Merge tag 's390-4.21-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-block.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
25985edc 15 * This work is based on the LPC-trie which is originally described in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
631dd1a8 19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
19baf839
RO
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
08009a76 53#include <linux/cache.h>
7c0f6ba6 54#include <linux/uaccess.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
5a0e3ad6 74#include <linux/slab.h>
bc3b2d7f 75#include <linux/export.h>
ffa915d0 76#include <linux/vmalloc.h>
b90eb754 77#include <linux/notifier.h>
457c4cbc 78#include <net/net_namespace.h>
19baf839
RO
79#include <net/ip.h>
80#include <net/protocol.h>
81#include <net/route.h>
82#include <net/tcp.h>
83#include <net/sock.h>
84#include <net/ip_fib.h>
04b1d4e5 85#include <net/fib_notifier.h>
f6d3c192 86#include <trace/events/fib.h>
19baf839
RO
87#include "fib_lookup.h"
88
c3852ef7
IS
89static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
90 enum fib_event_type event_type, u32 dst,
6eba87c7 91 int dst_len, struct fib_alias *fa)
c3852ef7
IS
92{
93 struct fib_entry_notifier_info info = {
94 .dst = dst,
95 .dst_len = dst_len,
6eba87c7
DA
96 .fi = fa->fa_info,
97 .tos = fa->fa_tos,
98 .type = fa->fa_type,
99 .tb_id = fa->tb_id,
c3852ef7 100 };
04b1d4e5 101 return call_fib4_notifier(nb, net, event_type, &info.info);
c3852ef7
IS
102}
103
b90eb754
JP
104static int call_fib_entry_notifiers(struct net *net,
105 enum fib_event_type event_type, u32 dst,
6c31e5a9
DA
106 int dst_len, struct fib_alias *fa,
107 struct netlink_ext_ack *extack)
b90eb754
JP
108{
109 struct fib_entry_notifier_info info = {
6c31e5a9 110 .info.extack = extack,
b90eb754
JP
111 .dst = dst,
112 .dst_len = dst_len,
6eba87c7
DA
113 .fi = fa->fa_info,
114 .tos = fa->fa_tos,
115 .type = fa->fa_type,
116 .tb_id = fa->tb_id,
b90eb754 117 };
04b1d4e5 118 return call_fib4_notifiers(net, event_type, &info.info);
b90eb754
JP
119}
120
06ef921d 121#define MAX_STAT_DEPTH 32
19baf839 122
95f60ea3
AD
123#define KEYLENGTH (8*sizeof(t_key))
124#define KEY_MAX ((t_key)~0)
19baf839 125
19baf839
RO
126typedef unsigned int t_key;
127
88bae714
AD
128#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
129#define IS_TNODE(n) ((n)->bits)
130#define IS_LEAF(n) (!(n)->bits)
2373ce1c 131
35c6edac 132struct key_vector {
64c9b6fb 133 t_key key;
64c9b6fb 134 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
41b489fd 135 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
5405afd1 136 unsigned char slen;
adaf9816 137 union {
41b489fd 138 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
79e5ad2c 139 struct hlist_head leaf;
41b489fd 140 /* This array is valid if (pos | bits) > 0 (TNODE) */
35c6edac 141 struct key_vector __rcu *tnode[0];
adaf9816 142 };
19baf839
RO
143};
144
dc35dbed 145struct tnode {
56ca2adf 146 struct rcu_head rcu;
6e22d174
AD
147 t_key empty_children; /* KEYLENGTH bits needed */
148 t_key full_children; /* KEYLENGTH bits needed */
f23e59fb 149 struct key_vector __rcu *parent;
dc35dbed 150 struct key_vector kv[1];
56ca2adf 151#define tn_bits kv[0].bits
dc35dbed
AD
152};
153
154#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
41b489fd
AD
155#define LEAF_SIZE TNODE_SIZE(1)
156
19baf839
RO
157#ifdef CONFIG_IP_FIB_TRIE_STATS
158struct trie_use_stats {
159 unsigned int gets;
160 unsigned int backtrack;
161 unsigned int semantic_match_passed;
162 unsigned int semantic_match_miss;
163 unsigned int null_node_hit;
2f36895a 164 unsigned int resize_node_skipped;
19baf839
RO
165};
166#endif
167
168struct trie_stat {
169 unsigned int totdepth;
170 unsigned int maxdepth;
171 unsigned int tnodes;
172 unsigned int leaves;
173 unsigned int nullpointers;
93672292 174 unsigned int prefixes;
06ef921d 175 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 176};
19baf839
RO
177
178struct trie {
88bae714 179 struct key_vector kv[1];
19baf839 180#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 181 struct trie_use_stats __percpu *stats;
19baf839 182#endif
19baf839
RO
183};
184
88bae714 185static struct key_vector *resize(struct trie *t, struct key_vector *tn);
c3059477
JP
186static size_t tnode_free_size;
187
188/*
189 * synchronize_rcu after call_rcu for that many pages; it should be especially
190 * useful before resizing the root node with PREEMPT_NONE configs; the value was
191 * obtained experimentally, aiming to avoid visible slowdown.
192 */
193static const int sync_pages = 128;
19baf839 194
08009a76
AD
195static struct kmem_cache *fn_alias_kmem __ro_after_init;
196static struct kmem_cache *trie_leaf_kmem __ro_after_init;
19baf839 197
56ca2adf
AD
198static inline struct tnode *tn_info(struct key_vector *kv)
199{
200 return container_of(kv, struct tnode, kv[0]);
201}
202
64c9b6fb 203/* caller must hold RTNL */
f23e59fb 204#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
754baf8d 205#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
0a5c0475 206
64c9b6fb 207/* caller must hold RCU read lock or RTNL */
f23e59fb 208#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
754baf8d 209#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
0a5c0475 210
64c9b6fb 211/* wrapper for rcu_assign_pointer */
35c6edac 212static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
b59cfbf7 213{
adaf9816 214 if (n)
f23e59fb 215 rcu_assign_pointer(tn_info(n)->parent, tp);
06801916
SH
216}
217
f23e59fb 218#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
64c9b6fb
AD
219
220/* This provides us with the number of children in this node, in the case of a
221 * leaf this will return 0 meaning none of the children are accessible.
6440cc9e 222 */
2e1ac88a 223static inline unsigned long child_length(const struct key_vector *tn)
06801916 224{
64c9b6fb 225 return (1ul << tn->bits) & ~(1ul);
06801916 226}
2373ce1c 227
88bae714
AD
228#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
229
2e1ac88a
AD
230static inline unsigned long get_index(t_key key, struct key_vector *kv)
231{
232 unsigned long index = key ^ kv->key;
233
88bae714
AD
234 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
235 return 0;
236
2e1ac88a
AD
237 return index >> kv->pos;
238}
239
e9b44019
AD
240/* To understand this stuff, an understanding of keys and all their bits is
241 * necessary. Every node in the trie has a key associated with it, but not
242 * all of the bits in that key are significant.
243 *
244 * Consider a node 'n' and its parent 'tp'.
245 *
246 * If n is a leaf, every bit in its key is significant. Its presence is
247 * necessitated by path compression, since during a tree traversal (when
248 * searching for a leaf - unless we are doing an insertion) we will completely
249 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
250 * a potentially successful search, that we have indeed been walking the
251 * correct key path.
252 *
253 * Note that we can never "miss" the correct key in the tree if present by
254 * following the wrong path. Path compression ensures that segments of the key
255 * that are the same for all keys with a given prefix are skipped, but the
256 * skipped part *is* identical for each node in the subtrie below the skipped
257 * bit! trie_insert() in this implementation takes care of that.
258 *
259 * if n is an internal node - a 'tnode' here, the various parts of its key
260 * have many different meanings.
261 *
262 * Example:
263 * _________________________________________________________________
264 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
265 * -----------------------------------------------------------------
266 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
267 *
268 * _________________________________________________________________
269 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
270 * -----------------------------------------------------------------
271 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
272 *
273 * tp->pos = 22
274 * tp->bits = 3
275 * n->pos = 13
276 * n->bits = 4
277 *
278 * First, let's just ignore the bits that come before the parent tp, that is
279 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
280 * point we do not use them for anything.
281 *
282 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
283 * index into the parent's child array. That is, they will be used to find
284 * 'n' among tp's children.
285 *
98a384ec 286 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
e9b44019
AD
287 * for the node n.
288 *
289 * All the bits we have seen so far are significant to the node n. The rest
290 * of the bits are really not needed or indeed known in n->key.
291 *
292 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
293 * n's child array, and will of course be different for each child.
294 *
98a384ec 295 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
e9b44019
AD
296 * at this point.
297 */
19baf839 298
f5026fab
DL
299static const int halve_threshold = 25;
300static const int inflate_threshold = 50;
345aa031 301static const int halve_threshold_root = 15;
80b71b80 302static const int inflate_threshold_root = 30;
2373ce1c
RO
303
304static void __alias_free_mem(struct rcu_head *head)
19baf839 305{
2373ce1c
RO
306 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
307 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
308}
309
2373ce1c 310static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 311{
2373ce1c
RO
312 call_rcu(&fa->rcu, __alias_free_mem);
313}
91b9a277 314
37fd30f2 315#define TNODE_KMALLOC_MAX \
35c6edac 316 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
1de3d87b 317#define TNODE_VMALLOC_MAX \
35c6edac 318 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
91b9a277 319
37fd30f2 320static void __node_free_rcu(struct rcu_head *head)
387a5487 321{
56ca2adf 322 struct tnode *n = container_of(head, struct tnode, rcu);
37fd30f2 323
56ca2adf 324 if (!n->tn_bits)
37fd30f2 325 kmem_cache_free(trie_leaf_kmem, n);
37fd30f2 326 else
1d5cfdb0 327 kvfree(n);
387a5487
SH
328}
329
56ca2adf 330#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
37fd30f2 331
dc35dbed 332static struct tnode *tnode_alloc(int bits)
f0e36f8c 333{
1de3d87b
AD
334 size_t size;
335
336 /* verify bits is within bounds */
337 if (bits > TNODE_VMALLOC_MAX)
338 return NULL;
339
340 /* determine size and verify it is non-zero and didn't overflow */
341 size = TNODE_SIZE(1ul << bits);
342
2373ce1c 343 if (size <= PAGE_SIZE)
8d965444 344 return kzalloc(size, GFP_KERNEL);
15be75cd 345 else
7a1c8e5a 346 return vzalloc(size);
15be75cd 347}
2373ce1c 348
35c6edac 349static inline void empty_child_inc(struct key_vector *n)
95f60ea3 350{
6e22d174 351 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
95f60ea3
AD
352}
353
35c6edac 354static inline void empty_child_dec(struct key_vector *n)
95f60ea3 355{
6e22d174 356 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
95f60ea3
AD
357}
358
35c6edac 359static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
2373ce1c 360{
f38b24c9
FY
361 struct key_vector *l;
362 struct tnode *kv;
dc35dbed 363
f38b24c9 364 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
dc35dbed
AD
365 if (!kv)
366 return NULL;
367
368 /* initialize key vector */
f38b24c9 369 l = kv->kv;
dc35dbed
AD
370 l->key = key;
371 l->pos = 0;
372 l->bits = 0;
373 l->slen = fa->fa_slen;
374
375 /* link leaf to fib alias */
376 INIT_HLIST_HEAD(&l->leaf);
377 hlist_add_head(&fa->fa_list, &l->leaf);
378
2373ce1c
RO
379 return l;
380}
381
35c6edac 382static struct key_vector *tnode_new(t_key key, int pos, int bits)
19baf839 383{
64c9b6fb 384 unsigned int shift = pos + bits;
f38b24c9
FY
385 struct key_vector *tn;
386 struct tnode *tnode;
64c9b6fb
AD
387
388 /* verify bits and pos their msb bits clear and values are valid */
389 BUG_ON(!bits || (shift > KEYLENGTH));
19baf839 390
f38b24c9 391 tnode = tnode_alloc(bits);
dc35dbed
AD
392 if (!tnode)
393 return NULL;
394
f38b24c9
FY
395 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
396 sizeof(struct key_vector *) << bits);
397
dc35dbed 398 if (bits == KEYLENGTH)
6e22d174 399 tnode->full_children = 1;
dc35dbed 400 else
6e22d174 401 tnode->empty_children = 1ul << bits;
dc35dbed 402
f38b24c9 403 tn = tnode->kv;
dc35dbed
AD
404 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
405 tn->pos = pos;
406 tn->bits = bits;
407 tn->slen = pos;
408
19baf839
RO
409 return tn;
410}
411
e9b44019 412/* Check whether a tnode 'n' is "full", i.e. it is an internal node
19baf839
RO
413 * and no bits are skipped. See discussion in dyntree paper p. 6
414 */
35c6edac 415static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
19baf839 416{
e9b44019 417 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
19baf839
RO
418}
419
ff181ed8
AD
420/* Add a child at position i overwriting the old value.
