Merge branch 'driver-core-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
5a0e3ad6 74#include <linux/slab.h>
70c71606 75#include <linux/prefetch.h>
457c4cbc 76#include <net/net_namespace.h>
19baf839
RO
77#include <net/ip.h>
78#include <net/protocol.h>
79#include <net/route.h>
80#include <net/tcp.h>
81#include <net/sock.h>
82#include <net/ip_fib.h>
83#include "fib_lookup.h"
84
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
19baf839 87#define KEYLENGTH (8*sizeof(t_key))
19baf839 88
19baf839
RO
89typedef unsigned int t_key;
90
91#define T_TNODE 0
92#define T_LEAF 1
93#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
94#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
95
91b9a277
OJ
96#define IS_TNODE(n) (!(n->parent & T_LEAF))
97#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839 98
b299e4f0 99struct rt_trie_node {
91b9a277 100 unsigned long parent;
8d965444 101 t_key key;
19baf839
RO
102};
103
104struct leaf {
91b9a277 105 unsigned long parent;
8d965444 106 t_key key;
19baf839 107 struct hlist_head list;
2373ce1c 108 struct rcu_head rcu;
19baf839
RO
109};
110
111struct leaf_info {
112 struct hlist_node hlist;
2373ce1c 113 struct rcu_head rcu;
19baf839
RO
114 int plen;
115 struct list_head falh;
116};
117
118struct tnode {
91b9a277 119 unsigned long parent;
8d965444 120 t_key key;
112d8cfc
ED
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
125 union {
126 struct rcu_head rcu;
127 struct work_struct work;
e0f7cb8c 128 struct tnode *tnode_free;
15be75cd 129 };
0a5c0475 130 struct rt_trie_node __rcu *child[0];
19baf839
RO
131};
132
133#ifdef CONFIG_IP_FIB_TRIE_STATS
134struct trie_use_stats {
135 unsigned int gets;
136 unsigned int backtrack;
137 unsigned int semantic_match_passed;
138 unsigned int semantic_match_miss;
139 unsigned int null_node_hit;
2f36895a 140 unsigned int resize_node_skipped;
19baf839
RO
141};
142#endif
143
144struct trie_stat {
145 unsigned int totdepth;
146 unsigned int maxdepth;
147 unsigned int tnodes;
148 unsigned int leaves;
149 unsigned int nullpointers;
93672292 150 unsigned int prefixes;
06ef921d 151 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 152};
19baf839
RO
153
154struct trie {
0a5c0475 155 struct rt_trie_node __rcu *trie;
19baf839
RO
156#ifdef CONFIG_IP_FIB_TRIE_STATS
157 struct trie_use_stats stats;
158#endif
19baf839
RO
159};
160
b299e4f0
DM
161static void put_child(struct trie *t, struct tnode *tn, int i, struct rt_trie_node *n);
162static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 163 int wasfull);
b299e4f0 164static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
165static struct tnode *inflate(struct trie *t, struct tnode *tn);
166static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
167/* tnodes to free after resize(); protected by RTNL */
168static struct tnode *tnode_free_head;
c3059477
JP
169static size_t tnode_free_size;
170
171/*
172 * synchronize_rcu after call_rcu for that many pages; it should be especially
173 * useful before resizing the root node with PREEMPT_NONE configs; the value was
174 * obtained experimentally, aiming to avoid visible slowdown.
175 */
176static const int sync_pages = 128;
19baf839 177
e18b890b 178static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 179static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 180
0a5c0475
ED
181/*
182 * caller must hold RTNL
183 */
184static inline struct tnode *node_parent(const struct rt_trie_node *node)
06801916 185{
0a5c0475
ED
186 unsigned long parent;
187
188 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
189
190 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
b59cfbf7
ED
191}
192
0a5c0475
ED
193/*
194 * caller must hold RCU read lock or RTNL
195 */
196static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
b59cfbf7 197{
0a5c0475
ED
198 unsigned long parent;
199
200 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
201 lockdep_rtnl_is_held());
06801916 202
0a5c0475 203 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
06801916
SH
204}
205
6440cc9e
SH
206/* Same as rcu_assign_pointer
207 * but that macro() assumes that value is a pointer.
208 */
b299e4f0 209static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
06801916 210{
6440cc9e
SH
211 smp_wmb();
212 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 213}
2373ce1c 214
0a5c0475
ED
215/*
216 * caller must hold RTNL
217 */
218static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
b59cfbf7
ED
219{
220 BUG_ON(i >= 1U << tn->bits);
2373ce1c 221
0a5c0475 222 return rtnl_dereference(tn->child[i]);
b59cfbf7
ED
223}
224
0a5c0475
ED
225/*
226 * caller must hold RCU read lock or RTNL
227 */
228static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
19baf839 229{
0a5c0475 230 BUG_ON(i >= 1U << tn->bits);
19baf839 231
0a5c0475 232 return rcu_dereference_rtnl(tn->child[i]);
19baf839
RO
233}
234
bb435b8d 235static inline int tnode_child_length(const struct tnode *tn)
19baf839 236{
91b9a277 237 return 1 << tn->bits;
19baf839
RO
238}
239
3b004569 240static inline t_key mask_pfx(t_key k, unsigned int l)
ab66b4a7
SH
241{
242 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
243}
244
3b004569 245static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
19baf839 246{
91b9a277 247 if (offset < KEYLENGTH)
19baf839 248 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 249 else
19baf839
RO
250 return 0;
251}
252
253static inline int tkey_equals(t_key a, t_key b)
254{
c877efb2 255 return a == b;
19baf839
RO
256}
257
258static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
259{
c877efb2
SH
260 if (bits == 0 || offset >= KEYLENGTH)
261 return 1;
91b9a277
OJ
262 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
263 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 264}
19baf839
RO
265
266static inline int tkey_mismatch(t_key a, int offset, t_key b)
267{
268 t_key diff = a ^ b;
269 int i = offset;
270
c877efb2
SH
271 if (!diff)
272 return 0;
273 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
274 i++;
275 return i;
276}
277
19baf839 278/*
e905a9ed
YH
279 To understand this stuff, an understanding of keys and all their bits is
280 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
281 all of the bits in that key are significant.
282
283 Consider a node 'n' and its parent 'tp'.
284
e905a9ed
YH
285 If n is a leaf, every bit in its key is significant. Its presence is
286 necessitated by path compression, since during a tree traversal (when
287 searching for a leaf - unless we are doing an insertion) we will completely
288 ignore all skipped bits we encounter. Thus we need to verify, at the end of
289 a potentially successful search, that we have indeed been walking the
19baf839
RO
290 correct key path.
291
e905a9ed
YH
292 Note that we can never "miss" the correct key in the tree if present by
293 following the wrong path. Path compression ensures that segments of the key
294 that are the same for all keys with a given prefix are skipped, but the
295 skipped part *is* identical for each node in the subtrie below the skipped
296 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
297 call to tkey_sub_equals() in trie_insert().
298
e905a9ed 299 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
300 have many different meanings.
301
e905a9ed 302 Example:
19baf839
RO
303 _________________________________________________________________
304 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
305 -----------------------------------------------------------------
e905a9ed 306 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
307
308 _________________________________________________________________
309 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
310 -----------------------------------------------------------------
311 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
312
313 tp->pos = 7
314 tp->bits = 3
315 n->pos = 15
91b9a277 316 n->bits = 4
19baf839 317
e905a9ed
YH
318 First, let's just ignore the bits that come before the parent tp, that is
319 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
320 not use them for anything.
321
322 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 323 index into the parent's child array. That is, they will be used to find
19baf839
RO
324 'n' among tp's children.
325
326 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
327 for the node n.
328
e905a9ed 329 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
330 of the bits are really not needed or indeed known in n->key.
331
e905a9ed 332 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 333 n's child array, and will of course be different for each child.
e905a9ed 334
c877efb2 335
19baf839
RO
336 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
337 at this point.
338
339*/
340
0c7770c7 341static inline void check_tnode(const struct tnode *tn)
19baf839 342{
0c7770c7 343 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
344}
345
f5026fab
DL
346static const int halve_threshold = 25;
347static const int inflate_threshold = 50;
345aa031 348static const int halve_threshold_root = 15;
80b71b80 349static const int inflate_threshold_root = 30;
2373ce1c
RO
350
351static void __alias_free_mem(struct rcu_head *head)
19baf839 352{
2373ce1c
RO
353 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
354 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
355}
356
2373ce1c 357static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 358{
2373ce1c
RO
359 call_rcu(&fa->rcu, __alias_free_mem);
360}
91b9a277 361
2373ce1c
RO
362static void __leaf_free_rcu(struct rcu_head *head)
363{
bc3c8c1e
SH
364 struct leaf *l = container_of(head, struct leaf, rcu);
365 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 366}
91b9a277 367
387a5487
SH
368static inline void free_leaf(struct leaf *l)
369{
370 call_rcu_bh(&l->rcu, __leaf_free_rcu);
371}
372
2373ce1c 373static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 374{
bceb0f45 375 kfree_rcu(leaf, rcu);
19baf839
RO
376}
377
8d965444 378static struct tnode *tnode_alloc(size_t size)
f0e36f8c 379{
2373ce1c 380 if (size <= PAGE_SIZE)
8d965444 381 return kzalloc(size, GFP_KERNEL);
15be75cd 382 else
7a1c8e5a 383 return vzalloc(size);
15be75cd 384}
2373ce1c 385
15be75cd
SH
386static void __tnode_vfree(struct work_struct *arg)
387{
388 struct tnode *tn = container_of(arg, struct tnode, work);
389 vfree(tn);
f0e36f8c
PM
390}
391
2373ce1c 392static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 393{
2373ce1c 394 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444 395 size_t size = sizeof(struct tnode) +
b299e4f0 396 (sizeof(struct rt_trie_node *) << tn->bits);
f0e36f8c
PM
397
398 if (size <= PAGE_SIZE)
399 kfree(tn);
15be75cd
SH
400 else {
401 INIT_WORK(&tn->work, __tnode_vfree);
402 schedule_work(&tn->work);
403 }
f0e36f8c
PM
404}
405
2373ce1c
RO
406static inline void tnode_free(struct tnode *tn)
407{
387a5487
SH
408 if (IS_LEAF(tn))
409 free_leaf((struct leaf *) tn);
410 else
550e29bc 411 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
412}
413
e0f7cb8c
JP
414static void tnode_free_safe(struct tnode *tn)
415{
416 BUG_ON(IS_LEAF(tn));
7b85576d
JP
417 tn->tnode_free = tnode_free_head;
418 tnode_free_head = tn;
c3059477 419 tnode_free_size += sizeof(struct tnode) +
b299e4f0 420 (sizeof(struct rt_trie_node *) << tn->bits);
e0f7cb8c
JP
421}
422
423static void tnode_free_flush(void)
424{
425 struct tnode *tn;
426
427 while ((tn = tnode_free_head)) {
428 tnode_free_head = tn->tnode_free;
429 tn->tnode_free = NULL;
430 tnode_free(tn);
431 }
c3059477
JP
432
433 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
434 tnode_free_size = 0;
435 synchronize_rcu();
436 }
e0f7cb8c
JP
437}
438
2373ce1c
RO
439static struct leaf *leaf_new(void)
440{
bc3c8c1e 441 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
442 if (l) {
443 l->parent = T_LEAF;
444 INIT_HLIST_HEAD(&l->list);
445 }
446 return l;
447}
448
449static struct leaf_info *leaf_info_new(int plen)
450{
451 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
452 if (li) {
453 li->plen = plen;
454 INIT_LIST_HEAD(&li->falh);
455 }
456 return li;
457}
458
a07f5f50 459static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 460{
b299e4f0 461 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
f0e36f8c 462 struct tnode *tn = tnode_alloc(sz);
19baf839 463
91b9a277 464 if (tn) {
2373ce1c 465 tn->parent = T_TNODE;
19baf839
RO
466 tn->pos = pos;
467 tn->bits = bits;
468 tn->key = key;
469 tn->full_children = 0;
470 tn->empty_children = 1<<bits;
471 }
c877efb2 472
a034ee3c 473 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
b299e4f0 474 sizeof(struct rt_trie_node) << bits);
19baf839
RO
475 return tn;
476}
477
19baf839
RO
478/*
479 * Check whether a tnode 'n' is "full", i.e. it is an internal node
480 * and no bits are skipped. See discussion in dyntree paper p. 6
481 */
482
b299e4f0 483static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
19baf839 484{
c877efb2 485 if (n == NULL || IS_LEAF(n))
19baf839
RO
486 return 0;
487
488 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
489}
490
a07f5f50 491static inline void put_child(struct trie *t, struct tnode *tn, int i,
b299e4f0 492 struct rt_trie_node *n)
19baf839
RO
493{
494 tnode_put_child_reorg(tn, i, n, -1);
495}
496
c877efb2 497 /*
19baf839
RO
498 * Add a child at position i overwriting the old value.
