once: implement DO_ONCE_LITE for non-fast-path "do once" functionality
[linux-block.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
11d6011c 82#include <linux/rwsem.h>
1da177e4
LT
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
0187bdfb 92#include <linux/ethtool.h>
1da177e4 93#include <linux/skbuff.h>
29863d41 94#include <linux/kthread.h>
a7862b45 95#include <linux/bpf.h>
b5cdae32 96#include <linux/bpf_trace.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4 98#include <net/sock.h>
02d62e86 99#include <net/busy_poll.h>
1da177e4 100#include <linux/rtnetlink.h>
1da177e4 101#include <linux/stat.h>
b14a9fc4 102#include <net/dsa.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
04f00ab2 105#include <net/gro.h>
1da177e4 106#include <net/pkt_sched.h>
87d83093 107#include <net/pkt_cls.h>
1da177e4 108#include <net/checksum.h>
44540960 109#include <net/xfrm.h>
1da177e4
LT
110#include <linux/highmem.h>
111#include <linux/init.h>
1da177e4 112#include <linux/module.h>
1da177e4
LT
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
1da177e4 116#include <net/iw_handler.h>
1da177e4 117#include <asm/current.h>
5bdb9886 118#include <linux/audit.h>
db217334 119#include <linux/dmaengine.h>
f6a78bfc 120#include <linux/err.h>
c7fa9d18 121#include <linux/ctype.h>
723e98b7 122#include <linux/if_arp.h>
6de329e2 123#include <linux/if_vlan.h>
8f0f2223 124#include <linux/ip.h>
ad55dcaf 125#include <net/ip.h>
25cd9ba0 126#include <net/mpls.h>
8f0f2223
DM
127#include <linux/ipv6.h>
128#include <linux/in.h>
b6b2fed1
DM
129#include <linux/jhash.h>
130#include <linux/random.h>
9cbc1cb8 131#include <trace/events/napi.h>
cf66ba58 132#include <trace/events/net.h>
07dc22e7 133#include <trace/events/skb.h>
caeda9b9 134#include <linux/inetdevice.h>
c445477d 135#include <linux/cpu_rmap.h>
c5905afb 136#include <linux/static_key.h>
af12fa6e 137#include <linux/hashtable.h>
60877a32 138#include <linux/vmalloc.h>
529d0489 139#include <linux/if_macvlan.h>
e7fd2885 140#include <linux/errqueue.h>
3b47d303 141#include <linux/hrtimer.h>
357b6cc5 142#include <linux/netfilter_ingress.h>
40e4e713 143#include <linux/crash_dump.h>
b72b5bf6 144#include <linux/sctp.h>
ae847f40 145#include <net/udp_tunnel.h>
6621dd29 146#include <linux/net_namespace.h>
aaa5d90b 147#include <linux/indirect_call_wrapper.h>
af3836df 148#include <net/devlink.h>
bd869245 149#include <linux/pm_runtime.h>
3744741a 150#include <linux/prandom.h>
1da177e4 151
342709ef
PE
152#include "net-sysfs.h"
153
d565b0a1
HX
154#define MAX_GRO_SKBS 8
155
5d38a079
HX
156/* This should be increased if a protocol with a bigger head is added. */
157#define GRO_MAX_HEAD (MAX_HEADER + 128)
158
1da177e4 159static DEFINE_SPINLOCK(ptype_lock);
62532da9 160static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
161struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162struct list_head ptype_all __read_mostly; /* Taps */
62532da9 163static struct list_head offload_base __read_mostly;
1da177e4 164
ae78dbfa 165static int netif_rx_internal(struct sk_buff *skb);
54951194 166static int call_netdevice_notifiers_info(unsigned long val,
54951194 167 struct netdev_notifier_info *info);
26372605
PM
168static int call_netdevice_notifiers_extack(unsigned long val,
169 struct net_device *dev,
170 struct netlink_ext_ack *extack);
90b602f8 171static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 172
1da177e4 173/*
7562f876 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
175 * semaphore.
176 *
c6d14c84 177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
7562f876 180 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
1da177e4 192DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
193EXPORT_SYMBOL(dev_base_lock);
194
6c557001
FW
195static DEFINE_MUTEX(ifalias_mutex);
196
af12fa6e
ET
197/* protects napi_hash addition/deletion and napi_gen_id */
198static DEFINE_SPINLOCK(napi_hash_lock);
199
52bd2d62 200static unsigned int napi_gen_id = NR_CPUS;
6180d9de 201static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 202
11d6011c 203static DECLARE_RWSEM(devnet_rename_sem);
c91f6df2 204
4e985ada
TG
205static inline void dev_base_seq_inc(struct net *net)
206{
643aa9cb 207 while (++net->dev_base_seq == 0)
208 ;
4e985ada
TG
209}
210
881d966b 211static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 212{
8387ff25 213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 214
08e9897d 215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
216}
217
881d966b 218static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 219{
7c28bd0b 220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
221}
222
e36fa2f7 223static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
224{
225#ifdef CONFIG_RPS
e36fa2f7 226 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
227#endif
228}
229
e36fa2f7 230static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
231{
232#ifdef CONFIG_RPS
e36fa2f7 233 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
234#endif
235}
236
ff927412
JP
237static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 const char *name)
239{
240 struct netdev_name_node *name_node;
241
242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 if (!name_node)
244 return NULL;
245 INIT_HLIST_NODE(&name_node->hlist);
246 name_node->dev = dev;
247 name_node->name = name;
248 return name_node;
249}
250
251static struct netdev_name_node *
252netdev_name_node_head_alloc(struct net_device *dev)
253{
36fbf1e5
JP
254 struct netdev_name_node *name_node;
255
256 name_node = netdev_name_node_alloc(dev, dev->name);
257 if (!name_node)
258 return NULL;
259 INIT_LIST_HEAD(&name_node->list);
260 return name_node;
ff927412
JP
261}
262
263static void netdev_name_node_free(struct netdev_name_node *name_node)
264{
265 kfree(name_node);
266}
267
268static void netdev_name_node_add(struct net *net,
269 struct netdev_name_node *name_node)
270{
271 hlist_add_head_rcu(&name_node->hlist,
272 dev_name_hash(net, name_node->name));
273}
274
275static void netdev_name_node_del(struct netdev_name_node *name_node)
276{
277 hlist_del_rcu(&name_node->hlist);
278}
279
280static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 const char *name)
282{
283 struct hlist_head *head = dev_name_hash(net, name);
284 struct netdev_name_node *name_node;
285
286 hlist_for_each_entry(name_node, head, hlist)
287 if (!strcmp(name_node->name, name))
288 return name_node;
289 return NULL;
290}
291
292static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 const char *name)
294{
295 struct hlist_head *head = dev_name_hash(net, name);
296 struct netdev_name_node *name_node;
297
298 hlist_for_each_entry_rcu(name_node, head, hlist)
299 if (!strcmp(name_node->name, name))
300 return name_node;
301 return NULL;
302}
303
36fbf1e5
JP
304int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305{
306 struct netdev_name_node *name_node;
307 struct net *net = dev_net(dev);
308
309 name_node = netdev_name_node_lookup(net, name);
310 if (name_node)
311 return -EEXIST;
312 name_node = netdev_name_node_alloc(dev, name);
313 if (!name_node)
314 return -ENOMEM;
315 netdev_name_node_add(net, name_node);
316 /* The node that holds dev->name acts as a head of per-device list. */
317 list_add_tail(&name_node->list, &dev->name_node->list);
318
319 return 0;
320}
321EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324{
325 list_del(&name_node->list);
326 netdev_name_node_del(name_node);
327 kfree(name_node->name);
328 netdev_name_node_free(name_node);
329}
330
331int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332{
333 struct netdev_name_node *name_node;
334 struct net *net = dev_net(dev);
335
336 name_node = netdev_name_node_lookup(net, name);
337 if (!name_node)
338 return -ENOENT;
e08ad805
ED
339 /* lookup might have found our primary name or a name belonging
340 * to another device.
341 */
342 if (name_node == dev->name_node || name_node->dev != dev)
343 return -EINVAL;
344
36fbf1e5
JP
345 __netdev_name_node_alt_destroy(name_node);
346
347 return 0;
348}
349EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351static void netdev_name_node_alt_flush(struct net_device *dev)
352{
353 struct netdev_name_node *name_node, *tmp;
354
355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 __netdev_name_node_alt_destroy(name_node);
357}
358
ce286d32 359/* Device list insertion */
53759be9 360static void list_netdevice(struct net_device *dev)
ce286d32 361{
c346dca1 362 struct net *net = dev_net(dev);
ce286d32
EB
363
364 ASSERT_RTNL();
365
366 write_lock_bh(&dev_base_lock);
c6d14c84 367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 368 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
369 hlist_add_head_rcu(&dev->index_hlist,
370 dev_index_hash(net, dev->ifindex));
ce286d32 371 write_unlock_bh(&dev_base_lock);
4e985ada
TG
372
373 dev_base_seq_inc(net);
ce286d32
EB
374}
375
fb699dfd
ED
376/* Device list removal
377 * caller must respect a RCU grace period before freeing/reusing dev
378 */
ce286d32
EB
379static void unlist_netdevice(struct net_device *dev)
380{
381 ASSERT_RTNL();
382
383 /* Unlink dev from the device chain */
384 write_lock_bh(&dev_base_lock);
c6d14c84 385 list_del_rcu(&dev->dev_list);
ff927412 386 netdev_name_node_del(dev->name_node);
fb699dfd 387 hlist_del_rcu(&dev->index_hlist);
ce286d32 388 write_unlock_bh(&dev_base_lock);
4e985ada
TG
389
390 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
391}
392
1da177e4
LT
393/*
394 * Our notifier list
395 */
396
f07d5b94 397static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
398
399/*
400 * Device drivers call our routines to queue packets here. We empty the
401 * queue in the local softnet handler.
402 */
bea3348e 403
9958da05 404DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 405EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 406
1a33e10e
CW
407#ifdef CONFIG_LOCKDEP
408/*
409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410 * according to dev->type
411 */
412static const unsigned short netdev_lock_type[] = {
413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429static const char *const netdev_lock_name[] = {
430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
845e0ebb 447static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
1a33e10e
CW
448
449static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450{
451 int i;
452
453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 if (netdev_lock_type[i] == dev_type)
455 return i;
456 /* the last key is used by default */
457 return ARRAY_SIZE(netdev_lock_type) - 1;
458}
459
460static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 unsigned short dev_type)
462{
463 int i;
464
465 i = netdev_lock_pos(dev_type);
466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 netdev_lock_name[i]);
468}
845e0ebb
CW
469
470static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471{
472 int i;
473
474 i = netdev_lock_pos(dev->type);
475 lockdep_set_class_and_name(&dev->addr_list_lock,
476 &netdev_addr_lock_key[i],
477 netdev_lock_name[i]);
478}
1a33e10e
CW
479#else
480static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 unsigned short dev_type)
482{
483}
845e0ebb
CW
484
485static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486{
487}
1a33e10e
CW
488#endif
489
1da177e4 490/*******************************************************************************
eb13da1a 491 *
492 * Protocol management and registration routines
493 *
494 *******************************************************************************/
1da177e4 495
1da177e4 496
1da177e4
LT
497/*
498 * Add a protocol ID to the list. Now that the input handler is
499 * smarter we can dispense with all the messy stuff that used to be
500 * here.
501 *
502 * BEWARE!!! Protocol handlers, mangling input packets,
503 * MUST BE last in hash buckets and checking protocol handlers
504 * MUST start from promiscuous ptype_all chain in net_bh.
505 * It is true now, do not change it.
506 * Explanation follows: if protocol handler, mangling packet, will
507 * be the first on list, it is not able to sense, that packet
508 * is cloned and should be copied-on-write, so that it will
509 * change it and subsequent readers will get broken packet.
510 * --ANK (980803)
511 */
512
c07b68e8
ED
513static inline struct list_head *ptype_head(const struct packet_type *pt)
514{
515 if (pt->type == htons(ETH_P_ALL))
7866a621 516 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 517 else
7866a621
SN
518 return pt->dev ? &pt->dev->ptype_specific :
519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
520}
521
1da177e4
LT
522/**
523 * dev_add_pack - add packet handler
524 * @pt: packet type declaration
525 *
526 * Add a protocol handler to the networking stack. The passed &packet_type
527 * is linked into kernel lists and may not be freed until it has been
528 * removed from the kernel lists.
529 *
4ec93edb 530 * This call does not sleep therefore it can not
1da177e4
LT
531 * guarantee all CPU's that are in middle of receiving packets
532 * will see the new packet type (until the next received packet).
533 */
534
535void dev_add_pack(struct packet_type *pt)
536{
c07b68e8 537 struct list_head *head = ptype_head(pt);
1da177e4 538
c07b68e8
ED
539 spin_lock(&ptype_lock);
540 list_add_rcu(&pt->list, head);
541 spin_unlock(&ptype_lock);
1da177e4 542}
d1b19dff 543EXPORT_SYMBOL(dev_add_pack);
1da177e4 544
1da177e4
LT
545/**
546 * __dev_remove_pack - remove packet handler
547 * @pt: packet type declaration
548 *
549 * Remove a protocol handler that was previously added to the kernel
550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
551 * from the kernel lists and can be freed or reused once this function
4ec93edb 552 * returns.
1da177e4
LT
553 *
554 * The packet type might still be in use by receivers
555 * and must not be freed until after all the CPU's have gone
556 * through a quiescent state.
557 */
558void __dev_remove_pack(struct packet_type *pt)
559{
c07b68e8 560 struct list_head *head = ptype_head(pt);
1da177e4
LT
561 struct packet_type *pt1;
562
c07b68e8 563 spin_lock(&ptype_lock);
1da177e4
LT
564
565 list_for_each_entry(pt1, head, list) {
566 if (pt == pt1) {
567 list_del_rcu(&pt->list);
568 goto out;
569 }
570 }
571
7b6cd1ce 572 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 573out:
c07b68e8 574 spin_unlock(&ptype_lock);
1da177e4 575}
d1b19dff
ED
576EXPORT_SYMBOL(__dev_remove_pack);
577
1da177e4
LT
578/**
579 * dev_remove_pack - remove packet handler
580 * @pt: packet type declaration
581 *
582 * Remove a protocol handler that was previously added to the kernel
583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
584 * from the kernel lists and can be freed or reused once this function
585 * returns.
586 *
587 * This call sleeps to guarantee that no CPU is looking at the packet
588 * type after return.
589 */
590void dev_remove_pack(struct packet_type *pt)
591{
592 __dev_remove_pack(pt);
4ec93edb 593
1da177e4
LT
594 synchronize_net();
595}
d1b19dff 596EXPORT_SYMBOL(dev_remove_pack);
1da177e4 597
62532da9
VY
598
599/**
600 * dev_add_offload - register offload handlers
601 * @po: protocol offload declaration
602 *
603 * Add protocol offload handlers to the networking stack. The passed
604 * &proto_offload is linked into kernel lists and may not be freed until
605 * it has been removed from the kernel lists.
606 *
607 * This call does not sleep therefore it can not
608 * guarantee all CPU's that are in middle of receiving packets
609 * will see the new offload handlers (until the next received packet).
610 */
611void dev_add_offload(struct packet_offload *po)
612{
bdef7de4 613 struct packet_offload *elem;
62532da9
VY
614
615 spin_lock(&offload_lock);
bdef7de4
DM
616 list_for_each_entry(elem, &offload_base, list) {
617 if (po->priority < elem->priority)
618 break;
619 }
620 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
621 spin_unlock(&offload_lock);
622}
623EXPORT_SYMBOL(dev_add_offload);
624
625/**
626 * __dev_remove_offload - remove offload handler
627 * @po: packet offload declaration
628 *
629 * Remove a protocol offload handler that was previously added to the
630 * kernel offload handlers by dev_add_offload(). The passed &offload_type
631 * is removed from the kernel lists and can be freed or reused once this
632 * function returns.
633 *
634 * The packet type might still be in use by receivers
635 * and must not be freed until after all the CPU's have gone
636 * through a quiescent state.
637 */
1d143d9f 638static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
639{
640 struct list_head *head = &offload_base;
641 struct packet_offload *po1;
642
c53aa505 643 spin_lock(&offload_lock);
62532da9
VY
644
645 list_for_each_entry(po1, head, list) {
646 if (po == po1) {
647 list_del_rcu(&po->list);
648 goto out;
649 }
650 }
651
652 pr_warn("dev_remove_offload: %p not found\n", po);
653out:
c53aa505 654 spin_unlock(&offload_lock);
62532da9 655}
62532da9
VY
656
657/**
658 * dev_remove_offload - remove packet offload handler
659 * @po: packet offload declaration
660 *
661 * Remove a packet offload handler that was previously added to the kernel
662 * offload handlers by dev_add_offload(). The passed &offload_type is
663 * removed from the kernel lists and can be freed or reused once this
664 * function returns.
665 *
666 * This call sleeps to guarantee that no CPU is looking at the packet
667 * type after return.
668 */
669void dev_remove_offload(struct packet_offload *po)
670{
671 __dev_remove_offload(po);
672
673 synchronize_net();
674}
675EXPORT_SYMBOL(dev_remove_offload);
676
1da177e4 677/******************************************************************************
eb13da1a 678 *
679 * Device Boot-time Settings Routines
680 *
681 ******************************************************************************/
1da177e4
LT
682
683/* Boot time configuration table */
684static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686/**
687 * netdev_boot_setup_add - add new setup entry
688 * @name: name of the device
689 * @map: configured settings for the device
690 *
691 * Adds new setup entry to the dev_boot_setup list. The function
692 * returns 0 on error and 1 on success. This is a generic routine to
693 * all netdevices.
694 */
695static int netdev_boot_setup_add(char *name, struct ifmap *map)
696{
697 struct netdev_boot_setup *s;
698 int i;
699
700 s = dev_boot_setup;
701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 704 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
705 memcpy(&s[i].map, map, sizeof(s[i].map));
706 break;
707 }
708 }
709
710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711}
712
713/**
722c9a0c 714 * netdev_boot_setup_check - check boot time settings
715 * @dev: the netdevice
1da177e4 716 *
722c9a0c 717 * Check boot time settings for the device.
718 * The found settings are set for the device to be used
719 * later in the device probing.
720 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
721 */
722int netdev_boot_setup_check(struct net_device *dev)
723{
724 struct netdev_boot_setup *s = dev_boot_setup;
725 int i;
726
727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 729 !strcmp(dev->name, s[i].name)) {
722c9a0c 730 dev->irq = s[i].map.irq;
731 dev->base_addr = s[i].map.base_addr;
732 dev->mem_start = s[i].map.mem_start;
733 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
734 return 1;
735 }
736 }
737 return 0;
738}
d1b19dff 739EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
740
741
742/**
722c9a0c 743 * netdev_boot_base - get address from boot time settings
744 * @prefix: prefix for network device
745 * @unit: id for network device
746 *
747 * Check boot time settings for the base address of device.
748 * The found settings are set for the device to be used
749 * later in the device probing.
750 * Returns 0 if no settings found.