421 * Update the value of full_children and empty_children.
422 */
35c6edac
AD
423static void put_child(struct key_vector *tn, unsigned long i,
424 struct key_vector *n)
19baf839 425{
754baf8d 426 struct key_vector *chi = get_child(tn, i);
ff181ed8 427 int isfull, wasfull;
19baf839 428
2e1ac88a 429 BUG_ON(i >= child_length(tn));
0c7770c7 430
95f60ea3 431 /* update emptyChildren, overflow into fullChildren */
00db4124 432 if (!n && chi)
95f60ea3 433 empty_child_inc(tn);
00db4124 434 if (n && !chi)
95f60ea3 435 empty_child_dec(tn);
c877efb2 436
19baf839 437 /* update fullChildren */
ff181ed8 438 wasfull = tnode_full(tn, chi);
19baf839 439 isfull = tnode_full(tn, n);
ff181ed8 440
c877efb2 441 if (wasfull && !isfull)
6e22d174 442 tn_info(tn)->full_children--;
c877efb2 443 else if (!wasfull && isfull)
6e22d174 444 tn_info(tn)->full_children++;
91b9a277 445
5405afd1
AD
446 if (n && (tn->slen < n->slen))
447 tn->slen = n->slen;
448
41b489fd 449 rcu_assign_pointer(tn->tnode[i], n);
19baf839
RO
450}
451
35c6edac 452static void update_children(struct key_vector *tn)
69fa57b1
AD
453{
454 unsigned long i;
455
456 /* update all of the child parent pointers */
2e1ac88a 457 for (i = child_length(tn); i;) {
754baf8d 458 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
459
460 if (!inode)
461 continue;
462
463 /* Either update the children of a tnode that
464 * already belongs to us or update the child
465 * to point to ourselves.
466 */
467 if (node_parent(inode) == tn)
468 update_children(inode);
469 else
470 node_set_parent(inode, tn);
471 }
472}
473
88bae714
AD
474static inline void put_child_root(struct key_vector *tp, t_key key,
475 struct key_vector *n)
836a0123 476{
88bae714
AD
477 if (IS_TRIE(tp))
478 rcu_assign_pointer(tp->tnode[0], n);
836a0123 479 else
88bae714 480 put_child(tp, get_index(key, tp), n);
836a0123
AD
481}
482
35c6edac 483static inline void tnode_free_init(struct key_vector *tn)
0a5c0475 484{
56ca2adf 485 tn_info(tn)->rcu.next = NULL;
fc86a93b
AD
486}
487
35c6edac
AD
488static inline void tnode_free_append(struct key_vector *tn,
489 struct key_vector *n)
fc86a93b 490{
56ca2adf
AD
491 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
492 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
fc86a93b 493}
0a5c0475 494
35c6edac 495static void tnode_free(struct key_vector *tn)
fc86a93b 496{
56ca2adf 497 struct callback_head *head = &tn_info(tn)->rcu;
fc86a93b
AD
498
499 while (head) {
500 head = head->next;
41b489fd 501 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
fc86a93b
AD
502 node_free(tn);
503
56ca2adf 504 tn = container_of(head, struct tnode, rcu)->kv;
fc86a93b
AD
505 }
506
507 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
508 tnode_free_size = 0;
509 synchronize_rcu();
0a5c0475 510 }
0a5c0475
ED
511}
512
88bae714
AD
513static struct key_vector *replace(struct trie *t,
514 struct key_vector *oldtnode,
515 struct key_vector *tn)
69fa57b1 516{
35c6edac 517 struct key_vector *tp = node_parent(oldtnode);
69fa57b1
AD
518 unsigned long i;
519
520 /* setup the parent pointer out of and back into this node */
521 NODE_INIT_PARENT(tn, tp);
88bae714 522 put_child_root(tp, tn->key, tn);
69fa57b1
AD
523
524 /* update all of the child parent pointers */
525 update_children(tn);
526
527 /* all pointers should be clean so we are done */
528 tnode_free(oldtnode);
529
530 /* resize children now that oldtnode is freed */
2e1ac88a 531 for (i = child_length(tn); i;) {
754baf8d 532 struct key_vector *inode = get_child(tn, --i);
69fa57b1
AD
533
534 /* resize child node */
535 if (tnode_full(tn, inode))
88bae714 536 tn = resize(t, inode);
69fa57b1 537 }
8d8e810c 538
88bae714 539 return tp;
69fa57b1
AD
540}
541
88bae714
AD
542static struct key_vector *inflate(struct trie *t,
543 struct key_vector *oldtnode)
19baf839 544{
35c6edac 545 struct key_vector *tn;
69fa57b1 546 unsigned long i;
e9b44019 547 t_key m;
19baf839 548
0c7770c7 549 pr_debug("In inflate\n");
19baf839 550
e9b44019 551 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
0c7770c7 552 if (!tn)
8d8e810c 553 goto notnode;
2f36895a 554
69fa57b1
AD
555 /* prepare oldtnode to be freed */
556 tnode_free_init(oldtnode);
557
12c081a5
AD
558 /* Assemble all of the pointers in our cluster, in this case that
559 * represents all of the pointers out of our allocated nodes that
560 * point to existing tnodes and the links between our allocated
561 * nodes.
2f36895a 562 */
2e1ac88a 563 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
754baf8d 564 struct key_vector *inode = get_child(oldtnode, --i);
35c6edac 565 struct key_vector *node0, *node1;
69fa57b1 566 unsigned long j, k;
c877efb2 567
19baf839 568 /* An empty child */
51456b29 569 if (!inode)
19baf839
RO
570 continue;
571
572 /* A leaf or an internal node with skipped bits */
adaf9816 573 if (!tnode_full(oldtnode, inode)) {
e9b44019 574 put_child(tn, get_index(inode->key, tn), inode);
19baf839
RO
575 continue;
576 }
577
69fa57b1
AD
578 /* drop the node in the old tnode free list */
579 tnode_free_append(oldtnode, inode);
580
19baf839 581 /* An internal node with two children */
19baf839 582 if (inode->bits == 1) {
754baf8d
AD
583 put_child(tn, 2 * i + 1, get_child(inode, 1));
584 put_child(tn, 2 * i, get_child(inode, 0));
91b9a277 585 continue;
19baf839
RO
586 }
587
91b9a277 588 /* We will replace this node 'inode' with two new
12c081a5 589 * ones, 'node0' and 'node1', each with half of the
91b9a277
OJ
590 * original children. The two new nodes will have
591 * a position one bit further down the key and this
592 * means that the "significant" part of their keys
593 * (see the discussion near the top of this file)
594 * will differ by one bit, which will be "0" in
12c081a5 595 * node0's key and "1" in node1's key. Since we are
91b9a277
OJ
596 * moving the key position by one step, the bit that
597 * we are moving away from - the bit at position
12c081a5
AD
598 * (tn->pos) - is the one that will differ between
599 * node0 and node1. So... we synthesize that bit in the
600 * two new keys.
91b9a277 601 */
12c081a5
AD
602 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
603 if (!node1)
604 goto nomem;
69fa57b1 605 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
12c081a5 606
69fa57b1 607 tnode_free_append(tn, node1);
12c081a5
AD
608 if (!node0)
609 goto nomem;
610 tnode_free_append(tn, node0);
611
612 /* populate child pointers in new nodes */
2e1ac88a 613 for (k = child_length(inode), j = k / 2; j;) {
754baf8d
AD
614 put_child(node1, --j, get_child(inode, --k));
615 put_child(node0, j, get_child(inode, j));
616 put_child(node1, --j, get_child(inode, --k));
617 put_child(node0, j, get_child(inode, j));
12c081a5 618 }
19baf839 619
12c081a5
AD
620 /* link new nodes to parent */
621 NODE_INIT_PARENT(node1, tn);
622 NODE_INIT_PARENT(node0, tn);
2f36895a 623
12c081a5
AD
624 /* link parent to nodes */
625 put_child(tn, 2 * i + 1, node1);
626 put_child(tn, 2 * i, node0);
627 }
2f36895a 628
69fa57b1 629 /* setup the parent pointers into and out of this node */
8d8e810c 630 return replace(t, oldtnode, tn);
2f80b3c8 631nomem:
fc86a93b
AD
632 /* all pointers should be clean so we are done */
633 tnode_free(tn);
8d8e810c
AD
634notnode:
635 return NULL;
19baf839
RO
636}
637
88bae714
AD
638static struct key_vector *halve(struct trie *t,
639 struct key_vector *oldtnode)
19baf839 640{
35c6edac 641 struct key_vector *tn;
12c081a5 642 unsigned long i;
19baf839 643
0c7770c7 644 pr_debug("In halve\n");
c877efb2 645
e9b44019 646 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
2f80b3c8 647 if (!tn)
8d8e810c 648 goto notnode;
2f36895a 649
69fa57b1
AD
650 /* prepare oldtnode to be freed */
651 tnode_free_init(oldtnode);
652
12c081a5
AD
653 /* Assemble all of the pointers in our cluster, in this case that
654 * represents all of the pointers out of our allocated nodes that
655 * point to existing tnodes and the links between our allocated
656 * nodes.
2f36895a 657 */
2e1ac88a 658 for (i = child_length(oldtnode); i;) {
754baf8d
AD
659 struct key_vector *node1 = get_child(oldtnode, --i);
660 struct key_vector *node0 = get_child(oldtnode, --i);
35c6edac 661 struct key_vector *inode;
2f36895a 662
12c081a5
AD
663 /* At least one of the children is empty */
664 if (!node1 || !node0) {
665 put_child(tn, i / 2, node1 ? : node0);
666 continue;
667 }
c877efb2 668
2f36895a 669 /* Two nonempty children */
12c081a5 670 inode = tnode_new(node0->key, oldtnode->pos, 1);
8d8e810c
AD
671 if (!inode)
672 goto nomem;
12c081a5 673 tnode_free_append(tn, inode);
2f36895a 674
12c081a5
AD
675 /* initialize pointers out of node */
676 put_child(inode, 1, node1);
677 put_child(inode, 0, node0);
678 NODE_INIT_PARENT(inode, tn);
679
680 /* link parent to node */
681 put_child(tn, i / 2, inode);
2f36895a 682 }
19baf839 683
69fa57b1 684 /* setup the parent pointers into and out of this node */
8d8e810c
AD
685 return replace(t, oldtnode, tn);
686nomem:
687 /* all pointers should be clean so we are done */
688 tnode_free(tn);
689notnode:
690 return NULL;
19baf839
RO
691}
692
88bae714
AD
693static struct key_vector *collapse(struct trie *t,
694 struct key_vector *oldtnode)
95f60ea3 695{
35c6edac 696 struct key_vector *n, *tp;
95f60ea3
AD
697 unsigned long i;
698
699 /* scan the tnode looking for that one child that might still exist */
2e1ac88a 700 for (n = NULL, i = child_length(oldtnode); !n && i;)
754baf8d 701 n = get_child(oldtnode, --i);
95f60ea3
AD
702
703 /* compress one level */
704 tp = node_parent(oldtnode);
88bae714 705 put_child_root(tp, oldtnode->key, n);
95f60ea3
AD
706 node_set_parent(n, tp);
707
708 /* drop dead node */
709 node_free(oldtnode);
88bae714
AD
710
711 return tp;
95f60ea3
AD
712}
713
35c6edac 714static unsigned char update_suffix(struct key_vector *tn)
5405afd1
AD
715{
716 unsigned char slen = tn->pos;
717 unsigned long stride, i;
a52ca62c
AD
718 unsigned char slen_max;
719
720 /* only vector 0 can have a suffix length greater than or equal to
721 * tn->pos + tn->bits, the second highest node will have a suffix
722 * length at most of tn->pos + tn->bits - 1
723 */
724 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
5405afd1
AD
725
726 /* search though the list of children looking for nodes that might
727 * have a suffix greater than the one we currently have. This is
728 * why we start with a stride of 2 since a stride of 1 would
729 * represent the nodes with suffix length equal to tn->pos
730 */
2e1ac88a 731 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
754baf8d 732 struct key_vector *n = get_child(tn, i);
5405afd1
AD
733
734 if (!n || (n->slen <= slen))
735 continue;
736
737 /* update stride and slen based on new value */
738 stride <<= (n->slen - slen);
739 slen = n->slen;
740 i &= ~(stride - 1);
741
a52ca62c
AD
742 /* stop searching if we have hit the maximum possible value */
743 if (slen >= slen_max)
5405afd1
AD
744 break;
745 }
746
747 tn->slen = slen;
748
749 return slen;
750}
751
f05a4819
AD
752/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
753 * the Helsinki University of Technology and Matti Tikkanen of Nokia
754 * Telecommunications, page 6:
755 * "A node is doubled if the ratio of non-empty children to all
756 * children in the *doubled* node is at least 'high'."
