Merge branch 'net-ethernet-ti-k3-introduce-common-platform-time-sync-driver-cpts'
[linux-block.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
1da177e4
LT
82#include <linux/string.h>
83#include <linux/mm.h>
84#include <linux/socket.h>
85#include <linux/sockios.h>
86#include <linux/errno.h>
87#include <linux/interrupt.h>
88#include <linux/if_ether.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
0187bdfb 91#include <linux/ethtool.h>
1da177e4 92#include <linux/skbuff.h>
a7862b45 93#include <linux/bpf.h>
b5cdae32 94#include <linux/bpf_trace.h>
457c4cbc 95#include <net/net_namespace.h>
1da177e4 96#include <net/sock.h>
02d62e86 97#include <net/busy_poll.h>
1da177e4 98#include <linux/rtnetlink.h>
1da177e4 99#include <linux/stat.h>
1da177e4 100#include <net/dst.h>
fc4099f1 101#include <net/dst_metadata.h>
1da177e4 102#include <net/pkt_sched.h>
87d83093 103#include <net/pkt_cls.h>
1da177e4 104#include <net/checksum.h>
44540960 105#include <net/xfrm.h>
1da177e4
LT
106#include <linux/highmem.h>
107#include <linux/init.h>
1da177e4 108#include <linux/module.h>
1da177e4
LT
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
1da177e4 112#include <net/iw_handler.h>
1da177e4 113#include <asm/current.h>
5bdb9886 114#include <linux/audit.h>
db217334 115#include <linux/dmaengine.h>
f6a78bfc 116#include <linux/err.h>
c7fa9d18 117#include <linux/ctype.h>
723e98b7 118#include <linux/if_arp.h>
6de329e2 119#include <linux/if_vlan.h>
8f0f2223 120#include <linux/ip.h>
ad55dcaf 121#include <net/ip.h>
25cd9ba0 122#include <net/mpls.h>
8f0f2223
DM
123#include <linux/ipv6.h>
124#include <linux/in.h>
b6b2fed1
DM
125#include <linux/jhash.h>
126#include <linux/random.h>
9cbc1cb8 127#include <trace/events/napi.h>
cf66ba58 128#include <trace/events/net.h>
07dc22e7 129#include <trace/events/skb.h>
caeda9b9 130#include <linux/inetdevice.h>
c445477d 131#include <linux/cpu_rmap.h>
c5905afb 132#include <linux/static_key.h>
af12fa6e 133#include <linux/hashtable.h>
60877a32 134#include <linux/vmalloc.h>
529d0489 135#include <linux/if_macvlan.h>
e7fd2885 136#include <linux/errqueue.h>
3b47d303 137#include <linux/hrtimer.h>
357b6cc5 138#include <linux/netfilter_ingress.h>
40e4e713 139#include <linux/crash_dump.h>
b72b5bf6 140#include <linux/sctp.h>
ae847f40 141#include <net/udp_tunnel.h>
6621dd29 142#include <linux/net_namespace.h>
aaa5d90b 143#include <linux/indirect_call_wrapper.h>
af3836df 144#include <net/devlink.h>
1da177e4 145
342709ef
PE
146#include "net-sysfs.h"
147
d565b0a1
HX
148#define MAX_GRO_SKBS 8
149
5d38a079
HX
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
1da177e4 153static DEFINE_SPINLOCK(ptype_lock);
62532da9 154static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
62532da9 157static struct list_head offload_base __read_mostly;
1da177e4 158
ae78dbfa 159static int netif_rx_internal(struct sk_buff *skb);
54951194 160static int call_netdevice_notifiers_info(unsigned long val,
54951194 161 struct netdev_notifier_info *info);
26372605
PM
162static int call_netdevice_notifiers_extack(unsigned long val,
163 struct net_device *dev,
164 struct netlink_ext_ack *extack);
90b602f8 165static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 166
1da177e4 167/*
7562f876 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
169 * semaphore.
170 *
c6d14c84 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
172 *
173 * Writers must hold the rtnl semaphore while they loop through the
7562f876 174 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
177 *
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
181 *
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
185 */
1da177e4 186DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
187EXPORT_SYMBOL(dev_base_lock);
188
6c557001
FW
189static DEFINE_MUTEX(ifalias_mutex);
190
af12fa6e
ET
191/* protects napi_hash addition/deletion and napi_gen_id */
192static DEFINE_SPINLOCK(napi_hash_lock);
193
52bd2d62 194static unsigned int napi_gen_id = NR_CPUS;
6180d9de 195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 196
18afa4b0 197static seqcount_t devnet_rename_seq;
c91f6df2 198
4e985ada
TG
199static inline void dev_base_seq_inc(struct net *net)
200{
643aa9cb 201 while (++net->dev_base_seq == 0)
202 ;
4e985ada
TG
203}
204
881d966b 205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 206{
8387ff25 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 208
08e9897d 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
210}
211
881d966b 212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 213{
7c28bd0b 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
215}
216
e36fa2f7 217static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
218{
219#ifdef CONFIG_RPS
e36fa2f7 220 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
221#endif
222}
223
e36fa2f7 224static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
225{
226#ifdef CONFIG_RPS
e36fa2f7 227 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
228#endif
229}
230
ff927412
JP
231static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232 const char *name)
233{
234 struct netdev_name_node *name_node;
235
236 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237 if (!name_node)
238 return NULL;
239 INIT_HLIST_NODE(&name_node->hlist);
240 name_node->dev = dev;
241 name_node->name = name;
242 return name_node;
243}
244
245static struct netdev_name_node *
246netdev_name_node_head_alloc(struct net_device *dev)
247{
36fbf1e5
JP
248 struct netdev_name_node *name_node;
249
250 name_node = netdev_name_node_alloc(dev, dev->name);
251 if (!name_node)
252 return NULL;
253 INIT_LIST_HEAD(&name_node->list);
254 return name_node;
ff927412
JP
255}
256
257static void netdev_name_node_free(struct netdev_name_node *name_node)
258{
259 kfree(name_node);
260}
261
262static void netdev_name_node_add(struct net *net,
263 struct netdev_name_node *name_node)
264{
265 hlist_add_head_rcu(&name_node->hlist,
266 dev_name_hash(net, name_node->name));
267}
268
269static void netdev_name_node_del(struct netdev_name_node *name_node)
270{
271 hlist_del_rcu(&name_node->hlist);
272}
273
274static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275 const char *name)
276{
277 struct hlist_head *head = dev_name_hash(net, name);
278 struct netdev_name_node *name_node;
279
280 hlist_for_each_entry(name_node, head, hlist)
281 if (!strcmp(name_node->name, name))
282 return name_node;
283 return NULL;
284}
285
286static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287 const char *name)
288{
289 struct hlist_head *head = dev_name_hash(net, name);
290 struct netdev_name_node *name_node;
291
292 hlist_for_each_entry_rcu(name_node, head, hlist)
293 if (!strcmp(name_node->name, name))
294 return name_node;
295 return NULL;
296}
297
36fbf1e5
JP
298int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299{
300 struct netdev_name_node *name_node;
301 struct net *net = dev_net(dev);
302
303 name_node = netdev_name_node_lookup(net, name);
304 if (name_node)
305 return -EEXIST;
306 name_node = netdev_name_node_alloc(dev, name);
307 if (!name_node)
308 return -ENOMEM;
309 netdev_name_node_add(net, name_node);
310 /* The node that holds dev->name acts as a head of per-device list. */
311 list_add_tail(&name_node->list, &dev->name_node->list);
312
313 return 0;
314}
315EXPORT_SYMBOL(netdev_name_node_alt_create);
316
317static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318{
319 list_del(&name_node->list);
320 netdev_name_node_del(name_node);
321 kfree(name_node->name);
322 netdev_name_node_free(name_node);
323}
324
325int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326{
327 struct netdev_name_node *name_node;
328 struct net *net = dev_net(dev);
329
330 name_node = netdev_name_node_lookup(net, name);
331 if (!name_node)
332 return -ENOENT;
e08ad805
ED
333 /* lookup might have found our primary name or a name belonging
334 * to another device.
335 */
336 if (name_node == dev->name_node || name_node->dev != dev)
337 return -EINVAL;
338
36fbf1e5
JP
339 __netdev_name_node_alt_destroy(name_node);
340
341 return 0;
342}
343EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344
345static void netdev_name_node_alt_flush(struct net_device *dev)
346{
347 struct netdev_name_node *name_node, *tmp;
348
349 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350 __netdev_name_node_alt_destroy(name_node);
351}
352
ce286d32 353/* Device list insertion */
53759be9 354static void list_netdevice(struct net_device *dev)
ce286d32 355{
c346dca1 356 struct net *net = dev_net(dev);
ce286d32
EB
357
358 ASSERT_RTNL();
359
360 write_lock_bh(&dev_base_lock);
c6d14c84 361 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 362 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
363 hlist_add_head_rcu(&dev->index_hlist,
364 dev_index_hash(net, dev->ifindex));
ce286d32 365 write_unlock_bh(&dev_base_lock);
4e985ada
TG
366
367 dev_base_seq_inc(net);
ce286d32
EB
368}
369
fb699dfd
ED
370/* Device list removal
371 * caller must respect a RCU grace period before freeing/reusing dev
372 */
ce286d32
EB
373static void unlist_netdevice(struct net_device *dev)
374{
375 ASSERT_RTNL();
376
377 /* Unlink dev from the device chain */
378 write_lock_bh(&dev_base_lock);
c6d14c84 379 list_del_rcu(&dev->dev_list);
ff927412 380 netdev_name_node_del(dev->name_node);
fb699dfd 381 hlist_del_rcu(&dev->index_hlist);
ce286d32 382 write_unlock_bh(&dev_base_lock);
4e985ada
TG
383
384 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
385}
386
1da177e4
LT
387/*
388 * Our notifier list
389 */
390
f07d5b94 391static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
392
393/*
394 * Device drivers call our routines to queue packets here. We empty the
395 * queue in the local softnet handler.
396 */
bea3348e 397
9958da05 398DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 399EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 400
1da177e4 401/*******************************************************************************
eb13da1a 402 *
403 * Protocol management and registration routines
404 *
405 *******************************************************************************/
1da177e4 406
1da177e4 407
1da177e4
LT
408/*
409 * Add a protocol ID to the list. Now that the input handler is
410 * smarter we can dispense with all the messy stuff that used to be
411 * here.
412 *
413 * BEWARE!!! Protocol handlers, mangling input packets,
414 * MUST BE last in hash buckets and checking protocol handlers
415 * MUST start from promiscuous ptype_all chain in net_bh.
416 * It is true now, do not change it.
417 * Explanation follows: if protocol handler, mangling packet, will
418 * be the first on list, it is not able to sense, that packet
419 * is cloned and should be copied-on-write, so that it will
420 * change it and subsequent readers will get broken packet.
421 * --ANK (980803)
422 */
423
c07b68e8
ED
424static inline struct list_head *ptype_head(const struct packet_type *pt)
425{
426 if (pt->type == htons(ETH_P_ALL))
7866a621 427 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 428 else
7866a621
SN
429 return pt->dev ? &pt->dev->ptype_specific :
430 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
431}
432
1da177e4
LT
433/**
434 * dev_add_pack - add packet handler
435 * @pt: packet type declaration
436 *
437 * Add a protocol handler to the networking stack. The passed &packet_type
438 * is linked into kernel lists and may not be freed until it has been
439 * removed from the kernel lists.
440 *
4ec93edb 441 * This call does not sleep therefore it can not
1da177e4
LT
442 * guarantee all CPU's that are in middle of receiving packets
443 * will see the new packet type (until the next received packet).
444 */
445
446void dev_add_pack(struct packet_type *pt)
447{
c07b68e8 448 struct list_head *head = ptype_head(pt);
1da177e4 449
c07b68e8
ED
450 spin_lock(&ptype_lock);
451 list_add_rcu(&pt->list, head);
452 spin_unlock(&ptype_lock);
1da177e4 453}
d1b19dff 454EXPORT_SYMBOL(dev_add_pack);
1da177e4 455
1da177e4
LT
456/**
457 * __dev_remove_pack - remove packet handler
458 * @pt: packet type declaration
459 *
460 * Remove a protocol handler that was previously added to the kernel
461 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
462 * from the kernel lists and can be freed or reused once this function
4ec93edb 463 * returns.
1da177e4
LT
464 *
465 * The packet type might still be in use by receivers
466 * and must not be freed until after all the CPU's have gone
467 * through a quiescent state.
468 */
469void __dev_remove_pack(struct packet_type *pt)
470{
c07b68e8 471 struct list_head *head = ptype_head(pt);
1da177e4
LT
472 struct packet_type *pt1;
473
c07b68e8 474 spin_lock(&ptype_lock);
1da177e4
LT
475
476 list_for_each_entry(pt1, head, list) {
477 if (pt == pt1) {
478 list_del_rcu(&pt->list);
479 goto out;
480 }
481 }
482
7b6cd1ce 483 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 484out:
c07b68e8 485 spin_unlock(&ptype_lock);
1da177e4 486}
d1b19dff
ED
487EXPORT_SYMBOL(__dev_remove_pack);
488
1da177e4
LT
489/**
490 * dev_remove_pack - remove packet handler
491 * @pt: packet type declaration
492 *
493 * Remove a protocol handler that was previously added to the kernel
494 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
495 * from the kernel lists and can be freed or reused once this function
496 * returns.
497 *
498 * This call sleeps to guarantee that no CPU is looking at the packet
499 * type after return.
500 */
501void dev_remove_pack(struct packet_type *pt)
502{
503 __dev_remove_pack(pt);
4ec93edb 504
1da177e4
LT
505 synchronize_net();
506}
d1b19dff 507EXPORT_SYMBOL(dev_remove_pack);
1da177e4 508
62532da9
VY
509
510/**
511 * dev_add_offload - register offload handlers
512 * @po: protocol offload declaration
513 *
514 * Add protocol offload handlers to the networking stack. The passed
515 * &proto_offload is linked into kernel lists and may not be freed until
516 * it has been removed from the kernel lists.
517 *
518 * This call does not sleep therefore it can not
519 * guarantee all CPU's that are in middle of receiving packets
520 * will see the new offload handlers (until the next received packet).
521 */
522void dev_add_offload(struct packet_offload *po)
523{
bdef7de4 524 struct packet_offload *elem;
62532da9
VY
525
526 spin_lock(&offload_lock);
bdef7de4
DM
527 list_for_each_entry(elem, &offload_base, list) {
528 if (po->priority < elem->priority)
529 break;
530 }
531 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
532 spin_unlock(&offload_lock);
533}
534EXPORT_SYMBOL(dev_add_offload);
535
536/**
537 * __dev_remove_offload - remove offload handler
538 * @po: packet offload declaration
539 *
540 * Remove a protocol offload handler that was previously added to the
541 * kernel offload handlers by dev_add_offload(). The passed &offload_type
542 * is removed from the kernel lists and can be freed or reused once this
543 * function returns.
544 *
545 * The packet type might still be in use by receivers
546 * and must not be freed until after all the CPU's have gone
547 * through a quiescent state.
548 */
1d143d9f 549static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
550{
551 struct list_head *head = &offload_base;
552 struct packet_offload *po1;
553
c53aa505 554 spin_lock(&offload_lock);
62532da9
VY
555
556 list_for_each_entry(po1, head, list) {
557 if (po == po1) {
558 list_del_rcu(&po->list);
559 goto out;
560 }
561 }
562
563 pr_warn("dev_remove_offload: %p not found\n", po);
564out:
c53aa505 565 spin_unlock(&offload_lock);
62532da9 566}
62532da9
VY
567
568/**
569 * dev_remove_offload - remove packet offload handler
570 * @po: packet offload declaration
571 *
572 * Remove a packet offload handler that was previously added to the kernel
573 * offload handlers by dev_add_offload(). The passed &offload_type is
574 * removed from the kernel lists and can be freed or reused once this
575 * function returns.
576 *
577 * This call sleeps to guarantee that no CPU is looking at the packet
578 * type after return.
579 */
580void dev_remove_offload(struct packet_offload *po)
581{
582 __dev_remove_offload(po);
583
584 synchronize_net();
585}
586EXPORT_SYMBOL(dev_remove_offload);
587
1da177e4 588/******************************************************************************
eb13da1a 589 *
590 * Device Boot-time Settings Routines
591 *
592 ******************************************************************************/
1da177e4
LT
593
594/* Boot time configuration table */
595static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
596
597/**
598 * netdev_boot_setup_add - add new setup entry
599 * @name: name of the device
600 * @map: configured settings for the device
601 *
602 * Adds new setup entry to the dev_boot_setup list. The function
603 * returns 0 on error and 1 on success. This is a generic routine to
604 * all netdevices.
605 */
606static int netdev_boot_setup_add(char *name, struct ifmap *map)
607{
608 struct netdev_boot_setup *s;
609 int i;
610
611 s = dev_boot_setup;
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 615 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
616 memcpy(&s[i].map, map, sizeof(s[i].map));
617 break;
618 }
619 }
620
621 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
622}
623
624/**
722c9a0c 625 * netdev_boot_setup_check - check boot time settings
626 * @dev: the netdevice
1da177e4 627 *
722c9a0c 628 * Check boot time settings for the device.
629 * The found settings are set for the device to be used
630 * later in the device probing.
631 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
632 */
633int netdev_boot_setup_check(struct net_device *dev)
634{
635 struct netdev_boot_setup *s = dev_boot_setup;
636 int i;
637
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 640 !strcmp(dev->name, s[i].name)) {
722c9a0c 641 dev->irq = s[i].map.irq;
642 dev->base_addr = s[i].map.base_addr;
643 dev->mem_start = s[i].map.mem_start;
644 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
645 return 1;
646 }
647 }
648 return 0;
649}
d1b19dff 650EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
651
652
653/**
722c9a0c 654 * netdev_boot_base - get address from boot time settings
655 * @prefix: prefix for network device
656 * @unit: id for network device
657 *
658 * Check boot time settings for the base address of device.
659 * The found settings are set for the device to be used
660 * later in the device probing.
661 * Returns 0 if no settings found.
1da177e4
LT
662 */
663unsigned long netdev_boot_base(const char *prefix, int unit)
664{
665 const struct netdev_boot_setup *s = dev_boot_setup;
666 char name[IFNAMSIZ];
667 int i;
668
669 sprintf(name, "%s%d", prefix, unit);
670
671 /*
672 * If device already registered then return base of 1
673 * to indicate not to probe for this interface
674 */
881d966b 675 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
676 return 1;
677
678 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679 if (!strcmp(name, s[i].name))
680 return s[i].map.base_addr;
681 return 0;
682}
683
684/*
685 * Saves at boot time configured settings for any netdevice.
686 */
687int __init netdev_boot_setup(char *str)
688{
689 int ints[5];
690 struct ifmap map;
691
692 str = get_options(str, ARRAY_SIZE(ints), ints);
693 if (!str || !*str)
694 return 0;
695
696 /* Save settings */
697 memset(&map, 0, sizeof(map));
698 if (ints[0] > 0)
699 map.irq = ints[1];
700 if (ints[0] > 1)
701 map.base_addr = ints[2];
702 if (ints[0] > 2)
703 map.mem_start = ints[3];
704 if (ints[0] > 3)
705 map.mem_end = ints[4];
706
707 /* Add new entry to the list */
708 return netdev_boot_setup_add(str, &map);
709}
710
711__setup("netdev=", netdev_boot_setup);
712
713/*******************************************************************************
eb13da1a 714 *
715 * Device Interface Subroutines
716 *
717 *******************************************************************************/
1da177e4 718
a54acb3a
ND
719/**
720 * dev_get_iflink - get 'iflink' value of a interface
721 * @dev: targeted interface
722 *
723 * Indicates the ifindex the interface is linked to.
724 * Physical interfaces have the same 'ifindex' and 'iflink' values.
725 */
726
727int dev_get_iflink(const struct net_device *dev)
728{
729 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730 return dev->netdev_ops->ndo_get_iflink(dev);
731
7a66bbc9 732 return dev->ifindex;
a54acb3a
ND
733}
734EXPORT_SYMBOL(dev_get_iflink);
735
fc4099f1
PS
736/**
737 * dev_fill_metadata_dst - Retrieve tunnel egress information.
738 * @dev: targeted interface
739 * @skb: The packet.
740 *
741 * For better visibility of tunnel traffic OVS needs to retrieve
742 * egress tunnel information for a packet. Following API allows
743 * user to get this info.
744 */
745int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
746{
747 struct ip_tunnel_info *info;
748
749 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
750 return -EINVAL;
751
752 info = skb_tunnel_info_unclone(skb);
753 if (!info)
754 return -ENOMEM;
755 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
756 return -EINVAL;
757
758 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
759}
760EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
761
1da177e4
LT
762/**
763 * __dev_get_by_name - find a device by its name
c4ea43c5 764 * @net: the applicable net namespace
1da177e4
LT
765 * @name: name to find
766 *
767 * Find an interface by name. Must be called under RTNL semaphore
768 * or @dev_base_lock. If the name is found a pointer to the device
769 * is returned. If the name is not found then %NULL is returned. The
770 * reference counters are not incremented so the caller must be
771 * careful with locks.
772 */
773
881d966b 774struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 775{
ff927412 776 struct netdev_name_node *node_name;
1da177e4 777
ff927412
JP
778 node_name = netdev_name_node_lookup(net, name);
779 return node_name ? node_name->dev : NULL;
1da177e4 780}
d1b19dff 781EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 782
72c9528b 783/**
722c9a0c 784 * dev_get_by_name_rcu - find a device by its name
785 * @net: the applicable net namespace
786 * @name: name to find
787 *
788 * Find an interface by name.
789 * If the name is found a pointer to the device is returned.
790 * If the name is not found then %NULL is returned.
791 * The reference counters are not incremented so the caller must be
792 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
793 */
794
795struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
796{
ff927412 797 struct netdev_name_node *node_name;
72c9528b 798
ff927412
JP
799 node_name = netdev_name_node_lookup_rcu(net, name);
800 return node_name ? node_name->dev : NULL;
72c9528b
ED
801}
802EXPORT_SYMBOL(dev_get_by_name_rcu);
803
1da177e4
LT
804/**
805 * dev_get_by_name - find a device by its name
c4ea43c5 806 * @net: the applicable net namespace
1da177e4
LT
807 * @name: name to find
808 *
809 * Find an interface by name. This can be called from any
810 * context and does its own locking. The returned handle has
811 * the usage count incremented and the caller must use dev_put() to
812 * release it when it is no longer needed. %NULL is returned if no
813 * matching device is found.
814 */
815
881d966b 816struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
817{
818 struct net_device *dev;
819
72c9528b
ED
820 rcu_read_lock();
821 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
822 if (dev)
823 dev_hold(dev);
72c9528b 824 rcu_read_unlock();
1da177e4
LT
825 return dev;
826}
d1b19dff 827EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
828
829/**
830 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 831 * @net: the applicable net namespace
1da177e4
LT
832 * @ifindex: index of device
833 *
834 * Search for an interface by index. Returns %NULL if the device
835 * is not found or a pointer to the device. The device has not
836 * had its reference counter increased so the caller must be careful
837 * about locking. The caller must hold either the RTNL semaphore
838 * or @dev_base_lock.
839 */
840
881d966b 841struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 842{
0bd8d536
ED
843 struct net_device *dev;
844 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 845
b67bfe0d 846 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
847 if (dev->ifindex == ifindex)
848 return dev;
0bd8d536 849
1da177e4
LT
850 return NULL;
851}
d1b19dff 852EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 853
fb699dfd
ED
854/**
855 * dev_get_by_index_rcu - find a device by its ifindex
856 * @net: the applicable net namespace
857 * @ifindex: index of device
858 *
859 * Search for an interface by index. Returns %NULL if the device
860 * is not found or a pointer to the device. The device has not
861 * had its reference counter increased so the caller must be careful
862 * about locking. The caller must hold RCU lock.
863 */
864
865struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
866{
fb699dfd
ED
867 struct net_device *dev;
868 struct hlist_head *head = dev_index_hash(net, ifindex);
869
b67bfe0d 870 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
871 if (dev->ifindex == ifindex)
872 return dev;
873
874 return NULL;
875}
876EXPORT_SYMBOL(dev_get_by_index_rcu);
877
1da177e4
LT
878
879/**
880 * dev_get_by_index - find a device by its ifindex
c4ea43c5 881 * @net: the applicable net namespace
1da177e4
LT
882 * @ifindex: index of device
883 *
884 * Search for an interface by index. Returns NULL if the device
885 * is not found or a pointer to the device. The device returned has
886 * had a reference added and the pointer is safe until the user calls
887 * dev_put to indicate they have finished with it.
888 */
889
881d966b 890struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
891{
892 struct net_device *dev;
893
fb699dfd
ED
894 rcu_read_lock();
895 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
896 if (dev)
897 dev_hold(dev);
fb699dfd 898 rcu_read_unlock();
1da177e4
LT
899 return dev;
900}
d1b19dff 901EXPORT_SYMBOL(dev_get_by_index);
1da177e4 902
90b602f8
ML
903/**
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
906 *
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
911 */
912
913struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914{
915 struct napi_struct *napi;
916
917 WARN_ON_ONCE(!rcu_read_lock_held());
918
919 if (napi_id < MIN_NAPI_ID)
920 return NULL;
921
922 napi = napi_by_id(napi_id);
923
924 return napi ? napi->dev : NULL;
925}
926EXPORT_SYMBOL(dev_get_by_napi_id);
927
5dbe7c17
NS
928/**
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
933 *
934 * The use of raw_seqcount_begin() and cond_resched() before
935 * retrying is required as we want to give the writers a chance
2da2b32f 936 * to complete when CONFIG_PREEMPTION is not set.
5dbe7c17
NS
937 */
938int netdev_get_name(struct net *net, char *name, int ifindex)
939{
940 struct net_device *dev;
941 unsigned int seq;
942
943retry:
944 seq = raw_seqcount_begin(&devnet_rename_seq);
945 rcu_read_lock();
946 dev = dev_get_by_index_rcu(net, ifindex);
947 if (!dev) {
948 rcu_read_unlock();
949 return -ENODEV;
950 }
951
952 strcpy(name, dev->name);
953 rcu_read_unlock();
954 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
955 cond_resched();
956 goto retry;
957 }
958
959 return 0;
960}
961
1da177e4 962/**
941666c2 963 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 964 * @net: the applicable net namespace
1da177e4
LT
965 * @type: media type of device
966 * @ha: hardware address
967 *
968 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
969 * is not found or a pointer to the device.
970 * The caller must hold RCU or RTNL.
941666c2 971 * The returned device has not had its ref count increased
1da177e4
LT
972 * and the caller must therefore be careful about locking
973 *
1da177e4
LT
974 */
975
941666c2
ED
976struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
977 const char *ha)
1da177e4
LT
978{
979 struct net_device *dev;
980
941666c2 981 for_each_netdev_rcu(net, dev)
1da177e4
LT
982 if (dev->type == type &&
983 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
984 return dev;
985
986 return NULL;
1da177e4 987}
941666c2 988EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 989
881d966b 990struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
991{
992 struct net_device *dev;
993
4e9cac2b 994 ASSERT_RTNL();
881d966b 995 for_each_netdev(net, dev)
4e9cac2b 996 if (dev->type == type)
7562f876
PE
997 return dev;
998
999 return NULL;
4e9cac2b 1000}
4e9cac2b
PM
1001EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1002
881d966b 1003struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 1004{
99fe3c39 1005 struct net_device *dev, *ret = NULL;
4e9cac2b 1006
99fe3c39
ED
1007 rcu_read_lock();
1008 for_each_netdev_rcu(net, dev)
1009 if (dev->type == type) {
1010 dev_hold(dev);
1011 ret = dev;
1012 break;
1013 }
1014 rcu_read_unlock();
1015 return ret;
1da177e4 1016}
1da177e4
LT
1017EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018
1019/**
6c555490 1020 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1021 * @net: the applicable net namespace
1da177e4
LT
1022 * @if_flags: IFF_* values
1023 * @mask: bitmask of bits in if_flags to check
1024 *
1025 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1026 * is not found or a pointer to the device. Must be called inside
6c555490 1027 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1028 */
1029
6c555490
WC
1030struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031 unsigned short mask)
1da177e4 1032{
7562f876 1033 struct net_device *dev, *ret;
1da177e4 1034
6c555490
WC
1035 ASSERT_RTNL();
1036
7562f876 1037 ret = NULL;
6c555490 1038 for_each_netdev(net, dev) {
1da177e4 1039 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1040 ret = dev;
1da177e4
LT
1041 break;
1042 }
1043 }
7562f876 1044 return ret;
1da177e4 1045}
6c555490 1046EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1047
1048/**
1049 * dev_valid_name - check if name is okay for network device
1050 * @name: name string
1051 *
1052 * Network device names need to be valid file names to
c7fa9d18
DM
1053 * to allow sysfs to work. We also disallow any kind of
1054 * whitespace.
1da177e4 1055 */
95f050bf 1056bool dev_valid_name(const char *name)
1da177e4 1057{
c7fa9d18 1058 if (*name == '\0')
95f050bf 1059 return false;
a9d48205 1060 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1061 return false;
c7fa9d18 1062 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1063 return false;
c7fa9d18
DM
1064
1065 while (*name) {
a4176a93 1066 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1067 return false;
c7fa9d18
DM
1068 name++;
1069 }
95f050bf 1070 return true;
1da177e4 1071}
d1b19dff 1072EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1073
1074/**
b267b179
EB
1075 * __dev_alloc_name - allocate a name for a device
1076 * @net: network namespace to allocate the device name in
1da177e4 1077 * @name: name format string
b267b179 1078 * @buf: scratch buffer and result name string
1da177e4
LT
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1087 */
1088
b267b179 1089static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1090{
1091 int i = 0;
1da177e4
LT
1092 const char *p;
1093 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1094 unsigned long *inuse;
1da177e4
LT
1095 struct net_device *d;
1096
93809105
RV
1097 if (!dev_valid_name(name))
1098 return -EINVAL;
1099
51f299dd 1100 p = strchr(name, '%');
1da177e4
LT
1101 if (p) {
1102 /*
1103 * Verify the string as this thing may have come from
1104 * the user. There must be either one "%d" and no other "%"
1105 * characters.
1106 */
1107 if (p[1] != 'd' || strchr(p + 2, '%'))
1108 return -EINVAL;
1109
1110 /* Use one page as a bit array of possible slots */
cfcabdcc 1111 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1112 if (!inuse)
1113 return -ENOMEM;
1114
881d966b 1115 for_each_netdev(net, d) {
1da177e4
LT
1116 if (!sscanf(d->name, name, &i))
1117 continue;
1118 if (i < 0 || i >= max_netdevices)
1119 continue;
1120
1121 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1122 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1123 if (!strncmp(buf, d->name, IFNAMSIZ))
1124 set_bit(i, inuse);
1125 }
1126
1127 i = find_first_zero_bit(inuse, max_netdevices);
1128 free_page((unsigned long) inuse);
1129 }
1130
6224abda 1131 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1132 if (!__dev_get_by_name(net, buf))
1da177e4 1133 return i;
1da177e4
LT
1134
1135 /* It is possible to run out of possible slots
1136 * when the name is long and there isn't enough space left
1137 * for the digits, or if all bits are used.
1138 */
029b6d14 1139 return -ENFILE;
1da177e4
LT
1140}
1141
2c88b855
RV
1142static int dev_alloc_name_ns(struct net *net,
1143 struct net_device *dev,
1144 const char *name)
1145{
1146 char buf[IFNAMSIZ];
1147 int ret;
1148
c46d7642 1149 BUG_ON(!net);
2c88b855
RV
1150 ret = __dev_alloc_name(net, name, buf);
1151 if (ret >= 0)
1152 strlcpy(dev->name, buf, IFNAMSIZ);
1153 return ret;
1da177e4
LT
1154}
1155
b267b179
EB
1156/**
1157 * dev_alloc_name - allocate a name for a device
1158 * @dev: device
1159 * @name: name format string
1160 *
1161 * Passed a format string - eg "lt%d" it will try and find a suitable
1162 * id. It scans list of devices to build up a free map, then chooses
1163 * the first empty slot. The caller must hold the dev_base or rtnl lock
1164 * while allocating the name and adding the device in order to avoid
1165 * duplicates.
1166 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167 * Returns the number of the unit assigned or a negative errno code.
1168 */
1169
1170int dev_alloc_name(struct net_device *dev, const char *name)
1171{
c46d7642 1172 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1173}
d1b19dff 1174EXPORT_SYMBOL(dev_alloc_name);
b267b179 1175
bacb7e18
ED
1176static int dev_get_valid_name(struct net *net, struct net_device *dev,
1177 const char *name)
828de4f6 1178{
55a5ec9b
DM
1179 BUG_ON(!net);
1180
1181 if (!dev_valid_name(name))
1182 return -EINVAL;
1183
1184 if (strchr(name, '%'))
1185 return dev_alloc_name_ns(net, dev, name);
1186 else if (__dev_get_by_name(net, name))
1187 return -EEXIST;
1188 else if (dev->name != name)
1189 strlcpy(dev->name, name, IFNAMSIZ);
1190
1191 return 0;
d9031024 1192}
1da177e4
LT
1193
1194/**
1195 * dev_change_name - change name of a device
1196 * @dev: device
1197 * @newname: name (or format string) must be at least IFNAMSIZ
1198 *
1199 * Change name of a device, can pass format strings "eth%d".
1200 * for wildcarding.
1201 */
cf04a4c7 1202int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1203{
238fa362 1204 unsigned char old_assign_type;
fcc5a03a 1205 char oldname[IFNAMSIZ];
1da177e4 1206 int err = 0;
fcc5a03a 1207 int ret;
881d966b 1208 struct net *net;
1da177e4
LT
1209
1210 ASSERT_RTNL();
c346dca1 1211 BUG_ON(!dev_net(dev));
1da177e4 1212
c346dca1 1213 net = dev_net(dev);
8065a779
SWL
1214
1215 /* Some auto-enslaved devices e.g. failover slaves are
1216 * special, as userspace might rename the device after
1217 * the interface had been brought up and running since
1218 * the point kernel initiated auto-enslavement. Allow
1219 * live name change even when these slave devices are
1220 * up and running.
1221 *
1222 * Typically, users of these auto-enslaving devices
1223 * don't actually care about slave name change, as
1224 * they are supposed to operate on master interface
1225 * directly.
1226 */
1227 if (dev->flags & IFF_UP &&
1228 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1229 return -EBUSY;
1230
30e6c9fa 1231 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1232
1233 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1234 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1235 return 0;
c91f6df2 1236 }
c8d90dca 1237
fcc5a03a
HX
1238 memcpy(oldname, dev->name, IFNAMSIZ);
1239
828de4f6 1240 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1241 if (err < 0) {
30e6c9fa 1242 write_seqcount_end(&devnet_rename_seq);
d9031024 1243 return err;
c91f6df2 1244 }
1da177e4 1245
6fe82a39
VF
1246 if (oldname[0] && !strchr(oldname, '%'))
1247 netdev_info(dev, "renamed from %s\n", oldname);
1248
238fa362
TG
1249 old_assign_type = dev->name_assign_type;
1250 dev->name_assign_type = NET_NAME_RENAMED;
1251
fcc5a03a 1252rollback:
a1b3f594
EB
1253 ret = device_rename(&dev->dev, dev->name);
1254 if (ret) {
1255 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1256 dev->name_assign_type = old_assign_type;
30e6c9fa 1257 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1258 return ret;
dcc99773 1259 }
7f988eab 1260
30e6c9fa 1261 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1262
5bb025fa
VF
1263 netdev_adjacent_rename_links(dev, oldname);
1264
7f988eab 1265 write_lock_bh(&dev_base_lock);
ff927412 1266 netdev_name_node_del(dev->name_node);
72c9528b
ED
1267 write_unlock_bh(&dev_base_lock);
1268
1269 synchronize_rcu();
1270
1271 write_lock_bh(&dev_base_lock);
ff927412 1272 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1273 write_unlock_bh(&dev_base_lock);
1274
056925ab 1275 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1276 ret = notifier_to_errno(ret);
1277
1278 if (ret) {
91e9c07b
ED
1279 /* err >= 0 after dev_alloc_name() or stores the first errno */
1280 if (err >= 0) {
fcc5a03a 1281 err = ret;
30e6c9fa 1282 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1283 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1284 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1285 dev->name_assign_type = old_assign_type;
1286 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1287 goto rollback;
91e9c07b 1288 } else {
7b6cd1ce 1289 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1290 dev->name, ret);
fcc5a03a
HX
1291 }
1292 }
1da177e4
LT
1293
1294 return err;
1295}
1296
0b815a1a
SH
1297/**
1298 * dev_set_alias - change ifalias of a device
1299 * @dev: device
1300 * @alias: name up to IFALIASZ
f0db275a 1301 * @len: limit of bytes to copy from info
0b815a1a
SH
1302 *
1303 * Set ifalias for a device,
1304 */
1305int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1306{
6c557001 1307 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1308
1309 if (len >= IFALIASZ)
1310 return -EINVAL;
1311
6c557001
FW
1312 if (len) {
1313 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1314 if (!new_alias)
1315 return -ENOMEM;
1316
1317 memcpy(new_alias->ifalias, alias, len);
1318 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1319 }
1320
6c557001 1321 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1322 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1324 mutex_unlock(&ifalias_mutex);
1325
1326 if (new_alias)
1327 kfree_rcu(new_alias, rcuhead);
0b815a1a 1328
0b815a1a
SH
1329 return len;
1330}
0fe554a4 1331EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1332
6c557001
FW
1333/**
1334 * dev_get_alias - get ifalias of a device
1335 * @dev: device
20e88320 1336 * @name: buffer to store name of ifalias
6c557001
FW
1337 * @len: size of buffer
1338 *
1339 * get ifalias for a device. Caller must make sure dev cannot go
1340 * away, e.g. rcu read lock or own a reference count to device.
1341 */
1342int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1343{
1344 const struct dev_ifalias *alias;
1345 int ret = 0;
1346
1347 rcu_read_lock();
1348 alias = rcu_dereference(dev->ifalias);
1349 if (alias)
1350 ret = snprintf(name, len, "%s", alias->ifalias);
1351 rcu_read_unlock();
1352
1353 return ret;
1354}
0b815a1a 1355
d8a33ac4 1356/**
3041a069 1357 * netdev_features_change - device changes features
d8a33ac4
SH
1358 * @dev: device to cause notification
1359 *
1360 * Called to indicate a device has changed features.
1361 */
1362void netdev_features_change(struct net_device *dev)
1363{
056925ab 1364 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1365}
1366EXPORT_SYMBOL(netdev_features_change);
1367
1da177e4
LT
1368/**
1369 * netdev_state_change - device changes state
1370 * @dev: device to cause notification
1371 *
1372 * Called to indicate a device has changed state. This function calls
1373 * the notifier chains for netdev_chain and sends a NEWLINK message
1374 * to the routing socket.
1375 */
1376void netdev_state_change(struct net_device *dev)
1377{
1378 if (dev->flags & IFF_UP) {
51d0c047
DA
1379 struct netdev_notifier_change_info change_info = {
1380 .info.dev = dev,
1381 };
54951194 1382
51d0c047 1383 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1384 &change_info.info);
7f294054 1385 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1386 }
1387}
d1b19dff 1388EXPORT_SYMBOL(netdev_state_change);
1da177e4 1389
ee89bab1 1390/**
722c9a0c 1391 * netdev_notify_peers - notify network peers about existence of @dev
1392 * @dev: network device
ee89bab1
AW
1393 *
1394 * Generate traffic such that interested network peers are aware of
1395 * @dev, such as by generating a gratuitous ARP. This may be used when
1396 * a device wants to inform the rest of the network about some sort of
1397 * reconfiguration such as a failover event or virtual machine
1398 * migration.
1399 */
1400void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1401{
ee89bab1
AW
1402 rtnl_lock();
1403 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1404 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1405 rtnl_unlock();
c1da4ac7 1406}
ee89bab1 1407EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1408
40c900aa 1409static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1410{
d314774c 1411 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1412 int ret;
1da177e4 1413
e46b66bc
BH
1414 ASSERT_RTNL();
1415
1da177e4
LT
1416 if (!netif_device_present(dev))
1417 return -ENODEV;
1418
ca99ca14
NH
1419 /* Block netpoll from trying to do any rx path servicing.
1420 * If we don't do this there is a chance ndo_poll_controller
1421 * or ndo_poll may be running while we open the device
1422 */
66b5552f 1423 netpoll_poll_disable(dev);
ca99ca14 1424
40c900aa 1425 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1426 ret = notifier_to_errno(ret);
1427 if (ret)
1428 return ret;
1429
1da177e4 1430 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1431
d314774c
SH
1432 if (ops->ndo_validate_addr)
1433 ret = ops->ndo_validate_addr(dev);
bada339b 1434
d314774c
SH
1435 if (!ret && ops->ndo_open)
1436 ret = ops->ndo_open(dev);
1da177e4 1437
66b5552f 1438 netpoll_poll_enable(dev);
ca99ca14 1439
bada339b
JG
1440 if (ret)
1441 clear_bit(__LINK_STATE_START, &dev->state);
1442 else {
1da177e4 1443 dev->flags |= IFF_UP;
4417da66 1444 dev_set_rx_mode(dev);
1da177e4 1445 dev_activate(dev);
7bf23575 1446 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1447 }
bada339b 1448
1da177e4
LT
1449 return ret;
1450}
1451
1452/**
bd380811 1453 * dev_open - prepare an interface for use.