499 * Update the value of full_children and empty_children.
500 */
501
b299e4f0 502static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
a07f5f50 503 int wasfull)
19baf839 504{
0a5c0475 505 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
19baf839
RO
506 int isfull;
507
0c7770c7
SH
508 BUG_ON(i >= 1<<tn->bits);
509
19baf839
RO
510 /* update emptyChildren */
511 if (n == NULL && chi != NULL)
512 tn->empty_children++;
513 else if (n != NULL && chi == NULL)
514 tn->empty_children--;
c877efb2 515
19baf839 516 /* update fullChildren */
91b9a277 517 if (wasfull == -1)
19baf839
RO
518 wasfull = tnode_full(tn, chi);
519
520 isfull = tnode_full(tn, n);
c877efb2 521 if (wasfull && !isfull)
19baf839 522 tn->full_children--;
c877efb2 523 else if (!wasfull && isfull)
19baf839 524 tn->full_children++;
91b9a277 525
c877efb2 526 if (n)
06801916 527 node_set_parent(n, tn);
19baf839 528
2373ce1c 529 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
530}
531
80b71b80 532#define MAX_WORK 10
b299e4f0 533static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
534{
535 int i;
2f80b3c8 536 struct tnode *old_tn;
e6308be8
RO
537 int inflate_threshold_use;
538 int halve_threshold_use;
80b71b80 539 int max_work;
19baf839 540
e905a9ed 541 if (!tn)
19baf839
RO
542 return NULL;
543
0c7770c7
SH
544 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
545 tn, inflate_threshold, halve_threshold);
19baf839
RO
546
547 /* No children */
548 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 549 tnode_free_safe(tn);
19baf839
RO
550 return NULL;
551 }
552 /* One child */
553 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 554 goto one_child;
c877efb2 555 /*
19baf839
RO
556 * Double as long as the resulting node has a number of
557 * nonempty nodes that are above the threshold.
558 */
559
560 /*
c877efb2
SH
561 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
562 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 563 * Telecommunications, page 6:
c877efb2 564 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
565 * children in the *doubled* node is at least 'high'."
566 *
c877efb2
SH
567 * 'high' in this instance is the variable 'inflate_threshold'. It
568 * is expressed as a percentage, so we multiply it with
569 * tnode_child_length() and instead of multiplying by 2 (since the
570 * child array will be doubled by inflate()) and multiplying
571 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 572 * multiply the left-hand side by 50.
c877efb2
SH
573 *
574 * The left-hand side may look a bit weird: tnode_child_length(tn)
575 * - tn->empty_children is of course the number of non-null children
576 * in the current node. tn->full_children is the number of "full"
19baf839 577 * children, that is non-null tnodes with a skip value of 0.
c877efb2 578 * All of those will be doubled in the resulting inflated tnode, so
19baf839 579 * we just count them one extra time here.
c877efb2 580 *
19baf839 581 * A clearer way to write this would be:
c877efb2 582 *
19baf839 583 * to_be_doubled = tn->full_children;
c877efb2 584 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
585 * tn->full_children;
586 *
587 * new_child_length = tnode_child_length(tn) * 2;
588 *
c877efb2 589 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
590 * new_child_length;
591 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
592 *
593 * ...and so on, tho it would mess up the while () loop.
594 *
19baf839
RO
595 * anyway,
596 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
597 * inflate_threshold
c877efb2 598 *
19baf839
RO
599 * avoid a division:
600 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
601 * inflate_threshold * new_child_length
c877efb2 602 *
19baf839 603 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 604 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 605 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 606 *
19baf839 607 * expand new_child_length:
c877efb2 608 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 609 * tn->full_children) >=
19baf839 610 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 611 *
19baf839 612 * shorten again:
c877efb2 613 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 614 * tn->empty_children) >= inflate_threshold *
19baf839 615 * tnode_child_length(tn)
c877efb2 616 *
19baf839
RO
617 */
618
619 check_tnode(tn);
c877efb2 620
e6308be8
RO
621 /* Keep root node larger */
622
b299e4f0 623 if (!node_parent((struct rt_trie_node *)tn)) {
80b71b80
JL
624 inflate_threshold_use = inflate_threshold_root;
625 halve_threshold_use = halve_threshold_root;
a034ee3c 626 } else {
e6308be8 627 inflate_threshold_use = inflate_threshold;
80b71b80
JL
628 halve_threshold_use = halve_threshold;
629 }
e6308be8 630
80b71b80
JL
631 max_work = MAX_WORK;
632 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
633 50 * (tn->full_children + tnode_child_length(tn)
634 - tn->empty_children)
635 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 636
2f80b3c8
RO
637 old_tn = tn;
638 tn = inflate(t, tn);
a07f5f50 639
2f80b3c8
RO
640 if (IS_ERR(tn)) {
641 tn = old_tn;
2f36895a
RO
642#ifdef CONFIG_IP_FIB_TRIE_STATS
643 t->stats.resize_node_skipped++;
644#endif
645 break;
646 }
19baf839
RO
647 }
648
649 check_tnode(tn);
650
80b71b80 651 /* Return if at least one inflate is run */
a034ee3c 652 if (max_work != MAX_WORK)
b299e4f0 653 return (struct rt_trie_node *) tn;
80b71b80 654
19baf839
RO
655 /*
656 * Halve as long as the number of empty children in this
657 * node is above threshold.
658 */
2f36895a 659
80b71b80
JL
660 max_work = MAX_WORK;
661 while (tn->bits > 1 && max_work-- &&
19baf839 662 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 663 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 664
2f80b3c8
RO
665 old_tn = tn;
666 tn = halve(t, tn);
667 if (IS_ERR(tn)) {
668 tn = old_tn;
2f36895a
RO
669#ifdef CONFIG_IP_FIB_TRIE_STATS
670 t->stats.resize_node_skipped++;
671#endif
672 break;
673 }
674 }
19baf839 675
c877efb2 676
19baf839 677 /* Only one child remains */
80b71b80
JL
678 if (tn->empty_children == tnode_child_length(tn) - 1) {
679one_child:
19baf839 680 for (i = 0; i < tnode_child_length(tn); i++) {
b299e4f0 681 struct rt_trie_node *n;
19baf839 682
0a5c0475 683 n = rtnl_dereference(tn->child[i]);
2373ce1c 684 if (!n)
91b9a277 685 continue;
91b9a277
OJ
686
687 /* compress one level */
688
06801916 689 node_set_parent(n, NULL);
e0f7cb8c 690 tnode_free_safe(tn);
91b9a277 691 return n;
19baf839 692 }
80b71b80 693 }
b299e4f0 694 return (struct rt_trie_node *) tn;
19baf839
RO
695}
696
0a5c0475
ED
697
698static void tnode_clean_free(struct tnode *tn)
699{
700 int i;
701 struct tnode *tofree;
702
703 for (i = 0; i < tnode_child_length(tn); i++) {
704 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
705 if (tofree)
706 tnode_free(tofree);
707 }
708 tnode_free(tn);
709}
710
2f80b3c8 711static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 712{
19baf839
RO
713 struct tnode *oldtnode = tn;
714 int olen = tnode_child_length(tn);
715 int i;
716
0c7770c7 717 pr_debug("In inflate\n");
19baf839
RO
718
719 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
720
0c7770c7 721 if (!tn)
2f80b3c8 722 return ERR_PTR(-ENOMEM);
2f36895a
RO
723
724 /*
c877efb2
SH
725 * Preallocate and store tnodes before the actual work so we
726 * don't get into an inconsistent state if memory allocation
727 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
728 * of tnode is ignored.