757 *
758 * 'high' in this instance is the variable 'inflate_threshold'. It
759 * is expressed as a percentage, so we multiply it with
2e1ac88a 760 * child_length() and instead of multiplying by 2 (since the
f05a4819
AD
761 * child array will be doubled by inflate()) and multiplying
762 * the left-hand side by 100 (to handle the percentage thing) we
763 * multiply the left-hand side by 50.
764 *
2e1ac88a 765 * The left-hand side may look a bit weird: child_length(tn)
f05a4819
AD
766 * - tn->empty_children is of course the number of non-null children
767 * in the current node. tn->full_children is the number of "full"
768 * children, that is non-null tnodes with a skip value of 0.
769 * All of those will be doubled in the resulting inflated tnode, so
770 * we just count them one extra time here.
771 *
772 * A clearer way to write this would be:
773 *
774 * to_be_doubled = tn->full_children;
2e1ac88a 775 * not_to_be_doubled = child_length(tn) - tn->empty_children -
f05a4819
AD
776 * tn->full_children;
777 *
2e1ac88a 778 * new_child_length = child_length(tn) * 2;
f05a4819
AD
779 *
780 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
781 * new_child_length;
782 * if (new_fill_factor >= inflate_threshold)
783 *
784 * ...and so on, tho it would mess up the while () loop.
785 *
786 * anyway,
787 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
788 * inflate_threshold
789 *
790 * avoid a division:
791 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
792 * inflate_threshold * new_child_length
793 *
794 * expand not_to_be_doubled and to_be_doubled, and shorten:
2e1ac88a 795 * 100 * (child_length(tn) - tn->empty_children +
f05a4819
AD
796 * tn->full_children) >= inflate_threshold * new_child_length
797 *
798 * expand new_child_length:
2e1ac88a 799 * 100 * (child_length(tn) - tn->empty_children +
f05a4819 800 * tn->full_children) >=
2e1ac88a 801 * inflate_threshold * child_length(tn) * 2
f05a4819
AD
802 *
803 * shorten again:
2e1ac88a 804 * 50 * (tn->full_children + child_length(tn) -
f05a4819 805 * tn->empty_children) >= inflate_threshold *
2e1ac88a 806 * child_length(tn)
f05a4819
AD
807 *
808 */
35c6edac 809static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
f05a4819 810{
2e1ac88a 811 unsigned long used = child_length(tn);
f05a4819
AD
812 unsigned long threshold = used;
813
814 /* Keep root node larger */
88bae714 815 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
6e22d174
AD
816 used -= tn_info(tn)->empty_children;
817 used += tn_info(tn)->full_children;
f05a4819 818
95f60ea3
AD
819 /* if bits == KEYLENGTH then pos = 0, and will fail below */
820
821 return (used > 1) && tn->pos && ((50 * used) >= threshold);
f05a4819
AD
822}
823
35c6edac 824static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
f05a4819 825{
2e1ac88a 826 unsigned long used = child_length(tn);
f05a4819
AD
827 unsigned long threshold = used;
828
829 /* Keep root node larger */
88bae714 830 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
6e22d174 831 used -= tn_info(tn)->empty_children;
f05a4819 832
95f60ea3
AD
833 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
834
835 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
836}
837
35c6edac 838static inline bool should_collapse(struct key_vector *tn)
95f60ea3 839{
2e1ac88a 840 unsigned long used = child_length(tn);
95f60ea3 841
6e22d174 842 used -= tn_info(tn)->empty_children;
95f60ea3
AD
843
844 /* account for bits == KEYLENGTH case */
6e22d174 845 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
95f60ea3
AD
846 used -= KEY_MAX;
847
848 /* One child or none, time to drop us from the trie */
849 return used < 2;
f05a4819
AD
850}
851
cf3637bb 852#define MAX_WORK 10
88bae714 853static struct key_vector *resize(struct trie *t, struct key_vector *tn)
cf3637bb 854{
8d8e810c
AD
855#ifdef CONFIG_IP_FIB_TRIE_STATS
856 struct trie_use_stats __percpu *stats = t->stats;
857#endif
35c6edac 858 struct key_vector *tp = node_parent(tn);
88bae714 859 unsigned long cindex = get_index(tn->key, tp);
a80e89d4 860 int max_work = MAX_WORK;
cf3637bb 861
cf3637bb
AD
862 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
863 tn, inflate_threshold, halve_threshold);
864
ff181ed8
AD
865 /* track the tnode via the pointer from the parent instead of
866 * doing it ourselves. This way we can let RCU fully do its
867 * thing without us interfering
868 */
88bae714 869 BUG_ON(tn != get_child(tp, cindex));
ff181ed8 870
f05a4819
AD
871 /* Double as long as the resulting node has a number of
872 * nonempty nodes that are above the threshold.
cf3637bb 873 */
b6f15f82 874 while (should_inflate(tp, tn) && max_work) {
88bae714
AD
875 tp = inflate(t, tn);
876 if (!tp) {
cf3637bb 877#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 878 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
879#endif
880 break;
881 }
ff181ed8 882
b6f15f82 883 max_work--;
88bae714 884 tn = get_child(tp, cindex);
cf3637bb
AD
885 }
886
b6f15f82
AD
887 /* update parent in case inflate failed */
888 tp = node_parent(tn);
889
cf3637bb
AD
890 /* Return if at least one inflate is run */
891 if (max_work != MAX_WORK)
b6f15f82 892 return tp;
cf3637bb 893
f05a4819 894 /* Halve as long as the number of empty children in this
cf3637bb
AD
895 * node is above threshold.
896 */
b6f15f82 897 while (should_halve(tp, tn) && max_work) {
88bae714
AD
898 tp = halve(t, tn);
899 if (!tp) {
cf3637bb 900#ifdef CONFIG_IP_FIB_TRIE_STATS
8d8e810c 901 this_cpu_inc(stats->resize_node_skipped);
cf3637bb
AD
902#endif
903 break;
904 }
cf3637bb 905
b6f15f82 906 max_work--;
88bae714 907 tn = get_child(tp, cindex);
ff181ed8 908 }
cf3637bb
AD
909
910 /* Only one child remains */
88bae714
AD
911 if (should_collapse(tn))
912 return collapse(t, tn);
913
b6f15f82 914 /* update parent in case halve failed */
a52ca62c 915 return node_parent(tn);
cf3637bb
AD
916}
917
1a239173 918static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
5405afd1 919{
1a239173
AD
920 unsigned char node_slen = tn->slen;
921
922 while ((node_slen > tn->pos) && (node_slen > slen)) {
923 slen = update_suffix(tn);
924 if (node_slen == slen)
5405afd1 925 break;
1a239173
AD
926
927 tn = node_parent(tn);
928 node_slen = tn->slen;
5405afd1
AD
929 }
930}
931
1a239173 932static void node_push_suffix(struct key_vector *tn, unsigned char slen)
19baf839 933{
1a239173
AD
934 while (tn->slen < slen) {
935 tn->slen = slen;
5405afd1
AD
936 tn = node_parent(tn);
937 }
938}
939
2373ce1c 940/* rcu_read_lock needs to be hold by caller from readside */
35c6edac
AD
941static struct key_vector *fib_find_node(struct trie *t,
942 struct key_vector **tp, u32 key)
19baf839 943{
88bae714
AD
944 struct key_vector *pn, *n = t->kv;
945 unsigned long index = 0;
946
947 do {
948 pn = n;
949 n = get_child_rcu(n, index);
950
951 if (!n)
952 break;
939afb06 953
88bae714 954 index = get_cindex(key, n);
939afb06
AD
955
956 /* This bit of code is a bit tricky but it combines multiple
957 * checks into a single check. The prefix consists of the
958 * prefix plus zeros for the bits in the cindex. The index
959 * is the difference between the key and this value. From
960 * this we can actually derive several pieces of data.
d4a975e8 961 * if (index >= (1ul << bits))
939afb06 962 * we have a mismatch in skip bits and failed
b3832117
AD
963 * else
964 * we know the value is cindex
d4a975e8
AD
965 *
966 * This check is safe even if bits == KEYLENGTH due to the
967 * fact that we can only allocate a node with 32 bits if a
968 * long is greater than 32 bits.
939afb06 969 */
d4a975e8
AD
970 if (index >= (1ul << n->bits)) {
971 n = NULL;
972 break;
973 }
939afb06 974
88bae714
AD
975 /* keep searching until we find a perfect match leaf or NULL */
976 } while (IS_TNODE(n));
91b9a277 977
35c6edac 978 *tp = pn;
d4a975e8 979
939afb06 980 return n;
19baf839
RO
981}
982
02525368
AD
983/* Return the first fib alias matching TOS with
984 * priority less than or equal to PRIO.
