arm64: cpufeature: Schedule enable() calls instead of calling them via IPI
[linux-2.6-block.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839 53#include <asm/uaccess.h>
1977f032 54#include <linux/bitops.h>
19baf839
RO
55#include <linux/types.h>
56#include <linux/kernel.h>
19baf839
RO
57#include <linux/mm.h>
58#include <linux/string.h>
59#include <linux/socket.h>
60#include <linux/sockios.h>
61#include <linux/errno.h>
62#include <linux/in.h>
63#include <linux/inet.h>
cd8787ab 64#include <linux/inetdevice.h>
19baf839
RO
65#include <linux/netdevice.h>
66#include <linux/if_arp.h>
67#include <linux/proc_fs.h>
2373ce1c 68#include <linux/rcupdate.h>
19baf839
RO
69#include <linux/skbuff.h>
70#include <linux/netlink.h>
71#include <linux/init.h>
72#include <linux/list.h>
5a0e3ad6 73#include <linux/slab.h>
bc3b2d7f 74#include <linux/export.h>
ffa915d0 75#include <linux/vmalloc.h>
b90eb754 76#include <linux/notifier.h>
457c4cbc 77#include <net/net_namespace.h>
19baf839
RO
78#include <net/ip.h>
79#include <net/protocol.h>
80#include <net/route.h>
81#include <net/tcp.h>
82#include <net/sock.h>
83#include <net/ip_fib.h>
f6d3c192 84#include <trace/events/fib.h>
19baf839
RO
85#include "fib_lookup.h"
86
b90eb754
JP
87static BLOCKING_NOTIFIER_HEAD(fib_chain);
88
89int register_fib_notifier(struct notifier_block *nb)
90{
91 return blocking_notifier_chain_register(&fib_chain, nb);
92}
93EXPORT_SYMBOL(register_fib_notifier);
94
95int unregister_fib_notifier(struct notifier_block *nb)
96{
97 return blocking_notifier_chain_unregister(&fib_chain, nb);
98}
99EXPORT_SYMBOL(unregister_fib_notifier);
100
101int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
102 struct fib_notifier_info *info)
103{
104 info->net = net;
105 return blocking_notifier_call_chain(&fib_chain, event_type, info);
106}
107
108static int call_fib_entry_notifiers(struct net *net,
109 enum fib_event_type event_type, u32 dst,
110 int dst_len, struct fib_info *fi,
111 u8 tos, u8 type, u32 tb_id, u32 nlflags)
112{
113 struct fib_entry_notifier_info info = {
114 .dst = dst,
115 .dst_len = dst_len,
116 .fi = fi,
117 .tos = tos,
118 .type = type,
119 .tb_id = tb_id,
120 .nlflags = nlflags,
121 };
122 return call_fib_notifiers(net, event_type, &info.info);
123}
124
06ef921d 125#define MAX_STAT_DEPTH 32
19baf839 126
95f60ea3
AD
127#define KEYLENGTH (8*sizeof(t_key))
128#define KEY_MAX ((t_key)~0)
19baf839 129
19baf839
RO
130typedef unsigned int t_key;
131
88bae714
AD
132#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
133#define IS_TNODE(n) ((n)->bits)
134#define IS_LEAF(n) (!(n)->bits)
2373ce1c 135
35c6edac 136struct key_vector {
64c9b6fb 137 t_key key;
64c9b6fb 138 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 139 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 140 unsigned char slen;
adaf9816 141 union {
41b489fd 142 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 143 struct hlist_head leaf;
41b489fd 144 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 145 struct key_vector __rcu *tnode[0];
adaf9816 146 };
19baf839
RO
147};
148
dc35dbed 149struct tnode {
56ca2adf 150 struct rcu_head rcu;
6e22d174
AD
151 t_key empty_children; /* KEYLENGTH bits needed */
152 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 153 struct key_vector __rcu *parent;
dc35dbed 154 struct key_vector kv[1];
56ca2adf 155#define tn_bits kv[0].bits
dc35dbed
AD
156};
157
158#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
159#define LEAF_SIZE TNODE_SIZE(1)
160
19baf839
RO
161#ifdef CONFIG_IP_FIB_TRIE_STATS
162struct trie_use_stats {
163 unsigned int gets;
164 unsigned int backtrack;
165 unsigned int semantic_match_passed;
166 unsigned int semantic_match_miss;
167 unsigned int null_node_hit;
2f36895a 168 unsigned int resize_node_skipped;
19baf839
RO
169};
170#endif
171
172struct trie_stat {
173 unsigned int totdepth;
174 unsigned int maxdepth;
175 unsigned int tnodes;
176 unsigned int leaves;
177 unsigned int nullpointers;
93672292 178 unsigned int prefixes;
06ef921d 179 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 180};
19baf839
RO
181
182struct trie {
88bae714 183 struct key_vector kv[1];
19baf839 184#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 185 struct trie_use_stats __percpu *stats;
19baf839 186#endif
19baf839
RO
187};
188
88bae714 189static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
190static size_t tnode_free_size;
191
192/*
193 * synchronize_rcu after call_rcu for that many pages; it should be especially
194 * useful before resizing the root node with PREEMPT_NONE configs; the value was
195 * obtained experimentally, aiming to avoid visible slowdown.
196 */
197static const int sync_pages = 128;
19baf839 198
e18b890b 199static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 200static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 201
56ca2adf
AD
202static inline struct tnode *tn_info(struct key_vector *kv)
203{
204 return container_of(kv, struct tnode, kv[0]);
205}
206
64c9b6fb 207/* caller must hold RTNL */
f23e59fb 208#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 209#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 210
64c9b6fb 211/* caller must hold RCU read lock or RTNL */
f23e59fb 212#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 213#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 214
64c9b6fb 215/* wrapper for rcu_assign_pointer */
35c6edac 216static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 217{
adaf9816 218 if (n)
f23e59fb 219 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
220}
221
f23e59fb 222#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
223
224/* This provides us with the number of children in this node, in the case of a
225 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 226 */
2e1ac88a 227static inline unsigned long child_length(const struct key_vector *tn)
06801916 228{
64c9b6fb 229 return (1ul << tn->bits) & ~(1ul);
06801916 230}
2373ce1c 231
88bae714
AD
232#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
233
2e1ac88a
AD
234static inline unsigned long get_index(t_key key, struct key_vector *kv)
235{
236 unsigned long index = key ^ kv->key;
237
88bae714
AD
238 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
239 return 0;
240
2e1ac88a
AD
241 return index >> kv->pos;
242}
243
e9b44019
AD
244/* To understand this stuff, an understanding of keys and all their bits is
245 * necessary. Every node in the trie has a key associated with it, but not
246 * all of the bits in that key are significant.
247 *
248 * Consider a node 'n' and its parent 'tp'.
249 *
250 * If n is a leaf, every bit in its key is significant. Its presence is
251 * necessitated by path compression, since during a tree traversal (when
252 * searching for a leaf - unless we are doing an insertion) we will completely
253 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
254 * a potentially successful search, that we have indeed been walking the
255 * correct key path.
256 *
257 * Note that we can never "miss" the correct key in the tree if present by
258 * following the wrong path. Path compression ensures that segments of the key
259 * that are the same for all keys with a given prefix are skipped, but the
260 * skipped part *is* identical for each node in the subtrie below the skipped
261 * bit! trie_insert() in this implementation takes care of that.
262 *
263 * if n is an internal node - a 'tnode' here, the various parts of its key
264 * have many different meanings.
265 *
266 * Example:
267 * _________________________________________________________________
268 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
269 * -----------------------------------------------------------------
270 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
271 *
272 * _________________________________________________________________
273 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
274 * -----------------------------------------------------------------
275 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
276 *
277 * tp->pos = 22
278 * tp->bits = 3
279 * n->pos = 13
280 * n->bits = 4
281 *
282 * First, let's just ignore the bits that come before the parent tp, that is
283 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
284 * point we do not use them for anything.
285 *
286 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
287 * index into the parent's child array. That is, they will be used to find
288 * 'n' among tp's children.
289 *
98a384ec 290 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
e9b44019
AD
291 * for the node n.
292 *
293 * All the bits we have seen so far are significant to the node n. The rest
294 * of the bits are really not needed or indeed known in n->key.
295 *
296 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
297 * n's child array, and will of course be different for each child.
298 *
98a384ec 299 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
e9b44019
AD
300 * at this point.
301 */
19baf839 302
f5026fab
DL
303static const int halve_threshold = 25;
304static const int inflate_threshold = 50;
345aa031 305static const int halve_threshold_root = 15;
80b71b80 306static const int inflate_threshold_root = 30;
2373ce1c
RO
307
308static void __alias_free_mem(struct rcu_head *head)
19baf839 309{
2373ce1c
RO
310 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
311 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
312}
313
2373ce1c 314static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 315{
2373ce1c
RO
316 call_rcu(&fa->rcu, __alias_free_mem);
317}
91b9a277 318
37fd30f2 319#define TNODE_KMALLOC_MAX \
35c6edac 320 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 321#define TNODE_VMALLOC_MAX \
35c6edac 322 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 323
37fd30f2 324static void __node_free_rcu(struct rcu_head *head)
387a5487 325{
56ca2adf 326 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 327
56ca2adf 328 if (!n->tn_bits)
37fd30f2 329 kmem_cache_free(trie_leaf_kmem, n);
37fd30f2 330 else
1d5cfdb0 331 kvfree(n);
387a5487
SH
332}
333
56ca2adf 334#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 335
dc35dbed 336static struct tnode *tnode_alloc(int bits)
f0e36f8c 337{
1de3d87b
AD
338 size_t size;
339
340 /* verify bits is within bounds */
341 if (bits > TNODE_VMALLOC_MAX)
342 return NULL;
343
344 /* determine size and verify it is non-zero and didn't overflow */
345 size = TNODE_SIZE(1ul << bits);
346
2373ce1c 347 if (size <= PAGE_SIZE)
8d965444 348 return kzalloc(size, GFP_KERNEL);
15be75cd 349 else
7a1c8e5a 350 return vzalloc(size);
15be75cd 351}
2373ce1c 352
35c6edac 353static inline void empty_child_inc(struct key_vector *n)
95f60ea3 354{
6e22d174 355 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
356}
357
35c6edac 358static inline void empty_child_dec(struct key_vector *n)
95f60ea3 359{
6e22d174 360 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
361}
362
35c6edac 363static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 364{
f38b24c9
FY
365 struct key_vector *l;
366 struct tnode *kv;
dc35dbed 367
f38b24c9 368 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
dc35dbed
AD
369 if (!kv)
370 return NULL;
371
372 /* initialize key vector */
f38b24c9 373 l = kv->kv;
dc35dbed
AD
374 l->key = key;
375 l->pos = 0;
376 l->bits = 0;
377 l->slen = fa->fa_slen;
378
379 /* link leaf to fib alias */
380 INIT_HLIST_HEAD(&l->leaf);
381 hlist_add_head(&fa->fa_list, &l->leaf);
382
2373ce1c
RO
383 return l;
384}
385
35c6edac 386static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 387{
64c9b6fb 388 unsigned int shift = pos + bits;
f38b24c9
FY
389 struct key_vector *tn;
390 struct tnode *tnode;
64c9b6fb
AD
391
392 /* verify bits and pos their msb bits clear and values are valid */
393 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 394
f38b24c9 395 tnode = tnode_alloc(bits);
dc35dbed
AD
396 if (!tnode)
397 return NULL;
398
f38b24c9
FY
399 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
400 sizeof(struct key_vector *) << bits);
401
dc35dbed 402 if (bits == KEYLENGTH)
6e22d174 403 tnode->full_children = 1;
dc35dbed 404 else
6e22d174 405 tnode->empty_children = 1ul << bits;
dc35dbed 406
f38b24c9 407 tn = tnode->kv;
dc35dbed
AD
408 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
409 tn->pos = pos;
410 tn->bits = bits;
411 tn->slen = pos;
412
19baf839
RO
413 return tn;
414}
415
e9b44019 416/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
417 * and no bits are skipped. See discussion in dyntree paper p. 6
418 */
35c6edac 419static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 420{
e9b44019 421 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
422}
423
ff181ed8
AD
424/* Add a child at position i overwriting the old value.
