ipv6: move udp declarations to net/udp.h
[linux-2.6-block.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
11d6011c 82#include <linux/rwsem.h>
1da177e4
LT
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
0187bdfb 92#include <linux/ethtool.h>
1da177e4 93#include <linux/skbuff.h>
a7862b45 94#include <linux/bpf.h>
b5cdae32 95#include <linux/bpf_trace.h>
457c4cbc 96#include <net/net_namespace.h>
1da177e4 97#include <net/sock.h>
02d62e86 98#include <net/busy_poll.h>
1da177e4 99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
b14a9fc4 101#include <net/dsa.h>
1da177e4 102#include <net/dst.h>
fc4099f1 103#include <net/dst_metadata.h>
1da177e4 104#include <net/pkt_sched.h>
87d83093 105#include <net/pkt_cls.h>
1da177e4 106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
caeda9b9 132#include <linux/inetdevice.h>
c445477d 133#include <linux/cpu_rmap.h>
c5905afb 134#include <linux/static_key.h>
af12fa6e 135#include <linux/hashtable.h>
60877a32 136#include <linux/vmalloc.h>
529d0489 137#include <linux/if_macvlan.h>
e7fd2885 138#include <linux/errqueue.h>
3b47d303 139#include <linux/hrtimer.h>
357b6cc5 140#include <linux/netfilter_ingress.h>
40e4e713 141#include <linux/crash_dump.h>
b72b5bf6 142#include <linux/sctp.h>
ae847f40 143#include <net/udp_tunnel.h>
6621dd29 144#include <linux/net_namespace.h>
aaa5d90b 145#include <linux/indirect_call_wrapper.h>
af3836df 146#include <net/devlink.h>
bd869245 147#include <linux/pm_runtime.h>
3744741a 148#include <linux/prandom.h>
1da177e4 149
342709ef
PE
150#include "net-sysfs.h"
151
d565b0a1
HX
152#define MAX_GRO_SKBS 8
153
5d38a079
HX
154/* This should be increased if a protocol with a bigger head is added. */
155#define GRO_MAX_HEAD (MAX_HEADER + 128)
156
1da177e4 157static DEFINE_SPINLOCK(ptype_lock);
62532da9 158static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
62532da9 161static struct list_head offload_base __read_mostly;
1da177e4 162
ae78dbfa 163static int netif_rx_internal(struct sk_buff *skb);
54951194 164static int call_netdevice_notifiers_info(unsigned long val,
54951194 165 struct netdev_notifier_info *info);
26372605
PM
166static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
90b602f8 169static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 170
1da177e4 171/*
7562f876 172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
173 * semaphore.
174 *
c6d14c84 175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
7562f876 178 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
1da177e4 190DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
191EXPORT_SYMBOL(dev_base_lock);
192
6c557001
FW
193static DEFINE_MUTEX(ifalias_mutex);
194
af12fa6e
ET
195/* protects napi_hash addition/deletion and napi_gen_id */
196static DEFINE_SPINLOCK(napi_hash_lock);
197
52bd2d62 198static unsigned int napi_gen_id = NR_CPUS;
6180d9de 199static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 200
11d6011c 201static DECLARE_RWSEM(devnet_rename_sem);
c91f6df2 202
4e985ada
TG
203static inline void dev_base_seq_inc(struct net *net)
204{
643aa9cb 205 while (++net->dev_base_seq == 0)
206 ;
4e985ada
TG
207}
208
881d966b 209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 210{
8387ff25 211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 212
08e9897d 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
214}
215
881d966b 216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 217{
7c28bd0b 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
219}
220
e36fa2f7 221static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
222{
223#ifdef CONFIG_RPS
e36fa2f7 224 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
225#endif
226}
227
e36fa2f7 228static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
229{
230#ifdef CONFIG_RPS
e36fa2f7 231 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
232#endif
233}
234
ff927412
JP
235static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 const char *name)
237{
238 struct netdev_name_node *name_node;
239
240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 if (!name_node)
242 return NULL;
243 INIT_HLIST_NODE(&name_node->hlist);
244 name_node->dev = dev;
245 name_node->name = name;
246 return name_node;
247}
248
249static struct netdev_name_node *
250netdev_name_node_head_alloc(struct net_device *dev)
251{
36fbf1e5
JP
252 struct netdev_name_node *name_node;
253
254 name_node = netdev_name_node_alloc(dev, dev->name);
255 if (!name_node)
256 return NULL;
257 INIT_LIST_HEAD(&name_node->list);
258 return name_node;
ff927412
JP
259}
260
261static void netdev_name_node_free(struct netdev_name_node *name_node)
262{
263 kfree(name_node);
264}
265
266static void netdev_name_node_add(struct net *net,
267 struct netdev_name_node *name_node)
268{
269 hlist_add_head_rcu(&name_node->hlist,
270 dev_name_hash(net, name_node->name));
271}
272
273static void netdev_name_node_del(struct netdev_name_node *name_node)
274{
275 hlist_del_rcu(&name_node->hlist);
276}
277
278static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 const char *name)
280{
281 struct hlist_head *head = dev_name_hash(net, name);
282 struct netdev_name_node *name_node;
283
284 hlist_for_each_entry(name_node, head, hlist)
285 if (!strcmp(name_node->name, name))
286 return name_node;
287 return NULL;
288}
289
290static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 const char *name)
292{
293 struct hlist_head *head = dev_name_hash(net, name);
294 struct netdev_name_node *name_node;
295
296 hlist_for_each_entry_rcu(name_node, head, hlist)
297 if (!strcmp(name_node->name, name))
298 return name_node;
299 return NULL;
300}
301
36fbf1e5
JP
302int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303{
304 struct netdev_name_node *name_node;
305 struct net *net = dev_net(dev);
306
307 name_node = netdev_name_node_lookup(net, name);
308 if (name_node)
309 return -EEXIST;
310 name_node = netdev_name_node_alloc(dev, name);
311 if (!name_node)
312 return -ENOMEM;
313 netdev_name_node_add(net, name_node);
314 /* The node that holds dev->name acts as a head of per-device list. */
315 list_add_tail(&name_node->list, &dev->name_node->list);
316
317 return 0;
318}
319EXPORT_SYMBOL(netdev_name_node_alt_create);
320
321static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322{
323 list_del(&name_node->list);
324 netdev_name_node_del(name_node);
325 kfree(name_node->name);
326 netdev_name_node_free(name_node);
327}
328
329int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330{
331 struct netdev_name_node *name_node;
332 struct net *net = dev_net(dev);
333
334 name_node = netdev_name_node_lookup(net, name);
335 if (!name_node)
336 return -ENOENT;
e08ad805
ED
337 /* lookup might have found our primary name or a name belonging
338 * to another device.
339 */
340 if (name_node == dev->name_node || name_node->dev != dev)
341 return -EINVAL;
342
36fbf1e5
JP
343 __netdev_name_node_alt_destroy(name_node);
344
345 return 0;
346}
347EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348
349static void netdev_name_node_alt_flush(struct net_device *dev)
350{
351 struct netdev_name_node *name_node, *tmp;
352
353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 __netdev_name_node_alt_destroy(name_node);
355}
356
ce286d32 357/* Device list insertion */
53759be9 358static void list_netdevice(struct net_device *dev)
ce286d32 359{
c346dca1 360 struct net *net = dev_net(dev);
ce286d32
EB
361
362 ASSERT_RTNL();
363
364 write_lock_bh(&dev_base_lock);
c6d14c84 365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 366 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
367 hlist_add_head_rcu(&dev->index_hlist,
368 dev_index_hash(net, dev->ifindex));
ce286d32 369 write_unlock_bh(&dev_base_lock);
4e985ada
TG
370
371 dev_base_seq_inc(net);
ce286d32
EB
372}
373
fb699dfd
ED
374/* Device list removal
375 * caller must respect a RCU grace period before freeing/reusing dev
376 */
ce286d32
EB
377static void unlist_netdevice(struct net_device *dev)
378{
379 ASSERT_RTNL();
380
381 /* Unlink dev from the device chain */
382 write_lock_bh(&dev_base_lock);
c6d14c84 383 list_del_rcu(&dev->dev_list);
ff927412 384 netdev_name_node_del(dev->name_node);
fb699dfd 385 hlist_del_rcu(&dev->index_hlist);
ce286d32 386 write_unlock_bh(&dev_base_lock);
4e985ada
TG
387
388 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
389}
390
1da177e4
LT
391/*
392 * Our notifier list
393 */
394
f07d5b94 395static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
396
397/*
398 * Device drivers call our routines to queue packets here. We empty the
399 * queue in the local softnet handler.
400 */
bea3348e 401
9958da05 402DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 403EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 404
1a33e10e
CW
405#ifdef CONFIG_LOCKDEP
406/*
407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408 * according to dev->type
409 */
410static const unsigned short netdev_lock_type[] = {
411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426
427static const char *const netdev_lock_name[] = {
428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443
444static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
845e0ebb 445static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
1a33e10e
CW
446
447static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448{
449 int i;
450
451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 if (netdev_lock_type[i] == dev_type)
453 return i;
454 /* the last key is used by default */
455 return ARRAY_SIZE(netdev_lock_type) - 1;
456}
457
458static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 unsigned short dev_type)
460{
461 int i;
462
463 i = netdev_lock_pos(dev_type);
464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 netdev_lock_name[i]);
466}
845e0ebb
CW
467
468static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469{
470 int i;
471
472 i = netdev_lock_pos(dev->type);
473 lockdep_set_class_and_name(&dev->addr_list_lock,
474 &netdev_addr_lock_key[i],
475 netdev_lock_name[i]);
476}
1a33e10e
CW
477#else
478static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 unsigned short dev_type)
480{
481}
845e0ebb
CW
482
483static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484{
485}
1a33e10e
CW
486#endif
487
1da177e4 488/*******************************************************************************
eb13da1a 489 *
490 * Protocol management and registration routines
491 *
492 *******************************************************************************/
1da177e4 493
1da177e4 494
1da177e4
LT
495/*
496 * Add a protocol ID to the list. Now that the input handler is
497 * smarter we can dispense with all the messy stuff that used to be
498 * here.
499 *
500 * BEWARE!!! Protocol handlers, mangling input packets,
501 * MUST BE last in hash buckets and checking protocol handlers
502 * MUST start from promiscuous ptype_all chain in net_bh.
503 * It is true now, do not change it.
504 * Explanation follows: if protocol handler, mangling packet, will
505 * be the first on list, it is not able to sense, that packet
506 * is cloned and should be copied-on-write, so that it will
507 * change it and subsequent readers will get broken packet.
508 * --ANK (980803)
509 */
510
c07b68e8
ED
511static inline struct list_head *ptype_head(const struct packet_type *pt)
512{
513 if (pt->type == htons(ETH_P_ALL))
7866a621 514 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 515 else
7866a621
SN
516 return pt->dev ? &pt->dev->ptype_specific :
517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
518}
519
1da177e4
LT
520/**
521 * dev_add_pack - add packet handler
522 * @pt: packet type declaration
523 *
524 * Add a protocol handler to the networking stack. The passed &packet_type
525 * is linked into kernel lists and may not be freed until it has been
526 * removed from the kernel lists.
527 *
4ec93edb 528 * This call does not sleep therefore it can not
1da177e4
LT
529 * guarantee all CPU's that are in middle of receiving packets
530 * will see the new packet type (until the next received packet).
531 */
532
533void dev_add_pack(struct packet_type *pt)
534{
c07b68e8 535 struct list_head *head = ptype_head(pt);
1da177e4 536
c07b68e8
ED
537 spin_lock(&ptype_lock);
538 list_add_rcu(&pt->list, head);
539 spin_unlock(&ptype_lock);
1da177e4 540}
d1b19dff 541EXPORT_SYMBOL(dev_add_pack);
1da177e4 542
1da177e4
LT
543/**
544 * __dev_remove_pack - remove packet handler
545 * @pt: packet type declaration
546 *
547 * Remove a protocol handler that was previously added to the kernel
548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
549 * from the kernel lists and can be freed or reused once this function
4ec93edb 550 * returns.
1da177e4
LT
551 *
552 * The packet type might still be in use by receivers
553 * and must not be freed until after all the CPU's have gone
554 * through a quiescent state.
555 */
556void __dev_remove_pack(struct packet_type *pt)
557{
c07b68e8 558 struct list_head *head = ptype_head(pt);
1da177e4
LT
559 struct packet_type *pt1;
560
c07b68e8 561 spin_lock(&ptype_lock);
1da177e4
LT
562
563 list_for_each_entry(pt1, head, list) {
564 if (pt == pt1) {
565 list_del_rcu(&pt->list);
566 goto out;
567 }
568 }
569
7b6cd1ce 570 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 571out:
c07b68e8 572 spin_unlock(&ptype_lock);
1da177e4 573}
d1b19dff
ED
574EXPORT_SYMBOL(__dev_remove_pack);
575
1da177e4
LT
576/**
577 * dev_remove_pack - remove packet handler
578 * @pt: packet type declaration
579 *
580 * Remove a protocol handler that was previously added to the kernel
581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
582 * from the kernel lists and can be freed or reused once this function
583 * returns.
584 *
585 * This call sleeps to guarantee that no CPU is looking at the packet
586 * type after return.
587 */
588void dev_remove_pack(struct packet_type *pt)
589{
590 __dev_remove_pack(pt);
4ec93edb 591
1da177e4
LT
592 synchronize_net();
593}
d1b19dff 594EXPORT_SYMBOL(dev_remove_pack);
1da177e4 595
62532da9
VY
596
597/**
598 * dev_add_offload - register offload handlers
599 * @po: protocol offload declaration
600 *
601 * Add protocol offload handlers to the networking stack. The passed
602 * &proto_offload is linked into kernel lists and may not be freed until
603 * it has been removed from the kernel lists.
604 *
605 * This call does not sleep therefore it can not
606 * guarantee all CPU's that are in middle of receiving packets
607 * will see the new offload handlers (until the next received packet).
608 */
609void dev_add_offload(struct packet_offload *po)
610{
bdef7de4 611 struct packet_offload *elem;
62532da9
VY
612
613 spin_lock(&offload_lock);
bdef7de4
DM
614 list_for_each_entry(elem, &offload_base, list) {
615 if (po->priority < elem->priority)
616 break;
617 }
618 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
619 spin_unlock(&offload_lock);
620}
621EXPORT_SYMBOL(dev_add_offload);
622
623/**
624 * __dev_remove_offload - remove offload handler
625 * @po: packet offload declaration
626 *
627 * Remove a protocol offload handler that was previously added to the
628 * kernel offload handlers by dev_add_offload(). The passed &offload_type
629 * is removed from the kernel lists and can be freed or reused once this
630 * function returns.
631 *
632 * The packet type might still be in use by receivers
633 * and must not be freed until after all the CPU's have gone
634 * through a quiescent state.
635 */
1d143d9f 636static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
637{
638 struct list_head *head = &offload_base;
639 struct packet_offload *po1;
640
c53aa505 641 spin_lock(&offload_lock);
62532da9
VY
642
643 list_for_each_entry(po1, head, list) {
644 if (po == po1) {
645 list_del_rcu(&po->list);
646 goto out;
647 }
648 }
649
650 pr_warn("dev_remove_offload: %p not found\n", po);
651out:
c53aa505 652 spin_unlock(&offload_lock);
62532da9 653}
62532da9
VY
654
655/**
656 * dev_remove_offload - remove packet offload handler
657 * @po: packet offload declaration
658 *
659 * Remove a packet offload handler that was previously added to the kernel
660 * offload handlers by dev_add_offload(). The passed &offload_type is
661 * removed from the kernel lists and can be freed or reused once this
662 * function returns.
663 *
664 * This call sleeps to guarantee that no CPU is looking at the packet
665 * type after return.
666 */
667void dev_remove_offload(struct packet_offload *po)
668{
669 __dev_remove_offload(po);
670
671 synchronize_net();
672}
673EXPORT_SYMBOL(dev_remove_offload);
674
1da177e4 675/******************************************************************************
eb13da1a 676 *
677 * Device Boot-time Settings Routines
678 *
679 ******************************************************************************/
1da177e4
LT
680
681/* Boot time configuration table */
682static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683
684/**
685 * netdev_boot_setup_add - add new setup entry
686 * @name: name of the device
687 * @map: configured settings for the device
688 *
689 * Adds new setup entry to the dev_boot_setup list. The function
690 * returns 0 on error and 1 on success. This is a generic routine to
691 * all netdevices.
692 */
693static int netdev_boot_setup_add(char *name, struct ifmap *map)
694{
695 struct netdev_boot_setup *s;
696 int i;
697
698 s = dev_boot_setup;
699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 702 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
703 memcpy(&s[i].map, map, sizeof(s[i].map));
704 break;
705 }
706 }
707
708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709}
710
711/**
722c9a0c 712 * netdev_boot_setup_check - check boot time settings
713 * @dev: the netdevice
1da177e4 714 *
722c9a0c 715 * Check boot time settings for the device.
716 * The found settings are set for the device to be used
717 * later in the device probing.
718 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
719 */
720int netdev_boot_setup_check(struct net_device *dev)
721{
722 struct netdev_boot_setup *s = dev_boot_setup;
723 int i;
724
725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 727 !strcmp(dev->name, s[i].name)) {
722c9a0c 728 dev->irq = s[i].map.irq;
729 dev->base_addr = s[i].map.base_addr;
730 dev->mem_start = s[i].map.mem_start;
731 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
732 return 1;
733 }
734 }
735 return 0;
736}
d1b19dff 737EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
738
739
740/**
722c9a0c 741 * netdev_boot_base - get address from boot time settings
742 * @prefix: prefix for network device
743 * @unit: id for network device
744 *
745 * Check boot time settings for the base address of device.
746 * The found settings are set for the device to be used
747 * later in the device probing.
748 * Returns 0 if no settings found.
1da177e4
LT
749 */
750unsigned long netdev_boot_base(const char *prefix, int unit)
751{
752 const struct netdev_boot_setup *s = dev_boot_setup;
753 char name[IFNAMSIZ];
754 int i;
755
756 sprintf(name, "%s%d", prefix, unit);
757
758 /*
759 * If device already registered then return base of 1
760 * to indicate not to probe for this interface
761 */
881d966b 762 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
763 return 1;
764
765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 if (!strcmp(name, s[i].name))
767 return s[i].map.base_addr;
768 return 0;
769}
770
771/*
772 * Saves at boot time configured settings for any netdevice.
773 */
774int __init netdev_boot_setup(char *str)
775{
776 int ints[5];
777 struct ifmap map;
778
779 str = get_options(str, ARRAY_SIZE(ints), ints);
780 if (!str || !*str)
781 return 0;
782
783 /* Save settings */
784 memset(&map, 0, sizeof(map));
785 if (ints[0] > 0)
786 map.irq = ints[1];
787 if (ints[0] > 1)
788 map.base_addr = ints[2];
789 if (ints[0] > 2)
790 map.mem_start = ints[3];
791 if (ints[0] > 3)
792 map.mem_end = ints[4];
793
794 /* Add new entry to the list */
795 return netdev_boot_setup_add(str, &map);
796}
797
798__setup("netdev=", netdev_boot_setup);
799
800/*******************************************************************************
eb13da1a 801 *
802 * Device Interface Subroutines
803 *
804 *******************************************************************************/
1da177e4 805
a54acb3a
ND
806/**
807 * dev_get_iflink - get 'iflink' value of a interface
808 * @dev: targeted interface
809 *
810 * Indicates the ifindex the interface is linked to.
811 * Physical interfaces have the same 'ifindex' and 'iflink' values.
812 */
813
814int dev_get_iflink(const struct net_device *dev)
815{
816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 return dev->netdev_ops->ndo_get_iflink(dev);
818
7a66bbc9 819 return dev->ifindex;
a54acb3a
ND
820}
821EXPORT_SYMBOL(dev_get_iflink);
822
fc4099f1
PS
823/**
824 * dev_fill_metadata_dst - Retrieve tunnel egress information.
825 * @dev: targeted interface
826 * @skb: The packet.
827 *
828 * For better visibility of tunnel traffic OVS needs to retrieve
829 * egress tunnel information for a packet. Following API allows
830 * user to get this info.
831 */
832int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833{
834 struct ip_tunnel_info *info;
835
836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
837 return -EINVAL;
838
839 info = skb_tunnel_info_unclone(skb);
840 if (!info)
841 return -ENOMEM;
842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 return -EINVAL;
844
845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846}
847EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848
1da177e4
LT
849/**
850 * __dev_get_by_name - find a device by its name
c4ea43c5 851 * @net: the applicable net namespace
1da177e4
LT
852 * @name: name to find
853 *
854 * Find an interface by name. Must be called under RTNL semaphore
855 * or @dev_base_lock. If the name is found a pointer to the device
856 * is returned. If the name is not found then %NULL is returned. The
857 * reference counters are not incremented so the caller must be
858 * careful with locks.
859 */
860
881d966b 861struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 862{
ff927412 863 struct netdev_name_node *node_name;
1da177e4 864
ff927412
JP
865 node_name = netdev_name_node_lookup(net, name);
866 return node_name ? node_name->dev : NULL;
1da177e4 867}
d1b19dff 868EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 869
72c9528b 870/**
722c9a0c 871 * dev_get_by_name_rcu - find a device by its name
872 * @net: the applicable net namespace
873 * @name: name to find
874 *
875 * Find an interface by name.
876 * If the name is found a pointer to the device is returned.
877 * If the name is not found then %NULL is returned.
878 * The reference counters are not incremented so the caller must be
879 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
880 */
881
882struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883{
ff927412 884 struct netdev_name_node *node_name;
72c9528b 885
ff927412
JP
886 node_name = netdev_name_node_lookup_rcu(net, name);
887 return node_name ? node_name->dev : NULL;
72c9528b
ED
888}
889EXPORT_SYMBOL(dev_get_by_name_rcu);
890
1da177e4
LT
891/**
892 * dev_get_by_name - find a device by its name
c4ea43c5 893 * @net: the applicable net namespace
1da177e4
LT
894 * @name: name to find
895 *
896 * Find an interface by name. This can be called from any
897 * context and does its own locking. The returned handle has
898 * the usage count incremented and the caller must use dev_put() to
899 * release it when it is no longer needed. %NULL is returned if no
900 * matching device is found.
901 */
902
881d966b 903struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
904{
905 struct net_device *dev;
906
72c9528b
ED
907 rcu_read_lock();
908 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
909 if (dev)
910 dev_hold(dev);
72c9528b 911 rcu_read_unlock();
1da177e4
LT
912 return dev;
913}
d1b19dff 914EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
915
916/**
917 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 918 * @net: the applicable net namespace
1da177e4
LT
919 * @ifindex: index of device
920 *
921 * Search for an interface by index. Returns %NULL if the device
922 * is not found or a pointer to the device. The device has not
923 * had its reference counter increased so the caller must be careful
924 * about locking. The caller must hold either the RTNL semaphore
925 * or @dev_base_lock.
926 */
927
881d966b 928struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 929{
0bd8d536
ED
930 struct net_device *dev;
931 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 932
b67bfe0d 933 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
934 if (dev->ifindex == ifindex)
935 return dev;
0bd8d536 936
1da177e4
LT
937 return NULL;
938}
d1b19dff 939EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 940
fb699dfd
ED
941/**
942 * dev_get_by_index_rcu - find a device by its ifindex
943 * @net: the applicable net namespace
944 * @ifindex: index of device
945 *
946 * Search for an interface by index. Returns %NULL if the device
947 * is not found or a pointer to the device. The device has not
948 * had its reference counter increased so the caller must be careful
949 * about locking. The caller must hold RCU lock.
950 */
951
952struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953{
fb699dfd
ED
954 struct net_device *dev;
955 struct hlist_head *head = dev_index_hash(net, ifindex);
956
b67bfe0d 957 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
958 if (dev->ifindex == ifindex)
959 return dev;
960
961 return NULL;
962}
963EXPORT_SYMBOL(dev_get_by_index_rcu);
964
1da177e4
LT
965
966/**
967 * dev_get_by_index - find a device by its ifindex
c4ea43c5 968 * @net: the applicable net namespace
1da177e4
LT
969 * @ifindex: index of device
970 *
971 * Search for an interface by index. Returns NULL if the device
972 * is not found or a pointer to the device. The device returned has
973 * had a reference added and the pointer is safe until the user calls
974 * dev_put to indicate they have finished with it.
975 */
976
881d966b 977struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
978{
979 struct net_device *dev;
980
fb699dfd
ED
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
983 if (dev)
984 dev_hold(dev);
fb699dfd 985 rcu_read_unlock();
1da177e4
LT
986 return dev;
987}
d1b19dff 988EXPORT_SYMBOL(dev_get_by_index);
1da177e4 989
90b602f8
ML
990/**
991 * dev_get_by_napi_id - find a device by napi_id
992 * @napi_id: ID of the NAPI struct
993 *
994 * Search for an interface by NAPI ID. Returns %NULL if the device
995 * is not found or a pointer to the device. The device has not had
996 * its reference counter increased so the caller must be careful
997 * about locking. The caller must hold RCU lock.
998 */
999
1000struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001{
1002 struct napi_struct *napi;
1003
1004 WARN_ON_ONCE(!rcu_read_lock_held());
1005
1006 if (napi_id < MIN_NAPI_ID)
1007 return NULL;
1008
1009 napi = napi_by_id(napi_id);
1010
1011 return napi ? napi->dev : NULL;
1012}
1013EXPORT_SYMBOL(dev_get_by_napi_id);
1014
5dbe7c17
NS
1015/**
1016 * netdev_get_name - get a netdevice name, knowing its ifindex.
1017 * @net: network namespace
1018 * @name: a pointer to the buffer where the name will be stored.
1019 * @ifindex: the ifindex of the interface to get the name from.
5dbe7c17
NS
1020 */
1021int netdev_get_name(struct net *net, char *name, int ifindex)
1022{
1023 struct net_device *dev;
11d6011c 1024 int ret;
5dbe7c17 1025
11d6011c 1026 down_read(&devnet_rename_sem);
5dbe7c17 1027 rcu_read_lock();
11d6011c 1028
5dbe7c17
NS
1029 dev = dev_get_by_index_rcu(net, ifindex);
1030 if (!dev) {
11d6011c
AD
1031 ret = -ENODEV;
1032 goto out;
5dbe7c17
NS
1033 }
1034
1035 strcpy(name, dev->name);
5dbe7c17 1036
11d6011c
AD
1037 ret = 0;
1038out:
1039 rcu_read_unlock();
1040 up_read(&devnet_rename_sem);
1041 return ret;
5dbe7c17
NS
1042}
1043
1da177e4 1044/**
941666c2 1045 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 1046 * @net: the applicable net namespace
1da177e4
LT
1047 * @type: media type of device
1048 * @ha: hardware address
1049 *
1050 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
1051 * is not found or a pointer to the device.
1052 * The caller must hold RCU or RTNL.
941666c2 1053 * The returned device has not had its ref count increased
1da177e4
LT
1054 * and the caller must therefore be careful about locking
1055 *
1da177e4
LT
1056 */
1057
941666c2
ED
1058struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 const char *ha)
1da177e4
LT
1060{
1061 struct net_device *dev;
1062
941666c2 1063 for_each_netdev_rcu(net, dev)
1da177e4
LT
1064 if (dev->type == type &&
1065 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
1066 return dev;
1067
1068 return NULL;
1da177e4 1069}
941666c2 1070EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 1071
881d966b 1072struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 1073{
99fe3c39 1074 struct net_device *dev, *ret = NULL;
4e9cac2b 1075
99fe3c39
ED
1076 rcu_read_lock();
1077 for_each_netdev_rcu(net, dev)
1078 if (dev->type == type) {
1079 dev_hold(dev);
1080 ret = dev;
1081 break;
1082 }
1083 rcu_read_unlock();
1084 return ret;
1da177e4 1085}
1da177e4
LT
1086EXPORT_SYMBOL(dev_getfirstbyhwtype);
1087
1088/**
6c555490 1089 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1090 * @net: the applicable net namespace
1da177e4
LT
1091 * @if_flags: IFF_* values
1092 * @mask: bitmask of bits in if_flags to check
1093 *
1094 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1095 * is not found or a pointer to the device. Must be called inside
6c555490 1096 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1097 */
1098
6c555490
WC
1099struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1100 unsigned short mask)
1da177e4 1101{
7562f876 1102 struct net_device *dev, *ret;
1da177e4 1103
6c555490
WC
1104 ASSERT_RTNL();
1105
7562f876 1106 ret = NULL;
6c555490 1107 for_each_netdev(net, dev) {
1da177e4 1108 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1109 ret = dev;
1da177e4
LT
1110 break;
1111 }
1112 }
7562f876 1113 return ret;
1da177e4 1114}
6c555490 1115EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1116
1117/**
1118 * dev_valid_name - check if name is okay for network device
1119 * @name: name string
1120 *
1121 * Network device names need to be valid file names to
4250b75b 1122 * allow sysfs to work. We also disallow any kind of
c7fa9d18 1123 * whitespace.
1da177e4 1124 */
95f050bf 1125bool dev_valid_name(const char *name)
1da177e4 1126{
c7fa9d18 1127 if (*name == '\0')
95f050bf 1128 return false;
a9d48205 1129 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1130 return false;
c7fa9d18 1131 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1132 return false;
c7fa9d18
DM
1133
1134 while (*name) {
a4176a93 1135 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1136 return false;
c7fa9d18
DM
1137 name++;
1138 }
95f050bf 1139 return true;
1da177e4 1140}
d1b19dff 1141EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1142
1143/**
b267b179
EB
1144 * __dev_alloc_name - allocate a name for a device
1145 * @net: network namespace to allocate the device name in
1da177e4 1146 * @name: name format string
b267b179 1147 * @buf: scratch buffer and result name string
1da177e4
LT
1148 *
1149 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1150 * id. It scans list of devices to build up a free map, then chooses
1151 * the first empty slot. The caller must hold the dev_base or rtnl lock
1152 * while allocating the name and adding the device in order to avoid
1153 * duplicates.
1154 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1155 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1156 */
1157
b267b179 1158static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1159{
1160 int i = 0;
1da177e4
LT
1161 const char *p;
1162 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1163 unsigned long *inuse;
1da177e4
LT
1164 struct net_device *d;
1165
93809105
RV
1166 if (!dev_valid_name(name))
1167 return -EINVAL;
1168
51f299dd 1169 p = strchr(name, '%');
1da177e4
LT
1170 if (p) {
1171 /*
1172 * Verify the string as this thing may have come from
1173 * the user. There must be either one "%d" and no other "%"
1174 * characters.
1175 */
1176 if (p[1] != 'd' || strchr(p + 2, '%'))
1177 return -EINVAL;
1178
1179 /* Use one page as a bit array of possible slots */
cfcabdcc 1180 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1181 if (!inuse)
1182 return -ENOMEM;
1183
881d966b 1184 for_each_netdev(net, d) {
1da177e4
LT
1185 if (!sscanf(d->name, name, &i))
1186 continue;
1187 if (i < 0 || i >= max_netdevices)
1188 continue;
1189
1190 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1191 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1192 if (!strncmp(buf, d->name, IFNAMSIZ))
1193 set_bit(i, inuse);
1194 }
1195
1196 i = find_first_zero_bit(inuse, max_netdevices);
1197 free_page((unsigned long) inuse);
1198 }
1199
6224abda 1200 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1201 if (!__dev_get_by_name(net, buf))
1da177e4 1202 return i;
1da177e4
LT
1203
1204 /* It is possible to run out of possible slots
1205 * when the name is long and there isn't enough space left
1206 * for the digits, or if all bits are used.
1207 */
029b6d14 1208 return -ENFILE;
1da177e4
LT
1209}
1210
2c88b855
RV
1211static int dev_alloc_name_ns(struct net *net,
1212 struct net_device *dev,
1213 const char *name)
1214{
1215 char buf[IFNAMSIZ];
1216 int ret;
1217
c46d7642 1218 BUG_ON(!net);
2c88b855
RV
1219 ret = __dev_alloc_name(net, name, buf);
1220 if (ret >= 0)
1221 strlcpy(dev->name, buf, IFNAMSIZ);
1222 return ret;
1da177e4
LT
1223}
1224
b267b179
EB
1225/**
1226 * dev_alloc_name - allocate a name for a device
1227 * @dev: device
1228 * @name: name format string
1229 *
1230 * Passed a format string - eg "lt%d" it will try and find a suitable
1231 * id. It scans list of devices to build up a free map, then chooses
1232 * the first empty slot. The caller must hold the dev_base or rtnl lock
1233 * while allocating the name and adding the device in order to avoid
1234 * duplicates.
1235 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1236 * Returns the number of the unit assigned or a negative errno code.
1237 */
1238
1239int dev_alloc_name(struct net_device *dev, const char *name)
1240{
c46d7642 1241 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1242}
d1b19dff 1243EXPORT_SYMBOL(dev_alloc_name);
b267b179 1244
bacb7e18
ED
1245static int dev_get_valid_name(struct net *net, struct net_device *dev,
1246 const char *name)
828de4f6 1247{
55a5ec9b
DM
1248 BUG_ON(!net);
1249
1250 if (!dev_valid_name(name))
1251 return -EINVAL;
1252
1253 if (strchr(name, '%'))
1254 return dev_alloc_name_ns(net, dev, name);
1255 else if (__dev_get_by_name(net, name))
1256 return -EEXIST;
1257 else if (dev->name != name)
1258 strlcpy(dev->name, name, IFNAMSIZ);
1259
1260 return 0;
d9031024 1261}
1da177e4
LT
1262
1263/**
1264 * dev_change_name - change name of a device
1265 * @dev: device
1266 * @newname: name (or format string) must be at least IFNAMSIZ
1267 *
1268 * Change name of a device, can pass format strings "eth%d".
1269 * for wildcarding.
1270 */
cf04a4c7 1271int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1272{
238fa362 1273 unsigned char old_assign_type;
fcc5a03a 1274 char oldname[IFNAMSIZ];
1da177e4 1275 int err = 0;
fcc5a03a 1276 int ret;
881d966b 1277 struct net *net;
1da177e4
LT
1278
1279 ASSERT_RTNL();
c346dca1 1280 BUG_ON(!dev_net(dev));
1da177e4 1281
c346dca1 1282 net = dev_net(dev);
8065a779
SWL
1283
1284 /* Some auto-enslaved devices e.g. failover slaves are
1285 * special, as userspace might rename the device after
1286 * the interface had been brought up and running since
1287 * the point kernel initiated auto-enslavement. Allow
1288 * live name change even when these slave devices are
1289 * up and running.
1290 *
1291 * Typically, users of these auto-enslaving devices
1292 * don't actually care about slave name change, as
1293 * they are supposed to operate on master interface
1294 * directly.
1295 */
1296 if (dev->flags & IFF_UP &&
1297 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1298 return -EBUSY;
1299
11d6011c 1300 down_write(&devnet_rename_sem);
c91f6df2
BH
1301
1302 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
11d6011c 1303 up_write(&devnet_rename_sem);
c8d90dca 1304 return 0;
c91f6df2 1305 }
c8d90dca 1306
fcc5a03a
HX
1307 memcpy(oldname, dev->name, IFNAMSIZ);
1308
828de4f6 1309 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1310 if (err < 0) {
11d6011c 1311 up_write(&devnet_rename_sem);
d9031024 1312 return err;
c91f6df2 1313 }
1da177e4 1314
6fe82a39
VF
1315 if (oldname[0] && !strchr(oldname, '%'))
1316 netdev_info(dev, "renamed from %s\n", oldname);
1317
238fa362
TG
1318 old_assign_type = dev->name_assign_type;
1319 dev->name_assign_type = NET_NAME_RENAMED;
1320
fcc5a03a 1321rollback:
a1b3f594
EB
1322 ret = device_rename(&dev->dev, dev->name);
1323 if (ret) {
1324 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1325 dev->name_assign_type = old_assign_type;
11d6011c 1326 up_write(&devnet_rename_sem);
a1b3f594 1327 return ret;
dcc99773 1328 }
7f988eab 1329
11d6011c 1330 up_write(&devnet_rename_sem);
c91f6df2 1331
5bb025fa
VF
1332 netdev_adjacent_rename_links(dev, oldname);
1333
7f988eab 1334 write_lock_bh(&dev_base_lock);
ff927412 1335 netdev_name_node_del(dev->name_node);
72c9528b
ED
1336 write_unlock_bh(&dev_base_lock);
1337
1338 synchronize_rcu();
1339
1340 write_lock_bh(&dev_base_lock);
ff927412 1341 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1342 write_unlock_bh(&dev_base_lock);
1343
056925ab 1344 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1345 ret = notifier_to_errno(ret);
1346
1347 if (ret) {
91e9c07b
ED
1348 /* err >= 0 after dev_alloc_name() or stores the first errno */
1349 if (err >= 0) {
fcc5a03a 1350 err = ret;
11d6011c 1351 down_write(&devnet_rename_sem);
fcc5a03a 1352 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1353 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1354 dev->name_assign_type = old_assign_type;
1355 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1356 goto rollback;
91e9c07b 1357 } else {
7b6cd1ce 1358 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1359 dev->name, ret);
fcc5a03a
HX
1360 }
1361 }
1da177e4
LT
1362
1363 return err;
1364}
1365
0b815a1a
SH
1366/**
1367 * dev_set_alias - change ifalias of a device
1368 * @dev: device
1369 * @alias: name up to IFALIASZ
f0db275a 1370 * @len: limit of bytes to copy from info
0b815a1a
SH
1371 *
1372 * Set ifalias for a device,
1373 */
1374int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1375{
6c557001 1376 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1377
1378 if (len >= IFALIASZ)
1379 return -EINVAL;
1380
6c557001
FW
1381 if (len) {
1382 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1383 if (!new_alias)
1384 return -ENOMEM;
1385
1386 memcpy(new_alias->ifalias, alias, len);
1387 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1388 }
1389
6c557001 1390 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1391 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1392 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1393 mutex_unlock(&ifalias_mutex);
1394
1395 if (new_alias)
1396 kfree_rcu(new_alias, rcuhead);
0b815a1a 1397
0b815a1a
SH
1398 return len;
1399}
0fe554a4 1400EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1401
6c557001
FW
1402/**
1403 * dev_get_alias - get ifalias of a device
1404 * @dev: device
20e88320 1405 * @name: buffer to store name of ifalias
6c557001
FW
1406 * @len: size of buffer
1407 *
1408 * get ifalias for a device. Caller must make sure dev cannot go
1409 * away, e.g. rcu read lock or own a reference count to device.
1410 */
1411int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1412{
1413 const struct dev_ifalias *alias;
1414 int ret = 0;
1415
1416 rcu_read_lock();
1417 alias = rcu_dereference(dev->ifalias);
1418 if (alias)
1419 ret = snprintf(name, len, "%s", alias->ifalias);
1420 rcu_read_unlock();
1421
1422 return ret;
1423}
0b815a1a 1424
d8a33ac4 1425/**
3041a069 1426 * netdev_features_change - device changes features
d8a33ac4
SH
1427 * @dev: device to cause notification
1428 *
1429 * Called to indicate a device has changed features.
1430 */
1431void netdev_features_change(struct net_device *dev)
1432{
056925ab 1433 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1434}
1435EXPORT_SYMBOL(netdev_features_change);
1436
1da177e4
LT
1437/**
1438 * netdev_state_change - device changes state
1439 * @dev: device to cause notification
1440 *
1441 * Called to indicate a device has changed state. This function calls
1442 * the notifier chains for netdev_chain and sends a NEWLINK message
1443 * to the routing socket.
1444 */
1445void netdev_state_change(struct net_device *dev)
1446{
1447 if (dev->flags & IFF_UP) {
51d0c047
DA
1448 struct netdev_notifier_change_info change_info = {
1449 .info.dev = dev,
1450 };
54951194 1451
51d0c047 1452 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1453 &change_info.info);
7f294054 1454 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1455 }
1456}
d1b19dff 1457EXPORT_SYMBOL(netdev_state_change);
1da177e4 1458
7061eb8c
LP
1459/**
1460 * __netdev_notify_peers - notify network peers about existence of @dev,
1461 * to be called when rtnl lock is already held.
1462 * @dev: network device
1463 *
1464 * Generate traffic such that interested network peers are aware of
1465 * @dev, such as by generating a gratuitous ARP. This may be used when
1466 * a device wants to inform the rest of the network about some sort of
1467 * reconfiguration such as a failover event or virtual machine
1468 * migration.
1469 */
1470void __netdev_notify_peers(struct net_device *dev)
1471{
1472 ASSERT_RTNL();
1473 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1474 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1475}
1476EXPORT_SYMBOL(__netdev_notify_peers);
1477
ee89bab1 1478/**
722c9a0c 1479 * netdev_notify_peers - notify network peers about existence of @dev
1480 * @dev: network device
ee89bab1
AW
1481 *
1482 * Generate traffic such that interested network peers are aware of
1483 * @dev, such as by generating a gratuitous ARP. This may be used when
1484 * a device wants to inform the rest of the network about some sort of
1485 * reconfiguration such as a failover event or virtual machine
1486 * migration.
1487 */
1488void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1489{
ee89bab1 1490 rtnl_lock();
7061eb8c 1491 __netdev_notify_peers(dev);
ee89bab1 1492 rtnl_unlock();
c1da4ac7 1493}
ee89bab1 1494EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1495
40c900aa 1496static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1497{
d314774c 1498 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1499 int ret;
1da177e4 1500
e46b66bc
BH
1501 ASSERT_RTNL();
1502
bd869245
HK
1503 if (!netif_device_present(dev)) {
1504 /* may be detached because parent is runtime-suspended */
1505 if (dev->dev.parent)
1506 pm_runtime_resume(dev->dev.parent);
1507 if (!netif_device_present(dev))
1508 return -ENODEV;
1509 }
1da177e4 1510
ca99ca14
NH
1511 /* Block netpoll from trying to do any rx path servicing.
1512 * If we don't do this there is a chance ndo_poll_controller
1513 * or ndo_poll may be running while we open the device
1514 */
66b5552f 1515 netpoll_poll_disable(dev);
ca99ca14 1516
40c900aa 1517 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1518 ret = notifier_to_errno(ret);
1519 if (ret)
1520 return ret;
1521
1da177e4 1522 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1523
d314774c
SH
1524 if (ops->ndo_validate_addr)
1525 ret = ops->ndo_validate_addr(dev);
bada339b 1526
d314774c
SH
1527 if (!ret && ops->ndo_open)
1528 ret = ops->ndo_open(dev);
1da177e4 1529
66b5552f 1530 netpoll_poll_enable(dev);
ca99ca14 1531
bada339b
JG
1532 if (ret)
1533 clear_bit(__LINK_STATE_START, &dev->state);
1534 else {
1da177e4 1535 dev->flags |= IFF_UP;
4417da66 1536 dev_set_rx_mode(dev);
1da177e4 1537 dev_activate(dev);
7bf23575 1538 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1539 }
bada339b 1540
1da177e4
LT
1541 return ret;
1542}
1543
1544/**
bd380811 1545 * dev_open - prepare an interface for use.
00f54e68
PM
1546 * @dev: device to open
1547 * @extack: netlink extended ack
1da177e4 1548 *
bd380811
PM
1549 * Takes a device from down to up state. The device's private open
1550 * function is invoked and then the multicast lists are loaded. Finally
1551 * the device is moved into the up state and a %NETDEV_UP message is
1552 * sent to the netdev notifier chain.
1553 *
1554 * Calling this function on an active interface is a nop. On a failure
1555 * a negative errno code is returned.
1da177e4 1556 */
00f54e68 1557int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1558{
1559 int ret;
1560
bd380811
PM
1561 if (dev->flags & IFF_UP)
1562 return 0;
1563
40c900aa 1564 ret = __dev_open(dev, extack);
bd380811
PM
1565 if (ret < 0)
1566 return ret;
1567
7f294054 1568 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1569 call_netdevice_notifiers(NETDEV_UP, dev);
1570
1571 return ret;
1572}
1573EXPORT_SYMBOL(dev_open);
1574
7051b88a 1575static void __dev_close_many(struct list_head *head)
1da177e4 1576{
44345724 1577 struct net_device *dev;
e46b66bc 1578
bd380811 1579 ASSERT_RTNL();
9d5010db
DM
1580 might_sleep();
1581
5cde2829 1582 list_for_each_entry(dev, head, close_list) {
3f4df206 1583 /* Temporarily disable netpoll until the interface is down */
66b5552f 1584 netpoll_poll_disable(dev);
3f4df206 1585
44345724 1586 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1587
44345724 1588 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1589
44345724
OP
1590 /* Synchronize to scheduled poll. We cannot touch poll list, it
1591 * can be even on different cpu. So just clear netif_running().
