497 else if (n != NULL && chi == NULL)
498 tn->empty_children--;
c877efb2 499
19baf839 500 /* update fullChildren */
91b9a277 501 if (wasfull == -1)
19baf839
RO
502 wasfull = tnode_full(tn, chi);
503
504 isfull = tnode_full(tn, n);
c877efb2 505 if (wasfull && !isfull)
19baf839 506 tn->full_children--;
c877efb2 507 else if (!wasfull && isfull)
19baf839 508 tn->full_children++;
91b9a277 509
c877efb2 510 if (n)
06801916 511 node_set_parent(n, tn);
19baf839 512
2373ce1c 513 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
514}
515
80b71b80 516#define MAX_WORK 10
c877efb2 517static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
518{
519 int i;
2f80b3c8 520 struct tnode *old_tn;
e6308be8
RO
521 int inflate_threshold_use;
522 int halve_threshold_use;
80b71b80 523 int max_work;
19baf839 524
e905a9ed 525 if (!tn)
19baf839
RO
526 return NULL;
527
0c7770c7
SH
528 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
529 tn, inflate_threshold, halve_threshold);
19baf839
RO
530
531 /* No children */
532 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 533 tnode_free_safe(tn);
19baf839
RO
534 return NULL;
535 }
536 /* One child */
537 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 538 goto one_child;
c877efb2 539 /*
19baf839
RO
540 * Double as long as the resulting node has a number of
541 * nonempty nodes that are above the threshold.
542 */
543
544 /*
c877efb2
SH
545 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
546 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 547 * Telecommunications, page 6:
c877efb2 548 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
549 * children in the *doubled* node is at least 'high'."
550 *
c877efb2
SH
551 * 'high' in this instance is the variable 'inflate_threshold'. It
552 * is expressed as a percentage, so we multiply it with
553 * tnode_child_length() and instead of multiplying by 2 (since the
554 * child array will be doubled by inflate()) and multiplying
555 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 556 * multiply the left-hand side by 50.
c877efb2
SH
557 *
558 * The left-hand side may look a bit weird: tnode_child_length(tn)
559 * - tn->empty_children is of course the number of non-null children
560 * in the current node. tn->full_children is the number of "full"
19baf839 561 * children, that is non-null tnodes with a skip value of 0.
c877efb2 562 * All of those will be doubled in the resulting inflated tnode, so
19baf839 563 * we just count them one extra time here.
c877efb2 564 *
19baf839 565 * A clearer way to write this would be:
c877efb2 566 *
19baf839 567 * to_be_doubled = tn->full_children;
c877efb2 568 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
569 * tn->full_children;
570 *
571 * new_child_length = tnode_child_length(tn) * 2;
572 *
c877efb2 573 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
574 * new_child_length;
575 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
576 *
577 * ...and so on, tho it would mess up the while () loop.
578 *
19baf839
RO
579 * anyway,
580 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
581 * inflate_threshold
c877efb2 582 *
19baf839
RO
583 * avoid a division:
584 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
585 * inflate_threshold * new_child_length
c877efb2 586 *
19baf839 587 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 588 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 589 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 590 *
19baf839 591 * expand new_child_length:
c877efb2 592 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 593 * tn->full_children) >=
19baf839 594 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 595 *
19baf839 596 * shorten again:
c877efb2 597 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 598 * tn->empty_children) >= inflate_threshold *
19baf839 599 * tnode_child_length(tn)
c877efb2 600 *
19baf839
RO
601 */
602
603 check_tnode(tn);
c877efb2 604
e6308be8
RO
605 /* Keep root node larger */
606
80b71b80
JL
607 if (!node_parent((struct node*) tn)) {
608 inflate_threshold_use = inflate_threshold_root;
609 halve_threshold_use = halve_threshold_root;
610 }
611 else {
e6308be8 612 inflate_threshold_use = inflate_threshold;
80b71b80
JL
613 halve_threshold_use = halve_threshold;
614 }
e6308be8 615
80b71b80
JL
616 max_work = MAX_WORK;
617 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
618 50 * (tn->full_children + tnode_child_length(tn)
619 - tn->empty_children)
620 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 621
2f80b3c8
RO
622 old_tn = tn;
623 tn = inflate(t, tn);
a07f5f50 624
2f80b3c8
RO
625 if (IS_ERR(tn)) {
626 tn = old_tn;
2f36895a
RO
627#ifdef CONFIG_IP_FIB_TRIE_STATS
628 t->stats.resize_node_skipped++;
629#endif
630 break;
631 }
19baf839
RO
632 }
633
634 check_tnode(tn);
635
80b71b80
JL
636 /* Return if at least one inflate is run */
637 if( max_work != MAX_WORK)
638 return (struct node *) tn;
639
19baf839
RO
640 /*
641 * Halve as long as the number of empty children in this
642 * node is above threshold.
643 */
2f36895a 644
80b71b80
JL
645 max_work = MAX_WORK;
646 while (tn->bits > 1 && max_work-- &&
19baf839 647 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 648 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 649
2f80b3c8
RO
650 old_tn = tn;
651 tn = halve(t, tn);
652 if (IS_ERR(tn)) {
653 tn = old_tn;
2f36895a
RO
654#ifdef CONFIG_IP_FIB_TRIE_STATS
655 t->stats.resize_node_skipped++;
656#endif
657 break;
658 }
659 }
19baf839 660
c877efb2 661
19baf839 662 /* Only one child remains */
80b71b80
JL
663 if (tn->empty_children == tnode_child_length(tn) - 1) {
664one_child:
19baf839 665 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 666 struct node *n;
19baf839 667
91b9a277 668 n = tn->child[i];
2373ce1c 669 if (!n)
91b9a277 670 continue;
91b9a277
OJ
671
672 /* compress one level */
673
06801916 674 node_set_parent(n, NULL);
e0f7cb8c 675 tnode_free_safe(tn);
91b9a277 676 return n;
19baf839 677 }
80b71b80 678 }
19baf839
RO
679 return (struct node *) tn;
680}
681
2f80b3c8 682static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 683{
19baf839
RO
684 struct tnode *oldtnode = tn;
685 int olen = tnode_child_length(tn);
686 int i;
687
0c7770c7 688 pr_debug("In inflate\n");
19baf839
RO
689
690 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
691
0c7770c7 692 if (!tn)
2f80b3c8 693 return ERR_PTR(-ENOMEM);
2f36895a
RO
694
695 /*
c877efb2
SH
696 * Preallocate and store tnodes before the actual work so we
697 * don't get into an inconsistent state if memory allocation
698 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
699 * of tnode is ignored.
700 */
91b9a277
OJ
701
702 for (i = 0; i < olen; i++) {
a07f5f50 703 struct tnode *inode;
2f36895a 704
a07f5f50 705 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
706 if (inode &&
707 IS_TNODE(inode) &&
708 inode->pos == oldtnode->pos + oldtnode->bits &&
709 inode->bits > 1) {
710 struct tnode *left, *right;
ab66b4a7 711 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 712
2f36895a
RO
713 left = tnode_new(inode->key&(~m), inode->pos + 1,
714 inode->bits - 1);
2f80b3c8
RO
715 if (!left)
716 goto nomem;
91b9a277 717
2f36895a
RO
718 right = tnode_new(inode->key|m, inode->pos + 1,
719 inode->bits - 1);
720
e905a9ed 721 if (!right) {
2f80b3c8
RO
722 tnode_free(left);
723 goto nomem;
e905a9ed 724 }
2f36895a
RO
725
726 put_child(t, tn, 2*i, (struct node *) left);
727 put_child(t, tn, 2*i+1, (struct node *) right);
728 }
729 }
730
91b9a277 731 for (i = 0; i < olen; i++) {
c95aaf9a 732 struct tnode *inode;
19baf839 733 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
734 struct tnode *left, *right;
735 int size, j;
c877efb2 736
19baf839
RO
737 /* An empty child */
738 if (node == NULL)
739 continue;
740
741 /* A leaf or an internal node with skipped bits */
742
c877efb2 743 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 744 tn->pos + tn->bits - 1) {
a07f5f50
SH
745 if (tkey_extract_bits(node->key,
746 oldtnode->pos + oldtnode->bits,
747 1) == 0)
19baf839
RO
748 put_child(t, tn, 2*i, node);
749 else
750 put_child(t, tn, 2*i+1, node);
751 continue;
752 }
753
754 /* An internal node with two children */
755 inode = (struct tnode *) node;
756
757 if (inode->bits == 1) {
758 put_child(t, tn, 2*i, inode->child[0]);
759 put_child(t, tn, 2*i+1, inode->child[1]);
760
e0f7cb8c 761 tnode_free_safe(inode);
91b9a277 762 continue;
19baf839
RO
763 }
764
91b9a277
OJ
765 /* An internal node with more than two children */
766
767 /* We will replace this node 'inode' with two new
768 * ones, 'left' and 'right', each with half of the
769 * original children. The two new nodes will have
770 * a position one bit further down the key and this
771 * means that the "significant" part of their keys
772 * (see the discussion near the top of this file)
773 * will differ by one bit, which will be "0" in
774 * left's key and "1" in right's key. Since we are
775 * moving the key position by one step, the bit that
776 * we are moving away from - the bit at position
777 * (inode->pos) - is the one that will differ between
778 * left and right. So... we synthesize that bit in the
779 * two new keys.