00f54e68
PM
1454 * @dev: device to open
1455 * @extack: netlink extended ack
1da177e4 1456 *
bd380811
PM
1457 * Takes a device from down to up state. The device's private open
1458 * function is invoked and then the multicast lists are loaded. Finally
1459 * the device is moved into the up state and a %NETDEV_UP message is
1460 * sent to the netdev notifier chain.
1461 *
1462 * Calling this function on an active interface is a nop. On a failure
1463 * a negative errno code is returned.
1da177e4 1464 */
00f54e68 1465int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1466{
1467 int ret;
1468
bd380811
PM
1469 if (dev->flags & IFF_UP)
1470 return 0;
1471
40c900aa 1472 ret = __dev_open(dev, extack);
bd380811
PM
1473 if (ret < 0)
1474 return ret;
1475
7f294054 1476 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1477 call_netdevice_notifiers(NETDEV_UP, dev);
1478
1479 return ret;
1480}
1481EXPORT_SYMBOL(dev_open);
1482
7051b88a 1483static void __dev_close_many(struct list_head *head)
1da177e4 1484{
44345724 1485 struct net_device *dev;
e46b66bc 1486
bd380811 1487 ASSERT_RTNL();
9d5010db
DM
1488 might_sleep();
1489
5cde2829 1490 list_for_each_entry(dev, head, close_list) {
3f4df206 1491 /* Temporarily disable netpoll until the interface is down */
66b5552f 1492 netpoll_poll_disable(dev);
3f4df206 1493
44345724 1494 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1495
44345724 1496 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1497
44345724
OP
1498 /* Synchronize to scheduled poll. We cannot touch poll list, it
1499 * can be even on different cpu. So just clear netif_running().
1500 *
1501 * dev->stop() will invoke napi_disable() on all of it's
1502 * napi_struct instances on this device.
1503 */
4e857c58 1504 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1505 }
1da177e4 1506
44345724 1507 dev_deactivate_many(head);
d8b2a4d2 1508
5cde2829 1509 list_for_each_entry(dev, head, close_list) {
44345724 1510 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1511
44345724
OP
1512 /*
1513 * Call the device specific close. This cannot fail.
1514 * Only if device is UP
1515 *
1516 * We allow it to be called even after a DETACH hot-plug
1517 * event.
1518 */
1519 if (ops->ndo_stop)
1520 ops->ndo_stop(dev);
1521
44345724 1522 dev->flags &= ~IFF_UP;
66b5552f 1523 netpoll_poll_enable(dev);
44345724 1524 }
44345724
OP
1525}
1526
7051b88a 1527static void __dev_close(struct net_device *dev)
44345724
OP
1528{
1529 LIST_HEAD(single);
1530
5cde2829 1531 list_add(&dev->close_list, &single);
7051b88a 1532 __dev_close_many(&single);
f87e6f47 1533 list_del(&single);
44345724
OP
1534}
1535
7051b88a 1536void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1537{
1538 struct net_device *dev, *tmp;
1da177e4 1539
5cde2829
EB
1540 /* Remove the devices that don't need to be closed */
1541 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1542 if (!(dev->flags & IFF_UP))
5cde2829 1543 list_del_init(&dev->close_list);
44345724
OP
1544
1545 __dev_close_many(head);
1da177e4 1546
5cde2829 1547 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1548 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1549 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1550 if (unlink)
1551 list_del_init(&dev->close_list);
44345724 1552 }
bd380811 1553}
99c4a26a 1554EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1555
1556/**
1557 * dev_close - shutdown an interface.
1558 * @dev: device to shutdown
1559 *
1560 * This function moves an active device into down state. A
1561 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1563 * chain.
1564 */
7051b88a 1565void dev_close(struct net_device *dev)
bd380811 1566{
e14a5993
ED
1567 if (dev->flags & IFF_UP) {
1568 LIST_HEAD(single);
1da177e4 1569
5cde2829 1570 list_add(&dev->close_list, &single);
99c4a26a 1571 dev_close_many(&single, true);
e14a5993
ED
1572 list_del(&single);
1573 }
1da177e4 1574}
d1b19dff 1575EXPORT_SYMBOL(dev_close);
1da177e4
LT
1576
1577
0187bdfb
BH
1578/**
1579 * dev_disable_lro - disable Large Receive Offload on a device
1580 * @dev: device
1581 *
1582 * Disable Large Receive Offload (LRO) on a net device. Must be
1583 * called under RTNL. This is needed if received packets may be
1584 * forwarded to another interface.
1585 */
1586void dev_disable_lro(struct net_device *dev)
1587{
fbe168ba
MK
1588 struct net_device *lower_dev;
1589 struct list_head *iter;
529d0489 1590
bc5787c6
MM
1591 dev->wanted_features &= ~NETIF_F_LRO;
1592 netdev_update_features(dev);
27660515 1593
22d5969f
MM
1594 if (unlikely(dev->features & NETIF_F_LRO))
1595 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1596
1597 netdev_for_each_lower_dev(dev, lower_dev, iter)
1598 dev_disable_lro(lower_dev);
0187bdfb
BH
1599}
1600EXPORT_SYMBOL(dev_disable_lro);
1601
56f5aa77
MC
1602/**
1603 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1604 * @dev: device
1605 *
1606 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1607 * called under RTNL. This is needed if Generic XDP is installed on
1608 * the device.
1609 */
1610static void dev_disable_gro_hw(struct net_device *dev)
1611{
1612 dev->wanted_features &= ~NETIF_F_GRO_HW;
1613 netdev_update_features(dev);
1614
1615 if (unlikely(dev->features & NETIF_F_GRO_HW))
1616 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1617}
1618
ede2762d
KT
1619const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1620{
1621#define N(val) \
1622 case NETDEV_##val: \
1623 return "NETDEV_" __stringify(val);
1624 switch (cmd) {
1625 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1632 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1634 N(PRE_CHANGEADDR)
3f5ecd8a 1635 }
ede2762d
KT
1636#undef N
1637 return "UNKNOWN_NETDEV_EVENT";
1638}
1639EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1640
351638e7
JP
1641static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642 struct net_device *dev)
1643{
51d0c047
DA
1644 struct netdev_notifier_info info = {
1645 .dev = dev,
1646 };
351638e7 1647
351638e7
JP
1648 return nb->notifier_call(nb, val, &info);
1649}
0187bdfb 1650
afa0df59
JP
1651static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652 struct net_device *dev)
1653{
1654 int err;
1655
1656 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657 err = notifier_to_errno(err);
1658 if (err)
1659 return err;
1660
1661 if (!(dev->flags & IFF_UP))
1662 return 0;
1663
1664 call_netdevice_notifier(nb, NETDEV_UP, dev);
1665 return 0;
1666}
1667
1668static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669 struct net_device *dev)
1670{
1671 if (dev->flags & IFF_UP) {
1672 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1673 dev);
1674 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1675 }
1676 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1677}
1678
1679static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1680 struct net *net)
1681{
1682 struct net_device *dev;
1683 int err;
1684
1685 for_each_netdev(net, dev) {
1686 err = call_netdevice_register_notifiers(nb, dev);
1687 if (err)
1688 goto rollback;
1689 }
1690 return 0;
1691
1692rollback:
1693 for_each_netdev_continue_reverse(net, dev)
1694 call_netdevice_unregister_notifiers(nb, dev);
1695 return err;
1696}
1697
1698static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1699 struct net *net)
1700{
1701 struct net_device *dev;
1702
1703 for_each_netdev(net, dev)
1704 call_netdevice_unregister_notifiers(nb, dev);
1705}
1706
881d966b
EB
1707static int dev_boot_phase = 1;
1708
1da177e4 1709/**
722c9a0c 1710 * register_netdevice_notifier - register a network notifier block
1711 * @nb: notifier
1da177e4 1712 *
722c9a0c 1713 * Register a notifier to be called when network device events occur.
1714 * The notifier passed is linked into the kernel structures and must
1715 * not be reused until it has been unregistered. A negative errno code
1716 * is returned on a failure.
1da177e4 1717 *
722c9a0c 1718 * When registered all registration and up events are replayed
1719 * to the new notifier to allow device to have a race free
1720 * view of the network device list.
1da177e4
LT
1721 */
1722
1723int register_netdevice_notifier(struct notifier_block *nb)
1724{
881d966b 1725 struct net *net;
1da177e4
LT
1726 int err;
1727
328fbe74
KT
1728 /* Close race with setup_net() and cleanup_net() */
1729 down_write(&pernet_ops_rwsem);
1da177e4 1730 rtnl_lock();
f07d5b94 1731 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1732 if (err)
1733 goto unlock;
881d966b
EB
1734 if (dev_boot_phase)
1735 goto unlock;
1736 for_each_net(net) {
afa0df59
JP
1737 err = call_netdevice_register_net_notifiers(nb, net);
1738 if (err)
1739 goto rollback;
1da177e4 1740 }
fcc5a03a
HX
1741
1742unlock:
1da177e4 1743 rtnl_unlock();
328fbe74 1744 up_write(&pernet_ops_rwsem);
1da177e4 1745 return err;
fcc5a03a
HX
1746
1747rollback:
afa0df59
JP
1748 for_each_net_continue_reverse(net)
1749 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1750
1751 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1752 goto unlock;
1da177e4 1753}
d1b19dff 1754EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1755
1756/**
722c9a0c 1757 * unregister_netdevice_notifier - unregister a network notifier block
1758 * @nb: notifier
1da177e4 1759 *
722c9a0c 1760 * Unregister a notifier previously registered by
1761 * register_netdevice_notifier(). The notifier is unlinked into the
1762 * kernel structures and may then be reused. A negative errno code
1763 * is returned on a failure.
7d3d43da 1764 *
722c9a0c 1765 * After unregistering unregister and down device events are synthesized
1766 * for all devices on the device list to the removed notifier to remove
1767 * the need for special case cleanup code.
1da177e4
LT
1768 */
1769
1770int unregister_netdevice_notifier(struct notifier_block *nb)
1771{
7d3d43da 1772 struct net *net;
9f514950
HX
1773 int err;
1774
328fbe74
KT
1775 /* Close race with setup_net() and cleanup_net() */
1776 down_write(&pernet_ops_rwsem);
9f514950 1777 rtnl_lock();
f07d5b94 1778 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1779 if (err)
1780 goto unlock;
1781
48b3a137
JP
1782 for_each_net(net)
1783 call_netdevice_unregister_net_notifiers(nb, net);
1784
7d3d43da 1785unlock:
9f514950 1786 rtnl_unlock();
328fbe74 1787 up_write(&pernet_ops_rwsem);
9f514950 1788 return err;
1da177e4 1789}
d1b19dff 1790EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1791
1f637703
JP
1792static int __register_netdevice_notifier_net(struct net *net,
1793 struct notifier_block *nb,
1794 bool ignore_call_fail)
1795{
1796 int err;
1797
1798 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799 if (err)
1800 return err;
1801 if (dev_boot_phase)
1802 return 0;
1803
1804 err = call_netdevice_register_net_notifiers(nb, net);
1805 if (err && !ignore_call_fail)
1806 goto chain_unregister;
1807
1808 return 0;
1809
1810chain_unregister:
1811 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812 return err;
1813}
1814
1815static int __unregister_netdevice_notifier_net(struct net *net,
1816 struct notifier_block *nb)
1817{
1818 int err;
1819
1820 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1821 if (err)
1822 return err;
1823
1824 call_netdevice_unregister_net_notifiers(nb, net);
1825 return 0;
1826}
1827
a30c7b42
JP
1828/**
1829 * register_netdevice_notifier_net - register a per-netns network notifier block
1830 * @net: network namespace
1831 * @nb: notifier
1832 *
1833 * Register a notifier to be called when network device events occur.
1834 * The notifier passed is linked into the kernel structures and must
1835 * not be reused until it has been unregistered. A negative errno code
1836 * is returned on a failure.
1837 *
1838 * When registered all registration and up events are replayed
1839 * to the new notifier to allow device to have a race free
1840 * view of the network device list.
1841 */
1842
1843int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1844{
1845 int err;
1846
1847 rtnl_lock();
1f637703 1848 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1849 rtnl_unlock();
1850 return err;
a30c7b42
JP
1851}
1852EXPORT_SYMBOL(register_netdevice_notifier_net);
1853
1854/**
1855 * unregister_netdevice_notifier_net - unregister a per-netns
1856 * network notifier block
1857 * @net: network namespace
1858 * @nb: notifier
1859 *
1860 * Unregister a notifier previously registered by
1861 * register_netdevice_notifier(). The notifier is unlinked into the
1862 * kernel structures and may then be reused. A negative errno code
1863 * is returned on a failure.
1864 *
1865 * After unregistering unregister and down device events are synthesized
1866 * for all devices on the device list to the removed notifier to remove
1867 * the need for special case cleanup code.
1868 */
1869
1870int unregister_netdevice_notifier_net(struct net *net,
1871 struct notifier_block *nb)
1872{
1873 int err;
1874
1875 rtnl_lock();
1f637703 1876 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1877 rtnl_unlock();
1878 return err;
1879}
1880EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1881
93642e14
JP
1882int register_netdevice_notifier_dev_net(struct net_device *dev,
1883 struct notifier_block *nb,
1884 struct netdev_net_notifier *nn)
1885{
1886 int err;
a30c7b42 1887
93642e14
JP
1888 rtnl_lock();
1889 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890 if (!err) {
1891 nn->nb = nb;
1892 list_add(&nn->list, &dev->net_notifier_list);
1893 }
a30c7b42
JP
1894 rtnl_unlock();
1895 return err;
1896}
93642e14
JP
1897EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1898
1899int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900 struct notifier_block *nb,
1901 struct netdev_net_notifier *nn)
1902{
1903 int err;
1904
1905 rtnl_lock();
1906 list_del(&nn->list);
1907 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1908 rtnl_unlock();
1909 return err;
1910}
1911EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1912
1913static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914 struct net *net)
1915{
1916 struct netdev_net_notifier *nn;
1917
1918 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920 __register_netdevice_notifier_net(net, nn->nb, true);
1921 }
1922}
a30c7b42 1923
351638e7
JP
1924/**
1925 * call_netdevice_notifiers_info - call all network notifier blocks
1926 * @val: value passed unmodified to notifier function
351638e7
JP
1927 * @info: notifier information data
1928 *
1929 * Call all network notifier blocks. Parameters and return value
1930 * are as for raw_notifier_call_chain().
1931 */
1932
1d143d9f 1933static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1934 struct netdev_notifier_info *info)
351638e7 1935{
a30c7b42
JP
1936 struct net *net = dev_net(info->dev);
1937 int ret;
1938
351638e7 1939 ASSERT_RTNL();
a30c7b42
JP
1940
1941 /* Run per-netns notifier block chain first, then run the global one.
1942 * Hopefully, one day, the global one is going to be removed after
1943 * all notifier block registrators get converted to be per-netns.
1944 */
1945 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946 if (ret & NOTIFY_STOP_MASK)
1947 return ret;
351638e7
JP
1948 return raw_notifier_call_chain(&netdev_chain, val, info);
1949}
351638e7 1950
26372605
PM
1951static int call_netdevice_notifiers_extack(unsigned long val,
1952 struct net_device *dev,
1953 struct netlink_ext_ack *extack)
1954{
1955 struct netdev_notifier_info info = {
1956 .dev = dev,
1957 .extack = extack,
1958 };
1959
1960 return call_netdevice_notifiers_info(val, &info);
1961}
1962
1da177e4
LT
1963/**
1964 * call_netdevice_notifiers - call all network notifier blocks
1965 * @val: value passed unmodified to notifier function
c4ea43c5 1966 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1967 *
1968 * Call all network notifier blocks. Parameters and return value
f07d5b94 1969 * are as for raw_notifier_call_chain().
1da177e4
LT
1970 */
1971
ad7379d4 1972int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1973{
26372605 1974 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 1975}
edf947f1 1976EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1977
af7d6cce
SD
1978/**
1979 * call_netdevice_notifiers_mtu - call all network notifier blocks
1980 * @val: value passed unmodified to notifier function
1981 * @dev: net_device pointer passed unmodified to notifier function
1982 * @arg: additional u32 argument passed to the notifier function
1983 *
1984 * Call all network notifier blocks. Parameters and return value
1985 * are as for raw_notifier_call_chain().
1986 */
1987static int call_netdevice_notifiers_mtu(unsigned long val,
1988 struct net_device *dev, u32 arg)
1989{
1990 struct netdev_notifier_info_ext info = {
1991 .info.dev = dev,
1992 .ext.mtu = arg,
1993 };
1994
1995 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1996
1997 return call_netdevice_notifiers_info(val, &info.info);
1998}
1999
1cf51900 2000#ifdef CONFIG_NET_INGRESS
aabf6772 2001static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2002
2003void net_inc_ingress_queue(void)
2004{
aabf6772 2005 static_branch_inc(&ingress_needed_key);
4577139b
DB
2006}
2007EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2008
2009void net_dec_ingress_queue(void)
2010{
aabf6772 2011 static_branch_dec(&ingress_needed_key);
4577139b
DB
2012}
2013EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2014#endif
2015
1f211a1b 2016#ifdef CONFIG_NET_EGRESS
aabf6772 2017static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2018
2019void net_inc_egress_queue(void)
2020{
aabf6772 2021 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2022}
2023EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2024
2025void net_dec_egress_queue(void)
2026{
aabf6772 2027 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2028}
2029EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2030#endif
2031
39e83922 2032static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2033#ifdef CONFIG_JUMP_LABEL
b90e5794 2034static atomic_t netstamp_needed_deferred;
13baa00a 2035static atomic_t netstamp_wanted;
5fa8bbda 2036static void netstamp_clear(struct work_struct *work)
1da177e4 2037{
b90e5794 2038 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2039 int wanted;
b90e5794 2040
13baa00a
ED
2041 wanted = atomic_add_return(deferred, &netstamp_wanted);
2042 if (wanted > 0)
39e83922 2043 static_branch_enable(&netstamp_needed_key);
13baa00a 2044 else
39e83922 2045 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2046}
2047static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2048#endif
5fa8bbda
ED
2049
2050void net_enable_timestamp(void)
2051{
e9666d10 2052#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2053 int wanted;
2054
2055 while (1) {
2056 wanted = atomic_read(&netstamp_wanted);
2057 if (wanted <= 0)
2058 break;
2059 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2060 return;
2061 }
2062 atomic_inc(&netstamp_needed_deferred);
2063 schedule_work(&netstamp_work);
2064#else
39e83922 2065 static_branch_inc(&netstamp_needed_key);
13baa00a 2066#endif
1da177e4 2067}
d1b19dff 2068EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2069
2070void net_disable_timestamp(void)
2071{
e9666d10 2072#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2073 int wanted;
2074
2075 while (1) {
2076 wanted = atomic_read(&netstamp_wanted);
2077 if (wanted <= 1)
2078 break;
2079 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2080 return;
2081 }
2082 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2083 schedule_work(&netstamp_work);
2084#else
39e83922 2085 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2086#endif
1da177e4 2087}
d1b19dff 2088EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2089
3b098e2d 2090static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2091{
2456e855 2092 skb->tstamp = 0;
39e83922 2093 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2094 __net_timestamp(skb);
1da177e4
LT
2095}
2096
39e83922
DB
2097#define net_timestamp_check(COND, SKB) \
2098 if (static_branch_unlikely(&netstamp_needed_key)) { \
2099 if ((COND) && !(SKB)->tstamp) \
2100 __net_timestamp(SKB); \
2101 } \
3b098e2d 2102
f4b05d27 2103bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
2104{
2105 unsigned int len;
2106
2107 if (!(dev->flags & IFF_UP))
2108 return false;
2109
2110 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111 if (skb->len <= len)
2112 return true;
2113
2114 /* if TSO is enabled, we don't care about the length as the packet
2115 * could be forwarded without being segmented before
2116 */
2117 if (skb_is_gso(skb))
2118 return true;
2119
2120 return false;
2121}
1ee481fb 2122EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2123
a0265d28
HX
2124int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2125{
4e3264d2 2126 int ret = ____dev_forward_skb(dev, skb);
a0265d28 2127
4e3264d2
MKL
2128 if (likely(!ret)) {
2129 skb->protocol = eth_type_trans(skb, dev);
2130 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2131 }
a0265d28 2132
4e3264d2 2133 return ret;
a0265d28
HX
2134}
2135EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136
44540960
AB
2137/**
2138 * dev_forward_skb - loopback an skb to another netif
2139 *
2140 * @dev: destination network device
2141 * @skb: buffer to forward
2142 *
2143 * return values:
2144 * NET_RX_SUCCESS (no congestion)
6ec82562 2145 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2146 *
2147 * dev_forward_skb can be used for injecting an skb from the
2148 * start_xmit function of one device into the receive queue
2149 * of another device.
2150 *
2151 * The receiving device may be in another namespace, so
2152 * we have to clear all information in the skb that could
2153 * impact namespace isolation.
2154 */
2155int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156{
a0265d28 2157 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2158}
2159EXPORT_SYMBOL_GPL(dev_forward_skb);
2160
71d9dec2
CG
2161static inline int deliver_skb(struct sk_buff *skb,
2162 struct packet_type *pt_prev,
2163 struct net_device *orig_dev)
2164{
1f8b977a 2165 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2166 return -ENOMEM;
63354797 2167 refcount_inc(&skb->users);
71d9dec2
CG
2168 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2169}
2170
7866a621
SN
2171static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172 struct packet_type **pt,
fbcb2170
JP
2173 struct net_device *orig_dev,
2174 __be16 type,
7866a621
SN
2175 struct list_head *ptype_list)
2176{
2177 struct packet_type *ptype, *pt_prev = *pt;
2178
2179 list_for_each_entry_rcu(ptype, ptype_list, list) {
2180 if (ptype->type != type)
2181 continue;
2182 if (pt_prev)
fbcb2170 2183 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2184 pt_prev = ptype;
2185 }
2186 *pt = pt_prev;
2187}
2188
c0de08d0
EL
2189static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2190{
a3d744e9 2191 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2192 return false;
2193
2194 if (ptype->id_match)
2195 return ptype->id_match(ptype, skb->sk);
2196 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2197 return true;
2198
2199 return false;
2200}
2201
9f9a742d
MR
2202/**
2203 * dev_nit_active - return true if any network interface taps are in use
2204 *
2205 * @dev: network device to check for the presence of taps
2206 */
2207bool dev_nit_active(struct net_device *dev)
2208{
2209 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2210}
2211EXPORT_SYMBOL_GPL(dev_nit_active);
2212
1da177e4
LT
2213/*
2214 * Support routine. Sends outgoing frames to any network
2215 * taps currently in use.
2216 */
2217
74b20582 2218void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2219{
2220 struct packet_type *ptype;
71d9dec2
CG
2221 struct sk_buff *skb2 = NULL;
2222 struct packet_type *pt_prev = NULL;
7866a621 2223 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2224
1da177e4 2225 rcu_read_lock();
7866a621
SN
2226again:
2227 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2228 if (ptype->ignore_outgoing)
2229 continue;
2230
1da177e4
LT
2231 /* Never send packets back to the socket
2232 * they originated from - MvS (miquels@drinkel.ow.org)
2233 */
7866a621
SN
2234 if (skb_loop_sk(ptype, skb))
2235 continue;
71d9dec2 2236
7866a621
SN
2237 if (pt_prev) {
2238 deliver_skb(skb2, pt_prev, skb->dev);
2239 pt_prev = ptype;
2240 continue;
2241 }
1da177e4 2242
7866a621
SN
2243 /* need to clone skb, done only once */
2244 skb2 = skb_clone(skb, GFP_ATOMIC);
2245 if (!skb2)
2246 goto out_unlock;
70978182 2247
7866a621 2248 net_timestamp_set(skb2);
1da177e4 2249
7866a621
SN
2250 /* skb->nh should be correctly
2251 * set by sender, so that the second statement is
2252 * just protection against buggy protocols.
2253 */
2254 skb_reset_mac_header(skb2);
2255
2256 if (skb_network_header(skb2) < skb2->data ||
2257 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259 ntohs(skb2->protocol),
2260 dev->name);
2261 skb_reset_network_header(skb2);
1da177e4 2262 }
7866a621
SN
2263
2264 skb2->transport_header = skb2->network_header;
2265 skb2->pkt_type = PACKET_OUTGOING;
2266 pt_prev = ptype;
2267 }
2268
2269 if (ptype_list == &ptype_all) {
2270 ptype_list = &dev->ptype_all;
2271 goto again;
1da177e4 2272 }
7866a621 2273out_unlock:
581fe0ea
WB
2274 if (pt_prev) {
2275 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2277 else
2278 kfree_skb(skb2);
2279 }
1da177e4
LT
2280 rcu_read_unlock();
2281}
74b20582 2282EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2283
2c53040f
BH
2284/**
2285 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2286 * @dev: Network device
2287 * @txq: number of queues available
2288 *
2289 * If real_num_tx_queues is changed the tc mappings may no longer be
2290 * valid. To resolve this verify the tc mapping remains valid and if
2291 * not NULL the mapping. With no priorities mapping to this
2292 * offset/count pair it will no longer be used. In the worst case TC0
2293 * is invalid nothing can be done so disable priority mappings. If is
2294 * expected that drivers will fix this mapping if they can before
2295 * calling netif_set_real_num_tx_queues.
2296 */
bb134d22 2297static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2298{
2299 int i;
2300 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2301
2302 /* If TC0 is invalidated disable TC mapping */
2303 if (tc->offset + tc->count > txq) {
7b6cd1ce 2304 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2305 dev->num_tc = 0;
2306 return;
2307 }
2308
2309 /* Invalidated prio to tc mappings set to TC0 */
2310 for (i = 1; i < TC_BITMASK + 1; i++) {
2311 int q = netdev_get_prio_tc_map(dev, i);
2312
2313 tc = &dev->tc_to_txq[q];
2314 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2315 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2316 i, q);
4f57c087
JF
2317 netdev_set_prio_tc_map(dev, i, 0);
2318 }
2319 }
2320}
2321
8d059b0f
AD
2322int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2323{
2324 if (dev->num_tc) {
2325 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2326 int i;
2327
ffcfe25b 2328 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2329 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330 if ((txq - tc->offset) < tc->count)
2331 return i;
2332 }
2333
ffcfe25b 2334 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2335 return -1;
2336 }
2337
2338 return 0;
2339}
8a5f2166 2340EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2341
537c00de 2342#ifdef CONFIG_XPS
04157469
AN
2343struct static_key xps_needed __read_mostly;
2344EXPORT_SYMBOL(xps_needed);
2345struct static_key xps_rxqs_needed __read_mostly;
2346EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2347static DEFINE_MUTEX(xps_map_mutex);
2348#define xmap_dereference(P) \
2349 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2350
6234f874
AD
2351static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2352 int tci, u16 index)
537c00de 2353{
10cdc3f3
AD
2354 struct xps_map *map = NULL;
2355 int pos;
537c00de 2356
10cdc3f3 2357 if (dev_maps)
80d19669 2358 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2359 if (!map)
2360 return false;
537c00de 2361
6234f874
AD
2362 for (pos = map->len; pos--;) {
2363 if (map->queues[pos] != index)
2364 continue;
2365
2366 if (map->len > 1) {
2367 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2368 break;
537c00de 2369 }
6234f874 2370
80d19669 2371 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2372 kfree_rcu(map, rcu);
2373 return false;
537c00de
AD
2374 }
2375
6234f874 2376 return true;
10cdc3f3
AD
2377}
2378
6234f874
AD
2379static bool remove_xps_queue_cpu(struct net_device *dev,
2380 struct xps_dev_maps *dev_maps,
2381 int cpu, u16 offset, u16 count)
2382{
184c449f
AD
2383 int num_tc = dev->num_tc ? : 1;
2384 bool active = false;
2385 int tci;
6234f874 2386
184c449f
AD
2387 for (tci = cpu * num_tc; num_tc--; tci++) {
2388 int i, j;
2389
2390 for (i = count, j = offset; i--; j++) {
6358d49a 2391 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2392 break;
2393 }
2394
2395 active |= i < 0;
6234f874
AD
2396 }
2397
184c449f 2398 return active;
6234f874
AD
2399}
2400
867d0ad4
SD
2401static void reset_xps_maps(struct net_device *dev,
2402 struct xps_dev_maps *dev_maps,
2403 bool is_rxqs_map)
2404{
2405 if (is_rxqs_map) {
2406 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2408 } else {
2409 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2410 }
2411 static_key_slow_dec_cpuslocked(&xps_needed);
2412 kfree_rcu(dev_maps, rcu);
2413}
2414
80d19669
AN
2415static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417 u16 offset, u16 count, bool is_rxqs_map)
2418{
2419 bool active = false;
2420 int i, j;
2421
2422 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2423 j < nr_ids;)
2424 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2425 count);
867d0ad4
SD
2426 if (!active)
2427 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2428
f28c020f
SD
2429 if (!is_rxqs_map) {
2430 for (i = offset + (count - 1); count--; i--) {
2431 netdev_queue_numa_node_write(
2432 netdev_get_tx_queue(dev, i),
2433 NUMA_NO_NODE);
80d19669 2434 }
80d19669
AN
2435 }
2436}
2437
6234f874
AD
2438static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2439 u16 count)
10cdc3f3 2440{
80d19669 2441 const unsigned long *possible_mask = NULL;
10cdc3f3 2442 struct xps_dev_maps *dev_maps;
80d19669 2443 unsigned int nr_ids;
10cdc3f3 2444
04157469
AN
2445 if (!static_key_false(&xps_needed))
2446 return;
10cdc3f3 2447
4d99f660 2448 cpus_read_lock();
04157469 2449 mutex_lock(&xps_map_mutex);
10cdc3f3 2450
04157469
AN
2451 if (static_key_false(&xps_rxqs_needed)) {
2452 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2453 if (dev_maps) {
2454 nr_ids = dev->num_rx_queues;
2455 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456 offset, count, true);
2457 }
537c00de
AD
2458 }
2459
80d19669
AN
2460 dev_maps = xmap_dereference(dev->xps_cpus_map);
2461 if (!dev_maps)
2462 goto out_no_maps;
2463
2464 if (num_possible_cpus() > 1)
2465 possible_mask = cpumask_bits(cpu_possible_mask);
2466 nr_ids = nr_cpu_ids;
2467 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2468 false);
024e9679 2469
537c00de
AD
2470out_no_maps:
2471 mutex_unlock(&xps_map_mutex);
4d99f660 2472 cpus_read_unlock();
537c00de
AD
2473}
2474
6234f874
AD
2475static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476{
2477 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2478}
2479
80d19669
AN
2480static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481 u16 index, bool is_rxqs_map)
01c5f864
AD
2482{
2483 struct xps_map *new_map;
2484 int alloc_len = XPS_MIN_MAP_ALLOC;
2485 int i, pos;
2486
2487 for (pos = 0; map && pos < map->len; pos++) {
2488 if (map->queues[pos] != index)
2489 continue;
2490 return map;
2491 }
2492
80d19669 2493 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2494 if (map) {
2495 if (pos < map->alloc_len)
2496 return map;
2497
2498 alloc_len = map->alloc_len * 2;
2499 }
2500
80d19669
AN
2501 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2502 * map
2503 */
2504 if (is_rxqs_map)
2505 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506 else
2507 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508 cpu_to_node(attr_index));
01c5f864
AD
2509 if (!new_map)
2510 return NULL;
2511
2512 for (i = 0; i < pos; i++)
2513 new_map->queues[i] = map->queues[i];
2514 new_map->alloc_len = alloc_len;
2515 new_map->len = pos;
2516
2517 return new_map;
2518}
2519
4d99f660 2520/* Must be called under cpus_read_lock */
80d19669
AN
2521int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522 u16 index, bool is_rxqs_map)
537c00de 2523{
80d19669 2524 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2525 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2526 int i, j, tci, numa_node_id = -2;
184c449f 2527 int maps_sz, num_tc = 1, tc = 0;
537c00de 2528 struct xps_map *map, *new_map;
01c5f864 2529 bool active = false;
80d19669 2530 unsigned int nr_ids;
537c00de 2531
184c449f 2532 if (dev->num_tc) {
ffcfe25b 2533 /* Do not allow XPS on subordinate device directly */
184c449f 2534 num_tc = dev->num_tc;
ffcfe25b
AD
2535 if (num_tc < 0)
2536 return -EINVAL;
2537
2538 /* If queue belongs to subordinate dev use its map */
2539 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2540
184c449f
AD
2541 tc = netdev_txq_to_tc(dev, index);
2542 if (tc < 0)
2543 return -EINVAL;
2544 }
2545
537c00de 2546 mutex_lock(&xps_map_mutex);
80d19669
AN
2547 if (is_rxqs_map) {
2548 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550 nr_ids = dev->num_rx_queues;
2551 } else {
2552 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553 if (num_possible_cpus() > 1) {
2554 online_mask = cpumask_bits(cpu_online_mask);
2555 possible_mask = cpumask_bits(cpu_possible_mask);
2556 }
2557 dev_maps = xmap_dereference(dev->xps_cpus_map);
2558 nr_ids = nr_cpu_ids;
2559 }
537c00de 2560
80d19669
AN
2561 if (maps_sz < L1_CACHE_BYTES)
2562 maps_sz = L1_CACHE_BYTES;
537c00de 2563
01c5f864 2564 /* allocate memory for queue storage */
80d19669
AN
2565 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2566 j < nr_ids;) {
01c5f864
AD
2567 if (!new_dev_maps)
2568 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2569 if (!new_dev_maps) {
2570 mutex_unlock(&xps_map_mutex);
01c5f864 2571 return -ENOMEM;
2bb60cb9 2572 }
01c5f864 2573
80d19669
AN
2574 tci = j * num_tc + tc;
2575 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2576 NULL;
2577
80d19669 2578 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2579 if (!map)
2580 goto error;
2581
80d19669 2582 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2583 }
2584
2585 if (!new_dev_maps)
2586 goto out_no_new_maps;
2587
867d0ad4
SD
2588 if (!dev_maps) {
2589 /* Increment static keys at most once per type */
2590 static_key_slow_inc_cpuslocked(&xps_needed);
2591 if (is_rxqs_map)
2592 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2593 }
04157469 2594
80d19669
AN
2595 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2596 j < nr_ids;) {
184c449f 2597 /* copy maps belonging to foreign traffic classes */
80d19669 2598 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2599 /* fill in the new device map from the old device map */
80d19669
AN
2600 map = xmap_dereference(dev_maps->attr_map[tci]);
2601 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2602 }
2603
2604 /* We need to explicitly update tci as prevous loop
2605 * could break out early if dev_maps is NULL.
2606 */
80d19669 2607 tci = j * num_tc + tc;
184c449f 2608
80d19669
AN
2609 if (netif_attr_test_mask(j, mask, nr_ids) &&
2610 netif_attr_test_online(j, online_mask, nr_ids)) {
2611 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2612 int pos = 0;
2613
80d19669 2614 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2615 while ((pos < map->len) && (map->queues[pos] != index))
2616 pos++;
2617
2618 if (pos == map->len)
2619 map->queues[map->len++] = index;
537c00de 2620#ifdef CONFIG_NUMA
80d19669
AN
2621 if (!is_rxqs_map) {
2622 if (numa_node_id == -2)
2623 numa_node_id = cpu_to_node(j);
2624 else if (numa_node_id != cpu_to_node(j))
2625 numa_node_id = -1;
2626 }
537c00de 2627#endif
01c5f864
AD
2628 } else if (dev_maps) {
2629 /* fill in the new device map from the old device map */
80d19669
AN
2630 map = xmap_dereference(dev_maps->attr_map[tci]);
2631 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2632 }
01c5f864 2633
184c449f
AD
2634 /* copy maps belonging to foreign traffic classes */
2635 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636 /* fill in the new device map from the old device map */
80d19669
AN
2637 map = xmap_dereference(dev_maps->attr_map[tci]);
2638 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2639 }
537c00de
AD
2640 }
2641
80d19669
AN
2642 if (is_rxqs_map)
2643 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2644 else
2645 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2646
537c00de 2647 /* Cleanup old maps */
184c449f
AD
2648 if (!dev_maps)
2649 goto out_no_old_maps;
2650
80d19669
AN
2651 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2652 j < nr_ids;) {
2653 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2656 if (map && map != new_map)
2657 kfree_rcu(map, rcu);
2658 }
537c00de
AD
2659 }
2660
184c449f
AD
2661 kfree_rcu(dev_maps, rcu);
2662
2663out_no_old_maps:
01c5f864
AD
2664 dev_maps = new_dev_maps;
2665 active = true;
537c00de 2666
01c5f864 2667out_no_new_maps:
80d19669
AN
2668 if (!is_rxqs_map) {
2669 /* update Tx queue numa node */
2670 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671 (numa_node_id >= 0) ?
2672 numa_node_id : NUMA_NO_NODE);
2673 }
537c00de 2674
01c5f864
AD
2675 if (!dev_maps)
2676 goto out_no_maps;
2677
80d19669
AN
2678 /* removes tx-queue from unused CPUs/rx-queues */
2679 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2680 j < nr_ids;) {
2681 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2682 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2683 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2685 active |= remove_xps_queue(dev_maps, tci, index);
2686 for (i = num_tc - tc, tci++; --i; tci++)
2687 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2688 }
2689
2690 /* free map if not active */
867d0ad4
SD
2691 if (!active)
2692 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2693
2694out_no_maps:
537c00de
AD
2695 mutex_unlock(&xps_map_mutex);
2696
2697 return 0;
2698error:
01c5f864 2699 /* remove any maps that we added */
80d19669
AN
2700 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2701 j < nr_ids;) {
2702 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2704 map = dev_maps ?
80d19669 2705 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2706 NULL;
2707 if (new_map && new_map != map)
2708 kfree(new_map);
2709 }
01c5f864
AD
2710 }
2711
537c00de
AD
2712 mutex_unlock(&xps_map_mutex);
2713
537c00de
AD
2714 kfree(new_dev_maps);
2715 return -ENOMEM;
2716}
4d99f660 2717EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2718
2719int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2720 u16 index)
2721{
4d99f660
AV
2722 int ret;
2723
2724 cpus_read_lock();
2725 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2726 cpus_read_unlock();
2727
2728 return ret;
80d19669 2729}
537c00de
AD
2730EXPORT_SYMBOL(netif_set_xps_queue);
2731
2732#endif
ffcfe25b
AD
2733static void netdev_unbind_all_sb_channels(struct net_device *dev)
2734{
2735 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736
2737 /* Unbind any subordinate channels */
2738 while (txq-- != &dev->_tx[0]) {
2739 if (txq->sb_dev)
2740 netdev_unbind_sb_channel(dev, txq->sb_dev);
2741 }
2742}
2743
9cf1f6a8
AD
2744void netdev_reset_tc(struct net_device *dev)
2745{
6234f874
AD
2746#ifdef CONFIG_XPS
2747 netif_reset_xps_queues_gt(dev, 0);
2748#endif
ffcfe25b
AD
2749 netdev_unbind_all_sb_channels(dev);
2750
2751 /* Reset TC configuration of device */
9cf1f6a8
AD
2752 dev->num_tc = 0;
2753 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2755}
2756EXPORT_SYMBOL(netdev_reset_tc);
2757
2758int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2759{
2760 if (tc >= dev->num_tc)
2761 return -EINVAL;
2762
6234f874
AD
2763#ifdef CONFIG_XPS
2764 netif_reset_xps_queues(dev, offset, count);
2765#endif
9cf1f6a8
AD
2766 dev->tc_to_txq[tc].count = count;
2767 dev->tc_to_txq[tc].offset = offset;
2768 return 0;
2769}
2770EXPORT_SYMBOL(netdev_set_tc_queue);
2771
2772int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2773{
2774 if (num_tc > TC_MAX_QUEUE)
2775 return -EINVAL;
2776
6234f874
AD
2777#ifdef CONFIG_XPS
2778 netif_reset_xps_queues_gt(dev, 0);
2779#endif
ffcfe25b
AD
2780 netdev_unbind_all_sb_channels(dev);
2781
9cf1f6a8
AD
2782 dev->num_tc = num_tc;
2783 return 0;
2784}
2785EXPORT_SYMBOL(netdev_set_num_tc);
2786
ffcfe25b
AD
2787void netdev_unbind_sb_channel(struct net_device *dev,
2788 struct net_device *sb_dev)
2789{
2790 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791
2792#ifdef CONFIG_XPS
2793 netif_reset_xps_queues_gt(sb_dev, 0);
2794#endif
2795 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2797
2798 while (txq-- != &dev->_tx[0]) {
2799 if (txq->sb_dev == sb_dev)
2800 txq->sb_dev = NULL;
2801 }
2802}
2803EXPORT_SYMBOL(netdev_unbind_sb_channel);
2804
2805int netdev_bind_sb_channel_queue(struct net_device *dev,
2806 struct net_device *sb_dev,
2807 u8 tc, u16 count, u16 offset)
2808{
2809 /* Make certain the sb_dev and dev are already configured */
2810 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2811 return -EINVAL;
2812
2813 /* We cannot hand out queues we don't have */
2814 if ((offset + count) > dev->real_num_tx_queues)
2815 return -EINVAL;
2816
2817 /* Record the mapping */
2818 sb_dev->tc_to_txq[tc].count = count;
2819 sb_dev->tc_to_txq[tc].offset = offset;
2820
2821 /* Provide a way for Tx queue to find the tc_to_txq map or
2822 * XPS map for itself.