1592 *
1593 * dev->stop() will invoke napi_disable() on all of it's
1594 * napi_struct instances on this device.
1595 */
4e857c58 1596 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1597 }
1da177e4 1598
44345724 1599 dev_deactivate_many(head);
d8b2a4d2 1600
5cde2829 1601 list_for_each_entry(dev, head, close_list) {
44345724 1602 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1603
44345724
OP
1604 /*
1605 * Call the device specific close. This cannot fail.
1606 * Only if device is UP
1607 *
1608 * We allow it to be called even after a DETACH hot-plug
1609 * event.
1610 */
1611 if (ops->ndo_stop)
1612 ops->ndo_stop(dev);
1613
44345724 1614 dev->flags &= ~IFF_UP;
66b5552f 1615 netpoll_poll_enable(dev);
44345724 1616 }
44345724
OP
1617}
1618
7051b88a 1619static void __dev_close(struct net_device *dev)
44345724
OP
1620{
1621 LIST_HEAD(single);
1622
5cde2829 1623 list_add(&dev->close_list, &single);
7051b88a 1624 __dev_close_many(&single);
f87e6f47 1625 list_del(&single);
44345724
OP
1626}
1627
7051b88a 1628void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1629{
1630 struct net_device *dev, *tmp;
1da177e4 1631
5cde2829
EB
1632 /* Remove the devices that don't need to be closed */
1633 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1634 if (!(dev->flags & IFF_UP))
5cde2829 1635 list_del_init(&dev->close_list);
44345724
OP
1636
1637 __dev_close_many(head);
1da177e4 1638
5cde2829 1639 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1640 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1641 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1642 if (unlink)
1643 list_del_init(&dev->close_list);
44345724 1644 }
bd380811 1645}
99c4a26a 1646EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1647
1648/**
1649 * dev_close - shutdown an interface.
1650 * @dev: device to shutdown
1651 *
1652 * This function moves an active device into down state. A
1653 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1654 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1655 * chain.
1656 */
7051b88a 1657void dev_close(struct net_device *dev)
bd380811 1658{
e14a5993
ED
1659 if (dev->flags & IFF_UP) {
1660 LIST_HEAD(single);
1da177e4 1661
5cde2829 1662 list_add(&dev->close_list, &single);
99c4a26a 1663 dev_close_many(&single, true);
e14a5993
ED
1664 list_del(&single);
1665 }
1da177e4 1666}
d1b19dff 1667EXPORT_SYMBOL(dev_close);
1da177e4
LT
1668
1669
0187bdfb
BH
1670/**
1671 * dev_disable_lro - disable Large Receive Offload on a device
1672 * @dev: device
1673 *
1674 * Disable Large Receive Offload (LRO) on a net device. Must be
1675 * called under RTNL. This is needed if received packets may be
1676 * forwarded to another interface.
1677 */
1678void dev_disable_lro(struct net_device *dev)
1679{
fbe168ba
MK
1680 struct net_device *lower_dev;
1681 struct list_head *iter;
529d0489 1682
bc5787c6
MM
1683 dev->wanted_features &= ~NETIF_F_LRO;
1684 netdev_update_features(dev);
27660515 1685
22d5969f
MM
1686 if (unlikely(dev->features & NETIF_F_LRO))
1687 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1688
1689 netdev_for_each_lower_dev(dev, lower_dev, iter)
1690 dev_disable_lro(lower_dev);
0187bdfb
BH
1691}
1692EXPORT_SYMBOL(dev_disable_lro);
1693
56f5aa77
MC
1694/**
1695 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1696 * @dev: device
1697 *
1698 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1699 * called under RTNL. This is needed if Generic XDP is installed on
1700 * the device.
1701 */
1702static void dev_disable_gro_hw(struct net_device *dev)
1703{
1704 dev->wanted_features &= ~NETIF_F_GRO_HW;
1705 netdev_update_features(dev);
1706
1707 if (unlikely(dev->features & NETIF_F_GRO_HW))
1708 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1709}
1710
ede2762d
KT
1711const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1712{
1713#define N(val) \
1714 case NETDEV_##val: \
1715 return "NETDEV_" __stringify(val);
1716 switch (cmd) {
1717 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1718 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1719 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1720 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1721 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1722 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1723 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1724 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1725 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1726 N(PRE_CHANGEADDR)
3f5ecd8a 1727 }
ede2762d
KT
1728#undef N
1729 return "UNKNOWN_NETDEV_EVENT";
1730}
1731EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1732
351638e7
JP
1733static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1734 struct net_device *dev)
1735{
51d0c047
DA
1736 struct netdev_notifier_info info = {
1737 .dev = dev,
1738 };
351638e7 1739
351638e7
JP
1740 return nb->notifier_call(nb, val, &info);
1741}
0187bdfb 1742
afa0df59
JP
1743static int call_netdevice_register_notifiers(struct notifier_block *nb,
1744 struct net_device *dev)
1745{
1746 int err;
1747
1748 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1749 err = notifier_to_errno(err);
1750 if (err)
1751 return err;
1752
1753 if (!(dev->flags & IFF_UP))
1754 return 0;
1755
1756 call_netdevice_notifier(nb, NETDEV_UP, dev);
1757 return 0;
1758}
1759
1760static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1761 struct net_device *dev)
1762{
1763 if (dev->flags & IFF_UP) {
1764 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1765 dev);
1766 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1767 }
1768 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1769}
1770
1771static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1772 struct net *net)
1773{
1774 struct net_device *dev;
1775 int err;
1776
1777 for_each_netdev(net, dev) {
1778 err = call_netdevice_register_notifiers(nb, dev);
1779 if (err)
1780 goto rollback;
1781 }
1782 return 0;
1783
1784rollback:
1785 for_each_netdev_continue_reverse(net, dev)
1786 call_netdevice_unregister_notifiers(nb, dev);
1787 return err;
1788}
1789
1790static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1791 struct net *net)
1792{
1793 struct net_device *dev;
1794
1795 for_each_netdev(net, dev)
1796 call_netdevice_unregister_notifiers(nb, dev);
1797}
1798
881d966b
EB
1799static int dev_boot_phase = 1;
1800
1da177e4 1801/**
722c9a0c 1802 * register_netdevice_notifier - register a network notifier block
1803 * @nb: notifier
1da177e4 1804 *
722c9a0c 1805 * Register a notifier to be called when network device events occur.
1806 * The notifier passed is linked into the kernel structures and must
1807 * not be reused until it has been unregistered. A negative errno code
1808 * is returned on a failure.
1da177e4 1809 *
722c9a0c 1810 * When registered all registration and up events are replayed
1811 * to the new notifier to allow device to have a race free
1812 * view of the network device list.
1da177e4
LT
1813 */
1814
1815int register_netdevice_notifier(struct notifier_block *nb)
1816{
881d966b 1817 struct net *net;
1da177e4
LT
1818 int err;
1819
328fbe74
KT
1820 /* Close race with setup_net() and cleanup_net() */
1821 down_write(&pernet_ops_rwsem);
1da177e4 1822 rtnl_lock();
f07d5b94 1823 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1824 if (err)
1825 goto unlock;
881d966b
EB
1826 if (dev_boot_phase)
1827 goto unlock;
1828 for_each_net(net) {
afa0df59
JP
1829 err = call_netdevice_register_net_notifiers(nb, net);
1830 if (err)
1831 goto rollback;
1da177e4 1832 }
fcc5a03a
HX
1833
1834unlock:
1da177e4 1835 rtnl_unlock();
328fbe74 1836 up_write(&pernet_ops_rwsem);
1da177e4 1837 return err;
fcc5a03a
HX
1838
1839rollback:
afa0df59
JP
1840 for_each_net_continue_reverse(net)
1841 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1842
1843 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1844 goto unlock;
1da177e4 1845}
d1b19dff 1846EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1847
1848/**
722c9a0c 1849 * unregister_netdevice_notifier - unregister a network notifier block
1850 * @nb: notifier
1da177e4 1851 *
722c9a0c 1852 * Unregister a notifier previously registered by
1853 * register_netdevice_notifier(). The notifier is unlinked into the
1854 * kernel structures and may then be reused. A negative errno code
1855 * is returned on a failure.
7d3d43da 1856 *
722c9a0c 1857 * After unregistering unregister and down device events are synthesized
1858 * for all devices on the device list to the removed notifier to remove
1859 * the need for special case cleanup code.
1da177e4
LT
1860 */
1861
1862int unregister_netdevice_notifier(struct notifier_block *nb)
1863{
7d3d43da 1864 struct net *net;
9f514950
HX
1865 int err;
1866
328fbe74
KT
1867 /* Close race with setup_net() and cleanup_net() */
1868 down_write(&pernet_ops_rwsem);
9f514950 1869 rtnl_lock();
f07d5b94 1870 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1871 if (err)
1872 goto unlock;
1873
48b3a137
JP
1874 for_each_net(net)
1875 call_netdevice_unregister_net_notifiers(nb, net);
1876
7d3d43da 1877unlock:
9f514950 1878 rtnl_unlock();
328fbe74 1879 up_write(&pernet_ops_rwsem);
9f514950 1880 return err;
1da177e4 1881}
d1b19dff 1882EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1883
1f637703
JP
1884static int __register_netdevice_notifier_net(struct net *net,
1885 struct notifier_block *nb,
1886 bool ignore_call_fail)
1887{
1888 int err;
1889
1890 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1891 if (err)
1892 return err;
1893 if (dev_boot_phase)
1894 return 0;
1895
1896 err = call_netdevice_register_net_notifiers(nb, net);
1897 if (err && !ignore_call_fail)
1898 goto chain_unregister;
1899
1900 return 0;
1901
1902chain_unregister:
1903 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1904 return err;
1905}
1906
1907static int __unregister_netdevice_notifier_net(struct net *net,
1908 struct notifier_block *nb)
1909{
1910 int err;
1911
1912 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1913 if (err)
1914 return err;
1915
1916 call_netdevice_unregister_net_notifiers(nb, net);
1917 return 0;
1918}
1919
a30c7b42
JP
1920/**
1921 * register_netdevice_notifier_net - register a per-netns network notifier block
1922 * @net: network namespace
1923 * @nb: notifier
1924 *
1925 * Register a notifier to be called when network device events occur.
1926 * The notifier passed is linked into the kernel structures and must
1927 * not be reused until it has been unregistered. A negative errno code
1928 * is returned on a failure.
1929 *
1930 * When registered all registration and up events are replayed
1931 * to the new notifier to allow device to have a race free
1932 * view of the network device list.
1933 */
1934
1935int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1936{
1937 int err;
1938
1939 rtnl_lock();
1f637703 1940 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1941 rtnl_unlock();
1942 return err;
a30c7b42
JP
1943}
1944EXPORT_SYMBOL(register_netdevice_notifier_net);
1945
1946/**
1947 * unregister_netdevice_notifier_net - unregister a per-netns
1948 * network notifier block
1949 * @net: network namespace
1950 * @nb: notifier
1951 *
1952 * Unregister a notifier previously registered by
1953 * register_netdevice_notifier(). The notifier is unlinked into the
1954 * kernel structures and may then be reused. A negative errno code
1955 * is returned on a failure.
1956 *
1957 * After unregistering unregister and down device events are synthesized
1958 * for all devices on the device list to the removed notifier to remove
1959 * the need for special case cleanup code.
1960 */
1961
1962int unregister_netdevice_notifier_net(struct net *net,
1963 struct notifier_block *nb)
1964{
1965 int err;
1966
1967 rtnl_lock();
1f637703 1968 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1969 rtnl_unlock();
1970 return err;
1971}
1972EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1973
93642e14
JP
1974int register_netdevice_notifier_dev_net(struct net_device *dev,
1975 struct notifier_block *nb,
1976 struct netdev_net_notifier *nn)
1977{
1978 int err;
a30c7b42 1979
93642e14
JP
1980 rtnl_lock();
1981 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1982 if (!err) {
1983 nn->nb = nb;
1984 list_add(&nn->list, &dev->net_notifier_list);
1985 }
a30c7b42
JP
1986 rtnl_unlock();
1987 return err;
1988}
93642e14
JP
1989EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1990
1991int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1992 struct notifier_block *nb,
1993 struct netdev_net_notifier *nn)
1994{
1995 int err;
1996
1997 rtnl_lock();
1998 list_del(&nn->list);
1999 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2000 rtnl_unlock();
2001 return err;
2002}
2003EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2004
2005static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2006 struct net *net)
2007{
2008 struct netdev_net_notifier *nn;
2009
2010 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2011 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2012 __register_netdevice_notifier_net(net, nn->nb, true);
2013 }
2014}
a30c7b42 2015
351638e7
JP
2016/**
2017 * call_netdevice_notifiers_info - call all network notifier blocks
2018 * @val: value passed unmodified to notifier function
351638e7
JP
2019 * @info: notifier information data
2020 *
2021 * Call all network notifier blocks. Parameters and return value
2022 * are as for raw_notifier_call_chain().
2023 */
2024
1d143d9f 2025static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 2026 struct netdev_notifier_info *info)
351638e7 2027{
a30c7b42
JP
2028 struct net *net = dev_net(info->dev);
2029 int ret;
2030
351638e7 2031 ASSERT_RTNL();
a30c7b42
JP
2032
2033 /* Run per-netns notifier block chain first, then run the global one.
2034 * Hopefully, one day, the global one is going to be removed after
2035 * all notifier block registrators get converted to be per-netns.
2036 */
2037 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2038 if (ret & NOTIFY_STOP_MASK)
2039 return ret;
351638e7
JP
2040 return raw_notifier_call_chain(&netdev_chain, val, info);
2041}
351638e7 2042
26372605
PM
2043static int call_netdevice_notifiers_extack(unsigned long val,
2044 struct net_device *dev,
2045 struct netlink_ext_ack *extack)
2046{
2047 struct netdev_notifier_info info = {
2048 .dev = dev,
2049 .extack = extack,
2050 };
2051
2052 return call_netdevice_notifiers_info(val, &info);
2053}
2054
1da177e4
LT
2055/**
2056 * call_netdevice_notifiers - call all network notifier blocks
2057 * @val: value passed unmodified to notifier function
c4ea43c5 2058 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
2059 *
2060 * Call all network notifier blocks. Parameters and return value
f07d5b94 2061 * are as for raw_notifier_call_chain().
1da177e4
LT
2062 */
2063
ad7379d4 2064int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 2065{
26372605 2066 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 2067}
edf947f1 2068EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 2069
af7d6cce
SD
2070/**
2071 * call_netdevice_notifiers_mtu - call all network notifier blocks
2072 * @val: value passed unmodified to notifier function
2073 * @dev: net_device pointer passed unmodified to notifier function
2074 * @arg: additional u32 argument passed to the notifier function
2075 *
2076 * Call all network notifier blocks. Parameters and return value
2077 * are as for raw_notifier_call_chain().
2078 */
2079static int call_netdevice_notifiers_mtu(unsigned long val,
2080 struct net_device *dev, u32 arg)
2081{
2082 struct netdev_notifier_info_ext info = {
2083 .info.dev = dev,
2084 .ext.mtu = arg,
2085 };
2086
2087 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2088
2089 return call_netdevice_notifiers_info(val, &info.info);
2090}
2091
1cf51900 2092#ifdef CONFIG_NET_INGRESS
aabf6772 2093static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2094
2095void net_inc_ingress_queue(void)
2096{
aabf6772 2097 static_branch_inc(&ingress_needed_key);
4577139b
DB
2098}
2099EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2100
2101void net_dec_ingress_queue(void)
2102{
aabf6772 2103 static_branch_dec(&ingress_needed_key);
4577139b
DB
2104}
2105EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2106#endif
2107
1f211a1b 2108#ifdef CONFIG_NET_EGRESS
aabf6772 2109static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2110
2111void net_inc_egress_queue(void)
2112{
aabf6772 2113 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2114}
2115EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2116
2117void net_dec_egress_queue(void)
2118{
aabf6772 2119 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2120}
2121EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2122#endif
2123
39e83922 2124static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2125#ifdef CONFIG_JUMP_LABEL
b90e5794 2126static atomic_t netstamp_needed_deferred;
13baa00a 2127static atomic_t netstamp_wanted;
5fa8bbda 2128static void netstamp_clear(struct work_struct *work)
1da177e4 2129{
b90e5794 2130 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2131 int wanted;
b90e5794 2132
13baa00a
ED
2133 wanted = atomic_add_return(deferred, &netstamp_wanted);
2134 if (wanted > 0)
39e83922 2135 static_branch_enable(&netstamp_needed_key);
13baa00a 2136 else
39e83922 2137 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2138}
2139static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2140#endif
5fa8bbda
ED
2141
2142void net_enable_timestamp(void)
2143{
e9666d10 2144#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2145 int wanted;
2146
2147 while (1) {
2148 wanted = atomic_read(&netstamp_wanted);
2149 if (wanted <= 0)
2150 break;
2151 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2152 return;
2153 }
2154 atomic_inc(&netstamp_needed_deferred);
2155 schedule_work(&netstamp_work);
2156#else
39e83922 2157 static_branch_inc(&netstamp_needed_key);
13baa00a 2158#endif
1da177e4 2159}
d1b19dff 2160EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2161
2162void net_disable_timestamp(void)
2163{
e9666d10 2164#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2165 int wanted;
2166
2167 while (1) {
2168 wanted = atomic_read(&netstamp_wanted);
2169 if (wanted <= 1)
2170 break;
2171 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2172 return;
2173 }
2174 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2175 schedule_work(&netstamp_work);
2176#else
39e83922 2177 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2178#endif
1da177e4 2179}
d1b19dff 2180EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2181
3b098e2d 2182static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2183{
2456e855 2184 skb->tstamp = 0;
39e83922 2185 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2186 __net_timestamp(skb);
1da177e4
LT
2187}
2188
39e83922
DB
2189#define net_timestamp_check(COND, SKB) \
2190 if (static_branch_unlikely(&netstamp_needed_key)) { \
2191 if ((COND) && !(SKB)->tstamp) \
2192 __net_timestamp(SKB); \
2193 } \
3b098e2d 2194
f4b05d27 2195bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
2196{
2197 unsigned int len;
2198
2199 if (!(dev->flags & IFF_UP))
2200 return false;
2201
2202 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2203 if (skb->len <= len)
2204 return true;
2205
2206 /* if TSO is enabled, we don't care about the length as the packet
2207 * could be forwarded without being segmented before
2208 */
2209 if (skb_is_gso(skb))
2210 return true;
2211
2212 return false;
2213}
1ee481fb 2214EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2215
a0265d28
HX
2216int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2217{
4e3264d2 2218 int ret = ____dev_forward_skb(dev, skb);
a0265d28 2219
4e3264d2
MKL
2220 if (likely(!ret)) {
2221 skb->protocol = eth_type_trans(skb, dev);
2222 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2223 }
a0265d28 2224
4e3264d2 2225 return ret;
a0265d28
HX
2226}
2227EXPORT_SYMBOL_GPL(__dev_forward_skb);
2228
44540960
AB
2229/**
2230 * dev_forward_skb - loopback an skb to another netif
2231 *
2232 * @dev: destination network device
2233 * @skb: buffer to forward
2234 *
2235 * return values:
2236 * NET_RX_SUCCESS (no congestion)
6ec82562 2237 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2238 *
2239 * dev_forward_skb can be used for injecting an skb from the
2240 * start_xmit function of one device into the receive queue
2241 * of another device.
2242 *
2243 * The receiving device may be in another namespace, so
2244 * we have to clear all information in the skb that could
2245 * impact namespace isolation.
2246 */
2247int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2248{
a0265d28 2249 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2250}
2251EXPORT_SYMBOL_GPL(dev_forward_skb);
2252
71d9dec2
CG
2253static inline int deliver_skb(struct sk_buff *skb,
2254 struct packet_type *pt_prev,
2255 struct net_device *orig_dev)
2256{
1f8b977a 2257 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2258 return -ENOMEM;
63354797 2259 refcount_inc(&skb->users);
71d9dec2
CG
2260 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2261}
2262
7866a621
SN
2263static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2264 struct packet_type **pt,
fbcb2170
JP
2265 struct net_device *orig_dev,
2266 __be16 type,
7866a621
SN
2267 struct list_head *ptype_list)
2268{
2269 struct packet_type *ptype, *pt_prev = *pt;
2270
2271 list_for_each_entry_rcu(ptype, ptype_list, list) {
2272 if (ptype->type != type)
2273 continue;
2274 if (pt_prev)
fbcb2170 2275 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2276 pt_prev = ptype;
2277 }
2278 *pt = pt_prev;
2279}
2280
c0de08d0
EL
2281static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2282{
a3d744e9 2283 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2284 return false;
2285
2286 if (ptype->id_match)
2287 return ptype->id_match(ptype, skb->sk);
2288 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2289 return true;
2290
2291 return false;
2292}
2293
9f9a742d
MR
2294/**
2295 * dev_nit_active - return true if any network interface taps are in use
2296 *
2297 * @dev: network device to check for the presence of taps
2298 */
2299bool dev_nit_active(struct net_device *dev)
2300{
2301 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2302}
2303EXPORT_SYMBOL_GPL(dev_nit_active);
2304
1da177e4
LT
2305/*
2306 * Support routine. Sends outgoing frames to any network
2307 * taps currently in use.
2308 */
2309
74b20582 2310void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2311{
2312 struct packet_type *ptype;
71d9dec2
CG
2313 struct sk_buff *skb2 = NULL;
2314 struct packet_type *pt_prev = NULL;
7866a621 2315 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2316
1da177e4 2317 rcu_read_lock();
7866a621
SN
2318again:
2319 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2320 if (ptype->ignore_outgoing)
2321 continue;
2322
1da177e4
LT
2323 /* Never send packets back to the socket
2324 * they originated from - MvS (miquels@drinkel.ow.org)
2325 */
7866a621
SN
2326 if (skb_loop_sk(ptype, skb))
2327 continue;
71d9dec2 2328
7866a621
SN
2329 if (pt_prev) {
2330 deliver_skb(skb2, pt_prev, skb->dev);
2331 pt_prev = ptype;
2332 continue;
2333 }
1da177e4 2334
7866a621
SN
2335 /* need to clone skb, done only once */
2336 skb2 = skb_clone(skb, GFP_ATOMIC);
2337 if (!skb2)
2338 goto out_unlock;
70978182 2339
7866a621 2340 net_timestamp_set(skb2);
1da177e4 2341
7866a621
SN
2342 /* skb->nh should be correctly
2343 * set by sender, so that the second statement is
2344 * just protection against buggy protocols.
2345 */
2346 skb_reset_mac_header(skb2);
2347
2348 if (skb_network_header(skb2) < skb2->data ||
2349 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2350 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2351 ntohs(skb2->protocol),
2352 dev->name);
2353 skb_reset_network_header(skb2);
1da177e4 2354 }
7866a621
SN
2355
2356 skb2->transport_header = skb2->network_header;
2357 skb2->pkt_type = PACKET_OUTGOING;
2358 pt_prev = ptype;
2359 }
2360
2361 if (ptype_list == &ptype_all) {
2362 ptype_list = &dev->ptype_all;
2363 goto again;
1da177e4 2364 }
7866a621 2365out_unlock:
581fe0ea
WB
2366 if (pt_prev) {
2367 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2368 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2369 else
2370 kfree_skb(skb2);
2371 }
1da177e4
LT
2372 rcu_read_unlock();
2373}
74b20582 2374EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2375
2c53040f
BH
2376/**
2377 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2378 * @dev: Network device
2379 * @txq: number of queues available
2380 *
2381 * If real_num_tx_queues is changed the tc mappings may no longer be
2382 * valid. To resolve this verify the tc mapping remains valid and if
2383 * not NULL the mapping. With no priorities mapping to this
2384 * offset/count pair it will no longer be used. In the worst case TC0
2385 * is invalid nothing can be done so disable priority mappings. If is
2386 * expected that drivers will fix this mapping if they can before
2387 * calling netif_set_real_num_tx_queues.
2388 */
bb134d22 2389static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2390{
2391 int i;
2392 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2393
2394 /* If TC0 is invalidated disable TC mapping */
2395 if (tc->offset + tc->count > txq) {
7b6cd1ce 2396 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2397 dev->num_tc = 0;
2398 return;
2399 }
2400
2401 /* Invalidated prio to tc mappings set to TC0 */
2402 for (i = 1; i < TC_BITMASK + 1; i++) {
2403 int q = netdev_get_prio_tc_map(dev, i);
2404
2405 tc = &dev->tc_to_txq[q];
2406 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2407 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2408 i, q);
4f57c087
JF
2409 netdev_set_prio_tc_map(dev, i, 0);
2410 }
2411 }
2412}
2413
8d059b0f
AD
2414int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2415{
2416 if (dev->num_tc) {
2417 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2418 int i;
2419
ffcfe25b 2420 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2421 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2422 if ((txq - tc->offset) < tc->count)
2423 return i;
2424 }
2425
ffcfe25b 2426 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2427 return -1;
2428 }
2429
2430 return 0;
2431}
8a5f2166 2432EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2433
537c00de 2434#ifdef CONFIG_XPS
04157469
AN
2435struct static_key xps_needed __read_mostly;
2436EXPORT_SYMBOL(xps_needed);
2437struct static_key xps_rxqs_needed __read_mostly;
2438EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2439static DEFINE_MUTEX(xps_map_mutex);
2440#define xmap_dereference(P) \
2441 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2442
6234f874
AD
2443static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2444 int tci, u16 index)
537c00de 2445{
10cdc3f3
AD
2446 struct xps_map *map = NULL;
2447 int pos;
537c00de 2448
10cdc3f3 2449 if (dev_maps)
80d19669 2450 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2451 if (!map)
2452 return false;
537c00de 2453
6234f874
AD
2454 for (pos = map->len; pos--;) {
2455 if (map->queues[pos] != index)
2456 continue;
2457
2458 if (map->len > 1) {
2459 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2460 break;
537c00de 2461 }
6234f874 2462
80d19669 2463 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2464 kfree_rcu(map, rcu);
2465 return false;
537c00de
AD
2466 }
2467
6234f874 2468 return true;
10cdc3f3
AD
2469}
2470
6234f874
AD
2471static bool remove_xps_queue_cpu(struct net_device *dev,
2472 struct xps_dev_maps *dev_maps,
2473 int cpu, u16 offset, u16 count)
2474{
184c449f
AD
2475 int num_tc = dev->num_tc ? : 1;
2476 bool active = false;
2477 int tci;
6234f874 2478
184c449f
AD
2479 for (tci = cpu * num_tc; num_tc--; tci++) {
2480 int i, j;
2481
2482 for (i = count, j = offset; i--; j++) {
6358d49a 2483 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2484 break;
2485 }
2486
2487 active |= i < 0;
6234f874
AD
2488 }
2489
184c449f 2490 return active;
6234f874
AD
2491}
2492
867d0ad4
SD
2493static void reset_xps_maps(struct net_device *dev,
2494 struct xps_dev_maps *dev_maps,
2495 bool is_rxqs_map)
2496{
2497 if (is_rxqs_map) {
2498 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2499 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2500 } else {
2501 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2502 }
2503 static_key_slow_dec_cpuslocked(&xps_needed);
2504 kfree_rcu(dev_maps, rcu);
2505}
2506
80d19669
AN
2507static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2508 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2509 u16 offset, u16 count, bool is_rxqs_map)
2510{
2511 bool active = false;
2512 int i, j;
2513
2514 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2515 j < nr_ids;)
2516 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2517 count);
867d0ad4
SD
2518 if (!active)
2519 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2520
f28c020f
SD
2521 if (!is_rxqs_map) {
2522 for (i = offset + (count - 1); count--; i--) {
2523 netdev_queue_numa_node_write(
2524 netdev_get_tx_queue(dev, i),
2525 NUMA_NO_NODE);
80d19669 2526 }
80d19669
AN
2527 }
2528}
2529
6234f874
AD
2530static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2531 u16 count)
10cdc3f3 2532{
80d19669 2533 const unsigned long *possible_mask = NULL;
10cdc3f3 2534 struct xps_dev_maps *dev_maps;
80d19669 2535 unsigned int nr_ids;
10cdc3f3 2536
04157469
AN
2537 if (!static_key_false(&xps_needed))
2538 return;
10cdc3f3 2539
4d99f660 2540 cpus_read_lock();
04157469 2541 mutex_lock(&xps_map_mutex);
10cdc3f3 2542
04157469
AN
2543 if (static_key_false(&xps_rxqs_needed)) {
2544 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2545 if (dev_maps) {
2546 nr_ids = dev->num_rx_queues;
2547 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2548 offset, count, true);
2549 }
537c00de
AD
2550 }
2551
80d19669
AN
2552 dev_maps = xmap_dereference(dev->xps_cpus_map);
2553 if (!dev_maps)
2554 goto out_no_maps;
2555
2556 if (num_possible_cpus() > 1)
2557 possible_mask = cpumask_bits(cpu_possible_mask);
2558 nr_ids = nr_cpu_ids;
2559 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2560 false);
024e9679 2561
537c00de
AD
2562out_no_maps:
2563 mutex_unlock(&xps_map_mutex);
4d99f660 2564 cpus_read_unlock();
537c00de
AD
2565}
2566
6234f874
AD
2567static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2568{
2569 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2570}
2571
80d19669
AN
2572static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2573 u16 index, bool is_rxqs_map)
01c5f864
AD
2574{
2575 struct xps_map *new_map;
2576 int alloc_len = XPS_MIN_MAP_ALLOC;
2577 int i, pos;
2578
2579 for (pos = 0; map && pos < map->len; pos++) {
2580 if (map->queues[pos] != index)
2581 continue;
2582 return map;
2583 }
2584
80d19669 2585 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2586 if (map) {
2587 if (pos < map->alloc_len)
2588 return map;
2589
2590 alloc_len = map->alloc_len * 2;
2591 }
2592
80d19669
AN
2593 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2594 * map
2595 */
2596 if (is_rxqs_map)
2597 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2598 else
2599 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2600 cpu_to_node(attr_index));
01c5f864
AD
2601 if (!new_map)
2602 return NULL;
2603
2604 for (i = 0; i < pos; i++)
2605 new_map->queues[i] = map->queues[i];
2606 new_map->alloc_len = alloc_len;
2607 new_map->len = pos;
2608
2609 return new_map;
2610}
2611
4d99f660 2612/* Must be called under cpus_read_lock */
80d19669
AN
2613int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2614 u16 index, bool is_rxqs_map)
537c00de 2615{
80d19669 2616 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2617 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2618 int i, j, tci, numa_node_id = -2;
184c449f 2619 int maps_sz, num_tc = 1, tc = 0;
537c00de 2620 struct xps_map *map, *new_map;
01c5f864 2621 bool active = false;
80d19669 2622 unsigned int nr_ids;
537c00de 2623
184c449f 2624 if (dev->num_tc) {
ffcfe25b 2625 /* Do not allow XPS on subordinate device directly */
184c449f 2626 num_tc = dev->num_tc;
ffcfe25b
AD
2627 if (num_tc < 0)
2628 return -EINVAL;
2629
2630 /* If queue belongs to subordinate dev use its map */
2631 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2632
184c449f
AD
2633 tc = netdev_txq_to_tc(dev, index);
2634 if (tc < 0)
2635 return -EINVAL;
2636 }
2637
537c00de 2638 mutex_lock(&xps_map_mutex);
80d19669
AN
2639 if (is_rxqs_map) {
2640 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2641 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2642 nr_ids = dev->num_rx_queues;
2643 } else {
2644 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2645 if (num_possible_cpus() > 1) {
2646 online_mask = cpumask_bits(cpu_online_mask);
2647 possible_mask = cpumask_bits(cpu_possible_mask);
2648 }
2649 dev_maps = xmap_dereference(dev->xps_cpus_map);
2650 nr_ids = nr_cpu_ids;
2651 }
537c00de 2652
80d19669
AN
2653 if (maps_sz < L1_CACHE_BYTES)
2654 maps_sz = L1_CACHE_BYTES;
537c00de 2655
01c5f864 2656 /* allocate memory for queue storage */
80d19669
AN
2657 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2658 j < nr_ids;) {
01c5f864
AD
2659 if (!new_dev_maps)
2660 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2661 if (!new_dev_maps) {
2662 mutex_unlock(&xps_map_mutex);
01c5f864 2663 return -ENOMEM;
2bb60cb9 2664 }
01c5f864 2665
80d19669
AN
2666 tci = j * num_tc + tc;
2667 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2668 NULL;
2669
80d19669 2670 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2671 if (!map)
2672 goto error;
2673
80d19669 2674 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2675 }
2676
2677 if (!new_dev_maps)
2678 goto out_no_new_maps;
2679
867d0ad4
SD
2680 if (!dev_maps) {
2681 /* Increment static keys at most once per type */
2682 static_key_slow_inc_cpuslocked(&xps_needed);
2683 if (is_rxqs_map)
2684 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2685 }
04157469 2686
80d19669
AN
2687 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2688 j < nr_ids;) {
184c449f 2689 /* copy maps belonging to foreign traffic classes */
80d19669 2690 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2691 /* fill in the new device map from the old device map */
80d19669
AN
2692 map = xmap_dereference(dev_maps->attr_map[tci]);
2693 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2694 }
2695
2696 /* We need to explicitly update tci as prevous loop
2697 * could break out early if dev_maps is NULL.
2698 */
80d19669 2699 tci = j * num_tc + tc;
184c449f 2700
80d19669
AN
2701 if (netif_attr_test_mask(j, mask, nr_ids) &&
2702 netif_attr_test_online(j, online_mask, nr_ids)) {
2703 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2704 int pos = 0;
2705
80d19669 2706 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2707 while ((pos < map->len) && (map->queues[pos] != index))
2708 pos++;
2709
2710 if (pos == map->len)
2711 map->queues[map->len++] = index;
537c00de 2712#ifdef CONFIG_NUMA
80d19669
AN
2713 if (!is_rxqs_map) {
2714 if (numa_node_id == -2)
2715 numa_node_id = cpu_to_node(j);
2716 else if (numa_node_id != cpu_to_node(j))
2717 numa_node_id = -1;
2718 }
537c00de 2719#endif
01c5f864
AD
2720 } else if (dev_maps) {
2721 /* fill in the new device map from the old device map */
80d19669
AN
2722 map = xmap_dereference(dev_maps->attr_map[tci]);
2723 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2724 }
01c5f864 2725
184c449f
AD
2726 /* copy maps belonging to foreign traffic classes */
2727 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2728 /* fill in the new device map from the old device map */
80d19669
AN
2729 map = xmap_dereference(dev_maps->attr_map[tci]);
2730 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2731 }
537c00de
AD
2732 }
2733
80d19669
AN
2734 if (is_rxqs_map)
2735 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2736 else
2737 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2738
537c00de 2739 /* Cleanup old maps */
184c449f
AD
2740 if (!dev_maps)
2741 goto out_no_old_maps;
2742
80d19669
AN
2743 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2744 j < nr_ids;) {
2745 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2746 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2747 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2748 if (map && map != new_map)
2749 kfree_rcu(map, rcu);
2750 }
537c00de
AD
2751 }
2752
184c449f
AD
2753 kfree_rcu(dev_maps, rcu);
2754
2755out_no_old_maps:
01c5f864
AD
2756 dev_maps = new_dev_maps;
2757 active = true;
537c00de 2758
01c5f864 2759out_no_new_maps:
80d19669
AN
2760 if (!is_rxqs_map) {
2761 /* update Tx queue numa node */
2762 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2763 (numa_node_id >= 0) ?
2764 numa_node_id : NUMA_NO_NODE);
2765 }
537c00de 2766
01c5f864
AD
2767 if (!dev_maps)
2768 goto out_no_maps;
2769
80d19669
AN
2770 /* removes tx-queue from unused CPUs/rx-queues */
2771 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2772 j < nr_ids;) {
2773 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2774 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2775 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2776 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2777 active |= remove_xps_queue(dev_maps, tci, index);
2778 for (i = num_tc - tc, tci++; --i; tci++)
2779 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2780 }
2781
2782 /* free map if not active */
867d0ad4
SD
2783 if (!active)
2784 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2785
2786out_no_maps:
537c00de
AD
2787 mutex_unlock(&xps_map_mutex);
2788
2789 return 0;
2790error:
01c5f864 2791 /* remove any maps that we added */
80d19669
AN
2792 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2793 j < nr_ids;) {
2794 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2795 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2796 map = dev_maps ?
80d19669 2797 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2798 NULL;
2799 if (new_map && new_map != map)
2800 kfree(new_map);
2801 }
01c5f864
AD
2802 }
2803
537c00de
AD
2804 mutex_unlock(&xps_map_mutex);
2805
537c00de
AD
2806 kfree(new_dev_maps);
2807 return -ENOMEM;
2808}
4d99f660 2809EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2810
2811int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2812 u16 index)
2813{
4d99f660
AV
2814 int ret;
2815
2816 cpus_read_lock();
2817 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2818 cpus_read_unlock();
2819
2820 return ret;
80d19669 2821}
537c00de
AD
2822EXPORT_SYMBOL(netif_set_xps_queue);
2823
2824#endif
ffcfe25b
AD
2825static void netdev_unbind_all_sb_channels(struct net_device *dev)
2826{
2827 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2828
2829 /* Unbind any subordinate channels */
2830 while (txq-- != &dev->_tx[0]) {
2831 if (txq->sb_dev)
2832 netdev_unbind_sb_channel(dev, txq->sb_dev);
2833 }
2834}
2835
9cf1f6a8
AD
2836void netdev_reset_tc(struct net_device *dev)
2837{
6234f874
AD
2838#ifdef CONFIG_XPS
2839 netif_reset_xps_queues_gt(dev, 0);
2840#endif
ffcfe25b
AD
2841 netdev_unbind_all_sb_channels(dev);
2842
2843 /* Reset TC configuration of device */
9cf1f6a8
AD
2844 dev->num_tc = 0;
2845 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2846 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2847}
2848EXPORT_SYMBOL(netdev_reset_tc);
2849
2850int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2851{
2852 if (tc >= dev->num_tc)
2853 return -EINVAL;
2854
6234f874
AD
2855#ifdef CONFIG_XPS
2856 netif_reset_xps_queues(dev, offset, count);
2857#endif
9cf1f6a8
AD
2858 dev->tc_to_txq[tc].count = count;
2859 dev->tc_to_txq[tc].offset = offset;
2860 return 0;
2861}
2862EXPORT_SYMBOL(netdev_set_tc_queue);
2863
2864int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2865{
2866 if (num_tc > TC_MAX_QUEUE)
2867 return -EINVAL;
2868
6234f874
AD
2869#ifdef CONFIG_XPS
2870 netif_reset_xps_queues_gt(dev, 0);
2871#endif
ffcfe25b
AD
2872 netdev_unbind_all_sb_channels(dev);
2873
9cf1f6a8
AD
2874 dev->num_tc = num_tc;
2875 return 0;
2876}
2877EXPORT_SYMBOL(netdev_set_num_tc);
2878
ffcfe25b
AD
2879void netdev_unbind_sb_channel(struct net_device *dev,
2880 struct net_device *sb_dev)
2881{
2882 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2883
2884#ifdef CONFIG_XPS
2885 netif_reset_xps_queues_gt(sb_dev, 0);
2886#endif
2887 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2888 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2889
2890 while (txq-- != &dev->_tx[0]) {
2891 if (txq->sb_dev == sb_dev)
2892 txq->sb_dev = NULL;
2893 }
2894}
2895EXPORT_SYMBOL(netdev_unbind_sb_channel);
2896
2897int netdev_bind_sb_channel_queue(struct net_device *dev,
2898 struct net_device *sb_dev,
2899 u8 tc, u16 count, u16 offset)
2900{
2901 /* Make certain the sb_dev and dev are already configured */
2902 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2903 return -EINVAL;
2904
2905 /* We cannot hand out queues we don't have */
2906 if ((offset + count) > dev->real_num_tx_queues)
2907 return -EINVAL;
2908
2909 /* Record the mapping */
2910 sb_dev->tc_to_txq[tc].count = count;
2911 sb_dev->tc_to_txq[tc].offset = offset;
2912
2913 /* Provide a way for Tx queue to find the tc_to_txq map or
2914 * XPS map for itself.
2915 */
2916 while (count--)
2917 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2918
2919 return 0;
2920}
2921EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2922
2923int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2924{
2925 /* Do not use a multiqueue device to represent a subordinate channel */
2926 if (netif_is_multiqueue(dev))
2927 return -ENODEV;
2928
2929 /* We allow channels 1 - 32767 to be used for subordinate channels.
2930 * Channel 0 is meant to be "native" mode and used only to represent
2931 * the main root device. We allow writing 0 to reset the device back
2932 * to normal mode after being used as a subordinate channel.
2933 */
2934 if (channel > S16_MAX)
2935 return -EINVAL;
2936
2937 dev->num_tc = -channel;
2938
2939 return 0;
2940}
2941EXPORT_SYMBOL(netdev_set_sb_channel);
2942
f0796d5c
JF
2943/*
2944 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2945 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2946 */
e6484930 2947int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2948{
ac5b7019 2949 bool disabling;
1d24eb48
TH
2950 int rc;
2951
ac5b7019
JK
2952 disabling = txq < dev->real_num_tx_queues;
2953
e6484930
TH
2954 if (txq < 1 || txq > dev->num_tx_queues)
2955 return -EINVAL;
f0796d5c 2956
5c56580b
BH
2957 if (dev->reg_state == NETREG_REGISTERED ||
2958 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2959 ASSERT_RTNL();
2960
1d24eb48
TH
2961 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2962 txq);
bf264145
TH
2963 if (rc)
2964 return rc;
2965
4f57c087
JF
2966 if (dev->num_tc)
2967 netif_setup_tc(dev, txq);
2968
ac5b7019
JK
2969 dev->real_num_tx_queues = txq;
2970
2971 if (disabling) {
2972 synchronize_net();
e6484930 2973 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2974#ifdef CONFIG_XPS
2975 netif_reset_xps_queues_gt(dev, txq);
2976#endif
2977 }
ac5b7019
JK
2978 } else {
2979 dev->real_num_tx_queues = txq;
f0796d5c 2980 }
e6484930 2981
e6484930 2982 return 0;
f0796d5c
JF
2983}
2984EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2985
a953be53 2986#ifdef CONFIG_SYSFS
62fe0b40
BH
2987/**
2988 * netif_set_real_num_rx_queues - set actual number of RX queues used
2989 * @dev: Network device
2990 * @rxq: Actual number of RX queues
2991 *
2992 * This must be called either with the rtnl_lock held or before
2993 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2994 * negative error code. If called before registration, it always
2995 * succeeds.
62fe0b40
BH
2996 */
2997int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2998{
2999 int rc;
3000
bd25fa7b
TH
3001 if (rxq < 1 || rxq > dev->num_rx_queues)
3002 return -EINVAL;
3003
62fe0b40
BH
3004 if (dev->reg_state == NETREG_REGISTERED) {
3005 ASSERT_RTNL();
3006
62fe0b40
BH
3007 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3008 rxq);
3009 if (rc)
3010 return rc;
62fe0b40
BH
3011 }
3012
3013 dev->real_num_rx_queues = rxq;
3014 return 0;
3015}
3016EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3017#endif
3018
2c53040f
BH
3019/**
3020 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
3021 *
3022 * This routine should set an upper limit on the number of RSS queues
3023 * used by default by multiqueue devices.
3024 */
a55b138b 3025int netif_get_num_default_rss_queues(void)
16917b87 3026{
40e4e713
HS
3027 return is_kdump_kernel() ?