425 * Update the value of full_children and empty_children.
426 */
35c6edac
AD
427static void put_child(struct key_vector *tn, unsigned long i,
428 struct key_vector *n)
19baf839 429{
754baf8d 430 struct key_vector *chi = get_child(tn, i);
ff181ed8 431 int isfull, wasfull;
19baf839 432
2e1ac88a 433 BUG_ON(i >= child_length(tn));
0c7770c7 434
95f60ea3 435 /* update emptyChildren, overflow into fullChildren */
00db4124 436 if (!n && chi)
95f60ea3 437 empty_child_inc(tn);
00db4124 438 if (n && !chi)
95f60ea3 439 empty_child_dec(tn);
c877efb2 440
19baf839 441 /* update fullChildren */
ff181ed8 442 wasfull = tnode_full(tn, chi);
19baf839 443 isfull = tnode_full(tn, n);
ff181ed8 444
c877efb2 445 if (wasfull && !isfull)
6e22d174 446 tn_info(tn)->full_children--;
c877efb2 447 else if (!wasfull && isfull)
6e22d174 448 tn_info(tn)->full_children++;
91b9a277 449
5405afd1
AD
450 if (n && (tn->slen < n->slen))
451 tn->slen = n->slen;
452
41b489fd 453 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
454}
455
35c6edac 456static void update_children(struct key_vector *tn)
69fa57b1
AD
457{
458 unsigned long i;
459
460 /* update all of the child parent pointers */
2e1ac88a 461 for (i = child_length(tn); i;) {
754baf8d 462 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
463
464 if (!inode)
465 continue;
466
467 /* Either update the children of a tnode that
468 * already belongs to us or update the child
469 * to point to ourselves.
470 */
471 if (node_parent(inode) == tn)
472 update_children(inode);
473 else
474 node_set_parent(inode, tn);
475 }
476}
477
88bae714
AD
478static inline void put_child_root(struct key_vector *tp, t_key key,
479 struct key_vector *n)
836a0123 480{
88bae714
AD
481 if (IS_TRIE(tp))
482 rcu_assign_pointer(tp->tnode[0], n);
836a0123 483 else
88bae714 484 put_child(tp, get_index(key, tp), n);
836a0123
AD
485}
486
35c6edac 487static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 488{
56ca2adf 489 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
490}
491
35c6edac
AD
492static inline void tnode_free_append(struct key_vector *tn,
493 struct key_vector *n)
fc86a93b 494{
56ca2adf
AD
495 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
496 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 497}
0a5c0475 498
35c6edac 499static void tnode_free(struct key_vector *tn)
fc86a93b 500{
56ca2adf 501 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
502
503 while (head) {
504 head = head->next;
41b489fd 505 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
506 node_free(tn);
507
56ca2adf 508 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
509 }
510
511 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
512 tnode_free_size = 0;
513 synchronize_rcu();
0a5c0475 514 }
0a5c0475
ED
515}
516
88bae714
AD
517static struct key_vector *replace(struct trie *t,
518 struct key_vector *oldtnode,
519 struct key_vector *tn)
69fa57b1 520{
35c6edac 521 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
522 unsigned long i;
523
524 /* setup the parent pointer out of and back into this node */
525 NODE_INIT_PARENT(tn, tp);
88bae714 526 put_child_root(tp, tn->key, tn);
69fa57b1
AD
527
528 /* update all of the child parent pointers */
529 update_children(tn);
530
531 /* all pointers should be clean so we are done */
532 tnode_free(oldtnode);
533
534 /* resize children now that oldtnode is freed */
2e1ac88a 535 for (i = child_length(tn); i;) {
754baf8d 536 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
537
538 /* resize child node */
539 if (tnode_full(tn, inode))
88bae714 540 tn = resize(t, inode);
69fa57b1 541 }
8d8e810c 542
88bae714 543 return tp;
69fa57b1
AD
544}
545
88bae714
AD
546static struct key_vector *inflate(struct trie *t,
547 struct key_vector *oldtnode)
19baf839 548{
35c6edac 549 struct key_vector *tn;
69fa57b1 550 unsigned long i;
e9b44019 551 t_key m;
19baf839 552
0c7770c7 553 pr_debug("In inflate\n");
19baf839 554
e9b44019 555 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 556 if (!tn)
8d8e810c 557 goto notnode;
2f36895a 558
69fa57b1
AD
559 /* prepare oldtnode to be freed */
560 tnode_free_init(oldtnode);
561
12c081a5
AD
562 /* Assemble all of the pointers in our cluster, in this case that
563 * represents all of the pointers out of our allocated nodes that
564 * point to existing tnodes and the links between our allocated
565 * nodes.
2f36895a 566 */
2e1ac88a 567 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 568 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 569 struct key_vector *node0, *node1;
69fa57b1 570 unsigned long j, k;
c877efb2 571
19baf839 572 /* An empty child */
51456b29 573 if (!inode)
19baf839
RO
574 continue;
575
576 /* A leaf or an internal node with skipped bits */
adaf9816 577 if (!tnode_full(oldtnode, inode)) {
e9b44019 578 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
579 continue;
580 }
581
69fa57b1
AD
582 /* drop the node in the old tnode free list */
583 tnode_free_append(oldtnode, inode);
584
19baf839 585 /* An internal node with two children */
19baf839 586 if (inode->bits == 1) {
754baf8d
AD
587 put_child(tn, 2 * i + 1, get_child(inode, 1));
588 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 589 continue;
19baf839
RO
590 }
591
91b9a277 592 /* We will replace this node 'inode' with two new
12c081a5 593 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
594 * original children. The two new nodes will have
595 * a position one bit further down the key and this
596 * means that the "significant" part of their keys
597 * (see the discussion near the top of this file)
598 * will differ by one bit, which will be "0" in
12c081a5 599 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
600 * moving the key position by one step, the bit that
601 * we are moving away from - the bit at position
12c081a5
AD
602 * (tn->pos) - is the one that will differ between
603 * node0 and node1. So... we synthesize that bit in the
604 * two new keys.
91b9a277 605 */
12c081a5
AD
606 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
607 if (!node1)
608 goto nomem;
69fa57b1 609 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 610
69fa57b1 611 tnode_free_append(tn, node1);
12c081a5
AD
612 if (!node0)
613 goto nomem;
614 tnode_free_append(tn, node0);
615
616 /* populate child pointers in new nodes */
2e1ac88a 617 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
618 put_child(node1, --j, get_child(inode, --k));
619 put_child(node0, j, get_child(inode, j));
620 put_child(node1, --j, get_child(inode, --k));
621 put_child(node0, j, get_child(inode, j));
12c081a5 622 }
19baf839 623
12c081a5
AD
624 /* link new nodes to parent */
625 NODE_INIT_PARENT(node1, tn);
626 NODE_INIT_PARENT(node0, tn);
2f36895a 627
12c081a5
AD
628 /* link parent to nodes */
629 put_child(tn, 2 * i + 1, node1);
630 put_child(tn, 2 * i, node0);
631 }
2f36895a 632
69fa57b1 633 /* setup the parent pointers into and out of this node */
8d8e810c 634 return replace(t, oldtnode, tn);
2f80b3c8 635nomem:
fc86a93b
AD
636 /* all pointers should be clean so we are done */
637 tnode_free(tn);
8d8e810c
AD
638notnode:
639 return NULL;
19baf839
RO
640}
641
88bae714
AD
642static struct key_vector *halve(struct trie *t,
643 struct key_vector *oldtnode)
19baf839 644{
35c6edac 645 struct key_vector *tn;
12c081a5 646 unsigned long i;
19baf839 647
0c7770c7 648 pr_debug("In halve\n");
c877efb2 649
e9b44019 650 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 651 if (!tn)
8d8e810c 652 goto notnode;
2f36895a 653
69fa57b1
AD
654 /* prepare oldtnode to be freed */
655 tnode_free_init(oldtnode);
656
12c081a5
AD
657 /* Assemble all of the pointers in our cluster, in this case that
658 * represents all of the pointers out of our allocated nodes that
659 * point to existing tnodes and the links between our allocated
660 * nodes.
2f36895a 661 */
2e1ac88a 662 for (i = child_length(oldtnode); i;) {
754baf8d
AD
663 struct key_vector *node1 = get_child(oldtnode, --i);
664 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 665 struct key_vector *inode;
2f36895a 666
12c081a5
AD
667 /* At least one of the children is empty */
668 if (!node1 || !node0) {
669 put_child(tn, i / 2, node1 ? : node0);
670 continue;
671 }
c877efb2 672
2f36895a 673 /* Two nonempty children */
12c081a5 674 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
675 if (!inode)
676 goto nomem;
12c081a5 677 tnode_free_append(tn, inode);
2f36895a 678
12c081a5
AD
679 /* initialize pointers out of node */
680 put_child(inode, 1, node1);
681 put_child(inode, 0, node0);
682 NODE_INIT_PARENT(inode, tn);
683
684 /* link parent to node */
685 put_child(tn, i / 2, inode);
2f36895a 686 }
19baf839 687
69fa57b1 688 /* setup the parent pointers into and out of this node */
8d8e810c
AD
689 return replace(t, oldtnode, tn);
690nomem:
691 /* all pointers should be clean so we are done */
692 tnode_free(tn);
693notnode:
694 return NULL;
19baf839
RO
695}
696
88bae714
AD
697static struct key_vector *collapse(struct trie *t,
698 struct key_vector *oldtnode)
95f60ea3 699{
35c6edac 700 struct key_vector *n, *tp;
95f60ea3
AD
701 unsigned long i;
702
703 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 704 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 705 n = get_child(oldtnode, --i);
95f60ea3
AD
706
707 /* compress one level */
708 tp = node_parent(oldtnode);
88bae714 709 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
710 node_set_parent(n, tp);
711
712 /* drop dead node */
713 node_free(oldtnode);
88bae714
AD
714
715 return tp;
95f60ea3
AD
716}
717
35c6edac 718static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
719{
720 unsigned char slen = tn->pos;
721 unsigned long stride, i;
722
723 /* search though the list of children looking for nodes that might
724 * have a suffix greater than the one we currently have. This is
725 * why we start with a stride of 2 since a stride of 1 would
726 * represent the nodes with suffix length equal to tn->pos
727 */
2e1ac88a 728 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 729 struct key_vector *n = get_child(tn, i);
5405afd1
AD
730
731 if (!n || (n->slen <= slen))
732 continue;
733
734 /* update stride and slen based on new value */
735 stride <<= (n->slen - slen);
736 slen = n->slen;
737 i &= ~(stride - 1);
738
739 /* if slen covers all but the last bit we can stop here
740 * there will be nothing longer than that since only node
741 * 0 and 1 << (bits - 1) could have that as their suffix
742 * length.