780 * The mask 'm' below will be a single "one" bit at
781 * the position (inode->pos)
782 */
19baf839 783
91b9a277
OJ
784 /* Use the old key, but set the new significant
785 * bit to zero.
786 */
2f36895a 787
91b9a277
OJ
788 left = (struct tnode *) tnode_get_child(tn, 2*i);
789 put_child(t, tn, 2*i, NULL);
2f36895a 790
91b9a277 791 BUG_ON(!left);
2f36895a 792
91b9a277
OJ
793 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
794 put_child(t, tn, 2*i+1, NULL);
19baf839 795
91b9a277 796 BUG_ON(!right);
19baf839 797
91b9a277
OJ
798 size = tnode_child_length(left);
799 for (j = 0; j < size; j++) {
800 put_child(t, left, j, inode->child[j]);
801 put_child(t, right, j, inode->child[j + size]);
19baf839 802 }
91b9a277
OJ
803 put_child(t, tn, 2*i, resize(t, left));
804 put_child(t, tn, 2*i+1, resize(t, right));
805
e0f7cb8c 806 tnode_free_safe(inode);
19baf839 807 }
e0f7cb8c 808 tnode_free_safe(oldtnode);
19baf839 809 return tn;
2f80b3c8
RO
810nomem:
811 {
812 int size = tnode_child_length(tn);
813 int j;
814
0c7770c7 815 for (j = 0; j < size; j++)
2f80b3c8
RO
816 if (tn->child[j])
817 tnode_free((struct tnode *)tn->child[j]);
818
819 tnode_free(tn);
0c7770c7 820
2f80b3c8
RO
821 return ERR_PTR(-ENOMEM);
822 }
19baf839
RO
823}
824
2f80b3c8 825static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
826{
827 struct tnode *oldtnode = tn;
828 struct node *left, *right;
829 int i;
830 int olen = tnode_child_length(tn);
831
0c7770c7 832 pr_debug("In halve\n");
c877efb2
SH
833
834 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 835
2f80b3c8
RO
836 if (!tn)
837 return ERR_PTR(-ENOMEM);
2f36895a
RO
838
839 /*
c877efb2
SH
840 * Preallocate and store tnodes before the actual work so we
841 * don't get into an inconsistent state if memory allocation
842 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
843 * of tnode is ignored.
844 */
845
91b9a277 846 for (i = 0; i < olen; i += 2) {
2f36895a
RO
847 left = tnode_get_child(oldtnode, i);
848 right = tnode_get_child(oldtnode, i+1);
c877efb2 849
2f36895a 850 /* Two nonempty children */
0c7770c7 851 if (left && right) {
2f80b3c8 852 struct tnode *newn;
0c7770c7 853
2f80b3c8 854 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
855
856 if (!newn)
2f80b3c8 857 goto nomem;
0c7770c7 858
2f80b3c8 859 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 860 }
2f36895a 861
2f36895a 862 }
19baf839 863
91b9a277
OJ
864 for (i = 0; i < olen; i += 2) {
865 struct tnode *newBinNode;
866
19baf839
RO
867 left = tnode_get_child(oldtnode, i);
868 right = tnode_get_child(oldtnode, i+1);
c877efb2 869
19baf839
RO
870 /* At least one of the children is empty */
871 if (left == NULL) {
872 if (right == NULL) /* Both are empty */
873 continue;
874 put_child(t, tn, i/2, right);
91b9a277 875 continue;
0c7770c7 876 }
91b9a277
OJ
877
878 if (right == NULL) {
19baf839 879 put_child(t, tn, i/2, left);
91b9a277
OJ
880 continue;
881 }
c877efb2 882
19baf839 883 /* Two nonempty children */
91b9a277
OJ
884 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
885 put_child(t, tn, i/2, NULL);
91b9a277
OJ
886 put_child(t, newBinNode, 0, left);
887 put_child(t, newBinNode, 1, right);
888 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 889 }
e0f7cb8c 890 tnode_free_safe(oldtnode);
19baf839 891 return tn;
2f80b3c8
RO
892nomem:
893 {
894 int size = tnode_child_length(tn);
895 int j;
896
0c7770c7 897 for (j = 0; j < size; j++)
2f80b3c8
RO
898 if (tn->child[j])
899 tnode_free((struct tnode *)tn->child[j]);
900
901 tnode_free(tn);
0c7770c7 902
2f80b3c8
RO
903 return ERR_PTR(-ENOMEM);
904 }
19baf839
RO
905}
906
772cb712 907/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
908 via get_fa_head and dump */
909
772cb712 910static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 911{
772cb712 912 struct hlist_head *head = &l->list;
19baf839
RO
913 struct hlist_node *node;
914 struct leaf_info *li;
915
2373ce1c 916 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 917 if (li->plen == plen)
19baf839 918 return li;
91b9a277 919
19baf839
RO
920 return NULL;
921}
922
a07f5f50 923static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 924{
772cb712 925 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 926
91b9a277
OJ
927 if (!li)
928 return NULL;
c877efb2 929
91b9a277 930 return &li->falh;
19baf839
RO
931}
932
933static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
934{
e905a9ed
YH
935 struct leaf_info *li = NULL, *last = NULL;
936 struct hlist_node *node;
937
938 if (hlist_empty(head)) {
939 hlist_add_head_rcu(&new->hlist, head);
940 } else {
941 hlist_for_each_entry(li, node, head, hlist) {
942 if (new->plen > li->plen)
943 break;
944
945 last = li;
946 }
947 if (last)
948 hlist_add_after_rcu(&last->hlist, &new->hlist);
949 else
950 hlist_add_before_rcu(&new->hlist, &li->hlist);
951 }
19baf839
RO
952}
953
2373ce1c
RO
954/* rcu_read_lock needs to be hold by caller from readside */
955
19baf839
RO
956static struct leaf *
957fib_find_node(struct trie *t, u32 key)
958{
959 int pos;
960 struct tnode *tn;
961 struct node *n;
962
963 pos = 0;
2373ce1c 964 n = rcu_dereference(t->trie);
19baf839
RO
965
966 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
967 tn = (struct tnode *) n;
91b9a277 968
19baf839 969 check_tnode(tn);
91b9a277 970
c877efb2 971 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 972 pos = tn->pos + tn->bits;
a07f5f50
SH
973 n = tnode_get_child_rcu(tn,
974 tkey_extract_bits(key,
975 tn->pos,
976 tn->bits));
91b9a277 977 } else
19baf839
RO
978 break;
979 }
980 /* Case we have found a leaf. Compare prefixes */
981
91b9a277
OJ
982 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
983 return (struct leaf *)n;
984
19baf839
RO
985 return NULL;
986}
987
7b85576d 988static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 989{
19baf839 990 int wasfull;
3ed18d76 991 t_key cindex, key;
06801916 992 struct tnode *tp;
19baf839 993
3ed18d76
RO
994 key = tn->key;
995
06801916 996 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
997 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
998 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
999 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1000
1001 tnode_put_child_reorg((struct tnode *)tp, cindex,
1002 (struct node *)tn, wasfull);
91b9a277 1003
06801916 1004 tp = node_parent((struct node *) tn);
008440e3
JP
1005 if (!tp)
1006 rcu_assign_pointer(t->trie, (struct node *)tn);
1007
e0f7cb8c 1008 tnode_free_flush();
06801916 1009 if (!tp)
19baf839 1010 break;
06801916 1011 tn = tp;
19baf839 1012 }
06801916 1013
19baf839 1014 /* Handle last (top) tnode */
7b85576d 1015 if (IS_TNODE(tn))
a07f5f50 1016 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1017
7b85576d
JP
1018 rcu_assign_pointer(t->trie, (struct node *)tn);
1019 tnode_free_flush();
1020
1021 return;
19baf839
RO
1022}
1023
2373ce1c
RO
1024/* only used from updater-side */
1025
fea86ad8 1026static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1027{
1028 int pos, newpos;
1029 struct tnode *tp = NULL, *tn = NULL;
1030 struct node *n;
1031 struct leaf *l;
1032 int missbit;
c877efb2 1033 struct list_head *fa_head = NULL;
19baf839
RO
1034 struct leaf_info *li;
1035 t_key cindex;
1036
1037 pos = 0;
c877efb2 1038 n = t->trie;
19baf839 1039
c877efb2
SH
1040 /* If we point to NULL, stop. Either the tree is empty and we should
1041 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1042 * and we should just put our new leaf in that.
c877efb2
SH
1043 * If we point to a T_TNODE, check if it matches our key. Note that
1044 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1045 * not be the parent's 'pos'+'bits'!
1046 *
c877efb2 1047 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1048 * the index from our key, push the T_TNODE and walk the tree.
