bpf, doc: Update KP's email in MAINTAINERS
[linux-2.6-block.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
11d6011c 82#include <linux/rwsem.h>
1da177e4
LT
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
0187bdfb 92#include <linux/ethtool.h>
1da177e4 93#include <linux/skbuff.h>
a7862b45 94#include <linux/bpf.h>
b5cdae32 95#include <linux/bpf_trace.h>
457c4cbc 96#include <net/net_namespace.h>
1da177e4 97#include <net/sock.h>
02d62e86 98#include <net/busy_poll.h>
1da177e4 99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
b14a9fc4 101#include <net/dsa.h>
1da177e4 102#include <net/dst.h>
fc4099f1 103#include <net/dst_metadata.h>
1da177e4 104#include <net/pkt_sched.h>
87d83093 105#include <net/pkt_cls.h>
1da177e4 106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
caeda9b9 132#include <linux/inetdevice.h>
c445477d 133#include <linux/cpu_rmap.h>
c5905afb 134#include <linux/static_key.h>
af12fa6e 135#include <linux/hashtable.h>
60877a32 136#include <linux/vmalloc.h>
529d0489 137#include <linux/if_macvlan.h>
e7fd2885 138#include <linux/errqueue.h>
3b47d303 139#include <linux/hrtimer.h>
357b6cc5 140#include <linux/netfilter_ingress.h>
40e4e713 141#include <linux/crash_dump.h>
b72b5bf6 142#include <linux/sctp.h>
ae847f40 143#include <net/udp_tunnel.h>
6621dd29 144#include <linux/net_namespace.h>
aaa5d90b 145#include <linux/indirect_call_wrapper.h>
af3836df 146#include <net/devlink.h>
bd869245 147#include <linux/pm_runtime.h>
3744741a 148#include <linux/prandom.h>
1da177e4 149
342709ef
PE
150#include "net-sysfs.h"
151
d565b0a1
HX
152#define MAX_GRO_SKBS 8
153
5d38a079
HX
154/* This should be increased if a protocol with a bigger head is added. */
155#define GRO_MAX_HEAD (MAX_HEADER + 128)
156
1da177e4 157static DEFINE_SPINLOCK(ptype_lock);
62532da9 158static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
62532da9 161static struct list_head offload_base __read_mostly;
1da177e4 162
ae78dbfa 163static int netif_rx_internal(struct sk_buff *skb);
54951194 164static int call_netdevice_notifiers_info(unsigned long val,
54951194 165 struct netdev_notifier_info *info);
26372605
PM
166static int call_netdevice_notifiers_extack(unsigned long val,
167 struct net_device *dev,
168 struct netlink_ext_ack *extack);
90b602f8 169static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 170
1da177e4 171/*
7562f876 172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
173 * semaphore.
174 *
c6d14c84 175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
176 *
177 * Writers must hold the rtnl semaphore while they loop through the
7562f876 178 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
179 * actual updates. This allows pure readers to access the list even
180 * while a writer is preparing to update it.
181 *
182 * To put it another way, dev_base_lock is held for writing only to
183 * protect against pure readers; the rtnl semaphore provides the
184 * protection against other writers.
185 *
186 * See, for example usages, register_netdevice() and
187 * unregister_netdevice(), which must be called with the rtnl
188 * semaphore held.
189 */
1da177e4 190DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
191EXPORT_SYMBOL(dev_base_lock);
192
6c557001
FW
193static DEFINE_MUTEX(ifalias_mutex);
194
af12fa6e
ET
195/* protects napi_hash addition/deletion and napi_gen_id */
196static DEFINE_SPINLOCK(napi_hash_lock);
197
52bd2d62 198static unsigned int napi_gen_id = NR_CPUS;
6180d9de 199static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 200
11d6011c 201static DECLARE_RWSEM(devnet_rename_sem);
c91f6df2 202
4e985ada
TG
203static inline void dev_base_seq_inc(struct net *net)
204{
643aa9cb 205 while (++net->dev_base_seq == 0)
206 ;
4e985ada
TG
207}
208
881d966b 209static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 210{
8387ff25 211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 212
08e9897d 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
214}
215
881d966b 216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 217{
7c28bd0b 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
219}
220
e36fa2f7 221static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
222{
223#ifdef CONFIG_RPS
e36fa2f7 224 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
225#endif
226}
227
e36fa2f7 228static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
229{
230#ifdef CONFIG_RPS
e36fa2f7 231 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
232#endif
233}
234
ff927412
JP
235static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
236 const char *name)
237{
238 struct netdev_name_node *name_node;
239
240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
241 if (!name_node)
242 return NULL;
243 INIT_HLIST_NODE(&name_node->hlist);
244 name_node->dev = dev;
245 name_node->name = name;
246 return name_node;
247}
248
249static struct netdev_name_node *
250netdev_name_node_head_alloc(struct net_device *dev)
251{
36fbf1e5
JP
252 struct netdev_name_node *name_node;
253
254 name_node = netdev_name_node_alloc(dev, dev->name);
255 if (!name_node)
256 return NULL;
257 INIT_LIST_HEAD(&name_node->list);
258 return name_node;
ff927412
JP
259}
260
261static void netdev_name_node_free(struct netdev_name_node *name_node)
262{
263 kfree(name_node);
264}
265
266static void netdev_name_node_add(struct net *net,
267 struct netdev_name_node *name_node)
268{
269 hlist_add_head_rcu(&name_node->hlist,
270 dev_name_hash(net, name_node->name));
271}
272
273static void netdev_name_node_del(struct netdev_name_node *name_node)
274{
275 hlist_del_rcu(&name_node->hlist);
276}
277
278static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
279 const char *name)
280{
281 struct hlist_head *head = dev_name_hash(net, name);
282 struct netdev_name_node *name_node;
283
284 hlist_for_each_entry(name_node, head, hlist)
285 if (!strcmp(name_node->name, name))
286 return name_node;
287 return NULL;
288}
289
290static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
291 const char *name)
292{
293 struct hlist_head *head = dev_name_hash(net, name);
294 struct netdev_name_node *name_node;
295
296 hlist_for_each_entry_rcu(name_node, head, hlist)
297 if (!strcmp(name_node->name, name))
298 return name_node;
299 return NULL;
300}
301
36fbf1e5
JP
302int netdev_name_node_alt_create(struct net_device *dev, const char *name)
303{
304 struct netdev_name_node *name_node;
305 struct net *net = dev_net(dev);
306
307 name_node = netdev_name_node_lookup(net, name);
308 if (name_node)
309 return -EEXIST;
310 name_node = netdev_name_node_alloc(dev, name);
311 if (!name_node)
312 return -ENOMEM;
313 netdev_name_node_add(net, name_node);
314 /* The node that holds dev->name acts as a head of per-device list. */
315 list_add_tail(&name_node->list, &dev->name_node->list);
316
317 return 0;
318}
319EXPORT_SYMBOL(netdev_name_node_alt_create);
320
321static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
322{
323 list_del(&name_node->list);
324 netdev_name_node_del(name_node);
325 kfree(name_node->name);
326 netdev_name_node_free(name_node);
327}
328
329int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
330{
331 struct netdev_name_node *name_node;
332 struct net *net = dev_net(dev);
333
334 name_node = netdev_name_node_lookup(net, name);
335 if (!name_node)
336 return -ENOENT;
e08ad805
ED
337 /* lookup might have found our primary name or a name belonging
338 * to another device.
339 */
340 if (name_node == dev->name_node || name_node->dev != dev)
341 return -EINVAL;
342
36fbf1e5
JP
343 __netdev_name_node_alt_destroy(name_node);
344
345 return 0;
346}
347EXPORT_SYMBOL(netdev_name_node_alt_destroy);
348
349static void netdev_name_node_alt_flush(struct net_device *dev)
350{
351 struct netdev_name_node *name_node, *tmp;
352
353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
354 __netdev_name_node_alt_destroy(name_node);
355}
356
ce286d32 357/* Device list insertion */
53759be9 358static void list_netdevice(struct net_device *dev)
ce286d32 359{
c346dca1 360 struct net *net = dev_net(dev);
ce286d32
EB
361
362 ASSERT_RTNL();
363
364 write_lock_bh(&dev_base_lock);
c6d14c84 365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 366 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
367 hlist_add_head_rcu(&dev->index_hlist,
368 dev_index_hash(net, dev->ifindex));
ce286d32 369 write_unlock_bh(&dev_base_lock);
4e985ada
TG
370
371 dev_base_seq_inc(net);
ce286d32
EB
372}
373
fb699dfd
ED
374/* Device list removal
375 * caller must respect a RCU grace period before freeing/reusing dev
376 */
ce286d32
EB
377static void unlist_netdevice(struct net_device *dev)
378{
379 ASSERT_RTNL();
380
381 /* Unlink dev from the device chain */
382 write_lock_bh(&dev_base_lock);
c6d14c84 383 list_del_rcu(&dev->dev_list);
ff927412 384 netdev_name_node_del(dev->name_node);
fb699dfd 385 hlist_del_rcu(&dev->index_hlist);
ce286d32 386 write_unlock_bh(&dev_base_lock);
4e985ada
TG
387
388 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
389}
390
1da177e4
LT
391/*
392 * Our notifier list
393 */
394
f07d5b94 395static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
396
397/*
398 * Device drivers call our routines to queue packets here. We empty the
399 * queue in the local softnet handler.
400 */
bea3348e 401
9958da05 402DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 403EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 404
1a33e10e
CW
405#ifdef CONFIG_LOCKDEP
406/*
407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
408 * according to dev->type
409 */
410static const unsigned short netdev_lock_type[] = {
411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
426
427static const char *const netdev_lock_name[] = {
428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
443
444static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
845e0ebb 445static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
1a33e10e
CW
446
447static inline unsigned short netdev_lock_pos(unsigned short dev_type)
448{
449 int i;
450
451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
452 if (netdev_lock_type[i] == dev_type)
453 return i;
454 /* the last key is used by default */
455 return ARRAY_SIZE(netdev_lock_type) - 1;
456}
457
458static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
459 unsigned short dev_type)
460{
461 int i;
462
463 i = netdev_lock_pos(dev_type);
464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
465 netdev_lock_name[i]);
466}
845e0ebb
CW
467
468static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
469{
470 int i;
471
472 i = netdev_lock_pos(dev->type);
473 lockdep_set_class_and_name(&dev->addr_list_lock,
474 &netdev_addr_lock_key[i],
475 netdev_lock_name[i]);
476}
1a33e10e
CW
477#else
478static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
479 unsigned short dev_type)
480{
481}
845e0ebb
CW
482
483static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
484{
485}
1a33e10e
CW
486#endif
487
1da177e4 488/*******************************************************************************
eb13da1a 489 *
490 * Protocol management and registration routines
491 *
492 *******************************************************************************/
1da177e4 493
1da177e4 494
1da177e4
LT
495/*
496 * Add a protocol ID to the list. Now that the input handler is
497 * smarter we can dispense with all the messy stuff that used to be
498 * here.
499 *
500 * BEWARE!!! Protocol handlers, mangling input packets,
501 * MUST BE last in hash buckets and checking protocol handlers
502 * MUST start from promiscuous ptype_all chain in net_bh.
503 * It is true now, do not change it.
504 * Explanation follows: if protocol handler, mangling packet, will
505 * be the first on list, it is not able to sense, that packet
506 * is cloned and should be copied-on-write, so that it will
507 * change it and subsequent readers will get broken packet.
508 * --ANK (980803)
509 */
510
c07b68e8
ED
511static inline struct list_head *ptype_head(const struct packet_type *pt)
512{
513 if (pt->type == htons(ETH_P_ALL))
7866a621 514 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 515 else
7866a621
SN
516 return pt->dev ? &pt->dev->ptype_specific :
517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
518}
519
1da177e4
LT
520/**
521 * dev_add_pack - add packet handler
522 * @pt: packet type declaration
523 *
524 * Add a protocol handler to the networking stack. The passed &packet_type
525 * is linked into kernel lists and may not be freed until it has been
526 * removed from the kernel lists.
527 *
4ec93edb 528 * This call does not sleep therefore it can not
1da177e4
LT
529 * guarantee all CPU's that are in middle of receiving packets
530 * will see the new packet type (until the next received packet).
531 */
532
533void dev_add_pack(struct packet_type *pt)
534{
c07b68e8 535 struct list_head *head = ptype_head(pt);
1da177e4 536
c07b68e8
ED
537 spin_lock(&ptype_lock);
538 list_add_rcu(&pt->list, head);
539 spin_unlock(&ptype_lock);
1da177e4 540}
d1b19dff 541EXPORT_SYMBOL(dev_add_pack);
1da177e4 542
1da177e4
LT
543/**
544 * __dev_remove_pack - remove packet handler
545 * @pt: packet type declaration
546 *
547 * Remove a protocol handler that was previously added to the kernel
548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
549 * from the kernel lists and can be freed or reused once this function
4ec93edb 550 * returns.
1da177e4
LT
551 *
552 * The packet type might still be in use by receivers
553 * and must not be freed until after all the CPU's have gone
554 * through a quiescent state.
555 */
556void __dev_remove_pack(struct packet_type *pt)
557{
c07b68e8 558 struct list_head *head = ptype_head(pt);
1da177e4
LT
559 struct packet_type *pt1;
560
c07b68e8 561 spin_lock(&ptype_lock);
1da177e4
LT
562
563 list_for_each_entry(pt1, head, list) {
564 if (pt == pt1) {
565 list_del_rcu(&pt->list);
566 goto out;
567 }
568 }
569
7b6cd1ce 570 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 571out:
c07b68e8 572 spin_unlock(&ptype_lock);
1da177e4 573}
d1b19dff
ED
574EXPORT_SYMBOL(__dev_remove_pack);
575
1da177e4
LT
576/**
577 * dev_remove_pack - remove packet handler
578 * @pt: packet type declaration
579 *
580 * Remove a protocol handler that was previously added to the kernel
581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
582 * from the kernel lists and can be freed or reused once this function
583 * returns.
584 *
585 * This call sleeps to guarantee that no CPU is looking at the packet
586 * type after return.
587 */
588void dev_remove_pack(struct packet_type *pt)
589{
590 __dev_remove_pack(pt);
4ec93edb 591
1da177e4
LT
592 synchronize_net();
593}
d1b19dff 594EXPORT_SYMBOL(dev_remove_pack);
1da177e4 595
62532da9
VY
596
597/**
598 * dev_add_offload - register offload handlers
599 * @po: protocol offload declaration
600 *
601 * Add protocol offload handlers to the networking stack. The passed
602 * &proto_offload is linked into kernel lists and may not be freed until
603 * it has been removed from the kernel lists.
604 *
605 * This call does not sleep therefore it can not
606 * guarantee all CPU's that are in middle of receiving packets
607 * will see the new offload handlers (until the next received packet).
608 */
609void dev_add_offload(struct packet_offload *po)
610{
bdef7de4 611 struct packet_offload *elem;
62532da9
VY
612
613 spin_lock(&offload_lock);
bdef7de4
DM
614 list_for_each_entry(elem, &offload_base, list) {
615 if (po->priority < elem->priority)
616 break;
617 }
618 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
619 spin_unlock(&offload_lock);
620}
621EXPORT_SYMBOL(dev_add_offload);
622
623/**
624 * __dev_remove_offload - remove offload handler
625 * @po: packet offload declaration
626 *
627 * Remove a protocol offload handler that was previously added to the
628 * kernel offload handlers by dev_add_offload(). The passed &offload_type
629 * is removed from the kernel lists and can be freed or reused once this
630 * function returns.
631 *
632 * The packet type might still be in use by receivers
633 * and must not be freed until after all the CPU's have gone
634 * through a quiescent state.
635 */
1d143d9f 636static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
637{
638 struct list_head *head = &offload_base;
639 struct packet_offload *po1;
640
c53aa505 641 spin_lock(&offload_lock);
62532da9
VY
642
643 list_for_each_entry(po1, head, list) {
644 if (po == po1) {
645 list_del_rcu(&po->list);
646 goto out;
647 }
648 }
649
650 pr_warn("dev_remove_offload: %p not found\n", po);
651out:
c53aa505 652 spin_unlock(&offload_lock);
62532da9 653}
62532da9
VY
654
655/**
656 * dev_remove_offload - remove packet offload handler
657 * @po: packet offload declaration
658 *
659 * Remove a packet offload handler that was previously added to the kernel
660 * offload handlers by dev_add_offload(). The passed &offload_type is
661 * removed from the kernel lists and can be freed or reused once this
662 * function returns.
663 *
664 * This call sleeps to guarantee that no CPU is looking at the packet
665 * type after return.
666 */
667void dev_remove_offload(struct packet_offload *po)
668{
669 __dev_remove_offload(po);
670
671 synchronize_net();
672}
673EXPORT_SYMBOL(dev_remove_offload);
674
1da177e4 675/******************************************************************************
eb13da1a 676 *
677 * Device Boot-time Settings Routines
678 *
679 ******************************************************************************/
1da177e4
LT
680
681/* Boot time configuration table */
682static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
683
684/**
685 * netdev_boot_setup_add - add new setup entry
686 * @name: name of the device
687 * @map: configured settings for the device
688 *
689 * Adds new setup entry to the dev_boot_setup list. The function
690 * returns 0 on error and 1 on success. This is a generic routine to
691 * all netdevices.
692 */
693static int netdev_boot_setup_add(char *name, struct ifmap *map)
694{
695 struct netdev_boot_setup *s;
696 int i;
697
698 s = dev_boot_setup;
699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
701 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 702 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
703 memcpy(&s[i].map, map, sizeof(s[i].map));
704 break;
705 }
706 }
707
708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
709}
710
711/**
722c9a0c 712 * netdev_boot_setup_check - check boot time settings
713 * @dev: the netdevice
1da177e4 714 *
722c9a0c 715 * Check boot time settings for the device.
716 * The found settings are set for the device to be used
717 * later in the device probing.
718 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
719 */
720int netdev_boot_setup_check(struct net_device *dev)
721{
722 struct netdev_boot_setup *s = dev_boot_setup;
723 int i;
724
725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 727 !strcmp(dev->name, s[i].name)) {
722c9a0c 728 dev->irq = s[i].map.irq;
729 dev->base_addr = s[i].map.base_addr;
730 dev->mem_start = s[i].map.mem_start;
731 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
732 return 1;
733 }
734 }
735 return 0;
736}
d1b19dff 737EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
738
739
740/**
722c9a0c 741 * netdev_boot_base - get address from boot time settings
742 * @prefix: prefix for network device
743 * @unit: id for network device
744 *
745 * Check boot time settings for the base address of device.
746 * The found settings are set for the device to be used
747 * later in the device probing.
748 * Returns 0 if no settings found.
1da177e4
LT
749 */
750unsigned long netdev_boot_base(const char *prefix, int unit)
751{
752 const struct netdev_boot_setup *s = dev_boot_setup;
753 char name[IFNAMSIZ];
754 int i;
755
756 sprintf(name, "%s%d", prefix, unit);
757
758 /*
759 * If device already registered then return base of 1
760 * to indicate not to probe for this interface
761 */
881d966b 762 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
763 return 1;
764
765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
766 if (!strcmp(name, s[i].name))
767 return s[i].map.base_addr;
768 return 0;
769}
770
771/*
772 * Saves at boot time configured settings for any netdevice.
773 */
774int __init netdev_boot_setup(char *str)
775{
776 int ints[5];
777 struct ifmap map;
778
779 str = get_options(str, ARRAY_SIZE(ints), ints);
780 if (!str || !*str)
781 return 0;
782
783 /* Save settings */
784 memset(&map, 0, sizeof(map));
785 if (ints[0] > 0)
786 map.irq = ints[1];
787 if (ints[0] > 1)
788 map.base_addr = ints[2];
789 if (ints[0] > 2)
790 map.mem_start = ints[3];
791 if (ints[0] > 3)
792 map.mem_end = ints[4];
793
794 /* Add new entry to the list */
795 return netdev_boot_setup_add(str, &map);
796}
797
798__setup("netdev=", netdev_boot_setup);
799
800/*******************************************************************************
eb13da1a 801 *
802 * Device Interface Subroutines
803 *
804 *******************************************************************************/
1da177e4 805
a54acb3a
ND
806/**
807 * dev_get_iflink - get 'iflink' value of a interface
808 * @dev: targeted interface
809 *
810 * Indicates the ifindex the interface is linked to.
811 * Physical interfaces have the same 'ifindex' and 'iflink' values.
812 */
813
814int dev_get_iflink(const struct net_device *dev)
815{
816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
817 return dev->netdev_ops->ndo_get_iflink(dev);
818
7a66bbc9 819 return dev->ifindex;
a54acb3a
ND
820}
821EXPORT_SYMBOL(dev_get_iflink);
822
fc4099f1
PS
823/**
824 * dev_fill_metadata_dst - Retrieve tunnel egress information.
825 * @dev: targeted interface
826 * @skb: The packet.
827 *
828 * For better visibility of tunnel traffic OVS needs to retrieve
829 * egress tunnel information for a packet. Following API allows
830 * user to get this info.
831 */
832int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
833{
834 struct ip_tunnel_info *info;
835
836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
837 return -EINVAL;
838
839 info = skb_tunnel_info_unclone(skb);
840 if (!info)
841 return -ENOMEM;
842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
843 return -EINVAL;
844
845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
846}
847EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
848
1da177e4
LT
849/**
850 * __dev_get_by_name - find a device by its name
c4ea43c5 851 * @net: the applicable net namespace
1da177e4
LT
852 * @name: name to find
853 *
854 * Find an interface by name. Must be called under RTNL semaphore
855 * or @dev_base_lock. If the name is found a pointer to the device
856 * is returned. If the name is not found then %NULL is returned. The
857 * reference counters are not incremented so the caller must be
858 * careful with locks.
859 */
860
881d966b 861struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 862{
ff927412 863 struct netdev_name_node *node_name;
1da177e4 864
ff927412
JP
865 node_name = netdev_name_node_lookup(net, name);
866 return node_name ? node_name->dev : NULL;
1da177e4 867}
d1b19dff 868EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 869
72c9528b 870/**
722c9a0c 871 * dev_get_by_name_rcu - find a device by its name
872 * @net: the applicable net namespace
873 * @name: name to find
874 *
875 * Find an interface by name.
876 * If the name is found a pointer to the device is returned.
877 * If the name is not found then %NULL is returned.
878 * The reference counters are not incremented so the caller must be
879 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
880 */
881
882struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
883{
ff927412 884 struct netdev_name_node *node_name;
72c9528b 885
ff927412
JP
886 node_name = netdev_name_node_lookup_rcu(net, name);
887 return node_name ? node_name->dev : NULL;
72c9528b
ED
888}
889EXPORT_SYMBOL(dev_get_by_name_rcu);
890
1da177e4
LT
891/**
892 * dev_get_by_name - find a device by its name
c4ea43c5 893 * @net: the applicable net namespace
1da177e4
LT
894 * @name: name to find
895 *
896 * Find an interface by name. This can be called from any
897 * context and does its own locking. The returned handle has
898 * the usage count incremented and the caller must use dev_put() to
899 * release it when it is no longer needed. %NULL is returned if no
900 * matching device is found.
901 */
902
881d966b 903struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
904{
905 struct net_device *dev;
906
72c9528b
ED
907 rcu_read_lock();
908 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
909 if (dev)
910 dev_hold(dev);
72c9528b 911 rcu_read_unlock();
1da177e4
LT
912 return dev;
913}
d1b19dff 914EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
915
916/**
917 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 918 * @net: the applicable net namespace
1da177e4
LT
919 * @ifindex: index of device
920 *
921 * Search for an interface by index. Returns %NULL if the device
922 * is not found or a pointer to the device. The device has not
923 * had its reference counter increased so the caller must be careful
924 * about locking. The caller must hold either the RTNL semaphore
925 * or @dev_base_lock.
926 */
927
881d966b 928struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 929{
0bd8d536
ED
930 struct net_device *dev;
931 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 932
b67bfe0d 933 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
934 if (dev->ifindex == ifindex)
935 return dev;
0bd8d536 936
1da177e4
LT
937 return NULL;
938}
d1b19dff 939EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 940
fb699dfd
ED
941/**
942 * dev_get_by_index_rcu - find a device by its ifindex
943 * @net: the applicable net namespace
944 * @ifindex: index of device
945 *
946 * Search for an interface by index. Returns %NULL if the device
947 * is not found or a pointer to the device. The device has not
948 * had its reference counter increased so the caller must be careful
949 * about locking. The caller must hold RCU lock.
950 */
951
952struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
953{
fb699dfd
ED
954 struct net_device *dev;
955 struct hlist_head *head = dev_index_hash(net, ifindex);
956
b67bfe0d 957 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
958 if (dev->ifindex == ifindex)
959 return dev;
960
961 return NULL;
962}
963EXPORT_SYMBOL(dev_get_by_index_rcu);
964
1da177e4
LT
965
966/**
967 * dev_get_by_index - find a device by its ifindex
c4ea43c5 968 * @net: the applicable net namespace
1da177e4
LT
969 * @ifindex: index of device
970 *
971 * Search for an interface by index. Returns NULL if the device
972 * is not found or a pointer to the device. The device returned has
973 * had a reference added and the pointer is safe until the user calls
974 * dev_put to indicate they have finished with it.
975 */
976
881d966b 977struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
978{
979 struct net_device *dev;
980
fb699dfd
ED
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
983 if (dev)
984 dev_hold(dev);
fb699dfd 985 rcu_read_unlock();
1da177e4
LT
986 return dev;
987}
d1b19dff 988EXPORT_SYMBOL(dev_get_by_index);
1da177e4 989
90b602f8
ML
990/**
991 * dev_get_by_napi_id - find a device by napi_id
992 * @napi_id: ID of the NAPI struct
993 *
994 * Search for an interface by NAPI ID. Returns %NULL if the device
995 * is not found or a pointer to the device. The device has not had
996 * its reference counter increased so the caller must be careful
997 * about locking. The caller must hold RCU lock.
998 */
999
1000struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1001{
1002 struct napi_struct *napi;
1003
1004 WARN_ON_ONCE(!rcu_read_lock_held());
1005
1006 if (napi_id < MIN_NAPI_ID)
1007 return NULL;
1008
1009 napi = napi_by_id(napi_id);
1010
1011 return napi ? napi->dev : NULL;
1012}
1013EXPORT_SYMBOL(dev_get_by_napi_id);
1014
5dbe7c17
NS
1015/**
1016 * netdev_get_name - get a netdevice name, knowing its ifindex.
1017 * @net: network namespace
1018 * @name: a pointer to the buffer where the name will be stored.
1019 * @ifindex: the ifindex of the interface to get the name from.
5dbe7c17
NS
1020 */
1021int netdev_get_name(struct net *net, char *name, int ifindex)
1022{
1023 struct net_device *dev;
11d6011c 1024 int ret;
5dbe7c17 1025
11d6011c 1026 down_read(&devnet_rename_sem);
5dbe7c17 1027 rcu_read_lock();
11d6011c 1028
5dbe7c17
NS
1029 dev = dev_get_by_index_rcu(net, ifindex);
1030 if (!dev) {
11d6011c
AD
1031 ret = -ENODEV;
1032 goto out;
5dbe7c17
NS
1033 }
1034
1035 strcpy(name, dev->name);
5dbe7c17 1036
11d6011c
AD
1037 ret = 0;
1038out:
1039 rcu_read_unlock();
1040 up_read(&devnet_rename_sem);
1041 return ret;
5dbe7c17
NS
1042}
1043
1da177e4 1044/**
941666c2 1045 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 1046 * @net: the applicable net namespace
1da177e4
LT
1047 * @type: media type of device
1048 * @ha: hardware address
1049 *
1050 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
1051 * is not found or a pointer to the device.
1052 * The caller must hold RCU or RTNL.
941666c2 1053 * The returned device has not had its ref count increased
1da177e4
LT
1054 * and the caller must therefore be careful about locking
1055 *
1da177e4
LT
1056 */
1057
941666c2
ED
1058struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1059 const char *ha)
1da177e4
LT
1060{
1061 struct net_device *dev;
1062
941666c2 1063 for_each_netdev_rcu(net, dev)
1da177e4
LT
1064 if (dev->type == type &&
1065 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
1066 return dev;
1067
1068 return NULL;
1da177e4 1069}
941666c2 1070EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 1071
881d966b 1072struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
1073{
1074 struct net_device *dev;
1075
4e9cac2b 1076 ASSERT_RTNL();
881d966b 1077 for_each_netdev(net, dev)
4e9cac2b 1078 if (dev->type == type)
7562f876
PE
1079 return dev;
1080
1081 return NULL;
4e9cac2b 1082}
4e9cac2b
PM
1083EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1084
881d966b 1085struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 1086{
99fe3c39 1087 struct net_device *dev, *ret = NULL;
4e9cac2b 1088
99fe3c39
ED
1089 rcu_read_lock();
1090 for_each_netdev_rcu(net, dev)
1091 if (dev->type == type) {
1092 dev_hold(dev);
1093 ret = dev;
1094 break;
1095 }
1096 rcu_read_unlock();
1097 return ret;
1da177e4 1098}
1da177e4
LT
1099EXPORT_SYMBOL(dev_getfirstbyhwtype);
1100
1101/**
6c555490 1102 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1103 * @net: the applicable net namespace
1da177e4
LT
1104 * @if_flags: IFF_* values
1105 * @mask: bitmask of bits in if_flags to check
1106 *
1107 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1108 * is not found or a pointer to the device. Must be called inside
6c555490 1109 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1110 */
1111
6c555490
WC
1112struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1113 unsigned short mask)
1da177e4 1114{
7562f876 1115 struct net_device *dev, *ret;
1da177e4 1116
6c555490
WC
1117 ASSERT_RTNL();
1118
7562f876 1119 ret = NULL;
6c555490 1120 for_each_netdev(net, dev) {
1da177e4 1121 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1122 ret = dev;
1da177e4
LT
1123 break;
1124 }
1125 }
7562f876 1126 return ret;
1da177e4 1127}
6c555490 1128EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1129
1130/**
1131 * dev_valid_name - check if name is okay for network device
1132 * @name: name string
1133 *
1134 * Network device names need to be valid file names to
4250b75b 1135 * allow sysfs to work. We also disallow any kind of
c7fa9d18 1136 * whitespace.
1da177e4 1137 */
95f050bf 1138bool dev_valid_name(const char *name)
1da177e4 1139{
c7fa9d18 1140 if (*name == '\0')
95f050bf 1141 return false;
a9d48205 1142 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1143 return false;
c7fa9d18 1144 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1145 return false;
c7fa9d18
DM
1146
1147 while (*name) {
a4176a93 1148 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1149 return false;
c7fa9d18
DM
1150 name++;
1151 }
95f050bf 1152 return true;
1da177e4 1153}
d1b19dff 1154EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1155
1156/**
b267b179
EB
1157 * __dev_alloc_name - allocate a name for a device
1158 * @net: network namespace to allocate the device name in
1da177e4 1159 * @name: name format string
b267b179 1160 * @buf: scratch buffer and result name string
1da177e4
LT
1161 *
1162 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1163 * id. It scans list of devices to build up a free map, then chooses
1164 * the first empty slot. The caller must hold the dev_base or rtnl lock
1165 * while allocating the name and adding the device in order to avoid
1166 * duplicates.
1167 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1168 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1169 */
1170
b267b179 1171static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1172{
1173 int i = 0;
1da177e4
LT
1174 const char *p;
1175 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1176 unsigned long *inuse;
1da177e4
LT
1177 struct net_device *d;
1178
93809105
RV
1179 if (!dev_valid_name(name))
1180 return -EINVAL;
1181
51f299dd 1182 p = strchr(name, '%');
1da177e4
LT
1183 if (p) {
1184 /*
1185 * Verify the string as this thing may have come from
1186 * the user. There must be either one "%d" and no other "%"
1187 * characters.
1188 */
1189 if (p[1] != 'd' || strchr(p + 2, '%'))
1190 return -EINVAL;
1191
1192 /* Use one page as a bit array of possible slots */
cfcabdcc 1193 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1194 if (!inuse)
1195 return -ENOMEM;
1196
881d966b 1197 for_each_netdev(net, d) {
1da177e4
LT
1198 if (!sscanf(d->name, name, &i))
1199 continue;
1200 if (i < 0 || i >= max_netdevices)
1201 continue;
1202
1203 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1204 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1205 if (!strncmp(buf, d->name, IFNAMSIZ))
1206 set_bit(i, inuse);
1207 }
1208
1209 i = find_first_zero_bit(inuse, max_netdevices);
1210 free_page((unsigned long) inuse);
1211 }
1212
6224abda 1213 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1214 if (!__dev_get_by_name(net, buf))
1da177e4 1215 return i;
1da177e4
LT
1216
1217 /* It is possible to run out of possible slots
1218 * when the name is long and there isn't enough space left
1219 * for the digits, or if all bits are used.
1220 */
029b6d14 1221 return -ENFILE;
1da177e4
LT
1222}
1223
2c88b855
RV
1224static int dev_alloc_name_ns(struct net *net,
1225 struct net_device *dev,
1226 const char *name)
1227{
1228 char buf[IFNAMSIZ];
1229 int ret;
1230
c46d7642 1231 BUG_ON(!net);
2c88b855
RV
1232 ret = __dev_alloc_name(net, name, buf);
1233 if (ret >= 0)
1234 strlcpy(dev->name, buf, IFNAMSIZ);
1235 return ret;
1da177e4
LT
1236}
1237
b267b179
EB
1238/**
1239 * dev_alloc_name - allocate a name for a device
1240 * @dev: device
1241 * @name: name format string
1242 *
1243 * Passed a format string - eg "lt%d" it will try and find a suitable
1244 * id. It scans list of devices to build up a free map, then chooses
1245 * the first empty slot. The caller must hold the dev_base or rtnl lock
1246 * while allocating the name and adding the device in order to avoid
1247 * duplicates.
1248 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1249 * Returns the number of the unit assigned or a negative errno code.
1250 */
1251
1252int dev_alloc_name(struct net_device *dev, const char *name)
1253{
c46d7642 1254 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1255}
d1b19dff 1256EXPORT_SYMBOL(dev_alloc_name);
b267b179 1257
bacb7e18
ED
1258static int dev_get_valid_name(struct net *net, struct net_device *dev,
1259 const char *name)
828de4f6 1260{
55a5ec9b
DM
1261 BUG_ON(!net);
1262
1263 if (!dev_valid_name(name))
1264 return -EINVAL;
1265
1266 if (strchr(name, '%'))
1267 return dev_alloc_name_ns(net, dev, name);
1268 else if (__dev_get_by_name(net, name))
1269 return -EEXIST;
1270 else if (dev->name != name)
1271 strlcpy(dev->name, name, IFNAMSIZ);
1272
1273 return 0;
d9031024 1274}
1da177e4
LT
1275
1276/**
1277 * dev_change_name - change name of a device
1278 * @dev: device
1279 * @newname: name (or format string) must be at least IFNAMSIZ
1280 *
1281 * Change name of a device, can pass format strings "eth%d".
1282 * for wildcarding.
1283 */
cf04a4c7 1284int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1285{
238fa362 1286 unsigned char old_assign_type;
fcc5a03a 1287 char oldname[IFNAMSIZ];
1da177e4 1288 int err = 0;
fcc5a03a 1289 int ret;
881d966b 1290 struct net *net;
1da177e4
LT
1291
1292 ASSERT_RTNL();
c346dca1 1293 BUG_ON(!dev_net(dev));
1da177e4 1294
c346dca1 1295 net = dev_net(dev);
8065a779
SWL
1296
1297 /* Some auto-enslaved devices e.g. failover slaves are
1298 * special, as userspace might rename the device after
1299 * the interface had been brought up and running since
1300 * the point kernel initiated auto-enslavement. Allow
1301 * live name change even when these slave devices are
1302 * up and running.
1303 *
1304 * Typically, users of these auto-enslaving devices
1305 * don't actually care about slave name change, as
1306 * they are supposed to operate on master interface
1307 * directly.
1308 */
1309 if (dev->flags & IFF_UP &&
1310 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1311 return -EBUSY;
1312
11d6011c 1313 down_write(&devnet_rename_sem);
c91f6df2
BH
1314
1315 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
11d6011c 1316 up_write(&devnet_rename_sem);
c8d90dca 1317 return 0;
c91f6df2 1318 }
c8d90dca 1319
fcc5a03a
HX
1320 memcpy(oldname, dev->name, IFNAMSIZ);
1321
828de4f6 1322 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1323 if (err < 0) {
11d6011c 1324 up_write(&devnet_rename_sem);
d9031024 1325 return err;
c91f6df2 1326 }
1da177e4 1327
6fe82a39
VF
1328 if (oldname[0] && !strchr(oldname, '%'))
1329 netdev_info(dev, "renamed from %s\n", oldname);
1330
238fa362
TG
1331 old_assign_type = dev->name_assign_type;
1332 dev->name_assign_type = NET_NAME_RENAMED;
1333
fcc5a03a 1334rollback:
a1b3f594
EB
1335 ret = device_rename(&dev->dev, dev->name);
1336 if (ret) {
1337 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1338 dev->name_assign_type = old_assign_type;
11d6011c 1339 up_write(&devnet_rename_sem);
a1b3f594 1340 return ret;
dcc99773 1341 }
7f988eab 1342
11d6011c 1343 up_write(&devnet_rename_sem);
c91f6df2 1344
5bb025fa
VF
1345 netdev_adjacent_rename_links(dev, oldname);
1346
7f988eab 1347 write_lock_bh(&dev_base_lock);
ff927412 1348 netdev_name_node_del(dev->name_node);
72c9528b
ED
1349 write_unlock_bh(&dev_base_lock);
1350
1351 synchronize_rcu();
1352
1353 write_lock_bh(&dev_base_lock);
ff927412 1354 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1355 write_unlock_bh(&dev_base_lock);
1356
056925ab 1357 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1358 ret = notifier_to_errno(ret);
1359
1360 if (ret) {
91e9c07b
ED
1361 /* err >= 0 after dev_alloc_name() or stores the first errno */
1362 if (err >= 0) {
fcc5a03a 1363 err = ret;
11d6011c 1364 down_write(&devnet_rename_sem);
fcc5a03a 1365 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1366 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1367 dev->name_assign_type = old_assign_type;
1368 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1369 goto rollback;
91e9c07b 1370 } else {
7b6cd1ce 1371 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1372 dev->name, ret);
fcc5a03a
HX
1373 }
1374 }
1da177e4
LT
1375
1376 return err;
1377}
1378
0b815a1a
SH
1379/**
1380 * dev_set_alias - change ifalias of a device
1381 * @dev: device
1382 * @alias: name up to IFALIASZ
f0db275a 1383 * @len: limit of bytes to copy from info
0b815a1a
SH
1384 *
1385 * Set ifalias for a device,
1386 */
1387int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1388{
6c557001 1389 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1390
1391 if (len >= IFALIASZ)
1392 return -EINVAL;
1393
6c557001
FW
1394 if (len) {
1395 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1396 if (!new_alias)
1397 return -ENOMEM;
1398
1399 memcpy(new_alias->ifalias, alias, len);
1400 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1401 }
1402
6c557001 1403 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1404 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1405 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1406 mutex_unlock(&ifalias_mutex);
1407
1408 if (new_alias)
1409 kfree_rcu(new_alias, rcuhead);
0b815a1a 1410
0b815a1a
SH
1411 return len;
1412}
0fe554a4 1413EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1414
6c557001
FW
1415/**
1416 * dev_get_alias - get ifalias of a device
1417 * @dev: device
20e88320 1418 * @name: buffer to store name of ifalias
6c557001
FW
1419 * @len: size of buffer
1420 *
1421 * get ifalias for a device. Caller must make sure dev cannot go
1422 * away, e.g. rcu read lock or own a reference count to device.
1423 */
1424int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1425{
1426 const struct dev_ifalias *alias;
1427 int ret = 0;
1428
1429 rcu_read_lock();
1430 alias = rcu_dereference(dev->ifalias);
1431 if (alias)
1432 ret = snprintf(name, len, "%s", alias->ifalias);
1433 rcu_read_unlock();
1434
1435 return ret;
1436}
0b815a1a 1437
d8a33ac4 1438/**
3041a069 1439 * netdev_features_change - device changes features
d8a33ac4
SH
1440 * @dev: device to cause notification
1441 *
1442 * Called to indicate a device has changed features.
1443 */
1444void netdev_features_change(struct net_device *dev)
1445{
056925ab 1446 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1447}
1448EXPORT_SYMBOL(netdev_features_change);
1449
1da177e4
LT
1450/**
1451 * netdev_state_change - device changes state
1452 * @dev: device to cause notification
1453 *
1454 * Called to indicate a device has changed state. This function calls
1455 * the notifier chains for netdev_chain and sends a NEWLINK message
1456 * to the routing socket.
1457 */
1458void netdev_state_change(struct net_device *dev)
1459{
1460 if (dev->flags & IFF_UP) {
51d0c047
DA
1461 struct netdev_notifier_change_info change_info = {
1462 .info.dev = dev,
1463 };
54951194 1464
51d0c047 1465 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1466 &change_info.info);
7f294054 1467 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1468 }
1469}
d1b19dff 1470EXPORT_SYMBOL(netdev_state_change);
1da177e4 1471
ee89bab1 1472/**
722c9a0c 1473 * netdev_notify_peers - notify network peers about existence of @dev
1474 * @dev: network device
ee89bab1
AW
1475 *
1476 * Generate traffic such that interested network peers are aware of
1477 * @dev, such as by generating a gratuitous ARP. This may be used when
1478 * a device wants to inform the rest of the network about some sort of
1479 * reconfiguration such as a failover event or virtual machine
1480 * migration.
1481 */
1482void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1483{
ee89bab1
AW
1484 rtnl_lock();
1485 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1486 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1487 rtnl_unlock();
c1da4ac7 1488}
ee89bab1 1489EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1490
40c900aa 1491static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1492{
d314774c 1493 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1494 int ret;
1da177e4 1495
e46b66bc
BH
1496 ASSERT_RTNL();
1497
bd869245
HK
1498 if (!netif_device_present(dev)) {
1499 /* may be detached because parent is runtime-suspended */
1500 if (dev->dev.parent)
1501 pm_runtime_resume(dev->dev.parent);
1502 if (!netif_device_present(dev))
1503 return -ENODEV;
1504 }
1da177e4 1505
ca99ca14
NH
1506 /* Block netpoll from trying to do any rx path servicing.
1507 * If we don't do this there is a chance ndo_poll_controller
1508 * or ndo_poll may be running while we open the device
1509 */
66b5552f 1510 netpoll_poll_disable(dev);
ca99ca14 1511
40c900aa 1512 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1513 ret = notifier_to_errno(ret);
1514 if (ret)
1515 return ret;
1516
1da177e4 1517 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1518
d314774c
SH
1519 if (ops->ndo_validate_addr)
1520 ret = ops->ndo_validate_addr(dev);
bada339b 1521
d314774c
SH
1522 if (!ret && ops->ndo_open)
1523 ret = ops->ndo_open(dev);
1da177e4 1524
66b5552f 1525 netpoll_poll_enable(dev);
ca99ca14 1526
bada339b
JG
1527 if (ret)
1528 clear_bit(__LINK_STATE_START, &dev->state);
1529 else {
1da177e4 1530 dev->flags |= IFF_UP;
4417da66 1531 dev_set_rx_mode(dev);
1da177e4 1532 dev_activate(dev);
7bf23575 1533 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1534 }
bada339b 1535
1da177e4
LT
1536 return ret;
1537}
1538
1539/**
bd380811 1540 * dev_open - prepare an interface for use.
00f54e68
PM
1541 * @dev: device to open
1542 * @extack: netlink extended ack
1da177e4 1543 *
bd380811
PM
1544 * Takes a device from down to up state. The device's private open
1545 * function is invoked and then the multicast lists are loaded. Finally
1546 * the device is moved into the up state and a %NETDEV_UP message is
1547 * sent to the netdev notifier chain.