729 */
91b9a277
OJ
730
731 for (i = 0; i < olen; i++) {
a07f5f50 732 struct tnode *inode;
2f36895a 733
a07f5f50 734 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
735 if (inode &&
736 IS_TNODE(inode) &&
737 inode->pos == oldtnode->pos + oldtnode->bits &&
738 inode->bits > 1) {
739 struct tnode *left, *right;
ab66b4a7 740 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 741
2f36895a
RO
742 left = tnode_new(inode->key&(~m), inode->pos + 1,
743 inode->bits - 1);
2f80b3c8
RO
744 if (!left)
745 goto nomem;
91b9a277 746
2f36895a
RO
747 right = tnode_new(inode->key|m, inode->pos + 1,
748 inode->bits - 1);
749
e905a9ed 750 if (!right) {
2f80b3c8
RO
751 tnode_free(left);
752 goto nomem;
e905a9ed 753 }
2f36895a 754
b299e4f0
DM
755 put_child(t, tn, 2*i, (struct rt_trie_node *) left);
756 put_child(t, tn, 2*i+1, (struct rt_trie_node *) right);
2f36895a
RO
757 }
758 }
759
91b9a277 760 for (i = 0; i < olen; i++) {
c95aaf9a 761 struct tnode *inode;
b299e4f0 762 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
763 struct tnode *left, *right;
764 int size, j;
c877efb2 765
19baf839
RO
766 /* An empty child */
767 if (node == NULL)
768 continue;
769
770 /* A leaf or an internal node with skipped bits */
771
c877efb2 772 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 773 tn->pos + tn->bits - 1) {
a07f5f50
SH
774 if (tkey_extract_bits(node->key,
775 oldtnode->pos + oldtnode->bits,
776 1) == 0)
19baf839
RO
777 put_child(t, tn, 2*i, node);
778 else
779 put_child(t, tn, 2*i+1, node);
780 continue;
781 }
782
783 /* An internal node with two children */
784 inode = (struct tnode *) node;
785
786 if (inode->bits == 1) {
0a5c0475
ED
787 put_child(t, tn, 2*i, rtnl_dereference(inode->child[0]));
788 put_child(t, tn, 2*i+1, rtnl_dereference(inode->child[1]));
19baf839 789
e0f7cb8c 790 tnode_free_safe(inode);
91b9a277 791 continue;
19baf839
RO
792 }
793
91b9a277
OJ
794 /* An internal node with more than two children */
795
796 /* We will replace this node 'inode' with two new
797 * ones, 'left' and 'right', each with half of the
798 * original children. The two new nodes will have
799 * a position one bit further down the key and this
800 * means that the "significant" part of their keys
801 * (see the discussion near the top of this file)
802 * will differ by one bit, which will be "0" in
803 * left's key and "1" in right's key. Since we are
804 * moving the key position by one step, the bit that
805 * we are moving away from - the bit at position
806 * (inode->pos) - is the one that will differ between
807 * left and right. So... we synthesize that bit in the
808 * two new keys.
809 * The mask 'm' below will be a single "one" bit at
810 * the position (inode->pos)
811 */
19baf839 812
91b9a277
OJ
813 /* Use the old key, but set the new significant
814 * bit to zero.
815 */
2f36895a 816
91b9a277
OJ
817 left = (struct tnode *) tnode_get_child(tn, 2*i);
818 put_child(t, tn, 2*i, NULL);
2f36895a 819
91b9a277 820 BUG_ON(!left);
2f36895a 821
91b9a277
OJ
822 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
823 put_child(t, tn, 2*i+1, NULL);
19baf839 824
91b9a277 825 BUG_ON(!right);
19baf839 826
91b9a277
OJ
827 size = tnode_child_length(left);
828 for (j = 0; j < size; j++) {
0a5c0475
ED
829 put_child(t, left, j, rtnl_dereference(inode->child[j]));
830 put_child(t, right, j, rtnl_dereference(inode->child[j + size]));
19baf839 831 }
91b9a277
OJ
832 put_child(t, tn, 2*i, resize(t, left));
833 put_child(t, tn, 2*i+1, resize(t, right));
834
e0f7cb8c 835 tnode_free_safe(inode);
19baf839 836 }
e0f7cb8c 837 tnode_free_safe(oldtnode);
19baf839 838 return tn;
2f80b3c8 839nomem:
0a5c0475
ED
840 tnode_clean_free(tn);
841 return ERR_PTR(-ENOMEM);
19baf839
RO
842}
843
2f80b3c8 844static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
845{
846 struct tnode *oldtnode = tn;
b299e4f0 847 struct rt_trie_node *left, *right;
19baf839
RO
848 int i;
849 int olen = tnode_child_length(tn);
850
0c7770c7 851 pr_debug("In halve\n");
c877efb2
SH
852
853 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 854
2f80b3c8
RO
855 if (!tn)
856 return ERR_PTR(-ENOMEM);
2f36895a
RO
857
858 /*
c877efb2
SH
859 * Preallocate and store tnodes before the actual work so we
860 * don't get into an inconsistent state if memory allocation
861 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
862 * of tnode is ignored.
863 */
864
91b9a277 865 for (i = 0; i < olen; i += 2) {
2f36895a
RO
866 left = tnode_get_child(oldtnode, i);
867 right = tnode_get_child(oldtnode, i+1);
c877efb2 868
2f36895a 869 /* Two nonempty children */
0c7770c7 870 if (left && right) {
2f80b3c8 871 struct tnode *newn;
0c7770c7 872
2f80b3c8 873 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
874
875 if (!newn)
2f80b3c8 876 goto nomem;
0c7770c7 877
b299e4f0 878 put_child(t, tn, i/2, (struct rt_trie_node *)newn);
2f36895a 879 }
2f36895a 880
2f36895a 881 }
19baf839 882
91b9a277
OJ
883 for (i = 0; i < olen; i += 2) {
884 struct tnode *newBinNode;
885
19baf839
RO
886 left = tnode_get_child(oldtnode, i);
887 right = tnode_get_child(oldtnode, i+1);
c877efb2 888
19baf839
RO
889 /* At least one of the children is empty */
890 if (left == NULL) {
891 if (right == NULL) /* Both are empty */
892 continue;
893 put_child(t, tn, i/2, right);
91b9a277 894 continue;
0c7770c7 895 }
91b9a277
OJ
896
897 if (right == NULL) {
19baf839 898 put_child(t, tn, i/2, left);
91b9a277
OJ
899 continue;
900 }
c877efb2 901
19baf839 902 /* Two nonempty children */
91b9a277
OJ
903 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
904 put_child(t, tn, i/2, NULL);
91b9a277
OJ
905 put_child(t, newBinNode, 0, left);
906 put_child(t, newBinNode, 1, right);
907 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 908 }
e0f7cb8c 909 tnode_free_safe(oldtnode);
19baf839 910 return tn;
2f80b3c8 911nomem:
0a5c0475
ED
912 tnode_clean_free(tn);
913 return ERR_PTR(-ENOMEM);
19baf839
RO
914}
915
772cb712 916/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
917 via get_fa_head and dump */
918
772cb712 919static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 920{
772cb712 921 struct hlist_head *head = &l->list;
19baf839
RO
922 struct hlist_node *node;
923 struct leaf_info *li;
924
2373ce1c 925 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 926 if (li->plen == plen)
19baf839 927 return li;
91b9a277 928
19baf839
RO
929 return NULL;
930}
931
a07f5f50 932static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 933{
772cb712 934 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 935
91b9a277
OJ
936 if (!li)
937 return NULL;
c877efb2 938
91b9a277 939 return &li->falh;
19baf839
RO
940}
941
942static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
943{
e905a9ed
YH
944 struct leaf_info *li = NULL, *last = NULL;
945 struct hlist_node *node;
946
947 if (hlist_empty(head)) {
948 hlist_add_head_rcu(&new->hlist, head);
949 } else {
950 hlist_for_each_entry(li, node, head, hlist) {
951 if (new->plen > li->plen)
952 break;
953
954 last = li;
955 }
956 if (last)
957 hlist_add_after_rcu(&last->hlist, &new->hlist);
958 else
959 hlist_add_before_rcu(&new->hlist, &li->hlist);
960 }
19baf839
RO
961}
962
2373ce1c
RO
963/* rcu_read_lock needs to be hold by caller from readside */
964
19baf839
RO
965static struct leaf *
966fib_find_node(struct trie *t, u32 key)
967{
968 int pos;
969 struct tnode *tn;
b299e4f0 970 struct rt_trie_node *n;
19baf839
RO
971
972 pos = 0;
a034ee3c 973 n = rcu_dereference_rtnl(t->trie);
19baf839
RO
974
975 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
976 tn = (struct tnode *) n;
91b9a277 977
19baf839 978 check_tnode(tn);
91b9a277 979
c877efb2 980 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 981 pos = tn->pos + tn->bits;
a07f5f50
SH
982 n = tnode_get_child_rcu(tn,
983 tkey_extract_bits(key,
984 tn->pos,
985 tn->bits));
91b9a277 986 } else
19baf839
RO
987 break;
988 }
989 /* Case we have found a leaf. Compare prefixes */
990
91b9a277
OJ
991 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
992 return (struct leaf *)n;
993
19baf839
RO
994 return NULL;
995}
996
7b85576d 997static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 998{
19baf839 999 int wasfull;
3ed18d76 1000 t_key cindex, key;
06801916 1001 struct tnode *tp;
19baf839 1002
3ed18d76
RO
1003 key = tn->key;
1004
b299e4f0 1005 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
19baf839
RO
1006 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1007 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
1008 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1009
1010 tnode_put_child_reorg((struct tnode *)tp, cindex,
b299e4f0 1011 (struct rt_trie_node *)tn, wasfull);
91b9a277 1012
b299e4f0 1013 tp = node_parent((struct rt_trie_node *) tn);
008440e3 1014 if (!tp)
b299e4f0 1015 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
008440e3 1016
e0f7cb8c 1017 tnode_free_flush();
06801916 1018 if (!tp)
19baf839 1019 break;
06801916 1020 tn = tp;
19baf839 1021 }
06801916 1022
19baf839 1023 /* Handle last (top) tnode */
7b85576d 1024 if (IS_TNODE(tn))
a07f5f50 1025 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1026
b299e4f0 1027 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
7b85576d 1028 tnode_free_flush();
19baf839
RO
1029}
1030
2373ce1c
RO
1031/* only used from updater-side */
1032
fea86ad8 1033static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1034{
1035 int pos, newpos;
1036 struct tnode *tp = NULL, *tn = NULL;
b299e4f0 1037 struct rt_trie_node *n;
19baf839
RO
1038 struct leaf *l;
1039 int missbit;
c877efb2 1040 struct list_head *fa_head = NULL;
19baf839
RO
1041 struct leaf_info *li;
1042 t_key cindex;
1043
1044 pos = 0;
0a5c0475 1045 n = rtnl_dereference(t->trie);
19baf839 1046
c877efb2
SH
1047 /* If we point to NULL, stop. Either the tree is empty and we should
1048 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1049 * and we should just put our new leaf in that.
c877efb2
SH
1050 * If we point to a T_TNODE, check if it matches our key. Note that
1051 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1052 * not be the parent's 'pos'+'bits'!
1053 *
c877efb2 1054 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1055 * the index from our key, push the T_TNODE and walk the tree.
1056 *
1057 * If it doesn't, we have to replace it with a new T_TNODE.