743 */
744 if ((slen + 1) >= (tn->pos + tn->bits))
745 break;
746 }
747
748 tn->slen = slen;
749
750 return slen;
751}
752
f05a4819
AD
753/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
754 * the Helsinki University of Technology and Matti Tikkanen of Nokia
755 * Telecommunications, page 6:
756 * "A node is doubled if the ratio of non-empty children to all
757 * children in the *doubled* node is at least 'high'."
758 *
759 * 'high' in this instance is the variable 'inflate_threshold'. It
760 * is expressed as a percentage, so we multiply it with
2e1ac88a 761 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
762 * child array will be doubled by inflate()) and multiplying
763 * the left-hand side by 100 (to handle the percentage thing) we
764 * multiply the left-hand side by 50.
765 *
2e1ac88a 766 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
767 * - tn->empty_children is of course the number of non-null children
768 * in the current node. tn->full_children is the number of "full"
769 * children, that is non-null tnodes with a skip value of 0.
770 * All of those will be doubled in the resulting inflated tnode, so
771 * we just count them one extra time here.
772 *
773 * A clearer way to write this would be:
774 *
775 * to_be_doubled = tn->full_children;
2e1ac88a 776 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
777 * tn->full_children;
778 *
2e1ac88a 779 * new_child_length = child_length(tn) * 2;
f05a4819
AD
780 *
781 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
782 * new_child_length;
783 * if (new_fill_factor >= inflate_threshold)
784 *
785 * ...and so on, tho it would mess up the while () loop.
786 *
787 * anyway,
788 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
789 * inflate_threshold
790 *
791 * avoid a division:
792 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
793 * inflate_threshold * new_child_length
794 *
795 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 796 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
797 * tn->full_children) >= inflate_threshold * new_child_length
798 *
799 * expand new_child_length:
2e1ac88a 800 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 801 * tn->full_children) >=
2e1ac88a 802 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
803 *
804 * shorten again:
2e1ac88a 805 * 50 * (tn->full_children + child_length(tn) -
f05a4819 806 * tn->empty_children) >= inflate_threshold *
2e1ac88a 807 * child_length(tn)
f05a4819
AD
808 *
809 */
35c6edac 810static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 811{
2e1ac88a 812 unsigned long used = child_length(tn);
f05a4819
AD
813 unsigned long threshold = used;
814
815 /* Keep root node larger */
88bae714 816 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
817 used -= tn_info(tn)->empty_children;
818 used += tn_info(tn)->full_children;
f05a4819 819
95f60ea3
AD
820 /* if bits == KEYLENGTH then pos = 0, and will fail below */
821
822 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
823}
824
35c6edac 825static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 826{
2e1ac88a 827 unsigned long used = child_length(tn);
f05a4819
AD
828 unsigned long threshold = used;
829
830 /* Keep root node larger */
88bae714 831 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 832 used -= tn_info(tn)->empty_children;
f05a4819 833
95f60ea3
AD
834 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
835
836 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
837}
838
35c6edac 839static inline bool should_collapse(struct key_vector *tn)
95f60ea3 840{
2e1ac88a 841 unsigned long used = child_length(tn);
95f60ea3 842
6e22d174 843 used -= tn_info(tn)->empty_children;
95f60ea3
AD
844
845 /* account for bits == KEYLENGTH case */
6e22d174 846 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
847 used -= KEY_MAX;
848
849 /* One child or none, time to drop us from the trie */
850 return used < 2;
f05a4819
AD
851}
852
cf3637bb 853#define MAX_WORK 10
88bae714 854static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 855{
8d8e810c
AD
856#ifdef CONFIG_IP_FIB_TRIE_STATS
857 struct trie_use_stats __percpu *stats = t->stats;
858#endif
35c6edac 859 struct key_vector *tp = node_parent(tn);
88bae714 860 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 861 int max_work = MAX_WORK;
cf3637bb 862
cf3637bb
AD
863 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
864 tn, inflate_threshold, halve_threshold);
865
ff181ed8
AD
866 /* track the tnode via the pointer from the parent instead of
867 * doing it ourselves. This way we can let RCU fully do its
868 * thing without us interfering
869 */
88bae714 870 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 871
f05a4819
AD
872 /* Double as long as the resulting node has a number of
873 * nonempty nodes that are above the threshold.
cf3637bb 874 */
b6f15f82 875 while (should_inflate(tp, tn) && max_work) {
88bae714
AD
876 tp = inflate(t, tn);
877 if (!tp) {
cf3637bb 878#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 879 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
880#endif
881 break;
882 }
ff181ed8 883
b6f15f82 884 max_work--;
88bae714 885 tn = get_child(tp, cindex);
cf3637bb
AD
886 }
887
b6f15f82
AD
888 /* update parent in case inflate failed */
889 tp = node_parent(tn);
890
cf3637bb
AD
891 /* Return if at least one inflate is run */
892 if (max_work != MAX_WORK)
b6f15f82 893 return tp;
cf3637bb 894
f05a4819 895 /* Halve as long as the number of empty children in this
cf3637bb
AD
896 * node is above threshold.
897 */
b6f15f82 898 while (should_halve(tp, tn) && max_work) {
88bae714
AD
899 tp = halve(t, tn);
900 if (!tp) {
cf3637bb 901#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 902 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
903#endif
904 break;
905 }
cf3637bb 906
b6f15f82 907 max_work--;
88bae714 908 tn = get_child(tp, cindex);
ff181ed8 909 }
cf3637bb
AD
910
911 /* Only one child remains */
88bae714
AD
912 if (should_collapse(tn))
913 return collapse(t, tn);
914
b6f15f82 915 /* update parent in case halve failed */
88bae714 916 tp = node_parent(tn);
5405afd1
AD
917
918 /* Return if at least one deflate was run */
919 if (max_work != MAX_WORK)
88bae714 920 return tp;
5405afd1
AD
921
922 /* push the suffix length to the parent node */
923 if (tn->slen > tn->pos) {
924 unsigned char slen = update_suffix(tn);
925
88bae714 926 if (slen > tp->slen)
5405afd1 927 tp->slen = slen;
cf3637bb 928 }
8d8e810c 929
88bae714 930 return tp;
cf3637bb
AD
931}
932
35c6edac 933static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
5405afd1 934{
88bae714 935 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
5405afd1
AD
936 if (update_suffix(tp) > l->slen)
937 break;
938 tp = node_parent(tp);
939 }
940}
941
35c6edac 942static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
19baf839 943{
5405afd1
AD
944 /* if this is a new leaf then tn will be NULL and we can sort
945 * out parent suffix lengths as a part of trie_rebalance
946 */
88bae714 947 while (tn->slen < l->slen) {
5405afd1
AD
948 tn->slen = l->slen;
949 tn = node_parent(tn);
950 }
951}
952
2373ce1c 953/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
954static struct key_vector *fib_find_node(struct trie *t,
955 struct key_vector **tp, u32 key)
19baf839 956{
88bae714
AD
957 struct key_vector *pn, *n = t->kv;
958 unsigned long index = 0;
959
960 do {
961 pn = n;
962 n = get_child_rcu(n, index);
963
964 if (!n)
965 break;
939afb06 966
88bae714 967 index = get_cindex(key, n);
939afb06
AD
968
969 /* This bit of code is a bit tricky but it combines multiple
970 * checks into a single check. The prefix consists of the
971 * prefix plus zeros for the bits in the cindex. The index
972 * is the difference between the key and this value. From
973 * this we can actually derive several pieces of data.
d4a975e8 974 * if (index >= (1ul << bits))
939afb06 975 * we have a mismatch in skip bits and failed
b3832117
AD
976 * else
977 * we know the value is cindex
d4a975e8
AD
978 *
979 * This check is safe even if bits == KEYLENGTH due to the
980 * fact that we can only allocate a node with 32 bits if a
981 * long is greater than 32 bits.
939afb06 982 */
d4a975e8
AD
983 if (index >= (1ul << n->bits)) {
984 n = NULL;
985 break;
986 }
939afb06 987
88bae714
AD
988 /* keep searching until we find a perfect match leaf or NULL */
989 } while (IS_TNODE(n));
91b9a277 990
35c6edac 991 *tp = pn;
d4a975e8 992
939afb06 993 return n;
19baf839
RO
994}
995
02525368
AD
996/* Return the first fib alias matching TOS with
997 * priority less than or equal to PRIO.