1548 *
1549 * Calling this function on an active interface is a nop. On a failure
1550 * a negative errno code is returned.
1da177e4 1551 */
00f54e68 1552int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1553{
1554 int ret;
1555
bd380811
PM
1556 if (dev->flags & IFF_UP)
1557 return 0;
1558
40c900aa 1559 ret = __dev_open(dev, extack);
bd380811
PM
1560 if (ret < 0)
1561 return ret;
1562
7f294054 1563 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1564 call_netdevice_notifiers(NETDEV_UP, dev);
1565
1566 return ret;
1567}
1568EXPORT_SYMBOL(dev_open);
1569
7051b88a 1570static void __dev_close_many(struct list_head *head)
1da177e4 1571{
44345724 1572 struct net_device *dev;
e46b66bc 1573
bd380811 1574 ASSERT_RTNL();
9d5010db
DM
1575 might_sleep();
1576
5cde2829 1577 list_for_each_entry(dev, head, close_list) {
3f4df206 1578 /* Temporarily disable netpoll until the interface is down */
66b5552f 1579 netpoll_poll_disable(dev);
3f4df206 1580
44345724 1581 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1582
44345724 1583 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1584
44345724
OP
1585 /* Synchronize to scheduled poll. We cannot touch poll list, it
1586 * can be even on different cpu. So just clear netif_running().
1587 *
1588 * dev->stop() will invoke napi_disable() on all of it's
1589 * napi_struct instances on this device.
1590 */
4e857c58 1591 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1592 }
1da177e4 1593
44345724 1594 dev_deactivate_many(head);
d8b2a4d2 1595
5cde2829 1596 list_for_each_entry(dev, head, close_list) {
44345724 1597 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1598
44345724
OP
1599 /*
1600 * Call the device specific close. This cannot fail.
1601 * Only if device is UP
1602 *
1603 * We allow it to be called even after a DETACH hot-plug
1604 * event.
1605 */
1606 if (ops->ndo_stop)
1607 ops->ndo_stop(dev);
1608
44345724 1609 dev->flags &= ~IFF_UP;
66b5552f 1610 netpoll_poll_enable(dev);
44345724 1611 }
44345724
OP
1612}
1613
7051b88a 1614static void __dev_close(struct net_device *dev)
44345724
OP
1615{
1616 LIST_HEAD(single);
1617
5cde2829 1618 list_add(&dev->close_list, &single);
7051b88a 1619 __dev_close_many(&single);
f87e6f47 1620 list_del(&single);
44345724
OP
1621}
1622
7051b88a 1623void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1624{
1625 struct net_device *dev, *tmp;
1da177e4 1626
5cde2829
EB
1627 /* Remove the devices that don't need to be closed */
1628 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1629 if (!(dev->flags & IFF_UP))
5cde2829 1630 list_del_init(&dev->close_list);
44345724
OP
1631
1632 __dev_close_many(head);
1da177e4 1633
5cde2829 1634 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1635 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1636 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1637 if (unlink)
1638 list_del_init(&dev->close_list);
44345724 1639 }
bd380811 1640}
99c4a26a 1641EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1642
1643/**
1644 * dev_close - shutdown an interface.
1645 * @dev: device to shutdown
1646 *
1647 * This function moves an active device into down state. A
1648 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1649 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1650 * chain.
1651 */
7051b88a 1652void dev_close(struct net_device *dev)
bd380811 1653{
e14a5993
ED
1654 if (dev->flags & IFF_UP) {
1655 LIST_HEAD(single);
1da177e4 1656
5cde2829 1657 list_add(&dev->close_list, &single);
99c4a26a 1658 dev_close_many(&single, true);
e14a5993
ED
1659 list_del(&single);
1660 }
1da177e4 1661}
d1b19dff 1662EXPORT_SYMBOL(dev_close);
1da177e4
LT
1663
1664
0187bdfb
BH
1665/**
1666 * dev_disable_lro - disable Large Receive Offload on a device
1667 * @dev: device
1668 *
1669 * Disable Large Receive Offload (LRO) on a net device. Must be
1670 * called under RTNL. This is needed if received packets may be
1671 * forwarded to another interface.
1672 */
1673void dev_disable_lro(struct net_device *dev)
1674{
fbe168ba
MK
1675 struct net_device *lower_dev;
1676 struct list_head *iter;
529d0489 1677
bc5787c6
MM
1678 dev->wanted_features &= ~NETIF_F_LRO;
1679 netdev_update_features(dev);
27660515 1680
22d5969f
MM
1681 if (unlikely(dev->features & NETIF_F_LRO))
1682 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1683
1684 netdev_for_each_lower_dev(dev, lower_dev, iter)
1685 dev_disable_lro(lower_dev);
0187bdfb
BH
1686}
1687EXPORT_SYMBOL(dev_disable_lro);
1688
56f5aa77
MC
1689/**
1690 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1691 * @dev: device
1692 *
1693 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1694 * called under RTNL. This is needed if Generic XDP is installed on
1695 * the device.
1696 */
1697static void dev_disable_gro_hw(struct net_device *dev)
1698{
1699 dev->wanted_features &= ~NETIF_F_GRO_HW;
1700 netdev_update_features(dev);
1701
1702 if (unlikely(dev->features & NETIF_F_GRO_HW))
1703 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1704}
1705
ede2762d
KT
1706const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1707{
1708#define N(val) \
1709 case NETDEV_##val: \
1710 return "NETDEV_" __stringify(val);
1711 switch (cmd) {
1712 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1713 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1714 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1715 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1716 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1717 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1718 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1719 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1720 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1721 N(PRE_CHANGEADDR)
3f5ecd8a 1722 }
ede2762d
KT
1723#undef N
1724 return "UNKNOWN_NETDEV_EVENT";
1725}
1726EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1727
351638e7
JP
1728static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1729 struct net_device *dev)
1730{
51d0c047
DA
1731 struct netdev_notifier_info info = {
1732 .dev = dev,
1733 };
351638e7 1734
351638e7
JP
1735 return nb->notifier_call(nb, val, &info);
1736}
0187bdfb 1737
afa0df59
JP
1738static int call_netdevice_register_notifiers(struct notifier_block *nb,
1739 struct net_device *dev)
1740{
1741 int err;
1742
1743 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1744 err = notifier_to_errno(err);
1745 if (err)
1746 return err;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return 0;
1750
1751 call_netdevice_notifier(nb, NETDEV_UP, dev);
1752 return 0;
1753}
1754
1755static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1756 struct net_device *dev)
1757{
1758 if (dev->flags & IFF_UP) {
1759 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1760 dev);
1761 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1762 }
1763 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1764}
1765
1766static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1767 struct net *net)
1768{
1769 struct net_device *dev;
1770 int err;
1771
1772 for_each_netdev(net, dev) {
1773 err = call_netdevice_register_notifiers(nb, dev);
1774 if (err)
1775 goto rollback;
1776 }
1777 return 0;
1778
1779rollback:
1780 for_each_netdev_continue_reverse(net, dev)
1781 call_netdevice_unregister_notifiers(nb, dev);
1782 return err;
1783}
1784
1785static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1786 struct net *net)
1787{
1788 struct net_device *dev;
1789
1790 for_each_netdev(net, dev)
1791 call_netdevice_unregister_notifiers(nb, dev);
1792}
1793
881d966b
EB
1794static int dev_boot_phase = 1;
1795
1da177e4 1796/**
722c9a0c 1797 * register_netdevice_notifier - register a network notifier block
1798 * @nb: notifier
1da177e4 1799 *
722c9a0c 1800 * Register a notifier to be called when network device events occur.
1801 * The notifier passed is linked into the kernel structures and must
1802 * not be reused until it has been unregistered. A negative errno code
1803 * is returned on a failure.
1da177e4 1804 *
722c9a0c 1805 * When registered all registration and up events are replayed
1806 * to the new notifier to allow device to have a race free
1807 * view of the network device list.
1da177e4
LT
1808 */
1809
1810int register_netdevice_notifier(struct notifier_block *nb)
1811{
881d966b 1812 struct net *net;
1da177e4
LT
1813 int err;
1814
328fbe74
KT
1815 /* Close race with setup_net() and cleanup_net() */
1816 down_write(&pernet_ops_rwsem);
1da177e4 1817 rtnl_lock();
f07d5b94 1818 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1819 if (err)
1820 goto unlock;
881d966b
EB
1821 if (dev_boot_phase)
1822 goto unlock;
1823 for_each_net(net) {
afa0df59
JP
1824 err = call_netdevice_register_net_notifiers(nb, net);
1825 if (err)
1826 goto rollback;
1da177e4 1827 }
fcc5a03a
HX
1828
1829unlock:
1da177e4 1830 rtnl_unlock();
328fbe74 1831 up_write(&pernet_ops_rwsem);
1da177e4 1832 return err;
fcc5a03a
HX
1833
1834rollback:
afa0df59
JP
1835 for_each_net_continue_reverse(net)
1836 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1837
1838 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1839 goto unlock;
1da177e4 1840}
d1b19dff 1841EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1842
1843/**
722c9a0c 1844 * unregister_netdevice_notifier - unregister a network notifier block
1845 * @nb: notifier
1da177e4 1846 *
722c9a0c 1847 * Unregister a notifier previously registered by
1848 * register_netdevice_notifier(). The notifier is unlinked into the
1849 * kernel structures and may then be reused. A negative errno code
1850 * is returned on a failure.
7d3d43da 1851 *
722c9a0c 1852 * After unregistering unregister and down device events are synthesized
1853 * for all devices on the device list to the removed notifier to remove
1854 * the need for special case cleanup code.
1da177e4
LT
1855 */
1856
1857int unregister_netdevice_notifier(struct notifier_block *nb)
1858{
7d3d43da 1859 struct net *net;
9f514950
HX
1860 int err;
1861
328fbe74
KT
1862 /* Close race with setup_net() and cleanup_net() */
1863 down_write(&pernet_ops_rwsem);
9f514950 1864 rtnl_lock();
f07d5b94 1865 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1866 if (err)
1867 goto unlock;
1868
48b3a137
JP
1869 for_each_net(net)
1870 call_netdevice_unregister_net_notifiers(nb, net);
1871
7d3d43da 1872unlock:
9f514950 1873 rtnl_unlock();
328fbe74 1874 up_write(&pernet_ops_rwsem);
9f514950 1875 return err;
1da177e4 1876}
d1b19dff 1877EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1878
1f637703
JP
1879static int __register_netdevice_notifier_net(struct net *net,
1880 struct notifier_block *nb,
1881 bool ignore_call_fail)
1882{
1883 int err;
1884
1885 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1886 if (err)
1887 return err;
1888 if (dev_boot_phase)
1889 return 0;
1890
1891 err = call_netdevice_register_net_notifiers(nb, net);
1892 if (err && !ignore_call_fail)
1893 goto chain_unregister;
1894
1895 return 0;
1896
1897chain_unregister:
1898 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1899 return err;
1900}
1901
1902static int __unregister_netdevice_notifier_net(struct net *net,
1903 struct notifier_block *nb)
1904{
1905 int err;
1906
1907 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1908 if (err)
1909 return err;
1910
1911 call_netdevice_unregister_net_notifiers(nb, net);
1912 return 0;
1913}
1914
a30c7b42
JP
1915/**
1916 * register_netdevice_notifier_net - register a per-netns network notifier block
1917 * @net: network namespace
1918 * @nb: notifier
1919 *
1920 * Register a notifier to be called when network device events occur.
1921 * The notifier passed is linked into the kernel structures and must
1922 * not be reused until it has been unregistered. A negative errno code
1923 * is returned on a failure.
1924 *
1925 * When registered all registration and up events are replayed
1926 * to the new notifier to allow device to have a race free
1927 * view of the network device list.
1928 */
1929
1930int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1931{
1932 int err;
1933
1934 rtnl_lock();
1f637703 1935 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1936 rtnl_unlock();
1937 return err;
a30c7b42
JP
1938}
1939EXPORT_SYMBOL(register_netdevice_notifier_net);
1940
1941/**
1942 * unregister_netdevice_notifier_net - unregister a per-netns
1943 * network notifier block
1944 * @net: network namespace
1945 * @nb: notifier
1946 *
1947 * Unregister a notifier previously registered by
1948 * register_netdevice_notifier(). The notifier is unlinked into the
1949 * kernel structures and may then be reused. A negative errno code
1950 * is returned on a failure.
1951 *
1952 * After unregistering unregister and down device events are synthesized
1953 * for all devices on the device list to the removed notifier to remove
1954 * the need for special case cleanup code.
1955 */
1956
1957int unregister_netdevice_notifier_net(struct net *net,
1958 struct notifier_block *nb)
1959{
1960 int err;
1961
1962 rtnl_lock();
1f637703 1963 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1964 rtnl_unlock();
1965 return err;
1966}
1967EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1968
93642e14
JP
1969int register_netdevice_notifier_dev_net(struct net_device *dev,
1970 struct notifier_block *nb,
1971 struct netdev_net_notifier *nn)
1972{
1973 int err;
a30c7b42 1974
93642e14
JP
1975 rtnl_lock();
1976 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1977 if (!err) {
1978 nn->nb = nb;
1979 list_add(&nn->list, &dev->net_notifier_list);
1980 }
a30c7b42
JP
1981 rtnl_unlock();
1982 return err;
1983}
93642e14
JP
1984EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1985
1986int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1987 struct notifier_block *nb,
1988 struct netdev_net_notifier *nn)
1989{
1990 int err;
1991
1992 rtnl_lock();
1993 list_del(&nn->list);
1994 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1995 rtnl_unlock();
1996 return err;
1997}
1998EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1999
2000static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2001 struct net *net)
2002{
2003 struct netdev_net_notifier *nn;
2004
2005 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2006 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2007 __register_netdevice_notifier_net(net, nn->nb, true);
2008 }
2009}
a30c7b42 2010
351638e7
JP
2011/**
2012 * call_netdevice_notifiers_info - call all network notifier blocks
2013 * @val: value passed unmodified to notifier function
351638e7
JP
2014 * @info: notifier information data
2015 *
2016 * Call all network notifier blocks. Parameters and return value
2017 * are as for raw_notifier_call_chain().
2018 */
2019
1d143d9f 2020static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 2021 struct netdev_notifier_info *info)
351638e7 2022{
a30c7b42
JP
2023 struct net *net = dev_net(info->dev);
2024 int ret;
2025
351638e7 2026 ASSERT_RTNL();
a30c7b42
JP
2027
2028 /* Run per-netns notifier block chain first, then run the global one.
2029 * Hopefully, one day, the global one is going to be removed after
2030 * all notifier block registrators get converted to be per-netns.
2031 */
2032 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2033 if (ret & NOTIFY_STOP_MASK)
2034 return ret;
351638e7
JP
2035 return raw_notifier_call_chain(&netdev_chain, val, info);
2036}
351638e7 2037
26372605
PM
2038static int call_netdevice_notifiers_extack(unsigned long val,
2039 struct net_device *dev,
2040 struct netlink_ext_ack *extack)
2041{
2042 struct netdev_notifier_info info = {
2043 .dev = dev,
2044 .extack = extack,
2045 };
2046
2047 return call_netdevice_notifiers_info(val, &info);
2048}
2049
1da177e4
LT
2050/**
2051 * call_netdevice_notifiers - call all network notifier blocks
2052 * @val: value passed unmodified to notifier function
c4ea43c5 2053 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
2054 *
2055 * Call all network notifier blocks. Parameters and return value
f07d5b94 2056 * are as for raw_notifier_call_chain().
1da177e4
LT
2057 */
2058
ad7379d4 2059int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 2060{
26372605 2061 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 2062}
edf947f1 2063EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 2064
af7d6cce
SD
2065/**
2066 * call_netdevice_notifiers_mtu - call all network notifier blocks
2067 * @val: value passed unmodified to notifier function
2068 * @dev: net_device pointer passed unmodified to notifier function
2069 * @arg: additional u32 argument passed to the notifier function
2070 *
2071 * Call all network notifier blocks. Parameters and return value
2072 * are as for raw_notifier_call_chain().
2073 */
2074static int call_netdevice_notifiers_mtu(unsigned long val,
2075 struct net_device *dev, u32 arg)
2076{
2077 struct netdev_notifier_info_ext info = {
2078 .info.dev = dev,
2079 .ext.mtu = arg,
2080 };
2081
2082 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2083
2084 return call_netdevice_notifiers_info(val, &info.info);
2085}
2086
1cf51900 2087#ifdef CONFIG_NET_INGRESS
aabf6772 2088static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2089
2090void net_inc_ingress_queue(void)
2091{
aabf6772 2092 static_branch_inc(&ingress_needed_key);
4577139b
DB
2093}
2094EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2095
2096void net_dec_ingress_queue(void)
2097{
aabf6772 2098 static_branch_dec(&ingress_needed_key);
4577139b
DB
2099}
2100EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2101#endif
2102
1f211a1b 2103#ifdef CONFIG_NET_EGRESS
aabf6772 2104static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2105
2106void net_inc_egress_queue(void)
2107{
aabf6772 2108 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2109}
2110EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2111
2112void net_dec_egress_queue(void)
2113{
aabf6772 2114 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2115}
2116EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2117#endif
2118
39e83922 2119static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2120#ifdef CONFIG_JUMP_LABEL
b90e5794 2121static atomic_t netstamp_needed_deferred;
13baa00a 2122static atomic_t netstamp_wanted;
5fa8bbda 2123static void netstamp_clear(struct work_struct *work)
1da177e4 2124{
b90e5794 2125 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2126 int wanted;
b90e5794 2127
13baa00a
ED
2128 wanted = atomic_add_return(deferred, &netstamp_wanted);
2129 if (wanted > 0)
39e83922 2130 static_branch_enable(&netstamp_needed_key);
13baa00a 2131 else
39e83922 2132 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2133}
2134static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2135#endif
5fa8bbda
ED
2136
2137void net_enable_timestamp(void)
2138{
e9666d10 2139#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2140 int wanted;
2141
2142 while (1) {
2143 wanted = atomic_read(&netstamp_wanted);
2144 if (wanted <= 0)
2145 break;
2146 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2147 return;
2148 }
2149 atomic_inc(&netstamp_needed_deferred);
2150 schedule_work(&netstamp_work);
2151#else
39e83922 2152 static_branch_inc(&netstamp_needed_key);
13baa00a 2153#endif
1da177e4 2154}
d1b19dff 2155EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2156
2157void net_disable_timestamp(void)
2158{
e9666d10 2159#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2160 int wanted;
2161
2162 while (1) {
2163 wanted = atomic_read(&netstamp_wanted);
2164 if (wanted <= 1)
2165 break;
2166 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2167 return;
2168 }
2169 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2170 schedule_work(&netstamp_work);
2171#else
39e83922 2172 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2173#endif
1da177e4 2174}
d1b19dff 2175EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2176
3b098e2d 2177static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2178{
2456e855 2179 skb->tstamp = 0;
39e83922 2180 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2181 __net_timestamp(skb);
1da177e4
LT
2182}
2183
39e83922
DB
2184#define net_timestamp_check(COND, SKB) \
2185 if (static_branch_unlikely(&netstamp_needed_key)) { \
2186 if ((COND) && !(SKB)->tstamp) \
2187 __net_timestamp(SKB); \
2188 } \
3b098e2d 2189
f4b05d27 2190bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
2191{
2192 unsigned int len;
2193
2194 if (!(dev->flags & IFF_UP))
2195 return false;
2196
2197 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2198 if (skb->len <= len)
2199 return true;
2200
2201 /* if TSO is enabled, we don't care about the length as the packet
2202 * could be forwarded without being segmented before
2203 */
2204 if (skb_is_gso(skb))
2205 return true;
2206
2207 return false;
2208}
1ee481fb 2209EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2210
a0265d28
HX
2211int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2212{
4e3264d2 2213 int ret = ____dev_forward_skb(dev, skb);
a0265d28 2214
4e3264d2
MKL
2215 if (likely(!ret)) {
2216 skb->protocol = eth_type_trans(skb, dev);
2217 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2218 }
a0265d28 2219
4e3264d2 2220 return ret;
a0265d28
HX
2221}
2222EXPORT_SYMBOL_GPL(__dev_forward_skb);
2223
44540960
AB
2224/**
2225 * dev_forward_skb - loopback an skb to another netif
2226 *
2227 * @dev: destination network device
2228 * @skb: buffer to forward
2229 *
2230 * return values:
2231 * NET_RX_SUCCESS (no congestion)
6ec82562 2232 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2233 *
2234 * dev_forward_skb can be used for injecting an skb from the
2235 * start_xmit function of one device into the receive queue
2236 * of another device.
2237 *
2238 * The receiving device may be in another namespace, so
2239 * we have to clear all information in the skb that could
2240 * impact namespace isolation.
2241 */
2242int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2243{
a0265d28 2244 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2245}
2246EXPORT_SYMBOL_GPL(dev_forward_skb);
2247
71d9dec2
CG
2248static inline int deliver_skb(struct sk_buff *skb,
2249 struct packet_type *pt_prev,
2250 struct net_device *orig_dev)
2251{
1f8b977a 2252 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2253 return -ENOMEM;
63354797 2254 refcount_inc(&skb->users);
71d9dec2
CG
2255 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2256}
2257
7866a621
SN
2258static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2259 struct packet_type **pt,
fbcb2170
JP
2260 struct net_device *orig_dev,
2261 __be16 type,
7866a621
SN
2262 struct list_head *ptype_list)
2263{
2264 struct packet_type *ptype, *pt_prev = *pt;
2265
2266 list_for_each_entry_rcu(ptype, ptype_list, list) {
2267 if (ptype->type != type)
2268 continue;
2269 if (pt_prev)
fbcb2170 2270 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2271 pt_prev = ptype;
2272 }
2273 *pt = pt_prev;
2274}
2275
c0de08d0
EL
2276static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2277{
a3d744e9 2278 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2279 return false;
2280
2281 if (ptype->id_match)
2282 return ptype->id_match(ptype, skb->sk);
2283 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2284 return true;
2285
2286 return false;
2287}
2288
9f9a742d
MR
2289/**
2290 * dev_nit_active - return true if any network interface taps are in use
2291 *
2292 * @dev: network device to check for the presence of taps
2293 */
2294bool dev_nit_active(struct net_device *dev)
2295{
2296 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2297}
2298EXPORT_SYMBOL_GPL(dev_nit_active);
2299
1da177e4
LT
2300/*
2301 * Support routine. Sends outgoing frames to any network
2302 * taps currently in use.
2303 */
2304
74b20582 2305void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2306{
2307 struct packet_type *ptype;
71d9dec2
CG
2308 struct sk_buff *skb2 = NULL;
2309 struct packet_type *pt_prev = NULL;
7866a621 2310 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2311
1da177e4 2312 rcu_read_lock();
7866a621
SN
2313again:
2314 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2315 if (ptype->ignore_outgoing)
2316 continue;
2317
1da177e4
LT
2318 /* Never send packets back to the socket
2319 * they originated from - MvS (miquels@drinkel.ow.org)
2320 */
7866a621
SN
2321 if (skb_loop_sk(ptype, skb))
2322 continue;
71d9dec2 2323
7866a621
SN
2324 if (pt_prev) {
2325 deliver_skb(skb2, pt_prev, skb->dev);
2326 pt_prev = ptype;
2327 continue;
2328 }
1da177e4 2329
7866a621
SN
2330 /* need to clone skb, done only once */
2331 skb2 = skb_clone(skb, GFP_ATOMIC);
2332 if (!skb2)
2333 goto out_unlock;
70978182 2334
7866a621 2335 net_timestamp_set(skb2);
1da177e4 2336
7866a621
SN
2337 /* skb->nh should be correctly
2338 * set by sender, so that the second statement is
2339 * just protection against buggy protocols.
2340 */
2341 skb_reset_mac_header(skb2);
2342
2343 if (skb_network_header(skb2) < skb2->data ||
2344 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2345 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2346 ntohs(skb2->protocol),
2347 dev->name);
2348 skb_reset_network_header(skb2);
1da177e4 2349 }
7866a621
SN
2350
2351 skb2->transport_header = skb2->network_header;
2352 skb2->pkt_type = PACKET_OUTGOING;
2353 pt_prev = ptype;
2354 }
2355
2356 if (ptype_list == &ptype_all) {
2357 ptype_list = &dev->ptype_all;
2358 goto again;
1da177e4 2359 }
7866a621 2360out_unlock:
581fe0ea
WB
2361 if (pt_prev) {
2362 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2363 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2364 else
2365 kfree_skb(skb2);
2366 }
1da177e4
LT
2367 rcu_read_unlock();
2368}
74b20582 2369EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2370
2c53040f
BH
2371/**
2372 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2373 * @dev: Network device
2374 * @txq: number of queues available
2375 *
2376 * If real_num_tx_queues is changed the tc mappings may no longer be
2377 * valid. To resolve this verify the tc mapping remains valid and if
2378 * not NULL the mapping. With no priorities mapping to this
2379 * offset/count pair it will no longer be used. In the worst case TC0
2380 * is invalid nothing can be done so disable priority mappings. If is
2381 * expected that drivers will fix this mapping if they can before
2382 * calling netif_set_real_num_tx_queues.
2383 */
bb134d22 2384static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2385{
2386 int i;
2387 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2388
2389 /* If TC0 is invalidated disable TC mapping */
2390 if (tc->offset + tc->count > txq) {
7b6cd1ce 2391 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2392 dev->num_tc = 0;
2393 return;
2394 }
2395
2396 /* Invalidated prio to tc mappings set to TC0 */
2397 for (i = 1; i < TC_BITMASK + 1; i++) {
2398 int q = netdev_get_prio_tc_map(dev, i);
2399
2400 tc = &dev->tc_to_txq[q];
2401 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2402 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2403 i, q);
4f57c087
JF
2404 netdev_set_prio_tc_map(dev, i, 0);
2405 }
2406 }
2407}
2408
8d059b0f
AD
2409int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2410{
2411 if (dev->num_tc) {
2412 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2413 int i;
2414
ffcfe25b 2415 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2416 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2417 if ((txq - tc->offset) < tc->count)
2418 return i;
2419 }
2420
ffcfe25b 2421 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2422 return -1;
2423 }
2424
2425 return 0;
2426}
8a5f2166 2427EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2428
537c00de 2429#ifdef CONFIG_XPS
04157469
AN
2430struct static_key xps_needed __read_mostly;
2431EXPORT_SYMBOL(xps_needed);
2432struct static_key xps_rxqs_needed __read_mostly;
2433EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2434static DEFINE_MUTEX(xps_map_mutex);
2435#define xmap_dereference(P) \
2436 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2437
6234f874
AD
2438static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2439 int tci, u16 index)
537c00de 2440{
10cdc3f3
AD
2441 struct xps_map *map = NULL;
2442 int pos;
537c00de 2443
10cdc3f3 2444 if (dev_maps)
80d19669 2445 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2446 if (!map)
2447 return false;
537c00de 2448
6234f874
AD
2449 for (pos = map->len; pos--;) {
2450 if (map->queues[pos] != index)
2451 continue;
2452
2453 if (map->len > 1) {
2454 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2455 break;
537c00de 2456 }
6234f874 2457
80d19669 2458 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2459 kfree_rcu(map, rcu);
2460 return false;
537c00de
AD
2461 }
2462
6234f874 2463 return true;
10cdc3f3
AD
2464}
2465
6234f874
AD
2466static bool remove_xps_queue_cpu(struct net_device *dev,
2467 struct xps_dev_maps *dev_maps,
2468 int cpu, u16 offset, u16 count)
2469{
184c449f
AD
2470 int num_tc = dev->num_tc ? : 1;
2471 bool active = false;
2472 int tci;
6234f874 2473
184c449f
AD
2474 for (tci = cpu * num_tc; num_tc--; tci++) {
2475 int i, j;
2476
2477 for (i = count, j = offset; i--; j++) {
6358d49a 2478 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2479 break;
2480 }
2481
2482 active |= i < 0;
6234f874
AD
2483 }
2484
184c449f 2485 return active;
6234f874
AD
2486}
2487
867d0ad4
SD
2488static void reset_xps_maps(struct net_device *dev,
2489 struct xps_dev_maps *dev_maps,
2490 bool is_rxqs_map)
2491{
2492 if (is_rxqs_map) {
2493 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2494 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2495 } else {
2496 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2497 }
2498 static_key_slow_dec_cpuslocked(&xps_needed);
2499 kfree_rcu(dev_maps, rcu);
2500}
2501
80d19669
AN
2502static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2503 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2504 u16 offset, u16 count, bool is_rxqs_map)
2505{
2506 bool active = false;
2507 int i, j;
2508
2509 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2510 j < nr_ids;)
2511 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2512 count);
867d0ad4
SD
2513 if (!active)
2514 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2515
f28c020f
SD
2516 if (!is_rxqs_map) {
2517 for (i = offset + (count - 1); count--; i--) {
2518 netdev_queue_numa_node_write(
2519 netdev_get_tx_queue(dev, i),
2520 NUMA_NO_NODE);
80d19669 2521 }
80d19669
AN
2522 }
2523}
2524
6234f874
AD
2525static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2526 u16 count)
10cdc3f3 2527{
80d19669 2528 const unsigned long *possible_mask = NULL;
10cdc3f3 2529 struct xps_dev_maps *dev_maps;
80d19669 2530 unsigned int nr_ids;
10cdc3f3 2531
04157469
AN
2532 if (!static_key_false(&xps_needed))
2533 return;
10cdc3f3 2534
4d99f660 2535 cpus_read_lock();
04157469 2536 mutex_lock(&xps_map_mutex);
10cdc3f3 2537
04157469
AN
2538 if (static_key_false(&xps_rxqs_needed)) {
2539 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2540 if (dev_maps) {
2541 nr_ids = dev->num_rx_queues;
2542 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2543 offset, count, true);
2544 }
537c00de
AD
2545 }
2546
80d19669
AN
2547 dev_maps = xmap_dereference(dev->xps_cpus_map);
2548 if (!dev_maps)
2549 goto out_no_maps;
2550
2551 if (num_possible_cpus() > 1)
2552 possible_mask = cpumask_bits(cpu_possible_mask);
2553 nr_ids = nr_cpu_ids;
2554 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2555 false);
024e9679 2556
537c00de
AD
2557out_no_maps:
2558 mutex_unlock(&xps_map_mutex);
4d99f660 2559 cpus_read_unlock();
537c00de
AD
2560}
2561
6234f874
AD
2562static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2563{
2564 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2565}
2566
80d19669
AN
2567static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2568 u16 index, bool is_rxqs_map)
01c5f864
AD
2569{
2570 struct xps_map *new_map;
2571 int alloc_len = XPS_MIN_MAP_ALLOC;
2572 int i, pos;
2573
2574 for (pos = 0; map && pos < map->len; pos++) {
2575 if (map->queues[pos] != index)
2576 continue;
2577 return map;
2578 }
2579
80d19669 2580 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2581 if (map) {
2582 if (pos < map->alloc_len)
2583 return map;
2584
2585 alloc_len = map->alloc_len * 2;
2586 }
2587
80d19669
AN
2588 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2589 * map
2590 */
2591 if (is_rxqs_map)
2592 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2593 else
2594 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2595 cpu_to_node(attr_index));
01c5f864
AD
2596 if (!new_map)
2597 return NULL;
2598
2599 for (i = 0; i < pos; i++)
2600 new_map->queues[i] = map->queues[i];
2601 new_map->alloc_len = alloc_len;
2602 new_map->len = pos;
2603
2604 return new_map;
2605}
2606
4d99f660 2607/* Must be called under cpus_read_lock */
80d19669
AN
2608int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2609 u16 index, bool is_rxqs_map)
537c00de 2610{
80d19669 2611 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2612 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2613 int i, j, tci, numa_node_id = -2;
184c449f 2614 int maps_sz, num_tc = 1, tc = 0;
537c00de 2615 struct xps_map *map, *new_map;
01c5f864 2616 bool active = false;
80d19669 2617 unsigned int nr_ids;
537c00de 2618
184c449f 2619 if (dev->num_tc) {
ffcfe25b 2620 /* Do not allow XPS on subordinate device directly */
184c449f 2621 num_tc = dev->num_tc;
ffcfe25b
AD
2622 if (num_tc < 0)
2623 return -EINVAL;
2624
2625 /* If queue belongs to subordinate dev use its map */
2626 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2627
184c449f
AD
2628 tc = netdev_txq_to_tc(dev, index);
2629 if (tc < 0)
2630 return -EINVAL;
2631 }
2632
537c00de 2633 mutex_lock(&xps_map_mutex);
80d19669
AN
2634 if (is_rxqs_map) {
2635 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2636 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2637 nr_ids = dev->num_rx_queues;
2638 } else {
2639 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2640 if (num_possible_cpus() > 1) {
2641 online_mask = cpumask_bits(cpu_online_mask);
2642 possible_mask = cpumask_bits(cpu_possible_mask);
2643 }
2644 dev_maps = xmap_dereference(dev->xps_cpus_map);
2645 nr_ids = nr_cpu_ids;
2646 }
537c00de 2647
80d19669
AN
2648 if (maps_sz < L1_CACHE_BYTES)
2649 maps_sz = L1_CACHE_BYTES;
537c00de 2650
01c5f864 2651 /* allocate memory for queue storage */
80d19669
AN
2652 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2653 j < nr_ids;) {
01c5f864
AD
2654 if (!new_dev_maps)
2655 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2656 if (!new_dev_maps) {
2657 mutex_unlock(&xps_map_mutex);
01c5f864 2658 return -ENOMEM;
2bb60cb9 2659 }
01c5f864 2660
80d19669
AN
2661 tci = j * num_tc + tc;
2662 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2663 NULL;
2664
80d19669 2665 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2666 if (!map)
2667 goto error;
2668
80d19669 2669 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2670 }
2671
2672 if (!new_dev_maps)
2673 goto out_no_new_maps;
2674
867d0ad4
SD
2675 if (!dev_maps) {
2676 /* Increment static keys at most once per type */
2677 static_key_slow_inc_cpuslocked(&xps_needed);
2678 if (is_rxqs_map)
2679 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2680 }
04157469 2681
80d19669
AN
2682 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2683 j < nr_ids;) {
184c449f 2684 /* copy maps belonging to foreign traffic classes */
80d19669 2685 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2686 /* fill in the new device map from the old device map */
80d19669
AN
2687 map = xmap_dereference(dev_maps->attr_map[tci]);
2688 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2689 }
2690
2691 /* We need to explicitly update tci as prevous loop
2692 * could break out early if dev_maps is NULL.
2693 */
80d19669 2694 tci = j * num_tc + tc;
184c449f 2695
80d19669
AN
2696 if (netif_attr_test_mask(j, mask, nr_ids) &&
2697 netif_attr_test_online(j, online_mask, nr_ids)) {
2698 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2699 int pos = 0;
2700
80d19669 2701 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2702 while ((pos < map->len) && (map->queues[pos] != index))
2703 pos++;
2704
2705 if (pos == map->len)
2706 map->queues[map->len++] = index;
537c00de 2707#ifdef CONFIG_NUMA
80d19669
AN
2708 if (!is_rxqs_map) {
2709 if (numa_node_id == -2)
2710 numa_node_id = cpu_to_node(j);
2711 else if (numa_node_id != cpu_to_node(j))
2712 numa_node_id = -1;
2713 }
537c00de 2714#endif
01c5f864
AD
2715 } else if (dev_maps) {
2716 /* fill in the new device map from the old device map */
80d19669
AN
2717 map = xmap_dereference(dev_maps->attr_map[tci]);
2718 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2719 }
01c5f864 2720
184c449f
AD
2721 /* copy maps belonging to foreign traffic classes */
2722 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2723 /* fill in the new device map from the old device map */
80d19669
AN
2724 map = xmap_dereference(dev_maps->attr_map[tci]);
2725 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2726 }
537c00de
AD
2727 }
2728
80d19669
AN
2729 if (is_rxqs_map)
2730 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2731 else
2732 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2733
537c00de 2734 /* Cleanup old maps */
184c449f
AD
2735 if (!dev_maps)
2736 goto out_no_old_maps;
2737
80d19669
AN
2738 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2739 j < nr_ids;) {
2740 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2741 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2742 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2743 if (map && map != new_map)
2744 kfree_rcu(map, rcu);
2745 }
537c00de
AD
2746 }
2747
184c449f
AD
2748 kfree_rcu(dev_maps, rcu);
2749
2750out_no_old_maps:
01c5f864
AD
2751 dev_maps = new_dev_maps;
2752 active = true;
537c00de 2753
01c5f864 2754out_no_new_maps:
80d19669
AN
2755 if (!is_rxqs_map) {
2756 /* update Tx queue numa node */
2757 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2758 (numa_node_id >= 0) ?
2759 numa_node_id : NUMA_NO_NODE);
2760 }
537c00de 2761
01c5f864
AD
2762 if (!dev_maps)
2763 goto out_no_maps;
2764
80d19669
AN
2765 /* removes tx-queue from unused CPUs/rx-queues */
2766 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2767 j < nr_ids;) {
2768 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2769 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2770 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2771 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2772 active |= remove_xps_queue(dev_maps, tci, index);
2773 for (i = num_tc - tc, tci++; --i; tci++)
2774 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2775 }
2776
2777 /* free map if not active */
867d0ad4
SD
2778 if (!active)
2779 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2780
2781out_no_maps:
537c00de
AD
2782 mutex_unlock(&xps_map_mutex);
2783
2784 return 0;
2785error:
01c5f864 2786 /* remove any maps that we added */
80d19669
AN
2787 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2788 j < nr_ids;) {
2789 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2790 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2791 map = dev_maps ?
80d19669 2792 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2793 NULL;
2794 if (new_map && new_map != map)
2795 kfree(new_map);
2796 }
01c5f864
AD
2797 }
2798
537c00de
AD
2799 mutex_unlock(&xps_map_mutex);
2800
537c00de
AD
2801 kfree(new_dev_maps);
2802 return -ENOMEM;
2803}
4d99f660 2804EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2805
2806int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2807 u16 index)
2808{
4d99f660
AV
2809 int ret;
2810
2811 cpus_read_lock();
2812 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2813 cpus_read_unlock();
2814
2815 return ret;
80d19669 2816}
537c00de
AD
2817EXPORT_SYMBOL(netif_set_xps_queue);
2818
2819#endif
ffcfe25b
AD
2820static void netdev_unbind_all_sb_channels(struct net_device *dev)
2821{
2822 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2823
2824 /* Unbind any subordinate channels */
2825 while (txq-- != &dev->_tx[0]) {
2826 if (txq->sb_dev)
2827 netdev_unbind_sb_channel(dev, txq->sb_dev);
2828 }
2829}
2830
9cf1f6a8
AD
2831void netdev_reset_tc(struct net_device *dev)
2832{
6234f874
AD
2833#ifdef CONFIG_XPS
2834 netif_reset_xps_queues_gt(dev, 0);
2835#endif
ffcfe25b
AD
2836 netdev_unbind_all_sb_channels(dev);
2837
2838 /* Reset TC configuration of device */
9cf1f6a8
AD
2839 dev->num_tc = 0;
2840 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2841 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2842}
2843EXPORT_SYMBOL(netdev_reset_tc);
2844
2845int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2846{
2847 if (tc >= dev->num_tc)
2848 return -EINVAL;
2849
6234f874
AD
2850#ifdef CONFIG_XPS
2851 netif_reset_xps_queues(dev, offset, count);
2852#endif
9cf1f6a8
AD
2853 dev->tc_to_txq[tc].count = count;
2854 dev->tc_to_txq[tc].offset = offset;
2855 return 0;
2856}
2857EXPORT_SYMBOL(netdev_set_tc_queue);
2858
2859int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2860{
2861 if (num_tc > TC_MAX_QUEUE)
2862 return -EINVAL;
2863
6234f874
AD
2864#ifdef CONFIG_XPS
2865 netif_reset_xps_queues_gt(dev, 0);
2866#endif
ffcfe25b
AD
2867 netdev_unbind_all_sb_channels(dev);
2868
9cf1f6a8
AD
2869 dev->num_tc = num_tc;
2870 return 0;
2871}
2872EXPORT_SYMBOL(netdev_set_num_tc);
2873
ffcfe25b
AD
2874void netdev_unbind_sb_channel(struct net_device *dev,
2875 struct net_device *sb_dev)
2876{
2877 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2878
2879#ifdef CONFIG_XPS
2880 netif_reset_xps_queues_gt(sb_dev, 0);
2881#endif
2882 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2883 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2884
2885 while (txq-- != &dev->_tx[0]) {
2886 if (txq->sb_dev == sb_dev)
2887 txq->sb_dev = NULL;
2888 }
2889}
2890EXPORT_SYMBOL(netdev_unbind_sb_channel);
2891
2892int netdev_bind_sb_channel_queue(struct net_device *dev,
2893 struct net_device *sb_dev,
2894 u8 tc, u16 count, u16 offset)
2895{
2896 /* Make certain the sb_dev and dev are already configured */
2897 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2898 return -EINVAL;
2899
2900 /* We cannot hand out queues we don't have */
2901 if ((offset + count) > dev->real_num_tx_queues)
2902 return -EINVAL;
2903
2904 /* Record the mapping */
2905 sb_dev->tc_to_txq[tc].count = count;
2906 sb_dev->tc_to_txq[tc].offset = offset;
2907
2908 /* Provide a way for Tx queue to find the tc_to_txq map or
2909 * XPS map for itself.
2910 */
2911 while (count--)
2912 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2913
2914 return 0;
2915}
2916EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2917
2918int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2919{
2920 /* Do not use a multiqueue device to represent a subordinate channel */
2921 if (netif_is_multiqueue(dev))
2922 return -ENODEV;
2923
2924 /* We allow channels 1 - 32767 to be used for subordinate channels.
2925 * Channel 0 is meant to be "native" mode and used only to represent
2926 * the main root device. We allow writing 0 to reset the device back
2927 * to normal mode after being used as a subordinate channel.
2928 */
2929 if (channel > S16_MAX)
2930 return -EINVAL;
2931
2932 dev->num_tc = -channel;
2933
2934 return 0;
2935}
2936EXPORT_SYMBOL(netdev_set_sb_channel);
2937
f0796d5c
JF
2938/*
2939 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2940 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2941 */
e6484930 2942int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2943{
ac5b7019 2944 bool disabling;
1d24eb48
TH
2945 int rc;
2946
ac5b7019
JK
2947 disabling = txq < dev->real_num_tx_queues;
2948
e6484930
TH
2949 if (txq < 1 || txq > dev->num_tx_queues)
2950 return -EINVAL;
f0796d5c 2951
5c56580b
BH
2952 if (dev->reg_state == NETREG_REGISTERED ||
2953 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2954 ASSERT_RTNL();
2955
1d24eb48
TH
2956 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2957 txq);
bf264145
TH
2958 if (rc)
2959 return rc;
2960
4f57c087
JF
2961 if (dev->num_tc)
2962 netif_setup_tc(dev, txq);
2963
ac5b7019
JK
2964 dev->real_num_tx_queues = txq;
2965
2966 if (disabling) {
2967 synchronize_net();
e6484930 2968 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2969#ifdef CONFIG_XPS
2970 netif_reset_xps_queues_gt(dev, txq);
2971#endif
2972 }
ac5b7019
JK
2973 } else {
2974 dev->real_num_tx_queues = txq;
f0796d5c 2975 }
e6484930 2976
e6484930 2977 return 0;
f0796d5c
JF
2978}
2979EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2980
a953be53 2981#ifdef CONFIG_SYSFS
62fe0b40
BH
2982/**
2983 * netif_set_real_num_rx_queues - set actual number of RX queues used
2984 * @dev: Network device
2985 * @rxq: Actual number of RX queues
2986 *
2987 * This must be called either with the rtnl_lock held or before
2988 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2989 * negative error code. If called before registration, it always
2990 * succeeds.