2823 */
2824 while (count--)
2825 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2826
2827 return 0;
2828}
2829EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2830
2831int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2832{
2833 /* Do not use a multiqueue device to represent a subordinate channel */
2834 if (netif_is_multiqueue(dev))
2835 return -ENODEV;
2836
2837 /* We allow channels 1 - 32767 to be used for subordinate channels.
2838 * Channel 0 is meant to be "native" mode and used only to represent
2839 * the main root device. We allow writing 0 to reset the device back
2840 * to normal mode after being used as a subordinate channel.
2841 */
2842 if (channel > S16_MAX)
2843 return -EINVAL;
2844
2845 dev->num_tc = -channel;
2846
2847 return 0;
2848}
2849EXPORT_SYMBOL(netdev_set_sb_channel);
2850
f0796d5c
JF
2851/*
2852 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2853 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2854 */
e6484930 2855int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2856{
ac5b7019 2857 bool disabling;
1d24eb48
TH
2858 int rc;
2859
ac5b7019
JK
2860 disabling = txq < dev->real_num_tx_queues;
2861
e6484930
TH
2862 if (txq < 1 || txq > dev->num_tx_queues)
2863 return -EINVAL;
f0796d5c 2864
5c56580b
BH
2865 if (dev->reg_state == NETREG_REGISTERED ||
2866 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2867 ASSERT_RTNL();
2868
1d24eb48
TH
2869 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2870 txq);
bf264145
TH
2871 if (rc)
2872 return rc;
2873
4f57c087
JF
2874 if (dev->num_tc)
2875 netif_setup_tc(dev, txq);
2876
ac5b7019
JK
2877 dev->real_num_tx_queues = txq;
2878
2879 if (disabling) {
2880 synchronize_net();
e6484930 2881 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2882#ifdef CONFIG_XPS
2883 netif_reset_xps_queues_gt(dev, txq);
2884#endif
2885 }
ac5b7019
JK
2886 } else {
2887 dev->real_num_tx_queues = txq;
f0796d5c 2888 }
e6484930 2889
e6484930 2890 return 0;
f0796d5c
JF
2891}
2892EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2893
a953be53 2894#ifdef CONFIG_SYSFS
62fe0b40
BH
2895/**
2896 * netif_set_real_num_rx_queues - set actual number of RX queues used
2897 * @dev: Network device
2898 * @rxq: Actual number of RX queues
2899 *
2900 * This must be called either with the rtnl_lock held or before
2901 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2902 * negative error code. If called before registration, it always
2903 * succeeds.
62fe0b40
BH
2904 */
2905int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2906{
2907 int rc;
2908
bd25fa7b
TH
2909 if (rxq < 1 || rxq > dev->num_rx_queues)
2910 return -EINVAL;
2911
62fe0b40
BH
2912 if (dev->reg_state == NETREG_REGISTERED) {
2913 ASSERT_RTNL();
2914
62fe0b40
BH
2915 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2916 rxq);
2917 if (rc)
2918 return rc;
62fe0b40
BH
2919 }
2920
2921 dev->real_num_rx_queues = rxq;
2922 return 0;
2923}
2924EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2925#endif
2926
2c53040f
BH
2927/**
2928 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2929 *
2930 * This routine should set an upper limit on the number of RSS queues
2931 * used by default by multiqueue devices.
2932 */
a55b138b 2933int netif_get_num_default_rss_queues(void)
16917b87 2934{
40e4e713
HS
2935 return is_kdump_kernel() ?
2936 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2937}
2938EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2939
3bcb846c 2940static void __netif_reschedule(struct Qdisc *q)
56079431 2941{
def82a1d
JP
2942 struct softnet_data *sd;
2943 unsigned long flags;
56079431 2944
def82a1d 2945 local_irq_save(flags);
903ceff7 2946 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2947 q->next_sched = NULL;
2948 *sd->output_queue_tailp = q;
2949 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2950 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951 local_irq_restore(flags);
2952}
2953
2954void __netif_schedule(struct Qdisc *q)
2955{
2956 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957 __netif_reschedule(q);
56079431
DV
2958}
2959EXPORT_SYMBOL(__netif_schedule);
2960
e6247027
ED
2961struct dev_kfree_skb_cb {
2962 enum skb_free_reason reason;
2963};
2964
2965static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2966{
e6247027
ED
2967 return (struct dev_kfree_skb_cb *)skb->cb;
2968}
2969
46e5da40
JF
2970void netif_schedule_queue(struct netdev_queue *txq)
2971{
2972 rcu_read_lock();
5be5515a 2973 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
2974 struct Qdisc *q = rcu_dereference(txq->qdisc);
2975
2976 __netif_schedule(q);
2977 }
2978 rcu_read_unlock();
2979}
2980EXPORT_SYMBOL(netif_schedule_queue);
2981
46e5da40
JF
2982void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2983{
2984 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2985 struct Qdisc *q;
2986
2987 rcu_read_lock();
2988 q = rcu_dereference(dev_queue->qdisc);
2989 __netif_schedule(q);
2990 rcu_read_unlock();
2991 }
2992}
2993EXPORT_SYMBOL(netif_tx_wake_queue);
2994
e6247027 2995void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2996{
e6247027 2997 unsigned long flags;
56079431 2998
9899886d
MJ
2999 if (unlikely(!skb))
3000 return;
3001
63354797 3002 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3003 smp_rmb();
63354797
RE
3004 refcount_set(&skb->users, 0);
3005 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3006 return;
bea3348e 3007 }
e6247027
ED
3008 get_kfree_skb_cb(skb)->reason = reason;
3009 local_irq_save(flags);
3010 skb->next = __this_cpu_read(softnet_data.completion_queue);
3011 __this_cpu_write(softnet_data.completion_queue, skb);
3012 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013 local_irq_restore(flags);
56079431 3014}
e6247027 3015EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3016
e6247027 3017void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3018{
3019 if (in_irq() || irqs_disabled())
e6247027 3020 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3021 else
3022 dev_kfree_skb(skb);
3023}
e6247027 3024EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3025
3026
bea3348e
SH
3027/**
3028 * netif_device_detach - mark device as removed
3029 * @dev: network device
3030 *
3031 * Mark device as removed from system and therefore no longer available.
3032 */
56079431
DV
3033void netif_device_detach(struct net_device *dev)
3034{
3035 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036 netif_running(dev)) {
d543103a 3037 netif_tx_stop_all_queues(dev);
56079431
DV
3038 }
3039}
3040EXPORT_SYMBOL(netif_device_detach);
3041
bea3348e
SH
3042/**
3043 * netif_device_attach - mark device as attached
3044 * @dev: network device
3045 *
3046 * Mark device as attached from system and restart if needed.
3047 */
56079431
DV
3048void netif_device_attach(struct net_device *dev)
3049{
3050 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051 netif_running(dev)) {
d543103a 3052 netif_tx_wake_all_queues(dev);
4ec93edb 3053 __netdev_watchdog_up(dev);
56079431
DV
3054 }
3055}
3056EXPORT_SYMBOL(netif_device_attach);
3057
5605c762
JP
3058/*
3059 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060 * to be used as a distribution range.
3061 */
eadec877
AD
3062static u16 skb_tx_hash(const struct net_device *dev,
3063 const struct net_device *sb_dev,
3064 struct sk_buff *skb)
5605c762
JP
3065{
3066 u32 hash;
3067 u16 qoffset = 0;
1b837d48 3068 u16 qcount = dev->real_num_tx_queues;
5605c762 3069
eadec877
AD
3070 if (dev->num_tc) {
3071 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3072
3073 qoffset = sb_dev->tc_to_txq[tc].offset;
3074 qcount = sb_dev->tc_to_txq[tc].count;
3075 }
3076
5605c762
JP
3077 if (skb_rx_queue_recorded(skb)) {
3078 hash = skb_get_rx_queue(skb);
6e11d157
AN
3079 if (hash >= qoffset)
3080 hash -= qoffset;
1b837d48
AD
3081 while (unlikely(hash >= qcount))
3082 hash -= qcount;
eadec877 3083 return hash + qoffset;
5605c762
JP
3084 }
3085
3086 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3087}
5605c762 3088
36c92474
BH
3089static void skb_warn_bad_offload(const struct sk_buff *skb)
3090{
84d15ae5 3091 static const netdev_features_t null_features;
36c92474 3092 struct net_device *dev = skb->dev;
88ad4175 3093 const char *name = "";
36c92474 3094
c846ad9b
BG
3095 if (!net_ratelimit())
3096 return;
3097
88ad4175
BM
3098 if (dev) {
3099 if (dev->dev.parent)
3100 name = dev_driver_string(dev->dev.parent);
3101 else
3102 name = netdev_name(dev);
3103 }
6413139d
WB
3104 skb_dump(KERN_WARNING, skb, false);
3105 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3106 name, dev ? &dev->features : &null_features,
6413139d 3107 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3108}
3109
1da177e4
LT
3110/*
3111 * Invalidate hardware checksum when packet is to be mangled, and
3112 * complete checksum manually on outgoing path.
3113 */
84fa7933 3114int skb_checksum_help(struct sk_buff *skb)
1da177e4 3115{
d3bc23e7 3116 __wsum csum;
663ead3b 3117 int ret = 0, offset;
1da177e4 3118
84fa7933 3119 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3120 goto out_set_summed;
3121
3122 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
3123 skb_warn_bad_offload(skb);
3124 return -EINVAL;
1da177e4
LT
3125 }
3126
cef401de
ED
3127 /* Before computing a checksum, we should make sure no frag could
3128 * be modified by an external entity : checksum could be wrong.
3129 */
3130 if (skb_has_shared_frag(skb)) {
3131 ret = __skb_linearize(skb);
3132 if (ret)
3133 goto out;
3134 }
3135
55508d60 3136 offset = skb_checksum_start_offset(skb);
a030847e
HX
3137 BUG_ON(offset >= skb_headlen(skb));
3138 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3139
3140 offset += skb->csum_offset;
3141 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3142
8211fbfa
HK
3143 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3144 if (ret)
3145 goto out;
1da177e4 3146
4f2e4ad5 3147 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3148out_set_summed:
1da177e4 3149 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3150out:
1da177e4
LT
3151 return ret;
3152}
d1b19dff 3153EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3154
b72b5bf6
DC
3155int skb_crc32c_csum_help(struct sk_buff *skb)
3156{
3157 __le32 crc32c_csum;
3158 int ret = 0, offset, start;
3159
3160 if (skb->ip_summed != CHECKSUM_PARTIAL)
3161 goto out;
3162
3163 if (unlikely(skb_is_gso(skb)))
3164 goto out;
3165
3166 /* Before computing a checksum, we should make sure no frag could
3167 * be modified by an external entity : checksum could be wrong.
3168 */
3169 if (unlikely(skb_has_shared_frag(skb))) {
3170 ret = __skb_linearize(skb);
3171 if (ret)
3172 goto out;
3173 }
3174 start = skb_checksum_start_offset(skb);
3175 offset = start + offsetof(struct sctphdr, checksum);
3176 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3177 ret = -EINVAL;
3178 goto out;
3179 }
8211fbfa
HK
3180
3181 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3182 if (ret)
3183 goto out;
3184
b72b5bf6
DC
3185 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3186 skb->len - start, ~(__u32)0,
3187 crc32c_csum_stub));
3188 *(__le32 *)(skb->data + offset) = crc32c_csum;
3189 skb->ip_summed = CHECKSUM_NONE;
dba00306 3190 skb->csum_not_inet = 0;
b72b5bf6
DC
3191out:
3192 return ret;
3193}
3194
53d6471c 3195__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3196{
252e3346 3197 __be16 type = skb->protocol;
f6a78bfc 3198
19acc327
PS
3199 /* Tunnel gso handlers can set protocol to ethernet. */
3200 if (type == htons(ETH_P_TEB)) {
3201 struct ethhdr *eth;
3202
3203 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3204 return 0;
3205
1dfe82eb 3206 eth = (struct ethhdr *)skb->data;
19acc327
PS
3207 type = eth->h_proto;
3208 }
3209
d4bcef3f 3210 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3211}
3212
3213/**
3214 * skb_mac_gso_segment - mac layer segmentation handler.
3215 * @skb: buffer to segment
3216 * @features: features for the output path (see dev->features)
3217 */
3218struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3219 netdev_features_t features)
3220{
3221 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3222 struct packet_offload *ptype;
53d6471c
VY
3223 int vlan_depth = skb->mac_len;
3224 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3225
3226 if (unlikely(!type))
3227 return ERR_PTR(-EINVAL);
3228
53d6471c 3229 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3230
3231 rcu_read_lock();
22061d80 3232 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3233 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3234 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3235 break;
3236 }
3237 }
3238 rcu_read_unlock();
3239
98e399f8 3240 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3241
f6a78bfc
HX
3242 return segs;
3243}
05e8ef4a
PS
3244EXPORT_SYMBOL(skb_mac_gso_segment);
3245
3246
3247/* openvswitch calls this on rx path, so we need a different check.
3248 */
3249static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3250{
3251 if (tx_path)
0c19f846
WB
3252 return skb->ip_summed != CHECKSUM_PARTIAL &&
3253 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3254
3255 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3256}
3257
3258/**
3259 * __skb_gso_segment - Perform segmentation on skb.
3260 * @skb: buffer to segment
3261 * @features: features for the output path (see dev->features)
3262 * @tx_path: whether it is called in TX path
3263 *
3264 * This function segments the given skb and returns a list of segments.
3265 *
3266 * It may return NULL if the skb requires no segmentation. This is
3267 * only possible when GSO is used for verifying header integrity.
9207f9d4 3268 *
a08e7fd9 3269 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3270 */
3271struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3272 netdev_features_t features, bool tx_path)
3273{
b2504a5d
ED
3274 struct sk_buff *segs;
3275
05e8ef4a
PS
3276 if (unlikely(skb_needs_check(skb, tx_path))) {
3277 int err;
3278
b2504a5d 3279 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3280 err = skb_cow_head(skb, 0);
3281 if (err < 0)
05e8ef4a
PS
3282 return ERR_PTR(err);
3283 }
3284
802ab55a
AD
3285 /* Only report GSO partial support if it will enable us to
3286 * support segmentation on this frame without needing additional
3287 * work.
3288 */
3289 if (features & NETIF_F_GSO_PARTIAL) {
3290 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3291 struct net_device *dev = skb->dev;
3292
3293 partial_features |= dev->features & dev->gso_partial_features;
3294 if (!skb_gso_ok(skb, features | partial_features))
3295 features &= ~NETIF_F_GSO_PARTIAL;
3296 }
3297
a08e7fd9 3298 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3299 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3300
68c33163 3301 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3302 SKB_GSO_CB(skb)->encap_level = 0;
3303
05e8ef4a
PS
3304 skb_reset_mac_header(skb);
3305 skb_reset_mac_len(skb);
3306
b2504a5d
ED
3307 segs = skb_mac_gso_segment(skb, features);
3308
3a1296a3 3309 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3310 skb_warn_bad_offload(skb);
3311
3312 return segs;
05e8ef4a 3313}
12b0004d 3314EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3315
fb286bb2
HX
3316/* Take action when hardware reception checksum errors are detected. */
3317#ifdef CONFIG_BUG
7fe50ac8 3318void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3319{
3320 if (net_ratelimit()) {
7b6cd1ce 3321 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3322 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3323 dump_stack();
3324 }
3325}
3326EXPORT_SYMBOL(netdev_rx_csum_fault);
3327#endif
3328
ab74cfeb 3329/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3330static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3331{
3d3a8533 3332#ifdef CONFIG_HIGHMEM
1da177e4 3333 int i;
f4563a75 3334
5acbbd42 3335 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3336 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3337 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3338
ea2ab693 3339 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3340 return 1;
ea2ab693 3341 }
5acbbd42 3342 }
3d3a8533 3343#endif
1da177e4
LT
3344 return 0;
3345}
1da177e4 3346
3b392ddb
SH
3347/* If MPLS offload request, verify we are testing hardware MPLS features
3348 * instead of standard features for the netdev.
3349 */
d0edc7bf 3350#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3351static netdev_features_t net_mpls_features(struct sk_buff *skb,
3352 netdev_features_t features,
3353 __be16 type)
3354{
25cd9ba0 3355 if (eth_p_mpls(type))
3b392ddb
SH
3356 features &= skb->dev->mpls_features;
3357
3358 return features;
3359}
3360#else
3361static netdev_features_t net_mpls_features(struct sk_buff *skb,
3362 netdev_features_t features,
3363 __be16 type)
3364{
3365 return features;
3366}
3367#endif
3368
c8f44aff 3369static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3370 netdev_features_t features)
f01a5236 3371{
53d6471c 3372 int tmp;
3b392ddb
SH
3373 __be16 type;
3374
3375 type = skb_network_protocol(skb, &tmp);
3376 features = net_mpls_features(skb, features, type);
53d6471c 3377
c0d680e5 3378 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3379 !can_checksum_protocol(features, type)) {
996e8021 3380 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3381 }
7be2c82c
ED
3382 if (illegal_highdma(skb->dev, skb))
3383 features &= ~NETIF_F_SG;
f01a5236
JG
3384
3385 return features;
3386}
3387
e38f3025
TM
3388netdev_features_t passthru_features_check(struct sk_buff *skb,
3389 struct net_device *dev,
3390 netdev_features_t features)
3391{
3392 return features;
3393}
3394EXPORT_SYMBOL(passthru_features_check);
3395
7ce23672 3396static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3397 struct net_device *dev,
3398 netdev_features_t features)
3399{
3400 return vlan_features_check(skb, features);
3401}
3402
cbc53e08
AD
3403static netdev_features_t gso_features_check(const struct sk_buff *skb,
3404 struct net_device *dev,
3405 netdev_features_t features)
3406{
3407 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3408
3409 if (gso_segs > dev->gso_max_segs)
3410 return features & ~NETIF_F_GSO_MASK;
3411
802ab55a
AD
3412 /* Support for GSO partial features requires software
3413 * intervention before we can actually process the packets
3414 * so we need to strip support for any partial features now
3415 * and we can pull them back in after we have partially
3416 * segmented the frame.
3417 */
3418 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3419 features &= ~dev->gso_partial_features;
3420
3421 /* Make sure to clear the IPv4 ID mangling feature if the
3422 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3423 */
3424 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3425 struct iphdr *iph = skb->encapsulation ?
3426 inner_ip_hdr(skb) : ip_hdr(skb);
3427
3428 if (!(iph->frag_off & htons(IP_DF)))
3429 features &= ~NETIF_F_TSO_MANGLEID;
3430 }
3431
3432 return features;
3433}
3434
c1e756bf 3435netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3436{
5f35227e 3437 struct net_device *dev = skb->dev;
fcbeb976 3438 netdev_features_t features = dev->features;
58e998c6 3439
cbc53e08
AD
3440 if (skb_is_gso(skb))
3441 features = gso_features_check(skb, dev, features);
30b678d8 3442
5f35227e
JG
3443 /* If encapsulation offload request, verify we are testing
3444 * hardware encapsulation features instead of standard
3445 * features for the netdev
3446 */
3447 if (skb->encapsulation)
3448 features &= dev->hw_enc_features;
3449
f5a7fb88
TM
3450 if (skb_vlan_tagged(skb))
3451 features = netdev_intersect_features(features,
3452 dev->vlan_features |
3453 NETIF_F_HW_VLAN_CTAG_TX |
3454 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3455
5f35227e
JG
3456 if (dev->netdev_ops->ndo_features_check)
3457 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3458 features);
8cb65d00
TM
3459 else
3460 features &= dflt_features_check(skb, dev, features);
5f35227e 3461
c1e756bf 3462 return harmonize_features(skb, features);
58e998c6 3463}
c1e756bf 3464EXPORT_SYMBOL(netif_skb_features);
58e998c6 3465
2ea25513 3466static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3467 struct netdev_queue *txq, bool more)
f6a78bfc 3468{
2ea25513
DM
3469 unsigned int len;
3470 int rc;
00829823 3471
9f9a742d 3472 if (dev_nit_active(dev))
2ea25513 3473 dev_queue_xmit_nit(skb, dev);
fc741216 3474
2ea25513
DM
3475 len = skb->len;
3476 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3477 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3478 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3479
2ea25513
DM
3480 return rc;
3481}
7b9c6090 3482
8dcda22a
DM
3483struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3484 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3485{
3486 struct sk_buff *skb = first;
3487 int rc = NETDEV_TX_OK;
7b9c6090 3488
7f2e870f
DM
3489 while (skb) {
3490 struct sk_buff *next = skb->next;
fc70fb64 3491
a8305bff 3492 skb_mark_not_on_list(skb);
95f6b3dd 3493 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3494 if (unlikely(!dev_xmit_complete(rc))) {
3495 skb->next = next;
3496 goto out;
3497 }
6afff0ca 3498
7f2e870f 3499 skb = next;
fe60faa5 3500 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3501 rc = NETDEV_TX_BUSY;
3502 break;
9ccb8975 3503 }
7f2e870f 3504 }
9ccb8975 3505
7f2e870f
DM
3506out:
3507 *ret = rc;
3508 return skb;
3509}
b40863c6 3510
1ff0dc94
ED
3511static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3512 netdev_features_t features)
f6a78bfc 3513{
df8a39de 3514 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3515 !vlan_hw_offload_capable(features, skb->vlan_proto))
3516 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3517 return skb;
3518}
f6a78bfc 3519
43c26a1a
DC
3520int skb_csum_hwoffload_help(struct sk_buff *skb,
3521 const netdev_features_t features)
3522{
3523 if (unlikely(skb->csum_not_inet))
3524 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3525 skb_crc32c_csum_help(skb);
3526
3527 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3528}
3529EXPORT_SYMBOL(skb_csum_hwoffload_help);
3530
f53c7239 3531static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3532{
3533 netdev_features_t features;
f6a78bfc 3534
eae3f88e
DM
3535 features = netif_skb_features(skb);
3536 skb = validate_xmit_vlan(skb, features);
3537 if (unlikely(!skb))
3538 goto out_null;
7b9c6090 3539
ebf4e808
IL
3540 skb = sk_validate_xmit_skb(skb, dev);
3541 if (unlikely(!skb))
3542 goto out_null;
3543
8b86a61d 3544 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3545 struct sk_buff *segs;
3546
3547 segs = skb_gso_segment(skb, features);
cecda693 3548 if (IS_ERR(segs)) {
af6dabc9 3549 goto out_kfree_skb;
cecda693
JW
3550 } else if (segs) {
3551 consume_skb(skb);
3552 skb = segs;
f6a78bfc 3553 }
eae3f88e
DM
3554 } else {
3555 if (skb_needs_linearize(skb, features) &&
3556 __skb_linearize(skb))
3557 goto out_kfree_skb;
4ec93edb 3558
eae3f88e
DM
3559 /* If packet is not checksummed and device does not
3560 * support checksumming for this protocol, complete
3561 * checksumming here.
3562 */
3563 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3564 if (skb->encapsulation)
3565 skb_set_inner_transport_header(skb,
3566 skb_checksum_start_offset(skb));
3567 else
3568 skb_set_transport_header(skb,
3569 skb_checksum_start_offset(skb));
43c26a1a 3570 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3571 goto out_kfree_skb;
7b9c6090 3572 }
0c772159 3573 }
7b9c6090 3574
f53c7239 3575 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3576
eae3f88e 3577 return skb;
fc70fb64 3578
f6a78bfc
HX
3579out_kfree_skb:
3580 kfree_skb(skb);
eae3f88e 3581out_null:
d21fd63e 3582 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3583 return NULL;
3584}
6afff0ca 3585
f53c7239 3586struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3587{
3588 struct sk_buff *next, *head = NULL, *tail;
3589
bec3cfdc 3590 for (; skb != NULL; skb = next) {
55a93b3e 3591 next = skb->next;
a8305bff 3592 skb_mark_not_on_list(skb);
bec3cfdc
ED
3593
3594 /* in case skb wont be segmented, point to itself */
3595 skb->prev = skb;
3596
f53c7239 3597 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3598 if (!skb)
3599 continue;
55a93b3e 3600
bec3cfdc
ED
3601 if (!head)
3602 head = skb;
3603 else
3604 tail->next = skb;
3605 /* If skb was segmented, skb->prev points to
3606 * the last segment. If not, it still contains skb.
3607 */
3608 tail = skb->prev;
55a93b3e
ED
3609 }
3610 return head;
f6a78bfc 3611}
104ba78c 3612EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3613
1def9238
ED
3614static void qdisc_pkt_len_init(struct sk_buff *skb)
3615{
3616 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3617
3618 qdisc_skb_cb(skb)->pkt_len = skb->len;
3619
3620 /* To get more precise estimation of bytes sent on wire,
3621 * we add to pkt_len the headers size of all segments
3622 */
a0dce875 3623 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3624 unsigned int hdr_len;
15e5a030 3625 u16 gso_segs = shinfo->gso_segs;
1def9238 3626
757b8b1d
ED
3627 /* mac layer + network layer */
3628 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3629
3630 /* + transport layer */
7c68d1a6
ED
3631 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3632 const struct tcphdr *th;
3633 struct tcphdr _tcphdr;
3634
3635 th = skb_header_pointer(skb, skb_transport_offset(skb),
3636 sizeof(_tcphdr), &_tcphdr);
3637 if (likely(th))
3638 hdr_len += __tcp_hdrlen(th);
3639 } else {
3640 struct udphdr _udphdr;
3641
3642 if (skb_header_pointer(skb, skb_transport_offset(skb),
3643 sizeof(_udphdr), &_udphdr))
3644 hdr_len += sizeof(struct udphdr);
3645 }
15e5a030
JW
3646
3647 if (shinfo->gso_type & SKB_GSO_DODGY)
3648 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3649 shinfo->gso_size);
3650
3651 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3652 }
3653}
3654
bbd8a0d3
KK
3655static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3656 struct net_device *dev,
3657 struct netdev_queue *txq)
3658{
3659 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3660 struct sk_buff *to_free = NULL;
a2da570d 3661 bool contended;
bbd8a0d3
KK
3662 int rc;
3663
a2da570d 3664 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3665
3666 if (q->flags & TCQ_F_NOLOCK) {
379349e9
PA
3667 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3668 qdisc_run(q);
6b3ba914
JF
3669
3670 if (unlikely(to_free))
3671 kfree_skb_list(to_free);
3672 return rc;
3673 }
3674
79640a4c
ED
3675 /*
3676 * Heuristic to force contended enqueues to serialize on a
3677 * separate lock before trying to get qdisc main lock.
f9eb8aea 3678 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3679 * often and dequeue packets faster.
79640a4c 3680 */
a2da570d 3681 contended = qdisc_is_running(q);
79640a4c
ED
3682 if (unlikely(contended))
3683 spin_lock(&q->busylock);
3684
bbd8a0d3
KK
3685 spin_lock(root_lock);
3686 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3687 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3688 rc = NET_XMIT_DROP;
3689 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3690 qdisc_run_begin(q)) {
bbd8a0d3
KK
3691 /*
3692 * This is a work-conserving queue; there are no old skbs
3693 * waiting to be sent out; and the qdisc is not running -
3694 * xmit the skb directly.
3695 */
bfe0d029 3696
bfe0d029
ED
3697 qdisc_bstats_update(q, skb);
3698
55a93b3e 3699 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3700 if (unlikely(contended)) {
3701 spin_unlock(&q->busylock);
3702 contended = false;
3703 }
bbd8a0d3 3704 __qdisc_run(q);
6c148184 3705 }
bbd8a0d3 3706
6c148184 3707 qdisc_run_end(q);
bbd8a0d3
KK
3708 rc = NET_XMIT_SUCCESS;
3709 } else {
520ac30f 3710 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3711 if (qdisc_run_begin(q)) {
3712 if (unlikely(contended)) {
3713 spin_unlock(&q->busylock);
3714 contended = false;
3715 }
3716 __qdisc_run(q);
6c148184 3717 qdisc_run_end(q);
79640a4c 3718 }
bbd8a0d3
KK
3719 }
3720 spin_unlock(root_lock);
520ac30f
ED
3721 if (unlikely(to_free))
3722 kfree_skb_list(to_free);
79640a4c
ED
3723 if (unlikely(contended))
3724 spin_unlock(&q->busylock);
bbd8a0d3
KK
3725 return rc;
3726}
3727
86f8515f 3728#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3729static void skb_update_prio(struct sk_buff *skb)
3730{
4dcb31d4
ED
3731 const struct netprio_map *map;
3732 const struct sock *sk;
3733 unsigned int prioidx;
5bc1421e 3734
4dcb31d4
ED
3735 if (skb->priority)
3736 return;
3737 map = rcu_dereference_bh(skb->dev->priomap);
3738 if (!map)
3739 return;
3740 sk = skb_to_full_sk(skb);
3741 if (!sk)
3742 return;
91c68ce2 3743
4dcb31d4
ED
3744 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3745
3746 if (prioidx < map->priomap_len)
3747 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3748}
3749#else
3750#define skb_update_prio(skb)
3751#endif
3752
95603e22
MM
3753/**
3754 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3755 * @net: network namespace this loopback is happening in
3756 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3757 * @skb: buffer to transmit
3758 */
0c4b51f0 3759int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3760{
3761 skb_reset_mac_header(skb);
3762 __skb_pull(skb, skb_network_offset(skb));
3763 skb->pkt_type = PACKET_LOOPBACK;
3764 skb->ip_summed = CHECKSUM_UNNECESSARY;
3765 WARN_ON(!skb_dst(skb));
3766 skb_dst_force(skb);
3767 netif_rx_ni(skb);
3768 return 0;
3769}
3770EXPORT_SYMBOL(dev_loopback_xmit);
3771
1f211a1b
DB
3772#ifdef CONFIG_NET_EGRESS
3773static struct sk_buff *
3774sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3775{
46209401 3776 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3777 struct tcf_result cl_res;
3778
46209401 3779 if (!miniq)
1f211a1b
DB
3780 return skb;
3781
8dc07fdb 3782 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3783 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3784
46209401 3785 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3786 case TC_ACT_OK:
3787 case TC_ACT_RECLASSIFY:
3788 skb->tc_index = TC_H_MIN(cl_res.classid);
3789 break;
3790 case TC_ACT_SHOT:
46209401 3791 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3792 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3793 kfree_skb(skb);
3794 return NULL;
1f211a1b
DB
3795 case TC_ACT_STOLEN:
3796 case TC_ACT_QUEUED:
e25ea21f 3797 case TC_ACT_TRAP:
1f211a1b 3798 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3799 consume_skb(skb);
1f211a1b
DB
3800 return NULL;
3801 case TC_ACT_REDIRECT:
3802 /* No need to push/pop skb's mac_header here on egress! */
3803 skb_do_redirect(skb);
3804 *ret = NET_XMIT_SUCCESS;
3805 return NULL;
3806 default:
3807 break;
3808 }
357b6cc5 3809
1f211a1b
DB
3810 return skb;
3811}
3812#endif /* CONFIG_NET_EGRESS */
3813
fc9bab24
AN
3814#ifdef CONFIG_XPS
3815static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3816 struct xps_dev_maps *dev_maps, unsigned int tci)
3817{
3818 struct xps_map *map;
3819 int queue_index = -1;
3820
3821 if (dev->num_tc) {
3822 tci *= dev->num_tc;
3823 tci += netdev_get_prio_tc_map(dev, skb->priority);
3824 }
3825
3826 map = rcu_dereference(dev_maps->attr_map[tci]);
3827 if (map) {
3828 if (map->len == 1)
3829 queue_index = map->queues[0];
3830 else
3831 queue_index = map->queues[reciprocal_scale(
3832 skb_get_hash(skb), map->len)];
3833 if (unlikely(queue_index >= dev->real_num_tx_queues))
3834 queue_index = -1;
3835 }
3836 return queue_index;
3837}
3838#endif
3839
eadec877
AD
3840static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3841 struct sk_buff *skb)
638b2a69
JP
3842{
3843#ifdef CONFIG_XPS
3844 struct xps_dev_maps *dev_maps;
fc9bab24 3845 struct sock *sk = skb->sk;
638b2a69
JP
3846 int queue_index = -1;
3847
04157469
AN
3848 if (!static_key_false(&xps_needed))
3849 return -1;
3850
638b2a69 3851 rcu_read_lock();
fc9bab24
AN
3852 if (!static_key_false(&xps_rxqs_needed))
3853 goto get_cpus_map;
3854
eadec877 3855 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3856 if (dev_maps) {
fc9bab24 3857 int tci = sk_rx_queue_get(sk);
184c449f 3858
fc9bab24
AN
3859 if (tci >= 0 && tci < dev->num_rx_queues)
3860 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3861 tci);
3862 }
184c449f 3863
fc9bab24
AN
3864get_cpus_map:
3865 if (queue_index < 0) {
eadec877 3866 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3867 if (dev_maps) {
3868 unsigned int tci = skb->sender_cpu - 1;
3869
3870 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3871 tci);
638b2a69
JP
3872 }
3873 }
3874 rcu_read_unlock();
3875
3876 return queue_index;
3877#else
3878 return -1;
3879#endif
3880}
3881
a4ea8a3d 3882u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3883 struct net_device *sb_dev)
a4ea8a3d
AD
3884{
3885 return 0;
3886}
3887EXPORT_SYMBOL(dev_pick_tx_zero);
3888
3889u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3890 struct net_device *sb_dev)
a4ea8a3d
AD
3891{
3892 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3893}
3894EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3895
b71b5837
PA
3896u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3897 struct net_device *sb_dev)
638b2a69
JP
3898{
3899 struct sock *sk = skb->sk;
3900 int queue_index = sk_tx_queue_get(sk);
3901
eadec877
AD
3902 sb_dev = sb_dev ? : dev;
3903
638b2a69
JP
3904 if (queue_index < 0 || skb->ooo_okay ||
3905 queue_index >= dev->real_num_tx_queues) {
eadec877 3906 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3907
638b2a69 3908 if (new_index < 0)
eadec877 3909 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3910
3911 if (queue_index != new_index && sk &&
004a5d01 3912 sk_fullsock(sk) &&
638b2a69
JP
3913 rcu_access_pointer(sk->sk_dst_cache))
3914 sk_tx_queue_set(sk, new_index);
3915
3916 queue_index = new_index;
3917 }
3918
3919 return queue_index;
3920}
b71b5837 3921EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 3922
4bd97d51
PA
3923struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3924 struct sk_buff *skb,
3925 struct net_device *sb_dev)
638b2a69
JP
3926{
3927 int queue_index = 0;
3928
3929#ifdef CONFIG_XPS
52bd2d62
ED
3930 u32 sender_cpu = skb->sender_cpu - 1;
3931
3932 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3933 skb->sender_cpu = raw_smp_processor_id() + 1;
3934#endif
3935
3936 if (dev->real_num_tx_queues != 1) {
3937 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3938
638b2a69 3939 if (ops->ndo_select_queue)
a350ecce 3940 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 3941 else
4bd97d51 3942 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 3943
d584527c 3944 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
3945 }
3946
3947 skb_set_queue_mapping(skb, queue_index);
3948 return netdev_get_tx_queue(dev, queue_index);
3949}
3950
d29f749e 3951/**
9d08dd3d 3952 * __dev_queue_xmit - transmit a buffer
d29f749e 3953 * @skb: buffer to transmit
eadec877 3954 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
3955 *
3956 * Queue a buffer for transmission to a network device. The caller must
3957 * have set the device and priority and built the buffer before calling
3958 * this function. The function can be called from an interrupt.
3959 *
3960 * A negative errno code is returned on a failure. A success does not
3961 * guarantee the frame will be transmitted as it may be dropped due
3962 * to congestion or traffic shaping.
3963 *
3964 * -----------------------------------------------------------------------------------
3965 * I notice this method can also return errors from the queue disciplines,
3966 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3967 * be positive.
3968 *
3969 * Regardless of the return value, the skb is consumed, so it is currently
3970 * difficult to retry a send to this method. (You can bump the ref count
3971 * before sending to hold a reference for retry if you are careful.)
3972 *
3973 * When calling this method, interrupts MUST be enabled. This is because
3974 * the BH enable code must have IRQs enabled so that it will not deadlock.
3975 * --BLG
3976 */
eadec877 3977static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
3978{
3979 struct net_device *dev = skb->dev;
dc2b4847 3980 struct netdev_queue *txq;
1da177e4
LT
3981 struct Qdisc *q;
3982 int rc = -ENOMEM;
f53c7239 3983 bool again = false;
1da177e4 3984
6d1ccff6
ED
3985 skb_reset_mac_header(skb);
3986
e7fd2885
WB
3987 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3988 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3989
4ec93edb
YH
3990 /* Disable soft irqs for various locks below. Also
3991 * stops preemption for RCU.
1da177e4 3992 */
4ec93edb 3993 rcu_read_lock_bh();
1da177e4 3994
5bc1421e
NH
3995 skb_update_prio(skb);
3996
1f211a1b
DB
3997 qdisc_pkt_len_init(skb);
3998#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3999 skb->tc_at_ingress = 0;
357b6cc5 4000# ifdef CONFIG_NET_EGRESS
aabf6772 4001 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4002 skb = sch_handle_egress(skb, &rc, dev);
4003 if (!skb)
4004 goto out;
4005 }
357b6cc5 4006# endif
1f211a1b 4007#endif
02875878
ED
4008 /* If device/qdisc don't need skb->dst, release it right now while
4009 * its hot in this cpu cache.
4010 */
4011 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4012 skb_dst_drop(skb);
4013 else
4014 skb_dst_force(skb);
4015
4bd97d51 4016 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4017 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4018
cf66ba58 4019 trace_net_dev_queue(skb);
1da177e4 4020 if (q->enqueue) {
bbd8a0d3 4021 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4022 goto out;
1da177e4
LT
4023 }
4024
4025 /* The device has no queue. Common case for software devices:
eb13da1a 4026 * loopback, all the sorts of tunnels...
1da177e4 4027
eb13da1a 4028 * Really, it is unlikely that netif_tx_lock protection is necessary
4029 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4030 * counters.)
4031 * However, it is possible, that they rely on protection
4032 * made by us here.
1da177e4 4033
eb13da1a 4034 * Check this and shot the lock. It is not prone from deadlocks.
