net: Remove unused parameter from fill method in fib_rules_ops.
[linux-2.6-block.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
05eee48c 51#define VERSION "0.408"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
457c4cbc 74#include <net/net_namespace.h>
19baf839
RO
75#include <net/ip.h>
76#include <net/protocol.h>
77#include <net/route.h>
78#include <net/tcp.h>
79#include <net/sock.h>
80#include <net/ip_fib.h>
81#include "fib_lookup.h"
82
06ef921d 83#define MAX_STAT_DEPTH 32
19baf839 84
19baf839 85#define KEYLENGTH (8*sizeof(t_key))
19baf839 86
19baf839
RO
87typedef unsigned int t_key;
88
89#define T_TNODE 0
90#define T_LEAF 1
91#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
92#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
93
91b9a277
OJ
94#define IS_TNODE(n) (!(n->parent & T_LEAF))
95#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
96
97struct node {
91b9a277 98 unsigned long parent;
8d965444 99 t_key key;
19baf839
RO
100};
101
102struct leaf {
91b9a277 103 unsigned long parent;
8d965444 104 t_key key;
19baf839 105 struct hlist_head list;
2373ce1c 106 struct rcu_head rcu;
19baf839
RO
107};
108
109struct leaf_info {
110 struct hlist_node hlist;
2373ce1c 111 struct rcu_head rcu;
19baf839
RO
112 int plen;
113 struct list_head falh;
114};
115
116struct tnode {
91b9a277 117 unsigned long parent;
8d965444 118 t_key key;
112d8cfc
ED
119 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
120 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
121 unsigned int full_children; /* KEYLENGTH bits needed */
122 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
123 union {
124 struct rcu_head rcu;
125 struct work_struct work;
126 };
91b9a277 127 struct node *child[0];
19baf839
RO
128};
129
130#ifdef CONFIG_IP_FIB_TRIE_STATS
131struct trie_use_stats {
132 unsigned int gets;
133 unsigned int backtrack;
134 unsigned int semantic_match_passed;
135 unsigned int semantic_match_miss;
136 unsigned int null_node_hit;
2f36895a 137 unsigned int resize_node_skipped;
19baf839
RO
138};
139#endif
140
141struct trie_stat {
142 unsigned int totdepth;
143 unsigned int maxdepth;
144 unsigned int tnodes;
145 unsigned int leaves;
146 unsigned int nullpointers;
93672292 147 unsigned int prefixes;
06ef921d 148 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 149};
19baf839
RO
150
151struct trie {
91b9a277 152 struct node *trie;
19baf839
RO
153#ifdef CONFIG_IP_FIB_TRIE_STATS
154 struct trie_use_stats stats;
155#endif
19baf839
RO
156};
157
19baf839 158static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
159static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
160 int wasfull);
19baf839 161static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
162static struct tnode *inflate(struct trie *t, struct tnode *tn);
163static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 164
e18b890b 165static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 166static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 167
06801916
SH
168static inline struct tnode *node_parent(struct node *node)
169{
b59cfbf7
ED
170 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
171}
172
173static inline struct tnode *node_parent_rcu(struct node *node)
174{
175 struct tnode *ret = node_parent(node);
06801916 176
06801916
SH
177 return rcu_dereference(ret);
178}
179
6440cc9e
SH
180/* Same as rcu_assign_pointer
181 * but that macro() assumes that value is a pointer.
182 */
06801916
SH
183static inline void node_set_parent(struct node *node, struct tnode *ptr)
184{
6440cc9e
SH
185 smp_wmb();
186 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 187}
2373ce1c 188
b59cfbf7
ED
189static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
190{
191 BUG_ON(i >= 1U << tn->bits);
2373ce1c 192
b59cfbf7
ED
193 return tn->child[i];
194}
195
196static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 197{
b59cfbf7 198 struct node *ret = tnode_get_child(tn, i);
19baf839 199
b59cfbf7 200 return rcu_dereference(ret);
19baf839
RO
201}
202
bb435b8d 203static inline int tnode_child_length(const struct tnode *tn)
19baf839 204{
91b9a277 205 return 1 << tn->bits;
19baf839
RO
206}
207
ab66b4a7
SH
208static inline t_key mask_pfx(t_key k, unsigned short l)
209{
210 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
211}
212
19baf839
RO
213static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
214{
91b9a277 215 if (offset < KEYLENGTH)
19baf839 216 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 217 else
19baf839
RO
218 return 0;
219}
220
221static inline int tkey_equals(t_key a, t_key b)
222{
c877efb2 223 return a == b;
19baf839
RO
224}
225
226static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
227{
c877efb2
SH
228 if (bits == 0 || offset >= KEYLENGTH)
229 return 1;
91b9a277
OJ
230 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
231 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 232}
19baf839
RO
233
234static inline int tkey_mismatch(t_key a, int offset, t_key b)
235{
236 t_key diff = a ^ b;
237 int i = offset;
238
c877efb2
SH
239 if (!diff)
240 return 0;
241 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
242 i++;
243 return i;
244}
245
19baf839 246/*
e905a9ed
YH
247 To understand this stuff, an understanding of keys and all their bits is
248 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
249 all of the bits in that key are significant.
250
251 Consider a node 'n' and its parent 'tp'.
252
e905a9ed
YH
253 If n is a leaf, every bit in its key is significant. Its presence is
254 necessitated by path compression, since during a tree traversal (when
255 searching for a leaf - unless we are doing an insertion) we will completely
256 ignore all skipped bits we encounter. Thus we need to verify, at the end of
257 a potentially successful search, that we have indeed been walking the
19baf839
RO
258 correct key path.
259
e905a9ed
YH
260 Note that we can never "miss" the correct key in the tree if present by
261 following the wrong path. Path compression ensures that segments of the key
262 that are the same for all keys with a given prefix are skipped, but the
263 skipped part *is* identical for each node in the subtrie below the skipped
264 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
265 call to tkey_sub_equals() in trie_insert().
266
e905a9ed 267 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
268 have many different meanings.
269
e905a9ed 270 Example:
19baf839
RO
271 _________________________________________________________________
272 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
273 -----------------------------------------------------------------
e905a9ed 274 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
275
276 _________________________________________________________________
277 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
278 -----------------------------------------------------------------
279 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
280
281 tp->pos = 7
282 tp->bits = 3
283 n->pos = 15
91b9a277 284 n->bits = 4
19baf839 285
e905a9ed
YH
286 First, let's just ignore the bits that come before the parent tp, that is
287 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
288 not use them for anything.
289
290 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 291 index into the parent's child array. That is, they will be used to find
19baf839
RO
292 'n' among tp's children.
293
294 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
295 for the node n.
296
e905a9ed 297 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
298 of the bits are really not needed or indeed known in n->key.
299
e905a9ed 300 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 301 n's child array, and will of course be different for each child.
e905a9ed 302
c877efb2 303
19baf839
RO
304 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
305 at this point.
306
307*/
308
0c7770c7 309static inline void check_tnode(const struct tnode *tn)
19baf839 310{
0c7770c7 311 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
312}
313
f5026fab
DL
314static const int halve_threshold = 25;
315static const int inflate_threshold = 50;
316static const int halve_threshold_root = 8;
317static const int inflate_threshold_root = 15;
19baf839 318
2373ce1c
RO
319
320static void __alias_free_mem(struct rcu_head *head)
19baf839 321{
2373ce1c
RO
322 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
323 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
324}
325
2373ce1c 326static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 327{
2373ce1c
RO
328 call_rcu(&fa->rcu, __alias_free_mem);
329}
91b9a277 330
2373ce1c
RO
331static void __leaf_free_rcu(struct rcu_head *head)
332{
bc3c8c1e
SH
333 struct leaf *l = container_of(head, struct leaf, rcu);
334 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 335}
91b9a277 336
387a5487
SH
337static inline void free_leaf(struct leaf *l)
338{
339 call_rcu_bh(&l->rcu, __leaf_free_rcu);
340}
341
2373ce1c 342static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 343{
2373ce1c 344 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
345}
346
2373ce1c 347static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 348{
2373ce1c 349 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
350}
351
8d965444 352static struct tnode *tnode_alloc(size_t size)
f0e36f8c 353{
2373ce1c 354 if (size <= PAGE_SIZE)
8d965444 355 return kzalloc(size, GFP_KERNEL);
15be75cd
SH
356 else
357 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
358}
2373ce1c 359
15be75cd
SH
360static void __tnode_vfree(struct work_struct *arg)
361{
362 struct tnode *tn = container_of(arg, struct tnode, work);
363 vfree(tn);
f0e36f8c
PM
364}
365
2373ce1c 366static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 367{
2373ce1c 368 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
369 size_t size = sizeof(struct tnode) +
370 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
371
372 if (size <= PAGE_SIZE)
373 kfree(tn);
15be75cd
SH
374 else {
375 INIT_WORK(&tn->work, __tnode_vfree);
376 schedule_work(&tn->work);
377 }
f0e36f8c
PM
378}
379
2373ce1c
RO
380static inline void tnode_free(struct tnode *tn)
381{
387a5487
SH
382 if (IS_LEAF(tn))
383 free_leaf((struct leaf *) tn);
384 else
550e29bc 385 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
386}
387
388static struct leaf *leaf_new(void)
389{
bc3c8c1e 390 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
391 if (l) {
392 l->parent = T_LEAF;
393 INIT_HLIST_HEAD(&l->list);
394 }
395 return l;
396}
397
398static struct leaf_info *leaf_info_new(int plen)
399{
400 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
401 if (li) {
402 li->plen = plen;
403 INIT_LIST_HEAD(&li->falh);
404 }
405 return li;
406}
407
a07f5f50 408static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 409{
8d965444 410 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 411 struct tnode *tn = tnode_alloc(sz);
19baf839 412
91b9a277 413 if (tn) {
2373ce1c 414 tn->parent = T_TNODE;
19baf839
RO
415 tn->pos = pos;
416 tn->bits = bits;
417 tn->key = key;
418 tn->full_children = 0;
419 tn->empty_children = 1<<bits;
420 }
c877efb2 421
8d965444
ED
422 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
423 (unsigned long) (sizeof(struct node) << bits));
19baf839
RO
424 return tn;
425}
426
19baf839
RO
427/*
428 * Check whether a tnode 'n' is "full", i.e. it is an internal node
429 * and no bits are skipped. See discussion in dyntree paper p. 6
430 */
431
bb435b8d 432static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 433{
c877efb2 434 if (n == NULL || IS_LEAF(n))
19baf839
RO
435 return 0;
436
437 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
438}
439
a07f5f50
SH
440static inline void put_child(struct trie *t, struct tnode *tn, int i,
441 struct node *n)
19baf839
RO
442{
443 tnode_put_child_reorg(tn, i, n, -1);
444}
445
c877efb2 446 /*
19baf839
RO
447 * Add a child at position i overwriting the old value.