3028 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
3029}
3030EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3031
3bcb846c 3032static void __netif_reschedule(struct Qdisc *q)
56079431 3033{
def82a1d
JP
3034 struct softnet_data *sd;
3035 unsigned long flags;
56079431 3036
def82a1d 3037 local_irq_save(flags);
903ceff7 3038 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
3039 q->next_sched = NULL;
3040 *sd->output_queue_tailp = q;
3041 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
3042 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3043 local_irq_restore(flags);
3044}
3045
3046void __netif_schedule(struct Qdisc *q)
3047{
3048 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3049 __netif_reschedule(q);
56079431
DV
3050}
3051EXPORT_SYMBOL(__netif_schedule);
3052
e6247027
ED
3053struct dev_kfree_skb_cb {
3054 enum skb_free_reason reason;
3055};
3056
3057static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 3058{
e6247027
ED
3059 return (struct dev_kfree_skb_cb *)skb->cb;
3060}
3061
46e5da40
JF
3062void netif_schedule_queue(struct netdev_queue *txq)
3063{
3064 rcu_read_lock();
5be5515a 3065 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
3066 struct Qdisc *q = rcu_dereference(txq->qdisc);
3067
3068 __netif_schedule(q);
3069 }
3070 rcu_read_unlock();
3071}
3072EXPORT_SYMBOL(netif_schedule_queue);
3073
46e5da40
JF
3074void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3075{
3076 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3077 struct Qdisc *q;
3078
3079 rcu_read_lock();
3080 q = rcu_dereference(dev_queue->qdisc);
3081 __netif_schedule(q);
3082 rcu_read_unlock();
3083 }
3084}
3085EXPORT_SYMBOL(netif_tx_wake_queue);
3086
e6247027 3087void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3088{
e6247027 3089 unsigned long flags;
56079431 3090
9899886d
MJ
3091 if (unlikely(!skb))
3092 return;
3093
63354797 3094 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3095 smp_rmb();
63354797
RE
3096 refcount_set(&skb->users, 0);
3097 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3098 return;
bea3348e 3099 }
e6247027
ED
3100 get_kfree_skb_cb(skb)->reason = reason;
3101 local_irq_save(flags);
3102 skb->next = __this_cpu_read(softnet_data.completion_queue);
3103 __this_cpu_write(softnet_data.completion_queue, skb);
3104 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3105 local_irq_restore(flags);
56079431 3106}
e6247027 3107EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3108
e6247027 3109void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3110{
3111 if (in_irq() || irqs_disabled())
e6247027 3112 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3113 else
3114 dev_kfree_skb(skb);
3115}
e6247027 3116EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3117
3118
bea3348e
SH
3119/**
3120 * netif_device_detach - mark device as removed
3121 * @dev: network device
3122 *
3123 * Mark device as removed from system and therefore no longer available.
3124 */
56079431
DV
3125void netif_device_detach(struct net_device *dev)
3126{
3127 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3128 netif_running(dev)) {
d543103a 3129 netif_tx_stop_all_queues(dev);
56079431
DV
3130 }
3131}
3132EXPORT_SYMBOL(netif_device_detach);
3133
bea3348e
SH
3134/**
3135 * netif_device_attach - mark device as attached
3136 * @dev: network device
3137 *
3138 * Mark device as attached from system and restart if needed.
3139 */
56079431
DV
3140void netif_device_attach(struct net_device *dev)
3141{
3142 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3143 netif_running(dev)) {
d543103a 3144 netif_tx_wake_all_queues(dev);
4ec93edb 3145 __netdev_watchdog_up(dev);
56079431
DV
3146 }
3147}
3148EXPORT_SYMBOL(netif_device_attach);
3149
5605c762
JP
3150/*
3151 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3152 * to be used as a distribution range.
3153 */
eadec877
AD
3154static u16 skb_tx_hash(const struct net_device *dev,
3155 const struct net_device *sb_dev,
3156 struct sk_buff *skb)
5605c762
JP
3157{
3158 u32 hash;
3159 u16 qoffset = 0;
1b837d48 3160 u16 qcount = dev->real_num_tx_queues;
5605c762 3161
eadec877
AD
3162 if (dev->num_tc) {
3163 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3164
3165 qoffset = sb_dev->tc_to_txq[tc].offset;
3166 qcount = sb_dev->tc_to_txq[tc].count;
3167 }
3168
5605c762
JP
3169 if (skb_rx_queue_recorded(skb)) {
3170 hash = skb_get_rx_queue(skb);
6e11d157
AN
3171 if (hash >= qoffset)
3172 hash -= qoffset;
1b837d48
AD
3173 while (unlikely(hash >= qcount))
3174 hash -= qcount;
eadec877 3175 return hash + qoffset;
5605c762
JP
3176 }
3177
3178 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3179}
5605c762 3180
36c92474
BH
3181static void skb_warn_bad_offload(const struct sk_buff *skb)
3182{
84d15ae5 3183 static const netdev_features_t null_features;
36c92474 3184 struct net_device *dev = skb->dev;
88ad4175 3185 const char *name = "";
36c92474 3186
c846ad9b
BG
3187 if (!net_ratelimit())
3188 return;
3189
88ad4175
BM
3190 if (dev) {
3191 if (dev->dev.parent)
3192 name = dev_driver_string(dev->dev.parent);
3193 else
3194 name = netdev_name(dev);
3195 }
6413139d
WB
3196 skb_dump(KERN_WARNING, skb, false);
3197 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3198 name, dev ? &dev->features : &null_features,
6413139d 3199 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3200}
3201
1da177e4
LT
3202/*
3203 * Invalidate hardware checksum when packet is to be mangled, and
3204 * complete checksum manually on outgoing path.
3205 */
84fa7933 3206int skb_checksum_help(struct sk_buff *skb)
1da177e4 3207{
d3bc23e7 3208 __wsum csum;
663ead3b 3209 int ret = 0, offset;
1da177e4 3210
84fa7933 3211 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3212 goto out_set_summed;
3213
3aefd7d6 3214 if (unlikely(skb_is_gso(skb))) {
36c92474
BH
3215 skb_warn_bad_offload(skb);
3216 return -EINVAL;
1da177e4
LT
3217 }
3218
cef401de
ED
3219 /* Before computing a checksum, we should make sure no frag could
3220 * be modified by an external entity : checksum could be wrong.
3221 */
3222 if (skb_has_shared_frag(skb)) {
3223 ret = __skb_linearize(skb);
3224 if (ret)
3225 goto out;
3226 }
3227
55508d60 3228 offset = skb_checksum_start_offset(skb);
a030847e
HX
3229 BUG_ON(offset >= skb_headlen(skb));
3230 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3231
3232 offset += skb->csum_offset;
3233 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3234
8211fbfa
HK
3235 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3236 if (ret)
3237 goto out;
1da177e4 3238
4f2e4ad5 3239 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3240out_set_summed:
1da177e4 3241 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3242out:
1da177e4
LT
3243 return ret;
3244}
d1b19dff 3245EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3246
b72b5bf6
DC
3247int skb_crc32c_csum_help(struct sk_buff *skb)
3248{
3249 __le32 crc32c_csum;
3250 int ret = 0, offset, start;
3251
3252 if (skb->ip_summed != CHECKSUM_PARTIAL)
3253 goto out;
3254
3255 if (unlikely(skb_is_gso(skb)))
3256 goto out;
3257
3258 /* Before computing a checksum, we should make sure no frag could
3259 * be modified by an external entity : checksum could be wrong.
3260 */
3261 if (unlikely(skb_has_shared_frag(skb))) {
3262 ret = __skb_linearize(skb);
3263 if (ret)
3264 goto out;
3265 }
3266 start = skb_checksum_start_offset(skb);
3267 offset = start + offsetof(struct sctphdr, checksum);
3268 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3269 ret = -EINVAL;
3270 goto out;
3271 }
8211fbfa
HK
3272
3273 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3274 if (ret)
3275 goto out;
3276
b72b5bf6
DC
3277 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3278 skb->len - start, ~(__u32)0,
3279 crc32c_csum_stub));
3280 *(__le32 *)(skb->data + offset) = crc32c_csum;
3281 skb->ip_summed = CHECKSUM_NONE;
dba00306 3282 skb->csum_not_inet = 0;
b72b5bf6
DC
3283out:
3284 return ret;
3285}
3286
53d6471c 3287__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3288{
252e3346 3289 __be16 type = skb->protocol;
f6a78bfc 3290
19acc327
PS
3291 /* Tunnel gso handlers can set protocol to ethernet. */
3292 if (type == htons(ETH_P_TEB)) {
3293 struct ethhdr *eth;
3294
3295 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3296 return 0;
3297
1dfe82eb 3298 eth = (struct ethhdr *)skb->data;
19acc327
PS
3299 type = eth->h_proto;
3300 }
3301
d4bcef3f 3302 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3303}
3304
3305/**
3306 * skb_mac_gso_segment - mac layer segmentation handler.
3307 * @skb: buffer to segment
3308 * @features: features for the output path (see dev->features)
3309 */
3310struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3311 netdev_features_t features)
3312{
3313 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3314 struct packet_offload *ptype;
53d6471c
VY
3315 int vlan_depth = skb->mac_len;
3316 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3317
3318 if (unlikely(!type))
3319 return ERR_PTR(-EINVAL);
3320
53d6471c 3321 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3322
3323 rcu_read_lock();
22061d80 3324 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3325 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3326 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3327 break;
3328 }
3329 }
3330 rcu_read_unlock();
3331
98e399f8 3332 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3333
f6a78bfc
HX
3334 return segs;
3335}
05e8ef4a
PS
3336EXPORT_SYMBOL(skb_mac_gso_segment);
3337
3338
3339/* openvswitch calls this on rx path, so we need a different check.
3340 */
3341static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3342{
3343 if (tx_path)
0c19f846
WB
3344 return skb->ip_summed != CHECKSUM_PARTIAL &&
3345 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3346
3347 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3348}
3349
3350/**
3351 * __skb_gso_segment - Perform segmentation on skb.
3352 * @skb: buffer to segment
3353 * @features: features for the output path (see dev->features)
3354 * @tx_path: whether it is called in TX path
3355 *
3356 * This function segments the given skb and returns a list of segments.
3357 *
3358 * It may return NULL if the skb requires no segmentation. This is
3359 * only possible when GSO is used for verifying header integrity.
9207f9d4 3360 *
a08e7fd9 3361 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3362 */
3363struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3364 netdev_features_t features, bool tx_path)
3365{
b2504a5d
ED
3366 struct sk_buff *segs;
3367
05e8ef4a
PS
3368 if (unlikely(skb_needs_check(skb, tx_path))) {
3369 int err;
3370
b2504a5d 3371 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3372 err = skb_cow_head(skb, 0);
3373 if (err < 0)
05e8ef4a
PS
3374 return ERR_PTR(err);
3375 }
3376
802ab55a
AD
3377 /* Only report GSO partial support if it will enable us to
3378 * support segmentation on this frame without needing additional
3379 * work.
3380 */
3381 if (features & NETIF_F_GSO_PARTIAL) {
3382 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3383 struct net_device *dev = skb->dev;
3384
3385 partial_features |= dev->features & dev->gso_partial_features;
3386 if (!skb_gso_ok(skb, features | partial_features))
3387 features &= ~NETIF_F_GSO_PARTIAL;
3388 }
3389
a08e7fd9 3390 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3391 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3392
68c33163 3393 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3394 SKB_GSO_CB(skb)->encap_level = 0;
3395
05e8ef4a
PS
3396 skb_reset_mac_header(skb);
3397 skb_reset_mac_len(skb);
3398
b2504a5d
ED
3399 segs = skb_mac_gso_segment(skb, features);
3400
3a1296a3 3401 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3402 skb_warn_bad_offload(skb);
3403
3404 return segs;
05e8ef4a 3405}
12b0004d 3406EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3407
fb286bb2
HX
3408/* Take action when hardware reception checksum errors are detected. */
3409#ifdef CONFIG_BUG
7fe50ac8 3410void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3411{
3412 if (net_ratelimit()) {
7b6cd1ce 3413 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3414 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3415 dump_stack();
3416 }
3417}
3418EXPORT_SYMBOL(netdev_rx_csum_fault);
3419#endif
3420
ab74cfeb 3421/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3422static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3423{
3d3a8533 3424#ifdef CONFIG_HIGHMEM
1da177e4 3425 int i;
f4563a75 3426
5acbbd42 3427 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3430
ea2ab693 3431 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3432 return 1;
ea2ab693 3433 }
5acbbd42 3434 }
3d3a8533 3435#endif
1da177e4
LT
3436 return 0;
3437}
1da177e4 3438
3b392ddb
SH
3439/* If MPLS offload request, verify we are testing hardware MPLS features
3440 * instead of standard features for the netdev.
3441 */
d0edc7bf 3442#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3443static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 netdev_features_t features,
3445 __be16 type)
3446{
25cd9ba0 3447 if (eth_p_mpls(type))
3b392ddb
SH
3448 features &= skb->dev->mpls_features;
3449
3450 return features;
3451}
3452#else
3453static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 netdev_features_t features,
3455 __be16 type)
3456{
3457 return features;
3458}
3459#endif
3460
c8f44aff 3461static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3462 netdev_features_t features)
f01a5236 3463{
3b392ddb
SH
3464 __be16 type;
3465
9fc95f50 3466 type = skb_network_protocol(skb, NULL);
3b392ddb 3467 features = net_mpls_features(skb, features, type);
53d6471c 3468
c0d680e5 3469 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3470 !can_checksum_protocol(features, type)) {
996e8021 3471 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3472 }
7be2c82c
ED
3473 if (illegal_highdma(skb->dev, skb))
3474 features &= ~NETIF_F_SG;
f01a5236
JG
3475
3476 return features;
3477}
3478
e38f3025
TM
3479netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 struct net_device *dev,
3481 netdev_features_t features)
3482{
3483 return features;
3484}
3485EXPORT_SYMBOL(passthru_features_check);
3486
7ce23672 3487static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3488 struct net_device *dev,
3489 netdev_features_t features)
3490{
3491 return vlan_features_check(skb, features);
3492}
3493
cbc53e08
AD
3494static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 struct net_device *dev,
3496 netdev_features_t features)
3497{
3498 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499
3500 if (gso_segs > dev->gso_max_segs)
3501 return features & ~NETIF_F_GSO_MASK;
3502
1d155dfd
HK
3503 if (!skb_shinfo(skb)->gso_type) {
3504 skb_warn_bad_offload(skb);
3505 return features & ~NETIF_F_GSO_MASK;
3506 }
3507
802ab55a
AD
3508 /* Support for GSO partial features requires software
3509 * intervention before we can actually process the packets
3510 * so we need to strip support for any partial features now
3511 * and we can pull them back in after we have partially
3512 * segmented the frame.
3513 */
3514 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3515 features &= ~dev->gso_partial_features;
3516
3517 /* Make sure to clear the IPv4 ID mangling feature if the
3518 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3519 */
3520 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3521 struct iphdr *iph = skb->encapsulation ?
3522 inner_ip_hdr(skb) : ip_hdr(skb);
3523
3524 if (!(iph->frag_off & htons(IP_DF)))
3525 features &= ~NETIF_F_TSO_MANGLEID;
3526 }
3527
3528 return features;
3529}
3530
c1e756bf 3531netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3532{
5f35227e 3533 struct net_device *dev = skb->dev;
fcbeb976 3534 netdev_features_t features = dev->features;
58e998c6 3535
cbc53e08
AD
3536 if (skb_is_gso(skb))
3537 features = gso_features_check(skb, dev, features);
30b678d8 3538
5f35227e
JG
3539 /* If encapsulation offload request, verify we are testing
3540 * hardware encapsulation features instead of standard
3541 * features for the netdev
3542 */
3543 if (skb->encapsulation)
3544 features &= dev->hw_enc_features;
3545
f5a7fb88
TM
3546 if (skb_vlan_tagged(skb))
3547 features = netdev_intersect_features(features,
3548 dev->vlan_features |
3549 NETIF_F_HW_VLAN_CTAG_TX |
3550 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3551
5f35227e
JG
3552 if (dev->netdev_ops->ndo_features_check)
3553 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3554 features);
8cb65d00
TM
3555 else
3556 features &= dflt_features_check(skb, dev, features);
5f35227e 3557
c1e756bf 3558 return harmonize_features(skb, features);
58e998c6 3559}
c1e756bf 3560EXPORT_SYMBOL(netif_skb_features);
58e998c6 3561
2ea25513 3562static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3563 struct netdev_queue *txq, bool more)
f6a78bfc 3564{
2ea25513
DM
3565 unsigned int len;
3566 int rc;
00829823 3567
9f9a742d 3568 if (dev_nit_active(dev))
2ea25513 3569 dev_queue_xmit_nit(skb, dev);
fc741216 3570
2ea25513 3571 len = skb->len;
3744741a 3572 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
2ea25513 3573 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3574 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3575 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3576
2ea25513
DM
3577 return rc;
3578}
7b9c6090 3579
8dcda22a
DM
3580struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3581 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3582{
3583 struct sk_buff *skb = first;
3584 int rc = NETDEV_TX_OK;
7b9c6090 3585
7f2e870f
DM
3586 while (skb) {
3587 struct sk_buff *next = skb->next;
fc70fb64 3588
a8305bff 3589 skb_mark_not_on_list(skb);
95f6b3dd 3590 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3591 if (unlikely(!dev_xmit_complete(rc))) {
3592 skb->next = next;
3593 goto out;
3594 }
6afff0ca 3595
7f2e870f 3596 skb = next;
fe60faa5 3597 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3598 rc = NETDEV_TX_BUSY;
3599 break;
9ccb8975 3600 }
7f2e870f 3601 }
9ccb8975 3602
7f2e870f
DM
3603out:
3604 *ret = rc;
3605 return skb;
3606}
b40863c6 3607
1ff0dc94
ED
3608static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3609 netdev_features_t features)
f6a78bfc 3610{
df8a39de 3611 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3612 !vlan_hw_offload_capable(features, skb->vlan_proto))
3613 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3614 return skb;
3615}
f6a78bfc 3616
43c26a1a
DC
3617int skb_csum_hwoffload_help(struct sk_buff *skb,
3618 const netdev_features_t features)
3619{
fa821170 3620 if (unlikely(skb_csum_is_sctp(skb)))
43c26a1a
DC
3621 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3622 skb_crc32c_csum_help(skb);
3623
62fafcd6
XL
3624 if (features & NETIF_F_HW_CSUM)
3625 return 0;
3626
3627 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3628 switch (skb->csum_offset) {
3629 case offsetof(struct tcphdr, check):
3630 case offsetof(struct udphdr, check):
3631 return 0;
3632 }
3633 }
3634
3635 return skb_checksum_help(skb);
43c26a1a
DC
3636}
3637EXPORT_SYMBOL(skb_csum_hwoffload_help);
3638
f53c7239 3639static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3640{
3641 netdev_features_t features;
f6a78bfc 3642
eae3f88e
DM
3643 features = netif_skb_features(skb);
3644 skb = validate_xmit_vlan(skb, features);
3645 if (unlikely(!skb))
3646 goto out_null;
7b9c6090 3647
ebf4e808
IL
3648 skb = sk_validate_xmit_skb(skb, dev);
3649 if (unlikely(!skb))
3650 goto out_null;
3651
8b86a61d 3652 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3653 struct sk_buff *segs;
3654
3655 segs = skb_gso_segment(skb, features);
cecda693 3656 if (IS_ERR(segs)) {
af6dabc9 3657 goto out_kfree_skb;
cecda693
JW
3658 } else if (segs) {
3659 consume_skb(skb);
3660 skb = segs;
f6a78bfc 3661 }
eae3f88e
DM
3662 } else {
3663 if (skb_needs_linearize(skb, features) &&
3664 __skb_linearize(skb))
3665 goto out_kfree_skb;
4ec93edb 3666
eae3f88e
DM
3667 /* If packet is not checksummed and device does not
3668 * support checksumming for this protocol, complete
3669 * checksumming here.
3670 */
3671 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3672 if (skb->encapsulation)
3673 skb_set_inner_transport_header(skb,
3674 skb_checksum_start_offset(skb));
3675 else
3676 skb_set_transport_header(skb,
3677 skb_checksum_start_offset(skb));
43c26a1a 3678 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3679 goto out_kfree_skb;
7b9c6090 3680 }
0c772159 3681 }
7b9c6090 3682
f53c7239 3683 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3684
eae3f88e 3685 return skb;
fc70fb64 3686
f6a78bfc
HX
3687out_kfree_skb:
3688 kfree_skb(skb);
eae3f88e 3689out_null:
d21fd63e 3690 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3691 return NULL;
3692}
6afff0ca 3693
f53c7239 3694struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3695{
3696 struct sk_buff *next, *head = NULL, *tail;
3697
bec3cfdc 3698 for (; skb != NULL; skb = next) {
55a93b3e 3699 next = skb->next;
a8305bff 3700 skb_mark_not_on_list(skb);
bec3cfdc
ED
3701
3702 /* in case skb wont be segmented, point to itself */
3703 skb->prev = skb;
3704
f53c7239 3705 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3706 if (!skb)
3707 continue;
55a93b3e 3708
bec3cfdc
ED
3709 if (!head)
3710 head = skb;
3711 else
3712 tail->next = skb;
3713 /* If skb was segmented, skb->prev points to
3714 * the last segment. If not, it still contains skb.
3715 */
3716 tail = skb->prev;
55a93b3e
ED
3717 }
3718 return head;
f6a78bfc 3719}
104ba78c 3720EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3721
1def9238
ED
3722static void qdisc_pkt_len_init(struct sk_buff *skb)
3723{
3724 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3725
3726 qdisc_skb_cb(skb)->pkt_len = skb->len;
3727
3728 /* To get more precise estimation of bytes sent on wire,
3729 * we add to pkt_len the headers size of all segments
3730 */
a0dce875 3731 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3732 unsigned int hdr_len;
15e5a030 3733 u16 gso_segs = shinfo->gso_segs;
1def9238 3734
757b8b1d
ED
3735 /* mac layer + network layer */
3736 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3737
3738 /* + transport layer */
7c68d1a6
ED
3739 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3740 const struct tcphdr *th;
3741 struct tcphdr _tcphdr;
3742
3743 th = skb_header_pointer(skb, skb_transport_offset(skb),
3744 sizeof(_tcphdr), &_tcphdr);
3745 if (likely(th))
3746 hdr_len += __tcp_hdrlen(th);
3747 } else {
3748 struct udphdr _udphdr;
3749
3750 if (skb_header_pointer(skb, skb_transport_offset(skb),
3751 sizeof(_udphdr), &_udphdr))
3752 hdr_len += sizeof(struct udphdr);
3753 }
15e5a030
JW
3754
3755 if (shinfo->gso_type & SKB_GSO_DODGY)
3756 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3757 shinfo->gso_size);
3758
3759 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3760 }
3761}
3762
bbd8a0d3
KK
3763static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3764 struct net_device *dev,
3765 struct netdev_queue *txq)
3766{
3767 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3768 struct sk_buff *to_free = NULL;
a2da570d 3769 bool contended;
bbd8a0d3
KK
3770 int rc;
3771
a2da570d 3772 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3773
3774 if (q->flags & TCQ_F_NOLOCK) {
ac5c66f2 3775 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
379349e9 3776 qdisc_run(q);
6b3ba914
JF
3777
3778 if (unlikely(to_free))
3779 kfree_skb_list(to_free);
3780 return rc;
3781 }
3782
79640a4c
ED
3783 /*
3784 * Heuristic to force contended enqueues to serialize on a
3785 * separate lock before trying to get qdisc main lock.
f9eb8aea 3786 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3787 * often and dequeue packets faster.
79640a4c 3788 */
a2da570d 3789 contended = qdisc_is_running(q);
79640a4c
ED
3790 if (unlikely(contended))
3791 spin_lock(&q->busylock);
3792
bbd8a0d3
KK
3793 spin_lock(root_lock);
3794 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3795 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3796 rc = NET_XMIT_DROP;
3797 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3798 qdisc_run_begin(q)) {
bbd8a0d3
KK
3799 /*
3800 * This is a work-conserving queue; there are no old skbs
3801 * waiting to be sent out; and the qdisc is not running -
3802 * xmit the skb directly.
3803 */
bfe0d029 3804
bfe0d029
ED
3805 qdisc_bstats_update(q, skb);
3806
55a93b3e 3807 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3808 if (unlikely(contended)) {
3809 spin_unlock(&q->busylock);
3810 contended = false;
3811 }
bbd8a0d3 3812 __qdisc_run(q);
6c148184 3813 }
bbd8a0d3 3814
6c148184 3815 qdisc_run_end(q);
bbd8a0d3
KK
3816 rc = NET_XMIT_SUCCESS;
3817 } else {
ac5c66f2 3818 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3819 if (qdisc_run_begin(q)) {
3820 if (unlikely(contended)) {
3821 spin_unlock(&q->busylock);
3822 contended = false;
3823 }
3824 __qdisc_run(q);
6c148184 3825 qdisc_run_end(q);
79640a4c 3826 }
bbd8a0d3
KK
3827 }
3828 spin_unlock(root_lock);
520ac30f
ED
3829 if (unlikely(to_free))
3830 kfree_skb_list(to_free);
79640a4c
ED
3831 if (unlikely(contended))
3832 spin_unlock(&q->busylock);
bbd8a0d3
KK
3833 return rc;
3834}
3835
86f8515f 3836#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3837static void skb_update_prio(struct sk_buff *skb)
3838{
4dcb31d4
ED
3839 const struct netprio_map *map;
3840 const struct sock *sk;
3841 unsigned int prioidx;
5bc1421e 3842
4dcb31d4
ED
3843 if (skb->priority)
3844 return;
3845 map = rcu_dereference_bh(skb->dev->priomap);
3846 if (!map)
3847 return;
3848 sk = skb_to_full_sk(skb);
3849 if (!sk)
3850 return;
91c68ce2 3851
4dcb31d4
ED
3852 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3853
3854 if (prioidx < map->priomap_len)
3855 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3856}
3857#else
3858#define skb_update_prio(skb)
3859#endif
3860
95603e22
MM
3861/**
3862 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3863 * @net: network namespace this loopback is happening in
3864 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3865 * @skb: buffer to transmit
3866 */
0c4b51f0 3867int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3868{
3869 skb_reset_mac_header(skb);
3870 __skb_pull(skb, skb_network_offset(skb));
3871 skb->pkt_type = PACKET_LOOPBACK;
3872 skb->ip_summed = CHECKSUM_UNNECESSARY;
3873 WARN_ON(!skb_dst(skb));
3874 skb_dst_force(skb);
3875 netif_rx_ni(skb);
3876 return 0;
3877}
3878EXPORT_SYMBOL(dev_loopback_xmit);
3879
1f211a1b
DB
3880#ifdef CONFIG_NET_EGRESS
3881static struct sk_buff *
3882sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3883{
46209401 3884 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3885 struct tcf_result cl_res;
3886
46209401 3887 if (!miniq)
1f211a1b
DB
3888 return skb;
3889
8dc07fdb 3890 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
aadaca9e 3891 qdisc_skb_cb(skb)->mru = 0;
7baf2429 3892 qdisc_skb_cb(skb)->post_ct = false;
46209401 3893 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3894
46209401 3895 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3896 case TC_ACT_OK:
3897 case TC_ACT_RECLASSIFY:
3898 skb->tc_index = TC_H_MIN(cl_res.classid);
3899 break;
3900 case TC_ACT_SHOT:
46209401 3901 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3902 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3903 kfree_skb(skb);
3904 return NULL;
1f211a1b
DB
3905 case TC_ACT_STOLEN:
3906 case TC_ACT_QUEUED:
e25ea21f 3907 case TC_ACT_TRAP:
1f211a1b 3908 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3909 consume_skb(skb);
1f211a1b
DB
3910 return NULL;
3911 case TC_ACT_REDIRECT:
3912 /* No need to push/pop skb's mac_header here on egress! */
3913 skb_do_redirect(skb);
3914 *ret = NET_XMIT_SUCCESS;
3915 return NULL;
3916 default:
3917 break;
3918 }
357b6cc5 3919
1f211a1b
DB
3920 return skb;
3921}
3922#endif /* CONFIG_NET_EGRESS */
3923
fc9bab24
AN
3924#ifdef CONFIG_XPS
3925static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3926 struct xps_dev_maps *dev_maps, unsigned int tci)
3927{
3928 struct xps_map *map;
3929 int queue_index = -1;
3930
3931 if (dev->num_tc) {
3932 tci *= dev->num_tc;
3933 tci += netdev_get_prio_tc_map(dev, skb->priority);
3934 }
3935
3936 map = rcu_dereference(dev_maps->attr_map[tci]);
3937 if (map) {
3938 if (map->len == 1)
3939 queue_index = map->queues[0];
3940 else
3941 queue_index = map->queues[reciprocal_scale(
3942 skb_get_hash(skb), map->len)];
3943 if (unlikely(queue_index >= dev->real_num_tx_queues))
3944 queue_index = -1;
3945 }
3946 return queue_index;
3947}
3948#endif
3949
eadec877
AD
3950static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3951 struct sk_buff *skb)
638b2a69
JP
3952{
3953#ifdef CONFIG_XPS
3954 struct xps_dev_maps *dev_maps;
fc9bab24 3955 struct sock *sk = skb->sk;
638b2a69
JP
3956 int queue_index = -1;
3957
04157469
AN
3958 if (!static_key_false(&xps_needed))
3959 return -1;
3960
638b2a69 3961 rcu_read_lock();
fc9bab24
AN
3962 if (!static_key_false(&xps_rxqs_needed))
3963 goto get_cpus_map;
3964
eadec877 3965 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3966 if (dev_maps) {
fc9bab24 3967 int tci = sk_rx_queue_get(sk);
184c449f 3968
fc9bab24
AN
3969 if (tci >= 0 && tci < dev->num_rx_queues)
3970 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3971 tci);
3972 }
184c449f 3973
fc9bab24
AN
3974get_cpus_map:
3975 if (queue_index < 0) {
eadec877 3976 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3977 if (dev_maps) {
3978 unsigned int tci = skb->sender_cpu - 1;
3979
3980 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3981 tci);
638b2a69
JP
3982 }
3983 }
3984 rcu_read_unlock();
3985
3986 return queue_index;
3987#else
3988 return -1;
3989#endif
3990}
3991
a4ea8a3d 3992u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3993 struct net_device *sb_dev)
a4ea8a3d
AD
3994{
3995 return 0;
3996}
3997EXPORT_SYMBOL(dev_pick_tx_zero);
3998
3999u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 4000 struct net_device *sb_dev)
a4ea8a3d
AD
4001{
4002 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4003}
4004EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4005
b71b5837
PA
4006u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4007 struct net_device *sb_dev)
638b2a69
JP
4008{
4009 struct sock *sk = skb->sk;
4010 int queue_index = sk_tx_queue_get(sk);
4011
eadec877
AD
4012 sb_dev = sb_dev ? : dev;
4013
638b2a69
JP
4014 if (queue_index < 0 || skb->ooo_okay ||
4015 queue_index >= dev->real_num_tx_queues) {
eadec877 4016 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 4017
638b2a69 4018 if (new_index < 0)
eadec877 4019 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
4020
4021 if (queue_index != new_index && sk &&
004a5d01 4022 sk_fullsock(sk) &&
638b2a69
JP
4023 rcu_access_pointer(sk->sk_dst_cache))
4024 sk_tx_queue_set(sk, new_index);
4025
4026 queue_index = new_index;
4027 }
4028
4029 return queue_index;
4030}
b71b5837 4031EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 4032
4bd97d51
PA
4033struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4034 struct sk_buff *skb,
4035 struct net_device *sb_dev)
638b2a69
JP
4036{
4037 int queue_index = 0;
4038
4039#ifdef CONFIG_XPS
52bd2d62
ED
4040 u32 sender_cpu = skb->sender_cpu - 1;
4041
4042 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
4043 skb->sender_cpu = raw_smp_processor_id() + 1;
4044#endif
4045
4046 if (dev->real_num_tx_queues != 1) {
4047 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 4048
638b2a69 4049 if (ops->ndo_select_queue)
a350ecce 4050 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 4051 else
4bd97d51 4052 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 4053
d584527c 4054 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
4055 }
4056
4057 skb_set_queue_mapping(skb, queue_index);
4058 return netdev_get_tx_queue(dev, queue_index);
4059}
4060
d29f749e 4061/**
9d08dd3d 4062 * __dev_queue_xmit - transmit a buffer
d29f749e 4063 * @skb: buffer to transmit
eadec877 4064 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
4065 *
4066 * Queue a buffer for transmission to a network device. The caller must
4067 * have set the device and priority and built the buffer before calling
4068 * this function. The function can be called from an interrupt.
4069 *
4070 * A negative errno code is returned on a failure. A success does not
4071 * guarantee the frame will be transmitted as it may be dropped due
4072 * to congestion or traffic shaping.
4073 *
4074 * -----------------------------------------------------------------------------------
4075 * I notice this method can also return errors from the queue disciplines,
4076 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4077 * be positive.
4078 *
4079 * Regardless of the return value, the skb is consumed, so it is currently
4080 * difficult to retry a send to this method. (You can bump the ref count
4081 * before sending to hold a reference for retry if you are careful.)
4082 *
4083 * When calling this method, interrupts MUST be enabled. This is because
4084 * the BH enable code must have IRQs enabled so that it will not deadlock.
4085 * --BLG
4086 */
eadec877 4087static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
4088{
4089 struct net_device *dev = skb->dev;
dc2b4847 4090 struct netdev_queue *txq;
1da177e4
LT
4091 struct Qdisc *q;
4092 int rc = -ENOMEM;
f53c7239 4093 bool again = false;
1da177e4 4094
6d1ccff6
ED
4095 skb_reset_mac_header(skb);
4096
e7fd2885 4097 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
e7ed11ee 4098 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
e7fd2885 4099
4ec93edb
YH
4100 /* Disable soft irqs for various locks below. Also
4101 * stops preemption for RCU.
1da177e4 4102 */
4ec93edb 4103 rcu_read_lock_bh();
1da177e4 4104
5bc1421e
NH
4105 skb_update_prio(skb);
4106
1f211a1b
DB
4107 qdisc_pkt_len_init(skb);
4108#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4109 skb->tc_at_ingress = 0;
357b6cc5 4110# ifdef CONFIG_NET_EGRESS
aabf6772 4111 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4112 skb = sch_handle_egress(skb, &rc, dev);
4113 if (!skb)
4114 goto out;
4115 }
357b6cc5 4116# endif
1f211a1b 4117#endif
02875878
ED
4118 /* If device/qdisc don't need skb->dst, release it right now while
4119 * its hot in this cpu cache.
4120 */
4121 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4122 skb_dst_drop(skb);
4123 else
4124 skb_dst_force(skb);
4125
4bd97d51 4126 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4127 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4128
cf66ba58 4129 trace_net_dev_queue(skb);
1da177e4 4130 if (q->enqueue) {
bbd8a0d3 4131 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4132 goto out;
1da177e4
LT
4133 }
4134
4135 /* The device has no queue. Common case for software devices:
eb13da1a 4136 * loopback, all the sorts of tunnels...
1da177e4 4137
eb13da1a 4138 * Really, it is unlikely that netif_tx_lock protection is necessary
4139 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4140 * counters.)
4141 * However, it is possible, that they rely on protection
4142 * made by us here.
1da177e4 4143
eb13da1a 4144 * Check this and shot the lock. It is not prone from deadlocks.
4145 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4146 */
4147 if (dev->flags & IFF_UP) {
4148 int cpu = smp_processor_id(); /* ok because BHs are off */
4149
c773e847 4150 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4151 if (dev_xmit_recursion())
745e20f1
ED
4152 goto recursion_alert;
4153
f53c7239 4154 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4155 if (!skb)
d21fd63e 4156 goto out;
1f59533f 4157
3744741a 4158 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
c773e847 4159 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4160
73466498 4161 if (!netif_xmit_stopped(txq)) {
97cdcf37 4162 dev_xmit_recursion_inc();
ce93718f 4163 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4164 dev_xmit_recursion_dec();
572a9d7b 4165 if (dev_xmit_complete(rc)) {
c773e847 4166 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4167 goto out;
4168 }
4169 }
c773e847 4170 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4171 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4172 dev->name);
1da177e4
LT
4173 } else {
4174 /* Recursion is detected! It is possible,
745e20f1
ED
4175 * unfortunately
4176 */
4177recursion_alert:
e87cc472
JP
4178 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4179 dev->name);
1da177e4
LT
4180 }
4181 }
4182
4183 rc = -ENETDOWN;
d4828d85 4184 rcu_read_unlock_bh();
1da177e4 4185
015f0688 4186 atomic_long_inc(&dev->tx_dropped);
1f59533f 4187 kfree_skb_list(skb);
1da177e4
LT
4188 return rc;
4189out:
d4828d85 4190 rcu_read_unlock_bh();
1da177e4
LT
4191 return rc;
4192}
f663dd9a 4193
2b4aa3ce 4194int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4195{
4196 return __dev_queue_xmit(skb, NULL);
4197}
2b4aa3ce 4198EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4199
eadec877 4200int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4201{
eadec877 4202 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4203}
4204EXPORT_SYMBOL(dev_queue_xmit_accel);
4205
36ccdf85 4206int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
865b03f2
MK
4207{
4208 struct net_device *dev = skb->dev;
4209 struct sk_buff *orig_skb = skb;
4210 struct netdev_queue *txq;
4211 int ret = NETDEV_TX_BUSY;
4212 bool again = false;
4213
4214 if (unlikely(!netif_running(dev) ||
4215 !netif_carrier_ok(dev)))
4216 goto drop;
4217
4218 skb = validate_xmit_skb_list(skb, dev, &again);
4219 if (skb != orig_skb)
4220 goto drop;
4221
4222 skb_set_queue_mapping(skb, queue_id);
4223 txq = skb_get_tx_queue(dev, skb);
3744741a 4224 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
865b03f2
MK
4225
4226 local_bh_disable();
4227
0ad6f6e7 4228 dev_xmit_recursion_inc();
865b03f2
MK
4229 HARD_TX_LOCK(dev, txq, smp_processor_id());
4230 if (!netif_xmit_frozen_or_drv_stopped(txq))
4231 ret = netdev_start_xmit(skb, dev, txq, false);
4232 HARD_TX_UNLOCK(dev, txq);
0ad6f6e7 4233 dev_xmit_recursion_dec();
865b03f2
MK
4234
4235 local_bh_enable();
865b03f2
MK
4236 return ret;
4237drop:
4238 atomic_long_inc(&dev->tx_dropped);
4239 kfree_skb_list(skb);
4240 return NET_XMIT_DROP;
4241}
36ccdf85 4242EXPORT_SYMBOL(__dev_direct_xmit);
1da177e4 4243
eb13da1a 4244/*************************************************************************
4245 * Receiver routines
4246 *************************************************************************/
1da177e4 4247
6b2bedc3 4248int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4249EXPORT_SYMBOL(netdev_max_backlog);
4250
3b098e2d 4251int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4252int netdev_budget __read_mostly = 300;
a4837980
KK
4253/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4254unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4255int weight_p __read_mostly = 64; /* old backlog weight */
4256int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4257int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4258int dev_rx_weight __read_mostly = 64;
4259int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4260/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4261int gro_normal_batch __read_mostly = 8;
1da177e4 4262
eecfd7c4
ED
4263/* Called with irq disabled */
4264static inline void ____napi_schedule(struct softnet_data *sd,
4265 struct napi_struct *napi)
4266{
4267 list_add_tail(&napi->poll_list, &sd->poll_list);
4268 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4269}
4270
bfb564e7
KK
4271#ifdef CONFIG_RPS
4272
4273/* One global table that all flow-based protocols share. */
6e3f7faf 4274struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4275EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4276u32 rps_cpu_mask __read_mostly;
4277EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4278
dc05360f 4279struct static_key_false rps_needed __read_mostly;
3df97ba8 4280EXPORT_SYMBOL(rps_needed);
dc05360f 4281struct static_key_false rfs_needed __read_mostly;
13bfff25 4282EXPORT_SYMBOL(rfs_needed);
adc9300e 4283
c445477d
BH
4284static struct rps_dev_flow *
4285set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4286 struct rps_dev_flow *rflow, u16 next_cpu)
4287{
a31196b0 4288 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4289#ifdef CONFIG_RFS_ACCEL
4290 struct netdev_rx_queue *rxqueue;
4291 struct rps_dev_flow_table *flow_table;
4292 struct rps_dev_flow *old_rflow;
4293 u32 flow_id;
4294 u16 rxq_index;
4295 int rc;
4296
4297 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4298 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4299 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4300 goto out;
4301 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4302 if (rxq_index == skb_get_rx_queue(skb))
4303 goto out;
4304
4305 rxqueue = dev->_rx + rxq_index;
4306 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4307 if (!flow_table)
4308 goto out;
61b905da 4309 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4310 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4311 rxq_index, flow_id);
4312 if (rc < 0)
4313 goto out;
4314 old_rflow = rflow;
4315 rflow = &flow_table->flows[flow_id];
c445477d
BH
4316 rflow->filter = rc;
4317 if (old_rflow->filter == rflow->filter)
4318 old_rflow->filter = RPS_NO_FILTER;
4319 out:
4320#endif
4321 rflow->last_qtail =
09994d1b 4322 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4323 }
4324
09994d1b 4325 rflow->cpu = next_cpu;
c445477d
BH
4326 return rflow;
4327}
4328
bfb564e7
KK
4329/*
4330 * get_rps_cpu is called from netif_receive_skb and returns the target
4331 * CPU from the RPS map of the receiving queue for a given skb.
4332 * rcu_read_lock must be held on entry.
4333 */
4334static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4335 struct rps_dev_flow **rflowp)
4336{
567e4b79
ED
4337 const struct rps_sock_flow_table *sock_flow_table;
4338 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4339 struct rps_dev_flow_table *flow_table;
567e4b79 4340 struct rps_map *map;
bfb564e7 4341 int cpu = -1;
567e4b79 4342 u32 tcpu;
61b905da 4343 u32 hash;
bfb564e7
KK
4344
4345 if (skb_rx_queue_recorded(skb)) {
4346 u16 index = skb_get_rx_queue(skb);
567e4b79 4347
62fe0b40
BH
4348 if (unlikely(index >= dev->real_num_rx_queues)) {
4349 WARN_ONCE(dev->real_num_rx_queues > 1,
4350 "%s received packet on queue %u, but number "
4351 "of RX queues is %u\n",
4352 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4353 goto done;
4354 }
567e4b79
ED
4355 rxqueue += index;
4356 }
bfb564e7 4357
567e4b79
ED
4358 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4359
4360 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4361 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4362 if (!flow_table && !map)
bfb564e7
KK
4363 goto done;
4364
2d47b459 4365 skb_reset_network_header(skb);
61b905da
TH
4366 hash = skb_get_hash(skb);
4367 if (!hash)
bfb564e7
KK
4368 goto done;
4369
fec5e652
TH
4370 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4371 if (flow_table && sock_flow_table) {
fec5e652 4372 struct rps_dev_flow *rflow;
567e4b79
ED
4373 u32 next_cpu;
4374 u32 ident;
4375
4376 /* First check into global flow table if there is a match */
4377 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4378 if ((ident ^ hash) & ~rps_cpu_mask)
4379 goto try_rps;
fec5e652 4380
567e4b79
ED
4381 next_cpu = ident & rps_cpu_mask;
4382
4383 /* OK, now we know there is a match,
4384 * we can look at the local (per receive queue) flow table
4385 */
61b905da 4386 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4387 tcpu = rflow->cpu;
4388
fec5e652
TH
4389 /*
4390 * If the desired CPU (where last recvmsg was done) is
4391 * different from current CPU (one in the rx-queue flow
4392 * table entry), switch if one of the following holds:
a31196b0 4393 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4394 * - Current CPU is offline.
4395 * - The current CPU's queue tail has advanced beyond the
4396 * last packet that was enqueued using this table entry.
4397 * This guarantees that all previous packets for the flow
4398 * have been dequeued, thus preserving in order delivery.
4399 */
4400 if (unlikely(tcpu != next_cpu) &&
a31196b0 4401 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4402 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4403 rflow->last_qtail)) >= 0)) {
4404 tcpu = next_cpu;
c445477d 4405 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4406 }
c445477d 4407
a31196b0 4408 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4409 *rflowp = rflow;
4410 cpu = tcpu;
4411 goto done;
4412 }
4413 }
4414
567e4b79
ED
4415try_rps:
4416
0a9627f2 4417 if (map) {
8fc54f68 4418 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4419 if (cpu_online(tcpu)) {
4420 cpu = tcpu;
4421 goto done;
4422 }
4423 }
4424
4425done:
0a9627f2
TH
4426 return cpu;
4427}
4428
c445477d
BH
4429#ifdef CONFIG_RFS_ACCEL
4430
4431/**
4432 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4433 * @dev: Device on which the filter was set
4434 * @rxq_index: RX queue index
4435 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4436 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4437 *
4438 * Drivers that implement ndo_rx_flow_steer() should periodically call
4439 * this function for each installed filter and remove the filters for
4440 * which it returns %true.