62fe0b40
BH
2991 */
2992int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2993{
2994 int rc;
2995
bd25fa7b
TH
2996 if (rxq < 1 || rxq > dev->num_rx_queues)
2997 return -EINVAL;
2998
62fe0b40
BH
2999 if (dev->reg_state == NETREG_REGISTERED) {
3000 ASSERT_RTNL();
3001
62fe0b40
BH
3002 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3003 rxq);
3004 if (rc)
3005 return rc;
62fe0b40
BH
3006 }
3007
3008 dev->real_num_rx_queues = rxq;
3009 return 0;
3010}
3011EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3012#endif
3013
2c53040f
BH
3014/**
3015 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
3016 *
3017 * This routine should set an upper limit on the number of RSS queues
3018 * used by default by multiqueue devices.
3019 */
a55b138b 3020int netif_get_num_default_rss_queues(void)
16917b87 3021{
40e4e713
HS
3022 return is_kdump_kernel() ?
3023 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
3024}
3025EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3026
3bcb846c 3027static void __netif_reschedule(struct Qdisc *q)
56079431 3028{
def82a1d
JP
3029 struct softnet_data *sd;
3030 unsigned long flags;
56079431 3031
def82a1d 3032 local_irq_save(flags);
903ceff7 3033 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
3034 q->next_sched = NULL;
3035 *sd->output_queue_tailp = q;
3036 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
3037 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3038 local_irq_restore(flags);
3039}
3040
3041void __netif_schedule(struct Qdisc *q)
3042{
3043 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3044 __netif_reschedule(q);
56079431
DV
3045}
3046EXPORT_SYMBOL(__netif_schedule);
3047
e6247027
ED
3048struct dev_kfree_skb_cb {
3049 enum skb_free_reason reason;
3050};
3051
3052static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 3053{
e6247027
ED
3054 return (struct dev_kfree_skb_cb *)skb->cb;
3055}
3056
46e5da40
JF
3057void netif_schedule_queue(struct netdev_queue *txq)
3058{
3059 rcu_read_lock();
5be5515a 3060 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
3061 struct Qdisc *q = rcu_dereference(txq->qdisc);
3062
3063 __netif_schedule(q);
3064 }
3065 rcu_read_unlock();
3066}
3067EXPORT_SYMBOL(netif_schedule_queue);
3068
46e5da40
JF
3069void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3070{
3071 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3072 struct Qdisc *q;
3073
3074 rcu_read_lock();
3075 q = rcu_dereference(dev_queue->qdisc);
3076 __netif_schedule(q);
3077 rcu_read_unlock();
3078 }
3079}
3080EXPORT_SYMBOL(netif_tx_wake_queue);
3081
e6247027 3082void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3083{
e6247027 3084 unsigned long flags;
56079431 3085
9899886d
MJ
3086 if (unlikely(!skb))
3087 return;
3088
63354797 3089 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3090 smp_rmb();
63354797
RE
3091 refcount_set(&skb->users, 0);
3092 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3093 return;
bea3348e 3094 }
e6247027
ED
3095 get_kfree_skb_cb(skb)->reason = reason;
3096 local_irq_save(flags);
3097 skb->next = __this_cpu_read(softnet_data.completion_queue);
3098 __this_cpu_write(softnet_data.completion_queue, skb);
3099 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3100 local_irq_restore(flags);
56079431 3101}
e6247027 3102EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3103
e6247027 3104void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3105{
3106 if (in_irq() || irqs_disabled())
e6247027 3107 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3108 else
3109 dev_kfree_skb(skb);
3110}
e6247027 3111EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3112
3113
bea3348e
SH
3114/**
3115 * netif_device_detach - mark device as removed
3116 * @dev: network device
3117 *
3118 * Mark device as removed from system and therefore no longer available.
3119 */
56079431
DV
3120void netif_device_detach(struct net_device *dev)
3121{
3122 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3123 netif_running(dev)) {
d543103a 3124 netif_tx_stop_all_queues(dev);
56079431
DV
3125 }
3126}
3127EXPORT_SYMBOL(netif_device_detach);
3128
bea3348e
SH
3129/**
3130 * netif_device_attach - mark device as attached
3131 * @dev: network device
3132 *
3133 * Mark device as attached from system and restart if needed.
3134 */
56079431
DV
3135void netif_device_attach(struct net_device *dev)
3136{
3137 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3138 netif_running(dev)) {
d543103a 3139 netif_tx_wake_all_queues(dev);
4ec93edb 3140 __netdev_watchdog_up(dev);
56079431
DV
3141 }
3142}
3143EXPORT_SYMBOL(netif_device_attach);
3144
5605c762
JP
3145/*
3146 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3147 * to be used as a distribution range.
3148 */
eadec877
AD
3149static u16 skb_tx_hash(const struct net_device *dev,
3150 const struct net_device *sb_dev,
3151 struct sk_buff *skb)
5605c762
JP
3152{
3153 u32 hash;
3154 u16 qoffset = 0;
1b837d48 3155 u16 qcount = dev->real_num_tx_queues;
5605c762 3156
eadec877
AD
3157 if (dev->num_tc) {
3158 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3159
3160 qoffset = sb_dev->tc_to_txq[tc].offset;
3161 qcount = sb_dev->tc_to_txq[tc].count;
3162 }
3163
5605c762
JP
3164 if (skb_rx_queue_recorded(skb)) {
3165 hash = skb_get_rx_queue(skb);
6e11d157
AN
3166 if (hash >= qoffset)
3167 hash -= qoffset;
1b837d48
AD
3168 while (unlikely(hash >= qcount))
3169 hash -= qcount;
eadec877 3170 return hash + qoffset;
5605c762
JP
3171 }
3172
3173 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3174}
5605c762 3175
36c92474
BH
3176static void skb_warn_bad_offload(const struct sk_buff *skb)
3177{
84d15ae5 3178 static const netdev_features_t null_features;
36c92474 3179 struct net_device *dev = skb->dev;
88ad4175 3180 const char *name = "";
36c92474 3181
c846ad9b
BG
3182 if (!net_ratelimit())
3183 return;
3184
88ad4175
BM
3185 if (dev) {
3186 if (dev->dev.parent)
3187 name = dev_driver_string(dev->dev.parent);
3188 else
3189 name = netdev_name(dev);
3190 }
6413139d
WB
3191 skb_dump(KERN_WARNING, skb, false);
3192 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3193 name, dev ? &dev->features : &null_features,
6413139d 3194 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3195}
3196
1da177e4
LT
3197/*
3198 * Invalidate hardware checksum when packet is to be mangled, and
3199 * complete checksum manually on outgoing path.
3200 */
84fa7933 3201int skb_checksum_help(struct sk_buff *skb)
1da177e4 3202{
d3bc23e7 3203 __wsum csum;
663ead3b 3204 int ret = 0, offset;
1da177e4 3205
84fa7933 3206 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3207 goto out_set_summed;
3208
3209 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
3210 skb_warn_bad_offload(skb);
3211 return -EINVAL;
1da177e4
LT
3212 }
3213
cef401de
ED
3214 /* Before computing a checksum, we should make sure no frag could
3215 * be modified by an external entity : checksum could be wrong.
3216 */
3217 if (skb_has_shared_frag(skb)) {
3218 ret = __skb_linearize(skb);
3219 if (ret)
3220 goto out;
3221 }
3222
55508d60 3223 offset = skb_checksum_start_offset(skb);
a030847e
HX
3224 BUG_ON(offset >= skb_headlen(skb));
3225 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3226
3227 offset += skb->csum_offset;
3228 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3229
8211fbfa
HK
3230 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3231 if (ret)
3232 goto out;
1da177e4 3233
4f2e4ad5 3234 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3235out_set_summed:
1da177e4 3236 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3237out:
1da177e4
LT
3238 return ret;
3239}
d1b19dff 3240EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3241
b72b5bf6
DC
3242int skb_crc32c_csum_help(struct sk_buff *skb)
3243{
3244 __le32 crc32c_csum;
3245 int ret = 0, offset, start;
3246
3247 if (skb->ip_summed != CHECKSUM_PARTIAL)
3248 goto out;
3249
3250 if (unlikely(skb_is_gso(skb)))
3251 goto out;
3252
3253 /* Before computing a checksum, we should make sure no frag could
3254 * be modified by an external entity : checksum could be wrong.
3255 */
3256 if (unlikely(skb_has_shared_frag(skb))) {
3257 ret = __skb_linearize(skb);
3258 if (ret)
3259 goto out;
3260 }
3261 start = skb_checksum_start_offset(skb);
3262 offset = start + offsetof(struct sctphdr, checksum);
3263 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3264 ret = -EINVAL;
3265 goto out;
3266 }
8211fbfa
HK
3267
3268 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3269 if (ret)
3270 goto out;
3271
b72b5bf6
DC
3272 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3273 skb->len - start, ~(__u32)0,
3274 crc32c_csum_stub));
3275 *(__le32 *)(skb->data + offset) = crc32c_csum;
3276 skb->ip_summed = CHECKSUM_NONE;
dba00306 3277 skb->csum_not_inet = 0;
b72b5bf6
DC
3278out:
3279 return ret;
3280}
3281
53d6471c 3282__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3283{
252e3346 3284 __be16 type = skb->protocol;
f6a78bfc 3285
19acc327
PS
3286 /* Tunnel gso handlers can set protocol to ethernet. */
3287 if (type == htons(ETH_P_TEB)) {
3288 struct ethhdr *eth;
3289
3290 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3291 return 0;
3292
1dfe82eb 3293 eth = (struct ethhdr *)skb->data;
19acc327
PS
3294 type = eth->h_proto;
3295 }
3296
d4bcef3f 3297 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3298}
3299
3300/**
3301 * skb_mac_gso_segment - mac layer segmentation handler.
3302 * @skb: buffer to segment
3303 * @features: features for the output path (see dev->features)
3304 */
3305struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3306 netdev_features_t features)
3307{
3308 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3309 struct packet_offload *ptype;
53d6471c
VY
3310 int vlan_depth = skb->mac_len;
3311 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3312
3313 if (unlikely(!type))
3314 return ERR_PTR(-EINVAL);
3315
53d6471c 3316 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3317
3318 rcu_read_lock();
22061d80 3319 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3320 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3321 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3322 break;
3323 }
3324 }
3325 rcu_read_unlock();
3326
98e399f8 3327 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3328
f6a78bfc
HX
3329 return segs;
3330}
05e8ef4a
PS
3331EXPORT_SYMBOL(skb_mac_gso_segment);
3332
3333
3334/* openvswitch calls this on rx path, so we need a different check.
3335 */
3336static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3337{
3338 if (tx_path)
0c19f846
WB
3339 return skb->ip_summed != CHECKSUM_PARTIAL &&
3340 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3341
3342 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3343}
3344
3345/**
3346 * __skb_gso_segment - Perform segmentation on skb.
3347 * @skb: buffer to segment
3348 * @features: features for the output path (see dev->features)
3349 * @tx_path: whether it is called in TX path
3350 *
3351 * This function segments the given skb and returns a list of segments.
3352 *
3353 * It may return NULL if the skb requires no segmentation. This is
3354 * only possible when GSO is used for verifying header integrity.
9207f9d4 3355 *
a08e7fd9 3356 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3357 */
3358struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3359 netdev_features_t features, bool tx_path)
3360{
b2504a5d
ED
3361 struct sk_buff *segs;
3362
05e8ef4a
PS
3363 if (unlikely(skb_needs_check(skb, tx_path))) {
3364 int err;
3365
b2504a5d 3366 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3367 err = skb_cow_head(skb, 0);
3368 if (err < 0)
05e8ef4a
PS
3369 return ERR_PTR(err);
3370 }
3371
802ab55a
AD
3372 /* Only report GSO partial support if it will enable us to
3373 * support segmentation on this frame without needing additional
3374 * work.
3375 */
3376 if (features & NETIF_F_GSO_PARTIAL) {
3377 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3378 struct net_device *dev = skb->dev;
3379
3380 partial_features |= dev->features & dev->gso_partial_features;
3381 if (!skb_gso_ok(skb, features | partial_features))
3382 features &= ~NETIF_F_GSO_PARTIAL;
3383 }
3384
a08e7fd9 3385 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3386 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3387
68c33163 3388 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3389 SKB_GSO_CB(skb)->encap_level = 0;
3390
05e8ef4a
PS
3391 skb_reset_mac_header(skb);
3392 skb_reset_mac_len(skb);
3393
b2504a5d
ED
3394 segs = skb_mac_gso_segment(skb, features);
3395
3a1296a3 3396 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3397 skb_warn_bad_offload(skb);
3398
3399 return segs;
05e8ef4a 3400}
12b0004d 3401EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3402
fb286bb2
HX
3403/* Take action when hardware reception checksum errors are detected. */
3404#ifdef CONFIG_BUG
7fe50ac8 3405void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3406{
3407 if (net_ratelimit()) {
7b6cd1ce 3408 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3409 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3410 dump_stack();
3411 }
3412}
3413EXPORT_SYMBOL(netdev_rx_csum_fault);
3414#endif
3415
ab74cfeb 3416/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3417static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3418{
3d3a8533 3419#ifdef CONFIG_HIGHMEM
1da177e4 3420 int i;
f4563a75 3421
5acbbd42 3422 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3425
ea2ab693 3426 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3427 return 1;
ea2ab693 3428 }
5acbbd42 3429 }
3d3a8533 3430#endif
1da177e4
LT
3431 return 0;
3432}
1da177e4 3433
3b392ddb
SH
3434/* If MPLS offload request, verify we are testing hardware MPLS features
3435 * instead of standard features for the netdev.
3436 */
d0edc7bf 3437#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3438static netdev_features_t net_mpls_features(struct sk_buff *skb,
3439 netdev_features_t features,
3440 __be16 type)
3441{
25cd9ba0 3442 if (eth_p_mpls(type))
3b392ddb
SH
3443 features &= skb->dev->mpls_features;
3444
3445 return features;
3446}
3447#else
3448static netdev_features_t net_mpls_features(struct sk_buff *skb,
3449 netdev_features_t features,
3450 __be16 type)
3451{
3452 return features;
3453}
3454#endif
3455
c8f44aff 3456static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3457 netdev_features_t features)
f01a5236 3458{
3b392ddb
SH
3459 __be16 type;
3460
9fc95f50 3461 type = skb_network_protocol(skb, NULL);
3b392ddb 3462 features = net_mpls_features(skb, features, type);
53d6471c 3463
c0d680e5 3464 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3465 !can_checksum_protocol(features, type)) {
996e8021 3466 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3467 }
7be2c82c
ED
3468 if (illegal_highdma(skb->dev, skb))
3469 features &= ~NETIF_F_SG;
f01a5236
JG
3470
3471 return features;
3472}
3473
e38f3025
TM
3474netdev_features_t passthru_features_check(struct sk_buff *skb,
3475 struct net_device *dev,
3476 netdev_features_t features)
3477{
3478 return features;
3479}
3480EXPORT_SYMBOL(passthru_features_check);
3481
7ce23672 3482static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3483 struct net_device *dev,
3484 netdev_features_t features)
3485{
3486 return vlan_features_check(skb, features);
3487}
3488
cbc53e08
AD
3489static netdev_features_t gso_features_check(const struct sk_buff *skb,
3490 struct net_device *dev,
3491 netdev_features_t features)
3492{
3493 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3494
3495 if (gso_segs > dev->gso_max_segs)
3496 return features & ~NETIF_F_GSO_MASK;
3497
802ab55a
AD
3498 /* Support for GSO partial features requires software
3499 * intervention before we can actually process the packets
3500 * so we need to strip support for any partial features now
3501 * and we can pull them back in after we have partially
3502 * segmented the frame.
3503 */
3504 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3505 features &= ~dev->gso_partial_features;
3506
3507 /* Make sure to clear the IPv4 ID mangling feature if the
3508 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3509 */
3510 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3511 struct iphdr *iph = skb->encapsulation ?
3512 inner_ip_hdr(skb) : ip_hdr(skb);
3513
3514 if (!(iph->frag_off & htons(IP_DF)))
3515 features &= ~NETIF_F_TSO_MANGLEID;
3516 }
3517
3518 return features;
3519}
3520
c1e756bf 3521netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3522{
5f35227e 3523 struct net_device *dev = skb->dev;
fcbeb976 3524 netdev_features_t features = dev->features;
58e998c6 3525
cbc53e08
AD
3526 if (skb_is_gso(skb))
3527 features = gso_features_check(skb, dev, features);
30b678d8 3528
5f35227e
JG
3529 /* If encapsulation offload request, verify we are testing
3530 * hardware encapsulation features instead of standard
3531 * features for the netdev
3532 */
3533 if (skb->encapsulation)
3534 features &= dev->hw_enc_features;
3535
f5a7fb88
TM
3536 if (skb_vlan_tagged(skb))
3537 features = netdev_intersect_features(features,
3538 dev->vlan_features |
3539 NETIF_F_HW_VLAN_CTAG_TX |
3540 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3541
5f35227e
JG
3542 if (dev->netdev_ops->ndo_features_check)
3543 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3544 features);
8cb65d00
TM
3545 else
3546 features &= dflt_features_check(skb, dev, features);
5f35227e 3547
c1e756bf 3548 return harmonize_features(skb, features);
58e998c6 3549}
c1e756bf 3550EXPORT_SYMBOL(netif_skb_features);
58e998c6 3551
2ea25513 3552static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3553 struct netdev_queue *txq, bool more)
f6a78bfc 3554{
2ea25513
DM
3555 unsigned int len;
3556 int rc;
00829823 3557
9f9a742d 3558 if (dev_nit_active(dev))
2ea25513 3559 dev_queue_xmit_nit(skb, dev);
fc741216 3560
2ea25513 3561 len = skb->len;
3744741a 3562 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
2ea25513 3563 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3564 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3565 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3566
2ea25513
DM
3567 return rc;
3568}
7b9c6090 3569
8dcda22a
DM
3570struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3571 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3572{
3573 struct sk_buff *skb = first;
3574 int rc = NETDEV_TX_OK;
7b9c6090 3575
7f2e870f
DM
3576 while (skb) {
3577 struct sk_buff *next = skb->next;
fc70fb64 3578
a8305bff 3579 skb_mark_not_on_list(skb);
95f6b3dd 3580 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3581 if (unlikely(!dev_xmit_complete(rc))) {
3582 skb->next = next;
3583 goto out;
3584 }
6afff0ca 3585
7f2e870f 3586 skb = next;
fe60faa5 3587 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3588 rc = NETDEV_TX_BUSY;
3589 break;
9ccb8975 3590 }
7f2e870f 3591 }
9ccb8975 3592
7f2e870f
DM
3593out:
3594 *ret = rc;
3595 return skb;
3596}
b40863c6 3597
1ff0dc94
ED
3598static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3599 netdev_features_t features)
f6a78bfc 3600{
df8a39de 3601 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3602 !vlan_hw_offload_capable(features, skb->vlan_proto))
3603 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3604 return skb;
3605}
f6a78bfc 3606
43c26a1a
DC
3607int skb_csum_hwoffload_help(struct sk_buff *skb,
3608 const netdev_features_t features)
3609{
3610 if (unlikely(skb->csum_not_inet))
3611 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3612 skb_crc32c_csum_help(skb);
3613
3614 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3615}
3616EXPORT_SYMBOL(skb_csum_hwoffload_help);
3617
f53c7239 3618static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3619{
3620 netdev_features_t features;
f6a78bfc 3621
eae3f88e
DM
3622 features = netif_skb_features(skb);
3623 skb = validate_xmit_vlan(skb, features);
3624 if (unlikely(!skb))
3625 goto out_null;
7b9c6090 3626
ebf4e808
IL
3627 skb = sk_validate_xmit_skb(skb, dev);
3628 if (unlikely(!skb))
3629 goto out_null;
3630
8b86a61d 3631 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3632 struct sk_buff *segs;
3633
3634 segs = skb_gso_segment(skb, features);
cecda693 3635 if (IS_ERR(segs)) {
af6dabc9 3636 goto out_kfree_skb;
cecda693
JW
3637 } else if (segs) {
3638 consume_skb(skb);
3639 skb = segs;
f6a78bfc 3640 }
eae3f88e
DM
3641 } else {
3642 if (skb_needs_linearize(skb, features) &&
3643 __skb_linearize(skb))
3644 goto out_kfree_skb;
4ec93edb 3645
eae3f88e
DM
3646 /* If packet is not checksummed and device does not
3647 * support checksumming for this protocol, complete
3648 * checksumming here.
3649 */
3650 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3651 if (skb->encapsulation)
3652 skb_set_inner_transport_header(skb,
3653 skb_checksum_start_offset(skb));
3654 else
3655 skb_set_transport_header(skb,
3656 skb_checksum_start_offset(skb));
43c26a1a 3657 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3658 goto out_kfree_skb;
7b9c6090 3659 }
0c772159 3660 }
7b9c6090 3661
f53c7239 3662 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3663
eae3f88e 3664 return skb;
fc70fb64 3665
f6a78bfc
HX
3666out_kfree_skb:
3667 kfree_skb(skb);
eae3f88e 3668out_null:
d21fd63e 3669 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3670 return NULL;
3671}
6afff0ca 3672
f53c7239 3673struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3674{
3675 struct sk_buff *next, *head = NULL, *tail;
3676
bec3cfdc 3677 for (; skb != NULL; skb = next) {
55a93b3e 3678 next = skb->next;
a8305bff 3679 skb_mark_not_on_list(skb);
bec3cfdc
ED
3680
3681 /* in case skb wont be segmented, point to itself */
3682 skb->prev = skb;
3683
f53c7239 3684 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3685 if (!skb)
3686 continue;
55a93b3e 3687
bec3cfdc
ED
3688 if (!head)
3689 head = skb;
3690 else
3691 tail->next = skb;
3692 /* If skb was segmented, skb->prev points to
3693 * the last segment. If not, it still contains skb.
3694 */
3695 tail = skb->prev;
55a93b3e
ED
3696 }
3697 return head;
f6a78bfc 3698}
104ba78c 3699EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3700
1def9238
ED
3701static void qdisc_pkt_len_init(struct sk_buff *skb)
3702{
3703 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3704
3705 qdisc_skb_cb(skb)->pkt_len = skb->len;
3706
3707 /* To get more precise estimation of bytes sent on wire,
3708 * we add to pkt_len the headers size of all segments
3709 */
a0dce875 3710 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3711 unsigned int hdr_len;
15e5a030 3712 u16 gso_segs = shinfo->gso_segs;
1def9238 3713
757b8b1d
ED
3714 /* mac layer + network layer */
3715 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3716
3717 /* + transport layer */
7c68d1a6
ED
3718 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3719 const struct tcphdr *th;
3720 struct tcphdr _tcphdr;
3721
3722 th = skb_header_pointer(skb, skb_transport_offset(skb),
3723 sizeof(_tcphdr), &_tcphdr);
3724 if (likely(th))
3725 hdr_len += __tcp_hdrlen(th);
3726 } else {
3727 struct udphdr _udphdr;
3728
3729 if (skb_header_pointer(skb, skb_transport_offset(skb),
3730 sizeof(_udphdr), &_udphdr))
3731 hdr_len += sizeof(struct udphdr);
3732 }
15e5a030
JW
3733
3734 if (shinfo->gso_type & SKB_GSO_DODGY)
3735 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3736 shinfo->gso_size);
3737
3738 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3739 }
3740}
3741
bbd8a0d3
KK
3742static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3743 struct net_device *dev,
3744 struct netdev_queue *txq)
3745{
3746 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3747 struct sk_buff *to_free = NULL;
a2da570d 3748 bool contended;
bbd8a0d3
KK
3749 int rc;
3750
a2da570d 3751 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3752
3753 if (q->flags & TCQ_F_NOLOCK) {
ac5c66f2 3754 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
379349e9 3755 qdisc_run(q);
6b3ba914
JF
3756
3757 if (unlikely(to_free))
3758 kfree_skb_list(to_free);
3759 return rc;
3760 }
3761
79640a4c
ED
3762 /*
3763 * Heuristic to force contended enqueues to serialize on a
3764 * separate lock before trying to get qdisc main lock.
f9eb8aea 3765 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3766 * often and dequeue packets faster.
79640a4c 3767 */
a2da570d 3768 contended = qdisc_is_running(q);
79640a4c
ED
3769 if (unlikely(contended))
3770 spin_lock(&q->busylock);
3771
bbd8a0d3
KK
3772 spin_lock(root_lock);
3773 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3774 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3775 rc = NET_XMIT_DROP;
3776 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3777 qdisc_run_begin(q)) {
bbd8a0d3
KK
3778 /*
3779 * This is a work-conserving queue; there are no old skbs
3780 * waiting to be sent out; and the qdisc is not running -
3781 * xmit the skb directly.
3782 */
bfe0d029 3783
bfe0d029
ED
3784 qdisc_bstats_update(q, skb);
3785
55a93b3e 3786 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3787 if (unlikely(contended)) {
3788 spin_unlock(&q->busylock);
3789 contended = false;
3790 }
bbd8a0d3 3791 __qdisc_run(q);
6c148184 3792 }
bbd8a0d3 3793
6c148184 3794 qdisc_run_end(q);
bbd8a0d3
KK
3795 rc = NET_XMIT_SUCCESS;
3796 } else {
ac5c66f2 3797 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3798 if (qdisc_run_begin(q)) {
3799 if (unlikely(contended)) {
3800 spin_unlock(&q->busylock);
3801 contended = false;
3802 }
3803 __qdisc_run(q);
6c148184 3804 qdisc_run_end(q);
79640a4c 3805 }
bbd8a0d3
KK
3806 }
3807 spin_unlock(root_lock);
520ac30f
ED
3808 if (unlikely(to_free))
3809 kfree_skb_list(to_free);
79640a4c
ED
3810 if (unlikely(contended))
3811 spin_unlock(&q->busylock);
bbd8a0d3
KK
3812 return rc;
3813}
3814
86f8515f 3815#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3816static void skb_update_prio(struct sk_buff *skb)
3817{
4dcb31d4
ED
3818 const struct netprio_map *map;
3819 const struct sock *sk;
3820 unsigned int prioidx;
5bc1421e 3821
4dcb31d4
ED
3822 if (skb->priority)
3823 return;
3824 map = rcu_dereference_bh(skb->dev->priomap);
3825 if (!map)
3826 return;
3827 sk = skb_to_full_sk(skb);
3828 if (!sk)
3829 return;
91c68ce2 3830
4dcb31d4
ED
3831 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3832
3833 if (prioidx < map->priomap_len)
3834 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3835}
3836#else
3837#define skb_update_prio(skb)
3838#endif
3839
95603e22
MM
3840/**
3841 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3842 * @net: network namespace this loopback is happening in
3843 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3844 * @skb: buffer to transmit
3845 */
0c4b51f0 3846int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3847{
3848 skb_reset_mac_header(skb);
3849 __skb_pull(skb, skb_network_offset(skb));
3850 skb->pkt_type = PACKET_LOOPBACK;
3851 skb->ip_summed = CHECKSUM_UNNECESSARY;
3852 WARN_ON(!skb_dst(skb));
3853 skb_dst_force(skb);
3854 netif_rx_ni(skb);
3855 return 0;
3856}
3857EXPORT_SYMBOL(dev_loopback_xmit);
3858
1f211a1b
DB
3859#ifdef CONFIG_NET_EGRESS
3860static struct sk_buff *
3861sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3862{
46209401 3863 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3864 struct tcf_result cl_res;
3865
46209401 3866 if (!miniq)
1f211a1b
DB
3867 return skb;
3868
8dc07fdb 3869 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3870 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3871
46209401 3872 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3873 case TC_ACT_OK:
3874 case TC_ACT_RECLASSIFY:
3875 skb->tc_index = TC_H_MIN(cl_res.classid);
3876 break;
3877 case TC_ACT_SHOT:
46209401 3878 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3879 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3880 kfree_skb(skb);
3881 return NULL;
1f211a1b
DB
3882 case TC_ACT_STOLEN:
3883 case TC_ACT_QUEUED:
e25ea21f 3884 case TC_ACT_TRAP:
1f211a1b 3885 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3886 consume_skb(skb);
1f211a1b
DB
3887 return NULL;
3888 case TC_ACT_REDIRECT:
3889 /* No need to push/pop skb's mac_header here on egress! */
3890 skb_do_redirect(skb);
3891 *ret = NET_XMIT_SUCCESS;
3892 return NULL;
3893 default:
3894 break;
3895 }
357b6cc5 3896
1f211a1b
DB
3897 return skb;
3898}
3899#endif /* CONFIG_NET_EGRESS */
3900
fc9bab24
AN
3901#ifdef CONFIG_XPS
3902static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3903 struct xps_dev_maps *dev_maps, unsigned int tci)
3904{
3905 struct xps_map *map;
3906 int queue_index = -1;
3907
3908 if (dev->num_tc) {
3909 tci *= dev->num_tc;
3910 tci += netdev_get_prio_tc_map(dev, skb->priority);
3911 }
3912
3913 map = rcu_dereference(dev_maps->attr_map[tci]);
3914 if (map) {
3915 if (map->len == 1)
3916 queue_index = map->queues[0];
3917 else
3918 queue_index = map->queues[reciprocal_scale(
3919 skb_get_hash(skb), map->len)];
3920 if (unlikely(queue_index >= dev->real_num_tx_queues))
3921 queue_index = -1;
3922 }
3923 return queue_index;
3924}
3925#endif
3926
eadec877
AD
3927static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3928 struct sk_buff *skb)
638b2a69
JP
3929{
3930#ifdef CONFIG_XPS
3931 struct xps_dev_maps *dev_maps;
fc9bab24 3932 struct sock *sk = skb->sk;
638b2a69
JP
3933 int queue_index = -1;
3934
04157469
AN
3935 if (!static_key_false(&xps_needed))
3936 return -1;
3937
638b2a69 3938 rcu_read_lock();
fc9bab24
AN
3939 if (!static_key_false(&xps_rxqs_needed))
3940 goto get_cpus_map;
3941
eadec877 3942 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3943 if (dev_maps) {
fc9bab24 3944 int tci = sk_rx_queue_get(sk);
184c449f 3945
fc9bab24
AN
3946 if (tci >= 0 && tci < dev->num_rx_queues)
3947 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3948 tci);
3949 }
184c449f 3950
fc9bab24
AN
3951get_cpus_map:
3952 if (queue_index < 0) {
eadec877 3953 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3954 if (dev_maps) {
3955 unsigned int tci = skb->sender_cpu - 1;
3956
3957 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3958 tci);
638b2a69
JP
3959 }
3960 }
3961 rcu_read_unlock();
3962
3963 return queue_index;
3964#else
3965 return -1;
3966#endif
3967}
3968
a4ea8a3d 3969u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3970 struct net_device *sb_dev)
a4ea8a3d
AD
3971{
3972 return 0;
3973}
3974EXPORT_SYMBOL(dev_pick_tx_zero);
3975
3976u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3977 struct net_device *sb_dev)
a4ea8a3d
AD
3978{
3979 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3980}
3981EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3982
b71b5837
PA
3983u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3984 struct net_device *sb_dev)
638b2a69
JP
3985{
3986 struct sock *sk = skb->sk;
3987 int queue_index = sk_tx_queue_get(sk);
3988
eadec877
AD
3989 sb_dev = sb_dev ? : dev;
3990
638b2a69
JP
3991 if (queue_index < 0 || skb->ooo_okay ||
3992 queue_index >= dev->real_num_tx_queues) {
eadec877 3993 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3994
638b2a69 3995 if (new_index < 0)
eadec877 3996 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3997
3998 if (queue_index != new_index && sk &&
004a5d01 3999 sk_fullsock(sk) &&
638b2a69
JP
4000 rcu_access_pointer(sk->sk_dst_cache))
4001 sk_tx_queue_set(sk, new_index);
4002
4003 queue_index = new_index;
4004 }
4005
4006 return queue_index;
4007}
b71b5837 4008EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 4009
4bd97d51
PA
4010struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4011 struct sk_buff *skb,
4012 struct net_device *sb_dev)
638b2a69
JP
4013{
4014 int queue_index = 0;
4015
4016#ifdef CONFIG_XPS
52bd2d62
ED
4017 u32 sender_cpu = skb->sender_cpu - 1;
4018
4019 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
4020 skb->sender_cpu = raw_smp_processor_id() + 1;
4021#endif
4022
4023 if (dev->real_num_tx_queues != 1) {
4024 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 4025
638b2a69 4026 if (ops->ndo_select_queue)
a350ecce 4027 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 4028 else
4bd97d51 4029 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 4030
d584527c 4031 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
4032 }
4033
4034 skb_set_queue_mapping(skb, queue_index);
4035 return netdev_get_tx_queue(dev, queue_index);
4036}
4037
d29f749e 4038/**
9d08dd3d 4039 * __dev_queue_xmit - transmit a buffer
d29f749e 4040 * @skb: buffer to transmit
eadec877 4041 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
4042 *
4043 * Queue a buffer for transmission to a network device. The caller must
4044 * have set the device and priority and built the buffer before calling
4045 * this function. The function can be called from an interrupt.
4046 *
4047 * A negative errno code is returned on a failure. A success does not
4048 * guarantee the frame will be transmitted as it may be dropped due
4049 * to congestion or traffic shaping.
4050 *
4051 * -----------------------------------------------------------------------------------
4052 * I notice this method can also return errors from the queue disciplines,
4053 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4054 * be positive.
4055 *
4056 * Regardless of the return value, the skb is consumed, so it is currently
4057 * difficult to retry a send to this method. (You can bump the ref count
4058 * before sending to hold a reference for retry if you are careful.)
4059 *
4060 * When calling this method, interrupts MUST be enabled. This is because
4061 * the BH enable code must have IRQs enabled so that it will not deadlock.
4062 * --BLG
4063 */
eadec877 4064static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
4065{
4066 struct net_device *dev = skb->dev;
dc2b4847 4067 struct netdev_queue *txq;
1da177e4
LT
4068 struct Qdisc *q;
4069 int rc = -ENOMEM;
f53c7239 4070 bool again = false;
1da177e4 4071
6d1ccff6
ED
4072 skb_reset_mac_header(skb);
4073
e7fd2885
WB
4074 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4075 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4076
4ec93edb
YH
4077 /* Disable soft irqs for various locks below. Also
4078 * stops preemption for RCU.
1da177e4 4079 */
4ec93edb 4080 rcu_read_lock_bh();
1da177e4 4081
5bc1421e
NH
4082 skb_update_prio(skb);
4083
1f211a1b
DB
4084 qdisc_pkt_len_init(skb);
4085#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4086 skb->tc_at_ingress = 0;
357b6cc5 4087# ifdef CONFIG_NET_EGRESS
aabf6772 4088 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4089 skb = sch_handle_egress(skb, &rc, dev);
4090 if (!skb)
4091 goto out;
4092 }
357b6cc5 4093# endif
1f211a1b 4094#endif
02875878
ED
4095 /* If device/qdisc don't need skb->dst, release it right now while
4096 * its hot in this cpu cache.
4097 */
4098 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4099 skb_dst_drop(skb);
4100 else
4101 skb_dst_force(skb);
4102
4bd97d51 4103 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4104 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4105
cf66ba58 4106 trace_net_dev_queue(skb);
1da177e4 4107 if (q->enqueue) {
bbd8a0d3 4108 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4109 goto out;
1da177e4
LT
4110 }
4111
4112 /* The device has no queue. Common case for software devices:
eb13da1a 4113 * loopback, all the sorts of tunnels...
1da177e4 4114
eb13da1a 4115 * Really, it is unlikely that netif_tx_lock protection is necessary
4116 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4117 * counters.)
4118 * However, it is possible, that they rely on protection
4119 * made by us here.
1da177e4 4120
eb13da1a 4121 * Check this and shot the lock. It is not prone from deadlocks.
4122 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4123 */
4124 if (dev->flags & IFF_UP) {
4125 int cpu = smp_processor_id(); /* ok because BHs are off */
4126
c773e847 4127 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4128 if (dev_xmit_recursion())
745e20f1
ED
4129 goto recursion_alert;
4130
f53c7239 4131 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4132 if (!skb)
d21fd63e 4133 goto out;
1f59533f 4134
3744741a 4135 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
c773e847 4136 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4137
73466498 4138 if (!netif_xmit_stopped(txq)) {
97cdcf37 4139 dev_xmit_recursion_inc();
ce93718f 4140 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4141 dev_xmit_recursion_dec();
572a9d7b 4142 if (dev_xmit_complete(rc)) {
c773e847 4143 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4144 goto out;
4145 }
4146 }
c773e847 4147 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4148 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4149 dev->name);
1da177e4
LT
4150 } else {
4151 /* Recursion is detected! It is possible,
745e20f1
ED
4152 * unfortunately
4153 */
4154recursion_alert:
e87cc472
JP
4155 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4156 dev->name);
1da177e4
LT
4157 }
4158 }
4159
4160 rc = -ENETDOWN;
d4828d85 4161 rcu_read_unlock_bh();
1da177e4 4162
015f0688 4163 atomic_long_inc(&dev->tx_dropped);
1f59533f 4164 kfree_skb_list(skb);
1da177e4
LT
4165 return rc;
4166out:
d4828d85 4167 rcu_read_unlock_bh();
1da177e4
LT
4168 return rc;
4169}
f663dd9a 4170
2b4aa3ce 4171int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4172{
4173 return __dev_queue_xmit(skb, NULL);
4174}
2b4aa3ce 4175EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4176
eadec877 4177int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4178{
eadec877 4179 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4180}
4181EXPORT_SYMBOL(dev_queue_xmit_accel);
4182
36ccdf85 4183int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
865b03f2
MK
4184{
4185 struct net_device *dev = skb->dev;
4186 struct sk_buff *orig_skb = skb;
4187 struct netdev_queue *txq;
4188 int ret = NETDEV_TX_BUSY;
4189 bool again = false;
4190
4191 if (unlikely(!netif_running(dev) ||
4192 !netif_carrier_ok(dev)))
4193 goto drop;
4194
4195 skb = validate_xmit_skb_list(skb, dev, &again);
4196 if (skb != orig_skb)
4197 goto drop;
4198
4199 skb_set_queue_mapping(skb, queue_id);
4200 txq = skb_get_tx_queue(dev, skb);
3744741a 4201 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
865b03f2
MK
4202
4203 local_bh_disable();
4204
0ad6f6e7 4205 dev_xmit_recursion_inc();
865b03f2
MK
4206 HARD_TX_LOCK(dev, txq, smp_processor_id());
4207 if (!netif_xmit_frozen_or_drv_stopped(txq))
4208 ret = netdev_start_xmit(skb, dev, txq, false);
4209 HARD_TX_UNLOCK(dev, txq);
0ad6f6e7 4210 dev_xmit_recursion_dec();
865b03f2
MK
4211
4212 local_bh_enable();
865b03f2
MK
4213 return ret;
4214drop:
4215 atomic_long_inc(&dev->tx_dropped);
4216 kfree_skb_list(skb);
4217 return NET_XMIT_DROP;
4218}
36ccdf85 4219EXPORT_SYMBOL(__dev_direct_xmit);
1da177e4 4220
eb13da1a 4221/*************************************************************************
4222 * Receiver routines
4223 *************************************************************************/
1da177e4 4224
6b2bedc3 4225int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4226EXPORT_SYMBOL(netdev_max_backlog);
4227
3b098e2d 4228int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4229int netdev_budget __read_mostly = 300;
a4837980
KK
4230/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4231unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4232int weight_p __read_mostly = 64; /* old backlog weight */
4233int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4234int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4235int dev_rx_weight __read_mostly = 64;
4236int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4237/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4238int gro_normal_batch __read_mostly = 8;
1da177e4 4239
eecfd7c4
ED
4240/* Called with irq disabled */
4241static inline void ____napi_schedule(struct softnet_data *sd,
4242 struct napi_struct *napi)
4243{
4244 list_add_tail(&napi->poll_list, &sd->poll_list);
4245 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4246}
4247
bfb564e7
KK
4248#ifdef CONFIG_RPS
4249
4250/* One global table that all flow-based protocols share. */
6e3f7faf 4251struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4252EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4253u32 rps_cpu_mask __read_mostly;
4254EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4255
dc05360f 4256struct static_key_false rps_needed __read_mostly;
3df97ba8 4257EXPORT_SYMBOL(rps_needed);
dc05360f 4258struct static_key_false rfs_needed __read_mostly;
13bfff25 4259EXPORT_SYMBOL(rfs_needed);
adc9300e 4260
c445477d
BH
4261static struct rps_dev_flow *
4262set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4263 struct rps_dev_flow *rflow, u16 next_cpu)
4264{
a31196b0 4265 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4266#ifdef CONFIG_RFS_ACCEL
4267 struct netdev_rx_queue *rxqueue;
4268 struct rps_dev_flow_table *flow_table;
4269 struct rps_dev_flow *old_rflow;
4270 u32 flow_id;
4271 u16 rxq_index;
4272 int rc;
4273
4274 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4275 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4276 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4277 goto out;
4278 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4279 if (rxq_index == skb_get_rx_queue(skb))
4280 goto out;
4281
4282 rxqueue = dev->_rx + rxq_index;
4283 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4284 if (!flow_table)
4285 goto out;
61b905da 4286 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4287 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4288 rxq_index, flow_id);
4289 if (rc < 0)
4290 goto out;
4291 old_rflow = rflow;
4292 rflow = &flow_table->flows[flow_id];
c445477d
BH
4293 rflow->filter = rc;
4294 if (old_rflow->filter == rflow->filter)
4295 old_rflow->filter = RPS_NO_FILTER;
4296 out:
4297#endif
4298 rflow->last_qtail =
09994d1b 4299 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4300 }
4301
09994d1b 4302 rflow->cpu = next_cpu;
c445477d
BH
4303 return rflow;
4304}
4305
bfb564e7
KK
4306/*
4307 * get_rps_cpu is called from netif_receive_skb and returns the target
4308 * CPU from the RPS map of the receiving queue for a given skb.
4309 * rcu_read_lock must be held on entry.
4310 */
4311static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4312 struct rps_dev_flow **rflowp)
4313{
567e4b79
ED
4314 const struct rps_sock_flow_table *sock_flow_table;
4315 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4316 struct rps_dev_flow_table *flow_table;
567e4b79 4317 struct rps_map *map;
bfb564e7 4318 int cpu = -1;
567e4b79 4319 u32 tcpu;
61b905da 4320 u32 hash;
bfb564e7
KK
4321
4322 if (skb_rx_queue_recorded(skb)) {
4323 u16 index = skb_get_rx_queue(skb);
567e4b79 4324
62fe0b40
BH
4325 if (unlikely(index >= dev->real_num_rx_queues)) {
4326 WARN_ONCE(dev->real_num_rx_queues > 1,
4327 "%s received packet on queue %u, but number "
4328 "of RX queues is %u\n",
4329 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4330 goto done;
4331 }
567e4b79
ED
4332 rxqueue += index;
4333 }
bfb564e7 4334
567e4b79
ED
4335 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4336
4337 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4338 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4339 if (!flow_table && !map)
bfb564e7
KK
4340 goto done;
4341
2d47b459 4342 skb_reset_network_header(skb);
61b905da
TH
4343 hash = skb_get_hash(skb);
4344 if (!hash)
bfb564e7
KK
4345 goto done;
4346
fec5e652
TH
4347 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4348 if (flow_table && sock_flow_table) {
fec5e652 4349 struct rps_dev_flow *rflow;
567e4b79
ED
4350 u32 next_cpu;
4351 u32 ident;
4352
4353 /* First check into global flow table if there is a match */
4354 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4355 if ((ident ^ hash) & ~rps_cpu_mask)
4356 goto try_rps;
fec5e652 4357
567e4b79
ED
4358 next_cpu = ident & rps_cpu_mask;
4359
4360 /* OK, now we know there is a match,
4361 * we can look at the local (per receive queue) flow table
4362 */
61b905da 4363 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4364 tcpu = rflow->cpu;
4365
fec5e652
TH
4366 /*
4367 * If the desired CPU (where last recvmsg was done) is
4368 * different from current CPU (one in the rx-queue flow
4369 * table entry), switch if one of the following holds:
a31196b0 4370 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4371 * - Current CPU is offline.
4372 * - The current CPU's queue tail has advanced beyond the
4373 * last packet that was enqueued using this table entry.