4035 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4036 */
4037 if (dev->flags & IFF_UP) {
4038 int cpu = smp_processor_id(); /* ok because BHs are off */
4039
c773e847 4040 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4041 if (dev_xmit_recursion())
745e20f1
ED
4042 goto recursion_alert;
4043
f53c7239 4044 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4045 if (!skb)
d21fd63e 4046 goto out;
1f59533f 4047
c773e847 4048 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4049
73466498 4050 if (!netif_xmit_stopped(txq)) {
97cdcf37 4051 dev_xmit_recursion_inc();
ce93718f 4052 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4053 dev_xmit_recursion_dec();
572a9d7b 4054 if (dev_xmit_complete(rc)) {
c773e847 4055 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4056 goto out;
4057 }
4058 }
c773e847 4059 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4060 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4061 dev->name);
1da177e4
LT
4062 } else {
4063 /* Recursion is detected! It is possible,
745e20f1
ED
4064 * unfortunately
4065 */
4066recursion_alert:
e87cc472
JP
4067 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4068 dev->name);
1da177e4
LT
4069 }
4070 }
4071
4072 rc = -ENETDOWN;
d4828d85 4073 rcu_read_unlock_bh();
1da177e4 4074
015f0688 4075 atomic_long_inc(&dev->tx_dropped);
1f59533f 4076 kfree_skb_list(skb);
1da177e4
LT
4077 return rc;
4078out:
d4828d85 4079 rcu_read_unlock_bh();
1da177e4
LT
4080 return rc;
4081}
f663dd9a 4082
2b4aa3ce 4083int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4084{
4085 return __dev_queue_xmit(skb, NULL);
4086}
2b4aa3ce 4087EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4088
eadec877 4089int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4090{
eadec877 4091 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4092}
4093EXPORT_SYMBOL(dev_queue_xmit_accel);
4094
865b03f2
MK
4095int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4096{
4097 struct net_device *dev = skb->dev;
4098 struct sk_buff *orig_skb = skb;
4099 struct netdev_queue *txq;
4100 int ret = NETDEV_TX_BUSY;
4101 bool again = false;
4102
4103 if (unlikely(!netif_running(dev) ||
4104 !netif_carrier_ok(dev)))
4105 goto drop;
4106
4107 skb = validate_xmit_skb_list(skb, dev, &again);
4108 if (skb != orig_skb)
4109 goto drop;
4110
4111 skb_set_queue_mapping(skb, queue_id);
4112 txq = skb_get_tx_queue(dev, skb);
4113
4114 local_bh_disable();
4115
4116 HARD_TX_LOCK(dev, txq, smp_processor_id());
4117 if (!netif_xmit_frozen_or_drv_stopped(txq))
4118 ret = netdev_start_xmit(skb, dev, txq, false);
4119 HARD_TX_UNLOCK(dev, txq);
4120
4121 local_bh_enable();
4122
4123 if (!dev_xmit_complete(ret))
4124 kfree_skb(skb);
4125
4126 return ret;
4127drop:
4128 atomic_long_inc(&dev->tx_dropped);
4129 kfree_skb_list(skb);
4130 return NET_XMIT_DROP;
4131}
4132EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 4133
eb13da1a 4134/*************************************************************************
4135 * Receiver routines
4136 *************************************************************************/
1da177e4 4137
6b2bedc3 4138int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4139EXPORT_SYMBOL(netdev_max_backlog);
4140
3b098e2d 4141int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4142int netdev_budget __read_mostly = 300;
a4837980
KK
4143/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4144unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4145int weight_p __read_mostly = 64; /* old backlog weight */
4146int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4147int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4148int dev_rx_weight __read_mostly = 64;
4149int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4150/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4151int gro_normal_batch __read_mostly = 8;
1da177e4 4152
eecfd7c4
ED
4153/* Called with irq disabled */
4154static inline void ____napi_schedule(struct softnet_data *sd,
4155 struct napi_struct *napi)
4156{
4157 list_add_tail(&napi->poll_list, &sd->poll_list);
4158 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4159}
4160
bfb564e7
KK
4161#ifdef CONFIG_RPS
4162
4163/* One global table that all flow-based protocols share. */
6e3f7faf 4164struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4165EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4166u32 rps_cpu_mask __read_mostly;
4167EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4168
dc05360f 4169struct static_key_false rps_needed __read_mostly;
3df97ba8 4170EXPORT_SYMBOL(rps_needed);
dc05360f 4171struct static_key_false rfs_needed __read_mostly;
13bfff25 4172EXPORT_SYMBOL(rfs_needed);
adc9300e 4173
c445477d
BH
4174static struct rps_dev_flow *
4175set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4176 struct rps_dev_flow *rflow, u16 next_cpu)
4177{
a31196b0 4178 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4179#ifdef CONFIG_RFS_ACCEL
4180 struct netdev_rx_queue *rxqueue;
4181 struct rps_dev_flow_table *flow_table;
4182 struct rps_dev_flow *old_rflow;
4183 u32 flow_id;
4184 u16 rxq_index;
4185 int rc;
4186
4187 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4188 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4189 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4190 goto out;
4191 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4192 if (rxq_index == skb_get_rx_queue(skb))
4193 goto out;
4194
4195 rxqueue = dev->_rx + rxq_index;
4196 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4197 if (!flow_table)
4198 goto out;
61b905da 4199 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4200 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4201 rxq_index, flow_id);
4202 if (rc < 0)
4203 goto out;
4204 old_rflow = rflow;
4205 rflow = &flow_table->flows[flow_id];
c445477d
BH
4206 rflow->filter = rc;
4207 if (old_rflow->filter == rflow->filter)
4208 old_rflow->filter = RPS_NO_FILTER;
4209 out:
4210#endif
4211 rflow->last_qtail =
09994d1b 4212 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4213 }
4214
09994d1b 4215 rflow->cpu = next_cpu;
c445477d
BH
4216 return rflow;
4217}
4218
bfb564e7
KK
4219/*
4220 * get_rps_cpu is called from netif_receive_skb and returns the target
4221 * CPU from the RPS map of the receiving queue for a given skb.
4222 * rcu_read_lock must be held on entry.
4223 */
4224static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4225 struct rps_dev_flow **rflowp)
4226{
567e4b79
ED
4227 const struct rps_sock_flow_table *sock_flow_table;
4228 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4229 struct rps_dev_flow_table *flow_table;
567e4b79 4230 struct rps_map *map;
bfb564e7 4231 int cpu = -1;
567e4b79 4232 u32 tcpu;
61b905da 4233 u32 hash;
bfb564e7
KK
4234
4235 if (skb_rx_queue_recorded(skb)) {
4236 u16 index = skb_get_rx_queue(skb);
567e4b79 4237
62fe0b40
BH
4238 if (unlikely(index >= dev->real_num_rx_queues)) {
4239 WARN_ONCE(dev->real_num_rx_queues > 1,
4240 "%s received packet on queue %u, but number "
4241 "of RX queues is %u\n",
4242 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4243 goto done;
4244 }
567e4b79
ED
4245 rxqueue += index;
4246 }
bfb564e7 4247
567e4b79
ED
4248 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4249
4250 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4251 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4252 if (!flow_table && !map)
bfb564e7
KK
4253 goto done;
4254
2d47b459 4255 skb_reset_network_header(skb);
61b905da
TH
4256 hash = skb_get_hash(skb);
4257 if (!hash)
bfb564e7
KK
4258 goto done;
4259
fec5e652
TH
4260 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4261 if (flow_table && sock_flow_table) {
fec5e652 4262 struct rps_dev_flow *rflow;
567e4b79
ED
4263 u32 next_cpu;
4264 u32 ident;
4265
4266 /* First check into global flow table if there is a match */
4267 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4268 if ((ident ^ hash) & ~rps_cpu_mask)
4269 goto try_rps;
fec5e652 4270
567e4b79
ED
4271 next_cpu = ident & rps_cpu_mask;
4272
4273 /* OK, now we know there is a match,
4274 * we can look at the local (per receive queue) flow table
4275 */
61b905da 4276 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4277 tcpu = rflow->cpu;
4278
fec5e652
TH
4279 /*
4280 * If the desired CPU (where last recvmsg was done) is
4281 * different from current CPU (one in the rx-queue flow
4282 * table entry), switch if one of the following holds:
a31196b0 4283 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4284 * - Current CPU is offline.
4285 * - The current CPU's queue tail has advanced beyond the
4286 * last packet that was enqueued using this table entry.
4287 * This guarantees that all previous packets for the flow
4288 * have been dequeued, thus preserving in order delivery.
4289 */
4290 if (unlikely(tcpu != next_cpu) &&
a31196b0 4291 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4292 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4293 rflow->last_qtail)) >= 0)) {
4294 tcpu = next_cpu;
c445477d 4295 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4296 }
c445477d 4297
a31196b0 4298 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4299 *rflowp = rflow;
4300 cpu = tcpu;
4301 goto done;
4302 }
4303 }
4304
567e4b79
ED
4305try_rps:
4306
0a9627f2 4307 if (map) {
8fc54f68 4308 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4309 if (cpu_online(tcpu)) {
4310 cpu = tcpu;
4311 goto done;
4312 }
4313 }
4314
4315done:
0a9627f2
TH
4316 return cpu;
4317}
4318
c445477d
BH
4319#ifdef CONFIG_RFS_ACCEL
4320
4321/**
4322 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4323 * @dev: Device on which the filter was set
4324 * @rxq_index: RX queue index
4325 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4326 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4327 *
4328 * Drivers that implement ndo_rx_flow_steer() should periodically call
4329 * this function for each installed filter and remove the filters for
4330 * which it returns %true.
4331 */
4332bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4333 u32 flow_id, u16 filter_id)
4334{
4335 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4336 struct rps_dev_flow_table *flow_table;
4337 struct rps_dev_flow *rflow;
4338 bool expire = true;
a31196b0 4339 unsigned int cpu;
c445477d
BH
4340
4341 rcu_read_lock();
4342 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4343 if (flow_table && flow_id <= flow_table->mask) {
4344 rflow = &flow_table->flows[flow_id];
6aa7de05 4345 cpu = READ_ONCE(rflow->cpu);
a31196b0 4346 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4347 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4348 rflow->last_qtail) <
4349 (int)(10 * flow_table->mask)))
4350 expire = false;
4351 }
4352 rcu_read_unlock();
4353 return expire;
4354}
4355EXPORT_SYMBOL(rps_may_expire_flow);
4356
4357#endif /* CONFIG_RFS_ACCEL */
4358
0a9627f2 4359/* Called from hardirq (IPI) context */
e36fa2f7 4360static void rps_trigger_softirq(void *data)
0a9627f2 4361{
e36fa2f7
ED
4362 struct softnet_data *sd = data;
4363
eecfd7c4 4364 ____napi_schedule(sd, &sd->backlog);
dee42870 4365 sd->received_rps++;
0a9627f2 4366}
e36fa2f7 4367
fec5e652 4368#endif /* CONFIG_RPS */
0a9627f2 4369
e36fa2f7
ED
4370/*
4371 * Check if this softnet_data structure is another cpu one
4372 * If yes, queue it to our IPI list and return 1
4373 * If no, return 0
4374 */
4375static int rps_ipi_queued(struct softnet_data *sd)
4376{
4377#ifdef CONFIG_RPS
903ceff7 4378 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4379
4380 if (sd != mysd) {
4381 sd->rps_ipi_next = mysd->rps_ipi_list;
4382 mysd->rps_ipi_list = sd;
4383
4384 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4385 return 1;
4386 }
4387#endif /* CONFIG_RPS */
4388 return 0;
4389}
4390
99bbc707
WB
4391#ifdef CONFIG_NET_FLOW_LIMIT
4392int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4393#endif
4394
4395static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4396{
4397#ifdef CONFIG_NET_FLOW_LIMIT
4398 struct sd_flow_limit *fl;
4399 struct softnet_data *sd;
4400 unsigned int old_flow, new_flow;
4401
4402 if (qlen < (netdev_max_backlog >> 1))
4403 return false;
4404
903ceff7 4405 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4406
4407 rcu_read_lock();
4408 fl = rcu_dereference(sd->flow_limit);
4409 if (fl) {
3958afa1 4410 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4411 old_flow = fl->history[fl->history_head];
4412 fl->history[fl->history_head] = new_flow;
4413
4414 fl->history_head++;
4415 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4416
4417 if (likely(fl->buckets[old_flow]))
4418 fl->buckets[old_flow]--;
4419
4420 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4421 fl->count++;
4422 rcu_read_unlock();
4423 return true;
4424 }
4425 }
4426 rcu_read_unlock();
4427#endif
4428 return false;
4429}
4430
0a9627f2
TH
4431/*
4432 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4433 * queue (may be a remote CPU queue).
4434 */
fec5e652
TH
4435static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4436 unsigned int *qtail)
0a9627f2 4437{
e36fa2f7 4438 struct softnet_data *sd;
0a9627f2 4439 unsigned long flags;
99bbc707 4440 unsigned int qlen;
0a9627f2 4441
e36fa2f7 4442 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4443
4444 local_irq_save(flags);
0a9627f2 4445
e36fa2f7 4446 rps_lock(sd);
e9e4dd32
JA
4447 if (!netif_running(skb->dev))
4448 goto drop;
99bbc707
WB
4449 qlen = skb_queue_len(&sd->input_pkt_queue);
4450 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4451 if (qlen) {
0a9627f2 4452enqueue:
e36fa2f7 4453 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4454 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4455 rps_unlock(sd);
152102c7 4456 local_irq_restore(flags);
0a9627f2
TH
4457 return NET_RX_SUCCESS;
4458 }
4459
ebda37c2
ED
4460 /* Schedule NAPI for backlog device
4461 * We can use non atomic operation since we own the queue lock
4462 */
4463 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4464 if (!rps_ipi_queued(sd))
eecfd7c4 4465 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4466 }
4467 goto enqueue;
4468 }
4469
e9e4dd32 4470drop:
dee42870 4471 sd->dropped++;
e36fa2f7 4472 rps_unlock(sd);
0a9627f2 4473
0a9627f2
TH
4474 local_irq_restore(flags);
4475
caf586e5 4476 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4477 kfree_skb(skb);
4478 return NET_RX_DROP;
4479}
1da177e4 4480
e817f856
JDB
4481static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4482{
4483 struct net_device *dev = skb->dev;
4484 struct netdev_rx_queue *rxqueue;
4485
4486 rxqueue = dev->_rx;
4487
4488 if (skb_rx_queue_recorded(skb)) {
4489 u16 index = skb_get_rx_queue(skb);
4490
4491 if (unlikely(index >= dev->real_num_rx_queues)) {
4492 WARN_ONCE(dev->real_num_rx_queues > 1,
4493 "%s received packet on queue %u, but number "
4494 "of RX queues is %u\n",
4495 dev->name, index, dev->real_num_rx_queues);
4496
4497 return rxqueue; /* Return first rxqueue */
4498 }
4499 rxqueue += index;
4500 }
4501 return rxqueue;
4502}
4503
d4455169 4504static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4505 struct xdp_buff *xdp,
d4455169
JF
4506 struct bpf_prog *xdp_prog)
4507{
e817f856 4508 struct netdev_rx_queue *rxqueue;
198d83bb 4509 void *orig_data, *orig_data_end;
de8f3a83 4510 u32 metalen, act = XDP_DROP;
29724956
JDB
4511 __be16 orig_eth_type;
4512 struct ethhdr *eth;
4513 bool orig_bcast;
d4455169
JF
4514 int hlen, off;
4515 u32 mac_len;
4516
4517 /* Reinjected packets coming from act_mirred or similar should
4518 * not get XDP generic processing.
4519 */
2c64605b 4520 if (skb_is_redirected(skb))
d4455169
JF
4521 return XDP_PASS;
4522
de8f3a83
DB
4523 /* XDP packets must be linear and must have sufficient headroom
4524 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4525 * native XDP provides, thus we need to do it here as well.
4526 */
ad1e03b2 4527 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
de8f3a83
DB
4528 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4529 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4530 int troom = skb->tail + skb->data_len - skb->end;
4531
4532 /* In case we have to go down the path and also linearize,
4533 * then lets do the pskb_expand_head() work just once here.
4534 */
4535 if (pskb_expand_head(skb,
4536 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4537 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4538 goto do_drop;
2d17d8d7 4539 if (skb_linearize(skb))
de8f3a83
DB
4540 goto do_drop;
4541 }
d4455169
JF
4542
4543 /* The XDP program wants to see the packet starting at the MAC
4544 * header.
4545 */
4546 mac_len = skb->data - skb_mac_header(skb);
4547 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4548 xdp->data = skb->data - mac_len;
4549 xdp->data_meta = xdp->data;
4550 xdp->data_end = xdp->data + hlen;
4551 xdp->data_hard_start = skb->data - skb_headroom(skb);
4552 orig_data_end = xdp->data_end;
4553 orig_data = xdp->data;
29724956
JDB
4554 eth = (struct ethhdr *)xdp->data;
4555 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4556 orig_eth_type = eth->h_proto;
d4455169 4557
e817f856 4558 rxqueue = netif_get_rxqueue(skb);
02671e23 4559 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4560
02671e23 4561 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4562
065af355 4563 /* check if bpf_xdp_adjust_head was used */
02671e23 4564 off = xdp->data - orig_data;
065af355
JDB
4565 if (off) {
4566 if (off > 0)
4567 __skb_pull(skb, off);
4568 else if (off < 0)
4569 __skb_push(skb, -off);
4570
4571 skb->mac_header += off;
4572 skb_reset_network_header(skb);
4573 }
d4455169 4574
198d83bb
NS
4575 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4576 * pckt.
4577 */
02671e23 4578 off = orig_data_end - xdp->data_end;
f7613120 4579 if (off != 0) {
02671e23 4580 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
f7613120 4581 skb->len -= off;
02671e23 4582
f7613120 4583 }
198d83bb 4584
29724956
JDB
4585 /* check if XDP changed eth hdr such SKB needs update */
4586 eth = (struct ethhdr *)xdp->data;
4587 if ((orig_eth_type != eth->h_proto) ||
4588 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4589 __skb_push(skb, ETH_HLEN);
4590 skb->protocol = eth_type_trans(skb, skb->dev);
4591 }
4592
d4455169 4593 switch (act) {
6103aa96 4594 case XDP_REDIRECT:
d4455169
JF
4595 case XDP_TX:
4596 __skb_push(skb, mac_len);
de8f3a83 4597 break;
d4455169 4598 case XDP_PASS:
02671e23 4599 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4600 if (metalen)
4601 skb_metadata_set(skb, metalen);
d4455169 4602 break;
d4455169
JF
4603 default:
4604 bpf_warn_invalid_xdp_action(act);
4605 /* fall through */
4606 case XDP_ABORTED:
4607 trace_xdp_exception(skb->dev, xdp_prog, act);
4608 /* fall through */
4609 case XDP_DROP:
4610 do_drop:
4611 kfree_skb(skb);
4612 break;
4613 }
4614
4615 return act;
4616}
4617
4618/* When doing generic XDP we have to bypass the qdisc layer and the
4619 * network taps in order to match in-driver-XDP behavior.
4620 */
7c497478 4621void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4622{
4623 struct net_device *dev = skb->dev;
4624 struct netdev_queue *txq;
4625 bool free_skb = true;
4626 int cpu, rc;
4627
4bd97d51 4628 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4629 cpu = smp_processor_id();
4630 HARD_TX_LOCK(dev, txq, cpu);
4631 if (!netif_xmit_stopped(txq)) {
4632 rc = netdev_start_xmit(skb, dev, txq, 0);
4633 if (dev_xmit_complete(rc))
4634 free_skb = false;
4635 }
4636 HARD_TX_UNLOCK(dev, txq);
4637 if (free_skb) {
4638 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4639 kfree_skb(skb);
4640 }
4641}
4642
02786475 4643static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4644
7c497478 4645int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4646{
d4455169 4647 if (xdp_prog) {
02671e23
BT
4648 struct xdp_buff xdp;
4649 u32 act;
6103aa96 4650 int err;
d4455169 4651
02671e23 4652 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4653 if (act != XDP_PASS) {
6103aa96
JF
4654 switch (act) {
4655 case XDP_REDIRECT:
2facaad6 4656 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4657 &xdp, xdp_prog);
6103aa96
JF
4658 if (err)
4659 goto out_redir;
02671e23 4660 break;
6103aa96 4661 case XDP_TX:
d4455169 4662 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4663 break;
4664 }
d4455169
JF
4665 return XDP_DROP;
4666 }
4667 }
4668 return XDP_PASS;
6103aa96 4669out_redir:
6103aa96
JF
4670 kfree_skb(skb);
4671 return XDP_DROP;
d4455169 4672}
7c497478 4673EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4674
ae78dbfa 4675static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4676{
b0e28f1e 4677 int ret;
1da177e4 4678
588f0330 4679 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4680
cf66ba58 4681 trace_netif_rx(skb);
d4455169 4682
df334545 4683#ifdef CONFIG_RPS
dc05360f 4684 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4685 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4686 int cpu;
4687
cece1945 4688 preempt_disable();
b0e28f1e 4689 rcu_read_lock();
fec5e652
TH
4690
4691 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4692 if (cpu < 0)
4693 cpu = smp_processor_id();
fec5e652
TH
4694
4695 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4696
b0e28f1e 4697 rcu_read_unlock();
cece1945 4698 preempt_enable();
adc9300e
ED
4699 } else
4700#endif
fec5e652
TH
4701 {
4702 unsigned int qtail;
f4563a75 4703
fec5e652
TH
4704 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4705 put_cpu();
4706 }
b0e28f1e 4707 return ret;
1da177e4 4708}
ae78dbfa
BH
4709
4710/**
4711 * netif_rx - post buffer to the network code
4712 * @skb: buffer to post
4713 *
4714 * This function receives a packet from a device driver and queues it for
4715 * the upper (protocol) levels to process. It always succeeds. The buffer
4716 * may be dropped during processing for congestion control or by the
4717 * protocol layers.
4718 *
4719 * return values:
4720 * NET_RX_SUCCESS (no congestion)
4721 * NET_RX_DROP (packet was dropped)
4722 *
4723 */
4724
4725int netif_rx(struct sk_buff *skb)
4726{
b0e3f1bd
GB
4727 int ret;
4728
ae78dbfa
BH
4729 trace_netif_rx_entry(skb);
4730
b0e3f1bd
GB
4731 ret = netif_rx_internal(skb);
4732 trace_netif_rx_exit(ret);
4733
4734 return ret;
ae78dbfa 4735}
d1b19dff 4736EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4737
4738int netif_rx_ni(struct sk_buff *skb)
4739{
4740 int err;
4741
ae78dbfa
BH
4742 trace_netif_rx_ni_entry(skb);
4743
1da177e4 4744 preempt_disable();
ae78dbfa 4745 err = netif_rx_internal(skb);
1da177e4
LT
4746 if (local_softirq_pending())
4747 do_softirq();
4748 preempt_enable();
b0e3f1bd 4749 trace_netif_rx_ni_exit(err);
1da177e4
LT
4750
4751 return err;
4752}
1da177e4
LT
4753EXPORT_SYMBOL(netif_rx_ni);
4754
0766f788 4755static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4756{
903ceff7 4757 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4758
4759 if (sd->completion_queue) {
4760 struct sk_buff *clist;
4761
4762 local_irq_disable();
4763 clist = sd->completion_queue;
4764 sd->completion_queue = NULL;
4765 local_irq_enable();
4766
4767 while (clist) {
4768 struct sk_buff *skb = clist;
f4563a75 4769
1da177e4
LT
4770 clist = clist->next;
4771
63354797 4772 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4773 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4774 trace_consume_skb(skb);
4775 else
4776 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4777
4778 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4779 __kfree_skb(skb);
4780 else
4781 __kfree_skb_defer(skb);
1da177e4 4782 }
15fad714
JDB
4783
4784 __kfree_skb_flush();
1da177e4
LT
4785 }
4786
4787 if (sd->output_queue) {
37437bb2 4788 struct Qdisc *head;
1da177e4
LT
4789
4790 local_irq_disable();
4791 head = sd->output_queue;
4792 sd->output_queue = NULL;
a9cbd588 4793 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4794 local_irq_enable();
4795
4796 while (head) {
37437bb2 4797 struct Qdisc *q = head;
6b3ba914 4798 spinlock_t *root_lock = NULL;
37437bb2 4799
1da177e4
LT
4800 head = head->next_sched;
4801
6b3ba914
JF
4802 if (!(q->flags & TCQ_F_NOLOCK)) {
4803 root_lock = qdisc_lock(q);
4804 spin_lock(root_lock);
4805 }
3bcb846c
ED
4806 /* We need to make sure head->next_sched is read
4807 * before clearing __QDISC_STATE_SCHED
4808 */
4809 smp_mb__before_atomic();
4810 clear_bit(__QDISC_STATE_SCHED, &q->state);
4811 qdisc_run(q);
6b3ba914
JF
4812 if (root_lock)
4813 spin_unlock(root_lock);
1da177e4
LT
4814 }
4815 }
f53c7239
SK
4816
4817 xfrm_dev_backlog(sd);
1da177e4
LT
4818}
4819
181402a5 4820#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4821/* This hook is defined here for ATM LANE */
4822int (*br_fdb_test_addr_hook)(struct net_device *dev,
4823 unsigned char *addr) __read_mostly;
4fb019a0 4824EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4825#endif
1da177e4 4826
1f211a1b
DB
4827static inline struct sk_buff *
4828sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4829 struct net_device *orig_dev)
f697c3e8 4830{
e7582bab 4831#ifdef CONFIG_NET_CLS_ACT
46209401 4832 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4833 struct tcf_result cl_res;
24824a09 4834
c9e99fd0
DB
4835 /* If there's at least one ingress present somewhere (so
4836 * we get here via enabled static key), remaining devices
4837 * that are not configured with an ingress qdisc will bail
d2788d34 4838 * out here.
c9e99fd0 4839 */
46209401 4840 if (!miniq)
4577139b 4841 return skb;
46209401 4842
f697c3e8
HX
4843 if (*pt_prev) {
4844 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4845 *pt_prev = NULL;
1da177e4
LT
4846 }
4847
3365495c 4848 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4849 skb->tc_at_ingress = 1;
46209401 4850 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4851
7d17c544
PB
4852 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4853 &cl_res, false)) {
d2788d34
DB
4854 case TC_ACT_OK:
4855 case TC_ACT_RECLASSIFY:
4856 skb->tc_index = TC_H_MIN(cl_res.classid);
4857 break;
4858 case TC_ACT_SHOT:
46209401 4859 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4860 kfree_skb(skb);
4861 return NULL;
d2788d34
DB
4862 case TC_ACT_STOLEN:
4863 case TC_ACT_QUEUED:
e25ea21f 4864 case TC_ACT_TRAP:
8a3a4c6e 4865 consume_skb(skb);
d2788d34 4866 return NULL;
27b29f63
AS
4867 case TC_ACT_REDIRECT:
4868 /* skb_mac_header check was done by cls/act_bpf, so
4869 * we can safely push the L2 header back before
4870 * redirecting to another netdev
4871 */
4872 __skb_push(skb, skb->mac_len);
4873 skb_do_redirect(skb);
4874 return NULL;
720f22fe 4875 case TC_ACT_CONSUMED:
cd11b164 4876 return NULL;
d2788d34
DB
4877 default:
4878 break;
f697c3e8 4879 }
e7582bab 4880#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4881 return skb;
4882}
1da177e4 4883
24b27fc4
MB
4884/**
4885 * netdev_is_rx_handler_busy - check if receive handler is registered
4886 * @dev: device to check
4887 *
4888 * Check if a receive handler is already registered for a given device.
4889 * Return true if there one.
4890 *
4891 * The caller must hold the rtnl_mutex.
4892 */
4893bool netdev_is_rx_handler_busy(struct net_device *dev)
4894{
4895 ASSERT_RTNL();
4896 return dev && rtnl_dereference(dev->rx_handler);
4897}
4898EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4899
ab95bfe0
JP
4900/**
4901 * netdev_rx_handler_register - register receive handler
4902 * @dev: device to register a handler for
4903 * @rx_handler: receive handler to register
93e2c32b 4904 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4905 *
e227867f 4906 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4907 * called from __netif_receive_skb. A negative errno code is returned
4908 * on a failure.
4909 *
4910 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4911 *
4912 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4913 */
4914int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4915 rx_handler_func_t *rx_handler,
4916 void *rx_handler_data)
ab95bfe0 4917{
1b7cd004 4918 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4919 return -EBUSY;
4920
f5426250
PA
4921 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4922 return -EINVAL;
4923
00cfec37 4924 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4925 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4926 rcu_assign_pointer(dev->rx_handler, rx_handler);
4927
4928 return 0;
4929}
4930EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4931
4932/**
4933 * netdev_rx_handler_unregister - unregister receive handler
4934 * @dev: device to unregister a handler from
4935 *
166ec369 4936 * Unregister a receive handler from a device.
ab95bfe0
JP
4937 *
4938 * The caller must hold the rtnl_mutex.
4939 */
4940void netdev_rx_handler_unregister(struct net_device *dev)
4941{
4942
4943 ASSERT_RTNL();
a9b3cd7f 4944 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4945 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4946 * section has a guarantee to see a non NULL rx_handler_data
4947 * as well.
4948 */
4949 synchronize_net();
a9b3cd7f 4950 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4951}
4952EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4953
b4b9e355
MG
4954/*
4955 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4956 * the special handling of PFMEMALLOC skbs.
4957 */
4958static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4959{
4960 switch (skb->protocol) {
2b8837ae
JP
4961 case htons(ETH_P_ARP):
4962 case htons(ETH_P_IP):
4963 case htons(ETH_P_IPV6):
4964 case htons(ETH_P_8021Q):
4965 case htons(ETH_P_8021AD):
b4b9e355
MG
4966 return true;
4967 default:
4968 return false;
4969 }
4970}
4971
e687ad60
PN
4972static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4973 int *ret, struct net_device *orig_dev)
4974{
4975 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4976 int ingress_retval;
4977
e687ad60
PN
4978 if (*pt_prev) {
4979 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4980 *pt_prev = NULL;
4981 }
4982
2c1e2703
AC
4983 rcu_read_lock();
4984 ingress_retval = nf_hook_ingress(skb);
4985 rcu_read_unlock();
4986 return ingress_retval;
e687ad60
PN
4987 }
4988 return 0;
4989}
e687ad60 4990
88eb1944
EC
4991static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4992 struct packet_type **ppt_prev)
1da177e4
LT
4993{
4994 struct packet_type *ptype, *pt_prev;
ab95bfe0 4995 rx_handler_func_t *rx_handler;
f2ccd8fa 4996 struct net_device *orig_dev;
8a4eb573 4997 bool deliver_exact = false;
1da177e4 4998 int ret = NET_RX_DROP;
252e3346 4999 __be16 type;
1da177e4 5000
588f0330 5001 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5002
cf66ba58 5003 trace_netif_receive_skb(skb);
9b22ea56 5004
cc9bd5ce 5005 orig_dev = skb->dev;
8f903c70 5006
c1d2bbe1 5007 skb_reset_network_header(skb);
fda55eca
ED
5008 if (!skb_transport_header_was_set(skb))
5009 skb_reset_transport_header(skb);
0b5c9db1 5010 skb_reset_mac_len(skb);
1da177e4
LT
5011
5012 pt_prev = NULL;
5013
63d8ea7f 5014another_round:
b6858177 5015 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5016
5017 __this_cpu_inc(softnet_data.processed);
5018
458bf2f2
SH
5019 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5020 int ret2;
5021
5022 preempt_disable();
5023 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5024 preempt_enable();
5025
5026 if (ret2 != XDP_PASS)
5027 return NET_RX_DROP;
5028 skb_reset_mac_len(skb);
5029 }
5030
8ad227ff
PM
5031 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5032 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 5033 skb = skb_vlan_untag(skb);
bcc6d479 5034 if (unlikely(!skb))
2c17d27c 5035 goto out;
bcc6d479
JP
5036 }
5037
e7246e12
WB
5038 if (skb_skip_tc_classify(skb))
5039 goto skip_classify;
1da177e4 5040
9754e293 5041 if (pfmemalloc)
b4b9e355
MG
5042 goto skip_taps;
5043
1da177e4 5044 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5045 if (pt_prev)
5046 ret = deliver_skb(skb, pt_prev, orig_dev);
5047 pt_prev = ptype;
5048 }
5049
5050 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5051 if (pt_prev)
5052 ret = deliver_skb(skb, pt_prev, orig_dev);
5053 pt_prev = ptype;
1da177e4
LT
5054 }
5055
b4b9e355 5056skip_taps:
1cf51900 5057#ifdef CONFIG_NET_INGRESS
aabf6772 5058 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 5059 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 5060 if (!skb)
2c17d27c 5061 goto out;
e687ad60
PN
5062
5063 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5064 goto out;
4577139b 5065 }
1cf51900 5066#endif
2c64605b 5067 skb_reset_redirect(skb);
e7246e12 5068skip_classify:
9754e293 5069 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5070 goto drop;
5071
df8a39de 5072 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5073 if (pt_prev) {
5074 ret = deliver_skb(skb, pt_prev, orig_dev);
5075 pt_prev = NULL;
5076 }
48cc32d3 5077 if (vlan_do_receive(&skb))
2425717b
JF
5078 goto another_round;
5079 else if (unlikely(!skb))
2c17d27c 5080 goto out;
2425717b
JF
5081 }
5082
48cc32d3 5083 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5084 if (rx_handler) {
5085 if (pt_prev) {
5086 ret = deliver_skb(skb, pt_prev, orig_dev);
5087 pt_prev = NULL;
5088 }
8a4eb573
JP
5089 switch (rx_handler(&skb)) {
5090 case RX_HANDLER_CONSUMED:
3bc1b1ad 5091 ret = NET_RX_SUCCESS;
2c17d27c 5092 goto out;
8a4eb573 5093 case RX_HANDLER_ANOTHER:
63d8ea7f 5094 goto another_round;
8a4eb573
JP
5095 case RX_HANDLER_EXACT:
5096 deliver_exact = true;
5097 case RX_HANDLER_PASS:
5098 break;
5099 default:
5100 BUG();
5101 }
ab95bfe0 5102 }
1da177e4 5103
df8a39de 5104 if (unlikely(skb_vlan_tag_present(skb))) {
36b2f61a
GV
5105check_vlan_id:
5106 if (skb_vlan_tag_get_id(skb)) {
5107 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5108 * find vlan device.
5109 */
d4b812de 5110 skb->pkt_type = PACKET_OTHERHOST;
36b2f61a
GV
5111 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5112 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5113 /* Outer header is 802.1P with vlan 0, inner header is
5114 * 802.1Q or 802.1AD and vlan_do_receive() above could
5115 * not find vlan dev for vlan id 0.
5116 */
5117 __vlan_hwaccel_clear_tag(skb);
5118 skb = skb_vlan_untag(skb);
5119 if (unlikely(!skb))
5120 goto out;
5121 if (vlan_do_receive(&skb))
5122 /* After stripping off 802.1P header with vlan 0
5123 * vlan dev is found for inner header.
5124 */
5125 goto another_round;
5126 else if (unlikely(!skb))
5127 goto out;
5128 else
5129 /* We have stripped outer 802.1P vlan 0 header.
5130 * But could not find vlan dev.
5131 * check again for vlan id to set OTHERHOST.
5132 */
5133 goto check_vlan_id;
5134 }
d4b812de
ED
5135 /* Note: we might in the future use prio bits
5136 * and set skb->priority like in vlan_do_receive()
5137 * For the time being, just ignore Priority Code Point
5138 */
b1817524 5139 __vlan_hwaccel_clear_tag(skb);
d4b812de 5140 }
48cc32d3 5141
7866a621
SN
5142 type = skb->protocol;
5143
63d8ea7f 5144 /* deliver only exact match when indicated */
7866a621
SN
5145 if (likely(!deliver_exact)) {
5146 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5147 &ptype_base[ntohs(type) &
5148 PTYPE_HASH_MASK]);
5149 }
1f3c8804 5150
7866a621
SN
5151 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5152 &orig_dev->ptype_specific);
5153
5154 if (unlikely(skb->dev != orig_dev)) {
5155 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5156 &skb->dev->ptype_specific);
1da177e4
LT
5157 }
5158
5159 if (pt_prev) {
1f8b977a 5160 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5161 goto drop;
88eb1944 5162 *ppt_prev = pt_prev;
1da177e4 5163 } else {
b4b9e355 5164drop:
6e7333d3
JW
5165 if (!deliver_exact)
5166 atomic_long_inc(&skb->dev->rx_dropped);
5167 else
5168 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5169 kfree_skb(skb);
5170 /* Jamal, now you will not able to escape explaining
5171 * me how you were going to use this. :-)
5172 */
5173 ret = NET_RX_DROP;
5174 }
5175
2c17d27c 5176out:
9754e293
DM
5177 return ret;
5178}
5179
88eb1944
EC
5180static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5181{
5182 struct net_device *orig_dev = skb->dev;
5183 struct packet_type *pt_prev = NULL;
5184 int ret;
5185
5186 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5187 if (pt_prev)
f5737cba
PA
5188 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5189 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5190 return ret;
5191}
5192
1c601d82
JDB
5193/**
5194 * netif_receive_skb_core - special purpose version of netif_receive_skb
5195 * @skb: buffer to process
5196 *
5197 * More direct receive version of netif_receive_skb(). It should
5198 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5199 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5200 *
5201 * This function may only be called from softirq context and interrupts
5202 * should be enabled.
5203 *
5204 * Return values (usually ignored):
5205 * NET_RX_SUCCESS: no congestion
5206 * NET_RX_DROP: packet was dropped
5207 */
5208int netif_receive_skb_core(struct sk_buff *skb)
5209{
5210 int ret;
5211
5212 rcu_read_lock();
88eb1944 5213 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5214 rcu_read_unlock();
5215
5216 return ret;
5217}
5218EXPORT_SYMBOL(netif_receive_skb_core);
5219
88eb1944
EC
5220static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5221 struct packet_type *pt_prev,
5222 struct net_device *orig_dev)
4ce0017a
EC
5223{
5224 struct sk_buff *skb, *next;
5225
88eb1944
EC
5226 if (!pt_prev)
5227 return;
5228 if (list_empty(head))
5229 return;
17266ee9 5230 if (pt_prev->list_func != NULL)
fdf71426
PA
5231 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5232 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5233 else
9a5a90d1
AL
5234 list_for_each_entry_safe(skb, next, head, list) {
5235 skb_list_del_init(skb);
fdf71426 5236 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5237 }
88eb1944
EC
5238}
5239
5240static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5241{
5242 /* Fast-path assumptions:
5243 * - There is no RX handler.
5244 * - Only one packet_type matches.
5245 * If either of these fails, we will end up doing some per-packet
5246 * processing in-line, then handling the 'last ptype' for the whole
5247 * sublist. This can't cause out-of-order delivery to any single ptype,
5248 * because the 'last ptype' must be constant across the sublist, and all
5249 * other ptypes are handled per-packet.
5250 */
5251 /* Current (common) ptype of sublist */
5252 struct packet_type *pt_curr = NULL;
5253 /* Current (common) orig_dev of sublist */
5254 struct net_device *od_curr = NULL;
5255 struct list_head sublist;
5256 struct sk_buff *skb, *next;
5257
9af86f93 5258 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5259 list_for_each_entry_safe(skb, next, head, list) {
5260 struct net_device *orig_dev = skb->dev;
5261 struct packet_type *pt_prev = NULL;
5262
22f6bbb7 5263 skb_list_del_init(skb);
88eb1944 5264 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
9af86f93
EC
5265 if (!pt_prev)
5266 continue;
88eb1944
EC
5267 if (pt_curr != pt_prev || od_curr != orig_dev) {
5268 /* dispatch old sublist */
88eb1944
EC
5269 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5270 /* start new sublist */
9af86f93 5271 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5272 pt_curr = pt_prev;
5273 od_curr = orig_dev;
5274 }
9af86f93 5275 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5276 }
5277
5278 /* dispatch final sublist */
9af86f93 5279 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5280}
5281
9754e293
DM
5282static int __netif_receive_skb(struct sk_buff *skb)
5283{
5284 int ret;
5285
5286 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5287 unsigned int noreclaim_flag;
9754e293
DM
5288
5289 /*
5290 * PFMEMALLOC skbs are special, they should
5291 * - be delivered to SOCK_MEMALLOC sockets only
5292 * - stay away from userspace
5293 * - have bounded memory usage
5294 *
5295 * Use PF_MEMALLOC as this saves us from propagating the allocation
5296 * context down to all allocation sites.
5297 */
f1083048 5298 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5299 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5300 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5301 } else
88eb1944 5302 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5303
1da177e4
LT
5304 return ret;
5305}
0a9627f2 5306
4ce0017a
EC
5307static void __netif_receive_skb_list(struct list_head *head)
5308{
5309 unsigned long noreclaim_flag = 0;
5310 struct sk_buff *skb, *next;
5311 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5312
5313 list_for_each_entry_safe(skb, next, head, list) {
5314 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5315 struct list_head sublist;
5316
5317 /* Handle the previous sublist */
5318 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5319 if (!list_empty(&sublist))
5320 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5321 pfmemalloc = !pfmemalloc;
5322 /* See comments in __netif_receive_skb */
5323 if (pfmemalloc)
5324 noreclaim_flag = memalloc_noreclaim_save();
5325 else
5326 memalloc_noreclaim_restore(noreclaim_flag);
5327 }
5328 }
5329 /* Handle the remaining sublist */
b9f463d6
EC
5330 if (!list_empty(head))
5331 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5332 /* Restore pflags */
5333 if (pfmemalloc)
5334 memalloc_noreclaim_restore(noreclaim_flag);
5335}
5336
f4e63525 5337static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5338{
58038695 5339 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5340 struct bpf_prog *new = xdp->prog;
5341 int ret = 0;
5342
5343 switch (xdp->command) {
58038695 5344 case XDP_SETUP_PROG:
b5cdae32
DM
5345 rcu_assign_pointer(dev->xdp_prog, new);
5346 if (old)
5347 bpf_prog_put(old);
5348
5349 if (old && !new) {
02786475 5350 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5351 } else if (new && !old) {
02786475 5352 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5353 dev_disable_lro(dev);
56f5aa77 5354 dev_disable_gro_hw(dev);
b5cdae32
DM
5355 }
5356 break;
b5cdae32
DM
5357
5358 case XDP_QUERY_PROG:
58038695 5359 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
5360 break;
5361
5362 default:
5363 ret = -EINVAL;
5364 break;
5365 }
5366
5367 return ret;
5368}
5369
ae78dbfa 5370static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5371{
2c17d27c
JA
5372 int ret;
5373
588f0330 5374 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5375
c1f19b51
RC
5376 if (skb_defer_rx_timestamp(skb))
5377 return NET_RX_SUCCESS;
5378
bbbe211c 5379 rcu_read_lock();
df334545 5380#ifdef CONFIG_RPS
dc05360f 5381 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5382 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5383 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5384
3b098e2d
ED
5385 if (cpu >= 0) {
5386 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5387 rcu_read_unlock();
adc9300e 5388 return ret;
3b098e2d 5389 }
fec5e652 5390 }
1e94d72f 5391#endif
2c17d27c
JA
5392 ret = __netif_receive_skb(skb);
5393 rcu_read_unlock();
5394 return ret;
0a9627f2 5395}
ae78dbfa 5396
7da517a3
EC
5397static void netif_receive_skb_list_internal(struct list_head *head)
5398{
7da517a3 5399 struct sk_buff *skb, *next;
8c057efa 5400 struct list_head sublist;
7da517a3 5401
8c057efa 5402 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5403 list_for_each_entry_safe(skb, next, head, list) {
5404 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5405 skb_list_del_init(skb);
8c057efa
EC
5406 if (!skb_defer_rx_timestamp(skb))
5407 list_add_tail(&skb->list, &sublist);
7da517a3 5408 }
8c057efa 5409 list_splice_init(&sublist, head);
7da517a3 5410
7da517a3
EC
5411 rcu_read_lock();
5412#ifdef CONFIG_RPS
dc05360f 5413 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5414 list_for_each_entry_safe(skb, next, head, list) {
5415 struct rps_dev_flow voidflow, *rflow = &voidflow;
5416 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5417
5418 if (cpu >= 0) {
8c057efa 5419 /* Will be handled, remove from list */
22f6bbb7 5420 skb_list_del_init(skb);
8c057efa 5421 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5422 }
5423 }
5424 }
5425#endif
5426 __netif_receive_skb_list(head);
5427 rcu_read_unlock();
5428}
5429
ae78dbfa
BH
5430/**
5431 * netif_receive_skb - process receive buffer from network
5432 * @skb: buffer to process
5433 *
5434 * netif_receive_skb() is the main receive data processing function.