1da177e4
LT
751 */
752unsigned long netdev_boot_base(const char *prefix, int unit)
753{
754 const struct netdev_boot_setup *s = dev_boot_setup;
755 char name[IFNAMSIZ];
756 int i;
757
758 sprintf(name, "%s%d", prefix, unit);
759
760 /*
761 * If device already registered then return base of 1
762 * to indicate not to probe for this interface
763 */
881d966b 764 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
765 return 1;
766
767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 if (!strcmp(name, s[i].name))
769 return s[i].map.base_addr;
770 return 0;
771}
772
773/*
774 * Saves at boot time configured settings for any netdevice.
775 */
776int __init netdev_boot_setup(char *str)
777{
778 int ints[5];
779 struct ifmap map;
780
781 str = get_options(str, ARRAY_SIZE(ints), ints);
782 if (!str || !*str)
783 return 0;
784
785 /* Save settings */
786 memset(&map, 0, sizeof(map));
787 if (ints[0] > 0)
788 map.irq = ints[1];
789 if (ints[0] > 1)
790 map.base_addr = ints[2];
791 if (ints[0] > 2)
792 map.mem_start = ints[3];
793 if (ints[0] > 3)
794 map.mem_end = ints[4];
795
796 /* Add new entry to the list */
797 return netdev_boot_setup_add(str, &map);
798}
799
800__setup("netdev=", netdev_boot_setup);
801
802/*******************************************************************************
eb13da1a 803 *
804 * Device Interface Subroutines
805 *
806 *******************************************************************************/
1da177e4 807
a54acb3a
ND
808/**
809 * dev_get_iflink - get 'iflink' value of a interface
810 * @dev: targeted interface
811 *
812 * Indicates the ifindex the interface is linked to.
813 * Physical interfaces have the same 'ifindex' and 'iflink' values.
814 */
815
816int dev_get_iflink(const struct net_device *dev)
817{
818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 return dev->netdev_ops->ndo_get_iflink(dev);
820
7a66bbc9 821 return dev->ifindex;
a54acb3a
ND
822}
823EXPORT_SYMBOL(dev_get_iflink);
824
fc4099f1
PS
825/**
826 * dev_fill_metadata_dst - Retrieve tunnel egress information.
827 * @dev: targeted interface
828 * @skb: The packet.
829 *
830 * For better visibility of tunnel traffic OVS needs to retrieve
831 * egress tunnel information for a packet. Following API allows
832 * user to get this info.
833 */
834int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835{
836 struct ip_tunnel_info *info;
837
838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
839 return -EINVAL;
840
841 info = skb_tunnel_info_unclone(skb);
842 if (!info)
843 return -ENOMEM;
844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 return -EINVAL;
846
847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848}
849EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
ddb94eaf
PNA
851static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
852{
853 int k = stack->num_paths++;
854
855 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
856 return NULL;
857
858 return &stack->path[k];
859}
860
861int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
862 struct net_device_path_stack *stack)
863{
864 const struct net_device *last_dev;
865 struct net_device_path_ctx ctx = {
866 .dev = dev,
867 .daddr = daddr,
868 };
869 struct net_device_path *path;
870 int ret = 0;
871
872 stack->num_paths = 0;
873 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
874 last_dev = ctx.dev;
875 path = dev_fwd_path(stack);
876 if (!path)
877 return -1;
878
879 memset(path, 0, sizeof(struct net_device_path));
880 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
881 if (ret < 0)
882 return -1;
883
884 if (WARN_ON_ONCE(last_dev == ctx.dev))
885 return -1;
886 }
887 path = dev_fwd_path(stack);
888 if (!path)
889 return -1;
890 path->type = DEV_PATH_ETHERNET;
891 path->dev = ctx.dev;
892
893 return ret;
894}
895EXPORT_SYMBOL_GPL(dev_fill_forward_path);
896
1da177e4
LT
897/**
898 * __dev_get_by_name - find a device by its name
c4ea43c5 899 * @net: the applicable net namespace
1da177e4
LT
900 * @name: name to find
901 *
902 * Find an interface by name. Must be called under RTNL semaphore
903 * or @dev_base_lock. If the name is found a pointer to the device
904 * is returned. If the name is not found then %NULL is returned. The
905 * reference counters are not incremented so the caller must be
906 * careful with locks.
907 */
908
881d966b 909struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 910{
ff927412 911 struct netdev_name_node *node_name;
1da177e4 912
ff927412
JP
913 node_name = netdev_name_node_lookup(net, name);
914 return node_name ? node_name->dev : NULL;
1da177e4 915}
d1b19dff 916EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 917
72c9528b 918/**
722c9a0c 919 * dev_get_by_name_rcu - find a device by its name
920 * @net: the applicable net namespace
921 * @name: name to find
922 *
923 * Find an interface by name.
924 * If the name is found a pointer to the device is returned.
925 * If the name is not found then %NULL is returned.
926 * The reference counters are not incremented so the caller must be
927 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
928 */
929
930struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
931{
ff927412 932 struct netdev_name_node *node_name;
72c9528b 933
ff927412
JP
934 node_name = netdev_name_node_lookup_rcu(net, name);
935 return node_name ? node_name->dev : NULL;
72c9528b
ED
936}
937EXPORT_SYMBOL(dev_get_by_name_rcu);
938
1da177e4
LT
939/**
940 * dev_get_by_name - find a device by its name
c4ea43c5 941 * @net: the applicable net namespace
1da177e4
LT
942 * @name: name to find
943 *
944 * Find an interface by name. This can be called from any
945 * context and does its own locking. The returned handle has
946 * the usage count incremented and the caller must use dev_put() to
947 * release it when it is no longer needed. %NULL is returned if no
948 * matching device is found.
949 */
950
881d966b 951struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
952{
953 struct net_device *dev;
954
72c9528b
ED
955 rcu_read_lock();
956 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
957 if (dev)
958 dev_hold(dev);
72c9528b 959 rcu_read_unlock();
1da177e4
LT
960 return dev;
961}
d1b19dff 962EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
963
964/**
965 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 966 * @net: the applicable net namespace
1da177e4
LT
967 * @ifindex: index of device
968 *
969 * Search for an interface by index. Returns %NULL if the device
970 * is not found or a pointer to the device. The device has not
971 * had its reference counter increased so the caller must be careful
972 * about locking. The caller must hold either the RTNL semaphore
973 * or @dev_base_lock.
974 */
975
881d966b 976struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 977{
0bd8d536
ED
978 struct net_device *dev;
979 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 980
b67bfe0d 981 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
982 if (dev->ifindex == ifindex)
983 return dev;
0bd8d536 984
1da177e4
LT
985 return NULL;
986}
d1b19dff 987EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 988
fb699dfd
ED
989/**
990 * dev_get_by_index_rcu - find a device by its ifindex
991 * @net: the applicable net namespace
992 * @ifindex: index of device
993 *
994 * Search for an interface by index. Returns %NULL if the device
995 * is not found or a pointer to the device. The device has not
996 * had its reference counter increased so the caller must be careful
997 * about locking. The caller must hold RCU lock.
998 */
999
1000struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1001{
fb699dfd
ED
1002 struct net_device *dev;
1003 struct hlist_head *head = dev_index_hash(net, ifindex);
1004
b67bfe0d 1005 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
1006 if (dev->ifindex == ifindex)
1007 return dev;
1008
1009 return NULL;
1010}
1011EXPORT_SYMBOL(dev_get_by_index_rcu);
1012
1da177e4
LT
1013
1014/**
1015 * dev_get_by_index - find a device by its ifindex
c4ea43c5 1016 * @net: the applicable net namespace
1da177e4
LT
1017 * @ifindex: index of device
1018 *
1019 * Search for an interface by index. Returns NULL if the device
1020 * is not found or a pointer to the device. The device returned has
1021 * had a reference added and the pointer is safe until the user calls
1022 * dev_put to indicate they have finished with it.
1023 */
1024
881d966b 1025struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
1026{
1027 struct net_device *dev;
1028
fb699dfd
ED
1029 rcu_read_lock();
1030 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
1031 if (dev)
1032 dev_hold(dev);
fb699dfd 1033 rcu_read_unlock();
1da177e4
LT
1034 return dev;
1035}
d1b19dff 1036EXPORT_SYMBOL(dev_get_by_index);
1da177e4 1037
90b602f8
ML
1038/**
1039 * dev_get_by_napi_id - find a device by napi_id
1040 * @napi_id: ID of the NAPI struct
1041 *
1042 * Search for an interface by NAPI ID. Returns %NULL if the device
1043 * is not found or a pointer to the device. The device has not had
1044 * its reference counter increased so the caller must be careful
1045 * about locking. The caller must hold RCU lock.
1046 */
1047
1048struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1049{
1050 struct napi_struct *napi;
1051
1052 WARN_ON_ONCE(!rcu_read_lock_held());
1053
1054 if (napi_id < MIN_NAPI_ID)
1055 return NULL;
1056
1057 napi = napi_by_id(napi_id);
1058
1059 return napi ? napi->dev : NULL;
1060}
1061EXPORT_SYMBOL(dev_get_by_napi_id);
1062
5dbe7c17
NS
1063/**
1064 * netdev_get_name - get a netdevice name, knowing its ifindex.
1065 * @net: network namespace
1066 * @name: a pointer to the buffer where the name will be stored.
1067 * @ifindex: the ifindex of the interface to get the name from.
5dbe7c17
NS
1068 */
1069int netdev_get_name(struct net *net, char *name, int ifindex)
1070{
1071 struct net_device *dev;
11d6011c 1072 int ret;
5dbe7c17 1073
11d6011c 1074 down_read(&devnet_rename_sem);
5dbe7c17 1075 rcu_read_lock();
11d6011c 1076
5dbe7c17
NS
1077 dev = dev_get_by_index_rcu(net, ifindex);
1078 if (!dev) {
11d6011c
AD
1079 ret = -ENODEV;
1080 goto out;
5dbe7c17
NS
1081 }
1082
1083 strcpy(name, dev->name);
5dbe7c17 1084
11d6011c
AD
1085 ret = 0;
1086out:
1087 rcu_read_unlock();
1088 up_read(&devnet_rename_sem);
1089 return ret;
5dbe7c17
NS
1090}
1091
1da177e4 1092/**
941666c2 1093 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 1094 * @net: the applicable net namespace
1da177e4
LT
1095 * @type: media type of device
1096 * @ha: hardware address
1097 *
1098 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
1099 * is not found or a pointer to the device.
1100 * The caller must hold RCU or RTNL.
941666c2 1101 * The returned device has not had its ref count increased
1da177e4
LT
1102 * and the caller must therefore be careful about locking
1103 *
1da177e4
LT
1104 */
1105
941666c2
ED
1106struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1107 const char *ha)
1da177e4
LT
1108{
1109 struct net_device *dev;
1110
941666c2 1111 for_each_netdev_rcu(net, dev)
1da177e4
LT
1112 if (dev->type == type &&
1113 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
1114 return dev;
1115
1116 return NULL;
1da177e4 1117}
941666c2 1118EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 1119
881d966b 1120struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 1121{
99fe3c39 1122 struct net_device *dev, *ret = NULL;
4e9cac2b 1123
99fe3c39
ED
1124 rcu_read_lock();
1125 for_each_netdev_rcu(net, dev)
1126 if (dev->type == type) {
1127 dev_hold(dev);
1128 ret = dev;
1129 break;
1130 }
1131 rcu_read_unlock();
1132 return ret;
1da177e4 1133}
1da177e4
LT
1134EXPORT_SYMBOL(dev_getfirstbyhwtype);
1135
1136/**
6c555490 1137 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1138 * @net: the applicable net namespace
1da177e4
LT
1139 * @if_flags: IFF_* values
1140 * @mask: bitmask of bits in if_flags to check
1141 *
1142 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1143 * is not found or a pointer to the device. Must be called inside
6c555490 1144 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1145 */
1146
6c555490
WC
1147struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1148 unsigned short mask)
1da177e4 1149{
7562f876 1150 struct net_device *dev, *ret;
1da177e4 1151
6c555490
WC
1152 ASSERT_RTNL();
1153
7562f876 1154 ret = NULL;
6c555490 1155 for_each_netdev(net, dev) {
1da177e4 1156 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1157 ret = dev;
1da177e4
LT
1158 break;
1159 }
1160 }
7562f876 1161 return ret;
1da177e4 1162}
6c555490 1163EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1164
1165/**
1166 * dev_valid_name - check if name is okay for network device
1167 * @name: name string
1168 *
1169 * Network device names need to be valid file names to
4250b75b 1170 * allow sysfs to work. We also disallow any kind of
c7fa9d18 1171 * whitespace.
1da177e4 1172 */
95f050bf 1173bool dev_valid_name(const char *name)
1da177e4 1174{
c7fa9d18 1175 if (*name == '\0')
95f050bf 1176 return false;
a9d48205 1177 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1178 return false;
c7fa9d18 1179 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1180 return false;
c7fa9d18
DM
1181
1182 while (*name) {
a4176a93 1183 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1184 return false;
c7fa9d18
DM
1185 name++;
1186 }
95f050bf 1187 return true;
1da177e4 1188}
d1b19dff 1189EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1190
1191/**
b267b179
EB
1192 * __dev_alloc_name - allocate a name for a device
1193 * @net: network namespace to allocate the device name in
1da177e4 1194 * @name: name format string
b267b179 1195 * @buf: scratch buffer and result name string
1da177e4
LT
1196 *
1197 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1198 * id. It scans list of devices to build up a free map, then chooses
1199 * the first empty slot. The caller must hold the dev_base or rtnl lock
1200 * while allocating the name and adding the device in order to avoid
1201 * duplicates.
1202 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1203 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1204 */
1205
b267b179 1206static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1207{
1208 int i = 0;
1da177e4
LT
1209 const char *p;
1210 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1211 unsigned long *inuse;
1da177e4
LT
1212 struct net_device *d;
1213
93809105
RV
1214 if (!dev_valid_name(name))
1215 return -EINVAL;
1216
51f299dd 1217 p = strchr(name, '%');
1da177e4
LT
1218 if (p) {
1219 /*
1220 * Verify the string as this thing may have come from
1221 * the user. There must be either one "%d" and no other "%"
1222 * characters.
1223 */
1224 if (p[1] != 'd' || strchr(p + 2, '%'))
1225 return -EINVAL;
1226
1227 /* Use one page as a bit array of possible slots */
cfcabdcc 1228 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1229 if (!inuse)
1230 return -ENOMEM;
1231
881d966b 1232 for_each_netdev(net, d) {
6c015a22
JB
1233 struct netdev_name_node *name_node;
1234 list_for_each_entry(name_node, &d->name_node->list, list) {
1235 if (!sscanf(name_node->name, name, &i))
1236 continue;
1237 if (i < 0 || i >= max_netdevices)
1238 continue;
1239
1240 /* avoid cases where sscanf is not exact inverse of printf */
1241 snprintf(buf, IFNAMSIZ, name, i);
1242 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1243 set_bit(i, inuse);
1244 }
1da177e4
LT
1245 if (!sscanf(d->name, name, &i))
1246 continue;
1247 if (i < 0 || i >= max_netdevices)
1248 continue;
1249
1250 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1251 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1252 if (!strncmp(buf, d->name, IFNAMSIZ))
1253 set_bit(i, inuse);
1254 }
1255
1256 i = find_first_zero_bit(inuse, max_netdevices);
1257 free_page((unsigned long) inuse);
1258 }
1259
6224abda 1260 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1261 if (!__dev_get_by_name(net, buf))
1da177e4 1262 return i;
1da177e4
LT
1263
1264 /* It is possible to run out of possible slots
1265 * when the name is long and there isn't enough space left
1266 * for the digits, or if all bits are used.
1267 */
029b6d14 1268 return -ENFILE;
1da177e4
LT
1269}
1270
2c88b855
RV
1271static int dev_alloc_name_ns(struct net *net,
1272 struct net_device *dev,
1273 const char *name)
1274{
1275 char buf[IFNAMSIZ];
1276 int ret;
1277
c46d7642 1278 BUG_ON(!net);
2c88b855
RV
1279 ret = __dev_alloc_name(net, name, buf);
1280 if (ret >= 0)
1281 strlcpy(dev->name, buf, IFNAMSIZ);
1282 return ret;
1da177e4
LT
1283}
1284
b267b179
EB
1285/**
1286 * dev_alloc_name - allocate a name for a device
1287 * @dev: device
1288 * @name: name format string
1289 *
1290 * Passed a format string - eg "lt%d" it will try and find a suitable
1291 * id. It scans list of devices to build up a free map, then chooses
1292 * the first empty slot. The caller must hold the dev_base or rtnl lock
1293 * while allocating the name and adding the device in order to avoid
1294 * duplicates.
1295 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1296 * Returns the number of the unit assigned or a negative errno code.
1297 */
1298
1299int dev_alloc_name(struct net_device *dev, const char *name)
1300{
c46d7642 1301 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1302}
d1b19dff 1303EXPORT_SYMBOL(dev_alloc_name);
b267b179 1304
bacb7e18
ED
1305static int dev_get_valid_name(struct net *net, struct net_device *dev,
1306 const char *name)
828de4f6 1307{
55a5ec9b
DM
1308 BUG_ON(!net);
1309
1310 if (!dev_valid_name(name))
1311 return -EINVAL;
1312
1313 if (strchr(name, '%'))
1314 return dev_alloc_name_ns(net, dev, name);
1315 else if (__dev_get_by_name(net, name))
1316 return -EEXIST;
1317 else if (dev->name != name)
1318 strlcpy(dev->name, name, IFNAMSIZ);
1319
1320 return 0;
d9031024 1321}
1da177e4
LT
1322
1323/**
1324 * dev_change_name - change name of a device
1325 * @dev: device
1326 * @newname: name (or format string) must be at least IFNAMSIZ
1327 *
1328 * Change name of a device, can pass format strings "eth%d".
1329 * for wildcarding.
1330 */
cf04a4c7 1331int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1332{
238fa362 1333 unsigned char old_assign_type;
fcc5a03a 1334 char oldname[IFNAMSIZ];
1da177e4 1335 int err = 0;
fcc5a03a 1336 int ret;
881d966b 1337 struct net *net;
1da177e4
LT
1338
1339 ASSERT_RTNL();
c346dca1 1340 BUG_ON(!dev_net(dev));
1da177e4 1341
c346dca1 1342 net = dev_net(dev);
8065a779
SWL
1343
1344 /* Some auto-enslaved devices e.g. failover slaves are
1345 * special, as userspace might rename the device after
1346 * the interface had been brought up and running since
1347 * the point kernel initiated auto-enslavement. Allow
1348 * live name change even when these slave devices are
1349 * up and running.
1350 *
1351 * Typically, users of these auto-enslaving devices
1352 * don't actually care about slave name change, as
1353 * they are supposed to operate on master interface
1354 * directly.