4374 * This guarantees that all previous packets for the flow
4375 * have been dequeued, thus preserving in order delivery.
4376 */
4377 if (unlikely(tcpu != next_cpu) &&
a31196b0 4378 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4379 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4380 rflow->last_qtail)) >= 0)) {
4381 tcpu = next_cpu;
c445477d 4382 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4383 }
c445477d 4384
a31196b0 4385 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4386 *rflowp = rflow;
4387 cpu = tcpu;
4388 goto done;
4389 }
4390 }
4391
567e4b79
ED
4392try_rps:
4393
0a9627f2 4394 if (map) {
8fc54f68 4395 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4396 if (cpu_online(tcpu)) {
4397 cpu = tcpu;
4398 goto done;
4399 }
4400 }
4401
4402done:
0a9627f2
TH
4403 return cpu;
4404}
4405
c445477d
BH
4406#ifdef CONFIG_RFS_ACCEL
4407
4408/**
4409 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4410 * @dev: Device on which the filter was set
4411 * @rxq_index: RX queue index
4412 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4413 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4414 *
4415 * Drivers that implement ndo_rx_flow_steer() should periodically call
4416 * this function for each installed filter and remove the filters for
4417 * which it returns %true.
4418 */
4419bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4420 u32 flow_id, u16 filter_id)
4421{
4422 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4423 struct rps_dev_flow_table *flow_table;
4424 struct rps_dev_flow *rflow;
4425 bool expire = true;
a31196b0 4426 unsigned int cpu;
c445477d
BH
4427
4428 rcu_read_lock();
4429 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430 if (flow_table && flow_id <= flow_table->mask) {
4431 rflow = &flow_table->flows[flow_id];
6aa7de05 4432 cpu = READ_ONCE(rflow->cpu);
a31196b0 4433 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4434 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4435 rflow->last_qtail) <
4436 (int)(10 * flow_table->mask)))
4437 expire = false;
4438 }
4439 rcu_read_unlock();
4440 return expire;
4441}
4442EXPORT_SYMBOL(rps_may_expire_flow);
4443
4444#endif /* CONFIG_RFS_ACCEL */
4445
0a9627f2 4446/* Called from hardirq (IPI) context */
e36fa2f7 4447static void rps_trigger_softirq(void *data)
0a9627f2 4448{
e36fa2f7
ED
4449 struct softnet_data *sd = data;
4450
eecfd7c4 4451 ____napi_schedule(sd, &sd->backlog);
dee42870 4452 sd->received_rps++;
0a9627f2 4453}
e36fa2f7 4454
fec5e652 4455#endif /* CONFIG_RPS */
0a9627f2 4456
e36fa2f7
ED
4457/*
4458 * Check if this softnet_data structure is another cpu one
4459 * If yes, queue it to our IPI list and return 1
4460 * If no, return 0
4461 */
4462static int rps_ipi_queued(struct softnet_data *sd)
4463{
4464#ifdef CONFIG_RPS
903ceff7 4465 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4466
4467 if (sd != mysd) {
4468 sd->rps_ipi_next = mysd->rps_ipi_list;
4469 mysd->rps_ipi_list = sd;
4470
4471 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472 return 1;
4473 }
4474#endif /* CONFIG_RPS */
4475 return 0;
4476}
4477
99bbc707
WB
4478#ifdef CONFIG_NET_FLOW_LIMIT
4479int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4480#endif
4481
4482static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4483{
4484#ifdef CONFIG_NET_FLOW_LIMIT
4485 struct sd_flow_limit *fl;
4486 struct softnet_data *sd;
4487 unsigned int old_flow, new_flow;
4488
4489 if (qlen < (netdev_max_backlog >> 1))
4490 return false;
4491
903ceff7 4492 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4493
4494 rcu_read_lock();
4495 fl = rcu_dereference(sd->flow_limit);
4496 if (fl) {
3958afa1 4497 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4498 old_flow = fl->history[fl->history_head];
4499 fl->history[fl->history_head] = new_flow;
4500
4501 fl->history_head++;
4502 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4503
4504 if (likely(fl->buckets[old_flow]))
4505 fl->buckets[old_flow]--;
4506
4507 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4508 fl->count++;
4509 rcu_read_unlock();
4510 return true;
4511 }
4512 }
4513 rcu_read_unlock();
4514#endif
4515 return false;
4516}
4517
0a9627f2
TH
4518/*
4519 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4520 * queue (may be a remote CPU queue).
4521 */
fec5e652
TH
4522static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4523 unsigned int *qtail)
0a9627f2 4524{
e36fa2f7 4525 struct softnet_data *sd;
0a9627f2 4526 unsigned long flags;
99bbc707 4527 unsigned int qlen;
0a9627f2 4528
e36fa2f7 4529 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4530
4531 local_irq_save(flags);
0a9627f2 4532
e36fa2f7 4533 rps_lock(sd);
e9e4dd32
JA
4534 if (!netif_running(skb->dev))
4535 goto drop;
99bbc707
WB
4536 qlen = skb_queue_len(&sd->input_pkt_queue);
4537 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4538 if (qlen) {
0a9627f2 4539enqueue:
e36fa2f7 4540 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4541 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4542 rps_unlock(sd);
152102c7 4543 local_irq_restore(flags);
0a9627f2
TH
4544 return NET_RX_SUCCESS;
4545 }
4546
ebda37c2
ED
4547 /* Schedule NAPI for backlog device
4548 * We can use non atomic operation since we own the queue lock
4549 */
4550 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4551 if (!rps_ipi_queued(sd))
eecfd7c4 4552 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4553 }
4554 goto enqueue;
4555 }
4556
e9e4dd32 4557drop:
dee42870 4558 sd->dropped++;
e36fa2f7 4559 rps_unlock(sd);
0a9627f2 4560
0a9627f2
TH
4561 local_irq_restore(flags);
4562
caf586e5 4563 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4564 kfree_skb(skb);
4565 return NET_RX_DROP;
4566}
1da177e4 4567
e817f856
JDB
4568static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4569{
4570 struct net_device *dev = skb->dev;
4571 struct netdev_rx_queue *rxqueue;
4572
4573 rxqueue = dev->_rx;
4574
4575 if (skb_rx_queue_recorded(skb)) {
4576 u16 index = skb_get_rx_queue(skb);
4577
4578 if (unlikely(index >= dev->real_num_rx_queues)) {
4579 WARN_ONCE(dev->real_num_rx_queues > 1,
4580 "%s received packet on queue %u, but number "
4581 "of RX queues is %u\n",
4582 dev->name, index, dev->real_num_rx_queues);
4583
4584 return rxqueue; /* Return first rxqueue */
4585 }
4586 rxqueue += index;
4587 }
4588 return rxqueue;
4589}
4590
d4455169 4591static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4592 struct xdp_buff *xdp,
d4455169
JF
4593 struct bpf_prog *xdp_prog)
4594{
e817f856 4595 struct netdev_rx_queue *rxqueue;
198d83bb 4596 void *orig_data, *orig_data_end;
de8f3a83 4597 u32 metalen, act = XDP_DROP;
29724956
JDB
4598 __be16 orig_eth_type;
4599 struct ethhdr *eth;
4600 bool orig_bcast;
d4455169
JF
4601 int hlen, off;
4602 u32 mac_len;
4603
4604 /* Reinjected packets coming from act_mirred or similar should
4605 * not get XDP generic processing.
4606 */
2c64605b 4607 if (skb_is_redirected(skb))
d4455169
JF
4608 return XDP_PASS;
4609
de8f3a83
DB
4610 /* XDP packets must be linear and must have sufficient headroom
4611 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4612 * native XDP provides, thus we need to do it here as well.
4613 */
ad1e03b2 4614 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
de8f3a83
DB
4615 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4616 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4617 int troom = skb->tail + skb->data_len - skb->end;
4618
4619 /* In case we have to go down the path and also linearize,
4620 * then lets do the pskb_expand_head() work just once here.
4621 */
4622 if (pskb_expand_head(skb,
4623 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4624 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4625 goto do_drop;
2d17d8d7 4626 if (skb_linearize(skb))
de8f3a83
DB
4627 goto do_drop;
4628 }
d4455169
JF
4629
4630 /* The XDP program wants to see the packet starting at the MAC
4631 * header.
4632 */
4633 mac_len = skb->data - skb_mac_header(skb);
4634 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4635 xdp->data = skb->data - mac_len;
4636 xdp->data_meta = xdp->data;
4637 xdp->data_end = xdp->data + hlen;
4638 xdp->data_hard_start = skb->data - skb_headroom(skb);
a075767b
JDB
4639
4640 /* SKB "head" area always have tailroom for skb_shared_info */
4641 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4642 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4643
02671e23
BT
4644 orig_data_end = xdp->data_end;
4645 orig_data = xdp->data;
29724956
JDB
4646 eth = (struct ethhdr *)xdp->data;
4647 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4648 orig_eth_type = eth->h_proto;
d4455169 4649
e817f856 4650 rxqueue = netif_get_rxqueue(skb);
02671e23 4651 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4652
02671e23 4653 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4654
065af355 4655 /* check if bpf_xdp_adjust_head was used */
02671e23 4656 off = xdp->data - orig_data;
065af355
JDB
4657 if (off) {
4658 if (off > 0)
4659 __skb_pull(skb, off);
4660 else if (off < 0)
4661 __skb_push(skb, -off);
4662
4663 skb->mac_header += off;
4664 skb_reset_network_header(skb);
4665 }
d4455169 4666
a075767b
JDB
4667 /* check if bpf_xdp_adjust_tail was used */
4668 off = xdp->data_end - orig_data_end;
f7613120 4669 if (off != 0) {
02671e23 4670 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
a075767b 4671 skb->len += off; /* positive on grow, negative on shrink */
f7613120 4672 }
198d83bb 4673
29724956
JDB
4674 /* check if XDP changed eth hdr such SKB needs update */
4675 eth = (struct ethhdr *)xdp->data;
4676 if ((orig_eth_type != eth->h_proto) ||
4677 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4678 __skb_push(skb, ETH_HLEN);
4679 skb->protocol = eth_type_trans(skb, skb->dev);
4680 }
4681
d4455169 4682 switch (act) {
6103aa96 4683 case XDP_REDIRECT:
d4455169
JF
4684 case XDP_TX:
4685 __skb_push(skb, mac_len);
de8f3a83 4686 break;
d4455169 4687 case XDP_PASS:
02671e23 4688 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4689 if (metalen)
4690 skb_metadata_set(skb, metalen);
d4455169 4691 break;
d4455169
JF
4692 default:
4693 bpf_warn_invalid_xdp_action(act);
df561f66 4694 fallthrough;
d4455169
JF
4695 case XDP_ABORTED:
4696 trace_xdp_exception(skb->dev, xdp_prog, act);
df561f66 4697 fallthrough;
d4455169
JF
4698 case XDP_DROP:
4699 do_drop:
4700 kfree_skb(skb);
4701 break;
4702 }
4703
4704 return act;
4705}
4706
4707/* When doing generic XDP we have to bypass the qdisc layer and the
4708 * network taps in order to match in-driver-XDP behavior.
4709 */
7c497478 4710void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4711{
4712 struct net_device *dev = skb->dev;
4713 struct netdev_queue *txq;
4714 bool free_skb = true;
4715 int cpu, rc;
4716
4bd97d51 4717 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4718 cpu = smp_processor_id();
4719 HARD_TX_LOCK(dev, txq, cpu);
4720 if (!netif_xmit_stopped(txq)) {
4721 rc = netdev_start_xmit(skb, dev, txq, 0);
4722 if (dev_xmit_complete(rc))
4723 free_skb = false;
4724 }
4725 HARD_TX_UNLOCK(dev, txq);
4726 if (free_skb) {
4727 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4728 kfree_skb(skb);
4729 }
4730}
4731
02786475 4732static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4733
7c497478 4734int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4735{
d4455169 4736 if (xdp_prog) {
02671e23
BT
4737 struct xdp_buff xdp;
4738 u32 act;
6103aa96 4739 int err;
d4455169 4740
02671e23 4741 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4742 if (act != XDP_PASS) {
6103aa96
JF
4743 switch (act) {
4744 case XDP_REDIRECT:
2facaad6 4745 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4746 &xdp, xdp_prog);
6103aa96
JF
4747 if (err)
4748 goto out_redir;
02671e23 4749 break;
6103aa96 4750 case XDP_TX:
d4455169 4751 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4752 break;
4753 }
d4455169
JF
4754 return XDP_DROP;
4755 }
4756 }
4757 return XDP_PASS;
6103aa96 4758out_redir:
6103aa96
JF
4759 kfree_skb(skb);
4760 return XDP_DROP;
d4455169 4761}
7c497478 4762EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4763
ae78dbfa 4764static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4765{
b0e28f1e 4766 int ret;
1da177e4 4767
588f0330 4768 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4769
cf66ba58 4770 trace_netif_rx(skb);
d4455169 4771
df334545 4772#ifdef CONFIG_RPS
dc05360f 4773 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4774 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4775 int cpu;
4776
cece1945 4777 preempt_disable();
b0e28f1e 4778 rcu_read_lock();
fec5e652
TH
4779
4780 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4781 if (cpu < 0)
4782 cpu = smp_processor_id();
fec5e652
TH
4783
4784 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4785
b0e28f1e 4786 rcu_read_unlock();
cece1945 4787 preempt_enable();
adc9300e
ED
4788 } else
4789#endif
fec5e652
TH
4790 {
4791 unsigned int qtail;
f4563a75 4792
fec5e652
TH
4793 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4794 put_cpu();
4795 }
b0e28f1e 4796 return ret;
1da177e4 4797}
ae78dbfa
BH
4798
4799/**
4800 * netif_rx - post buffer to the network code
4801 * @skb: buffer to post
4802 *
4803 * This function receives a packet from a device driver and queues it for
4804 * the upper (protocol) levels to process. It always succeeds. The buffer
4805 * may be dropped during processing for congestion control or by the
4806 * protocol layers.
4807 *
4808 * return values:
4809 * NET_RX_SUCCESS (no congestion)
4810 * NET_RX_DROP (packet was dropped)
4811 *
4812 */
4813
4814int netif_rx(struct sk_buff *skb)
4815{
b0e3f1bd
GB
4816 int ret;
4817
ae78dbfa
BH
4818 trace_netif_rx_entry(skb);
4819
b0e3f1bd
GB
4820 ret = netif_rx_internal(skb);
4821 trace_netif_rx_exit(ret);
4822
4823 return ret;
ae78dbfa 4824}
d1b19dff 4825EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4826
4827int netif_rx_ni(struct sk_buff *skb)
4828{
4829 int err;
4830
ae78dbfa
BH
4831 trace_netif_rx_ni_entry(skb);
4832
1da177e4 4833 preempt_disable();
ae78dbfa 4834 err = netif_rx_internal(skb);
1da177e4
LT
4835 if (local_softirq_pending())
4836 do_softirq();
4837 preempt_enable();
b0e3f1bd 4838 trace_netif_rx_ni_exit(err);
1da177e4
LT
4839
4840 return err;
4841}
1da177e4
LT
4842EXPORT_SYMBOL(netif_rx_ni);
4843
c11171a4
SAS
4844int netif_rx_any_context(struct sk_buff *skb)
4845{
4846 /*
4847 * If invoked from contexts which do not invoke bottom half
4848 * processing either at return from interrupt or when softrqs are
4849 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4850 * directly.
4851 */
4852 if (in_interrupt())
4853 return netif_rx(skb);
4854 else
4855 return netif_rx_ni(skb);
4856}
4857EXPORT_SYMBOL(netif_rx_any_context);
4858
0766f788 4859static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4860{
903ceff7 4861 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4862
4863 if (sd->completion_queue) {
4864 struct sk_buff *clist;
4865
4866 local_irq_disable();
4867 clist = sd->completion_queue;
4868 sd->completion_queue = NULL;
4869 local_irq_enable();
4870
4871 while (clist) {
4872 struct sk_buff *skb = clist;
f4563a75 4873
1da177e4
LT
4874 clist = clist->next;
4875
63354797 4876 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4877 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4878 trace_consume_skb(skb);
4879 else
4880 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4881
4882 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4883 __kfree_skb(skb);
4884 else
4885 __kfree_skb_defer(skb);
1da177e4 4886 }
15fad714
JDB
4887
4888 __kfree_skb_flush();
1da177e4
LT
4889 }
4890
4891 if (sd->output_queue) {
37437bb2 4892 struct Qdisc *head;
1da177e4
LT
4893
4894 local_irq_disable();
4895 head = sd->output_queue;
4896 sd->output_queue = NULL;
a9cbd588 4897 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4898 local_irq_enable();
4899
4900 while (head) {
37437bb2 4901 struct Qdisc *q = head;
6b3ba914 4902 spinlock_t *root_lock = NULL;
37437bb2 4903
1da177e4
LT
4904 head = head->next_sched;
4905
6b3ba914
JF
4906 if (!(q->flags & TCQ_F_NOLOCK)) {
4907 root_lock = qdisc_lock(q);
4908 spin_lock(root_lock);
4909 }
3bcb846c
ED
4910 /* We need to make sure head->next_sched is read
4911 * before clearing __QDISC_STATE_SCHED
4912 */
4913 smp_mb__before_atomic();
4914 clear_bit(__QDISC_STATE_SCHED, &q->state);
4915 qdisc_run(q);
6b3ba914
JF
4916 if (root_lock)
4917 spin_unlock(root_lock);
1da177e4
LT
4918 }
4919 }
f53c7239
SK
4920
4921 xfrm_dev_backlog(sd);
1da177e4
LT
4922}
4923
181402a5 4924#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4925/* This hook is defined here for ATM LANE */
4926int (*br_fdb_test_addr_hook)(struct net_device *dev,
4927 unsigned char *addr) __read_mostly;
4fb019a0 4928EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4929#endif
1da177e4 4930
1f211a1b
DB
4931static inline struct sk_buff *
4932sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
9aa1206e 4933 struct net_device *orig_dev, bool *another)
f697c3e8 4934{
e7582bab 4935#ifdef CONFIG_NET_CLS_ACT
46209401 4936 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4937 struct tcf_result cl_res;
24824a09 4938
c9e99fd0
DB
4939 /* If there's at least one ingress present somewhere (so
4940 * we get here via enabled static key), remaining devices
4941 * that are not configured with an ingress qdisc will bail
d2788d34 4942 * out here.
c9e99fd0 4943 */
46209401 4944 if (!miniq)
4577139b 4945 return skb;
46209401 4946
f697c3e8
HX
4947 if (*pt_prev) {
4948 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4949 *pt_prev = NULL;
1da177e4
LT
4950 }
4951
3365495c 4952 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4953 skb->tc_at_ingress = 1;
46209401 4954 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4955
7d17c544
PB
4956 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4957 &cl_res, false)) {
d2788d34
DB
4958 case TC_ACT_OK:
4959 case TC_ACT_RECLASSIFY:
4960 skb->tc_index = TC_H_MIN(cl_res.classid);
4961 break;
4962 case TC_ACT_SHOT:
46209401 4963 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4964 kfree_skb(skb);
4965 return NULL;
d2788d34
DB
4966 case TC_ACT_STOLEN:
4967 case TC_ACT_QUEUED:
e25ea21f 4968 case TC_ACT_TRAP:
8a3a4c6e 4969 consume_skb(skb);
d2788d34 4970 return NULL;
27b29f63
AS
4971 case TC_ACT_REDIRECT:
4972 /* skb_mac_header check was done by cls/act_bpf, so
4973 * we can safely push the L2 header back before
4974 * redirecting to another netdev
4975 */
4976 __skb_push(skb, skb->mac_len);
9aa1206e
DB
4977 if (skb_do_redirect(skb) == -EAGAIN) {
4978 __skb_pull(skb, skb->mac_len);
4979 *another = true;
4980 break;
4981 }
27b29f63 4982 return NULL;
720f22fe 4983 case TC_ACT_CONSUMED:
cd11b164 4984 return NULL;
d2788d34
DB
4985 default:
4986 break;
f697c3e8 4987 }
e7582bab 4988#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4989 return skb;
4990}
1da177e4 4991
24b27fc4
MB
4992/**
4993 * netdev_is_rx_handler_busy - check if receive handler is registered
4994 * @dev: device to check
4995 *
4996 * Check if a receive handler is already registered for a given device.
4997 * Return true if there one.
4998 *
4999 * The caller must hold the rtnl_mutex.
5000 */
5001bool netdev_is_rx_handler_busy(struct net_device *dev)
5002{
5003 ASSERT_RTNL();
5004 return dev && rtnl_dereference(dev->rx_handler);
5005}
5006EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5007
ab95bfe0
JP
5008/**
5009 * netdev_rx_handler_register - register receive handler
5010 * @dev: device to register a handler for
5011 * @rx_handler: receive handler to register
93e2c32b 5012 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 5013 *
e227867f 5014 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
5015 * called from __netif_receive_skb. A negative errno code is returned
5016 * on a failure.
5017 *
5018 * The caller must hold the rtnl_mutex.
8a4eb573
JP
5019 *
5020 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
5021 */
5022int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
5023 rx_handler_func_t *rx_handler,
5024 void *rx_handler_data)
ab95bfe0 5025{
1b7cd004 5026 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
5027 return -EBUSY;
5028
f5426250
PA
5029 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5030 return -EINVAL;
5031
00cfec37 5032 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 5033 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
5034 rcu_assign_pointer(dev->rx_handler, rx_handler);
5035
5036 return 0;
5037}
5038EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5039
5040/**
5041 * netdev_rx_handler_unregister - unregister receive handler
5042 * @dev: device to unregister a handler from
5043 *
166ec369 5044 * Unregister a receive handler from a device.
ab95bfe0
JP
5045 *
5046 * The caller must hold the rtnl_mutex.
5047 */
5048void netdev_rx_handler_unregister(struct net_device *dev)
5049{
5050
5051 ASSERT_RTNL();
a9b3cd7f 5052 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
5053 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5054 * section has a guarantee to see a non NULL rx_handler_data
5055 * as well.
5056 */
5057 synchronize_net();
a9b3cd7f 5058 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
5059}
5060EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5061
b4b9e355
MG
5062/*
5063 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5064 * the special handling of PFMEMALLOC skbs.
5065 */
5066static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5067{
5068 switch (skb->protocol) {
2b8837ae
JP
5069 case htons(ETH_P_ARP):
5070 case htons(ETH_P_IP):
5071 case htons(ETH_P_IPV6):
5072 case htons(ETH_P_8021Q):
5073 case htons(ETH_P_8021AD):
b4b9e355
MG
5074 return true;
5075 default:
5076 return false;
5077 }
5078}
5079
e687ad60
PN
5080static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5081 int *ret, struct net_device *orig_dev)
5082{
5083 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
5084 int ingress_retval;
5085
e687ad60
PN
5086 if (*pt_prev) {
5087 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5088 *pt_prev = NULL;
5089 }
5090
2c1e2703
AC
5091 rcu_read_lock();
5092 ingress_retval = nf_hook_ingress(skb);
5093 rcu_read_unlock();
5094 return ingress_retval;
e687ad60
PN
5095 }
5096 return 0;
5097}
e687ad60 5098
c0bbbdc3 5099static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
88eb1944 5100 struct packet_type **ppt_prev)
1da177e4
LT
5101{
5102 struct packet_type *ptype, *pt_prev;
ab95bfe0 5103 rx_handler_func_t *rx_handler;
c0bbbdc3 5104 struct sk_buff *skb = *pskb;
f2ccd8fa 5105 struct net_device *orig_dev;
8a4eb573 5106 bool deliver_exact = false;
1da177e4 5107 int ret = NET_RX_DROP;
252e3346 5108 __be16 type;
1da177e4 5109
588f0330 5110 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5111
cf66ba58 5112 trace_netif_receive_skb(skb);
9b22ea56 5113
cc9bd5ce 5114 orig_dev = skb->dev;
8f903c70 5115
c1d2bbe1 5116 skb_reset_network_header(skb);
fda55eca
ED
5117 if (!skb_transport_header_was_set(skb))
5118 skb_reset_transport_header(skb);
0b5c9db1 5119 skb_reset_mac_len(skb);
1da177e4
LT
5120
5121 pt_prev = NULL;
5122
63d8ea7f 5123another_round:
b6858177 5124 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5125
5126 __this_cpu_inc(softnet_data.processed);
5127
458bf2f2
SH
5128 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5129 int ret2;
5130
5131 preempt_disable();
5132 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5133 preempt_enable();
5134
c0bbbdc3
BS
5135 if (ret2 != XDP_PASS) {
5136 ret = NET_RX_DROP;
5137 goto out;
5138 }
458bf2f2
SH
5139 skb_reset_mac_len(skb);
5140 }
5141
8ad227ff
PM
5142 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5143 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 5144 skb = skb_vlan_untag(skb);
bcc6d479 5145 if (unlikely(!skb))
2c17d27c 5146 goto out;
bcc6d479
JP
5147 }
5148
e7246e12
WB
5149 if (skb_skip_tc_classify(skb))
5150 goto skip_classify;
1da177e4 5151
9754e293 5152 if (pfmemalloc)
b4b9e355
MG
5153 goto skip_taps;
5154
1da177e4 5155 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5156 if (pt_prev)
5157 ret = deliver_skb(skb, pt_prev, orig_dev);
5158 pt_prev = ptype;
5159 }
5160
5161 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5162 if (pt_prev)
5163 ret = deliver_skb(skb, pt_prev, orig_dev);
5164 pt_prev = ptype;
1da177e4
LT
5165 }
5166
b4b9e355 5167skip_taps:
1cf51900 5168#ifdef CONFIG_NET_INGRESS
aabf6772 5169 if (static_branch_unlikely(&ingress_needed_key)) {
9aa1206e
DB
5170 bool another = false;
5171
5172 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5173 &another);
5174 if (another)
5175 goto another_round;
4577139b 5176 if (!skb)
2c17d27c 5177 goto out;
e687ad60
PN
5178
5179 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5180 goto out;
4577139b 5181 }
1cf51900 5182#endif
2c64605b 5183 skb_reset_redirect(skb);
e7246e12 5184skip_classify:
9754e293 5185 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5186 goto drop;
5187
df8a39de 5188 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5189 if (pt_prev) {
5190 ret = deliver_skb(skb, pt_prev, orig_dev);
5191 pt_prev = NULL;
5192 }
48cc32d3 5193 if (vlan_do_receive(&skb))
2425717b
JF
5194 goto another_round;
5195 else if (unlikely(!skb))
2c17d27c 5196 goto out;
2425717b
JF
5197 }
5198
48cc32d3 5199 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5200 if (rx_handler) {
5201 if (pt_prev) {
5202 ret = deliver_skb(skb, pt_prev, orig_dev);
5203 pt_prev = NULL;
5204 }
8a4eb573
JP
5205 switch (rx_handler(&skb)) {
5206 case RX_HANDLER_CONSUMED:
3bc1b1ad 5207 ret = NET_RX_SUCCESS;
2c17d27c 5208 goto out;
8a4eb573 5209 case RX_HANDLER_ANOTHER:
63d8ea7f 5210 goto another_round;
8a4eb573
JP
5211 case RX_HANDLER_EXACT:
5212 deliver_exact = true;
5213 case RX_HANDLER_PASS:
5214 break;
5215 default:
5216 BUG();
5217 }
ab95bfe0 5218 }
1da177e4 5219
b14a9fc4 5220 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
36b2f61a
GV
5221check_vlan_id:
5222 if (skb_vlan_tag_get_id(skb)) {
5223 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5224 * find vlan device.
5225 */
d4b812de 5226 skb->pkt_type = PACKET_OTHERHOST;
36b2f61a
GV
5227 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5228 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5229 /* Outer header is 802.1P with vlan 0, inner header is
5230 * 802.1Q or 802.1AD and vlan_do_receive() above could
5231 * not find vlan dev for vlan id 0.
5232 */
5233 __vlan_hwaccel_clear_tag(skb);
5234 skb = skb_vlan_untag(skb);
5235 if (unlikely(!skb))
5236 goto out;
5237 if (vlan_do_receive(&skb))
5238 /* After stripping off 802.1P header with vlan 0
5239 * vlan dev is found for inner header.
5240 */
5241 goto another_round;
5242 else if (unlikely(!skb))
5243 goto out;
5244 else
5245 /* We have stripped outer 802.1P vlan 0 header.
5246 * But could not find vlan dev.
5247 * check again for vlan id to set OTHERHOST.
5248 */
5249 goto check_vlan_id;
5250 }
d4b812de
ED
5251 /* Note: we might in the future use prio bits
5252 * and set skb->priority like in vlan_do_receive()
5253 * For the time being, just ignore Priority Code Point
5254 */
b1817524 5255 __vlan_hwaccel_clear_tag(skb);
d4b812de 5256 }
48cc32d3 5257
7866a621
SN
5258 type = skb->protocol;
5259
63d8ea7f 5260 /* deliver only exact match when indicated */
7866a621
SN
5261 if (likely(!deliver_exact)) {
5262 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5263 &ptype_base[ntohs(type) &
5264 PTYPE_HASH_MASK]);
5265 }
1f3c8804 5266
7866a621
SN
5267 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5268 &orig_dev->ptype_specific);
5269
5270 if (unlikely(skb->dev != orig_dev)) {
5271 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5272 &skb->dev->ptype_specific);
1da177e4
LT
5273 }
5274
5275 if (pt_prev) {
1f8b977a 5276 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5277 goto drop;
88eb1944 5278 *ppt_prev = pt_prev;
1da177e4 5279 } else {
b4b9e355 5280drop:
6e7333d3
JW
5281 if (!deliver_exact)
5282 atomic_long_inc(&skb->dev->rx_dropped);
5283 else
5284 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5285 kfree_skb(skb);
5286 /* Jamal, now you will not able to escape explaining
5287 * me how you were going to use this. :-)
5288 */
5289 ret = NET_RX_DROP;
5290 }
5291
2c17d27c 5292out:
c0bbbdc3
BS
5293 /* The invariant here is that if *ppt_prev is not NULL
5294 * then skb should also be non-NULL.
5295 *
5296 * Apparently *ppt_prev assignment above holds this invariant due to
5297 * skb dereferencing near it.
5298 */
5299 *pskb = skb;
9754e293
DM
5300 return ret;
5301}
5302
88eb1944
EC
5303static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5304{
5305 struct net_device *orig_dev = skb->dev;
5306 struct packet_type *pt_prev = NULL;
5307 int ret;
5308
c0bbbdc3 5309 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
88eb1944 5310 if (pt_prev)
f5737cba
PA
5311 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5312 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5313 return ret;
5314}
5315
1c601d82
JDB
5316/**
5317 * netif_receive_skb_core - special purpose version of netif_receive_skb
5318 * @skb: buffer to process
5319 *
5320 * More direct receive version of netif_receive_skb(). It should
5321 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5322 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5323 *
5324 * This function may only be called from softirq context and interrupts
5325 * should be enabled.
5326 *
5327 * Return values (usually ignored):
5328 * NET_RX_SUCCESS: no congestion
5329 * NET_RX_DROP: packet was dropped
5330 */
5331int netif_receive_skb_core(struct sk_buff *skb)
5332{
5333 int ret;
5334
5335 rcu_read_lock();
88eb1944 5336 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5337 rcu_read_unlock();
5338
5339 return ret;
5340}
5341EXPORT_SYMBOL(netif_receive_skb_core);
5342
88eb1944
EC
5343static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5344 struct packet_type *pt_prev,
5345 struct net_device *orig_dev)
4ce0017a
EC
5346{
5347 struct sk_buff *skb, *next;
5348
88eb1944
EC
5349 if (!pt_prev)
5350 return;
5351 if (list_empty(head))
5352 return;
17266ee9 5353 if (pt_prev->list_func != NULL)
fdf71426
PA
5354 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5355 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5356 else
9a5a90d1
AL
5357 list_for_each_entry_safe(skb, next, head, list) {
5358 skb_list_del_init(skb);
fdf71426 5359 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5360 }
88eb1944
EC
5361}
5362
5363static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5364{
5365 /* Fast-path assumptions:
5366 * - There is no RX handler.
5367 * - Only one packet_type matches.
5368 * If either of these fails, we will end up doing some per-packet
5369 * processing in-line, then handling the 'last ptype' for the whole
5370 * sublist. This can't cause out-of-order delivery to any single ptype,
5371 * because the 'last ptype' must be constant across the sublist, and all
5372 * other ptypes are handled per-packet.
5373 */
5374 /* Current (common) ptype of sublist */
5375 struct packet_type *pt_curr = NULL;
5376 /* Current (common) orig_dev of sublist */
5377 struct net_device *od_curr = NULL;
5378 struct list_head sublist;
5379 struct sk_buff *skb, *next;
5380
9af86f93 5381 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5382 list_for_each_entry_safe(skb, next, head, list) {
5383 struct net_device *orig_dev = skb->dev;
5384 struct packet_type *pt_prev = NULL;
5385
22f6bbb7 5386 skb_list_del_init(skb);
c0bbbdc3 5387 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
9af86f93
EC
5388 if (!pt_prev)
5389 continue;
88eb1944
EC
5390 if (pt_curr != pt_prev || od_curr != orig_dev) {
5391 /* dispatch old sublist */
88eb1944
EC
5392 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5393 /* start new sublist */
9af86f93 5394 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5395 pt_curr = pt_prev;
5396 od_curr = orig_dev;
5397 }
9af86f93 5398 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5399 }
5400
5401 /* dispatch final sublist */
9af86f93 5402 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5403}
5404
9754e293
DM
5405static int __netif_receive_skb(struct sk_buff *skb)
5406{
5407 int ret;
5408
5409 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5410 unsigned int noreclaim_flag;
9754e293
DM
5411
5412 /*
5413 * PFMEMALLOC skbs are special, they should
5414 * - be delivered to SOCK_MEMALLOC sockets only
5415 * - stay away from userspace
5416 * - have bounded memory usage
5417 *
5418 * Use PF_MEMALLOC as this saves us from propagating the allocation
5419 * context down to all allocation sites.
5420 */
f1083048 5421 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5422 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5423 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5424 } else
88eb1944 5425 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5426
1da177e4
LT
5427 return ret;
5428}
0a9627f2 5429
4ce0017a
EC
5430static void __netif_receive_skb_list(struct list_head *head)
5431{
5432 unsigned long noreclaim_flag = 0;
5433 struct sk_buff *skb, *next;
5434 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5435
5436 list_for_each_entry_safe(skb, next, head, list) {
5437 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5438 struct list_head sublist;
5439
5440 /* Handle the previous sublist */
5441 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5442 if (!list_empty(&sublist))
5443 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5444 pfmemalloc = !pfmemalloc;
5445 /* See comments in __netif_receive_skb */
5446 if (pfmemalloc)
5447 noreclaim_flag = memalloc_noreclaim_save();
5448 else
5449 memalloc_noreclaim_restore(noreclaim_flag);
5450 }
5451 }
5452 /* Handle the remaining sublist */
b9f463d6
EC
5453 if (!list_empty(head))
5454 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5455 /* Restore pflags */
5456 if (pfmemalloc)
5457 memalloc_noreclaim_restore(noreclaim_flag);
5458}
5459
f4e63525 5460static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5461{
58038695 5462 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5463 struct bpf_prog *new = xdp->prog;
5464 int ret = 0;
5465
fbee97fe
DA
5466 if (new) {
5467 u32 i;
5468
984fe94f
YZ
5469 mutex_lock(&new->aux->used_maps_mutex);
5470
fbee97fe
DA
5471 /* generic XDP does not work with DEVMAPs that can
5472 * have a bpf_prog installed on an entry
5473 */
5474 for (i = 0; i < new->aux->used_map_cnt; i++) {
984fe94f
YZ
5475 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5476 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5477 mutex_unlock(&new->aux->used_maps_mutex);
92164774 5478 return -EINVAL;
984fe94f 5479 }
fbee97fe 5480 }
984fe94f
YZ
5481
5482 mutex_unlock(&new->aux->used_maps_mutex);
fbee97fe
DA
5483 }
5484
b5cdae32 5485 switch (xdp->command) {
58038695 5486 case XDP_SETUP_PROG:
b5cdae32
DM
5487 rcu_assign_pointer(dev->xdp_prog, new);
5488 if (old)
5489 bpf_prog_put(old);
5490
5491 if (old && !new) {
02786475 5492 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5493 } else if (new && !old) {
02786475 5494 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5495 dev_disable_lro(dev);
56f5aa77 5496 dev_disable_gro_hw(dev);
b5cdae32
DM
5497 }
5498 break;
b5cdae32 5499
b5cdae32
DM
5500 default:
5501 ret = -EINVAL;
5502 break;
5503 }
5504
5505 return ret;
5506}
5507
ae78dbfa 5508static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5509{
2c17d27c
JA
5510 int ret;
5511
588f0330 5512 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5513
c1f19b51
RC
5514 if (skb_defer_rx_timestamp(skb))
5515 return NET_RX_SUCCESS;
5516
bbbe211c 5517 rcu_read_lock();
df334545 5518#ifdef CONFIG_RPS
dc05360f 5519 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5520 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5521 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5522
3b098e2d
ED
5523 if (cpu >= 0) {
5524 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5525 rcu_read_unlock();
adc9300e 5526 return ret;
3b098e2d 5527 }
fec5e652 5528 }
1e94d72f 5529#endif
2c17d27c
JA
5530 ret = __netif_receive_skb(skb);
5531 rcu_read_unlock();
5532 return ret;
0a9627f2 5533}
ae78dbfa 5534
7da517a3
EC
5535static void netif_receive_skb_list_internal(struct list_head *head)
5536{
7da517a3 5537 struct sk_buff *skb, *next;
8c057efa 5538 struct list_head sublist;
7da517a3 5539
8c057efa 5540 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5541 list_for_each_entry_safe(skb, next, head, list) {
5542 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5543 skb_list_del_init(skb);
8c057efa
EC
5544 if (!skb_defer_rx_timestamp(skb))
5545 list_add_tail(&skb->list, &sublist);
7da517a3 5546 }
8c057efa 5547 list_splice_init(&sublist, head);
7da517a3 5548
7da517a3
EC
5549 rcu_read_lock();
5550#ifdef CONFIG_RPS
dc05360f 5551 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5552 list_for_each_entry_safe(skb, next, head, list) {
5553 struct rps_dev_flow voidflow, *rflow = &voidflow;
5554 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5555
5556 if (cpu >= 0) {
8c057efa 5557 /* Will be handled, remove from list */
22f6bbb7 5558 skb_list_del_init(skb);
8c057efa 5559 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5560 }
5561 }
5562 }
5563#endif
5564 __netif_receive_skb_list(head);
5565 rcu_read_unlock();
5566}
5567
ae78dbfa
BH
5568/**
5569 * netif_receive_skb - process receive buffer from network
5570 * @skb: buffer to process
5571 *
5572 * netif_receive_skb() is the main receive data processing function.
5573 * It always succeeds. The buffer may be dropped during processing
5574 * for congestion control or by the protocol layers.
5575 *
5576 * This function may only be called from softirq context and interrupts
5577 * should be enabled.
5578 *
5579 * Return values (usually ignored):
5580 * NET_RX_SUCCESS: no congestion
5581 * NET_RX_DROP: packet was dropped
5582 */
04eb4489 5583int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5584{
b0e3f1bd
GB
5585 int ret;
5586
ae78dbfa
BH
5587 trace_netif_receive_skb_entry(skb);
5588
b0e3f1bd
GB
5589 ret = netif_receive_skb_internal(skb);
5590 trace_netif_receive_skb_exit(ret);
5591
5592 return ret;
ae78dbfa 5593}
04eb4489 5594EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5595
f6ad8c1b
EC
5596/**
5597 * netif_receive_skb_list - process many receive buffers from network
5598 * @head: list of skbs to process.
5599 *
7da517a3
EC
5600 * Since return value of netif_receive_skb() is normally ignored, and
5601 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5602 *
5603 * This function may only be called from softirq context and interrupts
5604 * should be enabled.
5605 */
5606void netif_receive_skb_list(struct list_head *head)
5607{
7da517a3 5608 struct sk_buff *skb;
f6ad8c1b 5609
b9f463d6
EC
5610 if (list_empty(head))
5611 return;
b0e3f1bd
GB
5612 if (trace_netif_receive_skb_list_entry_enabled()) {
5613 list_for_each_entry(skb, head, list)
5614 trace_netif_receive_skb_list_entry(skb);
5615 }
7da517a3 5616 netif_receive_skb_list_internal(head);
b0e3f1bd 5617 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5618}
5619EXPORT_SYMBOL(netif_receive_skb_list);
5620
ce1e2a77 5621static DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5622
5623/* Network device is going away, flush any packets still pending */
5624static void flush_backlog(struct work_struct *work)
6e583ce5 5625{
6e583ce5 5626 struct sk_buff *skb, *tmp;
145dd5f9
PA
5627 struct softnet_data *sd;
5628
5629 local_bh_disable();
5630 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5631
145dd5f9 5632 local_irq_disable();
e36fa2f7 5633 rps_lock(sd);
6e7676c1 5634 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5635 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5636 __skb_unlink(skb, &sd->input_pkt_queue);
7df5cb75 5637 dev_kfree_skb_irq(skb);
76cc8b13 5638 input_queue_head_incr(sd);
6e583ce5 5639 }
6e7676c1 5640 }
e36fa2f7 5641 rps_unlock(sd);
145dd5f9 5642 local_irq_enable();
6e7676c1
CG
5643
5644 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5645 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5646 __skb_unlink(skb, &sd->process_queue);
5647 kfree_skb(skb);
76cc8b13 5648 input_queue_head_incr(sd);
6e7676c1
CG
5649 }
5650 }
145dd5f9
PA
5651 local_bh_enable();
5652}
5653
2de79ee2
PA
5654static bool flush_required(int cpu)
5655{
5656#if IS_ENABLED(CONFIG_RPS)
5657 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5658 bool do_flush;
5659
5660 local_irq_disable();
5661 rps_lock(sd);
5662
5663 /* as insertion into process_queue happens with the rps lock held,
5664 * process_queue access may race only with dequeue
5665 */
5666 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5667 !skb_queue_empty_lockless(&sd->process_queue);
5668 rps_unlock(sd);
5669 local_irq_enable();
5670
5671 return do_flush;
5672#endif
5673 /* without RPS we can't safely check input_pkt_queue: during a
5674 * concurrent remote skb_queue_splice() we can detect as empty both
5675 * input_pkt_queue and process_queue even if the latter could end-up
5676 * containing a lot of packets.
5677 */
5678 return true;
5679}
5680
41852497 5681static void flush_all_backlogs(void)
145dd5f9 5682{
2de79ee2 5683 static cpumask_t flush_cpus;
145dd5f9
PA
5684 unsigned int cpu;
5685
2de79ee2
PA
5686 /* since we are under rtnl lock protection we can use static data
5687 * for the cpumask and avoid allocating on stack the possibly
5688 * large mask
5689 */
5690 ASSERT_RTNL();
5691
145dd5f9
PA
5692 get_online_cpus();
5693
2de79ee2
PA
5694 cpumask_clear(&flush_cpus);
5695 for_each_online_cpu(cpu) {
5696 if (flush_required(cpu)) {
5697 queue_work_on(cpu, system_highpri_wq,
5698 per_cpu_ptr(&flush_works, cpu));
5699 cpumask_set_cpu(cpu, &flush_cpus);
5700 }
5701 }
145dd5f9 5702
2de79ee2
PA
5703 /* we can have in flight packet[s] on the cpus we are not flushing,
5704 * synchronize_net() in rollback_registered_many() will take care of
5705 * them
5706 */
5707 for_each_cpu(cpu, &flush_cpus)
41852497 5708 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5709
5710 put_online_cpus();
6e583ce5
SH
5711}
5712
c8079432
MM
5713/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5714static void gro_normal_list(struct napi_struct *napi)
5715{
5716 if (!napi->rx_count)
5717 return;
5718 netif_receive_skb_list_internal(&napi->rx_list);
5719 INIT_LIST_HEAD(&napi->rx_list);
5720 napi->rx_count = 0;
5721}
5722
5723/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5724 * pass the whole batch up to the stack.