5435 * It always succeeds. The buffer may be dropped during processing
5436 * for congestion control or by the protocol layers.
5437 *
5438 * This function may only be called from softirq context and interrupts
5439 * should be enabled.
5440 *
5441 * Return values (usually ignored):
5442 * NET_RX_SUCCESS: no congestion
5443 * NET_RX_DROP: packet was dropped
5444 */
04eb4489 5445int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5446{
b0e3f1bd
GB
5447 int ret;
5448
ae78dbfa
BH
5449 trace_netif_receive_skb_entry(skb);
5450
b0e3f1bd
GB
5451 ret = netif_receive_skb_internal(skb);
5452 trace_netif_receive_skb_exit(ret);
5453
5454 return ret;
ae78dbfa 5455}
04eb4489 5456EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5457
f6ad8c1b
EC
5458/**
5459 * netif_receive_skb_list - process many receive buffers from network
5460 * @head: list of skbs to process.
5461 *
7da517a3
EC
5462 * Since return value of netif_receive_skb() is normally ignored, and
5463 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5464 *
5465 * This function may only be called from softirq context and interrupts
5466 * should be enabled.
5467 */
5468void netif_receive_skb_list(struct list_head *head)
5469{
7da517a3 5470 struct sk_buff *skb;
f6ad8c1b 5471
b9f463d6
EC
5472 if (list_empty(head))
5473 return;
b0e3f1bd
GB
5474 if (trace_netif_receive_skb_list_entry_enabled()) {
5475 list_for_each_entry(skb, head, list)
5476 trace_netif_receive_skb_list_entry(skb);
5477 }
7da517a3 5478 netif_receive_skb_list_internal(head);
b0e3f1bd 5479 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5480}
5481EXPORT_SYMBOL(netif_receive_skb_list);
5482
41852497 5483DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5484
5485/* Network device is going away, flush any packets still pending */
5486static void flush_backlog(struct work_struct *work)
6e583ce5 5487{
6e583ce5 5488 struct sk_buff *skb, *tmp;
145dd5f9
PA
5489 struct softnet_data *sd;
5490
5491 local_bh_disable();
5492 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5493
145dd5f9 5494 local_irq_disable();
e36fa2f7 5495 rps_lock(sd);
6e7676c1 5496 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5497 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5498 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 5499 kfree_skb(skb);
76cc8b13 5500 input_queue_head_incr(sd);
6e583ce5 5501 }
6e7676c1 5502 }
e36fa2f7 5503 rps_unlock(sd);
145dd5f9 5504 local_irq_enable();
6e7676c1
CG
5505
5506 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5507 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5508 __skb_unlink(skb, &sd->process_queue);
5509 kfree_skb(skb);
76cc8b13 5510 input_queue_head_incr(sd);
6e7676c1
CG
5511 }
5512 }
145dd5f9
PA
5513 local_bh_enable();
5514}
5515
41852497 5516static void flush_all_backlogs(void)
145dd5f9
PA
5517{
5518 unsigned int cpu;
5519
5520 get_online_cpus();
5521
41852497
ED
5522 for_each_online_cpu(cpu)
5523 queue_work_on(cpu, system_highpri_wq,
5524 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5525
5526 for_each_online_cpu(cpu)
41852497 5527 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5528
5529 put_online_cpus();
6e583ce5
SH
5530}
5531
c8079432
MM
5532/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5533static void gro_normal_list(struct napi_struct *napi)
5534{
5535 if (!napi->rx_count)
5536 return;
5537 netif_receive_skb_list_internal(&napi->rx_list);
5538 INIT_LIST_HEAD(&napi->rx_list);
5539 napi->rx_count = 0;
5540}
5541
5542/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5543 * pass the whole batch up to the stack.
5544 */
5545static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5546{
5547 list_add_tail(&skb->list, &napi->rx_list);
5548 if (++napi->rx_count >= gro_normal_batch)
5549 gro_normal_list(napi);
5550}
5551
aaa5d90b
PA
5552INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5553INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
c8079432 5554static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5555{
22061d80 5556 struct packet_offload *ptype;
d565b0a1 5557 __be16 type = skb->protocol;
22061d80 5558 struct list_head *head = &offload_base;
d565b0a1
HX
5559 int err = -ENOENT;
5560
c3c7c254
ED
5561 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5562
fc59f9a3
HX
5563 if (NAPI_GRO_CB(skb)->count == 1) {
5564 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5565 goto out;
fc59f9a3 5566 }
d565b0a1
HX
5567
5568 rcu_read_lock();
5569 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5570 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5571 continue;
5572
aaa5d90b
PA
5573 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5574 ipv6_gro_complete, inet_gro_complete,
5575 skb, 0);
d565b0a1
HX
5576 break;
5577 }
5578 rcu_read_unlock();
5579
5580 if (err) {
5581 WARN_ON(&ptype->list == head);
5582 kfree_skb(skb);
5583 return NET_RX_SUCCESS;
5584 }
5585
5586out:
c8079432
MM
5587 gro_normal_one(napi, skb);
5588 return NET_RX_SUCCESS;
d565b0a1
HX
5589}
5590
6312fe77 5591static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5592 bool flush_old)
d565b0a1 5593{
6312fe77 5594 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5595 struct sk_buff *skb, *p;
2e71a6f8 5596
07d78363 5597 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5598 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5599 return;
992cba7e 5600 skb_list_del_init(skb);
c8079432 5601 napi_gro_complete(napi, skb);
6312fe77 5602 napi->gro_hash[index].count--;
d565b0a1 5603 }
d9f37d01
LR
5604
5605 if (!napi->gro_hash[index].count)
5606 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5607}
07d78363 5608
6312fe77 5609/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5610 * youngest packets at the head of it.
5611 * Complete skbs in reverse order to reduce latencies.
5612 */
5613void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5614{
42519ede
ED
5615 unsigned long bitmask = napi->gro_bitmask;
5616 unsigned int i, base = ~0U;
07d78363 5617
42519ede
ED
5618 while ((i = ffs(bitmask)) != 0) {
5619 bitmask >>= i;
5620 base += i;
5621 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5622 }
07d78363 5623}
86cac58b 5624EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5625
07d78363
DM
5626static struct list_head *gro_list_prepare(struct napi_struct *napi,
5627 struct sk_buff *skb)
89c5fa33 5628{
89c5fa33 5629 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5630 u32 hash = skb_get_hash_raw(skb);
07d78363 5631 struct list_head *head;
d4546c25 5632 struct sk_buff *p;
89c5fa33 5633
6312fe77 5634 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5635 list_for_each_entry(p, head, list) {
89c5fa33
ED
5636 unsigned long diffs;
5637
0b4cec8c
TH
5638 NAPI_GRO_CB(p)->flush = 0;
5639
5640 if (hash != skb_get_hash_raw(p)) {
5641 NAPI_GRO_CB(p)->same_flow = 0;
5642 continue;
5643 }
5644
89c5fa33 5645 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5646 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5647 if (skb_vlan_tag_present(p))
fc5141cb 5648 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
ce87fc6c 5649 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5650 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5651 if (maclen == ETH_HLEN)
5652 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5653 skb_mac_header(skb));
89c5fa33
ED
5654 else if (!diffs)
5655 diffs = memcmp(skb_mac_header(p),
a50e233c 5656 skb_mac_header(skb),
89c5fa33
ED
5657 maclen);
5658 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5659 }
07d78363
DM
5660
5661 return head;
89c5fa33
ED
5662}
5663
299603e8
JC
5664static void skb_gro_reset_offset(struct sk_buff *skb)
5665{
5666 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5667 const skb_frag_t *frag0 = &pinfo->frags[0];
5668
5669 NAPI_GRO_CB(skb)->data_offset = 0;
5670 NAPI_GRO_CB(skb)->frag0 = NULL;
5671 NAPI_GRO_CB(skb)->frag0_len = 0;
5672
8aef998d 5673 if (!skb_headlen(skb) && pinfo->nr_frags &&
299603e8
JC
5674 !PageHighMem(skb_frag_page(frag0))) {
5675 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5676 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5677 skb_frag_size(frag0),
5678 skb->end - skb->tail);
89c5fa33
ED
5679 }
5680}
5681
a50e233c
ED
5682static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5683{
5684 struct skb_shared_info *pinfo = skb_shinfo(skb);
5685
5686 BUG_ON(skb->end - skb->tail < grow);
5687
5688 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5689
5690 skb->data_len -= grow;
5691 skb->tail += grow;
5692
b54c9d5b 5693 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5694 skb_frag_size_sub(&pinfo->frags[0], grow);
5695
5696 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5697 skb_frag_unref(skb, 0);
5698 memmove(pinfo->frags, pinfo->frags + 1,
5699 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5700 }
5701}
5702
c8079432 5703static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 5704{
6312fe77 5705 struct sk_buff *oldest;
07d78363 5706
6312fe77 5707 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5708
6312fe77 5709 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5710 * impossible.
5711 */
5712 if (WARN_ON_ONCE(!oldest))
5713 return;
5714
d9f37d01
LR
5715 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5716 * SKB to the chain.
07d78363 5717 */
ece23711 5718 skb_list_del_init(oldest);
c8079432 5719 napi_gro_complete(napi, oldest);
07d78363
DM
5720}
5721
aaa5d90b
PA
5722INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5723 struct sk_buff *));
5724INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5725 struct sk_buff *));
bb728820 5726static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5727{
6312fe77 5728 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5729 struct list_head *head = &offload_base;
22061d80 5730 struct packet_offload *ptype;
d565b0a1 5731 __be16 type = skb->protocol;
07d78363 5732 struct list_head *gro_head;
d4546c25 5733 struct sk_buff *pp = NULL;
5b252f0c 5734 enum gro_result ret;
d4546c25 5735 int same_flow;
a50e233c 5736 int grow;
d565b0a1 5737
b5cdae32 5738 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5739 goto normal;
5740
07d78363 5741 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5742
d565b0a1
HX
5743 rcu_read_lock();
5744 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5745 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5746 continue;
5747
86911732 5748 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5749 skb_reset_mac_len(skb);
d565b0a1 5750 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5751 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5752 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5753 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5754 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5755 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5756 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5757 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5758
662880f4
TH
5759 /* Setup for GRO checksum validation */
5760 switch (skb->ip_summed) {
5761 case CHECKSUM_COMPLETE:
5762 NAPI_GRO_CB(skb)->csum = skb->csum;
5763 NAPI_GRO_CB(skb)->csum_valid = 1;
5764 NAPI_GRO_CB(skb)->csum_cnt = 0;
5765 break;
5766 case CHECKSUM_UNNECESSARY:
5767 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5768 NAPI_GRO_CB(skb)->csum_valid = 0;
5769 break;
5770 default:
5771 NAPI_GRO_CB(skb)->csum_cnt = 0;
5772 NAPI_GRO_CB(skb)->csum_valid = 0;
5773 }
d565b0a1 5774
aaa5d90b
PA
5775 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5776 ipv6_gro_receive, inet_gro_receive,
5777 gro_head, skb);
d565b0a1
HX
5778 break;
5779 }
5780 rcu_read_unlock();
5781
5782 if (&ptype->list == head)
5783 goto normal;
5784
45586c70 5785 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
5786 ret = GRO_CONSUMED;
5787 goto ok;
5788 }
5789
0da2afd5 5790 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5791 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5792
d565b0a1 5793 if (pp) {
992cba7e 5794 skb_list_del_init(pp);
c8079432 5795 napi_gro_complete(napi, pp);
6312fe77 5796 napi->gro_hash[hash].count--;
d565b0a1
HX
5797 }
5798
0da2afd5 5799 if (same_flow)
d565b0a1
HX
5800 goto ok;
5801
600adc18 5802 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5803 goto normal;
d565b0a1 5804
6312fe77 5805 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
c8079432 5806 gro_flush_oldest(napi, gro_head);
600adc18 5807 } else {
6312fe77 5808 napi->gro_hash[hash].count++;
600adc18 5809 }
d565b0a1 5810 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5811 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5812 NAPI_GRO_CB(skb)->last = skb;
86911732 5813 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5814 list_add(&skb->list, gro_head);
5d0d9be8 5815 ret = GRO_HELD;
d565b0a1 5816
ad0f9904 5817pull:
a50e233c
ED
5818 grow = skb_gro_offset(skb) - skb_headlen(skb);
5819 if (grow > 0)
5820 gro_pull_from_frag0(skb, grow);
d565b0a1 5821ok:
d9f37d01
LR
5822 if (napi->gro_hash[hash].count) {
5823 if (!test_bit(hash, &napi->gro_bitmask))
5824 __set_bit(hash, &napi->gro_bitmask);
5825 } else if (test_bit(hash, &napi->gro_bitmask)) {
5826 __clear_bit(hash, &napi->gro_bitmask);
5827 }
5828
5d0d9be8 5829 return ret;
d565b0a1
HX
5830
5831normal:
ad0f9904
HX
5832 ret = GRO_NORMAL;
5833 goto pull;
5d38a079 5834}
96e93eab 5835
bf5a755f
JC
5836struct packet_offload *gro_find_receive_by_type(__be16 type)
5837{
5838 struct list_head *offload_head = &offload_base;
5839 struct packet_offload *ptype;
5840
5841 list_for_each_entry_rcu(ptype, offload_head, list) {
5842 if (ptype->type != type || !ptype->callbacks.gro_receive)
5843 continue;
5844 return ptype;
5845 }
5846 return NULL;
5847}
e27a2f83 5848EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
5849
5850struct packet_offload *gro_find_complete_by_type(__be16 type)
5851{
5852 struct list_head *offload_head = &offload_base;
5853 struct packet_offload *ptype;
5854
5855 list_for_each_entry_rcu(ptype, offload_head, list) {
5856 if (ptype->type != type || !ptype->callbacks.gro_complete)
5857 continue;
5858 return ptype;
5859 }
5860 return NULL;
5861}
e27a2f83 5862EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5863
e44699d2
MK
5864static void napi_skb_free_stolen_head(struct sk_buff *skb)
5865{
5866 skb_dst_drop(skb);
174e2381 5867 skb_ext_put(skb);
e44699d2
MK
5868 kmem_cache_free(skbuff_head_cache, skb);
5869}
5870
6570bc79
AL
5871static gro_result_t napi_skb_finish(struct napi_struct *napi,
5872 struct sk_buff *skb,
5873 gro_result_t ret)
5d38a079 5874{
5d0d9be8
HX
5875 switch (ret) {
5876 case GRO_NORMAL:
6570bc79 5877 gro_normal_one(napi, skb);
c7c4b3b6 5878 break;
5d38a079 5879
5d0d9be8 5880 case GRO_DROP:
5d38a079
HX
5881 kfree_skb(skb);
5882 break;
5b252f0c 5883
daa86548 5884 case GRO_MERGED_FREE:
e44699d2
MK
5885 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5886 napi_skb_free_stolen_head(skb);
5887 else
d7e8883c 5888 __kfree_skb(skb);
daa86548
ED
5889 break;
5890
5b252f0c
BH
5891 case GRO_HELD:
5892 case GRO_MERGED:
25393d3f 5893 case GRO_CONSUMED:
5b252f0c 5894 break;
5d38a079
HX
5895 }
5896
c7c4b3b6 5897 return ret;
5d0d9be8 5898}
5d0d9be8 5899
c7c4b3b6 5900gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 5901{
b0e3f1bd
GB
5902 gro_result_t ret;
5903
93f93a44 5904 skb_mark_napi_id(skb, napi);
ae78dbfa 5905 trace_napi_gro_receive_entry(skb);
86911732 5906
a50e233c
ED
5907 skb_gro_reset_offset(skb);
5908
6570bc79 5909 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
5910 trace_napi_gro_receive_exit(ret);
5911
5912 return ret;
d565b0a1
HX
5913}
5914EXPORT_SYMBOL(napi_gro_receive);
5915
d0c2b0d2 5916static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5917{
93a35f59
ED
5918 if (unlikely(skb->pfmemalloc)) {
5919 consume_skb(skb);
5920 return;
5921 }
96e93eab 5922 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5923 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5924 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 5925 __vlan_hwaccel_clear_tag(skb);
66c46d74 5926 skb->dev = napi->dev;
6d152e23 5927 skb->skb_iif = 0;
33d9a2c7
ED
5928
5929 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5930 skb->pkt_type = PACKET_HOST;
5931
c3caf119
JC
5932 skb->encapsulation = 0;
5933 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5934 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 5935 skb_ext_reset(skb);
96e93eab
HX
5936
5937 napi->skb = skb;
5938}
96e93eab 5939
76620aaf 5940struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5941{
5d38a079 5942 struct sk_buff *skb = napi->skb;
5d38a079
HX
5943
5944 if (!skb) {
fd11a83d 5945 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5946 if (skb) {
5947 napi->skb = skb;
5948 skb_mark_napi_id(skb, napi);
5949 }
80595d59 5950 }
96e93eab
HX
5951 return skb;
5952}
76620aaf 5953EXPORT_SYMBOL(napi_get_frags);
96e93eab 5954
a50e233c
ED
5955static gro_result_t napi_frags_finish(struct napi_struct *napi,
5956 struct sk_buff *skb,
5957 gro_result_t ret)
96e93eab 5958{
5d0d9be8
HX
5959 switch (ret) {
5960 case GRO_NORMAL:
a50e233c
ED
5961 case GRO_HELD:
5962 __skb_push(skb, ETH_HLEN);
5963 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61
EC
5964 if (ret == GRO_NORMAL)
5965 gro_normal_one(napi, skb);
86911732 5966 break;
5d38a079 5967
5d0d9be8 5968 case GRO_DROP:
5d0d9be8
HX
5969 napi_reuse_skb(napi, skb);
5970 break;
5b252f0c 5971
e44699d2
MK
5972 case GRO_MERGED_FREE:
5973 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5974 napi_skb_free_stolen_head(skb);
5975 else
5976 napi_reuse_skb(napi, skb);
5977 break;
5978
5b252f0c 5979 case GRO_MERGED:
25393d3f 5980 case GRO_CONSUMED:
5b252f0c 5981 break;
5d0d9be8 5982 }
5d38a079 5983
c7c4b3b6 5984 return ret;
5d38a079 5985}
5d0d9be8 5986
a50e233c
ED
5987/* Upper GRO stack assumes network header starts at gro_offset=0
5988 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5989 * We copy ethernet header into skb->data to have a common layout.
5990 */
4adb9c4a 5991static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5992{
5993 struct sk_buff *skb = napi->skb;
a50e233c
ED
5994 const struct ethhdr *eth;
5995 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5996
5997 napi->skb = NULL;
5998
a50e233c
ED
5999 skb_reset_mac_header(skb);
6000 skb_gro_reset_offset(skb);
6001
a50e233c
ED
6002 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6003 eth = skb_gro_header_slow(skb, hlen, 0);
6004 if (unlikely(!eth)) {
4da46ceb
AC
6005 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6006 __func__, napi->dev->name);
a50e233c
ED
6007 napi_reuse_skb(napi, skb);
6008 return NULL;
6009 }
6010 } else {
a4270d67 6011 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6012 gro_pull_from_frag0(skb, hlen);
6013 NAPI_GRO_CB(skb)->frag0 += hlen;
6014 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6015 }
a50e233c
ED
6016 __skb_pull(skb, hlen);
6017
6018 /*
6019 * This works because the only protocols we care about don't require
6020 * special handling.
6021 * We'll fix it up properly in napi_frags_finish()
6022 */
6023 skb->protocol = eth->h_proto;
76620aaf 6024
76620aaf
HX
6025 return skb;
6026}
76620aaf 6027
c7c4b3b6 6028gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6029{
b0e3f1bd 6030 gro_result_t ret;
76620aaf 6031 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
6032
6033 if (!skb)
c7c4b3b6 6034 return GRO_DROP;
5d0d9be8 6035
ae78dbfa
BH
6036 trace_napi_gro_frags_entry(skb);
6037
b0e3f1bd
GB
6038 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6039 trace_napi_gro_frags_exit(ret);
6040
6041 return ret;
5d0d9be8 6042}
5d38a079
HX
6043EXPORT_SYMBOL(napi_gro_frags);
6044
573e8fca
TH
6045/* Compute the checksum from gro_offset and return the folded value
6046 * after adding in any pseudo checksum.
6047 */
6048__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6049{
6050 __wsum wsum;
6051 __sum16 sum;
6052
6053 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6054
6055 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6056 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6057 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6058 if (likely(!sum)) {
6059 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6060 !skb->csum_complete_sw)
7fe50ac8 6061 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6062 }
6063
6064 NAPI_GRO_CB(skb)->csum = wsum;
6065 NAPI_GRO_CB(skb)->csum_valid = 1;
6066
6067 return sum;
6068}
6069EXPORT_SYMBOL(__skb_gro_checksum_complete);
6070
773fc8f6 6071static void net_rps_send_ipi(struct softnet_data *remsd)
6072{
6073#ifdef CONFIG_RPS
6074 while (remsd) {
6075 struct softnet_data *next = remsd->rps_ipi_next;
6076
6077 if (cpu_online(remsd->cpu))
6078 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6079 remsd = next;
6080 }
6081#endif
6082}
6083
e326bed2 6084/*
855abcf0 6085 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6086 * Note: called with local irq disabled, but exits with local irq enabled.
6087 */
6088static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6089{
6090#ifdef CONFIG_RPS
6091 struct softnet_data *remsd = sd->rps_ipi_list;
6092
6093 if (remsd) {
6094 sd->rps_ipi_list = NULL;
6095
6096 local_irq_enable();
6097
6098 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6099 net_rps_send_ipi(remsd);
e326bed2
ED
6100 } else
6101#endif
6102 local_irq_enable();
6103}
6104
d75b1ade
ED
6105static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6106{
6107#ifdef CONFIG_RPS
6108 return sd->rps_ipi_list != NULL;
6109#else
6110 return false;
6111#endif
6112}
6113
bea3348e 6114static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6115{
eecfd7c4 6116 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6117 bool again = true;
6118 int work = 0;
1da177e4 6119
e326bed2
ED
6120 /* Check if we have pending ipi, its better to send them now,
6121 * not waiting net_rx_action() end.
6122 */
d75b1ade 6123 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6124 local_irq_disable();
6125 net_rps_action_and_irq_enable(sd);
6126 }
d75b1ade 6127
3d48b53f 6128 napi->weight = dev_rx_weight;
145dd5f9 6129 while (again) {
1da177e4 6130 struct sk_buff *skb;
6e7676c1
CG
6131
6132 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6133 rcu_read_lock();
6e7676c1 6134 __netif_receive_skb(skb);
2c17d27c 6135 rcu_read_unlock();
76cc8b13 6136 input_queue_head_incr(sd);
145dd5f9 6137 if (++work >= quota)
76cc8b13 6138 return work;
145dd5f9 6139
6e7676c1 6140 }
1da177e4 6141
145dd5f9 6142 local_irq_disable();
e36fa2f7 6143 rps_lock(sd);
11ef7a89 6144 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6145 /*
6146 * Inline a custom version of __napi_complete().
6147 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6148 * and NAPI_STATE_SCHED is the only possible flag set
6149 * on backlog.
6150 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6151 * and we dont need an smp_mb() memory barrier.
6152 */
eecfd7c4 6153 napi->state = 0;
145dd5f9
PA
6154 again = false;
6155 } else {
6156 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6157 &sd->process_queue);
bea3348e 6158 }
e36fa2f7 6159 rps_unlock(sd);
145dd5f9 6160 local_irq_enable();
6e7676c1 6161 }
1da177e4 6162
bea3348e
SH
6163 return work;
6164}
1da177e4 6165
bea3348e
SH
6166/**
6167 * __napi_schedule - schedule for receive
c4ea43c5 6168 * @n: entry to schedule
bea3348e 6169 *
bc9ad166
ED
6170 * The entry's receive function will be scheduled to run.
6171 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6172 */
b5606c2d 6173void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6174{
6175 unsigned long flags;
1da177e4 6176
bea3348e 6177 local_irq_save(flags);
903ceff7 6178 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6179 local_irq_restore(flags);
1da177e4 6180}
bea3348e
SH
6181EXPORT_SYMBOL(__napi_schedule);
6182
39e6c820
ED
6183/**
6184 * napi_schedule_prep - check if napi can be scheduled
6185 * @n: napi context
6186 *
6187 * Test if NAPI routine is already running, and if not mark
6188 * it as running. This is used as a condition variable
6189 * insure only one NAPI poll instance runs. We also make
6190 * sure there is no pending NAPI disable.
6191 */
6192bool napi_schedule_prep(struct napi_struct *n)
6193{
6194 unsigned long val, new;
6195
6196 do {
6197 val = READ_ONCE(n->state);
6198 if (unlikely(val & NAPIF_STATE_DISABLE))
6199 return false;
6200 new = val | NAPIF_STATE_SCHED;
6201
6202 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6203 * This was suggested by Alexander Duyck, as compiler
6204 * emits better code than :
6205 * if (val & NAPIF_STATE_SCHED)
6206 * new |= NAPIF_STATE_MISSED;
6207 */
6208 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6209 NAPIF_STATE_MISSED;
6210 } while (cmpxchg(&n->state, val, new) != val);
6211
6212 return !(val & NAPIF_STATE_SCHED);
6213}
6214EXPORT_SYMBOL(napi_schedule_prep);
6215
bc9ad166
ED
6216/**
6217 * __napi_schedule_irqoff - schedule for receive
6218 * @n: entry to schedule
6219 *
6220 * Variant of __napi_schedule() assuming hard irqs are masked
6221 */
6222void __napi_schedule_irqoff(struct napi_struct *n)
6223{
6224 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6225}
6226EXPORT_SYMBOL(__napi_schedule_irqoff);
6227
364b6055 6228bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6229{
6f8b12d6
ED
6230 unsigned long flags, val, new, timeout = 0;
6231 bool ret = true;
d565b0a1
HX
6232
6233 /*
217f6974
ED
6234 * 1) Don't let napi dequeue from the cpu poll list
6235 * just in case its running on a different cpu.
6236 * 2) If we are busy polling, do nothing here, we have
6237 * the guarantee we will be called later.
d565b0a1 6238 */
217f6974
ED
6239 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6240 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6241 return false;
d565b0a1 6242
6f8b12d6
ED
6243 if (work_done) {
6244 if (n->gro_bitmask)
7e417a66
ED
6245 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6246 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
6247 }
6248 if (n->defer_hard_irqs_count > 0) {
6249 n->defer_hard_irqs_count--;
7e417a66 6250 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
6251 if (timeout)
6252 ret = false;
6253 }
6254 if (n->gro_bitmask) {
605108ac
PA
6255 /* When the NAPI instance uses a timeout and keeps postponing
6256 * it, we need to bound somehow the time packets are kept in
6257 * the GRO layer
6258 */
6259 napi_gro_flush(n, !!timeout);
3b47d303 6260 }
c8079432
MM
6261
6262 gro_normal_list(n);
6263
02c1602e 6264 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6265 /* If n->poll_list is not empty, we need to mask irqs */
6266 local_irq_save(flags);
02c1602e 6267 list_del_init(&n->poll_list);
d75b1ade
ED
6268 local_irq_restore(flags);
6269 }
39e6c820
ED
6270
6271 do {
6272 val = READ_ONCE(n->state);
6273
6274 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6275
6276 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6277
6278 /* If STATE_MISSED was set, leave STATE_SCHED set,
6279 * because we will call napi->poll() one more time.
6280 * This C code was suggested by Alexander Duyck to help gcc.
6281 */
6282 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6283 NAPIF_STATE_SCHED;
6284 } while (cmpxchg(&n->state, val, new) != val);
6285
6286 if (unlikely(val & NAPIF_STATE_MISSED)) {
6287 __napi_schedule(n);
6288 return false;
6289 }
6290
6f8b12d6
ED
6291 if (timeout)
6292 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6293 HRTIMER_MODE_REL_PINNED);
6294 return ret;
d565b0a1 6295}
3b47d303 6296EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6297
af12fa6e 6298/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6299static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6300{
6301 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6302 struct napi_struct *napi;
6303
6304 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6305 if (napi->napi_id == napi_id)
6306 return napi;
6307
6308 return NULL;
6309}
02d62e86
ED
6310
6311#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6312
ce6aea93 6313#define BUSY_POLL_BUDGET 8
217f6974
ED
6314
6315static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6316{
6317 int rc;
6318
39e6c820
ED
6319 /* Busy polling means there is a high chance device driver hard irq
6320 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6321 * set in napi_schedule_prep().
6322 * Since we are about to call napi->poll() once more, we can safely
6323 * clear NAPI_STATE_MISSED.
6324 *
6325 * Note: x86 could use a single "lock and ..." instruction
6326 * to perform these two clear_bit()
6327 */
6328 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6329 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6330
6331 local_bh_disable();
6332
6333 /* All we really want here is to re-enable device interrupts.
6334 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6335 */
6336 rc = napi->poll(napi, BUSY_POLL_BUDGET);
323ebb61
EC
6337 /* We can't gro_normal_list() here, because napi->poll() might have
6338 * rearmed the napi (napi_complete_done()) in which case it could
6339 * already be running on another CPU.
6340 */
1e22391e 6341 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974 6342 netpoll_poll_unlock(have_poll_lock);
323ebb61
EC
6343 if (rc == BUSY_POLL_BUDGET) {
6344 /* As the whole budget was spent, we still own the napi so can
6345 * safely handle the rx_list.
6346 */
6347 gro_normal_list(napi);
217f6974 6348 __napi_schedule(napi);
323ebb61 6349 }
217f6974 6350 local_bh_enable();
217f6974
ED
6351}
6352
7db6b048
SS
6353void napi_busy_loop(unsigned int napi_id,
6354 bool (*loop_end)(void *, unsigned long),
6355 void *loop_end_arg)
02d62e86 6356{
7db6b048 6357 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6358 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6359 void *have_poll_lock = NULL;
02d62e86 6360 struct napi_struct *napi;
217f6974
ED
6361
6362restart:
217f6974 6363 napi_poll = NULL;
02d62e86 6364
2a028ecb 6365 rcu_read_lock();
02d62e86 6366
545cd5e5 6367 napi = napi_by_id(napi_id);
02d62e86
ED
6368 if (!napi)
6369 goto out;
6370
217f6974
ED
6371 preempt_disable();
6372 for (;;) {
2b5cd0df
AD
6373 int work = 0;
6374
2a028ecb 6375 local_bh_disable();
217f6974
ED
6376 if (!napi_poll) {
6377 unsigned long val = READ_ONCE(napi->state);
6378
6379 /* If multiple threads are competing for this napi,
6380 * we avoid dirtying napi->state as much as we can.
6381 */
6382 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6383 NAPIF_STATE_IN_BUSY_POLL))
6384 goto count;
6385 if (cmpxchg(&napi->state, val,
6386 val | NAPIF_STATE_IN_BUSY_POLL |
6387 NAPIF_STATE_SCHED) != val)
6388 goto count;
6389 have_poll_lock = netpoll_poll_lock(napi);
6390 napi_poll = napi->poll;
6391 }
2b5cd0df
AD
6392 work = napi_poll(napi, BUSY_POLL_BUDGET);
6393 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
323ebb61 6394 gro_normal_list(napi);
217f6974 6395count:
2b5cd0df 6396 if (work > 0)
7db6b048 6397 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6398 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6399 local_bh_enable();
02d62e86 6400
7db6b048 6401 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6402 break;
02d62e86 6403
217f6974
ED
6404 if (unlikely(need_resched())) {
6405 if (napi_poll)
6406 busy_poll_stop(napi, have_poll_lock);
6407 preempt_enable();
6408 rcu_read_unlock();
6409 cond_resched();
7db6b048 6410 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6411 return;
217f6974
ED
6412 goto restart;
6413 }
6cdf89b1 6414 cpu_relax();
217f6974
ED
6415 }
6416 if (napi_poll)
6417 busy_poll_stop(napi, have_poll_lock);
6418 preempt_enable();
02d62e86 6419out:
2a028ecb 6420 rcu_read_unlock();
02d62e86 6421}
7db6b048 6422EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6423
6424#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6425
149d6ad8 6426static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6427{
d64b5e85
ED
6428 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6429 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 6430 return;
af12fa6e 6431
52bd2d62 6432 spin_lock(&napi_hash_lock);
af12fa6e 6433
545cd5e5 6434 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6435 do {
545cd5e5
AD
6436 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6437 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6438 } while (napi_by_id(napi_gen_id));
6439 napi->napi_id = napi_gen_id;
af12fa6e 6440
52bd2d62
ED
6441 hlist_add_head_rcu(&napi->napi_hash_node,
6442 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6443
52bd2d62 6444 spin_unlock(&napi_hash_lock);
af12fa6e 6445}
af12fa6e
ET
6446
6447/* Warning : caller is responsible to make sure rcu grace period
6448 * is respected before freeing memory containing @napi
6449 */
34cbe27e 6450bool napi_hash_del(struct napi_struct *napi)
af12fa6e 6451{
34cbe27e
ED
6452 bool rcu_sync_needed = false;
6453
af12fa6e
ET
6454 spin_lock(&napi_hash_lock);
6455
34cbe27e
ED
6456 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6457 rcu_sync_needed = true;
af12fa6e 6458 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 6459 }
af12fa6e 6460 spin_unlock(&napi_hash_lock);
34cbe27e 6461 return rcu_sync_needed;
af12fa6e
ET
6462}
6463EXPORT_SYMBOL_GPL(napi_hash_del);
6464
3b47d303
ED
6465static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6466{
6467 struct napi_struct *napi;
6468
6469 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6470
6471 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6472 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6473 */
6f8b12d6 6474 if (!napi_disable_pending(napi) &&
39e6c820
ED
6475 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6476 __napi_schedule_irqoff(napi);
3b47d303
ED
6477
6478 return HRTIMER_NORESTART;
6479}
6480
7c4ec749 6481static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6482{
07d78363
DM
6483 int i;
6484
6312fe77
LR
6485 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6486 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6487 napi->gro_hash[i].count = 0;
6488 }
7c4ec749
DM
6489 napi->gro_bitmask = 0;
6490}
6491
6492void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6493 int (*poll)(struct napi_struct *, int), int weight)
6494{
6495 INIT_LIST_HEAD(&napi->poll_list);
6496 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6497 napi->timer.function = napi_watchdog;
6498 init_gro_hash(napi);
5d38a079 6499 napi->skb = NULL;
323ebb61
EC
6500 INIT_LIST_HEAD(&napi->rx_list);
6501 napi->rx_count = 0;
d565b0a1 6502 napi->poll = poll;
82dc3c63 6503 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6504 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6505 weight);
d565b0a1
HX
6506 napi->weight = weight;
6507 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 6508 napi->dev = dev;
5d38a079 6509#ifdef CONFIG_NETPOLL
d565b0a1
HX
6510 napi->poll_owner = -1;
6511#endif
6512 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 6513 napi_hash_add(napi);
d565b0a1
HX
6514}
6515EXPORT_SYMBOL(netif_napi_add);
6516
3b47d303
ED
6517void napi_disable(struct napi_struct *n)
6518{
6519 might_sleep();
6520 set_bit(NAPI_STATE_DISABLE, &n->state);
6521
6522 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6523 msleep(1);
2d8bff12
NH
6524 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6525 msleep(1);
3b47d303
ED
6526
6527 hrtimer_cancel(&n->timer);
6528
6529 clear_bit(NAPI_STATE_DISABLE, &n->state);
6530}
6531EXPORT_SYMBOL(napi_disable);
6532
07d78363 6533static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6534{
07d78363 6535 int i;
d4546c25 6536
07d78363
DM
6537 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6538 struct sk_buff *skb, *n;
6539
6312fe77 6540 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6541 kfree_skb(skb);
6312fe77 6542 napi->gro_hash[i].count = 0;
07d78363 6543 }
d4546c25
DM
6544}
6545
93d05d4a 6546/* Must be called in process context */
d565b0a1
HX
6547void netif_napi_del(struct napi_struct *napi)
6548{
93d05d4a
ED
6549 might_sleep();
6550 if (napi_hash_del(napi))
6551 synchronize_net();
d7b06636 6552 list_del_init(&napi->dev_list);
76620aaf 6553 napi_free_frags(napi);
d565b0a1 6554
07d78363 6555 flush_gro_hash(napi);
d9f37d01 6556 napi->gro_bitmask = 0;
d565b0a1
HX
6557}
6558EXPORT_SYMBOL(netif_napi_del);
6559
726ce70e
HX
6560static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6561{
6562 void *have;
6563 int work, weight;
6564
6565 list_del_init(&n->poll_list);
6566
6567 have = netpoll_poll_lock(n);
6568
6569 weight = n->weight;
6570
6571 /* This NAPI_STATE_SCHED test is for avoiding a race
6572 * with netpoll's poll_napi(). Only the entity which
6573 * obtains the lock and sees NAPI_STATE_SCHED set will
6574 * actually make the ->poll() call. Therefore we avoid
6575 * accidentally calling ->poll() when NAPI is not scheduled.
6576 */
6577 work = 0;
6578 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6579 work = n->poll(n, weight);
1db19db7 6580 trace_napi_poll(n, work, weight);
726ce70e
HX
6581 }
6582
6583 WARN_ON_ONCE(work > weight);
6584
6585 if (likely(work < weight))
6586 goto out_unlock;
6587
6588 /* Drivers must not modify the NAPI state if they
6589 * consume the entire weight. In such cases this code
6590 * still "owns" the NAPI instance and therefore can
6591 * move the instance around on the list at-will.
6592 */
6593 if (unlikely(napi_disable_pending(n))) {
6594 napi_complete(n);
6595 goto out_unlock;
6596 }
6597
d9f37d01 6598 if (n->gro_bitmask) {
726ce70e
HX
6599 /* flush too old packets
6600 * If HZ < 1000, flush all packets.
6601 */
6602 napi_gro_flush(n, HZ >= 1000);
6603 }
6604
c8079432
MM
6605 gro_normal_list(n);
6606
001ce546
HX
6607 /* Some drivers may have called napi_schedule
6608 * prior to exhausting their budget.
6609 */
6610 if (unlikely(!list_empty(&n->poll_list))) {
6611 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6612 n->dev ? n->dev->name : "backlog");
6613 goto out_unlock;
6614 }
6615
726ce70e
HX
6616 list_add_tail(&n->poll_list, repoll);
6617
6618out_unlock:
6619 netpoll_poll_unlock(have);
6620
6621 return work;
6622}
6623
0766f788 6624static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6625{
903ceff7 6626 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6627 unsigned long time_limit = jiffies +
6628 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6629 int budget = netdev_budget;
d75b1ade
ED
6630 LIST_HEAD(list);
6631 LIST_HEAD(repoll);
53fb95d3 6632
1da177e4 6633 local_irq_disable();
d75b1ade
ED
6634 list_splice_init(&sd->poll_list, &list);
6635 local_irq_enable();
1da177e4 6636
ceb8d5bf 6637 for (;;) {
bea3348e 6638 struct napi_struct *n;
1da177e4 6639
ceb8d5bf
HX
6640 if (list_empty(&list)) {
6641 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6642 goto out;
ceb8d5bf
HX
6643 break;
6644 }
6645
6bd373eb
HX
6646 n = list_first_entry(&list, struct napi_struct, poll_list);
6647 budget -= napi_poll(n, &repoll);
6648
d75b1ade 6649 /* If softirq window is exhausted then punt.
24f8b238
SH
6650 * Allow this to run for 2 jiffies since which will allow
6651 * an average latency of 1.5/HZ.
bea3348e 6652 */
ceb8d5bf
HX
6653 if (unlikely(budget <= 0 ||
6654 time_after_eq(jiffies, time_limit))) {
6655 sd->time_squeeze++;
6656 break;
6657 }
1da177e4 6658 }
d75b1ade 6659
d75b1ade
ED
6660 local_irq_disable();
6661
6662 list_splice_tail_init(&sd->poll_list, &list);
6663 list_splice_tail(&repoll, &list);
6664 list_splice(&list, &sd->poll_list);
6665 if (!list_empty(&sd->poll_list))
6666 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6667
e326bed2 6668 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6669out:
6670 __kfree_skb_flush();
1da177e4
LT
6671}
6672
aa9d8560 6673struct netdev_adjacent {
9ff162a8 6674 struct net_device *dev;
5d261913
VF
6675
6676 /* upper master flag, there can only be one master device per list */
9ff162a8 6677 bool master;
5d261913 6678
32b6d34f
TY
6679 /* lookup ignore flag */
6680 bool ignore;
6681
5d261913
VF
6682 /* counter for the number of times this device was added to us */
6683 u16 ref_nr;
6684
402dae96
VF
6685 /* private field for the users */
6686 void *private;
6687
9ff162a8
JP
6688 struct list_head list;
6689 struct rcu_head rcu;
9ff162a8
JP
6690};
6691
6ea29da1 6692static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6693 struct list_head *adj_list)
9ff162a8 6694{
5d261913 6695 struct netdev_adjacent *adj;
5d261913 6696
2f268f12 6697 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6698 if (adj->dev == adj_dev)
6699 return adj;
9ff162a8
JP
6700 }
6701 return NULL;
6702}
6703
32b6d34f 6704static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
f1170fd4
DA
6705{
6706 struct net_device *dev = data;
6707
6708 return upper_dev == dev;
6709}
6710
9ff162a8
JP
6711/**
6712 * netdev_has_upper_dev - Check if device is linked to an upper device
6713 * @dev: device
6714 * @upper_dev: upper device to check
6715 *
6716 * Find out if a device is linked to specified upper device and return true
6717 * in case it is. Note that this checks only immediate upper device,
6718 * not through a complete stack of devices. The caller must hold the RTNL lock.