985 */
79e5ad2c 986static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
0b65bd97 987 u8 tos, u32 prio, u32 tb_id)
02525368
AD
988{
989 struct fib_alias *fa;
990
991 if (!fah)
992 return NULL;
993
56315f9e 994 hlist_for_each_entry(fa, fah, fa_list) {
79e5ad2c
AD
995 if (fa->fa_slen < slen)
996 continue;
997 if (fa->fa_slen != slen)
998 break;
0b65bd97
AD
999 if (fa->tb_id > tb_id)
1000 continue;
1001 if (fa->tb_id != tb_id)
1002 break;
02525368
AD
1003 if (fa->fa_tos > tos)
1004 continue;
1005 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1006 return fa;
1007 }
1008
1009 return NULL;
1010}
1011
35c6edac 1012static void trie_rebalance(struct trie *t, struct key_vector *tn)
19baf839 1013{
88bae714
AD
1014 while (!IS_TRIE(tn))
1015 tn = resize(t, tn);
19baf839
RO
1016}
1017
35c6edac 1018static int fib_insert_node(struct trie *t, struct key_vector *tp,
d5d6487c 1019 struct fib_alias *new, t_key key)
19baf839 1020{
35c6edac 1021 struct key_vector *n, *l;
19baf839 1022
d5d6487c 1023 l = leaf_new(key, new);
79e5ad2c 1024 if (!l)
8d8e810c 1025 goto noleaf;
d5d6487c
AD
1026
1027 /* retrieve child from parent node */
88bae714 1028 n = get_child(tp, get_index(key, tp));
19baf839 1029
836a0123
AD
1030 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1031 *
1032 * Add a new tnode here
1033 * first tnode need some special handling
1034 * leaves us in position for handling as case 3
1035 */
1036 if (n) {
35c6edac 1037 struct key_vector *tn;
19baf839 1038
e9b44019 1039 tn = tnode_new(key, __fls(key ^ n->key), 1);
8d8e810c
AD
1040 if (!tn)
1041 goto notnode;
91b9a277 1042
836a0123
AD
1043 /* initialize routes out of node */
1044 NODE_INIT_PARENT(tn, tp);
1045 put_child(tn, get_index(key, tn) ^ 1, n);
19baf839 1046
836a0123 1047 /* start adding routes into the node */
88bae714 1048 put_child_root(tp, key, tn);
836a0123 1049 node_set_parent(n, tn);
e962f302 1050
836a0123 1051 /* parent now has a NULL spot where the leaf can go */
e962f302 1052 tp = tn;
19baf839 1053 }
91b9a277 1054
836a0123 1055 /* Case 3: n is NULL, and will just insert a new leaf */
a52ca62c 1056 node_push_suffix(tp, new->fa_slen);
d5d6487c 1057 NODE_INIT_PARENT(l, tp);
88bae714 1058 put_child_root(tp, key, l);
d5d6487c
AD
1059 trie_rebalance(t, tp);
1060
1061 return 0;
8d8e810c
AD
1062notnode:
1063 node_free(l);
1064noleaf:
1065 return -ENOMEM;
d5d6487c
AD
1066}
1067
6635f311
DA
1068/* fib notifier for ADD is sent before calling fib_insert_alias with
1069 * the expectation that the only possible failure ENOMEM
1070 */
35c6edac
AD
1071static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1072 struct key_vector *l, struct fib_alias *new,
d5d6487c
AD
1073 struct fib_alias *fa, t_key key)
1074{
1075 if (!l)
1076 return fib_insert_node(t, tp, new, key);
1077
1078 if (fa) {
1079 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
836a0123 1080 } else {
d5d6487c
AD
1081 struct fib_alias *last;
1082
1083 hlist_for_each_entry(last, &l->leaf, fa_list) {
1084 if (new->fa_slen < last->fa_slen)
1085 break;
0b65bd97
AD
1086 if ((new->fa_slen == last->fa_slen) &&
1087 (new->tb_id > last->tb_id))
1088 break;
d5d6487c
AD
1089 fa = last;
1090 }
1091
1092 if (fa)
1093 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1094 else
1095 hlist_add_head_rcu(&new->fa_list, &l->leaf);
836a0123 1096 }
2373ce1c 1097
d5d6487c
AD
1098 /* if we added to the tail node then we need to update slen */
1099 if (l->slen < new->fa_slen) {
1100 l->slen = new->fa_slen;
1a239173 1101 node_push_suffix(tp, new->fa_slen);
d5d6487c
AD
1102 }
1103
1104 return 0;
19baf839
RO
1105}
1106
78055998 1107static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
ba277e8e 1108{
78055998
DA
1109 if (plen > KEYLENGTH) {
1110 NL_SET_ERR_MSG(extack, "Invalid prefix length");
ba277e8e 1111 return false;
78055998 1112 }
ba277e8e 1113
78055998
DA
1114 if ((plen < KEYLENGTH) && (key << plen)) {
1115 NL_SET_ERR_MSG(extack,
1116 "Invalid prefix for given prefix length");
ba277e8e 1117 return false;
78055998 1118 }
ba277e8e
DA
1119
1120 return true;
1121}
1122
d5d6487c 1123/* Caller must hold RTNL. */
b90eb754 1124int fib_table_insert(struct net *net, struct fib_table *tb,
6d8422a1 1125 struct fib_config *cfg, struct netlink_ext_ack *extack)
19baf839 1126{
2f3a5272 1127 enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
d4a975e8 1128 struct trie *t = (struct trie *)tb->tb_data;
19baf839 1129 struct fib_alias *fa, *new_fa;
35c6edac 1130 struct key_vector *l, *tp;
b93e1fa7 1131 u16 nlflags = NLM_F_EXCL;
19baf839 1132 struct fib_info *fi;
79e5ad2c
AD
1133 u8 plen = cfg->fc_dst_len;
1134 u8 slen = KEYLENGTH - plen;
4e902c57 1135 u8 tos = cfg->fc_tos;
d4a975e8 1136 u32 key;
19baf839 1137 int err;
19baf839 1138
4e902c57 1139 key = ntohl(cfg->fc_dst);
19baf839 1140
78055998 1141 if (!fib_valid_key_len(key, plen, extack))
19baf839
RO
1142 return -EINVAL;
1143
ba277e8e
DA
1144 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1145
6d8422a1 1146 fi = fib_create_info(cfg, extack);
4e902c57
TG
1147 if (IS_ERR(fi)) {
1148 err = PTR_ERR(fi);
19baf839 1149 goto err;
4e902c57 1150 }
19baf839 1151
d4a975e8 1152 l = fib_find_node(t, &tp, key);
0b65bd97
AD
1153 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1154 tb->tb_id) : NULL;
19baf839
RO
1155
1156 /* Now fa, if non-NULL, points to the first fib alias
1157 * with the same keys [prefix,tos,priority], if such key already
1158 * exists or to the node before which we will insert new one.
1159 *
1160 * If fa is NULL, we will need to allocate a new one and
56315f9e
AD
1161 * insert to the tail of the section matching the suffix length
1162 * of the new alias.
19baf839
RO
1163 */
1164
936f6f8e
JA
1165 if (fa && fa->fa_tos == tos &&
1166 fa->fa_info->fib_priority == fi->fib_priority) {
1167 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1168
1169 err = -EEXIST;
4e902c57 1170 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1171 goto out;
1172
b93e1fa7
GN
1173 nlflags &= ~NLM_F_EXCL;
1174
936f6f8e
JA
1175 /* We have 2 goals:
1176 * 1. Find exact match for type, scope, fib_info to avoid
1177 * duplicate routes
1178 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1179 */
1180 fa_match = NULL;
1181 fa_first = fa;
56315f9e 1182 hlist_for_each_entry_from(fa, fa_list) {
0b65bd97
AD
1183 if ((fa->fa_slen != slen) ||
1184 (fa->tb_id != tb->tb_id) ||
1185 (fa->fa_tos != tos))
936f6f8e
JA
1186 break;
1187 if (fa->fa_info->fib_priority != fi->fib_priority)
1188 break;
1189 if (fa->fa_type == cfg->fc_type &&
936f6f8e
JA
1190 fa->fa_info == fi) {
1191 fa_match = fa;
1192 break;
1193 }
1194 }
1195
4e902c57 1196 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1197 struct fib_info *fi_drop;
1198 u8 state;
1199
b93e1fa7 1200 nlflags |= NLM_F_REPLACE;
936f6f8e
JA
1201 fa = fa_first;
1202 if (fa_match) {
1203 if (fa == fa_match)
1204 err = 0;
6725033f 1205 goto out;
936f6f8e 1206 }
2373ce1c 1207 err = -ENOBUFS;
e94b1766 1208 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1209 if (!new_fa)
2373ce1c 1210 goto out;
19baf839
RO
1211
1212 fi_drop = fa->fa_info;
2373ce1c
RO
1213 new_fa->fa_tos = fa->fa_tos;
1214 new_fa->fa_info = fi;
4e902c57 1215 new_fa->fa_type = cfg->fc_type;
19baf839 1216 state = fa->fa_state;
936f6f8e 1217 new_fa->fa_state = state & ~FA_S_ACCESSED;
9b6ebad5 1218 new_fa->fa_slen = fa->fa_slen;
d4e64c29 1219 new_fa->tb_id = tb->tb_id;
2392debc 1220 new_fa->fa_default = -1;
19baf839 1221
c1d7ee67
DA
1222 err = call_fib_entry_notifiers(net,
1223 FIB_EVENT_ENTRY_REPLACE,
1224 key, plen, new_fa,
1225 extack);
1226 if (err)
1227 goto out_free_new_fa;
1228
5b7d616d
IS
1229 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1230 tb->tb_id, &cfg->fc_nlinfo, nlflags);
1231
56315f9e 1232 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
8e05fd71 1233
2373ce1c 1234 alias_free_mem_rcu(fa);
19baf839
RO
1235
1236 fib_release_info(fi_drop);
1237 if (state & FA_S_ACCESSED)
4ccfe6d4 1238 rt_cache_flush(cfg->fc_nlinfo.nl_net);
b90eb754 1239
91b9a277 1240 goto succeeded;
19baf839
RO
1241 }
1242 /* Error if we find a perfect match which
1243 * uses the same scope, type, and nexthop
1244 * information.
1245 */
936f6f8e
JA
1246 if (fa_match)
1247 goto out;
a07f5f50 1248
2f3a5272
IS
1249 if (cfg->fc_nlflags & NLM_F_APPEND) {
1250 event = FIB_EVENT_ENTRY_APPEND;
b93e1fa7 1251 nlflags |= NLM_F_APPEND;
2f3a5272 1252 } else {
936f6f8e 1253 fa = fa_first;
2f3a5272 1254 }
19baf839
RO
1255 }
1256 err = -ENOENT;
4e902c57 1257 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1258 goto out;
1259
b93e1fa7 1260 nlflags |= NLM_F_CREATE;
19baf839 1261 err = -ENOBUFS;
e94b1766 1262 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
51456b29 1263 if (!new_fa)
19baf839
RO
1264 goto out;
1265
1266 new_fa->fa_info = fi;
1267 new_fa->fa_tos = tos;
4e902c57 1268 new_fa->fa_type = cfg->fc_type;
19baf839 1269 new_fa->fa_state = 0;
79e5ad2c 1270 new_fa->fa_slen = slen;
0ddcf43d 1271 new_fa->tb_id = tb->tb_id;
2392debc 1272 new_fa->fa_default = -1;
19baf839 1273
6635f311
DA
1274 err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1275 if (err)
1276 goto out_free_new_fa;
1277
9b6ebad5 1278 /* Insert new entry to the list. */
d5d6487c
AD
1279 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1280 if (err)
6635f311 1281 goto out_fib_notif;
19baf839 1282
21d8c49e
DM
1283 if (!plen)
1284 tb->tb_num_default++;
1285
4ccfe6d4 1286 rt_cache_flush(cfg->fc_nlinfo.nl_net);
0ddcf43d 1287 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
a2bb6d7d 1288 &cfg->fc_nlinfo, nlflags);
19baf839
RO
1289succeeded:
1290 return 0;
f835e471 1291
6635f311
DA
1292out_fib_notif:
1293 /* notifier was sent that entry would be added to trie, but
1294 * the add failed and need to recover. Only failure for
1295 * fib_insert_alias is ENOMEM.
1296 */
1297 NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1298 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1299 plen, new_fa, NULL);
f835e471
RO
1300out_free_new_fa:
1301 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1302out:
1303 fib_release_info(fi);
91b9a277 1304err:
19baf839
RO
1305 return err;
1306}
1307
35c6edac 1308static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
9f9e636d
AD
1309{
1310 t_key prefix = n->key;
1311
1312 return (key ^ prefix) & (prefix | -prefix);
1313}
1314
345e9b54 1315/* should be called with rcu_read_lock */
22bd5b9b 1316int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
ebc0ffae 1317 struct fib_result *res, int fib_flags)
19baf839 1318{
0ddcf43d 1319 struct trie *t = (struct trie *) tb->tb_data;
8274a97a
AD
1320#ifdef CONFIG_IP_FIB_TRIE_STATS
1321 struct trie_use_stats __percpu *stats = t->stats;
1322#endif
9f9e636d 1323 const t_key key = ntohl(flp->daddr);
35c6edac 1324 struct key_vector *n, *pn;
79e5ad2c 1325 struct fib_alias *fa;
71e8b67d 1326 unsigned long index;
9f9e636d 1327 t_key cindex;
91b9a277 1328
88bae714
AD
1329 pn = t->kv;
1330 cindex = 0;
1331
1332 n = get_child_rcu(pn, cindex);
9f323973
DA
1333 if (!n) {
1334 trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
345e9b54 1335 return -EAGAIN;
9f323973 1336 }
19baf839
RO
1337
1338#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 1339 this_cpu_inc(stats->gets);
19baf839
RO
1340#endif
1341
9f9e636d
AD
1342 /* Step 1: Travel to the longest prefix match in the trie */
1343 for (;;) {
88bae714 1344 index = get_cindex(key, n);
9f9e636d
AD
1345
1346 /* This bit of code is a bit tricky but it combines multiple
1347 * checks into a single check. The prefix consists of the
1348 * prefix plus zeros for the "bits" in the prefix. The index
1349 * is the difference between the key and this value. From
1350 * this we can actually derive several pieces of data.
71e8b67d 1351 * if (index >= (1ul << bits))
9f9e636d 1352 * we have a mismatch in skip bits and failed
b3832117
AD
1353 * else
1354 * we know the value is cindex
71e8b67d
AD
1355 *
1356 * This check is safe even if bits == KEYLENGTH due to the
1357 * fact that we can only allocate a node with 32 bits if a
1358 * long is greater than 32 bits.
9f9e636d 1359 */
71e8b67d 1360 if (index >= (1ul << n->bits))
9f9e636d 1361 break;
19baf839 1362
9f9e636d
AD
1363 /* we have found a leaf. Prefixes have already been compared */
1364 if (IS_LEAF(n))
a07f5f50 1365 goto found;
19baf839 1366
9f9e636d
AD
1367 /* only record pn and cindex if we are going to be chopping
1368 * bits later. Otherwise we are just wasting cycles.
91b9a277 1369 */
5405afd1 1370 if (n->slen > n->pos) {
9f9e636d
AD
1371 pn = n;
1372 cindex = index;
91b9a277 1373 }
19baf839 1374
754baf8d 1375 n = get_child_rcu(n, index);
9f9e636d
AD
1376 if (unlikely(!n))
1377 goto backtrace;
1378 }
19baf839 1379
9f9e636d
AD
1380 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1381 for (;;) {
1382 /* record the pointer where our next node pointer is stored */
35c6edac 1383 struct key_vector __rcu **cptr = n->tnode;
19baf839 1384
9f9e636d
AD
1385 /* This test verifies that none of the bits that differ
1386 * between the key and the prefix exist in the region of
1387 * the lsb and higher in the prefix.