998 */
79e5ad2c 999static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
0b65bd97 1000 u8 tos, u32 prio, u32 tb_id)
02525368
AD
1001{
1002 struct fib_alias *fa;
1003
1004 if (!fah)
1005 return NULL;
1006
56315f9e 1007 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
1008 if (fa->fa_slen < slen)
1009 continue;
1010 if (fa->fa_slen != slen)
1011 break;
0b65bd97
AD
1012 if (fa->tb_id > tb_id)
1013 continue;
1014 if (fa->tb_id != tb_id)
1015 break;
02525368
AD
1016 if (fa->fa_tos > tos)
1017 continue;
1018 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1019 return fa;
1020 }
1021
1022 return NULL;
1023}
1024
35c6edac 1025static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 1026{
88bae714
AD
1027 while (!IS_TRIE(tn))
1028 tn = resize(t, tn);
19baf839
RO
1029}
1030
35c6edac 1031static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 1032 struct fib_alias *new, t_key key)
19baf839 1033{
35c6edac 1034 struct key_vector *n, *l;
19baf839 1035
d5d6487c 1036 l = leaf_new(key, new);
79e5ad2c 1037 if (!l)
8d8e810c 1038 goto noleaf;
d5d6487c
AD
1039
1040 /* retrieve child from parent node */
88bae714 1041 n = get_child(tp, get_index(key, tp));
19baf839 1042
836a0123
AD
1043 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1044 *
1045 * Add a new tnode here
1046 * first tnode need some special handling
1047 * leaves us in position for handling as case 3
1048 */
1049 if (n) {
35c6edac 1050 struct key_vector *tn;
19baf839 1051
e9b44019 1052 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1053 if (!tn)
1054 goto notnode;
91b9a277 1055
836a0123
AD
1056 /* initialize routes out of node */
1057 NODE_INIT_PARENT(tn, tp);
1058 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1059
836a0123 1060 /* start adding routes into the node */
88bae714 1061 put_child_root(tp, key, tn);
836a0123 1062 node_set_parent(n, tn);
e962f302 1063
836a0123 1064 /* parent now has a NULL spot where the leaf can go */
e962f302 1065 tp = tn;
19baf839 1066 }
91b9a277 1067
836a0123 1068 /* Case 3: n is NULL, and will just insert a new leaf */
d5d6487c 1069 NODE_INIT_PARENT(l, tp);
88bae714 1070 put_child_root(tp, key, l);
d5d6487c
AD
1071 trie_rebalance(t, tp);
1072
1073 return 0;
8d8e810c
AD
1074notnode:
1075 node_free(l);
1076noleaf:
1077 return -ENOMEM;
d5d6487c
AD
1078}
1079
35c6edac
AD
1080static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1081 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1082 struct fib_alias *fa, t_key key)
1083{
1084 if (!l)
1085 return fib_insert_node(t, tp, new, key);
1086
1087 if (fa) {
1088 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1089 } else {
d5d6487c
AD
1090 struct fib_alias *last;
1091
1092 hlist_for_each_entry(last, &l->leaf, fa_list) {
1093 if (new->fa_slen < last->fa_slen)
1094 break;
0b65bd97
AD
1095 if ((new->fa_slen == last->fa_slen) &&
1096 (new->tb_id > last->tb_id))
1097 break;
d5d6487c
AD
1098 fa = last;
1099 }
1100
1101 if (fa)
1102 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1103 else
1104 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1105 }
2373ce1c 1106
d5d6487c
AD
1107 /* if we added to the tail node then we need to update slen */
1108 if (l->slen < new->fa_slen) {
1109 l->slen = new->fa_slen;
1110 leaf_push_suffix(tp, l);
1111 }
1112
1113 return 0;
19baf839
RO
1114}
1115
d5d6487c 1116/* Caller must hold RTNL. */
b90eb754
JP
1117int fib_table_insert(struct net *net, struct fib_table *tb,
1118 struct fib_config *cfg)
19baf839 1119{
d4a975e8 1120 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1121 struct fib_alias *fa, *new_fa;
35c6edac 1122 struct key_vector *l, *tp;
b93e1fa7 1123 u16 nlflags = NLM_F_EXCL;
19baf839 1124 struct fib_info *fi;
79e5ad2c
AD
1125 u8 plen = cfg->fc_dst_len;
1126 u8 slen = KEYLENGTH - plen;
4e902c57 1127 u8 tos = cfg->fc_tos;
d4a975e8 1128 u32 key;
19baf839 1129 int err;
19baf839 1130
5786ec60 1131 if (plen > KEYLENGTH)
19baf839
RO
1132 return -EINVAL;
1133
4e902c57 1134 key = ntohl(cfg->fc_dst);
19baf839 1135
2dfe55b4 1136 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1137
d4a975e8 1138 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1139 return -EINVAL;
1140
4e902c57
TG
1141 fi = fib_create_info(cfg);
1142 if (IS_ERR(fi)) {
1143 err = PTR_ERR(fi);
19baf839 1144 goto err;
4e902c57 1145 }
19baf839 1146
d4a975e8 1147 l = fib_find_node(t, &tp, key);
0b65bd97
AD
1148 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1149 tb->tb_id) : NULL;
19baf839
RO
1150
1151 /* Now fa, if non-NULL, points to the first fib alias
1152 * with the same keys [prefix,tos,priority], if such key already
1153 * exists or to the node before which we will insert new one.
1154 *
1155 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1156 * insert to the tail of the section matching the suffix length
1157 * of the new alias.
19baf839
RO
1158 */
1159
936f6f8e
JA
1160 if (fa && fa->fa_tos == tos &&
1161 fa->fa_info->fib_priority == fi->fib_priority) {
1162 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1163
1164 err = -EEXIST;
4e902c57 1165 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1166 goto out;
1167
b93e1fa7
GN
1168 nlflags &= ~NLM_F_EXCL;
1169
936f6f8e
JA
1170 /* We have 2 goals:
1171 * 1. Find exact match for type, scope, fib_info to avoid
1172 * duplicate routes
1173 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1174 */
1175 fa_match = NULL;
1176 fa_first = fa;
56315f9e 1177 hlist_for_each_entry_from(fa, fa_list) {
0b65bd97
AD
1178 if ((fa->fa_slen != slen) ||
1179 (fa->tb_id != tb->tb_id) ||
1180 (fa->fa_tos != tos))
936f6f8e
JA
1181 break;
1182 if (fa->fa_info->fib_priority != fi->fib_priority)
1183 break;
1184 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1185 fa->fa_info == fi) {
1186 fa_match = fa;
1187 break;
1188 }
1189 }
1190
4e902c57 1191 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1192 struct fib_info *fi_drop;
1193 u8 state;
1194
b93e1fa7 1195 nlflags |= NLM_F_REPLACE;
936f6f8e
JA
1196 fa = fa_first;
1197 if (fa_match) {
1198 if (fa == fa_match)
1199 err = 0;
6725033f 1200 goto out;
936f6f8e 1201 }
2373ce1c 1202 err = -ENOBUFS;
e94b1766 1203 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1204 if (!new_fa)
2373ce1c 1205 goto out;
19baf839
RO
1206
1207 fi_drop = fa->fa_info;
2373ce1c
RO
1208 new_fa->fa_tos = fa->fa_tos;
1209 new_fa->fa_info = fi;
4e902c57 1210 new_fa->fa_type = cfg->fc_type;
19baf839 1211 state = fa->fa_state;
936f6f8e 1212 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1213 new_fa->fa_slen = fa->fa_slen;
d4e64c29 1214 new_fa->tb_id = tb->tb_id;
2392debc 1215 new_fa->fa_default = -1;
19baf839 1216
56315f9e 1217 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1218
2373ce1c 1219 alias_free_mem_rcu(fa);
19baf839
RO
1220
1221 fib_release_info(fi_drop);
1222 if (state & FA_S_ACCESSED)
4ccfe6d4 1223 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b90eb754
JP
1224
1225 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD,
1226 key, plen, fi,
1227 new_fa->fa_tos, cfg->fc_type,
1228 tb->tb_id, cfg->fc_nlflags);
b8f55831 1229 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
b93e1fa7 1230 tb->tb_id, &cfg->fc_nlinfo, nlflags);
19baf839 1231
91b9a277 1232 goto succeeded;
19baf839
RO
1233 }
1234 /* Error if we find a perfect match which
1235 * uses the same scope, type, and nexthop
1236 * information.
1237 */
936f6f8e
JA
1238 if (fa_match)
1239 goto out;
a07f5f50 1240
a2bb6d7d 1241 if (cfg->fc_nlflags & NLM_F_APPEND)
b93e1fa7 1242 nlflags |= NLM_F_APPEND;
a2bb6d7d 1243 else
936f6f8e 1244 fa = fa_first;
19baf839
RO
1245 }
1246 err = -ENOENT;
4e902c57 1247 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1248 goto out;
1249
b93e1fa7 1250 nlflags |= NLM_F_CREATE;
19baf839 1251 err = -ENOBUFS;
e94b1766 1252 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1253 if (!new_fa)
19baf839
RO
1254 goto out;
1255
1256 new_fa->fa_info = fi;
1257 new_fa->fa_tos = tos;
4e902c57 1258 new_fa->fa_type = cfg->fc_type;
19baf839 1259 new_fa->fa_state = 0;
79e5ad2c 1260 new_fa->fa_slen = slen;
0ddcf43d 1261 new_fa->tb_id = tb->tb_id;
2392debc 1262 new_fa->fa_default = -1;
19baf839 1263
9b6ebad5 1264 /* Insert new entry to the list. */
d5d6487c
AD
1265 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1266 if (err)
347e3b28 1267 goto out_free_new_fa;
19baf839 1268
21d8c49e
DM
1269 if (!plen)
1270 tb->tb_num_default++;
1271
4ccfe6d4 1272 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b90eb754
JP
1273 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, key, plen, fi, tos,
1274 cfg->fc_type, tb->tb_id, cfg->fc_nlflags);
0ddcf43d 1275 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
a2bb6d7d 1276 &cfg->fc_nlinfo, nlflags);
19baf839
RO
1277succeeded:
1278 return 0;
f835e471
RO
1279
1280out_free_new_fa:
1281 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1282out:
1283 fib_release_info(fi);
91b9a277 1284err:
19baf839
RO
1285 return err;
1286}
1287
35c6edac 1288static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1289{
1290 t_key prefix = n->key;
1291
1292 return (key ^ prefix) & (prefix | -prefix);
1293}
1294
345e9b54 1295/* should be called with rcu_read_lock */
22bd5b9b 1296int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1297 struct fib_result *res, int fib_flags)
19baf839 1298{
0ddcf43d 1299 struct trie *t = (struct trie *) tb->tb_data;
8274a97a
AD
1300#ifdef CONFIG_IP_FIB_TRIE_STATS
1301 struct trie_use_stats __percpu *stats = t->stats;
1302#endif
9f9e636d 1303 const t_key key = ntohl(flp->daddr);
35c6edac 1304 struct key_vector *n, *pn;
79e5ad2c 1305 struct fib_alias *fa;
71e8b67d 1306 unsigned long index;
9f9e636d 1307 t_key cindex;
91b9a277 1308
f6d3c192
DA
1309 trace_fib_table_lookup(tb->tb_id, flp);
1310
88bae714
AD
1311 pn = t->kv;
1312 cindex = 0;
1313
1314 n = get_child_rcu(pn, cindex);
c877efb2 1315 if (!n)
345e9b54 1316 return -EAGAIN;
19baf839
RO
1317
1318#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1319 this_cpu_inc(stats->gets);
19baf839
RO
1320#endif
1321
9f9e636d
AD
1322 /* Step 1: Travel to the longest prefix match in the trie */
1323 for (;;) {
88bae714 1324 index = get_cindex(key, n);
9f9e636d
AD
1325
1326 /* This bit of code is a bit tricky but it combines multiple
1327 * checks into a single check. The prefix consists of the
1328 * prefix plus zeros for the "bits" in the prefix. The index
1329 * is the difference between the key and this value. From
1330 * this we can actually derive several pieces of data.