448 * Update the value of full_children and empty_children.
449 */
450
a07f5f50
SH
451static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
452 int wasfull)
19baf839 453{
2373ce1c 454 struct node *chi = tn->child[i];
19baf839
RO
455 int isfull;
456
0c7770c7
SH
457 BUG_ON(i >= 1<<tn->bits);
458
19baf839
RO
459 /* update emptyChildren */
460 if (n == NULL && chi != NULL)
461 tn->empty_children++;
462 else if (n != NULL && chi == NULL)
463 tn->empty_children--;
c877efb2 464
19baf839 465 /* update fullChildren */
91b9a277 466 if (wasfull == -1)
19baf839
RO
467 wasfull = tnode_full(tn, chi);
468
469 isfull = tnode_full(tn, n);
c877efb2 470 if (wasfull && !isfull)
19baf839 471 tn->full_children--;
c877efb2 472 else if (!wasfull && isfull)
19baf839 473 tn->full_children++;
91b9a277 474
c877efb2 475 if (n)
06801916 476 node_set_parent(n, tn);
19baf839 477
2373ce1c 478 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
479}
480
c877efb2 481static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
482{
483 int i;
2f36895a 484 int err = 0;
2f80b3c8 485 struct tnode *old_tn;
e6308be8
RO
486 int inflate_threshold_use;
487 int halve_threshold_use;
05eee48c 488 int max_resize;
19baf839 489
e905a9ed 490 if (!tn)
19baf839
RO
491 return NULL;
492
0c7770c7
SH
493 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
494 tn, inflate_threshold, halve_threshold);
19baf839
RO
495
496 /* No children */
497 if (tn->empty_children == tnode_child_length(tn)) {
498 tnode_free(tn);
499 return NULL;
500 }
501 /* One child */
502 if (tn->empty_children == tnode_child_length(tn) - 1)
503 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 504 struct node *n;
19baf839 505
91b9a277 506 n = tn->child[i];
2373ce1c 507 if (!n)
91b9a277 508 continue;
91b9a277
OJ
509
510 /* compress one level */
06801916 511 node_set_parent(n, NULL);
91b9a277
OJ
512 tnode_free(tn);
513 return n;
19baf839 514 }
c877efb2 515 /*
19baf839
RO
516 * Double as long as the resulting node has a number of
517 * nonempty nodes that are above the threshold.
518 */
519
520 /*
c877efb2
SH
521 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
522 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 523 * Telecommunications, page 6:
c877efb2 524 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
525 * children in the *doubled* node is at least 'high'."
526 *
c877efb2
SH
527 * 'high' in this instance is the variable 'inflate_threshold'. It
528 * is expressed as a percentage, so we multiply it with
529 * tnode_child_length() and instead of multiplying by 2 (since the
530 * child array will be doubled by inflate()) and multiplying
531 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 532 * multiply the left-hand side by 50.
c877efb2
SH
533 *
534 * The left-hand side may look a bit weird: tnode_child_length(tn)
535 * - tn->empty_children is of course the number of non-null children
536 * in the current node. tn->full_children is the number of "full"
19baf839 537 * children, that is non-null tnodes with a skip value of 0.
c877efb2 538 * All of those will be doubled in the resulting inflated tnode, so
19baf839 539 * we just count them one extra time here.
c877efb2 540 *
19baf839 541 * A clearer way to write this would be:
c877efb2 542 *
19baf839 543 * to_be_doubled = tn->full_children;
c877efb2 544 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
545 * tn->full_children;
546 *
547 * new_child_length = tnode_child_length(tn) * 2;
548 *
c877efb2 549 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
550 * new_child_length;
551 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
552 *
553 * ...and so on, tho it would mess up the while () loop.
554 *
19baf839
RO
555 * anyway,
556 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
557 * inflate_threshold
c877efb2 558 *
19baf839
RO
559 * avoid a division:
560 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
561 * inflate_threshold * new_child_length
c877efb2 562 *
19baf839 563 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 564 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 565 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 566 *
19baf839 567 * expand new_child_length:
c877efb2 568 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 569 * tn->full_children) >=
19baf839 570 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 571 *
19baf839 572 * shorten again:
c877efb2 573 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 574 * tn->empty_children) >= inflate_threshold *
19baf839 575 * tnode_child_length(tn)
c877efb2 576 *
19baf839
RO
577 */
578
579 check_tnode(tn);
c877efb2 580
e6308be8
RO
581 /* Keep root node larger */
582
132adf54 583 if (!tn->parent)
e6308be8 584 inflate_threshold_use = inflate_threshold_root;
e905a9ed 585 else
e6308be8
RO
586 inflate_threshold_use = inflate_threshold;
587
2f36895a 588 err = 0;
05eee48c
RO
589 max_resize = 10;
590 while ((tn->full_children > 0 && max_resize-- &&
a07f5f50
SH
591 50 * (tn->full_children + tnode_child_length(tn)
592 - tn->empty_children)
593 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 594
2f80b3c8
RO
595 old_tn = tn;
596 tn = inflate(t, tn);
a07f5f50 597
2f80b3c8
RO
598 if (IS_ERR(tn)) {
599 tn = old_tn;
2f36895a
RO
600#ifdef CONFIG_IP_FIB_TRIE_STATS
601 t->stats.resize_node_skipped++;
602#endif
603 break;
604 }
19baf839
RO
605 }
606
05eee48c
RO
607 if (max_resize < 0) {
608 if (!tn->parent)
a07f5f50
SH
609 pr_warning("Fix inflate_threshold_root."
610 " Now=%d size=%d bits\n",
611 inflate_threshold_root, tn->bits);
05eee48c 612 else
a07f5f50
SH
613 pr_warning("Fix inflate_threshold."
614 " Now=%d size=%d bits\n",
615 inflate_threshold, tn->bits);
05eee48c
RO
616 }
617
19baf839
RO
618 check_tnode(tn);
619
620 /*
621 * Halve as long as the number of empty children in this
622 * node is above threshold.
623 */
2f36895a 624
e6308be8
RO
625
626 /* Keep root node larger */
627
132adf54 628 if (!tn->parent)
e6308be8 629 halve_threshold_use = halve_threshold_root;
e905a9ed 630 else
e6308be8
RO
631 halve_threshold_use = halve_threshold;
632
2f36895a 633 err = 0;
05eee48c
RO
634 max_resize = 10;
635 while (tn->bits > 1 && max_resize-- &&
19baf839 636 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 637 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 638
2f80b3c8
RO
639 old_tn = tn;
640 tn = halve(t, tn);
641 if (IS_ERR(tn)) {
642 tn = old_tn;
2f36895a
RO
643#ifdef CONFIG_IP_FIB_TRIE_STATS
644 t->stats.resize_node_skipped++;
645#endif
646 break;
647 }
648 }
19baf839 649
05eee48c
RO
650 if (max_resize < 0) {
651 if (!tn->parent)
a07f5f50
SH
652 pr_warning("Fix halve_threshold_root."
653 " Now=%d size=%d bits\n",
654 halve_threshold_root, tn->bits);
05eee48c 655 else
a07f5f50
SH
656 pr_warning("Fix halve_threshold."
657 " Now=%d size=%d bits\n",
658 halve_threshold, tn->bits);
05eee48c 659 }
c877efb2 660
19baf839 661 /* Only one child remains */
19baf839
RO
662 if (tn->empty_children == tnode_child_length(tn) - 1)
663 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 664 struct node *n;
19baf839 665
91b9a277 666 n = tn->child[i];
2373ce1c 667 if (!n)
91b9a277 668 continue;
91b9a277
OJ
669
670 /* compress one level */
671
06801916 672 node_set_parent(n, NULL);
91b9a277
OJ
673 tnode_free(tn);
674 return n;
19baf839
RO
675 }
676
677 return (struct node *) tn;
678}
679
2f80b3c8 680static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 681{
19baf839
RO
682 struct tnode *oldtnode = tn;
683 int olen = tnode_child_length(tn);
684 int i;
685
0c7770c7 686 pr_debug("In inflate\n");
19baf839
RO
687
688 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
689
0c7770c7 690 if (!tn)
2f80b3c8 691 return ERR_PTR(-ENOMEM);
2f36895a
RO
692
693 /*
c877efb2
SH
694 * Preallocate and store tnodes before the actual work so we
695 * don't get into an inconsistent state if memory allocation
696 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
697 * of tnode is ignored.
698 */
91b9a277
OJ
699
700 for (i = 0; i < olen; i++) {
a07f5f50 701 struct tnode *inode;
2f36895a 702
a07f5f50 703 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
704 if (inode &&
705 IS_TNODE(inode) &&
706 inode->pos == oldtnode->pos + oldtnode->bits &&
707 inode->bits > 1) {
708 struct tnode *left, *right;
ab66b4a7 709 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 710
2f36895a
RO
711 left = tnode_new(inode->key&(~m), inode->pos + 1,
712 inode->bits - 1);
2f80b3c8
RO
713 if (!left)
714 goto nomem;
91b9a277 715
2f36895a
RO
716 right = tnode_new(inode->key|m, inode->pos + 1,
717 inode->bits - 1);
718
e905a9ed 719 if (!right) {
2f80b3c8
RO
720 tnode_free(left);
721 goto nomem;
e905a9ed 722 }
2f36895a
RO
723
724 put_child(t, tn, 2*i, (struct node *) left);
725 put_child(t, tn, 2*i+1, (struct node *) right);
726 }
727 }
728
91b9a277 729 for (i = 0; i < olen; i++) {
c95aaf9a 730 struct tnode *inode;
19baf839 731 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
732 struct tnode *left, *right;
733 int size, j;
c877efb2 734
19baf839
RO
735 /* An empty child */
736 if (node == NULL)
737 continue;
738
739 /* A leaf or an internal node with skipped bits */
740
c877efb2 741 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 742 tn->pos + tn->bits - 1) {
a07f5f50
SH
743 if (tkey_extract_bits(node->key,
744 oldtnode->pos + oldtnode->bits,
745 1) == 0)
19baf839
RO
746 put_child(t, tn, 2*i, node);
747 else
748 put_child(t, tn, 2*i+1, node);
749 continue;
750 }
751
752 /* An internal node with two children */
753 inode = (struct tnode *) node;
754
755 if (inode->bits == 1) {
756 put_child(t, tn, 2*i, inode->child[0]);
757 put_child(t, tn, 2*i+1, inode->child[1]);
758
759 tnode_free(inode);
91b9a277 760 continue;
19baf839
RO
761 }
762
91b9a277
OJ
763 /* An internal node with more than two children */
764
765 /* We will replace this node 'inode' with two new
766 * ones, 'left' and 'right', each with half of the
767 * original children. The two new nodes will have
768 * a position one bit further down the key and this
769 * means that the "significant" part of their keys
770 * (see the discussion near the top of this file)
771 * will differ by one bit, which will be "0" in
772 * left's key and "1" in right's key. Since we are
773 * moving the key position by one step, the bit that
774 * we are moving away from - the bit at position
775 * (inode->pos) - is the one that will differ between
776 * left and right. So... we synthesize that bit in the
777 * two new keys.