1355 */
1356 if (dev->flags & IFF_UP &&
1357 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1358 return -EBUSY;
1359
11d6011c 1360 down_write(&devnet_rename_sem);
c91f6df2
BH
1361
1362 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
11d6011c 1363 up_write(&devnet_rename_sem);
c8d90dca 1364 return 0;
c91f6df2 1365 }
c8d90dca 1366
fcc5a03a
HX
1367 memcpy(oldname, dev->name, IFNAMSIZ);
1368
828de4f6 1369 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1370 if (err < 0) {
11d6011c 1371 up_write(&devnet_rename_sem);
d9031024 1372 return err;
c91f6df2 1373 }
1da177e4 1374
6fe82a39
VF
1375 if (oldname[0] && !strchr(oldname, '%'))
1376 netdev_info(dev, "renamed from %s\n", oldname);
1377
238fa362
TG
1378 old_assign_type = dev->name_assign_type;
1379 dev->name_assign_type = NET_NAME_RENAMED;
1380
fcc5a03a 1381rollback:
a1b3f594
EB
1382 ret = device_rename(&dev->dev, dev->name);
1383 if (ret) {
1384 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1385 dev->name_assign_type = old_assign_type;
11d6011c 1386 up_write(&devnet_rename_sem);
a1b3f594 1387 return ret;
dcc99773 1388 }
7f988eab 1389
11d6011c 1390 up_write(&devnet_rename_sem);
c91f6df2 1391
5bb025fa
VF
1392 netdev_adjacent_rename_links(dev, oldname);
1393
7f988eab 1394 write_lock_bh(&dev_base_lock);
ff927412 1395 netdev_name_node_del(dev->name_node);
72c9528b
ED
1396 write_unlock_bh(&dev_base_lock);
1397
1398 synchronize_rcu();
1399
1400 write_lock_bh(&dev_base_lock);
ff927412 1401 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1402 write_unlock_bh(&dev_base_lock);
1403
056925ab 1404 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1405 ret = notifier_to_errno(ret);
1406
1407 if (ret) {
91e9c07b
ED
1408 /* err >= 0 after dev_alloc_name() or stores the first errno */
1409 if (err >= 0) {
fcc5a03a 1410 err = ret;
11d6011c 1411 down_write(&devnet_rename_sem);
fcc5a03a 1412 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1413 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1414 dev->name_assign_type = old_assign_type;
1415 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1416 goto rollback;
91e9c07b 1417 } else {
7b6cd1ce 1418 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1419 dev->name, ret);
fcc5a03a
HX
1420 }
1421 }
1da177e4
LT
1422
1423 return err;
1424}
1425
0b815a1a
SH
1426/**
1427 * dev_set_alias - change ifalias of a device
1428 * @dev: device
1429 * @alias: name up to IFALIASZ
f0db275a 1430 * @len: limit of bytes to copy from info
0b815a1a
SH
1431 *
1432 * Set ifalias for a device,
1433 */
1434int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1435{
6c557001 1436 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1437
1438 if (len >= IFALIASZ)
1439 return -EINVAL;
1440
6c557001
FW
1441 if (len) {
1442 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1443 if (!new_alias)
1444 return -ENOMEM;
1445
1446 memcpy(new_alias->ifalias, alias, len);
1447 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1448 }
1449
6c557001 1450 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1451 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1452 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1453 mutex_unlock(&ifalias_mutex);
1454
1455 if (new_alias)
1456 kfree_rcu(new_alias, rcuhead);
0b815a1a 1457
0b815a1a
SH
1458 return len;
1459}
0fe554a4 1460EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1461
6c557001
FW
1462/**
1463 * dev_get_alias - get ifalias of a device
1464 * @dev: device
20e88320 1465 * @name: buffer to store name of ifalias
6c557001
FW
1466 * @len: size of buffer
1467 *
1468 * get ifalias for a device. Caller must make sure dev cannot go
1469 * away, e.g. rcu read lock or own a reference count to device.
1470 */
1471int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1472{
1473 const struct dev_ifalias *alias;
1474 int ret = 0;
1475
1476 rcu_read_lock();
1477 alias = rcu_dereference(dev->ifalias);
1478 if (alias)
1479 ret = snprintf(name, len, "%s", alias->ifalias);
1480 rcu_read_unlock();
1481
1482 return ret;
1483}
0b815a1a 1484
d8a33ac4 1485/**
3041a069 1486 * netdev_features_change - device changes features
d8a33ac4
SH
1487 * @dev: device to cause notification
1488 *
1489 * Called to indicate a device has changed features.
1490 */
1491void netdev_features_change(struct net_device *dev)
1492{
056925ab 1493 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1494}
1495EXPORT_SYMBOL(netdev_features_change);
1496
1da177e4
LT
1497/**
1498 * netdev_state_change - device changes state
1499 * @dev: device to cause notification
1500 *
1501 * Called to indicate a device has changed state. This function calls
1502 * the notifier chains for netdev_chain and sends a NEWLINK message
1503 * to the routing socket.
1504 */
1505void netdev_state_change(struct net_device *dev)
1506{
1507 if (dev->flags & IFF_UP) {
51d0c047
DA
1508 struct netdev_notifier_change_info change_info = {
1509 .info.dev = dev,
1510 };
54951194 1511
51d0c047 1512 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1513 &change_info.info);
7f294054 1514 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1515 }
1516}
d1b19dff 1517EXPORT_SYMBOL(netdev_state_change);
1da177e4 1518
7061eb8c
LP
1519/**
1520 * __netdev_notify_peers - notify network peers about existence of @dev,
1521 * to be called when rtnl lock is already held.
1522 * @dev: network device
1523 *
1524 * Generate traffic such that interested network peers are aware of
1525 * @dev, such as by generating a gratuitous ARP. This may be used when
1526 * a device wants to inform the rest of the network about some sort of
1527 * reconfiguration such as a failover event or virtual machine
1528 * migration.
1529 */
1530void __netdev_notify_peers(struct net_device *dev)
1531{
1532 ASSERT_RTNL();
1533 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1534 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1535}
1536EXPORT_SYMBOL(__netdev_notify_peers);
1537
ee89bab1 1538/**
722c9a0c 1539 * netdev_notify_peers - notify network peers about existence of @dev
1540 * @dev: network device
ee89bab1
AW
1541 *
1542 * Generate traffic such that interested network peers are aware of
1543 * @dev, such as by generating a gratuitous ARP. This may be used when
1544 * a device wants to inform the rest of the network about some sort of
1545 * reconfiguration such as a failover event or virtual machine
1546 * migration.
1547 */
1548void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1549{
ee89bab1 1550 rtnl_lock();
7061eb8c 1551 __netdev_notify_peers(dev);
ee89bab1 1552 rtnl_unlock();
c1da4ac7 1553}
ee89bab1 1554EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1555
29863d41
WW
1556static int napi_threaded_poll(void *data);
1557
1558static int napi_kthread_create(struct napi_struct *n)
1559{
1560 int err = 0;
1561
1562 /* Create and wake up the kthread once to put it in
1563 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1564 * warning and work with loadavg.
1565 */
1566 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1567 n->dev->name, n->napi_id);
1568 if (IS_ERR(n->thread)) {
1569 err = PTR_ERR(n->thread);
1570 pr_err("kthread_run failed with err %d\n", err);
1571 n->thread = NULL;
1572 }
1573
1574 return err;
1575}
1576
40c900aa 1577static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1578{
d314774c 1579 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1580 int ret;
1da177e4 1581
e46b66bc
BH
1582 ASSERT_RTNL();
1583
bd869245
HK
1584 if (!netif_device_present(dev)) {
1585 /* may be detached because parent is runtime-suspended */
1586 if (dev->dev.parent)
1587 pm_runtime_resume(dev->dev.parent);
1588 if (!netif_device_present(dev))
1589 return -ENODEV;
1590 }
1da177e4 1591
ca99ca14
NH
1592 /* Block netpoll from trying to do any rx path servicing.
1593 * If we don't do this there is a chance ndo_poll_controller
1594 * or ndo_poll may be running while we open the device
1595 */
66b5552f 1596 netpoll_poll_disable(dev);
ca99ca14 1597
40c900aa 1598 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1599 ret = notifier_to_errno(ret);
1600 if (ret)
1601 return ret;
1602
1da177e4 1603 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1604
d314774c
SH
1605 if (ops->ndo_validate_addr)
1606 ret = ops->ndo_validate_addr(dev);
bada339b 1607
d314774c
SH
1608 if (!ret && ops->ndo_open)
1609 ret = ops->ndo_open(dev);
1da177e4 1610
66b5552f 1611 netpoll_poll_enable(dev);
ca99ca14 1612
bada339b
JG
1613 if (ret)
1614 clear_bit(__LINK_STATE_START, &dev->state);
1615 else {
1da177e4 1616 dev->flags |= IFF_UP;
4417da66 1617 dev_set_rx_mode(dev);
1da177e4 1618 dev_activate(dev);
7bf23575 1619 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1620 }
bada339b 1621
1da177e4
LT
1622 return ret;
1623}
1624
1625/**
bd380811 1626 * dev_open - prepare an interface for use.
00f54e68
PM
1627 * @dev: device to open
1628 * @extack: netlink extended ack
1da177e4 1629 *
bd380811
PM
1630 * Takes a device from down to up state. The device's private open
1631 * function is invoked and then the multicast lists are loaded. Finally
1632 * the device is moved into the up state and a %NETDEV_UP message is
1633 * sent to the netdev notifier chain.
1634 *
1635 * Calling this function on an active interface is a nop. On a failure
1636 * a negative errno code is returned.
1da177e4 1637 */
00f54e68 1638int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1639{
1640 int ret;
1641
bd380811
PM
1642 if (dev->flags & IFF_UP)
1643 return 0;
1644
40c900aa 1645 ret = __dev_open(dev, extack);
bd380811
PM
1646 if (ret < 0)
1647 return ret;
1648
7f294054 1649 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1650 call_netdevice_notifiers(NETDEV_UP, dev);
1651
1652 return ret;
1653}
1654EXPORT_SYMBOL(dev_open);
1655
7051b88a 1656static void __dev_close_many(struct list_head *head)
1da177e4 1657{
44345724 1658 struct net_device *dev;
e46b66bc 1659
bd380811 1660 ASSERT_RTNL();
9d5010db
DM
1661 might_sleep();
1662
5cde2829 1663 list_for_each_entry(dev, head, close_list) {
3f4df206 1664 /* Temporarily disable netpoll until the interface is down */
66b5552f 1665 netpoll_poll_disable(dev);
3f4df206 1666
44345724 1667 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1668
44345724 1669 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1670
44345724
OP
1671 /* Synchronize to scheduled poll. We cannot touch poll list, it
1672 * can be even on different cpu. So just clear netif_running().
1673 *
1674 * dev->stop() will invoke napi_disable() on all of it's
1675 * napi_struct instances on this device.
1676 */
4e857c58 1677 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1678 }
1da177e4 1679
44345724 1680 dev_deactivate_many(head);
d8b2a4d2 1681
5cde2829 1682 list_for_each_entry(dev, head, close_list) {
44345724 1683 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1684
44345724
OP
1685 /*
1686 * Call the device specific close. This cannot fail.
1687 * Only if device is UP
1688 *
1689 * We allow it to be called even after a DETACH hot-plug
1690 * event.
1691 */
1692 if (ops->ndo_stop)
1693 ops->ndo_stop(dev);
1694
44345724 1695 dev->flags &= ~IFF_UP;
66b5552f 1696 netpoll_poll_enable(dev);
44345724 1697 }
44345724
OP
1698}
1699
7051b88a 1700static void __dev_close(struct net_device *dev)
44345724
OP
1701{
1702 LIST_HEAD(single);
1703
5cde2829 1704 list_add(&dev->close_list, &single);
7051b88a 1705 __dev_close_many(&single);
f87e6f47 1706 list_del(&single);
44345724
OP
1707}
1708
7051b88a 1709void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1710{
1711 struct net_device *dev, *tmp;
1da177e4 1712
5cde2829
EB
1713 /* Remove the devices that don't need to be closed */
1714 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1715 if (!(dev->flags & IFF_UP))
5cde2829 1716 list_del_init(&dev->close_list);
44345724
OP
1717
1718 __dev_close_many(head);
1da177e4 1719
5cde2829 1720 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1721 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1722 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1723 if (unlink)
1724 list_del_init(&dev->close_list);
44345724 1725 }
bd380811 1726}
99c4a26a 1727EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1728
1729/**
1730 * dev_close - shutdown an interface.
1731 * @dev: device to shutdown
1732 *
1733 * This function moves an active device into down state. A
1734 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1735 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1736 * chain.
1737 */
7051b88a 1738void dev_close(struct net_device *dev)
bd380811 1739{
e14a5993
ED
1740 if (dev->flags & IFF_UP) {
1741 LIST_HEAD(single);
1da177e4 1742
5cde2829 1743 list_add(&dev->close_list, &single);
99c4a26a 1744 dev_close_many(&single, true);
e14a5993
ED
1745 list_del(&single);
1746 }
1da177e4 1747}
d1b19dff 1748EXPORT_SYMBOL(dev_close);
1da177e4
LT
1749
1750
0187bdfb
BH
1751/**
1752 * dev_disable_lro - disable Large Receive Offload on a device
1753 * @dev: device
1754 *
1755 * Disable Large Receive Offload (LRO) on a net device. Must be
1756 * called under RTNL. This is needed if received packets may be
1757 * forwarded to another interface.
1758 */
1759void dev_disable_lro(struct net_device *dev)
1760{
fbe168ba
MK
1761 struct net_device *lower_dev;
1762 struct list_head *iter;
529d0489 1763
bc5787c6
MM
1764 dev->wanted_features &= ~NETIF_F_LRO;
1765 netdev_update_features(dev);
27660515 1766
22d5969f
MM
1767 if (unlikely(dev->features & NETIF_F_LRO))
1768 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1769
1770 netdev_for_each_lower_dev(dev, lower_dev, iter)
1771 dev_disable_lro(lower_dev);
0187bdfb
BH
1772}
1773EXPORT_SYMBOL(dev_disable_lro);
1774
56f5aa77
MC
1775/**
1776 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777 * @dev: device
1778 *
1779 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1780 * called under RTNL. This is needed if Generic XDP is installed on
1781 * the device.
1782 */
1783static void dev_disable_gro_hw(struct net_device *dev)
1784{
1785 dev->wanted_features &= ~NETIF_F_GRO_HW;
1786 netdev_update_features(dev);
1787
1788 if (unlikely(dev->features & NETIF_F_GRO_HW))
1789 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790}
1791
ede2762d
KT
1792const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793{
1794#define N(val) \
1795 case NETDEV_##val: \
1796 return "NETDEV_" __stringify(val);
1797 switch (cmd) {
1798 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1802 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1803 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1804 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1805 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1807 N(PRE_CHANGEADDR)
3f5ecd8a 1808 }
ede2762d
KT
1809#undef N
1810 return "UNKNOWN_NETDEV_EVENT";
1811}
1812EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1813
351638e7
JP
1814static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1815 struct net_device *dev)
1816{
51d0c047
DA
1817 struct netdev_notifier_info info = {
1818 .dev = dev,
1819 };
351638e7 1820
351638e7
JP
1821 return nb->notifier_call(nb, val, &info);
1822}
0187bdfb 1823
afa0df59
JP
1824static int call_netdevice_register_notifiers(struct notifier_block *nb,
1825 struct net_device *dev)
1826{
1827 int err;
1828
1829 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1830 err = notifier_to_errno(err);
1831 if (err)
1832 return err;
1833
1834 if (!(dev->flags & IFF_UP))
1835 return 0;
1836
1837 call_netdevice_notifier(nb, NETDEV_UP, dev);
1838 return 0;
1839}
1840
1841static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1842 struct net_device *dev)
1843{
1844 if (dev->flags & IFF_UP) {
1845 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1846 dev);
1847 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1848 }
1849 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1850}
1851
1852static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1853 struct net *net)
1854{
1855 struct net_device *dev;
1856 int err;
1857
1858 for_each_netdev(net, dev) {
1859 err = call_netdevice_register_notifiers(nb, dev);
1860 if (err)
1861 goto rollback;
1862 }
1863 return 0;
1864
1865rollback:
1866 for_each_netdev_continue_reverse(net, dev)
1867 call_netdevice_unregister_notifiers(nb, dev);
1868 return err;
1869}
1870
1871static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1872 struct net *net)
1873{
1874 struct net_device *dev;
1875
1876 for_each_netdev(net, dev)
1877 call_netdevice_unregister_notifiers(nb, dev);
1878}
1879
881d966b
EB
1880static int dev_boot_phase = 1;
1881
1da177e4 1882/**
722c9a0c 1883 * register_netdevice_notifier - register a network notifier block
1884 * @nb: notifier
1da177e4 1885 *
722c9a0c 1886 * Register a notifier to be called when network device events occur.
1887 * The notifier passed is linked into the kernel structures and must
1888 * not be reused until it has been unregistered. A negative errno code
1889 * is returned on a failure.
1da177e4 1890 *
722c9a0c 1891 * When registered all registration and up events are replayed
1892 * to the new notifier to allow device to have a race free
1893 * view of the network device list.
1da177e4
LT
1894 */
1895
1896int register_netdevice_notifier(struct notifier_block *nb)
1897{
881d966b 1898 struct net *net;
1da177e4
LT
1899 int err;
1900
328fbe74
KT
1901 /* Close race with setup_net() and cleanup_net() */
1902 down_write(&pernet_ops_rwsem);
1da177e4 1903 rtnl_lock();
f07d5b94 1904 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1905 if (err)
1906 goto unlock;
881d966b
EB
1907 if (dev_boot_phase)
1908 goto unlock;
1909 for_each_net(net) {
afa0df59
JP
1910 err = call_netdevice_register_net_notifiers(nb, net);
1911 if (err)
1912 goto rollback;
1da177e4 1913 }
fcc5a03a
HX
1914
1915unlock:
1da177e4 1916 rtnl_unlock();
328fbe74 1917 up_write(&pernet_ops_rwsem);
1da177e4 1918 return err;
fcc5a03a
HX
1919
1920rollback:
afa0df59
JP
1921 for_each_net_continue_reverse(net)
1922 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1923
1924 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1925 goto unlock;
1da177e4 1926}
d1b19dff 1927EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1928
1929/**
722c9a0c 1930 * unregister_netdevice_notifier - unregister a network notifier block
1931 * @nb: notifier
1da177e4 1932 *
722c9a0c 1933 * Unregister a notifier previously registered by
1934 * register_netdevice_notifier(). The notifier is unlinked into the
1935 * kernel structures and may then be reused. A negative errno code
1936 * is returned on a failure.
7d3d43da 1937 *
722c9a0c 1938 * After unregistering unregister and down device events are synthesized
1939 * for all devices on the device list to the removed notifier to remove
1940 * the need for special case cleanup code.