71e8b67d 1331 * if (index >= (1ul << bits))
9f9e636d 1332 * we have a mismatch in skip bits and failed
b3832117
AD
1333 * else
1334 * we know the value is cindex
71e8b67d
AD
1335 *
1336 * This check is safe even if bits == KEYLENGTH due to the
1337 * fact that we can only allocate a node with 32 bits if a
1338 * long is greater than 32 bits.
9f9e636d 1339 */
71e8b67d 1340 if (index >= (1ul << n->bits))
9f9e636d 1341 break;
19baf839 1342
9f9e636d
AD
1343 /* we have found a leaf. Prefixes have already been compared */
1344 if (IS_LEAF(n))
a07f5f50 1345 goto found;
19baf839 1346
9f9e636d
AD
1347 /* only record pn and cindex if we are going to be chopping
1348 * bits later. Otherwise we are just wasting cycles.
91b9a277 1349 */
5405afd1 1350 if (n->slen > n->pos) {
9f9e636d
AD
1351 pn = n;
1352 cindex = index;
91b9a277 1353 }
19baf839 1354
754baf8d 1355 n = get_child_rcu(n, index);
9f9e636d
AD
1356 if (unlikely(!n))
1357 goto backtrace;
1358 }
19baf839 1359
9f9e636d
AD
1360 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1361 for (;;) {
1362 /* record the pointer where our next node pointer is stored */
35c6edac 1363 struct key_vector __rcu **cptr = n->tnode;
19baf839 1364
9f9e636d
AD
1365 /* This test verifies that none of the bits that differ
1366 * between the key and the prefix exist in the region of
1367 * the lsb and higher in the prefix.
91b9a277 1368 */
5405afd1 1369 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1370 goto backtrace;
91b9a277 1371
9f9e636d
AD
1372 /* exit out and process leaf */
1373 if (unlikely(IS_LEAF(n)))
1374 break;
91b9a277 1375
9f9e636d
AD
1376 /* Don't bother recording parent info. Since we are in
1377 * prefix match mode we will have to come back to wherever
1378 * we started this traversal anyway
91b9a277 1379 */
91b9a277 1380
9f9e636d 1381 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1382backtrace:
19baf839 1383#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1384 if (!n)
1385 this_cpu_inc(stats->null_node_hit);
19baf839 1386#endif
9f9e636d
AD
1387 /* If we are at cindex 0 there are no more bits for
1388 * us to strip at this level so we must ascend back
1389 * up one level to see if there are any more bits to
1390 * be stripped there.
1391 */
1392 while (!cindex) {
1393 t_key pkey = pn->key;
1394
88bae714
AD
1395 /* If we don't have a parent then there is
1396 * nothing for us to do as we do not have any
1397 * further nodes to parse.
1398 */
1399 if (IS_TRIE(pn))
345e9b54 1400 return -EAGAIN;
9f9e636d
AD
1401#ifdef CONFIG_IP_FIB_TRIE_STATS
1402 this_cpu_inc(stats->backtrack);
1403#endif
1404 /* Get Child's index */
88bae714 1405 pn = node_parent_rcu(pn);
9f9e636d
AD
1406 cindex = get_index(pkey, pn);
1407 }
1408
1409 /* strip the least significant bit from the cindex */
1410 cindex &= cindex - 1;
1411
1412 /* grab pointer for next child node */
41b489fd 1413 cptr = &pn->tnode[cindex];
c877efb2 1414 }
19baf839 1415 }
9f9e636d 1416
19baf839 1417found:
71e8b67d
AD
1418 /* this line carries forward the xor from earlier in the function */
1419 index = key ^ n->key;
1420
9f9e636d 1421 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1422 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1423 struct fib_info *fi = fa->fa_info;
1424 int nhsel, err;
345e9b54 1425
a5829f53
AD
1426 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1427 if (index >= (1ul << fa->fa_slen))
1428 continue;
1429 }
79e5ad2c
AD
1430 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1431 continue;
1432 if (fi->fib_dead)
1433 continue;
1434 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1435 continue;
1436 fib_alias_accessed(fa);
1437 err = fib_props[fa->fa_type].error;
1438 if (unlikely(err < 0)) {
345e9b54 1439#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1440 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1441#endif
79e5ad2c
AD
1442 return err;
1443 }
1444 if (fi->fib_flags & RTNH_F_DEAD)
1445 continue;
1446 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1447 const struct fib_nh *nh = &fi->fib_nh[nhsel];
0eeb075f 1448 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
79e5ad2c
AD
1449
1450 if (nh->nh_flags & RTNH_F_DEAD)
1451 continue;
0eeb075f
AG
1452 if (in_dev &&
1453 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1454 nh->nh_flags & RTNH_F_LINKDOWN &&
1455 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1456 continue;
58189ca7 1457 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
613d09b3
DA
1458 if (flp->flowi4_oif &&
1459 flp->flowi4_oif != nh->nh_oif)
1460 continue;
1461 }
79e5ad2c
AD
1462
1463 if (!(fib_flags & FIB_LOOKUP_NOREF))
1464 atomic_inc(&fi->fib_clntref);
1465
1466 res->prefixlen = KEYLENGTH - fa->fa_slen;
1467 res->nh_sel = nhsel;
1468 res->type = fa->fa_type;
1469 res->scope = fi->fib_scope;
1470 res->fi = fi;
1471 res->table = tb;
1472 res->fa_head = &n->leaf;
345e9b54 1473#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1474 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1475#endif
f6d3c192
DA
1476 trace_fib_table_lookup_nh(nh);
1477
79e5ad2c 1478 return err;
345e9b54 1479 }
9b6ebad5 1480 }
345e9b54 1481#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1482 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1483#endif
345e9b54 1484 goto backtrace;
19baf839 1485}
6fc01438 1486EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1487
35c6edac
AD
1488static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1489 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1490{
1491 /* record the location of the previous list_info entry */
1492 struct hlist_node **pprev = old->fa_list.pprev;
1493 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1494
1495 /* remove the fib_alias from the list */
1496 hlist_del_rcu(&old->fa_list);
1497
1498 /* if we emptied the list this leaf will be freed and we can sort
1499 * out parent suffix lengths as a part of trie_rebalance
1500 */
1501 if (hlist_empty(&l->leaf)) {
88bae714 1502 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1503 node_free(l);
1504 trie_rebalance(t, tp);
1505 return;
1506 }
1507
1508 /* only access fa if it is pointing at the last valid hlist_node */
1509 if (*pprev)
1510 return;
1511
1512 /* update the trie with the latest suffix length */
1513 l->slen = fa->fa_slen;
1514 leaf_pull_suffix(tp, l);
1515}
1516
1517/* Caller must hold RTNL. */
b90eb754
JP
1518int fib_table_delete(struct net *net, struct fib_table *tb,
1519 struct fib_config *cfg)
19baf839
RO
1520{
1521 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1522 struct fib_alias *fa, *fa_to_delete;
35c6edac 1523 struct key_vector *l, *tp;
79e5ad2c 1524 u8 plen = cfg->fc_dst_len;
79e5ad2c 1525 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1526 u8 tos = cfg->fc_tos;
1527 u32 key;
91b9a277 1528
79e5ad2c 1529 if (plen > KEYLENGTH)
19baf839
RO
1530 return -EINVAL;
1531
4e902c57 1532 key = ntohl(cfg->fc_dst);
19baf839 1533
d4a975e8 1534 if ((plen < KEYLENGTH) && (key << plen))
19baf839
RO
1535 return -EINVAL;
1536
d4a975e8 1537 l = fib_find_node(t, &tp, key);
c877efb2 1538 if (!l)
19baf839
RO
1539 return -ESRCH;
1540
0b65bd97 1541 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
19baf839
RO
1542 if (!fa)
1543 return -ESRCH;
1544
0c7770c7 1545 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1546
1547 fa_to_delete = NULL;
56315f9e 1548 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1549 struct fib_info *fi = fa->fa_info;
1550
0b65bd97
AD
1551 if ((fa->fa_slen != slen) ||
1552 (fa->tb_id != tb->tb_id) ||
1553 (fa->fa_tos != tos))
19baf839
RO
1554 break;
1555
4e902c57
TG
1556 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1557 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1558 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1559 (!cfg->fc_prefsrc ||
1560 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1561 (!cfg->fc_protocol ||
1562 fi->fib_protocol == cfg->fc_protocol) &&
1563 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1564 fa_to_delete = fa;
1565 break;
1566 }
1567 }
1568
91b9a277
OJ
1569 if (!fa_to_delete)
1570 return -ESRCH;
19baf839 1571
b90eb754
JP
1572 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1573 fa_to_delete->fa_info, tos, cfg->fc_type,
1574 tb->tb_id, 0);
d5d6487c 1575 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1576 &cfg->fc_nlinfo, 0);
91b9a277 1577
21d8c49e
DM
1578 if (!plen)
1579 tb->tb_num_default--;
1580
d5d6487c 1581 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1582
d5d6487c 1583 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1584 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1585
d5d6487c
AD