6719 */
6720bool netdev_has_upper_dev(struct net_device *dev,
6721 struct net_device *upper_dev)
6722{
6723 ASSERT_RTNL();
6724
32b6d34f 6725 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
f1170fd4 6726 upper_dev);
9ff162a8
JP
6727}
6728EXPORT_SYMBOL(netdev_has_upper_dev);
6729
1a3f060c
DA
6730/**
6731 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6732 * @dev: device
6733 * @upper_dev: upper device to check
6734 *
6735 * Find out if a device is linked to specified upper device and return true
6736 * in case it is. Note that this checks the entire upper device chain.
6737 * The caller must hold rcu lock.
6738 */
6739
1a3f060c
DA
6740bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6741 struct net_device *upper_dev)
6742{
32b6d34f 6743 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
1a3f060c
DA
6744 upper_dev);
6745}
6746EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6747
9ff162a8
JP
6748/**
6749 * netdev_has_any_upper_dev - Check if device is linked to some device
6750 * @dev: device
6751 *
6752 * Find out if a device is linked to an upper device and return true in case
6753 * it is. The caller must hold the RTNL lock.
6754 */
25cc72a3 6755bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6756{
6757 ASSERT_RTNL();
6758
f1170fd4 6759 return !list_empty(&dev->adj_list.upper);
9ff162a8 6760}
25cc72a3 6761EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6762
6763/**
6764 * netdev_master_upper_dev_get - Get master upper device
6765 * @dev: device
6766 *
6767 * Find a master upper device and return pointer to it or NULL in case
6768 * it's not there. The caller must hold the RTNL lock.
6769 */
6770struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6771{
aa9d8560 6772 struct netdev_adjacent *upper;
9ff162a8
JP
6773
6774 ASSERT_RTNL();
6775
2f268f12 6776 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6777 return NULL;
6778
2f268f12 6779 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6780 struct netdev_adjacent, list);
9ff162a8
JP
6781 if (likely(upper->master))
6782 return upper->dev;
6783 return NULL;
6784}
6785EXPORT_SYMBOL(netdev_master_upper_dev_get);
6786
32b6d34f
TY
6787static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6788{
6789 struct netdev_adjacent *upper;
6790
6791 ASSERT_RTNL();
6792
6793 if (list_empty(&dev->adj_list.upper))
6794 return NULL;
6795
6796 upper = list_first_entry(&dev->adj_list.upper,
6797 struct netdev_adjacent, list);
6798 if (likely(upper->master) && !upper->ignore)
6799 return upper->dev;
6800 return NULL;
6801}
6802
0f524a80
DA
6803/**
6804 * netdev_has_any_lower_dev - Check if device is linked to some device
6805 * @dev: device
6806 *
6807 * Find out if a device is linked to a lower device and return true in case
6808 * it is. The caller must hold the RTNL lock.
6809 */
6810static bool netdev_has_any_lower_dev(struct net_device *dev)
6811{
6812 ASSERT_RTNL();
6813
6814 return !list_empty(&dev->adj_list.lower);
6815}
6816
b6ccba4c
VF
6817void *netdev_adjacent_get_private(struct list_head *adj_list)
6818{
6819 struct netdev_adjacent *adj;
6820
6821 adj = list_entry(adj_list, struct netdev_adjacent, list);
6822
6823 return adj->private;
6824}
6825EXPORT_SYMBOL(netdev_adjacent_get_private);
6826
44a40855
VY
6827/**
6828 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6829 * @dev: device
6830 * @iter: list_head ** of the current position
6831 *
6832 * Gets the next device from the dev's upper list, starting from iter
6833 * position. The caller must hold RCU read lock.
6834 */
6835struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6836 struct list_head **iter)
6837{
6838 struct netdev_adjacent *upper;
6839
6840 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6841
6842 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6843
6844 if (&upper->list == &dev->adj_list.upper)
6845 return NULL;
6846
6847 *iter = &upper->list;
6848
6849 return upper->dev;
6850}
6851EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6852
32b6d34f
TY
6853static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6854 struct list_head **iter,
6855 bool *ignore)
5343da4c
TY
6856{
6857 struct netdev_adjacent *upper;
6858
6859 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6860
6861 if (&upper->list == &dev->adj_list.upper)
6862 return NULL;
6863
6864 *iter = &upper->list;
32b6d34f 6865 *ignore = upper->ignore;
5343da4c
TY
6866
6867 return upper->dev;
6868}
6869
1a3f060c
DA
6870static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6871 struct list_head **iter)
6872{
6873 struct netdev_adjacent *upper;
6874
6875 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6876
6877 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6878
6879 if (&upper->list == &dev->adj_list.upper)
6880 return NULL;
6881
6882 *iter = &upper->list;
6883
6884 return upper->dev;
6885}
6886
32b6d34f
TY
6887static int __netdev_walk_all_upper_dev(struct net_device *dev,
6888 int (*fn)(struct net_device *dev,
6889 void *data),
6890 void *data)
5343da4c
TY
6891{
6892 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6893 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6894 int ret, cur = 0;
32b6d34f 6895 bool ignore;
5343da4c
TY
6896
6897 now = dev;
6898 iter = &dev->adj_list.upper;
6899
6900 while (1) {
6901 if (now != dev) {
6902 ret = fn(now, data);
6903 if (ret)
6904 return ret;
6905 }
6906
6907 next = NULL;
6908 while (1) {
32b6d34f 6909 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
6910 if (!udev)
6911 break;
32b6d34f
TY
6912 if (ignore)
6913 continue;
5343da4c
TY
6914
6915 next = udev;
6916 niter = &udev->adj_list.upper;
6917 dev_stack[cur] = now;
6918 iter_stack[cur++] = iter;
6919 break;
6920 }
6921
6922 if (!next) {
6923 if (!cur)
6924 return 0;
6925 next = dev_stack[--cur];
6926 niter = iter_stack[cur];
6927 }
6928
6929 now = next;
6930 iter = niter;
6931 }
6932
6933 return 0;
6934}
6935
1a3f060c
DA
6936int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6937 int (*fn)(struct net_device *dev,
6938 void *data),
6939 void *data)
6940{
5343da4c
TY
6941 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6942 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6943 int ret, cur = 0;
1a3f060c 6944
5343da4c
TY
6945 now = dev;
6946 iter = &dev->adj_list.upper;
1a3f060c 6947
5343da4c
TY
6948 while (1) {
6949 if (now != dev) {
6950 ret = fn(now, data);
6951 if (ret)
6952 return ret;
6953 }
6954
6955 next = NULL;
6956 while (1) {
6957 udev = netdev_next_upper_dev_rcu(now, &iter);
6958 if (!udev)
6959 break;
6960
6961 next = udev;
6962 niter = &udev->adj_list.upper;
6963 dev_stack[cur] = now;
6964 iter_stack[cur++] = iter;
6965 break;
6966 }
6967
6968 if (!next) {
6969 if (!cur)
6970 return 0;
6971 next = dev_stack[--cur];
6972 niter = iter_stack[cur];
6973 }
6974
6975 now = next;
6976 iter = niter;
1a3f060c
DA
6977 }
6978
6979 return 0;
6980}
6981EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6982
32b6d34f
TY
6983static bool __netdev_has_upper_dev(struct net_device *dev,
6984 struct net_device *upper_dev)
6985{
6986 ASSERT_RTNL();
6987
6988 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6989 upper_dev);
6990}
6991
31088a11
VF
6992/**
6993 * netdev_lower_get_next_private - Get the next ->private from the
6994 * lower neighbour list
6995 * @dev: device
6996 * @iter: list_head ** of the current position
6997 *
6998 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6999 * list, starting from iter position. The caller must hold either hold the
7000 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 7001 * list will remain unchanged.
31088a11
VF
7002 */
7003void *netdev_lower_get_next_private(struct net_device *dev,
7004 struct list_head **iter)
7005{
7006 struct netdev_adjacent *lower;
7007
7008 lower = list_entry(*iter, struct netdev_adjacent, list);
7009
7010 if (&lower->list == &dev->adj_list.lower)
7011 return NULL;
7012
6859e7df 7013 *iter = lower->list.next;
31088a11
VF
7014
7015 return lower->private;
7016}
7017EXPORT_SYMBOL(netdev_lower_get_next_private);
7018
7019/**
7020 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7021 * lower neighbour list, RCU
7022 * variant
7023 * @dev: device
7024 * @iter: list_head ** of the current position
7025 *
7026 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7027 * list, starting from iter position. The caller must hold RCU read lock.
7028 */
7029void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7030 struct list_head **iter)
7031{
7032 struct netdev_adjacent *lower;
7033
7034 WARN_ON_ONCE(!rcu_read_lock_held());
7035
7036 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7037
7038 if (&lower->list == &dev->adj_list.lower)
7039 return NULL;
7040
6859e7df 7041 *iter = &lower->list;
31088a11
VF
7042
7043 return lower->private;
7044}
7045EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7046
4085ebe8
VY
7047/**
7048 * netdev_lower_get_next - Get the next device from the lower neighbour
7049 * list
7050 * @dev: device
7051 * @iter: list_head ** of the current position
7052 *
7053 * Gets the next netdev_adjacent from the dev's lower neighbour
7054 * list, starting from iter position. The caller must hold RTNL lock or
7055 * its own locking that guarantees that the neighbour lower
b469139e 7056 * list will remain unchanged.
4085ebe8
VY
7057 */
7058void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7059{
7060 struct netdev_adjacent *lower;
7061
cfdd28be 7062 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7063
7064 if (&lower->list == &dev->adj_list.lower)
7065 return NULL;
7066
cfdd28be 7067 *iter = lower->list.next;
4085ebe8
VY
7068
7069 return lower->dev;
7070}
7071EXPORT_SYMBOL(netdev_lower_get_next);
7072
1a3f060c
DA
7073static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7074 struct list_head **iter)
7075{
7076 struct netdev_adjacent *lower;
7077
46b5ab1a 7078 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7079
7080 if (&lower->list == &dev->adj_list.lower)
7081 return NULL;
7082
46b5ab1a 7083 *iter = &lower->list;
1a3f060c
DA
7084
7085 return lower->dev;
7086}
7087
32b6d34f
TY
7088static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7089 struct list_head **iter,
7090 bool *ignore)
7091{
7092 struct netdev_adjacent *lower;
7093
7094 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7095
7096 if (&lower->list == &dev->adj_list.lower)
7097 return NULL;
7098
7099 *iter = &lower->list;
7100 *ignore = lower->ignore;
7101
7102 return lower->dev;
7103}
7104
1a3f060c
DA
7105int netdev_walk_all_lower_dev(struct net_device *dev,
7106 int (*fn)(struct net_device *dev,
7107 void *data),
7108 void *data)
7109{
5343da4c
TY
7110 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7111 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7112 int ret, cur = 0;
1a3f060c 7113
5343da4c
TY
7114 now = dev;
7115 iter = &dev->adj_list.lower;
1a3f060c 7116
5343da4c
TY
7117 while (1) {
7118 if (now != dev) {
7119 ret = fn(now, data);
7120 if (ret)
7121 return ret;
7122 }
7123
7124 next = NULL;
7125 while (1) {
7126 ldev = netdev_next_lower_dev(now, &iter);
7127 if (!ldev)
7128 break;
7129
7130 next = ldev;
7131 niter = &ldev->adj_list.lower;
7132 dev_stack[cur] = now;
7133 iter_stack[cur++] = iter;
7134 break;
7135 }
7136
7137 if (!next) {
7138 if (!cur)
7139 return 0;
7140 next = dev_stack[--cur];
7141 niter = iter_stack[cur];
7142 }
7143
7144 now = next;
7145 iter = niter;
1a3f060c
DA
7146 }
7147
7148 return 0;
7149}
7150EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7151
32b6d34f
TY
7152static int __netdev_walk_all_lower_dev(struct net_device *dev,
7153 int (*fn)(struct net_device *dev,
7154 void *data),
7155 void *data)
7156{
7157 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7158 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7159 int ret, cur = 0;
7160 bool ignore;
7161
7162 now = dev;
7163 iter = &dev->adj_list.lower;
7164
7165 while (1) {
7166 if (now != dev) {
7167 ret = fn(now, data);
7168 if (ret)
7169 return ret;
7170 }
7171
7172 next = NULL;
7173 while (1) {
7174 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7175 if (!ldev)
7176 break;
7177 if (ignore)
7178 continue;
7179
7180 next = ldev;
7181 niter = &ldev->adj_list.lower;
7182 dev_stack[cur] = now;
7183 iter_stack[cur++] = iter;
7184 break;
7185 }
7186
7187 if (!next) {
7188 if (!cur)
7189 return 0;
7190 next = dev_stack[--cur];
7191 niter = iter_stack[cur];
7192 }
7193
7194 now = next;
7195 iter = niter;
7196 }
7197
7198 return 0;
7199}
7200
7151affe
TY
7201struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7202 struct list_head **iter)
1a3f060c
DA
7203{
7204 struct netdev_adjacent *lower;
7205
7206 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7207 if (&lower->list == &dev->adj_list.lower)
7208 return NULL;
7209
7210 *iter = &lower->list;
7211
7212 return lower->dev;
7213}
7151affe 7214EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7215
5343da4c
TY
7216static u8 __netdev_upper_depth(struct net_device *dev)
7217{
7218 struct net_device *udev;
7219 struct list_head *iter;
7220 u8 max_depth = 0;
32b6d34f 7221 bool ignore;
5343da4c
TY
7222
7223 for (iter = &dev->adj_list.upper,
32b6d34f 7224 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7225 udev;
32b6d34f
TY
7226 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7227 if (ignore)
7228 continue;
5343da4c
TY
7229 if (max_depth < udev->upper_level)
7230 max_depth = udev->upper_level;
7231 }
7232
7233 return max_depth;
7234}
7235
7236static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7237{
7238 struct net_device *ldev;
7239 struct list_head *iter;
5343da4c 7240 u8 max_depth = 0;
32b6d34f 7241 bool ignore;
1a3f060c
DA
7242
7243 for (iter = &dev->adj_list.lower,
32b6d34f 7244 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7245 ldev;
32b6d34f
TY
7246 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7247 if (ignore)
7248 continue;
5343da4c
TY
7249 if (max_depth < ldev->lower_level)
7250 max_depth = ldev->lower_level;
7251 }
1a3f060c 7252
5343da4c
TY
7253 return max_depth;
7254}
7255
7256static int __netdev_update_upper_level(struct net_device *dev, void *data)
7257{
7258 dev->upper_level = __netdev_upper_depth(dev) + 1;
7259 return 0;
7260}
7261
7262static int __netdev_update_lower_level(struct net_device *dev, void *data)
7263{
7264 dev->lower_level = __netdev_lower_depth(dev) + 1;
7265 return 0;
7266}
7267
7268int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7269 int (*fn)(struct net_device *dev,
7270 void *data),
7271 void *data)
7272{
7273 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7274 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7275 int ret, cur = 0;
7276
7277 now = dev;
7278 iter = &dev->adj_list.lower;
7279
7280 while (1) {
7281 if (now != dev) {
7282 ret = fn(now, data);
7283 if (ret)
7284 return ret;
7285 }
7286
7287 next = NULL;
7288 while (1) {
7289 ldev = netdev_next_lower_dev_rcu(now, &iter);
7290 if (!ldev)
7291 break;
7292
7293 next = ldev;
7294 niter = &ldev->adj_list.lower;
7295 dev_stack[cur] = now;
7296 iter_stack[cur++] = iter;
7297 break;
7298 }
7299
7300 if (!next) {
7301 if (!cur)
7302 return 0;
7303 next = dev_stack[--cur];
7304 niter = iter_stack[cur];
7305 }
7306
7307 now = next;
7308 iter = niter;
1a3f060c
DA
7309 }
7310
7311 return 0;
7312}
7313EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7314
e001bfad 7315/**
7316 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7317 * lower neighbour list, RCU
7318 * variant
7319 * @dev: device
7320 *
7321 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7322 * list. The caller must hold RCU read lock.
7323 */
7324void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7325{
7326 struct netdev_adjacent *lower;
7327
7328 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7329 struct netdev_adjacent, list);
7330 if (lower)
7331 return lower->private;
7332 return NULL;
7333}
7334EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7335
9ff162a8
JP
7336/**
7337 * netdev_master_upper_dev_get_rcu - Get master upper device
7338 * @dev: device
7339 *
7340 * Find a master upper device and return pointer to it or NULL in case
7341 * it's not there. The caller must hold the RCU read lock.
7342 */
7343struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7344{
aa9d8560 7345 struct netdev_adjacent *upper;
9ff162a8 7346
2f268f12 7347 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7348 struct netdev_adjacent, list);
9ff162a8
JP
7349 if (upper && likely(upper->master))
7350 return upper->dev;
7351 return NULL;
7352}
7353EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7354
0a59f3a9 7355static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7356 struct net_device *adj_dev,
7357 struct list_head *dev_list)
7358{
7359 char linkname[IFNAMSIZ+7];
f4563a75 7360
3ee32707
VF
7361 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7362 "upper_%s" : "lower_%s", adj_dev->name);
7363 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7364 linkname);
7365}
0a59f3a9 7366static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7367 char *name,
7368 struct list_head *dev_list)
7369{
7370 char linkname[IFNAMSIZ+7];
f4563a75 7371
3ee32707
VF
7372 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7373 "upper_%s" : "lower_%s", name);
7374 sysfs_remove_link(&(dev->dev.kobj), linkname);
7375}
7376
7ce64c79
AF
7377static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7378 struct net_device *adj_dev,
7379 struct list_head *dev_list)
7380{
7381 return (dev_list == &dev->adj_list.upper ||
7382 dev_list == &dev->adj_list.lower) &&
7383 net_eq(dev_net(dev), dev_net(adj_dev));
7384}
3ee32707 7385
5d261913
VF
7386static int __netdev_adjacent_dev_insert(struct net_device *dev,
7387 struct net_device *adj_dev,
7863c054 7388 struct list_head *dev_list,
402dae96 7389 void *private, bool master)
5d261913
VF
7390{
7391 struct netdev_adjacent *adj;
842d67a7 7392 int ret;
5d261913 7393
6ea29da1 7394 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7395
7396 if (adj) {
790510d9 7397 adj->ref_nr += 1;
67b62f98
DA
7398 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7399 dev->name, adj_dev->name, adj->ref_nr);
7400
5d261913
VF
7401 return 0;
7402 }
7403
7404 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7405 if (!adj)
7406 return -ENOMEM;
7407
7408 adj->dev = adj_dev;
7409 adj->master = master;
790510d9 7410 adj->ref_nr = 1;
402dae96 7411 adj->private = private;
32b6d34f 7412 adj->ignore = false;
5d261913 7413 dev_hold(adj_dev);
2f268f12 7414
67b62f98
DA
7415 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7416 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7417
7ce64c79 7418 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7419 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7420 if (ret)
7421 goto free_adj;
7422 }
7423
7863c054 7424 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7425 if (master) {
7426 ret = sysfs_create_link(&(dev->dev.kobj),
7427 &(adj_dev->dev.kobj), "master");
7428 if (ret)
5831d66e 7429 goto remove_symlinks;
842d67a7 7430
7863c054 7431 list_add_rcu(&adj->list, dev_list);
842d67a7 7432 } else {
7863c054 7433 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7434 }
5d261913
VF
7435
7436 return 0;
842d67a7 7437
5831d66e 7438remove_symlinks:
7ce64c79 7439 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7440 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7441free_adj:
7442 kfree(adj);
974daef7 7443 dev_put(adj_dev);
842d67a7
VF
7444
7445 return ret;
5d261913
VF
7446}
7447
1d143d9f 7448static void __netdev_adjacent_dev_remove(struct net_device *dev,
7449 struct net_device *adj_dev,
93409033 7450 u16 ref_nr,
1d143d9f 7451 struct list_head *dev_list)
5d261913
VF
7452{
7453 struct netdev_adjacent *adj;
7454
67b62f98
DA
7455 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7456 dev->name, adj_dev->name, ref_nr);
7457
6ea29da1 7458 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7459
2f268f12 7460 if (!adj) {
67b62f98 7461 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7462 dev->name, adj_dev->name);
67b62f98
DA
7463 WARN_ON(1);
7464 return;
2f268f12 7465 }
5d261913 7466
93409033 7467 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7468 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7469 dev->name, adj_dev->name, ref_nr,
7470 adj->ref_nr - ref_nr);
93409033 7471 adj->ref_nr -= ref_nr;
5d261913
VF
7472 return;
7473 }
7474
842d67a7
VF
7475 if (adj->master)
7476 sysfs_remove_link(&(dev->dev.kobj), "master");
7477
7ce64c79 7478 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7479 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7480
5d261913 7481 list_del_rcu(&adj->list);
67b62f98 7482 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7483 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7484 dev_put(adj_dev);
7485 kfree_rcu(adj, rcu);
7486}
7487
1d143d9f 7488static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7489 struct net_device *upper_dev,
7490 struct list_head *up_list,
7491 struct list_head *down_list,
7492 void *private, bool master)
5d261913
VF
7493{
7494 int ret;
7495
790510d9 7496 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7497 private, master);
5d261913
VF
7498 if (ret)
7499 return ret;
7500
790510d9 7501 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7502 private, false);
5d261913 7503 if (ret) {
790510d9 7504 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7505 return ret;
7506 }
7507
7508 return 0;
7509}
7510
1d143d9f 7511static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7512 struct net_device *upper_dev,
93409033 7513 u16 ref_nr,
1d143d9f 7514 struct list_head *up_list,
7515 struct list_head *down_list)
5d261913 7516{
93409033
AC
7517 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7518 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7519}
7520
1d143d9f 7521static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7522 struct net_device *upper_dev,
7523 void *private, bool master)
2f268f12 7524{
f1170fd4
DA
7525 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7526 &dev->adj_list.upper,
7527 &upper_dev->adj_list.lower,
7528 private, master);
5d261913
VF
7529}
7530
1d143d9f 7531static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7532 struct net_device *upper_dev)
2f268f12 7533{
93409033 7534 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7535 &dev->adj_list.upper,
7536 &upper_dev->adj_list.lower);
7537}
5d261913 7538
9ff162a8 7539static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7540 struct net_device *upper_dev, bool master,
42ab19ee
DA
7541 void *upper_priv, void *upper_info,
7542 struct netlink_ext_ack *extack)
9ff162a8 7543{
51d0c047
DA
7544 struct netdev_notifier_changeupper_info changeupper_info = {
7545 .info = {
7546 .dev = dev,
42ab19ee 7547 .extack = extack,
51d0c047
DA
7548 },
7549 .upper_dev = upper_dev,
7550 .master = master,
7551 .linking = true,
7552 .upper_info = upper_info,
7553 };
50d629e7 7554 struct net_device *master_dev;
5d261913 7555 int ret = 0;
9ff162a8
JP
7556
7557 ASSERT_RTNL();
7558
7559 if (dev == upper_dev)
7560 return -EBUSY;
7561
7562 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7563 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7564 return -EBUSY;
7565
5343da4c
TY
7566 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7567 return -EMLINK;
7568
50d629e7 7569 if (!master) {
32b6d34f 7570 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7571 return -EEXIST;
7572 } else {
32b6d34f 7573 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7574 if (master_dev)
7575 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7576 }
9ff162a8 7577
51d0c047 7578 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7579 &changeupper_info.info);
7580 ret = notifier_to_errno(ret);
7581 if (ret)
7582 return ret;
7583
6dffb044 7584 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7585 master);
5d261913
VF
7586 if (ret)
7587 return ret;
9ff162a8 7588
51d0c047 7589 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7590 &changeupper_info.info);
7591 ret = notifier_to_errno(ret);
7592 if (ret)
f1170fd4 7593 goto rollback;
b03804e7 7594
5343da4c 7595 __netdev_update_upper_level(dev, NULL);
32b6d34f 7596 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7597
7598 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7599 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7600 NULL);
5343da4c 7601
9ff162a8 7602 return 0;
5d261913 7603
f1170fd4 7604rollback:
2f268f12 7605 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7606
7607 return ret;
9ff162a8
JP
7608}
7609
7610/**
7611 * netdev_upper_dev_link - Add a link to the upper device
7612 * @dev: device
7613 * @upper_dev: new upper device
7a006d59 7614 * @extack: netlink extended ack
9ff162a8
JP
7615 *
7616 * Adds a link to device which is upper to this one. The caller must hold
7617 * the RTNL lock. On a failure a negative errno code is returned.
7618 * On success the reference counts are adjusted and the function
7619 * returns zero.
7620 */
7621int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7622 struct net_device *upper_dev,
7623 struct netlink_ext_ack *extack)
9ff162a8 7624{
42ab19ee
DA
7625 return __netdev_upper_dev_link(dev, upper_dev, false,
7626 NULL, NULL, extack);
9ff162a8
JP
7627}
7628EXPORT_SYMBOL(netdev_upper_dev_link);
7629
7630/**
7631 * netdev_master_upper_dev_link - Add a master link to the upper device
7632 * @dev: device
7633 * @upper_dev: new upper device
6dffb044 7634 * @upper_priv: upper device private
29bf24af 7635 * @upper_info: upper info to be passed down via notifier
7a006d59 7636 * @extack: netlink extended ack
9ff162a8
JP
7637 *
7638 * Adds a link to device which is upper to this one. In this case, only
7639 * one master upper device can be linked, although other non-master devices
7640 * might be linked as well. The caller must hold the RTNL lock.
7641 * On a failure a negative errno code is returned. On success the reference
7642 * counts are adjusted and the function returns zero.
7643 */
7644int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7645 struct net_device *upper_dev,
42ab19ee
DA
7646 void *upper_priv, void *upper_info,
7647 struct netlink_ext_ack *extack)
9ff162a8 7648{
29bf24af 7649 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7650 upper_priv, upper_info, extack);
9ff162a8
JP
7651}
7652EXPORT_SYMBOL(netdev_master_upper_dev_link);
7653
7654/**
7655 * netdev_upper_dev_unlink - Removes a link to upper device
7656 * @dev: device
7657 * @upper_dev: new upper device
7658 *
7659 * Removes a link to device which is upper to this one. The caller must hold
7660 * the RTNL lock.
7661 */
7662void netdev_upper_dev_unlink(struct net_device *dev,
7663 struct net_device *upper_dev)
7664{
51d0c047
DA
7665 struct netdev_notifier_changeupper_info changeupper_info = {
7666 .info = {
7667 .dev = dev,
7668 },
7669 .upper_dev = upper_dev,
7670 .linking = false,
7671 };
f4563a75 7672
9ff162a8
JP
7673 ASSERT_RTNL();
7674
0e4ead9d 7675 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7676
51d0c047 7677 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7678 &changeupper_info.info);
7679
2f268f12 7680 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7681
51d0c047 7682 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7683 &changeupper_info.info);
5343da4c
TY
7684
7685 __netdev_update_upper_level(dev, NULL);
32b6d34f 7686 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7687
7688 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7689 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7690 NULL);
9ff162a8
JP
7691}
7692EXPORT_SYMBOL(netdev_upper_dev_unlink);
7693
32b6d34f
TY
7694static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7695 struct net_device *lower_dev,
7696 bool val)
7697{
7698 struct netdev_adjacent *adj;
7699
7700 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7701 if (adj)
7702 adj->ignore = val;
7703
7704 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7705 if (adj)
7706 adj->ignore = val;
7707}
7708
7709static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7710 struct net_device *lower_dev)
7711{
7712 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7713}
7714
7715static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7716 struct net_device *lower_dev)
7717{
7718 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7719}
7720
7721int netdev_adjacent_change_prepare(struct net_device *old_dev,
7722 struct net_device *new_dev,
7723 struct net_device *dev,
7724 struct netlink_ext_ack *extack)
7725{
7726 int err;
7727
7728 if (!new_dev)
7729 return 0;
7730
7731 if (old_dev && new_dev != old_dev)
7732 netdev_adjacent_dev_disable(dev, old_dev);
7733
7734 err = netdev_upper_dev_link(new_dev, dev, extack);
7735 if (err) {
7736 if (old_dev && new_dev != old_dev)
7737 netdev_adjacent_dev_enable(dev, old_dev);
7738 return err;
7739 }
7740
7741 return 0;
7742}
7743EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7744
7745void netdev_adjacent_change_commit(struct net_device *old_dev,
7746 struct net_device *new_dev,
7747 struct net_device *dev)
7748{
7749 if (!new_dev || !old_dev)
7750 return;
7751
7752 if (new_dev == old_dev)
7753 return;
7754
7755 netdev_adjacent_dev_enable(dev, old_dev);
7756 netdev_upper_dev_unlink(old_dev, dev);
7757}
7758EXPORT_SYMBOL(netdev_adjacent_change_commit);
7759
7760void netdev_adjacent_change_abort(struct net_device *old_dev,
7761 struct net_device *new_dev,
7762 struct net_device *dev)
7763{
7764 if (!new_dev)
7765 return;
7766
7767 if (old_dev && new_dev != old_dev)
7768 netdev_adjacent_dev_enable(dev, old_dev);
7769
7770 netdev_upper_dev_unlink(new_dev, dev);
7771}
7772EXPORT_SYMBOL(netdev_adjacent_change_abort);
7773
61bd3857
MS
7774/**
7775 * netdev_bonding_info_change - Dispatch event about slave change
7776 * @dev: device
4a26e453 7777 * @bonding_info: info to dispatch
61bd3857
MS
7778 *
7779 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7780 * The caller must hold the RTNL lock.
7781 */
7782void netdev_bonding_info_change(struct net_device *dev,
7783 struct netdev_bonding_info *bonding_info)
7784{
51d0c047
DA
7785 struct netdev_notifier_bonding_info info = {
7786 .info.dev = dev,
7787 };
61bd3857
MS
7788
7789 memcpy(&info.bonding_info, bonding_info,
7790 sizeof(struct netdev_bonding_info));
51d0c047 7791 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7792 &info.info);
7793}
7794EXPORT_SYMBOL(netdev_bonding_info_change);
7795
2ce1ee17 7796static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7797{
7798 struct netdev_adjacent *iter;
7799
7800 struct net *net = dev_net(dev);
7801
7802 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7803 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7804 continue;
7805 netdev_adjacent_sysfs_add(iter->dev, dev,
7806 &iter->dev->adj_list.lower);
7807 netdev_adjacent_sysfs_add(dev, iter->dev,
7808 &dev->adj_list.upper);
7809 }
7810
7811 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7812 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7813 continue;
7814 netdev_adjacent_sysfs_add(iter->dev, dev,
7815 &iter->dev->adj_list.upper);
7816 netdev_adjacent_sysfs_add(dev, iter->dev,
7817 &dev->adj_list.lower);
7818 }
7819}
7820
2ce1ee17 7821static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
7822{
7823 struct netdev_adjacent *iter;
7824
7825 struct net *net = dev_net(dev);
7826
7827 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7828 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7829 continue;
7830 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7831 &iter->dev->adj_list.lower);
7832 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7833 &dev->adj_list.upper);
7834 }
7835
7836 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7837 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7838 continue;
7839 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7840 &iter->dev->adj_list.upper);
7841 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7842 &dev->adj_list.lower);
7843 }
7844}
7845
5bb025fa 7846void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 7847{
5bb025fa 7848 struct netdev_adjacent *iter;
402dae96 7849
4c75431a
AF
7850 struct net *net = dev_net(dev);
7851
5bb025fa 7852 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7853 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7854 continue;
5bb025fa
VF
7855 netdev_adjacent_sysfs_del(iter->dev, oldname,
7856 &iter->dev->adj_list.lower);
7857 netdev_adjacent_sysfs_add(iter->dev, dev,
7858 &iter->dev->adj_list.lower);
7859 }
402dae96 7860
5bb025fa 7861 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7862 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7863 continue;
5bb025fa
VF
7864 netdev_adjacent_sysfs_del(iter->dev, oldname,
7865 &iter->dev->adj_list.upper);
7866 netdev_adjacent_sysfs_add(iter->dev, dev,
7867 &iter->dev->adj_list.upper);
7868 }
402dae96 7869}
402dae96
VF
7870
7871void *netdev_lower_dev_get_private(struct net_device *dev,
7872 struct net_device *lower_dev)
7873{
7874 struct netdev_adjacent *lower;
7875
7876 if (!lower_dev)
7877 return NULL;
6ea29da1 7878 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
7879 if (!lower)
7880 return NULL;
7881
7882 return lower->private;
7883}
7884EXPORT_SYMBOL(netdev_lower_dev_get_private);
7885
4085ebe8 7886
04d48266
JP
7887/**
7888 * netdev_lower_change - Dispatch event about lower device state change
7889 * @lower_dev: device
7890 * @lower_state_info: state to dispatch
7891 *
7892 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7893 * The caller must hold the RTNL lock.
7894 */
7895void netdev_lower_state_changed(struct net_device *lower_dev,
7896 void *lower_state_info)
7897{
51d0c047
DA
7898 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7899 .info.dev = lower_dev,
7900 };
04d48266
JP
7901
7902 ASSERT_RTNL();
7903 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 7904 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
7905 &changelowerstate_info.info);
7906}
7907EXPORT_SYMBOL(netdev_lower_state_changed);
7908
b6c40d68
PM
7909static void dev_change_rx_flags(struct net_device *dev, int flags)
7910{
d314774c
SH
7911 const struct net_device_ops *ops = dev->netdev_ops;
7912
d2615bf4 7913 if (ops->ndo_change_rx_flags)
d314774c 7914 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
7915}
7916
991fb3f7 7917static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 7918{
b536db93 7919 unsigned int old_flags = dev->flags;
d04a48b0
EB
7920 kuid_t uid;
7921 kgid_t gid;
1da177e4 7922
24023451
PM
7923 ASSERT_RTNL();
7924
dad9b335
WC
7925 dev->flags |= IFF_PROMISC;
7926 dev->promiscuity += inc;
7927 if (dev->promiscuity == 0) {
7928 /*
7929 * Avoid overflow.
7930 * If inc causes overflow, untouch promisc and return error.
7931 */
7932 if (inc < 0)
7933 dev->flags &= ~IFF_PROMISC;
7934 else {
7935 dev->promiscuity -= inc;
7b6cd1ce
JP
7936 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7937 dev->name);
dad9b335
WC
7938 return -EOVERFLOW;
7939 }
7940 }
52609c0b 7941 if (dev->flags != old_flags) {
7b6cd1ce
JP
7942 pr_info("device %s %s promiscuous mode\n",
7943 dev->name,
7944 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
7945 if (audit_enabled) {
7946 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
7947 audit_log(audit_context(), GFP_ATOMIC,
7948 AUDIT_ANOM_PROMISCUOUS,
7949 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7950 dev->name, (dev->flags & IFF_PROMISC),
7951 (old_flags & IFF_PROMISC),
7952 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7953 from_kuid(&init_user_ns, uid),
7954 from_kgid(&init_user_ns, gid),
7955 audit_get_sessionid(current));
8192b0c4 7956 }
24023451 7957
b6c40d68 7958 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 7959 }
991fb3f7
ND
7960 if (notify)
7961 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 7962 return 0;
1da177e4
LT
7963}
7964
4417da66
PM
7965/**
7966 * dev_set_promiscuity - update promiscuity count on a device
7967 * @dev: device
7968 * @inc: modifier
7969 *
7970 * Add or remove promiscuity from a device. While the count in the device
7971 * remains above zero the interface remains promiscuous. Once it hits zero
7972 * the device reverts back to normal filtering operation. A negative inc
7973 * value is used to drop promiscuity on the device.
dad9b335 7974 * Return 0 if successful or a negative errno code on error.
4417da66 7975 */
dad9b335 7976int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 7977{
b536db93 7978 unsigned int old_flags = dev->flags;
dad9b335 7979 int err;
4417da66 7980
991fb3f7 7981 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 7982 if (err < 0)
dad9b335 7983 return err;
4417da66
PM
7984 if (dev->flags != old_flags)
7985 dev_set_rx_mode(dev);
dad9b335 7986 return err;
4417da66 7987}
d1b19dff 7988EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 7989
991fb3f7 7990static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 7991{
991fb3f7 7992 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 7993
24023451
PM
7994 ASSERT_RTNL();
7995
1da177e4 7996 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
7997 dev->allmulti += inc;
7998 if (dev->allmulti == 0) {
7999 /*
8000 * Avoid overflow.
8001 * If inc causes overflow, untouch allmulti and return error.
8002 */
8003 if (inc < 0)
8004 dev->flags &= ~IFF_ALLMULTI;
8005 else {
8006 dev->allmulti -= inc;
7b6cd1ce
JP
8007 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8008 dev->name);
dad9b335
WC
8009 return -EOVERFLOW;
8010 }
8011 }
24023451 8012 if (dev->flags ^ old_flags) {
b6c40d68 8013 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8014 dev_set_rx_mode(dev);
991fb3f7
ND
8015 if (notify)
8016 __dev_notify_flags(dev, old_flags,
8017 dev->gflags ^ old_gflags);
24023451 8018 }
dad9b335 8019 return 0;
4417da66 8020}
991fb3f7
ND
8021
8022/**
8023 * dev_set_allmulti - update allmulti count on a device
8024 * @dev: device
8025 * @inc: modifier
8026 *
8027 * Add or remove reception of all multicast frames to a device. While the
8028 * count in the device remains above zero the interface remains listening
8029 * to all interfaces. Once it hits zero the device reverts back to normal
8030 * filtering operation. A negative @inc value is used to drop the counter
8031 * when releasing a resource needing all multicasts.
8032 * Return 0 if successful or a negative errno code on error.
8033 */
8034
8035int dev_set_allmulti(struct net_device *dev, int inc)
8036{
8037 return __dev_set_allmulti(dev, inc, true);
8038}
d1b19dff 8039EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8040
8041/*
8042 * Upload unicast and multicast address lists to device and
8043 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8044 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8045 * are present.
8046 */
8047void __dev_set_rx_mode(struct net_device *dev)
8048{
d314774c
SH
8049 const struct net_device_ops *ops = dev->netdev_ops;
8050
4417da66
PM
8051 /* dev_open will call this function so the list will stay sane. */
8052 if (!(dev->flags&IFF_UP))
8053 return;
8054
8055 if (!netif_device_present(dev))
40b77c94 8056 return;
4417da66 8057
01789349 8058 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8059 /* Unicast addresses changes may only happen under the rtnl,
8060 * therefore calling __dev_set_promiscuity here is safe.
8061 */
32e7bfc4 8062 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8063 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8064 dev->uc_promisc = true;
32e7bfc4 8065 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8066 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8067 dev->uc_promisc = false;
4417da66 8068 }
4417da66 8069 }
01789349
JP
8070
8071 if (ops->ndo_set_rx_mode)
8072 ops->ndo_set_rx_mode(dev);
4417da66
PM
8073}
8074
8075void dev_set_rx_mode(struct net_device *dev)
8076{
b9e40857 8077 netif_addr_lock_bh(dev);
4417da66 8078 __dev_set_rx_mode(dev);
b9e40857 8079 netif_addr_unlock_bh(dev);
1da177e4
LT
8080}
8081
f0db275a
SH
8082/**
8083 * dev_get_flags - get flags reported to userspace
8084 * @dev: device
8085 *
8086 * Get the combination of flag bits exported through APIs to userspace.
8087 */
95c96174 8088unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8089{
95c96174 8090 unsigned int flags;
1da177e4
LT
8091
8092 flags = (dev->flags & ~(IFF_PROMISC |
8093 IFF_ALLMULTI |
b00055aa
SR
8094 IFF_RUNNING |
8095 IFF_LOWER_UP |
8096 IFF_DORMANT)) |
1da177e4
LT
8097 (dev->gflags & (IFF_PROMISC |
8098 IFF_ALLMULTI));
8099
b00055aa
SR
8100 if (netif_running(dev)) {
8101 if (netif_oper_up(dev))
8102 flags |= IFF_RUNNING;
8103 if (netif_carrier_ok(dev))
8104 flags |= IFF_LOWER_UP;
8105 if (netif_dormant(dev))
8106 flags |= IFF_DORMANT;
8107 }
1da177e4
LT
8108
8109 return flags;
8110}
d1b19dff 8111EXPORT_SYMBOL(dev_get_flags);
1da177e4 8112
6d040321
PM
8113int __dev_change_flags(struct net_device *dev, unsigned int flags,
8114 struct netlink_ext_ack *extack)
1da177e4 8115{
b536db93 8116 unsigned int old_flags = dev->flags;
bd380811 8117 int ret;
1da177e4 8118
24023451
PM
8119 ASSERT_RTNL();
8120
1da177e4
LT
8121 /*
8122 * Set the flags on our device.