5725 */
5726static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5727{
5728 list_add_tail(&skb->list, &napi->rx_list);
5729 if (++napi->rx_count >= gro_normal_batch)
5730 gro_normal_list(napi);
5731}
5732
aaa5d90b
PA
5733INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5734INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
c8079432 5735static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5736{
22061d80 5737 struct packet_offload *ptype;
d565b0a1 5738 __be16 type = skb->protocol;
22061d80 5739 struct list_head *head = &offload_base;
d565b0a1
HX
5740 int err = -ENOENT;
5741
c3c7c254
ED
5742 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5743
fc59f9a3
HX
5744 if (NAPI_GRO_CB(skb)->count == 1) {
5745 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5746 goto out;
fc59f9a3 5747 }
d565b0a1
HX
5748
5749 rcu_read_lock();
5750 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5751 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5752 continue;
5753
aaa5d90b
PA
5754 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5755 ipv6_gro_complete, inet_gro_complete,
5756 skb, 0);
d565b0a1
HX
5757 break;
5758 }
5759 rcu_read_unlock();
5760
5761 if (err) {
5762 WARN_ON(&ptype->list == head);
5763 kfree_skb(skb);
5764 return NET_RX_SUCCESS;
5765 }
5766
5767out:
c8079432
MM
5768 gro_normal_one(napi, skb);
5769 return NET_RX_SUCCESS;
d565b0a1
HX
5770}
5771
6312fe77 5772static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5773 bool flush_old)
d565b0a1 5774{
6312fe77 5775 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5776 struct sk_buff *skb, *p;
2e71a6f8 5777
07d78363 5778 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5779 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5780 return;
992cba7e 5781 skb_list_del_init(skb);
c8079432 5782 napi_gro_complete(napi, skb);
6312fe77 5783 napi->gro_hash[index].count--;
d565b0a1 5784 }
d9f37d01
LR
5785
5786 if (!napi->gro_hash[index].count)
5787 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5788}
07d78363 5789
6312fe77 5790/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5791 * youngest packets at the head of it.
5792 * Complete skbs in reverse order to reduce latencies.
5793 */
5794void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5795{
42519ede
ED
5796 unsigned long bitmask = napi->gro_bitmask;
5797 unsigned int i, base = ~0U;
07d78363 5798
42519ede
ED
5799 while ((i = ffs(bitmask)) != 0) {
5800 bitmask >>= i;
5801 base += i;
5802 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5803 }
07d78363 5804}
86cac58b 5805EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5806
07d78363
DM
5807static struct list_head *gro_list_prepare(struct napi_struct *napi,
5808 struct sk_buff *skb)
89c5fa33 5809{
89c5fa33 5810 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5811 u32 hash = skb_get_hash_raw(skb);
07d78363 5812 struct list_head *head;
d4546c25 5813 struct sk_buff *p;
89c5fa33 5814
6312fe77 5815 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5816 list_for_each_entry(p, head, list) {
89c5fa33
ED
5817 unsigned long diffs;
5818
0b4cec8c
TH
5819 NAPI_GRO_CB(p)->flush = 0;
5820
5821 if (hash != skb_get_hash_raw(p)) {
5822 NAPI_GRO_CB(p)->same_flow = 0;
5823 continue;
5824 }
5825
89c5fa33 5826 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5827 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5828 if (skb_vlan_tag_present(p))
fc5141cb 5829 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
ce87fc6c 5830 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5831 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5832 if (maclen == ETH_HLEN)
5833 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5834 skb_mac_header(skb));
89c5fa33
ED
5835 else if (!diffs)
5836 diffs = memcmp(skb_mac_header(p),
a50e233c 5837 skb_mac_header(skb),
89c5fa33
ED
5838 maclen);
5839 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5840 }
07d78363
DM
5841
5842 return head;
89c5fa33
ED
5843}
5844
299603e8
JC
5845static void skb_gro_reset_offset(struct sk_buff *skb)
5846{
5847 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5848 const skb_frag_t *frag0 = &pinfo->frags[0];
5849
5850 NAPI_GRO_CB(skb)->data_offset = 0;
5851 NAPI_GRO_CB(skb)->frag0 = NULL;
5852 NAPI_GRO_CB(skb)->frag0_len = 0;
5853
8aef998d 5854 if (!skb_headlen(skb) && pinfo->nr_frags &&
299603e8
JC
5855 !PageHighMem(skb_frag_page(frag0))) {
5856 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5857 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5858 skb_frag_size(frag0),
5859 skb->end - skb->tail);
89c5fa33
ED
5860 }
5861}
5862
a50e233c
ED
5863static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5864{
5865 struct skb_shared_info *pinfo = skb_shinfo(skb);
5866
5867 BUG_ON(skb->end - skb->tail < grow);
5868
5869 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5870
5871 skb->data_len -= grow;
5872 skb->tail += grow;
5873
b54c9d5b 5874 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5875 skb_frag_size_sub(&pinfo->frags[0], grow);
5876
5877 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5878 skb_frag_unref(skb, 0);
5879 memmove(pinfo->frags, pinfo->frags + 1,
5880 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5881 }
5882}
5883
c8079432 5884static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 5885{
6312fe77 5886 struct sk_buff *oldest;
07d78363 5887
6312fe77 5888 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5889
6312fe77 5890 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5891 * impossible.
5892 */
5893 if (WARN_ON_ONCE(!oldest))
5894 return;
5895
d9f37d01
LR
5896 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5897 * SKB to the chain.
07d78363 5898 */
ece23711 5899 skb_list_del_init(oldest);
c8079432 5900 napi_gro_complete(napi, oldest);
07d78363
DM
5901}
5902
aaa5d90b
PA
5903INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5904 struct sk_buff *));
5905INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5906 struct sk_buff *));
bb728820 5907static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5908{
6312fe77 5909 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5910 struct list_head *head = &offload_base;
22061d80 5911 struct packet_offload *ptype;
d565b0a1 5912 __be16 type = skb->protocol;
07d78363 5913 struct list_head *gro_head;
d4546c25 5914 struct sk_buff *pp = NULL;
5b252f0c 5915 enum gro_result ret;
d4546c25 5916 int same_flow;
a50e233c 5917 int grow;
d565b0a1 5918
b5cdae32 5919 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5920 goto normal;
5921
07d78363 5922 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5923
d565b0a1
HX
5924 rcu_read_lock();
5925 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5926 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5927 continue;
5928
86911732 5929 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5930 skb_reset_mac_len(skb);
d565b0a1 5931 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5932 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5933 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5934 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5935 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5936 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5937 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5938 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5939
662880f4
TH
5940 /* Setup for GRO checksum validation */
5941 switch (skb->ip_summed) {
5942 case CHECKSUM_COMPLETE:
5943 NAPI_GRO_CB(skb)->csum = skb->csum;
5944 NAPI_GRO_CB(skb)->csum_valid = 1;
5945 NAPI_GRO_CB(skb)->csum_cnt = 0;
5946 break;
5947 case CHECKSUM_UNNECESSARY:
5948 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5949 NAPI_GRO_CB(skb)->csum_valid = 0;
5950 break;
5951 default:
5952 NAPI_GRO_CB(skb)->csum_cnt = 0;
5953 NAPI_GRO_CB(skb)->csum_valid = 0;
5954 }
d565b0a1 5955
aaa5d90b
PA
5956 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5957 ipv6_gro_receive, inet_gro_receive,
5958 gro_head, skb);
d565b0a1
HX
5959 break;
5960 }
5961 rcu_read_unlock();
5962
5963 if (&ptype->list == head)
5964 goto normal;
5965
45586c70 5966 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
5967 ret = GRO_CONSUMED;
5968 goto ok;
5969 }
5970
0da2afd5 5971 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5972 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5973
d565b0a1 5974 if (pp) {
992cba7e 5975 skb_list_del_init(pp);
c8079432 5976 napi_gro_complete(napi, pp);
6312fe77 5977 napi->gro_hash[hash].count--;
d565b0a1
HX
5978 }
5979
0da2afd5 5980 if (same_flow)
d565b0a1
HX
5981 goto ok;
5982
600adc18 5983 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5984 goto normal;
d565b0a1 5985
6312fe77 5986 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
c8079432 5987 gro_flush_oldest(napi, gro_head);
600adc18 5988 } else {
6312fe77 5989 napi->gro_hash[hash].count++;
600adc18 5990 }
d565b0a1 5991 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5992 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5993 NAPI_GRO_CB(skb)->last = skb;
86911732 5994 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5995 list_add(&skb->list, gro_head);
5d0d9be8 5996 ret = GRO_HELD;
d565b0a1 5997
ad0f9904 5998pull:
a50e233c
ED
5999 grow = skb_gro_offset(skb) - skb_headlen(skb);
6000 if (grow > 0)
6001 gro_pull_from_frag0(skb, grow);
d565b0a1 6002ok:
d9f37d01
LR
6003 if (napi->gro_hash[hash].count) {
6004 if (!test_bit(hash, &napi->gro_bitmask))
6005 __set_bit(hash, &napi->gro_bitmask);
6006 } else if (test_bit(hash, &napi->gro_bitmask)) {
6007 __clear_bit(hash, &napi->gro_bitmask);
6008 }
6009
5d0d9be8 6010 return ret;
d565b0a1
HX
6011
6012normal:
ad0f9904
HX
6013 ret = GRO_NORMAL;
6014 goto pull;
5d38a079 6015}
96e93eab 6016
bf5a755f
JC
6017struct packet_offload *gro_find_receive_by_type(__be16 type)
6018{
6019 struct list_head *offload_head = &offload_base;
6020 struct packet_offload *ptype;
6021
6022 list_for_each_entry_rcu(ptype, offload_head, list) {
6023 if (ptype->type != type || !ptype->callbacks.gro_receive)
6024 continue;
6025 return ptype;
6026 }
6027 return NULL;
6028}
e27a2f83 6029EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
6030
6031struct packet_offload *gro_find_complete_by_type(__be16 type)
6032{
6033 struct list_head *offload_head = &offload_base;
6034 struct packet_offload *ptype;
6035
6036 list_for_each_entry_rcu(ptype, offload_head, list) {
6037 if (ptype->type != type || !ptype->callbacks.gro_complete)
6038 continue;
6039 return ptype;
6040 }
6041 return NULL;
6042}
e27a2f83 6043EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 6044
e44699d2
MK
6045static void napi_skb_free_stolen_head(struct sk_buff *skb)
6046{
6047 skb_dst_drop(skb);
174e2381 6048 skb_ext_put(skb);
e44699d2
MK
6049 kmem_cache_free(skbuff_head_cache, skb);
6050}
6051
6570bc79
AL
6052static gro_result_t napi_skb_finish(struct napi_struct *napi,
6053 struct sk_buff *skb,
6054 gro_result_t ret)
5d38a079 6055{
5d0d9be8
HX
6056 switch (ret) {
6057 case GRO_NORMAL:
6570bc79 6058 gro_normal_one(napi, skb);
c7c4b3b6 6059 break;
5d38a079 6060
5d0d9be8 6061 case GRO_DROP:
5d38a079
HX
6062 kfree_skb(skb);
6063 break;
5b252f0c 6064
daa86548 6065 case GRO_MERGED_FREE:
e44699d2
MK
6066 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6067 napi_skb_free_stolen_head(skb);
6068 else
d7e8883c 6069 __kfree_skb(skb);
daa86548
ED
6070 break;
6071
5b252f0c
BH
6072 case GRO_HELD:
6073 case GRO_MERGED:
25393d3f 6074 case GRO_CONSUMED:
5b252f0c 6075 break;
5d38a079
HX
6076 }
6077
c7c4b3b6 6078 return ret;
5d0d9be8 6079}
5d0d9be8 6080
c7c4b3b6 6081gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 6082{
b0e3f1bd
GB
6083 gro_result_t ret;
6084
93f93a44 6085 skb_mark_napi_id(skb, napi);
ae78dbfa 6086 trace_napi_gro_receive_entry(skb);
86911732 6087
a50e233c
ED
6088 skb_gro_reset_offset(skb);
6089
6570bc79 6090 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
6091 trace_napi_gro_receive_exit(ret);
6092
6093 return ret;
d565b0a1
HX
6094}
6095EXPORT_SYMBOL(napi_gro_receive);
6096
d0c2b0d2 6097static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 6098{
93a35f59
ED
6099 if (unlikely(skb->pfmemalloc)) {
6100 consume_skb(skb);
6101 return;
6102 }
96e93eab 6103 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
6104 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6105 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 6106 __vlan_hwaccel_clear_tag(skb);
66c46d74 6107 skb->dev = napi->dev;
6d152e23 6108 skb->skb_iif = 0;
33d9a2c7
ED
6109
6110 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6111 skb->pkt_type = PACKET_HOST;
6112
c3caf119
JC
6113 skb->encapsulation = 0;
6114 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 6115 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 6116 skb_ext_reset(skb);
96e93eab
HX
6117
6118 napi->skb = skb;
6119}
96e93eab 6120
76620aaf 6121struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 6122{
5d38a079 6123 struct sk_buff *skb = napi->skb;
5d38a079
HX
6124
6125 if (!skb) {
fd11a83d 6126 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
6127 if (skb) {
6128 napi->skb = skb;
6129 skb_mark_napi_id(skb, napi);
6130 }
80595d59 6131 }
96e93eab
HX
6132 return skb;
6133}
76620aaf 6134EXPORT_SYMBOL(napi_get_frags);
96e93eab 6135
a50e233c
ED
6136static gro_result_t napi_frags_finish(struct napi_struct *napi,
6137 struct sk_buff *skb,
6138 gro_result_t ret)
96e93eab 6139{
5d0d9be8
HX
6140 switch (ret) {
6141 case GRO_NORMAL:
a50e233c
ED
6142 case GRO_HELD:
6143 __skb_push(skb, ETH_HLEN);
6144 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61
EC
6145 if (ret == GRO_NORMAL)
6146 gro_normal_one(napi, skb);
86911732 6147 break;
5d38a079 6148
5d0d9be8 6149 case GRO_DROP:
5d0d9be8
HX
6150 napi_reuse_skb(napi, skb);
6151 break;
5b252f0c 6152
e44699d2
MK
6153 case GRO_MERGED_FREE:
6154 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6155 napi_skb_free_stolen_head(skb);
6156 else
6157 napi_reuse_skb(napi, skb);
6158 break;
6159
5b252f0c 6160 case GRO_MERGED:
25393d3f 6161 case GRO_CONSUMED:
5b252f0c 6162 break;
5d0d9be8 6163 }
5d38a079 6164
c7c4b3b6 6165 return ret;
5d38a079 6166}
5d0d9be8 6167
a50e233c
ED
6168/* Upper GRO stack assumes network header starts at gro_offset=0
6169 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6170 * We copy ethernet header into skb->data to have a common layout.
6171 */
4adb9c4a 6172static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
6173{
6174 struct sk_buff *skb = napi->skb;
a50e233c
ED
6175 const struct ethhdr *eth;
6176 unsigned int hlen = sizeof(*eth);
76620aaf
HX
6177
6178 napi->skb = NULL;
6179
a50e233c
ED
6180 skb_reset_mac_header(skb);
6181 skb_gro_reset_offset(skb);
6182
a50e233c
ED
6183 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6184 eth = skb_gro_header_slow(skb, hlen, 0);
6185 if (unlikely(!eth)) {
4da46ceb
AC
6186 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6187 __func__, napi->dev->name);
a50e233c
ED
6188 napi_reuse_skb(napi, skb);
6189 return NULL;
6190 }
6191 } else {
a4270d67 6192 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6193 gro_pull_from_frag0(skb, hlen);
6194 NAPI_GRO_CB(skb)->frag0 += hlen;
6195 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6196 }
a50e233c
ED
6197 __skb_pull(skb, hlen);
6198
6199 /*
6200 * This works because the only protocols we care about don't require
6201 * special handling.
6202 * We'll fix it up properly in napi_frags_finish()
6203 */
6204 skb->protocol = eth->h_proto;
76620aaf 6205
76620aaf
HX
6206 return skb;
6207}
76620aaf 6208
c7c4b3b6 6209gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6210{
b0e3f1bd 6211 gro_result_t ret;
76620aaf 6212 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
6213
6214 if (!skb)
c7c4b3b6 6215 return GRO_DROP;
5d0d9be8 6216
ae78dbfa
BH
6217 trace_napi_gro_frags_entry(skb);
6218
b0e3f1bd
GB
6219 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6220 trace_napi_gro_frags_exit(ret);
6221
6222 return ret;
5d0d9be8 6223}
5d38a079
HX
6224EXPORT_SYMBOL(napi_gro_frags);
6225
573e8fca
TH
6226/* Compute the checksum from gro_offset and return the folded value
6227 * after adding in any pseudo checksum.
6228 */
6229__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6230{
6231 __wsum wsum;
6232 __sum16 sum;
6233
6234 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6235
6236 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6237 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6238 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6239 if (likely(!sum)) {
6240 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6241 !skb->csum_complete_sw)
7fe50ac8 6242 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6243 }
6244
6245 NAPI_GRO_CB(skb)->csum = wsum;
6246 NAPI_GRO_CB(skb)->csum_valid = 1;
6247
6248 return sum;
6249}
6250EXPORT_SYMBOL(__skb_gro_checksum_complete);
6251
773fc8f6 6252static void net_rps_send_ipi(struct softnet_data *remsd)
6253{
6254#ifdef CONFIG_RPS
6255 while (remsd) {
6256 struct softnet_data *next = remsd->rps_ipi_next;
6257
6258 if (cpu_online(remsd->cpu))
6259 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6260 remsd = next;
6261 }
6262#endif
6263}
6264
e326bed2 6265/*
855abcf0 6266 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6267 * Note: called with local irq disabled, but exits with local irq enabled.
6268 */
6269static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6270{
6271#ifdef CONFIG_RPS
6272 struct softnet_data *remsd = sd->rps_ipi_list;
6273
6274 if (remsd) {
6275 sd->rps_ipi_list = NULL;
6276
6277 local_irq_enable();
6278
6279 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6280 net_rps_send_ipi(remsd);
e326bed2
ED
6281 } else
6282#endif
6283 local_irq_enable();
6284}
6285
d75b1ade
ED
6286static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6287{
6288#ifdef CONFIG_RPS
6289 return sd->rps_ipi_list != NULL;
6290#else
6291 return false;
6292#endif
6293}
6294
bea3348e 6295static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6296{
eecfd7c4 6297 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6298 bool again = true;
6299 int work = 0;
1da177e4 6300
e326bed2
ED
6301 /* Check if we have pending ipi, its better to send them now,
6302 * not waiting net_rx_action() end.
6303 */
d75b1ade 6304 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6305 local_irq_disable();
6306 net_rps_action_and_irq_enable(sd);
6307 }
d75b1ade 6308
3d48b53f 6309 napi->weight = dev_rx_weight;
145dd5f9 6310 while (again) {
1da177e4 6311 struct sk_buff *skb;
6e7676c1
CG
6312
6313 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6314 rcu_read_lock();
6e7676c1 6315 __netif_receive_skb(skb);
2c17d27c 6316 rcu_read_unlock();
76cc8b13 6317 input_queue_head_incr(sd);
145dd5f9 6318 if (++work >= quota)
76cc8b13 6319 return work;
145dd5f9 6320
6e7676c1 6321 }
1da177e4 6322
145dd5f9 6323 local_irq_disable();
e36fa2f7 6324 rps_lock(sd);
11ef7a89 6325 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6326 /*
6327 * Inline a custom version of __napi_complete().
6328 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6329 * and NAPI_STATE_SCHED is the only possible flag set
6330 * on backlog.
6331 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6332 * and we dont need an smp_mb() memory barrier.
6333 */
eecfd7c4 6334 napi->state = 0;
145dd5f9
PA
6335 again = false;
6336 } else {
6337 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6338 &sd->process_queue);
bea3348e 6339 }
e36fa2f7 6340 rps_unlock(sd);
145dd5f9 6341 local_irq_enable();
6e7676c1 6342 }
1da177e4 6343
bea3348e
SH
6344 return work;
6345}
1da177e4 6346
bea3348e
SH
6347/**
6348 * __napi_schedule - schedule for receive
c4ea43c5 6349 * @n: entry to schedule
bea3348e 6350 *
bc9ad166
ED
6351 * The entry's receive function will be scheduled to run.
6352 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6353 */
b5606c2d 6354void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6355{
6356 unsigned long flags;
1da177e4 6357
bea3348e 6358 local_irq_save(flags);
903ceff7 6359 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6360 local_irq_restore(flags);
1da177e4 6361}
bea3348e
SH
6362EXPORT_SYMBOL(__napi_schedule);
6363
39e6c820
ED
6364/**
6365 * napi_schedule_prep - check if napi can be scheduled
6366 * @n: napi context
6367 *
6368 * Test if NAPI routine is already running, and if not mark
ee1a4c84 6369 * it as running. This is used as a condition variable to
39e6c820
ED
6370 * insure only one NAPI poll instance runs. We also make
6371 * sure there is no pending NAPI disable.
6372 */
6373bool napi_schedule_prep(struct napi_struct *n)
6374{
6375 unsigned long val, new;
6376
6377 do {
6378 val = READ_ONCE(n->state);
6379 if (unlikely(val & NAPIF_STATE_DISABLE))
6380 return false;
6381 new = val | NAPIF_STATE_SCHED;
6382
6383 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6384 * This was suggested by Alexander Duyck, as compiler
6385 * emits better code than :
6386 * if (val & NAPIF_STATE_SCHED)
6387 * new |= NAPIF_STATE_MISSED;
6388 */
6389 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6390 NAPIF_STATE_MISSED;
6391 } while (cmpxchg(&n->state, val, new) != val);
6392
6393 return !(val & NAPIF_STATE_SCHED);
6394}
6395EXPORT_SYMBOL(napi_schedule_prep);
6396
bc9ad166
ED
6397/**
6398 * __napi_schedule_irqoff - schedule for receive
6399 * @n: entry to schedule
6400 *
6401 * Variant of __napi_schedule() assuming hard irqs are masked
6402 */
6403void __napi_schedule_irqoff(struct napi_struct *n)
6404{
6405 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6406}
6407EXPORT_SYMBOL(__napi_schedule_irqoff);
6408
364b6055 6409bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6410{
6f8b12d6
ED
6411 unsigned long flags, val, new, timeout = 0;
6412 bool ret = true;
d565b0a1
HX
6413
6414 /*
217f6974
ED
6415 * 1) Don't let napi dequeue from the cpu poll list
6416 * just in case its running on a different cpu.
6417 * 2) If we are busy polling, do nothing here, we have
6418 * the guarantee we will be called later.
d565b0a1 6419 */
217f6974
ED
6420 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6421 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6422 return false;
d565b0a1 6423
6f8b12d6
ED
6424 if (work_done) {
6425 if (n->gro_bitmask)
7e417a66
ED
6426 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6427 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
6428 }
6429 if (n->defer_hard_irqs_count > 0) {
6430 n->defer_hard_irqs_count--;
7e417a66 6431 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
6432 if (timeout)
6433 ret = false;
6434 }
6435 if (n->gro_bitmask) {
605108ac
PA
6436 /* When the NAPI instance uses a timeout and keeps postponing
6437 * it, we need to bound somehow the time packets are kept in
6438 * the GRO layer
6439 */
6440 napi_gro_flush(n, !!timeout);
3b47d303 6441 }
c8079432
MM
6442
6443 gro_normal_list(n);
6444
02c1602e 6445 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6446 /* If n->poll_list is not empty, we need to mask irqs */
6447 local_irq_save(flags);
02c1602e 6448 list_del_init(&n->poll_list);
d75b1ade
ED
6449 local_irq_restore(flags);
6450 }
39e6c820
ED
6451
6452 do {
6453 val = READ_ONCE(n->state);
6454
6455 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6456
6457 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6458
6459 /* If STATE_MISSED was set, leave STATE_SCHED set,
6460 * because we will call napi->poll() one more time.
6461 * This C code was suggested by Alexander Duyck to help gcc.
6462 */
6463 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6464 NAPIF_STATE_SCHED;
6465 } while (cmpxchg(&n->state, val, new) != val);
6466
6467 if (unlikely(val & NAPIF_STATE_MISSED)) {
6468 __napi_schedule(n);
6469 return false;
6470 }
6471
6f8b12d6
ED
6472 if (timeout)
6473 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6474 HRTIMER_MODE_REL_PINNED);
6475 return ret;
d565b0a1 6476}
3b47d303 6477EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6478
af12fa6e 6479/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6480static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6481{
6482 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6483 struct napi_struct *napi;
6484
6485 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6486 if (napi->napi_id == napi_id)
6487 return napi;
6488
6489 return NULL;
6490}
02d62e86
ED
6491
6492#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6493
ce6aea93 6494#define BUSY_POLL_BUDGET 8
217f6974
ED
6495
6496static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6497{
6498 int rc;
6499
39e6c820
ED
6500 /* Busy polling means there is a high chance device driver hard irq
6501 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6502 * set in napi_schedule_prep().
6503 * Since we are about to call napi->poll() once more, we can safely
6504 * clear NAPI_STATE_MISSED.
6505 *
6506 * Note: x86 could use a single "lock and ..." instruction
6507 * to perform these two clear_bit()
6508 */
6509 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6510 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6511
6512 local_bh_disable();
6513
6514 /* All we really want here is to re-enable device interrupts.
6515 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6516 */
6517 rc = napi->poll(napi, BUSY_POLL_BUDGET);
323ebb61
EC
6518 /* We can't gro_normal_list() here, because napi->poll() might have
6519 * rearmed the napi (napi_complete_done()) in which case it could
6520 * already be running on another CPU.
6521 */
1e22391e 6522 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974 6523 netpoll_poll_unlock(have_poll_lock);
323ebb61
EC
6524 if (rc == BUSY_POLL_BUDGET) {
6525 /* As the whole budget was spent, we still own the napi so can
6526 * safely handle the rx_list.
6527 */
6528 gro_normal_list(napi);
217f6974 6529 __napi_schedule(napi);
323ebb61 6530 }
217f6974 6531 local_bh_enable();
217f6974
ED
6532}
6533
7db6b048
SS
6534void napi_busy_loop(unsigned int napi_id,
6535 bool (*loop_end)(void *, unsigned long),
6536 void *loop_end_arg)
02d62e86 6537{
7db6b048 6538 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6539 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6540 void *have_poll_lock = NULL;
02d62e86 6541 struct napi_struct *napi;
217f6974
ED
6542
6543restart:
217f6974 6544 napi_poll = NULL;
02d62e86 6545
2a028ecb 6546 rcu_read_lock();
02d62e86 6547
545cd5e5 6548 napi = napi_by_id(napi_id);
02d62e86
ED
6549 if (!napi)
6550 goto out;
6551
217f6974
ED
6552 preempt_disable();
6553 for (;;) {
2b5cd0df
AD
6554 int work = 0;
6555
2a028ecb 6556 local_bh_disable();
217f6974
ED
6557 if (!napi_poll) {
6558 unsigned long val = READ_ONCE(napi->state);
6559
6560 /* If multiple threads are competing for this napi,
6561 * we avoid dirtying napi->state as much as we can.
6562 */
6563 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6564 NAPIF_STATE_IN_BUSY_POLL))
6565 goto count;
6566 if (cmpxchg(&napi->state, val,
6567 val | NAPIF_STATE_IN_BUSY_POLL |
6568 NAPIF_STATE_SCHED) != val)
6569 goto count;
6570 have_poll_lock = netpoll_poll_lock(napi);
6571 napi_poll = napi->poll;
6572 }
2b5cd0df
AD
6573 work = napi_poll(napi, BUSY_POLL_BUDGET);
6574 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
323ebb61 6575 gro_normal_list(napi);
217f6974 6576count:
2b5cd0df 6577 if (work > 0)
7db6b048 6578 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6579 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6580 local_bh_enable();
02d62e86 6581
7db6b048 6582 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6583 break;
02d62e86 6584
217f6974
ED
6585 if (unlikely(need_resched())) {
6586 if (napi_poll)
6587 busy_poll_stop(napi, have_poll_lock);
6588 preempt_enable();
6589 rcu_read_unlock();
6590 cond_resched();
7db6b048 6591 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6592 return;
217f6974
ED
6593 goto restart;
6594 }
6cdf89b1 6595 cpu_relax();
217f6974
ED
6596 }
6597 if (napi_poll)
6598 busy_poll_stop(napi, have_poll_lock);
6599 preempt_enable();
02d62e86 6600out:
2a028ecb 6601 rcu_read_unlock();
02d62e86 6602}
7db6b048 6603EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6604
6605#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6606
149d6ad8 6607static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6608{
4d092dd2 6609 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
52bd2d62 6610 return;
af12fa6e 6611
52bd2d62 6612 spin_lock(&napi_hash_lock);
af12fa6e 6613
545cd5e5 6614 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6615 do {
545cd5e5
AD
6616 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6617 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6618 } while (napi_by_id(napi_gen_id));
6619 napi->napi_id = napi_gen_id;
af12fa6e 6620
52bd2d62
ED
6621 hlist_add_head_rcu(&napi->napi_hash_node,
6622 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6623
52bd2d62 6624 spin_unlock(&napi_hash_lock);
af12fa6e 6625}
af12fa6e
ET
6626
6627/* Warning : caller is responsible to make sure rcu grace period
6628 * is respected before freeing memory containing @napi
6629 */
5198d545 6630static void napi_hash_del(struct napi_struct *napi)
af12fa6e
ET
6631{
6632 spin_lock(&napi_hash_lock);
6633
4d092dd2 6634 hlist_del_init_rcu(&napi->napi_hash_node);
5198d545 6635
af12fa6e
ET
6636 spin_unlock(&napi_hash_lock);
6637}
af12fa6e 6638
3b47d303
ED
6639static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6640{
6641 struct napi_struct *napi;
6642
6643 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6644
6645 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6646 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6647 */
6f8b12d6 6648 if (!napi_disable_pending(napi) &&
39e6c820
ED
6649 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6650 __napi_schedule_irqoff(napi);
3b47d303
ED
6651
6652 return HRTIMER_NORESTART;
6653}
6654
7c4ec749 6655static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6656{
07d78363
DM
6657 int i;
6658
6312fe77
LR
6659 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6660 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6661 napi->gro_hash[i].count = 0;
6662 }
7c4ec749
DM
6663 napi->gro_bitmask = 0;
6664}
6665
6666void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6667 int (*poll)(struct napi_struct *, int), int weight)
6668{
4d092dd2
JK
6669 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6670 return;
6671
7c4ec749 6672 INIT_LIST_HEAD(&napi->poll_list);
4d092dd2 6673 INIT_HLIST_NODE(&napi->napi_hash_node);
7c4ec749
DM
6674 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6675 napi->timer.function = napi_watchdog;
6676 init_gro_hash(napi);
5d38a079 6677 napi->skb = NULL;
323ebb61
EC
6678 INIT_LIST_HEAD(&napi->rx_list);
6679 napi->rx_count = 0;
d565b0a1 6680 napi->poll = poll;
82dc3c63 6681 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6682 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6683 weight);
d565b0a1 6684 napi->weight = weight;
d565b0a1 6685 napi->dev = dev;
5d38a079 6686#ifdef CONFIG_NETPOLL
d565b0a1
HX
6687 napi->poll_owner = -1;
6688#endif
6689 set_bit(NAPI_STATE_SCHED, &napi->state);
96e97bc0
JK
6690 set_bit(NAPI_STATE_NPSVC, &napi->state);
6691 list_add_rcu(&napi->dev_list, &dev->napi_list);
93d05d4a 6692 napi_hash_add(napi);
d565b0a1
HX
6693}
6694EXPORT_SYMBOL(netif_napi_add);
6695
3b47d303
ED
6696void napi_disable(struct napi_struct *n)
6697{
6698 might_sleep();
6699 set_bit(NAPI_STATE_DISABLE, &n->state);
6700
6701 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6702 msleep(1);
2d8bff12
NH
6703 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6704 msleep(1);
3b47d303
ED
6705
6706 hrtimer_cancel(&n->timer);
6707
6708 clear_bit(NAPI_STATE_DISABLE, &n->state);
6709}
6710EXPORT_SYMBOL(napi_disable);
6711
07d78363 6712static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6713{
07d78363 6714 int i;
d4546c25 6715
07d78363
DM
6716 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6717 struct sk_buff *skb, *n;
6718
6312fe77 6719 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6720 kfree_skb(skb);
6312fe77 6721 napi->gro_hash[i].count = 0;
07d78363 6722 }
d4546c25
DM
6723}
6724
93d05d4a 6725/* Must be called in process context */
5198d545 6726void __netif_napi_del(struct napi_struct *napi)
d565b0a1 6727{
4d092dd2
JK
6728 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6729 return;
6730
5198d545 6731 napi_hash_del(napi);
5251ef82 6732 list_del_rcu(&napi->dev_list);
76620aaf 6733 napi_free_frags(napi);
d565b0a1 6734
07d78363 6735 flush_gro_hash(napi);
d9f37d01 6736 napi->gro_bitmask = 0;
d565b0a1 6737}
5198d545 6738EXPORT_SYMBOL(__netif_napi_del);
d565b0a1 6739
726ce70e
HX
6740static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6741{
6742 void *have;
6743 int work, weight;
6744
6745 list_del_init(&n->poll_list);
6746
6747 have = netpoll_poll_lock(n);
6748
6749 weight = n->weight;
6750
6751 /* This NAPI_STATE_SCHED test is for avoiding a race
6752 * with netpoll's poll_napi(). Only the entity which
6753 * obtains the lock and sees NAPI_STATE_SCHED set will
6754 * actually make the ->poll() call. Therefore we avoid
6755 * accidentally calling ->poll() when NAPI is not scheduled.
6756 */
6757 work = 0;
6758 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6759 work = n->poll(n, weight);
1db19db7 6760 trace_napi_poll(n, work, weight);
726ce70e
HX
6761 }
6762
427d5838
ED
6763 if (unlikely(work > weight))
6764 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6765 n->poll, work, weight);
726ce70e
HX
6766
6767 if (likely(work < weight))
6768 goto out_unlock;
6769
6770 /* Drivers must not modify the NAPI state if they
6771 * consume the entire weight. In such cases this code
6772 * still "owns" the NAPI instance and therefore can
6773 * move the instance around on the list at-will.
6774 */
6775 if (unlikely(napi_disable_pending(n))) {
6776 napi_complete(n);
6777 goto out_unlock;
6778 }
6779
d9f37d01 6780 if (n->gro_bitmask) {
726ce70e
HX
6781 /* flush too old packets
6782 * If HZ < 1000, flush all packets.
6783 */
6784 napi_gro_flush(n, HZ >= 1000);
6785 }
6786
c8079432
MM
6787 gro_normal_list(n);
6788
001ce546
HX
6789 /* Some drivers may have called napi_schedule
6790 * prior to exhausting their budget.
6791 */
6792 if (unlikely(!list_empty(&n->poll_list))) {
6793 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6794 n->dev ? n->dev->name : "backlog");
6795 goto out_unlock;
6796 }
6797
726ce70e
HX
6798 list_add_tail(&n->poll_list, repoll);
6799
6800out_unlock:
6801 netpoll_poll_unlock(have);
6802
6803 return work;
6804}
6805
0766f788 6806static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6807{
903ceff7 6808 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6809 unsigned long time_limit = jiffies +
6810 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6811 int budget = netdev_budget;
d75b1ade
ED
6812 LIST_HEAD(list);
6813 LIST_HEAD(repoll);
53fb95d3 6814
1da177e4 6815 local_irq_disable();
d75b1ade
ED
6816 list_splice_init(&sd->poll_list, &list);
6817 local_irq_enable();
1da177e4 6818
ceb8d5bf 6819 for (;;) {
bea3348e 6820 struct napi_struct *n;
1da177e4 6821
ceb8d5bf
HX
6822 if (list_empty(&list)) {
6823 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6824 goto out;
ceb8d5bf
HX
6825 break;
6826 }
6827
6bd373eb
HX
6828 n = list_first_entry(&list, struct napi_struct, poll_list);
6829 budget -= napi_poll(n, &repoll);
6830
d75b1ade 6831 /* If softirq window is exhausted then punt.
24f8b238
SH
6832 * Allow this to run for 2 jiffies since which will allow
6833 * an average latency of 1.5/HZ.
bea3348e 6834 */
ceb8d5bf
HX
6835 if (unlikely(budget <= 0 ||
6836 time_after_eq(jiffies, time_limit))) {
6837 sd->time_squeeze++;
6838 break;
6839 }
1da177e4 6840 }
d75b1ade 6841
d75b1ade
ED
6842 local_irq_disable();
6843
6844 list_splice_tail_init(&sd->poll_list, &list);
6845 list_splice_tail(&repoll, &list);
6846 list_splice(&list, &sd->poll_list);
6847 if (!list_empty(&sd->poll_list))
6848 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6849
e326bed2 6850 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6851out:
6852 __kfree_skb_flush();
1da177e4
LT
6853}
6854
aa9d8560 6855struct netdev_adjacent {
9ff162a8 6856 struct net_device *dev;
5d261913
VF
6857
6858 /* upper master flag, there can only be one master device per list */
9ff162a8 6859 bool master;
5d261913 6860
32b6d34f
TY
6861 /* lookup ignore flag */
6862 bool ignore;
6863
5d261913
VF
6864 /* counter for the number of times this device was added to us */
6865 u16 ref_nr;
6866
402dae96
VF
6867 /* private field for the users */
6868 void *private;
6869
9ff162a8
JP
6870 struct list_head list;
6871 struct rcu_head rcu;
9ff162a8
JP
6872};
6873
6ea29da1 6874static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6875 struct list_head *adj_list)
9ff162a8 6876{
5d261913 6877 struct netdev_adjacent *adj;
5d261913 6878
2f268f12 6879 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6880 if (adj->dev == adj_dev)
6881 return adj;
9ff162a8
JP
6882 }
6883 return NULL;
6884}
6885
eff74233
TY
6886static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6887 struct netdev_nested_priv *priv)
f1170fd4 6888{
eff74233 6889 struct net_device *dev = (struct net_device *)priv->data;
f1170fd4
DA
6890
6891 return upper_dev == dev;
6892}
6893
9ff162a8
JP
6894/**
6895 * netdev_has_upper_dev - Check if device is linked to an upper device
6896 * @dev: device
6897 * @upper_dev: upper device to check
6898 *
6899 * Find out if a device is linked to specified upper device and return true
6900 * in case it is. Note that this checks only immediate upper device,
6901 * not through a complete stack of devices. The caller must hold the RTNL lock.
6902 */
6903bool netdev_has_upper_dev(struct net_device *dev,
6904 struct net_device *upper_dev)
6905{
eff74233
TY
6906 struct netdev_nested_priv priv = {
6907 .data = (void *)upper_dev,
6908 };
6909
9ff162a8
JP
6910 ASSERT_RTNL();
6911
32b6d34f 6912 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 6913 &priv);
9ff162a8
JP
6914}
6915EXPORT_SYMBOL(netdev_has_upper_dev);
6916
1a3f060c
DA
6917/**
6918 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6919 * @dev: device
6920 * @upper_dev: upper device to check
6921 *
6922 * Find out if a device is linked to specified upper device and return true
6923 * in case it is. Note that this checks the entire upper device chain.
6924 * The caller must hold rcu lock.
6925 */
6926
1a3f060c
DA
6927bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6928 struct net_device *upper_dev)
6929{
eff74233
TY
6930 struct netdev_nested_priv priv = {
6931 .data = (void *)upper_dev,
6932 };
6933
32b6d34f 6934 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 6935 &priv);
1a3f060c
DA
6936}
6937EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6938
9ff162a8
JP
6939/**
6940 * netdev_has_any_upper_dev - Check if device is linked to some device
6941 * @dev: device
6942 *
6943 * Find out if a device is linked to an upper device and return true in case
6944 * it is. The caller must hold the RTNL lock.
6945 */
25cc72a3 6946bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6947{
6948 ASSERT_RTNL();
6949
f1170fd4 6950 return !list_empty(&dev->adj_list.upper);
9ff162a8 6951}
25cc72a3 6952EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6953
6954/**
6955 * netdev_master_upper_dev_get - Get master upper device
6956 * @dev: device
6957 *
6958 * Find a master upper device and return pointer to it or NULL in case
6959 * it's not there. The caller must hold the RTNL lock.
6960 */
6961struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6962{
aa9d8560 6963 struct netdev_adjacent *upper;
9ff162a8
JP
6964
6965 ASSERT_RTNL();
6966
2f268f12 6967 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6968 return NULL;
6969
2f268f12 6970 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6971 struct netdev_adjacent, list);
9ff162a8
JP
6972 if (likely(upper->master))
6973 return upper->dev;
6974 return NULL;
6975}
6976EXPORT_SYMBOL(netdev_master_upper_dev_get);
6977
32b6d34f
TY
6978static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6979{
6980 struct netdev_adjacent *upper;
6981
6982 ASSERT_RTNL();
6983
6984 if (list_empty(&dev->adj_list.upper))
6985 return NULL;
6986
6987 upper = list_first_entry(&dev->adj_list.upper,
6988 struct netdev_adjacent, list);
6989 if (likely(upper->master) && !upper->ignore)
6990 return upper->dev;
6991 return NULL;
6992}
6993
0f524a80
DA
6994/**
6995 * netdev_has_any_lower_dev - Check if device is linked to some device
6996 * @dev: device
6997 *
6998 * Find out if a device is linked to a lower device and return true in case
6999 * it is. The caller must hold the RTNL lock.
7000 */
7001static bool netdev_has_any_lower_dev(struct net_device *dev)
7002{
7003 ASSERT_RTNL();
7004
7005 return !list_empty(&dev->adj_list.lower);
7006}
7007
b6ccba4c
VF
7008void *netdev_adjacent_get_private(struct list_head *adj_list)
7009{
7010 struct netdev_adjacent *adj;
7011
7012 adj = list_entry(adj_list, struct netdev_adjacent, list);
7013
7014 return adj->private;
7015}
7016EXPORT_SYMBOL(netdev_adjacent_get_private);
7017
44a40855
VY
7018/**
7019 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7020 * @dev: device
7021 * @iter: list_head ** of the current position
7022 *
7023 * Gets the next device from the dev's upper list, starting from iter
7024 * position. The caller must hold RCU read lock.