778 * The mask 'm' below will be a single "one" bit at
779 * the position (inode->pos)
780 */
19baf839 781
91b9a277
OJ
782 /* Use the old key, but set the new significant
783 * bit to zero.
784 */
2f36895a 785
91b9a277
OJ
786 left = (struct tnode *) tnode_get_child(tn, 2*i);
787 put_child(t, tn, 2*i, NULL);
2f36895a 788
91b9a277 789 BUG_ON(!left);
2f36895a 790
91b9a277
OJ
791 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
792 put_child(t, tn, 2*i+1, NULL);
19baf839 793
91b9a277 794 BUG_ON(!right);
19baf839 795
91b9a277
OJ
796 size = tnode_child_length(left);
797 for (j = 0; j < size; j++) {
798 put_child(t, left, j, inode->child[j]);
799 put_child(t, right, j, inode->child[j + size]);
19baf839 800 }
91b9a277
OJ
801 put_child(t, tn, 2*i, resize(t, left));
802 put_child(t, tn, 2*i+1, resize(t, right));
803
804 tnode_free(inode);
19baf839
RO
805 }
806 tnode_free(oldtnode);
807 return tn;
2f80b3c8
RO
808nomem:
809 {
810 int size = tnode_child_length(tn);
811 int j;
812
0c7770c7 813 for (j = 0; j < size; j++)
2f80b3c8
RO
814 if (tn->child[j])
815 tnode_free((struct tnode *)tn->child[j]);
816
817 tnode_free(tn);
0c7770c7 818
2f80b3c8
RO
819 return ERR_PTR(-ENOMEM);
820 }
19baf839
RO
821}
822
2f80b3c8 823static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
824{
825 struct tnode *oldtnode = tn;
826 struct node *left, *right;
827 int i;
828 int olen = tnode_child_length(tn);
829
0c7770c7 830 pr_debug("In halve\n");
c877efb2
SH
831
832 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 833
2f80b3c8
RO
834 if (!tn)
835 return ERR_PTR(-ENOMEM);
2f36895a
RO
836
837 /*
c877efb2
SH
838 * Preallocate and store tnodes before the actual work so we
839 * don't get into an inconsistent state if memory allocation
840 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
841 * of tnode is ignored.
842 */
843
91b9a277 844 for (i = 0; i < olen; i += 2) {
2f36895a
RO
845 left = tnode_get_child(oldtnode, i);
846 right = tnode_get_child(oldtnode, i+1);
c877efb2 847
2f36895a 848 /* Two nonempty children */
0c7770c7 849 if (left && right) {
2f80b3c8 850 struct tnode *newn;
0c7770c7 851
2f80b3c8 852 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
853
854 if (!newn)
2f80b3c8 855 goto nomem;
0c7770c7 856
2f80b3c8 857 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 858 }
2f36895a 859
2f36895a 860 }
19baf839 861
91b9a277
OJ
862 for (i = 0; i < olen; i += 2) {
863 struct tnode *newBinNode;
864
19baf839
RO
865 left = tnode_get_child(oldtnode, i);
866 right = tnode_get_child(oldtnode, i+1);
c877efb2 867
19baf839
RO
868 /* At least one of the children is empty */
869 if (left == NULL) {
870 if (right == NULL) /* Both are empty */
871 continue;
872 put_child(t, tn, i/2, right);
91b9a277 873 continue;
0c7770c7 874 }
91b9a277
OJ
875
876 if (right == NULL) {
19baf839 877 put_child(t, tn, i/2, left);
91b9a277
OJ
878 continue;
879 }
c877efb2 880
19baf839 881 /* Two nonempty children */
91b9a277
OJ
882 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
883 put_child(t, tn, i/2, NULL);
91b9a277
OJ
884 put_child(t, newBinNode, 0, left);
885 put_child(t, newBinNode, 1, right);
886 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
887 }
888 tnode_free(oldtnode);
889 return tn;
2f80b3c8
RO
890nomem:
891 {
892 int size = tnode_child_length(tn);
893 int j;
894
0c7770c7 895 for (j = 0; j < size; j++)
2f80b3c8
RO
896 if (tn->child[j])
897 tnode_free((struct tnode *)tn->child[j]);
898
899 tnode_free(tn);
0c7770c7 900
2f80b3c8
RO
901 return ERR_PTR(-ENOMEM);
902 }
19baf839
RO
903}
904
772cb712 905/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
906 via get_fa_head and dump */
907
772cb712 908static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 909{
772cb712 910 struct hlist_head *head = &l->list;
19baf839
RO
911 struct hlist_node *node;
912 struct leaf_info *li;
913
2373ce1c 914 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 915 if (li->plen == plen)
19baf839 916 return li;
91b9a277 917
19baf839
RO
918 return NULL;
919}
920
a07f5f50 921static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 922{
772cb712 923 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 924
91b9a277
OJ
925 if (!li)
926 return NULL;
c877efb2 927
91b9a277 928 return &li->falh;
19baf839
RO
929}
930
931static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
932{
e905a9ed
YH
933 struct leaf_info *li = NULL, *last = NULL;
934 struct hlist_node *node;
935
936 if (hlist_empty(head)) {
937 hlist_add_head_rcu(&new->hlist, head);
938 } else {
939 hlist_for_each_entry(li, node, head, hlist) {
940 if (new->plen > li->plen)
941 break;
942
943 last = li;
944 }
945 if (last)
946 hlist_add_after_rcu(&last->hlist, &new->hlist);
947 else
948 hlist_add_before_rcu(&new->hlist, &li->hlist);
949 }
19baf839
RO
950}
951
2373ce1c
RO
952/* rcu_read_lock needs to be hold by caller from readside */
953
19baf839
RO
954static struct leaf *
955fib_find_node(struct trie *t, u32 key)
956{
957 int pos;
958 struct tnode *tn;
959 struct node *n;
960
961 pos = 0;
2373ce1c 962 n = rcu_dereference(t->trie);
19baf839
RO
963
964 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
965 tn = (struct tnode *) n;
91b9a277 966
19baf839 967 check_tnode(tn);
91b9a277 968
c877efb2 969 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 970 pos = tn->pos + tn->bits;
a07f5f50
SH
971 n = tnode_get_child_rcu(tn,
972 tkey_extract_bits(key,
973 tn->pos,
974 tn->bits));
91b9a277 975 } else
19baf839
RO
976 break;
977 }
978 /* Case we have found a leaf. Compare prefixes */
979
91b9a277
OJ
980 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
981 return (struct leaf *)n;
982
19baf839
RO
983 return NULL;
984}
985
986static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
987{
19baf839 988 int wasfull;
06801916
SH
989 t_key cindex, key = tn->key;
990 struct tnode *tp;
19baf839 991
06801916 992 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
993 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
994 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
995 tn = (struct tnode *) resize(t, (struct tnode *)tn);
996
997 tnode_put_child_reorg((struct tnode *)tp, cindex,
998 (struct node *)tn, wasfull);
91b9a277 999
06801916
SH
1000 tp = node_parent((struct node *) tn);
1001 if (!tp)
19baf839 1002 break;
06801916 1003 tn = tp;
19baf839 1004 }
06801916 1005
19baf839 1006 /* Handle last (top) tnode */
c877efb2 1007 if (IS_TNODE(tn))
a07f5f50 1008 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1009
a07f5f50 1010 return (struct node *)tn;
19baf839
RO
1011}
1012
2373ce1c
RO
1013/* only used from updater-side */
1014
fea86ad8 1015static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1016{
1017 int pos, newpos;
1018 struct tnode *tp = NULL, *tn = NULL;
1019 struct node *n;
1020 struct leaf *l;
1021 int missbit;
c877efb2 1022 struct list_head *fa_head = NULL;
19baf839
RO
1023 struct leaf_info *li;
1024 t_key cindex;
1025
1026 pos = 0;
c877efb2 1027 n = t->trie;
19baf839 1028
c877efb2
SH
1029 /* If we point to NULL, stop. Either the tree is empty and we should
1030 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1031 * and we should just put our new leaf in that.
c877efb2
SH
1032 * If we point to a T_TNODE, check if it matches our key. Note that
1033 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1034 * not be the parent's 'pos'+'bits'!
1035 *
c877efb2 1036 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1037 * the index from our key, push the T_TNODE and walk the tree.
1038 *
1039 * If it doesn't, we have to replace it with a new T_TNODE.
1040 *
c877efb2
SH
1041 * If we point to a T_LEAF, it might or might not have the same key
1042 * as we do. If it does, just change the value, update the T_LEAF's
1043 * value, and return it.
19baf839
RO
1044 * If it doesn't, we need to replace it with a T_TNODE.