1049 *
1050 * If it doesn't, we have to replace it with a new T_TNODE.
1051 *
c877efb2
SH
1052 * If we point to a T_LEAF, it might or might not have the same key
1053 * as we do. If it does, just change the value, update the T_LEAF's
1054 * value, and return it.
19baf839
RO
1055 * If it doesn't, we need to replace it with a T_TNODE.
1056 */
1057
1058 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1059 tn = (struct tnode *) n;
91b9a277 1060
c877efb2 1061 check_tnode(tn);
91b9a277 1062
c877efb2 1063 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1064 tp = tn;
91b9a277 1065 pos = tn->pos + tn->bits;
a07f5f50
SH
1066 n = tnode_get_child(tn,
1067 tkey_extract_bits(key,
1068 tn->pos,
1069 tn->bits));
19baf839 1070
06801916 1071 BUG_ON(n && node_parent(n) != tn);
91b9a277 1072 } else
19baf839
RO
1073 break;
1074 }
1075
1076 /*
1077 * n ----> NULL, LEAF or TNODE
1078 *
c877efb2 1079 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1080 */
1081
91b9a277 1082 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1083
1084 /* Case 1: n is a leaf. Compare prefixes */
1085
c877efb2 1086 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1087 l = (struct leaf *) n;
19baf839 1088 li = leaf_info_new(plen);
91b9a277 1089
fea86ad8
SH
1090 if (!li)
1091 return NULL;
19baf839
RO
1092
1093 fa_head = &li->falh;
1094 insert_leaf_info(&l->list, li);
1095 goto done;
1096 }
19baf839
RO
1097 l = leaf_new();
1098
fea86ad8
SH
1099 if (!l)
1100 return NULL;
19baf839
RO
1101
1102 l->key = key;
1103 li = leaf_info_new(plen);
1104
c877efb2 1105 if (!li) {
387a5487 1106 free_leaf(l);
fea86ad8 1107 return NULL;
f835e471 1108 }
19baf839
RO
1109
1110 fa_head = &li->falh;
1111 insert_leaf_info(&l->list, li);
1112
19baf839 1113 if (t->trie && n == NULL) {
91b9a277 1114 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1115
06801916 1116 node_set_parent((struct node *)l, tp);
19baf839 1117
91b9a277
OJ
1118 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1119 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1120 } else {
1121 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1122 /*
1123 * Add a new tnode here
19baf839
RO
1124 * first tnode need some special handling
1125 */
1126
1127 if (tp)
91b9a277 1128 pos = tp->pos+tp->bits;
19baf839 1129 else
91b9a277
OJ
1130 pos = 0;
1131
c877efb2 1132 if (n) {
19baf839
RO
1133 newpos = tkey_mismatch(key, pos, n->key);
1134 tn = tnode_new(n->key, newpos, 1);
91b9a277 1135 } else {
19baf839 1136 newpos = 0;
c877efb2 1137 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1138 }
19baf839 1139
c877efb2 1140 if (!tn) {
f835e471 1141 free_leaf_info(li);
387a5487 1142 free_leaf(l);
fea86ad8 1143 return NULL;
91b9a277
OJ
1144 }
1145
06801916 1146 node_set_parent((struct node *)tn, tp);
19baf839 1147
91b9a277 1148 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1149 put_child(t, tn, missbit, (struct node *)l);
1150 put_child(t, tn, 1-missbit, n);
1151
c877efb2 1152 if (tp) {
19baf839 1153 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1154 put_child(t, (struct tnode *)tp, cindex,
1155 (struct node *)tn);
91b9a277 1156 } else {
a07f5f50 1157 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1158 tp = tn;
1159 }
1160 }
91b9a277
OJ
1161
1162 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1163 pr_warning("fib_trie"
1164 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1165 tp, tp->pos, tp->bits, key, plen);
91b9a277 1166
19baf839 1167 /* Rebalance the trie */
2373ce1c 1168
7b85576d 1169 trie_rebalance(t, tp);
f835e471 1170done:
19baf839
RO
1171 return fa_head;
1172}
1173
d562f1f8
RO
1174/*
1175 * Caller must hold RTNL.
1176 */
16c6cf8b 1177int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1178{
1179 struct trie *t = (struct trie *) tb->tb_data;
1180 struct fib_alias *fa, *new_fa;
c877efb2 1181 struct list_head *fa_head = NULL;
19baf839 1182 struct fib_info *fi;
4e902c57
TG
1183 int plen = cfg->fc_dst_len;
1184 u8 tos = cfg->fc_tos;
19baf839
RO
1185 u32 key, mask;
1186 int err;
1187 struct leaf *l;
1188
1189 if (plen > 32)
1190 return -EINVAL;
1191
4e902c57 1192 key = ntohl(cfg->fc_dst);
19baf839 1193
2dfe55b4 1194 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1195
91b9a277 1196 mask = ntohl(inet_make_mask(plen));
19baf839 1197
c877efb2 1198 if (key & ~mask)
19baf839
RO
1199 return -EINVAL;
1200
1201 key = key & mask;
1202
4e902c57
TG
1203 fi = fib_create_info(cfg);
1204 if (IS_ERR(fi)) {
1205 err = PTR_ERR(fi);
19baf839 1206 goto err;
4e902c57 1207 }
19baf839
RO
1208
1209 l = fib_find_node(t, key);
c877efb2 1210 fa = NULL;
19baf839 1211
c877efb2 1212 if (l) {
19baf839
RO
1213 fa_head = get_fa_head(l, plen);
1214 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1215 }
1216
1217 /* Now fa, if non-NULL, points to the first fib alias
1218 * with the same keys [prefix,tos,priority], if such key already
1219 * exists or to the node before which we will insert new one.
1220 *
1221 * If fa is NULL, we will need to allocate a new one and
1222 * insert to the head of f.
1223 *
1224 * If f is NULL, no fib node matched the destination key
1225 * and we need to allocate a new one of those as well.
1226 */
1227
936f6f8e
JA
1228 if (fa && fa->fa_tos == tos &&
1229 fa->fa_info->fib_priority == fi->fib_priority) {
1230 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1231
1232 err = -EEXIST;
4e902c57 1233 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1234 goto out;
1235
936f6f8e
JA
1236 /* We have 2 goals:
1237 * 1. Find exact match for type, scope, fib_info to avoid
1238 * duplicate routes
1239 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1240 */
1241 fa_match = NULL;
1242 fa_first = fa;
1243 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1244 list_for_each_entry_continue(fa, fa_head, fa_list) {
1245 if (fa->fa_tos != tos)
1246 break;
1247 if (fa->fa_info->fib_priority != fi->fib_priority)
1248 break;
1249 if (fa->fa_type == cfg->fc_type &&
1250 fa->fa_scope == cfg->fc_scope &&
1251 fa->fa_info == fi) {
1252 fa_match = fa;
1253 break;
1254 }
1255 }
1256
4e902c57 1257 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1258 struct fib_info *fi_drop;
1259 u8 state;
1260
936f6f8e
JA
1261 fa = fa_first;
1262 if (fa_match) {
1263 if (fa == fa_match)
1264 err = 0;
6725033f 1265 goto out;
936f6f8e 1266 }
2373ce1c 1267 err = -ENOBUFS;
e94b1766 1268 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1269 if (new_fa == NULL)
1270 goto out;
19baf839
RO
1271
1272 fi_drop = fa->fa_info;
2373ce1c
RO
1273 new_fa->fa_tos = fa->fa_tos;
1274 new_fa->fa_info = fi;
4e902c57
TG
1275 new_fa->fa_type = cfg->fc_type;
1276 new_fa->fa_scope = cfg->fc_scope;
19baf839 1277 state = fa->fa_state;
936f6f8e 1278 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1279
2373ce1c
RO
1280 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1281 alias_free_mem_rcu(fa);
19baf839
RO
1282
1283 fib_release_info(fi_drop);
1284 if (state & FA_S_ACCESSED)
76e6ebfb 1285 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1286 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1287 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1288
91b9a277 1289 goto succeeded;
19baf839
RO
1290 }
1291 /* Error if we find a perfect match which
1292 * uses the same scope, type, and nexthop
1293 * information.
1294 */
936f6f8e
JA
1295 if (fa_match)
1296 goto out;
a07f5f50 1297
4e902c57 1298 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1299 fa = fa_first;
19baf839
RO
1300 }
1301 err = -ENOENT;
4e902c57 1302 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1303 goto out;
1304
1305 err = -ENOBUFS;
e94b1766 1306 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1307 if (new_fa == NULL)
1308 goto out;
1309
1310 new_fa->fa_info = fi;
1311 new_fa->fa_tos = tos;
4e902c57
TG
1312 new_fa->fa_type = cfg->fc_type;
1313 new_fa->fa_scope = cfg->fc_scope;
19baf839 1314 new_fa->fa_state = 0;
19baf839
RO
1315 /*
1316 * Insert new entry to the list.