1586 fib_release_info(fa_to_delete->fa_info);
1587 alias_free_mem_rcu(fa_to_delete);
91b9a277 1588 return 0;
19baf839
RO
1589}
1590
8be33e95 1591/* Scan for the next leaf starting at the provided key value */
35c6edac 1592static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1593{
35c6edac 1594 struct key_vector *pn, *n = *tn;
8be33e95 1595 unsigned long cindex;
82cfbb00 1596
8be33e95 1597 /* this loop is meant to try and find the key in the trie */
88bae714 1598 do {
8be33e95
AD
1599 /* record parent and next child index */
1600 pn = n;
c2229fe1 1601 cindex = (key > pn->key) ? get_index(key, pn) : 0;
88bae714
AD
1602
1603 if (cindex >> pn->bits)
1604 break;
82cfbb00 1605
8be33e95 1606 /* descend into the next child */
754baf8d 1607 n = get_child_rcu(pn, cindex++);
88bae714
AD
1608 if (!n)
1609 break;
1610
1611 /* guarantee forward progress on the keys */
1612 if (IS_LEAF(n) && (n->key >= key))
1613 goto found;
1614 } while (IS_TNODE(n));
82cfbb00 1615
8be33e95 1616 /* this loop will search for the next leaf with a greater key */
88bae714 1617 while (!IS_TRIE(pn)) {
8be33e95
AD
1618 /* if we exhausted the parent node we will need to climb */
1619 if (cindex >= (1ul << pn->bits)) {
1620 t_key pkey = pn->key;
82cfbb00 1621
8be33e95 1622 pn = node_parent_rcu(pn);
8be33e95
AD
1623 cindex = get_index(pkey, pn) + 1;
1624 continue;
1625 }
82cfbb00 1626
8be33e95 1627 /* grab the next available node */
754baf8d 1628 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1629 if (!n)
1630 continue;
19baf839 1631
8be33e95
AD
1632 /* no need to compare keys since we bumped the index */
1633 if (IS_LEAF(n))
1634 goto found;
71d67e66 1635
8be33e95
AD
1636 /* Rescan start scanning in new node */
1637 pn = n;
1638 cindex = 0;
1639 }
ec28cf73 1640
8be33e95
AD
1641 *tn = pn;
1642 return NULL; /* Root of trie */
1643found:
1644 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1645 *tn = pn;
8be33e95 1646 return n;
71d67e66
SH
1647}
1648
0ddcf43d
AD
1649static void fib_trie_free(struct fib_table *tb)
1650{
1651 struct trie *t = (struct trie *)tb->tb_data;
1652 struct key_vector *pn = t->kv;
1653 unsigned long cindex = 1;
1654 struct hlist_node *tmp;
1655 struct fib_alias *fa;
1656
1657 /* walk trie in reverse order and free everything */
1658 for (;;) {
1659 struct key_vector *n;
1660
1661 if (!(cindex--)) {
1662 t_key pkey = pn->key;
1663
1664 if (IS_TRIE(pn))
1665 break;
1666
1667 n = pn;
1668 pn = node_parent(pn);
1669
1670 /* drop emptied tnode */
1671 put_child_root(pn, n->key, NULL);
1672 node_free(n);
1673
1674 cindex = get_index(pkey, pn);
1675
1676 continue;
1677 }
1678
1679 /* grab the next available node */
1680 n = get_child(pn, cindex);
1681 if (!n)
1682 continue;
1683
1684 if (IS_TNODE(n)) {
1685 /* record pn and cindex for leaf walking */
1686 pn = n;
1687 cindex = 1ul << n->bits;
1688
1689 continue;
1690 }
1691
1692 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1693 hlist_del_rcu(&fa->fa_list);
1694 alias_free_mem_rcu(fa);
1695 }
1696
1697 put_child_root(pn, n->key, NULL);
1698 node_free(n);
1699 }
1700
1701#ifdef CONFIG_IP_FIB_TRIE_STATS
1702 free_percpu(t->stats);
1703#endif
1704 kfree(tb);
1705}
1706
1707struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1708{
1709 struct trie *ot = (struct trie *)oldtb->tb_data;
1710 struct key_vector *l, *tp = ot->kv;
1711 struct fib_table *local_tb;
1712 struct fib_alias *fa;
1713 struct trie *lt;
1714 t_key key = 0;
1715
1716 if (oldtb->tb_data == oldtb->__data)
1717 return oldtb;
1718
1719 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1720 if (!local_tb)
1721 return NULL;
1722
1723 lt = (struct trie *)local_tb->tb_data;
1724
1725 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1726 struct key_vector *local_l = NULL, *local_tp;
1727
1728 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1729 struct fib_alias *new_fa;
1730
1731 if (local_tb->tb_id != fa->tb_id)
1732 continue;
1733
1734 /* clone fa for new local table */
1735 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1736 if (!new_fa)
1737 goto out;
1738
1739 memcpy(new_fa, fa, sizeof(*fa));
1740
1741 /* insert clone into table */
1742 if (!local_l)
1743 local_l = fib_find_node(lt, &local_tp, l->key);
1744
1745 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1746 NULL, l->key))
1747 goto out;
1748 }
1749
1750 /* stop loop if key wrapped back to 0 */
1751 key = l->key + 1;
1752 if (key < l->key)
1753 break;
1754 }
1755
1756 return local_tb;
1757out:
1758 fib_trie_free(local_tb);
1759
1760 return NULL;
1761}
1762
8be33e95 1763/* Caller must hold RTNL. */
b90eb754 1764int fib_table_flush(struct net *net, struct fib_table *tb)
19baf839 1765{
7289e6dd 1766 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1767 struct key_vector *pn = t->kv;
1768 unsigned long cindex = 1;
7289e6dd
AD
1769 struct hlist_node *tmp;
1770 struct fib_alias *fa;
82cfbb00 1771 int found = 0;
19baf839 1772
88bae714
AD
1773 /* walk trie in reverse order */
1774 for (;;) {
1775 unsigned char slen = 0;
1776 struct key_vector *n;
19baf839 1777
88bae714
AD
1778 if (!(cindex--)) {
1779 t_key pkey = pn->key;
7289e6dd 1780
88bae714
AD
1781 /* cannot resize the trie vector */
1782 if (IS_TRIE(pn))
1783 break;
7289e6dd 1784
88bae714
AD
1785 /* resize completed node */
1786 pn = resize(t, pn);
1787 cindex = get_index(pkey, pn);
7289e6dd 1788
88bae714
AD
1789 continue;
1790 }
7289e6dd 1791
88bae714
AD
1792 /* grab the next available node */
1793 n = get_child(pn, cindex);
1794 if (!n)
1795 continue;
7289e6dd 1796
88bae714
AD
1797 if (IS_TNODE(n)) {
1798 /* record pn and cindex for leaf walking */
1799 pn = n;
1800 cindex = 1ul << n->bits;
7289e6dd 1801
88bae714
AD
1802 continue;
1803 }
7289e6dd 1804
88bae714
AD
1805 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1806 struct fib_info *fi = fa->fa_info;
7289e6dd 1807
88bae714
AD
1808 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1809 slen = fa->fa_slen;
1810 continue;
1811 }
7289e6dd 1812
b90eb754
JP
1813 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1814 n->key,
1815 KEYLENGTH - fa->fa_slen,
1816 fi, fa->fa_tos, fa->fa_type,
1817 tb->tb_id, 0);
7289e6dd
AD
1818 hlist_del_rcu(&fa->fa_list);
1819 fib_release_info(fa->fa_info);
1820 alias_free_mem_rcu(fa);
1821 found++;
64c62723
AD
1822 }
1823
88bae714
AD
1824 /* update leaf slen */
1825 n->slen = slen;
7289e6dd 1826
88bae714
AD
1827 if (hlist_empty(&n->leaf)) {
1828 put_child_root(pn, n->key, NULL);
1829 node_free(n);
88bae714 1830 }
64c62723 1831 }
19baf839 1832
0c7770c7 1833 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1834 return found;
1835}
1836
a7e53531 1837static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1838{
a7e53531 1839 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1840#ifdef CONFIG_IP_FIB_TRIE_STATS
1841 struct trie *t = (struct trie *)tb->tb_data;
1842
0ddcf43d
AD
1843 if (tb->tb_data == tb->__data)
1844 free_percpu(t->stats);
8274a97a 1845#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1846 kfree(tb);
1847}
1848
a7e53531
AD
1849void fib_free_table(struct fib_table *tb)
1850{
1851 call_rcu(&tb->rcu, __trie_free_rcu);
1852}
1853
35c6edac 1854static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
79e5ad2c 1855 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1856{
79e5ad2c 1857 __be32 xkey = htonl(l->key);
19baf839 1858 struct fib_alias *fa;
79e5ad2c 1859 int i, s_i;
19baf839 1860
79e5ad2c 1861 s_i = cb->args[4];
19baf839
RO
1862 i = 0;
1863
2373ce1c 1864 /* rcu_read_lock is hold by caller */
79e5ad2c 1865 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
19baf839
RO
1866 if (i < s_i) {
1867 i++;
1868 continue;
1869 }
19baf839 1870
0ddcf43d
AD
1871 if (tb->tb_id != fa->tb_id) {
1872 i++;
1873 continue;
1874 }
1875
15e47304 1876 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
19baf839
RO
1877 cb->nlh->nlmsg_seq,
1878 RTM_NEWROUTE,
1879 tb->tb_id,
1880 fa->fa_type,
be403ea1 1881 xkey,
9b6ebad5 1882 KEYLENGTH - fa->fa_slen,
19baf839 1883 fa->fa_tos,
64347f78 1884 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1885 cb->args[4] = i;
19baf839
RO
1886 return -1;
1887 }
a88ee229 1888 i++;
19baf839 1889 }
a88ee229 1890
71d67e66 1891 cb->args[4] = i;
19baf839
RO
1892 return skb->len;
1893}
1894
a7e53531 1895/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b
SH
1896int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1897 struct netlink_callback *cb)
19baf839 1898{
8be33e95 1899 struct trie *t = (struct trie *)tb->tb_data;
88bae714 1900 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
1901 /* Dump starting at last key.
1902 * Note: 0.0.0.0/0 (ie default) is first key.