1045 */
1046
1047 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1048 tn = (struct tnode *) n;
91b9a277 1049
c877efb2 1050 check_tnode(tn);
91b9a277 1051
c877efb2 1052 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1053 tp = tn;
91b9a277 1054 pos = tn->pos + tn->bits;
a07f5f50
SH
1055 n = tnode_get_child(tn,
1056 tkey_extract_bits(key,
1057 tn->pos,
1058 tn->bits));
19baf839 1059
06801916 1060 BUG_ON(n && node_parent(n) != tn);
91b9a277 1061 } else
19baf839
RO
1062 break;
1063 }
1064
1065 /*
1066 * n ----> NULL, LEAF or TNODE
1067 *
c877efb2 1068 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1069 */
1070
91b9a277 1071 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1072
1073 /* Case 1: n is a leaf. Compare prefixes */
1074
c877efb2 1075 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1076 l = (struct leaf *) n;
19baf839 1077 li = leaf_info_new(plen);
91b9a277 1078
fea86ad8
SH
1079 if (!li)
1080 return NULL;
19baf839
RO
1081
1082 fa_head = &li->falh;
1083 insert_leaf_info(&l->list, li);
1084 goto done;
1085 }
19baf839
RO
1086 l = leaf_new();
1087
fea86ad8
SH
1088 if (!l)
1089 return NULL;
19baf839
RO
1090
1091 l->key = key;
1092 li = leaf_info_new(plen);
1093
c877efb2 1094 if (!li) {
387a5487 1095 free_leaf(l);
fea86ad8 1096 return NULL;
f835e471 1097 }
19baf839
RO
1098
1099 fa_head = &li->falh;
1100 insert_leaf_info(&l->list, li);
1101
19baf839 1102 if (t->trie && n == NULL) {
91b9a277 1103 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1104
06801916 1105 node_set_parent((struct node *)l, tp);
19baf839 1106
91b9a277
OJ
1107 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1108 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1109 } else {
1110 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1111 /*
1112 * Add a new tnode here
19baf839
RO
1113 * first tnode need some special handling
1114 */
1115
1116 if (tp)
91b9a277 1117 pos = tp->pos+tp->bits;
19baf839 1118 else
91b9a277
OJ
1119 pos = 0;
1120
c877efb2 1121 if (n) {
19baf839
RO
1122 newpos = tkey_mismatch(key, pos, n->key);
1123 tn = tnode_new(n->key, newpos, 1);
91b9a277 1124 } else {
19baf839 1125 newpos = 0;
c877efb2 1126 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1127 }
19baf839 1128
c877efb2 1129 if (!tn) {
f835e471 1130 free_leaf_info(li);
387a5487 1131 free_leaf(l);
fea86ad8 1132 return NULL;
91b9a277
OJ
1133 }
1134
06801916 1135 node_set_parent((struct node *)tn, tp);
19baf839 1136
91b9a277 1137 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1138 put_child(t, tn, missbit, (struct node *)l);
1139 put_child(t, tn, 1-missbit, n);
1140
c877efb2 1141 if (tp) {
19baf839 1142 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1143 put_child(t, (struct tnode *)tp, cindex,
1144 (struct node *)tn);
91b9a277 1145 } else {
a07f5f50 1146 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1147 tp = tn;
1148 }
1149 }
91b9a277
OJ
1150
1151 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1152 pr_warning("fib_trie"
1153 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1154 tp, tp->pos, tp->bits, key, plen);
91b9a277 1155
19baf839 1156 /* Rebalance the trie */
2373ce1c
RO
1157
1158 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471 1159done:
19baf839
RO
1160 return fa_head;
1161}
1162
d562f1f8
RO
1163/*
1164 * Caller must hold RTNL.
1165 */
4e902c57 1166static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1167{
1168 struct trie *t = (struct trie *) tb->tb_data;
1169 struct fib_alias *fa, *new_fa;
c877efb2 1170 struct list_head *fa_head = NULL;
19baf839 1171 struct fib_info *fi;
4e902c57
TG
1172 int plen = cfg->fc_dst_len;
1173 u8 tos = cfg->fc_tos;
19baf839
RO
1174 u32 key, mask;
1175 int err;
1176 struct leaf *l;
1177
1178 if (plen > 32)
1179 return -EINVAL;
1180
4e902c57 1181 key = ntohl(cfg->fc_dst);
19baf839 1182
2dfe55b4 1183 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1184
91b9a277 1185 mask = ntohl(inet_make_mask(plen));
19baf839 1186
c877efb2 1187 if (key & ~mask)
19baf839
RO
1188 return -EINVAL;
1189
1190 key = key & mask;
1191
4e902c57
TG
1192 fi = fib_create_info(cfg);
1193 if (IS_ERR(fi)) {
1194 err = PTR_ERR(fi);
19baf839 1195 goto err;
4e902c57 1196 }
19baf839
RO
1197
1198 l = fib_find_node(t, key);
c877efb2 1199 fa = NULL;
19baf839 1200
c877efb2 1201 if (l) {
19baf839
RO
1202 fa_head = get_fa_head(l, plen);
1203 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1204 }
1205
1206 /* Now fa, if non-NULL, points to the first fib alias
1207 * with the same keys [prefix,tos,priority], if such key already
1208 * exists or to the node before which we will insert new one.
1209 *
1210 * If fa is NULL, we will need to allocate a new one and
1211 * insert to the head of f.
1212 *
1213 * If f is NULL, no fib node matched the destination key
1214 * and we need to allocate a new one of those as well.
1215 */
1216
936f6f8e
JA
1217 if (fa && fa->fa_tos == tos &&
1218 fa->fa_info->fib_priority == fi->fib_priority) {
1219 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1220
1221 err = -EEXIST;
4e902c57 1222 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1223 goto out;
1224
936f6f8e
JA
1225 /* We have 2 goals:
1226 * 1. Find exact match for type, scope, fib_info to avoid
1227 * duplicate routes
1228 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1229 */
1230 fa_match = NULL;
1231 fa_first = fa;
1232 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1233 list_for_each_entry_continue(fa, fa_head, fa_list) {
1234 if (fa->fa_tos != tos)
1235 break;
1236 if (fa->fa_info->fib_priority != fi->fib_priority)
1237 break;
1238 if (fa->fa_type == cfg->fc_type &&
1239 fa->fa_scope == cfg->fc_scope &&
1240 fa->fa_info == fi) {
1241 fa_match = fa;
1242 break;
1243 }
1244 }
1245
4e902c57 1246 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1247 struct fib_info *fi_drop;
1248 u8 state;
1249
936f6f8e
JA
1250 fa = fa_first;
1251 if (fa_match) {
1252 if (fa == fa_match)
1253 err = 0;
6725033f 1254 goto out;
936f6f8e 1255 }
2373ce1c 1256 err = -ENOBUFS;
e94b1766 1257 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1258 if (new_fa == NULL)
1259 goto out;
19baf839
RO
1260
1261 fi_drop = fa->fa_info;
2373ce1c
RO
1262 new_fa->fa_tos = fa->fa_tos;
1263 new_fa->fa_info = fi;
4e902c57
TG
1264 new_fa->fa_type = cfg->fc_type;
1265 new_fa->fa_scope = cfg->fc_scope;
19baf839 1266 state = fa->fa_state;
936f6f8e 1267 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1268
2373ce1c
RO
1269 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1270 alias_free_mem_rcu(fa);
19baf839
RO
1271
1272 fib_release_info(fi_drop);
1273 if (state & FA_S_ACCESSED)
76e6ebfb 1274 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1275 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1276 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1277
91b9a277 1278 goto succeeded;
19baf839
RO
1279 }
1280 /* Error if we find a perfect match which
1281 * uses the same scope, type, and nexthop
1282 * information.
1283 */
936f6f8e
JA
1284 if (fa_match)
1285 goto out;
a07f5f50 1286
4e902c57 1287 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1288 fa = fa_first;
19baf839
RO
1289 }
1290 err = -ENOENT;
4e902c57 1291 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1292 goto out;
1293
1294 err = -ENOBUFS;
e94b1766 1295 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1296 if (new_fa == NULL)
1297 goto out;
1298
1299 new_fa->fa_info = fi;
1300 new_fa->fa_tos = tos;
4e902c57
TG
1301 new_fa->fa_type = cfg->fc_type;
1302 new_fa->fa_scope = cfg->fc_scope;
19baf839 1303 new_fa->fa_state = 0;
19baf839
RO
1304 /*
1305 * Insert new entry to the list.
1306 */
1307
c877efb2 1308 if (!fa_head) {
fea86ad8
SH
1309 fa_head = fib_insert_node(t, key, plen);
1310 if (unlikely(!fa_head)) {
1311 err = -ENOMEM;
f835e471 1312 goto out_free_new_fa;
fea86ad8 1313 }
f835e471 1314 }
19baf839 1315
2373ce1c
RO
1316 list_add_tail_rcu(&new_fa->fa_list,
1317 (fa ? &fa->fa_list : fa_head));
19baf839 1318
76e6ebfb 1319 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1320 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1321 &cfg->fc_nlinfo, 0);
19baf839
RO
1322succeeded:
1323 return 0;
f835e471
RO
1324
1325out_free_new_fa:
1326 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1327out:
1328 fib_release_info(fi);
91b9a277 1329err:
19baf839
RO
1330 return err;
1331}
1332
772cb712 1333/* should be called with rcu_read_lock */
a07f5f50
SH
1334static int check_leaf(struct trie *t, struct leaf *l,
1335 t_key key, const struct flowi *flp,
1336 struct fib_result *res)
19baf839 1337{
19baf839
RO
1338 struct leaf_info *li;
1339 struct hlist_head *hhead = &l->list;
1340 struct hlist_node *node;
c877efb2 1341
2373ce1c 1342 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1343 int err;
1344 int plen = li->plen;
1345 __be32 mask = inet_make_mask(plen);
1346
888454c5 1347 if (l->key != (key & ntohl(mask)))
19baf839
RO
1348 continue;
1349
e204a345 1350 err = fib_semantic_match(&li->falh, flp, res, plen);
a07f5f50 1351
19baf839 1352#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1353 if (err <= 0)
19baf839 1354 t->stats.semantic_match_passed++;
a07f5f50
SH
1355 else
1356 t->stats.semantic_match_miss++;
19baf839 1357#endif
a07f5f50 1358 if (err <= 0)
2e655571 1359 return err;
19baf839 1360 }
a07f5f50 1361
2e655571 1362 return 1;
19baf839
RO
1363}
1364
a07f5f50
SH
1365static int fn_trie_lookup(struct fib_table *tb, const struct flowi *flp,
1366 struct fib_result *res)
19baf839
RO
1367{
1368 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1369 int ret;
19baf839
RO
1370 struct node *n;
1371 struct tnode *pn;
1372 int pos, bits;
91b9a277 1373 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1374 int chopped_off;
1375 t_key cindex = 0;
1376 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1377 struct tnode *cn;
1378 t_key node_prefix, key_prefix, pref_mismatch;
1379 int mp;
1380
2373ce1c 1381 rcu_read_lock();
91b9a277 1382
2373ce1c 1383 n = rcu_dereference(t->trie);
c877efb2 1384 if (!n)
19baf839
RO
1385 goto failed;
1386
1387#ifdef CONFIG_IP_FIB_TRIE_STATS
1388 t->stats.gets++;
1389#endif
1390
1391 /* Just a leaf? */
1392 if (IS_LEAF(n)) {
2e655571 1393 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
a07f5f50 1394 goto found;
19baf839 1395 }
a07f5f50 1396
19baf839
RO
1397 pn = (struct tnode *) n;
1398 chopped_off = 0;
c877efb2 1399
91b9a277 1400 while (pn) {
19baf839
RO
1401 pos = pn->pos;
1402 bits = pn->bits;
1403
c877efb2 1404 if (!chopped_off)
ab66b4a7
SH
1405 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1406 pos, bits);
19baf839
RO
1407
1408 n = tnode_get_child(pn, cindex);
1409
1410 if (n == NULL) {
1411#ifdef CONFIG_IP_FIB_TRIE_STATS
1412 t->stats.null_node_hit++;
1413#endif
1414 goto backtrace;
1415 }
1416
91b9a277 1417 if (IS_LEAF(n)) {
2e655571
BH
1418 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1419 if (ret > 0)
91b9a277 1420 goto backtrace;
a07f5f50 1421 goto found;
91b9a277
OJ
1422 }
1423
91b9a277 1424 cn = (struct tnode *)n;
19baf839 1425
91b9a277
OJ
1426 /*
1427 * It's a tnode, and we can do some extra checks here if we
1428 * like, to avoid descending into a dead-end branch.