8123 */
8124
8125 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8126 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8127 IFF_AUTOMEDIA)) |
8128 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8129 IFF_ALLMULTI));
8130
8131 /*
8132 * Load in the correct multicast list now the flags have changed.
8133 */
8134
b6c40d68
PM
8135 if ((old_flags ^ flags) & IFF_MULTICAST)
8136 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8137
4417da66 8138 dev_set_rx_mode(dev);
1da177e4
LT
8139
8140 /*
8141 * Have we downed the interface. We handle IFF_UP ourselves
8142 * according to user attempts to set it, rather than blindly
8143 * setting it.
8144 */
8145
8146 ret = 0;
7051b88a 8147 if ((old_flags ^ flags) & IFF_UP) {
8148 if (old_flags & IFF_UP)
8149 __dev_close(dev);
8150 else
40c900aa 8151 ret = __dev_open(dev, extack);
7051b88a 8152 }
1da177e4 8153
1da177e4 8154 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8155 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8156 unsigned int old_flags = dev->flags;
d1b19dff 8157
1da177e4 8158 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8159
8160 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8161 if (dev->flags != old_flags)
8162 dev_set_rx_mode(dev);
1da177e4
LT
8163 }
8164
8165 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8166 * is important. Some (broken) drivers set IFF_PROMISC, when
8167 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8168 */
8169 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8170 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8171
1da177e4 8172 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8173 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8174 }
8175
bd380811
PM
8176 return ret;
8177}
8178
a528c219
ND
8179void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8180 unsigned int gchanges)
bd380811
PM
8181{
8182 unsigned int changes = dev->flags ^ old_flags;
8183
a528c219 8184 if (gchanges)
7f294054 8185 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8186
bd380811
PM
8187 if (changes & IFF_UP) {
8188 if (dev->flags & IFF_UP)
8189 call_netdevice_notifiers(NETDEV_UP, dev);
8190 else
8191 call_netdevice_notifiers(NETDEV_DOWN, dev);
8192 }
8193
8194 if (dev->flags & IFF_UP &&
be9efd36 8195 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8196 struct netdev_notifier_change_info change_info = {
8197 .info = {
8198 .dev = dev,
8199 },
8200 .flags_changed = changes,
8201 };
be9efd36 8202
51d0c047 8203 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8204 }
bd380811
PM
8205}
8206
8207/**
8208 * dev_change_flags - change device settings
8209 * @dev: device
8210 * @flags: device state flags
567c5e13 8211 * @extack: netlink extended ack
bd380811
PM
8212 *
8213 * Change settings on device based state flags. The flags are
8214 * in the userspace exported format.
8215 */
567c5e13
PM
8216int dev_change_flags(struct net_device *dev, unsigned int flags,
8217 struct netlink_ext_ack *extack)
bd380811 8218{
b536db93 8219 int ret;
991fb3f7 8220 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8221
6d040321 8222 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8223 if (ret < 0)
8224 return ret;
8225
991fb3f7 8226 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8227 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8228 return ret;
8229}
d1b19dff 8230EXPORT_SYMBOL(dev_change_flags);
1da177e4 8231
f51048c3 8232int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8233{
8234 const struct net_device_ops *ops = dev->netdev_ops;
8235
8236 if (ops->ndo_change_mtu)
8237 return ops->ndo_change_mtu(dev, new_mtu);
8238
501a90c9
ED
8239 /* Pairs with all the lockless reads of dev->mtu in the stack */
8240 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8241 return 0;
8242}
f51048c3 8243EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8244
d836f5c6
ED
8245int dev_validate_mtu(struct net_device *dev, int new_mtu,
8246 struct netlink_ext_ack *extack)
8247{
8248 /* MTU must be positive, and in range */
8249 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8250 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8251 return -EINVAL;
8252 }
8253
8254 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8255 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8256 return -EINVAL;
8257 }
8258 return 0;
8259}
8260
f0db275a 8261/**
7a4c53be 8262 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8263 * @dev: device
8264 * @new_mtu: new transfer unit
7a4c53be 8265 * @extack: netlink extended ack
f0db275a
SH
8266 *
8267 * Change the maximum transfer size of the network device.
8268 */
7a4c53be
SH
8269int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8270 struct netlink_ext_ack *extack)
1da177e4 8271{
2315dc91 8272 int err, orig_mtu;
1da177e4
LT
8273
8274 if (new_mtu == dev->mtu)
8275 return 0;
8276
d836f5c6
ED
8277 err = dev_validate_mtu(dev, new_mtu, extack);
8278 if (err)
8279 return err;
1da177e4
LT
8280
8281 if (!netif_device_present(dev))
8282 return -ENODEV;
8283
1d486bfb
VF
8284 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8285 err = notifier_to_errno(err);
8286 if (err)
8287 return err;
d314774c 8288
2315dc91
VF
8289 orig_mtu = dev->mtu;
8290 err = __dev_set_mtu(dev, new_mtu);
d314774c 8291
2315dc91 8292 if (!err) {
af7d6cce
SD
8293 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8294 orig_mtu);
2315dc91
VF
8295 err = notifier_to_errno(err);
8296 if (err) {
8297 /* setting mtu back and notifying everyone again,
8298 * so that they have a chance to revert changes.
8299 */
8300 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8301 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8302 new_mtu);
2315dc91
VF
8303 }
8304 }
1da177e4
LT
8305 return err;
8306}
7a4c53be
SH
8307
8308int dev_set_mtu(struct net_device *dev, int new_mtu)
8309{
8310 struct netlink_ext_ack extack;
8311 int err;
8312
a6bcfc89 8313 memset(&extack, 0, sizeof(extack));
7a4c53be 8314 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8315 if (err && extack._msg)
7a4c53be
SH
8316 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8317 return err;
8318}
d1b19dff 8319EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8320
6a643ddb
CW
8321/**
8322 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8323 * @dev: device
8324 * @new_len: new tx queue length
8325 */
8326int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8327{
8328 unsigned int orig_len = dev->tx_queue_len;
8329 int res;
8330
8331 if (new_len != (unsigned int)new_len)
8332 return -ERANGE;
8333
8334 if (new_len != orig_len) {
8335 dev->tx_queue_len = new_len;
8336 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8337 res = notifier_to_errno(res);
7effaf06
TT
8338 if (res)
8339 goto err_rollback;
8340 res = dev_qdisc_change_tx_queue_len(dev);
8341 if (res)
8342 goto err_rollback;
6a643ddb
CW
8343 }
8344
8345 return 0;
7effaf06
TT
8346
8347err_rollback:
8348 netdev_err(dev, "refused to change device tx_queue_len\n");
8349 dev->tx_queue_len = orig_len;
8350 return res;
6a643ddb
CW
8351}
8352
cbda10fa
VD
8353/**
8354 * dev_set_group - Change group this device belongs to
8355 * @dev: device
8356 * @new_group: group this device should belong to
8357 */
8358void dev_set_group(struct net_device *dev, int new_group)
8359{
8360 dev->group = new_group;
8361}
8362EXPORT_SYMBOL(dev_set_group);
8363
d59cdf94
PM
8364/**
8365 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8366 * @dev: device
8367 * @addr: new address
8368 * @extack: netlink extended ack
8369 */
8370int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8371 struct netlink_ext_ack *extack)
8372{
8373 struct netdev_notifier_pre_changeaddr_info info = {
8374 .info.dev = dev,
8375 .info.extack = extack,
8376 .dev_addr = addr,
8377 };
8378 int rc;
8379
8380 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8381 return notifier_to_errno(rc);
8382}
8383EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8384
f0db275a
SH
8385/**
8386 * dev_set_mac_address - Change Media Access Control Address
8387 * @dev: device
8388 * @sa: new address
3a37a963 8389 * @extack: netlink extended ack
f0db275a
SH
8390 *
8391 * Change the hardware (MAC) address of the device
8392 */
3a37a963
PM
8393int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8394 struct netlink_ext_ack *extack)
1da177e4 8395{
d314774c 8396 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8397 int err;
8398
d314774c 8399 if (!ops->ndo_set_mac_address)
1da177e4
LT
8400 return -EOPNOTSUPP;
8401 if (sa->sa_family != dev->type)
8402 return -EINVAL;
8403 if (!netif_device_present(dev))
8404 return -ENODEV;
d59cdf94
PM
8405 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8406 if (err)
8407 return err;
d314774c 8408 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8409 if (err)
8410 return err;
fbdeca2d 8411 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8412 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8413 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8414 return 0;
1da177e4 8415}
d1b19dff 8416EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8417
4bf84c35
JP
8418/**
8419 * dev_change_carrier - Change device carrier
8420 * @dev: device
691b3b7e 8421 * @new_carrier: new value
4bf84c35
JP
8422 *
8423 * Change device carrier
8424 */
8425int dev_change_carrier(struct net_device *dev, bool new_carrier)
8426{
8427 const struct net_device_ops *ops = dev->netdev_ops;
8428
8429 if (!ops->ndo_change_carrier)
8430 return -EOPNOTSUPP;
8431 if (!netif_device_present(dev))
8432 return -ENODEV;
8433 return ops->ndo_change_carrier(dev, new_carrier);
8434}
8435EXPORT_SYMBOL(dev_change_carrier);
8436
66b52b0d
JP
8437/**
8438 * dev_get_phys_port_id - Get device physical port ID
8439 * @dev: device
8440 * @ppid: port ID
8441 *
8442 * Get device physical port ID
8443 */
8444int dev_get_phys_port_id(struct net_device *dev,
02637fce 8445 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8446{
8447 const struct net_device_ops *ops = dev->netdev_ops;
8448
8449 if (!ops->ndo_get_phys_port_id)
8450 return -EOPNOTSUPP;
8451 return ops->ndo_get_phys_port_id(dev, ppid);
8452}
8453EXPORT_SYMBOL(dev_get_phys_port_id);
8454
db24a904
DA
8455/**
8456 * dev_get_phys_port_name - Get device physical port name
8457 * @dev: device
8458 * @name: port name
ed49e650 8459 * @len: limit of bytes to copy to name
db24a904
DA
8460 *
8461 * Get device physical port name
8462 */
8463int dev_get_phys_port_name(struct net_device *dev,
8464 char *name, size_t len)
8465{
8466 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8467 int err;
db24a904 8468
af3836df
JP
8469 if (ops->ndo_get_phys_port_name) {
8470 err = ops->ndo_get_phys_port_name(dev, name, len);
8471 if (err != -EOPNOTSUPP)
8472 return err;
8473 }
8474 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
8475}
8476EXPORT_SYMBOL(dev_get_phys_port_name);
8477
d6abc596
FF
8478/**
8479 * dev_get_port_parent_id - Get the device's port parent identifier
8480 * @dev: network device
8481 * @ppid: pointer to a storage for the port's parent identifier
8482 * @recurse: allow/disallow recursion to lower devices
8483 *
8484 * Get the devices's port parent identifier
8485 */
8486int dev_get_port_parent_id(struct net_device *dev,
8487 struct netdev_phys_item_id *ppid,
8488 bool recurse)
8489{
8490 const struct net_device_ops *ops = dev->netdev_ops;
8491 struct netdev_phys_item_id first = { };
8492 struct net_device *lower_dev;
8493 struct list_head *iter;
7e1146e8
JP
8494 int err;
8495
8496 if (ops->ndo_get_port_parent_id) {
8497 err = ops->ndo_get_port_parent_id(dev, ppid);
8498 if (err != -EOPNOTSUPP)
8499 return err;
8500 }
d6abc596 8501
7e1146e8
JP
8502 err = devlink_compat_switch_id_get(dev, ppid);
8503 if (!err || err != -EOPNOTSUPP)
8504 return err;
d6abc596
FF
8505
8506 if (!recurse)
7e1146e8 8507 return -EOPNOTSUPP;
d6abc596
FF
8508
8509 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8510 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8511 if (err)
8512 break;
8513 if (!first.id_len)
8514 first = *ppid;
8515 else if (memcmp(&first, ppid, sizeof(*ppid)))
8516 return -ENODATA;
8517 }
8518
8519 return err;
8520}
8521EXPORT_SYMBOL(dev_get_port_parent_id);
8522
8523/**
8524 * netdev_port_same_parent_id - Indicate if two network devices have
8525 * the same port parent identifier
8526 * @a: first network device
8527 * @b: second network device
8528 */
8529bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8530{
8531 struct netdev_phys_item_id a_id = { };
8532 struct netdev_phys_item_id b_id = { };
8533
8534 if (dev_get_port_parent_id(a, &a_id, true) ||
8535 dev_get_port_parent_id(b, &b_id, true))
8536 return false;
8537
8538 return netdev_phys_item_id_same(&a_id, &b_id);
8539}
8540EXPORT_SYMBOL(netdev_port_same_parent_id);
8541
d746d707
AK
8542/**
8543 * dev_change_proto_down - update protocol port state information
8544 * @dev: device
8545 * @proto_down: new value
8546 *
8547 * This info can be used by switch drivers to set the phys state of the
8548 * port.
8549 */
8550int dev_change_proto_down(struct net_device *dev, bool proto_down)
8551{
8552 const struct net_device_ops *ops = dev->netdev_ops;
8553
8554 if (!ops->ndo_change_proto_down)
8555 return -EOPNOTSUPP;
8556 if (!netif_device_present(dev))
8557 return -ENODEV;
8558 return ops->ndo_change_proto_down(dev, proto_down);
8559}
8560EXPORT_SYMBOL(dev_change_proto_down);
8561
b5899679
AR
8562/**
8563 * dev_change_proto_down_generic - generic implementation for
8564 * ndo_change_proto_down that sets carrier according to
8565 * proto_down.
8566 *
8567 * @dev: device
8568 * @proto_down: new value
8569 */
8570int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8571{
8572 if (proto_down)
8573 netif_carrier_off(dev);
8574 else
8575 netif_carrier_on(dev);
8576 dev->proto_down = proto_down;
8577 return 0;
8578}
8579EXPORT_SYMBOL(dev_change_proto_down_generic);
8580
a25717d2
JK
8581u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8582 enum bpf_netdev_command cmd)
d67b9cd2 8583{
a25717d2 8584 struct netdev_bpf xdp;
d67b9cd2 8585
a25717d2
JK
8586 if (!bpf_op)
8587 return 0;
118b4aa2 8588
a25717d2
JK
8589 memset(&xdp, 0, sizeof(xdp));
8590 xdp.command = cmd;
118b4aa2 8591
a25717d2
JK
8592 /* Query must always succeed. */
8593 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
58038695 8594
6b867589 8595 return xdp.prog_id;
d67b9cd2
DB
8596}
8597
f4e63525 8598static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 8599 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
8600 struct bpf_prog *prog)
8601{
7e6897f9
BT
8602 bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8603 struct bpf_prog *prev_prog = NULL;
f4e63525 8604 struct netdev_bpf xdp;
7e6897f9
BT
8605 int err;
8606
8607 if (non_hw) {
8608 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8609 XDP_QUERY_PROG));
8610 if (IS_ERR(prev_prog))
8611 prev_prog = NULL;
8612 }
d67b9cd2
DB
8613
8614 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
8615 if (flags & XDP_FLAGS_HW_MODE)
8616 xdp.command = XDP_SETUP_PROG_HW;
8617 else
8618 xdp.command = XDP_SETUP_PROG;
d67b9cd2 8619 xdp.extack = extack;
32d60277 8620 xdp.flags = flags;
d67b9cd2
DB
8621 xdp.prog = prog;
8622
7e6897f9
BT
8623 err = bpf_op(dev, &xdp);
8624 if (!err && non_hw)
8625 bpf_prog_change_xdp(prev_prog, prog);
8626
8627 if (prev_prog)
8628 bpf_prog_put(prev_prog);
8629
8630 return err;
d67b9cd2
DB
8631}
8632
bd0b2e7f
JK
8633static void dev_xdp_uninstall(struct net_device *dev)
8634{
8635 struct netdev_bpf xdp;
8636 bpf_op_t ndo_bpf;
8637
8638 /* Remove generic XDP */
8639 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8640
8641 /* Remove from the driver */
8642 ndo_bpf = dev->netdev_ops->ndo_bpf;
8643 if (!ndo_bpf)
8644 return;
8645
a25717d2
JK
8646 memset(&xdp, 0, sizeof(xdp));
8647 xdp.command = XDP_QUERY_PROG;
8648 WARN_ON(ndo_bpf(dev, &xdp));
8649 if (xdp.prog_id)
8650 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8651 NULL));
bd0b2e7f 8652
a25717d2
JK
8653 /* Remove HW offload */
8654 memset(&xdp, 0, sizeof(xdp));
8655 xdp.command = XDP_QUERY_PROG_HW;
8656 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8657 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8658 NULL));
bd0b2e7f
JK
8659}
8660
a7862b45
BB
8661/**
8662 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8663 * @dev: device
b5d60989 8664 * @extack: netlink extended ack
a7862b45 8665 * @fd: new program fd or negative value to clear
92234c8f 8666 * @expected_fd: old program fd that userspace expects to replace or clear
85de8576 8667 * @flags: xdp-related flags
a7862b45
BB
8668 *
8669 * Set or clear a bpf program for a device
8670 */
ddf9f970 8671int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
92234c8f 8672 int fd, int expected_fd, u32 flags)
a7862b45
BB
8673{
8674 const struct net_device_ops *ops = dev->netdev_ops;
a25717d2 8675 enum bpf_netdev_command query;
92234c8f 8676 u32 prog_id, expected_id = 0;
f4e63525 8677 bpf_op_t bpf_op, bpf_chk;
dfa74909 8678 struct bpf_prog *prog;
9ee963d6 8679 bool offload;
a7862b45
BB
8680 int err;
8681
85de8576
DB
8682 ASSERT_RTNL();
8683
9ee963d6
JK
8684 offload = flags & XDP_FLAGS_HW_MODE;
8685 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
a25717d2 8686
f4e63525 8687 bpf_op = bpf_chk = ops->ndo_bpf;
01dde20c
MF
8688 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8689 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
0489df9a 8690 return -EOPNOTSUPP;
01dde20c 8691 }
f4e63525
JK
8692 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8693 bpf_op = generic_xdp_install;
8694 if (bpf_op == bpf_chk)
8695 bpf_chk = generic_xdp_install;
b5cdae32 8696
92234c8f
THJ
8697 prog_id = __dev_xdp_query(dev, bpf_op, query);
8698 if (flags & XDP_FLAGS_REPLACE) {
8699 if (expected_fd >= 0) {
8700 prog = bpf_prog_get_type_dev(expected_fd,
8701 BPF_PROG_TYPE_XDP,
8702 bpf_op == ops->ndo_bpf);
8703 if (IS_ERR(prog))
8704 return PTR_ERR(prog);
8705 expected_id = prog->aux->id;
8706 bpf_prog_put(prog);
8707 }
c14a9f63 8708
92234c8f
THJ
8709 if (prog_id != expected_id) {
8710 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8711 return -EEXIST;
8712 }
8713 }
8714 if (fd >= 0) {
9ee963d6 8715 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
01dde20c 8716 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
d67b9cd2 8717 return -EEXIST;
01dde20c 8718 }
c14a9f63 8719
c14a9f63 8720 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
01dde20c 8721 NL_SET_ERR_MSG(extack, "XDP program already attached");
d67b9cd2 8722 return -EBUSY;
01dde20c 8723 }
85de8576 8724
288b3de5
JK
8725 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8726 bpf_op == ops->ndo_bpf);
a7862b45
BB
8727 if (IS_ERR(prog))
8728 return PTR_ERR(prog);
441a3303 8729
9ee963d6 8730 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
441a3303
JK
8731 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8732 bpf_prog_put(prog);
8733 return -EINVAL;
8734 }
c14a9f63 8735
aefc3e72
JK
8736 /* prog->aux->id may be 0 for orphaned device-bound progs */
8737 if (prog->aux->id && prog->aux->id == prog_id) {
c14a9f63
MM
8738 bpf_prog_put(prog);
8739 return 0;
8740 }
8741 } else {
92234c8f 8742 if (!prog_id)
c14a9f63 8743 return 0;
dfa74909 8744 prog = NULL;
a7862b45
BB
8745 }
8746
f4e63525 8747 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
8748 if (err < 0 && prog)
8749 bpf_prog_put(prog);
8750
8751 return err;
8752}
a7862b45 8753
1da177e4
LT
8754/**
8755 * dev_new_index - allocate an ifindex
c4ea43c5 8756 * @net: the applicable net namespace
1da177e4
LT
8757 *
8758 * Returns a suitable unique value for a new device interface
8759 * number. The caller must hold the rtnl semaphore or the
8760 * dev_base_lock to be sure it remains unique.
8761 */
881d966b 8762static int dev_new_index(struct net *net)
1da177e4 8763{
aa79e66e 8764 int ifindex = net->ifindex;
f4563a75 8765
1da177e4
LT
8766 for (;;) {
8767 if (++ifindex <= 0)
8768 ifindex = 1;
881d966b 8769 if (!__dev_get_by_index(net, ifindex))
aa79e66e 8770 return net->ifindex = ifindex;
1da177e4
LT
8771 }
8772}
8773
1da177e4 8774/* Delayed registration/unregisteration */
3b5b34fd 8775static LIST_HEAD(net_todo_list);
200b916f 8776DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 8777
6f05f629 8778static void net_set_todo(struct net_device *dev)
1da177e4 8779{
1da177e4 8780 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 8781 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
8782}
8783
9b5e383c 8784static void rollback_registered_many(struct list_head *head)
93ee31f1 8785{
e93737b0 8786 struct net_device *dev, *tmp;
5cde2829 8787 LIST_HEAD(close_head);
9b5e383c 8788
93ee31f1
DL
8789 BUG_ON(dev_boot_phase);
8790 ASSERT_RTNL();
8791
e93737b0 8792 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 8793 /* Some devices call without registering
e93737b0
KK
8794 * for initialization unwind. Remove those
8795 * devices and proceed with the remaining.
9b5e383c
ED
8796 */
8797 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
8798 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8799 dev->name, dev);
93ee31f1 8800
9b5e383c 8801 WARN_ON(1);
e93737b0
KK
8802 list_del(&dev->unreg_list);
8803 continue;
9b5e383c 8804 }
449f4544 8805 dev->dismantle = true;
9b5e383c 8806 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 8807 }
93ee31f1 8808
44345724 8809 /* If device is running, close it first. */
5cde2829
EB
8810 list_for_each_entry(dev, head, unreg_list)
8811 list_add_tail(&dev->close_list, &close_head);
99c4a26a 8812 dev_close_many(&close_head, true);
93ee31f1 8813
44345724 8814 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
8815 /* And unlink it from device chain. */
8816 unlist_netdevice(dev);
93ee31f1 8817
9b5e383c
ED
8818 dev->reg_state = NETREG_UNREGISTERING;
8819 }
41852497 8820 flush_all_backlogs();
93ee31f1
DL
8821
8822 synchronize_net();
8823
9b5e383c 8824 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
8825 struct sk_buff *skb = NULL;
8826
9b5e383c
ED
8827 /* Shutdown queueing discipline. */
8828 dev_shutdown(dev);
93ee31f1 8829
bd0b2e7f 8830 dev_xdp_uninstall(dev);
93ee31f1 8831
9b5e383c 8832 /* Notify protocols, that we are about to destroy
eb13da1a 8833 * this device. They should clean all the things.
8834 */
9b5e383c 8835 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 8836
395eea6c
MB
8837 if (!dev->rtnl_link_ops ||
8838 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 8839 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 8840 GFP_KERNEL, NULL, 0);
395eea6c 8841
9b5e383c
ED
8842 /*
8843 * Flush the unicast and multicast chains
8844 */
a748ee24 8845 dev_uc_flush(dev);
22bedad3 8846 dev_mc_flush(dev);
93ee31f1 8847
36fbf1e5 8848 netdev_name_node_alt_flush(dev);
ff927412
JP
8849 netdev_name_node_free(dev->name_node);
8850
9b5e383c
ED
8851 if (dev->netdev_ops->ndo_uninit)
8852 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 8853
395eea6c
MB
8854 if (skb)
8855 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 8856
9ff162a8
JP
8857 /* Notifier chain MUST detach us all upper devices. */
8858 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 8859 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 8860
9b5e383c
ED
8861 /* Remove entries from kobject tree */
8862 netdev_unregister_kobject(dev);
024e9679
AD
8863#ifdef CONFIG_XPS
8864 /* Remove XPS queueing entries */
8865 netif_reset_xps_queues_gt(dev, 0);
8866#endif
9b5e383c 8867 }
93ee31f1 8868
850a545b 8869 synchronize_net();
395264d5 8870
a5ee1551 8871 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
8872 dev_put(dev);
8873}
8874
8875static void rollback_registered(struct net_device *dev)
8876{
8877 LIST_HEAD(single);
8878
8879 list_add(&dev->unreg_list, &single);
8880 rollback_registered_many(&single);
ceaaec98 8881 list_del(&single);
93ee31f1
DL
8882}
8883
fd867d51
JW
8884static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8885 struct net_device *upper, netdev_features_t features)
8886{
8887 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8888 netdev_features_t feature;
5ba3f7d6 8889 int feature_bit;
fd867d51 8890
3b89ea9c 8891 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8892 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8893 if (!(upper->wanted_features & feature)
8894 && (features & feature)) {
8895 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8896 &feature, upper->name);
8897 features &= ~feature;
8898 }
8899 }
8900
8901 return features;
8902}
8903
8904static void netdev_sync_lower_features(struct net_device *upper,
8905 struct net_device *lower, netdev_features_t features)
8906{
8907 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8908 netdev_features_t feature;
5ba3f7d6 8909 int feature_bit;
fd867d51 8910
3b89ea9c 8911 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8912 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8913 if (!(features & feature) && (lower->features & feature)) {
8914 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8915 &feature, lower->name);
8916 lower->wanted_features &= ~feature;
8917 netdev_update_features(lower);
8918
8919 if (unlikely(lower->features & feature))
8920 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8921 &feature, lower->name);
8922 }
8923 }
8924}
8925
c8f44aff
MM
8926static netdev_features_t netdev_fix_features(struct net_device *dev,
8927 netdev_features_t features)
b63365a2 8928{
57422dc5
MM
8929 /* Fix illegal checksum combinations */
8930 if ((features & NETIF_F_HW_CSUM) &&
8931 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 8932 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
8933 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8934 }
8935
b63365a2 8936 /* TSO requires that SG is present as well. */
ea2d3688 8937 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 8938 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 8939 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
8940 }
8941
ec5f0615
PS
8942 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8943 !(features & NETIF_F_IP_CSUM)) {
8944 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8945 features &= ~NETIF_F_TSO;
8946 features &= ~NETIF_F_TSO_ECN;
8947 }
8948
8949 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8950 !(features & NETIF_F_IPV6_CSUM)) {
8951 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8952 features &= ~NETIF_F_TSO6;
8953 }
8954
b1dc497b
AD
8955 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8956 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8957 features &= ~NETIF_F_TSO_MANGLEID;
8958
31d8b9e0
BH
8959 /* TSO ECN requires that TSO is present as well. */
8960 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8961 features &= ~NETIF_F_TSO_ECN;
8962
212b573f
MM
8963 /* Software GSO depends on SG. */
8964 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 8965 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
8966 features &= ~NETIF_F_GSO;
8967 }
8968
802ab55a
AD
8969 /* GSO partial features require GSO partial be set */
8970 if ((features & dev->gso_partial_features) &&
8971 !(features & NETIF_F_GSO_PARTIAL)) {
8972 netdev_dbg(dev,
8973 "Dropping partially supported GSO features since no GSO partial.\n");
8974 features &= ~dev->gso_partial_features;
8975 }
8976
fb1f5f79
MC
8977 if (!(features & NETIF_F_RXCSUM)) {
8978 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8979 * successfully merged by hardware must also have the
8980 * checksum verified by hardware. If the user does not
8981 * want to enable RXCSUM, logically, we should disable GRO_HW.
8982 */
8983 if (features & NETIF_F_GRO_HW) {
8984 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8985 features &= ~NETIF_F_GRO_HW;
8986 }
8987 }
8988
de8d5ab2
GP
8989 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8990 if (features & NETIF_F_RXFCS) {
8991 if (features & NETIF_F_LRO) {
8992 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8993 features &= ~NETIF_F_LRO;
8994 }
8995
8996 if (features & NETIF_F_GRO_HW) {
8997 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8998 features &= ~NETIF_F_GRO_HW;
8999 }
e6c6a929
GP
9000 }
9001
b63365a2
HX
9002 return features;
9003}
b63365a2 9004
6cb6a27c 9005int __netdev_update_features(struct net_device *dev)
5455c699 9006{
fd867d51 9007 struct net_device *upper, *lower;
c8f44aff 9008 netdev_features_t features;
fd867d51 9009 struct list_head *iter;
e7868a85 9010 int err = -1;
5455c699 9011
87267485
MM
9012 ASSERT_RTNL();
9013
5455c699
MM
9014 features = netdev_get_wanted_features(dev);
9015
9016 if (dev->netdev_ops->ndo_fix_features)
9017 features = dev->netdev_ops->ndo_fix_features(dev, features);
9018
9019 /* driver might be less strict about feature dependencies */
9020 features = netdev_fix_features(dev, features);
9021
fd867d51
JW
9022 /* some features can't be enabled if they're off an an upper device */
9023 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9024 features = netdev_sync_upper_features(dev, upper, features);
9025
5455c699 9026 if (dev->features == features)
e7868a85 9027 goto sync_lower;
5455c699 9028
c8f44aff
MM
9029 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9030 &dev->features, &features);
5455c699
MM
9031
9032 if (dev->netdev_ops->ndo_set_features)
9033 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9034 else
9035 err = 0;
5455c699 9036
6cb6a27c 9037 if (unlikely(err < 0)) {
5455c699 9038 netdev_err(dev,
c8f44aff
MM
9039 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9040 err, &features, &dev->features);
17b85d29
NA
9041 /* return non-0 since some features might have changed and
9042 * it's better to fire a spurious notification than miss it
9043 */
9044 return -1;
6cb6a27c
MM
9045 }
9046
e7868a85 9047sync_lower:
fd867d51
JW
9048 /* some features must be disabled on lower devices when disabled
9049 * on an upper device (think: bonding master or bridge)
9050 */
9051 netdev_for_each_lower_dev(dev, lower, iter)
9052 netdev_sync_lower_features(dev, lower, features);
9053
ae847f40
SD
9054 if (!err) {
9055 netdev_features_t diff = features ^ dev->features;
9056
9057 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9058 /* udp_tunnel_{get,drop}_rx_info both need
9059 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9060 * device, or they won't do anything.
9061 * Thus we need to update dev->features
9062 * *before* calling udp_tunnel_get_rx_info,
9063 * but *after* calling udp_tunnel_drop_rx_info.
9064 */
9065 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9066 dev->features = features;
9067 udp_tunnel_get_rx_info(dev);
9068 } else {
9069 udp_tunnel_drop_rx_info(dev);
9070 }
9071 }
9072
9daae9bd
GP
9073 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9074 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9075 dev->features = features;
9076 err |= vlan_get_rx_ctag_filter_info(dev);
9077 } else {
9078 vlan_drop_rx_ctag_filter_info(dev);
9079 }
9080 }
9081
9082 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9083 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9084 dev->features = features;
9085 err |= vlan_get_rx_stag_filter_info(dev);
9086 } else {
9087 vlan_drop_rx_stag_filter_info(dev);
9088 }
9089 }
9090
6cb6a27c 9091 dev->features = features;
ae847f40 9092 }
6cb6a27c 9093
e7868a85 9094 return err < 0 ? 0 : 1;
6cb6a27c
MM
9095}
9096
afe12cc8
MM
9097/**
9098 * netdev_update_features - recalculate device features
9099 * @dev: the device to check
9100 *
9101 * Recalculate dev->features set and send notifications if it
9102 * has changed. Should be called after driver or hardware dependent
9103 * conditions might have changed that influence the features.
9104 */
6cb6a27c
MM
9105void netdev_update_features(struct net_device *dev)
9106{
9107 if (__netdev_update_features(dev))
9108 netdev_features_change(dev);
5455c699
MM
9109}
9110EXPORT_SYMBOL(netdev_update_features);
9111
afe12cc8
MM
9112/**
9113 * netdev_change_features - recalculate device features
9114 * @dev: the device to check
9115 *
9116 * Recalculate dev->features set and send notifications even
9117 * if they have not changed. Should be called instead of
9118 * netdev_update_features() if also dev->vlan_features might
9119 * have changed to allow the changes to be propagated to stacked
9120 * VLAN devices.
9121 */
9122void netdev_change_features(struct net_device *dev)
9123{
9124 __netdev_update_features(dev);
9125 netdev_features_change(dev);
9126}
9127EXPORT_SYMBOL(netdev_change_features);
9128
fc4a7489
PM
9129/**
9130 * netif_stacked_transfer_operstate - transfer operstate
9131 * @rootdev: the root or lower level device to transfer state from
9132 * @dev: the device to transfer operstate to
9133 *
9134 * Transfer operational state from root to device. This is normally
9135 * called when a stacking relationship exists between the root
9136 * device and the device(a leaf device).
9137 */
9138void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9139 struct net_device *dev)
9140{
9141 if (rootdev->operstate == IF_OPER_DORMANT)
9142 netif_dormant_on(dev);
9143 else
9144 netif_dormant_off(dev);
9145
eec517cd
AL
9146 if (rootdev->operstate == IF_OPER_TESTING)
9147 netif_testing_on(dev);
9148 else
9149 netif_testing_off(dev);
9150
0575c86b
ZS
9151 if (netif_carrier_ok(rootdev))
9152 netif_carrier_on(dev);
9153 else
9154 netif_carrier_off(dev);
fc4a7489
PM
9155}
9156EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9157
1b4bf461
ED
9158static int netif_alloc_rx_queues(struct net_device *dev)
9159{
1b4bf461 9160 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 9161 struct netdev_rx_queue *rx;
10595902 9162 size_t sz = count * sizeof(*rx);
e817f856 9163 int err = 0;
1b4bf461 9164
bd25fa7b 9165 BUG_ON(count < 1);
1b4bf461 9166
dcda9b04 9167 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9168 if (!rx)
9169 return -ENOMEM;
9170
bd25fa7b
TH
9171 dev->_rx = rx;
9172
e817f856 9173 for (i = 0; i < count; i++) {
fe822240 9174 rx[i].dev = dev;
e817f856
JDB
9175
9176 /* XDP RX-queue setup */
9177 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9178 if (err < 0)
9179 goto err_rxq_info;
9180 }
1b4bf461 9181 return 0;
e817f856
JDB
9182
9183err_rxq_info:
9184 /* Rollback successful reg's and free other resources */
9185 while (i--)
9186 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 9187 kvfree(dev->_rx);
e817f856
JDB
9188 dev->_rx = NULL;
9189 return err;
9190}
9191
9192static void netif_free_rx_queues(struct net_device *dev)
9193{
9194 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
9195
9196 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9197 if (!dev->_rx)
9198 return;
9199
e817f856 9200 for (i = 0; i < count; i++)
82aaff2f
JK
9201 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9202
9203 kvfree(dev->_rx);
1b4bf461
ED
9204}
9205
aa942104
CG
9206static void netdev_init_one_queue(struct net_device *dev,
9207 struct netdev_queue *queue, void *_unused)
9208{
9209 /* Initialize queue lock */
9210 spin_lock_init(&queue->_xmit_lock);
ab92d68f 9211 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
aa942104 9212 queue->xmit_lock_owner = -1;
b236da69 9213 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 9214 queue->dev = dev;
114cf580
TH
9215#ifdef CONFIG_BQL
9216 dql_init(&queue->dql, HZ);
9217#endif
aa942104
CG
9218}
9219
60877a32
ED
9220static void netif_free_tx_queues(struct net_device *dev)
9221{
4cb28970 9222 kvfree(dev->_tx);
60877a32
ED
9223}
9224
e6484930
TH
9225static int netif_alloc_netdev_queues(struct net_device *dev)
9226{
9227 unsigned int count = dev->num_tx_queues;
9228 struct netdev_queue *tx;
60877a32 9229 size_t sz = count * sizeof(*tx);
e6484930 9230
d339727c
ED
9231 if (count < 1 || count > 0xffff)
9232 return -EINVAL;
62b5942a 9233
dcda9b04 9234 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9235 if (!tx)
9236 return -ENOMEM;
9237
e6484930 9238 dev->_tx = tx;
1d24eb48 9239
e6484930
TH
9240 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9241 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
9242
9243 return 0;
e6484930
TH
9244}
9245
a2029240
DV
9246void netif_tx_stop_all_queues(struct net_device *dev)
9247{
9248 unsigned int i;
9249
9250 for (i = 0; i < dev->num_tx_queues; i++) {
9251 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 9252
a2029240
DV
9253 netif_tx_stop_queue(txq);
9254 }
9255}
9256EXPORT_SYMBOL(netif_tx_stop_all_queues);
9257
ab92d68f
TY
9258static void netdev_register_lockdep_key(struct net_device *dev)
9259{
9260 lockdep_register_key(&dev->qdisc_tx_busylock_key);
9261 lockdep_register_key(&dev->qdisc_running_key);
9262 lockdep_register_key(&dev->qdisc_xmit_lock_key);
9263 lockdep_register_key(&dev->addr_list_lock_key);
9264}
9265
9266static void netdev_unregister_lockdep_key(struct net_device *dev)
9267{
9268 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9269 lockdep_unregister_key(&dev->qdisc_running_key);
9270 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9271 lockdep_unregister_key(&dev->addr_list_lock_key);
9272}
9273
9274void netdev_update_lockdep_key(struct net_device *dev)
9275{
ab92d68f 9276 lockdep_unregister_key(&dev->addr_list_lock_key);
ab92d68f
TY
9277 lockdep_register_key(&dev->addr_list_lock_key);
9278
9279 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
ab92d68f
TY
9280}
9281EXPORT_SYMBOL(netdev_update_lockdep_key);
9282
1da177e4
LT
9283/**
9284 * register_netdevice - register a network device
9285 * @dev: device to register
9286 *
9287 * Take a completed network device structure and add it to the kernel
9288 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9289 * chain. 0 is returned on success. A negative errno code is returned
9290 * on a failure to set up the device, or if the name is a duplicate.
9291 *
9292 * Callers must hold the rtnl semaphore. You may want
9293 * register_netdev() instead of this.
9294 *
9295 * BUGS:
9296 * The locking appears insufficient to guarantee two parallel registers
9297 * will not get the same name.
9298 */
9299
9300int register_netdevice(struct net_device *dev)
9301{
1da177e4 9302 int ret;
d314774c 9303 struct net *net = dev_net(dev);
1da177e4 9304
e283de3a
FF
9305 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9306 NETDEV_FEATURE_COUNT);
1da177e4
LT
9307 BUG_ON(dev_boot_phase);
9308 ASSERT_RTNL();
9309
b17a7c17
SH
9310 might_sleep();
9311
1da177e4
LT
9312 /* When net_device's are persistent, this will be fatal. */
9313 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 9314 BUG_ON(!net);
1da177e4 9315
9000edb7
JK
9316 ret = ethtool_check_ops(dev->ethtool_ops);
9317 if (ret)
9318 return ret;
9319
f1f28aa3 9320 spin_lock_init(&dev->addr_list_lock);
ab92d68f 9321 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
1da177e4 9322
828de4f6 9323 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
9324 if (ret < 0)
9325 goto out;
9326
9077f052 9327 ret = -ENOMEM;
ff927412
JP
9328 dev->name_node = netdev_name_node_head_alloc(dev);
9329 if (!dev->name_node)
9330 goto out;
9331
1da177e4 9332 /* Init, if this function is available */
d314774c
SH
9333 if (dev->netdev_ops->ndo_init) {
9334 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
9335 if (ret) {
9336 if (ret > 0)
9337 ret = -EIO;
42c17fa6 9338 goto err_free_name;
1da177e4
LT
9339 }
9340 }
4ec93edb 9341
f646968f
PM
9342 if (((dev->hw_features | dev->features) &
9343 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
9344 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9345 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9346 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9347 ret = -EINVAL;
9348 goto err_uninit;
9349 }
9350
9c7dafbf
PE
9351 ret = -EBUSY;
9352 if (!dev->ifindex)
9353 dev->ifindex = dev_new_index(net);
9354 else if (__dev_get_by_index(net, dev->ifindex))
9355 goto err_uninit;
9356
5455c699
MM
9357 /* Transfer changeable features to wanted_features and enable
9358 * software offloads (GSO and GRO).
9359 */
1a3c998f 9360 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 9361 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
9362
9363 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9364 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9365 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9366 }
9367
14d1232f 9368 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 9369
cbc53e08 9370 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 9371 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 9372
7f348a60
AD
9373 /* If IPv4 TCP segmentation offload is supported we should also
9374 * allow the device to enable segmenting the frame with the option
9375 * of ignoring a static IP ID value. This doesn't enable the
9376 * feature itself but allows the user to enable it later.