1317 */
1318
c877efb2 1319 if (!fa_head) {
fea86ad8
SH
1320 fa_head = fib_insert_node(t, key, plen);
1321 if (unlikely(!fa_head)) {
1322 err = -ENOMEM;
f835e471 1323 goto out_free_new_fa;
fea86ad8 1324 }
f835e471 1325 }
19baf839 1326
2373ce1c
RO
1327 list_add_tail_rcu(&new_fa->fa_list,
1328 (fa ? &fa->fa_list : fa_head));
19baf839 1329
76e6ebfb 1330 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1331 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1332 &cfg->fc_nlinfo, 0);
19baf839
RO
1333succeeded:
1334 return 0;
f835e471
RO
1335
1336out_free_new_fa:
1337 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1338out:
1339 fib_release_info(fi);
91b9a277 1340err:
19baf839
RO
1341 return err;
1342}
1343
772cb712 1344/* should be called with rcu_read_lock */
a07f5f50
SH
1345static int check_leaf(struct trie *t, struct leaf *l,
1346 t_key key, const struct flowi *flp,
1347 struct fib_result *res)
19baf839 1348{
19baf839
RO
1349 struct leaf_info *li;
1350 struct hlist_head *hhead = &l->list;
1351 struct hlist_node *node;
c877efb2 1352
2373ce1c 1353 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1354 int err;
1355 int plen = li->plen;
1356 __be32 mask = inet_make_mask(plen);
1357
888454c5 1358 if (l->key != (key & ntohl(mask)))
19baf839
RO
1359 continue;
1360
e204a345 1361 err = fib_semantic_match(&li->falh, flp, res, plen);
a07f5f50 1362
19baf839 1363#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1364 if (err <= 0)
19baf839 1365 t->stats.semantic_match_passed++;
a07f5f50
SH
1366 else
1367 t->stats.semantic_match_miss++;
19baf839 1368#endif
a07f5f50 1369 if (err <= 0)
2e655571 1370 return err;
19baf839 1371 }
a07f5f50 1372
2e655571 1373 return 1;
19baf839
RO
1374}
1375
16c6cf8b
SH
1376int fib_table_lookup(struct fib_table *tb, const struct flowi *flp,
1377 struct fib_result *res)
19baf839
RO
1378{
1379 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1380 int ret;
19baf839
RO
1381 struct node *n;
1382 struct tnode *pn;
1383 int pos, bits;
91b9a277 1384 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1385 int chopped_off;
1386 t_key cindex = 0;
1387 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1388 struct tnode *cn;
1389 t_key node_prefix, key_prefix, pref_mismatch;
1390 int mp;
1391
2373ce1c 1392 rcu_read_lock();
91b9a277 1393
2373ce1c 1394 n = rcu_dereference(t->trie);
c877efb2 1395 if (!n)
19baf839
RO
1396 goto failed;
1397
1398#ifdef CONFIG_IP_FIB_TRIE_STATS
1399 t->stats.gets++;
1400#endif
1401
1402 /* Just a leaf? */
1403 if (IS_LEAF(n)) {
2e655571 1404 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
a07f5f50 1405 goto found;
19baf839 1406 }
a07f5f50 1407
19baf839
RO
1408 pn = (struct tnode *) n;
1409 chopped_off = 0;
c877efb2 1410
91b9a277 1411 while (pn) {
19baf839
RO
1412 pos = pn->pos;
1413 bits = pn->bits;
1414
c877efb2 1415 if (!chopped_off)
ab66b4a7
SH
1416 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1417 pos, bits);
19baf839 1418
b902e573 1419 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1420
1421 if (n == NULL) {
1422#ifdef CONFIG_IP_FIB_TRIE_STATS
1423 t->stats.null_node_hit++;
1424#endif
1425 goto backtrace;
1426 }
1427
91b9a277 1428 if (IS_LEAF(n)) {
2e655571
BH
1429 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1430 if (ret > 0)
91b9a277 1431 goto backtrace;
a07f5f50 1432 goto found;
91b9a277
OJ
1433 }
1434
91b9a277 1435 cn = (struct tnode *)n;
19baf839 1436
91b9a277
OJ
1437 /*
1438 * It's a tnode, and we can do some extra checks here if we
1439 * like, to avoid descending into a dead-end branch.
1440 * This tnode is in the parent's child array at index
1441 * key[p_pos..p_pos+p_bits] but potentially with some bits
1442 * chopped off, so in reality the index may be just a
1443 * subprefix, padded with zero at the end.
1444 * We can also take a look at any skipped bits in this
1445 * tnode - everything up to p_pos is supposed to be ok,
1446 * and the non-chopped bits of the index (se previous
1447 * paragraph) are also guaranteed ok, but the rest is
1448 * considered unknown.
1449 *
1450 * The skipped bits are key[pos+bits..cn->pos].
1451 */
19baf839 1452
91b9a277
OJ
1453 /* If current_prefix_length < pos+bits, we are already doing
1454 * actual prefix matching, which means everything from
1455 * pos+(bits-chopped_off) onward must be zero along some
1456 * branch of this subtree - otherwise there is *no* valid
1457 * prefix present. Here we can only check the skipped
1458 * bits. Remember, since we have already indexed into the
1459 * parent's child array, we know that the bits we chopped of
1460 * *are* zero.
1461 */
19baf839 1462
a07f5f50
SH
1463 /* NOTA BENE: Checking only skipped bits
1464 for the new node here */
19baf839 1465
91b9a277
OJ
1466 if (current_prefix_length < pos+bits) {
1467 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1468 cn->pos - current_prefix_length)
1469 || !(cn->child[0]))
91b9a277
OJ
1470 goto backtrace;
1471 }
19baf839 1472
91b9a277
OJ
1473 /*
1474 * If chopped_off=0, the index is fully validated and we
1475 * only need to look at the skipped bits for this, the new,
1476 * tnode. What we actually want to do is to find out if
1477 * these skipped bits match our key perfectly, or if we will
1478 * have to count on finding a matching prefix further down,
1479 * because if we do, we would like to have some way of
1480 * verifying the existence of such a prefix at this point.
1481 */
19baf839 1482
91b9a277
OJ
1483 /* The only thing we can do at this point is to verify that
1484 * any such matching prefix can indeed be a prefix to our
1485 * key, and if the bits in the node we are inspecting that
1486 * do not match our key are not ZERO, this cannot be true.
1487 * Thus, find out where there is a mismatch (before cn->pos)
1488 * and verify that all the mismatching bits are zero in the
1489 * new tnode's key.
1490 */
19baf839 1491
a07f5f50
SH
1492 /*
1493 * Note: We aren't very concerned about the piece of
1494 * the key that precede pn->pos+pn->bits, since these
1495 * have already been checked. The bits after cn->pos
1496 * aren't checked since these are by definition
1497 * "unknown" at this point. Thus, what we want to see
1498 * is if we are about to enter the "prefix matching"
1499 * state, and in that case verify that the skipped
1500 * bits that will prevail throughout this subtree are
1501 * zero, as they have to be if we are to find a
1502 * matching prefix.
91b9a277
OJ
1503 */
1504
ab66b4a7
SH
1505 node_prefix = mask_pfx(cn->key, cn->pos);
1506 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1507 pref_mismatch = key_prefix^node_prefix;
1508 mp = 0;
1509
a07f5f50
SH
1510 /*
1511 * In short: If skipped bits in this node do not match
1512 * the search key, enter the "prefix matching"
1513 * state.directly.
91b9a277
OJ
1514 */
1515 if (pref_mismatch) {
1516 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1517 mp++;
a07f5f50 1518 pref_mismatch = pref_mismatch << 1;
91b9a277
OJ
1519 }
1520 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1521
1522 if (key_prefix != 0)
1523 goto backtrace;
1524
1525 if (current_prefix_length >= cn->pos)
1526 current_prefix_length = mp;
c877efb2 1527 }
a07f5f50 1528
91b9a277
OJ
1529 pn = (struct tnode *)n; /* Descend */
1530 chopped_off = 0;
1531 continue;
1532
19baf839
RO
1533backtrace:
1534 chopped_off++;
1535
1536 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1537 while ((chopped_off <= pn->bits)
1538 && !(cindex & (1<<(chopped_off-1))))
19baf839 1539 chopped_off++;
19baf839
RO
1540
1541 /* Decrease current_... with bits chopped off */
1542 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1543 current_prefix_length = pn->pos + pn->bits
1544 - chopped_off;
91b9a277 1545
19baf839 1546 /*
c877efb2 1547 * Either we do the actual chop off according or if we have
19baf839
RO
1548 * chopped off all bits in this tnode walk up to our parent.