91b9a277 1388 */
5405afd1 1389 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
9f9e636d 1390 goto backtrace;
91b9a277 1391
9f9e636d
AD
1392 /* exit out and process leaf */
1393 if (unlikely(IS_LEAF(n)))
1394 break;
91b9a277 1395
9f9e636d
AD
1396 /* Don't bother recording parent info. Since we are in
1397 * prefix match mode we will have to come back to wherever
1398 * we started this traversal anyway
91b9a277 1399 */
91b9a277 1400
9f9e636d 1401 while ((n = rcu_dereference(*cptr)) == NULL) {
19baf839 1402backtrace:
19baf839 1403#ifdef CONFIG_IP_FIB_TRIE_STATS
9f9e636d
AD
1404 if (!n)
1405 this_cpu_inc(stats->null_node_hit);
19baf839 1406#endif
9f9e636d
AD
1407 /* If we are at cindex 0 there are no more bits for
1408 * us to strip at this level so we must ascend back
1409 * up one level to see if there are any more bits to
1410 * be stripped there.
1411 */
1412 while (!cindex) {
1413 t_key pkey = pn->key;
1414
88bae714
AD
1415 /* If we don't have a parent then there is
1416 * nothing for us to do as we do not have any
1417 * further nodes to parse.
1418 */
9f323973
DA
1419 if (IS_TRIE(pn)) {
1420 trace_fib_table_lookup(tb->tb_id, flp,
1421 NULL, -EAGAIN);
345e9b54 1422 return -EAGAIN;
9f323973 1423 }
9f9e636d
AD
1424#ifdef CONFIG_IP_FIB_TRIE_STATS
1425 this_cpu_inc(stats->backtrack);
1426#endif
1427 /* Get Child's index */
88bae714 1428 pn = node_parent_rcu(pn);
9f9e636d
AD
1429 cindex = get_index(pkey, pn);
1430 }
1431
1432 /* strip the least significant bit from the cindex */
1433 cindex &= cindex - 1;
1434
1435 /* grab pointer for next child node */
41b489fd 1436 cptr = &pn->tnode[cindex];
c877efb2 1437 }
19baf839 1438 }
9f9e636d 1439
19baf839 1440found:
71e8b67d
AD
1441 /* this line carries forward the xor from earlier in the function */
1442 index = key ^ n->key;
1443
9f9e636d 1444 /* Step 3: Process the leaf, if that fails fall back to backtracing */
79e5ad2c
AD
1445 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1446 struct fib_info *fi = fa->fa_info;
1447 int nhsel, err;
345e9b54 1448
a5829f53
AD
1449 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1450 if (index >= (1ul << fa->fa_slen))
1451 continue;
1452 }
79e5ad2c
AD
1453 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1454 continue;
1455 if (fi->fib_dead)
1456 continue;
1457 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1458 continue;
1459 fib_alias_accessed(fa);
1460 err = fib_props[fa->fa_type].error;
1461 if (unlikely(err < 0)) {
345e9b54 1462#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1463 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1464#endif
9f323973 1465 trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
79e5ad2c
AD
1466 return err;
1467 }
1468 if (fi->fib_flags & RTNH_F_DEAD)
1469 continue;
1470 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1471 const struct fib_nh *nh = &fi->fib_nh[nhsel];
0eeb075f 1472 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
79e5ad2c
AD
1473
1474 if (nh->nh_flags & RTNH_F_DEAD)
1475 continue;
0eeb075f
AG
1476 if (in_dev &&
1477 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1478 nh->nh_flags & RTNH_F_LINKDOWN &&
1479 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1480 continue;
58189ca7 1481 if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
613d09b3
DA
1482 if (flp->flowi4_oif &&
1483 flp->flowi4_oif != nh->nh_oif)
1484 continue;
1485 }
79e5ad2c
AD
1486
1487 if (!(fib_flags & FIB_LOOKUP_NOREF))
0029c0de 1488 refcount_inc(&fi->fib_clntref);
79e5ad2c 1489
6ffd9034 1490 res->prefix = htonl(n->key);
79e5ad2c
AD
1491 res->prefixlen = KEYLENGTH - fa->fa_slen;
1492 res->nh_sel = nhsel;
1493 res->type = fa->fa_type;
1494 res->scope = fi->fib_scope;
1495 res->fi = fi;
1496 res->table = tb;
1497 res->fa_head = &n->leaf;
345e9b54 1498#ifdef CONFIG_IP_FIB_TRIE_STATS
79e5ad2c 1499 this_cpu_inc(stats->semantic_match_passed);
345e9b54 1500#endif
9f323973 1501 trace_fib_table_lookup(tb->tb_id, flp, nh, err);
f6d3c192 1502
79e5ad2c 1503 return err;
345e9b54 1504 }
9b6ebad5 1505 }
345e9b54 1506#ifdef CONFIG_IP_FIB_TRIE_STATS
9b6ebad5 1507 this_cpu_inc(stats->semantic_match_miss);
345e9b54 1508#endif
345e9b54 1509 goto backtrace;
19baf839 1510}
6fc01438 1511EXPORT_SYMBOL_GPL(fib_table_lookup);
19baf839 1512
35c6edac
AD
1513static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1514 struct key_vector *l, struct fib_alias *old)
d5d6487c
AD
1515{
1516 /* record the location of the previous list_info entry */
1517 struct hlist_node **pprev = old->fa_list.pprev;
1518 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1519
1520 /* remove the fib_alias from the list */
1521 hlist_del_rcu(&old->fa_list);
1522
1523 /* if we emptied the list this leaf will be freed and we can sort
1524 * out parent suffix lengths as a part of trie_rebalance
1525 */
1526 if (hlist_empty(&l->leaf)) {
a52ca62c
AD
1527 if (tp->slen == l->slen)
1528 node_pull_suffix(tp, tp->pos);
88bae714 1529 put_child_root(tp, l->key, NULL);
d5d6487c
AD
1530 node_free(l);
1531 trie_rebalance(t, tp);
1532 return;
1533 }
1534
1535 /* only access fa if it is pointing at the last valid hlist_node */
1536 if (*pprev)
1537 return;
1538
1539 /* update the trie with the latest suffix length */
1540 l->slen = fa->fa_slen;
1a239173 1541 node_pull_suffix(tp, fa->fa_slen);
d5d6487c
AD
1542}
1543
1544/* Caller must hold RTNL. */
b90eb754 1545int fib_table_delete(struct net *net, struct fib_table *tb,
78055998 1546 struct fib_config *cfg, struct netlink_ext_ack *extack)
19baf839
RO
1547{
1548 struct trie *t = (struct trie *) tb->tb_data;
19baf839 1549 struct fib_alias *fa, *fa_to_delete;
35c6edac 1550 struct key_vector *l, *tp;
79e5ad2c 1551 u8 plen = cfg->fc_dst_len;
79e5ad2c 1552 u8 slen = KEYLENGTH - plen;
d4a975e8
AD
1553 u8 tos = cfg->fc_tos;
1554 u32 key;
91b9a277 1555
4e902c57 1556 key = ntohl(cfg->fc_dst);
19baf839 1557
78055998 1558 if (!fib_valid_key_len(key, plen, extack))
19baf839
RO
1559 return -EINVAL;
1560
d4a975e8 1561 l = fib_find_node(t, &tp, key);
c877efb2 1562 if (!l)
19baf839
RO
1563 return -ESRCH;
1564
0b65bd97 1565 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
19baf839
RO
1566 if (!fa)
1567 return -ESRCH;
1568
0c7770c7 1569 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1570
1571 fa_to_delete = NULL;
56315f9e 1572 hlist_for_each_entry_from(fa, fa_list) {
19baf839
RO
1573 struct fib_info *fi = fa->fa_info;
1574
0b65bd97
AD
1575 if ((fa->fa_slen != slen) ||
1576 (fa->tb_id != tb->tb_id) ||
1577 (fa->fa_tos != tos))
19baf839
RO
1578 break;
1579
4e902c57
TG
1580 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1581 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
37e826c5 1582 fa->fa_info->fib_scope == cfg->fc_scope) &&
74cb3c10
JA
1583 (!cfg->fc_prefsrc ||
1584 fi->fib_prefsrc == cfg->fc_prefsrc) &&
4e902c57
TG
1585 (!cfg->fc_protocol ||
1586 fi->fib_protocol == cfg->fc_protocol) &&
5f9ae3d9
XL
1587 fib_nh_match(cfg, fi, extack) == 0 &&
1588 fib_metrics_match(cfg, fi)) {
19baf839
RO
1589 fa_to_delete = fa;
1590 break;
1591 }
1592 }
1593
91b9a277
OJ
1594 if (!fa_to_delete)
1595 return -ESRCH;
19baf839 1596
b90eb754 1597 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
6c31e5a9 1598 fa_to_delete, extack);
d5d6487c 1599 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
b8f55831 1600 &cfg->fc_nlinfo, 0);
91b9a277 1601
21d8c49e
DM
1602 if (!plen)
1603 tb->tb_num_default--;
1604
d5d6487c 1605 fib_remove_alias(t, tp, l, fa_to_delete);
19baf839 1606
d5d6487c 1607 if (fa_to_delete->fa_state & FA_S_ACCESSED)
4ccfe6d4 1608 rt_cache_flush(cfg->fc_nlinfo.nl_net);
19baf839 1609
d5d6487c
AD
1610 fib_release_info(fa_to_delete->fa_info);
1611 alias_free_mem_rcu(fa_to_delete);
91b9a277 1612 return 0;
19baf839
RO
1613}
1614
8be33e95 1615/* Scan for the next leaf starting at the provided key value */
35c6edac 1616static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
19baf839 1617{
35c6edac 1618 struct key_vector *pn, *n = *tn;
8be33e95 1619 unsigned long cindex;
82cfbb00 1620
8be33e95 1621 /* this loop is meant to try and find the key in the trie */
88bae714 1622 do {
8be33e95
AD
1623 /* record parent and next child index */
1624 pn = n;
c2229fe1 1625 cindex = (key > pn->key) ? get_index(key, pn) : 0;
88bae714
AD
1626
1627 if (cindex >> pn->bits)
1628 break;
82cfbb00 1629
8be33e95 1630 /* descend into the next child */
754baf8d 1631 n = get_child_rcu(pn, cindex++);
88bae714
AD
1632 if (!n)
1633 break;
1634
1635 /* guarantee forward progress on the keys */
1636 if (IS_LEAF(n) && (n->key >= key))
1637 goto found;
1638 } while (IS_TNODE(n));
82cfbb00 1639
8be33e95 1640 /* this loop will search for the next leaf with a greater key */
88bae714 1641 while (!IS_TRIE(pn)) {
8be33e95
AD
1642 /* if we exhausted the parent node we will need to climb */
1643 if (cindex >= (1ul << pn->bits)) {
1644 t_key pkey = pn->key;
82cfbb00 1645
8be33e95 1646 pn = node_parent_rcu(pn);
8be33e95
AD
1647 cindex = get_index(pkey, pn) + 1;
1648 continue;
1649 }
82cfbb00 1650
8be33e95 1651 /* grab the next available node */
754baf8d 1652 n = get_child_rcu(pn, cindex++);
8be33e95
AD
1653 if (!n)
1654 continue;
19baf839 1655
8be33e95
AD
1656 /* no need to compare keys since we bumped the index */
1657 if (IS_LEAF(n))
1658 goto found;
71d67e66 1659
8be33e95
AD
1660 /* Rescan start scanning in new node */
1661 pn = n;
1662 cindex = 0;
1663 }
ec28cf73 1664
8be33e95
AD
1665 *tn = pn;
1666 return NULL; /* Root of trie */
1667found:
1668 /* if we are at the limit for keys just return NULL for the tnode */
88bae714 1669 *tn = pn;
8be33e95 1670 return n;
71d67e66
SH
1671}
1672
0ddcf43d
AD
1673static void fib_trie_free(struct fib_table *tb)
1674{
1675 struct trie *t = (struct trie *)tb->tb_data;
1676 struct key_vector *pn = t->kv;
1677 unsigned long cindex = 1;
1678 struct hlist_node *tmp;
1679 struct fib_alias *fa;
1680
1681 /* walk trie in reverse order and free everything */
1682 for (;;) {
1683 struct key_vector *n;
1684
1685 if (!(cindex--)) {
1686 t_key pkey = pn->key;
1687
1688 if (IS_TRIE(pn))
1689 break;
1690
1691 n = pn;
1692 pn = node_parent(pn);