4441 */
4442bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4443 u32 flow_id, u16 filter_id)
4444{
4445 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4446 struct rps_dev_flow_table *flow_table;
4447 struct rps_dev_flow *rflow;
4448 bool expire = true;
a31196b0 4449 unsigned int cpu;
c445477d
BH
4450
4451 rcu_read_lock();
4452 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4453 if (flow_table && flow_id <= flow_table->mask) {
4454 rflow = &flow_table->flows[flow_id];
6aa7de05 4455 cpu = READ_ONCE(rflow->cpu);
a31196b0 4456 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4457 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4458 rflow->last_qtail) <
4459 (int)(10 * flow_table->mask)))
4460 expire = false;
4461 }
4462 rcu_read_unlock();
4463 return expire;
4464}
4465EXPORT_SYMBOL(rps_may_expire_flow);
4466
4467#endif /* CONFIG_RFS_ACCEL */
4468
0a9627f2 4469/* Called from hardirq (IPI) context */
e36fa2f7 4470static void rps_trigger_softirq(void *data)
0a9627f2 4471{
e36fa2f7
ED
4472 struct softnet_data *sd = data;
4473
eecfd7c4 4474 ____napi_schedule(sd, &sd->backlog);
dee42870 4475 sd->received_rps++;
0a9627f2 4476}
e36fa2f7 4477
fec5e652 4478#endif /* CONFIG_RPS */
0a9627f2 4479
e36fa2f7
ED
4480/*
4481 * Check if this softnet_data structure is another cpu one
4482 * If yes, queue it to our IPI list and return 1
4483 * If no, return 0
4484 */
4485static int rps_ipi_queued(struct softnet_data *sd)
4486{
4487#ifdef CONFIG_RPS
903ceff7 4488 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4489
4490 if (sd != mysd) {
4491 sd->rps_ipi_next = mysd->rps_ipi_list;
4492 mysd->rps_ipi_list = sd;
4493
4494 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4495 return 1;
4496 }
4497#endif /* CONFIG_RPS */
4498 return 0;
4499}
4500
99bbc707
WB
4501#ifdef CONFIG_NET_FLOW_LIMIT
4502int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4503#endif
4504
4505static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4506{
4507#ifdef CONFIG_NET_FLOW_LIMIT
4508 struct sd_flow_limit *fl;
4509 struct softnet_data *sd;
4510 unsigned int old_flow, new_flow;
4511
4512 if (qlen < (netdev_max_backlog >> 1))
4513 return false;
4514
903ceff7 4515 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4516
4517 rcu_read_lock();
4518 fl = rcu_dereference(sd->flow_limit);
4519 if (fl) {
3958afa1 4520 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4521 old_flow = fl->history[fl->history_head];
4522 fl->history[fl->history_head] = new_flow;
4523
4524 fl->history_head++;
4525 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4526
4527 if (likely(fl->buckets[old_flow]))
4528 fl->buckets[old_flow]--;
4529
4530 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4531 fl->count++;
4532 rcu_read_unlock();
4533 return true;
4534 }
4535 }
4536 rcu_read_unlock();
4537#endif
4538 return false;
4539}
4540
0a9627f2
TH
4541/*
4542 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4543 * queue (may be a remote CPU queue).
4544 */
fec5e652
TH
4545static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4546 unsigned int *qtail)
0a9627f2 4547{
e36fa2f7 4548 struct softnet_data *sd;
0a9627f2 4549 unsigned long flags;
99bbc707 4550 unsigned int qlen;
0a9627f2 4551
e36fa2f7 4552 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4553
4554 local_irq_save(flags);
0a9627f2 4555
e36fa2f7 4556 rps_lock(sd);
e9e4dd32
JA
4557 if (!netif_running(skb->dev))
4558 goto drop;
99bbc707
WB
4559 qlen = skb_queue_len(&sd->input_pkt_queue);
4560 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4561 if (qlen) {
0a9627f2 4562enqueue:
e36fa2f7 4563 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4564 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4565 rps_unlock(sd);
152102c7 4566 local_irq_restore(flags);
0a9627f2
TH
4567 return NET_RX_SUCCESS;
4568 }
4569
ebda37c2
ED
4570 /* Schedule NAPI for backlog device
4571 * We can use non atomic operation since we own the queue lock
4572 */
4573 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4574 if (!rps_ipi_queued(sd))
eecfd7c4 4575 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4576 }
4577 goto enqueue;
4578 }
4579
e9e4dd32 4580drop:
dee42870 4581 sd->dropped++;
e36fa2f7 4582 rps_unlock(sd);
0a9627f2 4583
0a9627f2
TH
4584 local_irq_restore(flags);
4585
caf586e5 4586 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4587 kfree_skb(skb);
4588 return NET_RX_DROP;
4589}
1da177e4 4590
e817f856
JDB
4591static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4592{
4593 struct net_device *dev = skb->dev;
4594 struct netdev_rx_queue *rxqueue;
4595
4596 rxqueue = dev->_rx;
4597
4598 if (skb_rx_queue_recorded(skb)) {
4599 u16 index = skb_get_rx_queue(skb);
4600
4601 if (unlikely(index >= dev->real_num_rx_queues)) {
4602 WARN_ONCE(dev->real_num_rx_queues > 1,
4603 "%s received packet on queue %u, but number "
4604 "of RX queues is %u\n",
4605 dev->name, index, dev->real_num_rx_queues);
4606
4607 return rxqueue; /* Return first rxqueue */
4608 }
4609 rxqueue += index;
4610 }
4611 return rxqueue;
4612}
4613
d4455169 4614static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4615 struct xdp_buff *xdp,
d4455169
JF
4616 struct bpf_prog *xdp_prog)
4617{
be9df4af 4618 void *orig_data, *orig_data_end, *hard_start;
e817f856 4619 struct netdev_rx_queue *rxqueue;
de8f3a83 4620 u32 metalen, act = XDP_DROP;
43b5169d 4621 u32 mac_len, frame_sz;
29724956
JDB
4622 __be16 orig_eth_type;
4623 struct ethhdr *eth;
4624 bool orig_bcast;
be9df4af 4625 int off;
d4455169
JF
4626
4627 /* Reinjected packets coming from act_mirred or similar should
4628 * not get XDP generic processing.
4629 */
2c64605b 4630 if (skb_is_redirected(skb))
d4455169
JF
4631 return XDP_PASS;
4632
de8f3a83
DB
4633 /* XDP packets must be linear and must have sufficient headroom
4634 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4635 * native XDP provides, thus we need to do it here as well.
4636 */
ad1e03b2 4637 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
de8f3a83
DB
4638 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4639 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4640 int troom = skb->tail + skb->data_len - skb->end;
4641
4642 /* In case we have to go down the path and also linearize,
4643 * then lets do the pskb_expand_head() work just once here.
4644 */
4645 if (pskb_expand_head(skb,
4646 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4647 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4648 goto do_drop;
2d17d8d7 4649 if (skb_linearize(skb))
de8f3a83
DB
4650 goto do_drop;
4651 }
d4455169
JF
4652
4653 /* The XDP program wants to see the packet starting at the MAC
4654 * header.
4655 */
4656 mac_len = skb->data - skb_mac_header(skb);
be9df4af 4657 hard_start = skb->data - skb_headroom(skb);
a075767b
JDB
4658
4659 /* SKB "head" area always have tailroom for skb_shared_info */
be9df4af 4660 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
43b5169d 4661 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
a075767b 4662
be9df4af
LB
4663 rxqueue = netif_get_rxqueue(skb);
4664 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4665 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4666 skb_headlen(skb) + mac_len, true);
a075767b 4667
02671e23
BT
4668 orig_data_end = xdp->data_end;
4669 orig_data = xdp->data;
29724956
JDB
4670 eth = (struct ethhdr *)xdp->data;
4671 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4672 orig_eth_type = eth->h_proto;
d4455169 4673
02671e23 4674 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4675
065af355 4676 /* check if bpf_xdp_adjust_head was used */
02671e23 4677 off = xdp->data - orig_data;
065af355
JDB
4678 if (off) {
4679 if (off > 0)
4680 __skb_pull(skb, off);
4681 else if (off < 0)
4682 __skb_push(skb, -off);
4683
4684 skb->mac_header += off;
4685 skb_reset_network_header(skb);
4686 }
d4455169 4687
a075767b
JDB
4688 /* check if bpf_xdp_adjust_tail was used */
4689 off = xdp->data_end - orig_data_end;
f7613120 4690 if (off != 0) {
02671e23 4691 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
a075767b 4692 skb->len += off; /* positive on grow, negative on shrink */
f7613120 4693 }
198d83bb 4694
29724956
JDB
4695 /* check if XDP changed eth hdr such SKB needs update */
4696 eth = (struct ethhdr *)xdp->data;
4697 if ((orig_eth_type != eth->h_proto) ||
4698 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4699 __skb_push(skb, ETH_HLEN);
4700 skb->protocol = eth_type_trans(skb, skb->dev);
4701 }
4702
d4455169 4703 switch (act) {
6103aa96 4704 case XDP_REDIRECT:
d4455169
JF
4705 case XDP_TX:
4706 __skb_push(skb, mac_len);
de8f3a83 4707 break;
d4455169 4708 case XDP_PASS:
02671e23 4709 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4710 if (metalen)
4711 skb_metadata_set(skb, metalen);
d4455169 4712 break;
d4455169
JF
4713 default:
4714 bpf_warn_invalid_xdp_action(act);
df561f66 4715 fallthrough;
d4455169
JF
4716 case XDP_ABORTED:
4717 trace_xdp_exception(skb->dev, xdp_prog, act);
df561f66 4718 fallthrough;
d4455169
JF
4719 case XDP_DROP:
4720 do_drop:
4721 kfree_skb(skb);
4722 break;
4723 }
4724
4725 return act;
4726}
4727
4728/* When doing generic XDP we have to bypass the qdisc layer and the
4729 * network taps in order to match in-driver-XDP behavior.
4730 */
7c497478 4731void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4732{
4733 struct net_device *dev = skb->dev;
4734 struct netdev_queue *txq;
4735 bool free_skb = true;
4736 int cpu, rc;
4737
4bd97d51 4738 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4739 cpu = smp_processor_id();
4740 HARD_TX_LOCK(dev, txq, cpu);
4741 if (!netif_xmit_stopped(txq)) {
4742 rc = netdev_start_xmit(skb, dev, txq, 0);
4743 if (dev_xmit_complete(rc))
4744 free_skb = false;
4745 }
4746 HARD_TX_UNLOCK(dev, txq);
4747 if (free_skb) {
4748 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4749 kfree_skb(skb);
4750 }
4751}
4752
02786475 4753static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4754
7c497478 4755int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4756{
d4455169 4757 if (xdp_prog) {
02671e23
BT
4758 struct xdp_buff xdp;
4759 u32 act;
6103aa96 4760 int err;
d4455169 4761
02671e23 4762 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4763 if (act != XDP_PASS) {
6103aa96
JF
4764 switch (act) {
4765 case XDP_REDIRECT:
2facaad6 4766 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4767 &xdp, xdp_prog);
6103aa96
JF
4768 if (err)
4769 goto out_redir;
02671e23 4770 break;
6103aa96 4771 case XDP_TX:
d4455169 4772 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4773 break;
4774 }
d4455169
JF
4775 return XDP_DROP;
4776 }
4777 }
4778 return XDP_PASS;
6103aa96 4779out_redir:
6103aa96
JF
4780 kfree_skb(skb);
4781 return XDP_DROP;
d4455169 4782}
7c497478 4783EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4784
ae78dbfa 4785static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4786{
b0e28f1e 4787 int ret;
1da177e4 4788
588f0330 4789 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4790
cf66ba58 4791 trace_netif_rx(skb);
d4455169 4792
df334545 4793#ifdef CONFIG_RPS
dc05360f 4794 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4795 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4796 int cpu;
4797
cece1945 4798 preempt_disable();
b0e28f1e 4799 rcu_read_lock();
fec5e652
TH
4800
4801 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4802 if (cpu < 0)
4803 cpu = smp_processor_id();
fec5e652
TH
4804
4805 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4806
b0e28f1e 4807 rcu_read_unlock();
cece1945 4808 preempt_enable();
adc9300e
ED
4809 } else
4810#endif
fec5e652
TH
4811 {
4812 unsigned int qtail;
f4563a75 4813
fec5e652
TH
4814 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4815 put_cpu();
4816 }
b0e28f1e 4817 return ret;
1da177e4 4818}
ae78dbfa
BH
4819
4820/**
4821 * netif_rx - post buffer to the network code
4822 * @skb: buffer to post
4823 *
4824 * This function receives a packet from a device driver and queues it for
4825 * the upper (protocol) levels to process. It always succeeds. The buffer
4826 * may be dropped during processing for congestion control or by the
4827 * protocol layers.
4828 *
4829 * return values:
4830 * NET_RX_SUCCESS (no congestion)
4831 * NET_RX_DROP (packet was dropped)
4832 *
4833 */
4834
4835int netif_rx(struct sk_buff *skb)
4836{
b0e3f1bd
GB
4837 int ret;
4838
ae78dbfa
BH
4839 trace_netif_rx_entry(skb);
4840
b0e3f1bd
GB
4841 ret = netif_rx_internal(skb);
4842 trace_netif_rx_exit(ret);
4843
4844 return ret;
ae78dbfa 4845}
d1b19dff 4846EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4847
4848int netif_rx_ni(struct sk_buff *skb)
4849{
4850 int err;
4851
ae78dbfa
BH
4852 trace_netif_rx_ni_entry(skb);
4853
1da177e4 4854 preempt_disable();
ae78dbfa 4855 err = netif_rx_internal(skb);
1da177e4
LT
4856 if (local_softirq_pending())
4857 do_softirq();
4858 preempt_enable();
b0e3f1bd 4859 trace_netif_rx_ni_exit(err);
1da177e4
LT
4860
4861 return err;
4862}
1da177e4
LT
4863EXPORT_SYMBOL(netif_rx_ni);
4864
c11171a4
SAS
4865int netif_rx_any_context(struct sk_buff *skb)
4866{
4867 /*
4868 * If invoked from contexts which do not invoke bottom half
4869 * processing either at return from interrupt or when softrqs are
4870 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4871 * directly.
4872 */
4873 if (in_interrupt())
4874 return netif_rx(skb);
4875 else
4876 return netif_rx_ni(skb);
4877}
4878EXPORT_SYMBOL(netif_rx_any_context);
4879
0766f788 4880static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4881{
903ceff7 4882 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4883
4884 if (sd->completion_queue) {
4885 struct sk_buff *clist;
4886
4887 local_irq_disable();
4888 clist = sd->completion_queue;
4889 sd->completion_queue = NULL;
4890 local_irq_enable();
4891
4892 while (clist) {
4893 struct sk_buff *skb = clist;
f4563a75 4894
1da177e4
LT
4895 clist = clist->next;
4896
63354797 4897 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4898 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4899 trace_consume_skb(skb);
4900 else
4901 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4902
4903 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4904 __kfree_skb(skb);
4905 else
4906 __kfree_skb_defer(skb);
1da177e4 4907 }
15fad714
JDB
4908
4909 __kfree_skb_flush();
1da177e4
LT
4910 }
4911
4912 if (sd->output_queue) {
37437bb2 4913 struct Qdisc *head;
1da177e4
LT
4914
4915 local_irq_disable();
4916 head = sd->output_queue;
4917 sd->output_queue = NULL;
a9cbd588 4918 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4919 local_irq_enable();
4920
4921 while (head) {
37437bb2 4922 struct Qdisc *q = head;
6b3ba914 4923 spinlock_t *root_lock = NULL;
37437bb2 4924
1da177e4
LT
4925 head = head->next_sched;
4926
6b3ba914
JF
4927 if (!(q->flags & TCQ_F_NOLOCK)) {
4928 root_lock = qdisc_lock(q);
4929 spin_lock(root_lock);
4930 }
3bcb846c
ED
4931 /* We need to make sure head->next_sched is read
4932 * before clearing __QDISC_STATE_SCHED
4933 */
4934 smp_mb__before_atomic();
4935 clear_bit(__QDISC_STATE_SCHED, &q->state);
4936 qdisc_run(q);
6b3ba914
JF
4937 if (root_lock)
4938 spin_unlock(root_lock);
1da177e4
LT
4939 }
4940 }
f53c7239
SK
4941
4942 xfrm_dev_backlog(sd);
1da177e4
LT
4943}
4944
181402a5 4945#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4946/* This hook is defined here for ATM LANE */
4947int (*br_fdb_test_addr_hook)(struct net_device *dev,
4948 unsigned char *addr) __read_mostly;
4fb019a0 4949EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4950#endif
1da177e4 4951
1f211a1b
DB
4952static inline struct sk_buff *
4953sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
9aa1206e 4954 struct net_device *orig_dev, bool *another)
f697c3e8 4955{
e7582bab 4956#ifdef CONFIG_NET_CLS_ACT
46209401 4957 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4958 struct tcf_result cl_res;
24824a09 4959
c9e99fd0
DB
4960 /* If there's at least one ingress present somewhere (so
4961 * we get here via enabled static key), remaining devices
4962 * that are not configured with an ingress qdisc will bail
d2788d34 4963 * out here.
c9e99fd0 4964 */
46209401 4965 if (!miniq)
4577139b 4966 return skb;
46209401 4967
f697c3e8
HX
4968 if (*pt_prev) {
4969 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4970 *pt_prev = NULL;
1da177e4
LT
4971 }
4972
3365495c 4973 qdisc_skb_cb(skb)->pkt_len = skb->len;
aadaca9e 4974 qdisc_skb_cb(skb)->mru = 0;
7baf2429 4975 qdisc_skb_cb(skb)->post_ct = false;
8dc07fdb 4976 skb->tc_at_ingress = 1;
46209401 4977 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4978
7d17c544
PB
4979 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4980 &cl_res, false)) {
d2788d34
DB
4981 case TC_ACT_OK:
4982 case TC_ACT_RECLASSIFY:
4983 skb->tc_index = TC_H_MIN(cl_res.classid);
4984 break;
4985 case TC_ACT_SHOT:
46209401 4986 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4987 kfree_skb(skb);
4988 return NULL;
d2788d34
DB
4989 case TC_ACT_STOLEN:
4990 case TC_ACT_QUEUED:
e25ea21f 4991 case TC_ACT_TRAP:
8a3a4c6e 4992 consume_skb(skb);
d2788d34 4993 return NULL;
27b29f63
AS
4994 case TC_ACT_REDIRECT:
4995 /* skb_mac_header check was done by cls/act_bpf, so
4996 * we can safely push the L2 header back before
4997 * redirecting to another netdev
4998 */
4999 __skb_push(skb, skb->mac_len);
9aa1206e
DB
5000 if (skb_do_redirect(skb) == -EAGAIN) {
5001 __skb_pull(skb, skb->mac_len);
5002 *another = true;
5003 break;
5004 }
27b29f63 5005 return NULL;
720f22fe 5006 case TC_ACT_CONSUMED:
cd11b164 5007 return NULL;
d2788d34
DB
5008 default:
5009 break;
f697c3e8 5010 }
e7582bab 5011#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
5012 return skb;
5013}
1da177e4 5014
24b27fc4
MB
5015/**
5016 * netdev_is_rx_handler_busy - check if receive handler is registered
5017 * @dev: device to check
5018 *
5019 * Check if a receive handler is already registered for a given device.
5020 * Return true if there one.
5021 *
5022 * The caller must hold the rtnl_mutex.
5023 */
5024bool netdev_is_rx_handler_busy(struct net_device *dev)
5025{
5026 ASSERT_RTNL();
5027 return dev && rtnl_dereference(dev->rx_handler);
5028}
5029EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5030
ab95bfe0
JP
5031/**
5032 * netdev_rx_handler_register - register receive handler
5033 * @dev: device to register a handler for
5034 * @rx_handler: receive handler to register
93e2c32b 5035 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 5036 *
e227867f 5037 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
5038 * called from __netif_receive_skb. A negative errno code is returned
5039 * on a failure.
5040 *
5041 * The caller must hold the rtnl_mutex.
8a4eb573
JP
5042 *
5043 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
5044 */
5045int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
5046 rx_handler_func_t *rx_handler,
5047 void *rx_handler_data)
ab95bfe0 5048{
1b7cd004 5049 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
5050 return -EBUSY;
5051
f5426250
PA
5052 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5053 return -EINVAL;
5054
00cfec37 5055 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 5056 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
5057 rcu_assign_pointer(dev->rx_handler, rx_handler);
5058
5059 return 0;
5060}
5061EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5062
5063/**
5064 * netdev_rx_handler_unregister - unregister receive handler
5065 * @dev: device to unregister a handler from
5066 *
166ec369 5067 * Unregister a receive handler from a device.
ab95bfe0
JP
5068 *
5069 * The caller must hold the rtnl_mutex.
5070 */
5071void netdev_rx_handler_unregister(struct net_device *dev)
5072{
5073
5074 ASSERT_RTNL();
a9b3cd7f 5075 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
5076 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5077 * section has a guarantee to see a non NULL rx_handler_data
5078 * as well.
5079 */
5080 synchronize_net();
a9b3cd7f 5081 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
5082}
5083EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5084
b4b9e355
MG
5085/*
5086 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5087 * the special handling of PFMEMALLOC skbs.
5088 */
5089static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5090{
5091 switch (skb->protocol) {
2b8837ae
JP
5092 case htons(ETH_P_ARP):
5093 case htons(ETH_P_IP):
5094 case htons(ETH_P_IPV6):
5095 case htons(ETH_P_8021Q):
5096 case htons(ETH_P_8021AD):
b4b9e355
MG
5097 return true;
5098 default:
5099 return false;
5100 }
5101}
5102
e687ad60
PN
5103static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5104 int *ret, struct net_device *orig_dev)
5105{
5106 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
5107 int ingress_retval;
5108
e687ad60
PN
5109 if (*pt_prev) {
5110 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5111 *pt_prev = NULL;
5112 }
5113
2c1e2703
AC
5114 rcu_read_lock();
5115 ingress_retval = nf_hook_ingress(skb);
5116 rcu_read_unlock();
5117 return ingress_retval;
e687ad60
PN
5118 }
5119 return 0;
5120}
e687ad60 5121
c0bbbdc3 5122static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
88eb1944 5123 struct packet_type **ppt_prev)
1da177e4
LT
5124{
5125 struct packet_type *ptype, *pt_prev;
ab95bfe0 5126 rx_handler_func_t *rx_handler;
c0bbbdc3 5127 struct sk_buff *skb = *pskb;
f2ccd8fa 5128 struct net_device *orig_dev;
8a4eb573 5129 bool deliver_exact = false;
1da177e4 5130 int ret = NET_RX_DROP;
252e3346 5131 __be16 type;
1da177e4 5132
588f0330 5133 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5134
cf66ba58 5135 trace_netif_receive_skb(skb);
9b22ea56 5136
cc9bd5ce 5137 orig_dev = skb->dev;
8f903c70 5138
c1d2bbe1 5139 skb_reset_network_header(skb);
fda55eca
ED
5140 if (!skb_transport_header_was_set(skb))
5141 skb_reset_transport_header(skb);
0b5c9db1 5142 skb_reset_mac_len(skb);
1da177e4
LT
5143
5144 pt_prev = NULL;
5145
63d8ea7f 5146another_round:
b6858177 5147 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5148
5149 __this_cpu_inc(softnet_data.processed);
5150
458bf2f2
SH
5151 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5152 int ret2;
5153
5154 preempt_disable();
5155 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5156 preempt_enable();
5157
c0bbbdc3
BS
5158 if (ret2 != XDP_PASS) {
5159 ret = NET_RX_DROP;
5160 goto out;
5161 }
458bf2f2
SH
5162 skb_reset_mac_len(skb);
5163 }
5164
324cefaf 5165 if (eth_type_vlan(skb->protocol)) {
0d5501c1 5166 skb = skb_vlan_untag(skb);
bcc6d479 5167 if (unlikely(!skb))
2c17d27c 5168 goto out;
bcc6d479
JP
5169 }
5170
e7246e12
WB
5171 if (skb_skip_tc_classify(skb))
5172 goto skip_classify;
1da177e4 5173
9754e293 5174 if (pfmemalloc)
b4b9e355
MG
5175 goto skip_taps;
5176
1da177e4 5177 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5178 if (pt_prev)
5179 ret = deliver_skb(skb, pt_prev, orig_dev);
5180 pt_prev = ptype;
5181 }
5182
5183 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5184 if (pt_prev)
5185 ret = deliver_skb(skb, pt_prev, orig_dev);
5186 pt_prev = ptype;
1da177e4
LT
5187 }
5188
b4b9e355 5189skip_taps:
1cf51900 5190#ifdef CONFIG_NET_INGRESS
aabf6772 5191 if (static_branch_unlikely(&ingress_needed_key)) {
9aa1206e
DB
5192 bool another = false;
5193
5194 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5195 &another);
5196 if (another)
5197 goto another_round;
4577139b 5198 if (!skb)
2c17d27c 5199 goto out;
e687ad60
PN
5200
5201 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5202 goto out;
4577139b 5203 }
1cf51900 5204#endif
2c64605b 5205 skb_reset_redirect(skb);
e7246e12 5206skip_classify:
9754e293 5207 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5208 goto drop;
5209
df8a39de 5210 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5211 if (pt_prev) {
5212 ret = deliver_skb(skb, pt_prev, orig_dev);
5213 pt_prev = NULL;
5214 }
48cc32d3 5215 if (vlan_do_receive(&skb))
2425717b
JF
5216 goto another_round;
5217 else if (unlikely(!skb))
2c17d27c 5218 goto out;
2425717b
JF
5219 }
5220
48cc32d3 5221 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5222 if (rx_handler) {
5223 if (pt_prev) {
5224 ret = deliver_skb(skb, pt_prev, orig_dev);
5225 pt_prev = NULL;
5226 }
8a4eb573
JP
5227 switch (rx_handler(&skb)) {
5228 case RX_HANDLER_CONSUMED:
3bc1b1ad 5229 ret = NET_RX_SUCCESS;
2c17d27c 5230 goto out;
8a4eb573 5231 case RX_HANDLER_ANOTHER:
63d8ea7f 5232 goto another_round;
8a4eb573
JP
5233 case RX_HANDLER_EXACT:
5234 deliver_exact = true;
5235 case RX_HANDLER_PASS:
5236 break;
5237 default:
5238 BUG();
5239 }
ab95bfe0 5240 }
1da177e4 5241
b14a9fc4 5242 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
36b2f61a
GV
5243check_vlan_id:
5244 if (skb_vlan_tag_get_id(skb)) {
5245 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5246 * find vlan device.
5247 */
d4b812de 5248 skb->pkt_type = PACKET_OTHERHOST;
324cefaf 5249 } else if (eth_type_vlan(skb->protocol)) {
36b2f61a
GV
5250 /* Outer header is 802.1P with vlan 0, inner header is
5251 * 802.1Q or 802.1AD and vlan_do_receive() above could
5252 * not find vlan dev for vlan id 0.
5253 */
5254 __vlan_hwaccel_clear_tag(skb);
5255 skb = skb_vlan_untag(skb);
5256 if (unlikely(!skb))
5257 goto out;
5258 if (vlan_do_receive(&skb))
5259 /* After stripping off 802.1P header with vlan 0
5260 * vlan dev is found for inner header.
5261 */
5262 goto another_round;
5263 else if (unlikely(!skb))
5264 goto out;
5265 else
5266 /* We have stripped outer 802.1P vlan 0 header.
5267 * But could not find vlan dev.
5268 * check again for vlan id to set OTHERHOST.
5269 */
5270 goto check_vlan_id;
5271 }
d4b812de
ED
5272 /* Note: we might in the future use prio bits
5273 * and set skb->priority like in vlan_do_receive()
5274 * For the time being, just ignore Priority Code Point
5275 */
b1817524 5276 __vlan_hwaccel_clear_tag(skb);
d4b812de 5277 }
48cc32d3 5278
7866a621
SN
5279 type = skb->protocol;
5280
63d8ea7f 5281 /* deliver only exact match when indicated */
7866a621
SN
5282 if (likely(!deliver_exact)) {
5283 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5284 &ptype_base[ntohs(type) &
5285 PTYPE_HASH_MASK]);
5286 }
1f3c8804 5287
7866a621
SN
5288 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5289 &orig_dev->ptype_specific);
5290
5291 if (unlikely(skb->dev != orig_dev)) {
5292 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5293 &skb->dev->ptype_specific);
1da177e4
LT
5294 }
5295
5296 if (pt_prev) {
1f8b977a 5297 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5298 goto drop;
88eb1944 5299 *ppt_prev = pt_prev;
1da177e4 5300 } else {
b4b9e355 5301drop:
6e7333d3
JW
5302 if (!deliver_exact)
5303 atomic_long_inc(&skb->dev->rx_dropped);
5304 else
5305 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5306 kfree_skb(skb);
5307 /* Jamal, now you will not able to escape explaining
5308 * me how you were going to use this. :-)
5309 */
5310 ret = NET_RX_DROP;
5311 }
5312
2c17d27c 5313out:
c0bbbdc3
BS
5314 /* The invariant here is that if *ppt_prev is not NULL
5315 * then skb should also be non-NULL.
5316 *
5317 * Apparently *ppt_prev assignment above holds this invariant due to
5318 * skb dereferencing near it.
5319 */
5320 *pskb = skb;
9754e293
DM
5321 return ret;
5322}
5323
88eb1944
EC
5324static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5325{
5326 struct net_device *orig_dev = skb->dev;
5327 struct packet_type *pt_prev = NULL;
5328 int ret;
5329
c0bbbdc3 5330 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
88eb1944 5331 if (pt_prev)
f5737cba
PA
5332 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5333 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5334 return ret;
5335}
5336
1c601d82
JDB
5337/**
5338 * netif_receive_skb_core - special purpose version of netif_receive_skb
5339 * @skb: buffer to process
5340 *
5341 * More direct receive version of netif_receive_skb(). It should
5342 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5343 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5344 *
5345 * This function may only be called from softirq context and interrupts
5346 * should be enabled.
5347 *
5348 * Return values (usually ignored):
5349 * NET_RX_SUCCESS: no congestion
5350 * NET_RX_DROP: packet was dropped
5351 */
5352int netif_receive_skb_core(struct sk_buff *skb)
5353{
5354 int ret;
5355
5356 rcu_read_lock();
88eb1944 5357 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5358 rcu_read_unlock();
5359
5360 return ret;
5361}
5362EXPORT_SYMBOL(netif_receive_skb_core);
5363
88eb1944
EC
5364static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5365 struct packet_type *pt_prev,
5366 struct net_device *orig_dev)
4ce0017a
EC
5367{
5368 struct sk_buff *skb, *next;
5369
88eb1944
EC
5370 if (!pt_prev)
5371 return;
5372 if (list_empty(head))
5373 return;
17266ee9 5374 if (pt_prev->list_func != NULL)
fdf71426
PA
5375 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5376 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5377 else
9a5a90d1
AL
5378 list_for_each_entry_safe(skb, next, head, list) {
5379 skb_list_del_init(skb);
fdf71426 5380 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5381 }
88eb1944
EC
5382}
5383
5384static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5385{
5386 /* Fast-path assumptions:
5387 * - There is no RX handler.
5388 * - Only one packet_type matches.
5389 * If either of these fails, we will end up doing some per-packet
5390 * processing in-line, then handling the 'last ptype' for the whole
5391 * sublist. This can't cause out-of-order delivery to any single ptype,
5392 * because the 'last ptype' must be constant across the sublist, and all
5393 * other ptypes are handled per-packet.
5394 */
5395 /* Current (common) ptype of sublist */
5396 struct packet_type *pt_curr = NULL;
5397 /* Current (common) orig_dev of sublist */
5398 struct net_device *od_curr = NULL;
5399 struct list_head sublist;
5400 struct sk_buff *skb, *next;
5401
9af86f93 5402 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5403 list_for_each_entry_safe(skb, next, head, list) {
5404 struct net_device *orig_dev = skb->dev;
5405 struct packet_type *pt_prev = NULL;
5406
22f6bbb7 5407 skb_list_del_init(skb);
c0bbbdc3 5408 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
9af86f93
EC
5409 if (!pt_prev)
5410 continue;
88eb1944
EC
5411 if (pt_curr != pt_prev || od_curr != orig_dev) {
5412 /* dispatch old sublist */
88eb1944
EC
5413 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5414 /* start new sublist */
9af86f93 5415 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5416 pt_curr = pt_prev;
5417 od_curr = orig_dev;
5418 }
9af86f93 5419 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5420 }
5421
5422 /* dispatch final sublist */
9af86f93 5423 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5424}
5425
9754e293
DM
5426static int __netif_receive_skb(struct sk_buff *skb)
5427{
5428 int ret;
5429
5430 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5431 unsigned int noreclaim_flag;
9754e293
DM
5432
5433 /*
5434 * PFMEMALLOC skbs are special, they should
5435 * - be delivered to SOCK_MEMALLOC sockets only
5436 * - stay away from userspace
5437 * - have bounded memory usage
5438 *
5439 * Use PF_MEMALLOC as this saves us from propagating the allocation
5440 * context down to all allocation sites.
5441 */
f1083048 5442 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5443 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5444 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5445 } else
88eb1944 5446 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5447
1da177e4
LT
5448 return ret;
5449}
0a9627f2 5450
4ce0017a
EC
5451static void __netif_receive_skb_list(struct list_head *head)
5452{
5453 unsigned long noreclaim_flag = 0;
5454 struct sk_buff *skb, *next;
5455 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5456
5457 list_for_each_entry_safe(skb, next, head, list) {
5458 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5459 struct list_head sublist;
5460
5461 /* Handle the previous sublist */
5462 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5463 if (!list_empty(&sublist))
5464 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5465 pfmemalloc = !pfmemalloc;
5466 /* See comments in __netif_receive_skb */
5467 if (pfmemalloc)
5468 noreclaim_flag = memalloc_noreclaim_save();
5469 else
5470 memalloc_noreclaim_restore(noreclaim_flag);
5471 }
5472 }
5473 /* Handle the remaining sublist */
b9f463d6
EC
5474 if (!list_empty(head))
5475 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5476 /* Restore pflags */
5477 if (pfmemalloc)
5478 memalloc_noreclaim_restore(noreclaim_flag);
5479}
5480
f4e63525 5481static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5482{
58038695 5483 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5484 struct bpf_prog *new = xdp->prog;
5485 int ret = 0;
5486
fbee97fe
DA
5487 if (new) {
5488 u32 i;
5489
984fe94f
YZ
5490 mutex_lock(&new->aux->used_maps_mutex);
5491
fbee97fe
DA
5492 /* generic XDP does not work with DEVMAPs that can
5493 * have a bpf_prog installed on an entry
5494 */
5495 for (i = 0; i < new->aux->used_map_cnt; i++) {
984fe94f
YZ
5496 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5497 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5498 mutex_unlock(&new->aux->used_maps_mutex);
92164774 5499 return -EINVAL;
984fe94f 5500 }
fbee97fe 5501 }
984fe94f
YZ
5502
5503 mutex_unlock(&new->aux->used_maps_mutex);
fbee97fe
DA
5504 }
5505
b5cdae32 5506 switch (xdp->command) {
58038695 5507 case XDP_SETUP_PROG:
b5cdae32
DM
5508 rcu_assign_pointer(dev->xdp_prog, new);
5509 if (old)
5510 bpf_prog_put(old);
5511
5512 if (old && !new) {
02786475 5513 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5514 } else if (new && !old) {
02786475 5515 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5516 dev_disable_lro(dev);
56f5aa77 5517 dev_disable_gro_hw(dev);
b5cdae32
DM
5518 }
5519 break;
b5cdae32 5520
b5cdae32
DM
5521 default:
5522 ret = -EINVAL;
5523 break;
5524 }
5525
5526 return ret;
5527}
5528
ae78dbfa 5529static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5530{
2c17d27c
JA
5531 int ret;
5532
588f0330 5533 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5534
c1f19b51
RC
5535 if (skb_defer_rx_timestamp(skb))
5536 return NET_RX_SUCCESS;
5537
bbbe211c 5538 rcu_read_lock();
df334545 5539#ifdef CONFIG_RPS
dc05360f 5540 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5541 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5542 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5543
3b098e2d
ED
5544 if (cpu >= 0) {
5545 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5546 rcu_read_unlock();
adc9300e 5547 return ret;
3b098e2d 5548 }
fec5e652 5549 }
1e94d72f 5550#endif
2c17d27c
JA
5551 ret = __netif_receive_skb(skb);
5552 rcu_read_unlock();
5553 return ret;
0a9627f2 5554}
ae78dbfa 5555
7da517a3
EC
5556static void netif_receive_skb_list_internal(struct list_head *head)
5557{
7da517a3 5558 struct sk_buff *skb, *next;
8c057efa 5559 struct list_head sublist;
7da517a3 5560
8c057efa 5561 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5562 list_for_each_entry_safe(skb, next, head, list) {
5563 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5564 skb_list_del_init(skb);
8c057efa
EC
5565 if (!skb_defer_rx_timestamp(skb))
5566 list_add_tail(&skb->list, &sublist);
7da517a3 5567 }
8c057efa 5568 list_splice_init(&sublist, head);
7da517a3 5569
7da517a3
EC
5570 rcu_read_lock();
5571#ifdef CONFIG_RPS
dc05360f 5572 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5573 list_for_each_entry_safe(skb, next, head, list) {
5574 struct rps_dev_flow voidflow, *rflow = &voidflow;
5575 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5576
5577 if (cpu >= 0) {
8c057efa 5578 /* Will be handled, remove from list */
22f6bbb7 5579 skb_list_del_init(skb);
8c057efa 5580 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5581 }
5582 }
5583 }
5584#endif
5585 __netif_receive_skb_list(head);
5586 rcu_read_unlock();
5587}
5588
ae78dbfa
BH
5589/**
5590 * netif_receive_skb - process receive buffer from network
5591 * @skb: buffer to process
5592 *
5593 * netif_receive_skb() is the main receive data processing function.
5594 * It always succeeds. The buffer may be dropped during processing
5595 * for congestion control or by the protocol layers.
5596 *
5597 * This function may only be called from softirq context and interrupts
5598 * should be enabled.
5599 *
5600 * Return values (usually ignored):
5601 * NET_RX_SUCCESS: no congestion
5602 * NET_RX_DROP: packet was dropped
5603 */
04eb4489 5604int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5605{
b0e3f1bd
GB
5606 int ret;
5607
ae78dbfa
BH
5608 trace_netif_receive_skb_entry(skb);
5609
b0e3f1bd
GB
5610 ret = netif_receive_skb_internal(skb);
5611 trace_netif_receive_skb_exit(ret);
5612
5613 return ret;
ae78dbfa 5614}
04eb4489 5615EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5616
f6ad8c1b
EC
5617/**
5618 * netif_receive_skb_list - process many receive buffers from network
5619 * @head: list of skbs to process.
5620 *
7da517a3
EC
5621 * Since return value of netif_receive_skb() is normally ignored, and
5622 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5623 *
5624 * This function may only be called from softirq context and interrupts
5625 * should be enabled.
5626 */
5627void netif_receive_skb_list(struct list_head *head)
5628{
7da517a3 5629 struct sk_buff *skb;
f6ad8c1b 5630
b9f463d6
EC
5631 if (list_empty(head))
5632 return;
b0e3f1bd
GB
5633 if (trace_netif_receive_skb_list_entry_enabled()) {
5634 list_for_each_entry(skb, head, list)
5635 trace_netif_receive_skb_list_entry(skb);
5636 }
7da517a3 5637 netif_receive_skb_list_internal(head);
b0e3f1bd 5638 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5639}
5640EXPORT_SYMBOL(netif_receive_skb_list);
5641
ce1e2a77 5642static DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5643
5644/* Network device is going away, flush any packets still pending */
5645static void flush_backlog(struct work_struct *work)
6e583ce5 5646{
6e583ce5 5647 struct sk_buff *skb, *tmp;
145dd5f9
PA
5648 struct softnet_data *sd;
5649
5650 local_bh_disable();
5651 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5652
145dd5f9 5653 local_irq_disable();
e36fa2f7 5654 rps_lock(sd);
6e7676c1 5655 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5656 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5657 __skb_unlink(skb, &sd->input_pkt_queue);
7df5cb75 5658 dev_kfree_skb_irq(skb);
76cc8b13 5659 input_queue_head_incr(sd);
6e583ce5 5660 }
6e7676c1 5661 }
e36fa2f7 5662 rps_unlock(sd);
145dd5f9 5663 local_irq_enable();
6e7676c1
CG
5664
5665 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5666 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5667 __skb_unlink(skb, &sd->process_queue);
5668 kfree_skb(skb);
76cc8b13 5669 input_queue_head_incr(sd);
6e7676c1
CG
5670 }
5671 }
145dd5f9
PA
5672 local_bh_enable();
5673}
5674
2de79ee2
PA
5675static bool flush_required(int cpu)
5676{
5677#if IS_ENABLED(CONFIG_RPS)
5678 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5679 bool do_flush;
5680
5681 local_irq_disable();
5682 rps_lock(sd);
5683
5684 /* as insertion into process_queue happens with the rps lock held,
5685 * process_queue access may race only with dequeue
5686 */
5687 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5688 !skb_queue_empty_lockless(&sd->process_queue);
5689 rps_unlock(sd);
5690 local_irq_enable();
5691
5692 return do_flush;
5693#endif
5694 /* without RPS we can't safely check input_pkt_queue: during a
5695 * concurrent remote skb_queue_splice() we can detect as empty both
5696 * input_pkt_queue and process_queue even if the latter could end-up
5697 * containing a lot of packets.
5698 */
5699 return true;
5700}
5701
41852497 5702static void flush_all_backlogs(void)
145dd5f9 5703{
2de79ee2 5704 static cpumask_t flush_cpus;
145dd5f9
PA
5705 unsigned int cpu;
5706
2de79ee2
PA
5707 /* since we are under rtnl lock protection we can use static data
5708 * for the cpumask and avoid allocating on stack the possibly
5709 * large mask
5710 */
5711 ASSERT_RTNL();
5712
145dd5f9
PA
5713 get_online_cpus();
5714
2de79ee2
PA
5715 cpumask_clear(&flush_cpus);
5716 for_each_online_cpu(cpu) {
5717 if (flush_required(cpu)) {
5718 queue_work_on(cpu, system_highpri_wq,
5719 per_cpu_ptr(&flush_works, cpu));
5720 cpumask_set_cpu(cpu, &flush_cpus);
5721 }
5722 }
145dd5f9 5723
2de79ee2 5724 /* we can have in flight packet[s] on the cpus we are not flushing,
0cbe1e57 5725 * synchronize_net() in unregister_netdevice_many() will take care of
2de79ee2
PA
5726 * them
5727 */
5728 for_each_cpu(cpu, &flush_cpus)
41852497 5729 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5730
5731 put_online_cpus();
6e583ce5
SH
5732}
5733
c8079432
MM
5734/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5735static void gro_normal_list(struct napi_struct *napi)
5736{
5737 if (!napi->rx_count)
5738 return;
5739 netif_receive_skb_list_internal(&napi->rx_list);
5740 INIT_LIST_HEAD(&napi->rx_list);
5741 napi->rx_count = 0;
5742}
5743
5744/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5745 * pass the whole batch up to the stack.
5746 */
5747static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5748{
5749 list_add_tail(&skb->list, &napi->rx_list);
5750 if (++napi->rx_count >= gro_normal_batch)
5751 gro_normal_list(napi);
5752}
5753
aaa5d90b
PA
5754INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5755INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
c8079432 5756static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5757{
22061d80 5758 struct packet_offload *ptype;
d565b0a1 5759 __be16 type = skb->protocol;
22061d80 5760 struct list_head *head = &offload_base;
d565b0a1
HX
5761 int err = -ENOENT;
5762
c3c7c254
ED
5763 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5764
fc59f9a3
HX
5765 if (NAPI_GRO_CB(skb)->count == 1) {
5766 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5767 goto out;
fc59f9a3 5768 }
d565b0a1
HX
5769
5770 rcu_read_lock();
5771 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5772 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5773 continue;
5774
aaa5d90b
PA
5775 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5776 ipv6_gro_complete, inet_gro_complete,
5777 skb, 0);
d565b0a1
HX
5778 break;
5779 }
5780 rcu_read_unlock();
5781
5782 if (err) {
5783 WARN_ON(&ptype->list == head);
5784 kfree_skb(skb);
5785 return NET_RX_SUCCESS;
5786 }
5787
5788out:
c8079432
MM
5789 gro_normal_one(napi, skb);
5790 return NET_RX_SUCCESS;
d565b0a1
HX
5791}
5792
6312fe77 5793static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5794 bool flush_old)
d565b0a1 5795{
6312fe77 5796 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5797 struct sk_buff *skb, *p;
2e71a6f8 5798
07d78363 5799 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5800 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5801 return;
992cba7e 5802 skb_list_del_init(skb);
c8079432 5803 napi_gro_complete(napi, skb);
6312fe77 5804 napi->gro_hash[index].count--;
d565b0a1 5805 }
d9f37d01
LR
5806
5807 if (!napi->gro_hash[index].count)
5808 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5809}
07d78363 5810
6312fe77 5811/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5812 * youngest packets at the head of it.