1903 */
8be33e95
AD
1904 int count = cb->args[2];
1905 t_key key = cb->args[3];
a88ee229 1906
8be33e95 1907 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
a88ee229 1908 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
8be33e95
AD
1909 cb->args[3] = key;
1910 cb->args[2] = count;
a88ee229 1911 return -1;
19baf839 1912 }
d5ce8a0e 1913
71d67e66 1914 ++count;
8be33e95
AD
1915 key = l->key + 1;
1916
71d67e66
SH
1917 memset(&cb->args[4], 0,
1918 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
1919
1920 /* stop loop if key wrapped back to 0 */
1921 if (key < l->key)
1922 break;
19baf839 1923 }
8be33e95 1924
8be33e95
AD
1925 cb->args[3] = key;
1926 cb->args[2] = count;
1927
19baf839 1928 return skb->len;
19baf839
RO
1929}
1930
5348ba85 1931void __init fib_trie_init(void)
7f9b8052 1932{
a07f5f50
SH
1933 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1934 sizeof(struct fib_alias),
bc3c8c1e
SH
1935 0, SLAB_PANIC, NULL);
1936
1937 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 1938 LEAF_SIZE,
bc3c8c1e 1939 0, SLAB_PANIC, NULL);
7f9b8052 1940}
19baf839 1941
0ddcf43d 1942struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
19baf839
RO
1943{
1944 struct fib_table *tb;
1945 struct trie *t;
0ddcf43d
AD
1946 size_t sz = sizeof(*tb);
1947
1948 if (!alias)
1949 sz += sizeof(struct trie);
19baf839 1950
0ddcf43d 1951 tb = kzalloc(sz, GFP_KERNEL);
51456b29 1952 if (!tb)
19baf839
RO
1953 return NULL;
1954
1955 tb->tb_id = id;
21d8c49e 1956 tb->tb_num_default = 0;
0ddcf43d
AD
1957 tb->tb_data = (alias ? alias->__data : tb->__data);
1958
1959 if (alias)
1960 return tb;
19baf839
RO
1961
1962 t = (struct trie *) tb->tb_data;
88bae714
AD
1963 t->kv[0].pos = KEYLENGTH;
1964 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
1965#ifdef CONFIG_IP_FIB_TRIE_STATS
1966 t->stats = alloc_percpu(struct trie_use_stats);
1967 if (!t->stats) {
1968 kfree(tb);
1969 tb = NULL;
1970 }
1971#endif
19baf839 1972
19baf839
RO
1973 return tb;
1974}
1975
cb7b593c
SH
1976#ifdef CONFIG_PROC_FS
1977/* Depth first Trie walk iterator */
1978struct fib_trie_iter {
1c340b2f 1979 struct seq_net_private p;
3d3b2d25 1980 struct fib_table *tb;
35c6edac 1981 struct key_vector *tnode;
a034ee3c
ED
1982 unsigned int index;
1983 unsigned int depth;
cb7b593c 1984};
19baf839 1985
35c6edac 1986static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 1987{
98293e8d 1988 unsigned long cindex = iter->index;
88bae714
AD
1989 struct key_vector *pn = iter->tnode;
1990 t_key pkey;
6640e697 1991
cb7b593c
SH
1992 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1993 iter->tnode, iter->index, iter->depth);
19baf839 1994
88bae714
AD
1995 while (!IS_TRIE(pn)) {
1996 while (cindex < child_length(pn)) {
1997 struct key_vector *n = get_child_rcu(pn, cindex++);
1998
1999 if (!n)
2000 continue;
2001
cb7b593c 2002 if (IS_LEAF(n)) {
88bae714
AD
2003 iter->tnode = pn;
2004 iter->index = cindex;
cb7b593c
SH
2005 } else {
2006 /* push down one level */
adaf9816 2007 iter->tnode = n;
cb7b593c
SH
2008 iter->index = 0;
2009 ++iter->depth;
2010 }
88bae714 2011
cb7b593c
SH
2012 return n;
2013 }
19baf839 2014
88bae714
AD
2015 /* Current node exhausted, pop back up */
2016 pkey = pn->key;
2017 pn = node_parent_rcu(pn);
2018 cindex = get_index(pkey, pn) + 1;
cb7b593c 2019 --iter->depth;
19baf839 2020 }
cb7b593c 2021
88bae714
AD
2022 /* record root node so further searches know we are done */
2023 iter->tnode = pn;
2024 iter->index = 0;
2025
cb7b593c 2026 return NULL;
19baf839
RO
2027}
2028
35c6edac
AD
2029static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2030 struct trie *t)
19baf839 2031{
f38b24c9 2032 struct key_vector *n, *pn;
5ddf0eb2 2033
132adf54 2034 if (!t)
5ddf0eb2
RO
2035 return NULL;
2036
f38b24c9 2037 pn = t->kv;
88bae714 2038 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 2039 if (!n)
5ddf0eb2 2040 return NULL;
19baf839 2041
3d3b2d25 2042 if (IS_TNODE(n)) {
adaf9816 2043 iter->tnode = n;
3d3b2d25
SH
2044 iter->index = 0;
2045 iter->depth = 1;
2046 } else {
88bae714 2047 iter->tnode = pn;
3d3b2d25
SH
2048 iter->index = 0;
2049 iter->depth = 0;
91b9a277 2050 }
3d3b2d25
SH
2051
2052 return n;
cb7b593c 2053}
91b9a277 2054
cb7b593c
SH
2055static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2056{
35c6edac 2057 struct key_vector *n;
cb7b593c 2058 struct fib_trie_iter iter;
91b9a277 2059
cb7b593c 2060 memset(s, 0, sizeof(*s));
91b9a277 2061
cb7b593c 2062 rcu_read_lock();
3d3b2d25 2063 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2064 if (IS_LEAF(n)) {
79e5ad2c 2065 struct fib_alias *fa;
93672292 2066
cb7b593c
SH
2067 s->leaves++;
2068 s->totdepth += iter.depth;
2069 if (iter.depth > s->maxdepth)
2070 s->maxdepth = iter.depth;
93672292 2071
79e5ad2c 2072 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 2073 ++s->prefixes;
cb7b593c 2074 } else {
cb7b593c 2075 s->tnodes++;
adaf9816
AD
2076 if (n->bits < MAX_STAT_DEPTH)
2077 s->nodesizes[n->bits]++;
6e22d174 2078 s->nullpointers += tn_info(n)->empty_children;
19baf839 2079 }
19baf839 2080 }
2373ce1c 2081 rcu_read_unlock();
19baf839
RO
2082}
2083
cb7b593c
SH
2084/*
2085 * This outputs /proc/net/fib_triestats
2086 */
2087static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2088{
a034ee3c 2089 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2090
cb7b593c
SH
2091 if (stat->leaves)
2092 avdepth = stat->totdepth*100 / stat->leaves;
2093 else
2094 avdepth = 0;
91b9a277 2095
a07f5f50
SH
2096 seq_printf(seq, "\tAver depth: %u.%02d\n",
2097 avdepth / 100, avdepth % 100);
cb7b593c 2098 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2099
cb7b593c 2100 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 2101 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
2102
2103 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 2104 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 2105
187b5188 2106 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 2107 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 2108
06ef921d
RO
2109 max = MAX_STAT_DEPTH;
2110 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2111 max--;
19baf839 2112
cb7b593c 2113 pointers = 0;
f585a991 2114 for (i = 1; i < max; i++)
cb7b593c 2115 if (stat->nodesizes[i] != 0) {
187b5188 2116 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2117 pointers += (1<<i) * stat->nodesizes[i];
2118 }
2119 seq_putc(seq, '\n');
187b5188 2120 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2121
35c6edac 2122 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2123 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2124 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2125}
2373ce1c 2126
cb7b593c 2127#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2128static void trie_show_usage(struct seq_file *seq,
8274a97a 2129 const struct trie_use_stats __percpu *stats)
66a2f7fd 2130{
8274a97a
AD
2131 struct trie_use_stats s = { 0 };
2132 int cpu;
2133
2134 /* loop through all of the CPUs and gather up the stats */
2135 for_each_possible_cpu(cpu) {
2136 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2137
2138 s.gets += pcpu->gets;
2139 s.backtrack += pcpu->backtrack;
2140 s.semantic_match_passed += pcpu->semantic_match_passed;
2141 s.semantic_match_miss += pcpu->semantic_match_miss;
2142 s.null_node_hit += pcpu->null_node_hit;
2143 s.resize_node_skipped += pcpu->resize_node_skipped;
2144 }
2145
66a2f7fd 2146 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2147 seq_printf(seq, "gets = %u\n", s.gets);
2148 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2149 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2150 s.semantic_match_passed);
2151 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2152 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2153 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2154}
66a2f7fd
SH
2155#endif /* CONFIG_IP_FIB_TRIE_STATS */
2156
3d3b2d25 2157static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2158{
3d3b2d25
SH
2159 if (tb->tb_id == RT_TABLE_LOCAL)
2160 seq_puts(seq, "Local:\n");
2161 else if (tb->tb_id == RT_TABLE_MAIN)
2162 seq_puts(seq, "Main:\n");
2163 else
2164 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2165}
19baf839 2166
3d3b2d25 2167
cb7b593c
SH
2168static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2169{
1c340b2f 2170 struct net *net = (struct net *)seq->private;
3d3b2d25 2171 unsigned int h;
877a9bff 2172
d717a9a6 2173 seq_printf(seq,
a07f5f50
SH
2174 "Basic info: size of leaf:"
2175 " %Zd bytes, size of tnode: %Zd bytes.\n",
41b489fd 2176 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2177
3d3b2d25
SH
2178 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2179 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2180 struct fib_table *tb;
2181
b67bfe0d 2182 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2183 struct trie *t = (struct trie *) tb->tb_data;
2184 struct trie_stat stat;
877a9bff 2185
3d3b2d25
SH
2186 if (!t)
2187 continue;
2188
2189 fib_table_print(seq, tb);
2190
2191 trie_collect_stats(t, &stat);
2192 trie_show_stats(seq, &stat);
2193#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2194 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2195#endif
2196 }
2197 }
19baf839 2198
cb7b593c 2199 return 0;
19baf839
RO
2200}
2201
cb7b593c 2202static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2203{
de05c557 2204 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2205}
2206
9a32144e 2207static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2208 .owner = THIS_MODULE,
2209 .open = fib_triestat_seq_open,
2210 .read = seq_read,
2211 .llseek = seq_lseek,
b6fcbdb4 2212 .release = single_release_net,
cb7b593c
SH
2213};
2214
35c6edac 2215static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2216{
1218854a
YH
2217 struct fib_trie_iter *iter = seq->private;
2218 struct net *net = seq_file_net(seq);
cb7b593c 2219 loff_t idx = 0;
3d3b2d25 2220 unsigned int h;
cb7b593c 2221
3d3b2d25
SH
2222 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2223 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2224 struct fib_table *tb;
cb7b593c 2225
b67bfe0d 2226 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2227 struct key_vector *n;
3d3b2d25
SH
2228
2229 for (n = fib_trie_get_first(iter,
2230 (struct trie *) tb->tb_data);
2231 n; n = fib_trie_get_next(iter))
2232 if (pos == idx++) {
2233 iter->tb = tb;
2234 return n;
2235 }
2236 }
cb7b593c 2237 }
3d3b2d25 2238
19baf839
RO
2239 return NULL;
2240}
2241
cb7b593c 2242static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2243 __acquires(RCU)
19baf839 2244{
cb7b593c 2245 rcu_read_lock();
1218854a 2246 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2247}
2248
cb7b593c 2249static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2250{
cb7b593c 2251 struct fib_trie_iter *iter = seq->private;
1218854a 2252 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2253 struct fib_table *tb = iter->tb;
2254 struct hlist_node *tb_node;
2255 unsigned int h;
35c6edac 2256 struct key_vector *n;