1549 */
1550
91b9a277 1551 if (chopped_off <= pn->bits) {
19baf839 1552 cindex &= ~(1 << (chopped_off-1));
91b9a277 1553 } else {
b902e573 1554 struct tnode *parent = node_parent_rcu((struct node *) pn);
06801916 1555 if (!parent)
19baf839 1556 goto failed;
91b9a277 1557
19baf839 1558 /* Get Child's index */
06801916
SH
1559 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1560 pn = parent;
19baf839
RO
1561 chopped_off = 0;
1562
1563#ifdef CONFIG_IP_FIB_TRIE_STATS
1564 t->stats.backtrack++;
1565#endif
1566 goto backtrace;
c877efb2 1567 }
19baf839
RO
1568 }
1569failed:
c877efb2 1570 ret = 1;
19baf839 1571found:
2373ce1c 1572 rcu_read_unlock();
19baf839
RO
1573 return ret;
1574}
1575
9195bef7
SH
1576/*
1577 * Remove the leaf and return parent.
1578 */
1579static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1580{
9195bef7 1581 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1582
9195bef7 1583 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1584
c877efb2 1585 if (tp) {
9195bef7 1586 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1587 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1588 trie_rebalance(t, tp);
91b9a277 1589 } else
2373ce1c 1590 rcu_assign_pointer(t->trie, NULL);
19baf839 1591
387a5487 1592 free_leaf(l);
19baf839
RO
1593}
1594
d562f1f8
RO
1595/*
1596 * Caller must hold RTNL.
1597 */
16c6cf8b 1598int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1599{
1600 struct trie *t = (struct trie *) tb->tb_data;
1601 u32 key, mask;
4e902c57
TG
1602 int plen = cfg->fc_dst_len;
1603 u8 tos = cfg->fc_tos;
19baf839
RO
1604 struct fib_alias *fa, *fa_to_delete;
1605 struct list_head *fa_head;
1606 struct leaf *l;
91b9a277
OJ
1607 struct leaf_info *li;
1608
c877efb2 1609 if (plen > 32)
19baf839
RO
1610 return -EINVAL;
1611
4e902c57 1612 key = ntohl(cfg->fc_dst);
91b9a277 1613 mask = ntohl(inet_make_mask(plen));
19baf839 1614
c877efb2 1615 if (key & ~mask)
19baf839
RO
1616 return -EINVAL;
1617
1618 key = key & mask;
1619 l = fib_find_node(t, key);
1620
c877efb2 1621 if (!l)
19baf839
RO
1622 return -ESRCH;
1623
1624 fa_head = get_fa_head(l, plen);
1625 fa = fib_find_alias(fa_head, tos, 0);
1626
1627 if (!fa)
1628 return -ESRCH;
1629
0c7770c7 1630 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1631
1632 fa_to_delete = NULL;
936f6f8e
JA
1633 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1634 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1635 struct fib_info *fi = fa->fa_info;
1636
1637 if (fa->fa_tos != tos)
1638 break;
1639
4e902c57
TG
1640 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1641 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1642 fa->fa_scope == cfg->fc_scope) &&
1643 (!cfg->fc_protocol ||
1644 fi->fib_protocol == cfg->fc_protocol) &&
1645 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1646 fa_to_delete = fa;
1647 break;
1648 }
1649 }
1650
91b9a277
OJ
1651 if (!fa_to_delete)
1652 return -ESRCH;
19baf839 1653
91b9a277 1654 fa = fa_to_delete;
4e902c57 1655 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1656 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1657
1658 l = fib_find_node(t, key);
772cb712 1659 li = find_leaf_info(l, plen);
19baf839 1660
2373ce1c 1661 list_del_rcu(&fa->fa_list);
19baf839 1662
91b9a277 1663 if (list_empty(fa_head)) {
2373ce1c 1664 hlist_del_rcu(&li->hlist);
91b9a277 1665 free_leaf_info(li);
2373ce1c 1666 }
19baf839 1667
91b9a277 1668 if (hlist_empty(&l->list))
9195bef7 1669 trie_leaf_remove(t, l);
19baf839 1670
91b9a277 1671 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1672 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1673
2373ce1c
RO
1674 fib_release_info(fa->fa_info);
1675 alias_free_mem_rcu(fa);
91b9a277 1676 return 0;
19baf839
RO
1677}
1678
ef3660ce 1679static int trie_flush_list(struct list_head *head)
19baf839
RO
1680{
1681 struct fib_alias *fa, *fa_node;
1682 int found = 0;
1683
1684 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1685 struct fib_info *fi = fa->fa_info;
19baf839 1686
2373ce1c
RO
1687 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1688 list_del_rcu(&fa->fa_list);
1689 fib_release_info(fa->fa_info);
1690 alias_free_mem_rcu(fa);
19baf839
RO
1691 found++;
1692 }
1693 }
1694 return found;
1695}
1696
ef3660ce 1697static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1698{
1699 int found = 0;
1700 struct hlist_head *lih = &l->list;
1701 struct hlist_node *node, *tmp;
1702 struct leaf_info *li = NULL;
1703
1704 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1705 found += trie_flush_list(&li->falh);
19baf839
RO
1706
1707 if (list_empty(&li->falh)) {
2373ce1c 1708 hlist_del_rcu(&li->hlist);
19baf839
RO
1709 free_leaf_info(li);
1710 }
1711 }
1712 return found;
1713}
1714
82cfbb00
SH
1715/*
1716 * Scan for the next right leaf starting at node p->child[idx]
1717 * Since we have back pointer, no recursion necessary.
1718 */
1719static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1720{
82cfbb00
SH
1721 do {
1722 t_key idx;
c877efb2 1723
c877efb2 1724 if (c)
82cfbb00 1725 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1726 else
82cfbb00 1727 idx = 0;
2373ce1c 1728
82cfbb00
SH
1729 while (idx < 1u << p->bits) {
1730 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1731 if (!c)
91b9a277
OJ
1732 continue;
1733
82cfbb00
SH
1734 if (IS_LEAF(c)) {
1735 prefetch(p->child[idx]);
1736 return (struct leaf *) c;
19baf839 1737 }
82cfbb00
SH
1738
1739 /* Rescan start scanning in new node */
1740 p = (struct tnode *) c;
1741 idx = 0;
19baf839 1742 }
82cfbb00
SH
1743
1744 /* Node empty, walk back up to parent */
91b9a277 1745 c = (struct node *) p;
82cfbb00
SH
1746 } while ( (p = node_parent_rcu(c)) != NULL);
1747
1748 return NULL; /* Root of trie */
1749}
1750
82cfbb00
SH
1751static struct leaf *trie_firstleaf(struct trie *t)
1752{
1753 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1754
1755 if (!n)
1756 return NULL;
1757
1758 if (IS_LEAF(n)) /* trie is just a leaf */
1759 return (struct leaf *) n;
1760
1761 return leaf_walk_rcu(n, NULL);
1762}
1763
1764static struct leaf *trie_nextleaf(struct leaf *l)
1765{
1766 struct node *c = (struct node *) l;
b902e573 1767 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1768
1769 if (!p)
1770 return NULL; /* trie with just one leaf */
1771
1772 return leaf_walk_rcu(p, c);
19baf839
RO
1773}
1774
71d67e66
SH
1775static struct leaf *trie_leafindex(struct trie *t, int index)
1776{
1777 struct leaf *l = trie_firstleaf(t);
1778
ec28cf73 1779 while (l && index-- > 0)
71d67e66 1780 l = trie_nextleaf(l);
ec28cf73 1781
71d67e66
SH
1782 return l;
1783}
1784
1785
d562f1f8
RO
1786/*
1787 * Caller must hold RTNL.