5813 * Complete skbs in reverse order to reduce latencies.
5814 */
5815void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5816{
42519ede
ED
5817 unsigned long bitmask = napi->gro_bitmask;
5818 unsigned int i, base = ~0U;
07d78363 5819
42519ede
ED
5820 while ((i = ffs(bitmask)) != 0) {
5821 bitmask >>= i;
5822 base += i;
5823 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5824 }
07d78363 5825}
86cac58b 5826EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5827
07d78363
DM
5828static struct list_head *gro_list_prepare(struct napi_struct *napi,
5829 struct sk_buff *skb)
89c5fa33 5830{
89c5fa33 5831 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5832 u32 hash = skb_get_hash_raw(skb);
07d78363 5833 struct list_head *head;
d4546c25 5834 struct sk_buff *p;
89c5fa33 5835
6312fe77 5836 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5837 list_for_each_entry(p, head, list) {
89c5fa33
ED
5838 unsigned long diffs;
5839
0b4cec8c
TH
5840 NAPI_GRO_CB(p)->flush = 0;
5841
5842 if (hash != skb_get_hash_raw(p)) {
5843 NAPI_GRO_CB(p)->same_flow = 0;
5844 continue;
5845 }
5846
89c5fa33 5847 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5848 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5849 if (skb_vlan_tag_present(p))
fc5141cb 5850 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
ce87fc6c 5851 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5852 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5853 if (maclen == ETH_HLEN)
5854 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5855 skb_mac_header(skb));
89c5fa33
ED
5856 else if (!diffs)
5857 diffs = memcmp(skb_mac_header(p),
a50e233c 5858 skb_mac_header(skb),
89c5fa33
ED
5859 maclen);
5860 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5861 }
07d78363
DM
5862
5863 return head;
89c5fa33
ED
5864}
5865
299603e8
JC
5866static void skb_gro_reset_offset(struct sk_buff *skb)
5867{
5868 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5869 const skb_frag_t *frag0 = &pinfo->frags[0];
5870
5871 NAPI_GRO_CB(skb)->data_offset = 0;
5872 NAPI_GRO_CB(skb)->frag0 = NULL;
5873 NAPI_GRO_CB(skb)->frag0_len = 0;
5874
8aef998d 5875 if (!skb_headlen(skb) && pinfo->nr_frags &&
299603e8
JC
5876 !PageHighMem(skb_frag_page(frag0))) {
5877 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5878 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5879 skb_frag_size(frag0),
5880 skb->end - skb->tail);
89c5fa33
ED
5881 }
5882}
5883
a50e233c
ED
5884static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5885{
5886 struct skb_shared_info *pinfo = skb_shinfo(skb);
5887
5888 BUG_ON(skb->end - skb->tail < grow);
5889
5890 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5891
5892 skb->data_len -= grow;
5893 skb->tail += grow;
5894
b54c9d5b 5895 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5896 skb_frag_size_sub(&pinfo->frags[0], grow);
5897
5898 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5899 skb_frag_unref(skb, 0);
5900 memmove(pinfo->frags, pinfo->frags + 1,
5901 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5902 }
5903}
5904
c8079432 5905static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 5906{
6312fe77 5907 struct sk_buff *oldest;
07d78363 5908
6312fe77 5909 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5910
6312fe77 5911 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5912 * impossible.
5913 */
5914 if (WARN_ON_ONCE(!oldest))
5915 return;
5916
d9f37d01
LR
5917 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5918 * SKB to the chain.
07d78363 5919 */
ece23711 5920 skb_list_del_init(oldest);
c8079432 5921 napi_gro_complete(napi, oldest);
07d78363
DM
5922}
5923
aaa5d90b
PA
5924INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5925 struct sk_buff *));
5926INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5927 struct sk_buff *));
bb728820 5928static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5929{
6312fe77 5930 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5931 struct list_head *head = &offload_base;
22061d80 5932 struct packet_offload *ptype;
d565b0a1 5933 __be16 type = skb->protocol;
07d78363 5934 struct list_head *gro_head;
d4546c25 5935 struct sk_buff *pp = NULL;
5b252f0c 5936 enum gro_result ret;
d4546c25 5937 int same_flow;
a50e233c 5938 int grow;
d565b0a1 5939
b5cdae32 5940 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5941 goto normal;
5942
07d78363 5943 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5944
d565b0a1
HX
5945 rcu_read_lock();
5946 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5947 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5948 continue;
5949
86911732 5950 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5951 skb_reset_mac_len(skb);
d565b0a1 5952 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5953 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5954 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5955 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5956 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5957 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5958 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5959 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5960
662880f4
TH
5961 /* Setup for GRO checksum validation */
5962 switch (skb->ip_summed) {
5963 case CHECKSUM_COMPLETE:
5964 NAPI_GRO_CB(skb)->csum = skb->csum;
5965 NAPI_GRO_CB(skb)->csum_valid = 1;
5966 NAPI_GRO_CB(skb)->csum_cnt = 0;
5967 break;
5968 case CHECKSUM_UNNECESSARY:
5969 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5970 NAPI_GRO_CB(skb)->csum_valid = 0;
5971 break;
5972 default:
5973 NAPI_GRO_CB(skb)->csum_cnt = 0;
5974 NAPI_GRO_CB(skb)->csum_valid = 0;
5975 }
d565b0a1 5976
aaa5d90b
PA
5977 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5978 ipv6_gro_receive, inet_gro_receive,
5979 gro_head, skb);
d565b0a1
HX
5980 break;
5981 }
5982 rcu_read_unlock();
5983
5984 if (&ptype->list == head)
5985 goto normal;
5986
45586c70 5987 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
5988 ret = GRO_CONSUMED;
5989 goto ok;
5990 }
5991
0da2afd5 5992 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5993 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5994
d565b0a1 5995 if (pp) {
992cba7e 5996 skb_list_del_init(pp);
c8079432 5997 napi_gro_complete(napi, pp);
6312fe77 5998 napi->gro_hash[hash].count--;
d565b0a1
HX
5999 }
6000
0da2afd5 6001 if (same_flow)
d565b0a1
HX
6002 goto ok;
6003
600adc18 6004 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 6005 goto normal;
d565b0a1 6006
6312fe77 6007 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
c8079432 6008 gro_flush_oldest(napi, gro_head);
600adc18 6009 } else {
6312fe77 6010 napi->gro_hash[hash].count++;
600adc18 6011 }
d565b0a1 6012 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 6013 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 6014 NAPI_GRO_CB(skb)->last = skb;
86911732 6015 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 6016 list_add(&skb->list, gro_head);
5d0d9be8 6017 ret = GRO_HELD;
d565b0a1 6018
ad0f9904 6019pull:
a50e233c
ED
6020 grow = skb_gro_offset(skb) - skb_headlen(skb);
6021 if (grow > 0)
6022 gro_pull_from_frag0(skb, grow);
d565b0a1 6023ok:
d9f37d01
LR
6024 if (napi->gro_hash[hash].count) {
6025 if (!test_bit(hash, &napi->gro_bitmask))
6026 __set_bit(hash, &napi->gro_bitmask);
6027 } else if (test_bit(hash, &napi->gro_bitmask)) {
6028 __clear_bit(hash, &napi->gro_bitmask);
6029 }
6030
5d0d9be8 6031 return ret;
d565b0a1
HX
6032
6033normal:
ad0f9904
HX
6034 ret = GRO_NORMAL;
6035 goto pull;
5d38a079 6036}
96e93eab 6037
bf5a755f
JC
6038struct packet_offload *gro_find_receive_by_type(__be16 type)
6039{
6040 struct list_head *offload_head = &offload_base;
6041 struct packet_offload *ptype;
6042
6043 list_for_each_entry_rcu(ptype, offload_head, list) {
6044 if (ptype->type != type || !ptype->callbacks.gro_receive)
6045 continue;
6046 return ptype;
6047 }
6048 return NULL;
6049}
e27a2f83 6050EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
6051
6052struct packet_offload *gro_find_complete_by_type(__be16 type)
6053{
6054 struct list_head *offload_head = &offload_base;
6055 struct packet_offload *ptype;
6056
6057 list_for_each_entry_rcu(ptype, offload_head, list) {
6058 if (ptype->type != type || !ptype->callbacks.gro_complete)
6059 continue;
6060 return ptype;
6061 }
6062 return NULL;
6063}
e27a2f83 6064EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 6065
e44699d2
MK
6066static void napi_skb_free_stolen_head(struct sk_buff *skb)
6067{
6068 skb_dst_drop(skb);
174e2381 6069 skb_ext_put(skb);
e44699d2
MK
6070 kmem_cache_free(skbuff_head_cache, skb);
6071}
6072
6570bc79
AL
6073static gro_result_t napi_skb_finish(struct napi_struct *napi,
6074 struct sk_buff *skb,
6075 gro_result_t ret)
5d38a079 6076{
5d0d9be8
HX
6077 switch (ret) {
6078 case GRO_NORMAL:
6570bc79 6079 gro_normal_one(napi, skb);
c7c4b3b6 6080 break;
5d38a079 6081
daa86548 6082 case GRO_MERGED_FREE:
e44699d2
MK
6083 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6084 napi_skb_free_stolen_head(skb);
6085 else
d7e8883c 6086 __kfree_skb(skb);
daa86548
ED
6087 break;
6088
5b252f0c
BH
6089 case GRO_HELD:
6090 case GRO_MERGED:
25393d3f 6091 case GRO_CONSUMED:
5b252f0c 6092 break;
5d38a079
HX
6093 }
6094
c7c4b3b6 6095 return ret;
5d0d9be8 6096}
5d0d9be8 6097
c7c4b3b6 6098gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 6099{
b0e3f1bd
GB
6100 gro_result_t ret;
6101
93f93a44 6102 skb_mark_napi_id(skb, napi);
ae78dbfa 6103 trace_napi_gro_receive_entry(skb);
86911732 6104
a50e233c
ED
6105 skb_gro_reset_offset(skb);
6106
6570bc79 6107 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
6108 trace_napi_gro_receive_exit(ret);
6109
6110 return ret;
d565b0a1
HX
6111}
6112EXPORT_SYMBOL(napi_gro_receive);
6113
d0c2b0d2 6114static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 6115{
93a35f59
ED
6116 if (unlikely(skb->pfmemalloc)) {
6117 consume_skb(skb);
6118 return;
6119 }
96e93eab 6120 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
6121 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6122 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 6123 __vlan_hwaccel_clear_tag(skb);
66c46d74 6124 skb->dev = napi->dev;
6d152e23 6125 skb->skb_iif = 0;
33d9a2c7
ED
6126
6127 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6128 skb->pkt_type = PACKET_HOST;
6129
c3caf119
JC
6130 skb->encapsulation = 0;
6131 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 6132 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 6133 skb_ext_reset(skb);
96e93eab
HX
6134
6135 napi->skb = skb;
6136}
96e93eab 6137
76620aaf 6138struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 6139{
5d38a079 6140 struct sk_buff *skb = napi->skb;
5d38a079
HX
6141
6142 if (!skb) {
fd11a83d 6143 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
6144 if (skb) {
6145 napi->skb = skb;
6146 skb_mark_napi_id(skb, napi);
6147 }
80595d59 6148 }
96e93eab
HX
6149 return skb;
6150}
76620aaf 6151EXPORT_SYMBOL(napi_get_frags);
96e93eab 6152
a50e233c
ED
6153static gro_result_t napi_frags_finish(struct napi_struct *napi,
6154 struct sk_buff *skb,
6155 gro_result_t ret)
96e93eab 6156{
5d0d9be8
HX
6157 switch (ret) {
6158 case GRO_NORMAL:
a50e233c
ED
6159 case GRO_HELD:
6160 __skb_push(skb, ETH_HLEN);
6161 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61
EC
6162 if (ret == GRO_NORMAL)
6163 gro_normal_one(napi, skb);
86911732 6164 break;
5d38a079 6165
e44699d2
MK
6166 case GRO_MERGED_FREE:
6167 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6168 napi_skb_free_stolen_head(skb);
6169 else
6170 napi_reuse_skb(napi, skb);
6171 break;
6172
5b252f0c 6173 case GRO_MERGED:
25393d3f 6174 case GRO_CONSUMED:
5b252f0c 6175 break;
5d0d9be8 6176 }
5d38a079 6177
c7c4b3b6 6178 return ret;
5d38a079 6179}
5d0d9be8 6180
a50e233c
ED
6181/* Upper GRO stack assumes network header starts at gro_offset=0
6182 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6183 * We copy ethernet header into skb->data to have a common layout.
6184 */
4adb9c4a 6185static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
6186{
6187 struct sk_buff *skb = napi->skb;
a50e233c
ED
6188 const struct ethhdr *eth;
6189 unsigned int hlen = sizeof(*eth);
76620aaf
HX
6190
6191 napi->skb = NULL;
6192
a50e233c
ED
6193 skb_reset_mac_header(skb);
6194 skb_gro_reset_offset(skb);
6195
a50e233c
ED
6196 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6197 eth = skb_gro_header_slow(skb, hlen, 0);
6198 if (unlikely(!eth)) {
4da46ceb
AC
6199 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6200 __func__, napi->dev->name);
a50e233c
ED
6201 napi_reuse_skb(napi, skb);
6202 return NULL;
6203 }
6204 } else {
a4270d67 6205 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6206 gro_pull_from_frag0(skb, hlen);
6207 NAPI_GRO_CB(skb)->frag0 += hlen;
6208 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6209 }
a50e233c
ED
6210 __skb_pull(skb, hlen);
6211
6212 /*
6213 * This works because the only protocols we care about don't require
6214 * special handling.
6215 * We'll fix it up properly in napi_frags_finish()
6216 */
6217 skb->protocol = eth->h_proto;
76620aaf 6218
76620aaf
HX
6219 return skb;
6220}
76620aaf 6221
c7c4b3b6 6222gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6223{
b0e3f1bd 6224 gro_result_t ret;
76620aaf 6225 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8 6226
ae78dbfa
BH
6227 trace_napi_gro_frags_entry(skb);
6228
b0e3f1bd
GB
6229 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6230 trace_napi_gro_frags_exit(ret);
6231
6232 return ret;
5d0d9be8 6233}
5d38a079
HX
6234EXPORT_SYMBOL(napi_gro_frags);
6235
573e8fca
TH
6236/* Compute the checksum from gro_offset and return the folded value
6237 * after adding in any pseudo checksum.
6238 */
6239__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6240{
6241 __wsum wsum;
6242 __sum16 sum;
6243
6244 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6245
6246 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6247 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6248 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6249 if (likely(!sum)) {
6250 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6251 !skb->csum_complete_sw)
7fe50ac8 6252 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6253 }
6254
6255 NAPI_GRO_CB(skb)->csum = wsum;
6256 NAPI_GRO_CB(skb)->csum_valid = 1;
6257
6258 return sum;
6259}
6260EXPORT_SYMBOL(__skb_gro_checksum_complete);
6261
773fc8f6 6262static void net_rps_send_ipi(struct softnet_data *remsd)
6263{
6264#ifdef CONFIG_RPS
6265 while (remsd) {
6266 struct softnet_data *next = remsd->rps_ipi_next;
6267
6268 if (cpu_online(remsd->cpu))
6269 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6270 remsd = next;
6271 }
6272#endif
6273}
6274
e326bed2 6275/*
855abcf0 6276 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6277 * Note: called with local irq disabled, but exits with local irq enabled.
6278 */
6279static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6280{
6281#ifdef CONFIG_RPS
6282 struct softnet_data *remsd = sd->rps_ipi_list;
6283
6284 if (remsd) {
6285 sd->rps_ipi_list = NULL;
6286
6287 local_irq_enable();
6288
6289 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6290 net_rps_send_ipi(remsd);
e326bed2
ED
6291 } else
6292#endif
6293 local_irq_enable();
6294}
6295
d75b1ade
ED
6296static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6297{
6298#ifdef CONFIG_RPS
6299 return sd->rps_ipi_list != NULL;
6300#else
6301 return false;
6302#endif
6303}
6304
bea3348e 6305static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6306{
eecfd7c4 6307 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6308 bool again = true;
6309 int work = 0;
1da177e4 6310
e326bed2
ED
6311 /* Check if we have pending ipi, its better to send them now,
6312 * not waiting net_rx_action() end.
6313 */
d75b1ade 6314 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6315 local_irq_disable();
6316 net_rps_action_and_irq_enable(sd);
6317 }
d75b1ade 6318
3d48b53f 6319 napi->weight = dev_rx_weight;
145dd5f9 6320 while (again) {
1da177e4 6321 struct sk_buff *skb;
6e7676c1
CG
6322
6323 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6324 rcu_read_lock();
6e7676c1 6325 __netif_receive_skb(skb);
2c17d27c 6326 rcu_read_unlock();
76cc8b13 6327 input_queue_head_incr(sd);
145dd5f9 6328 if (++work >= quota)
76cc8b13 6329 return work;
145dd5f9 6330
6e7676c1 6331 }
1da177e4 6332
145dd5f9 6333 local_irq_disable();
e36fa2f7 6334 rps_lock(sd);
11ef7a89 6335 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6336 /*
6337 * Inline a custom version of __napi_complete().
6338 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6339 * and NAPI_STATE_SCHED is the only possible flag set
6340 * on backlog.
6341 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6342 * and we dont need an smp_mb() memory barrier.
6343 */
eecfd7c4 6344 napi->state = 0;
145dd5f9
PA
6345 again = false;
6346 } else {
6347 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6348 &sd->process_queue);
bea3348e 6349 }
e36fa2f7 6350 rps_unlock(sd);
145dd5f9 6351 local_irq_enable();
6e7676c1 6352 }
1da177e4 6353
bea3348e
SH
6354 return work;
6355}
1da177e4 6356
bea3348e
SH
6357/**
6358 * __napi_schedule - schedule for receive
c4ea43c5 6359 * @n: entry to schedule
bea3348e 6360 *
bc9ad166
ED
6361 * The entry's receive function will be scheduled to run.
6362 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6363 */
b5606c2d 6364void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6365{
6366 unsigned long flags;
1da177e4 6367
bea3348e 6368 local_irq_save(flags);
903ceff7 6369 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6370 local_irq_restore(flags);
1da177e4 6371}
bea3348e
SH
6372EXPORT_SYMBOL(__napi_schedule);
6373
39e6c820
ED
6374/**
6375 * napi_schedule_prep - check if napi can be scheduled
6376 * @n: napi context
6377 *
6378 * Test if NAPI routine is already running, and if not mark
ee1a4c84 6379 * it as running. This is used as a condition variable to
39e6c820
ED
6380 * insure only one NAPI poll instance runs. We also make
6381 * sure there is no pending NAPI disable.
6382 */
6383bool napi_schedule_prep(struct napi_struct *n)
6384{
6385 unsigned long val, new;
6386
6387 do {
6388 val = READ_ONCE(n->state);
6389 if (unlikely(val & NAPIF_STATE_DISABLE))
6390 return false;
6391 new = val | NAPIF_STATE_SCHED;
6392
6393 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6394 * This was suggested by Alexander Duyck, as compiler
6395 * emits better code than :
6396 * if (val & NAPIF_STATE_SCHED)
6397 * new |= NAPIF_STATE_MISSED;
6398 */
6399 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6400 NAPIF_STATE_MISSED;
6401 } while (cmpxchg(&n->state, val, new) != val);
6402
6403 return !(val & NAPIF_STATE_SCHED);
6404}
6405EXPORT_SYMBOL(napi_schedule_prep);
6406
bc9ad166
ED
6407/**
6408 * __napi_schedule_irqoff - schedule for receive
6409 * @n: entry to schedule
6410 *
6411 * Variant of __napi_schedule() assuming hard irqs are masked
6412 */
6413void __napi_schedule_irqoff(struct napi_struct *n)
6414{
6415 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6416}
6417EXPORT_SYMBOL(__napi_schedule_irqoff);
6418
364b6055 6419bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6420{
6f8b12d6
ED
6421 unsigned long flags, val, new, timeout = 0;
6422 bool ret = true;
d565b0a1
HX
6423
6424 /*
217f6974
ED
6425 * 1) Don't let napi dequeue from the cpu poll list
6426 * just in case its running on a different cpu.
6427 * 2) If we are busy polling, do nothing here, we have
6428 * the guarantee we will be called later.
d565b0a1 6429 */
217f6974
ED
6430 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6431 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6432 return false;
d565b0a1 6433
6f8b12d6
ED
6434 if (work_done) {
6435 if (n->gro_bitmask)
7e417a66
ED
6436 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6437 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
6438 }
6439 if (n->defer_hard_irqs_count > 0) {
6440 n->defer_hard_irqs_count--;
7e417a66 6441 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
6442 if (timeout)
6443 ret = false;
6444 }
6445 if (n->gro_bitmask) {
605108ac
PA
6446 /* When the NAPI instance uses a timeout and keeps postponing
6447 * it, we need to bound somehow the time packets are kept in
6448 * the GRO layer
6449 */
6450 napi_gro_flush(n, !!timeout);
3b47d303 6451 }
c8079432
MM
6452
6453 gro_normal_list(n);
6454
02c1602e 6455 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6456 /* If n->poll_list is not empty, we need to mask irqs */
6457 local_irq_save(flags);
02c1602e 6458 list_del_init(&n->poll_list);
d75b1ade
ED
6459 local_irq_restore(flags);
6460 }
39e6c820
ED
6461
6462 do {
6463 val = READ_ONCE(n->state);
6464
6465 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6466
7fd3253a
BT
6467 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6468 NAPIF_STATE_PREFER_BUSY_POLL);
39e6c820
ED
6469
6470 /* If STATE_MISSED was set, leave STATE_SCHED set,
6471 * because we will call napi->poll() one more time.
6472 * This C code was suggested by Alexander Duyck to help gcc.
6473 */
6474 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6475 NAPIF_STATE_SCHED;
6476 } while (cmpxchg(&n->state, val, new) != val);
6477
6478 if (unlikely(val & NAPIF_STATE_MISSED)) {
6479 __napi_schedule(n);
6480 return false;
6481 }
6482
6f8b12d6
ED
6483 if (timeout)
6484 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6485 HRTIMER_MODE_REL_PINNED);
6486 return ret;
d565b0a1 6487}
3b47d303 6488EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6489
af12fa6e 6490/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6491static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6492{
6493 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6494 struct napi_struct *napi;
6495
6496 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6497 if (napi->napi_id == napi_id)
6498 return napi;
6499
6500 return NULL;
6501}
02d62e86
ED
6502
6503#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6504
7fd3253a 6505static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
217f6974 6506{
7fd3253a
BT
6507 if (!skip_schedule) {
6508 gro_normal_list(napi);
6509 __napi_schedule(napi);
6510 return;
6511 }
217f6974 6512
7fd3253a
BT
6513 if (napi->gro_bitmask) {
6514 /* flush too old packets
6515 * If HZ < 1000, flush all packets.
6516 */
6517 napi_gro_flush(napi, HZ >= 1000);
6518 }
217f6974 6519
7fd3253a
BT
6520 gro_normal_list(napi);
6521 clear_bit(NAPI_STATE_SCHED, &napi->state);
6522}
6523
7c951caf
BT
6524static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6525 u16 budget)
217f6974 6526{
7fd3253a
BT
6527 bool skip_schedule = false;
6528 unsigned long timeout;
217f6974
ED
6529 int rc;
6530
39e6c820
ED
6531 /* Busy polling means there is a high chance device driver hard irq
6532 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6533 * set in napi_schedule_prep().
6534 * Since we are about to call napi->poll() once more, we can safely
6535 * clear NAPI_STATE_MISSED.
6536 *
6537 * Note: x86 could use a single "lock and ..." instruction
6538 * to perform these two clear_bit()
6539 */
6540 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6541 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6542
6543 local_bh_disable();
6544
7fd3253a
BT
6545 if (prefer_busy_poll) {
6546 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6547 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6548 if (napi->defer_hard_irqs_count && timeout) {
6549 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6550 skip_schedule = true;
6551 }
6552 }
6553
217f6974
ED
6554 /* All we really want here is to re-enable device interrupts.
6555 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6556 */
7c951caf 6557 rc = napi->poll(napi, budget);
323ebb61
EC
6558 /* We can't gro_normal_list() here, because napi->poll() might have
6559 * rearmed the napi (napi_complete_done()) in which case it could
6560 * already be running on another CPU.
6561 */
7c951caf 6562 trace_napi_poll(napi, rc, budget);
217f6974 6563 netpoll_poll_unlock(have_poll_lock);
7c951caf 6564 if (rc == budget)
7fd3253a 6565 __busy_poll_stop(napi, skip_schedule);
217f6974 6566 local_bh_enable();
217f6974
ED
6567}
6568
7db6b048
SS
6569void napi_busy_loop(unsigned int napi_id,
6570 bool (*loop_end)(void *, unsigned long),
7c951caf 6571 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
02d62e86 6572{
7db6b048 6573 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6574 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6575 void *have_poll_lock = NULL;
02d62e86 6576 struct napi_struct *napi;
217f6974
ED
6577
6578restart:
217f6974 6579 napi_poll = NULL;
02d62e86 6580
2a028ecb 6581 rcu_read_lock();
02d62e86 6582
545cd5e5 6583 napi = napi_by_id(napi_id);
02d62e86
ED
6584 if (!napi)
6585 goto out;
6586
217f6974
ED
6587 preempt_disable();
6588 for (;;) {
2b5cd0df
AD
6589 int work = 0;
6590
2a028ecb 6591 local_bh_disable();
217f6974
ED
6592 if (!napi_poll) {
6593 unsigned long val = READ_ONCE(napi->state);
6594
6595 /* If multiple threads are competing for this napi,
6596 * we avoid dirtying napi->state as much as we can.
6597 */
6598 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
7fd3253a
BT
6599 NAPIF_STATE_IN_BUSY_POLL)) {
6600 if (prefer_busy_poll)
6601 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6602 goto count;
7fd3253a 6603 }
217f6974
ED
6604 if (cmpxchg(&napi->state, val,
6605 val | NAPIF_STATE_IN_BUSY_POLL |
7fd3253a
BT
6606 NAPIF_STATE_SCHED) != val) {
6607 if (prefer_busy_poll)
6608 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6609 goto count;
7fd3253a 6610 }
217f6974
ED
6611 have_poll_lock = netpoll_poll_lock(napi);
6612 napi_poll = napi->poll;
6613 }
7c951caf
BT
6614 work = napi_poll(napi, budget);
6615 trace_napi_poll(napi, work, budget);
323ebb61 6616 gro_normal_list(napi);
217f6974 6617count:
2b5cd0df 6618 if (work > 0)
7db6b048 6619 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6620 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6621 local_bh_enable();
02d62e86 6622
7db6b048 6623 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6624 break;
02d62e86 6625
217f6974
ED
6626 if (unlikely(need_resched())) {
6627 if (napi_poll)
7c951caf 6628 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974
ED
6629 preempt_enable();
6630 rcu_read_unlock();
6631 cond_resched();
7db6b048 6632 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6633 return;
217f6974
ED
6634 goto restart;
6635 }
6cdf89b1 6636 cpu_relax();
217f6974
ED
6637 }
6638 if (napi_poll)
7c951caf 6639 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974 6640 preempt_enable();
02d62e86 6641out:
2a028ecb 6642 rcu_read_unlock();
02d62e86 6643}
7db6b048 6644EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6645
6646#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6647
149d6ad8 6648static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6649{
4d092dd2 6650 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
52bd2d62 6651 return;
af12fa6e 6652
52bd2d62 6653 spin_lock(&napi_hash_lock);
af12fa6e 6654
545cd5e5 6655 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6656 do {
545cd5e5
AD
6657 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6658 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6659 } while (napi_by_id(napi_gen_id));
6660 napi->napi_id = napi_gen_id;
af12fa6e 6661
52bd2d62
ED
6662 hlist_add_head_rcu(&napi->napi_hash_node,
6663 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6664
52bd2d62 6665 spin_unlock(&napi_hash_lock);
af12fa6e 6666}
af12fa6e
ET
6667
6668/* Warning : caller is responsible to make sure rcu grace period
6669 * is respected before freeing memory containing @napi
6670 */
5198d545 6671static void napi_hash_del(struct napi_struct *napi)
af12fa6e
ET
6672{
6673 spin_lock(&napi_hash_lock);
6674
4d092dd2 6675 hlist_del_init_rcu(&napi->napi_hash_node);
5198d545 6676
af12fa6e
ET
6677 spin_unlock(&napi_hash_lock);
6678}
af12fa6e 6679
3b47d303
ED
6680static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6681{
6682 struct napi_struct *napi;
6683
6684 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6685
6686 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6687 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6688 */
6f8b12d6 6689 if (!napi_disable_pending(napi) &&
7fd3253a
BT
6690 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6691 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
39e6c820 6692 __napi_schedule_irqoff(napi);
7fd3253a 6693 }
3b47d303
ED
6694
6695 return HRTIMER_NORESTART;
6696}
6697
7c4ec749 6698static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6699{
07d78363
DM
6700 int i;
6701
6312fe77
LR
6702 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6703 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6704 napi->gro_hash[i].count = 0;
6705 }
7c4ec749
DM
6706 napi->gro_bitmask = 0;
6707}
6708
6709void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6710 int (*poll)(struct napi_struct *, int), int weight)
6711{
4d092dd2
JK
6712 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6713 return;
6714
7c4ec749 6715 INIT_LIST_HEAD(&napi->poll_list);
4d092dd2 6716 INIT_HLIST_NODE(&napi->napi_hash_node);
7c4ec749
DM
6717 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6718 napi->timer.function = napi_watchdog;
6719 init_gro_hash(napi);
5d38a079 6720 napi->skb = NULL;
323ebb61
EC
6721 INIT_LIST_HEAD(&napi->rx_list);
6722 napi->rx_count = 0;
d565b0a1 6723 napi->poll = poll;
82dc3c63 6724 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6725 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6726 weight);
d565b0a1 6727 napi->weight = weight;
d565b0a1 6728 napi->dev = dev;
5d38a079 6729#ifdef CONFIG_NETPOLL
d565b0a1
HX
6730 napi->poll_owner = -1;
6731#endif
6732 set_bit(NAPI_STATE_SCHED, &napi->state);
96e97bc0
JK
6733 set_bit(NAPI_STATE_NPSVC, &napi->state);
6734 list_add_rcu(&napi->dev_list, &dev->napi_list);
93d05d4a 6735 napi_hash_add(napi);
d565b0a1
HX
6736}
6737EXPORT_SYMBOL(netif_napi_add);
6738
3b47d303
ED
6739void napi_disable(struct napi_struct *n)
6740{
6741 might_sleep();
6742 set_bit(NAPI_STATE_DISABLE, &n->state);
6743
6744 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6745 msleep(1);
2d8bff12
NH
6746 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6747 msleep(1);
3b47d303
ED
6748
6749 hrtimer_cancel(&n->timer);
6750
7fd3253a 6751 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
3b47d303
ED
6752 clear_bit(NAPI_STATE_DISABLE, &n->state);
6753}
6754EXPORT_SYMBOL(napi_disable);
6755
07d78363 6756static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6757{
07d78363 6758 int i;
d4546c25 6759
07d78363
DM
6760 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6761 struct sk_buff *skb, *n;
6762
6312fe77 6763 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6764 kfree_skb(skb);
6312fe77 6765 napi->gro_hash[i].count = 0;
07d78363 6766 }
d4546c25
DM
6767}
6768
93d05d4a 6769/* Must be called in process context */
5198d545 6770void __netif_napi_del(struct napi_struct *napi)
d565b0a1 6771{
4d092dd2
JK
6772 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6773 return;
6774
5198d545 6775 napi_hash_del(napi);
5251ef82 6776 list_del_rcu(&napi->dev_list);
76620aaf 6777 napi_free_frags(napi);
d565b0a1 6778
07d78363 6779 flush_gro_hash(napi);
d9f37d01 6780 napi->gro_bitmask = 0;
d565b0a1 6781}
5198d545 6782EXPORT_SYMBOL(__netif_napi_del);
d565b0a1 6783
726ce70e
HX
6784static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6785{
6786 void *have;
6787 int work, weight;
6788
6789 list_del_init(&n->poll_list);
6790
6791 have = netpoll_poll_lock(n);
6792
6793 weight = n->weight;
6794
6795 /* This NAPI_STATE_SCHED test is for avoiding a race
6796 * with netpoll's poll_napi(). Only the entity which
6797 * obtains the lock and sees NAPI_STATE_SCHED set will
6798 * actually make the ->poll() call. Therefore we avoid
6799 * accidentally calling ->poll() when NAPI is not scheduled.
6800 */
6801 work = 0;
6802 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6803 work = n->poll(n, weight);
1db19db7 6804 trace_napi_poll(n, work, weight);
726ce70e
HX
6805 }
6806
427d5838
ED
6807 if (unlikely(work > weight))
6808 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6809 n->poll, work, weight);
726ce70e
HX
6810
6811 if (likely(work < weight))
6812 goto out_unlock;
6813
6814 /* Drivers must not modify the NAPI state if they
6815 * consume the entire weight. In such cases this code
6816 * still "owns" the NAPI instance and therefore can
6817 * move the instance around on the list at-will.
6818 */
6819 if (unlikely(napi_disable_pending(n))) {
6820 napi_complete(n);
6821 goto out_unlock;
6822 }
6823
7fd3253a
BT
6824 /* The NAPI context has more processing work, but busy-polling
6825 * is preferred. Exit early.
6826 */
6827 if (napi_prefer_busy_poll(n)) {
6828 if (napi_complete_done(n, work)) {
6829 /* If timeout is not set, we need to make sure
6830 * that the NAPI is re-scheduled.
6831 */
6832 napi_schedule(n);
6833 }
6834 goto out_unlock;
6835 }
6836
d9f37d01 6837 if (n->gro_bitmask) {
726ce70e
HX
6838 /* flush too old packets
6839 * If HZ < 1000, flush all packets.
6840 */
6841 napi_gro_flush(n, HZ >= 1000);
6842 }
6843
c8079432
MM
6844 gro_normal_list(n);
6845
001ce546
HX
6846 /* Some drivers may have called napi_schedule
6847 * prior to exhausting their budget.
6848 */
6849 if (unlikely(!list_empty(&n->poll_list))) {
6850 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6851 n->dev ? n->dev->name : "backlog");
6852 goto out_unlock;
6853 }
6854
726ce70e
HX
6855 list_add_tail(&n->poll_list, repoll);
6856
6857out_unlock:
6858 netpoll_poll_unlock(have);
6859
6860 return work;
6861}
6862
0766f788 6863static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6864{
903ceff7 6865 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6866 unsigned long time_limit = jiffies +
6867 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6868 int budget = netdev_budget;
d75b1ade
ED
6869 LIST_HEAD(list);
6870 LIST_HEAD(repoll);
53fb95d3 6871
1da177e4 6872 local_irq_disable();
d75b1ade
ED
6873 list_splice_init(&sd->poll_list, &list);
6874 local_irq_enable();
1da177e4 6875
ceb8d5bf 6876 for (;;) {
bea3348e 6877 struct napi_struct *n;
1da177e4 6878
ceb8d5bf
HX
6879 if (list_empty(&list)) {
6880 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6881 goto out;
ceb8d5bf
HX
6882 break;
6883 }
6884
6bd373eb
HX
6885 n = list_first_entry(&list, struct napi_struct, poll_list);
6886 budget -= napi_poll(n, &repoll);
6887
d75b1ade 6888 /* If softirq window is exhausted then punt.
24f8b238
SH
6889 * Allow this to run for 2 jiffies since which will allow
6890 * an average latency of 1.5/HZ.
bea3348e 6891 */
ceb8d5bf
HX
6892 if (unlikely(budget <= 0 ||
6893 time_after_eq(jiffies, time_limit))) {
6894 sd->time_squeeze++;
6895 break;
6896 }
1da177e4 6897 }
d75b1ade 6898
d75b1ade
ED
6899 local_irq_disable();
6900
6901 list_splice_tail_init(&sd->poll_list, &list);
6902 list_splice_tail(&repoll, &list);
6903 list_splice(&list, &sd->poll_list);
6904 if (!list_empty(&sd->poll_list))
6905 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6906
e326bed2 6907 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6908out:
6909 __kfree_skb_flush();
1da177e4
LT
6910}
6911
aa9d8560 6912struct netdev_adjacent {
9ff162a8 6913 struct net_device *dev;
5d261913
VF
6914
6915 /* upper master flag, there can only be one master device per list */
9ff162a8 6916 bool master;
5d261913 6917
32b6d34f
TY
6918 /* lookup ignore flag */
6919 bool ignore;
6920
5d261913
VF
6921 /* counter for the number of times this device was added to us */
6922 u16 ref_nr;
6923
402dae96
VF
6924 /* private field for the users */
6925 void *private;
6926
9ff162a8
JP
6927 struct list_head list;
6928 struct rcu_head rcu;
9ff162a8
JP
6929};
6930
6ea29da1 6931static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6932 struct list_head *adj_list)
9ff162a8 6933{
5d261913 6934 struct netdev_adjacent *adj;
5d261913 6935
2f268f12 6936 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6937 if (adj->dev == adj_dev)
6938 return adj;
9ff162a8
JP
6939 }
6940 return NULL;
6941}
6942
eff74233
TY
6943static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6944 struct netdev_nested_priv *priv)
f1170fd4 6945{
eff74233 6946 struct net_device *dev = (struct net_device *)priv->data;
f1170fd4
DA
6947
6948 return upper_dev == dev;
6949}
6950
9ff162a8
JP
6951/**
6952 * netdev_has_upper_dev - Check if device is linked to an upper device
6953 * @dev: device
6954 * @upper_dev: upper device to check
6955 *
6956 * Find out if a device is linked to specified upper device and return true
6957 * in case it is. Note that this checks only immediate upper device,
6958 * not through a complete stack of devices. The caller must hold the RTNL lock.
6959 */
6960bool netdev_has_upper_dev(struct net_device *dev,
6961 struct net_device *upper_dev)
6962{
eff74233
TY
6963 struct netdev_nested_priv priv = {
6964 .data = (void *)upper_dev,
6965 };
6966
9ff162a8
JP
6967 ASSERT_RTNL();
6968
32b6d34f 6969 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 6970 &priv);
9ff162a8
JP
6971}
6972EXPORT_SYMBOL(netdev_has_upper_dev);
6973
1a3f060c 6974/**
c1639be9 6975 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
1a3f060c
DA
6976 * @dev: device
6977 * @upper_dev: upper device to check
6978 *
6979 * Find out if a device is linked to specified upper device and return true
6980 * in case it is. Note that this checks the entire upper device chain.
6981 * The caller must hold rcu lock.
6982 */
6983
1a3f060c
DA
6984bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6985 struct net_device *upper_dev)
6986{
eff74233
TY
6987 struct netdev_nested_priv priv = {
6988 .data = (void *)upper_dev,
6989 };
6990
32b6d34f 6991 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 6992 &priv);
1a3f060c
DA
6993}
6994EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6995
9ff162a8
JP
6996/**
6997 * netdev_has_any_upper_dev - Check if device is linked to some device
6998 * @dev: device
6999 *
7000 * Find out if a device is linked to an upper device and return true in case
7001 * it is. The caller must hold the RTNL lock.
7002 */
25cc72a3 7003bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
7004{
7005 ASSERT_RTNL();
7006
f1170fd4 7007 return !list_empty(&dev->adj_list.upper);
9ff162a8 7008}
25cc72a3 7009EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
7010
7011/**
7012 * netdev_master_upper_dev_get - Get master upper device
7013 * @dev: device
7014 *
7015 * Find a master upper device and return pointer to it or NULL in case
7016 * it's not there. The caller must hold the RTNL lock.
7017 */
7018struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7019{
aa9d8560 7020 struct netdev_adjacent *upper;
9ff162a8
JP
7021
7022 ASSERT_RTNL();
7023
2f268f12 7024 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
7025 return NULL;
7026
2f268f12 7027 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 7028 struct netdev_adjacent, list);
9ff162a8
JP
7029 if (likely(upper->master))
7030 return upper->dev;
7031 return NULL;
7032}
7033EXPORT_SYMBOL(netdev_master_upper_dev_get);
7034
32b6d34f
TY
7035static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7036{
7037 struct netdev_adjacent *upper;
7038
7039 ASSERT_RTNL();
7040
7041 if (list_empty(&dev->adj_list.upper))
7042 return NULL;
7043
7044 upper = list_first_entry(&dev->adj_list.upper,
7045 struct netdev_adjacent, list);
7046 if (likely(upper->master) && !upper->ignore)
7047 return upper->dev;
7048 return NULL;
7049}
7050
0f524a80
DA
7051/**
7052 * netdev_has_any_lower_dev - Check if device is linked to some device
7053 * @dev: device
7054 *
7055 * Find out if a device is linked to a lower device and return true in case
7056 * it is. The caller must hold the RTNL lock.
7057 */
7058static bool netdev_has_any_lower_dev(struct net_device *dev)
7059{
7060 ASSERT_RTNL();
7061
7062 return !list_empty(&dev->adj_list.lower);
7063}
7064
b6ccba4c
VF
7065void *netdev_adjacent_get_private(struct list_head *adj_list)
7066{
7067 struct netdev_adjacent *adj;
7068
7069 adj = list_entry(adj_list, struct netdev_adjacent, list);
7070
7071 return adj->private;
7072}
7073EXPORT_SYMBOL(netdev_adjacent_get_private);
7074
44a40855
VY
7075/**
7076 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7077 * @dev: device
7078 * @iter: list_head ** of the current position
7079 *
7080 * Gets the next device from the dev's upper list, starting from iter
7081 * position. The caller must hold RCU read lock.