9377 */
cbc53e08
AD
9378 if (dev->hw_features & NETIF_F_TSO)
9379 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
9380 if (dev->vlan_features & NETIF_F_TSO)
9381 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9382 if (dev->mpls_features & NETIF_F_TSO)
9383 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9384 if (dev->hw_enc_features & NETIF_F_TSO)
9385 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 9386
1180e7d6 9387 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 9388 */
1180e7d6 9389 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 9390
ee579677
PS
9391 /* Make NETIF_F_SG inheritable to tunnel devices.
9392 */
802ab55a 9393 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 9394
0d89d203
SH
9395 /* Make NETIF_F_SG inheritable to MPLS.
9396 */
9397 dev->mpls_features |= NETIF_F_SG;
9398
7ffbe3fd
JB
9399 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9400 ret = notifier_to_errno(ret);
9401 if (ret)
9402 goto err_uninit;
9403
8b41d188 9404 ret = netdev_register_kobject(dev);
cb626bf5
JH
9405 if (ret) {
9406 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 9407 goto err_uninit;
cb626bf5 9408 }
b17a7c17
SH
9409 dev->reg_state = NETREG_REGISTERED;
9410
6cb6a27c 9411 __netdev_update_features(dev);
8e9b59b2 9412
1da177e4
LT
9413 /*
9414 * Default initial state at registry is that the
9415 * device is present.
9416 */
9417
9418 set_bit(__LINK_STATE_PRESENT, &dev->state);
9419
8f4cccbb
BH
9420 linkwatch_init_dev(dev);
9421
1da177e4 9422 dev_init_scheduler(dev);
1da177e4 9423 dev_hold(dev);
ce286d32 9424 list_netdevice(dev);
7bf23575 9425 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 9426
948b337e
JP
9427 /* If the device has permanent device address, driver should
9428 * set dev_addr and also addr_assign_type should be set to
9429 * NET_ADDR_PERM (default value).
9430 */
9431 if (dev->addr_assign_type == NET_ADDR_PERM)
9432 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9433
1da177e4 9434 /* Notify protocols, that a new device appeared. */
056925ab 9435 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 9436 ret = notifier_to_errno(ret);
93ee31f1
DL
9437 if (ret) {
9438 rollback_registered(dev);
10cc514f
SAK
9439 rcu_barrier();
9440
93ee31f1
DL
9441 dev->reg_state = NETREG_UNREGISTERED;
9442 }
d90a909e
EB
9443 /*
9444 * Prevent userspace races by waiting until the network
9445 * device is fully setup before sending notifications.
9446 */
a2835763
PM
9447 if (!dev->rtnl_link_ops ||
9448 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 9449 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
9450
9451out:
9452 return ret;
7ce1b0ed
HX
9453
9454err_uninit:
d314774c
SH
9455 if (dev->netdev_ops->ndo_uninit)
9456 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
9457 if (dev->priv_destructor)
9458 dev->priv_destructor(dev);
42c17fa6
DC
9459err_free_name:
9460 netdev_name_node_free(dev->name_node);
7ce1b0ed 9461 goto out;
1da177e4 9462}
d1b19dff 9463EXPORT_SYMBOL(register_netdevice);
1da177e4 9464
937f1ba5
BH
9465/**
9466 * init_dummy_netdev - init a dummy network device for NAPI
9467 * @dev: device to init
9468 *
9469 * This takes a network device structure and initialize the minimum
9470 * amount of fields so it can be used to schedule NAPI polls without
9471 * registering a full blown interface. This is to be used by drivers
9472 * that need to tie several hardware interfaces to a single NAPI
9473 * poll scheduler due to HW limitations.
9474 */
9475int init_dummy_netdev(struct net_device *dev)
9476{
9477 /* Clear everything. Note we don't initialize spinlocks
9478 * are they aren't supposed to be taken by any of the
9479 * NAPI code and this dummy netdev is supposed to be
9480 * only ever used for NAPI polls
9481 */
9482 memset(dev, 0, sizeof(struct net_device));
9483
9484 /* make sure we BUG if trying to hit standard
9485 * register/unregister code path
9486 */
9487 dev->reg_state = NETREG_DUMMY;
9488
937f1ba5
BH
9489 /* NAPI wants this */
9490 INIT_LIST_HEAD(&dev->napi_list);
9491
9492 /* a dummy interface is started by default */
9493 set_bit(__LINK_STATE_PRESENT, &dev->state);
9494 set_bit(__LINK_STATE_START, &dev->state);
9495
35edfdc7
JE
9496 /* napi_busy_loop stats accounting wants this */
9497 dev_net_set(dev, &init_net);
9498
29b4433d
ED
9499 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9500 * because users of this 'device' dont need to change
9501 * its refcount.
9502 */
9503
937f1ba5
BH
9504 return 0;
9505}
9506EXPORT_SYMBOL_GPL(init_dummy_netdev);
9507
9508
1da177e4
LT
9509/**
9510 * register_netdev - register a network device
9511 * @dev: device to register
9512 *
9513 * Take a completed network device structure and add it to the kernel
9514 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9515 * chain. 0 is returned on success. A negative errno code is returned
9516 * on a failure to set up the device, or if the name is a duplicate.
9517 *
38b4da38 9518 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
9519 * and expands the device name if you passed a format string to
9520 * alloc_netdev.
9521 */
9522int register_netdev(struct net_device *dev)
9523{
9524 int err;
9525
b0f3debc
KT
9526 if (rtnl_lock_killable())
9527 return -EINTR;
1da177e4 9528 err = register_netdevice(dev);
1da177e4
LT
9529 rtnl_unlock();
9530 return err;
9531}
9532EXPORT_SYMBOL(register_netdev);
9533
29b4433d
ED
9534int netdev_refcnt_read(const struct net_device *dev)
9535{
9536 int i, refcnt = 0;
9537
9538 for_each_possible_cpu(i)
9539 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9540 return refcnt;
9541}
9542EXPORT_SYMBOL(netdev_refcnt_read);
9543
2c53040f 9544/**
1da177e4 9545 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 9546 * @dev: target net_device
1da177e4
LT
9547 *
9548 * This is called when unregistering network devices.
9549 *
9550 * Any protocol or device that holds a reference should register
9551 * for netdevice notification, and cleanup and put back the
9552 * reference if they receive an UNREGISTER event.
9553 * We can get stuck here if buggy protocols don't correctly
4ec93edb 9554 * call dev_put.
1da177e4
LT
9555 */
9556static void netdev_wait_allrefs(struct net_device *dev)
9557{
9558 unsigned long rebroadcast_time, warning_time;
29b4433d 9559 int refcnt;
1da177e4 9560
e014debe
ED
9561 linkwatch_forget_dev(dev);
9562
1da177e4 9563 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
9564 refcnt = netdev_refcnt_read(dev);
9565
9566 while (refcnt != 0) {
1da177e4 9567 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 9568 rtnl_lock();
1da177e4
LT
9569
9570 /* Rebroadcast unregister notification */
056925ab 9571 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 9572
748e2d93 9573 __rtnl_unlock();
0115e8e3 9574 rcu_barrier();
748e2d93
ED
9575 rtnl_lock();
9576
1da177e4
LT
9577 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9578 &dev->state)) {
9579 /* We must not have linkwatch events
9580 * pending on unregister. If this
9581 * happens, we simply run the queue
9582 * unscheduled, resulting in a noop
9583 * for this device.
9584 */
9585 linkwatch_run_queue();
9586 }
9587
6756ae4b 9588 __rtnl_unlock();
1da177e4
LT
9589
9590 rebroadcast_time = jiffies;
9591 }
9592
9593 msleep(250);
9594
29b4433d
ED
9595 refcnt = netdev_refcnt_read(dev);
9596
d7c04b05 9597 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
9598 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9599 dev->name, refcnt);
1da177e4
LT
9600 warning_time = jiffies;
9601 }
9602 }
9603}
9604
9605/* The sequence is:
9606 *
9607 * rtnl_lock();
9608 * ...
9609 * register_netdevice(x1);
9610 * register_netdevice(x2);
9611 * ...
9612 * unregister_netdevice(y1);
9613 * unregister_netdevice(y2);
9614 * ...
9615 * rtnl_unlock();
9616 * free_netdev(y1);
9617 * free_netdev(y2);
9618 *
58ec3b4d 9619 * We are invoked by rtnl_unlock().
1da177e4 9620 * This allows us to deal with problems:
b17a7c17 9621 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
9622 * without deadlocking with linkwatch via keventd.
9623 * 2) Since we run with the RTNL semaphore not held, we can sleep
9624 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
9625 *
9626 * We must not return until all unregister events added during
9627 * the interval the lock was held have been completed.
1da177e4 9628 */
1da177e4
LT
9629void netdev_run_todo(void)
9630{
626ab0e6 9631 struct list_head list;
1da177e4 9632
1da177e4 9633 /* Snapshot list, allow later requests */
626ab0e6 9634 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
9635
9636 __rtnl_unlock();
626ab0e6 9637
0115e8e3
ED
9638
9639 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
9640 if (!list_empty(&list))
9641 rcu_barrier();
9642
1da177e4
LT
9643 while (!list_empty(&list)) {
9644 struct net_device *dev
e5e26d75 9645 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
9646 list_del(&dev->todo_list);
9647
b17a7c17 9648 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 9649 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
9650 dev->name, dev->reg_state);
9651 dump_stack();
9652 continue;
9653 }
1da177e4 9654
b17a7c17 9655 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 9656
b17a7c17 9657 netdev_wait_allrefs(dev);
1da177e4 9658
b17a7c17 9659 /* paranoia */
29b4433d 9660 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
9661 BUG_ON(!list_empty(&dev->ptype_all));
9662 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
9663 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9664 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 9665#if IS_ENABLED(CONFIG_DECNET)
547b792c 9666 WARN_ON(dev->dn_ptr);
330c7272 9667#endif
cf124db5
DM
9668 if (dev->priv_destructor)
9669 dev->priv_destructor(dev);
9670 if (dev->needs_free_netdev)
9671 free_netdev(dev);
9093bbb2 9672
50624c93
EB
9673 /* Report a network device has been unregistered */
9674 rtnl_lock();
9675 dev_net(dev)->dev_unreg_count--;
9676 __rtnl_unlock();
9677 wake_up(&netdev_unregistering_wq);
9678
9093bbb2
SH
9679 /* Free network device */
9680 kobject_put(&dev->dev.kobj);
1da177e4 9681 }
1da177e4
LT
9682}
9683
9256645a
JW
9684/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9685 * all the same fields in the same order as net_device_stats, with only
9686 * the type differing, but rtnl_link_stats64 may have additional fields
9687 * at the end for newer counters.
3cfde79c 9688 */
77a1abf5
ED
9689void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9690 const struct net_device_stats *netdev_stats)
3cfde79c
BH
9691{
9692#if BITS_PER_LONG == 64
9256645a 9693 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 9694 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
9695 /* zero out counters that only exist in rtnl_link_stats64 */
9696 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9697 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 9698#else
9256645a 9699 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
9700 const unsigned long *src = (const unsigned long *)netdev_stats;
9701 u64 *dst = (u64 *)stats64;
9702
9256645a 9703 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
9704 for (i = 0; i < n; i++)
9705 dst[i] = src[i];
9256645a
JW
9706 /* zero out counters that only exist in rtnl_link_stats64 */
9707 memset((char *)stats64 + n * sizeof(u64), 0,
9708 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
9709#endif
9710}
77a1abf5 9711EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 9712
eeda3fd6
SH
9713/**
9714 * dev_get_stats - get network device statistics
9715 * @dev: device to get statistics from
28172739 9716 * @storage: place to store stats
eeda3fd6 9717 *
d7753516
BH
9718 * Get network statistics from device. Return @storage.
9719 * The device driver may provide its own method by setting
9720 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9721 * otherwise the internal statistics structure is used.
eeda3fd6 9722 */
d7753516
BH
9723struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9724 struct rtnl_link_stats64 *storage)
7004bf25 9725{
eeda3fd6
SH
9726 const struct net_device_ops *ops = dev->netdev_ops;
9727
28172739
ED
9728 if (ops->ndo_get_stats64) {
9729 memset(storage, 0, sizeof(*storage));
caf586e5
ED
9730 ops->ndo_get_stats64(dev, storage);
9731 } else if (ops->ndo_get_stats) {
3cfde79c 9732 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
9733 } else {
9734 netdev_stats_to_stats64(storage, &dev->stats);
28172739 9735 }
6f64ec74
ED
9736 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9737 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9738 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 9739 return storage;
c45d286e 9740}
eeda3fd6 9741EXPORT_SYMBOL(dev_get_stats);
c45d286e 9742
24824a09 9743struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 9744{
24824a09 9745 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 9746
24824a09
ED
9747#ifdef CONFIG_NET_CLS_ACT
9748 if (queue)
9749 return queue;
9750 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9751 if (!queue)
9752 return NULL;
9753 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 9754 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
9755 queue->qdisc_sleeping = &noop_qdisc;
9756 rcu_assign_pointer(dev->ingress_queue, queue);
9757#endif
9758 return queue;
bb949fbd
DM
9759}
9760
2c60db03
ED
9761static const struct ethtool_ops default_ethtool_ops;
9762
d07d7507
SG
9763void netdev_set_default_ethtool_ops(struct net_device *dev,
9764 const struct ethtool_ops *ops)
9765{
9766 if (dev->ethtool_ops == &default_ethtool_ops)
9767 dev->ethtool_ops = ops;
9768}
9769EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9770
74d332c1
ED
9771void netdev_freemem(struct net_device *dev)
9772{
9773 char *addr = (char *)dev - dev->padded;
9774
4cb28970 9775 kvfree(addr);
74d332c1
ED
9776}
9777
1da177e4 9778/**
722c9a0c 9779 * alloc_netdev_mqs - allocate network device
9780 * @sizeof_priv: size of private data to allocate space for
9781 * @name: device name format string
9782 * @name_assign_type: origin of device name
9783 * @setup: callback to initialize device
9784 * @txqs: the number of TX subqueues to allocate
9785 * @rxqs: the number of RX subqueues to allocate
9786 *
9787 * Allocates a struct net_device with private data area for driver use
9788 * and performs basic initialization. Also allocates subqueue structs
9789 * for each queue on the device.
1da177e4 9790 */
36909ea4 9791struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 9792 unsigned char name_assign_type,
36909ea4
TH
9793 void (*setup)(struct net_device *),
9794 unsigned int txqs, unsigned int rxqs)
1da177e4 9795{
1da177e4 9796 struct net_device *dev;
52a59bd5 9797 unsigned int alloc_size;
1ce8e7b5 9798 struct net_device *p;
1da177e4 9799
b6fe17d6
SH
9800 BUG_ON(strlen(name) >= sizeof(dev->name));
9801
36909ea4 9802 if (txqs < 1) {
7b6cd1ce 9803 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
9804 return NULL;
9805 }
9806
36909ea4 9807 if (rxqs < 1) {
7b6cd1ce 9808 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
9809 return NULL;
9810 }
36909ea4 9811
fd2ea0a7 9812 alloc_size = sizeof(struct net_device);
d1643d24
AD
9813 if (sizeof_priv) {
9814 /* ensure 32-byte alignment of private area */
1ce8e7b5 9815 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
9816 alloc_size += sizeof_priv;
9817 }
9818 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 9819 alloc_size += NETDEV_ALIGN - 1;
1da177e4 9820
dcda9b04 9821 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 9822 if (!p)
1da177e4 9823 return NULL;
1da177e4 9824
1ce8e7b5 9825 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 9826 dev->padded = (char *)dev - (char *)p;
ab9c73cc 9827
29b4433d
ED
9828 dev->pcpu_refcnt = alloc_percpu(int);
9829 if (!dev->pcpu_refcnt)
74d332c1 9830 goto free_dev;
ab9c73cc 9831
ab9c73cc 9832 if (dev_addr_init(dev))
29b4433d 9833 goto free_pcpu;
ab9c73cc 9834
22bedad3 9835 dev_mc_init(dev);
a748ee24 9836 dev_uc_init(dev);
ccffad25 9837
c346dca1 9838 dev_net_set(dev, &init_net);
1da177e4 9839
ab92d68f
TY
9840 netdev_register_lockdep_key(dev);
9841
8d3bdbd5 9842 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 9843 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
9844 dev->upper_level = 1;
9845 dev->lower_level = 1;
8d3bdbd5 9846
8d3bdbd5
DM
9847 INIT_LIST_HEAD(&dev->napi_list);
9848 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 9849 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 9850 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
9851 INIT_LIST_HEAD(&dev->adj_list.upper);
9852 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
9853 INIT_LIST_HEAD(&dev->ptype_all);
9854 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 9855 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
9856#ifdef CONFIG_NET_SCHED
9857 hash_init(dev->qdisc_hash);
9858#endif
02875878 9859 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
9860 setup(dev);
9861
a813104d 9862 if (!dev->tx_queue_len) {
f84bb1ea 9863 dev->priv_flags |= IFF_NO_QUEUE;
11597084 9864 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 9865 }
906470c1 9866
36909ea4
TH
9867 dev->num_tx_queues = txqs;
9868 dev->real_num_tx_queues = txqs;
ed9af2e8 9869 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 9870 goto free_all;
e8a0464c 9871
36909ea4
TH
9872 dev->num_rx_queues = rxqs;
9873 dev->real_num_rx_queues = rxqs;
fe822240 9874 if (netif_alloc_rx_queues(dev))
8d3bdbd5 9875 goto free_all;
0a9627f2 9876
1da177e4 9877 strcpy(dev->name, name);
c835a677 9878 dev->name_assign_type = name_assign_type;
cbda10fa 9879 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
9880 if (!dev->ethtool_ops)
9881 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 9882
357b6cc5 9883 nf_hook_ingress_init(dev);
e687ad60 9884
1da177e4 9885 return dev;
ab9c73cc 9886
8d3bdbd5
DM
9887free_all:
9888 free_netdev(dev);
9889 return NULL;
9890
29b4433d
ED
9891free_pcpu:
9892 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
9893free_dev:
9894 netdev_freemem(dev);
ab9c73cc 9895 return NULL;
1da177e4 9896}
36909ea4 9897EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
9898
9899/**
722c9a0c 9900 * free_netdev - free network device
9901 * @dev: device
1da177e4 9902 *
722c9a0c 9903 * This function does the last stage of destroying an allocated device
9904 * interface. The reference to the device object is released. If this
9905 * is the last reference then it will be freed.Must be called in process
9906 * context.
1da177e4
LT
9907 */
9908void free_netdev(struct net_device *dev)
9909{
d565b0a1
HX
9910 struct napi_struct *p, *n;
9911
93d05d4a 9912 might_sleep();
60877a32 9913 netif_free_tx_queues(dev);
e817f856 9914 netif_free_rx_queues(dev);
e8a0464c 9915
33d480ce 9916 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 9917
f001fde5
JP
9918 /* Flush device addresses */
9919 dev_addr_flush(dev);
9920
d565b0a1
HX
9921 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9922 netif_napi_del(p);
9923
29b4433d
ED
9924 free_percpu(dev->pcpu_refcnt);
9925 dev->pcpu_refcnt = NULL;
75ccae62
THJ
9926 free_percpu(dev->xdp_bulkq);
9927 dev->xdp_bulkq = NULL;
29b4433d 9928
ab92d68f
TY
9929 netdev_unregister_lockdep_key(dev);
9930
3041a069 9931 /* Compatibility with error handling in drivers */
1da177e4 9932 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 9933 netdev_freemem(dev);
1da177e4
LT
9934 return;
9935 }
9936
9937 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9938 dev->reg_state = NETREG_RELEASED;
9939
43cb76d9
GKH
9940 /* will free via device release */
9941 put_device(&dev->dev);
1da177e4 9942}
d1b19dff 9943EXPORT_SYMBOL(free_netdev);
4ec93edb 9944
f0db275a
SH
9945/**
9946 * synchronize_net - Synchronize with packet receive processing
9947 *
9948 * Wait for packets currently being received to be done.
9949 * Does not block later packets from starting.
9950 */
4ec93edb 9951void synchronize_net(void)
1da177e4
LT
9952{
9953 might_sleep();
be3fc413
ED
9954 if (rtnl_is_locked())
9955 synchronize_rcu_expedited();
9956 else
9957 synchronize_rcu();
1da177e4 9958}
d1b19dff 9959EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
9960
9961/**
44a0873d 9962 * unregister_netdevice_queue - remove device from the kernel
1da177e4 9963 * @dev: device
44a0873d 9964 * @head: list
6ebfbc06 9965 *
1da177e4 9966 * This function shuts down a device interface and removes it
d59b54b1 9967 * from the kernel tables.
44a0873d 9968 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
9969 *
9970 * Callers must hold the rtnl semaphore. You may want
9971 * unregister_netdev() instead of this.
9972 */
9973
44a0873d 9974void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 9975{
a6620712
HX
9976 ASSERT_RTNL();
9977
44a0873d 9978 if (head) {
9fdce099 9979 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
9980 } else {
9981 rollback_registered(dev);
9982 /* Finish processing unregister after unlock */
9983 net_set_todo(dev);
9984 }
1da177e4 9985}
44a0873d 9986EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 9987
9b5e383c
ED
9988/**
9989 * unregister_netdevice_many - unregister many devices
9990 * @head: list of devices
87757a91
ED
9991 *
9992 * Note: As most callers use a stack allocated list_head,
9993 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
9994 */
9995void unregister_netdevice_many(struct list_head *head)
9996{
9997 struct net_device *dev;
9998
9999 if (!list_empty(head)) {
10000 rollback_registered_many(head);
10001 list_for_each_entry(dev, head, unreg_list)
10002 net_set_todo(dev);
87757a91 10003 list_del(head);
9b5e383c
ED
10004 }
10005}
63c8099d 10006EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 10007
1da177e4
LT
10008/**
10009 * unregister_netdev - remove device from the kernel
10010 * @dev: device
10011 *
10012 * This function shuts down a device interface and removes it
d59b54b1 10013 * from the kernel tables.
1da177e4
LT
10014 *
10015 * This is just a wrapper for unregister_netdevice that takes
10016 * the rtnl semaphore. In general you want to use this and not
10017 * unregister_netdevice.
10018 */
10019void unregister_netdev(struct net_device *dev)
10020{
10021 rtnl_lock();
10022 unregister_netdevice(dev);
10023 rtnl_unlock();
10024}
1da177e4
LT
10025EXPORT_SYMBOL(unregister_netdev);
10026
ce286d32
EB
10027/**
10028 * dev_change_net_namespace - move device to different nethost namespace
10029 * @dev: device
10030 * @net: network namespace
10031 * @pat: If not NULL name pattern to try if the current device name
10032 * is already taken in the destination network namespace.
10033 *
10034 * This function shuts down a device interface and moves it
10035 * to a new network namespace. On success 0 is returned, on
10036 * a failure a netagive errno code is returned.
10037 *
10038 * Callers must hold the rtnl semaphore.
10039 */
10040
10041int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10042{
ef6a4c88 10043 struct net *net_old = dev_net(dev);
38e01b30 10044 int err, new_nsid, new_ifindex;
ce286d32
EB
10045
10046 ASSERT_RTNL();
10047
10048 /* Don't allow namespace local devices to be moved. */
10049 err = -EINVAL;
10050 if (dev->features & NETIF_F_NETNS_LOCAL)
10051 goto out;
10052
10053 /* Ensure the device has been registrered */
ce286d32
EB
10054 if (dev->reg_state != NETREG_REGISTERED)
10055 goto out;
10056
10057 /* Get out if there is nothing todo */
10058 err = 0;
ef6a4c88 10059 if (net_eq(net_old, net))
ce286d32
EB
10060 goto out;
10061
10062 /* Pick the destination device name, and ensure
10063 * we can use it in the destination network namespace.
10064 */
10065 err = -EEXIST;
d9031024 10066 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
10067 /* We get here if we can't use the current device name */
10068 if (!pat)
10069 goto out;
7892bd08
LR
10070 err = dev_get_valid_name(net, dev, pat);
10071 if (err < 0)
ce286d32
EB
10072 goto out;
10073 }
10074
10075 /*
10076 * And now a mini version of register_netdevice unregister_netdevice.
10077 */
10078
10079 /* If device is running close it first. */
9b772652 10080 dev_close(dev);
ce286d32
EB
10081
10082 /* And unlink it from device chain */
ce286d32
EB
10083 unlist_netdevice(dev);
10084
10085 synchronize_net();
10086
10087 /* Shutdown queueing discipline. */
10088 dev_shutdown(dev);
10089
10090 /* Notify protocols, that we are about to destroy
eb13da1a 10091 * this device. They should clean all the things.
10092 *
10093 * Note that dev->reg_state stays at NETREG_REGISTERED.
10094 * This is wanted because this way 8021q and macvlan know
10095 * the device is just moving and can keep their slaves up.
10096 */
ce286d32 10097 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 10098 rcu_barrier();
38e01b30 10099
d4e4fdf9 10100 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30
ND
10101 /* If there is an ifindex conflict assign a new one */
10102 if (__dev_get_by_index(net, dev->ifindex))
10103 new_ifindex = dev_new_index(net);
10104 else
10105 new_ifindex = dev->ifindex;
10106
10107 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10108 new_ifindex);
ce286d32
EB
10109
10110 /*
10111 * Flush the unicast and multicast chains
10112 */
a748ee24 10113 dev_uc_flush(dev);
22bedad3 10114 dev_mc_flush(dev);
ce286d32 10115
4e66ae2e
SH
10116 /* Send a netdev-removed uevent to the old namespace */
10117 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 10118 netdev_adjacent_del_links(dev);
4e66ae2e 10119
93642e14
JP
10120 /* Move per-net netdevice notifiers that are following the netdevice */
10121 move_netdevice_notifiers_dev_net(dev, net);
10122
ce286d32 10123 /* Actually switch the network namespace */
c346dca1 10124 dev_net_set(dev, net);
38e01b30 10125 dev->ifindex = new_ifindex;
ce286d32 10126
4e66ae2e
SH
10127 /* Send a netdev-add uevent to the new namespace */
10128 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 10129 netdev_adjacent_add_links(dev);
4e66ae2e 10130
8b41d188 10131 /* Fixup kobjects */
a1b3f594 10132 err = device_rename(&dev->dev, dev->name);
8b41d188 10133 WARN_ON(err);
ce286d32 10134
ef6a4c88
CB
10135 /* Adapt owner in case owning user namespace of target network
10136 * namespace is different from the original one.
10137 */
10138 err = netdev_change_owner(dev, net_old, net);
10139 WARN_ON(err);
10140
ce286d32
EB
10141 /* Add the device back in the hashes */
10142 list_netdevice(dev);
10143
10144 /* Notify protocols, that a new device appeared. */
10145 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10146
d90a909e
EB
10147 /*
10148 * Prevent userspace races by waiting until the network
10149 * device is fully setup before sending notifications.
10150 */
7f294054 10151 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 10152
ce286d32
EB
10153 synchronize_net();
10154 err = 0;
10155out:
10156 return err;
10157}
463d0183 10158EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 10159
f0bf90de 10160static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
10161{
10162 struct sk_buff **list_skb;
1da177e4 10163 struct sk_buff *skb;
f0bf90de 10164 unsigned int cpu;
97d8b6e3 10165 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 10166
1da177e4
LT
10167 local_irq_disable();
10168 cpu = smp_processor_id();
10169 sd = &per_cpu(softnet_data, cpu);
10170 oldsd = &per_cpu(softnet_data, oldcpu);
10171
10172 /* Find end of our completion_queue. */
10173 list_skb = &sd->completion_queue;
10174 while (*list_skb)
10175 list_skb = &(*list_skb)->next;
10176 /* Append completion queue from offline CPU. */
10177 *list_skb = oldsd->completion_queue;
10178 oldsd->completion_queue = NULL;
10179
1da177e4 10180 /* Append output queue from offline CPU. */
a9cbd588
CG
10181 if (oldsd->output_queue) {
10182 *sd->output_queue_tailp = oldsd->output_queue;
10183 sd->output_queue_tailp = oldsd->output_queue_tailp;
10184 oldsd->output_queue = NULL;
10185 oldsd->output_queue_tailp = &oldsd->output_queue;
10186 }
ac64da0b
ED
10187 /* Append NAPI poll list from offline CPU, with one exception :
10188 * process_backlog() must be called by cpu owning percpu backlog.
10189 * We properly handle process_queue & input_pkt_queue later.
10190 */
10191 while (!list_empty(&oldsd->poll_list)) {
10192 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10193 struct napi_struct,
10194 poll_list);
10195
10196 list_del_init(&napi->poll_list);
10197 if (napi->poll == process_backlog)
10198 napi->state = 0;
10199 else
10200 ____napi_schedule(sd, napi);
264524d5 10201 }
1da177e4
LT
10202
10203 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10204 local_irq_enable();
10205
773fc8f6 10206#ifdef CONFIG_RPS
10207 remsd = oldsd->rps_ipi_list;
10208 oldsd->rps_ipi_list = NULL;
10209#endif
10210 /* send out pending IPI's on offline CPU */
10211 net_rps_send_ipi(remsd);
10212
1da177e4 10213 /* Process offline CPU's input_pkt_queue */
76cc8b13 10214 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 10215 netif_rx_ni(skb);
76cc8b13 10216 input_queue_head_incr(oldsd);
fec5e652 10217 }
ac64da0b 10218 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 10219 netif_rx_ni(skb);
76cc8b13
TH
10220 input_queue_head_incr(oldsd);
10221 }
1da177e4 10222
f0bf90de 10223 return 0;
1da177e4 10224}
1da177e4 10225
7f353bf2 10226/**
b63365a2
HX
10227 * netdev_increment_features - increment feature set by one
10228 * @all: current feature set
10229 * @one: new feature set
10230 * @mask: mask feature set
7f353bf2
HX
10231 *
10232 * Computes a new feature set after adding a device with feature set
b63365a2
HX
10233 * @one to the master device with current feature set @all. Will not
10234 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 10235 */
c8f44aff
MM
10236netdev_features_t netdev_increment_features(netdev_features_t all,
10237 netdev_features_t one, netdev_features_t mask)
b63365a2 10238{
c8cd0989 10239 if (mask & NETIF_F_HW_CSUM)
a188222b 10240 mask |= NETIF_F_CSUM_MASK;
1742f183 10241 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 10242
a188222b 10243 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 10244 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 10245
1742f183 10246 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
10247 if (all & NETIF_F_HW_CSUM)
10248 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
10249
10250 return all;
10251}
b63365a2 10252EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 10253
430f03cd 10254static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
10255{
10256 int i;
10257 struct hlist_head *hash;
10258
6da2ec56 10259 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
10260 if (hash != NULL)
10261 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10262 INIT_HLIST_HEAD(&hash[i]);
10263
10264 return hash;
10265}
10266
881d966b 10267/* Initialize per network namespace state */
4665079c 10268static int __net_init netdev_init(struct net *net)
881d966b 10269{
d9f37d01 10270 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 10271 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 10272
734b6541
RM
10273 if (net != &init_net)
10274 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 10275
30d97d35
PE
10276 net->dev_name_head = netdev_create_hash();
10277 if (net->dev_name_head == NULL)
10278 goto err_name;
881d966b 10279
30d97d35
PE
10280 net->dev_index_head = netdev_create_hash();
10281 if (net->dev_index_head == NULL)
10282 goto err_idx;
881d966b 10283
a30c7b42
JP
10284 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10285
881d966b 10286 return 0;
30d97d35
PE
10287
10288err_idx:
10289 kfree(net->dev_name_head);
10290err_name:
10291 return -ENOMEM;
881d966b
EB
10292}
10293
f0db275a
SH
10294/**
10295 * netdev_drivername - network driver for the device
10296 * @dev: network device
f0db275a
SH
10297 *
10298 * Determine network driver for device.
10299 */
3019de12 10300const char *netdev_drivername(const struct net_device *dev)
6579e57b 10301{
cf04a4c7
SH
10302 const struct device_driver *driver;
10303 const struct device *parent;
3019de12 10304 const char *empty = "";
6579e57b
AV
10305
10306 parent = dev->dev.parent;
6579e57b 10307 if (!parent)
3019de12 10308 return empty;
6579e57b
AV
10309
10310 driver = parent->driver;
10311 if (driver && driver->name)
3019de12
DM
10312 return driver->name;
10313 return empty;
6579e57b
AV
10314}
10315
6ea754eb
JP
10316static void __netdev_printk(const char *level, const struct net_device *dev,
10317 struct va_format *vaf)
256df2f3 10318{
b004ff49 10319 if (dev && dev->dev.parent) {
6ea754eb
JP
10320 dev_printk_emit(level[1] - '0',
10321 dev->dev.parent,
10322 "%s %s %s%s: %pV",
10323 dev_driver_string(dev->dev.parent),
10324 dev_name(dev->dev.parent),
10325 netdev_name(dev), netdev_reg_state(dev),
10326 vaf);
b004ff49 10327 } else if (dev) {
6ea754eb
JP
10328 printk("%s%s%s: %pV",
10329 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 10330 } else {
6ea754eb 10331 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 10332 }
256df2f3
JP
10333}
10334
6ea754eb
JP
10335void netdev_printk(const char *level, const struct net_device *dev,
10336 const char *format, ...)
256df2f3
JP
10337{
10338 struct va_format vaf;
10339 va_list args;
256df2f3
JP
10340
10341 va_start(args, format);
10342
10343 vaf.fmt = format;
10344 vaf.va = &args;
10345
6ea754eb 10346 __netdev_printk(level, dev, &vaf);
b004ff49 10347
256df2f3 10348 va_end(args);
256df2f3
JP
10349}
10350EXPORT_SYMBOL(netdev_printk);
10351
10352#define define_netdev_printk_level(func, level) \
6ea754eb 10353void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 10354{ \
256df2f3
JP
10355 struct va_format vaf; \
10356 va_list args; \
10357 \
10358 va_start(args, fmt); \
10359 \
10360 vaf.fmt = fmt; \
10361 vaf.va = &args; \
10362 \
6ea754eb 10363 __netdev_printk(level, dev, &vaf); \
b004ff49 10364 \
256df2f3 10365 va_end(args); \
256df2f3
JP
10366} \
10367EXPORT_SYMBOL(func);
10368
10369define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10370define_netdev_printk_level(netdev_alert, KERN_ALERT);
10371define_netdev_printk_level(netdev_crit, KERN_CRIT);
10372define_netdev_printk_level(netdev_err, KERN_ERR);
10373define_netdev_printk_level(netdev_warn, KERN_WARNING);
10374define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10375define_netdev_printk_level(netdev_info, KERN_INFO);
10376
4665079c 10377static void __net_exit netdev_exit(struct net *net)
881d966b
EB
10378{
10379 kfree(net->dev_name_head);
10380 kfree(net->dev_index_head);
ee21b18b
VA
10381 if (net != &init_net)
10382 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
10383}
10384
022cbae6 10385static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
10386 .init = netdev_init,
10387 .exit = netdev_exit,
10388};
10389
4665079c 10390static void __net_exit default_device_exit(struct net *net)
ce286d32 10391{
e008b5fc 10392 struct net_device *dev, *aux;
ce286d32 10393 /*
e008b5fc 10394 * Push all migratable network devices back to the
ce286d32
EB
10395 * initial network namespace
10396 */
10397 rtnl_lock();
e008b5fc 10398 for_each_netdev_safe(net, dev, aux) {
ce286d32 10399 int err;
aca51397 10400 char fb_name[IFNAMSIZ];
ce286d32
EB
10401
10402 /* Ignore unmoveable devices (i.e. loopback) */
10403 if (dev->features & NETIF_F_NETNS_LOCAL)
10404 continue;
10405
e008b5fc
EB
10406 /* Leave virtual devices for the generic cleanup */
10407 if (dev->rtnl_link_ops)
10408 continue;
d0c082ce 10409
25985edc 10410 /* Push remaining network devices to init_net */
aca51397 10411 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
10412 if (__dev_get_by_name(&init_net, fb_name))
10413 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 10414 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 10415 if (err) {
7b6cd1ce
JP
10416 pr_emerg("%s: failed to move %s to init_net: %d\n",
10417 __func__, dev->name, err);
aca51397 10418 BUG();
ce286d32
EB
10419 }
10420 }
10421 rtnl_unlock();
10422}
10423
50624c93
EB
10424static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10425{
10426 /* Return with the rtnl_lock held when there are no network
10427 * devices unregistering in any network namespace in net_list.
10428 */
10429 struct net *net;
10430 bool unregistering;
ff960a73 10431 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 10432
ff960a73 10433 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 10434 for (;;) {
50624c93
EB
10435 unregistering = false;
10436 rtnl_lock();
10437 list_for_each_entry(net, net_list, exit_list) {
10438 if (net->dev_unreg_count > 0) {
10439 unregistering = true;
10440 break;
10441 }
10442 }
10443 if (!unregistering)
10444 break;
10445 __rtnl_unlock();
ff960a73
PZ
10446
10447 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 10448 }
ff960a73 10449 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
10450}
10451
04dc7f6b
EB
10452static void __net_exit default_device_exit_batch(struct list_head *net_list)
10453{
10454 /* At exit all network devices most be removed from a network
b595076a 10455 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
10456 * Do this across as many network namespaces as possible to
10457 * improve batching efficiency.
10458 */
10459 struct net_device *dev;
10460 struct net *net;
10461 LIST_HEAD(dev_kill_list);
10462
50624c93
EB
10463 /* To prevent network device cleanup code from dereferencing
10464 * loopback devices or network devices that have been freed
10465 * wait here for all pending unregistrations to complete,
10466 * before unregistring the loopback device and allowing the
10467 * network namespace be freed.
10468 *
10469 * The netdev todo list containing all network devices
10470 * unregistrations that happen in default_device_exit_batch
10471 * will run in the rtnl_unlock() at the end of
10472 * default_device_exit_batch.
10473 */
10474 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
10475 list_for_each_entry(net, net_list, exit_list) {
10476 for_each_netdev_reverse(net, dev) {
b0ab2fab 10477 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
10478 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10479 else
10480 unregister_netdevice_queue(dev, &dev_kill_list);
10481 }
10482 }
10483 unregister_netdevice_many(&dev_kill_list);
10484 rtnl_unlock();
10485}
10486
022cbae6 10487static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 10488 .exit = default_device_exit,
04dc7f6b 10489 .exit_batch = default_device_exit_batch,
ce286d32
EB
10490};
10491
1da177e4
LT
10492/*
10493 * Initialize the DEV module. At boot time this walks the device list and
10494 * unhooks any devices that fail to initialise (normally hardware not
10495 * present) and leaves us with a valid list of present and active devices.
10496 *
10497 */
10498
10499/*
10500 * This is called single threaded during boot, so no need
10501 * to take the rtnl semaphore.
10502 */
10503static int __init net_dev_init(void)
10504{
10505 int i, rc = -ENOMEM;
10506
10507 BUG_ON(!dev_boot_phase);
10508
1da177e4
LT
10509 if (dev_proc_init())
10510 goto out;
10511
8b41d188 10512 if (netdev_kobject_init())
1da177e4
LT
10513 goto out;
10514
10515 INIT_LIST_HEAD(&ptype_all);
82d8a867 10516 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
10517 INIT_LIST_HEAD(&ptype_base[i]);
10518
62532da9
VY
10519 INIT_LIST_HEAD(&offload_base);
10520
881d966b
EB
10521 if (register_pernet_subsys(&netdev_net_ops))
10522 goto out;
1da177e4
LT
10523
10524 /*
10525 * Initialise the packet receive queues.
10526 */
10527
6f912042 10528 for_each_possible_cpu(i) {
41852497 10529 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 10530 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 10531
41852497
ED
10532 INIT_WORK(flush, flush_backlog);
10533
e36fa2f7 10534 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 10535 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
10536#ifdef CONFIG_XFRM_OFFLOAD
10537 skb_queue_head_init(&sd->xfrm_backlog);
10538#endif
e36fa2f7 10539 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 10540 sd->output_queue_tailp = &sd->output_queue;
df334545 10541#ifdef CONFIG_RPS
e36fa2f7
ED
10542 sd->csd.func = rps_trigger_softirq;
10543 sd->csd.info = sd;
e36fa2f7 10544 sd->cpu = i;
1e94d72f 10545#endif
0a9627f2 10546
7c4ec749 10547 init_gro_hash(&sd->backlog);
e36fa2f7
ED
10548 sd->backlog.poll = process_backlog;
10549 sd->backlog.weight = weight_p;
1da177e4
LT
10550 }
10551
1da177e4
LT
10552 dev_boot_phase = 0;
10553
505d4f73
EB
10554 /* The loopback device is special if any other network devices
10555 * is present in a network namespace the loopback device must
10556 * be present. Since we now dynamically allocate and free the
10557 * loopback device ensure this invariant is maintained by
10558 * keeping the loopback device as the first device on the
10559 * list of network devices. Ensuring the loopback devices
10560 * is the first device that appears and the last network device
10561 * that disappears.
10562 */
10563 if (register_pernet_device(&loopback_net_ops))
10564 goto out;
10565
10566 if (register_pernet_device(&default_device_ops))
10567 goto out;
10568
962cf36c
CM
10569 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10570 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 10571
f0bf90de
SAS
10572 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10573 NULL, dev_cpu_dead);
10574 WARN_ON(rc < 0);
1da177e4
LT
10575 rc = 0;
10576out:
10577 return rc;
10578}
10579
10580subsys_initcall(net_dev_init);