1429 * This tnode is in the parent's child array at index
1430 * key[p_pos..p_pos+p_bits] but potentially with some bits
1431 * chopped off, so in reality the index may be just a
1432 * subprefix, padded with zero at the end.
1433 * We can also take a look at any skipped bits in this
1434 * tnode - everything up to p_pos is supposed to be ok,
1435 * and the non-chopped bits of the index (se previous
1436 * paragraph) are also guaranteed ok, but the rest is
1437 * considered unknown.
1438 *
1439 * The skipped bits are key[pos+bits..cn->pos].
1440 */
19baf839 1441
91b9a277
OJ
1442 /* If current_prefix_length < pos+bits, we are already doing
1443 * actual prefix matching, which means everything from
1444 * pos+(bits-chopped_off) onward must be zero along some
1445 * branch of this subtree - otherwise there is *no* valid
1446 * prefix present. Here we can only check the skipped
1447 * bits. Remember, since we have already indexed into the
1448 * parent's child array, we know that the bits we chopped of
1449 * *are* zero.
1450 */
19baf839 1451
a07f5f50
SH
1452 /* NOTA BENE: Checking only skipped bits
1453 for the new node here */
19baf839 1454
91b9a277
OJ
1455 if (current_prefix_length < pos+bits) {
1456 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1457 cn->pos - current_prefix_length)
1458 || !(cn->child[0]))
91b9a277
OJ
1459 goto backtrace;
1460 }
19baf839 1461
91b9a277
OJ
1462 /*
1463 * If chopped_off=0, the index is fully validated and we
1464 * only need to look at the skipped bits for this, the new,
1465 * tnode. What we actually want to do is to find out if
1466 * these skipped bits match our key perfectly, or if we will
1467 * have to count on finding a matching prefix further down,
1468 * because if we do, we would like to have some way of
1469 * verifying the existence of such a prefix at this point.
1470 */
19baf839 1471
91b9a277
OJ
1472 /* The only thing we can do at this point is to verify that
1473 * any such matching prefix can indeed be a prefix to our
1474 * key, and if the bits in the node we are inspecting that
1475 * do not match our key are not ZERO, this cannot be true.
1476 * Thus, find out where there is a mismatch (before cn->pos)
1477 * and verify that all the mismatching bits are zero in the
1478 * new tnode's key.
1479 */
19baf839 1480
a07f5f50
SH
1481 /*
1482 * Note: We aren't very concerned about the piece of
1483 * the key that precede pn->pos+pn->bits, since these
1484 * have already been checked. The bits after cn->pos
1485 * aren't checked since these are by definition
1486 * "unknown" at this point. Thus, what we want to see
1487 * is if we are about to enter the "prefix matching"
1488 * state, and in that case verify that the skipped
1489 * bits that will prevail throughout this subtree are
1490 * zero, as they have to be if we are to find a
1491 * matching prefix.
91b9a277
OJ
1492 */
1493
ab66b4a7
SH
1494 node_prefix = mask_pfx(cn->key, cn->pos);
1495 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1496 pref_mismatch = key_prefix^node_prefix;
1497 mp = 0;
1498
a07f5f50
SH
1499 /*
1500 * In short: If skipped bits in this node do not match
1501 * the search key, enter the "prefix matching"
1502 * state.directly.
91b9a277
OJ
1503 */
1504 if (pref_mismatch) {
1505 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1506 mp++;
a07f5f50 1507 pref_mismatch = pref_mismatch << 1;
91b9a277
OJ
1508 }
1509 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1510
1511 if (key_prefix != 0)
1512 goto backtrace;
1513
1514 if (current_prefix_length >= cn->pos)
1515 current_prefix_length = mp;
c877efb2 1516 }
a07f5f50 1517
91b9a277
OJ
1518 pn = (struct tnode *)n; /* Descend */
1519 chopped_off = 0;
1520 continue;
1521
19baf839
RO
1522backtrace:
1523 chopped_off++;
1524
1525 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1526 while ((chopped_off <= pn->bits)
1527 && !(cindex & (1<<(chopped_off-1))))
19baf839 1528 chopped_off++;
19baf839
RO
1529
1530 /* Decrease current_... with bits chopped off */
1531 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1532 current_prefix_length = pn->pos + pn->bits
1533 - chopped_off;
91b9a277 1534
19baf839 1535 /*
c877efb2 1536 * Either we do the actual chop off according or if we have
19baf839
RO
1537 * chopped off all bits in this tnode walk up to our parent.
1538 */
1539
91b9a277 1540 if (chopped_off <= pn->bits) {
19baf839 1541 cindex &= ~(1 << (chopped_off-1));
91b9a277 1542 } else {
06801916
SH
1543 struct tnode *parent = node_parent((struct node *) pn);
1544 if (!parent)
19baf839 1545 goto failed;
91b9a277 1546
19baf839 1547 /* Get Child's index */
06801916
SH
1548 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1549 pn = parent;
19baf839
RO
1550 chopped_off = 0;
1551
1552#ifdef CONFIG_IP_FIB_TRIE_STATS
1553 t->stats.backtrack++;
1554#endif
1555 goto backtrace;
c877efb2 1556 }
19baf839
RO
1557 }
1558failed:
c877efb2 1559 ret = 1;
19baf839 1560found:
2373ce1c 1561 rcu_read_unlock();
19baf839
RO
1562 return ret;
1563}
1564
9195bef7
SH
1565/*
1566 * Remove the leaf and return parent.
1567 */
1568static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1569{
9195bef7 1570 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1571
9195bef7 1572 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1573
c877efb2 1574 if (tp) {
9195bef7 1575 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1576 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1577 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1578 } else
2373ce1c 1579 rcu_assign_pointer(t->trie, NULL);
19baf839 1580
387a5487 1581 free_leaf(l);
19baf839
RO
1582}
1583
d562f1f8
RO
1584/*
1585 * Caller must hold RTNL.
1586 */
4e902c57 1587static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1588{
1589 struct trie *t = (struct trie *) tb->tb_data;
1590 u32 key, mask;
4e902c57
TG
1591 int plen = cfg->fc_dst_len;
1592 u8 tos = cfg->fc_tos;
19baf839
RO
1593 struct fib_alias *fa, *fa_to_delete;
1594 struct list_head *fa_head;
1595 struct leaf *l;
91b9a277
OJ
1596 struct leaf_info *li;
1597
c877efb2 1598 if (plen > 32)
19baf839
RO
1599 return -EINVAL;
1600
4e902c57 1601 key = ntohl(cfg->fc_dst);
91b9a277 1602 mask = ntohl(inet_make_mask(plen));
19baf839 1603
c877efb2 1604 if (key & ~mask)
19baf839
RO
1605 return -EINVAL;
1606
1607 key = key & mask;
1608 l = fib_find_node(t, key);
1609
c877efb2 1610 if (!l)
19baf839
RO
1611 return -ESRCH;
1612
1613 fa_head = get_fa_head(l, plen);
1614 fa = fib_find_alias(fa_head, tos, 0);
1615
1616 if (!fa)
1617 return -ESRCH;
1618
0c7770c7 1619 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1620
1621 fa_to_delete = NULL;
936f6f8e
JA
1622 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1623 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1624 struct fib_info *fi = fa->fa_info;
1625
1626 if (fa->fa_tos != tos)
1627 break;
1628
4e902c57
TG
1629 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1630 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1631 fa->fa_scope == cfg->fc_scope) &&
1632 (!cfg->fc_protocol ||
1633 fi->fib_protocol == cfg->fc_protocol) &&
1634 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1635 fa_to_delete = fa;
1636 break;
1637 }
1638 }
1639
91b9a277
OJ
1640 if (!fa_to_delete)
1641 return -ESRCH;
19baf839 1642
91b9a277 1643 fa = fa_to_delete;
4e902c57 1644 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1645 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1646
1647 l = fib_find_node(t, key);
772cb712 1648 li = find_leaf_info(l, plen);
19baf839 1649
2373ce1c 1650 list_del_rcu(&fa->fa_list);
19baf839 1651
91b9a277 1652 if (list_empty(fa_head)) {
2373ce1c 1653 hlist_del_rcu(&li->hlist);
91b9a277 1654 free_leaf_info(li);
2373ce1c 1655 }
19baf839 1656
91b9a277 1657 if (hlist_empty(&l->list))
9195bef7 1658 trie_leaf_remove(t, l);
19baf839 1659
91b9a277 1660 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1661 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1662
2373ce1c
RO
1663 fib_release_info(fa->fa_info);
1664 alias_free_mem_rcu(fa);
91b9a277 1665 return 0;
19baf839
RO
1666}
1667
ef3660ce 1668static int trie_flush_list(struct list_head *head)
19baf839
RO
1669{
1670 struct fib_alias *fa, *fa_node;
1671 int found = 0;
1672
1673 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1674 struct fib_info *fi = fa->fa_info;
19baf839 1675
2373ce1c
RO
1676 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1677 list_del_rcu(&fa->fa_list);
1678 fib_release_info(fa->fa_info);
1679 alias_free_mem_rcu(fa);
19baf839
RO
1680 found++;
1681 }
1682 }
1683 return found;
1684}
1685
ef3660ce 1686static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1687{
1688 int found = 0;
1689 struct hlist_head *lih = &l->list;
1690 struct hlist_node *node, *tmp;
1691 struct leaf_info *li = NULL;
1692
1693 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1694 found += trie_flush_list(&li->falh);
19baf839
RO
1695
1696 if (list_empty(&li->falh)) {
2373ce1c 1697 hlist_del_rcu(&li->hlist);
19baf839
RO
1698 free_leaf_info(li);
1699 }
1700 }
1701 return found;
1702}
1703
82cfbb00
SH
1704/*
1705 * Scan for the next right leaf starting at node p->child[idx]
1706 * Since we have back pointer, no recursion necessary.