7082 */
7083struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7084 struct list_head **iter)
7085{
7086 struct netdev_adjacent *upper;
7087
7088 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7089
7090 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7091
7092 if (&upper->list == &dev->adj_list.upper)
7093 return NULL;
7094
7095 *iter = &upper->list;
7096
7097 return upper->dev;
7098}
7099EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7100
32b6d34f
TY
7101static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7102 struct list_head **iter,
7103 bool *ignore)
5343da4c
TY
7104{
7105 struct netdev_adjacent *upper;
7106
7107 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7108
7109 if (&upper->list == &dev->adj_list.upper)
7110 return NULL;
7111
7112 *iter = &upper->list;
32b6d34f 7113 *ignore = upper->ignore;
5343da4c
TY
7114
7115 return upper->dev;
7116}
7117
1a3f060c
DA
7118static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7119 struct list_head **iter)
7120{
7121 struct netdev_adjacent *upper;
7122
7123 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7124
7125 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7126
7127 if (&upper->list == &dev->adj_list.upper)
7128 return NULL;
7129
7130 *iter = &upper->list;
7131
7132 return upper->dev;
7133}
7134
32b6d34f
TY
7135static int __netdev_walk_all_upper_dev(struct net_device *dev,
7136 int (*fn)(struct net_device *dev,
eff74233
TY
7137 struct netdev_nested_priv *priv),
7138 struct netdev_nested_priv *priv)
5343da4c
TY
7139{
7140 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7141 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7142 int ret, cur = 0;
32b6d34f 7143 bool ignore;
5343da4c
TY
7144
7145 now = dev;
7146 iter = &dev->adj_list.upper;
7147
7148 while (1) {
7149 if (now != dev) {
eff74233 7150 ret = fn(now, priv);
5343da4c
TY
7151 if (ret)
7152 return ret;
7153 }
7154
7155 next = NULL;
7156 while (1) {
32b6d34f 7157 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
7158 if (!udev)
7159 break;
32b6d34f
TY
7160 if (ignore)
7161 continue;
5343da4c
TY
7162
7163 next = udev;
7164 niter = &udev->adj_list.upper;
7165 dev_stack[cur] = now;
7166 iter_stack[cur++] = iter;
7167 break;
7168 }
7169
7170 if (!next) {
7171 if (!cur)
7172 return 0;
7173 next = dev_stack[--cur];
7174 niter = iter_stack[cur];
7175 }
7176
7177 now = next;
7178 iter = niter;
7179 }
7180
7181 return 0;
7182}
7183
1a3f060c
DA
7184int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7185 int (*fn)(struct net_device *dev,
eff74233
TY
7186 struct netdev_nested_priv *priv),
7187 struct netdev_nested_priv *priv)
1a3f060c 7188{
5343da4c
TY
7189 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7190 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7191 int ret, cur = 0;
1a3f060c 7192
5343da4c
TY
7193 now = dev;
7194 iter = &dev->adj_list.upper;
1a3f060c 7195
5343da4c
TY
7196 while (1) {
7197 if (now != dev) {
eff74233 7198 ret = fn(now, priv);
5343da4c
TY
7199 if (ret)
7200 return ret;
7201 }
7202
7203 next = NULL;
7204 while (1) {
7205 udev = netdev_next_upper_dev_rcu(now, &iter);
7206 if (!udev)
7207 break;
7208
7209 next = udev;
7210 niter = &udev->adj_list.upper;
7211 dev_stack[cur] = now;
7212 iter_stack[cur++] = iter;
7213 break;
7214 }
7215
7216 if (!next) {
7217 if (!cur)
7218 return 0;
7219 next = dev_stack[--cur];
7220 niter = iter_stack[cur];
7221 }
7222
7223 now = next;
7224 iter = niter;
1a3f060c
DA
7225 }
7226
7227 return 0;
7228}
7229EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7230
32b6d34f
TY
7231static bool __netdev_has_upper_dev(struct net_device *dev,
7232 struct net_device *upper_dev)
7233{
eff74233 7234 struct netdev_nested_priv priv = {
1fc70edb 7235 .flags = 0,
eff74233
TY
7236 .data = (void *)upper_dev,
7237 };
7238
32b6d34f
TY
7239 ASSERT_RTNL();
7240
7241 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
eff74233 7242 &priv);
32b6d34f
TY
7243}
7244
31088a11
VF
7245/**
7246 * netdev_lower_get_next_private - Get the next ->private from the
7247 * lower neighbour list
7248 * @dev: device
7249 * @iter: list_head ** of the current position
7250 *
7251 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7252 * list, starting from iter position. The caller must hold either hold the
7253 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 7254 * list will remain unchanged.
31088a11
VF
7255 */
7256void *netdev_lower_get_next_private(struct net_device *dev,
7257 struct list_head **iter)
7258{
7259 struct netdev_adjacent *lower;
7260
7261 lower = list_entry(*iter, struct netdev_adjacent, list);
7262
7263 if (&lower->list == &dev->adj_list.lower)
7264 return NULL;
7265
6859e7df 7266 *iter = lower->list.next;
31088a11
VF
7267
7268 return lower->private;
7269}
7270EXPORT_SYMBOL(netdev_lower_get_next_private);
7271
7272/**
7273 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7274 * lower neighbour list, RCU
7275 * variant
7276 * @dev: device
7277 * @iter: list_head ** of the current position
7278 *
7279 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7280 * list, starting from iter position. The caller must hold RCU read lock.
7281 */
7282void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7283 struct list_head **iter)
7284{
7285 struct netdev_adjacent *lower;
7286
7287 WARN_ON_ONCE(!rcu_read_lock_held());
7288
7289 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7290
7291 if (&lower->list == &dev->adj_list.lower)
7292 return NULL;
7293
6859e7df 7294 *iter = &lower->list;
31088a11
VF
7295
7296 return lower->private;
7297}
7298EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7299
4085ebe8
VY
7300/**
7301 * netdev_lower_get_next - Get the next device from the lower neighbour
7302 * list
7303 * @dev: device
7304 * @iter: list_head ** of the current position
7305 *
7306 * Gets the next netdev_adjacent from the dev's lower neighbour
7307 * list, starting from iter position. The caller must hold RTNL lock or
7308 * its own locking that guarantees that the neighbour lower
b469139e 7309 * list will remain unchanged.
4085ebe8
VY
7310 */
7311void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7312{
7313 struct netdev_adjacent *lower;
7314
cfdd28be 7315 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7316
7317 if (&lower->list == &dev->adj_list.lower)
7318 return NULL;
7319
cfdd28be 7320 *iter = lower->list.next;
4085ebe8
VY
7321
7322 return lower->dev;
7323}
7324EXPORT_SYMBOL(netdev_lower_get_next);
7325
1a3f060c
DA
7326static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7327 struct list_head **iter)
7328{
7329 struct netdev_adjacent *lower;
7330
46b5ab1a 7331 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7332
7333 if (&lower->list == &dev->adj_list.lower)
7334 return NULL;
7335
46b5ab1a 7336 *iter = &lower->list;
1a3f060c
DA
7337
7338 return lower->dev;
7339}
7340
32b6d34f
TY
7341static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7342 struct list_head **iter,
7343 bool *ignore)
7344{
7345 struct netdev_adjacent *lower;
7346
7347 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7348
7349 if (&lower->list == &dev->adj_list.lower)
7350 return NULL;
7351
7352 *iter = &lower->list;
7353 *ignore = lower->ignore;
7354
7355 return lower->dev;
7356}
7357
1a3f060c
DA
7358int netdev_walk_all_lower_dev(struct net_device *dev,
7359 int (*fn)(struct net_device *dev,
eff74233
TY
7360 struct netdev_nested_priv *priv),
7361 struct netdev_nested_priv *priv)
1a3f060c 7362{
5343da4c
TY
7363 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7364 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7365 int ret, cur = 0;
1a3f060c 7366
5343da4c
TY
7367 now = dev;
7368 iter = &dev->adj_list.lower;
1a3f060c 7369
5343da4c
TY
7370 while (1) {
7371 if (now != dev) {
eff74233 7372 ret = fn(now, priv);
5343da4c
TY
7373 if (ret)
7374 return ret;
7375 }
7376
7377 next = NULL;
7378 while (1) {
7379 ldev = netdev_next_lower_dev(now, &iter);
7380 if (!ldev)
7381 break;
7382
7383 next = ldev;
7384 niter = &ldev->adj_list.lower;
7385 dev_stack[cur] = now;
7386 iter_stack[cur++] = iter;
7387 break;
7388 }
7389
7390 if (!next) {
7391 if (!cur)
7392 return 0;
7393 next = dev_stack[--cur];
7394 niter = iter_stack[cur];
7395 }
7396
7397 now = next;
7398 iter = niter;
1a3f060c
DA
7399 }
7400
7401 return 0;
7402}
7403EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7404
32b6d34f
TY
7405static int __netdev_walk_all_lower_dev(struct net_device *dev,
7406 int (*fn)(struct net_device *dev,
eff74233
TY
7407 struct netdev_nested_priv *priv),
7408 struct netdev_nested_priv *priv)
32b6d34f
TY
7409{
7410 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7411 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7412 int ret, cur = 0;
7413 bool ignore;
7414
7415 now = dev;
7416 iter = &dev->adj_list.lower;
7417
7418 while (1) {
7419 if (now != dev) {
eff74233 7420 ret = fn(now, priv);
32b6d34f
TY
7421 if (ret)
7422 return ret;
7423 }
7424
7425 next = NULL;
7426 while (1) {
7427 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7428 if (!ldev)
7429 break;
7430 if (ignore)
7431 continue;
7432
7433 next = ldev;
7434 niter = &ldev->adj_list.lower;
7435 dev_stack[cur] = now;
7436 iter_stack[cur++] = iter;
7437 break;
7438 }
7439
7440 if (!next) {
7441 if (!cur)
7442 return 0;
7443 next = dev_stack[--cur];
7444 niter = iter_stack[cur];
7445 }
7446
7447 now = next;
7448 iter = niter;
7449 }
7450
7451 return 0;
7452}
7453
7151affe
TY
7454struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7455 struct list_head **iter)
1a3f060c
DA
7456{
7457 struct netdev_adjacent *lower;
7458
7459 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7460 if (&lower->list == &dev->adj_list.lower)
7461 return NULL;
7462
7463 *iter = &lower->list;
7464
7465 return lower->dev;
7466}
7151affe 7467EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7468
5343da4c
TY
7469static u8 __netdev_upper_depth(struct net_device *dev)
7470{
7471 struct net_device *udev;
7472 struct list_head *iter;
7473 u8 max_depth = 0;
32b6d34f 7474 bool ignore;
5343da4c
TY
7475
7476 for (iter = &dev->adj_list.upper,
32b6d34f 7477 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7478 udev;
32b6d34f
TY
7479 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7480 if (ignore)
7481 continue;
5343da4c
TY
7482 if (max_depth < udev->upper_level)
7483 max_depth = udev->upper_level;
7484 }
7485
7486 return max_depth;
7487}
7488
7489static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7490{
7491 struct net_device *ldev;
7492 struct list_head *iter;
5343da4c 7493 u8 max_depth = 0;
32b6d34f 7494 bool ignore;
1a3f060c
DA
7495
7496 for (iter = &dev->adj_list.lower,
32b6d34f 7497 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7498 ldev;
32b6d34f
TY
7499 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7500 if (ignore)
7501 continue;
5343da4c
TY
7502 if (max_depth < ldev->lower_level)
7503 max_depth = ldev->lower_level;
7504 }
1a3f060c 7505
5343da4c
TY
7506 return max_depth;
7507}
7508
eff74233
TY
7509static int __netdev_update_upper_level(struct net_device *dev,
7510 struct netdev_nested_priv *__unused)
5343da4c
TY
7511{
7512 dev->upper_level = __netdev_upper_depth(dev) + 1;
7513 return 0;
7514}
7515
eff74233 7516static int __netdev_update_lower_level(struct net_device *dev,
1fc70edb 7517 struct netdev_nested_priv *priv)
5343da4c
TY
7518{
7519 dev->lower_level = __netdev_lower_depth(dev) + 1;
1fc70edb
TY
7520
7521#ifdef CONFIG_LOCKDEP
7522 if (!priv)
7523 return 0;
7524
7525 if (priv->flags & NESTED_SYNC_IMM)
7526 dev->nested_level = dev->lower_level - 1;
7527 if (priv->flags & NESTED_SYNC_TODO)
7528 net_unlink_todo(dev);
7529#endif
5343da4c
TY
7530 return 0;
7531}
7532
7533int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7534 int (*fn)(struct net_device *dev,
eff74233
TY
7535 struct netdev_nested_priv *priv),
7536 struct netdev_nested_priv *priv)
5343da4c
TY
7537{
7538 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7539 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7540 int ret, cur = 0;
7541
7542 now = dev;
7543 iter = &dev->adj_list.lower;
7544
7545 while (1) {
7546 if (now != dev) {
eff74233 7547 ret = fn(now, priv);
5343da4c
TY
7548 if (ret)
7549 return ret;
7550 }
7551
7552 next = NULL;
7553 while (1) {
7554 ldev = netdev_next_lower_dev_rcu(now, &iter);
7555 if (!ldev)
7556 break;
7557
7558 next = ldev;
7559 niter = &ldev->adj_list.lower;
7560 dev_stack[cur] = now;
7561 iter_stack[cur++] = iter;
7562 break;
7563 }
7564
7565 if (!next) {
7566 if (!cur)
7567 return 0;
7568 next = dev_stack[--cur];
7569 niter = iter_stack[cur];
7570 }
7571
7572 now = next;
7573 iter = niter;
1a3f060c
DA
7574 }
7575
7576 return 0;
7577}
7578EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7579
e001bfad 7580/**
7581 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7582 * lower neighbour list, RCU
7583 * variant
7584 * @dev: device
7585 *
7586 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7587 * list. The caller must hold RCU read lock.
7588 */
7589void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7590{
7591 struct netdev_adjacent *lower;
7592
7593 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7594 struct netdev_adjacent, list);
7595 if (lower)
7596 return lower->private;
7597 return NULL;
7598}
7599EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7600
9ff162a8
JP
7601/**
7602 * netdev_master_upper_dev_get_rcu - Get master upper device
7603 * @dev: device
7604 *
7605 * Find a master upper device and return pointer to it or NULL in case
7606 * it's not there. The caller must hold the RCU read lock.
7607 */
7608struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7609{
aa9d8560 7610 struct netdev_adjacent *upper;
9ff162a8 7611
2f268f12 7612 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7613 struct netdev_adjacent, list);
9ff162a8
JP
7614 if (upper && likely(upper->master))
7615 return upper->dev;
7616 return NULL;
7617}
7618EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7619
0a59f3a9 7620static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7621 struct net_device *adj_dev,
7622 struct list_head *dev_list)
7623{
7624 char linkname[IFNAMSIZ+7];
f4563a75 7625
3ee32707
VF
7626 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7627 "upper_%s" : "lower_%s", adj_dev->name);
7628 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7629 linkname);
7630}
0a59f3a9 7631static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7632 char *name,
7633 struct list_head *dev_list)
7634{
7635 char linkname[IFNAMSIZ+7];
f4563a75 7636
3ee32707
VF
7637 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7638 "upper_%s" : "lower_%s", name);
7639 sysfs_remove_link(&(dev->dev.kobj), linkname);
7640}
7641
7ce64c79
AF
7642static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7643 struct net_device *adj_dev,
7644 struct list_head *dev_list)
7645{
7646 return (dev_list == &dev->adj_list.upper ||
7647 dev_list == &dev->adj_list.lower) &&
7648 net_eq(dev_net(dev), dev_net(adj_dev));
7649}
3ee32707 7650
5d261913
VF
7651static int __netdev_adjacent_dev_insert(struct net_device *dev,
7652 struct net_device *adj_dev,
7863c054 7653 struct list_head *dev_list,
402dae96 7654 void *private, bool master)
5d261913
VF
7655{
7656 struct netdev_adjacent *adj;
842d67a7 7657 int ret;
5d261913 7658
6ea29da1 7659 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7660
7661 if (adj) {
790510d9 7662 adj->ref_nr += 1;
67b62f98
DA
7663 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7664 dev->name, adj_dev->name, adj->ref_nr);
7665
5d261913
VF
7666 return 0;
7667 }
7668
7669 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7670 if (!adj)
7671 return -ENOMEM;
7672
7673 adj->dev = adj_dev;
7674 adj->master = master;
790510d9 7675 adj->ref_nr = 1;
402dae96 7676 adj->private = private;
32b6d34f 7677 adj->ignore = false;
5d261913 7678 dev_hold(adj_dev);
2f268f12 7679
67b62f98
DA
7680 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7681 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7682
7ce64c79 7683 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7684 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7685 if (ret)
7686 goto free_adj;
7687 }
7688
7863c054 7689 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7690 if (master) {
7691 ret = sysfs_create_link(&(dev->dev.kobj),
7692 &(adj_dev->dev.kobj), "master");
7693 if (ret)
5831d66e 7694 goto remove_symlinks;
842d67a7 7695
7863c054 7696 list_add_rcu(&adj->list, dev_list);
842d67a7 7697 } else {
7863c054 7698 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7699 }
5d261913
VF
7700
7701 return 0;
842d67a7 7702
5831d66e 7703remove_symlinks:
7ce64c79 7704 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7705 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7706free_adj:
7707 kfree(adj);
974daef7 7708 dev_put(adj_dev);
842d67a7
VF
7709
7710 return ret;
5d261913
VF
7711}
7712
1d143d9f 7713static void __netdev_adjacent_dev_remove(struct net_device *dev,
7714 struct net_device *adj_dev,
93409033 7715 u16 ref_nr,
1d143d9f 7716 struct list_head *dev_list)
5d261913
VF
7717{
7718 struct netdev_adjacent *adj;
7719
67b62f98
DA
7720 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7721 dev->name, adj_dev->name, ref_nr);
7722
6ea29da1 7723 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7724
2f268f12 7725 if (!adj) {
67b62f98 7726 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7727 dev->name, adj_dev->name);
67b62f98
DA
7728 WARN_ON(1);
7729 return;
2f268f12 7730 }
5d261913 7731
93409033 7732 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7733 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7734 dev->name, adj_dev->name, ref_nr,
7735 adj->ref_nr - ref_nr);
93409033 7736 adj->ref_nr -= ref_nr;
5d261913
VF
7737 return;
7738 }
7739
842d67a7
VF
7740 if (adj->master)
7741 sysfs_remove_link(&(dev->dev.kobj), "master");
7742
7ce64c79 7743 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7744 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7745
5d261913 7746 list_del_rcu(&adj->list);
67b62f98 7747 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7748 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7749 dev_put(adj_dev);
7750 kfree_rcu(adj, rcu);
7751}
7752
1d143d9f 7753static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7754 struct net_device *upper_dev,
7755 struct list_head *up_list,
7756 struct list_head *down_list,
7757 void *private, bool master)
5d261913
VF
7758{
7759 int ret;
7760
790510d9 7761 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7762 private, master);
5d261913
VF
7763 if (ret)
7764 return ret;
7765
790510d9 7766 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7767 private, false);
5d261913 7768 if (ret) {
790510d9 7769 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7770 return ret;
7771 }
7772
7773 return 0;
7774}
7775
1d143d9f 7776static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7777 struct net_device *upper_dev,
93409033 7778 u16 ref_nr,
1d143d9f 7779 struct list_head *up_list,
7780 struct list_head *down_list)
5d261913 7781{
93409033
AC
7782 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7783 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7784}
7785
1d143d9f 7786static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7787 struct net_device *upper_dev,
7788 void *private, bool master)
2f268f12 7789{
f1170fd4
DA
7790 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7791 &dev->adj_list.upper,
7792 &upper_dev->adj_list.lower,
7793 private, master);
5d261913
VF
7794}
7795
1d143d9f 7796static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7797 struct net_device *upper_dev)
2f268f12 7798{
93409033 7799 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7800 &dev->adj_list.upper,
7801 &upper_dev->adj_list.lower);
7802}
5d261913 7803
9ff162a8 7804static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7805 struct net_device *upper_dev, bool master,
42ab19ee 7806 void *upper_priv, void *upper_info,
1fc70edb 7807 struct netdev_nested_priv *priv,
42ab19ee 7808 struct netlink_ext_ack *extack)
9ff162a8 7809{
51d0c047
DA
7810 struct netdev_notifier_changeupper_info changeupper_info = {
7811 .info = {
7812 .dev = dev,
42ab19ee 7813 .extack = extack,
51d0c047
DA
7814 },
7815 .upper_dev = upper_dev,
7816 .master = master,
7817 .linking = true,
7818 .upper_info = upper_info,
7819 };
50d629e7 7820 struct net_device *master_dev;
5d261913 7821 int ret = 0;
9ff162a8
JP
7822
7823 ASSERT_RTNL();
7824
7825 if (dev == upper_dev)
7826 return -EBUSY;
7827
7828 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7829 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7830 return -EBUSY;
7831
5343da4c
TY
7832 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7833 return -EMLINK;
7834
50d629e7 7835 if (!master) {
32b6d34f 7836 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7837 return -EEXIST;
7838 } else {
32b6d34f 7839 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7840 if (master_dev)
7841 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7842 }
9ff162a8 7843
51d0c047 7844 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7845 &changeupper_info.info);
7846 ret = notifier_to_errno(ret);
7847 if (ret)
7848 return ret;
7849
6dffb044 7850 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7851 master);
5d261913
VF
7852 if (ret)
7853 return ret;
9ff162a8 7854
51d0c047 7855 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7856 &changeupper_info.info);
7857 ret = notifier_to_errno(ret);
7858 if (ret)
f1170fd4 7859 goto rollback;
b03804e7 7860
5343da4c 7861 __netdev_update_upper_level(dev, NULL);
32b6d34f 7862 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 7863
1fc70edb 7864 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 7865 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 7866 priv);
5343da4c 7867
9ff162a8 7868 return 0;
5d261913 7869
f1170fd4 7870rollback:
2f268f12 7871 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7872
7873 return ret;
9ff162a8
JP
7874}
7875
7876/**
7877 * netdev_upper_dev_link - Add a link to the upper device
7878 * @dev: device
7879 * @upper_dev: new upper device
7a006d59 7880 * @extack: netlink extended ack
9ff162a8
JP
7881 *
7882 * Adds a link to device which is upper to this one. The caller must hold
7883 * the RTNL lock. On a failure a negative errno code is returned.
7884 * On success the reference counts are adjusted and the function
7885 * returns zero.
7886 */
7887int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7888 struct net_device *upper_dev,
7889 struct netlink_ext_ack *extack)
9ff162a8 7890{
1fc70edb
TY
7891 struct netdev_nested_priv priv = {
7892 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7893 .data = NULL,
7894 };
7895
42ab19ee 7896 return __netdev_upper_dev_link(dev, upper_dev, false,
1fc70edb 7897 NULL, NULL, &priv, extack);
9ff162a8
JP
7898}
7899EXPORT_SYMBOL(netdev_upper_dev_link);
7900
7901/**
7902 * netdev_master_upper_dev_link - Add a master link to the upper device
7903 * @dev: device
7904 * @upper_dev: new upper device
6dffb044 7905 * @upper_priv: upper device private
29bf24af 7906 * @upper_info: upper info to be passed down via notifier
7a006d59 7907 * @extack: netlink extended ack
9ff162a8
JP
7908 *
7909 * Adds a link to device which is upper to this one. In this case, only
7910 * one master upper device can be linked, although other non-master devices
7911 * might be linked as well. The caller must hold the RTNL lock.
7912 * On a failure a negative errno code is returned. On success the reference
7913 * counts are adjusted and the function returns zero.
7914 */
7915int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7916 struct net_device *upper_dev,
42ab19ee
DA
7917 void *upper_priv, void *upper_info,
7918 struct netlink_ext_ack *extack)
9ff162a8 7919{
1fc70edb
TY
7920 struct netdev_nested_priv priv = {
7921 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7922 .data = NULL,
7923 };
7924
29bf24af 7925 return __netdev_upper_dev_link(dev, upper_dev, true,
1fc70edb 7926 upper_priv, upper_info, &priv, extack);
9ff162a8
JP
7927}
7928EXPORT_SYMBOL(netdev_master_upper_dev_link);
7929
fe8300fd 7930static void __netdev_upper_dev_unlink(struct net_device *dev,
1fc70edb
TY
7931 struct net_device *upper_dev,
7932 struct netdev_nested_priv *priv)
9ff162a8 7933{
51d0c047
DA
7934 struct netdev_notifier_changeupper_info changeupper_info = {
7935 .info = {
7936 .dev = dev,
7937 },
7938 .upper_dev = upper_dev,
7939 .linking = false,
7940 };
f4563a75 7941
9ff162a8
JP
7942 ASSERT_RTNL();
7943
0e4ead9d 7944 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7945
51d0c047 7946 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7947 &changeupper_info.info);
7948
2f268f12 7949 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7950
51d0c047 7951 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7952 &changeupper_info.info);
5343da4c
TY
7953
7954 __netdev_update_upper_level(dev, NULL);
32b6d34f 7955 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 7956
1fc70edb 7957 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 7958 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 7959 priv);
9ff162a8 7960}
fe8300fd
TY
7961
7962/**
7963 * netdev_upper_dev_unlink - Removes a link to upper device
7964 * @dev: device
7965 * @upper_dev: new upper device
7966 *
7967 * Removes a link to device which is upper to this one. The caller must hold
7968 * the RTNL lock.
7969 */
7970void netdev_upper_dev_unlink(struct net_device *dev,
7971 struct net_device *upper_dev)
7972{
1fc70edb
TY
7973 struct netdev_nested_priv priv = {
7974 .flags = NESTED_SYNC_TODO,
7975 .data = NULL,
7976 };
7977
7978 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
9ff162a8
JP
7979}
7980EXPORT_SYMBOL(netdev_upper_dev_unlink);
7981
32b6d34f
TY
7982static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7983 struct net_device *lower_dev,
7984 bool val)
7985{
7986 struct netdev_adjacent *adj;
7987
7988 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7989 if (adj)
7990 adj->ignore = val;
7991
7992 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7993 if (adj)
7994 adj->ignore = val;
7995}
7996
7997static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7998 struct net_device *lower_dev)
7999{
8000 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8001}
8002
8003static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8004 struct net_device *lower_dev)
8005{
8006 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8007}
8008
8009int netdev_adjacent_change_prepare(struct net_device *old_dev,
8010 struct net_device *new_dev,
8011 struct net_device *dev,
8012 struct netlink_ext_ack *extack)
8013{
1fc70edb
TY
8014 struct netdev_nested_priv priv = {
8015 .flags = 0,
8016 .data = NULL,
8017 };
32b6d34f
TY
8018 int err;
8019
8020 if (!new_dev)
8021 return 0;
8022
8023 if (old_dev && new_dev != old_dev)
8024 netdev_adjacent_dev_disable(dev, old_dev);
1fc70edb
TY
8025 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8026 extack);
32b6d34f
TY
8027 if (err) {
8028 if (old_dev && new_dev != old_dev)
8029 netdev_adjacent_dev_enable(dev, old_dev);
8030 return err;
8031 }
8032
8033 return 0;
8034}
8035EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8036
8037void netdev_adjacent_change_commit(struct net_device *old_dev,
8038 struct net_device *new_dev,
8039 struct net_device *dev)
8040{
1fc70edb
TY
8041 struct netdev_nested_priv priv = {
8042 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8043 .data = NULL,
8044 };
8045
32b6d34f
TY
8046 if (!new_dev || !old_dev)
8047 return;
8048
8049 if (new_dev == old_dev)
8050 return;
8051
8052 netdev_adjacent_dev_enable(dev, old_dev);
1fc70edb 8053 __netdev_upper_dev_unlink(old_dev, dev, &priv);
32b6d34f
TY
8054}
8055EXPORT_SYMBOL(netdev_adjacent_change_commit);
8056
8057void netdev_adjacent_change_abort(struct net_device *old_dev,
8058 struct net_device *new_dev,
8059 struct net_device *dev)
8060{
1fc70edb
TY
8061 struct netdev_nested_priv priv = {
8062 .flags = 0,
8063 .data = NULL,
8064 };
8065
32b6d34f
TY
8066 if (!new_dev)
8067 return;
8068
8069 if (old_dev && new_dev != old_dev)
8070 netdev_adjacent_dev_enable(dev, old_dev);
8071
1fc70edb 8072 __netdev_upper_dev_unlink(new_dev, dev, &priv);
32b6d34f
TY
8073}
8074EXPORT_SYMBOL(netdev_adjacent_change_abort);
8075
61bd3857
MS
8076/**
8077 * netdev_bonding_info_change - Dispatch event about slave change
8078 * @dev: device
4a26e453 8079 * @bonding_info: info to dispatch
61bd3857
MS
8080 *
8081 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8082 * The caller must hold the RTNL lock.
8083 */
8084void netdev_bonding_info_change(struct net_device *dev,
8085 struct netdev_bonding_info *bonding_info)
8086{
51d0c047
DA
8087 struct netdev_notifier_bonding_info info = {
8088 .info.dev = dev,
8089 };
61bd3857
MS
8090
8091 memcpy(&info.bonding_info, bonding_info,
8092 sizeof(struct netdev_bonding_info));
51d0c047 8093 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
8094 &info.info);
8095}
8096EXPORT_SYMBOL(netdev_bonding_info_change);
8097
cff9f12b
MG
8098/**
8099 * netdev_get_xmit_slave - Get the xmit slave of master device
8842500d 8100 * @dev: device
cff9f12b
MG
8101 * @skb: The packet
8102 * @all_slaves: assume all the slaves are active
8103 *
8104 * The reference counters are not incremented so the caller must be
8105 * careful with locks. The caller must hold RCU lock.
8106 * %NULL is returned if no slave is found.
8107 */
8108
8109struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8110 struct sk_buff *skb,
8111 bool all_slaves)
8112{
8113 const struct net_device_ops *ops = dev->netdev_ops;
8114
8115 if (!ops->ndo_get_xmit_slave)
8116 return NULL;
8117 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8118}
8119EXPORT_SYMBOL(netdev_get_xmit_slave);
8120
719a402c
TT
8121static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8122 struct sock *sk)
8123{
8124 const struct net_device_ops *ops = dev->netdev_ops;
8125
8126 if (!ops->ndo_sk_get_lower_dev)
8127 return NULL;
8128 return ops->ndo_sk_get_lower_dev(dev, sk);
8129}
8130
8131/**
8132 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8133 * @dev: device
8134 * @sk: the socket
8135 *
8136 * %NULL is returned if no lower device is found.
8137 */
8138
8139struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8140 struct sock *sk)
8141{
8142 struct net_device *lower;
8143
8144 lower = netdev_sk_get_lower_dev(dev, sk);
8145 while (lower) {
8146 dev = lower;
8147 lower = netdev_sk_get_lower_dev(dev, sk);
8148 }
8149
8150 return dev;
8151}
8152EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8153
2ce1ee17 8154static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
8155{
8156 struct netdev_adjacent *iter;
8157
8158 struct net *net = dev_net(dev);
8159
8160 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8161 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8162 continue;
8163 netdev_adjacent_sysfs_add(iter->dev, dev,
8164 &iter->dev->adj_list.lower);
8165 netdev_adjacent_sysfs_add(dev, iter->dev,
8166 &dev->adj_list.upper);
8167 }
8168
8169 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8170 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8171 continue;
8172 netdev_adjacent_sysfs_add(iter->dev, dev,
8173 &iter->dev->adj_list.upper);
8174 netdev_adjacent_sysfs_add(dev, iter->dev,
8175 &dev->adj_list.lower);
8176 }
8177}
8178
2ce1ee17 8179static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
8180{
8181 struct netdev_adjacent *iter;
8182
8183 struct net *net = dev_net(dev);
8184
8185 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8186 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8187 continue;
8188 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8189 &iter->dev->adj_list.lower);
8190 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8191 &dev->adj_list.upper);
8192 }
8193
8194 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8195 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8196 continue;
8197 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8198 &iter->dev->adj_list.upper);
8199 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8200 &dev->adj_list.lower);
8201 }
8202}
8203
5bb025fa 8204void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 8205{
5bb025fa 8206 struct netdev_adjacent *iter;
402dae96 8207
4c75431a
AF
8208 struct net *net = dev_net(dev);
8209
5bb025fa 8210 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8211 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8212 continue;
5bb025fa
VF
8213 netdev_adjacent_sysfs_del(iter->dev, oldname,
8214 &iter->dev->adj_list.lower);
8215 netdev_adjacent_sysfs_add(iter->dev, dev,
8216 &iter->dev->adj_list.lower);
8217 }
402dae96 8218
5bb025fa 8219 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8220 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8221 continue;
5bb025fa
VF
8222 netdev_adjacent_sysfs_del(iter->dev, oldname,
8223 &iter->dev->adj_list.upper);
8224 netdev_adjacent_sysfs_add(iter->dev, dev,
8225 &iter->dev->adj_list.upper);
8226 }
402dae96 8227}
402dae96
VF
8228
8229void *netdev_lower_dev_get_private(struct net_device *dev,
8230 struct net_device *lower_dev)
8231{
8232 struct netdev_adjacent *lower;
8233
8234 if (!lower_dev)
8235 return NULL;
6ea29da1 8236 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
8237 if (!lower)
8238 return NULL;
8239
8240 return lower->private;
8241}
8242EXPORT_SYMBOL(netdev_lower_dev_get_private);
8243
4085ebe8 8244
04d48266 8245/**
c1639be9 8246 * netdev_lower_state_changed - Dispatch event about lower device state change
04d48266
JP
8247 * @lower_dev: device
8248 * @lower_state_info: state to dispatch
8249 *
8250 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8251 * The caller must hold the RTNL lock.
8252 */
8253void netdev_lower_state_changed(struct net_device *lower_dev,
8254 void *lower_state_info)
8255{
51d0c047
DA
8256 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8257 .info.dev = lower_dev,
8258 };
04d48266
JP
8259
8260 ASSERT_RTNL();
8261 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 8262 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
8263 &changelowerstate_info.info);
8264}
8265EXPORT_SYMBOL(netdev_lower_state_changed);
8266
b6c40d68
PM
8267static void dev_change_rx_flags(struct net_device *dev, int flags)
8268{
d314774c
SH
8269 const struct net_device_ops *ops = dev->netdev_ops;
8270
d2615bf4 8271 if (ops->ndo_change_rx_flags)
d314774c 8272 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
8273}
8274
991fb3f7 8275static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 8276{
b536db93 8277 unsigned int old_flags = dev->flags;
d04a48b0
EB
8278 kuid_t uid;
8279 kgid_t gid;
1da177e4 8280
24023451
PM
8281 ASSERT_RTNL();
8282
dad9b335
WC
8283 dev->flags |= IFF_PROMISC;
8284 dev->promiscuity += inc;
8285 if (dev->promiscuity == 0) {
8286 /*
8287 * Avoid overflow.
8288 * If inc causes overflow, untouch promisc and return error.
8289 */
8290 if (inc < 0)
8291 dev->flags &= ~IFF_PROMISC;
8292 else {
8293 dev->promiscuity -= inc;
7b6cd1ce
JP
8294 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8295 dev->name);
dad9b335
WC
8296 return -EOVERFLOW;
8297 }
8298 }
52609c0b 8299 if (dev->flags != old_flags) {
7b6cd1ce
JP
8300 pr_info("device %s %s promiscuous mode\n",
8301 dev->name,
8302 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
8303 if (audit_enabled) {
8304 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
8305 audit_log(audit_context(), GFP_ATOMIC,
8306 AUDIT_ANOM_PROMISCUOUS,
8307 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8308 dev->name, (dev->flags & IFF_PROMISC),
8309 (old_flags & IFF_PROMISC),
8310 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8311 from_kuid(&init_user_ns, uid),
8312 from_kgid(&init_user_ns, gid),
8313 audit_get_sessionid(current));
8192b0c4 8314 }
24023451 8315
b6c40d68 8316 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 8317 }
991fb3f7
ND
8318 if (notify)
8319 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 8320 return 0;
1da177e4
LT
8321}
8322
4417da66
PM
8323/**
8324 * dev_set_promiscuity - update promiscuity count on a device
8325 * @dev: device
8326 * @inc: modifier
8327 *
8328 * Add or remove promiscuity from a device. While the count in the device
8329 * remains above zero the interface remains promiscuous. Once it hits zero
8330 * the device reverts back to normal filtering operation. A negative inc
8331 * value is used to drop promiscuity on the device.
dad9b335 8332 * Return 0 if successful or a negative errno code on error.
4417da66 8333 */
dad9b335 8334int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 8335{
b536db93 8336 unsigned int old_flags = dev->flags;
dad9b335 8337 int err;
4417da66 8338
991fb3f7 8339 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 8340 if (err < 0)
dad9b335 8341 return err;
4417da66
PM
8342 if (dev->flags != old_flags)
8343 dev_set_rx_mode(dev);
dad9b335 8344 return err;
4417da66 8345}
d1b19dff 8346EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 8347
991fb3f7 8348static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 8349{
991fb3f7 8350 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 8351
24023451
PM
8352 ASSERT_RTNL();
8353
1da177e4 8354 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8355 dev->allmulti += inc;
8356 if (dev->allmulti == 0) {
8357 /*
8358 * Avoid overflow.
8359 * If inc causes overflow, untouch allmulti and return error.
8360 */
8361 if (inc < 0)
8362 dev->flags &= ~IFF_ALLMULTI;
8363 else {
8364 dev->allmulti -= inc;
7b6cd1ce
JP
8365 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8366 dev->name);
dad9b335
WC
8367 return -EOVERFLOW;
8368 }
8369 }
24023451 8370 if (dev->flags ^ old_flags) {
b6c40d68 8371 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8372 dev_set_rx_mode(dev);
991fb3f7
ND
8373 if (notify)
8374 __dev_notify_flags(dev, old_flags,
8375 dev->gflags ^ old_gflags);
24023451 8376 }
dad9b335 8377 return 0;
4417da66 8378}
991fb3f7
ND
8379
8380/**
8381 * dev_set_allmulti - update allmulti count on a device
8382 * @dev: device
8383 * @inc: modifier
8384 *
8385 * Add or remove reception of all multicast frames to a device. While the
8386 * count in the device remains above zero the interface remains listening
8387 * to all interfaces. Once it hits zero the device reverts back to normal
8388 * filtering operation. A negative @inc value is used to drop the counter
8389 * when releasing a resource needing all multicasts.
8390 * Return 0 if successful or a negative errno code on error.
8391 */
8392
8393int dev_set_allmulti(struct net_device *dev, int inc)
8394{
8395 return __dev_set_allmulti(dev, inc, true);
8396}
d1b19dff 8397EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8398
8399/*
8400 * Upload unicast and multicast address lists to device and
8401 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8402 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8403 * are present.
8404 */
8405void __dev_set_rx_mode(struct net_device *dev)
8406{
d314774c
SH
8407 const struct net_device_ops *ops = dev->netdev_ops;
8408
4417da66
PM
8409 /* dev_open will call this function so the list will stay sane. */
8410 if (!(dev->flags&IFF_UP))
8411 return;
8412
8413 if (!netif_device_present(dev))
40b77c94 8414 return;
4417da66 8415
01789349 8416 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8417 /* Unicast addresses changes may only happen under the rtnl,
8418 * therefore calling __dev_set_promiscuity here is safe.
8419 */
32e7bfc4 8420 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8421 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8422 dev->uc_promisc = true;
32e7bfc4 8423 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8424 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8425 dev->uc_promisc = false;
4417da66 8426 }
4417da66 8427 }
01789349
JP
8428
8429 if (ops->ndo_set_rx_mode)
8430 ops->ndo_set_rx_mode(dev);
4417da66
PM
8431}
8432
8433void dev_set_rx_mode(struct net_device *dev)
8434{
b9e40857 8435 netif_addr_lock_bh(dev);
4417da66 8436 __dev_set_rx_mode(dev);
b9e40857 8437 netif_addr_unlock_bh(dev);
1da177e4
LT
8438}
8439
f0db275a
SH
8440/**
8441 * dev_get_flags - get flags reported to userspace
8442 * @dev: device
8443 *
8444 * Get the combination of flag bits exported through APIs to userspace.
8445 */
95c96174 8446unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8447{
95c96174 8448 unsigned int flags;
1da177e4
LT
8449
8450 flags = (dev->flags & ~(IFF_PROMISC |
8451 IFF_ALLMULTI |
b00055aa
SR
8452 IFF_RUNNING |
8453 IFF_LOWER_UP |
8454 IFF_DORMANT)) |
1da177e4
LT
8455 (dev->gflags & (IFF_PROMISC |
8456 IFF_ALLMULTI));
8457
b00055aa
SR
8458 if (netif_running(dev)) {
8459 if (netif_oper_up(dev))
8460 flags |= IFF_RUNNING;
8461 if (netif_carrier_ok(dev))
8462 flags |= IFF_LOWER_UP;
8463 if (netif_dormant(dev))
8464 flags |= IFF_DORMANT;
8465 }
1da177e4
LT
8466
8467 return flags;
8468}
d1b19dff 8469EXPORT_SYMBOL(dev_get_flags);
1da177e4 8470
6d040321
PM
8471int __dev_change_flags(struct net_device *dev, unsigned int flags,
8472 struct netlink_ext_ack *extack)
1da177e4 8473{
b536db93 8474 unsigned int old_flags = dev->flags;
bd380811 8475 int ret;
1da177e4 8476
24023451
PM
8477 ASSERT_RTNL();
8478
1da177e4
LT
8479 /*
8480 * Set the flags on our device.
8481 */
8482
8483 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8484 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8485 IFF_AUTOMEDIA)) |
8486 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8487 IFF_ALLMULTI));
8488
8489 /*
8490 * Load in the correct multicast list now the flags have changed.
8491 */
8492
b6c40d68
PM
8493 if ((old_flags ^ flags) & IFF_MULTICAST)
8494 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8495
4417da66 8496 dev_set_rx_mode(dev);
1da177e4
LT
8497
8498 /*
8499 * Have we downed the interface. We handle IFF_UP ourselves
8500 * according to user attempts to set it, rather than blindly
8501 * setting it.
8502 */
8503
8504 ret = 0;
7051b88a 8505 if ((old_flags ^ flags) & IFF_UP) {
8506 if (old_flags & IFF_UP)
8507 __dev_close(dev);
8508 else
40c900aa 8509 ret = __dev_open(dev, extack);
7051b88a 8510 }
1da177e4 8511
1da177e4 8512 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8513 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8514 unsigned int old_flags = dev->flags;
d1b19dff 8515
1da177e4 8516 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8517
8518 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8519 if (dev->flags != old_flags)
8520 dev_set_rx_mode(dev);
1da177e4
LT
8521 }
8522
8523 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8524 * is important. Some (broken) drivers set IFF_PROMISC, when
8525 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8526 */
8527 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8528 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8529
1da177e4 8530 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8531 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8532 }
8533
bd380811
PM
8534 return ret;
8535}
8536
a528c219
ND
8537void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8538 unsigned int gchanges)
bd380811
PM
8539{
8540 unsigned int changes = dev->flags ^ old_flags;
8541
a528c219 8542 if (gchanges)
7f294054 8543 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8544
bd380811
PM
8545 if (changes & IFF_UP) {
8546 if (dev->flags & IFF_UP)
8547 call_netdevice_notifiers(NETDEV_UP, dev);
8548 else
8549 call_netdevice_notifiers(NETDEV_DOWN, dev);
8550 }
8551
8552 if (dev->flags & IFF_UP &&
be9efd36 8553 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8554 struct netdev_notifier_change_info change_info = {
8555 .info = {
8556 .dev = dev,
8557 },
8558 .flags_changed = changes,
8559 };
be9efd36 8560
51d0c047 8561 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8562 }
bd380811
PM
8563}
8564
8565/**
8566 * dev_change_flags - change device settings
8567 * @dev: device
8568 * @flags: device state flags
567c5e13 8569 * @extack: netlink extended ack
bd380811
PM
8570 *
8571 * Change settings on device based state flags. The flags are
8572 * in the userspace exported format.
8573 */
567c5e13
PM
8574int dev_change_flags(struct net_device *dev, unsigned int flags,
8575 struct netlink_ext_ack *extack)
bd380811 8576{
b536db93 8577 int ret;
991fb3f7 8578 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8579
6d040321 8580 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8581 if (ret < 0)
8582 return ret;
8583
991fb3f7 8584 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8585 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8586 return ret;
8587}
d1b19dff 8588EXPORT_SYMBOL(dev_change_flags);
1da177e4 8589
f51048c3 8590int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8591{
8592 const struct net_device_ops *ops = dev->netdev_ops;
8593
8594 if (ops->ndo_change_mtu)
8595 return ops->ndo_change_mtu(dev, new_mtu);
8596
501a90c9
ED
8597 /* Pairs with all the lockless reads of dev->mtu in the stack */
8598 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8599 return 0;
8600}
f51048c3 8601EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8602
d836f5c6
ED
8603int dev_validate_mtu(struct net_device *dev, int new_mtu,
8604 struct netlink_ext_ack *extack)
8605{
8606 /* MTU must be positive, and in range */
8607 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8608 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8609 return -EINVAL;
8610 }
8611
8612 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8613 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8614 return -EINVAL;
8615 }
8616 return 0;
8617}
8618
f0db275a 8619/**
7a4c53be 8620 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8621 * @dev: device
8622 * @new_mtu: new transfer unit
7a4c53be 8623 * @extack: netlink extended ack
f0db275a
SH
8624 *
8625 * Change the maximum transfer size of the network device.
8626 */
7a4c53be
SH
8627int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8628 struct netlink_ext_ack *extack)
1da177e4 8629{
2315dc91 8630 int err, orig_mtu;
1da177e4
LT
8631
8632 if (new_mtu == dev->mtu)
8633 return 0;
8634
d836f5c6
ED
8635 err = dev_validate_mtu(dev, new_mtu, extack);
8636 if (err)
8637 return err;
1da177e4
LT
8638
8639 if (!netif_device_present(dev))
8640 return -ENODEV;
8641
1d486bfb
VF
8642 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8643 err = notifier_to_errno(err);
8644 if (err)
8645 return err;
d314774c 8646
2315dc91
VF
8647 orig_mtu = dev->mtu;
8648 err = __dev_set_mtu(dev, new_mtu);
d314774c 8649
2315dc91 8650 if (!err) {
af7d6cce
SD
8651 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8652 orig_mtu);
2315dc91
VF
8653 err = notifier_to_errno(err);
8654 if (err) {
8655 /* setting mtu back and notifying everyone again,
8656 * so that they have a chance to revert changes.