1da177e4
LT
1941 */
1942
1943int unregister_netdevice_notifier(struct notifier_block *nb)
1944{
7d3d43da 1945 struct net *net;
9f514950
HX
1946 int err;
1947
328fbe74
KT
1948 /* Close race with setup_net() and cleanup_net() */
1949 down_write(&pernet_ops_rwsem);
9f514950 1950 rtnl_lock();
f07d5b94 1951 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1952 if (err)
1953 goto unlock;
1954
48b3a137
JP
1955 for_each_net(net)
1956 call_netdevice_unregister_net_notifiers(nb, net);
1957
7d3d43da 1958unlock:
9f514950 1959 rtnl_unlock();
328fbe74 1960 up_write(&pernet_ops_rwsem);
9f514950 1961 return err;
1da177e4 1962}
d1b19dff 1963EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1964
1f637703
JP
1965static int __register_netdevice_notifier_net(struct net *net,
1966 struct notifier_block *nb,
1967 bool ignore_call_fail)
1968{
1969 int err;
1970
1971 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1972 if (err)
1973 return err;
1974 if (dev_boot_phase)
1975 return 0;
1976
1977 err = call_netdevice_register_net_notifiers(nb, net);
1978 if (err && !ignore_call_fail)
1979 goto chain_unregister;
1980
1981 return 0;
1982
1983chain_unregister:
1984 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1985 return err;
1986}
1987
1988static int __unregister_netdevice_notifier_net(struct net *net,
1989 struct notifier_block *nb)
1990{
1991 int err;
1992
1993 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994 if (err)
1995 return err;
1996
1997 call_netdevice_unregister_net_notifiers(nb, net);
1998 return 0;
1999}
2000
a30c7b42
JP
2001/**
2002 * register_netdevice_notifier_net - register a per-netns network notifier block
2003 * @net: network namespace
2004 * @nb: notifier
2005 *
2006 * Register a notifier to be called when network device events occur.
2007 * The notifier passed is linked into the kernel structures and must
2008 * not be reused until it has been unregistered. A negative errno code
2009 * is returned on a failure.
2010 *
2011 * When registered all registration and up events are replayed
2012 * to the new notifier to allow device to have a race free
2013 * view of the network device list.
2014 */
2015
2016int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2017{
2018 int err;
2019
2020 rtnl_lock();
1f637703 2021 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
2022 rtnl_unlock();
2023 return err;
a30c7b42
JP
2024}
2025EXPORT_SYMBOL(register_netdevice_notifier_net);
2026
2027/**
2028 * unregister_netdevice_notifier_net - unregister a per-netns
2029 * network notifier block
2030 * @net: network namespace
2031 * @nb: notifier
2032 *
2033 * Unregister a notifier previously registered by
2034 * register_netdevice_notifier(). The notifier is unlinked into the
2035 * kernel structures and may then be reused. A negative errno code
2036 * is returned on a failure.
2037 *
2038 * After unregistering unregister and down device events are synthesized
2039 * for all devices on the device list to the removed notifier to remove
2040 * the need for special case cleanup code.
2041 */
2042
2043int unregister_netdevice_notifier_net(struct net *net,
2044 struct notifier_block *nb)
2045{
2046 int err;
2047
2048 rtnl_lock();
1f637703 2049 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
2050 rtnl_unlock();
2051 return err;
2052}
2053EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 2054
93642e14
JP
2055int register_netdevice_notifier_dev_net(struct net_device *dev,
2056 struct notifier_block *nb,
2057 struct netdev_net_notifier *nn)
2058{
2059 int err;
a30c7b42 2060
93642e14
JP
2061 rtnl_lock();
2062 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2063 if (!err) {
2064 nn->nb = nb;
2065 list_add(&nn->list, &dev->net_notifier_list);
2066 }
a30c7b42
JP
2067 rtnl_unlock();
2068 return err;
2069}
93642e14
JP
2070EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2071
2072int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2073 struct notifier_block *nb,
2074 struct netdev_net_notifier *nn)
2075{
2076 int err;
2077
2078 rtnl_lock();
2079 list_del(&nn->list);
2080 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2081 rtnl_unlock();
2082 return err;
2083}
2084EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2085
2086static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2087 struct net *net)
2088{
2089 struct netdev_net_notifier *nn;
2090
2091 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2092 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2093 __register_netdevice_notifier_net(net, nn->nb, true);
2094 }
2095}
a30c7b42 2096
351638e7
JP
2097/**
2098 * call_netdevice_notifiers_info - call all network notifier blocks
2099 * @val: value passed unmodified to notifier function
351638e7
JP
2100 * @info: notifier information data
2101 *
2102 * Call all network notifier blocks. Parameters and return value
2103 * are as for raw_notifier_call_chain().
2104 */
2105
1d143d9f 2106static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 2107 struct netdev_notifier_info *info)
351638e7 2108{
a30c7b42
JP
2109 struct net *net = dev_net(info->dev);
2110 int ret;
2111
351638e7 2112 ASSERT_RTNL();
a30c7b42
JP
2113
2114 /* Run per-netns notifier block chain first, then run the global one.
2115 * Hopefully, one day, the global one is going to be removed after
2116 * all notifier block registrators get converted to be per-netns.
2117 */
2118 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2119 if (ret & NOTIFY_STOP_MASK)
2120 return ret;
351638e7
JP
2121 return raw_notifier_call_chain(&netdev_chain, val, info);
2122}
351638e7 2123
26372605
PM
2124static int call_netdevice_notifiers_extack(unsigned long val,
2125 struct net_device *dev,
2126 struct netlink_ext_ack *extack)
2127{
2128 struct netdev_notifier_info info = {
2129 .dev = dev,
2130 .extack = extack,
2131 };
2132
2133 return call_netdevice_notifiers_info(val, &info);
2134}
2135
1da177e4
LT
2136/**
2137 * call_netdevice_notifiers - call all network notifier blocks
2138 * @val: value passed unmodified to notifier function
c4ea43c5 2139 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
2140 *
2141 * Call all network notifier blocks. Parameters and return value
f07d5b94 2142 * are as for raw_notifier_call_chain().
1da177e4
LT
2143 */
2144
ad7379d4 2145int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 2146{
26372605 2147 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 2148}
edf947f1 2149EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 2150
af7d6cce
SD
2151/**
2152 * call_netdevice_notifiers_mtu - call all network notifier blocks
2153 * @val: value passed unmodified to notifier function
2154 * @dev: net_device pointer passed unmodified to notifier function
2155 * @arg: additional u32 argument passed to the notifier function
2156 *
2157 * Call all network notifier blocks. Parameters and return value
2158 * are as for raw_notifier_call_chain().
2159 */
2160static int call_netdevice_notifiers_mtu(unsigned long val,
2161 struct net_device *dev, u32 arg)
2162{
2163 struct netdev_notifier_info_ext info = {
2164 .info.dev = dev,
2165 .ext.mtu = arg,
2166 };
2167
2168 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2169
2170 return call_netdevice_notifiers_info(val, &info.info);
2171}
2172
1cf51900 2173#ifdef CONFIG_NET_INGRESS
aabf6772 2174static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2175
2176void net_inc_ingress_queue(void)
2177{
aabf6772 2178 static_branch_inc(&ingress_needed_key);
4577139b
DB
2179}
2180EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2181
2182void net_dec_ingress_queue(void)
2183{
aabf6772 2184 static_branch_dec(&ingress_needed_key);
4577139b
DB
2185}
2186EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2187#endif
2188
1f211a1b 2189#ifdef CONFIG_NET_EGRESS
aabf6772 2190static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2191
2192void net_inc_egress_queue(void)
2193{
aabf6772 2194 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2195}
2196EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2197
2198void net_dec_egress_queue(void)
2199{
aabf6772 2200 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2201}
2202EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2203#endif
2204
39e83922 2205static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2206#ifdef CONFIG_JUMP_LABEL
b90e5794 2207static atomic_t netstamp_needed_deferred;
13baa00a 2208static atomic_t netstamp_wanted;
5fa8bbda 2209static void netstamp_clear(struct work_struct *work)
1da177e4 2210{
b90e5794 2211 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2212 int wanted;
b90e5794 2213
13baa00a
ED
2214 wanted = atomic_add_return(deferred, &netstamp_wanted);
2215 if (wanted > 0)
39e83922 2216 static_branch_enable(&netstamp_needed_key);
13baa00a 2217 else
39e83922 2218 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2219}
2220static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2221#endif
5fa8bbda
ED
2222
2223void net_enable_timestamp(void)
2224{
e9666d10 2225#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2226 int wanted;
2227
2228 while (1) {
2229 wanted = atomic_read(&netstamp_wanted);
2230 if (wanted <= 0)
2231 break;
2232 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2233 return;
2234 }
2235 atomic_inc(&netstamp_needed_deferred);
2236 schedule_work(&netstamp_work);
2237#else
39e83922 2238 static_branch_inc(&netstamp_needed_key);
13baa00a 2239#endif
1da177e4 2240}
d1b19dff 2241EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2242
2243void net_disable_timestamp(void)
2244{
e9666d10 2245#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2246 int wanted;
2247
2248 while (1) {
2249 wanted = atomic_read(&netstamp_wanted);
2250 if (wanted <= 1)
2251 break;
2252 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2253 return;
2254 }
2255 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2256 schedule_work(&netstamp_work);
2257#else
39e83922 2258 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2259#endif
1da177e4 2260}
d1b19dff 2261EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2262
3b098e2d 2263static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2264{
2456e855 2265 skb->tstamp = 0;
39e83922 2266 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2267 __net_timestamp(skb);
1da177e4
LT
2268}
2269
39e83922
DB
2270#define net_timestamp_check(COND, SKB) \
2271 if (static_branch_unlikely(&netstamp_needed_key)) { \
2272 if ((COND) && !(SKB)->tstamp) \
2273 __net_timestamp(SKB); \
2274 } \
3b098e2d 2275
f4b05d27 2276bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0 2277{
5f7d5728 2278 return __is_skb_forwardable(dev, skb, true);
79b569f0 2279}
1ee481fb 2280EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2281
5f7d5728
JDB
2282static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2283 bool check_mtu)
a0265d28 2284{
5f7d5728 2285 int ret = ____dev_forward_skb(dev, skb, check_mtu);
a0265d28 2286
4e3264d2
MKL
2287 if (likely(!ret)) {
2288 skb->protocol = eth_type_trans(skb, dev);
2289 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2290 }
a0265d28 2291
4e3264d2 2292 return ret;
a0265d28 2293}
5f7d5728
JDB
2294
2295int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2296{
2297 return __dev_forward_skb2(dev, skb, true);
2298}
a0265d28
HX
2299EXPORT_SYMBOL_GPL(__dev_forward_skb);
2300
44540960
AB
2301/**
2302 * dev_forward_skb - loopback an skb to another netif
2303 *
2304 * @dev: destination network device
2305 * @skb: buffer to forward
2306 *
2307 * return values:
2308 * NET_RX_SUCCESS (no congestion)
6ec82562 2309 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2310 *
2311 * dev_forward_skb can be used for injecting an skb from the
2312 * start_xmit function of one device into the receive queue
2313 * of another device.
2314 *
2315 * The receiving device may be in another namespace, so
2316 * we have to clear all information in the skb that could
2317 * impact namespace isolation.
2318 */
2319int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2320{
a0265d28 2321 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2322}
2323EXPORT_SYMBOL_GPL(dev_forward_skb);
2324
5f7d5728
JDB
2325int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2326{
2327 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2328}
2329
71d9dec2
CG
2330static inline int deliver_skb(struct sk_buff *skb,
2331 struct packet_type *pt_prev,
2332 struct net_device *orig_dev)
2333{
1f8b977a 2334 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2335 return -ENOMEM;
63354797 2336 refcount_inc(&skb->users);
71d9dec2
CG
2337 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2338}
2339
7866a621
SN
2340static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2341 struct packet_type **pt,
fbcb2170
JP
2342 struct net_device *orig_dev,
2343 __be16 type,
7866a621
SN
2344 struct list_head *ptype_list)
2345{
2346 struct packet_type *ptype, *pt_prev = *pt;
2347
2348 list_for_each_entry_rcu(ptype, ptype_list, list) {
2349 if (ptype->type != type)
2350 continue;
2351 if (pt_prev)
fbcb2170 2352 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2353 pt_prev = ptype;
2354 }
2355 *pt = pt_prev;
2356}
2357
c0de08d0
EL
2358static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2359{
a3d744e9 2360 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2361 return false;
2362
2363 if (ptype->id_match)
2364 return ptype->id_match(ptype, skb->sk);
2365 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2366 return true;
2367
2368 return false;
2369}
2370
9f9a742d
MR
2371/**
2372 * dev_nit_active - return true if any network interface taps are in use
2373 *
2374 * @dev: network device to check for the presence of taps
2375 */
2376bool dev_nit_active(struct net_device *dev)
2377{
2378 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2379}
2380EXPORT_SYMBOL_GPL(dev_nit_active);
2381
1da177e4
LT
2382/*
2383 * Support routine. Sends outgoing frames to any network
2384 * taps currently in use.
2385 */
2386
74b20582 2387void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2388{
2389 struct packet_type *ptype;
71d9dec2
CG
2390 struct sk_buff *skb2 = NULL;
2391 struct packet_type *pt_prev = NULL;
7866a621 2392 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2393
1da177e4 2394 rcu_read_lock();
7866a621
SN
2395again:
2396 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2397 if (ptype->ignore_outgoing)
2398 continue;
2399
1da177e4
LT
2400 /* Never send packets back to the socket
2401 * they originated from - MvS (miquels@drinkel.ow.org)
2402 */
7866a621
SN
2403 if (skb_loop_sk(ptype, skb))
2404 continue;
71d9dec2 2405
7866a621
SN
2406 if (pt_prev) {
2407 deliver_skb(skb2, pt_prev, skb->dev);
2408 pt_prev = ptype;
2409 continue;
2410 }
1da177e4 2411
7866a621
SN
2412 /* need to clone skb, done only once */
2413 skb2 = skb_clone(skb, GFP_ATOMIC);
2414 if (!skb2)
2415 goto out_unlock;
70978182 2416
7866a621 2417 net_timestamp_set(skb2);
1da177e4 2418
7866a621
SN
2419 /* skb->nh should be correctly
2420 * set by sender, so that the second statement is
2421 * just protection against buggy protocols.
2422 */
2423 skb_reset_mac_header(skb2);
2424
2425 if (skb_network_header(skb2) < skb2->data ||
2426 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2427 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2428 ntohs(skb2->protocol),
2429 dev->name);
2430 skb_reset_network_header(skb2);
1da177e4 2431 }
7866a621
SN
2432
2433 skb2->transport_header = skb2->network_header;
2434 skb2->pkt_type = PACKET_OUTGOING;
2435 pt_prev = ptype;
2436 }
2437
2438 if (ptype_list == &ptype_all) {
2439 ptype_list = &dev->ptype_all;
2440 goto again;
1da177e4 2441 }
7866a621 2442out_unlock:
581fe0ea
WB
2443 if (pt_prev) {
2444 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2445 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2446 else
2447 kfree_skb(skb2);
2448 }
1da177e4
LT
2449 rcu_read_unlock();
2450}
74b20582 2451EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2452
2c53040f
BH
2453/**
2454 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2455 * @dev: Network device
2456 * @txq: number of queues available
2457 *
2458 * If real_num_tx_queues is changed the tc mappings may no longer be
2459 * valid. To resolve this verify the tc mapping remains valid and if
2460 * not NULL the mapping. With no priorities mapping to this
2461 * offset/count pair it will no longer be used. In the worst case TC0
2462 * is invalid nothing can be done so disable priority mappings. If is
2463 * expected that drivers will fix this mapping if they can before
2464 * calling netif_set_real_num_tx_queues.