1058 *
c877efb2
SH
1059 * If we point to a T_LEAF, it might or might not have the same key
1060 * as we do. If it does, just change the value, update the T_LEAF's
1061 * value, and return it.
19baf839
RO
1062 * If it doesn't, we need to replace it with a T_TNODE.
1063 */
1064
1065 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1066 tn = (struct tnode *) n;
91b9a277 1067
c877efb2 1068 check_tnode(tn);
91b9a277 1069
c877efb2 1070 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1071 tp = tn;
91b9a277 1072 pos = tn->pos + tn->bits;
a07f5f50
SH
1073 n = tnode_get_child(tn,
1074 tkey_extract_bits(key,
1075 tn->pos,
1076 tn->bits));
19baf839 1077
06801916 1078 BUG_ON(n && node_parent(n) != tn);
91b9a277 1079 } else
19baf839
RO
1080 break;
1081 }
1082
1083 /*
1084 * n ----> NULL, LEAF or TNODE
1085 *
c877efb2 1086 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1087 */
1088
91b9a277 1089 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1090
1091 /* Case 1: n is a leaf. Compare prefixes */
1092
c877efb2 1093 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1094 l = (struct leaf *) n;
19baf839 1095 li = leaf_info_new(plen);
91b9a277 1096
fea86ad8
SH
1097 if (!li)
1098 return NULL;
19baf839
RO
1099
1100 fa_head = &li->falh;
1101 insert_leaf_info(&l->list, li);
1102 goto done;
1103 }
19baf839
RO
1104 l = leaf_new();
1105
fea86ad8
SH
1106 if (!l)
1107 return NULL;
19baf839
RO
1108
1109 l->key = key;
1110 li = leaf_info_new(plen);
1111
c877efb2 1112 if (!li) {
387a5487 1113 free_leaf(l);
fea86ad8 1114 return NULL;
f835e471 1115 }
19baf839
RO
1116
1117 fa_head = &li->falh;
1118 insert_leaf_info(&l->list, li);
1119
19baf839 1120 if (t->trie && n == NULL) {
91b9a277 1121 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1122
b299e4f0 1123 node_set_parent((struct rt_trie_node *)l, tp);
19baf839 1124
91b9a277 1125 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
b299e4f0 1126 put_child(t, (struct tnode *)tp, cindex, (struct rt_trie_node *)l);
91b9a277
OJ
1127 } else {
1128 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1129 /*
1130 * Add a new tnode here
19baf839
RO
1131 * first tnode need some special handling
1132 */
1133
1134 if (tp)
91b9a277 1135 pos = tp->pos+tp->bits;
19baf839 1136 else
91b9a277
OJ
1137 pos = 0;
1138
c877efb2 1139 if (n) {
19baf839
RO
1140 newpos = tkey_mismatch(key, pos, n->key);
1141 tn = tnode_new(n->key, newpos, 1);
91b9a277 1142 } else {
19baf839 1143 newpos = 0;
c877efb2 1144 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1145 }
19baf839 1146
c877efb2 1147 if (!tn) {
f835e471 1148 free_leaf_info(li);
387a5487 1149 free_leaf(l);
fea86ad8 1150 return NULL;
91b9a277
OJ
1151 }
1152
b299e4f0 1153 node_set_parent((struct rt_trie_node *)tn, tp);
19baf839 1154
91b9a277 1155 missbit = tkey_extract_bits(key, newpos, 1);
b299e4f0 1156 put_child(t, tn, missbit, (struct rt_trie_node *)l);
19baf839
RO
1157 put_child(t, tn, 1-missbit, n);
1158
c877efb2 1159 if (tp) {
19baf839 1160 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50 1161 put_child(t, (struct tnode *)tp, cindex,
b299e4f0 1162 (struct rt_trie_node *)tn);
91b9a277 1163 } else {
b299e4f0 1164 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
19baf839
RO
1165 tp = tn;
1166 }
1167 }
91b9a277
OJ
1168
1169 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1170 pr_warning("fib_trie"
1171 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1172 tp, tp->pos, tp->bits, key, plen);
91b9a277 1173
19baf839 1174 /* Rebalance the trie */
2373ce1c 1175
7b85576d 1176 trie_rebalance(t, tp);
f835e471 1177done:
19baf839
RO
1178 return fa_head;
1179}
1180
d562f1f8
RO
1181/*
1182 * Caller must hold RTNL.
1183 */
16c6cf8b 1184int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1185{
1186 struct trie *t = (struct trie *) tb->tb_data;
1187 struct fib_alias *fa, *new_fa;
c877efb2 1188 struct list_head *fa_head = NULL;
19baf839 1189 struct fib_info *fi;
4e902c57
TG
1190 int plen = cfg->fc_dst_len;
1191 u8 tos = cfg->fc_tos;
19baf839
RO
1192 u32 key, mask;
1193 int err;
1194 struct leaf *l;
1195
1196 if (plen > 32)
1197 return -EINVAL;
1198
4e902c57 1199 key = ntohl(cfg->fc_dst);
19baf839 1200
2dfe55b4 1201 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1202
91b9a277 1203 mask = ntohl(inet_make_mask(plen));
19baf839 1204
c877efb2 1205 if (key & ~mask)
19baf839
RO
1206 return -EINVAL;
1207
1208 key = key & mask;
1209
4e902c57
TG
1210 fi = fib_create_info(cfg);
1211 if (IS_ERR(fi)) {
1212 err = PTR_ERR(fi);
19baf839 1213 goto err;
4e902c57 1214 }
19baf839
RO
1215
1216 l = fib_find_node(t, key);
c877efb2 1217 fa = NULL;
19baf839 1218
c877efb2 1219 if (l) {
19baf839
RO
1220 fa_head = get_fa_head(l, plen);
1221 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1222 }
1223
1224 /* Now fa, if non-NULL, points to the first fib alias
1225 * with the same keys [prefix,tos,priority], if such key already
1226 * exists or to the node before which we will insert new one.
1227 *
1228 * If fa is NULL, we will need to allocate a new one and
1229 * insert to the head of f.
1230 *
1231 * If f is NULL, no fib node matched the destination key
1232 * and we need to allocate a new one of those as well.
1233 */
1234
936f6f8e
JA
1235 if (fa && fa->fa_tos == tos &&
1236 fa->fa_info->fib_priority == fi->fib_priority) {
1237 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1238
1239 err = -EEXIST;
4e902c57 1240 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1241 goto out;
1242
936f6f8e
JA
1243 /* We have 2 goals:
1244 * 1. Find exact match for type, scope, fib_info to avoid
1245 * duplicate routes
1246 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1247 */
1248 fa_match = NULL;
1249 fa_first = fa;
1250 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1251 list_for_each_entry_continue(fa, fa_head, fa_list) {
1252 if (fa->fa_tos != tos)
1253 break;
1254 if (fa->fa_info->fib_priority != fi->fib_priority)
1255 break;
1256 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1257 fa->fa_info == fi) {
1258 fa_match = fa;
1259 break;
1260 }
1261 }
1262
4e902c57 1263 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1264 struct fib_info *fi_drop;
1265 u8 state;
1266
936f6f8e
JA
1267 fa = fa_first;
1268 if (fa_match) {
1269 if (fa == fa_match)
1270 err = 0;
6725033f 1271 goto out;
936f6f8e 1272 }
2373ce1c 1273 err = -ENOBUFS;
e94b1766 1274 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1275 if (new_fa == NULL)
1276 goto out;
19baf839
RO
1277
1278 fi_drop = fa->fa_info;
2373ce1c
RO
1279 new_fa->fa_tos = fa->fa_tos;
1280 new_fa->fa_info = fi;
4e902c57 1281 new_fa->fa_type = cfg->fc_type;
19baf839 1282 state = fa->fa_state;
936f6f8e 1283 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1284
2373ce1c
RO
1285 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1286 alias_free_mem_rcu(fa);
19baf839
RO
1287
1288 fib_release_info(fi_drop);
1289 if (state & FA_S_ACCESSED)
76e6ebfb 1290 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1291 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1292 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1293
91b9a277 1294 goto succeeded;
19baf839
RO
1295 }
1296 /* Error if we find a perfect match which
1297 * uses the same scope, type, and nexthop
1298 * information.
1299 */
936f6f8e
JA
1300 if (fa_match)
1301 goto out;
a07f5f50 1302
4e902c57 1303 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1304 fa = fa_first;
19baf839
RO
1305 }
1306 err = -ENOENT;
4e902c57 1307 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1308 goto out;
1309
1310 err = -ENOBUFS;
e94b1766 1311 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1312 if (new_fa == NULL)
1313 goto out;
1314
1315 new_fa->fa_info = fi;
1316 new_fa->fa_tos = tos;
4e902c57 1317 new_fa->fa_type = cfg->fc_type;
19baf839 1318 new_fa->fa_state = 0;
19baf839
RO
1319 /*
1320 * Insert new entry to the list.