8657 */
8658 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8659 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8660 new_mtu);
2315dc91
VF
8661 }
8662 }
1da177e4
LT
8663 return err;
8664}
7a4c53be
SH
8665
8666int dev_set_mtu(struct net_device *dev, int new_mtu)
8667{
8668 struct netlink_ext_ack extack;
8669 int err;
8670
a6bcfc89 8671 memset(&extack, 0, sizeof(extack));
7a4c53be 8672 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8673 if (err && extack._msg)
7a4c53be
SH
8674 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8675 return err;
8676}
d1b19dff 8677EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8678
6a643ddb
CW
8679/**
8680 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8681 * @dev: device
8682 * @new_len: new tx queue length
8683 */
8684int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8685{
8686 unsigned int orig_len = dev->tx_queue_len;
8687 int res;
8688
8689 if (new_len != (unsigned int)new_len)
8690 return -ERANGE;
8691
8692 if (new_len != orig_len) {
8693 dev->tx_queue_len = new_len;
8694 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8695 res = notifier_to_errno(res);
7effaf06
TT
8696 if (res)
8697 goto err_rollback;
8698 res = dev_qdisc_change_tx_queue_len(dev);
8699 if (res)
8700 goto err_rollback;
6a643ddb
CW
8701 }
8702
8703 return 0;
7effaf06
TT
8704
8705err_rollback:
8706 netdev_err(dev, "refused to change device tx_queue_len\n");
8707 dev->tx_queue_len = orig_len;
8708 return res;
6a643ddb
CW
8709}
8710
cbda10fa
VD
8711/**
8712 * dev_set_group - Change group this device belongs to
8713 * @dev: device
8714 * @new_group: group this device should belong to
8715 */
8716void dev_set_group(struct net_device *dev, int new_group)
8717{
8718 dev->group = new_group;
8719}
8720EXPORT_SYMBOL(dev_set_group);
8721
d59cdf94
PM
8722/**
8723 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8724 * @dev: device
8725 * @addr: new address
8726 * @extack: netlink extended ack
8727 */
8728int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8729 struct netlink_ext_ack *extack)
8730{
8731 struct netdev_notifier_pre_changeaddr_info info = {
8732 .info.dev = dev,
8733 .info.extack = extack,
8734 .dev_addr = addr,
8735 };
8736 int rc;
8737
8738 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8739 return notifier_to_errno(rc);
8740}
8741EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8742
f0db275a
SH
8743/**
8744 * dev_set_mac_address - Change Media Access Control Address
8745 * @dev: device
8746 * @sa: new address
3a37a963 8747 * @extack: netlink extended ack
f0db275a
SH
8748 *
8749 * Change the hardware (MAC) address of the device
8750 */
3a37a963
PM
8751int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8752 struct netlink_ext_ack *extack)
1da177e4 8753{
d314774c 8754 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8755 int err;
8756
d314774c 8757 if (!ops->ndo_set_mac_address)
1da177e4
LT
8758 return -EOPNOTSUPP;
8759 if (sa->sa_family != dev->type)
8760 return -EINVAL;
8761 if (!netif_device_present(dev))
8762 return -ENODEV;
d59cdf94
PM
8763 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8764 if (err)
8765 return err;
d314774c 8766 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8767 if (err)
8768 return err;
fbdeca2d 8769 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8770 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8771 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8772 return 0;
1da177e4 8773}
d1b19dff 8774EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8775
4bf84c35
JP
8776/**
8777 * dev_change_carrier - Change device carrier
8778 * @dev: device
691b3b7e 8779 * @new_carrier: new value
4bf84c35
JP
8780 *
8781 * Change device carrier
8782 */
8783int dev_change_carrier(struct net_device *dev, bool new_carrier)
8784{
8785 const struct net_device_ops *ops = dev->netdev_ops;
8786
8787 if (!ops->ndo_change_carrier)
8788 return -EOPNOTSUPP;
8789 if (!netif_device_present(dev))
8790 return -ENODEV;
8791 return ops->ndo_change_carrier(dev, new_carrier);
8792}
8793EXPORT_SYMBOL(dev_change_carrier);
8794
66b52b0d
JP
8795/**
8796 * dev_get_phys_port_id - Get device physical port ID
8797 * @dev: device
8798 * @ppid: port ID
8799 *
8800 * Get device physical port ID
8801 */
8802int dev_get_phys_port_id(struct net_device *dev,
02637fce 8803 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8804{
8805 const struct net_device_ops *ops = dev->netdev_ops;
8806
8807 if (!ops->ndo_get_phys_port_id)
8808 return -EOPNOTSUPP;
8809 return ops->ndo_get_phys_port_id(dev, ppid);
8810}
8811EXPORT_SYMBOL(dev_get_phys_port_id);
8812
db24a904
DA
8813/**
8814 * dev_get_phys_port_name - Get device physical port name
8815 * @dev: device
8816 * @name: port name
ed49e650 8817 * @len: limit of bytes to copy to name
db24a904
DA
8818 *
8819 * Get device physical port name
8820 */
8821int dev_get_phys_port_name(struct net_device *dev,
8822 char *name, size_t len)
8823{
8824 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8825 int err;
db24a904 8826
af3836df
JP
8827 if (ops->ndo_get_phys_port_name) {
8828 err = ops->ndo_get_phys_port_name(dev, name, len);
8829 if (err != -EOPNOTSUPP)
8830 return err;
8831 }
8832 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
8833}
8834EXPORT_SYMBOL(dev_get_phys_port_name);
8835
d6abc596
FF
8836/**
8837 * dev_get_port_parent_id - Get the device's port parent identifier
8838 * @dev: network device
8839 * @ppid: pointer to a storage for the port's parent identifier
8840 * @recurse: allow/disallow recursion to lower devices
8841 *
8842 * Get the devices's port parent identifier
8843 */
8844int dev_get_port_parent_id(struct net_device *dev,
8845 struct netdev_phys_item_id *ppid,
8846 bool recurse)
8847{
8848 const struct net_device_ops *ops = dev->netdev_ops;
8849 struct netdev_phys_item_id first = { };
8850 struct net_device *lower_dev;
8851 struct list_head *iter;
7e1146e8
JP
8852 int err;
8853
8854 if (ops->ndo_get_port_parent_id) {
8855 err = ops->ndo_get_port_parent_id(dev, ppid);
8856 if (err != -EOPNOTSUPP)
8857 return err;
8858 }
d6abc596 8859
7e1146e8
JP
8860 err = devlink_compat_switch_id_get(dev, ppid);
8861 if (!err || err != -EOPNOTSUPP)
8862 return err;
d6abc596
FF
8863
8864 if (!recurse)
7e1146e8 8865 return -EOPNOTSUPP;
d6abc596
FF
8866
8867 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8868 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8869 if (err)
8870 break;
8871 if (!first.id_len)
8872 first = *ppid;
8873 else if (memcmp(&first, ppid, sizeof(*ppid)))
e1b9efe6 8874 return -EOPNOTSUPP;
d6abc596
FF
8875 }
8876
8877 return err;
8878}
8879EXPORT_SYMBOL(dev_get_port_parent_id);
8880
8881/**
8882 * netdev_port_same_parent_id - Indicate if two network devices have
8883 * the same port parent identifier
8884 * @a: first network device
8885 * @b: second network device
8886 */
8887bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8888{
8889 struct netdev_phys_item_id a_id = { };
8890 struct netdev_phys_item_id b_id = { };
8891
8892 if (dev_get_port_parent_id(a, &a_id, true) ||
8893 dev_get_port_parent_id(b, &b_id, true))
8894 return false;
8895
8896 return netdev_phys_item_id_same(&a_id, &b_id);
8897}
8898EXPORT_SYMBOL(netdev_port_same_parent_id);
8899
d746d707
AK
8900/**
8901 * dev_change_proto_down - update protocol port state information
8902 * @dev: device
8903 * @proto_down: new value
8904 *
8905 * This info can be used by switch drivers to set the phys state of the
8906 * port.
8907 */
8908int dev_change_proto_down(struct net_device *dev, bool proto_down)
8909{
8910 const struct net_device_ops *ops = dev->netdev_ops;
8911
8912 if (!ops->ndo_change_proto_down)
8913 return -EOPNOTSUPP;
8914 if (!netif_device_present(dev))
8915 return -ENODEV;
8916 return ops->ndo_change_proto_down(dev, proto_down);
8917}
8918EXPORT_SYMBOL(dev_change_proto_down);
8919
b5899679
AR
8920/**
8921 * dev_change_proto_down_generic - generic implementation for
8922 * ndo_change_proto_down that sets carrier according to
8923 * proto_down.
8924 *
8925 * @dev: device
8926 * @proto_down: new value
8927 */
8928int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8929{
8930 if (proto_down)
8931 netif_carrier_off(dev);
8932 else
8933 netif_carrier_on(dev);
8934 dev->proto_down = proto_down;
8935 return 0;
8936}
8937EXPORT_SYMBOL(dev_change_proto_down_generic);
8938
829eb208
RP
8939/**
8940 * dev_change_proto_down_reason - proto down reason
8941 *
8942 * @dev: device
8943 * @mask: proto down mask
8944 * @value: proto down value
8945 */
8946void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8947 u32 value)
8948{
8949 int b;
8950
8951 if (!mask) {
8952 dev->proto_down_reason = value;
8953 } else {
8954 for_each_set_bit(b, &mask, 32) {
8955 if (value & (1 << b))
8956 dev->proto_down_reason |= BIT(b);
8957 else
8958 dev->proto_down_reason &= ~BIT(b);
8959 }
8960 }
8961}
8962EXPORT_SYMBOL(dev_change_proto_down_reason);
8963
aa8d3a71
AN
8964struct bpf_xdp_link {
8965 struct bpf_link link;
8966 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8967 int flags;
8968};
8969
c8a36f19 8970static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
d67b9cd2 8971{
7f0a8382
AN
8972 if (flags & XDP_FLAGS_HW_MODE)
8973 return XDP_MODE_HW;
8974 if (flags & XDP_FLAGS_DRV_MODE)
8975 return XDP_MODE_DRV;
c8a36f19
AN
8976 if (flags & XDP_FLAGS_SKB_MODE)
8977 return XDP_MODE_SKB;
8978 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
7f0a8382 8979}
d67b9cd2 8980
7f0a8382
AN
8981static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8982{
8983 switch (mode) {
8984 case XDP_MODE_SKB:
8985 return generic_xdp_install;
8986 case XDP_MODE_DRV:
8987 case XDP_MODE_HW:
8988 return dev->netdev_ops->ndo_bpf;
8989 default:
8990 return NULL;
5d867245 8991 }
7f0a8382 8992}
118b4aa2 8993
aa8d3a71
AN
8994static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8995 enum bpf_xdp_mode mode)
8996{
8997 return dev->xdp_state[mode].link;
8998}
8999
7f0a8382
AN
9000static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9001 enum bpf_xdp_mode mode)
9002{
aa8d3a71
AN
9003 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9004
9005 if (link)
9006 return link->link.prog;
7f0a8382
AN
9007 return dev->xdp_state[mode].prog;
9008}
9009
998f1729
THJ
9010static u8 dev_xdp_prog_count(struct net_device *dev)
9011{
9012 u8 count = 0;
9013 int i;
9014
9015 for (i = 0; i < __MAX_XDP_MODE; i++)
9016 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9017 count++;
9018 return count;
9019}
9020
7f0a8382
AN
9021u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9022{
9023 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
118b4aa2 9024
7f0a8382
AN
9025 return prog ? prog->aux->id : 0;
9026}
58038695 9027
aa8d3a71
AN
9028static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9029 struct bpf_xdp_link *link)
9030{
9031 dev->xdp_state[mode].link = link;
9032 dev->xdp_state[mode].prog = NULL;
d67b9cd2
DB
9033}
9034
7f0a8382
AN
9035static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9036 struct bpf_prog *prog)
9037{
aa8d3a71 9038 dev->xdp_state[mode].link = NULL;
7f0a8382 9039 dev->xdp_state[mode].prog = prog;
d67b9cd2
DB
9040}
9041
7f0a8382
AN
9042static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9043 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9044 u32 flags, struct bpf_prog *prog)
d67b9cd2 9045{
f4e63525 9046 struct netdev_bpf xdp;
7e6897f9
BT
9047 int err;
9048
d67b9cd2 9049 memset(&xdp, 0, sizeof(xdp));
7f0a8382 9050 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
d67b9cd2 9051 xdp.extack = extack;
32d60277 9052 xdp.flags = flags;
d67b9cd2
DB
9053 xdp.prog = prog;
9054
7f0a8382
AN
9055 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9056 * "moved" into driver), so they don't increment it on their own, but
9057 * they do decrement refcnt when program is detached or replaced.
9058 * Given net_device also owns link/prog, we need to bump refcnt here
9059 * to prevent drivers from underflowing it.
9060 */
9061 if (prog)
9062 bpf_prog_inc(prog);
7e6897f9 9063 err = bpf_op(dev, &xdp);
7f0a8382
AN
9064 if (err) {
9065 if (prog)
9066 bpf_prog_put(prog);
9067 return err;
9068 }
7e6897f9 9069
7f0a8382
AN
9070 if (mode != XDP_MODE_HW)
9071 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
7e6897f9 9072
7f0a8382 9073 return 0;
d67b9cd2
DB
9074}
9075
bd0b2e7f
JK
9076static void dev_xdp_uninstall(struct net_device *dev)
9077{
aa8d3a71 9078 struct bpf_xdp_link *link;
7f0a8382
AN
9079 struct bpf_prog *prog;
9080 enum bpf_xdp_mode mode;
9081 bpf_op_t bpf_op;
bd0b2e7f 9082
7f0a8382 9083 ASSERT_RTNL();
bd0b2e7f 9084
7f0a8382
AN
9085 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9086 prog = dev_xdp_prog(dev, mode);
9087 if (!prog)
9088 continue;
bd0b2e7f 9089
7f0a8382
AN
9090 bpf_op = dev_xdp_bpf_op(dev, mode);
9091 if (!bpf_op)
9092 continue;
bd0b2e7f 9093
7f0a8382
AN
9094 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9095
aa8d3a71
AN
9096 /* auto-detach link from net device */
9097 link = dev_xdp_link(dev, mode);
9098 if (link)
9099 link->dev = NULL;
9100 else
9101 bpf_prog_put(prog);
9102
9103 dev_xdp_set_link(dev, mode, NULL);
7f0a8382 9104 }
bd0b2e7f
JK
9105}
9106
d4baa936 9107static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
aa8d3a71
AN
9108 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9109 struct bpf_prog *old_prog, u32 flags)
a7862b45 9110{
998f1729 9111 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
d4baa936
AN
9112 struct bpf_prog *cur_prog;
9113 enum bpf_xdp_mode mode;
7f0a8382 9114 bpf_op_t bpf_op;
a7862b45
BB
9115 int err;
9116
85de8576
DB
9117 ASSERT_RTNL();
9118
aa8d3a71
AN
9119 /* either link or prog attachment, never both */
9120 if (link && (new_prog || old_prog))
9121 return -EINVAL;
9122 /* link supports only XDP mode flags */
9123 if (link && (flags & ~XDP_FLAGS_MODES)) {
9124 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9125 return -EINVAL;
9126 }
998f1729
THJ
9127 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9128 if (num_modes > 1) {
d4baa936
AN
9129 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9130 return -EINVAL;
9131 }
998f1729
THJ
9132 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9133 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9134 NL_SET_ERR_MSG(extack,
9135 "More than one program loaded, unset mode is ambiguous");
9136 return -EINVAL;
9137 }
d4baa936
AN
9138 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9139 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9140 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9141 return -EINVAL;
01dde20c 9142 }
a25717d2 9143
c8a36f19 9144 mode = dev_xdp_mode(dev, flags);
aa8d3a71
AN
9145 /* can't replace attached link */
9146 if (dev_xdp_link(dev, mode)) {
9147 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9148 return -EBUSY;
01dde20c 9149 }
c14a9f63 9150
d4baa936 9151 cur_prog = dev_xdp_prog(dev, mode);
aa8d3a71
AN
9152 /* can't replace attached prog with link */
9153 if (link && cur_prog) {
9154 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9155 return -EBUSY;
9156 }
d4baa936
AN
9157 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9158 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9159 return -EEXIST;
92234c8f 9160 }
c14a9f63 9161
aa8d3a71
AN
9162 /* put effective new program into new_prog */
9163 if (link)
9164 new_prog = link->link.prog;
85de8576 9165
d4baa936
AN
9166 if (new_prog) {
9167 bool offload = mode == XDP_MODE_HW;
7f0a8382
AN
9168 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9169 ? XDP_MODE_DRV : XDP_MODE_SKB;
441a3303 9170
068d9d1e
AN
9171 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9172 NL_SET_ERR_MSG(extack, "XDP program already attached");
9173 return -EBUSY;
9174 }
d4baa936 9175 if (!offload && dev_xdp_prog(dev, other_mode)) {
7f0a8382 9176 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
d67b9cd2 9177 return -EEXIST;
01dde20c 9178 }
d4baa936 9179 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
7f0a8382 9180 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
441a3303
JK
9181 return -EINVAL;
9182 }
d4baa936 9183 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
fbee97fe 9184 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
fbee97fe
DA
9185 return -EINVAL;
9186 }
d4baa936
AN
9187 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9188 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
92164774
LB
9189 return -EINVAL;
9190 }
d4baa936 9191 }
92164774 9192
d4baa936
AN
9193 /* don't call drivers if the effective program didn't change */
9194 if (new_prog != cur_prog) {
9195 bpf_op = dev_xdp_bpf_op(dev, mode);
9196 if (!bpf_op) {
9197 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9198 return -EOPNOTSUPP;
c14a9f63 9199 }
a7862b45 9200
d4baa936
AN
9201 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9202 if (err)
9203 return err;
7f0a8382 9204 }
d4baa936 9205
aa8d3a71
AN
9206 if (link)
9207 dev_xdp_set_link(dev, mode, link);
9208 else
9209 dev_xdp_set_prog(dev, mode, new_prog);
d4baa936
AN
9210 if (cur_prog)
9211 bpf_prog_put(cur_prog);
a7862b45 9212
7f0a8382 9213 return 0;
a7862b45 9214}
a7862b45 9215
aa8d3a71
AN
9216static int dev_xdp_attach_link(struct net_device *dev,
9217 struct netlink_ext_ack *extack,
9218 struct bpf_xdp_link *link)
9219{
9220 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9221}
9222
9223static int dev_xdp_detach_link(struct net_device *dev,
9224 struct netlink_ext_ack *extack,
9225 struct bpf_xdp_link *link)
9226{
9227 enum bpf_xdp_mode mode;
9228 bpf_op_t bpf_op;
9229
9230 ASSERT_RTNL();
9231
c8a36f19 9232 mode = dev_xdp_mode(dev, link->flags);
aa8d3a71
AN
9233 if (dev_xdp_link(dev, mode) != link)
9234 return -EINVAL;
9235
9236 bpf_op = dev_xdp_bpf_op(dev, mode);
9237 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9238 dev_xdp_set_link(dev, mode, NULL);
9239 return 0;
9240}
9241
9242static void bpf_xdp_link_release(struct bpf_link *link)
9243{
9244 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9245
9246 rtnl_lock();
9247
9248 /* if racing with net_device's tear down, xdp_link->dev might be
9249 * already NULL, in which case link was already auto-detached
9250 */
73b11c2a 9251 if (xdp_link->dev) {
aa8d3a71 9252 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
73b11c2a
AN
9253 xdp_link->dev = NULL;
9254 }
aa8d3a71
AN
9255
9256 rtnl_unlock();
9257}
9258
73b11c2a
AN
9259static int bpf_xdp_link_detach(struct bpf_link *link)
9260{
9261 bpf_xdp_link_release(link);
9262 return 0;
9263}
9264
aa8d3a71
AN
9265static void bpf_xdp_link_dealloc(struct bpf_link *link)
9266{
9267 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9268
9269 kfree(xdp_link);
9270}
9271
c1931c97
AN
9272static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9273 struct seq_file *seq)
9274{
9275 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9276 u32 ifindex = 0;
9277
9278 rtnl_lock();
9279 if (xdp_link->dev)
9280 ifindex = xdp_link->dev->ifindex;
9281 rtnl_unlock();
9282
9283 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9284}
9285
9286static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9287 struct bpf_link_info *info)
9288{
9289 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9290 u32 ifindex = 0;
9291
9292 rtnl_lock();
9293 if (xdp_link->dev)
9294 ifindex = xdp_link->dev->ifindex;
9295 rtnl_unlock();
9296
9297 info->xdp.ifindex = ifindex;
9298 return 0;
9299}
9300
026a4c28
AN
9301static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9302 struct bpf_prog *old_prog)
9303{
9304 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9305 enum bpf_xdp_mode mode;
9306 bpf_op_t bpf_op;
9307 int err = 0;
9308
9309 rtnl_lock();
9310
9311 /* link might have been auto-released already, so fail */
9312 if (!xdp_link->dev) {
9313 err = -ENOLINK;
9314 goto out_unlock;
9315 }
9316
9317 if (old_prog && link->prog != old_prog) {
9318 err = -EPERM;
9319 goto out_unlock;
9320 }
9321 old_prog = link->prog;
9322 if (old_prog == new_prog) {
9323 /* no-op, don't disturb drivers */
9324 bpf_prog_put(new_prog);
9325 goto out_unlock;
9326 }
9327
c8a36f19 9328 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
026a4c28
AN
9329 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9330 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9331 xdp_link->flags, new_prog);
9332 if (err)
9333 goto out_unlock;
9334
9335 old_prog = xchg(&link->prog, new_prog);
9336 bpf_prog_put(old_prog);
9337
9338out_unlock:
9339 rtnl_unlock();
9340 return err;
9341}
9342
aa8d3a71
AN
9343static const struct bpf_link_ops bpf_xdp_link_lops = {
9344 .release = bpf_xdp_link_release,
9345 .dealloc = bpf_xdp_link_dealloc,
73b11c2a 9346 .detach = bpf_xdp_link_detach,
c1931c97
AN
9347 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9348 .fill_link_info = bpf_xdp_link_fill_link_info,
026a4c28 9349 .update_prog = bpf_xdp_link_update,
aa8d3a71
AN
9350};
9351
9352int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9353{
9354 struct net *net = current->nsproxy->net_ns;
9355 struct bpf_link_primer link_primer;
9356 struct bpf_xdp_link *link;
9357 struct net_device *dev;
9358 int err, fd;
9359
9360 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9361 if (!dev)
9362 return -EINVAL;
9363
9364 link = kzalloc(sizeof(*link), GFP_USER);
9365 if (!link) {
9366 err = -ENOMEM;
9367 goto out_put_dev;
9368 }
9369
9370 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9371 link->dev = dev;
9372 link->flags = attr->link_create.flags;
9373
9374 err = bpf_link_prime(&link->link, &link_primer);
9375 if (err) {
9376 kfree(link);
9377 goto out_put_dev;
9378 }
9379
9380 rtnl_lock();
9381 err = dev_xdp_attach_link(dev, NULL, link);
9382 rtnl_unlock();
9383
9384 if (err) {
9385 bpf_link_cleanup(&link_primer);
9386 goto out_put_dev;
9387 }
9388
9389 fd = bpf_link_settle(&link_primer);
9390 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9391 dev_put(dev);
9392 return fd;
9393
9394out_put_dev:
9395 dev_put(dev);
9396 return err;
9397}
9398
d4baa936
AN
9399/**
9400 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9401 * @dev: device
9402 * @extack: netlink extended ack
9403 * @fd: new program fd or negative value to clear
9404 * @expected_fd: old program fd that userspace expects to replace or clear
9405 * @flags: xdp-related flags
9406 *
9407 * Set or clear a bpf program for a device
9408 */
9409int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9410 int fd, int expected_fd, u32 flags)
9411{
c8a36f19 9412 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
d4baa936
AN
9413 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9414 int err;
9415
9416 ASSERT_RTNL();
9417
9418 if (fd >= 0) {
9419 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9420 mode != XDP_MODE_SKB);
9421 if (IS_ERR(new_prog))
9422 return PTR_ERR(new_prog);
9423 }
9424
9425 if (expected_fd >= 0) {
9426 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9427 mode != XDP_MODE_SKB);
9428 if (IS_ERR(old_prog)) {
9429 err = PTR_ERR(old_prog);
9430 old_prog = NULL;
9431 goto err_out;
c14a9f63 9432 }
a7862b45
BB
9433 }
9434
aa8d3a71 9435 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
a7862b45 9436
d4baa936
AN
9437err_out:
9438 if (err && new_prog)
9439 bpf_prog_put(new_prog);
9440 if (old_prog)
9441 bpf_prog_put(old_prog);
a7862b45
BB
9442 return err;
9443}
a7862b45 9444
1da177e4
LT
9445/**
9446 * dev_new_index - allocate an ifindex
c4ea43c5 9447 * @net: the applicable net namespace
1da177e4
LT
9448 *
9449 * Returns a suitable unique value for a new device interface
9450 * number. The caller must hold the rtnl semaphore or the
9451 * dev_base_lock to be sure it remains unique.
9452 */
881d966b 9453static int dev_new_index(struct net *net)
1da177e4 9454{
aa79e66e 9455 int ifindex = net->ifindex;
f4563a75 9456
1da177e4
LT
9457 for (;;) {
9458 if (++ifindex <= 0)
9459 ifindex = 1;
881d966b 9460 if (!__dev_get_by_index(net, ifindex))
aa79e66e 9461 return net->ifindex = ifindex;
1da177e4
LT
9462 }
9463}
9464
1da177e4 9465/* Delayed registration/unregisteration */
3b5b34fd 9466static LIST_HEAD(net_todo_list);
200b916f 9467DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 9468
6f05f629 9469static void net_set_todo(struct net_device *dev)
1da177e4 9470{
1da177e4 9471 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 9472 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
9473}
9474
fd867d51
JW
9475static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9476 struct net_device *upper, netdev_features_t features)
9477{
9478 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9479 netdev_features_t feature;
5ba3f7d6 9480 int feature_bit;
fd867d51 9481
3b89ea9c 9482 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9483 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9484 if (!(upper->wanted_features & feature)
9485 && (features & feature)) {
9486 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9487 &feature, upper->name);
9488 features &= ~feature;
9489 }
9490 }
9491
9492 return features;
9493}
9494
9495static void netdev_sync_lower_features(struct net_device *upper,
9496 struct net_device *lower, netdev_features_t features)
9497{
9498 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9499 netdev_features_t feature;
5ba3f7d6 9500 int feature_bit;
fd867d51 9501
3b89ea9c 9502 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9503 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9504 if (!(features & feature) && (lower->features & feature)) {
9505 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9506 &feature, lower->name);
9507 lower->wanted_features &= ~feature;
dd912306 9508 __netdev_update_features(lower);
fd867d51
JW
9509
9510 if (unlikely(lower->features & feature))
9511 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9512 &feature, lower->name);
dd912306
CW
9513 else
9514 netdev_features_change(lower);
fd867d51
JW
9515 }
9516 }
9517}
9518
c8f44aff
MM
9519static netdev_features_t netdev_fix_features(struct net_device *dev,
9520 netdev_features_t features)
b63365a2 9521{
57422dc5
MM
9522 /* Fix illegal checksum combinations */
9523 if ((features & NETIF_F_HW_CSUM) &&
9524 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 9525 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
9526 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9527 }
9528
b63365a2 9529 /* TSO requires that SG is present as well. */
ea2d3688 9530 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 9531 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 9532 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
9533 }
9534
ec5f0615
PS
9535 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9536 !(features & NETIF_F_IP_CSUM)) {
9537 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9538 features &= ~NETIF_F_TSO;
9539 features &= ~NETIF_F_TSO_ECN;
9540 }
9541
9542 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9543 !(features & NETIF_F_IPV6_CSUM)) {
9544 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9545 features &= ~NETIF_F_TSO6;
9546 }
9547
b1dc497b
AD
9548 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9549 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9550 features &= ~NETIF_F_TSO_MANGLEID;
9551
31d8b9e0
BH
9552 /* TSO ECN requires that TSO is present as well. */
9553 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9554 features &= ~NETIF_F_TSO_ECN;
9555
212b573f
MM
9556 /* Software GSO depends on SG. */
9557 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 9558 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
9559 features &= ~NETIF_F_GSO;
9560 }
9561
802ab55a
AD
9562 /* GSO partial features require GSO partial be set */
9563 if ((features & dev->gso_partial_features) &&
9564 !(features & NETIF_F_GSO_PARTIAL)) {
9565 netdev_dbg(dev,
9566 "Dropping partially supported GSO features since no GSO partial.\n");
9567 features &= ~dev->gso_partial_features;
9568 }
9569
fb1f5f79
MC
9570 if (!(features & NETIF_F_RXCSUM)) {
9571 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9572 * successfully merged by hardware must also have the
9573 * checksum verified by hardware. If the user does not
9574 * want to enable RXCSUM, logically, we should disable GRO_HW.
9575 */
9576 if (features & NETIF_F_GRO_HW) {
9577 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9578 features &= ~NETIF_F_GRO_HW;
9579 }
9580 }
9581
de8d5ab2
GP
9582 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9583 if (features & NETIF_F_RXFCS) {
9584 if (features & NETIF_F_LRO) {
9585 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9586 features &= ~NETIF_F_LRO;
9587 }
9588
9589 if (features & NETIF_F_GRO_HW) {
9590 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9591 features &= ~NETIF_F_GRO_HW;
9592 }
e6c6a929
GP
9593 }
9594
25537d71
TT
9595 if (features & NETIF_F_HW_TLS_TX) {
9596 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9597 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9598 bool hw_csum = features & NETIF_F_HW_CSUM;
9599
9600 if (!ip_csum && !hw_csum) {
9601 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9602 features &= ~NETIF_F_HW_TLS_TX;
9603 }
ae0b04b2
TT
9604 }
9605
a3eb4e9d
TT
9606 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9607 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9608 features &= ~NETIF_F_HW_TLS_RX;
9609 }
9610
b63365a2
HX
9611 return features;
9612}
b63365a2 9613
6cb6a27c 9614int __netdev_update_features(struct net_device *dev)
5455c699 9615{
fd867d51 9616 struct net_device *upper, *lower;
c8f44aff 9617 netdev_features_t features;
fd867d51 9618 struct list_head *iter;
e7868a85 9619 int err = -1;
5455c699 9620
87267485
MM
9621 ASSERT_RTNL();
9622
5455c699
MM
9623 features = netdev_get_wanted_features(dev);
9624
9625 if (dev->netdev_ops->ndo_fix_features)
9626 features = dev->netdev_ops->ndo_fix_features(dev, features);
9627
9628 /* driver might be less strict about feature dependencies */
9629 features = netdev_fix_features(dev, features);
9630
4250b75b 9631 /* some features can't be enabled if they're off on an upper device */
fd867d51
JW
9632 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9633 features = netdev_sync_upper_features(dev, upper, features);
9634
5455c699 9635 if (dev->features == features)
e7868a85 9636 goto sync_lower;
5455c699 9637
c8f44aff
MM
9638 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9639 &dev->features, &features);
5455c699
MM
9640
9641 if (dev->netdev_ops->ndo_set_features)
9642 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9643 else
9644 err = 0;
5455c699 9645
6cb6a27c 9646 if (unlikely(err < 0)) {
5455c699 9647 netdev_err(dev,
c8f44aff
MM
9648 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9649 err, &features, &dev->features);
17b85d29
NA
9650 /* return non-0 since some features might have changed and
9651 * it's better to fire a spurious notification than miss it
9652 */
9653 return -1;
6cb6a27c
MM
9654 }
9655
e7868a85 9656sync_lower:
fd867d51
JW
9657 /* some features must be disabled on lower devices when disabled
9658 * on an upper device (think: bonding master or bridge)
9659 */
9660 netdev_for_each_lower_dev(dev, lower, iter)
9661 netdev_sync_lower_features(dev, lower, features);
9662
ae847f40
SD
9663 if (!err) {
9664 netdev_features_t diff = features ^ dev->features;
9665
9666 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9667 /* udp_tunnel_{get,drop}_rx_info both need
9668 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9669 * device, or they won't do anything.
9670 * Thus we need to update dev->features
9671 * *before* calling udp_tunnel_get_rx_info,
9672 * but *after* calling udp_tunnel_drop_rx_info.
9673 */
9674 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9675 dev->features = features;
9676 udp_tunnel_get_rx_info(dev);
9677 } else {
9678 udp_tunnel_drop_rx_info(dev);
9679 }
9680 }
9681
9daae9bd
GP
9682 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9683 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9684 dev->features = features;
9685 err |= vlan_get_rx_ctag_filter_info(dev);
9686 } else {
9687 vlan_drop_rx_ctag_filter_info(dev);
9688 }
9689 }
9690
9691 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9692 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9693 dev->features = features;
9694 err |= vlan_get_rx_stag_filter_info(dev);
9695 } else {
9696 vlan_drop_rx_stag_filter_info(dev);
9697 }
9698 }
9699
6cb6a27c 9700 dev->features = features;
ae847f40 9701 }
6cb6a27c 9702
e7868a85 9703 return err < 0 ? 0 : 1;
6cb6a27c
MM
9704}
9705
afe12cc8
MM
9706/**
9707 * netdev_update_features - recalculate device features
9708 * @dev: the device to check
9709 *
9710 * Recalculate dev->features set and send notifications if it
9711 * has changed. Should be called after driver or hardware dependent
9712 * conditions might have changed that influence the features.
9713 */
6cb6a27c
MM
9714void netdev_update_features(struct net_device *dev)
9715{
9716 if (__netdev_update_features(dev))
9717 netdev_features_change(dev);
5455c699
MM
9718}
9719EXPORT_SYMBOL(netdev_update_features);
9720
afe12cc8
MM
9721/**
9722 * netdev_change_features - recalculate device features
9723 * @dev: the device to check
9724 *
9725 * Recalculate dev->features set and send notifications even
9726 * if they have not changed. Should be called instead of
9727 * netdev_update_features() if also dev->vlan_features might
9728 * have changed to allow the changes to be propagated to stacked
9729 * VLAN devices.
9730 */
9731void netdev_change_features(struct net_device *dev)
9732{
9733 __netdev_update_features(dev);
9734 netdev_features_change(dev);
9735}
9736EXPORT_SYMBOL(netdev_change_features);
9737
fc4a7489
PM
9738/**
9739 * netif_stacked_transfer_operstate - transfer operstate
9740 * @rootdev: the root or lower level device to transfer state from
9741 * @dev: the device to transfer operstate to
9742 *
9743 * Transfer operational state from root to device. This is normally
9744 * called when a stacking relationship exists between the root
9745 * device and the device(a leaf device).
9746 */
9747void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9748 struct net_device *dev)
9749{
9750 if (rootdev->operstate == IF_OPER_DORMANT)
9751 netif_dormant_on(dev);
9752 else
9753 netif_dormant_off(dev);
9754
eec517cd
AL
9755 if (rootdev->operstate == IF_OPER_TESTING)
9756 netif_testing_on(dev);
9757 else
9758 netif_testing_off(dev);
9759
0575c86b
ZS
9760 if (netif_carrier_ok(rootdev))
9761 netif_carrier_on(dev);
9762 else
9763 netif_carrier_off(dev);
fc4a7489
PM
9764}
9765EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9766
1b4bf461
ED
9767static int netif_alloc_rx_queues(struct net_device *dev)
9768{
1b4bf461 9769 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 9770 struct netdev_rx_queue *rx;
10595902 9771 size_t sz = count * sizeof(*rx);
e817f856 9772 int err = 0;
1b4bf461 9773
bd25fa7b 9774 BUG_ON(count < 1);
1b4bf461 9775
dcda9b04 9776 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9777 if (!rx)
9778 return -ENOMEM;
9779
bd25fa7b
TH
9780 dev->_rx = rx;
9781
e817f856 9782 for (i = 0; i < count; i++) {
fe822240 9783 rx[i].dev = dev;
e817f856
JDB
9784
9785 /* XDP RX-queue setup */
b02e5a0e 9786 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
e817f856
JDB
9787 if (err < 0)
9788 goto err_rxq_info;
9789 }
1b4bf461 9790 return 0;
e817f856
JDB
9791
9792err_rxq_info:
9793 /* Rollback successful reg's and free other resources */
9794 while (i--)
9795 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 9796 kvfree(dev->_rx);
e817f856
JDB
9797 dev->_rx = NULL;
9798 return err;
9799}
9800
9801static void netif_free_rx_queues(struct net_device *dev)
9802{
9803 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
9804
9805 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9806 if (!dev->_rx)
9807 return;
9808
e817f856 9809 for (i = 0; i < count; i++)
82aaff2f
JK
9810 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9811
9812 kvfree(dev->_rx);
1b4bf461
ED
9813}
9814
aa942104
CG
9815static void netdev_init_one_queue(struct net_device *dev,
9816 struct netdev_queue *queue, void *_unused)
9817{
9818 /* Initialize queue lock */
9819 spin_lock_init(&queue->_xmit_lock);
1a33e10e 9820 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
aa942104 9821 queue->xmit_lock_owner = -1;
b236da69 9822 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 9823 queue->dev = dev;
114cf580
TH
9824#ifdef CONFIG_BQL
9825 dql_init(&queue->dql, HZ);
9826#endif
aa942104
CG
9827}
9828
60877a32
ED
9829static void netif_free_tx_queues(struct net_device *dev)
9830{
4cb28970 9831 kvfree(dev->_tx);
60877a32
ED
9832}
9833
e6484930
TH
9834static int netif_alloc_netdev_queues(struct net_device *dev)
9835{
9836 unsigned int count = dev->num_tx_queues;
9837 struct netdev_queue *tx;
60877a32 9838 size_t sz = count * sizeof(*tx);
e6484930 9839
d339727c
ED
9840 if (count < 1 || count > 0xffff)
9841 return -EINVAL;
62b5942a 9842
dcda9b04 9843 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9844 if (!tx)
9845 return -ENOMEM;
9846
e6484930 9847 dev->_tx = tx;
1d24eb48 9848
e6484930
TH
9849 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9850 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
9851
9852 return 0;
e6484930
TH
9853}
9854
a2029240
DV
9855void netif_tx_stop_all_queues(struct net_device *dev)
9856{
9857 unsigned int i;
9858
9859 for (i = 0; i < dev->num_tx_queues; i++) {
9860 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 9861
a2029240
DV
9862 netif_tx_stop_queue(txq);
9863 }
9864}
9865EXPORT_SYMBOL(netif_tx_stop_all_queues);
9866
1da177e4
LT
9867/**
9868 * register_netdevice - register a network device
9869 * @dev: device to register
9870 *
9871 * Take a completed network device structure and add it to the kernel
9872 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9873 * chain. 0 is returned on success. A negative errno code is returned
9874 * on a failure to set up the device, or if the name is a duplicate.
9875 *
9876 * Callers must hold the rtnl semaphore. You may want
9877 * register_netdev() instead of this.
9878 *
9879 * BUGS:
9880 * The locking appears insufficient to guarantee two parallel registers
9881 * will not get the same name.
9882 */
9883
9884int register_netdevice(struct net_device *dev)
9885{
1da177e4 9886 int ret;
d314774c 9887 struct net *net = dev_net(dev);
1da177e4 9888
e283de3a
FF
9889 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9890 NETDEV_FEATURE_COUNT);
1da177e4
LT
9891 BUG_ON(dev_boot_phase);
9892 ASSERT_RTNL();
9893
b17a7c17
SH
9894 might_sleep();
9895
1da177e4
LT
9896 /* When net_device's are persistent, this will be fatal. */
9897 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 9898 BUG_ON(!net);
1da177e4 9899
9000edb7
JK
9900 ret = ethtool_check_ops(dev->ethtool_ops);
9901 if (ret)
9902 return ret;
9903
f1f28aa3 9904 spin_lock_init(&dev->addr_list_lock);
845e0ebb 9905 netdev_set_addr_lockdep_class(dev);
1da177e4 9906
828de4f6 9907 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
9908 if (ret < 0)
9909 goto out;
9910
9077f052 9911 ret = -ENOMEM;
ff927412
JP
9912 dev->name_node = netdev_name_node_head_alloc(dev);
9913 if (!dev->name_node)
9914 goto out;
9915
1da177e4 9916 /* Init, if this function is available */
d314774c
SH
9917 if (dev->netdev_ops->ndo_init) {
9918 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
9919 if (ret) {
9920 if (ret > 0)
9921 ret = -EIO;
42c17fa6 9922 goto err_free_name;
1da177e4
LT
9923 }
9924 }
4ec93edb 9925
f646968f
PM
9926 if (((dev->hw_features | dev->features) &
9927 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
9928 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9929 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9930 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9931 ret = -EINVAL;
9932 goto err_uninit;
9933 }
9934
9c7dafbf
PE
9935 ret = -EBUSY;
9936 if (!dev->ifindex)
9937 dev->ifindex = dev_new_index(net);
9938 else if (__dev_get_by_index(net, dev->ifindex))
9939 goto err_uninit;
9940
5455c699
MM
9941 /* Transfer changeable features to wanted_features and enable
9942 * software offloads (GSO and GRO).
9943 */
1a3c998f 9944 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 9945 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122 9946
876c4384 9947 if (dev->udp_tunnel_nic_info) {
d764a122
SD
9948 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9949 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9950 }
9951
14d1232f 9952 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 9953
cbc53e08 9954 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 9955 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 9956
7f348a60
AD
9957 /* If IPv4 TCP segmentation offload is supported we should also
9958 * allow the device to enable segmenting the frame with the option
9959 * of ignoring a static IP ID value. This doesn't enable the
9960 * feature itself but allows the user to enable it later.
9961 */
cbc53e08
AD
9962 if (dev->hw_features & NETIF_F_TSO)
9963 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
9964 if (dev->vlan_features & NETIF_F_TSO)
9965 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9966 if (dev->mpls_features & NETIF_F_TSO)
9967 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9968 if (dev->hw_enc_features & NETIF_F_TSO)
9969 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 9970
1180e7d6 9971 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 9972 */
1180e7d6 9973 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 9974
ee579677
PS
9975 /* Make NETIF_F_SG inheritable to tunnel devices.
9976 */
802ab55a 9977 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 9978
0d89d203
SH
9979 /* Make NETIF_F_SG inheritable to MPLS.
9980 */
9981 dev->mpls_features |= NETIF_F_SG;
9982
7ffbe3fd
JB
9983 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9984 ret = notifier_to_errno(ret);
9985 if (ret)
9986 goto err_uninit;
9987
8b41d188 9988 ret = netdev_register_kobject(dev);
cb626bf5
JH
9989 if (ret) {
9990 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 9991 goto err_uninit;
cb626bf5 9992 }
b17a7c17
SH
9993 dev->reg_state = NETREG_REGISTERED;
9994
6cb6a27c 9995 __netdev_update_features(dev);
8e9b59b2 9996
1da177e4
LT
9997 /*
9998 * Default initial state at registry is that the
9999 * device is present.
10000 */
10001
10002 set_bit(__LINK_STATE_PRESENT, &dev->state);
10003
8f4cccbb
BH
10004 linkwatch_init_dev(dev);
10005
1da177e4 10006 dev_init_scheduler(dev);
1da177e4 10007 dev_hold(dev);
ce286d32 10008 list_netdevice(dev);
7bf23575 10009 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 10010
948b337e
JP
10011 /* If the device has permanent device address, driver should
10012 * set dev_addr and also addr_assign_type should be set to
10013 * NET_ADDR_PERM (default value).
10014 */
10015 if (dev->addr_assign_type == NET_ADDR_PERM)
10016 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10017
1da177e4 10018 /* Notify protocols, that a new device appeared. */
056925ab 10019 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 10020 ret = notifier_to_errno(ret);
93ee31f1 10021 if (ret) {
766b0515
JK
10022 /* Expect explicit free_netdev() on failure */
10023 dev->needs_free_netdev = false;
037e56bd 10024 unregister_netdevice_queue(dev, NULL);
766b0515 10025 goto out;
93ee31f1 10026 }
d90a909e
EB
10027 /*
10028 * Prevent userspace races by waiting until the network
10029 * device is fully setup before sending notifications.