2465 */
bb134d22 2466static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2467{
2468 int i;
2469 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2470
2471 /* If TC0 is invalidated disable TC mapping */
2472 if (tc->offset + tc->count > txq) {
7b6cd1ce 2473 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2474 dev->num_tc = 0;
2475 return;
2476 }
2477
2478 /* Invalidated prio to tc mappings set to TC0 */
2479 for (i = 1; i < TC_BITMASK + 1; i++) {
2480 int q = netdev_get_prio_tc_map(dev, i);
2481
2482 tc = &dev->tc_to_txq[q];
2483 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2484 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2485 i, q);
4f57c087
JF
2486 netdev_set_prio_tc_map(dev, i, 0);
2487 }
2488 }
2489}
2490
8d059b0f
AD
2491int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2492{
2493 if (dev->num_tc) {
2494 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2495 int i;
2496
ffcfe25b 2497 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2498 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2499 if ((txq - tc->offset) < tc->count)
2500 return i;
2501 }
2502
ffcfe25b 2503 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2504 return -1;
2505 }
2506
2507 return 0;
2508}
8a5f2166 2509EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2510
537c00de 2511#ifdef CONFIG_XPS
5da9ace3
VO
2512static struct static_key xps_needed __read_mostly;
2513static struct static_key xps_rxqs_needed __read_mostly;
537c00de
AD
2514static DEFINE_MUTEX(xps_map_mutex);
2515#define xmap_dereference(P) \
2516 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2517
6234f874 2518static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2d05bf01 2519 struct xps_dev_maps *old_maps, int tci, u16 index)
537c00de 2520{
10cdc3f3
AD
2521 struct xps_map *map = NULL;
2522 int pos;
537c00de 2523
10cdc3f3 2524 if (dev_maps)
80d19669 2525 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2526 if (!map)
2527 return false;
537c00de 2528
6234f874
AD
2529 for (pos = map->len; pos--;) {
2530 if (map->queues[pos] != index)
2531 continue;
2532
2533 if (map->len > 1) {
2534 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2535 break;
537c00de 2536 }
6234f874 2537
2d05bf01
AT
2538 if (old_maps)
2539 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
80d19669 2540 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2541 kfree_rcu(map, rcu);
2542 return false;
537c00de
AD
2543 }
2544
6234f874 2545 return true;
10cdc3f3
AD
2546}
2547
6234f874
AD
2548static bool remove_xps_queue_cpu(struct net_device *dev,
2549 struct xps_dev_maps *dev_maps,
2550 int cpu, u16 offset, u16 count)
2551{
255c04a8 2552 int num_tc = dev_maps->num_tc;
184c449f
AD
2553 bool active = false;
2554 int tci;
6234f874 2555
184c449f
AD
2556 for (tci = cpu * num_tc; num_tc--; tci++) {
2557 int i, j;
2558
2559 for (i = count, j = offset; i--; j++) {
2d05bf01 2560 if (!remove_xps_queue(dev_maps, NULL, tci, j))
184c449f
AD
2561 break;
2562 }
2563
2564 active |= i < 0;
6234f874
AD
2565 }
2566
184c449f 2567 return active;
6234f874
AD
2568}
2569
867d0ad4
SD
2570static void reset_xps_maps(struct net_device *dev,
2571 struct xps_dev_maps *dev_maps,
044ab86d 2572 enum xps_map_type type)
867d0ad4 2573{
867d0ad4 2574 static_key_slow_dec_cpuslocked(&xps_needed);
044ab86d
AT
2575 if (type == XPS_RXQS)
2576 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2577
2578 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2579
867d0ad4
SD
2580 kfree_rcu(dev_maps, rcu);
2581}
2582
044ab86d
AT
2583static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2584 u16 offset, u16 count)
80d19669 2585{
044ab86d 2586 struct xps_dev_maps *dev_maps;
80d19669
AN
2587 bool active = false;
2588 int i, j;
2589
044ab86d
AT
2590 dev_maps = xmap_dereference(dev->xps_maps[type]);
2591 if (!dev_maps)
2592 return;
2593
6f36158e
AT
2594 for (j = 0; j < dev_maps->nr_ids; j++)
2595 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
867d0ad4 2596 if (!active)
044ab86d 2597 reset_xps_maps(dev, dev_maps, type);
80d19669 2598
044ab86d 2599 if (type == XPS_CPUS) {
6f36158e 2600 for (i = offset + (count - 1); count--; i--)
f28c020f 2601 netdev_queue_numa_node_write(
6f36158e 2602 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
80d19669
AN
2603 }
2604}
2605
6234f874
AD
2606static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2607 u16 count)
10cdc3f3 2608{
04157469
AN
2609 if (!static_key_false(&xps_needed))
2610 return;
10cdc3f3 2611
4d99f660 2612 cpus_read_lock();
04157469 2613 mutex_lock(&xps_map_mutex);
10cdc3f3 2614
044ab86d
AT
2615 if (static_key_false(&xps_rxqs_needed))
2616 clean_xps_maps(dev, XPS_RXQS, offset, count);
80d19669 2617
044ab86d 2618 clean_xps_maps(dev, XPS_CPUS, offset, count);
024e9679 2619
537c00de 2620 mutex_unlock(&xps_map_mutex);
4d99f660 2621 cpus_read_unlock();
537c00de
AD
2622}
2623
6234f874
AD
2624static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2625{
2626 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2627}
2628
80d19669
AN
2629static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2630 u16 index, bool is_rxqs_map)
01c5f864
AD
2631{
2632 struct xps_map *new_map;
2633 int alloc_len = XPS_MIN_MAP_ALLOC;
2634 int i, pos;
2635
2636 for (pos = 0; map && pos < map->len; pos++) {
2637 if (map->queues[pos] != index)
2638 continue;
2639 return map;
2640 }
2641
80d19669 2642 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2643 if (map) {
2644 if (pos < map->alloc_len)
2645 return map;
2646
2647 alloc_len = map->alloc_len * 2;
2648 }
2649
80d19669
AN
2650 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2651 * map
2652 */
2653 if (is_rxqs_map)
2654 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2655 else
2656 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2657 cpu_to_node(attr_index));
01c5f864
AD
2658 if (!new_map)
2659 return NULL;
2660
2661 for (i = 0; i < pos; i++)
2662 new_map->queues[i] = map->queues[i];
2663 new_map->alloc_len = alloc_len;
2664 new_map->len = pos;
2665
2666 return new_map;
2667}
2668
402fbb99
AT
2669/* Copy xps maps at a given index */
2670static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2671 struct xps_dev_maps *new_dev_maps, int index,
2672 int tc, bool skip_tc)
2673{
2674 int i, tci = index * dev_maps->num_tc;
2675 struct xps_map *map;
2676
2677 /* copy maps belonging to foreign traffic classes */
2678 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2679 if (i == tc && skip_tc)
2680 continue;
2681
2682 /* fill in the new device map from the old device map */
2683 map = xmap_dereference(dev_maps->attr_map[tci]);
2684 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2685 }
2686}
2687
4d99f660 2688/* Must be called under cpus_read_lock */
80d19669 2689int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
044ab86d 2690 u16 index, enum xps_map_type type)
537c00de 2691{
2d05bf01 2692 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
6f36158e 2693 const unsigned long *online_mask = NULL;
255c04a8 2694 bool active = false, copy = false;
80d19669 2695 int i, j, tci, numa_node_id = -2;
184c449f 2696 int maps_sz, num_tc = 1, tc = 0;
537c00de 2697 struct xps_map *map, *new_map;
80d19669 2698 unsigned int nr_ids;
537c00de 2699
184c449f 2700 if (dev->num_tc) {
ffcfe25b 2701 /* Do not allow XPS on subordinate device directly */
184c449f 2702 num_tc = dev->num_tc;
ffcfe25b
AD
2703 if (num_tc < 0)
2704 return -EINVAL;
2705
2706 /* If queue belongs to subordinate dev use its map */
2707 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2708
184c449f
AD
2709 tc = netdev_txq_to_tc(dev, index);
2710 if (tc < 0)
2711 return -EINVAL;
2712 }
2713
537c00de 2714 mutex_lock(&xps_map_mutex);
044ab86d
AT
2715
2716 dev_maps = xmap_dereference(dev->xps_maps[type]);
2717 if (type == XPS_RXQS) {
80d19669 2718 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
80d19669
AN
2719 nr_ids = dev->num_rx_queues;
2720 } else {
2721 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
6f36158e 2722 if (num_possible_cpus() > 1)
80d19669 2723 online_mask = cpumask_bits(cpu_online_mask);
80d19669
AN
2724 nr_ids = nr_cpu_ids;
2725 }
537c00de 2726
80d19669
AN
2727 if (maps_sz < L1_CACHE_BYTES)
2728 maps_sz = L1_CACHE_BYTES;
537c00de 2729
255c04a8 2730 /* The old dev_maps could be larger or smaller than the one we're
5478fcd0
AT
2731 * setting up now, as dev->num_tc or nr_ids could have been updated in
2732 * between. We could try to be smart, but let's be safe instead and only
2733 * copy foreign traffic classes if the two map sizes match.
255c04a8 2734 */
5478fcd0
AT
2735 if (dev_maps &&
2736 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
255c04a8
AT
2737 copy = true;
2738
01c5f864 2739 /* allocate memory for queue storage */
80d19669
AN
2740 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2741 j < nr_ids;) {
2bb60cb9 2742 if (!new_dev_maps) {
255c04a8
AT
2743 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2744 if (!new_dev_maps) {
2745 mutex_unlock(&xps_map_mutex);
2746 return -ENOMEM;
2747 }
2748
5478fcd0 2749 new_dev_maps->nr_ids = nr_ids;
255c04a8 2750 new_dev_maps->num_tc = num_tc;
2bb60cb9 2751 }
01c5f864 2752
80d19669 2753 tci = j * num_tc + tc;
255c04a8 2754 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
01c5f864 2755
044ab86d 2756 map = expand_xps_map(map, j, index, type == XPS_RXQS);
01c5f864
AD
2757 if (!map)
2758 goto error;
2759
80d19669 2760 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2761 }
2762
2763 if (!new_dev_maps)
2764 goto out_no_new_maps;
2765
867d0ad4
SD
2766 if (!dev_maps) {
2767 /* Increment static keys at most once per type */
2768 static_key_slow_inc_cpuslocked(&xps_needed);
044ab86d 2769 if (type == XPS_RXQS)
867d0ad4
SD
2770 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2771 }
04157469 2772
6f36158e 2773 for (j = 0; j < nr_ids; j++) {
402fbb99 2774 bool skip_tc = false;
184c449f 2775
80d19669 2776 tci = j * num_tc + tc;
80d19669
AN
2777 if (netif_attr_test_mask(j, mask, nr_ids) &&
2778 netif_attr_test_online(j, online_mask, nr_ids)) {
2779 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2780 int pos = 0;
2781
402fbb99
AT
2782 skip_tc = true;
2783
80d19669 2784 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2785 while ((pos < map->len) && (map->queues[pos] != index))
2786 pos++;
2787
2788 if (pos == map->len)
2789 map->queues[map->len++] = index;
537c00de 2790#ifdef CONFIG_NUMA
044ab86d 2791 if (type == XPS_CPUS) {
80d19669
AN
2792 if (numa_node_id == -2)
2793 numa_node_id = cpu_to_node(j);
2794 else if (numa_node_id != cpu_to_node(j))
2795 numa_node_id = -1;
2796 }
537c00de 2797#endif
537c00de 2798 }
01c5f864 2799
402fbb99
AT
2800 if (copy)
2801 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2802 skip_tc);
537c00de
AD
2803 }
2804
044ab86d 2805 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
01c5f864 2806
537c00de 2807 /* Cleanup old maps */
184c449f
AD
2808 if (!dev_maps)
2809 goto out_no_old_maps;
2810
6f36158e 2811 for (j = 0; j < dev_maps->nr_ids; j++) {
255c04a8 2812 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
80d19669 2813 map = xmap_dereference(dev_maps->attr_map[tci]);
255c04a8
AT
2814 if (!map)
2815 continue;
2816
2817 if (copy) {
2818 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819 if (map == new_map)
2820 continue;
2821 }
2822
75b2758a 2823 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
255c04a8 2824 kfree_rcu(map, rcu);
01c5f864 2825 }
537c00de
AD
2826 }
2827
2d05bf01 2828 old_dev_maps = dev_maps;
184c449f
AD
2829
2830out_no_old_maps:
01c5f864
AD
2831 dev_maps = new_dev_maps;
2832 active = true;
537c00de 2833
01c5f864 2834out_no_new_maps:
044ab86d 2835 if (type == XPS_CPUS)
80d19669
AN
2836 /* update Tx queue numa node */
2837 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2838 (numa_node_id >= 0) ?
2839 numa_node_id : NUMA_NO_NODE);
537c00de 2840
01c5f864
AD
2841 if (!dev_maps)
2842 goto out_no_maps;
2843
80d19669 2844 /* removes tx-queue from unused CPUs/rx-queues */
6f36158e 2845 for (j = 0; j < dev_maps->nr_ids; j++) {
132f743b
AT
2846 tci = j * dev_maps->num_tc;
2847
2848 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2849 if (i == tc &&
2850 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2851 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2852 continue;
2853
2d05bf01
AT
2854 active |= remove_xps_queue(dev_maps,
2855 copy ? old_dev_maps : NULL,
2856 tci, index);
132f743b 2857 }
01c5f864
AD
2858 }
2859
2d05bf01
AT
2860 if (old_dev_maps)
2861 kfree_rcu(old_dev_maps, rcu);
2862
01c5f864 2863 /* free map if not active */
867d0ad4 2864 if (!active)
044ab86d 2865 reset_xps_maps(dev, dev_maps, type);
01c5f864
AD
2866
2867out_no_maps:
537c00de
AD
2868 mutex_unlock(&xps_map_mutex);
2869
2870 return 0;
2871error:
01c5f864 2872 /* remove any maps that we added */
6f36158e 2873 for (j = 0; j < nr_ids; j++) {
80d19669
AN
2874 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2875 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
255c04a8 2876 map = copy ?
80d19669 2877 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2878 NULL;
2879 if (new_map && new_map != map)
2880 kfree(new_map);
2881 }
01c5f864
AD
2882 }
2883
537c00de
AD
2884 mutex_unlock(&xps_map_mutex);
2885
537c00de
AD
2886 kfree(new_dev_maps);
2887 return -ENOMEM;
2888}
4d99f660 2889EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2890
2891int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2892 u16 index)
2893{
4d99f660
AV
2894 int ret;
2895
2896 cpus_read_lock();
044ab86d 2897 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
4d99f660
AV
2898 cpus_read_unlock();
2899
2900 return ret;
80d19669 2901}
537c00de
AD
2902EXPORT_SYMBOL(netif_set_xps_queue);
2903
2904#endif
ffcfe25b
AD
2905static void netdev_unbind_all_sb_channels(struct net_device *dev)
2906{
2907 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2908
2909 /* Unbind any subordinate channels */
2910 while (txq-- != &dev->_tx[0]) {
2911 if (txq->sb_dev)
2912 netdev_unbind_sb_channel(dev, txq->sb_dev);
2913 }
2914}
2915
9cf1f6a8
AD
2916void netdev_reset_tc(struct net_device *dev)
2917{
6234f874
AD
2918#ifdef CONFIG_XPS
2919 netif_reset_xps_queues_gt(dev, 0);
2920#endif
ffcfe25b
AD
2921 netdev_unbind_all_sb_channels(dev);
2922
2923 /* Reset TC configuration of device */
9cf1f6a8
AD
2924 dev->num_tc = 0;
2925 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2926 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2927}
2928EXPORT_SYMBOL(netdev_reset_tc);
2929
2930int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2931{
2932 if (tc >= dev->num_tc)
2933 return -EINVAL;
2934
6234f874
AD
2935#ifdef CONFIG_XPS
2936 netif_reset_xps_queues(dev, offset, count);
2937#endif
9cf1f6a8
AD
2938 dev->tc_to_txq[tc].count = count;
2939 dev->tc_to_txq[tc].offset = offset;
2940 return 0;
2941}
2942EXPORT_SYMBOL(netdev_set_tc_queue);
2943
2944int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2945{
2946 if (num_tc > TC_MAX_QUEUE)
2947 return -EINVAL;
2948
6234f874
AD
2949#ifdef CONFIG_XPS
2950 netif_reset_xps_queues_gt(dev, 0);
2951#endif
ffcfe25b
AD
2952 netdev_unbind_all_sb_channels(dev);
2953
9cf1f6a8
AD
2954 dev->num_tc = num_tc;
2955 return 0;
2956}
2957EXPORT_SYMBOL(netdev_set_num_tc);
2958
ffcfe25b
AD
2959void netdev_unbind_sb_channel(struct net_device *dev,
2960 struct net_device *sb_dev)
2961{
2962 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2963
2964#ifdef CONFIG_XPS
2965 netif_reset_xps_queues_gt(sb_dev, 0);
2966#endif
2967 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2968 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2969
2970 while (txq-- != &dev->_tx[0]) {
2971 if (txq->sb_dev == sb_dev)
2972 txq->sb_dev = NULL;
2973 }
2974}
2975EXPORT_SYMBOL(netdev_unbind_sb_channel);
2976
2977int netdev_bind_sb_channel_queue(struct net_device *dev,
2978 struct net_device *sb_dev,
2979 u8 tc, u16 count, u16 offset)
2980{
2981 /* Make certain the sb_dev and dev are already configured */
2982 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2983 return -EINVAL;
2984
2985 /* We cannot hand out queues we don't have */
2986 if ((offset + count) > dev->real_num_tx_queues)
2987 return -EINVAL;
2988
2989 /* Record the mapping */
2990 sb_dev->tc_to_txq[tc].count = count;
2991 sb_dev->tc_to_txq[tc].offset = offset;
2992
2993 /* Provide a way for Tx queue to find the tc_to_txq map or
2994 * XPS map for itself.
2995 */
2996 while (count--)
2997 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2998
2999 return 0;
3000}
3001EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3002
3003int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3004{
3005 /* Do not use a multiqueue device to represent a subordinate channel */
3006 if (netif_is_multiqueue(dev))
3007 return -ENODEV;
3008
3009 /* We allow channels 1 - 32767 to be used for subordinate channels.
3010 * Channel 0 is meant to be "native" mode and used only to represent
3011 * the main root device. We allow writing 0 to reset the device back
3012 * to normal mode after being used as a subordinate channel.
3013 */
3014 if (channel > S16_MAX)
3015 return -EINVAL;
3016
3017 dev->num_tc = -channel;
3018
3019 return 0;
3020}
3021EXPORT_SYMBOL(netdev_set_sb_channel);
3022
f0796d5c
JF
3023/*
3024 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 3025 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 3026 */
e6484930 3027int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 3028{
ac5b7019 3029 bool disabling;
1d24eb48
TH
3030 int rc;
3031
ac5b7019
JK
3032 disabling = txq < dev->real_num_tx_queues;
3033
e6484930
TH
3034 if (txq < 1 || txq > dev->num_tx_queues)
3035 return -EINVAL;
f0796d5c 3036
5c56580b
BH
3037 if (dev->reg_state == NETREG_REGISTERED ||
3038 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
3039 ASSERT_RTNL();
3040
1d24eb48
TH
3041 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3042 txq);
bf264145
TH
3043 if (rc)
3044 return rc;
3045
4f57c087
JF
3046 if (dev->num_tc)
3047 netif_setup_tc(dev, txq);
3048
ac5b7019
JK
3049 dev->real_num_tx_queues = txq;
3050
3051 if (disabling) {
3052 synchronize_net();
e6484930 3053 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
3054#ifdef CONFIG_XPS
3055 netif_reset_xps_queues_gt(dev, txq);
3056#endif
3057 }
ac5b7019
JK
3058 } else {
3059 dev->real_num_tx_queues = txq;
f0796d5c 3060 }
e6484930 3061
e6484930 3062 return 0;
f0796d5c
JF
3063}
3064EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 3065
a953be53 3066#ifdef CONFIG_SYSFS
62fe0b40
BH
3067/**
3068 * netif_set_real_num_rx_queues - set actual number of RX queues used
3069 * @dev: Network device
3070 * @rxq: Actual number of RX queues
3071 *
3072 * This must be called either with the rtnl_lock held or before
3073 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
3074 * negative error code. If called before registration, it always
3075 * succeeds.
62fe0b40
BH
3076 */
3077int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3078{
3079 int rc;
3080
bd25fa7b
TH
3081 if (rxq < 1 || rxq > dev->num_rx_queues)
3082 return -EINVAL;
3083
62fe0b40
BH
3084 if (dev->reg_state == NETREG_REGISTERED) {
3085 ASSERT_RTNL();
3086
62fe0b40
BH
3087 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3088 rxq);
3089 if (rc)
3090 return rc;
62fe0b40
BH
3091 }
3092
3093 dev->real_num_rx_queues = rxq;
3094 return 0;
3095}
3096EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3097#endif
3098
2c53040f
BH
3099/**
3100 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
3101 *
3102 * This routine should set an upper limit on the number of RSS queues
3103 * used by default by multiqueue devices.
3104 */
a55b138b 3105int netif_get_num_default_rss_queues(void)
16917b87 3106{
40e4e713
HS
3107 return is_kdump_kernel() ?
3108 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
3109}
3110EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3111
3bcb846c 3112static void __netif_reschedule(struct Qdisc *q)
56079431 3113{
def82a1d
JP
3114 struct softnet_data *sd;
3115 unsigned long flags;
56079431 3116
def82a1d 3117 local_irq_save(flags);
903ceff7 3118 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
3119 q->next_sched = NULL;
3120 *sd->output_queue_tailp = q;
3121 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
3122 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3123 local_irq_restore(flags);
3124}
3125
3126void __netif_schedule(struct Qdisc *q)
3127{
3128 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3129 __netif_reschedule(q);
56079431
DV
3130}
3131EXPORT_SYMBOL(__netif_schedule);
3132
e6247027
ED
3133struct dev_kfree_skb_cb {
3134 enum skb_free_reason reason;
3135};
3136
3137static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 3138{
e6247027
ED
3139 return (struct dev_kfree_skb_cb *)skb->cb;
3140}
3141
46e5da40
JF
3142void netif_schedule_queue(struct netdev_queue *txq)
3143{
3144 rcu_read_lock();
5be5515a 3145 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
3146 struct Qdisc *q = rcu_dereference(txq->qdisc);
3147
3148 __netif_schedule(q);
3149 }
3150 rcu_read_unlock();
3151}
3152EXPORT_SYMBOL(netif_schedule_queue);
3153
46e5da40
JF
3154void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3155{
3156 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3157 struct Qdisc *q;
3158
3159 rcu_read_lock();
3160 q = rcu_dereference(dev_queue->qdisc);
3161 __netif_schedule(q);
3162 rcu_read_unlock();
3163 }
3164}
3165EXPORT_SYMBOL(netif_tx_wake_queue);
3166
e6247027 3167void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3168{
e6247027 3169 unsigned long flags;
56079431 3170
9899886d
MJ
3171 if (unlikely(!skb))
3172 return;
3173
63354797 3174 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3175 smp_rmb();
63354797
RE
3176 refcount_set(&skb->users, 0);
3177 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3178 return;
bea3348e 3179 }
e6247027
ED
3180 get_kfree_skb_cb(skb)->reason = reason;
3181 local_irq_save(flags);
3182 skb->next = __this_cpu_read(softnet_data.completion_queue);
3183 __this_cpu_write(softnet_data.completion_queue, skb);
3184 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3185 local_irq_restore(flags);
56079431 3186}
e6247027 3187EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3188
e6247027 3189void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3190{
3191 if (in_irq() || irqs_disabled())
e6247027 3192 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3193 else
3194 dev_kfree_skb(skb);
3195}
e6247027 3196EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3197
3198
bea3348e
SH
3199/**
3200 * netif_device_detach - mark device as removed
3201 * @dev: network device
3202 *
3203 * Mark device as removed from system and therefore no longer available.