1693
1694 /* drop emptied tnode */
1695 put_child_root(pn, n->key, NULL);
1696 node_free(n);
1697
1698 cindex = get_index(pkey, pn);
1699
1700 continue;
1701 }
1702
1703 /* grab the next available node */
1704 n = get_child(pn, cindex);
1705 if (!n)
1706 continue;
1707
1708 if (IS_TNODE(n)) {
1709 /* record pn and cindex for leaf walking */
1710 pn = n;
1711 cindex = 1ul << n->bits;
1712
1713 continue;
1714 }
1715
1716 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1717 hlist_del_rcu(&fa->fa_list);
1718 alias_free_mem_rcu(fa);
1719 }
1720
1721 put_child_root(pn, n->key, NULL);
1722 node_free(n);
1723 }
1724
1725#ifdef CONFIG_IP_FIB_TRIE_STATS
1726 free_percpu(t->stats);
1727#endif
1728 kfree(tb);
1729}
1730
1731struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1732{
1733 struct trie *ot = (struct trie *)oldtb->tb_data;
1734 struct key_vector *l, *tp = ot->kv;
1735 struct fib_table *local_tb;
1736 struct fib_alias *fa;
1737 struct trie *lt;
1738 t_key key = 0;
1739
1740 if (oldtb->tb_data == oldtb->__data)
1741 return oldtb;
1742
1743 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1744 if (!local_tb)
1745 return NULL;
1746
1747 lt = (struct trie *)local_tb->tb_data;
1748
1749 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1750 struct key_vector *local_l = NULL, *local_tp;
1751
1752 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1753 struct fib_alias *new_fa;
1754
1755 if (local_tb->tb_id != fa->tb_id)
1756 continue;
1757
1758 /* clone fa for new local table */
1759 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1760 if (!new_fa)
1761 goto out;
1762
1763 memcpy(new_fa, fa, sizeof(*fa));
1764
1765 /* insert clone into table */
1766 if (!local_l)
1767 local_l = fib_find_node(lt, &local_tp, l->key);
1768
1769 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
3114cdfe
AD
1770 NULL, l->key)) {
1771 kmem_cache_free(fn_alias_kmem, new_fa);
0ddcf43d 1772 goto out;
3114cdfe 1773 }
0ddcf43d
AD
1774 }
1775
1776 /* stop loop if key wrapped back to 0 */
1777 key = l->key + 1;
1778 if (key < l->key)
1779 break;
1780 }
1781
1782 return local_tb;
1783out:
1784 fib_trie_free(local_tb);
1785
1786 return NULL;
1787}
1788
3b709334
AD
1789/* Caller must hold RTNL */
1790void fib_table_flush_external(struct fib_table *tb)
1791{
1792 struct trie *t = (struct trie *)tb->tb_data;
1793 struct key_vector *pn = t->kv;
1794 unsigned long cindex = 1;
1795 struct hlist_node *tmp;
1796 struct fib_alias *fa;
1797
1798 /* walk trie in reverse order */
1799 for (;;) {
1800 unsigned char slen = 0;
1801 struct key_vector *n;
1802
1803 if (!(cindex--)) {
1804 t_key pkey = pn->key;
1805
1806 /* cannot resize the trie vector */
1807 if (IS_TRIE(pn))
1808 break;
1809
a52ca62c
AD
1810 /* update the suffix to address pulled leaves */
1811 if (pn->slen > pn->pos)
1812 update_suffix(pn);
1813
3b709334
AD
1814 /* resize completed node */
1815 pn = resize(t, pn);
1816 cindex = get_index(pkey, pn);
1817
1818 continue;
1819 }
1820
1821 /* grab the next available node */
1822 n = get_child(pn, cindex);
1823 if (!n)
1824 continue;
1825
1826 if (IS_TNODE(n)) {
1827 /* record pn and cindex for leaf walking */
1828 pn = n;
1829 cindex = 1ul << n->bits;
1830
1831 continue;
1832 }
1833
1834 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1835 /* if alias was cloned to local then we just
1836 * need to remove the local copy from main
1837 */
1838 if (tb->tb_id != fa->tb_id) {
1839 hlist_del_rcu(&fa->fa_list);
1840 alias_free_mem_rcu(fa);
1841 continue;
1842 }
1843
1844 /* record local slen */
1845 slen = fa->fa_slen;
1846 }
1847
1848 /* update leaf slen */
1849 n->slen = slen;
1850
1851 if (hlist_empty(&n->leaf)) {
1852 put_child_root(pn, n->key, NULL);
1853 node_free(n);
1854 }
1855 }
1856}
1857
8be33e95 1858/* Caller must hold RTNL. */
b90eb754 1859int fib_table_flush(struct net *net, struct fib_table *tb)
19baf839 1860{
7289e6dd 1861 struct trie *t = (struct trie *)tb->tb_data;
88bae714
AD
1862 struct key_vector *pn = t->kv;
1863 unsigned long cindex = 1;
7289e6dd
AD
1864 struct hlist_node *tmp;
1865 struct fib_alias *fa;
82cfbb00 1866 int found = 0;
19baf839 1867
88bae714
AD
1868 /* walk trie in reverse order */
1869 for (;;) {
1870 unsigned char slen = 0;
1871 struct key_vector *n;
19baf839 1872
88bae714
AD
1873 if (!(cindex--)) {
1874 t_key pkey = pn->key;
7289e6dd 1875
88bae714
AD
1876 /* cannot resize the trie vector */
1877 if (IS_TRIE(pn))
1878 break;
7289e6dd 1879
a52ca62c
AD
1880 /* update the suffix to address pulled leaves */
1881 if (pn->slen > pn->pos)
1882 update_suffix(pn);
1883
88bae714
AD
1884 /* resize completed node */
1885 pn = resize(t, pn);
1886 cindex = get_index(pkey, pn);
7289e6dd 1887
88bae714
AD
1888 continue;
1889 }
7289e6dd 1890
88bae714
AD
1891 /* grab the next available node */
1892 n = get_child(pn, cindex);
1893 if (!n)
1894 continue;
7289e6dd 1895
88bae714
AD
1896 if (IS_TNODE(n)) {
1897 /* record pn and cindex for leaf walking */
1898 pn = n;
1899 cindex = 1ul << n->bits;
7289e6dd 1900
88bae714
AD
1901 continue;
1902 }
7289e6dd 1903
88bae714
AD
1904 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1905 struct fib_info *fi = fa->fa_info;
7289e6dd 1906
58e3bdd5
IS
1907 if (!fi || !(fi->fib_flags & RTNH_F_DEAD) ||
1908 tb->tb_id != fa->tb_id) {
88bae714
AD
1909 slen = fa->fa_slen;
1910 continue;
1911 }
7289e6dd 1912
b90eb754
JP
1913 call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1914 n->key,
6c31e5a9
DA
1915 KEYLENGTH - fa->fa_slen, fa,
1916 NULL);
7289e6dd
AD
1917 hlist_del_rcu(&fa->fa_list);
1918 fib_release_info(fa->fa_info);
1919 alias_free_mem_rcu(fa);
1920 found++;
64c62723
AD
1921 }
1922
88bae714
AD
1923 /* update leaf slen */
1924 n->slen = slen;
7289e6dd 1925
88bae714
AD
1926 if (hlist_empty(&n->leaf)) {
1927 put_child_root(pn, n->key, NULL);
1928 node_free(n);
88bae714 1929 }
64c62723 1930 }
19baf839 1931
0c7770c7 1932 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1933 return found;
1934}
1935
c3852ef7 1936static void fib_leaf_notify(struct net *net, struct key_vector *l,
d05f7a7d 1937 struct fib_table *tb, struct notifier_block *nb)
c3852ef7
IS
1938{
1939 struct fib_alias *fa;
1940
1941 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1942 struct fib_info *fi = fa->fa_info;
1943
1944 if (!fi)
1945 continue;
1946
1947 /* local and main table can share the same trie,
1948 * so don't notify twice for the same entry.
1949 */
1950 if (tb->tb_id != fa->tb_id)
1951 continue;
1952
d05f7a7d 1953 call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
6eba87c7 1954 KEYLENGTH - fa->fa_slen, fa);
c3852ef7
IS
1955 }
1956}
1957
1958static void fib_table_notify(struct net *net, struct fib_table *tb,
d05f7a7d 1959 struct notifier_block *nb)
c3852ef7
IS
1960{
1961 struct trie *t = (struct trie *)tb->tb_data;
1962 struct key_vector *l, *tp = t->kv;
1963 t_key key = 0;
1964
1965 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
d05f7a7d 1966 fib_leaf_notify(net, l, tb, nb);
c3852ef7
IS
1967
1968 key = l->key + 1;
1969 /* stop in case of wrap around */
1970 if (key < l->key)
1971 break;
1972 }
1973}
1974
d05f7a7d 1975void fib_notify(struct net *net, struct notifier_block *nb)
c3852ef7
IS
1976{
1977 unsigned int h;
1978
1979 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1980 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1981 struct fib_table *tb;
1982
1983 hlist_for_each_entry_rcu(tb, head, tb_hlist)
d05f7a7d 1984 fib_table_notify(net, tb, nb);
c3852ef7
IS
1985 }
1986}
1987
a7e53531 1988static void __trie_free_rcu(struct rcu_head *head)
4aa2c466 1989{
a7e53531 1990 struct fib_table *tb = container_of(head, struct fib_table, rcu);
8274a97a
AD
1991#ifdef CONFIG_IP_FIB_TRIE_STATS
1992 struct trie *t = (struct trie *)tb->tb_data;
1993
0ddcf43d
AD
1994 if (tb->tb_data == tb->__data)
1995 free_percpu(t->stats);
8274a97a 1996#endif /* CONFIG_IP_FIB_TRIE_STATS */
4aa2c466
PE
1997 kfree(tb);
1998}
1999
a7e53531
AD
2000void fib_free_table(struct fib_table *tb)
2001{
2002 call_rcu(&tb->rcu, __trie_free_rcu);
2003}
2004
35c6edac 2005static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
18a8021a
DA
2006 struct sk_buff *skb, struct netlink_callback *cb,
2007 struct fib_dump_filter *filter)
19baf839 2008{
18a8021a 2009 unsigned int flags = NLM_F_MULTI;
79e5ad2c 2010 __be32 xkey = htonl(l->key);
19baf839 2011 struct fib_alias *fa;
79e5ad2c 2012 int i, s_i;
19baf839 2013
18a8021a
DA
2014 if (filter->filter_set)
2015 flags |= NLM_F_DUMP_FILTERED;
2016
79e5ad2c 2017 s_i = cb->args[4];
19baf839
RO
2018 i = 0;
2019
2373ce1c 2020 /* rcu_read_lock is hold by caller */
79e5ad2c 2021 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
f6c5775f
DA
2022 int err;
2023
18a8021a
DA
2024 if (i < s_i)
2025 goto next;
19baf839 2026
18a8021a
DA
2027 if (tb->tb_id != fa->tb_id)
2028 goto next;
2029
2030 if (filter->filter_set) {
2031 if (filter->rt_type && fa->fa_type != filter->rt_type)
2032 goto next;
2033
2034 if ((filter->protocol &&
2035 fa->fa_info->fib_protocol != filter->protocol))
2036 goto next;
2037
2038 if (filter->dev &&
2039 !fib_info_nh_uses_dev(fa->fa_info, filter->dev))
2040 goto next;
0ddcf43d
AD
2041 }
2042
f6c5775f
DA
2043 err = fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
2044 cb->nlh->nlmsg_seq, RTM_NEWROUTE,
2045 tb->tb_id, fa->fa_type,
2046 xkey, KEYLENGTH - fa->fa_slen,
18a8021a 2047 fa->fa_tos, fa->fa_info, flags);
f6c5775f 2048 if (err < 0) {
71d67e66 2049 cb->args[4] = i;
f6c5775f 2050 return err;
19baf839 2051 }
18a8021a 2052next:
a88ee229 2053 i++;
19baf839 2054 }
a88ee229 2055
71d67e66 2056 cb->args[4] = i;
19baf839
RO
2057 return skb->len;
2058}
2059
a7e53531 2060/* rcu_read_lock needs to be hold by caller from readside */
16c6cf8b 2061int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
18a8021a 2062 struct netlink_callback *cb, struct fib_dump_filter *filter)
19baf839 2063{
8be33e95 2064 struct trie *t = (struct trie *)tb->tb_data;
88bae714 2065 struct key_vector *l, *tp = t->kv;
d5ce8a0e
SH
2066 /* Dump starting at last key.
2067 * Note: 0.0.0.0/0 (ie default) is first key.