1321 */
1322
c877efb2 1323 if (!fa_head) {
fea86ad8
SH
1324 fa_head = fib_insert_node(t, key, plen);
1325 if (unlikely(!fa_head)) {
1326 err = -ENOMEM;
f835e471 1327 goto out_free_new_fa;
fea86ad8 1328 }
f835e471 1329 }
19baf839 1330
21d8c49e
DM
1331 if (!plen)
1332 tb->tb_num_default++;
1333
2373ce1c
RO
1334 list_add_tail_rcu(&new_fa->fa_list,
1335 (fa ? &fa->fa_list : fa_head));
19baf839 1336
76e6ebfb 1337 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1338 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1339 &cfg->fc_nlinfo, 0);
19baf839
RO
1340succeeded:
1341 return 0;
f835e471
RO
1342
1343out_free_new_fa:
1344 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1345out:
1346 fib_release_info(fi);
91b9a277 1347err:
19baf839
RO
1348 return err;
1349}
1350
772cb712 1351/* should be called with rcu_read_lock */
5b470441 1352static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
22bd5b9b 1353 t_key key, const struct flowi4 *flp,
ebc0ffae 1354 struct fib_result *res, int fib_flags)
19baf839 1355{
19baf839
RO
1356 struct leaf_info *li;
1357 struct hlist_head *hhead = &l->list;
1358 struct hlist_node *node;
c877efb2 1359
2373ce1c 1360 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
3be0686b 1361 struct fib_alias *fa;
a07f5f50
SH
1362 int plen = li->plen;
1363 __be32 mask = inet_make_mask(plen);
1364
888454c5 1365 if (l->key != (key & ntohl(mask)))
19baf839
RO
1366 continue;
1367
3be0686b
DM
1368 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1369 struct fib_info *fi = fa->fa_info;
1370 int nhsel, err;
a07f5f50 1371
22bd5b9b 1372 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
3be0686b 1373 continue;
37e826c5 1374 if (fa->fa_info->fib_scope < flp->flowi4_scope)
3be0686b
DM
1375 continue;
1376 fib_alias_accessed(fa);
1377 err = fib_props[fa->fa_type].error;
1378 if (err) {
19baf839 1379#ifdef CONFIG_IP_FIB_TRIE_STATS
1fbc7843 1380 t->stats.semantic_match_passed++;
3be0686b 1381#endif
1fbc7843 1382 return err;
3be0686b
DM
1383 }
1384 if (fi->fib_flags & RTNH_F_DEAD)
1385 continue;
1386 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1387 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1388
1389 if (nh->nh_flags & RTNH_F_DEAD)
1390 continue;
22bd5b9b 1391 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
3be0686b
DM
1392 continue;
1393
1394#ifdef CONFIG_IP_FIB_TRIE_STATS
1395 t->stats.semantic_match_passed++;
1396#endif
1397 res->prefixlen = plen;
1398 res->nh_sel = nhsel;
1399 res->type = fa->fa_type;
37e826c5 1400 res->scope = fa->fa_info->fib_scope;
3be0686b
DM
1401 res->fi = fi;
1402 res->table = tb;
1403 res->fa_head = &li->falh;
1404 if (!(fib_flags & FIB_LOOKUP_NOREF))
1405 atomic_inc(&res->fi->fib_clntref);
1406 return 0;
1407 }
1408 }
1409
1410#ifdef CONFIG_IP_FIB_TRIE_STATS
1411 t->stats.semantic_match_miss++;
19baf839 1412#endif
19baf839 1413 }
a07f5f50 1414
2e655571 1415 return 1;
19baf839
RO
1416}
1417
22bd5b9b 1418int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1419 struct fib_result *res, int fib_flags)
19baf839
RO
1420{
1421 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1422 int ret;
b299e4f0 1423 struct rt_trie_node *n;
19baf839 1424 struct tnode *pn;
3b004569 1425 unsigned int pos, bits;
22bd5b9b 1426 t_key key = ntohl(flp->daddr);
3b004569 1427 unsigned int chopped_off;
19baf839 1428 t_key cindex = 0;
3b004569 1429 unsigned int current_prefix_length = KEYLENGTH;
91b9a277 1430 struct tnode *cn;
874ffa8f 1431 t_key pref_mismatch;
91b9a277 1432
2373ce1c 1433 rcu_read_lock();
91b9a277 1434
2373ce1c 1435 n = rcu_dereference(t->trie);
c877efb2 1436 if (!n)
19baf839
RO
1437 goto failed;
1438
1439#ifdef CONFIG_IP_FIB_TRIE_STATS
1440 t->stats.gets++;
1441#endif
1442
1443 /* Just a leaf? */
1444 if (IS_LEAF(n)) {
5b470441 1445 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
a07f5f50 1446 goto found;
19baf839 1447 }
a07f5f50 1448
19baf839
RO
1449 pn = (struct tnode *) n;
1450 chopped_off = 0;
c877efb2 1451
91b9a277 1452 while (pn) {
19baf839
RO
1453 pos = pn->pos;
1454 bits = pn->bits;
1455
c877efb2 1456 if (!chopped_off)
ab66b4a7
SH
1457 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1458 pos, bits);
19baf839 1459
b902e573 1460 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1461
1462 if (n == NULL) {
1463#ifdef CONFIG_IP_FIB_TRIE_STATS
1464 t->stats.null_node_hit++;
1465#endif
1466 goto backtrace;
1467 }
1468
91b9a277 1469 if (IS_LEAF(n)) {
5b470441 1470 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
2e655571 1471 if (ret > 0)
91b9a277 1472 goto backtrace;
a07f5f50 1473 goto found;
91b9a277
OJ
1474 }
1475
91b9a277 1476 cn = (struct tnode *)n;
19baf839 1477
91b9a277
OJ
1478 /*
1479 * It's a tnode, and we can do some extra checks here if we
1480 * like, to avoid descending into a dead-end branch.
1481 * This tnode is in the parent's child array at index
1482 * key[p_pos..p_pos+p_bits] but potentially with some bits
1483 * chopped off, so in reality the index may be just a
1484 * subprefix, padded with zero at the end.
1485 * We can also take a look at any skipped bits in this
1486 * tnode - everything up to p_pos is supposed to be ok,
1487 * and the non-chopped bits of the index (se previous
1488 * paragraph) are also guaranteed ok, but the rest is
1489 * considered unknown.
1490 *
1491 * The skipped bits are key[pos+bits..cn->pos].
1492 */
19baf839 1493
91b9a277
OJ
1494 /* If current_prefix_length < pos+bits, we are already doing
1495 * actual prefix matching, which means everything from
1496 * pos+(bits-chopped_off) onward must be zero along some
1497 * branch of this subtree - otherwise there is *no* valid
1498 * prefix present. Here we can only check the skipped
1499 * bits. Remember, since we have already indexed into the
1500 * parent's child array, we know that the bits we chopped of
1501 * *are* zero.
1502 */
19baf839 1503
a07f5f50
SH
1504 /* NOTA BENE: Checking only skipped bits
1505 for the new node here */
19baf839 1506
91b9a277
OJ
1507 if (current_prefix_length < pos+bits) {
1508 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1509 cn->pos - current_prefix_length)
1510 || !(cn->child[0]))
91b9a277
OJ
1511 goto backtrace;
1512 }
19baf839 1513
91b9a277
OJ
1514 /*
1515 * If chopped_off=0, the index is fully validated and we
1516 * only need to look at the skipped bits for this, the new,
1517 * tnode. What we actually want to do is to find out if
1518 * these skipped bits match our key perfectly, or if we will
1519 * have to count on finding a matching prefix further down,
1520 * because if we do, we would like to have some way of
1521 * verifying the existence of such a prefix at this point.
1522 */
19baf839 1523
91b9a277
OJ
1524 /* The only thing we can do at this point is to verify that
1525 * any such matching prefix can indeed be a prefix to our
1526 * key, and if the bits in the node we are inspecting that
1527 * do not match our key are not ZERO, this cannot be true.
1528 * Thus, find out where there is a mismatch (before cn->pos)
1529 * and verify that all the mismatching bits are zero in the
1530 * new tnode's key.
1531 */
19baf839 1532
a07f5f50
SH
1533 /*
1534 * Note: We aren't very concerned about the piece of
1535 * the key that precede pn->pos+pn->bits, since these
1536 * have already been checked. The bits after cn->pos
1537 * aren't checked since these are by definition
1538 * "unknown" at this point. Thus, what we want to see
1539 * is if we are about to enter the "prefix matching"
1540 * state, and in that case verify that the skipped
1541 * bits that will prevail throughout this subtree are
1542 * zero, as they have to be if we are to find a
1543 * matching prefix.
91b9a277
OJ
1544 */
1545
874ffa8f 1546 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
91b9a277 1547
a07f5f50
SH
1548 /*
1549 * In short: If skipped bits in this node do not match
1550 * the search key, enter the "prefix matching"
1551 * state.directly.
91b9a277
OJ
1552 */
1553 if (pref_mismatch) {
874ffa8f 1554 int mp = KEYLENGTH - fls(pref_mismatch);
91b9a277 1555
874ffa8f 1556 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
91b9a277
OJ
1557 goto backtrace;
1558
1559 if (current_prefix_length >= cn->pos)
1560 current_prefix_length = mp;
c877efb2 1561 }
a07f5f50 1562
91b9a277
OJ
1563 pn = (struct tnode *)n; /* Descend */
1564 chopped_off = 0;
1565 continue;
1566
19baf839
RO
1567backtrace:
1568 chopped_off++;
1569
1570 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1571 while ((chopped_off <= pn->bits)
1572 && !(cindex & (1<<(chopped_off-1))))
19baf839 1573 chopped_off++;
19baf839
RO
1574
1575 /* Decrease current_... with bits chopped off */
1576 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1577 current_prefix_length = pn->pos + pn->bits
1578 - chopped_off;
91b9a277 1579
19baf839 1580 /*
c877efb2 1581 * Either we do the actual chop off according or if we have
19baf839
RO
1582 * chopped off all bits in this tnode walk up to our parent.
1583 */
1584
91b9a277 1585 if (chopped_off <= pn->bits) {
19baf839 1586 cindex &= ~(1 << (chopped_off-1));
91b9a277 1587 } else {
b299e4f0 1588 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
06801916 1589 if (!parent)
19baf839 1590 goto failed;
91b9a277 1591
19baf839 1592 /* Get Child's index */
06801916
SH
1593 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1594 pn = parent;
19baf839
RO
1595 chopped_off = 0;
1596
1597#ifdef CONFIG_IP_FIB_TRIE_STATS
1598 t->stats.backtrack++;
1599#endif
1600 goto backtrace;
c877efb2 1601 }
19baf839
RO
1602 }
1603failed:
c877efb2 1604 ret = 1;
19baf839 1605found:
2373ce1c 1606 rcu_read_unlock();
19baf839
RO
1607 return ret;
1608}
1609
9195bef7
SH
1610/*
1611 * Remove the leaf and return parent.
1612 */
1613static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1614{
b299e4f0 1615 struct tnode *tp = node_parent((struct rt_trie_node *) l);
c877efb2 1616
9195bef7 1617 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1618
c877efb2 1619 if (tp) {
9195bef7 1620 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1621 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1622 trie_rebalance(t, tp);
91b9a277 1623 } else
2373ce1c 1624 rcu_assign_pointer(t->trie, NULL);
19baf839 1625
387a5487 1626 free_leaf(l);
19baf839
RO
1627}
1628
d562f1f8
RO
1629/*
1630 * Caller must hold RTNL.