10030 */
a2835763
PM
10031 if (!dev->rtnl_link_ops ||
10032 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 10033 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
10034
10035out:
10036 return ret;
7ce1b0ed
HX
10037
10038err_uninit:
d314774c
SH
10039 if (dev->netdev_ops->ndo_uninit)
10040 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
10041 if (dev->priv_destructor)
10042 dev->priv_destructor(dev);
42c17fa6
DC
10043err_free_name:
10044 netdev_name_node_free(dev->name_node);
7ce1b0ed 10045 goto out;
1da177e4 10046}
d1b19dff 10047EXPORT_SYMBOL(register_netdevice);
1da177e4 10048
937f1ba5
BH
10049/**
10050 * init_dummy_netdev - init a dummy network device for NAPI
10051 * @dev: device to init
10052 *
10053 * This takes a network device structure and initialize the minimum
10054 * amount of fields so it can be used to schedule NAPI polls without
10055 * registering a full blown interface. This is to be used by drivers
10056 * that need to tie several hardware interfaces to a single NAPI
10057 * poll scheduler due to HW limitations.
10058 */
10059int init_dummy_netdev(struct net_device *dev)
10060{
10061 /* Clear everything. Note we don't initialize spinlocks
10062 * are they aren't supposed to be taken by any of the
10063 * NAPI code and this dummy netdev is supposed to be
10064 * only ever used for NAPI polls
10065 */
10066 memset(dev, 0, sizeof(struct net_device));
10067
10068 /* make sure we BUG if trying to hit standard
10069 * register/unregister code path
10070 */
10071 dev->reg_state = NETREG_DUMMY;
10072
937f1ba5
BH
10073 /* NAPI wants this */
10074 INIT_LIST_HEAD(&dev->napi_list);
10075
10076 /* a dummy interface is started by default */
10077 set_bit(__LINK_STATE_PRESENT, &dev->state);
10078 set_bit(__LINK_STATE_START, &dev->state);
10079
35edfdc7
JE
10080 /* napi_busy_loop stats accounting wants this */
10081 dev_net_set(dev, &init_net);
10082
29b4433d
ED
10083 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10084 * because users of this 'device' dont need to change
10085 * its refcount.
10086 */
10087
937f1ba5
BH
10088 return 0;
10089}
10090EXPORT_SYMBOL_GPL(init_dummy_netdev);
10091
10092
1da177e4
LT
10093/**
10094 * register_netdev - register a network device
10095 * @dev: device to register
10096 *
10097 * Take a completed network device structure and add it to the kernel
10098 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10099 * chain. 0 is returned on success. A negative errno code is returned
10100 * on a failure to set up the device, or if the name is a duplicate.
10101 *
38b4da38 10102 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
10103 * and expands the device name if you passed a format string to
10104 * alloc_netdev.
10105 */
10106int register_netdev(struct net_device *dev)
10107{
10108 int err;
10109
b0f3debc
KT
10110 if (rtnl_lock_killable())
10111 return -EINTR;
1da177e4 10112 err = register_netdevice(dev);
1da177e4
LT
10113 rtnl_unlock();
10114 return err;
10115}
10116EXPORT_SYMBOL(register_netdev);
10117
29b4433d
ED
10118int netdev_refcnt_read(const struct net_device *dev)
10119{
10120 int i, refcnt = 0;
10121
10122 for_each_possible_cpu(i)
10123 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10124 return refcnt;
10125}
10126EXPORT_SYMBOL(netdev_refcnt_read);
10127
de2b541b
MCC
10128#define WAIT_REFS_MIN_MSECS 1
10129#define WAIT_REFS_MAX_MSECS 250
2c53040f 10130/**
1da177e4 10131 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 10132 * @dev: target net_device
1da177e4
LT
10133 *
10134 * This is called when unregistering network devices.
10135 *
10136 * Any protocol or device that holds a reference should register
10137 * for netdevice notification, and cleanup and put back the
10138 * reference if they receive an UNREGISTER event.
10139 * We can get stuck here if buggy protocols don't correctly
4ec93edb 10140 * call dev_put.
1da177e4
LT
10141 */
10142static void netdev_wait_allrefs(struct net_device *dev)
10143{
10144 unsigned long rebroadcast_time, warning_time;
0e4be9e5 10145 int wait = 0, refcnt;
1da177e4 10146
e014debe
ED
10147 linkwatch_forget_dev(dev);
10148
1da177e4 10149 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
10150 refcnt = netdev_refcnt_read(dev);
10151
10152 while (refcnt != 0) {
1da177e4 10153 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 10154 rtnl_lock();
1da177e4
LT
10155
10156 /* Rebroadcast unregister notification */
056925ab 10157 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 10158
748e2d93 10159 __rtnl_unlock();
0115e8e3 10160 rcu_barrier();
748e2d93
ED
10161 rtnl_lock();
10162
1da177e4
LT
10163 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10164 &dev->state)) {
10165 /* We must not have linkwatch events
10166 * pending on unregister. If this
10167 * happens, we simply run the queue
10168 * unscheduled, resulting in a noop
10169 * for this device.
10170 */
10171 linkwatch_run_queue();
10172 }
10173
6756ae4b 10174 __rtnl_unlock();
1da177e4
LT
10175
10176 rebroadcast_time = jiffies;
10177 }
10178
0e4be9e5
FR
10179 if (!wait) {
10180 rcu_barrier();
10181 wait = WAIT_REFS_MIN_MSECS;
10182 } else {
10183 msleep(wait);
10184 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10185 }
1da177e4 10186
29b4433d
ED
10187 refcnt = netdev_refcnt_read(dev);
10188
d7c04b05 10189 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
10190 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10191 dev->name, refcnt);
1da177e4
LT
10192 warning_time = jiffies;
10193 }
10194 }
10195}
10196
10197/* The sequence is:
10198 *
10199 * rtnl_lock();
10200 * ...
10201 * register_netdevice(x1);
10202 * register_netdevice(x2);
10203 * ...
10204 * unregister_netdevice(y1);
10205 * unregister_netdevice(y2);
10206 * ...
10207 * rtnl_unlock();
10208 * free_netdev(y1);
10209 * free_netdev(y2);
10210 *
58ec3b4d 10211 * We are invoked by rtnl_unlock().
1da177e4 10212 * This allows us to deal with problems:
b17a7c17 10213 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
10214 * without deadlocking with linkwatch via keventd.
10215 * 2) Since we run with the RTNL semaphore not held, we can sleep
10216 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
10217 *
10218 * We must not return until all unregister events added during
10219 * the interval the lock was held have been completed.
1da177e4 10220 */
1da177e4
LT
10221void netdev_run_todo(void)
10222{
626ab0e6 10223 struct list_head list;
1fc70edb
TY
10224#ifdef CONFIG_LOCKDEP
10225 struct list_head unlink_list;
10226
10227 list_replace_init(&net_unlink_list, &unlink_list);
10228
10229 while (!list_empty(&unlink_list)) {
10230 struct net_device *dev = list_first_entry(&unlink_list,
10231 struct net_device,
10232 unlink_list);
0e8b8d6a 10233 list_del_init(&dev->unlink_list);
1fc70edb
TY
10234 dev->nested_level = dev->lower_level - 1;
10235 }
10236#endif
1da177e4 10237
1da177e4 10238 /* Snapshot list, allow later requests */
626ab0e6 10239 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
10240
10241 __rtnl_unlock();
626ab0e6 10242
0115e8e3
ED
10243
10244 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
10245 if (!list_empty(&list))
10246 rcu_barrier();
10247
1da177e4
LT
10248 while (!list_empty(&list)) {
10249 struct net_device *dev
e5e26d75 10250 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
10251 list_del(&dev->todo_list);
10252
b17a7c17 10253 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 10254 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
10255 dev->name, dev->reg_state);
10256 dump_stack();
10257 continue;
10258 }
1da177e4 10259
b17a7c17 10260 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 10261
b17a7c17 10262 netdev_wait_allrefs(dev);
1da177e4 10263
b17a7c17 10264 /* paranoia */
29b4433d 10265 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
10266 BUG_ON(!list_empty(&dev->ptype_all));
10267 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
10268 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10269 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 10270#if IS_ENABLED(CONFIG_DECNET)
547b792c 10271 WARN_ON(dev->dn_ptr);
330c7272 10272#endif
cf124db5
DM
10273 if (dev->priv_destructor)
10274 dev->priv_destructor(dev);
10275 if (dev->needs_free_netdev)
10276 free_netdev(dev);
9093bbb2 10277
50624c93
EB
10278 /* Report a network device has been unregistered */
10279 rtnl_lock();
10280 dev_net(dev)->dev_unreg_count--;
10281 __rtnl_unlock();
10282 wake_up(&netdev_unregistering_wq);
10283
9093bbb2
SH
10284 /* Free network device */
10285 kobject_put(&dev->dev.kobj);
1da177e4 10286 }
1da177e4
LT
10287}
10288
9256645a
JW
10289/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10290 * all the same fields in the same order as net_device_stats, with only
10291 * the type differing, but rtnl_link_stats64 may have additional fields
10292 * at the end for newer counters.
3cfde79c 10293 */
77a1abf5
ED
10294void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10295 const struct net_device_stats *netdev_stats)
3cfde79c
BH
10296{
10297#if BITS_PER_LONG == 64
9256645a 10298 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 10299 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
10300 /* zero out counters that only exist in rtnl_link_stats64 */
10301 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10302 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 10303#else
9256645a 10304 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
10305 const unsigned long *src = (const unsigned long *)netdev_stats;
10306 u64 *dst = (u64 *)stats64;
10307
9256645a 10308 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
10309 for (i = 0; i < n; i++)
10310 dst[i] = src[i];
9256645a
JW
10311 /* zero out counters that only exist in rtnl_link_stats64 */
10312 memset((char *)stats64 + n * sizeof(u64), 0,
10313 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
10314#endif
10315}
77a1abf5 10316EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 10317
eeda3fd6
SH
10318/**
10319 * dev_get_stats - get network device statistics
10320 * @dev: device to get statistics from
28172739 10321 * @storage: place to store stats
eeda3fd6 10322 *
d7753516
BH
10323 * Get network statistics from device. Return @storage.
10324 * The device driver may provide its own method by setting
10325 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10326 * otherwise the internal statistics structure is used.
eeda3fd6 10327 */
d7753516
BH
10328struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10329 struct rtnl_link_stats64 *storage)
7004bf25 10330{
eeda3fd6
SH
10331 const struct net_device_ops *ops = dev->netdev_ops;
10332
28172739
ED
10333 if (ops->ndo_get_stats64) {
10334 memset(storage, 0, sizeof(*storage));
caf586e5
ED
10335 ops->ndo_get_stats64(dev, storage);
10336 } else if (ops->ndo_get_stats) {
3cfde79c 10337 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
10338 } else {
10339 netdev_stats_to_stats64(storage, &dev->stats);
28172739 10340 }
6f64ec74
ED
10341 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10342 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10343 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 10344 return storage;
c45d286e 10345}
eeda3fd6 10346EXPORT_SYMBOL(dev_get_stats);
c45d286e 10347
44fa32f0
HK
10348/**
10349 * dev_fetch_sw_netstats - get per-cpu network device statistics
10350 * @s: place to store stats
10351 * @netstats: per-cpu network stats to read from
10352 *
10353 * Read per-cpu network statistics and populate the related fields in @s.
10354 */
10355void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10356 const struct pcpu_sw_netstats __percpu *netstats)
10357{
10358 int cpu;
10359
10360 for_each_possible_cpu(cpu) {
10361 const struct pcpu_sw_netstats *stats;
10362 struct pcpu_sw_netstats tmp;
10363 unsigned int start;
10364
10365 stats = per_cpu_ptr(netstats, cpu);
10366 do {
10367 start = u64_stats_fetch_begin_irq(&stats->syncp);
10368 tmp.rx_packets = stats->rx_packets;
10369 tmp.rx_bytes = stats->rx_bytes;
10370 tmp.tx_packets = stats->tx_packets;
10371 tmp.tx_bytes = stats->tx_bytes;
10372 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10373
10374 s->rx_packets += tmp.rx_packets;
10375 s->rx_bytes += tmp.rx_bytes;
10376 s->tx_packets += tmp.tx_packets;
10377 s->tx_bytes += tmp.tx_bytes;
10378 }
10379}
10380EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10381
a1839426
HK
10382/**
10383 * dev_get_tstats64 - ndo_get_stats64 implementation
10384 * @dev: device to get statistics from
10385 * @s: place to store stats
10386 *
10387 * Populate @s from dev->stats and dev->tstats. Can be used as
10388 * ndo_get_stats64() callback.
10389 */
10390void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10391{
10392 netdev_stats_to_stats64(s, &dev->stats);
10393 dev_fetch_sw_netstats(s, dev->tstats);
10394}
10395EXPORT_SYMBOL_GPL(dev_get_tstats64);
10396
24824a09 10397struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 10398{
24824a09 10399 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 10400
24824a09
ED
10401#ifdef CONFIG_NET_CLS_ACT
10402 if (queue)
10403 return queue;
10404 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10405 if (!queue)
10406 return NULL;
10407 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 10408 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
10409 queue->qdisc_sleeping = &noop_qdisc;
10410 rcu_assign_pointer(dev->ingress_queue, queue);
10411#endif
10412 return queue;
bb949fbd
DM
10413}
10414
2c60db03
ED
10415static const struct ethtool_ops default_ethtool_ops;
10416
d07d7507
SG
10417void netdev_set_default_ethtool_ops(struct net_device *dev,
10418 const struct ethtool_ops *ops)
10419{
10420 if (dev->ethtool_ops == &default_ethtool_ops)
10421 dev->ethtool_ops = ops;
10422}
10423EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10424
74d332c1
ED
10425void netdev_freemem(struct net_device *dev)
10426{
10427 char *addr = (char *)dev - dev->padded;
10428
4cb28970 10429 kvfree(addr);
74d332c1
ED
10430}
10431
1da177e4 10432/**
722c9a0c 10433 * alloc_netdev_mqs - allocate network device
10434 * @sizeof_priv: size of private data to allocate space for
10435 * @name: device name format string
10436 * @name_assign_type: origin of device name
10437 * @setup: callback to initialize device
10438 * @txqs: the number of TX subqueues to allocate
10439 * @rxqs: the number of RX subqueues to allocate
10440 *
10441 * Allocates a struct net_device with private data area for driver use
10442 * and performs basic initialization. Also allocates subqueue structs
10443 * for each queue on the device.
1da177e4 10444 */
36909ea4 10445struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 10446 unsigned char name_assign_type,
36909ea4
TH
10447 void (*setup)(struct net_device *),
10448 unsigned int txqs, unsigned int rxqs)
1da177e4 10449{
1da177e4 10450 struct net_device *dev;
52a59bd5 10451 unsigned int alloc_size;
1ce8e7b5 10452 struct net_device *p;
1da177e4 10453
b6fe17d6
SH
10454 BUG_ON(strlen(name) >= sizeof(dev->name));
10455
36909ea4 10456 if (txqs < 1) {
7b6cd1ce 10457 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
10458 return NULL;
10459 }
10460
36909ea4 10461 if (rxqs < 1) {
7b6cd1ce 10462 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
10463 return NULL;
10464 }
36909ea4 10465
fd2ea0a7 10466 alloc_size = sizeof(struct net_device);
d1643d24
AD
10467 if (sizeof_priv) {
10468 /* ensure 32-byte alignment of private area */
1ce8e7b5 10469 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
10470 alloc_size += sizeof_priv;
10471 }
10472 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 10473 alloc_size += NETDEV_ALIGN - 1;
1da177e4 10474
dcda9b04 10475 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 10476 if (!p)
1da177e4 10477 return NULL;
1da177e4 10478
1ce8e7b5 10479 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 10480 dev->padded = (char *)dev - (char *)p;
ab9c73cc 10481
29b4433d
ED
10482 dev->pcpu_refcnt = alloc_percpu(int);
10483 if (!dev->pcpu_refcnt)
74d332c1 10484 goto free_dev;
ab9c73cc 10485
ab9c73cc 10486 if (dev_addr_init(dev))
29b4433d 10487 goto free_pcpu;
ab9c73cc 10488
22bedad3 10489 dev_mc_init(dev);
a748ee24 10490 dev_uc_init(dev);
ccffad25 10491
c346dca1 10492 dev_net_set(dev, &init_net);
1da177e4 10493
8d3bdbd5 10494 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 10495 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
10496 dev->upper_level = 1;
10497 dev->lower_level = 1;
1fc70edb
TY
10498#ifdef CONFIG_LOCKDEP
10499 dev->nested_level = 0;
10500 INIT_LIST_HEAD(&dev->unlink_list);
10501#endif
8d3bdbd5 10502
8d3bdbd5
DM
10503 INIT_LIST_HEAD(&dev->napi_list);
10504 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 10505 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 10506 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
10507 INIT_LIST_HEAD(&dev->adj_list.upper);
10508 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
10509 INIT_LIST_HEAD(&dev->ptype_all);
10510 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 10511 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
10512#ifdef CONFIG_NET_SCHED
10513 hash_init(dev->qdisc_hash);
10514#endif
02875878 10515 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
10516 setup(dev);
10517
a813104d 10518 if (!dev->tx_queue_len) {
f84bb1ea 10519 dev->priv_flags |= IFF_NO_QUEUE;
11597084 10520 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 10521 }
906470c1 10522
36909ea4
TH
10523 dev->num_tx_queues = txqs;
10524 dev->real_num_tx_queues = txqs;
ed9af2e8 10525 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 10526 goto free_all;
e8a0464c 10527
36909ea4
TH
10528 dev->num_rx_queues = rxqs;
10529 dev->real_num_rx_queues = rxqs;
fe822240 10530 if (netif_alloc_rx_queues(dev))
8d3bdbd5 10531 goto free_all;
0a9627f2 10532
1da177e4 10533 strcpy(dev->name, name);
c835a677 10534 dev->name_assign_type = name_assign_type;
cbda10fa 10535 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
10536 if (!dev->ethtool_ops)
10537 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 10538
357b6cc5 10539 nf_hook_ingress_init(dev);
e687ad60 10540
1da177e4 10541 return dev;
ab9c73cc 10542
8d3bdbd5
DM
10543free_all:
10544 free_netdev(dev);
10545 return NULL;
10546
29b4433d
ED
10547free_pcpu:
10548 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
10549free_dev:
10550 netdev_freemem(dev);
ab9c73cc 10551 return NULL;
1da177e4 10552}
36909ea4 10553EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
10554
10555/**
722c9a0c 10556 * free_netdev - free network device
10557 * @dev: device
1da177e4 10558 *
722c9a0c 10559 * This function does the last stage of destroying an allocated device
10560 * interface. The reference to the device object is released. If this
10561 * is the last reference then it will be freed.Must be called in process
10562 * context.
1da177e4
LT
10563 */
10564void free_netdev(struct net_device *dev)
10565{
d565b0a1
HX
10566 struct napi_struct *p, *n;
10567
93d05d4a 10568 might_sleep();
c269a24c
JK
10569
10570 /* When called immediately after register_netdevice() failed the unwind
10571 * handling may still be dismantling the device. Handle that case by
10572 * deferring the free.
10573 */
10574 if (dev->reg_state == NETREG_UNREGISTERING) {
10575 ASSERT_RTNL();
10576 dev->needs_free_netdev = true;
10577 return;
10578 }
10579
60877a32 10580 netif_free_tx_queues(dev);
e817f856 10581 netif_free_rx_queues(dev);
e8a0464c 10582
33d480ce 10583 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 10584
f001fde5
JP
10585 /* Flush device addresses */
10586 dev_addr_flush(dev);
10587
d565b0a1
HX
10588 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10589 netif_napi_del(p);
10590
29b4433d
ED
10591 free_percpu(dev->pcpu_refcnt);
10592 dev->pcpu_refcnt = NULL;
75ccae62
THJ
10593 free_percpu(dev->xdp_bulkq);
10594 dev->xdp_bulkq = NULL;
29b4433d 10595
3041a069 10596 /* Compatibility with error handling in drivers */
1da177e4 10597 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 10598 netdev_freemem(dev);
1da177e4
LT
10599 return;
10600 }
10601
10602 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10603 dev->reg_state = NETREG_RELEASED;
10604
43cb76d9
GKH
10605 /* will free via device release */
10606 put_device(&dev->dev);
1da177e4 10607}
d1b19dff 10608EXPORT_SYMBOL(free_netdev);
4ec93edb 10609
f0db275a
SH
10610/**
10611 * synchronize_net - Synchronize with packet receive processing
10612 *
10613 * Wait for packets currently being received to be done.
10614 * Does not block later packets from starting.
10615 */
4ec93edb 10616void synchronize_net(void)
1da177e4
LT
10617{
10618 might_sleep();
be3fc413
ED
10619 if (rtnl_is_locked())
10620 synchronize_rcu_expedited();
10621 else
10622 synchronize_rcu();
1da177e4 10623}
d1b19dff 10624EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
10625
10626/**
44a0873d 10627 * unregister_netdevice_queue - remove device from the kernel
1da177e4 10628 * @dev: device
44a0873d 10629 * @head: list
6ebfbc06 10630 *
1da177e4 10631 * This function shuts down a device interface and removes it
d59b54b1 10632 * from the kernel tables.
44a0873d 10633 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
10634 *
10635 * Callers must hold the rtnl semaphore. You may want
10636 * unregister_netdev() instead of this.
10637 */
10638
44a0873d 10639void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 10640{
a6620712
HX
10641 ASSERT_RTNL();
10642
44a0873d 10643 if (head) {
9fdce099 10644 list_move_tail(&dev->unreg_list, head);
44a0873d 10645 } else {
037e56bd
JK
10646 LIST_HEAD(single);
10647
10648 list_add(&dev->unreg_list, &single);
0cbe1e57 10649 unregister_netdevice_many(&single);
44a0873d 10650 }
1da177e4 10651}
44a0873d 10652EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 10653
9b5e383c
ED
10654/**
10655 * unregister_netdevice_many - unregister many devices
10656 * @head: list of devices
87757a91
ED
10657 *
10658 * Note: As most callers use a stack allocated list_head,
10659 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
10660 */
10661void unregister_netdevice_many(struct list_head *head)
bcfe2f1a
JK
10662{
10663 struct net_device *dev, *tmp;
10664 LIST_HEAD(close_head);
10665
10666 BUG_ON(dev_boot_phase);
10667 ASSERT_RTNL();
10668
0cbe1e57
JK
10669 if (list_empty(head))
10670 return;
10671
bcfe2f1a
JK
10672 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10673 /* Some devices call without registering
10674 * for initialization unwind. Remove those
10675 * devices and proceed with the remaining.
10676 */
10677 if (dev->reg_state == NETREG_UNINITIALIZED) {
10678 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10679 dev->name, dev);
10680
10681 WARN_ON(1);
10682 list_del(&dev->unreg_list);
10683 continue;
10684 }
10685 dev->dismantle = true;
10686 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10687 }
10688
10689 /* If device is running, close it first. */
10690 list_for_each_entry(dev, head, unreg_list)
10691 list_add_tail(&dev->close_list, &close_head);
10692 dev_close_many(&close_head, true);
10693
10694 list_for_each_entry(dev, head, unreg_list) {
10695 /* And unlink it from device chain. */
10696 unlist_netdevice(dev);
10697
10698 dev->reg_state = NETREG_UNREGISTERING;
10699 }
10700 flush_all_backlogs();
10701
10702 synchronize_net();
10703
10704 list_for_each_entry(dev, head, unreg_list) {
10705 struct sk_buff *skb = NULL;
10706
10707 /* Shutdown queueing discipline. */
10708 dev_shutdown(dev);
10709
10710 dev_xdp_uninstall(dev);
10711
10712 /* Notify protocols, that we are about to destroy
10713 * this device. They should clean all the things.
10714 */
10715 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10716
10717 if (!dev->rtnl_link_ops ||
10718 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10719 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10720 GFP_KERNEL, NULL, 0);
10721
10722 /*
10723 * Flush the unicast and multicast chains
10724 */
10725 dev_uc_flush(dev);
10726 dev_mc_flush(dev);
10727
10728 netdev_name_node_alt_flush(dev);
10729 netdev_name_node_free(dev->name_node);
10730
10731 if (dev->netdev_ops->ndo_uninit)
10732 dev->netdev_ops->ndo_uninit(dev);
10733
10734 if (skb)
10735 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10736
10737 /* Notifier chain MUST detach us all upper devices. */
10738 WARN_ON(netdev_has_any_upper_dev(dev));
10739 WARN_ON(netdev_has_any_lower_dev(dev));
10740
10741 /* Remove entries from kobject tree */
10742 netdev_unregister_kobject(dev);
10743#ifdef CONFIG_XPS
10744 /* Remove XPS queueing entries */
10745 netif_reset_xps_queues_gt(dev, 0);
10746#endif
10747 }
10748
10749 synchronize_net();
10750
10751 list_for_each_entry(dev, head, unreg_list) {
10752 dev_put(dev);
10753 net_set_todo(dev);
10754 }
0cbe1e57
JK
10755
10756 list_del(head);
bcfe2f1a 10757}
0cbe1e57 10758EXPORT_SYMBOL(unregister_netdevice_many);
bcfe2f1a 10759
1da177e4
LT
10760/**
10761 * unregister_netdev - remove device from the kernel
10762 * @dev: device
10763 *
10764 * This function shuts down a device interface and removes it
d59b54b1 10765 * from the kernel tables.
1da177e4
LT
10766 *
10767 * This is just a wrapper for unregister_netdevice that takes
10768 * the rtnl semaphore. In general you want to use this and not
10769 * unregister_netdevice.
10770 */
10771void unregister_netdev(struct net_device *dev)
10772{
10773 rtnl_lock();
10774 unregister_netdevice(dev);
10775 rtnl_unlock();
10776}
1da177e4
LT
10777EXPORT_SYMBOL(unregister_netdev);
10778
ce286d32
EB
10779/**
10780 * dev_change_net_namespace - move device to different nethost namespace
10781 * @dev: device
10782 * @net: network namespace
10783 * @pat: If not NULL name pattern to try if the current device name
10784 * is already taken in the destination network namespace.
10785 *
10786 * This function shuts down a device interface and moves it
10787 * to a new network namespace. On success 0 is returned, on
10788 * a failure a netagive errno code is returned.
10789 *
10790 * Callers must hold the rtnl semaphore.
10791 */
10792
10793int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10794{
ef6a4c88 10795 struct net *net_old = dev_net(dev);
38e01b30 10796 int err, new_nsid, new_ifindex;
ce286d32
EB
10797
10798 ASSERT_RTNL();
10799
10800 /* Don't allow namespace local devices to be moved. */
10801 err = -EINVAL;
10802 if (dev->features & NETIF_F_NETNS_LOCAL)
10803 goto out;
10804
10805 /* Ensure the device has been registrered */
ce286d32
EB
10806 if (dev->reg_state != NETREG_REGISTERED)
10807 goto out;
10808
10809 /* Get out if there is nothing todo */
10810 err = 0;
ef6a4c88 10811 if (net_eq(net_old, net))
ce286d32
EB
10812 goto out;
10813
10814 /* Pick the destination device name, and ensure
10815 * we can use it in the destination network namespace.
10816 */
10817 err = -EEXIST;
d9031024 10818 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
10819 /* We get here if we can't use the current device name */
10820 if (!pat)
10821 goto out;
7892bd08
LR
10822 err = dev_get_valid_name(net, dev, pat);
10823 if (err < 0)
ce286d32
EB
10824 goto out;
10825 }
10826
10827 /*
10828 * And now a mini version of register_netdevice unregister_netdevice.
10829 */
10830
10831 /* If device is running close it first. */
9b772652 10832 dev_close(dev);
ce286d32
EB
10833
10834 /* And unlink it from device chain */
ce286d32
EB
10835 unlist_netdevice(dev);
10836
10837 synchronize_net();
10838
10839 /* Shutdown queueing discipline. */
10840 dev_shutdown(dev);
10841
10842 /* Notify protocols, that we are about to destroy
eb13da1a 10843 * this device. They should clean all the things.
10844 *
10845 * Note that dev->reg_state stays at NETREG_REGISTERED.
10846 * This is wanted because this way 8021q and macvlan know
10847 * the device is just moving and can keep their slaves up.
10848 */
ce286d32 10849 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 10850 rcu_barrier();
38e01b30 10851
d4e4fdf9 10852 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30
ND
10853 /* If there is an ifindex conflict assign a new one */
10854 if (__dev_get_by_index(net, dev->ifindex))
10855 new_ifindex = dev_new_index(net);
10856 else
10857 new_ifindex = dev->ifindex;
10858
10859 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10860 new_ifindex);
ce286d32
EB
10861
10862 /*
10863 * Flush the unicast and multicast chains
10864 */
a748ee24 10865 dev_uc_flush(dev);
22bedad3 10866 dev_mc_flush(dev);
ce286d32 10867
4e66ae2e
SH
10868 /* Send a netdev-removed uevent to the old namespace */
10869 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 10870 netdev_adjacent_del_links(dev);
4e66ae2e 10871
93642e14
JP
10872 /* Move per-net netdevice notifiers that are following the netdevice */
10873 move_netdevice_notifiers_dev_net(dev, net);
10874
ce286d32 10875 /* Actually switch the network namespace */
c346dca1 10876 dev_net_set(dev, net);
38e01b30 10877 dev->ifindex = new_ifindex;
ce286d32 10878
4e66ae2e
SH
10879 /* Send a netdev-add uevent to the new namespace */
10880 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 10881 netdev_adjacent_add_links(dev);
4e66ae2e 10882
8b41d188 10883 /* Fixup kobjects */
a1b3f594 10884 err = device_rename(&dev->dev, dev->name);
8b41d188 10885 WARN_ON(err);
ce286d32 10886
ef6a4c88
CB
10887 /* Adapt owner in case owning user namespace of target network
10888 * namespace is different from the original one.
10889 */
10890 err = netdev_change_owner(dev, net_old, net);
10891 WARN_ON(err);
10892
ce286d32
EB
10893 /* Add the device back in the hashes */
10894 list_netdevice(dev);
10895
10896 /* Notify protocols, that a new device appeared. */
10897 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10898
d90a909e
EB
10899 /*
10900 * Prevent userspace races by waiting until the network
10901 * device is fully setup before sending notifications.
10902 */
7f294054 10903 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 10904
ce286d32
EB
10905 synchronize_net();
10906 err = 0;
10907out:
10908 return err;
10909}
463d0183 10910EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 10911
f0bf90de 10912static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
10913{
10914 struct sk_buff **list_skb;
1da177e4 10915 struct sk_buff *skb;
f0bf90de 10916 unsigned int cpu;
97d8b6e3 10917 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 10918
1da177e4
LT
10919 local_irq_disable();
10920 cpu = smp_processor_id();
10921 sd = &per_cpu(softnet_data, cpu);
10922 oldsd = &per_cpu(softnet_data, oldcpu);
10923
10924 /* Find end of our completion_queue. */
10925 list_skb = &sd->completion_queue;
10926 while (*list_skb)
10927 list_skb = &(*list_skb)->next;
10928 /* Append completion queue from offline CPU. */
10929 *list_skb = oldsd->completion_queue;
10930 oldsd->completion_queue = NULL;
10931
1da177e4 10932 /* Append output queue from offline CPU. */
a9cbd588
CG
10933 if (oldsd->output_queue) {
10934 *sd->output_queue_tailp = oldsd->output_queue;
10935 sd->output_queue_tailp = oldsd->output_queue_tailp;
10936 oldsd->output_queue = NULL;
10937 oldsd->output_queue_tailp = &oldsd->output_queue;
10938 }
ac64da0b
ED
10939 /* Append NAPI poll list from offline CPU, with one exception :
10940 * process_backlog() must be called by cpu owning percpu backlog.
10941 * We properly handle process_queue & input_pkt_queue later.
10942 */
10943 while (!list_empty(&oldsd->poll_list)) {
10944 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10945 struct napi_struct,
10946 poll_list);
10947
10948 list_del_init(&napi->poll_list);
10949 if (napi->poll == process_backlog)
10950 napi->state = 0;
10951 else
10952 ____napi_schedule(sd, napi);
264524d5 10953 }
1da177e4
LT
10954
10955 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10956 local_irq_enable();
10957
773fc8f6 10958#ifdef CONFIG_RPS
10959 remsd = oldsd->rps_ipi_list;
10960 oldsd->rps_ipi_list = NULL;
10961#endif
10962 /* send out pending IPI's on offline CPU */
10963 net_rps_send_ipi(remsd);
10964
1da177e4 10965 /* Process offline CPU's input_pkt_queue */
76cc8b13 10966 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 10967 netif_rx_ni(skb);
76cc8b13 10968 input_queue_head_incr(oldsd);
fec5e652 10969 }
ac64da0b 10970 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 10971 netif_rx_ni(skb);
76cc8b13
TH
10972 input_queue_head_incr(oldsd);
10973 }
1da177e4 10974
f0bf90de 10975 return 0;
1da177e4 10976}
1da177e4 10977
7f353bf2 10978/**
b63365a2
HX
10979 * netdev_increment_features - increment feature set by one
10980 * @all: current feature set
10981 * @one: new feature set
10982 * @mask: mask feature set
7f353bf2
HX
10983 *
10984 * Computes a new feature set after adding a device with feature set
b63365a2
HX
10985 * @one to the master device with current feature set @all. Will not
10986 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 10987 */
c8f44aff
MM
10988netdev_features_t netdev_increment_features(netdev_features_t all,
10989 netdev_features_t one, netdev_features_t mask)
b63365a2 10990{
c8cd0989 10991 if (mask & NETIF_F_HW_CSUM)
a188222b 10992 mask |= NETIF_F_CSUM_MASK;
1742f183 10993 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 10994
a188222b 10995 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 10996 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 10997
1742f183 10998 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
10999 if (all & NETIF_F_HW_CSUM)
11000 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
11001
11002 return all;
11003}
b63365a2 11004EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 11005
430f03cd 11006static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
11007{
11008 int i;
11009 struct hlist_head *hash;
11010
6da2ec56 11011 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
11012 if (hash != NULL)
11013 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11014 INIT_HLIST_HEAD(&hash[i]);
11015
11016 return hash;
11017}
11018
881d966b 11019/* Initialize per network namespace state */
4665079c 11020static int __net_init netdev_init(struct net *net)
881d966b 11021{
d9f37d01 11022 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 11023 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 11024
734b6541
RM
11025 if (net != &init_net)
11026 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 11027
30d97d35
PE
11028 net->dev_name_head = netdev_create_hash();
11029 if (net->dev_name_head == NULL)
11030 goto err_name;
881d966b 11031
30d97d35
PE
11032 net->dev_index_head = netdev_create_hash();
11033 if (net->dev_index_head == NULL)
11034 goto err_idx;
881d966b 11035
a30c7b42
JP
11036 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11037
881d966b 11038 return 0;
30d97d35
PE
11039
11040err_idx:
11041 kfree(net->dev_name_head);
11042err_name:
11043 return -ENOMEM;
881d966b
EB
11044}
11045
f0db275a
SH
11046/**
11047 * netdev_drivername - network driver for the device
11048 * @dev: network device
f0db275a
SH
11049 *
11050 * Determine network driver for device.
11051 */
3019de12 11052const char *netdev_drivername(const struct net_device *dev)
6579e57b 11053{
cf04a4c7
SH
11054 const struct device_driver *driver;
11055 const struct device *parent;
3019de12 11056 const char *empty = "";
6579e57b
AV
11057
11058 parent = dev->dev.parent;
6579e57b 11059 if (!parent)
3019de12 11060 return empty;
6579e57b
AV
11061
11062 driver = parent->driver;
11063 if (driver && driver->name)
3019de12
DM
11064 return driver->name;
11065 return empty;
6579e57b
AV
11066}
11067
6ea754eb
JP
11068static void __netdev_printk(const char *level, const struct net_device *dev,
11069 struct va_format *vaf)
256df2f3 11070{
b004ff49 11071 if (dev && dev->dev.parent) {
6ea754eb
JP
11072 dev_printk_emit(level[1] - '0',
11073 dev->dev.parent,
11074 "%s %s %s%s: %pV",
11075 dev_driver_string(dev->dev.parent),
11076 dev_name(dev->dev.parent),
11077 netdev_name(dev), netdev_reg_state(dev),
11078 vaf);
b004ff49 11079 } else if (dev) {
6ea754eb
JP
11080 printk("%s%s%s: %pV",
11081 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 11082 } else {
6ea754eb 11083 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 11084 }
256df2f3
JP
11085}
11086
6ea754eb
JP
11087void netdev_printk(const char *level, const struct net_device *dev,
11088 const char *format, ...)
256df2f3
JP
11089{
11090 struct va_format vaf;
11091 va_list args;
256df2f3
JP
11092
11093 va_start(args, format);
11094
11095 vaf.fmt = format;
11096 vaf.va = &args;
11097
6ea754eb 11098 __netdev_printk(level, dev, &vaf);
b004ff49 11099
256df2f3 11100 va_end(args);
256df2f3
JP
11101}
11102EXPORT_SYMBOL(netdev_printk);
11103
11104#define define_netdev_printk_level(func, level) \
6ea754eb 11105void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 11106{ \
256df2f3
JP
11107 struct va_format vaf; \
11108 va_list args; \
11109 \
11110 va_start(args, fmt); \
11111 \
11112 vaf.fmt = fmt; \
11113 vaf.va = &args; \
11114 \
6ea754eb 11115 __netdev_printk(level, dev, &vaf); \
b004ff49 11116 \
256df2f3 11117 va_end(args); \
256df2f3
JP
11118} \
11119EXPORT_SYMBOL(func);
11120
11121define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11122define_netdev_printk_level(netdev_alert, KERN_ALERT);
11123define_netdev_printk_level(netdev_crit, KERN_CRIT);
11124define_netdev_printk_level(netdev_err, KERN_ERR);
11125define_netdev_printk_level(netdev_warn, KERN_WARNING);
11126define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11127define_netdev_printk_level(netdev_info, KERN_INFO);
11128
4665079c 11129static void __net_exit netdev_exit(struct net *net)
881d966b
EB
11130{
11131 kfree(net->dev_name_head);
11132 kfree(net->dev_index_head);
ee21b18b
VA
11133 if (net != &init_net)
11134 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
11135}
11136
022cbae6 11137static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
11138 .init = netdev_init,
11139 .exit = netdev_exit,
11140};
11141
4665079c 11142static void __net_exit default_device_exit(struct net *net)
ce286d32 11143{
e008b5fc 11144 struct net_device *dev, *aux;
ce286d32 11145 /*
e008b5fc 11146 * Push all migratable network devices back to the
ce286d32
EB
11147 * initial network namespace
11148 */
11149 rtnl_lock();
e008b5fc 11150 for_each_netdev_safe(net, dev, aux) {
ce286d32 11151 int err;
aca51397 11152 char fb_name[IFNAMSIZ];
ce286d32
EB
11153
11154 /* Ignore unmoveable devices (i.e. loopback) */
11155 if (dev->features & NETIF_F_NETNS_LOCAL)
11156 continue;
11157
e008b5fc
EB
11158 /* Leave virtual devices for the generic cleanup */
11159 if (dev->rtnl_link_ops)
11160 continue;
d0c082ce 11161
25985edc 11162 /* Push remaining network devices to init_net */
aca51397 11163 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
11164 if (__dev_get_by_name(&init_net, fb_name))
11165 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 11166 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 11167 if (err) {
7b6cd1ce
JP
11168 pr_emerg("%s: failed to move %s to init_net: %d\n",
11169 __func__, dev->name, err);
aca51397 11170 BUG();
ce286d32
EB
11171 }
11172 }
11173 rtnl_unlock();
11174}
11175
50624c93
EB
11176static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11177{
11178 /* Return with the rtnl_lock held when there are no network
11179 * devices unregistering in any network namespace in net_list.
11180 */
11181 struct net *net;
11182 bool unregistering;
ff960a73 11183 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 11184
ff960a73 11185 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 11186 for (;;) {
50624c93
EB
11187 unregistering = false;
11188 rtnl_lock();
11189 list_for_each_entry(net, net_list, exit_list) {
11190 if (net->dev_unreg_count > 0) {
11191 unregistering = true;
11192 break;
11193 }
11194 }
11195 if (!unregistering)
11196 break;
11197 __rtnl_unlock();
ff960a73
PZ
11198
11199 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 11200 }
ff960a73 11201 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
11202}
11203
04dc7f6b
EB
11204static void __net_exit default_device_exit_batch(struct list_head *net_list)
11205{
11206 /* At exit all network devices most be removed from a network
b595076a 11207 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
11208 * Do this across as many network namespaces as possible to
11209 * improve batching efficiency.
11210 */
11211 struct net_device *dev;
11212 struct net *net;
11213 LIST_HEAD(dev_kill_list);
11214
50624c93
EB
11215 /* To prevent network device cleanup code from dereferencing
11216 * loopback devices or network devices that have been freed
11217 * wait here for all pending unregistrations to complete,
11218 * before unregistring the loopback device and allowing the
11219 * network namespace be freed.
11220 *
11221 * The netdev todo list containing all network devices
11222 * unregistrations that happen in default_device_exit_batch
11223 * will run in the rtnl_unlock() at the end of
11224 * default_device_exit_batch.
11225 */
11226 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
11227 list_for_each_entry(net, net_list, exit_list) {
11228 for_each_netdev_reverse(net, dev) {
b0ab2fab 11229 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
11230 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11231 else
11232 unregister_netdevice_queue(dev, &dev_kill_list);
11233 }
11234 }
11235 unregister_netdevice_many(&dev_kill_list);
11236 rtnl_unlock();
11237}
11238
022cbae6 11239static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 11240 .exit = default_device_exit,
04dc7f6b 11241 .exit_batch = default_device_exit_batch,
ce286d32
EB
11242};
11243
1da177e4
LT
11244/*
11245 * Initialize the DEV module. At boot time this walks the device list and
11246 * unhooks any devices that fail to initialise (normally hardware not
11247 * present) and leaves us with a valid list of present and active devices.
11248 *
11249 */
11250
11251/*
11252 * This is called single threaded during boot, so no need
11253 * to take the rtnl semaphore.
11254 */
11255static int __init net_dev_init(void)
11256{
11257 int i, rc = -ENOMEM;
11258
11259 BUG_ON(!dev_boot_phase);
11260
1da177e4
LT
11261 if (dev_proc_init())
11262 goto out;
11263
8b41d188 11264 if (netdev_kobject_init())
1da177e4
LT
11265 goto out;
11266
11267 INIT_LIST_HEAD(&ptype_all);
82d8a867 11268 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
11269 INIT_LIST_HEAD(&ptype_base[i]);
11270
62532da9
VY
11271 INIT_LIST_HEAD(&offload_base);
11272
881d966b
EB
11273 if (register_pernet_subsys(&netdev_net_ops))
11274 goto out;
1da177e4
LT
11275
11276 /*
11277 * Initialise the packet receive queues.
11278 */
11279
6f912042 11280 for_each_possible_cpu(i) {
41852497 11281 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 11282 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 11283
41852497
ED
11284 INIT_WORK(flush, flush_backlog);
11285
e36fa2f7 11286 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 11287 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
11288#ifdef CONFIG_XFRM_OFFLOAD
11289 skb_queue_head_init(&sd->xfrm_backlog);
11290#endif
e36fa2f7 11291 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 11292 sd->output_queue_tailp = &sd->output_queue;
df334545 11293#ifdef CONFIG_RPS
545b8c8d 11294 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
e36fa2f7 11295 sd->cpu = i;
1e94d72f 11296#endif
0a9627f2 11297
7c4ec749 11298 init_gro_hash(&sd->backlog);
e36fa2f7
ED
11299 sd->backlog.poll = process_backlog;
11300 sd->backlog.weight = weight_p;
1da177e4
LT
11301 }
11302
1da177e4
LT
11303 dev_boot_phase = 0;
11304
505d4f73
EB
11305 /* The loopback device is special if any other network devices
11306 * is present in a network namespace the loopback device must
11307 * be present. Since we now dynamically allocate and free the
11308 * loopback device ensure this invariant is maintained by
11309 * keeping the loopback device as the first device on the
11310 * list of network devices. Ensuring the loopback devices
11311 * is the first device that appears and the last network device
11312 * that disappears.
11313 */
11314 if (register_pernet_device(&loopback_net_ops))
11315 goto out;
11316
11317 if (register_pernet_device(&default_device_ops))
11318 goto out;
11319
962cf36c
CM
11320 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11321 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 11322
f0bf90de
SAS
11323 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11324 NULL, dev_cpu_dead);
11325 WARN_ON(rc < 0);
1da177e4
LT
11326 rc = 0;
11327out:
11328 return rc;
11329}
11330
11331subsys_initcall(net_dev_init);