7025 */
7026struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7027 struct list_head **iter)
7028{
7029 struct netdev_adjacent *upper;
7030
7031 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7032
7033 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7034
7035 if (&upper->list == &dev->adj_list.upper)
7036 return NULL;
7037
7038 *iter = &upper->list;
7039
7040 return upper->dev;
7041}
7042EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7043
32b6d34f
TY
7044static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7045 struct list_head **iter,
7046 bool *ignore)
5343da4c
TY
7047{
7048 struct netdev_adjacent *upper;
7049
7050 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7051
7052 if (&upper->list == &dev->adj_list.upper)
7053 return NULL;
7054
7055 *iter = &upper->list;
32b6d34f 7056 *ignore = upper->ignore;
5343da4c
TY
7057
7058 return upper->dev;
7059}
7060
1a3f060c
DA
7061static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7062 struct list_head **iter)
7063{
7064 struct netdev_adjacent *upper;
7065
7066 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7067
7068 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7069
7070 if (&upper->list == &dev->adj_list.upper)
7071 return NULL;
7072
7073 *iter = &upper->list;
7074
7075 return upper->dev;
7076}
7077
32b6d34f
TY
7078static int __netdev_walk_all_upper_dev(struct net_device *dev,
7079 int (*fn)(struct net_device *dev,
eff74233
TY
7080 struct netdev_nested_priv *priv),
7081 struct netdev_nested_priv *priv)
5343da4c
TY
7082{
7083 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7084 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7085 int ret, cur = 0;
32b6d34f 7086 bool ignore;
5343da4c
TY
7087
7088 now = dev;
7089 iter = &dev->adj_list.upper;
7090
7091 while (1) {
7092 if (now != dev) {
eff74233 7093 ret = fn(now, priv);
5343da4c
TY
7094 if (ret)
7095 return ret;
7096 }
7097
7098 next = NULL;
7099 while (1) {
32b6d34f 7100 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
7101 if (!udev)
7102 break;
32b6d34f
TY
7103 if (ignore)
7104 continue;
5343da4c
TY
7105
7106 next = udev;
7107 niter = &udev->adj_list.upper;
7108 dev_stack[cur] = now;
7109 iter_stack[cur++] = iter;
7110 break;
7111 }
7112
7113 if (!next) {
7114 if (!cur)
7115 return 0;
7116 next = dev_stack[--cur];
7117 niter = iter_stack[cur];
7118 }
7119
7120 now = next;
7121 iter = niter;
7122 }
7123
7124 return 0;
7125}
7126
1a3f060c
DA
7127int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7128 int (*fn)(struct net_device *dev,
eff74233
TY
7129 struct netdev_nested_priv *priv),
7130 struct netdev_nested_priv *priv)
1a3f060c 7131{
5343da4c
TY
7132 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7133 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7134 int ret, cur = 0;
1a3f060c 7135
5343da4c
TY
7136 now = dev;
7137 iter = &dev->adj_list.upper;
1a3f060c 7138
5343da4c
TY
7139 while (1) {
7140 if (now != dev) {
eff74233 7141 ret = fn(now, priv);
5343da4c
TY
7142 if (ret)
7143 return ret;
7144 }
7145
7146 next = NULL;
7147 while (1) {
7148 udev = netdev_next_upper_dev_rcu(now, &iter);
7149 if (!udev)
7150 break;
7151
7152 next = udev;
7153 niter = &udev->adj_list.upper;
7154 dev_stack[cur] = now;
7155 iter_stack[cur++] = iter;
7156 break;
7157 }
7158
7159 if (!next) {
7160 if (!cur)
7161 return 0;
7162 next = dev_stack[--cur];
7163 niter = iter_stack[cur];
7164 }
7165
7166 now = next;
7167 iter = niter;
1a3f060c
DA
7168 }
7169
7170 return 0;
7171}
7172EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7173
32b6d34f
TY
7174static bool __netdev_has_upper_dev(struct net_device *dev,
7175 struct net_device *upper_dev)
7176{
eff74233 7177 struct netdev_nested_priv priv = {
1fc70edb 7178 .flags = 0,
eff74233
TY
7179 .data = (void *)upper_dev,
7180 };
7181
32b6d34f
TY
7182 ASSERT_RTNL();
7183
7184 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
eff74233 7185 &priv);
32b6d34f
TY
7186}
7187
31088a11
VF
7188/**
7189 * netdev_lower_get_next_private - Get the next ->private from the
7190 * lower neighbour list
7191 * @dev: device
7192 * @iter: list_head ** of the current position
7193 *
7194 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7195 * list, starting from iter position. The caller must hold either hold the
7196 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 7197 * list will remain unchanged.
31088a11
VF
7198 */
7199void *netdev_lower_get_next_private(struct net_device *dev,
7200 struct list_head **iter)
7201{
7202 struct netdev_adjacent *lower;
7203
7204 lower = list_entry(*iter, struct netdev_adjacent, list);
7205
7206 if (&lower->list == &dev->adj_list.lower)
7207 return NULL;
7208
6859e7df 7209 *iter = lower->list.next;
31088a11
VF
7210
7211 return lower->private;
7212}
7213EXPORT_SYMBOL(netdev_lower_get_next_private);
7214
7215/**
7216 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7217 * lower neighbour list, RCU
7218 * variant
7219 * @dev: device
7220 * @iter: list_head ** of the current position
7221 *
7222 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7223 * list, starting from iter position. The caller must hold RCU read lock.
7224 */
7225void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7226 struct list_head **iter)
7227{
7228 struct netdev_adjacent *lower;
7229
7230 WARN_ON_ONCE(!rcu_read_lock_held());
7231
7232 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7233
7234 if (&lower->list == &dev->adj_list.lower)
7235 return NULL;
7236
6859e7df 7237 *iter = &lower->list;
31088a11
VF
7238
7239 return lower->private;
7240}
7241EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7242
4085ebe8
VY
7243/**
7244 * netdev_lower_get_next - Get the next device from the lower neighbour
7245 * list
7246 * @dev: device
7247 * @iter: list_head ** of the current position
7248 *
7249 * Gets the next netdev_adjacent from the dev's lower neighbour
7250 * list, starting from iter position. The caller must hold RTNL lock or
7251 * its own locking that guarantees that the neighbour lower
b469139e 7252 * list will remain unchanged.
4085ebe8
VY
7253 */
7254void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7255{
7256 struct netdev_adjacent *lower;
7257
cfdd28be 7258 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7259
7260 if (&lower->list == &dev->adj_list.lower)
7261 return NULL;
7262
cfdd28be 7263 *iter = lower->list.next;
4085ebe8
VY
7264
7265 return lower->dev;
7266}
7267EXPORT_SYMBOL(netdev_lower_get_next);
7268
1a3f060c
DA
7269static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7270 struct list_head **iter)
7271{
7272 struct netdev_adjacent *lower;
7273
46b5ab1a 7274 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7275
7276 if (&lower->list == &dev->adj_list.lower)
7277 return NULL;
7278
46b5ab1a 7279 *iter = &lower->list;
1a3f060c
DA
7280
7281 return lower->dev;
7282}
7283
32b6d34f
TY
7284static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7285 struct list_head **iter,
7286 bool *ignore)
7287{
7288 struct netdev_adjacent *lower;
7289
7290 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7291
7292 if (&lower->list == &dev->adj_list.lower)
7293 return NULL;
7294
7295 *iter = &lower->list;
7296 *ignore = lower->ignore;
7297
7298 return lower->dev;
7299}
7300
1a3f060c
DA
7301int netdev_walk_all_lower_dev(struct net_device *dev,
7302 int (*fn)(struct net_device *dev,
eff74233
TY
7303 struct netdev_nested_priv *priv),
7304 struct netdev_nested_priv *priv)
1a3f060c 7305{
5343da4c
TY
7306 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7307 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7308 int ret, cur = 0;
1a3f060c 7309
5343da4c
TY
7310 now = dev;
7311 iter = &dev->adj_list.lower;
1a3f060c 7312
5343da4c
TY
7313 while (1) {
7314 if (now != dev) {
eff74233 7315 ret = fn(now, priv);
5343da4c
TY
7316 if (ret)
7317 return ret;
7318 }
7319
7320 next = NULL;
7321 while (1) {
7322 ldev = netdev_next_lower_dev(now, &iter);
7323 if (!ldev)
7324 break;
7325
7326 next = ldev;
7327 niter = &ldev->adj_list.lower;
7328 dev_stack[cur] = now;
7329 iter_stack[cur++] = iter;
7330 break;
7331 }
7332
7333 if (!next) {
7334 if (!cur)
7335 return 0;
7336 next = dev_stack[--cur];
7337 niter = iter_stack[cur];
7338 }
7339
7340 now = next;
7341 iter = niter;
1a3f060c
DA
7342 }
7343
7344 return 0;
7345}
7346EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7347
32b6d34f
TY
7348static int __netdev_walk_all_lower_dev(struct net_device *dev,
7349 int (*fn)(struct net_device *dev,
eff74233
TY
7350 struct netdev_nested_priv *priv),
7351 struct netdev_nested_priv *priv)
32b6d34f
TY
7352{
7353 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7354 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7355 int ret, cur = 0;
7356 bool ignore;
7357
7358 now = dev;
7359 iter = &dev->adj_list.lower;
7360
7361 while (1) {
7362 if (now != dev) {
eff74233 7363 ret = fn(now, priv);
32b6d34f
TY
7364 if (ret)
7365 return ret;
7366 }
7367
7368 next = NULL;
7369 while (1) {
7370 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7371 if (!ldev)
7372 break;
7373 if (ignore)
7374 continue;
7375
7376 next = ldev;
7377 niter = &ldev->adj_list.lower;
7378 dev_stack[cur] = now;
7379 iter_stack[cur++] = iter;
7380 break;
7381 }
7382
7383 if (!next) {
7384 if (!cur)
7385 return 0;
7386 next = dev_stack[--cur];
7387 niter = iter_stack[cur];
7388 }
7389
7390 now = next;
7391 iter = niter;
7392 }
7393
7394 return 0;
7395}
7396
7151affe
TY
7397struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7398 struct list_head **iter)
1a3f060c
DA
7399{
7400 struct netdev_adjacent *lower;
7401
7402 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7403 if (&lower->list == &dev->adj_list.lower)
7404 return NULL;
7405
7406 *iter = &lower->list;
7407
7408 return lower->dev;
7409}
7151affe 7410EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7411
5343da4c
TY
7412static u8 __netdev_upper_depth(struct net_device *dev)
7413{
7414 struct net_device *udev;
7415 struct list_head *iter;
7416 u8 max_depth = 0;
32b6d34f 7417 bool ignore;
5343da4c
TY
7418
7419 for (iter = &dev->adj_list.upper,
32b6d34f 7420 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7421 udev;
32b6d34f
TY
7422 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7423 if (ignore)
7424 continue;
5343da4c
TY
7425 if (max_depth < udev->upper_level)
7426 max_depth = udev->upper_level;
7427 }
7428
7429 return max_depth;
7430}
7431
7432static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7433{
7434 struct net_device *ldev;
7435 struct list_head *iter;
5343da4c 7436 u8 max_depth = 0;
32b6d34f 7437 bool ignore;
1a3f060c
DA
7438
7439 for (iter = &dev->adj_list.lower,
32b6d34f 7440 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7441 ldev;
32b6d34f
TY
7442 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7443 if (ignore)
7444 continue;
5343da4c
TY
7445 if (max_depth < ldev->lower_level)
7446 max_depth = ldev->lower_level;
7447 }
1a3f060c 7448
5343da4c
TY
7449 return max_depth;
7450}
7451
eff74233
TY
7452static int __netdev_update_upper_level(struct net_device *dev,
7453 struct netdev_nested_priv *__unused)
5343da4c
TY
7454{
7455 dev->upper_level = __netdev_upper_depth(dev) + 1;
7456 return 0;
7457}
7458
eff74233 7459static int __netdev_update_lower_level(struct net_device *dev,
1fc70edb 7460 struct netdev_nested_priv *priv)
5343da4c
TY
7461{
7462 dev->lower_level = __netdev_lower_depth(dev) + 1;
1fc70edb
TY
7463
7464#ifdef CONFIG_LOCKDEP
7465 if (!priv)
7466 return 0;
7467
7468 if (priv->flags & NESTED_SYNC_IMM)
7469 dev->nested_level = dev->lower_level - 1;
7470 if (priv->flags & NESTED_SYNC_TODO)
7471 net_unlink_todo(dev);
7472#endif
5343da4c
TY
7473 return 0;
7474}
7475
7476int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7477 int (*fn)(struct net_device *dev,
eff74233
TY
7478 struct netdev_nested_priv *priv),
7479 struct netdev_nested_priv *priv)
5343da4c
TY
7480{
7481 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7482 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7483 int ret, cur = 0;
7484
7485 now = dev;
7486 iter = &dev->adj_list.lower;
7487
7488 while (1) {
7489 if (now != dev) {
eff74233 7490 ret = fn(now, priv);
5343da4c
TY
7491 if (ret)
7492 return ret;
7493 }
7494
7495 next = NULL;
7496 while (1) {
7497 ldev = netdev_next_lower_dev_rcu(now, &iter);
7498 if (!ldev)
7499 break;
7500
7501 next = ldev;
7502 niter = &ldev->adj_list.lower;
7503 dev_stack[cur] = now;
7504 iter_stack[cur++] = iter;
7505 break;
7506 }
7507
7508 if (!next) {
7509 if (!cur)
7510 return 0;
7511 next = dev_stack[--cur];
7512 niter = iter_stack[cur];
7513 }
7514
7515 now = next;
7516 iter = niter;
1a3f060c
DA
7517 }
7518
7519 return 0;
7520}
7521EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7522
e001bfad 7523/**
7524 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7525 * lower neighbour list, RCU
7526 * variant
7527 * @dev: device
7528 *
7529 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7530 * list. The caller must hold RCU read lock.
7531 */
7532void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7533{
7534 struct netdev_adjacent *lower;
7535
7536 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7537 struct netdev_adjacent, list);
7538 if (lower)
7539 return lower->private;
7540 return NULL;
7541}
7542EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7543
9ff162a8
JP
7544/**
7545 * netdev_master_upper_dev_get_rcu - Get master upper device
7546 * @dev: device
7547 *
7548 * Find a master upper device and return pointer to it or NULL in case
7549 * it's not there. The caller must hold the RCU read lock.
7550 */
7551struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7552{
aa9d8560 7553 struct netdev_adjacent *upper;
9ff162a8 7554
2f268f12 7555 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7556 struct netdev_adjacent, list);
9ff162a8
JP
7557 if (upper && likely(upper->master))
7558 return upper->dev;
7559 return NULL;
7560}
7561EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7562
0a59f3a9 7563static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7564 struct net_device *adj_dev,
7565 struct list_head *dev_list)
7566{
7567 char linkname[IFNAMSIZ+7];
f4563a75 7568
3ee32707
VF
7569 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7570 "upper_%s" : "lower_%s", adj_dev->name);
7571 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7572 linkname);
7573}
0a59f3a9 7574static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7575 char *name,
7576 struct list_head *dev_list)
7577{
7578 char linkname[IFNAMSIZ+7];
f4563a75 7579
3ee32707
VF
7580 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7581 "upper_%s" : "lower_%s", name);
7582 sysfs_remove_link(&(dev->dev.kobj), linkname);
7583}
7584
7ce64c79
AF
7585static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7586 struct net_device *adj_dev,
7587 struct list_head *dev_list)
7588{
7589 return (dev_list == &dev->adj_list.upper ||
7590 dev_list == &dev->adj_list.lower) &&
7591 net_eq(dev_net(dev), dev_net(adj_dev));
7592}
3ee32707 7593
5d261913
VF
7594static int __netdev_adjacent_dev_insert(struct net_device *dev,
7595 struct net_device *adj_dev,
7863c054 7596 struct list_head *dev_list,
402dae96 7597 void *private, bool master)
5d261913
VF
7598{
7599 struct netdev_adjacent *adj;
842d67a7 7600 int ret;
5d261913 7601
6ea29da1 7602 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7603
7604 if (adj) {
790510d9 7605 adj->ref_nr += 1;
67b62f98
DA
7606 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7607 dev->name, adj_dev->name, adj->ref_nr);
7608
5d261913
VF
7609 return 0;
7610 }
7611
7612 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7613 if (!adj)
7614 return -ENOMEM;
7615
7616 adj->dev = adj_dev;
7617 adj->master = master;
790510d9 7618 adj->ref_nr = 1;
402dae96 7619 adj->private = private;
32b6d34f 7620 adj->ignore = false;
5d261913 7621 dev_hold(adj_dev);
2f268f12 7622
67b62f98
DA
7623 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7624 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7625
7ce64c79 7626 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7627 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7628 if (ret)
7629 goto free_adj;
7630 }
7631
7863c054 7632 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7633 if (master) {
7634 ret = sysfs_create_link(&(dev->dev.kobj),
7635 &(adj_dev->dev.kobj), "master");
7636 if (ret)
5831d66e 7637 goto remove_symlinks;
842d67a7 7638
7863c054 7639 list_add_rcu(&adj->list, dev_list);
842d67a7 7640 } else {
7863c054 7641 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7642 }
5d261913
VF
7643
7644 return 0;
842d67a7 7645
5831d66e 7646remove_symlinks:
7ce64c79 7647 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7648 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7649free_adj:
7650 kfree(adj);
974daef7 7651 dev_put(adj_dev);
842d67a7
VF
7652
7653 return ret;
5d261913
VF
7654}
7655
1d143d9f 7656static void __netdev_adjacent_dev_remove(struct net_device *dev,
7657 struct net_device *adj_dev,
93409033 7658 u16 ref_nr,
1d143d9f 7659 struct list_head *dev_list)
5d261913
VF
7660{
7661 struct netdev_adjacent *adj;
7662
67b62f98
DA
7663 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7664 dev->name, adj_dev->name, ref_nr);
7665
6ea29da1 7666 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7667
2f268f12 7668 if (!adj) {
67b62f98 7669 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7670 dev->name, adj_dev->name);
67b62f98
DA
7671 WARN_ON(1);
7672 return;
2f268f12 7673 }
5d261913 7674
93409033 7675 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7676 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7677 dev->name, adj_dev->name, ref_nr,
7678 adj->ref_nr - ref_nr);
93409033 7679 adj->ref_nr -= ref_nr;
5d261913
VF
7680 return;
7681 }
7682
842d67a7
VF
7683 if (adj->master)
7684 sysfs_remove_link(&(dev->dev.kobj), "master");
7685
7ce64c79 7686 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7687 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7688
5d261913 7689 list_del_rcu(&adj->list);
67b62f98 7690 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7691 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7692 dev_put(adj_dev);
7693 kfree_rcu(adj, rcu);
7694}
7695
1d143d9f 7696static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7697 struct net_device *upper_dev,
7698 struct list_head *up_list,
7699 struct list_head *down_list,
7700 void *private, bool master)
5d261913
VF
7701{
7702 int ret;
7703
790510d9 7704 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7705 private, master);
5d261913
VF
7706 if (ret)
7707 return ret;
7708
790510d9 7709 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7710 private, false);
5d261913 7711 if (ret) {
790510d9 7712 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7713 return ret;
7714 }
7715
7716 return 0;
7717}
7718
1d143d9f 7719static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7720 struct net_device *upper_dev,
93409033 7721 u16 ref_nr,
1d143d9f 7722 struct list_head *up_list,
7723 struct list_head *down_list)
5d261913 7724{
93409033
AC
7725 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7726 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7727}
7728
1d143d9f 7729static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7730 struct net_device *upper_dev,
7731 void *private, bool master)
2f268f12 7732{
f1170fd4
DA
7733 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7734 &dev->adj_list.upper,
7735 &upper_dev->adj_list.lower,
7736 private, master);
5d261913
VF
7737}
7738
1d143d9f 7739static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7740 struct net_device *upper_dev)
2f268f12 7741{
93409033 7742 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7743 &dev->adj_list.upper,
7744 &upper_dev->adj_list.lower);
7745}
5d261913 7746
9ff162a8 7747static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7748 struct net_device *upper_dev, bool master,
42ab19ee 7749 void *upper_priv, void *upper_info,
1fc70edb 7750 struct netdev_nested_priv *priv,
42ab19ee 7751 struct netlink_ext_ack *extack)
9ff162a8 7752{
51d0c047
DA
7753 struct netdev_notifier_changeupper_info changeupper_info = {
7754 .info = {
7755 .dev = dev,
42ab19ee 7756 .extack = extack,
51d0c047
DA
7757 },
7758 .upper_dev = upper_dev,
7759 .master = master,
7760 .linking = true,
7761 .upper_info = upper_info,
7762 };
50d629e7 7763 struct net_device *master_dev;
5d261913 7764 int ret = 0;
9ff162a8
JP
7765
7766 ASSERT_RTNL();
7767
7768 if (dev == upper_dev)
7769 return -EBUSY;
7770
7771 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7772 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7773 return -EBUSY;
7774
5343da4c
TY
7775 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7776 return -EMLINK;
7777
50d629e7 7778 if (!master) {
32b6d34f 7779 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7780 return -EEXIST;
7781 } else {
32b6d34f 7782 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7783 if (master_dev)
7784 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7785 }
9ff162a8 7786
51d0c047 7787 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7788 &changeupper_info.info);
7789 ret = notifier_to_errno(ret);
7790 if (ret)
7791 return ret;
7792
6dffb044 7793 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7794 master);
5d261913
VF
7795 if (ret)
7796 return ret;
9ff162a8 7797
51d0c047 7798 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7799 &changeupper_info.info);
7800 ret = notifier_to_errno(ret);
7801 if (ret)
f1170fd4 7802 goto rollback;
b03804e7 7803
5343da4c 7804 __netdev_update_upper_level(dev, NULL);
32b6d34f 7805 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 7806
1fc70edb 7807 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 7808 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 7809 priv);
5343da4c 7810
9ff162a8 7811 return 0;
5d261913 7812
f1170fd4 7813rollback:
2f268f12 7814 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7815
7816 return ret;
9ff162a8
JP
7817}
7818
7819/**
7820 * netdev_upper_dev_link - Add a link to the upper device
7821 * @dev: device
7822 * @upper_dev: new upper device
7a006d59 7823 * @extack: netlink extended ack
9ff162a8
JP
7824 *
7825 * Adds a link to device which is upper to this one. The caller must hold
7826 * the RTNL lock. On a failure a negative errno code is returned.
7827 * On success the reference counts are adjusted and the function
7828 * returns zero.
7829 */
7830int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7831 struct net_device *upper_dev,
7832 struct netlink_ext_ack *extack)
9ff162a8 7833{
1fc70edb
TY
7834 struct netdev_nested_priv priv = {
7835 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7836 .data = NULL,
7837 };
7838
42ab19ee 7839 return __netdev_upper_dev_link(dev, upper_dev, false,
1fc70edb 7840 NULL, NULL, &priv, extack);
9ff162a8
JP
7841}
7842EXPORT_SYMBOL(netdev_upper_dev_link);
7843
7844/**
7845 * netdev_master_upper_dev_link - Add a master link to the upper device
7846 * @dev: device
7847 * @upper_dev: new upper device
6dffb044 7848 * @upper_priv: upper device private
29bf24af 7849 * @upper_info: upper info to be passed down via notifier
7a006d59 7850 * @extack: netlink extended ack
9ff162a8
JP
7851 *
7852 * Adds a link to device which is upper to this one. In this case, only
7853 * one master upper device can be linked, although other non-master devices
7854 * might be linked as well. The caller must hold the RTNL lock.
7855 * On a failure a negative errno code is returned. On success the reference
7856 * counts are adjusted and the function returns zero.
7857 */
7858int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7859 struct net_device *upper_dev,
42ab19ee
DA
7860 void *upper_priv, void *upper_info,
7861 struct netlink_ext_ack *extack)
9ff162a8 7862{
1fc70edb
TY
7863 struct netdev_nested_priv priv = {
7864 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7865 .data = NULL,
7866 };
7867
29bf24af 7868 return __netdev_upper_dev_link(dev, upper_dev, true,
1fc70edb 7869 upper_priv, upper_info, &priv, extack);
9ff162a8
JP
7870}
7871EXPORT_SYMBOL(netdev_master_upper_dev_link);
7872
fe8300fd 7873static void __netdev_upper_dev_unlink(struct net_device *dev,
1fc70edb
TY
7874 struct net_device *upper_dev,
7875 struct netdev_nested_priv *priv)
9ff162a8 7876{
51d0c047
DA
7877 struct netdev_notifier_changeupper_info changeupper_info = {
7878 .info = {
7879 .dev = dev,
7880 },
7881 .upper_dev = upper_dev,
7882 .linking = false,
7883 };
f4563a75 7884
9ff162a8
JP
7885 ASSERT_RTNL();
7886
0e4ead9d 7887 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7888
51d0c047 7889 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7890 &changeupper_info.info);
7891
2f268f12 7892 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7893
51d0c047 7894 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7895 &changeupper_info.info);
5343da4c
TY
7896
7897 __netdev_update_upper_level(dev, NULL);
32b6d34f 7898 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 7899
1fc70edb 7900 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 7901 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 7902 priv);
9ff162a8 7903}
fe8300fd
TY
7904
7905/**
7906 * netdev_upper_dev_unlink - Removes a link to upper device
7907 * @dev: device
7908 * @upper_dev: new upper device
7909 *
7910 * Removes a link to device which is upper to this one. The caller must hold
7911 * the RTNL lock.
7912 */
7913void netdev_upper_dev_unlink(struct net_device *dev,
7914 struct net_device *upper_dev)
7915{
1fc70edb
TY
7916 struct netdev_nested_priv priv = {
7917 .flags = NESTED_SYNC_TODO,
7918 .data = NULL,
7919 };
7920
7921 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
9ff162a8
JP
7922}
7923EXPORT_SYMBOL(netdev_upper_dev_unlink);
7924
32b6d34f
TY
7925static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7926 struct net_device *lower_dev,
7927 bool val)
7928{
7929 struct netdev_adjacent *adj;
7930
7931 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7932 if (adj)
7933 adj->ignore = val;
7934
7935 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7936 if (adj)
7937 adj->ignore = val;
7938}
7939
7940static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7941 struct net_device *lower_dev)
7942{
7943 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7944}
7945
7946static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7947 struct net_device *lower_dev)
7948{
7949 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7950}
7951
7952int netdev_adjacent_change_prepare(struct net_device *old_dev,
7953 struct net_device *new_dev,
7954 struct net_device *dev,
7955 struct netlink_ext_ack *extack)
7956{
1fc70edb
TY
7957 struct netdev_nested_priv priv = {
7958 .flags = 0,
7959 .data = NULL,
7960 };
32b6d34f
TY
7961 int err;
7962
7963 if (!new_dev)
7964 return 0;
7965
7966 if (old_dev && new_dev != old_dev)
7967 netdev_adjacent_dev_disable(dev, old_dev);
1fc70edb
TY
7968 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7969 extack);
32b6d34f
TY
7970 if (err) {
7971 if (old_dev && new_dev != old_dev)
7972 netdev_adjacent_dev_enable(dev, old_dev);
7973 return err;
7974 }
7975
7976 return 0;
7977}
7978EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7979
7980void netdev_adjacent_change_commit(struct net_device *old_dev,
7981 struct net_device *new_dev,
7982 struct net_device *dev)
7983{
1fc70edb
TY
7984 struct netdev_nested_priv priv = {
7985 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7986 .data = NULL,
7987 };
7988
32b6d34f
TY
7989 if (!new_dev || !old_dev)
7990 return;
7991
7992 if (new_dev == old_dev)
7993 return;
7994
7995 netdev_adjacent_dev_enable(dev, old_dev);
1fc70edb 7996 __netdev_upper_dev_unlink(old_dev, dev, &priv);
32b6d34f
TY
7997}
7998EXPORT_SYMBOL(netdev_adjacent_change_commit);
7999
8000void netdev_adjacent_change_abort(struct net_device *old_dev,
8001 struct net_device *new_dev,
8002 struct net_device *dev)
8003{
1fc70edb
TY
8004 struct netdev_nested_priv priv = {
8005 .flags = 0,
8006 .data = NULL,
8007 };
8008
32b6d34f
TY
8009 if (!new_dev)
8010 return;
8011
8012 if (old_dev && new_dev != old_dev)
8013 netdev_adjacent_dev_enable(dev, old_dev);
8014
1fc70edb 8015 __netdev_upper_dev_unlink(new_dev, dev, &priv);
32b6d34f
TY
8016}
8017EXPORT_SYMBOL(netdev_adjacent_change_abort);
8018
61bd3857
MS
8019/**
8020 * netdev_bonding_info_change - Dispatch event about slave change
8021 * @dev: device
4a26e453 8022 * @bonding_info: info to dispatch
61bd3857
MS
8023 *
8024 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8025 * The caller must hold the RTNL lock.
8026 */
8027void netdev_bonding_info_change(struct net_device *dev,
8028 struct netdev_bonding_info *bonding_info)
8029{
51d0c047
DA
8030 struct netdev_notifier_bonding_info info = {
8031 .info.dev = dev,
8032 };
61bd3857
MS
8033
8034 memcpy(&info.bonding_info, bonding_info,
8035 sizeof(struct netdev_bonding_info));
51d0c047 8036 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
8037 &info.info);
8038}
8039EXPORT_SYMBOL(netdev_bonding_info_change);
8040
cff9f12b
MG
8041/**
8042 * netdev_get_xmit_slave - Get the xmit slave of master device
8842500d 8043 * @dev: device
cff9f12b
MG
8044 * @skb: The packet
8045 * @all_slaves: assume all the slaves are active
8046 *
8047 * The reference counters are not incremented so the caller must be
8048 * careful with locks. The caller must hold RCU lock.
8049 * %NULL is returned if no slave is found.
8050 */
8051
8052struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8053 struct sk_buff *skb,
8054 bool all_slaves)
8055{
8056 const struct net_device_ops *ops = dev->netdev_ops;
8057
8058 if (!ops->ndo_get_xmit_slave)
8059 return NULL;
8060 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8061}
8062EXPORT_SYMBOL(netdev_get_xmit_slave);
8063
2ce1ee17 8064static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
8065{
8066 struct netdev_adjacent *iter;
8067
8068 struct net *net = dev_net(dev);
8069
8070 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8071 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8072 continue;
8073 netdev_adjacent_sysfs_add(iter->dev, dev,
8074 &iter->dev->adj_list.lower);
8075 netdev_adjacent_sysfs_add(dev, iter->dev,
8076 &dev->adj_list.upper);
8077 }
8078
8079 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8080 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8081 continue;
8082 netdev_adjacent_sysfs_add(iter->dev, dev,
8083 &iter->dev->adj_list.upper);
8084 netdev_adjacent_sysfs_add(dev, iter->dev,
8085 &dev->adj_list.lower);
8086 }
8087}
8088
2ce1ee17 8089static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
8090{
8091 struct netdev_adjacent *iter;
8092
8093 struct net *net = dev_net(dev);
8094
8095 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8096 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8097 continue;
8098 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8099 &iter->dev->adj_list.lower);
8100 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8101 &dev->adj_list.upper);
8102 }
8103
8104 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8105 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8106 continue;
8107 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8108 &iter->dev->adj_list.upper);
8109 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8110 &dev->adj_list.lower);
8111 }
8112}
8113
5bb025fa 8114void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 8115{
5bb025fa 8116 struct netdev_adjacent *iter;
402dae96 8117
4c75431a
AF
8118 struct net *net = dev_net(dev);
8119
5bb025fa 8120 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8121 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8122 continue;
5bb025fa
VF
8123 netdev_adjacent_sysfs_del(iter->dev, oldname,
8124 &iter->dev->adj_list.lower);
8125 netdev_adjacent_sysfs_add(iter->dev, dev,
8126 &iter->dev->adj_list.lower);
8127 }
402dae96 8128
5bb025fa 8129 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8130 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8131 continue;
5bb025fa
VF
8132 netdev_adjacent_sysfs_del(iter->dev, oldname,
8133 &iter->dev->adj_list.upper);
8134 netdev_adjacent_sysfs_add(iter->dev, dev,
8135 &iter->dev->adj_list.upper);
8136 }
402dae96 8137}
402dae96
VF
8138
8139void *netdev_lower_dev_get_private(struct net_device *dev,
8140 struct net_device *lower_dev)
8141{
8142 struct netdev_adjacent *lower;
8143
8144 if (!lower_dev)
8145 return NULL;
6ea29da1 8146 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
8147 if (!lower)
8148 return NULL;
8149
8150 return lower->private;
8151}
8152EXPORT_SYMBOL(netdev_lower_dev_get_private);
8153
4085ebe8 8154
04d48266
JP
8155/**
8156 * netdev_lower_change - Dispatch event about lower device state change
8157 * @lower_dev: device
8158 * @lower_state_info: state to dispatch
8159 *
8160 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8161 * The caller must hold the RTNL lock.
8162 */
8163void netdev_lower_state_changed(struct net_device *lower_dev,
8164 void *lower_state_info)
8165{
51d0c047
DA
8166 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8167 .info.dev = lower_dev,
8168 };
04d48266
JP
8169
8170 ASSERT_RTNL();
8171 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 8172 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
8173 &changelowerstate_info.info);
8174}
8175EXPORT_SYMBOL(netdev_lower_state_changed);
8176
b6c40d68
PM
8177static void dev_change_rx_flags(struct net_device *dev, int flags)
8178{
d314774c
SH
8179 const struct net_device_ops *ops = dev->netdev_ops;
8180
d2615bf4 8181 if (ops->ndo_change_rx_flags)
d314774c 8182 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
8183}
8184
991fb3f7 8185static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 8186{
b536db93 8187 unsigned int old_flags = dev->flags;
d04a48b0
EB
8188 kuid_t uid;
8189 kgid_t gid;
1da177e4 8190
24023451
PM
8191 ASSERT_RTNL();
8192
dad9b335
WC
8193 dev->flags |= IFF_PROMISC;
8194 dev->promiscuity += inc;
8195 if (dev->promiscuity == 0) {
8196 /*
8197 * Avoid overflow.
8198 * If inc causes overflow, untouch promisc and return error.
8199 */
8200 if (inc < 0)
8201 dev->flags &= ~IFF_PROMISC;
8202 else {
8203 dev->promiscuity -= inc;
7b6cd1ce
JP
8204 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8205 dev->name);
dad9b335
WC
8206 return -EOVERFLOW;
8207 }
8208 }
52609c0b 8209 if (dev->flags != old_flags) {
7b6cd1ce
JP
8210 pr_info("device %s %s promiscuous mode\n",
8211 dev->name,
8212 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
8213 if (audit_enabled) {
8214 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
8215 audit_log(audit_context(), GFP_ATOMIC,
8216 AUDIT_ANOM_PROMISCUOUS,
8217 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8218 dev->name, (dev->flags & IFF_PROMISC),
8219 (old_flags & IFF_PROMISC),
8220 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8221 from_kuid(&init_user_ns, uid),
8222 from_kgid(&init_user_ns, gid),
8223 audit_get_sessionid(current));
8192b0c4 8224 }
24023451 8225
b6c40d68 8226 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 8227 }
991fb3f7
ND
8228 if (notify)
8229 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 8230 return 0;
1da177e4
LT
8231}
8232
4417da66
PM
8233/**
8234 * dev_set_promiscuity - update promiscuity count on a device
8235 * @dev: device
8236 * @inc: modifier
8237 *
8238 * Add or remove promiscuity from a device. While the count in the device
8239 * remains above zero the interface remains promiscuous. Once it hits zero
8240 * the device reverts back to normal filtering operation. A negative inc
8241 * value is used to drop promiscuity on the device.
dad9b335 8242 * Return 0 if successful or a negative errno code on error.
4417da66 8243 */
dad9b335 8244int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 8245{
b536db93 8246 unsigned int old_flags = dev->flags;
dad9b335 8247 int err;
4417da66 8248
991fb3f7 8249 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 8250 if (err < 0)
dad9b335 8251 return err;
4417da66
PM
8252 if (dev->flags != old_flags)
8253 dev_set_rx_mode(dev);
dad9b335 8254 return err;
4417da66 8255}
d1b19dff 8256EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 8257
991fb3f7 8258static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 8259{
991fb3f7 8260 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 8261
24023451
PM
8262 ASSERT_RTNL();
8263
1da177e4 8264 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8265 dev->allmulti += inc;
8266 if (dev->allmulti == 0) {
8267 /*
8268 * Avoid overflow.
8269 * If inc causes overflow, untouch allmulti and return error.
8270 */
8271 if (inc < 0)
8272 dev->flags &= ~IFF_ALLMULTI;
8273 else {
8274 dev->allmulti -= inc;
7b6cd1ce
JP
8275 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8276 dev->name);
dad9b335
WC
8277 return -EOVERFLOW;
8278 }
8279 }
24023451 8280 if (dev->flags ^ old_flags) {
b6c40d68 8281 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8282 dev_set_rx_mode(dev);
991fb3f7
ND
8283 if (notify)
8284 __dev_notify_flags(dev, old_flags,
8285 dev->gflags ^ old_gflags);
24023451 8286 }
dad9b335 8287 return 0;
4417da66 8288}
991fb3f7
ND
8289
8290/**
8291 * dev_set_allmulti - update allmulti count on a device
8292 * @dev: device
8293 * @inc: modifier
8294 *
8295 * Add or remove reception of all multicast frames to a device. While the
8296 * count in the device remains above zero the interface remains listening
8297 * to all interfaces. Once it hits zero the device reverts back to normal
8298 * filtering operation. A negative @inc value is used to drop the counter
8299 * when releasing a resource needing all multicasts.
8300 * Return 0 if successful or a negative errno code on error.
8301 */
8302
8303int dev_set_allmulti(struct net_device *dev, int inc)
8304{
8305 return __dev_set_allmulti(dev, inc, true);
8306}
d1b19dff 8307EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8308
8309/*
8310 * Upload unicast and multicast address lists to device and
8311 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8312 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8313 * are present.
8314 */
8315void __dev_set_rx_mode(struct net_device *dev)
8316{
d314774c
SH
8317 const struct net_device_ops *ops = dev->netdev_ops;
8318
4417da66
PM
8319 /* dev_open will call this function so the list will stay sane. */
8320 if (!(dev->flags&IFF_UP))
8321 return;
8322
8323 if (!netif_device_present(dev))
40b77c94 8324 return;
4417da66 8325
01789349 8326 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8327 /* Unicast addresses changes may only happen under the rtnl,
8328 * therefore calling __dev_set_promiscuity here is safe.
8329 */
32e7bfc4 8330 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8331 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8332 dev->uc_promisc = true;
32e7bfc4 8333 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8334 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8335 dev->uc_promisc = false;
4417da66 8336 }
4417da66 8337 }
01789349
JP
8338
8339 if (ops->ndo_set_rx_mode)
8340 ops->ndo_set_rx_mode(dev);
4417da66
PM
8341}
8342
8343void dev_set_rx_mode(struct net_device *dev)
8344{
b9e40857 8345 netif_addr_lock_bh(dev);
4417da66 8346 __dev_set_rx_mode(dev);
b9e40857 8347 netif_addr_unlock_bh(dev);
1da177e4
LT
8348}
8349
f0db275a
SH
8350/**
8351 * dev_get_flags - get flags reported to userspace
8352 * @dev: device
8353 *
8354 * Get the combination of flag bits exported through APIs to userspace.
8355 */
95c96174 8356unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8357{
95c96174 8358 unsigned int flags;
1da177e4
LT
8359
8360 flags = (dev->flags & ~(IFF_PROMISC |
8361 IFF_ALLMULTI |
b00055aa
SR
8362 IFF_RUNNING |
8363 IFF_LOWER_UP |
8364 IFF_DORMANT)) |
1da177e4
LT
8365 (dev->gflags & (IFF_PROMISC |
8366 IFF_ALLMULTI));
8367
b00055aa
SR
8368 if (netif_running(dev)) {
8369 if (netif_oper_up(dev))
8370 flags |= IFF_RUNNING;
8371 if (netif_carrier_ok(dev))
8372 flags |= IFF_LOWER_UP;
8373 if (netif_dormant(dev))
8374 flags |= IFF_DORMANT;
8375 }
1da177e4
LT
8376
8377 return flags;
8378}
d1b19dff 8379EXPORT_SYMBOL(dev_get_flags);
1da177e4 8380
6d040321
PM
8381int __dev_change_flags(struct net_device *dev, unsigned int flags,
8382 struct netlink_ext_ack *extack)
1da177e4 8383{
b536db93 8384 unsigned int old_flags = dev->flags;
bd380811 8385 int ret;
1da177e4 8386
24023451
PM
8387 ASSERT_RTNL();
8388
1da177e4
LT
8389 /*
8390 * Set the flags on our device.
8391 */
8392
8393 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8394 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8395 IFF_AUTOMEDIA)) |
8396 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8397 IFF_ALLMULTI));
8398
8399 /*
8400 * Load in the correct multicast list now the flags have changed.
8401 */
8402
b6c40d68
PM
8403 if ((old_flags ^ flags) & IFF_MULTICAST)
8404 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8405
4417da66 8406 dev_set_rx_mode(dev);
1da177e4
LT
8407
8408 /*
8409 * Have we downed the interface. We handle IFF_UP ourselves
8410 * according to user attempts to set it, rather than blindly
8411 * setting it.
8412 */
8413
8414 ret = 0;
7051b88a 8415 if ((old_flags ^ flags) & IFF_UP) {
8416 if (old_flags & IFF_UP)
8417 __dev_close(dev);
8418 else
40c900aa 8419 ret = __dev_open(dev, extack);
7051b88a 8420 }
1da177e4 8421
1da177e4 8422 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8423 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8424 unsigned int old_flags = dev->flags;
d1b19dff 8425
1da177e4 8426 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8427
8428 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8429 if (dev->flags != old_flags)
8430 dev_set_rx_mode(dev);
1da177e4
LT
8431 }
8432
8433 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8434 * is important. Some (broken) drivers set IFF_PROMISC, when
8435 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8436 */
8437 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8438 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8439
1da177e4 8440 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8441 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8442 }
8443
bd380811
PM
8444 return ret;
8445}
8446
a528c219
ND
8447void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8448 unsigned int gchanges)
bd380811
PM
8449{
8450 unsigned int changes = dev->flags ^ old_flags;
8451
a528c219 8452 if (gchanges)
7f294054 8453 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8454
bd380811
PM
8455 if (changes & IFF_UP) {
8456 if (dev->flags & IFF_UP)
8457 call_netdevice_notifiers(NETDEV_UP, dev);
8458 else
8459 call_netdevice_notifiers(NETDEV_DOWN, dev);
8460 }
8461
8462 if (dev->flags & IFF_UP &&
be9efd36 8463 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8464 struct netdev_notifier_change_info change_info = {
8465 .info = {
8466 .dev = dev,
8467 },
8468 .flags_changed = changes,
8469 };
be9efd36 8470
51d0c047 8471 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8472 }
bd380811
PM
8473}
8474
8475/**
8476 * dev_change_flags - change device settings
8477 * @dev: device
8478 * @flags: device state flags
567c5e13 8479 * @extack: netlink extended ack
bd380811
PM
8480 *
8481 * Change settings on device based state flags. The flags are
8482 * in the userspace exported format.
8483 */
567c5e13
PM
8484int dev_change_flags(struct net_device *dev, unsigned int flags,
8485 struct netlink_ext_ack *extack)
bd380811 8486{
b536db93 8487 int ret;
991fb3f7 8488 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8489
6d040321 8490 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8491 if (ret < 0)
8492 return ret;
8493
991fb3f7 8494 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8495 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8496 return ret;
8497}
d1b19dff 8498EXPORT_SYMBOL(dev_change_flags);
1da177e4 8499
f51048c3 8500int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8501{
8502 const struct net_device_ops *ops = dev->netdev_ops;
8503
8504 if (ops->ndo_change_mtu)
8505 return ops->ndo_change_mtu(dev, new_mtu);
8506
501a90c9
ED
8507 /* Pairs with all the lockless reads of dev->mtu in the stack */
8508 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8509 return 0;
8510}
f51048c3 8511EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8512
d836f5c6
ED
8513int dev_validate_mtu(struct net_device *dev, int new_mtu,
8514 struct netlink_ext_ack *extack)
8515{
8516 /* MTU must be positive, and in range */
8517 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8518 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8519 return -EINVAL;
8520 }
8521
8522 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8523 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8524 return -EINVAL;
8525 }
8526 return 0;
8527}
8528
f0db275a 8529/**
7a4c53be 8530 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8531 * @dev: device
8532 * @new_mtu: new transfer unit
7a4c53be 8533 * @extack: netlink extended ack
f0db275a
SH
8534 *
8535 * Change the maximum transfer size of the network device.
8536 */
7a4c53be
SH
8537int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8538 struct netlink_ext_ack *extack)
1da177e4 8539{
2315dc91 8540 int err, orig_mtu;
1da177e4
LT
8541
8542 if (new_mtu == dev->mtu)
8543 return 0;
8544
d836f5c6
ED
8545 err = dev_validate_mtu(dev, new_mtu, extack);
8546 if (err)
8547 return err;
1da177e4
LT
8548
8549 if (!netif_device_present(dev))
8550 return -ENODEV;
8551
1d486bfb
VF
8552 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8553 err = notifier_to_errno(err);
8554 if (err)
8555 return err;
d314774c 8556
2315dc91
VF
8557 orig_mtu = dev->mtu;
8558 err = __dev_set_mtu(dev, new_mtu);
d314774c 8559
2315dc91 8560 if (!err) {
af7d6cce
SD
8561 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8562 orig_mtu);
2315dc91
VF
8563 err = notifier_to_errno(err);
8564 if (err) {
8565 /* setting mtu back and notifying everyone again,
8566 * so that they have a chance to revert changes.