1631 */
16c6cf8b 1632int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1633{
1634 struct trie *t = (struct trie *) tb->tb_data;
1635 u32 key, mask;
4e902c57
TG
1636 int plen = cfg->fc_dst_len;
1637 u8 tos = cfg->fc_tos;
19baf839
RO
1638 struct fib_alias *fa, *fa_to_delete;
1639 struct list_head *fa_head;
1640 struct leaf *l;
91b9a277
OJ
1641 struct leaf_info *li;
1642
c877efb2 1643 if (plen > 32)
19baf839
RO
1644 return -EINVAL;
1645
4e902c57 1646 key = ntohl(cfg->fc_dst);
91b9a277 1647 mask = ntohl(inet_make_mask(plen));
19baf839 1648
c877efb2 1649 if (key & ~mask)
19baf839
RO
1650 return -EINVAL;
1651
1652 key = key & mask;
1653 l = fib_find_node(t, key);
1654
c877efb2 1655 if (!l)
19baf839
RO
1656 return -ESRCH;
1657
1658 fa_head = get_fa_head(l, plen);
1659 fa = fib_find_alias(fa_head, tos, 0);
1660
1661 if (!fa)
1662 return -ESRCH;
1663
0c7770c7 1664 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1665
1666 fa_to_delete = NULL;
936f6f8e
JA
1667 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1668 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1669 struct fib_info *fi = fa->fa_info;
1670
1671 if (fa->fa_tos != tos)
1672 break;
1673
4e902c57
TG
1674 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1675 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1676 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1677 (!cfg->fc_prefsrc ||
1678 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1679 (!cfg->fc_protocol ||
1680 fi->fib_protocol == cfg->fc_protocol) &&
1681 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1682 fa_to_delete = fa;
1683 break;
1684 }
1685 }
1686
91b9a277
OJ
1687 if (!fa_to_delete)
1688 return -ESRCH;
19baf839 1689
91b9a277 1690 fa = fa_to_delete;
4e902c57 1691 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1692 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1693
1694 l = fib_find_node(t, key);
772cb712 1695 li = find_leaf_info(l, plen);
19baf839 1696
2373ce1c 1697 list_del_rcu(&fa->fa_list);
19baf839 1698
21d8c49e
DM
1699 if (!plen)
1700 tb->tb_num_default--;
1701
91b9a277 1702 if (list_empty(fa_head)) {
2373ce1c 1703 hlist_del_rcu(&li->hlist);
91b9a277 1704 free_leaf_info(li);
2373ce1c 1705 }
19baf839 1706
91b9a277 1707 if (hlist_empty(&l->list))
9195bef7 1708 trie_leaf_remove(t, l);
19baf839 1709
91b9a277 1710 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1711 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1712
2373ce1c
RO
1713 fib_release_info(fa->fa_info);
1714 alias_free_mem_rcu(fa);
91b9a277 1715 return 0;
19baf839
RO
1716}
1717
ef3660ce 1718static int trie_flush_list(struct list_head *head)
19baf839
RO
1719{
1720 struct fib_alias *fa, *fa_node;
1721 int found = 0;
1722
1723 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1724 struct fib_info *fi = fa->fa_info;
19baf839 1725
2373ce1c
RO
1726 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1727 list_del_rcu(&fa->fa_list);
1728 fib_release_info(fa->fa_info);
1729 alias_free_mem_rcu(fa);
19baf839
RO
1730 found++;
1731 }
1732 }
1733 return found;
1734}
1735
ef3660ce 1736static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1737{
1738 int found = 0;
1739 struct hlist_head *lih = &l->list;
1740 struct hlist_node *node, *tmp;
1741 struct leaf_info *li = NULL;
1742
1743 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1744 found += trie_flush_list(&li->falh);
19baf839
RO
1745
1746 if (list_empty(&li->falh)) {
2373ce1c 1747 hlist_del_rcu(&li->hlist);
19baf839
RO
1748 free_leaf_info(li);
1749 }
1750 }
1751 return found;
1752}
1753
82cfbb00
SH
1754/*
1755 * Scan for the next right leaf starting at node p->child[idx]
1756 * Since we have back pointer, no recursion necessary.
1757 */
b299e4f0 1758static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
19baf839 1759{
82cfbb00
SH
1760 do {
1761 t_key idx;
c877efb2 1762
c877efb2 1763 if (c)
82cfbb00 1764 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1765 else
82cfbb00 1766 idx = 0;
2373ce1c 1767
82cfbb00
SH
1768 while (idx < 1u << p->bits) {
1769 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1770 if (!c)
91b9a277
OJ
1771 continue;
1772
82cfbb00 1773 if (IS_LEAF(c)) {
0a5c0475 1774 prefetch(rcu_dereference_rtnl(p->child[idx]));
82cfbb00 1775 return (struct leaf *) c;
19baf839 1776 }
82cfbb00
SH
1777
1778 /* Rescan start scanning in new node */
1779 p = (struct tnode *) c;
1780 idx = 0;
19baf839 1781 }
82cfbb00
SH
1782
1783 /* Node empty, walk back up to parent */
b299e4f0 1784 c = (struct rt_trie_node *) p;
a034ee3c 1785 } while ((p = node_parent_rcu(c)) != NULL);
82cfbb00
SH
1786
1787 return NULL; /* Root of trie */
1788}
1789
82cfbb00
SH
1790static struct leaf *trie_firstleaf(struct trie *t)
1791{
a034ee3c 1792 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
82cfbb00
SH
1793
1794 if (!n)
1795 return NULL;
1796
1797 if (IS_LEAF(n)) /* trie is just a leaf */
1798 return (struct leaf *) n;
1799
1800 return leaf_walk_rcu(n, NULL);
1801}
1802
1803static struct leaf *trie_nextleaf(struct leaf *l)
1804{
b299e4f0 1805 struct rt_trie_node *c = (struct rt_trie_node *) l;
b902e573 1806 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1807
1808 if (!p)
1809 return NULL; /* trie with just one leaf */
1810
1811 return leaf_walk_rcu(p, c);
19baf839
RO
1812}
1813
71d67e66
SH
1814static struct leaf *trie_leafindex(struct trie *t, int index)
1815{
1816 struct leaf *l = trie_firstleaf(t);
1817
ec28cf73 1818 while (l && index-- > 0)
71d67e66 1819 l = trie_nextleaf(l);
ec28cf73 1820
71d67e66
SH
1821 return l;
1822}
1823
1824
d562f1f8
RO
1825/*
1826 * Caller must hold RTNL.
1827 */
16c6cf8b 1828int fib_table_flush(struct fib_table *tb)
19baf839
RO
1829{
1830 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1831 struct leaf *l, *ll = NULL;
82cfbb00 1832 int found = 0;
19baf839 1833
82cfbb00 1834 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1835 found += trie_flush_leaf(l);
19baf839
RO
1836
1837 if (ll && hlist_empty(&ll->list))
9195bef7 1838 trie_leaf_remove(t, ll);
19baf839
RO
1839 ll = l;
1840 }
1841
1842 if (ll && hlist_empty(&ll->list))
9195bef7 1843 trie_leaf_remove(t, ll);
19baf839 1844
0c7770c7 1845 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1846 return found;
1847}
1848
4aa2c466
PE
1849void fib_free_table(struct fib_table *tb)
1850{
1851 kfree(tb);
1852}
1853
a07f5f50
SH
1854static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1855 struct fib_table *tb,
19baf839
RO
1856 struct sk_buff *skb, struct netlink_callback *cb)
1857{
1858 int i, s_i;
1859 struct fib_alias *fa;
32ab5f80 1860 __be32 xkey = htonl(key);
19baf839 1861
71d67e66 1862 s_i = cb->args[5];
19baf839
RO
1863 i = 0;
1864
2373ce1c
RO
1865 /* rcu_read_lock is hold by caller */
1866
1867 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1868 if (i < s_i) {
1869 i++;
1870 continue;
1871 }
19baf839
RO
1872
1873 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1874 cb->nlh->nlmsg_seq,
1875 RTM_NEWROUTE,
1876 tb->tb_id,
1877 fa->fa_type,
be403ea1 1878 xkey,
19baf839
RO
1879 plen,
1880 fa->fa_tos,
64347f78 1881 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1882 cb->args[5] = i;
19baf839 1883 return -1;
91b9a277 1884 }
19baf839
RO
1885 i++;
1886 }
71d67e66 1887 cb->args[5] = i;
19baf839
RO
1888 return skb->len;
1889}
1890
a88ee229
SH
1891static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1892 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1893{
a88ee229
SH
1894 struct leaf_info *li;
1895 struct hlist_node *node;
1896 int i, s_i;
19baf839 1897
71d67e66 1898 s_i = cb->args[4];
a88ee229 1899 i = 0;
19baf839 1900
a88ee229
SH
1901 /* rcu_read_lock is hold by caller */
1902 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1903 if (i < s_i) {
1904 i++;
19baf839 1905 continue;
a88ee229 1906 }
91b9a277 1907
a88ee229 1908 if (i > s_i)
71d67e66 1909 cb->args[5] = 0;
19baf839 1910
a88ee229 1911 if (list_empty(&li->falh))
19baf839
RO
1912 continue;
1913
a88ee229 1914 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1915 cb->args[4] = i;
19baf839
RO
1916 return -1;
1917 }
a88ee229 1918 i++;
19baf839 1919 }
a88ee229 1920
71d67e66 1921 cb->args[4] = i;
19baf839
RO
1922 return skb->len;
1923}
1924
16c6cf8b
SH
1925int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1926 struct netlink_callback *cb)
19baf839 1927{
a88ee229 1928 struct leaf *l;
19baf839 1929 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1930 t_key key = cb->args[2];
71d67e66 1931 int count = cb->args[3];
19baf839 1932
2373ce1c 1933 rcu_read_lock();
d5ce8a0e
SH
1934 /* Dump starting at last key.
1935 * Note: 0.0.0.0/0 (ie default) is first key.