1707 */
1708static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1709{
82cfbb00
SH
1710 do {
1711 t_key idx;
c877efb2 1712
c877efb2 1713 if (c)
82cfbb00 1714 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1715 else
82cfbb00 1716 idx = 0;
2373ce1c 1717
82cfbb00
SH
1718 while (idx < 1u << p->bits) {
1719 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1720 if (!c)
91b9a277
OJ
1721 continue;
1722
82cfbb00
SH
1723 if (IS_LEAF(c)) {
1724 prefetch(p->child[idx]);
1725 return (struct leaf *) c;
19baf839 1726 }
82cfbb00
SH
1727
1728 /* Rescan start scanning in new node */
1729 p = (struct tnode *) c;
1730 idx = 0;
19baf839 1731 }
82cfbb00
SH
1732
1733 /* Node empty, walk back up to parent */
91b9a277 1734 c = (struct node *) p;
82cfbb00
SH
1735 } while ( (p = node_parent_rcu(c)) != NULL);
1736
1737 return NULL; /* Root of trie */
1738}
1739
82cfbb00
SH
1740static struct leaf *trie_firstleaf(struct trie *t)
1741{
1742 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1743
1744 if (!n)
1745 return NULL;
1746
1747 if (IS_LEAF(n)) /* trie is just a leaf */
1748 return (struct leaf *) n;
1749
1750 return leaf_walk_rcu(n, NULL);
1751}
1752
1753static struct leaf *trie_nextleaf(struct leaf *l)
1754{
1755 struct node *c = (struct node *) l;
1756 struct tnode *p = node_parent(c);
1757
1758 if (!p)
1759 return NULL; /* trie with just one leaf */
1760
1761 return leaf_walk_rcu(p, c);
19baf839
RO
1762}
1763
71d67e66
SH
1764static struct leaf *trie_leafindex(struct trie *t, int index)
1765{
1766 struct leaf *l = trie_firstleaf(t);
1767
ec28cf73 1768 while (l && index-- > 0)
71d67e66 1769 l = trie_nextleaf(l);
ec28cf73 1770
71d67e66
SH
1771 return l;
1772}
1773
1774
d562f1f8
RO
1775/*
1776 * Caller must hold RTNL.
1777 */
19baf839
RO
1778static int fn_trie_flush(struct fib_table *tb)
1779{
1780 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1781 struct leaf *l, *ll = NULL;
82cfbb00 1782 int found = 0;
19baf839 1783
82cfbb00 1784 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1785 found += trie_flush_leaf(l);
19baf839
RO
1786
1787 if (ll && hlist_empty(&ll->list))
9195bef7 1788 trie_leaf_remove(t, ll);
19baf839
RO
1789 ll = l;
1790 }
1791
1792 if (ll && hlist_empty(&ll->list))
9195bef7 1793 trie_leaf_remove(t, ll);
19baf839 1794
0c7770c7 1795 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1796 return found;
1797}
1798
a07f5f50
SH
1799static void fn_trie_select_default(struct fib_table *tb,
1800 const struct flowi *flp,
1801 struct fib_result *res)
19baf839
RO
1802{
1803 struct trie *t = (struct trie *) tb->tb_data;
1804 int order, last_idx;
1805 struct fib_info *fi = NULL;
1806 struct fib_info *last_resort;
1807 struct fib_alias *fa = NULL;
1808 struct list_head *fa_head;
1809 struct leaf *l;
1810
1811 last_idx = -1;
1812 last_resort = NULL;
1813 order = -1;
1814
2373ce1c 1815 rcu_read_lock();
c877efb2 1816
19baf839 1817 l = fib_find_node(t, 0);
c877efb2 1818 if (!l)
19baf839
RO
1819 goto out;
1820
1821 fa_head = get_fa_head(l, 0);
c877efb2 1822 if (!fa_head)
19baf839
RO
1823 goto out;
1824
c877efb2 1825 if (list_empty(fa_head))
19baf839
RO
1826 goto out;
1827
2373ce1c 1828 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1829 struct fib_info *next_fi = fa->fa_info;
91b9a277 1830
19baf839
RO
1831 if (fa->fa_scope != res->scope ||
1832 fa->fa_type != RTN_UNICAST)
1833 continue;
91b9a277 1834
19baf839
RO
1835 if (next_fi->fib_priority > res->fi->fib_priority)
1836 break;
1837 if (!next_fi->fib_nh[0].nh_gw ||
1838 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1839 continue;
1840 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1841
19baf839
RO
1842 if (fi == NULL) {
1843 if (next_fi != res->fi)
1844 break;
1845 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1846 &last_idx, tb->tb_default)) {
a2bbe682 1847 fib_result_assign(res, fi);
971b893e 1848 tb->tb_default = order;
19baf839
RO
1849 goto out;
1850 }
1851 fi = next_fi;
1852 order++;
1853 }
1854 if (order <= 0 || fi == NULL) {
971b893e 1855 tb->tb_default = -1;
19baf839
RO
1856 goto out;
1857 }
1858
971b893e
DL
1859 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1860 tb->tb_default)) {
a2bbe682 1861 fib_result_assign(res, fi);
971b893e 1862 tb->tb_default = order;
19baf839
RO
1863 goto out;
1864 }
a2bbe682
DL
1865 if (last_idx >= 0)
1866 fib_result_assign(res, last_resort);
971b893e
DL
1867 tb->tb_default = last_idx;
1868out:
2373ce1c 1869 rcu_read_unlock();
19baf839
RO
1870}
1871
a07f5f50
SH
1872static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1873 struct fib_table *tb,
19baf839
RO
1874 struct sk_buff *skb, struct netlink_callback *cb)
1875{
1876 int i, s_i;
1877 struct fib_alias *fa;
32ab5f80 1878 __be32 xkey = htonl(key);
19baf839 1879
71d67e66 1880 s_i = cb->args[5];
19baf839
RO
1881 i = 0;
1882
2373ce1c
RO
1883 /* rcu_read_lock is hold by caller */
1884
1885 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1886 if (i < s_i) {
1887 i++;
1888 continue;
1889 }
19baf839
RO
1890
1891 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1892 cb->nlh->nlmsg_seq,
1893 RTM_NEWROUTE,
1894 tb->tb_id,
1895 fa->fa_type,
1896 fa->fa_scope,
be403ea1 1897 xkey,
19baf839
RO
1898 plen,
1899 fa->fa_tos,
64347f78 1900 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1901 cb->args[5] = i;
19baf839 1902 return -1;
91b9a277 1903 }
19baf839
RO
1904 i++;
1905 }
71d67e66 1906 cb->args[5] = i;
19baf839
RO
1907 return skb->len;
1908}
1909
a88ee229
SH
1910static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1911 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1912{
a88ee229
SH
1913 struct leaf_info *li;
1914 struct hlist_node *node;
1915 int i, s_i;
19baf839 1916
71d67e66 1917 s_i = cb->args[4];
a88ee229 1918 i = 0;
19baf839 1919
a88ee229
SH
1920 /* rcu_read_lock is hold by caller */
1921 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1922 if (i < s_i) {
1923 i++;
19baf839 1924 continue;
a88ee229 1925 }
91b9a277 1926
a88ee229 1927 if (i > s_i)
71d67e66 1928 cb->args[5] = 0;
19baf839 1929
a88ee229 1930 if (list_empty(&li->falh))
19baf839
RO
1931 continue;
1932
a88ee229 1933 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1934 cb->args[4] = i;
19baf839
RO
1935 return -1;
1936 }
a88ee229 1937 i++;
19baf839 1938 }
a88ee229 1939
71d67e66 1940 cb->args[4] = i;
19baf839
RO
1941 return skb->len;
1942}
1943
a07f5f50
SH
1944static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb,
1945 struct netlink_callback *cb)
19baf839 1946{
a88ee229 1947 struct leaf *l;
19baf839 1948 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1949 t_key key = cb->args[2];
71d67e66 1950 int count = cb->args[3];
19baf839 1951
2373ce1c 1952 rcu_read_lock();
d5ce8a0e
SH
1953 /* Dump starting at last key.
1954 * Note: 0.0.0.0/0 (ie default) is first key.