2068 */
8be33e95
AD
2069 int count = cb->args[2];
2070 t_key key = cb->args[3];
a88ee229 2071
8be33e95 2072 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
f6c5775f
DA
2073 int err;
2074
18a8021a 2075 err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
f6c5775f 2076 if (err < 0) {
8be33e95
AD
2077 cb->args[3] = key;
2078 cb->args[2] = count;
f6c5775f 2079 return err;
19baf839 2080 }
d5ce8a0e 2081
71d67e66 2082 ++count;
8be33e95
AD
2083 key = l->key + 1;
2084
71d67e66
SH
2085 memset(&cb->args[4], 0,
2086 sizeof(cb->args) - 4*sizeof(cb->args[0]));
8be33e95
AD
2087
2088 /* stop loop if key wrapped back to 0 */
2089 if (key < l->key)
2090 break;
19baf839 2091 }
8be33e95 2092
8be33e95
AD
2093 cb->args[3] = key;
2094 cb->args[2] = count;
2095
19baf839 2096 return skb->len;
19baf839
RO
2097}
2098
5348ba85 2099void __init fib_trie_init(void)
7f9b8052 2100{
a07f5f50
SH
2101 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2102 sizeof(struct fib_alias),
bc3c8c1e
SH
2103 0, SLAB_PANIC, NULL);
2104
2105 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
41b489fd 2106 LEAF_SIZE,
bc3c8c1e 2107 0, SLAB_PANIC, NULL);
7f9b8052 2108}
19baf839 2109
0ddcf43d 2110struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
19baf839
RO
2111{
2112 struct fib_table *tb;
2113 struct trie *t;
0ddcf43d
AD
2114 size_t sz = sizeof(*tb);
2115
2116 if (!alias)
2117 sz += sizeof(struct trie);
19baf839 2118
0ddcf43d 2119 tb = kzalloc(sz, GFP_KERNEL);
51456b29 2120 if (!tb)
19baf839
RO
2121 return NULL;
2122
2123 tb->tb_id = id;
21d8c49e 2124 tb->tb_num_default = 0;
0ddcf43d
AD
2125 tb->tb_data = (alias ? alias->__data : tb->__data);
2126
2127 if (alias)
2128 return tb;
19baf839
RO
2129
2130 t = (struct trie *) tb->tb_data;
88bae714
AD
2131 t->kv[0].pos = KEYLENGTH;
2132 t->kv[0].slen = KEYLENGTH;
8274a97a
AD
2133#ifdef CONFIG_IP_FIB_TRIE_STATS
2134 t->stats = alloc_percpu(struct trie_use_stats);
2135 if (!t->stats) {
2136 kfree(tb);
2137 tb = NULL;
2138 }
2139#endif
19baf839 2140
19baf839
RO
2141 return tb;
2142}
2143
cb7b593c
SH
2144#ifdef CONFIG_PROC_FS
2145/* Depth first Trie walk iterator */
2146struct fib_trie_iter {
1c340b2f 2147 struct seq_net_private p;
3d3b2d25 2148 struct fib_table *tb;
35c6edac 2149 struct key_vector *tnode;
a034ee3c
ED
2150 unsigned int index;
2151 unsigned int depth;
cb7b593c 2152};
19baf839 2153
35c6edac 2154static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2155{
98293e8d 2156 unsigned long cindex = iter->index;
88bae714
AD
2157 struct key_vector *pn = iter->tnode;
2158 t_key pkey;
6640e697 2159
cb7b593c
SH
2160 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2161 iter->tnode, iter->index, iter->depth);
19baf839 2162
88bae714
AD
2163 while (!IS_TRIE(pn)) {
2164 while (cindex < child_length(pn)) {
2165 struct key_vector *n = get_child_rcu(pn, cindex++);
2166
2167 if (!n)
2168 continue;
2169
cb7b593c 2170 if (IS_LEAF(n)) {
88bae714
AD
2171 iter->tnode = pn;
2172 iter->index = cindex;
cb7b593c
SH
2173 } else {
2174 /* push down one level */
adaf9816 2175 iter->tnode = n;
cb7b593c
SH
2176 iter->index = 0;
2177 ++iter->depth;
2178 }
88bae714 2179
cb7b593c
SH
2180 return n;
2181 }
19baf839 2182
88bae714
AD
2183 /* Current node exhausted, pop back up */
2184 pkey = pn->key;
2185 pn = node_parent_rcu(pn);
2186 cindex = get_index(pkey, pn) + 1;
cb7b593c 2187 --iter->depth;
19baf839 2188 }
cb7b593c 2189
88bae714
AD
2190 /* record root node so further searches know we are done */
2191 iter->tnode = pn;
2192 iter->index = 0;
2193
cb7b593c 2194 return NULL;
19baf839
RO
2195}
2196
35c6edac
AD
2197static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2198 struct trie *t)
19baf839 2199{
f38b24c9 2200 struct key_vector *n, *pn;
5ddf0eb2 2201
132adf54 2202 if (!t)
5ddf0eb2
RO
2203 return NULL;
2204
f38b24c9 2205 pn = t->kv;
88bae714 2206 n = rcu_dereference(pn->tnode[0]);
3d3b2d25 2207 if (!n)
5ddf0eb2 2208 return NULL;
19baf839 2209
3d3b2d25 2210 if (IS_TNODE(n)) {
adaf9816 2211 iter->tnode = n;
3d3b2d25
SH
2212 iter->index = 0;
2213 iter->depth = 1;
2214 } else {
88bae714 2215 iter->tnode = pn;
3d3b2d25
SH
2216 iter->index = 0;
2217 iter->depth = 0;
91b9a277 2218 }
3d3b2d25
SH
2219
2220 return n;
cb7b593c 2221}
91b9a277 2222
cb7b593c
SH
2223static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2224{
35c6edac 2225 struct key_vector *n;
cb7b593c 2226 struct fib_trie_iter iter;
91b9a277 2227
cb7b593c 2228 memset(s, 0, sizeof(*s));
91b9a277 2229
cb7b593c 2230 rcu_read_lock();
3d3b2d25 2231 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2232 if (IS_LEAF(n)) {
79e5ad2c 2233 struct fib_alias *fa;
93672292 2234
cb7b593c
SH
2235 s->leaves++;
2236 s->totdepth += iter.depth;
2237 if (iter.depth > s->maxdepth)
2238 s->maxdepth = iter.depth;
93672292 2239
79e5ad2c 2240 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
93672292 2241 ++s->prefixes;
cb7b593c 2242 } else {
cb7b593c 2243 s->tnodes++;
adaf9816
AD
2244 if (n->bits < MAX_STAT_DEPTH)
2245 s->nodesizes[n->bits]++;
6e22d174 2246 s->nullpointers += tn_info(n)->empty_children;
19baf839 2247 }
19baf839 2248 }
2373ce1c 2249 rcu_read_unlock();
19baf839
RO
2250}
2251
cb7b593c
SH
2252/*
2253 * This outputs /proc/net/fib_triestats
2254 */
2255static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2256{
a034ee3c 2257 unsigned int i, max, pointers, bytes, avdepth;
c877efb2 2258
cb7b593c
SH
2259 if (stat->leaves)
2260 avdepth = stat->totdepth*100 / stat->leaves;
2261 else
2262 avdepth = 0;
91b9a277 2263
a07f5f50
SH
2264 seq_printf(seq, "\tAver depth: %u.%02d\n",
2265 avdepth / 100, avdepth % 100);
cb7b593c 2266 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2267
cb7b593c 2268 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
41b489fd 2269 bytes = LEAF_SIZE * stat->leaves;
93672292
SH
2270
2271 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
79e5ad2c 2272 bytes += sizeof(struct fib_alias) * stat->prefixes;
93672292 2273
187b5188 2274 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
41b489fd 2275 bytes += TNODE_SIZE(0) * stat->tnodes;
19baf839 2276
06ef921d
RO
2277 max = MAX_STAT_DEPTH;
2278 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2279 max--;
19baf839 2280
cb7b593c 2281 pointers = 0;
f585a991 2282 for (i = 1; i < max; i++)
cb7b593c 2283 if (stat->nodesizes[i] != 0) {
187b5188 2284 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2285 pointers += (1<<i) * stat->nodesizes[i];
2286 }
2287 seq_putc(seq, '\n');
187b5188 2288 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2289
35c6edac 2290 bytes += sizeof(struct key_vector *) * pointers;
187b5188
SH
2291 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2292 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2293}
2373ce1c 2294
cb7b593c 2295#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd 2296static void trie_show_usage(struct seq_file *seq,
8274a97a 2297 const struct trie_use_stats __percpu *stats)
66a2f7fd 2298{
8274a97a
AD
2299 struct trie_use_stats s = { 0 };
2300 int cpu;
2301
2302 /* loop through all of the CPUs and gather up the stats */
2303 for_each_possible_cpu(cpu) {
2304 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2305
2306 s.gets += pcpu->gets;
2307 s.backtrack += pcpu->backtrack;
2308 s.semantic_match_passed += pcpu->semantic_match_passed;
2309 s.semantic_match_miss += pcpu->semantic_match_miss;
2310 s.null_node_hit += pcpu->null_node_hit;
2311 s.resize_node_skipped += pcpu->resize_node_skipped;
2312 }
2313
66a2f7fd 2314 seq_printf(seq, "\nCounters:\n---------\n");
8274a97a
AD
2315 seq_printf(seq, "gets = %u\n", s.gets);
2316 seq_printf(seq, "backtracks = %u\n", s.backtrack);
a07f5f50 2317 seq_printf(seq, "semantic match passed = %u\n",
8274a97a
AD
2318 s.semantic_match_passed);
2319 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2320 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2321 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
cb7b593c 2322}
66a2f7fd
SH
2323#endif /* CONFIG_IP_FIB_TRIE_STATS */
2324
3d3b2d25 2325static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2326{
3d3b2d25
SH
2327 if (tb->tb_id == RT_TABLE_LOCAL)
2328 seq_puts(seq, "Local:\n");
2329 else if (tb->tb_id == RT_TABLE_MAIN)
2330 seq_puts(seq, "Main:\n");
2331 else
2332 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2333}
19baf839 2334
3d3b2d25 2335
cb7b593c
SH
2336static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2337{
1c340b2f 2338 struct net *net = (struct net *)seq->private;
3d3b2d25 2339 unsigned int h;
877a9bff 2340
d717a9a6 2341 seq_printf(seq,
a07f5f50 2342 "Basic info: size of leaf:"
5b5e0928 2343 " %zd bytes, size of tnode: %zd bytes.\n",
41b489fd 2344 LEAF_SIZE, TNODE_SIZE(0));
d717a9a6 2345
3d3b2d25
SH
2346 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2347 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25
SH
2348 struct fib_table *tb;
2349
b67bfe0d 2350 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2351 struct trie *t = (struct trie *) tb->tb_data;
2352 struct trie_stat stat;
877a9bff 2353
3d3b2d25
SH
2354 if (!t)
2355 continue;
2356
2357 fib_table_print(seq, tb);
2358
2359 trie_collect_stats(t, &stat);
2360 trie_show_stats(seq, &stat);
2361#ifdef CONFIG_IP_FIB_TRIE_STATS
8274a97a 2362 trie_show_usage(seq, t->stats);
3d3b2d25
SH
2363#endif
2364 }
2365 }
19baf839 2366
cb7b593c 2367 return 0;
19baf839
RO
2368}
2369
35c6edac 2370static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2371{
1218854a
YH
2372 struct fib_trie_iter *iter = seq->private;
2373 struct net *net = seq_file_net(seq);
cb7b593c 2374 loff_t idx = 0;
3d3b2d25 2375 unsigned int h;
cb7b593c 2376
3d3b2d25
SH
2377 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2378 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
3d3b2d25 2379 struct fib_table *tb;
cb7b593c 2380
b67bfe0d 2381 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
35c6edac 2382 struct key_vector *n;
3d3b2d25
SH
2383
2384 for (n = fib_trie_get_first(iter,
2385 (struct trie *) tb->tb_data);
2386 n; n = fib_trie_get_next(iter))
2387 if (pos == idx++) {
2388 iter->tb = tb;
2389 return n;
2390 }
2391 }
cb7b593c 2392 }
3d3b2d25 2393
19baf839
RO
2394 return NULL;
2395}
2396
cb7b593c 2397static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2398 __acquires(RCU)
19baf839 2399{
cb7b593c 2400 rcu_read_lock();
1218854a 2401 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2402}
2403
cb7b593c 2404static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2405{