1936 */
71d67e66 1937 if (count == 0)
d5ce8a0e
SH
1938 l = trie_firstleaf(t);
1939 else {
71d67e66
SH
1940 /* Normally, continue from last key, but if that is missing
1941 * fallback to using slow rescan
1942 */
d5ce8a0e 1943 l = fib_find_node(t, key);
71d67e66
SH
1944 if (!l)
1945 l = trie_leafindex(t, count);
d5ce8a0e 1946 }
a88ee229 1947
d5ce8a0e
SH
1948 while (l) {
1949 cb->args[2] = l->key;
a88ee229 1950 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1951 cb->args[3] = count;
a88ee229 1952 rcu_read_unlock();
a88ee229 1953 return -1;
19baf839 1954 }
d5ce8a0e 1955
71d67e66 1956 ++count;
d5ce8a0e 1957 l = trie_nextleaf(l);
71d67e66
SH
1958 memset(&cb->args[4], 0,
1959 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1960 }
71d67e66 1961 cb->args[3] = count;
2373ce1c 1962 rcu_read_unlock();
a88ee229 1963
19baf839 1964 return skb->len;
19baf839
RO
1965}
1966
5348ba85 1967void __init fib_trie_init(void)
7f9b8052 1968{
a07f5f50
SH
1969 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1970 sizeof(struct fib_alias),
bc3c8c1e
SH
1971 0, SLAB_PANIC, NULL);
1972
1973 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1974 max(sizeof(struct leaf),
1975 sizeof(struct leaf_info)),
1976 0, SLAB_PANIC, NULL);
7f9b8052 1977}
19baf839 1978
7f9b8052 1979
5348ba85 1980struct fib_table *fib_trie_table(u32 id)
19baf839
RO
1981{
1982 struct fib_table *tb;
1983 struct trie *t;
1984
19baf839
RO
1985 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1986 GFP_KERNEL);
1987 if (tb == NULL)
1988 return NULL;
1989
1990 tb->tb_id = id;
971b893e 1991 tb->tb_default = -1;
21d8c49e 1992 tb->tb_num_default = 0;
19baf839
RO
1993
1994 t = (struct trie *) tb->tb_data;
c28a1cf4 1995 memset(t, 0, sizeof(*t));
19baf839 1996
19baf839
RO
1997 return tb;
1998}
1999
cb7b593c
SH
2000#ifdef CONFIG_PROC_FS
2001/* Depth first Trie walk iterator */
2002struct fib_trie_iter {
1c340b2f 2003 struct seq_net_private p;
3d3b2d25 2004 struct fib_table *tb;
cb7b593c 2005 struct tnode *tnode;
a034ee3c
ED
2006 unsigned int index;
2007 unsigned int depth;
cb7b593c 2008};
19baf839 2009
b299e4f0 2010static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2011{
cb7b593c 2012 struct tnode *tn = iter->tnode;
a034ee3c 2013 unsigned int cindex = iter->index;
cb7b593c 2014 struct tnode *p;
19baf839 2015
6640e697
EB
2016 /* A single entry routing table */
2017 if (!tn)
2018 return NULL;
2019
cb7b593c
SH
2020 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2021 iter->tnode, iter->index, iter->depth);
2022rescan:
2023 while (cindex < (1<<tn->bits)) {
b299e4f0 2024 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2025
cb7b593c
SH
2026 if (n) {
2027 if (IS_LEAF(n)) {
2028 iter->tnode = tn;
2029 iter->index = cindex + 1;
2030 } else {
2031 /* push down one level */
2032 iter->tnode = (struct tnode *) n;
2033 iter->index = 0;
2034 ++iter->depth;
2035 }
2036 return n;
2037 }
19baf839 2038
cb7b593c
SH
2039 ++cindex;
2040 }
91b9a277 2041
cb7b593c 2042 /* Current node exhausted, pop back up */
b299e4f0 2043 p = node_parent_rcu((struct rt_trie_node *)tn);
cb7b593c
SH
2044 if (p) {
2045 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2046 tn = p;
2047 --iter->depth;
2048 goto rescan;
19baf839 2049 }
cb7b593c
SH
2050
2051 /* got root? */
2052 return NULL;
19baf839
RO
2053}
2054
b299e4f0 2055static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
cb7b593c 2056 struct trie *t)
19baf839 2057{
b299e4f0 2058 struct rt_trie_node *n;
5ddf0eb2 2059
132adf54 2060 if (!t)
5ddf0eb2
RO
2061 return NULL;
2062
2063 n = rcu_dereference(t->trie);
3d3b2d25 2064 if (!n)
5ddf0eb2 2065 return NULL;
19baf839 2066
3d3b2d25
SH
2067 if (IS_TNODE(n)) {
2068 iter->tnode = (struct tnode *) n;
2069 iter->index = 0;
2070 iter->depth = 1;
2071 } else {
2072 iter->tnode = NULL;
2073 iter->index = 0;
2074 iter->depth = 0;
91b9a277 2075 }
3d3b2d25
SH
2076
2077 return n;
cb7b593c 2078}
91b9a277 2079
cb7b593c
SH
2080static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2081{
b299e4f0 2082 struct rt_trie_node *n;
cb7b593c 2083 struct fib_trie_iter iter;
91b9a277 2084
cb7b593c 2085 memset(s, 0, sizeof(*s));
91b9a277 2086
cb7b593c 2087 rcu_read_lock();
3d3b2d25 2088 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2089 if (IS_LEAF(n)) {
93672292
SH
2090 struct leaf *l = (struct leaf *)n;
2091 struct leaf_info *li;
2092 struct hlist_node *tmp;
2093
cb7b593c
SH
2094 s->leaves++;
2095 s->totdepth += iter.depth;
2096 if (iter.depth > s->maxdepth)
2097 s->maxdepth = iter.depth;
93672292
SH
2098
2099 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2100 ++s->prefixes;
cb7b593c
SH
2101 } else {
2102 const struct tnode *tn = (const struct tnode *) n;
2103 int i;
2104
2105 s->tnodes++;
132adf54 2106 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2107 s->nodesizes[tn->bits]++;
2108
cb7b593c
SH
2109 for (i = 0; i < (1<<tn->bits); i++)
2110 if (!tn->child[i])
2111 s->nullpointers++;
19baf839 2112 }
19baf839 2113 }
2373ce1c 2114 rcu_read_unlock();
19baf839
RO
2115}
2116
cb7b593c
SH
2117/*
2118 * This outputs /proc/net/fib_triestats
2119 */
2120static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2121{
a034ee3c 2122 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2123
cb7b593c
SH
2124 if (stat->leaves)
2125 avdepth = stat->totdepth*100 / stat->leaves;
2126 else
2127 avdepth = 0;
91b9a277 2128
a07f5f50
SH
2129 seq_printf(seq, "\tAver depth: %u.%02d\n",
2130 avdepth / 100, avdepth % 100);
cb7b593c 2131 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2132
cb7b593c 2133 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2134 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2135
2136 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2137 bytes += sizeof(struct leaf_info) * stat->prefixes;
2138
187b5188 2139 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2140 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2141
06ef921d
RO
2142 max = MAX_STAT_DEPTH;
2143 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2144 max--;
19baf839 2145
cb7b593c
SH
2146 pointers = 0;
2147 for (i = 1; i <= max; i++)
2148 if (stat->nodesizes[i] != 0) {
187b5188 2149 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2150 pointers += (1<<i) * stat->nodesizes[i];
2151 }
2152 seq_putc(seq, '\n');
187b5188 2153 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2154
b299e4f0 2155 bytes += sizeof(struct rt_trie_node *) * pointers;
187b5188
SH
2156 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2157 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2158}
2373ce1c 2159
cb7b593c 2160#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2161static void trie_show_usage(struct seq_file *seq,
2162 const struct trie_use_stats *stats)
2163{
2164 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2165 seq_printf(seq, "gets = %u\n", stats->gets);
2166 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2167 seq_printf(seq, "semantic match passed = %u\n",
2168 stats->semantic_match_passed);
2169 seq_printf(seq, "semantic match miss = %u\n",
2170 stats->semantic_match_miss);
2171 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2172 seq_printf(seq, "skipped node resize = %u\n\n",
2173 stats->resize_node_skipped);
cb7b593c 2174}
66a2f7fd
SH
2175#endif /* CONFIG_IP_FIB_TRIE_STATS */
2176
3d3b2d25 2177static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2178{
3d3b2d25
SH
2179 if (tb->tb_id == RT_TABLE_LOCAL)
2180 seq_puts(seq, "Local:\n");
2181 else if (tb->tb_id == RT_TABLE_MAIN)
2182 seq_puts(seq, "Main:\n");
2183 else
2184 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2185}
19baf839 2186
3d3b2d25 2187
cb7b593c
SH
2188static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2189{
1c340b2f 2190 struct net *net = (struct net *)seq->private;
3d3b2d25 2191 unsigned int h;
877a9bff 2192
d717a9a6 2193 seq_printf(seq,
a07f5f50
SH
2194 "Basic info: size of leaf:"
2195 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2196 sizeof(struct leaf), sizeof(struct tnode));
2197
3d3b2d25
SH
2198 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2199 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2200 struct hlist_node *node;
2201 struct fib_table *tb;
2202
2203 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2204 struct trie *t = (struct trie *) tb->tb_data;
2205 struct trie_stat stat;
877a9bff 2206
3d3b2d25
SH
2207 if (!t)
2208 continue;
2209
2210 fib_table_print(seq, tb);
2211
2212 trie_collect_stats(t, &stat);
2213 trie_show_stats(seq, &stat);
2214#ifdef CONFIG_IP_FIB_TRIE_STATS
2215 trie_show_usage(seq, &t->stats);
2216#endif
2217 }
2218 }
19baf839 2219
cb7b593c 2220 return 0;
19baf839
RO
2221}
2222
cb7b593c 2223static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2224{
de05c557 2225 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2226}
2227
9a32144e 2228static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2229 .owner = THIS_MODULE,
2230 .open = fib_triestat_seq_open,
2231 .read = seq_read,
2232 .llseek = seq_lseek,
b6fcbdb4 2233 .release = single_release_net,
cb7b593c
SH
2234};
2235
b299e4f0 2236static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2237{
1218854a
YH
2238 struct fib_trie_iter *iter = seq->private;
2239 struct net *net = seq_file_net(seq);
cb7b593c 2240 loff_t idx = 0;
3d3b2d25 2241 unsigned int h;
cb7b593c 2242
3d3b2d25
SH
2243 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2244 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2245 struct hlist_node *node;
2246 struct fib_table *tb;
cb7b593c 2247
3d3b2d25 2248 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
b299e4f0 2249 struct rt_trie_node *n;
3d3b2d25
SH
2250
2251 for (n = fib_trie_get_first(iter,
2252 (struct trie *) tb->tb_data);
2253 n; n = fib_trie_get_next(iter))
2254 if (pos == idx++) {
2255 iter->tb = tb;
2256 return n;
2257 }
2258 }
cb7b593c 2259 }
3d3b2d25 2260
19baf839
RO
2261 return NULL;
2262}
2263
cb7b593c 2264static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2265 __acquires(RCU)
19baf839 2266{
cb7b593c 2267 rcu_read_lock();
1218854a 2268 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2269}
2270
cb7b593c 2271static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2272{
cb7b593c 2273 struct fib_trie_iter *iter = seq->private;
1218854a 2274 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2275 struct fib_table *tb = iter->tb;
2276 struct hlist_node *tb_node;
2277 unsigned int h;
b299e4f0 2278 struct rt_trie_node *n;
cb7b593c 2279
19baf839 2280 ++*pos;