1955 */
71d67e66 1956 if (count == 0)
d5ce8a0e
SH
1957 l = trie_firstleaf(t);
1958 else {
71d67e66
SH
1959 /* Normally, continue from last key, but if that is missing
1960 * fallback to using slow rescan
1961 */
d5ce8a0e 1962 l = fib_find_node(t, key);
71d67e66
SH
1963 if (!l)
1964 l = trie_leafindex(t, count);
d5ce8a0e 1965 }
a88ee229 1966
d5ce8a0e
SH
1967 while (l) {
1968 cb->args[2] = l->key;
a88ee229 1969 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1970 cb->args[3] = count;
a88ee229 1971 rcu_read_unlock();
a88ee229 1972 return -1;
19baf839 1973 }
d5ce8a0e 1974
71d67e66 1975 ++count;
d5ce8a0e 1976 l = trie_nextleaf(l);
71d67e66
SH
1977 memset(&cb->args[4], 0,
1978 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1979 }
71d67e66 1980 cb->args[3] = count;
2373ce1c 1981 rcu_read_unlock();
a88ee229 1982
19baf839 1983 return skb->len;
19baf839
RO
1984}
1985
7f9b8052
SH
1986void __init fib_hash_init(void)
1987{
a07f5f50
SH
1988 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1989 sizeof(struct fib_alias),
bc3c8c1e
SH
1990 0, SLAB_PANIC, NULL);
1991
1992 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1993 max(sizeof(struct leaf),
1994 sizeof(struct leaf_info)),
1995 0, SLAB_PANIC, NULL);
7f9b8052 1996}
19baf839 1997
7f9b8052
SH
1998
1999/* Fix more generic FIB names for init later */
2000struct fib_table *fib_hash_table(u32 id)
19baf839
RO
2001{
2002 struct fib_table *tb;
2003 struct trie *t;
2004
19baf839
RO
2005 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2006 GFP_KERNEL);
2007 if (tb == NULL)
2008 return NULL;
2009
2010 tb->tb_id = id;
971b893e 2011 tb->tb_default = -1;
19baf839
RO
2012 tb->tb_lookup = fn_trie_lookup;
2013 tb->tb_insert = fn_trie_insert;
2014 tb->tb_delete = fn_trie_delete;
2015 tb->tb_flush = fn_trie_flush;
2016 tb->tb_select_default = fn_trie_select_default;
2017 tb->tb_dump = fn_trie_dump;
19baf839
RO
2018
2019 t = (struct trie *) tb->tb_data;
c28a1cf4 2020 memset(t, 0, sizeof(*t));
19baf839 2021
19baf839 2022 if (id == RT_TABLE_LOCAL)
a07f5f50 2023 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2024
2025 return tb;
2026}
2027
cb7b593c
SH
2028#ifdef CONFIG_PROC_FS
2029/* Depth first Trie walk iterator */
2030struct fib_trie_iter {
1c340b2f 2031 struct seq_net_private p;
3d3b2d25 2032 struct fib_table *tb;
cb7b593c 2033 struct tnode *tnode;
cb7b593c
SH
2034 unsigned index;
2035 unsigned depth;
2036};
19baf839 2037
cb7b593c 2038static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2039{
cb7b593c
SH
2040 struct tnode *tn = iter->tnode;
2041 unsigned cindex = iter->index;
2042 struct tnode *p;
19baf839 2043
6640e697
EB
2044 /* A single entry routing table */
2045 if (!tn)
2046 return NULL;
2047
cb7b593c
SH
2048 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2049 iter->tnode, iter->index, iter->depth);
2050rescan:
2051 while (cindex < (1<<tn->bits)) {
b59cfbf7 2052 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2053
cb7b593c
SH
2054 if (n) {
2055 if (IS_LEAF(n)) {
2056 iter->tnode = tn;
2057 iter->index = cindex + 1;
2058 } else {
2059 /* push down one level */
2060 iter->tnode = (struct tnode *) n;
2061 iter->index = 0;
2062 ++iter->depth;
2063 }
2064 return n;
2065 }
19baf839 2066
cb7b593c
SH
2067 ++cindex;
2068 }
91b9a277 2069
cb7b593c 2070 /* Current node exhausted, pop back up */
b59cfbf7 2071 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2072 if (p) {
2073 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2074 tn = p;
2075 --iter->depth;
2076 goto rescan;
19baf839 2077 }
cb7b593c
SH
2078
2079 /* got root? */
2080 return NULL;
19baf839
RO
2081}
2082
cb7b593c
SH
2083static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2084 struct trie *t)
19baf839 2085{
3d3b2d25 2086 struct node *n;
5ddf0eb2 2087
132adf54 2088 if (!t)
5ddf0eb2
RO
2089 return NULL;
2090
2091 n = rcu_dereference(t->trie);
3d3b2d25 2092 if (!n)
5ddf0eb2 2093 return NULL;
19baf839 2094
3d3b2d25
SH
2095 if (IS_TNODE(n)) {
2096 iter->tnode = (struct tnode *) n;
2097 iter->index = 0;
2098 iter->depth = 1;
2099 } else {
2100 iter->tnode = NULL;
2101 iter->index = 0;
2102 iter->depth = 0;
91b9a277 2103 }
3d3b2d25
SH
2104
2105 return n;
cb7b593c 2106}
91b9a277 2107
cb7b593c
SH
2108static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2109{
2110 struct node *n;
2111 struct fib_trie_iter iter;
91b9a277 2112
cb7b593c 2113 memset(s, 0, sizeof(*s));
91b9a277 2114
cb7b593c 2115 rcu_read_lock();
3d3b2d25 2116 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2117 if (IS_LEAF(n)) {
93672292
SH
2118 struct leaf *l = (struct leaf *)n;
2119 struct leaf_info *li;
2120 struct hlist_node *tmp;
2121
cb7b593c
SH
2122 s->leaves++;
2123 s->totdepth += iter.depth;
2124 if (iter.depth > s->maxdepth)
2125 s->maxdepth = iter.depth;
93672292
SH
2126
2127 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2128 ++s->prefixes;
cb7b593c
SH
2129 } else {
2130 const struct tnode *tn = (const struct tnode *) n;
2131 int i;
2132
2133 s->tnodes++;
132adf54 2134 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2135 s->nodesizes[tn->bits]++;
2136
cb7b593c
SH
2137 for (i = 0; i < (1<<tn->bits); i++)
2138 if (!tn->child[i])
2139 s->nullpointers++;
19baf839 2140 }
19baf839 2141 }
2373ce1c 2142 rcu_read_unlock();
19baf839
RO
2143}
2144
cb7b593c
SH
2145/*
2146 * This outputs /proc/net/fib_triestats
2147 */
2148static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2149{
cb7b593c 2150 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2151
cb7b593c
SH
2152 if (stat->leaves)
2153 avdepth = stat->totdepth*100 / stat->leaves;
2154 else
2155 avdepth = 0;
91b9a277 2156
a07f5f50
SH
2157 seq_printf(seq, "\tAver depth: %u.%02d\n",
2158 avdepth / 100, avdepth % 100);
cb7b593c 2159 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2160
cb7b593c 2161 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2162 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2163
2164 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2165 bytes += sizeof(struct leaf_info) * stat->prefixes;
2166
187b5188 2167 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2168 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2169
06ef921d
RO
2170 max = MAX_STAT_DEPTH;
2171 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2172 max--;
19baf839 2173
cb7b593c
SH
2174 pointers = 0;
2175 for (i = 1; i <= max; i++)
2176 if (stat->nodesizes[i] != 0) {
187b5188 2177 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2178 pointers += (1<<i) * stat->nodesizes[i];
2179 }
2180 seq_putc(seq, '\n');
187b5188 2181 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2182
cb7b593c 2183 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2184 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2185 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2186}
2373ce1c 2187
cb7b593c 2188#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2189static void trie_show_usage(struct seq_file *seq,
2190 const struct trie_use_stats *stats)
2191{
2192 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2193 seq_printf(seq, "gets = %u\n", stats->gets);
2194 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2195 seq_printf(seq, "semantic match passed = %u\n",
2196 stats->semantic_match_passed);
2197 seq_printf(seq, "semantic match miss = %u\n",
2198 stats->semantic_match_miss);
2199 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2200 seq_printf(seq, "skipped node resize = %u\n\n",
2201 stats->resize_node_skipped);
cb7b593c 2202}
66a2f7fd
SH
2203#endif /* CONFIG_IP_FIB_TRIE_STATS */
2204
3d3b2d25 2205static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2206{
3d3b2d25
SH
2207 if (tb->tb_id == RT_TABLE_LOCAL)
2208 seq_puts(seq, "Local:\n");
2209 else if (tb->tb_id == RT_TABLE_MAIN)
2210 seq_puts(seq, "Main:\n");
2211 else
2212 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2213}
19baf839 2214
3d3b2d25 2215
cb7b593c
SH
2216static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2217{
1c340b2f 2218 struct net *net = (struct net *)seq->private;
3d3b2d25 2219 unsigned int h;
877a9bff 2220
d717a9a6 2221 seq_printf(seq,
a07f5f50
SH
2222 "Basic info: size of leaf:"
2223 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2224 sizeof(struct leaf), sizeof(struct tnode));
2225
3d3b2d25
SH
2226 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2227 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2228 struct hlist_node *node;
2229 struct fib_table *tb;
2230
2231 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2232 struct trie *t = (struct trie *) tb->tb_data;
2233 struct trie_stat stat;
877a9bff 2234
3d3b2d25
SH
2235 if (!t)
2236 continue;
2237
2238 fib_table_print(seq, tb);
2239
2240 trie_collect_stats(t, &stat);
2241 trie_show_stats(seq, &stat);
2242#ifdef CONFIG_IP_FIB_TRIE_STATS
2243 trie_show_usage(seq, &t->stats);
2244#endif
2245 }
2246 }
19baf839 2247
cb7b593c 2248 return 0;
19baf839
RO
2249}
2250
cb7b593c 2251static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2252{
de05c557 2253 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2254}
2255
9a32144e 2256static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2257 .owner = THIS_MODULE,
2258 .open = fib_triestat_seq_open,
2259 .read = seq_read,
2260 .llseek = seq_lseek,
b6fcbdb4 2261 .release = single_release_net,
cb7b593c
SH
2262};
2263
1218854a 2264static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2265{
1218854a
YH
2266 struct fib_trie_iter *iter = seq->private;
2267 struct net *net = seq_file_net(seq);
cb7b593c 2268 loff_t idx = 0;
3d3b2d25 2269 unsigned int h;
cb7b593c 2270
3d3b2d25
SH
2271 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2272 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2273 struct hlist_node *node;
2274 struct fib_table *tb;
cb7b593c 2275
3d3b2d25
SH
2276 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2277 struct node *n;
2278
2279 for (n = fib_trie_get_first(iter,
2280 (struct trie *) tb->tb_data);
2281 n; n = fib_trie_get_next(iter))
2282 if (pos == idx++) {
2283 iter->tb = tb;
2284 return n;
2285 }
2286 }
cb7b593c 2287 }
3d3b2d25 2288
19baf839
RO
2289 return NULL;
2290}
2291
cb7b593c 2292static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2293 __acquires(RCU)
19baf839 2294{
cb7b593c 2295 rcu_read_lock();
1218854a 2296 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2297}
2298
cb7b593c 2299static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2300{
cb7b593c 2301 struct fib_trie_iter *iter = seq->private;
1218854a 2302 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2303 struct fib_table *tb = iter->tb;