1788 */
16c6cf8b 1789int fib_table_flush(struct fib_table *tb)
19baf839
RO
1790{
1791 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1792 struct leaf *l, *ll = NULL;
82cfbb00 1793 int found = 0;
19baf839 1794
82cfbb00 1795 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1796 found += trie_flush_leaf(l);
19baf839
RO
1797
1798 if (ll && hlist_empty(&ll->list))
9195bef7 1799 trie_leaf_remove(t, ll);
19baf839
RO
1800 ll = l;
1801 }
1802
1803 if (ll && hlist_empty(&ll->list))
9195bef7 1804 trie_leaf_remove(t, ll);
19baf839 1805
0c7770c7 1806 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1807 return found;
1808}
1809
16c6cf8b
SH
1810void fib_table_select_default(struct fib_table *tb,
1811 const struct flowi *flp,
1812 struct fib_result *res)
19baf839
RO
1813{
1814 struct trie *t = (struct trie *) tb->tb_data;
1815 int order, last_idx;
1816 struct fib_info *fi = NULL;
1817 struct fib_info *last_resort;
1818 struct fib_alias *fa = NULL;
1819 struct list_head *fa_head;
1820 struct leaf *l;
1821
1822 last_idx = -1;
1823 last_resort = NULL;
1824 order = -1;
1825
2373ce1c 1826 rcu_read_lock();
c877efb2 1827
19baf839 1828 l = fib_find_node(t, 0);
c877efb2 1829 if (!l)
19baf839
RO
1830 goto out;
1831
1832 fa_head = get_fa_head(l, 0);
c877efb2 1833 if (!fa_head)
19baf839
RO
1834 goto out;
1835
c877efb2 1836 if (list_empty(fa_head))
19baf839
RO
1837 goto out;
1838
2373ce1c 1839 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1840 struct fib_info *next_fi = fa->fa_info;
91b9a277 1841
19baf839
RO
1842 if (fa->fa_scope != res->scope ||
1843 fa->fa_type != RTN_UNICAST)
1844 continue;
91b9a277 1845
19baf839
RO
1846 if (next_fi->fib_priority > res->fi->fib_priority)
1847 break;
1848 if (!next_fi->fib_nh[0].nh_gw ||
1849 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1850 continue;
1851 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1852
19baf839
RO
1853 if (fi == NULL) {
1854 if (next_fi != res->fi)
1855 break;
1856 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1857 &last_idx, tb->tb_default)) {
a2bbe682 1858 fib_result_assign(res, fi);
971b893e 1859 tb->tb_default = order;
19baf839
RO
1860 goto out;
1861 }
1862 fi = next_fi;
1863 order++;
1864 }
1865 if (order <= 0 || fi == NULL) {
971b893e 1866 tb->tb_default = -1;
19baf839
RO
1867 goto out;
1868 }
1869
971b893e
DL
1870 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1871 tb->tb_default)) {
a2bbe682 1872 fib_result_assign(res, fi);
971b893e 1873 tb->tb_default = order;
19baf839
RO
1874 goto out;
1875 }
a2bbe682
DL
1876 if (last_idx >= 0)
1877 fib_result_assign(res, last_resort);
971b893e
DL
1878 tb->tb_default = last_idx;
1879out:
2373ce1c 1880 rcu_read_unlock();
19baf839
RO
1881}
1882
a07f5f50
SH
1883static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1884 struct fib_table *tb,
19baf839
RO
1885 struct sk_buff *skb, struct netlink_callback *cb)
1886{
1887 int i, s_i;
1888 struct fib_alias *fa;
32ab5f80 1889 __be32 xkey = htonl(key);
19baf839 1890
71d67e66 1891 s_i = cb->args[5];
19baf839
RO
1892 i = 0;
1893
2373ce1c
RO
1894 /* rcu_read_lock is hold by caller */
1895
1896 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1897 if (i < s_i) {
1898 i++;
1899 continue;
1900 }
19baf839
RO
1901
1902 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1903 cb->nlh->nlmsg_seq,
1904 RTM_NEWROUTE,
1905 tb->tb_id,
1906 fa->fa_type,
1907 fa->fa_scope,
be403ea1 1908 xkey,
19baf839
RO
1909 plen,
1910 fa->fa_tos,
64347f78 1911 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1912 cb->args[5] = i;
19baf839 1913 return -1;
91b9a277 1914 }
19baf839
RO
1915 i++;
1916 }
71d67e66 1917 cb->args[5] = i;
19baf839
RO
1918 return skb->len;
1919}
1920
a88ee229
SH
1921static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1922 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1923{
a88ee229
SH
1924 struct leaf_info *li;
1925 struct hlist_node *node;
1926 int i, s_i;
19baf839 1927
71d67e66 1928 s_i = cb->args[4];
a88ee229 1929 i = 0;
19baf839 1930
a88ee229
SH
1931 /* rcu_read_lock is hold by caller */
1932 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1933 if (i < s_i) {
1934 i++;
19baf839 1935 continue;
a88ee229 1936 }
91b9a277 1937
a88ee229 1938 if (i > s_i)
71d67e66 1939 cb->args[5] = 0;
19baf839 1940
a88ee229 1941 if (list_empty(&li->falh))
19baf839
RO
1942 continue;
1943
a88ee229 1944 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1945 cb->args[4] = i;
19baf839
RO
1946 return -1;
1947 }
a88ee229 1948 i++;
19baf839 1949 }
a88ee229 1950
71d67e66 1951 cb->args[4] = i;
19baf839
RO
1952 return skb->len;
1953}
1954
16c6cf8b
SH
1955int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1956 struct netlink_callback *cb)
19baf839 1957{
a88ee229 1958 struct leaf *l;
19baf839 1959 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1960 t_key key = cb->args[2];
71d67e66 1961 int count = cb->args[3];
19baf839 1962
2373ce1c 1963 rcu_read_lock();
d5ce8a0e
SH
1964 /* Dump starting at last key.
1965 * Note: 0.0.0.0/0 (ie default) is first key.
1966 */
71d67e66 1967 if (count == 0)
d5ce8a0e
SH
1968 l = trie_firstleaf(t);
1969 else {
71d67e66
SH
1970 /* Normally, continue from last key, but if that is missing
1971 * fallback to using slow rescan
1972 */
d5ce8a0e 1973 l = fib_find_node(t, key);
71d67e66
SH
1974 if (!l)
1975 l = trie_leafindex(t, count);
d5ce8a0e 1976 }
a88ee229 1977
d5ce8a0e
SH
1978 while (l) {
1979 cb->args[2] = l->key;
a88ee229 1980 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1981 cb->args[3] = count;
a88ee229 1982 rcu_read_unlock();
a88ee229 1983 return -1;
19baf839 1984 }
d5ce8a0e 1985
71d67e66 1986 ++count;
d5ce8a0e 1987 l = trie_nextleaf(l);
71d67e66
SH
1988 memset(&cb->args[4], 0,
1989 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1990 }
71d67e66 1991 cb->args[3] = count;
2373ce1c 1992 rcu_read_unlock();
a88ee229 1993
19baf839 1994 return skb->len;
19baf839
RO
1995}
1996
7f9b8052
SH
1997void __init fib_hash_init(void)
1998{
a07f5f50
SH
1999 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2000 sizeof(struct fib_alias),
bc3c8c1e
SH
2001 0, SLAB_PANIC, NULL);
2002
2003 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2004 max(sizeof(struct leaf),
2005 sizeof(struct leaf_info)),
2006 0, SLAB_PANIC, NULL);
7f9b8052 2007}
19baf839 2008
7f9b8052
SH
2009
2010/* Fix more generic FIB names for init later */
2011struct fib_table *fib_hash_table(u32 id)
19baf839
RO
2012{
2013 struct fib_table *tb;
2014 struct trie *t;
2015
19baf839
RO
2016 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2017 GFP_KERNEL);
2018 if (tb == NULL)
2019 return NULL;
2020
2021 tb->tb_id = id;
971b893e 2022 tb->tb_default = -1;
19baf839
RO
2023
2024 t = (struct trie *) tb->tb_data;
c28a1cf4 2025 memset(t, 0, sizeof(*t));
19baf839 2026
19baf839 2027 if (id == RT_TABLE_LOCAL)
a07f5f50 2028 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2029
2030 return tb;
2031}
2032
cb7b593c
SH
2033#ifdef CONFIG_PROC_FS
2034/* Depth first Trie walk iterator */
2035struct fib_trie_iter {
1c340b2f 2036 struct seq_net_private p;
3d3b2d25 2037 struct fib_table *tb;
cb7b593c 2038 struct tnode *tnode;
cb7b593c
SH
2039 unsigned index;
2040 unsigned depth;
2041};
19baf839 2042
cb7b593c 2043static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2044{
cb7b593c
SH
2045 struct tnode *tn = iter->tnode;
2046 unsigned cindex = iter->index;
2047 struct tnode *p;
19baf839 2048
6640e697
EB
2049 /* A single entry routing table */
2050 if (!tn)
2051 return NULL;
2052
cb7b593c
SH
2053 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2054 iter->tnode, iter->index, iter->depth);
2055rescan:
2056 while (cindex < (1<<tn->bits)) {
b59cfbf7 2057 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2058
cb7b593c
SH
2059 if (n) {
2060 if (IS_LEAF(n)) {
2061 iter->tnode = tn;
2062 iter->index = cindex + 1;
2063 } else {
2064 /* push down one level */
2065 iter->tnode = (struct tnode *) n;
2066 iter->index = 0;
2067 ++iter->depth;
2068 }
2069 return n;
2070 }
19baf839 2071
cb7b593c
SH
2072 ++cindex;
2073 }
91b9a277 2074
cb7b593c 2075 /* Current node exhausted, pop back up */
b59cfbf7 2076 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2077 if (p) {
2078 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2079 tn = p;
2080 --iter->depth;
2081 goto rescan;
19baf839 2082 }
cb7b593c
SH
2083
2084 /* got root? */
2085 return NULL;
19baf839
RO
2086}
2087
cb7b593c
SH
2088static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2089 struct trie *t)
19baf839 2090{
3d3b2d25 2091 struct node *n;
5ddf0eb2 2092
132adf54 2093 if (!t)
5ddf0eb2
RO
2094 return NULL;
2095
2096 n = rcu_dereference(t->trie);