3d3b2d25
SH
2281 /* next node in same table */
2282 n = fib_trie_get_next(iter);
2283 if (n)
2284 return n;
19baf839 2285
3d3b2d25
SH
2286 /* walk rest of this hash chain */
2287 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2288 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2289 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2290 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2291 if (n)
2292 goto found;
2293 }
19baf839 2294
3d3b2d25
SH
2295 /* new hash chain */
2296 while (++h < FIB_TABLE_HASHSZ) {
2297 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2298 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2299 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2300 if (n)
2301 goto found;
2302 }
2303 }
cb7b593c 2304 return NULL;
3d3b2d25
SH
2305
2306found:
2307 iter->tb = tb;
2308 return n;
cb7b593c 2309}
19baf839 2310
cb7b593c 2311static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2312 __releases(RCU)
19baf839 2313{
cb7b593c
SH
2314 rcu_read_unlock();
2315}
91b9a277 2316
cb7b593c
SH
2317static void seq_indent(struct seq_file *seq, int n)
2318{
a034ee3c
ED
2319 while (n-- > 0)
2320 seq_puts(seq, " ");
cb7b593c 2321}
19baf839 2322
28d36e37 2323static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2324{
132adf54 2325 switch (s) {
cb7b593c
SH
2326 case RT_SCOPE_UNIVERSE: return "universe";
2327 case RT_SCOPE_SITE: return "site";
2328 case RT_SCOPE_LINK: return "link";
2329 case RT_SCOPE_HOST: return "host";
2330 case RT_SCOPE_NOWHERE: return "nowhere";
2331 default:
28d36e37 2332 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2333 return buf;
2334 }
2335}
19baf839 2336
36cbd3dc 2337static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2338 [RTN_UNSPEC] = "UNSPEC",
2339 [RTN_UNICAST] = "UNICAST",
2340 [RTN_LOCAL] = "LOCAL",
2341 [RTN_BROADCAST] = "BROADCAST",
2342 [RTN_ANYCAST] = "ANYCAST",
2343 [RTN_MULTICAST] = "MULTICAST",
2344 [RTN_BLACKHOLE] = "BLACKHOLE",
2345 [RTN_UNREACHABLE] = "UNREACHABLE",
2346 [RTN_PROHIBIT] = "PROHIBIT",
2347 [RTN_THROW] = "THROW",
2348 [RTN_NAT] = "NAT",
2349 [RTN_XRESOLVE] = "XRESOLVE",
2350};
19baf839 2351
a034ee3c 2352static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2353{
cb7b593c
SH
2354 if (t < __RTN_MAX && rtn_type_names[t])
2355 return rtn_type_names[t];
28d36e37 2356 snprintf(buf, len, "type %u", t);
cb7b593c 2357 return buf;
19baf839
RO
2358}
2359
cb7b593c
SH
2360/* Pretty print the trie */
2361static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2362{
cb7b593c 2363 const struct fib_trie_iter *iter = seq->private;
b299e4f0 2364 struct rt_trie_node *n = v;
c877efb2 2365
3d3b2d25
SH
2366 if (!node_parent_rcu(n))
2367 fib_table_print(seq, iter->tb);
095b8501 2368
cb7b593c
SH
2369 if (IS_TNODE(n)) {
2370 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2371 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2372
1d25cd6c 2373 seq_indent(seq, iter->depth-1);
673d57e7
HH
2374 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2375 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2376 tn->empty_children);
e905a9ed 2377
cb7b593c
SH
2378 } else {
2379 struct leaf *l = (struct leaf *) n;
1328042e
SH
2380 struct leaf_info *li;
2381 struct hlist_node *node;
32ab5f80 2382 __be32 val = htonl(l->key);
cb7b593c
SH
2383
2384 seq_indent(seq, iter->depth);
673d57e7 2385 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2386
2387 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2388 struct fib_alias *fa;
2389
2390 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2391 char buf1[32], buf2[32];
2392
2393 seq_indent(seq, iter->depth+1);
2394 seq_printf(seq, " /%d %s %s", li->plen,
2395 rtn_scope(buf1, sizeof(buf1),
37e826c5 2396 fa->fa_info->fib_scope),
1328042e
SH
2397 rtn_type(buf2, sizeof(buf2),
2398 fa->fa_type));
2399 if (fa->fa_tos)
b9c4d82a 2400 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2401 seq_putc(seq, '\n');
cb7b593c
SH
2402 }
2403 }
19baf839 2404 }
cb7b593c 2405
19baf839
RO
2406 return 0;
2407}
2408
f690808e 2409static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2410 .start = fib_trie_seq_start,
2411 .next = fib_trie_seq_next,
2412 .stop = fib_trie_seq_stop,
2413 .show = fib_trie_seq_show,
19baf839
RO
2414};
2415
cb7b593c 2416static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2417{
1c340b2f
DL
2418 return seq_open_net(inode, file, &fib_trie_seq_ops,
2419 sizeof(struct fib_trie_iter));
19baf839
RO
2420}
2421
9a32144e 2422static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2423 .owner = THIS_MODULE,
2424 .open = fib_trie_seq_open,
2425 .read = seq_read,
2426 .llseek = seq_lseek,
1c340b2f 2427 .release = seq_release_net,
19baf839
RO
2428};
2429
8315f5d8
SH
2430struct fib_route_iter {
2431 struct seq_net_private p;
2432 struct trie *main_trie;
2433 loff_t pos;
2434 t_key key;
2435};
2436
2437static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2438{
2439 struct leaf *l = NULL;
2440 struct trie *t = iter->main_trie;
2441
2442 /* use cache location of last found key */
2443 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2444 pos -= iter->pos;
2445 else {
2446 iter->pos = 0;
2447 l = trie_firstleaf(t);
2448 }
2449
2450 while (l && pos-- > 0) {
2451 iter->pos++;
2452 l = trie_nextleaf(l);
2453 }
2454
2455 if (l)
2456 iter->key = pos; /* remember it */
2457 else
2458 iter->pos = 0; /* forget it */
2459
2460 return l;
2461}
2462
2463static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2464 __acquires(RCU)
2465{
2466 struct fib_route_iter *iter = seq->private;
2467 struct fib_table *tb;
2468
2469 rcu_read_lock();
1218854a 2470 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2471 if (!tb)
2472 return NULL;
2473
2474 iter->main_trie = (struct trie *) tb->tb_data;
2475 if (*pos == 0)
2476 return SEQ_START_TOKEN;
2477 else
2478 return fib_route_get_idx(iter, *pos - 1);
2479}
2480
2481static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2482{
2483 struct fib_route_iter *iter = seq->private;
2484 struct leaf *l = v;
2485
2486 ++*pos;
2487 if (v == SEQ_START_TOKEN) {
2488 iter->pos = 0;
2489 l = trie_firstleaf(iter->main_trie);
2490 } else {
2491 iter->pos++;
2492 l = trie_nextleaf(l);
2493 }
2494
2495 if (l)
2496 iter->key = l->key;
2497 else
2498 iter->pos = 0;
2499 return l;
2500}
2501
2502static void fib_route_seq_stop(struct seq_file *seq, void *v)
2503 __releases(RCU)
2504{
2505 rcu_read_unlock();
2506}
2507
a034ee3c 2508static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2509{
a034ee3c 2510 unsigned int flags = 0;
19baf839 2511
a034ee3c
ED
2512 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2513 flags = RTF_REJECT;
cb7b593c
SH
2514 if (fi && fi->fib_nh->nh_gw)
2515 flags |= RTF_GATEWAY;
32ab5f80 2516 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2517 flags |= RTF_HOST;
2518 flags |= RTF_UP;
2519 return flags;
19baf839
RO
2520}
2521
cb7b593c
SH
2522/*
2523 * This outputs /proc/net/route.
2524 * The format of the file is not supposed to be changed
a034ee3c 2525 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2526 * legacy utilities
2527 */
2528static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2529{
cb7b593c 2530 struct leaf *l = v;
1328042e
SH
2531 struct leaf_info *li;
2532 struct hlist_node *node;
19baf839 2533
cb7b593c
SH
2534 if (v == SEQ_START_TOKEN) {
2535 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2536 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2537 "\tWindow\tIRTT");
2538 return 0;
2539 }
19baf839 2540
1328042e 2541 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2542 struct fib_alias *fa;
32ab5f80 2543 __be32 mask, prefix;
91b9a277 2544
cb7b593c
SH
2545 mask = inet_make_mask(li->plen);
2546 prefix = htonl(l->key);
19baf839 2547
cb7b593c 2548 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2549 const struct fib_info *fi = fa->fa_info;
a034ee3c 2550 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2551 int len;
19baf839 2552
cb7b593c
SH
2553 if (fa->fa_type == RTN_BROADCAST
2554 || fa->fa_type == RTN_MULTICAST)
2555 continue;
19baf839 2556
cb7b593c 2557 if (fi)
5e659e4c
PE
2558 seq_printf(seq,
2559 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2560 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2561 fi->fib_dev ? fi->fib_dev->name : "*",
2562 prefix,
2563 fi->fib_nh->nh_gw, flags, 0, 0,
2564 fi->fib_priority,
2565 mask,
a07f5f50
SH
2566 (fi->fib_advmss ?
2567 fi->fib_advmss + 40 : 0),
cb7b593c 2568 fi->fib_window,
5e659e4c 2569 fi->fib_rtt >> 3, &len);
cb7b593c 2570 else
5e659e4c
PE
2571 seq_printf(seq,
2572 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2573 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2574 prefix, 0, flags, 0, 0, 0,
5e659e4c 2575 mask, 0, 0, 0, &len);
19baf839 2576
5e659e4c 2577 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2578 }
19baf839
RO
2579 }
2580
2581 return 0;
2582}
2583
f690808e 2584static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2585 .start = fib_route_seq_start,
2586 .next = fib_route_seq_next,
2587 .stop = fib_route_seq_stop,
cb7b593c 2588 .show = fib_route_seq_show,
19baf839
RO
2589};
2590
cb7b593c 2591static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2592{
1c340b2f 2593 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2594 sizeof(struct fib_route_iter));
19baf839
RO
2595}
2596
9a32144e 2597static const struct file_operations fib_route_fops = {
cb7b593c
SH
2598 .owner = THIS_MODULE,
2599 .open = fib_route_seq_open,
2600 .read = seq_read,
2601 .llseek = seq_lseek,
1c340b2f 2602 .release = seq_release_net,
19baf839
RO
2603};
2604
61a02653 2605int __net_init fib_proc_init(struct net *net)
19baf839 2606{
61a02653 2607 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2608 goto out1;
2609
61a02653
DL
2610 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2611 &fib_triestat_fops))
cb7b593c
SH
2612 goto out2;
2613
61a02653 2614 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2615 goto out3;
2616
19baf839 2617 return 0;
cb7b593c
SH
2618
2619out3:
61a02653 2620 proc_net_remove(net, "fib_triestat");
cb7b593c 2621out2:
61a02653 2622 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2623out1:
2624 return -ENOMEM;
19baf839
RO
2625}
2626
61a02653 2627void __net_exit fib_proc_exit(struct net *net)
19baf839 2628{
61a02653
DL
2629 proc_net_remove(net, "fib_trie");
2630 proc_net_remove(net, "fib_triestat");
2631 proc_net_remove(net, "route");
19baf839
RO
2632}
2633
2634#endif /* CONFIG_PROC_FS */