cb7b593c 2257
19baf839 2258 ++*pos;
3d3b2d25
SH
2259 /* next node in same table */
2260 n = fib_trie_get_next(iter);
2261 if (n)
2262 return n;
19baf839 2263
3d3b2d25
SH
2264 /* walk rest of this hash chain */
2265 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2266 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2267 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2268 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2269 if (n)
2270 goto found;
2271 }
19baf839 2272
3d3b2d25
SH
2273 /* new hash chain */
2274 while (++h < FIB_TABLE_HASHSZ) {
2275 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2276 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2277 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2278 if (n)
2279 goto found;
2280 }
2281 }
cb7b593c 2282 return NULL;
3d3b2d25
SH
2283
2284found:
2285 iter->tb = tb;
2286 return n;
cb7b593c 2287}
19baf839 2288
cb7b593c 2289static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2290 __releases(RCU)
19baf839 2291{
cb7b593c
SH
2292 rcu_read_unlock();
2293}
91b9a277 2294
cb7b593c
SH
2295static void seq_indent(struct seq_file *seq, int n)
2296{
a034ee3c
ED
2297 while (n-- > 0)
2298 seq_puts(seq, " ");
cb7b593c 2299}
19baf839 2300
28d36e37 2301static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2302{
132adf54 2303 switch (s) {
cb7b593c
SH
2304 case RT_SCOPE_UNIVERSE: return "universe";
2305 case RT_SCOPE_SITE: return "site";
2306 case RT_SCOPE_LINK: return "link";
2307 case RT_SCOPE_HOST: return "host";
2308 case RT_SCOPE_NOWHERE: return "nowhere";
2309 default:
28d36e37 2310 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2311 return buf;
2312 }
2313}
19baf839 2314
36cbd3dc 2315static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2316 [RTN_UNSPEC] = "UNSPEC",
2317 [RTN_UNICAST] = "UNICAST",
2318 [RTN_LOCAL] = "LOCAL",
2319 [RTN_BROADCAST] = "BROADCAST",
2320 [RTN_ANYCAST] = "ANYCAST",
2321 [RTN_MULTICAST] = "MULTICAST",
2322 [RTN_BLACKHOLE] = "BLACKHOLE",
2323 [RTN_UNREACHABLE] = "UNREACHABLE",
2324 [RTN_PROHIBIT] = "PROHIBIT",
2325 [RTN_THROW] = "THROW",
2326 [RTN_NAT] = "NAT",
2327 [RTN_XRESOLVE] = "XRESOLVE",
2328};
19baf839 2329
a034ee3c 2330static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2331{
cb7b593c
SH
2332 if (t < __RTN_MAX && rtn_type_names[t])
2333 return rtn_type_names[t];
28d36e37 2334 snprintf(buf, len, "type %u", t);
cb7b593c 2335 return buf;
19baf839
RO
2336}
2337
cb7b593c
SH
2338/* Pretty print the trie */
2339static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2340{
cb7b593c 2341 const struct fib_trie_iter *iter = seq->private;
35c6edac 2342 struct key_vector *n = v;
c877efb2 2343
88bae714 2344 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2345 fib_table_print(seq, iter->tb);
095b8501 2346
cb7b593c 2347 if (IS_TNODE(n)) {
adaf9816 2348 __be32 prf = htonl(n->key);
91b9a277 2349
e9b44019
AD
2350 seq_indent(seq, iter->depth-1);
2351 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2352 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2353 tn_info(n)->full_children,
2354 tn_info(n)->empty_children);
cb7b593c 2355 } else {
adaf9816 2356 __be32 val = htonl(n->key);
79e5ad2c 2357 struct fib_alias *fa;
cb7b593c
SH
2358
2359 seq_indent(seq, iter->depth);
673d57e7 2360 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2361
79e5ad2c
AD
2362 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2363 char buf1[32], buf2[32];
2364
2365 seq_indent(seq, iter->depth + 1);
2366 seq_printf(seq, " /%zu %s %s",
2367 KEYLENGTH - fa->fa_slen,
2368 rtn_scope(buf1, sizeof(buf1),
2369 fa->fa_info->fib_scope),
2370 rtn_type(buf2, sizeof(buf2),
2371 fa->fa_type));
2372 if (fa->fa_tos)
2373 seq_printf(seq, " tos=%d", fa->fa_tos);
2374 seq_putc(seq, '\n');
cb7b593c 2375 }
19baf839 2376 }
cb7b593c 2377
19baf839
RO
2378 return 0;
2379}
2380
f690808e 2381static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2382 .start = fib_trie_seq_start,
2383 .next = fib_trie_seq_next,
2384 .stop = fib_trie_seq_stop,
2385 .show = fib_trie_seq_show,
19baf839
RO
2386};
2387
cb7b593c 2388static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2389{
1c340b2f
DL
2390 return seq_open_net(inode, file, &fib_trie_seq_ops,
2391 sizeof(struct fib_trie_iter));
19baf839
RO
2392}
2393
9a32144e 2394static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2395 .owner = THIS_MODULE,
2396 .open = fib_trie_seq_open,
2397 .read = seq_read,
2398 .llseek = seq_lseek,
1c340b2f 2399 .release = seq_release_net,
19baf839
RO
2400};
2401
8315f5d8
SH
2402struct fib_route_iter {
2403 struct seq_net_private p;
8be33e95 2404 struct fib_table *main_tb;
35c6edac 2405 struct key_vector *tnode;
8315f5d8
SH
2406 loff_t pos;
2407 t_key key;
2408};
2409
35c6edac
AD
2410static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2411 loff_t pos)
8315f5d8 2412{
35c6edac 2413 struct key_vector *l, **tp = &iter->tnode;
8be33e95 2414 t_key key;
8315f5d8 2415
8be33e95
AD
2416 /* use cache location of next-to-find key */
2417 if (iter->pos > 0 && pos >= iter->pos) {
8315f5d8 2418 pos -= iter->pos;
8be33e95
AD
2419 key = iter->key;
2420 } else {
8315f5d8 2421 iter->pos = 0;
8be33e95 2422 key = 0;
8315f5d8
SH
2423 }
2424
8be33e95
AD
2425 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2426 key = l->key + 1;
8315f5d8 2427 iter->pos++;
8be33e95 2428
25b97c01 2429 if (--pos <= 0)
8be33e95
AD
2430 break;
2431
2432 l = NULL;
2433
2434 /* handle unlikely case of a key wrap */
2435 if (!key)
2436 break;
8315f5d8
SH
2437 }
2438
2439 if (l)
8be33e95 2440 iter->key = key; /* remember it */
8315f5d8
SH
2441 else
2442 iter->pos = 0; /* forget it */
2443
2444 return l;
2445}
2446
2447static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2448 __acquires(RCU)
2449{
2450 struct fib_route_iter *iter = seq->private;
2451 struct fib_table *tb;
8be33e95 2452 struct trie *t;
8315f5d8
SH
2453
2454 rcu_read_lock();
8be33e95 2455
1218854a 2456 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2457 if (!tb)
2458 return NULL;
2459
8be33e95 2460 iter->main_tb = tb;
94d9f1c5
DF
2461 t = (struct trie *)tb->tb_data;
2462 iter->tnode = t->kv;
8be33e95
AD
2463
2464 if (*pos != 0)
2465 return fib_route_get_idx(iter, *pos);
2466
8be33e95
AD
2467 iter->pos = 0;
2468 iter->key = 0;
2469
2470 return SEQ_START_TOKEN;
8315f5d8
SH
2471}
2472
2473static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2474{
2475 struct fib_route_iter *iter = seq->private;
35c6edac 2476 struct key_vector *l = NULL;
8be33e95 2477 t_key key = iter->key;
8315f5d8
SH
2478
2479 ++*pos;
8be33e95
AD
2480
2481 /* only allow key of 0 for start of sequence */
2482 if ((v == SEQ_START_TOKEN) || key)
2483 l = leaf_walk_rcu(&iter->tnode, key);
2484
2485 if (l) {
2486 iter->key = l->key + 1;
8315f5d8 2487 iter->pos++;
8be33e95
AD
2488 } else {
2489 iter->pos = 0;
8315f5d8
SH
2490 }
2491
8315f5d8
SH
2492 return l;
2493}
2494
2495static void fib_route_seq_stop(struct seq_file *seq, void *v)
2496 __releases(RCU)
2497{
2498 rcu_read_unlock();
2499}
2500
a034ee3c 2501static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2502{
a034ee3c 2503 unsigned int flags = 0;
19baf839 2504
a034ee3c
ED
2505 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2506 flags = RTF_REJECT;
cb7b593c
SH
2507 if (fi && fi->fib_nh->nh_gw)
2508 flags |= RTF_GATEWAY;
32ab5f80 2509 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2510 flags |= RTF_HOST;
2511 flags |= RTF_UP;
2512 return flags;
19baf839
RO
2513}
2514
cb7b593c
SH
2515/*
2516 * This outputs /proc/net/route.
2517 * The format of the file is not supposed to be changed
a034ee3c 2518 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2519 * legacy utilities
2520 */
2521static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2522{
654eff45
AD
2523 struct fib_route_iter *iter = seq->private;
2524 struct fib_table *tb = iter->main_tb;
79e5ad2c 2525 struct fib_alias *fa;
35c6edac 2526 struct key_vector *l = v;
9b6ebad5 2527 __be32 prefix;
19baf839 2528
cb7b593c
SH
2529 if (v == SEQ_START_TOKEN) {
2530 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2531 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2532 "\tWindow\tIRTT");
2533 return 0;
2534 }
19baf839 2535
9b6ebad5
AD
2536 prefix = htonl(l->key);
2537
79e5ad2c
AD
2538 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2539 const struct fib_info *fi = fa->fa_info;
2540 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2541 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2542
79e5ad2c
AD
2543 if ((fa->fa_type == RTN_BROADCAST) ||
2544 (fa->fa_type == RTN_MULTICAST))
2545 continue;
19baf839 2546
654eff45
AD
2547 if (fa->tb_id != tb->tb_id)
2548 continue;
2549
79e5ad2c
AD
2550 seq_setwidth(seq, 127);
2551
2552 if (fi)
2553 seq_printf(seq,
2554 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2555 "%d\t%08X\t%d\t%u\t%u",
2556 fi->fib_dev ? fi->fib_dev->name : "*",
2557 prefix,
2558 fi->fib_nh->nh_gw, flags, 0, 0,
2559 fi->fib_priority,
2560 mask,
2561 (fi->fib_advmss ?
2562 fi->fib_advmss + 40 : 0),
2563 fi->fib_window,
2564 fi->fib_rtt >> 3);
2565 else
2566 seq_printf(seq,
2567 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2568 "%d\t%08X\t%d\t%u\t%u",
2569 prefix, 0, flags, 0, 0, 0,
2570 mask, 0, 0, 0);
19baf839 2571
79e5ad2c 2572 seq_pad(seq, '\n');
19baf839
RO
2573 }
2574
2575 return 0;
2576}
2577
f690808e 2578static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2579 .start = fib_route_seq_start,
2580 .next = fib_route_seq_next,
2581 .stop = fib_route_seq_stop,
cb7b593c 2582 .show = fib_route_seq_show,
19baf839
RO
2583};
2584
cb7b593c 2585static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2586{
1c340b2f 2587 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2588 sizeof(struct fib_route_iter));
19baf839
RO
2589}
2590
9a32144e 2591static const struct file_operations fib_route_fops = {
cb7b593c
SH
2592 .owner = THIS_MODULE,
2593 .open = fib_route_seq_open,
2594 .read = seq_read,
2595 .llseek = seq_lseek,
1c340b2f 2596 .release = seq_release_net,
19baf839
RO
2597};
2598
61a02653 2599int __net_init fib_proc_init(struct net *net)
19baf839 2600{
d4beaa66 2601 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
cb7b593c
SH
2602 goto out1;
2603
d4beaa66
G
2604 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2605 &fib_triestat_fops))
cb7b593c
SH
2606 goto out2;
2607
d4beaa66 2608 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
cb7b593c
SH
2609 goto out3;
2610
19baf839 2611 return 0;
cb7b593c
SH
2612
2613out3:
ece31ffd 2614 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2615out2:
ece31ffd 2616 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2617out1:
2618 return -ENOMEM;
19baf839
RO
2619}
2620
61a02653 2621void __net_exit fib_proc_exit(struct net *net)
19baf839 2622{
ece31ffd
G
2623 remove_proc_entry("fib_trie", net->proc_net);
2624 remove_proc_entry("fib_triestat", net->proc_net);
2625 remove_proc_entry("route", net->proc_net);
19baf839
RO
2626}
2627
2628#endif /* CONFIG_PROC_FS */