3d3b2d25 2097 if (!n)
5ddf0eb2 2098 return NULL;
19baf839 2099
3d3b2d25
SH
2100 if (IS_TNODE(n)) {
2101 iter->tnode = (struct tnode *) n;
2102 iter->index = 0;
2103 iter->depth = 1;
2104 } else {
2105 iter->tnode = NULL;
2106 iter->index = 0;
2107 iter->depth = 0;
91b9a277 2108 }
3d3b2d25
SH
2109
2110 return n;
cb7b593c 2111}
91b9a277 2112
cb7b593c
SH
2113static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2114{
2115 struct node *n;
2116 struct fib_trie_iter iter;
91b9a277 2117
cb7b593c 2118 memset(s, 0, sizeof(*s));
91b9a277 2119
cb7b593c 2120 rcu_read_lock();
3d3b2d25 2121 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2122 if (IS_LEAF(n)) {
93672292
SH
2123 struct leaf *l = (struct leaf *)n;
2124 struct leaf_info *li;
2125 struct hlist_node *tmp;
2126
cb7b593c
SH
2127 s->leaves++;
2128 s->totdepth += iter.depth;
2129 if (iter.depth > s->maxdepth)
2130 s->maxdepth = iter.depth;
93672292
SH
2131
2132 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2133 ++s->prefixes;
cb7b593c
SH
2134 } else {
2135 const struct tnode *tn = (const struct tnode *) n;
2136 int i;
2137
2138 s->tnodes++;
132adf54 2139 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2140 s->nodesizes[tn->bits]++;
2141
cb7b593c
SH
2142 for (i = 0; i < (1<<tn->bits); i++)
2143 if (!tn->child[i])
2144 s->nullpointers++;
19baf839 2145 }
19baf839 2146 }
2373ce1c 2147 rcu_read_unlock();
19baf839
RO
2148}
2149
cb7b593c
SH
2150/*
2151 * This outputs /proc/net/fib_triestats
2152 */
2153static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2154{
cb7b593c 2155 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2156
cb7b593c
SH
2157 if (stat->leaves)
2158 avdepth = stat->totdepth*100 / stat->leaves;
2159 else
2160 avdepth = 0;
91b9a277 2161
a07f5f50
SH
2162 seq_printf(seq, "\tAver depth: %u.%02d\n",
2163 avdepth / 100, avdepth % 100);
cb7b593c 2164 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2165
cb7b593c 2166 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2167 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2168
2169 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2170 bytes += sizeof(struct leaf_info) * stat->prefixes;
2171
187b5188 2172 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2173 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2174
06ef921d
RO
2175 max = MAX_STAT_DEPTH;
2176 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2177 max--;
19baf839 2178
cb7b593c
SH
2179 pointers = 0;
2180 for (i = 1; i <= max; i++)
2181 if (stat->nodesizes[i] != 0) {
187b5188 2182 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2183 pointers += (1<<i) * stat->nodesizes[i];
2184 }
2185 seq_putc(seq, '\n');
187b5188 2186 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2187
cb7b593c 2188 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2189 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2190 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2191}
2373ce1c 2192
cb7b593c 2193#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2194static void trie_show_usage(struct seq_file *seq,
2195 const struct trie_use_stats *stats)
2196{
2197 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2198 seq_printf(seq, "gets = %u\n", stats->gets);
2199 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2200 seq_printf(seq, "semantic match passed = %u\n",
2201 stats->semantic_match_passed);
2202 seq_printf(seq, "semantic match miss = %u\n",
2203 stats->semantic_match_miss);
2204 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2205 seq_printf(seq, "skipped node resize = %u\n\n",
2206 stats->resize_node_skipped);
cb7b593c 2207}
66a2f7fd
SH
2208#endif /* CONFIG_IP_FIB_TRIE_STATS */
2209
3d3b2d25 2210static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2211{
3d3b2d25
SH
2212 if (tb->tb_id == RT_TABLE_LOCAL)
2213 seq_puts(seq, "Local:\n");
2214 else if (tb->tb_id == RT_TABLE_MAIN)
2215 seq_puts(seq, "Main:\n");
2216 else
2217 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2218}
19baf839 2219
3d3b2d25 2220
cb7b593c
SH
2221static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2222{
1c340b2f 2223 struct net *net = (struct net *)seq->private;
3d3b2d25 2224 unsigned int h;
877a9bff 2225
d717a9a6 2226 seq_printf(seq,
a07f5f50
SH
2227 "Basic info: size of leaf:"
2228 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2229 sizeof(struct leaf), sizeof(struct tnode));
2230
3d3b2d25
SH
2231 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2232 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2233 struct hlist_node *node;
2234 struct fib_table *tb;
2235
2236 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2237 struct trie *t = (struct trie *) tb->tb_data;
2238 struct trie_stat stat;
877a9bff 2239
3d3b2d25
SH
2240 if (!t)
2241 continue;
2242
2243 fib_table_print(seq, tb);
2244
2245 trie_collect_stats(t, &stat);
2246 trie_show_stats(seq, &stat);
2247#ifdef CONFIG_IP_FIB_TRIE_STATS
2248 trie_show_usage(seq, &t->stats);
2249#endif
2250 }
2251 }
19baf839 2252
cb7b593c 2253 return 0;
19baf839
RO
2254}
2255
cb7b593c 2256static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2257{
de05c557 2258 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2259}
2260
9a32144e 2261static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2262 .owner = THIS_MODULE,
2263 .open = fib_triestat_seq_open,
2264 .read = seq_read,
2265 .llseek = seq_lseek,
b6fcbdb4 2266 .release = single_release_net,
cb7b593c
SH
2267};
2268
1218854a 2269static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2270{
1218854a
YH
2271 struct fib_trie_iter *iter = seq->private;
2272 struct net *net = seq_file_net(seq);
cb7b593c 2273 loff_t idx = 0;
3d3b2d25 2274 unsigned int h;
cb7b593c 2275
3d3b2d25
SH
2276 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2277 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2278 struct hlist_node *node;
2279 struct fib_table *tb;
cb7b593c 2280
3d3b2d25
SH
2281 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2282 struct node *n;
2283
2284 for (n = fib_trie_get_first(iter,
2285 (struct trie *) tb->tb_data);
2286 n; n = fib_trie_get_next(iter))
2287 if (pos == idx++) {
2288 iter->tb = tb;
2289 return n;
2290 }
2291 }
cb7b593c 2292 }
3d3b2d25 2293
19baf839
RO
2294 return NULL;
2295}
2296
cb7b593c 2297static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2298 __acquires(RCU)
19baf839 2299{
cb7b593c 2300 rcu_read_lock();
1218854a 2301 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2302}
2303
cb7b593c 2304static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2305{
cb7b593c 2306 struct fib_trie_iter *iter = seq->private;
1218854a 2307 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2308 struct fib_table *tb = iter->tb;
2309 struct hlist_node *tb_node;
2310 unsigned int h;
2311 struct node *n;
cb7b593c 2312
19baf839 2313 ++*pos;
3d3b2d25
SH
2314 /* next node in same table */
2315 n = fib_trie_get_next(iter);
2316 if (n)
2317 return n;
19baf839 2318
3d3b2d25
SH
2319 /* walk rest of this hash chain */
2320 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2321 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2322 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2323 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2324 if (n)
2325 goto found;
2326 }
19baf839 2327
3d3b2d25
SH
2328 /* new hash chain */
2329 while (++h < FIB_TABLE_HASHSZ) {
2330 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2331 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2332 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2333 if (n)
2334 goto found;
2335 }
2336 }
cb7b593c 2337 return NULL;
3d3b2d25
SH
2338
2339found:
2340 iter->tb = tb;
2341 return n;
cb7b593c 2342}
19baf839 2343
cb7b593c 2344static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2345 __releases(RCU)
19baf839 2346{
cb7b593c
SH
2347 rcu_read_unlock();
2348}
91b9a277 2349
cb7b593c
SH
2350static void seq_indent(struct seq_file *seq, int n)
2351{
2352 while (n-- > 0) seq_puts(seq, " ");
2353}
19baf839 2354
28d36e37 2355static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2356{
132adf54 2357 switch (s) {
cb7b593c
SH
2358 case RT_SCOPE_UNIVERSE: return "universe";
2359 case RT_SCOPE_SITE: return "site";
2360 case RT_SCOPE_LINK: return "link";
2361 case RT_SCOPE_HOST: return "host";
2362 case RT_SCOPE_NOWHERE: return "nowhere";
2363 default:
28d36e37 2364 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2365 return buf;
2366 }
2367}
19baf839 2368
36cbd3dc 2369static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2370 [RTN_UNSPEC] = "UNSPEC",
2371 [RTN_UNICAST] = "UNICAST",
2372 [RTN_LOCAL] = "LOCAL",