3204 */
56079431
DV
3205void netif_device_detach(struct net_device *dev)
3206{
3207 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3208 netif_running(dev)) {
d543103a 3209 netif_tx_stop_all_queues(dev);
56079431
DV
3210 }
3211}
3212EXPORT_SYMBOL(netif_device_detach);
3213
bea3348e
SH
3214/**
3215 * netif_device_attach - mark device as attached
3216 * @dev: network device
3217 *
3218 * Mark device as attached from system and restart if needed.
3219 */
56079431
DV
3220void netif_device_attach(struct net_device *dev)
3221{
3222 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3223 netif_running(dev)) {
d543103a 3224 netif_tx_wake_all_queues(dev);
4ec93edb 3225 __netdev_watchdog_up(dev);
56079431
DV
3226 }
3227}
3228EXPORT_SYMBOL(netif_device_attach);
3229
5605c762
JP
3230/*
3231 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3232 * to be used as a distribution range.
3233 */
eadec877
AD
3234static u16 skb_tx_hash(const struct net_device *dev,
3235 const struct net_device *sb_dev,
3236 struct sk_buff *skb)
5605c762
JP
3237{
3238 u32 hash;
3239 u16 qoffset = 0;
1b837d48 3240 u16 qcount = dev->real_num_tx_queues;
5605c762 3241
eadec877
AD
3242 if (dev->num_tc) {
3243 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3244
3245 qoffset = sb_dev->tc_to_txq[tc].offset;
3246 qcount = sb_dev->tc_to_txq[tc].count;
3247 }
3248
5605c762
JP
3249 if (skb_rx_queue_recorded(skb)) {
3250 hash = skb_get_rx_queue(skb);
6e11d157
AN
3251 if (hash >= qoffset)
3252 hash -= qoffset;
1b837d48
AD
3253 while (unlikely(hash >= qcount))
3254 hash -= qcount;
eadec877 3255 return hash + qoffset;
5605c762
JP
3256 }
3257
3258 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3259}
5605c762 3260
36c92474
BH
3261static void skb_warn_bad_offload(const struct sk_buff *skb)
3262{
84d15ae5 3263 static const netdev_features_t null_features;
36c92474 3264 struct net_device *dev = skb->dev;
88ad4175 3265 const char *name = "";
36c92474 3266
c846ad9b
BG
3267 if (!net_ratelimit())
3268 return;
3269
88ad4175
BM
3270 if (dev) {
3271 if (dev->dev.parent)
3272 name = dev_driver_string(dev->dev.parent);
3273 else
3274 name = netdev_name(dev);
3275 }
6413139d
WB
3276 skb_dump(KERN_WARNING, skb, false);
3277 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3278 name, dev ? &dev->features : &null_features,
6413139d 3279 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3280}
3281
1da177e4
LT
3282/*
3283 * Invalidate hardware checksum when packet is to be mangled, and
3284 * complete checksum manually on outgoing path.
3285 */
84fa7933 3286int skb_checksum_help(struct sk_buff *skb)
1da177e4 3287{
d3bc23e7 3288 __wsum csum;
663ead3b 3289 int ret = 0, offset;
1da177e4 3290
84fa7933 3291 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3292 goto out_set_summed;
3293
3aefd7d6 3294 if (unlikely(skb_is_gso(skb))) {
36c92474
BH
3295 skb_warn_bad_offload(skb);
3296 return -EINVAL;
1da177e4
LT
3297 }
3298
cef401de
ED
3299 /* Before computing a checksum, we should make sure no frag could
3300 * be modified by an external entity : checksum could be wrong.
3301 */
3302 if (skb_has_shared_frag(skb)) {
3303 ret = __skb_linearize(skb);
3304 if (ret)
3305 goto out;
3306 }
3307
55508d60 3308 offset = skb_checksum_start_offset(skb);
a030847e
HX
3309 BUG_ON(offset >= skb_headlen(skb));
3310 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3311
3312 offset += skb->csum_offset;
3313 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3314
8211fbfa
HK
3315 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3316 if (ret)
3317 goto out;
1da177e4 3318
4f2e4ad5 3319 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3320out_set_summed:
1da177e4 3321 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3322out:
1da177e4
LT
3323 return ret;
3324}
d1b19dff 3325EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3326
b72b5bf6
DC
3327int skb_crc32c_csum_help(struct sk_buff *skb)
3328{
3329 __le32 crc32c_csum;
3330 int ret = 0, offset, start;
3331
3332 if (skb->ip_summed != CHECKSUM_PARTIAL)
3333 goto out;
3334
3335 if (unlikely(skb_is_gso(skb)))
3336 goto out;
3337
3338 /* Before computing a checksum, we should make sure no frag could
3339 * be modified by an external entity : checksum could be wrong.
3340 */
3341 if (unlikely(skb_has_shared_frag(skb))) {
3342 ret = __skb_linearize(skb);
3343 if (ret)
3344 goto out;
3345 }
3346 start = skb_checksum_start_offset(skb);
3347 offset = start + offsetof(struct sctphdr, checksum);
3348 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3349 ret = -EINVAL;
3350 goto out;
3351 }
8211fbfa
HK
3352
3353 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3354 if (ret)
3355 goto out;
3356
b72b5bf6
DC
3357 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3358 skb->len - start, ~(__u32)0,
3359 crc32c_csum_stub));
3360 *(__le32 *)(skb->data + offset) = crc32c_csum;
3361 skb->ip_summed = CHECKSUM_NONE;
dba00306 3362 skb->csum_not_inet = 0;
b72b5bf6
DC
3363out:
3364 return ret;
3365}
3366
53d6471c 3367__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3368{
252e3346 3369 __be16 type = skb->protocol;
f6a78bfc 3370
19acc327
PS
3371 /* Tunnel gso handlers can set protocol to ethernet. */
3372 if (type == htons(ETH_P_TEB)) {
3373 struct ethhdr *eth;
3374
3375 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3376 return 0;
3377
1dfe82eb 3378 eth = (struct ethhdr *)skb->data;
19acc327
PS
3379 type = eth->h_proto;
3380 }
3381
d4bcef3f 3382 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3383}
3384
3385/**
3386 * skb_mac_gso_segment - mac layer segmentation handler.
3387 * @skb: buffer to segment
3388 * @features: features for the output path (see dev->features)
3389 */
3390struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3391 netdev_features_t features)
3392{
3393 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3394 struct packet_offload *ptype;
53d6471c
VY
3395 int vlan_depth = skb->mac_len;
3396 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3397
3398 if (unlikely(!type))
3399 return ERR_PTR(-EINVAL);
3400
53d6471c 3401 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3402
3403 rcu_read_lock();
22061d80 3404 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3405 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3406 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3407 break;
3408 }
3409 }
3410 rcu_read_unlock();
3411
98e399f8 3412 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3413
f6a78bfc
HX
3414 return segs;
3415}
05e8ef4a
PS
3416EXPORT_SYMBOL(skb_mac_gso_segment);
3417
3418
3419/* openvswitch calls this on rx path, so we need a different check.
3420 */
3421static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3422{
3423 if (tx_path)
0c19f846
WB
3424 return skb->ip_summed != CHECKSUM_PARTIAL &&
3425 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3426
3427 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3428}
3429
3430/**
3431 * __skb_gso_segment - Perform segmentation on skb.
3432 * @skb: buffer to segment
3433 * @features: features for the output path (see dev->features)
3434 * @tx_path: whether it is called in TX path
3435 *
3436 * This function segments the given skb and returns a list of segments.
3437 *
3438 * It may return NULL if the skb requires no segmentation. This is
3439 * only possible when GSO is used for verifying header integrity.
9207f9d4 3440 *
a08e7fd9 3441 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3442 */
3443struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3444 netdev_features_t features, bool tx_path)
3445{
b2504a5d
ED
3446 struct sk_buff *segs;
3447
05e8ef4a
PS
3448 if (unlikely(skb_needs_check(skb, tx_path))) {
3449 int err;
3450
b2504a5d 3451 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3452 err = skb_cow_head(skb, 0);
3453 if (err < 0)
05e8ef4a
PS
3454 return ERR_PTR(err);
3455 }
3456
802ab55a
AD
3457 /* Only report GSO partial support if it will enable us to
3458 * support segmentation on this frame without needing additional
3459 * work.
3460 */
3461 if (features & NETIF_F_GSO_PARTIAL) {
3462 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3463 struct net_device *dev = skb->dev;
3464
3465 partial_features |= dev->features & dev->gso_partial_features;
3466 if (!skb_gso_ok(skb, features | partial_features))
3467 features &= ~NETIF_F_GSO_PARTIAL;
3468 }
3469
a08e7fd9 3470 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3471 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3472
68c33163 3473 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3474 SKB_GSO_CB(skb)->encap_level = 0;
3475
05e8ef4a
PS
3476 skb_reset_mac_header(skb);
3477 skb_reset_mac_len(skb);
3478
b2504a5d
ED
3479 segs = skb_mac_gso_segment(skb, features);
3480
3a1296a3 3481 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3482 skb_warn_bad_offload(skb);
3483
3484 return segs;
05e8ef4a 3485}
12b0004d 3486EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3487
fb286bb2
HX
3488/* Take action when hardware reception checksum errors are detected. */
3489#ifdef CONFIG_BUG
7fe50ac8 3490void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3491{
3492 if (net_ratelimit()) {
7b6cd1ce 3493 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3494 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3495 dump_stack();
3496 }
3497}
3498EXPORT_SYMBOL(netdev_rx_csum_fault);
3499#endif
3500
ab74cfeb 3501/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3502static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3503{
3d3a8533 3504#ifdef CONFIG_HIGHMEM
1da177e4 3505 int i;
f4563a75 3506
5acbbd42 3507 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3508 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3509 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3510
ea2ab693 3511 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3512 return 1;
ea2ab693 3513 }
5acbbd42 3514 }
3d3a8533 3515#endif
1da177e4
LT
3516 return 0;
3517}
1da177e4 3518
3b392ddb
SH
3519/* If MPLS offload request, verify we are testing hardware MPLS features
3520 * instead of standard features for the netdev.
3521 */
d0edc7bf 3522#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3523static netdev_features_t net_mpls_features(struct sk_buff *skb,
3524 netdev_features_t features,
3525 __be16 type)
3526{
25cd9ba0 3527 if (eth_p_mpls(type))
3b392ddb
SH
3528 features &= skb->dev->mpls_features;
3529
3530 return features;
3531}
3532#else
3533static netdev_features_t net_mpls_features(struct sk_buff *skb,
3534 netdev_features_t features,
3535 __be16 type)
3536{
3537 return features;
3538}
3539#endif
3540
c8f44aff 3541static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3542 netdev_features_t features)
f01a5236 3543{
3b392ddb
SH
3544 __be16 type;
3545
9fc95f50 3546 type = skb_network_protocol(skb, NULL);
3b392ddb 3547 features = net_mpls_features(skb, features, type);
53d6471c 3548
c0d680e5 3549 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3550 !can_checksum_protocol(features, type)) {
996e8021 3551 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3552 }
7be2c82c
ED
3553 if (illegal_highdma(skb->dev, skb))
3554 features &= ~NETIF_F_SG;
f01a5236
JG
3555
3556 return features;
3557}
3558
e38f3025
TM
3559netdev_features_t passthru_features_check(struct sk_buff *skb,
3560 struct net_device *dev,
3561 netdev_features_t features)
3562{
3563 return features;
3564}
3565EXPORT_SYMBOL(passthru_features_check);
3566
7ce23672 3567static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3568 struct net_device *dev,
3569 netdev_features_t features)
3570{
3571 return vlan_features_check(skb, features);
3572}
3573
cbc53e08
AD
3574static netdev_features_t gso_features_check(const struct sk_buff *skb,
3575 struct net_device *dev,
3576 netdev_features_t features)
3577{
3578 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3579
3580 if (gso_segs > dev->gso_max_segs)
3581 return features & ~NETIF_F_GSO_MASK;
3582
1d155dfd
HK
3583 if (!skb_shinfo(skb)->gso_type) {
3584 skb_warn_bad_offload(skb);
3585 return features & ~NETIF_F_GSO_MASK;
3586 }
3587
802ab55a
AD
3588 /* Support for GSO partial features requires software
3589 * intervention before we can actually process the packets
3590 * so we need to strip support for any partial features now
3591 * and we can pull them back in after we have partially
3592 * segmented the frame.
3593 */
3594 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3595 features &= ~dev->gso_partial_features;
3596
3597 /* Make sure to clear the IPv4 ID mangling feature if the
3598 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3599 */
3600 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3601 struct iphdr *iph = skb->encapsulation ?
3602 inner_ip_hdr(skb) : ip_hdr(skb);
3603
3604 if (!(iph->frag_off & htons(IP_DF)))
3605 features &= ~NETIF_F_TSO_MANGLEID;
3606 }
3607
3608 return features;
3609}
3610
c1e756bf 3611netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3612{
5f35227e 3613 struct net_device *dev = skb->dev;
fcbeb976 3614 netdev_features_t features = dev->features;
58e998c6 3615
cbc53e08
AD
3616 if (skb_is_gso(skb))
3617 features = gso_features_check(skb, dev, features);
30b678d8 3618
5f35227e
JG
3619 /* If encapsulation offload request, verify we are testing
3620 * hardware encapsulation features instead of standard
3621 * features for the netdev
3622 */
3623 if (skb->encapsulation)
3624 features &= dev->hw_enc_features;
3625
f5a7fb88
TM
3626 if (skb_vlan_tagged(skb))
3627 features = netdev_intersect_features(features,
3628 dev->vlan_features |
3629 NETIF_F_HW_VLAN_CTAG_TX |
3630 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3631
5f35227e
JG
3632 if (dev->netdev_ops->ndo_features_check)
3633 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3634 features);
8cb65d00
TM
3635 else
3636 features &= dflt_features_check(skb, dev, features);
5f35227e 3637
c1e756bf 3638 return harmonize_features(skb, features);
58e998c6 3639}
c1e756bf 3640EXPORT_SYMBOL(netif_skb_features);
58e998c6 3641
2ea25513 3642static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3643 struct netdev_queue *txq, bool more)
f6a78bfc 3644{
2ea25513
DM
3645 unsigned int len;
3646 int rc;
00829823 3647
9f9a742d 3648 if (dev_nit_active(dev))
2ea25513 3649 dev_queue_xmit_nit(skb, dev);
fc741216 3650
2ea25513 3651 len = skb->len;
3744741a 3652 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
2ea25513 3653 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3654 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3655 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3656
2ea25513
DM
3657 return rc;
3658}
7b9c6090 3659
8dcda22a
DM
3660struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3661 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3662{
3663 struct sk_buff *skb = first;
3664 int rc = NETDEV_TX_OK;
7b9c6090 3665
7f2e870f
DM
3666 while (skb) {
3667 struct sk_buff *next = skb->next;
fc70fb64 3668
a8305bff 3669 skb_mark_not_on_list(skb);
95f6b3dd 3670 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3671 if (unlikely(!dev_xmit_complete(rc))) {
3672 skb->next = next;
3673 goto out;
3674 }
6afff0ca 3675
7f2e870f 3676 skb = next;
fe60faa5 3677 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3678 rc = NETDEV_TX_BUSY;
3679 break;
9ccb8975 3680 }
7f2e870f 3681 }
9ccb8975 3682
7f2e870f
DM
3683out:
3684 *ret = rc;
3685 return skb;
3686}
b40863c6 3687
1ff0dc94
ED
3688static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3689 netdev_features_t features)
f6a78bfc 3690{
df8a39de 3691 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3692 !vlan_hw_offload_capable(features, skb->vlan_proto))
3693 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3694 return skb;
3695}
f6a78bfc 3696
43c26a1a
DC
3697int skb_csum_hwoffload_help(struct sk_buff *skb,
3698 const netdev_features_t features)
3699{
fa821170 3700 if (unlikely(skb_csum_is_sctp(skb)))
43c26a1a
DC
3701 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3702 skb_crc32c_csum_help(skb);
3703
62fafcd6
XL
3704 if (features & NETIF_F_HW_CSUM)
3705 return 0;
3706
3707 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3708 switch (skb->csum_offset) {
3709 case offsetof(struct tcphdr, check):
3710 case offsetof(struct udphdr, check):
3711 return 0;
3712 }
3713 }
3714
3715 return skb_checksum_help(skb);
43c26a1a
DC
3716}
3717EXPORT_SYMBOL(skb_csum_hwoffload_help);
3718
f53c7239 3719static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3720{
3721 netdev_features_t features;
f6a78bfc 3722
eae3f88e
DM
3723 features = netif_skb_features(skb);
3724 skb = validate_xmit_vlan(skb, features);
3725 if (unlikely(!skb))
3726 goto out_null;
7b9c6090 3727
ebf4e808
IL
3728 skb = sk_validate_xmit_skb(skb, dev);
3729 if (unlikely(!skb))
3730 goto out_null;
3731
8b86a61d 3732 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3733 struct sk_buff *segs;
3734
3735 segs = skb_gso_segment(skb, features);
cecda693 3736 if (IS_ERR(segs)) {
af6dabc9 3737 goto out_kfree_skb;
cecda693
JW
3738 } else if (segs) {
3739 consume_skb(skb);
3740 skb = segs;
f6a78bfc 3741 }
eae3f88e
DM
3742 } else {
3743 if (skb_needs_linearize(skb, features) &&
3744 __skb_linearize(skb))
3745 goto out_kfree_skb;
4ec93edb 3746
eae3f88e
DM
3747 /* If packet is not checksummed and device does not
3748 * support checksumming for this protocol, complete
3749 * checksumming here.
3750 */
3751 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3752 if (skb->encapsulation)
3753 skb_set_inner_transport_header(skb,
3754 skb_checksum_start_offset(skb));
3755 else
3756 skb_set_transport_header(skb,
3757 skb_checksum_start_offset(skb));
43c26a1a 3758 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3759 goto out_kfree_skb;
7b9c6090 3760 }
0c772159 3761 }
7b9c6090 3762
f53c7239 3763 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3764
eae3f88e 3765 return skb;
fc70fb64 3766
f6a78bfc
HX
3767out_kfree_skb:
3768 kfree_skb(skb);
eae3f88e 3769out_null:
d21fd63e 3770 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3771 return NULL;
3772}
6afff0ca 3773
f53c7239 3774struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3775{
3776 struct sk_buff *next, *head = NULL, *tail;
3777
bec3cfdc 3778 for (; skb != NULL; skb = next) {
55a93b3e 3779 next = skb->next;
a8305bff 3780 skb_mark_not_on_list(skb);
bec3cfdc
ED
3781
3782 /* in case skb wont be segmented, point to itself */
3783 skb->prev = skb;
3784
f53c7239 3785 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3786 if (!skb)
3787 continue;
55a93b3e 3788
bec3cfdc
ED
3789 if (!head)
3790 head = skb;
3791 else
3792 tail->next = skb;
3793 /* If skb was segmented, skb->prev points to
3794 * the last segment. If not, it still contains skb.