2304 struct hlist_node *tb_node;
2305 unsigned int h;
2306 struct node *n;
cb7b593c 2307
19baf839 2308 ++*pos;
3d3b2d25
SH
2309 /* next node in same table */
2310 n = fib_trie_get_next(iter);
2311 if (n)
2312 return n;
19baf839 2313
3d3b2d25
SH
2314 /* walk rest of this hash chain */
2315 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2316 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2317 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2318 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2319 if (n)
2320 goto found;
2321 }
19baf839 2322
3d3b2d25
SH
2323 /* new hash chain */
2324 while (++h < FIB_TABLE_HASHSZ) {
2325 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2326 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2327 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2328 if (n)
2329 goto found;
2330 }
2331 }
cb7b593c 2332 return NULL;
3d3b2d25
SH
2333
2334found:
2335 iter->tb = tb;
2336 return n;
cb7b593c 2337}
19baf839 2338
cb7b593c 2339static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2340 __releases(RCU)
19baf839 2341{
cb7b593c
SH
2342 rcu_read_unlock();
2343}
91b9a277 2344
cb7b593c
SH
2345static void seq_indent(struct seq_file *seq, int n)
2346{
2347 while (n-- > 0) seq_puts(seq, " ");
2348}
19baf839 2349
28d36e37 2350static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2351{
132adf54 2352 switch (s) {
cb7b593c
SH
2353 case RT_SCOPE_UNIVERSE: return "universe";
2354 case RT_SCOPE_SITE: return "site";
2355 case RT_SCOPE_LINK: return "link";
2356 case RT_SCOPE_HOST: return "host";
2357 case RT_SCOPE_NOWHERE: return "nowhere";
2358 default:
28d36e37 2359 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2360 return buf;
2361 }
2362}
19baf839 2363
cb7b593c
SH
2364static const char *rtn_type_names[__RTN_MAX] = {
2365 [RTN_UNSPEC] = "UNSPEC",
2366 [RTN_UNICAST] = "UNICAST",
2367 [RTN_LOCAL] = "LOCAL",
2368 [RTN_BROADCAST] = "BROADCAST",
2369 [RTN_ANYCAST] = "ANYCAST",
2370 [RTN_MULTICAST] = "MULTICAST",
2371 [RTN_BLACKHOLE] = "BLACKHOLE",
2372 [RTN_UNREACHABLE] = "UNREACHABLE",
2373 [RTN_PROHIBIT] = "PROHIBIT",
2374 [RTN_THROW] = "THROW",
2375 [RTN_NAT] = "NAT",
2376 [RTN_XRESOLVE] = "XRESOLVE",
2377};
19baf839 2378
28d36e37 2379static inline const char *rtn_type(char *buf, size_t len, unsigned t)
cb7b593c 2380{
cb7b593c
SH
2381 if (t < __RTN_MAX && rtn_type_names[t])
2382 return rtn_type_names[t];
28d36e37 2383 snprintf(buf, len, "type %u", t);
cb7b593c 2384 return buf;
19baf839
RO
2385}
2386
cb7b593c
SH
2387/* Pretty print the trie */
2388static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2389{
cb7b593c
SH
2390 const struct fib_trie_iter *iter = seq->private;
2391 struct node *n = v;
c877efb2 2392
3d3b2d25
SH
2393 if (!node_parent_rcu(n))
2394 fib_table_print(seq, iter->tb);
095b8501 2395
cb7b593c
SH
2396 if (IS_TNODE(n)) {
2397 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2398 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2399
1d25cd6c 2400 seq_indent(seq, iter->depth-1);
673d57e7
HH
2401 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2402 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2403 tn->empty_children);
e905a9ed 2404
cb7b593c
SH
2405 } else {
2406 struct leaf *l = (struct leaf *) n;
1328042e
SH
2407 struct leaf_info *li;
2408 struct hlist_node *node;
32ab5f80 2409 __be32 val = htonl(l->key);
cb7b593c
SH
2410
2411 seq_indent(seq, iter->depth);
673d57e7 2412 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2413
2414 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2415 struct fib_alias *fa;
2416
2417 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2418 char buf1[32], buf2[32];
2419
2420 seq_indent(seq, iter->depth+1);
2421 seq_printf(seq, " /%d %s %s", li->plen,
2422 rtn_scope(buf1, sizeof(buf1),
2423 fa->fa_scope),
2424 rtn_type(buf2, sizeof(buf2),
2425 fa->fa_type));
2426 if (fa->fa_tos)
b9c4d82a 2427 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2428 seq_putc(seq, '\n');
cb7b593c
SH
2429 }
2430 }
19baf839 2431 }
cb7b593c 2432
19baf839
RO
2433 return 0;
2434}
2435
f690808e 2436static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2437 .start = fib_trie_seq_start,
2438 .next = fib_trie_seq_next,
2439 .stop = fib_trie_seq_stop,
2440 .show = fib_trie_seq_show,
19baf839
RO
2441};
2442
cb7b593c 2443static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2444{
1c340b2f
DL
2445 return seq_open_net(inode, file, &fib_trie_seq_ops,
2446 sizeof(struct fib_trie_iter));
19baf839
RO
2447}
2448
9a32144e 2449static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2450 .owner = THIS_MODULE,
2451 .open = fib_trie_seq_open,
2452 .read = seq_read,
2453 .llseek = seq_lseek,
1c340b2f 2454 .release = seq_release_net,
19baf839
RO
2455};
2456
8315f5d8
SH
2457struct fib_route_iter {
2458 struct seq_net_private p;
2459 struct trie *main_trie;
2460 loff_t pos;
2461 t_key key;
2462};
2463
2464static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2465{
2466 struct leaf *l = NULL;
2467 struct trie *t = iter->main_trie;
2468
2469 /* use cache location of last found key */
2470 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2471 pos -= iter->pos;
2472 else {
2473 iter->pos = 0;
2474 l = trie_firstleaf(t);
2475 }
2476
2477 while (l && pos-- > 0) {
2478 iter->pos++;
2479 l = trie_nextleaf(l);
2480 }
2481
2482 if (l)
2483 iter->key = pos; /* remember it */
2484 else
2485 iter->pos = 0; /* forget it */
2486
2487 return l;
2488}
2489
2490static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2491 __acquires(RCU)
2492{
2493 struct fib_route_iter *iter = seq->private;
2494 struct fib_table *tb;
2495
2496 rcu_read_lock();
1218854a 2497 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2498 if (!tb)
2499 return NULL;
2500
2501 iter->main_trie = (struct trie *) tb->tb_data;
2502 if (*pos == 0)
2503 return SEQ_START_TOKEN;
2504 else
2505 return fib_route_get_idx(iter, *pos - 1);
2506}
2507
2508static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2509{
2510 struct fib_route_iter *iter = seq->private;
2511 struct leaf *l = v;
2512
2513 ++*pos;
2514 if (v == SEQ_START_TOKEN) {
2515 iter->pos = 0;
2516 l = trie_firstleaf(iter->main_trie);
2517 } else {
2518 iter->pos++;
2519 l = trie_nextleaf(l);
2520 }
2521
2522 if (l)
2523 iter->key = l->key;
2524 else
2525 iter->pos = 0;
2526 return l;
2527}
2528
2529static void fib_route_seq_stop(struct seq_file *seq, void *v)
2530 __releases(RCU)
2531{
2532 rcu_read_unlock();
2533}
2534
32ab5f80 2535static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2536{
cb7b593c
SH
2537 static unsigned type2flags[RTN_MAX + 1] = {
2538 [7] = RTF_REJECT, [8] = RTF_REJECT,
2539 };
2540 unsigned flags = type2flags[type];
19baf839 2541
cb7b593c
SH
2542 if (fi && fi->fib_nh->nh_gw)
2543 flags |= RTF_GATEWAY;
32ab5f80 2544 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2545 flags |= RTF_HOST;
2546 flags |= RTF_UP;
2547 return flags;
19baf839
RO
2548}
2549
cb7b593c
SH
2550/*
2551 * This outputs /proc/net/route.
2552 * The format of the file is not supposed to be changed
2553 * and needs to be same as fib_hash output to avoid breaking
2554 * legacy utilities
2555 */
2556static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2557{
cb7b593c 2558 struct leaf *l = v;
1328042e
SH
2559 struct leaf_info *li;
2560 struct hlist_node *node;
19baf839 2561
cb7b593c
SH
2562 if (v == SEQ_START_TOKEN) {
2563 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2564 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2565 "\tWindow\tIRTT");
2566 return 0;
2567 }
19baf839 2568
1328042e 2569 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2570 struct fib_alias *fa;
32ab5f80 2571 __be32 mask, prefix;
91b9a277 2572
cb7b593c
SH
2573 mask = inet_make_mask(li->plen);
2574 prefix = htonl(l->key);
19baf839 2575
cb7b593c 2576 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2577 const struct fib_info *fi = fa->fa_info;
cb7b593c 2578 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2579 int len;
19baf839 2580
cb7b593c
SH
2581 if (fa->fa_type == RTN_BROADCAST
2582 || fa->fa_type == RTN_MULTICAST)
2583 continue;
19baf839 2584
cb7b593c 2585 if (fi)
5e659e4c
PE
2586 seq_printf(seq,
2587 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2588 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2589 fi->fib_dev ? fi->fib_dev->name : "*",
2590 prefix,
2591 fi->fib_nh->nh_gw, flags, 0, 0,
2592 fi->fib_priority,
2593 mask,
a07f5f50
SH
2594 (fi->fib_advmss ?
2595 fi->fib_advmss + 40 : 0),
cb7b593c 2596 fi->fib_window,
5e659e4c 2597 fi->fib_rtt >> 3, &len);
cb7b593c 2598 else
5e659e4c
PE
2599 seq_printf(seq,
2600 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2601 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2602 prefix, 0, flags, 0, 0, 0,
5e659e4c 2603 mask, 0, 0, 0, &len);
19baf839 2604
5e659e4c 2605 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2606 }
19baf839
RO
2607 }
2608
2609 return 0;
2610}
2611
f690808e 2612static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2613 .start = fib_route_seq_start,
2614 .next = fib_route_seq_next,
2615 .stop = fib_route_seq_stop,
cb7b593c 2616 .show = fib_route_seq_show,
19baf839
RO
2617};
2618
cb7b593c 2619static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2620{
1c340b2f 2621 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2622 sizeof(struct fib_route_iter));
19baf839
RO
2623}
2624
9a32144e 2625static const struct file_operations fib_route_fops = {
cb7b593c
SH
2626 .owner = THIS_MODULE,
2627 .open = fib_route_seq_open,
2628 .read = seq_read,
2629 .llseek = seq_lseek,
1c340b2f 2630 .release = seq_release_net,
19baf839
RO
2631};
2632
61a02653 2633int __net_init fib_proc_init(struct net *net)
19baf839 2634{
61a02653 2635 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2636 goto out1;
2637
61a02653
DL
2638 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2639 &fib_triestat_fops))
cb7b593c
SH
2640 goto out2;
2641
61a02653 2642 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2643 goto out3;
2644
19baf839 2645 return 0;
cb7b593c
SH
2646
2647out3:
61a02653 2648 proc_net_remove(net, "fib_triestat");
cb7b593c 2649out2:
61a02653 2650 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2651out1:
2652 return -ENOMEM;
19baf839
RO
2653}
2654
61a02653 2655void __net_exit fib_proc_exit(struct net *net)
19baf839 2656{
61a02653
DL
2657 proc_net_remove(net, "fib_trie");
2658 proc_net_remove(net, "fib_triestat");
2659 proc_net_remove(net, "route");
19baf839
RO
2660}
2661
2662#endif /* CONFIG_PROC_FS */