2373 [RTN_BROADCAST] = "BROADCAST",
2374 [RTN_ANYCAST] = "ANYCAST",
2375 [RTN_MULTICAST] = "MULTICAST",
2376 [RTN_BLACKHOLE] = "BLACKHOLE",
2377 [RTN_UNREACHABLE] = "UNREACHABLE",
2378 [RTN_PROHIBIT] = "PROHIBIT",
2379 [RTN_THROW] = "THROW",
2380 [RTN_NAT] = "NAT",
2381 [RTN_XRESOLVE] = "XRESOLVE",
2382};
19baf839 2383
28d36e37 2384static inline const char *rtn_type(char *buf, size_t len, unsigned t)
cb7b593c 2385{
cb7b593c
SH
2386 if (t < __RTN_MAX && rtn_type_names[t])
2387 return rtn_type_names[t];
28d36e37 2388 snprintf(buf, len, "type %u", t);
cb7b593c 2389 return buf;
19baf839
RO
2390}
2391
cb7b593c
SH
2392/* Pretty print the trie */
2393static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2394{
cb7b593c
SH
2395 const struct fib_trie_iter *iter = seq->private;
2396 struct node *n = v;
c877efb2 2397
3d3b2d25
SH
2398 if (!node_parent_rcu(n))
2399 fib_table_print(seq, iter->tb);
095b8501 2400
cb7b593c
SH
2401 if (IS_TNODE(n)) {
2402 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2403 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2404
1d25cd6c 2405 seq_indent(seq, iter->depth-1);
673d57e7
HH
2406 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2407 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2408 tn->empty_children);
e905a9ed 2409
cb7b593c
SH
2410 } else {
2411 struct leaf *l = (struct leaf *) n;
1328042e
SH
2412 struct leaf_info *li;
2413 struct hlist_node *node;
32ab5f80 2414 __be32 val = htonl(l->key);
cb7b593c
SH
2415
2416 seq_indent(seq, iter->depth);
673d57e7 2417 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2418
2419 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2420 struct fib_alias *fa;
2421
2422 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2423 char buf1[32], buf2[32];
2424
2425 seq_indent(seq, iter->depth+1);
2426 seq_printf(seq, " /%d %s %s", li->plen,
2427 rtn_scope(buf1, sizeof(buf1),
2428 fa->fa_scope),
2429 rtn_type(buf2, sizeof(buf2),
2430 fa->fa_type));
2431 if (fa->fa_tos)
b9c4d82a 2432 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2433 seq_putc(seq, '\n');
cb7b593c
SH
2434 }
2435 }
19baf839 2436 }
cb7b593c 2437
19baf839
RO
2438 return 0;
2439}
2440
f690808e 2441static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2442 .start = fib_trie_seq_start,
2443 .next = fib_trie_seq_next,
2444 .stop = fib_trie_seq_stop,
2445 .show = fib_trie_seq_show,
19baf839
RO
2446};
2447
cb7b593c 2448static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2449{
1c340b2f
DL
2450 return seq_open_net(inode, file, &fib_trie_seq_ops,
2451 sizeof(struct fib_trie_iter));
19baf839
RO
2452}
2453
9a32144e 2454static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2455 .owner = THIS_MODULE,
2456 .open = fib_trie_seq_open,
2457 .read = seq_read,
2458 .llseek = seq_lseek,
1c340b2f 2459 .release = seq_release_net,
19baf839
RO
2460};
2461
8315f5d8
SH
2462struct fib_route_iter {
2463 struct seq_net_private p;
2464 struct trie *main_trie;
2465 loff_t pos;
2466 t_key key;
2467};
2468
2469static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2470{
2471 struct leaf *l = NULL;
2472 struct trie *t = iter->main_trie;
2473
2474 /* use cache location of last found key */
2475 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2476 pos -= iter->pos;
2477 else {
2478 iter->pos = 0;
2479 l = trie_firstleaf(t);
2480 }
2481
2482 while (l && pos-- > 0) {
2483 iter->pos++;
2484 l = trie_nextleaf(l);
2485 }
2486
2487 if (l)
2488 iter->key = pos; /* remember it */
2489 else
2490 iter->pos = 0; /* forget it */
2491
2492 return l;
2493}
2494
2495static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2496 __acquires(RCU)
2497{
2498 struct fib_route_iter *iter = seq->private;
2499 struct fib_table *tb;
2500
2501 rcu_read_lock();
1218854a 2502 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2503 if (!tb)
2504 return NULL;
2505
2506 iter->main_trie = (struct trie *) tb->tb_data;
2507 if (*pos == 0)
2508 return SEQ_START_TOKEN;
2509 else
2510 return fib_route_get_idx(iter, *pos - 1);
2511}
2512
2513static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2514{
2515 struct fib_route_iter *iter = seq->private;
2516 struct leaf *l = v;
2517
2518 ++*pos;
2519 if (v == SEQ_START_TOKEN) {
2520 iter->pos = 0;
2521 l = trie_firstleaf(iter->main_trie);
2522 } else {
2523 iter->pos++;
2524 l = trie_nextleaf(l);
2525 }
2526
2527 if (l)
2528 iter->key = l->key;
2529 else
2530 iter->pos = 0;
2531 return l;
2532}
2533
2534static void fib_route_seq_stop(struct seq_file *seq, void *v)
2535 __releases(RCU)
2536{
2537 rcu_read_unlock();
2538}
2539
32ab5f80 2540static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2541{
cb7b593c
SH
2542 static unsigned type2flags[RTN_MAX + 1] = {
2543 [7] = RTF_REJECT, [8] = RTF_REJECT,
2544 };
2545 unsigned flags = type2flags[type];
19baf839 2546
cb7b593c
SH
2547 if (fi && fi->fib_nh->nh_gw)
2548 flags |= RTF_GATEWAY;
32ab5f80 2549 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2550 flags |= RTF_HOST;
2551 flags |= RTF_UP;
2552 return flags;
19baf839
RO
2553}
2554
cb7b593c
SH
2555/*
2556 * This outputs /proc/net/route.
2557 * The format of the file is not supposed to be changed
2558 * and needs to be same as fib_hash output to avoid breaking
2559 * legacy utilities
2560 */
2561static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2562{
cb7b593c 2563 struct leaf *l = v;
1328042e
SH
2564 struct leaf_info *li;
2565 struct hlist_node *node;
19baf839 2566
cb7b593c
SH
2567 if (v == SEQ_START_TOKEN) {
2568 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2569 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2570 "\tWindow\tIRTT");
2571 return 0;
2572 }
19baf839 2573
1328042e 2574 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2575 struct fib_alias *fa;
32ab5f80 2576 __be32 mask, prefix;
91b9a277 2577
cb7b593c
SH
2578 mask = inet_make_mask(li->plen);
2579 prefix = htonl(l->key);
19baf839 2580
cb7b593c 2581 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2582 const struct fib_info *fi = fa->fa_info;
cb7b593c 2583 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2584 int len;
19baf839 2585
cb7b593c
SH
2586 if (fa->fa_type == RTN_BROADCAST
2587 || fa->fa_type == RTN_MULTICAST)
2588 continue;
19baf839 2589
cb7b593c 2590 if (fi)
5e659e4c
PE
2591 seq_printf(seq,
2592 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2593 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2594 fi->fib_dev ? fi->fib_dev->name : "*",
2595 prefix,
2596 fi->fib_nh->nh_gw, flags, 0, 0,
2597 fi->fib_priority,
2598 mask,
a07f5f50
SH
2599 (fi->fib_advmss ?
2600 fi->fib_advmss + 40 : 0),
cb7b593c 2601 fi->fib_window,
5e659e4c 2602 fi->fib_rtt >> 3, &len);
cb7b593c 2603 else
5e659e4c
PE
2604 seq_printf(seq,
2605 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2606 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2607 prefix, 0, flags, 0, 0, 0,
5e659e4c 2608 mask, 0, 0, 0, &len);
19baf839 2609
5e659e4c 2610 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2611 }
19baf839
RO
2612 }
2613
2614 return 0;
2615}
2616
f690808e 2617static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2618 .start = fib_route_seq_start,
2619 .next = fib_route_seq_next,
2620 .stop = fib_route_seq_stop,
cb7b593c 2621 .show = fib_route_seq_show,
19baf839
RO
2622};
2623
cb7b593c 2624static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2625{
1c340b2f 2626 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2627 sizeof(struct fib_route_iter));
19baf839
RO
2628}
2629
9a32144e 2630static const struct file_operations fib_route_fops = {
cb7b593c
SH
2631 .owner = THIS_MODULE,
2632 .open = fib_route_seq_open,
2633 .read = seq_read,
2634 .llseek = seq_lseek,
1c340b2f 2635 .release = seq_release_net,
19baf839
RO
2636};
2637
61a02653 2638int __net_init fib_proc_init(struct net *net)
19baf839 2639{
61a02653 2640 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2641 goto out1;
2642
61a02653
DL
2643 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2644 &fib_triestat_fops))
cb7b593c
SH
2645 goto out2;
2646
61a02653 2647 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2648 goto out3;
2649
19baf839 2650 return 0;
cb7b593c
SH
2651
2652out3:
61a02653 2653 proc_net_remove(net, "fib_triestat");
cb7b593c 2654out2:
61a02653 2655 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2656out1:
2657 return -ENOMEM;
19baf839
RO
2658}
2659
61a02653 2660void __net_exit fib_proc_exit(struct net *net)
19baf839 2661{
61a02653
DL
2662 proc_net_remove(net, "fib_trie");
2663 proc_net_remove(net, "fib_triestat");
2664 proc_net_remove(net, "route");
19baf839
RO
2665}
2666
2667#endif /* CONFIG_PROC_FS */