8567 */
8568 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8569 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8570 new_mtu);
2315dc91
VF
8571 }
8572 }
1da177e4
LT
8573 return err;
8574}
7a4c53be
SH
8575
8576int dev_set_mtu(struct net_device *dev, int new_mtu)
8577{
8578 struct netlink_ext_ack extack;
8579 int err;
8580
a6bcfc89 8581 memset(&extack, 0, sizeof(extack));
7a4c53be 8582 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8583 if (err && extack._msg)
7a4c53be
SH
8584 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8585 return err;
8586}
d1b19dff 8587EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8588
6a643ddb
CW
8589/**
8590 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8591 * @dev: device
8592 * @new_len: new tx queue length
8593 */
8594int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8595{
8596 unsigned int orig_len = dev->tx_queue_len;
8597 int res;
8598
8599 if (new_len != (unsigned int)new_len)
8600 return -ERANGE;
8601
8602 if (new_len != orig_len) {
8603 dev->tx_queue_len = new_len;
8604 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8605 res = notifier_to_errno(res);
7effaf06
TT
8606 if (res)
8607 goto err_rollback;
8608 res = dev_qdisc_change_tx_queue_len(dev);
8609 if (res)
8610 goto err_rollback;
6a643ddb
CW
8611 }
8612
8613 return 0;
7effaf06
TT
8614
8615err_rollback:
8616 netdev_err(dev, "refused to change device tx_queue_len\n");
8617 dev->tx_queue_len = orig_len;
8618 return res;
6a643ddb
CW
8619}
8620
cbda10fa
VD
8621/**
8622 * dev_set_group - Change group this device belongs to
8623 * @dev: device
8624 * @new_group: group this device should belong to
8625 */
8626void dev_set_group(struct net_device *dev, int new_group)
8627{
8628 dev->group = new_group;
8629}
8630EXPORT_SYMBOL(dev_set_group);
8631
d59cdf94
PM
8632/**
8633 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8634 * @dev: device
8635 * @addr: new address
8636 * @extack: netlink extended ack
8637 */
8638int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8639 struct netlink_ext_ack *extack)
8640{
8641 struct netdev_notifier_pre_changeaddr_info info = {
8642 .info.dev = dev,
8643 .info.extack = extack,
8644 .dev_addr = addr,
8645 };
8646 int rc;
8647
8648 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8649 return notifier_to_errno(rc);
8650}
8651EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8652
f0db275a
SH
8653/**
8654 * dev_set_mac_address - Change Media Access Control Address
8655 * @dev: device
8656 * @sa: new address
3a37a963 8657 * @extack: netlink extended ack
f0db275a
SH
8658 *
8659 * Change the hardware (MAC) address of the device
8660 */
3a37a963
PM
8661int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8662 struct netlink_ext_ack *extack)
1da177e4 8663{
d314774c 8664 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8665 int err;
8666
d314774c 8667 if (!ops->ndo_set_mac_address)
1da177e4
LT
8668 return -EOPNOTSUPP;
8669 if (sa->sa_family != dev->type)
8670 return -EINVAL;
8671 if (!netif_device_present(dev))
8672 return -ENODEV;
d59cdf94
PM
8673 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8674 if (err)
8675 return err;
d314774c 8676 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8677 if (err)
8678 return err;
fbdeca2d 8679 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8680 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8681 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8682 return 0;
1da177e4 8683}
d1b19dff 8684EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8685
4bf84c35
JP
8686/**
8687 * dev_change_carrier - Change device carrier
8688 * @dev: device
691b3b7e 8689 * @new_carrier: new value
4bf84c35
JP
8690 *
8691 * Change device carrier
8692 */
8693int dev_change_carrier(struct net_device *dev, bool new_carrier)
8694{
8695 const struct net_device_ops *ops = dev->netdev_ops;
8696
8697 if (!ops->ndo_change_carrier)
8698 return -EOPNOTSUPP;
8699 if (!netif_device_present(dev))
8700 return -ENODEV;
8701 return ops->ndo_change_carrier(dev, new_carrier);
8702}
8703EXPORT_SYMBOL(dev_change_carrier);
8704
66b52b0d
JP
8705/**
8706 * dev_get_phys_port_id - Get device physical port ID
8707 * @dev: device
8708 * @ppid: port ID
8709 *
8710 * Get device physical port ID
8711 */
8712int dev_get_phys_port_id(struct net_device *dev,
02637fce 8713 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8714{
8715 const struct net_device_ops *ops = dev->netdev_ops;
8716
8717 if (!ops->ndo_get_phys_port_id)
8718 return -EOPNOTSUPP;
8719 return ops->ndo_get_phys_port_id(dev, ppid);
8720}
8721EXPORT_SYMBOL(dev_get_phys_port_id);
8722
db24a904
DA
8723/**
8724 * dev_get_phys_port_name - Get device physical port name
8725 * @dev: device
8726 * @name: port name
ed49e650 8727 * @len: limit of bytes to copy to name
db24a904
DA
8728 *
8729 * Get device physical port name
8730 */
8731int dev_get_phys_port_name(struct net_device *dev,
8732 char *name, size_t len)
8733{
8734 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8735 int err;
db24a904 8736
af3836df
JP
8737 if (ops->ndo_get_phys_port_name) {
8738 err = ops->ndo_get_phys_port_name(dev, name, len);
8739 if (err != -EOPNOTSUPP)
8740 return err;
8741 }
8742 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
8743}
8744EXPORT_SYMBOL(dev_get_phys_port_name);
8745
d6abc596
FF
8746/**
8747 * dev_get_port_parent_id - Get the device's port parent identifier
8748 * @dev: network device
8749 * @ppid: pointer to a storage for the port's parent identifier
8750 * @recurse: allow/disallow recursion to lower devices
8751 *
8752 * Get the devices's port parent identifier
8753 */
8754int dev_get_port_parent_id(struct net_device *dev,
8755 struct netdev_phys_item_id *ppid,
8756 bool recurse)
8757{
8758 const struct net_device_ops *ops = dev->netdev_ops;
8759 struct netdev_phys_item_id first = { };
8760 struct net_device *lower_dev;
8761 struct list_head *iter;
7e1146e8
JP
8762 int err;
8763
8764 if (ops->ndo_get_port_parent_id) {
8765 err = ops->ndo_get_port_parent_id(dev, ppid);
8766 if (err != -EOPNOTSUPP)
8767 return err;
8768 }
d6abc596 8769
7e1146e8
JP
8770 err = devlink_compat_switch_id_get(dev, ppid);
8771 if (!err || err != -EOPNOTSUPP)
8772 return err;
d6abc596
FF
8773
8774 if (!recurse)
7e1146e8 8775 return -EOPNOTSUPP;
d6abc596
FF
8776
8777 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8778 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8779 if (err)
8780 break;
8781 if (!first.id_len)
8782 first = *ppid;
8783 else if (memcmp(&first, ppid, sizeof(*ppid)))
e1b9efe6 8784 return -EOPNOTSUPP;
d6abc596
FF
8785 }
8786
8787 return err;
8788}
8789EXPORT_SYMBOL(dev_get_port_parent_id);
8790
8791/**
8792 * netdev_port_same_parent_id - Indicate if two network devices have
8793 * the same port parent identifier
8794 * @a: first network device
8795 * @b: second network device
8796 */
8797bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8798{
8799 struct netdev_phys_item_id a_id = { };
8800 struct netdev_phys_item_id b_id = { };
8801
8802 if (dev_get_port_parent_id(a, &a_id, true) ||
8803 dev_get_port_parent_id(b, &b_id, true))
8804 return false;
8805
8806 return netdev_phys_item_id_same(&a_id, &b_id);
8807}
8808EXPORT_SYMBOL(netdev_port_same_parent_id);
8809
d746d707
AK
8810/**
8811 * dev_change_proto_down - update protocol port state information
8812 * @dev: device
8813 * @proto_down: new value
8814 *
8815 * This info can be used by switch drivers to set the phys state of the
8816 * port.
8817 */
8818int dev_change_proto_down(struct net_device *dev, bool proto_down)
8819{
8820 const struct net_device_ops *ops = dev->netdev_ops;
8821
8822 if (!ops->ndo_change_proto_down)
8823 return -EOPNOTSUPP;
8824 if (!netif_device_present(dev))
8825 return -ENODEV;
8826 return ops->ndo_change_proto_down(dev, proto_down);
8827}
8828EXPORT_SYMBOL(dev_change_proto_down);
8829
b5899679
AR
8830/**
8831 * dev_change_proto_down_generic - generic implementation for
8832 * ndo_change_proto_down that sets carrier according to
8833 * proto_down.
8834 *
8835 * @dev: device
8836 * @proto_down: new value
8837 */
8838int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8839{
8840 if (proto_down)
8841 netif_carrier_off(dev);
8842 else
8843 netif_carrier_on(dev);
8844 dev->proto_down = proto_down;
8845 return 0;
8846}
8847EXPORT_SYMBOL(dev_change_proto_down_generic);
8848
829eb208
RP
8849/**
8850 * dev_change_proto_down_reason - proto down reason
8851 *
8852 * @dev: device
8853 * @mask: proto down mask
8854 * @value: proto down value
8855 */
8856void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8857 u32 value)
8858{
8859 int b;
8860
8861 if (!mask) {
8862 dev->proto_down_reason = value;
8863 } else {
8864 for_each_set_bit(b, &mask, 32) {
8865 if (value & (1 << b))
8866 dev->proto_down_reason |= BIT(b);
8867 else
8868 dev->proto_down_reason &= ~BIT(b);
8869 }
8870 }
8871}
8872EXPORT_SYMBOL(dev_change_proto_down_reason);
8873
aa8d3a71
AN
8874struct bpf_xdp_link {
8875 struct bpf_link link;
8876 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8877 int flags;
8878};
8879
c8a36f19 8880static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
d67b9cd2 8881{
7f0a8382
AN
8882 if (flags & XDP_FLAGS_HW_MODE)
8883 return XDP_MODE_HW;
8884 if (flags & XDP_FLAGS_DRV_MODE)
8885 return XDP_MODE_DRV;
c8a36f19
AN
8886 if (flags & XDP_FLAGS_SKB_MODE)
8887 return XDP_MODE_SKB;
8888 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
7f0a8382 8889}
d67b9cd2 8890
7f0a8382
AN
8891static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8892{
8893 switch (mode) {
8894 case XDP_MODE_SKB:
8895 return generic_xdp_install;
8896 case XDP_MODE_DRV:
8897 case XDP_MODE_HW:
8898 return dev->netdev_ops->ndo_bpf;
8899 default:
8900 return NULL;
8901 };
8902}
118b4aa2 8903
aa8d3a71
AN
8904static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8905 enum bpf_xdp_mode mode)
8906{
8907 return dev->xdp_state[mode].link;
8908}
8909
7f0a8382
AN
8910static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8911 enum bpf_xdp_mode mode)
8912{
aa8d3a71
AN
8913 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8914
8915 if (link)
8916 return link->link.prog;
7f0a8382
AN
8917 return dev->xdp_state[mode].prog;
8918}
8919
8920u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8921{
8922 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
118b4aa2 8923
7f0a8382
AN
8924 return prog ? prog->aux->id : 0;
8925}
58038695 8926
aa8d3a71
AN
8927static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8928 struct bpf_xdp_link *link)
8929{
8930 dev->xdp_state[mode].link = link;
8931 dev->xdp_state[mode].prog = NULL;
d67b9cd2
DB
8932}
8933
7f0a8382
AN
8934static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8935 struct bpf_prog *prog)
8936{
aa8d3a71 8937 dev->xdp_state[mode].link = NULL;
7f0a8382 8938 dev->xdp_state[mode].prog = prog;
d67b9cd2
DB
8939}
8940
7f0a8382
AN
8941static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8942 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8943 u32 flags, struct bpf_prog *prog)
d67b9cd2 8944{
f4e63525 8945 struct netdev_bpf xdp;
7e6897f9
BT
8946 int err;
8947
d67b9cd2 8948 memset(&xdp, 0, sizeof(xdp));
7f0a8382 8949 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
d67b9cd2 8950 xdp.extack = extack;
32d60277 8951 xdp.flags = flags;
d67b9cd2
DB
8952 xdp.prog = prog;
8953
7f0a8382
AN
8954 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8955 * "moved" into driver), so they don't increment it on their own, but
8956 * they do decrement refcnt when program is detached or replaced.
8957 * Given net_device also owns link/prog, we need to bump refcnt here
8958 * to prevent drivers from underflowing it.
8959 */
8960 if (prog)
8961 bpf_prog_inc(prog);
7e6897f9 8962 err = bpf_op(dev, &xdp);
7f0a8382
AN
8963 if (err) {
8964 if (prog)
8965 bpf_prog_put(prog);
8966 return err;
8967 }
7e6897f9 8968
7f0a8382
AN
8969 if (mode != XDP_MODE_HW)
8970 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
7e6897f9 8971
7f0a8382 8972 return 0;
d67b9cd2
DB
8973}
8974
bd0b2e7f
JK
8975static void dev_xdp_uninstall(struct net_device *dev)
8976{
aa8d3a71 8977 struct bpf_xdp_link *link;
7f0a8382
AN
8978 struct bpf_prog *prog;
8979 enum bpf_xdp_mode mode;
8980 bpf_op_t bpf_op;
bd0b2e7f 8981
7f0a8382 8982 ASSERT_RTNL();
bd0b2e7f 8983
7f0a8382
AN
8984 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8985 prog = dev_xdp_prog(dev, mode);
8986 if (!prog)
8987 continue;
bd0b2e7f 8988
7f0a8382
AN
8989 bpf_op = dev_xdp_bpf_op(dev, mode);
8990 if (!bpf_op)
8991 continue;
bd0b2e7f 8992
7f0a8382
AN
8993 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8994
aa8d3a71
AN
8995 /* auto-detach link from net device */
8996 link = dev_xdp_link(dev, mode);
8997 if (link)
8998 link->dev = NULL;
8999 else
9000 bpf_prog_put(prog);
9001
9002 dev_xdp_set_link(dev, mode, NULL);
7f0a8382 9003 }
bd0b2e7f
JK
9004}
9005
d4baa936 9006static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
aa8d3a71
AN
9007 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9008 struct bpf_prog *old_prog, u32 flags)
a7862b45 9009{
d4baa936
AN
9010 struct bpf_prog *cur_prog;
9011 enum bpf_xdp_mode mode;
7f0a8382 9012 bpf_op_t bpf_op;
a7862b45
BB
9013 int err;
9014
85de8576
DB
9015 ASSERT_RTNL();
9016
aa8d3a71
AN
9017 /* either link or prog attachment, never both */
9018 if (link && (new_prog || old_prog))
9019 return -EINVAL;
9020 /* link supports only XDP mode flags */
9021 if (link && (flags & ~XDP_FLAGS_MODES)) {
9022 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9023 return -EINVAL;
9024 }
d4baa936
AN
9025 /* just one XDP mode bit should be set, zero defaults to SKB mode */
9026 if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
9027 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9028 return -EINVAL;
9029 }
9030 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9031 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9032 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9033 return -EINVAL;
01dde20c 9034 }
a25717d2 9035
c8a36f19 9036 mode = dev_xdp_mode(dev, flags);
aa8d3a71
AN
9037 /* can't replace attached link */
9038 if (dev_xdp_link(dev, mode)) {
9039 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9040 return -EBUSY;
01dde20c 9041 }
c14a9f63 9042
d4baa936 9043 cur_prog = dev_xdp_prog(dev, mode);
aa8d3a71
AN
9044 /* can't replace attached prog with link */
9045 if (link && cur_prog) {
9046 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9047 return -EBUSY;
9048 }
d4baa936
AN
9049 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9050 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9051 return -EEXIST;
92234c8f 9052 }
c14a9f63 9053
aa8d3a71
AN
9054 /* put effective new program into new_prog */
9055 if (link)
9056 new_prog = link->link.prog;
85de8576 9057
d4baa936
AN
9058 if (new_prog) {
9059 bool offload = mode == XDP_MODE_HW;
7f0a8382
AN
9060 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9061 ? XDP_MODE_DRV : XDP_MODE_SKB;
441a3303 9062
068d9d1e
AN
9063 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9064 NL_SET_ERR_MSG(extack, "XDP program already attached");
9065 return -EBUSY;
9066 }
d4baa936 9067 if (!offload && dev_xdp_prog(dev, other_mode)) {
7f0a8382 9068 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
d67b9cd2 9069 return -EEXIST;
01dde20c 9070 }
d4baa936 9071 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
7f0a8382 9072 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
441a3303
JK
9073 return -EINVAL;
9074 }
d4baa936 9075 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
fbee97fe 9076 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
fbee97fe
DA
9077 return -EINVAL;
9078 }
d4baa936
AN
9079 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9080 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
92164774
LB
9081 return -EINVAL;
9082 }
d4baa936 9083 }
92164774 9084
d4baa936
AN
9085 /* don't call drivers if the effective program didn't change */
9086 if (new_prog != cur_prog) {
9087 bpf_op = dev_xdp_bpf_op(dev, mode);
9088 if (!bpf_op) {
9089 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9090 return -EOPNOTSUPP;
c14a9f63 9091 }
a7862b45 9092
d4baa936
AN
9093 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9094 if (err)
9095 return err;
7f0a8382 9096 }
d4baa936 9097
aa8d3a71
AN
9098 if (link)
9099 dev_xdp_set_link(dev, mode, link);
9100 else
9101 dev_xdp_set_prog(dev, mode, new_prog);
d4baa936
AN
9102 if (cur_prog)
9103 bpf_prog_put(cur_prog);
a7862b45 9104
7f0a8382 9105 return 0;
a7862b45 9106}
a7862b45 9107
aa8d3a71
AN
9108static int dev_xdp_attach_link(struct net_device *dev,
9109 struct netlink_ext_ack *extack,
9110 struct bpf_xdp_link *link)
9111{
9112 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9113}
9114
9115static int dev_xdp_detach_link(struct net_device *dev,
9116 struct netlink_ext_ack *extack,
9117 struct bpf_xdp_link *link)
9118{
9119 enum bpf_xdp_mode mode;
9120 bpf_op_t bpf_op;
9121
9122 ASSERT_RTNL();
9123
c8a36f19 9124 mode = dev_xdp_mode(dev, link->flags);
aa8d3a71
AN
9125 if (dev_xdp_link(dev, mode) != link)
9126 return -EINVAL;
9127
9128 bpf_op = dev_xdp_bpf_op(dev, mode);
9129 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9130 dev_xdp_set_link(dev, mode, NULL);
9131 return 0;
9132}
9133
9134static void bpf_xdp_link_release(struct bpf_link *link)
9135{
9136 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9137
9138 rtnl_lock();
9139
9140 /* if racing with net_device's tear down, xdp_link->dev might be
9141 * already NULL, in which case link was already auto-detached
9142 */
73b11c2a 9143 if (xdp_link->dev) {
aa8d3a71 9144 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
73b11c2a
AN
9145 xdp_link->dev = NULL;
9146 }
aa8d3a71
AN
9147
9148 rtnl_unlock();
9149}
9150
73b11c2a
AN
9151static int bpf_xdp_link_detach(struct bpf_link *link)
9152{
9153 bpf_xdp_link_release(link);
9154 return 0;
9155}
9156
aa8d3a71
AN
9157static void bpf_xdp_link_dealloc(struct bpf_link *link)
9158{
9159 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9160
9161 kfree(xdp_link);
9162}
9163
c1931c97
AN
9164static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9165 struct seq_file *seq)
9166{
9167 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9168 u32 ifindex = 0;
9169
9170 rtnl_lock();
9171 if (xdp_link->dev)
9172 ifindex = xdp_link->dev->ifindex;
9173 rtnl_unlock();
9174
9175 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9176}
9177
9178static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9179 struct bpf_link_info *info)
9180{
9181 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9182 u32 ifindex = 0;
9183
9184 rtnl_lock();
9185 if (xdp_link->dev)
9186 ifindex = xdp_link->dev->ifindex;
9187 rtnl_unlock();
9188
9189 info->xdp.ifindex = ifindex;
9190 return 0;
9191}
9192
026a4c28
AN
9193static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9194 struct bpf_prog *old_prog)
9195{
9196 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9197 enum bpf_xdp_mode mode;
9198 bpf_op_t bpf_op;
9199 int err = 0;
9200
9201 rtnl_lock();
9202
9203 /* link might have been auto-released already, so fail */
9204 if (!xdp_link->dev) {
9205 err = -ENOLINK;
9206 goto out_unlock;
9207 }
9208
9209 if (old_prog && link->prog != old_prog) {
9210 err = -EPERM;
9211 goto out_unlock;
9212 }
9213 old_prog = link->prog;
9214 if (old_prog == new_prog) {
9215 /* no-op, don't disturb drivers */
9216 bpf_prog_put(new_prog);
9217 goto out_unlock;
9218 }
9219
c8a36f19 9220 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
026a4c28
AN
9221 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9222 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9223 xdp_link->flags, new_prog);
9224 if (err)
9225 goto out_unlock;
9226
9227 old_prog = xchg(&link->prog, new_prog);
9228 bpf_prog_put(old_prog);
9229
9230out_unlock:
9231 rtnl_unlock();
9232 return err;
9233}
9234
aa8d3a71
AN
9235static const struct bpf_link_ops bpf_xdp_link_lops = {
9236 .release = bpf_xdp_link_release,
9237 .dealloc = bpf_xdp_link_dealloc,
73b11c2a 9238 .detach = bpf_xdp_link_detach,
c1931c97
AN
9239 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9240 .fill_link_info = bpf_xdp_link_fill_link_info,
026a4c28 9241 .update_prog = bpf_xdp_link_update,
aa8d3a71
AN
9242};
9243
9244int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9245{
9246 struct net *net = current->nsproxy->net_ns;
9247 struct bpf_link_primer link_primer;
9248 struct bpf_xdp_link *link;
9249 struct net_device *dev;
9250 int err, fd;
9251
9252 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9253 if (!dev)
9254 return -EINVAL;
9255
9256 link = kzalloc(sizeof(*link), GFP_USER);
9257 if (!link) {
9258 err = -ENOMEM;
9259 goto out_put_dev;
9260 }
9261
9262 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9263 link->dev = dev;
9264 link->flags = attr->link_create.flags;
9265
9266 err = bpf_link_prime(&link->link, &link_primer);
9267 if (err) {
9268 kfree(link);
9269 goto out_put_dev;
9270 }
9271
9272 rtnl_lock();
9273 err = dev_xdp_attach_link(dev, NULL, link);
9274 rtnl_unlock();
9275
9276 if (err) {
9277 bpf_link_cleanup(&link_primer);
9278 goto out_put_dev;
9279 }
9280
9281 fd = bpf_link_settle(&link_primer);
9282 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9283 dev_put(dev);
9284 return fd;
9285
9286out_put_dev:
9287 dev_put(dev);
9288 return err;
9289}
9290
d4baa936
AN
9291/**
9292 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9293 * @dev: device
9294 * @extack: netlink extended ack
9295 * @fd: new program fd or negative value to clear
9296 * @expected_fd: old program fd that userspace expects to replace or clear
9297 * @flags: xdp-related flags
9298 *
9299 * Set or clear a bpf program for a device
9300 */
9301int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9302 int fd, int expected_fd, u32 flags)
9303{
c8a36f19 9304 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
d4baa936
AN
9305 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9306 int err;
9307
9308 ASSERT_RTNL();
9309
9310 if (fd >= 0) {
9311 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9312 mode != XDP_MODE_SKB);
9313 if (IS_ERR(new_prog))
9314 return PTR_ERR(new_prog);
9315 }
9316
9317 if (expected_fd >= 0) {
9318 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9319 mode != XDP_MODE_SKB);
9320 if (IS_ERR(old_prog)) {
9321 err = PTR_ERR(old_prog);
9322 old_prog = NULL;
9323 goto err_out;
c14a9f63 9324 }
a7862b45
BB
9325 }
9326
aa8d3a71 9327 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
a7862b45 9328
d4baa936
AN
9329err_out:
9330 if (err && new_prog)
9331 bpf_prog_put(new_prog);
9332 if (old_prog)
9333 bpf_prog_put(old_prog);
a7862b45
BB
9334 return err;
9335}
a7862b45 9336
1da177e4
LT
9337/**
9338 * dev_new_index - allocate an ifindex
c4ea43c5 9339 * @net: the applicable net namespace
1da177e4
LT
9340 *
9341 * Returns a suitable unique value for a new device interface
9342 * number. The caller must hold the rtnl semaphore or the
9343 * dev_base_lock to be sure it remains unique.
9344 */
881d966b 9345static int dev_new_index(struct net *net)
1da177e4 9346{
aa79e66e 9347 int ifindex = net->ifindex;
f4563a75 9348
1da177e4
LT
9349 for (;;) {
9350 if (++ifindex <= 0)
9351 ifindex = 1;
881d966b 9352 if (!__dev_get_by_index(net, ifindex))
aa79e66e 9353 return net->ifindex = ifindex;
1da177e4
LT
9354 }
9355}
9356
1da177e4 9357/* Delayed registration/unregisteration */
3b5b34fd 9358static LIST_HEAD(net_todo_list);
200b916f 9359DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 9360
6f05f629 9361static void net_set_todo(struct net_device *dev)
1da177e4 9362{
1da177e4 9363 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 9364 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
9365}
9366
9b5e383c 9367static void rollback_registered_many(struct list_head *head)
93ee31f1 9368{
e93737b0 9369 struct net_device *dev, *tmp;
5cde2829 9370 LIST_HEAD(close_head);
9b5e383c 9371
93ee31f1
DL
9372 BUG_ON(dev_boot_phase);
9373 ASSERT_RTNL();
9374
e93737b0 9375 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 9376 /* Some devices call without registering
e93737b0
KK
9377 * for initialization unwind. Remove those
9378 * devices and proceed with the remaining.
9b5e383c
ED
9379 */
9380 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
9381 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9382 dev->name, dev);
93ee31f1 9383
9b5e383c 9384 WARN_ON(1);
e93737b0
KK
9385 list_del(&dev->unreg_list);
9386 continue;
9b5e383c 9387 }
449f4544 9388 dev->dismantle = true;
9b5e383c 9389 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 9390 }
93ee31f1 9391
44345724 9392 /* If device is running, close it first. */
5cde2829
EB
9393 list_for_each_entry(dev, head, unreg_list)
9394 list_add_tail(&dev->close_list, &close_head);
99c4a26a 9395 dev_close_many(&close_head, true);
93ee31f1 9396
44345724 9397 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
9398 /* And unlink it from device chain. */
9399 unlist_netdevice(dev);
93ee31f1 9400
9b5e383c
ED
9401 dev->reg_state = NETREG_UNREGISTERING;
9402 }
41852497 9403 flush_all_backlogs();
93ee31f1
DL
9404
9405 synchronize_net();
9406
9b5e383c 9407 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
9408 struct sk_buff *skb = NULL;
9409
9b5e383c
ED
9410 /* Shutdown queueing discipline. */
9411 dev_shutdown(dev);
93ee31f1 9412
bd0b2e7f 9413 dev_xdp_uninstall(dev);
93ee31f1 9414
9b5e383c 9415 /* Notify protocols, that we are about to destroy
eb13da1a 9416 * this device. They should clean all the things.
9417 */
9b5e383c 9418 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 9419
395eea6c
MB
9420 if (!dev->rtnl_link_ops ||
9421 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 9422 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 9423 GFP_KERNEL, NULL, 0);
395eea6c 9424
9b5e383c
ED
9425 /*
9426 * Flush the unicast and multicast chains
9427 */
a748ee24 9428 dev_uc_flush(dev);
22bedad3 9429 dev_mc_flush(dev);
93ee31f1 9430
36fbf1e5 9431 netdev_name_node_alt_flush(dev);
ff927412
JP
9432 netdev_name_node_free(dev->name_node);
9433
9b5e383c
ED
9434 if (dev->netdev_ops->ndo_uninit)
9435 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 9436
395eea6c
MB
9437 if (skb)
9438 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 9439
9ff162a8
JP
9440 /* Notifier chain MUST detach us all upper devices. */
9441 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 9442 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 9443
9b5e383c
ED
9444 /* Remove entries from kobject tree */
9445 netdev_unregister_kobject(dev);
024e9679
AD
9446#ifdef CONFIG_XPS
9447 /* Remove XPS queueing entries */
9448 netif_reset_xps_queues_gt(dev, 0);
9449#endif
9b5e383c 9450 }
93ee31f1 9451
850a545b 9452 synchronize_net();
395264d5 9453
a5ee1551 9454 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
9455 dev_put(dev);
9456}
9457
9458static void rollback_registered(struct net_device *dev)
9459{
9460 LIST_HEAD(single);
9461
9462 list_add(&dev->unreg_list, &single);
9463 rollback_registered_many(&single);
ceaaec98 9464 list_del(&single);
93ee31f1
DL
9465}
9466
fd867d51
JW
9467static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9468 struct net_device *upper, netdev_features_t features)
9469{
9470 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9471 netdev_features_t feature;
5ba3f7d6 9472 int feature_bit;
fd867d51 9473
3b89ea9c 9474 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9475 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9476 if (!(upper->wanted_features & feature)
9477 && (features & feature)) {
9478 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9479 &feature, upper->name);
9480 features &= ~feature;
9481 }
9482 }
9483
9484 return features;
9485}
9486
9487static void netdev_sync_lower_features(struct net_device *upper,
9488 struct net_device *lower, netdev_features_t features)
9489{
9490 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9491 netdev_features_t feature;
5ba3f7d6 9492 int feature_bit;
fd867d51 9493
3b89ea9c 9494 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9495 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9496 if (!(features & feature) && (lower->features & feature)) {
9497 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9498 &feature, lower->name);
9499 lower->wanted_features &= ~feature;
dd912306 9500 __netdev_update_features(lower);
fd867d51
JW
9501
9502 if (unlikely(lower->features & feature))
9503 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9504 &feature, lower->name);
dd912306
CW
9505 else
9506 netdev_features_change(lower);
fd867d51
JW
9507 }
9508 }
9509}
9510
c8f44aff
MM
9511static netdev_features_t netdev_fix_features(struct net_device *dev,
9512 netdev_features_t features)
b63365a2 9513{
57422dc5
MM
9514 /* Fix illegal checksum combinations */
9515 if ((features & NETIF_F_HW_CSUM) &&
9516 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 9517 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
9518 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9519 }
9520
b63365a2 9521 /* TSO requires that SG is present as well. */
ea2d3688 9522 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 9523 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 9524 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
9525 }
9526
ec5f0615
PS
9527 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9528 !(features & NETIF_F_IP_CSUM)) {
9529 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9530 features &= ~NETIF_F_TSO;
9531 features &= ~NETIF_F_TSO_ECN;
9532 }
9533
9534 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9535 !(features & NETIF_F_IPV6_CSUM)) {
9536 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9537 features &= ~NETIF_F_TSO6;
9538 }
9539
b1dc497b
AD
9540 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9541 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9542 features &= ~NETIF_F_TSO_MANGLEID;
9543
31d8b9e0
BH
9544 /* TSO ECN requires that TSO is present as well. */
9545 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9546 features &= ~NETIF_F_TSO_ECN;
9547
212b573f
MM
9548 /* Software GSO depends on SG. */
9549 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 9550 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
9551 features &= ~NETIF_F_GSO;
9552 }
9553
802ab55a
AD
9554 /* GSO partial features require GSO partial be set */
9555 if ((features & dev->gso_partial_features) &&
9556 !(features & NETIF_F_GSO_PARTIAL)) {
9557 netdev_dbg(dev,
9558 "Dropping partially supported GSO features since no GSO partial.\n");
9559 features &= ~dev->gso_partial_features;
9560 }
9561
fb1f5f79
MC
9562 if (!(features & NETIF_F_RXCSUM)) {
9563 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9564 * successfully merged by hardware must also have the
9565 * checksum verified by hardware. If the user does not
9566 * want to enable RXCSUM, logically, we should disable GRO_HW.
9567 */
9568 if (features & NETIF_F_GRO_HW) {
9569 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9570 features &= ~NETIF_F_GRO_HW;
9571 }
9572 }
9573
de8d5ab2
GP
9574 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9575 if (features & NETIF_F_RXFCS) {
9576 if (features & NETIF_F_LRO) {
9577 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9578 features &= ~NETIF_F_LRO;
9579 }
9580
9581 if (features & NETIF_F_GRO_HW) {
9582 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9583 features &= ~NETIF_F_GRO_HW;
9584 }
e6c6a929
GP
9585 }
9586
b63365a2
HX
9587 return features;
9588}
b63365a2 9589
6cb6a27c 9590int __netdev_update_features(struct net_device *dev)
5455c699 9591{
fd867d51 9592 struct net_device *upper, *lower;
c8f44aff 9593 netdev_features_t features;
fd867d51 9594 struct list_head *iter;
e7868a85 9595 int err = -1;
5455c699 9596
87267485
MM
9597 ASSERT_RTNL();
9598
5455c699
MM
9599 features = netdev_get_wanted_features(dev);
9600
9601 if (dev->netdev_ops->ndo_fix_features)
9602 features = dev->netdev_ops->ndo_fix_features(dev, features);
9603
9604 /* driver might be less strict about feature dependencies */
9605 features = netdev_fix_features(dev, features);
9606
4250b75b 9607 /* some features can't be enabled if they're off on an upper device */
fd867d51
JW
9608 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9609 features = netdev_sync_upper_features(dev, upper, features);
9610
5455c699 9611 if (dev->features == features)
e7868a85 9612 goto sync_lower;
5455c699 9613
c8f44aff
MM
9614 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9615 &dev->features, &features);
5455c699
MM
9616
9617 if (dev->netdev_ops->ndo_set_features)
9618 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9619 else
9620 err = 0;
5455c699 9621
6cb6a27c 9622 if (unlikely(err < 0)) {
5455c699 9623 netdev_err(dev,
c8f44aff
MM
9624 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9625 err, &features, &dev->features);
17b85d29
NA
9626 /* return non-0 since some features might have changed and
9627 * it's better to fire a spurious notification than miss it
9628 */
9629 return -1;
6cb6a27c
MM
9630 }
9631
e7868a85 9632sync_lower:
fd867d51
JW
9633 /* some features must be disabled on lower devices when disabled
9634 * on an upper device (think: bonding master or bridge)
9635 */
9636 netdev_for_each_lower_dev(dev, lower, iter)
9637 netdev_sync_lower_features(dev, lower, features);
9638
ae847f40
SD
9639 if (!err) {
9640 netdev_features_t diff = features ^ dev->features;
9641
9642 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9643 /* udp_tunnel_{get,drop}_rx_info both need
9644 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9645 * device, or they won't do anything.
9646 * Thus we need to update dev->features
9647 * *before* calling udp_tunnel_get_rx_info,
9648 * but *after* calling udp_tunnel_drop_rx_info.
9649 */
9650 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9651 dev->features = features;
9652 udp_tunnel_get_rx_info(dev);
9653 } else {
9654 udp_tunnel_drop_rx_info(dev);
9655 }
9656 }
9657
9daae9bd
GP
9658 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9659 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9660 dev->features = features;
9661 err |= vlan_get_rx_ctag_filter_info(dev);
9662 } else {
9663 vlan_drop_rx_ctag_filter_info(dev);
9664 }
9665 }
9666
9667 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9668 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9669 dev->features = features;
9670 err |= vlan_get_rx_stag_filter_info(dev);
9671 } else {
9672 vlan_drop_rx_stag_filter_info(dev);
9673 }
9674 }
9675
6cb6a27c 9676 dev->features = features;
ae847f40 9677 }
6cb6a27c 9678
e7868a85 9679 return err < 0 ? 0 : 1;
6cb6a27c
MM
9680}
9681
afe12cc8
MM
9682/**
9683 * netdev_update_features - recalculate device features
9684 * @dev: the device to check
9685 *
9686 * Recalculate dev->features set and send notifications if it
9687 * has changed. Should be called after driver or hardware dependent
9688 * conditions might have changed that influence the features.
9689 */
6cb6a27c
MM
9690void netdev_update_features(struct net_device *dev)
9691{
9692 if (__netdev_update_features(dev))
9693 netdev_features_change(dev);
5455c699
MM
9694}
9695EXPORT_SYMBOL(netdev_update_features);
9696
afe12cc8
MM
9697/**
9698 * netdev_change_features - recalculate device features
9699 * @dev: the device to check
9700 *
9701 * Recalculate dev->features set and send notifications even
9702 * if they have not changed. Should be called instead of
9703 * netdev_update_features() if also dev->vlan_features might
9704 * have changed to allow the changes to be propagated to stacked
9705 * VLAN devices.
9706 */
9707void netdev_change_features(struct net_device *dev)
9708{
9709 __netdev_update_features(dev);
9710 netdev_features_change(dev);
9711}
9712EXPORT_SYMBOL(netdev_change_features);
9713
fc4a7489
PM
9714/**
9715 * netif_stacked_transfer_operstate - transfer operstate
9716 * @rootdev: the root or lower level device to transfer state from
9717 * @dev: the device to transfer operstate to
9718 *
9719 * Transfer operational state from root to device. This is normally
9720 * called when a stacking relationship exists between the root
9721 * device and the device(a leaf device).
9722 */
9723void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9724 struct net_device *dev)
9725{
9726 if (rootdev->operstate == IF_OPER_DORMANT)
9727 netif_dormant_on(dev);
9728 else
9729 netif_dormant_off(dev);
9730
eec517cd
AL
9731 if (rootdev->operstate == IF_OPER_TESTING)
9732 netif_testing_on(dev);
9733 else
9734 netif_testing_off(dev);
9735
0575c86b
ZS
9736 if (netif_carrier_ok(rootdev))
9737 netif_carrier_on(dev);
9738 else
9739 netif_carrier_off(dev);
fc4a7489
PM
9740}
9741EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9742
1b4bf461
ED
9743static int netif_alloc_rx_queues(struct net_device *dev)
9744{
1b4bf461 9745 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 9746 struct netdev_rx_queue *rx;
10595902 9747 size_t sz = count * sizeof(*rx);
e817f856 9748 int err = 0;
1b4bf461 9749
bd25fa7b 9750 BUG_ON(count < 1);
1b4bf461 9751
dcda9b04 9752 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9753 if (!rx)
9754 return -ENOMEM;
9755
bd25fa7b
TH
9756 dev->_rx = rx;
9757
e817f856 9758 for (i = 0; i < count; i++) {
fe822240 9759 rx[i].dev = dev;
e817f856
JDB
9760
9761 /* XDP RX-queue setup */
9762 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9763 if (err < 0)
9764 goto err_rxq_info;
9765 }
1b4bf461 9766 return 0;
e817f856
JDB
9767
9768err_rxq_info:
9769 /* Rollback successful reg's and free other resources */
9770 while (i--)
9771 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 9772 kvfree(dev->_rx);
e817f856
JDB
9773 dev->_rx = NULL;
9774 return err;
9775}
9776
9777static void netif_free_rx_queues(struct net_device *dev)
9778{
9779 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
9780
9781 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9782 if (!dev->_rx)
9783 return;
9784
e817f856 9785 for (i = 0; i < count; i++)
82aaff2f
JK
9786 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9787
9788 kvfree(dev->_rx);
1b4bf461
ED
9789}
9790
aa942104
CG
9791static void netdev_init_one_queue(struct net_device *dev,
9792 struct netdev_queue *queue, void *_unused)
9793{
9794 /* Initialize queue lock */
9795 spin_lock_init(&queue->_xmit_lock);
1a33e10e 9796 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
aa942104 9797 queue->xmit_lock_owner = -1;
b236da69 9798 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 9799 queue->dev = dev;
114cf580
TH
9800#ifdef CONFIG_BQL
9801 dql_init(&queue->dql, HZ);
9802#endif
aa942104
CG
9803}
9804
60877a32
ED
9805static void netif_free_tx_queues(struct net_device *dev)
9806{
4cb28970 9807 kvfree(dev->_tx);
60877a32
ED
9808}
9809
e6484930
TH
9810static int netif_alloc_netdev_queues(struct net_device *dev)
9811{
9812 unsigned int count = dev->num_tx_queues;
9813 struct netdev_queue *tx;
60877a32 9814 size_t sz = count * sizeof(*tx);
e6484930 9815
d339727c
ED
9816 if (count < 1 || count > 0xffff)
9817 return -EINVAL;
62b5942a 9818
dcda9b04 9819 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9820 if (!tx)
9821 return -ENOMEM;
9822
e6484930 9823 dev->_tx = tx;
1d24eb48 9824
e6484930
TH
9825 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9826 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
9827
9828 return 0;
e6484930
TH
9829}
9830
a2029240
DV
9831void netif_tx_stop_all_queues(struct net_device *dev)
9832{
9833 unsigned int i;
9834
9835 for (i = 0; i < dev->num_tx_queues; i++) {
9836 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 9837
a2029240
DV
9838 netif_tx_stop_queue(txq);
9839 }
9840}
9841EXPORT_SYMBOL(netif_tx_stop_all_queues);
9842
1da177e4
LT
9843/**
9844 * register_netdevice - register a network device
9845 * @dev: device to register
9846 *
9847 * Take a completed network device structure and add it to the kernel
9848 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9849 * chain. 0 is returned on success. A negative errno code is returned
9850 * on a failure to set up the device, or if the name is a duplicate.
9851 *
9852 * Callers must hold the rtnl semaphore. You may want
9853 * register_netdev() instead of this.
9854 *
9855 * BUGS:
9856 * The locking appears insufficient to guarantee two parallel registers
9857 * will not get the same name.
9858 */
9859
9860int register_netdevice(struct net_device *dev)
9861{
1da177e4 9862 int ret;
d314774c 9863 struct net *net = dev_net(dev);
1da177e4 9864
e283de3a
FF
9865 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9866 NETDEV_FEATURE_COUNT);
1da177e4
LT
9867 BUG_ON(dev_boot_phase);
9868 ASSERT_RTNL();
9869
b17a7c17
SH
9870 might_sleep();
9871
1da177e4
LT
9872 /* When net_device's are persistent, this will be fatal. */
9873 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 9874 BUG_ON(!net);
1da177e4 9875
9000edb7
JK
9876 ret = ethtool_check_ops(dev->ethtool_ops);
9877 if (ret)
9878 return ret;
9879
f1f28aa3 9880 spin_lock_init(&dev->addr_list_lock);
845e0ebb 9881 netdev_set_addr_lockdep_class(dev);
1da177e4 9882
828de4f6 9883 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
9884 if (ret < 0)
9885 goto out;
9886
9077f052 9887 ret = -ENOMEM;
ff927412
JP
9888 dev->name_node = netdev_name_node_head_alloc(dev);
9889 if (!dev->name_node)
9890 goto out;
9891
1da177e4 9892 /* Init, if this function is available */
d314774c
SH
9893 if (dev->netdev_ops->ndo_init) {
9894 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
9895 if (ret) {
9896 if (ret > 0)
9897 ret = -EIO;
42c17fa6 9898 goto err_free_name;
1da177e4
LT
9899 }
9900 }
4ec93edb 9901
f646968f
PM
9902 if (((dev->hw_features | dev->features) &
9903 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
9904 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9905 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9906 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9907 ret = -EINVAL;
9908 goto err_uninit;
9909 }
9910
9c7dafbf
PE
9911 ret = -EBUSY;
9912 if (!dev->ifindex)
9913 dev->ifindex = dev_new_index(net);
9914 else if (__dev_get_by_index(net, dev->ifindex))
9915 goto err_uninit;
9916
5455c699
MM
9917 /* Transfer changeable features to wanted_features and enable
9918 * software offloads (GSO and GRO).
9919 */
1a3c998f 9920 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 9921 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
9922
9923 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9924 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9925 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9926 }
9927
14d1232f 9928 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 9929
cbc53e08 9930 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 9931 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 9932
7f348a60
AD
9933 /* If IPv4 TCP segmentation offload is supported we should also
9934 * allow the device to enable segmenting the frame with the option
9935 * of ignoring a static IP ID value. This doesn't enable the
9936 * feature itself but allows the user to enable it later.