3795 */
3796 tail = skb->prev;
55a93b3e
ED
3797 }
3798 return head;
f6a78bfc 3799}
104ba78c 3800EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3801
1def9238
ED
3802static void qdisc_pkt_len_init(struct sk_buff *skb)
3803{
3804 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3805
3806 qdisc_skb_cb(skb)->pkt_len = skb->len;
3807
3808 /* To get more precise estimation of bytes sent on wire,
3809 * we add to pkt_len the headers size of all segments
3810 */
a0dce875 3811 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3812 unsigned int hdr_len;
15e5a030 3813 u16 gso_segs = shinfo->gso_segs;
1def9238 3814
757b8b1d
ED
3815 /* mac layer + network layer */
3816 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3817
3818 /* + transport layer */
7c68d1a6
ED
3819 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3820 const struct tcphdr *th;
3821 struct tcphdr _tcphdr;
3822
3823 th = skb_header_pointer(skb, skb_transport_offset(skb),
3824 sizeof(_tcphdr), &_tcphdr);
3825 if (likely(th))
3826 hdr_len += __tcp_hdrlen(th);
3827 } else {
3828 struct udphdr _udphdr;
3829
3830 if (skb_header_pointer(skb, skb_transport_offset(skb),
3831 sizeof(_udphdr), &_udphdr))
3832 hdr_len += sizeof(struct udphdr);
3833 }
15e5a030
JW
3834
3835 if (shinfo->gso_type & SKB_GSO_DODGY)
3836 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3837 shinfo->gso_size);
3838
3839 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3840 }
3841}
3842
bbd8a0d3
KK
3843static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3844 struct net_device *dev,
3845 struct netdev_queue *txq)
3846{
3847 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3848 struct sk_buff *to_free = NULL;
a2da570d 3849 bool contended;
bbd8a0d3
KK
3850 int rc;
3851
a2da570d 3852 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3853
3854 if (q->flags & TCQ_F_NOLOCK) {
c4fef01b
YL
3855 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3856 qdisc_run_begin(q)) {
3857 /* Retest nolock_qdisc_is_empty() within the protection
3858 * of q->seqlock to protect from racing with requeuing.
3859 */
3860 if (unlikely(!nolock_qdisc_is_empty(q))) {
3861 rc = q->enqueue(skb, q, &to_free) &
3862 NET_XMIT_MASK;
3863 __qdisc_run(q);
3864 qdisc_run_end(q);
3865
3866 goto no_lock_out;
3867 }
3868
3869 qdisc_bstats_cpu_update(q, skb);
3870 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3871 !nolock_qdisc_is_empty(q))
3872 __qdisc_run(q);
3873
3874 qdisc_run_end(q);
3875 return NET_XMIT_SUCCESS;
3876 }
3877
ac5c66f2 3878 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
c4fef01b 3879 qdisc_run(q);
6b3ba914 3880
c4fef01b 3881no_lock_out:
6b3ba914
JF
3882 if (unlikely(to_free))
3883 kfree_skb_list(to_free);
3884 return rc;
3885 }
3886
79640a4c
ED
3887 /*
3888 * Heuristic to force contended enqueues to serialize on a
3889 * separate lock before trying to get qdisc main lock.
f9eb8aea 3890 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3891 * often and dequeue packets faster.
79640a4c 3892 */
a2da570d 3893 contended = qdisc_is_running(q);
79640a4c
ED
3894 if (unlikely(contended))
3895 spin_lock(&q->busylock);
3896
bbd8a0d3
KK
3897 spin_lock(root_lock);
3898 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3899 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3900 rc = NET_XMIT_DROP;
3901 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3902 qdisc_run_begin(q)) {
bbd8a0d3
KK
3903 /*
3904 * This is a work-conserving queue; there are no old skbs
3905 * waiting to be sent out; and the qdisc is not running -
3906 * xmit the skb directly.
3907 */
bfe0d029 3908
bfe0d029
ED
3909 qdisc_bstats_update(q, skb);
3910
55a93b3e 3911 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3912 if (unlikely(contended)) {
3913 spin_unlock(&q->busylock);
3914 contended = false;
3915 }
bbd8a0d3 3916 __qdisc_run(q);
6c148184 3917 }
bbd8a0d3 3918
6c148184 3919 qdisc_run_end(q);
bbd8a0d3
KK
3920 rc = NET_XMIT_SUCCESS;
3921 } else {
ac5c66f2 3922 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3923 if (qdisc_run_begin(q)) {
3924 if (unlikely(contended)) {
3925 spin_unlock(&q->busylock);
3926 contended = false;
3927 }
3928 __qdisc_run(q);
6c148184 3929 qdisc_run_end(q);
79640a4c 3930 }
bbd8a0d3
KK
3931 }
3932 spin_unlock(root_lock);
520ac30f
ED
3933 if (unlikely(to_free))
3934 kfree_skb_list(to_free);
79640a4c
ED
3935 if (unlikely(contended))
3936 spin_unlock(&q->busylock);
bbd8a0d3
KK
3937 return rc;
3938}
3939
86f8515f 3940#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3941static void skb_update_prio(struct sk_buff *skb)
3942{
4dcb31d4
ED
3943 const struct netprio_map *map;
3944 const struct sock *sk;
3945 unsigned int prioidx;
5bc1421e 3946
4dcb31d4
ED
3947 if (skb->priority)
3948 return;
3949 map = rcu_dereference_bh(skb->dev->priomap);
3950 if (!map)
3951 return;
3952 sk = skb_to_full_sk(skb);
3953 if (!sk)
3954 return;
91c68ce2 3955
4dcb31d4
ED
3956 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3957
3958 if (prioidx < map->priomap_len)
3959 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3960}
3961#else
3962#define skb_update_prio(skb)
3963#endif
3964
95603e22
MM
3965/**
3966 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3967 * @net: network namespace this loopback is happening in
3968 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3969 * @skb: buffer to transmit
3970 */
0c4b51f0 3971int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3972{
3973 skb_reset_mac_header(skb);
3974 __skb_pull(skb, skb_network_offset(skb));
3975 skb->pkt_type = PACKET_LOOPBACK;
3976 skb->ip_summed = CHECKSUM_UNNECESSARY;
3977 WARN_ON(!skb_dst(skb));
3978 skb_dst_force(skb);
3979 netif_rx_ni(skb);
3980 return 0;
3981}
3982EXPORT_SYMBOL(dev_loopback_xmit);
3983
1f211a1b
DB
3984#ifdef CONFIG_NET_EGRESS
3985static struct sk_buff *
3986sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3987{
46209401 3988 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3989 struct tcf_result cl_res;
3990
46209401 3991 if (!miniq)
1f211a1b
DB
3992 return skb;
3993
8dc07fdb 3994 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
aadaca9e 3995 qdisc_skb_cb(skb)->mru = 0;
7baf2429 3996 qdisc_skb_cb(skb)->post_ct = false;
46209401 3997 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3998
46209401 3999 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
4000 case TC_ACT_OK:
4001 case TC_ACT_RECLASSIFY:
4002 skb->tc_index = TC_H_MIN(cl_res.classid);
4003 break;
4004 case TC_ACT_SHOT:
46209401 4005 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 4006 *ret = NET_XMIT_DROP;
7e2c3aea
DB
4007 kfree_skb(skb);
4008 return NULL;
1f211a1b
DB
4009 case TC_ACT_STOLEN:
4010 case TC_ACT_QUEUED:
e25ea21f 4011 case TC_ACT_TRAP:
1f211a1b 4012 *ret = NET_XMIT_SUCCESS;
7e2c3aea 4013 consume_skb(skb);
1f211a1b
DB
4014 return NULL;
4015 case TC_ACT_REDIRECT:
4016 /* No need to push/pop skb's mac_header here on egress! */
4017 skb_do_redirect(skb);
4018 *ret = NET_XMIT_SUCCESS;
4019 return NULL;
4020 default:
4021 break;
4022 }
357b6cc5 4023
1f211a1b
DB
4024 return skb;
4025}
4026#endif /* CONFIG_NET_EGRESS */
4027
fc9bab24
AN
4028#ifdef CONFIG_XPS
4029static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4030 struct xps_dev_maps *dev_maps, unsigned int tci)
4031{
255c04a8 4032 int tc = netdev_get_prio_tc_map(dev, skb->priority);
fc9bab24
AN
4033 struct xps_map *map;
4034 int queue_index = -1;
4035
5478fcd0 4036 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
255c04a8
AT
4037 return queue_index;
4038
4039 tci *= dev_maps->num_tc;
4040 tci += tc;
fc9bab24
AN
4041
4042 map = rcu_dereference(dev_maps->attr_map[tci]);
4043 if (map) {
4044 if (map->len == 1)
4045 queue_index = map->queues[0];
4046 else
4047 queue_index = map->queues[reciprocal_scale(
4048 skb_get_hash(skb), map->len)];
4049 if (unlikely(queue_index >= dev->real_num_tx_queues))
4050 queue_index = -1;
4051 }
4052 return queue_index;
4053}
4054#endif
4055
eadec877
AD
4056static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4057 struct sk_buff *skb)
638b2a69
JP
4058{
4059#ifdef CONFIG_XPS
4060 struct xps_dev_maps *dev_maps;
fc9bab24 4061 struct sock *sk = skb->sk;
638b2a69
JP
4062 int queue_index = -1;
4063
04157469
AN
4064 if (!static_key_false(&xps_needed))
4065 return -1;
4066
638b2a69 4067 rcu_read_lock();
fc9bab24
AN
4068 if (!static_key_false(&xps_rxqs_needed))
4069 goto get_cpus_map;
4070
044ab86d 4071 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
638b2a69 4072 if (dev_maps) {
fc9bab24 4073 int tci = sk_rx_queue_get(sk);
184c449f 4074
5478fcd0 4075 if (tci >= 0)
fc9bab24
AN
4076 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4077 tci);
4078 }
184c449f 4079
fc9bab24
AN
4080get_cpus_map:
4081 if (queue_index < 0) {
044ab86d 4082 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
fc9bab24
AN
4083 if (dev_maps) {
4084 unsigned int tci = skb->sender_cpu - 1;
4085
4086 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4087 tci);
638b2a69
JP
4088 }
4089 }
4090 rcu_read_unlock();
4091
4092 return queue_index;
4093#else
4094 return -1;
4095#endif
4096}
4097
a4ea8a3d 4098u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 4099 struct net_device *sb_dev)
a4ea8a3d
AD
4100{
4101 return 0;
4102}
4103EXPORT_SYMBOL(dev_pick_tx_zero);
4104
4105u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 4106 struct net_device *sb_dev)
a4ea8a3d
AD
4107{
4108 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4109}
4110EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4111
b71b5837
PA
4112u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4113 struct net_device *sb_dev)
638b2a69
JP
4114{
4115 struct sock *sk = skb->sk;
4116 int queue_index = sk_tx_queue_get(sk);
4117
eadec877
AD
4118 sb_dev = sb_dev ? : dev;
4119
638b2a69
JP
4120 if (queue_index < 0 || skb->ooo_okay ||
4121 queue_index >= dev->real_num_tx_queues) {
eadec877 4122 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 4123
638b2a69 4124 if (new_index < 0)
eadec877 4125 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
4126
4127 if (queue_index != new_index && sk &&
004a5d01 4128 sk_fullsock(sk) &&
638b2a69
JP
4129 rcu_access_pointer(sk->sk_dst_cache))
4130 sk_tx_queue_set(sk, new_index);
4131
4132 queue_index = new_index;
4133 }
4134
4135 return queue_index;
4136}
b71b5837 4137EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 4138
4bd97d51
PA
4139struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4140 struct sk_buff *skb,
4141 struct net_device *sb_dev)
638b2a69
JP
4142{
4143 int queue_index = 0;
4144
4145#ifdef CONFIG_XPS
52bd2d62
ED
4146 u32 sender_cpu = skb->sender_cpu - 1;
4147
4148 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
4149 skb->sender_cpu = raw_smp_processor_id() + 1;
4150#endif
4151
4152 if (dev->real_num_tx_queues != 1) {
4153 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 4154
638b2a69 4155 if (ops->ndo_select_queue)
a350ecce 4156 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 4157 else
4bd97d51 4158 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 4159
d584527c 4160 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
4161 }
4162
4163 skb_set_queue_mapping(skb, queue_index);
4164 return netdev_get_tx_queue(dev, queue_index);
4165}
4166
d29f749e 4167/**
9d08dd3d 4168 * __dev_queue_xmit - transmit a buffer
d29f749e 4169 * @skb: buffer to transmit
eadec877 4170 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
4171 *
4172 * Queue a buffer for transmission to a network device. The caller must
4173 * have set the device and priority and built the buffer before calling
4174 * this function. The function can be called from an interrupt.
4175 *
4176 * A negative errno code is returned on a failure. A success does not
4177 * guarantee the frame will be transmitted as it may be dropped due
4178 * to congestion or traffic shaping.
4179 *
4180 * -----------------------------------------------------------------------------------
4181 * I notice this method can also return errors from the queue disciplines,
4182 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4183 * be positive.
4184 *
4185 * Regardless of the return value, the skb is consumed, so it is currently
4186 * difficult to retry a send to this method. (You can bump the ref count
4187 * before sending to hold a reference for retry if you are careful.)
4188 *
4189 * When calling this method, interrupts MUST be enabled. This is because
4190 * the BH enable code must have IRQs enabled so that it will not deadlock.
4191 * --BLG
4192 */
eadec877 4193static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
4194{
4195 struct net_device *dev = skb->dev;
dc2b4847 4196 struct netdev_queue *txq;
1da177e4
LT
4197 struct Qdisc *q;
4198 int rc = -ENOMEM;
f53c7239 4199 bool again = false;
1da177e4 4200
6d1ccff6
ED
4201 skb_reset_mac_header(skb);
4202
e7fd2885 4203 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
e7ed11ee 4204 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
e7fd2885 4205
4ec93edb
YH
4206 /* Disable soft irqs for various locks below. Also
4207 * stops preemption for RCU.
1da177e4 4208 */
4ec93edb 4209 rcu_read_lock_bh();
1da177e4 4210
5bc1421e
NH
4211 skb_update_prio(skb);
4212
1f211a1b
DB
4213 qdisc_pkt_len_init(skb);
4214#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4215 skb->tc_at_ingress = 0;
357b6cc5 4216# ifdef CONFIG_NET_EGRESS
aabf6772 4217 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4218 skb = sch_handle_egress(skb, &rc, dev);
4219 if (!skb)
4220 goto out;
4221 }
357b6cc5 4222# endif
1f211a1b 4223#endif
02875878
ED
4224 /* If device/qdisc don't need skb->dst, release it right now while
4225 * its hot in this cpu cache.
4226 */
4227 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4228 skb_dst_drop(skb);
4229 else
4230 skb_dst_force(skb);
4231
4bd97d51 4232 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4233 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4234
cf66ba58 4235 trace_net_dev_queue(skb);
1da177e4 4236 if (q->enqueue) {
bbd8a0d3 4237 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4238 goto out;
1da177e4
LT
4239 }
4240
4241 /* The device has no queue. Common case for software devices:
eb13da1a 4242 * loopback, all the sorts of tunnels...
1da177e4 4243
eb13da1a 4244 * Really, it is unlikely that netif_tx_lock protection is necessary
4245 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4246 * counters.)
4247 * However, it is possible, that they rely on protection
4248 * made by us here.
1da177e4 4249
eb13da1a 4250 * Check this and shot the lock. It is not prone from deadlocks.
4251 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4252 */
4253 if (dev->flags & IFF_UP) {
4254 int cpu = smp_processor_id(); /* ok because BHs are off */
4255
c773e847 4256 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4257 if (dev_xmit_recursion())
745e20f1
ED
4258 goto recursion_alert;
4259
f53c7239 4260 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4261 if (!skb)
d21fd63e 4262 goto out;
1f59533f 4263
3744741a 4264 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
c773e847 4265 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4266
73466498 4267 if (!netif_xmit_stopped(txq)) {
97cdcf37 4268 dev_xmit_recursion_inc();
ce93718f 4269 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4270 dev_xmit_recursion_dec();
572a9d7b 4271 if (dev_xmit_complete(rc)) {
c773e847 4272 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4273 goto out;
4274 }
4275 }
c773e847 4276 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4277 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4278 dev->name);
1da177e4
LT
4279 } else {
4280 /* Recursion is detected! It is possible,
745e20f1
ED
4281 * unfortunately
4282 */
4283recursion_alert:
e87cc472
JP
4284 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4285 dev->name);
1da177e4
LT
4286 }
4287 }
4288
4289 rc = -ENETDOWN;
d4828d85 4290 rcu_read_unlock_bh();
1da177e4 4291
015f0688 4292 atomic_long_inc(&dev->tx_dropped);
1f59533f 4293 kfree_skb_list(skb);
1da177e4
LT
4294 return rc;
4295out:
d4828d85 4296 rcu_read_unlock_bh();
1da177e4
LT
4297 return rc;
4298}
f663dd9a 4299
2b4aa3ce 4300int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4301{
4302 return __dev_queue_xmit(skb, NULL);
4303}
2b4aa3ce 4304EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4305
eadec877 4306int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4307{
eadec877 4308 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4309}
4310EXPORT_SYMBOL(dev_queue_xmit_accel);
4311
36ccdf85 4312int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
865b03f2
MK
4313{
4314 struct net_device *dev = skb->dev;
4315 struct sk_buff *orig_skb = skb;
4316 struct netdev_queue *txq;
4317 int ret = NETDEV_TX_BUSY;
4318 bool again = false;
4319
4320 if (unlikely(!netif_running(dev) ||
4321 !netif_carrier_ok(dev)))
4322 goto drop;
4323
4324 skb = validate_xmit_skb_list(skb, dev, &again);
4325 if (skb != orig_skb)
4326 goto drop;
4327
4328 skb_set_queue_mapping(skb, queue_id);
4329 txq = skb_get_tx_queue(dev, skb);
3744741a 4330 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
865b03f2
MK
4331
4332 local_bh_disable();
4333
0ad6f6e7 4334 dev_xmit_recursion_inc();
865b03f2
MK
4335 HARD_TX_LOCK(dev, txq, smp_processor_id());
4336 if (!netif_xmit_frozen_or_drv_stopped(txq))
4337 ret = netdev_start_xmit(skb, dev, txq, false);
4338 HARD_TX_UNLOCK(dev, txq);
0ad6f6e7 4339 dev_xmit_recursion_dec();
865b03f2
MK
4340
4341 local_bh_enable();
865b03f2
MK
4342 return ret;
4343drop:
4344 atomic_long_inc(&dev->tx_dropped);
4345 kfree_skb_list(skb);
4346 return NET_XMIT_DROP;
4347}
36ccdf85 4348EXPORT_SYMBOL(__dev_direct_xmit);
1da177e4 4349
eb13da1a 4350/*************************************************************************
4351 * Receiver routines
4352 *************************************************************************/
1da177e4 4353
6b2bedc3 4354int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4355EXPORT_SYMBOL(netdev_max_backlog);
4356
3b098e2d 4357int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4358int netdev_budget __read_mostly = 300;
a4837980
KK
4359/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4360unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4361int weight_p __read_mostly = 64; /* old backlog weight */
4362int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4363int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4364int dev_rx_weight __read_mostly = 64;
4365int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4366/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4367int gro_normal_batch __read_mostly = 8;
1da177e4 4368
eecfd7c4
ED
4369/* Called with irq disabled */
4370static inline void ____napi_schedule(struct softnet_data *sd,
4371 struct napi_struct *napi)
4372{
29863d41
WW
4373 struct task_struct *thread;
4374
4375 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4376 /* Paired with smp_mb__before_atomic() in
5fdd2f0e
WW
4377 * napi_enable()/dev_set_threaded().