cb7b593c 2406 struct fib_trie_iter *iter = seq->private;
1218854a 2407 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2408 struct fib_table *tb = iter->tb;
2409 struct hlist_node *tb_node;
2410 unsigned int h;
35c6edac 2411 struct key_vector *n;
cb7b593c 2412
19baf839 2413 ++*pos;
3d3b2d25
SH
2414 /* next node in same table */
2415 n = fib_trie_get_next(iter);
2416 if (n)
2417 return n;
19baf839 2418
3d3b2d25
SH
2419 /* walk rest of this hash chain */
2420 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
0a5c0475 2421 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
3d3b2d25
SH
2422 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2423 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2424 if (n)
2425 goto found;
2426 }
19baf839 2427
3d3b2d25
SH
2428 /* new hash chain */
2429 while (++h < FIB_TABLE_HASHSZ) {
2430 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
b67bfe0d 2431 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
3d3b2d25
SH
2432 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2433 if (n)
2434 goto found;
2435 }
2436 }
cb7b593c 2437 return NULL;
3d3b2d25
SH
2438
2439found:
2440 iter->tb = tb;
2441 return n;
cb7b593c 2442}
19baf839 2443
cb7b593c 2444static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2445 __releases(RCU)
19baf839 2446{
cb7b593c
SH
2447 rcu_read_unlock();
2448}
91b9a277 2449
cb7b593c
SH
2450static void seq_indent(struct seq_file *seq, int n)
2451{
a034ee3c
ED
2452 while (n-- > 0)
2453 seq_puts(seq, " ");
cb7b593c 2454}
19baf839 2455
28d36e37 2456static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2457{
132adf54 2458 switch (s) {
cb7b593c
SH
2459 case RT_SCOPE_UNIVERSE: return "universe";
2460 case RT_SCOPE_SITE: return "site";
2461 case RT_SCOPE_LINK: return "link";
2462 case RT_SCOPE_HOST: return "host";
2463 case RT_SCOPE_NOWHERE: return "nowhere";
2464 default:
28d36e37 2465 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2466 return buf;
2467 }
2468}
19baf839 2469
36cbd3dc 2470static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2471 [RTN_UNSPEC] = "UNSPEC",
2472 [RTN_UNICAST] = "UNICAST",
2473 [RTN_LOCAL] = "LOCAL",
2474 [RTN_BROADCAST] = "BROADCAST",
2475 [RTN_ANYCAST] = "ANYCAST",
2476 [RTN_MULTICAST] = "MULTICAST",
2477 [RTN_BLACKHOLE] = "BLACKHOLE",
2478 [RTN_UNREACHABLE] = "UNREACHABLE",
2479 [RTN_PROHIBIT] = "PROHIBIT",
2480 [RTN_THROW] = "THROW",
2481 [RTN_NAT] = "NAT",
2482 [RTN_XRESOLVE] = "XRESOLVE",
2483};
19baf839 2484
a034ee3c 2485static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
cb7b593c 2486{
cb7b593c
SH
2487 if (t < __RTN_MAX && rtn_type_names[t])
2488 return rtn_type_names[t];
28d36e37 2489 snprintf(buf, len, "type %u", t);
cb7b593c 2490 return buf;
19baf839
RO
2491}
2492
cb7b593c
SH
2493/* Pretty print the trie */
2494static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2495{
cb7b593c 2496 const struct fib_trie_iter *iter = seq->private;
35c6edac 2497 struct key_vector *n = v;
c877efb2 2498
88bae714 2499 if (IS_TRIE(node_parent_rcu(n)))
3d3b2d25 2500 fib_table_print(seq, iter->tb);
095b8501 2501
cb7b593c 2502 if (IS_TNODE(n)) {
adaf9816 2503 __be32 prf = htonl(n->key);
91b9a277 2504
e9b44019
AD
2505 seq_indent(seq, iter->depth-1);
2506 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2507 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
6e22d174
AD
2508 tn_info(n)->full_children,
2509 tn_info(n)->empty_children);
cb7b593c 2510 } else {
adaf9816 2511 __be32 val = htonl(n->key);
79e5ad2c 2512 struct fib_alias *fa;
cb7b593c
SH
2513
2514 seq_indent(seq, iter->depth);
673d57e7 2515 seq_printf(seq, " |-- %pI4\n", &val);
1328042e 2516
79e5ad2c
AD
2517 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2518 char buf1[32], buf2[32];
2519
2520 seq_indent(seq, iter->depth + 1);
2521 seq_printf(seq, " /%zu %s %s",
2522 KEYLENGTH - fa->fa_slen,
2523 rtn_scope(buf1, sizeof(buf1),
2524 fa->fa_info->fib_scope),
2525 rtn_type(buf2, sizeof(buf2),
2526 fa->fa_type));
2527 if (fa->fa_tos)
2528 seq_printf(seq, " tos=%d", fa->fa_tos);
2529 seq_putc(seq, '\n');
cb7b593c 2530 }
19baf839 2531 }
cb7b593c 2532
19baf839
RO
2533 return 0;
2534}
2535
f690808e 2536static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2537 .start = fib_trie_seq_start,
2538 .next = fib_trie_seq_next,
2539 .stop = fib_trie_seq_stop,
2540 .show = fib_trie_seq_show,
19baf839
RO
2541};
2542
8315f5d8
SH
2543struct fib_route_iter {
2544 struct seq_net_private p;
8be33e95 2545 struct fib_table *main_tb;
35c6edac 2546 struct key_vector *tnode;
8315f5d8
SH
2547 loff_t pos;
2548 t_key key;
2549};
2550
35c6edac
AD
2551static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2552 loff_t pos)
8315f5d8 2553{
35c6edac 2554 struct key_vector *l, **tp = &iter->tnode;
8be33e95 2555 t_key key;
8315f5d8 2556
fd0285a3 2557 /* use cached location of previously found key */
8be33e95 2558 if (iter->pos > 0 && pos >= iter->pos) {
8be33e95
AD
2559 key = iter->key;
2560 } else {
fd0285a3 2561 iter->pos = 1;
8be33e95 2562 key = 0;
8315f5d8
SH
2563 }
2564
fd0285a3
AD
2565 pos -= iter->pos;
2566
2567 while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
8be33e95 2568 key = l->key + 1;
8315f5d8 2569 iter->pos++;
8be33e95
AD
2570 l = NULL;
2571
2572 /* handle unlikely case of a key wrap */
2573 if (!key)
2574 break;
8315f5d8
SH
2575 }
2576
2577 if (l)
fd0285a3 2578 iter->key = l->key; /* remember it */
8315f5d8
SH
2579 else
2580 iter->pos = 0; /* forget it */
2581
2582 return l;
2583}
2584
2585static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2586 __acquires(RCU)
2587{
2588 struct fib_route_iter *iter = seq->private;
2589 struct fib_table *tb;
8be33e95 2590 struct trie *t;
8315f5d8
SH
2591
2592 rcu_read_lock();
8be33e95 2593
1218854a 2594 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2595 if (!tb)
2596 return NULL;
2597
8be33e95 2598 iter->main_tb = tb;
94d9f1c5
DF
2599 t = (struct trie *)tb->tb_data;
2600 iter->tnode = t->kv;
8be33e95
AD
2601
2602 if (*pos != 0)
2603 return fib_route_get_idx(iter, *pos);
2604
8be33e95 2605 iter->pos = 0;
fd0285a3 2606 iter->key = KEY_MAX;
8be33e95
AD
2607
2608 return SEQ_START_TOKEN;
8315f5d8
SH
2609}
2610
2611static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2612{
2613 struct fib_route_iter *iter = seq->private;
35c6edac 2614 struct key_vector *l = NULL;
fd0285a3 2615 t_key key = iter->key + 1;
8315f5d8
SH
2616
2617 ++*pos;
8be33e95
AD
2618
2619 /* only allow key of 0 for start of sequence */
2620 if ((v == SEQ_START_TOKEN) || key)
2621 l = leaf_walk_rcu(&iter->tnode, key);
2622
2623 if (l) {
fd0285a3 2624 iter->key = l->key;
8315f5d8 2625 iter->pos++;
8be33e95
AD
2626 } else {
2627 iter->pos = 0;
8315f5d8
SH
2628 }
2629
8315f5d8
SH
2630 return l;
2631}
2632
2633static void fib_route_seq_stop(struct seq_file *seq, void *v)
2634 __releases(RCU)
2635{
2636 rcu_read_unlock();
2637}
2638
a034ee3c 2639static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2640{
a034ee3c 2641 unsigned int flags = 0;
19baf839 2642
a034ee3c
ED
2643 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2644 flags = RTF_REJECT;
cb7b593c
SH
2645 if (fi && fi->fib_nh->nh_gw)
2646 flags |= RTF_GATEWAY;
32ab5f80 2647 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2648 flags |= RTF_HOST;
2649 flags |= RTF_UP;
2650 return flags;
19baf839
RO
2651}
2652
cb7b593c
SH
2653/*
2654 * This outputs /proc/net/route.
2655 * The format of the file is not supposed to be changed
a034ee3c 2656 * and needs to be same as fib_hash output to avoid breaking
cb7b593c
SH
2657 * legacy utilities
2658 */
2659static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2660{
654eff45
AD
2661 struct fib_route_iter *iter = seq->private;
2662 struct fib_table *tb = iter->main_tb;
79e5ad2c 2663 struct fib_alias *fa;
35c6edac 2664 struct key_vector *l = v;
9b6ebad5 2665 __be32 prefix;
19baf839 2666
cb7b593c
SH
2667 if (v == SEQ_START_TOKEN) {
2668 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2669 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2670 "\tWindow\tIRTT");
2671 return 0;
2672 }
19baf839 2673
9b6ebad5
AD
2674 prefix = htonl(l->key);
2675
79e5ad2c
AD
2676 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2677 const struct fib_info *fi = fa->fa_info;
2678 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2679 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2680
79e5ad2c
AD
2681 if ((fa->fa_type == RTN_BROADCAST) ||
2682 (fa->fa_type == RTN_MULTICAST))
2683 continue;
19baf839 2684
654eff45
AD
2685 if (fa->tb_id != tb->tb_id)
2686 continue;
2687
79e5ad2c
AD
2688 seq_setwidth(seq, 127);
2689
2690 if (fi)
2691 seq_printf(seq,
2692 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2693 "%d\t%08X\t%d\t%u\t%u",
2694 fi->fib_dev ? fi->fib_dev->name : "*",
2695 prefix,
2696 fi->fib_nh->nh_gw, flags, 0, 0,
2697 fi->fib_priority,
2698 mask,
2699 (fi->fib_advmss ?
2700 fi->fib_advmss + 40 : 0),
2701 fi->fib_window,
2702 fi->fib_rtt >> 3);
2703 else
2704 seq_printf(seq,
2705 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2706 "%d\t%08X\t%d\t%u\t%u",
2707 prefix, 0, flags, 0, 0, 0,
2708 mask, 0, 0, 0);
19baf839 2709
79e5ad2c 2710 seq_pad(seq, '\n');
19baf839
RO
2711 }
2712
2713 return 0;
2714}
2715
f690808e 2716static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2717 .start = fib_route_seq_start,
2718 .next = fib_route_seq_next,
2719 .stop = fib_route_seq_stop,
cb7b593c 2720 .show = fib_route_seq_show,
19baf839
RO
2721};
2722
61a02653 2723int __net_init fib_proc_init(struct net *net)
19baf839 2724{
c3506372
CH
2725 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2726 sizeof(struct fib_trie_iter)))
cb7b593c
SH
2727 goto out1;
2728
3617d949
CH
2729 if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2730 fib_triestat_seq_show, NULL))
cb7b593c
SH
2731 goto out2;
2732
c3506372
CH
2733 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2734 sizeof(struct fib_route_iter)))
cb7b593c
SH
2735 goto out3;
2736
19baf839 2737 return 0;
cb7b593c
SH
2738
2739out3:
ece31ffd 2740 remove_proc_entry("fib_triestat", net->proc_net);
cb7b593c 2741out2:
ece31ffd 2742 remove_proc_entry("fib_trie", net->proc_net);
cb7b593c
SH
2743out1:
2744 return -ENOMEM;
19baf839
RO
2745}
2746
61a02653 2747void __net_exit fib_proc_exit(struct net *net)
19baf839 2748{
ece31ffd
G
2749 remove_proc_entry("fib_trie", net->proc_net);
2750 remove_proc_entry("fib_triestat", net->proc_net);
2751 remove_proc_entry("route", net->proc_net);
19baf839
RO
2752}
2753
2754#endif /* CONFIG_PROC_FS */