9937 */
cbc53e08
AD
9938 if (dev->hw_features & NETIF_F_TSO)
9939 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
9940 if (dev->vlan_features & NETIF_F_TSO)
9941 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9942 if (dev->mpls_features & NETIF_F_TSO)
9943 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9944 if (dev->hw_enc_features & NETIF_F_TSO)
9945 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 9946
1180e7d6 9947 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 9948 */
1180e7d6 9949 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 9950
ee579677
PS
9951 /* Make NETIF_F_SG inheritable to tunnel devices.
9952 */
802ab55a 9953 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 9954
0d89d203
SH
9955 /* Make NETIF_F_SG inheritable to MPLS.
9956 */
9957 dev->mpls_features |= NETIF_F_SG;
9958
7ffbe3fd
JB
9959 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9960 ret = notifier_to_errno(ret);
9961 if (ret)
9962 goto err_uninit;
9963
8b41d188 9964 ret = netdev_register_kobject(dev);
cb626bf5
JH
9965 if (ret) {
9966 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 9967 goto err_uninit;
cb626bf5 9968 }
b17a7c17
SH
9969 dev->reg_state = NETREG_REGISTERED;
9970
6cb6a27c 9971 __netdev_update_features(dev);
8e9b59b2 9972
1da177e4
LT
9973 /*
9974 * Default initial state at registry is that the
9975 * device is present.
9976 */
9977
9978 set_bit(__LINK_STATE_PRESENT, &dev->state);
9979
8f4cccbb
BH
9980 linkwatch_init_dev(dev);
9981
1da177e4 9982 dev_init_scheduler(dev);
1da177e4 9983 dev_hold(dev);
ce286d32 9984 list_netdevice(dev);
7bf23575 9985 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 9986
948b337e
JP
9987 /* If the device has permanent device address, driver should
9988 * set dev_addr and also addr_assign_type should be set to
9989 * NET_ADDR_PERM (default value).
9990 */
9991 if (dev->addr_assign_type == NET_ADDR_PERM)
9992 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9993
1da177e4 9994 /* Notify protocols, that a new device appeared. */
056925ab 9995 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 9996 ret = notifier_to_errno(ret);
93ee31f1
DL
9997 if (ret) {
9998 rollback_registered(dev);
10cc514f
SAK
9999 rcu_barrier();
10000
93ee31f1 10001 dev->reg_state = NETREG_UNREGISTERED;
814152a8
YY
10002 /* We should put the kobject that hold in
10003 * netdev_unregister_kobject(), otherwise
10004 * the net device cannot be freed when
10005 * driver calls free_netdev(), because the
10006 * kobject is being hold.
10007 */
10008 kobject_put(&dev->dev.kobj);
93ee31f1 10009 }
d90a909e
EB
10010 /*
10011 * Prevent userspace races by waiting until the network
10012 * device is fully setup before sending notifications.
10013 */
a2835763
PM
10014 if (!dev->rtnl_link_ops ||
10015 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 10016 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
10017
10018out:
10019 return ret;
7ce1b0ed
HX
10020
10021err_uninit:
d314774c
SH
10022 if (dev->netdev_ops->ndo_uninit)
10023 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
10024 if (dev->priv_destructor)
10025 dev->priv_destructor(dev);
42c17fa6
DC
10026err_free_name:
10027 netdev_name_node_free(dev->name_node);
7ce1b0ed 10028 goto out;
1da177e4 10029}
d1b19dff 10030EXPORT_SYMBOL(register_netdevice);
1da177e4 10031
937f1ba5
BH
10032/**
10033 * init_dummy_netdev - init a dummy network device for NAPI
10034 * @dev: device to init
10035 *
10036 * This takes a network device structure and initialize the minimum
10037 * amount of fields so it can be used to schedule NAPI polls without
10038 * registering a full blown interface. This is to be used by drivers
10039 * that need to tie several hardware interfaces to a single NAPI
10040 * poll scheduler due to HW limitations.
10041 */
10042int init_dummy_netdev(struct net_device *dev)
10043{
10044 /* Clear everything. Note we don't initialize spinlocks
10045 * are they aren't supposed to be taken by any of the
10046 * NAPI code and this dummy netdev is supposed to be
10047 * only ever used for NAPI polls
10048 */
10049 memset(dev, 0, sizeof(struct net_device));
10050
10051 /* make sure we BUG if trying to hit standard
10052 * register/unregister code path
10053 */
10054 dev->reg_state = NETREG_DUMMY;
10055
937f1ba5
BH
10056 /* NAPI wants this */
10057 INIT_LIST_HEAD(&dev->napi_list);
10058
10059 /* a dummy interface is started by default */
10060 set_bit(__LINK_STATE_PRESENT, &dev->state);
10061 set_bit(__LINK_STATE_START, &dev->state);
10062
35edfdc7
JE
10063 /* napi_busy_loop stats accounting wants this */
10064 dev_net_set(dev, &init_net);
10065
29b4433d
ED
10066 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10067 * because users of this 'device' dont need to change
10068 * its refcount.
10069 */
10070
937f1ba5
BH
10071 return 0;
10072}
10073EXPORT_SYMBOL_GPL(init_dummy_netdev);
10074
10075
1da177e4
LT
10076/**
10077 * register_netdev - register a network device
10078 * @dev: device to register
10079 *
10080 * Take a completed network device structure and add it to the kernel
10081 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10082 * chain. 0 is returned on success. A negative errno code is returned
10083 * on a failure to set up the device, or if the name is a duplicate.
10084 *
38b4da38 10085 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
10086 * and expands the device name if you passed a format string to
10087 * alloc_netdev.
10088 */
10089int register_netdev(struct net_device *dev)
10090{
10091 int err;
10092
b0f3debc
KT
10093 if (rtnl_lock_killable())
10094 return -EINTR;
1da177e4 10095 err = register_netdevice(dev);
1da177e4
LT
10096 rtnl_unlock();
10097 return err;
10098}
10099EXPORT_SYMBOL(register_netdev);
10100
29b4433d
ED
10101int netdev_refcnt_read(const struct net_device *dev)
10102{
10103 int i, refcnt = 0;
10104
10105 for_each_possible_cpu(i)
10106 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10107 return refcnt;
10108}
10109EXPORT_SYMBOL(netdev_refcnt_read);
10110
de2b541b
MCC
10111#define WAIT_REFS_MIN_MSECS 1
10112#define WAIT_REFS_MAX_MSECS 250
2c53040f 10113/**
1da177e4 10114 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 10115 * @dev: target net_device
1da177e4
LT
10116 *
10117 * This is called when unregistering network devices.
10118 *
10119 * Any protocol or device that holds a reference should register
10120 * for netdevice notification, and cleanup and put back the
10121 * reference if they receive an UNREGISTER event.
10122 * We can get stuck here if buggy protocols don't correctly
4ec93edb 10123 * call dev_put.
1da177e4
LT
10124 */
10125static void netdev_wait_allrefs(struct net_device *dev)
10126{
10127 unsigned long rebroadcast_time, warning_time;
0e4be9e5 10128 int wait = 0, refcnt;
1da177e4 10129
e014debe
ED
10130 linkwatch_forget_dev(dev);
10131
1da177e4 10132 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
10133 refcnt = netdev_refcnt_read(dev);
10134
10135 while (refcnt != 0) {
1da177e4 10136 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 10137 rtnl_lock();
1da177e4
LT
10138
10139 /* Rebroadcast unregister notification */
056925ab 10140 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 10141
748e2d93 10142 __rtnl_unlock();
0115e8e3 10143 rcu_barrier();
748e2d93
ED
10144 rtnl_lock();
10145
1da177e4
LT
10146 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10147 &dev->state)) {
10148 /* We must not have linkwatch events
10149 * pending on unregister. If this
10150 * happens, we simply run the queue
10151 * unscheduled, resulting in a noop
10152 * for this device.
10153 */
10154 linkwatch_run_queue();
10155 }
10156
6756ae4b 10157 __rtnl_unlock();
1da177e4
LT
10158
10159 rebroadcast_time = jiffies;
10160 }
10161
0e4be9e5
FR
10162 if (!wait) {
10163 rcu_barrier();
10164 wait = WAIT_REFS_MIN_MSECS;
10165 } else {
10166 msleep(wait);
10167 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10168 }
1da177e4 10169
29b4433d
ED
10170 refcnt = netdev_refcnt_read(dev);
10171
d7c04b05 10172 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
10173 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10174 dev->name, refcnt);
1da177e4
LT
10175 warning_time = jiffies;
10176 }
10177 }
10178}
10179
10180/* The sequence is:
10181 *
10182 * rtnl_lock();
10183 * ...
10184 * register_netdevice(x1);
10185 * register_netdevice(x2);
10186 * ...
10187 * unregister_netdevice(y1);
10188 * unregister_netdevice(y2);
10189 * ...
10190 * rtnl_unlock();
10191 * free_netdev(y1);
10192 * free_netdev(y2);
10193 *
58ec3b4d 10194 * We are invoked by rtnl_unlock().
1da177e4 10195 * This allows us to deal with problems:
b17a7c17 10196 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
10197 * without deadlocking with linkwatch via keventd.
10198 * 2) Since we run with the RTNL semaphore not held, we can sleep
10199 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
10200 *
10201 * We must not return until all unregister events added during
10202 * the interval the lock was held have been completed.
1da177e4 10203 */
1da177e4
LT
10204void netdev_run_todo(void)
10205{
626ab0e6 10206 struct list_head list;
1fc70edb
TY
10207#ifdef CONFIG_LOCKDEP
10208 struct list_head unlink_list;
10209
10210 list_replace_init(&net_unlink_list, &unlink_list);
10211
10212 while (!list_empty(&unlink_list)) {
10213 struct net_device *dev = list_first_entry(&unlink_list,
10214 struct net_device,
10215 unlink_list);
0e8b8d6a 10216 list_del_init(&dev->unlink_list);
1fc70edb
TY
10217 dev->nested_level = dev->lower_level - 1;
10218 }
10219#endif
1da177e4 10220
1da177e4 10221 /* Snapshot list, allow later requests */
626ab0e6 10222 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
10223
10224 __rtnl_unlock();
626ab0e6 10225
0115e8e3
ED
10226
10227 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
10228 if (!list_empty(&list))
10229 rcu_barrier();
10230
1da177e4
LT
10231 while (!list_empty(&list)) {
10232 struct net_device *dev
e5e26d75 10233 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
10234 list_del(&dev->todo_list);
10235
b17a7c17 10236 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 10237 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
10238 dev->name, dev->reg_state);
10239 dump_stack();
10240 continue;
10241 }
1da177e4 10242
b17a7c17 10243 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 10244
b17a7c17 10245 netdev_wait_allrefs(dev);
1da177e4 10246
b17a7c17 10247 /* paranoia */
29b4433d 10248 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
10249 BUG_ON(!list_empty(&dev->ptype_all));
10250 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
10251 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10252 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 10253#if IS_ENABLED(CONFIG_DECNET)
547b792c 10254 WARN_ON(dev->dn_ptr);
330c7272 10255#endif
cf124db5
DM
10256 if (dev->priv_destructor)
10257 dev->priv_destructor(dev);
10258 if (dev->needs_free_netdev)
10259 free_netdev(dev);
9093bbb2 10260
50624c93
EB
10261 /* Report a network device has been unregistered */
10262 rtnl_lock();
10263 dev_net(dev)->dev_unreg_count--;
10264 __rtnl_unlock();
10265 wake_up(&netdev_unregistering_wq);
10266
9093bbb2
SH
10267 /* Free network device */
10268 kobject_put(&dev->dev.kobj);
1da177e4 10269 }
1da177e4
LT
10270}
10271
9256645a
JW
10272/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10273 * all the same fields in the same order as net_device_stats, with only
10274 * the type differing, but rtnl_link_stats64 may have additional fields
10275 * at the end for newer counters.
3cfde79c 10276 */
77a1abf5
ED
10277void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10278 const struct net_device_stats *netdev_stats)
3cfde79c
BH
10279{
10280#if BITS_PER_LONG == 64
9256645a 10281 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 10282 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
10283 /* zero out counters that only exist in rtnl_link_stats64 */
10284 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10285 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 10286#else
9256645a 10287 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
10288 const unsigned long *src = (const unsigned long *)netdev_stats;
10289 u64 *dst = (u64 *)stats64;
10290
9256645a 10291 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
10292 for (i = 0; i < n; i++)
10293 dst[i] = src[i];
9256645a
JW
10294 /* zero out counters that only exist in rtnl_link_stats64 */
10295 memset((char *)stats64 + n * sizeof(u64), 0,
10296 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
10297#endif
10298}
77a1abf5 10299EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 10300
eeda3fd6
SH
10301/**
10302 * dev_get_stats - get network device statistics
10303 * @dev: device to get statistics from
28172739 10304 * @storage: place to store stats
eeda3fd6 10305 *
d7753516
BH
10306 * Get network statistics from device. Return @storage.
10307 * The device driver may provide its own method by setting
10308 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10309 * otherwise the internal statistics structure is used.
eeda3fd6 10310 */
d7753516
BH
10311struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10312 struct rtnl_link_stats64 *storage)
7004bf25 10313{
eeda3fd6
SH
10314 const struct net_device_ops *ops = dev->netdev_ops;
10315
28172739
ED
10316 if (ops->ndo_get_stats64) {
10317 memset(storage, 0, sizeof(*storage));
caf586e5
ED
10318 ops->ndo_get_stats64(dev, storage);
10319 } else if (ops->ndo_get_stats) {
3cfde79c 10320 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
10321 } else {
10322 netdev_stats_to_stats64(storage, &dev->stats);
28172739 10323 }
6f64ec74
ED
10324 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10325 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10326 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 10327 return storage;
c45d286e 10328}
eeda3fd6 10329EXPORT_SYMBOL(dev_get_stats);
c45d286e 10330
44fa32f0
HK
10331/**
10332 * dev_fetch_sw_netstats - get per-cpu network device statistics
10333 * @s: place to store stats
10334 * @netstats: per-cpu network stats to read from
10335 *
10336 * Read per-cpu network statistics and populate the related fields in @s.
10337 */
10338void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10339 const struct pcpu_sw_netstats __percpu *netstats)
10340{
10341 int cpu;
10342
10343 for_each_possible_cpu(cpu) {
10344 const struct pcpu_sw_netstats *stats;
10345 struct pcpu_sw_netstats tmp;
10346 unsigned int start;
10347
10348 stats = per_cpu_ptr(netstats, cpu);
10349 do {
10350 start = u64_stats_fetch_begin_irq(&stats->syncp);
10351 tmp.rx_packets = stats->rx_packets;
10352 tmp.rx_bytes = stats->rx_bytes;
10353 tmp.tx_packets = stats->tx_packets;
10354 tmp.tx_bytes = stats->tx_bytes;
10355 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10356
10357 s->rx_packets += tmp.rx_packets;
10358 s->rx_bytes += tmp.rx_bytes;
10359 s->tx_packets += tmp.tx_packets;
10360 s->tx_bytes += tmp.tx_bytes;
10361 }
10362}
10363EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10364
24824a09 10365struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 10366{
24824a09 10367 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 10368
24824a09
ED
10369#ifdef CONFIG_NET_CLS_ACT
10370 if (queue)
10371 return queue;
10372 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10373 if (!queue)
10374 return NULL;
10375 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 10376 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
10377 queue->qdisc_sleeping = &noop_qdisc;
10378 rcu_assign_pointer(dev->ingress_queue, queue);
10379#endif
10380 return queue;
bb949fbd
DM
10381}
10382
2c60db03
ED
10383static const struct ethtool_ops default_ethtool_ops;
10384
d07d7507
SG
10385void netdev_set_default_ethtool_ops(struct net_device *dev,
10386 const struct ethtool_ops *ops)
10387{
10388 if (dev->ethtool_ops == &default_ethtool_ops)
10389 dev->ethtool_ops = ops;
10390}
10391EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10392
74d332c1
ED
10393void netdev_freemem(struct net_device *dev)
10394{
10395 char *addr = (char *)dev - dev->padded;
10396
4cb28970 10397 kvfree(addr);
74d332c1
ED
10398}
10399
1da177e4 10400/**
722c9a0c 10401 * alloc_netdev_mqs - allocate network device
10402 * @sizeof_priv: size of private data to allocate space for
10403 * @name: device name format string
10404 * @name_assign_type: origin of device name
10405 * @setup: callback to initialize device
10406 * @txqs: the number of TX subqueues to allocate
10407 * @rxqs: the number of RX subqueues to allocate
10408 *
10409 * Allocates a struct net_device with private data area for driver use
10410 * and performs basic initialization. Also allocates subqueue structs
10411 * for each queue on the device.
1da177e4 10412 */
36909ea4 10413struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 10414 unsigned char name_assign_type,
36909ea4
TH
10415 void (*setup)(struct net_device *),
10416 unsigned int txqs, unsigned int rxqs)
1da177e4 10417{
1da177e4 10418 struct net_device *dev;
52a59bd5 10419 unsigned int alloc_size;
1ce8e7b5 10420 struct net_device *p;
1da177e4 10421
b6fe17d6
SH
10422 BUG_ON(strlen(name) >= sizeof(dev->name));
10423
36909ea4 10424 if (txqs < 1) {
7b6cd1ce 10425 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
10426 return NULL;
10427 }
10428
36909ea4 10429 if (rxqs < 1) {
7b6cd1ce 10430 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
10431 return NULL;
10432 }
36909ea4 10433
fd2ea0a7 10434 alloc_size = sizeof(struct net_device);
d1643d24
AD
10435 if (sizeof_priv) {
10436 /* ensure 32-byte alignment of private area */
1ce8e7b5 10437 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
10438 alloc_size += sizeof_priv;
10439 }
10440 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 10441 alloc_size += NETDEV_ALIGN - 1;
1da177e4 10442
dcda9b04 10443 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 10444 if (!p)
1da177e4 10445 return NULL;
1da177e4 10446
1ce8e7b5 10447 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 10448 dev->padded = (char *)dev - (char *)p;
ab9c73cc 10449
29b4433d
ED
10450 dev->pcpu_refcnt = alloc_percpu(int);
10451 if (!dev->pcpu_refcnt)
74d332c1 10452 goto free_dev;
ab9c73cc 10453
ab9c73cc 10454 if (dev_addr_init(dev))
29b4433d 10455 goto free_pcpu;
ab9c73cc 10456
22bedad3 10457 dev_mc_init(dev);
a748ee24 10458 dev_uc_init(dev);
ccffad25 10459
c346dca1 10460 dev_net_set(dev, &init_net);
1da177e4 10461
8d3bdbd5 10462 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 10463 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
10464 dev->upper_level = 1;
10465 dev->lower_level = 1;
1fc70edb
TY
10466#ifdef CONFIG_LOCKDEP
10467 dev->nested_level = 0;
10468 INIT_LIST_HEAD(&dev->unlink_list);
10469#endif
8d3bdbd5 10470
8d3bdbd5
DM
10471 INIT_LIST_HEAD(&dev->napi_list);
10472 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 10473 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 10474 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
10475 INIT_LIST_HEAD(&dev->adj_list.upper);
10476 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
10477 INIT_LIST_HEAD(&dev->ptype_all);
10478 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 10479 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
10480#ifdef CONFIG_NET_SCHED
10481 hash_init(dev->qdisc_hash);
10482#endif
02875878 10483 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
10484 setup(dev);
10485
a813104d 10486 if (!dev->tx_queue_len) {
f84bb1ea 10487 dev->priv_flags |= IFF_NO_QUEUE;
11597084 10488 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 10489 }
906470c1 10490
36909ea4
TH
10491 dev->num_tx_queues = txqs;
10492 dev->real_num_tx_queues = txqs;
ed9af2e8 10493 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 10494 goto free_all;
e8a0464c 10495
36909ea4
TH
10496 dev->num_rx_queues = rxqs;
10497 dev->real_num_rx_queues = rxqs;
fe822240 10498 if (netif_alloc_rx_queues(dev))
8d3bdbd5 10499 goto free_all;
0a9627f2 10500
1da177e4 10501 strcpy(dev->name, name);
c835a677 10502 dev->name_assign_type = name_assign_type;
cbda10fa 10503 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
10504 if (!dev->ethtool_ops)
10505 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 10506
357b6cc5 10507 nf_hook_ingress_init(dev);
e687ad60 10508
1da177e4 10509 return dev;
ab9c73cc 10510
8d3bdbd5
DM
10511free_all:
10512 free_netdev(dev);
10513 return NULL;
10514
29b4433d
ED
10515free_pcpu:
10516 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
10517free_dev:
10518 netdev_freemem(dev);
ab9c73cc 10519 return NULL;
1da177e4 10520}
36909ea4 10521EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
10522
10523/**
722c9a0c 10524 * free_netdev - free network device
10525 * @dev: device
1da177e4 10526 *
722c9a0c 10527 * This function does the last stage of destroying an allocated device
10528 * interface. The reference to the device object is released. If this
10529 * is the last reference then it will be freed.Must be called in process
10530 * context.
1da177e4
LT
10531 */
10532void free_netdev(struct net_device *dev)
10533{
d565b0a1
HX
10534 struct napi_struct *p, *n;
10535
93d05d4a 10536 might_sleep();
60877a32 10537 netif_free_tx_queues(dev);
e817f856 10538 netif_free_rx_queues(dev);
e8a0464c 10539
33d480ce 10540 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 10541
f001fde5
JP
10542 /* Flush device addresses */
10543 dev_addr_flush(dev);
10544
d565b0a1
HX
10545 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10546 netif_napi_del(p);
10547
29b4433d
ED
10548 free_percpu(dev->pcpu_refcnt);
10549 dev->pcpu_refcnt = NULL;
75ccae62
THJ
10550 free_percpu(dev->xdp_bulkq);
10551 dev->xdp_bulkq = NULL;
29b4433d 10552
3041a069 10553 /* Compatibility with error handling in drivers */
1da177e4 10554 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 10555 netdev_freemem(dev);
1da177e4
LT
10556 return;
10557 }
10558
10559 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10560 dev->reg_state = NETREG_RELEASED;
10561
43cb76d9
GKH
10562 /* will free via device release */
10563 put_device(&dev->dev);
1da177e4 10564}
d1b19dff 10565EXPORT_SYMBOL(free_netdev);
4ec93edb 10566
f0db275a
SH
10567/**
10568 * synchronize_net - Synchronize with packet receive processing
10569 *
10570 * Wait for packets currently being received to be done.
10571 * Does not block later packets from starting.
10572 */
4ec93edb 10573void synchronize_net(void)
1da177e4
LT
10574{
10575 might_sleep();
be3fc413
ED
10576 if (rtnl_is_locked())
10577 synchronize_rcu_expedited();
10578 else
10579 synchronize_rcu();
1da177e4 10580}
d1b19dff 10581EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
10582
10583/**
44a0873d 10584 * unregister_netdevice_queue - remove device from the kernel
1da177e4 10585 * @dev: device
44a0873d 10586 * @head: list
6ebfbc06 10587 *
1da177e4 10588 * This function shuts down a device interface and removes it
d59b54b1 10589 * from the kernel tables.
44a0873d 10590 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
10591 *
10592 * Callers must hold the rtnl semaphore. You may want
10593 * unregister_netdev() instead of this.
10594 */
10595
44a0873d 10596void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 10597{
a6620712
HX
10598 ASSERT_RTNL();
10599
44a0873d 10600 if (head) {
9fdce099 10601 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
10602 } else {
10603 rollback_registered(dev);
10604 /* Finish processing unregister after unlock */
10605 net_set_todo(dev);
10606 }
1da177e4 10607}
44a0873d 10608EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 10609
9b5e383c
ED
10610/**
10611 * unregister_netdevice_many - unregister many devices
10612 * @head: list of devices
87757a91
ED
10613 *
10614 * Note: As most callers use a stack allocated list_head,
10615 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
10616 */
10617void unregister_netdevice_many(struct list_head *head)
10618{
10619 struct net_device *dev;
10620
10621 if (!list_empty(head)) {
10622 rollback_registered_many(head);
10623 list_for_each_entry(dev, head, unreg_list)
10624 net_set_todo(dev);
87757a91 10625 list_del(head);
9b5e383c
ED
10626 }
10627}
63c8099d 10628EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 10629
1da177e4
LT
10630/**
10631 * unregister_netdev - remove device from the kernel
10632 * @dev: device
10633 *
10634 * This function shuts down a device interface and removes it
d59b54b1 10635 * from the kernel tables.
1da177e4
LT
10636 *
10637 * This is just a wrapper for unregister_netdevice that takes
10638 * the rtnl semaphore. In general you want to use this and not
10639 * unregister_netdevice.
10640 */
10641void unregister_netdev(struct net_device *dev)
10642{
10643 rtnl_lock();
10644 unregister_netdevice(dev);
10645 rtnl_unlock();
10646}
1da177e4
LT
10647EXPORT_SYMBOL(unregister_netdev);
10648
ce286d32
EB
10649/**
10650 * dev_change_net_namespace - move device to different nethost namespace
10651 * @dev: device
10652 * @net: network namespace
10653 * @pat: If not NULL name pattern to try if the current device name
10654 * is already taken in the destination network namespace.
10655 *
10656 * This function shuts down a device interface and moves it
10657 * to a new network namespace. On success 0 is returned, on
10658 * a failure a netagive errno code is returned.
10659 *
10660 * Callers must hold the rtnl semaphore.
10661 */
10662
10663int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10664{
ef6a4c88 10665 struct net *net_old = dev_net(dev);
38e01b30 10666 int err, new_nsid, new_ifindex;
ce286d32
EB
10667
10668 ASSERT_RTNL();
10669
10670 /* Don't allow namespace local devices to be moved. */
10671 err = -EINVAL;
10672 if (dev->features & NETIF_F_NETNS_LOCAL)
10673 goto out;
10674
10675 /* Ensure the device has been registrered */
ce286d32
EB
10676 if (dev->reg_state != NETREG_REGISTERED)
10677 goto out;
10678
10679 /* Get out if there is nothing todo */
10680 err = 0;
ef6a4c88 10681 if (net_eq(net_old, net))
ce286d32
EB
10682 goto out;
10683
10684 /* Pick the destination device name, and ensure
10685 * we can use it in the destination network namespace.
10686 */
10687 err = -EEXIST;
d9031024 10688 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
10689 /* We get here if we can't use the current device name */
10690 if (!pat)
10691 goto out;
7892bd08
LR
10692 err = dev_get_valid_name(net, dev, pat);
10693 if (err < 0)
ce286d32
EB
10694 goto out;
10695 }
10696
10697 /*
10698 * And now a mini version of register_netdevice unregister_netdevice.
10699 */
10700
10701 /* If device is running close it first. */
9b772652 10702 dev_close(dev);
ce286d32
EB
10703
10704 /* And unlink it from device chain */
ce286d32
EB
10705 unlist_netdevice(dev);
10706
10707 synchronize_net();
10708
10709 /* Shutdown queueing discipline. */
10710 dev_shutdown(dev);
10711
10712 /* Notify protocols, that we are about to destroy
eb13da1a 10713 * this device. They should clean all the things.
10714 *
10715 * Note that dev->reg_state stays at NETREG_REGISTERED.
10716 * This is wanted because this way 8021q and macvlan know
10717 * the device is just moving and can keep their slaves up.
10718 */
ce286d32 10719 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 10720 rcu_barrier();
38e01b30 10721
d4e4fdf9 10722 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30
ND
10723 /* If there is an ifindex conflict assign a new one */
10724 if (__dev_get_by_index(net, dev->ifindex))
10725 new_ifindex = dev_new_index(net);
10726 else
10727 new_ifindex = dev->ifindex;
10728
10729 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10730 new_ifindex);
ce286d32
EB
10731
10732 /*
10733 * Flush the unicast and multicast chains
10734 */
a748ee24 10735 dev_uc_flush(dev);
22bedad3 10736 dev_mc_flush(dev);
ce286d32 10737
4e66ae2e
SH
10738 /* Send a netdev-removed uevent to the old namespace */
10739 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 10740 netdev_adjacent_del_links(dev);
4e66ae2e 10741
93642e14
JP
10742 /* Move per-net netdevice notifiers that are following the netdevice */
10743 move_netdevice_notifiers_dev_net(dev, net);
10744
ce286d32 10745 /* Actually switch the network namespace */
c346dca1 10746 dev_net_set(dev, net);
38e01b30 10747 dev->ifindex = new_ifindex;
ce286d32 10748
4e66ae2e
SH
10749 /* Send a netdev-add uevent to the new namespace */
10750 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 10751 netdev_adjacent_add_links(dev);
4e66ae2e 10752
8b41d188 10753 /* Fixup kobjects */
a1b3f594 10754 err = device_rename(&dev->dev, dev->name);
8b41d188 10755 WARN_ON(err);
ce286d32 10756
ef6a4c88
CB
10757 /* Adapt owner in case owning user namespace of target network
10758 * namespace is different from the original one.
10759 */
10760 err = netdev_change_owner(dev, net_old, net);
10761 WARN_ON(err);
10762
ce286d32
EB
10763 /* Add the device back in the hashes */
10764 list_netdevice(dev);
10765
10766 /* Notify protocols, that a new device appeared. */
10767 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10768
d90a909e
EB
10769 /*
10770 * Prevent userspace races by waiting until the network
10771 * device is fully setup before sending notifications.
10772 */
7f294054 10773 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 10774
ce286d32
EB
10775 synchronize_net();
10776 err = 0;
10777out:
10778 return err;
10779}
463d0183 10780EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 10781
f0bf90de 10782static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
10783{
10784 struct sk_buff **list_skb;
1da177e4 10785 struct sk_buff *skb;
f0bf90de 10786 unsigned int cpu;
97d8b6e3 10787 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 10788
1da177e4
LT
10789 local_irq_disable();
10790 cpu = smp_processor_id();
10791 sd = &per_cpu(softnet_data, cpu);
10792 oldsd = &per_cpu(softnet_data, oldcpu);
10793
10794 /* Find end of our completion_queue. */
10795 list_skb = &sd->completion_queue;
10796 while (*list_skb)
10797 list_skb = &(*list_skb)->next;
10798 /* Append completion queue from offline CPU. */
10799 *list_skb = oldsd->completion_queue;
10800 oldsd->completion_queue = NULL;
10801
1da177e4 10802 /* Append output queue from offline CPU. */
a9cbd588
CG
10803 if (oldsd->output_queue) {
10804 *sd->output_queue_tailp = oldsd->output_queue;
10805 sd->output_queue_tailp = oldsd->output_queue_tailp;
10806 oldsd->output_queue = NULL;
10807 oldsd->output_queue_tailp = &oldsd->output_queue;
10808 }
ac64da0b
ED
10809 /* Append NAPI poll list from offline CPU, with one exception :
10810 * process_backlog() must be called by cpu owning percpu backlog.
10811 * We properly handle process_queue & input_pkt_queue later.
10812 */
10813 while (!list_empty(&oldsd->poll_list)) {
10814 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10815 struct napi_struct,
10816 poll_list);
10817
10818 list_del_init(&napi->poll_list);
10819 if (napi->poll == process_backlog)
10820 napi->state = 0;
10821 else
10822 ____napi_schedule(sd, napi);
264524d5 10823 }
1da177e4
LT
10824
10825 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10826 local_irq_enable();
10827
773fc8f6 10828#ifdef CONFIG_RPS
10829 remsd = oldsd->rps_ipi_list;
10830 oldsd->rps_ipi_list = NULL;
10831#endif
10832 /* send out pending IPI's on offline CPU */
10833 net_rps_send_ipi(remsd);
10834
1da177e4 10835 /* Process offline CPU's input_pkt_queue */
76cc8b13 10836 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 10837 netif_rx_ni(skb);
76cc8b13 10838 input_queue_head_incr(oldsd);
fec5e652 10839 }
ac64da0b 10840 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 10841 netif_rx_ni(skb);
76cc8b13
TH
10842 input_queue_head_incr(oldsd);
10843 }
1da177e4 10844
f0bf90de 10845 return 0;
1da177e4 10846}
1da177e4 10847
7f353bf2 10848/**
b63365a2
HX
10849 * netdev_increment_features - increment feature set by one
10850 * @all: current feature set
10851 * @one: new feature set
10852 * @mask: mask feature set
7f353bf2
HX
10853 *
10854 * Computes a new feature set after adding a device with feature set
b63365a2
HX
10855 * @one to the master device with current feature set @all. Will not
10856 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 10857 */
c8f44aff
MM
10858netdev_features_t netdev_increment_features(netdev_features_t all,
10859 netdev_features_t one, netdev_features_t mask)
b63365a2 10860{
c8cd0989 10861 if (mask & NETIF_F_HW_CSUM)
a188222b 10862 mask |= NETIF_F_CSUM_MASK;
1742f183 10863 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 10864
a188222b 10865 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 10866 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 10867
1742f183 10868 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
10869 if (all & NETIF_F_HW_CSUM)
10870 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
10871
10872 return all;
10873}
b63365a2 10874EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 10875
430f03cd 10876static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
10877{
10878 int i;
10879 struct hlist_head *hash;
10880
6da2ec56 10881 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
10882 if (hash != NULL)
10883 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10884 INIT_HLIST_HEAD(&hash[i]);
10885
10886 return hash;
10887}
10888
881d966b 10889/* Initialize per network namespace state */
4665079c 10890static int __net_init netdev_init(struct net *net)
881d966b 10891{
d9f37d01 10892 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 10893 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 10894
734b6541
RM
10895 if (net != &init_net)
10896 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 10897
30d97d35
PE
10898 net->dev_name_head = netdev_create_hash();
10899 if (net->dev_name_head == NULL)
10900 goto err_name;
881d966b 10901
30d97d35
PE
10902 net->dev_index_head = netdev_create_hash();
10903 if (net->dev_index_head == NULL)
10904 goto err_idx;
881d966b 10905
a30c7b42
JP
10906 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10907
881d966b 10908 return 0;
30d97d35
PE
10909
10910err_idx:
10911 kfree(net->dev_name_head);
10912err_name:
10913 return -ENOMEM;
881d966b
EB
10914}
10915
f0db275a
SH
10916/**
10917 * netdev_drivername - network driver for the device
10918 * @dev: network device
f0db275a
SH
10919 *
10920 * Determine network driver for device.
10921 */
3019de12 10922const char *netdev_drivername(const struct net_device *dev)
6579e57b 10923{
cf04a4c7
SH
10924 const struct device_driver *driver;
10925 const struct device *parent;
3019de12 10926 const char *empty = "";
6579e57b
AV
10927
10928 parent = dev->dev.parent;
6579e57b 10929 if (!parent)
3019de12 10930 return empty;
6579e57b
AV
10931
10932 driver = parent->driver;
10933 if (driver && driver->name)
3019de12
DM
10934 return driver->name;
10935 return empty;
6579e57b
AV
10936}
10937
6ea754eb
JP
10938static void __netdev_printk(const char *level, const struct net_device *dev,
10939 struct va_format *vaf)
256df2f3 10940{
b004ff49 10941 if (dev && dev->dev.parent) {
6ea754eb
JP
10942 dev_printk_emit(level[1] - '0',
10943 dev->dev.parent,
10944 "%s %s %s%s: %pV",
10945 dev_driver_string(dev->dev.parent),
10946 dev_name(dev->dev.parent),
10947 netdev_name(dev), netdev_reg_state(dev),
10948 vaf);
b004ff49 10949 } else if (dev) {
6ea754eb
JP
10950 printk("%s%s%s: %pV",
10951 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 10952 } else {
6ea754eb 10953 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 10954 }
256df2f3
JP
10955}
10956
6ea754eb
JP
10957void netdev_printk(const char *level, const struct net_device *dev,
10958 const char *format, ...)
256df2f3
JP
10959{
10960 struct va_format vaf;
10961 va_list args;
256df2f3
JP
10962
10963 va_start(args, format);
10964
10965 vaf.fmt = format;
10966 vaf.va = &args;
10967
6ea754eb 10968 __netdev_printk(level, dev, &vaf);
b004ff49 10969
256df2f3 10970 va_end(args);
256df2f3
JP
10971}
10972EXPORT_SYMBOL(netdev_printk);
10973
10974#define define_netdev_printk_level(func, level) \
6ea754eb 10975void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 10976{ \
256df2f3
JP
10977 struct va_format vaf; \
10978 va_list args; \
10979 \
10980 va_start(args, fmt); \
10981 \
10982 vaf.fmt = fmt; \
10983 vaf.va = &args; \
10984 \
6ea754eb 10985 __netdev_printk(level, dev, &vaf); \
b004ff49 10986 \
256df2f3 10987 va_end(args); \
256df2f3
JP
10988} \
10989EXPORT_SYMBOL(func);
10990
10991define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10992define_netdev_printk_level(netdev_alert, KERN_ALERT);
10993define_netdev_printk_level(netdev_crit, KERN_CRIT);
10994define_netdev_printk_level(netdev_err, KERN_ERR);
10995define_netdev_printk_level(netdev_warn, KERN_WARNING);
10996define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10997define_netdev_printk_level(netdev_info, KERN_INFO);
10998
4665079c 10999static void __net_exit netdev_exit(struct net *net)
881d966b
EB
11000{
11001 kfree(net->dev_name_head);
11002 kfree(net->dev_index_head);
ee21b18b
VA
11003 if (net != &init_net)
11004 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
11005}
11006
022cbae6 11007static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
11008 .init = netdev_init,
11009 .exit = netdev_exit,
11010};
11011
4665079c 11012static void __net_exit default_device_exit(struct net *net)
ce286d32 11013{
e008b5fc 11014 struct net_device *dev, *aux;
ce286d32 11015 /*
e008b5fc 11016 * Push all migratable network devices back to the
ce286d32
EB
11017 * initial network namespace
11018 */
11019 rtnl_lock();
e008b5fc 11020 for_each_netdev_safe(net, dev, aux) {
ce286d32 11021 int err;
aca51397 11022 char fb_name[IFNAMSIZ];
ce286d32
EB
11023
11024 /* Ignore unmoveable devices (i.e. loopback) */
11025 if (dev->features & NETIF_F_NETNS_LOCAL)
11026 continue;
11027
e008b5fc
EB
11028 /* Leave virtual devices for the generic cleanup */
11029 if (dev->rtnl_link_ops)
11030 continue;
d0c082ce 11031
25985edc 11032 /* Push remaining network devices to init_net */
aca51397 11033 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
11034 if (__dev_get_by_name(&init_net, fb_name))
11035 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 11036 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 11037 if (err) {
7b6cd1ce
JP
11038 pr_emerg("%s: failed to move %s to init_net: %d\n",
11039 __func__, dev->name, err);
aca51397 11040 BUG();
ce286d32
EB
11041 }
11042 }
11043 rtnl_unlock();
11044}
11045
50624c93
EB
11046static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11047{
11048 /* Return with the rtnl_lock held when there are no network
11049 * devices unregistering in any network namespace in net_list.
11050 */
11051 struct net *net;
11052 bool unregistering;
ff960a73 11053 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 11054
ff960a73 11055 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 11056 for (;;) {
50624c93
EB
11057 unregistering = false;
11058 rtnl_lock();
11059 list_for_each_entry(net, net_list, exit_list) {
11060 if (net->dev_unreg_count > 0) {
11061 unregistering = true;
11062 break;
11063 }
11064 }
11065 if (!unregistering)
11066 break;
11067 __rtnl_unlock();
ff960a73
PZ
11068
11069 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 11070 }
ff960a73 11071 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
11072}
11073
04dc7f6b
EB
11074static void __net_exit default_device_exit_batch(struct list_head *net_list)
11075{
11076 /* At exit all network devices most be removed from a network
b595076a 11077 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
11078 * Do this across as many network namespaces as possible to
11079 * improve batching efficiency.
11080 */
11081 struct net_device *dev;
11082 struct net *net;
11083 LIST_HEAD(dev_kill_list);
11084
50624c93
EB
11085 /* To prevent network device cleanup code from dereferencing
11086 * loopback devices or network devices that have been freed
11087 * wait here for all pending unregistrations to complete,
11088 * before unregistring the loopback device and allowing the
11089 * network namespace be freed.
11090 *
11091 * The netdev todo list containing all network devices
11092 * unregistrations that happen in default_device_exit_batch
11093 * will run in the rtnl_unlock() at the end of
11094 * default_device_exit_batch.
11095 */
11096 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
11097 list_for_each_entry(net, net_list, exit_list) {
11098 for_each_netdev_reverse(net, dev) {
b0ab2fab 11099 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
11100 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11101 else
11102 unregister_netdevice_queue(dev, &dev_kill_list);
11103 }
11104 }
11105 unregister_netdevice_many(&dev_kill_list);
11106 rtnl_unlock();
11107}
11108
022cbae6 11109static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 11110 .exit = default_device_exit,
04dc7f6b 11111 .exit_batch = default_device_exit_batch,
ce286d32
EB
11112};
11113
1da177e4
LT
11114/*
11115 * Initialize the DEV module. At boot time this walks the device list and
11116 * unhooks any devices that fail to initialise (normally hardware not
11117 * present) and leaves us with a valid list of present and active devices.
11118 *
11119 */
11120
11121/*
11122 * This is called single threaded during boot, so no need
11123 * to take the rtnl semaphore.
11124 */
11125static int __init net_dev_init(void)
11126{
11127 int i, rc = -ENOMEM;
11128
11129 BUG_ON(!dev_boot_phase);
11130
1da177e4
LT
11131 if (dev_proc_init())
11132 goto out;
11133
8b41d188 11134 if (netdev_kobject_init())
1da177e4
LT
11135 goto out;
11136
11137 INIT_LIST_HEAD(&ptype_all);
82d8a867 11138 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
11139 INIT_LIST_HEAD(&ptype_base[i]);
11140
62532da9
VY
11141 INIT_LIST_HEAD(&offload_base);
11142
881d966b
EB
11143 if (register_pernet_subsys(&netdev_net_ops))
11144 goto out;
1da177e4
LT
11145
11146 /*
11147 * Initialise the packet receive queues.
11148 */
11149
6f912042 11150 for_each_possible_cpu(i) {
41852497 11151 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 11152 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 11153
41852497
ED
11154 INIT_WORK(flush, flush_backlog);
11155
e36fa2f7 11156 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 11157 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
11158#ifdef CONFIG_XFRM_OFFLOAD
11159 skb_queue_head_init(&sd->xfrm_backlog);
11160#endif
e36fa2f7 11161 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 11162 sd->output_queue_tailp = &sd->output_queue;
df334545 11163#ifdef CONFIG_RPS
e36fa2f7
ED
11164 sd->csd.func = rps_trigger_softirq;
11165 sd->csd.info = sd;
e36fa2f7 11166 sd->cpu = i;
1e94d72f 11167#endif
0a9627f2 11168
7c4ec749 11169 init_gro_hash(&sd->backlog);
e36fa2f7
ED
11170 sd->backlog.poll = process_backlog;
11171 sd->backlog.weight = weight_p;
1da177e4
LT
11172 }
11173
1da177e4
LT
11174 dev_boot_phase = 0;
11175
505d4f73
EB
11176 /* The loopback device is special if any other network devices
11177 * is present in a network namespace the loopback device must
11178 * be present. Since we now dynamically allocate and free the
11179 * loopback device ensure this invariant is maintained by
11180 * keeping the loopback device as the first device on the
11181 * list of network devices. Ensuring the loopback devices
11182 * is the first device that appears and the last network device
11183 * that disappears.
11184 */
11185 if (register_pernet_device(&loopback_net_ops))
11186 goto out;
11187
11188 if (register_pernet_device(&default_device_ops))
11189 goto out;
11190
962cf36c
CM
11191 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11192 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 11193
f0bf90de
SAS
11194 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11195 NULL, dev_cpu_dead);
11196 WARN_ON(rc < 0);
1da177e4
LT
11197 rc = 0;
11198out:
11199 return rc;
11200}
11201
11202subsys_initcall(net_dev_init);