4378 * Use READ_ONCE() to guarantee a complete
4379 * read on napi->thread. Only call
29863d41
WW
4380 * wake_up_process() when it's not NULL.
4381 */
4382 thread = READ_ONCE(napi->thread);
4383 if (thread) {
cb038357
WW
4384 /* Avoid doing set_bit() if the thread is in
4385 * INTERRUPTIBLE state, cause napi_thread_wait()
4386 * makes sure to proceed with napi polling
4387 * if the thread is explicitly woken from here.
4388 */
4389 if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4390 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
29863d41
WW
4391 wake_up_process(thread);
4392 return;
4393 }
4394 }
4395
eecfd7c4
ED
4396 list_add_tail(&napi->poll_list, &sd->poll_list);
4397 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4398}
4399
bfb564e7
KK
4400#ifdef CONFIG_RPS
4401
4402/* One global table that all flow-based protocols share. */
6e3f7faf 4403struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4404EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4405u32 rps_cpu_mask __read_mostly;
4406EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4407
dc05360f 4408struct static_key_false rps_needed __read_mostly;
3df97ba8 4409EXPORT_SYMBOL(rps_needed);
dc05360f 4410struct static_key_false rfs_needed __read_mostly;
13bfff25 4411EXPORT_SYMBOL(rfs_needed);
adc9300e 4412
c445477d
BH
4413static struct rps_dev_flow *
4414set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4415 struct rps_dev_flow *rflow, u16 next_cpu)
4416{
a31196b0 4417 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4418#ifdef CONFIG_RFS_ACCEL
4419 struct netdev_rx_queue *rxqueue;
4420 struct rps_dev_flow_table *flow_table;
4421 struct rps_dev_flow *old_rflow;
4422 u32 flow_id;
4423 u16 rxq_index;
4424 int rc;
4425
4426 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4427 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4428 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4429 goto out;
4430 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4431 if (rxq_index == skb_get_rx_queue(skb))
4432 goto out;
4433
4434 rxqueue = dev->_rx + rxq_index;
4435 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4436 if (!flow_table)
4437 goto out;
61b905da 4438 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4439 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4440 rxq_index, flow_id);
4441 if (rc < 0)
4442 goto out;
4443 old_rflow = rflow;
4444 rflow = &flow_table->flows[flow_id];
c445477d
BH
4445 rflow->filter = rc;
4446 if (old_rflow->filter == rflow->filter)
4447 old_rflow->filter = RPS_NO_FILTER;
4448 out:
4449#endif
4450 rflow->last_qtail =
09994d1b 4451 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4452 }
4453
09994d1b 4454 rflow->cpu = next_cpu;
c445477d
BH
4455 return rflow;
4456}
4457
bfb564e7
KK
4458/*
4459 * get_rps_cpu is called from netif_receive_skb and returns the target
4460 * CPU from the RPS map of the receiving queue for a given skb.
4461 * rcu_read_lock must be held on entry.
4462 */
4463static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4464 struct rps_dev_flow **rflowp)
4465{
567e4b79
ED
4466 const struct rps_sock_flow_table *sock_flow_table;
4467 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4468 struct rps_dev_flow_table *flow_table;
567e4b79 4469 struct rps_map *map;
bfb564e7 4470 int cpu = -1;
567e4b79 4471 u32 tcpu;
61b905da 4472 u32 hash;
bfb564e7
KK
4473
4474 if (skb_rx_queue_recorded(skb)) {
4475 u16 index = skb_get_rx_queue(skb);
567e4b79 4476
62fe0b40
BH
4477 if (unlikely(index >= dev->real_num_rx_queues)) {
4478 WARN_ONCE(dev->real_num_rx_queues > 1,
4479 "%s received packet on queue %u, but number "
4480 "of RX queues is %u\n",
4481 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4482 goto done;
4483 }
567e4b79
ED
4484 rxqueue += index;
4485 }
bfb564e7 4486
567e4b79
ED
4487 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4488
4489 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4490 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4491 if (!flow_table && !map)
bfb564e7
KK
4492 goto done;
4493
2d47b459 4494 skb_reset_network_header(skb);
61b905da
TH
4495 hash = skb_get_hash(skb);
4496 if (!hash)
bfb564e7
KK
4497 goto done;
4498
fec5e652
TH
4499 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4500 if (flow_table && sock_flow_table) {
fec5e652 4501 struct rps_dev_flow *rflow;
567e4b79
ED
4502 u32 next_cpu;
4503 u32 ident;
4504
4505 /* First check into global flow table if there is a match */
4506 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4507 if ((ident ^ hash) & ~rps_cpu_mask)
4508 goto try_rps;
fec5e652 4509
567e4b79
ED
4510 next_cpu = ident & rps_cpu_mask;
4511
4512 /* OK, now we know there is a match,
4513 * we can look at the local (per receive queue) flow table
4514 */
61b905da 4515 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4516 tcpu = rflow->cpu;
4517
fec5e652
TH
4518 /*
4519 * If the desired CPU (where last recvmsg was done) is
4520 * different from current CPU (one in the rx-queue flow
4521 * table entry), switch if one of the following holds:
a31196b0 4522 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4523 * - Current CPU is offline.
4524 * - The current CPU's queue tail has advanced beyond the
4525 * last packet that was enqueued using this table entry.
4526 * This guarantees that all previous packets for the flow
4527 * have been dequeued, thus preserving in order delivery.
4528 */
4529 if (unlikely(tcpu != next_cpu) &&
a31196b0 4530 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4531 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4532 rflow->last_qtail)) >= 0)) {
4533 tcpu = next_cpu;
c445477d 4534 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4535 }
c445477d 4536
a31196b0 4537 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4538 *rflowp = rflow;
4539 cpu = tcpu;
4540 goto done;
4541 }
4542 }
4543
567e4b79
ED
4544try_rps:
4545
0a9627f2 4546 if (map) {
8fc54f68 4547 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4548 if (cpu_online(tcpu)) {
4549 cpu = tcpu;
4550 goto done;
4551 }
4552 }
4553
4554done:
0a9627f2
TH
4555 return cpu;
4556}
4557
c445477d
BH
4558#ifdef CONFIG_RFS_ACCEL
4559
4560/**
4561 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4562 * @dev: Device on which the filter was set
4563 * @rxq_index: RX queue index
4564 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4565 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4566 *
4567 * Drivers that implement ndo_rx_flow_steer() should periodically call
4568 * this function for each installed filter and remove the filters for
4569 * which it returns %true.
4570 */
4571bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4572 u32 flow_id, u16 filter_id)
4573{
4574 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4575 struct rps_dev_flow_table *flow_table;
4576 struct rps_dev_flow *rflow;
4577 bool expire = true;
a31196b0 4578 unsigned int cpu;
c445477d
BH
4579
4580 rcu_read_lock();
4581 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4582 if (flow_table && flow_id <= flow_table->mask) {
4583 rflow = &flow_table->flows[flow_id];
6aa7de05 4584 cpu = READ_ONCE(rflow->cpu);
a31196b0 4585 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4586 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4587 rflow->last_qtail) <
4588 (int)(10 * flow_table->mask)))
4589 expire = false;
4590 }
4591 rcu_read_unlock();
4592 return expire;
4593}
4594EXPORT_SYMBOL(rps_may_expire_flow);
4595
4596#endif /* CONFIG_RFS_ACCEL */
4597
0a9627f2 4598/* Called from hardirq (IPI) context */
e36fa2f7 4599static void rps_trigger_softirq(void *data)
0a9627f2 4600{
e36fa2f7
ED
4601 struct softnet_data *sd = data;
4602
eecfd7c4 4603 ____napi_schedule(sd, &sd->backlog);
dee42870 4604 sd->received_rps++;
0a9627f2 4605}
e36fa2f7 4606
fec5e652 4607#endif /* CONFIG_RPS */
0a9627f2 4608
e36fa2f7
ED
4609/*
4610 * Check if this softnet_data structure is another cpu one
4611 * If yes, queue it to our IPI list and return 1
4612 * If no, return 0
4613 */
4614static int rps_ipi_queued(struct softnet_data *sd)
4615{
4616#ifdef CONFIG_RPS
903ceff7 4617 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4618
4619 if (sd != mysd) {
4620 sd->rps_ipi_next = mysd->rps_ipi_list;
4621 mysd->rps_ipi_list = sd;
4622
4623 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4624 return 1;
4625 }
4626#endif /* CONFIG_RPS */
4627 return 0;
4628}
4629
99bbc707
WB
4630#ifdef CONFIG_NET_FLOW_LIMIT
4631int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4632#endif
4633
4634static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4635{
4636#ifdef CONFIG_NET_FLOW_LIMIT
4637 struct sd_flow_limit *fl;
4638 struct softnet_data *sd;
4639 unsigned int old_flow, new_flow;
4640
4641 if (qlen < (netdev_max_backlog >> 1))
4642 return false;
4643
903ceff7 4644 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4645
4646 rcu_read_lock();
4647 fl = rcu_dereference(sd->flow_limit);
4648 if (fl) {
3958afa1 4649 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4650 old_flow = fl->history[fl->history_head];
4651 fl->history[fl->history_head] = new_flow;
4652
4653 fl->history_head++;
4654 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4655
4656 if (likely(fl->buckets[old_flow]))
4657 fl->buckets[old_flow]--;
4658
4659 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4660 fl->count++;
4661 rcu_read_unlock();
4662 return true;
4663 }
4664 }
4665 rcu_read_unlock();
4666#endif
4667 return false;
4668}
4669
0a9627f2
TH
4670/*
4671 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4672 * queue (may be a remote CPU queue).
4673 */
fec5e652
TH
4674static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4675 unsigned int *qtail)
0a9627f2 4676{
e36fa2f7 4677 struct softnet_data *sd;
0a9627f2 4678 unsigned long flags;
99bbc707 4679 unsigned int qlen;
0a9627f2 4680
e36fa2f7 4681 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4682
4683 local_irq_save(flags);
0a9627f2 4684
e36fa2f7 4685 rps_lock(sd);
e9e4dd32
JA
4686 if (!netif_running(skb->dev))
4687 goto drop;
99bbc707
WB
4688 qlen = skb_queue_len(&sd->input_pkt_queue);
4689 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4690 if (qlen) {
0a9627f2 4691enqueue:
e36fa2f7 4692 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4693 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4694 rps_unlock(sd);
152102c7 4695 local_irq_restore(flags);
0a9627f2
TH
4696 return NET_RX_SUCCESS;
4697 }
4698
ebda37c2
ED
4699 /* Schedule NAPI for backlog device
4700 * We can use non atomic operation since we own the queue lock
4701 */
4702 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4703 if (!rps_ipi_queued(sd))
eecfd7c4 4704 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4705 }
4706 goto enqueue;
4707 }
4708
e9e4dd32 4709drop:
dee42870 4710 sd->dropped++;
e36fa2f7 4711 rps_unlock(sd);
0a9627f2 4712
0a9627f2
TH
4713 local_irq_restore(flags);
4714
caf586e5 4715 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4716 kfree_skb(skb);
4717 return NET_RX_DROP;
4718}
1da177e4 4719
e817f856
JDB
4720static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4721{
4722 struct net_device *dev = skb->dev;
4723 struct netdev_rx_queue *rxqueue;
4724
4725 rxqueue = dev->_rx;
4726
4727 if (skb_rx_queue_recorded(skb)) {
4728 u16 index = skb_get_rx_queue(skb);
4729
4730 if (unlikely(index >= dev->real_num_rx_queues)) {
4731 WARN_ONCE(dev->real_num_rx_queues > 1,
4732 "%s received packet on queue %u, but number "
4733 "of RX queues is %u\n",
4734 dev->name, index, dev->real_num_rx_queues);
4735
4736 return rxqueue; /* Return first rxqueue */
4737 }
4738 rxqueue += index;
4739 }
4740 return rxqueue;
4741}
4742
d4455169 4743static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4744 struct xdp_buff *xdp,
d4455169
JF
4745 struct bpf_prog *xdp_prog)
4746{
be9df4af 4747 void *orig_data, *orig_data_end, *hard_start;
e817f856 4748 struct netdev_rx_queue *rxqueue;
de8f3a83 4749 u32 metalen, act = XDP_DROP;
22b60343 4750 bool orig_bcast, orig_host;
43b5169d 4751 u32 mac_len, frame_sz;
29724956
JDB
4752 __be16 orig_eth_type;
4753 struct ethhdr *eth;
be9df4af 4754 int off;
d4455169
JF
4755
4756 /* Reinjected packets coming from act_mirred or similar should
4757 * not get XDP generic processing.
4758 */
2c64605b 4759 if (skb_is_redirected(skb))
d4455169
JF
4760 return XDP_PASS;
4761
de8f3a83
DB
4762 /* XDP packets must be linear and must have sufficient headroom
4763 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4764 * native XDP provides, thus we need to do it here as well.
4765 */
ad1e03b2 4766 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
de8f3a83
DB
4767 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4768 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4769 int troom = skb->tail + skb->data_len - skb->end;
4770
4771 /* In case we have to go down the path and also linearize,
4772 * then lets do the pskb_expand_head() work just once here.
4773 */
4774 if (pskb_expand_head(skb,
4775 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4776 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4777 goto do_drop;
2d17d8d7 4778 if (skb_linearize(skb))
de8f3a83
DB
4779 goto do_drop;
4780 }
d4455169
JF
4781
4782 /* The XDP program wants to see the packet starting at the MAC
4783 * header.
4784 */
4785 mac_len = skb->data - skb_mac_header(skb);
be9df4af 4786 hard_start = skb->data - skb_headroom(skb);
a075767b
JDB
4787
4788 /* SKB "head" area always have tailroom for skb_shared_info */
be9df4af 4789 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
43b5169d 4790 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
a075767b 4791
be9df4af
LB
4792 rxqueue = netif_get_rxqueue(skb);
4793 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4794 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4795 skb_headlen(skb) + mac_len, true);
a075767b 4796
02671e23
BT
4797 orig_data_end = xdp->data_end;
4798 orig_data = xdp->data;
29724956 4799 eth = (struct ethhdr *)xdp->data;
22b60343 4800 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
29724956
JDB
4801 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4802 orig_eth_type = eth->h_proto;
d4455169 4803
02671e23 4804 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4805
065af355 4806 /* check if bpf_xdp_adjust_head was used */
02671e23 4807 off = xdp->data - orig_data;
065af355
JDB
4808 if (off) {
4809 if (off > 0)
4810 __skb_pull(skb, off);
4811 else if (off < 0)
4812 __skb_push(skb, -off);
4813
4814 skb->mac_header += off;
4815 skb_reset_network_header(skb);
4816 }
d4455169 4817
a075767b
JDB
4818 /* check if bpf_xdp_adjust_tail was used */
4819 off = xdp->data_end - orig_data_end;
f7613120 4820 if (off != 0) {
02671e23 4821 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
a075767b 4822 skb->len += off; /* positive on grow, negative on shrink */
f7613120 4823 }
198d83bb 4824
29724956
JDB
4825 /* check if XDP changed eth hdr such SKB needs update */
4826 eth = (struct ethhdr *)xdp->data;
4827 if ((orig_eth_type != eth->h_proto) ||
22b60343
MW
4828 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4829 skb->dev->dev_addr)) ||
29724956
JDB
4830 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4831 __skb_push(skb, ETH_HLEN);
22b60343 4832 skb->pkt_type = PACKET_HOST;
29724956
JDB
4833 skb->protocol = eth_type_trans(skb, skb->dev);
4834 }
4835
d4455169 4836 switch (act) {
6103aa96 4837 case XDP_REDIRECT:
d4455169
JF
4838 case XDP_TX:
4839 __skb_push(skb, mac_len);
de8f3a83 4840 break;
d4455169 4841 case XDP_PASS:
02671e23 4842 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4843 if (metalen)
4844 skb_metadata_set(skb, metalen);
d4455169 4845 break;
d4455169
JF
4846 default:
4847 bpf_warn_invalid_xdp_action(act);
df561f66 4848 fallthrough;
d4455169
JF
4849 case XDP_ABORTED:
4850 trace_xdp_exception(skb->dev, xdp_prog, act);
df561f66 4851 fallthrough;
d4455169
JF
4852 case XDP_DROP:
4853 do_drop:
4854 kfree_skb(skb);
4855 break;
4856 }
4857
4858 return act;
4859}
4860
4861/* When doing generic XDP we have to bypass the qdisc layer and the
4862 * network taps in order to match in-driver-XDP behavior.
4863 */
7c497478 4864void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4865{
4866 struct net_device *dev = skb->dev;
4867 struct netdev_queue *txq;
4868 bool free_skb = true;
4869 int cpu, rc;
4870
4bd97d51 4871 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4872 cpu = smp_processor_id();
4873 HARD_TX_LOCK(dev, txq, cpu);
4874 if (!netif_xmit_stopped(txq)) {
4875 rc = netdev_start_xmit(skb, dev, txq, 0);
4876 if (dev_xmit_complete(rc))
4877 free_skb = false;
4878 }
4879 HARD_TX_UNLOCK(dev, txq);
4880 if (free_skb) {
4881 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4882 kfree_skb(skb);
4883 }
4884}
4885
02786475 4886static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4887
7c497478 4888int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4889{
d4455169 4890 if (xdp_prog) {
02671e23
BT
4891 struct xdp_buff xdp;
4892 u32 act;
6103aa96 4893 int err;
d4455169 4894
02671e23 4895 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4896 if (act != XDP_PASS) {
6103aa96
JF
4897 switch (act) {
4898 case XDP_REDIRECT:
2facaad6 4899 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4900 &xdp, xdp_prog);
6103aa96
JF
4901 if (err)
4902 goto out_redir;
02671e23 4903 break;
6103aa96 4904 case XDP_TX:
d4455169 4905 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4906 break;
4907 }
d4455169
JF
4908 return XDP_DROP;
4909 }
4910 }
4911 return XDP_PASS;
6103aa96 4912out_redir:
6103aa96
JF
4913 kfree_skb(skb);
4914 return XDP_DROP;
d4455169 4915}
7c497478 4916EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4917
ae78dbfa 4918static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4919{
b0e28f1e 4920 int ret;
1da177e4 4921
588f0330 4922 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4923
cf66ba58 4924 trace_netif_rx(skb);
d4455169 4925
df334545 4926#ifdef CONFIG_RPS
dc05360f 4927 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4928 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4929 int cpu;
4930
cece1945 4931 preempt_disable();
b0e28f1e 4932 rcu_read_lock();
fec5e652
TH
4933
4934 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4935 if (cpu < 0)
4936 cpu = smp_processor_id();
fec5e652
TH
4937
4938 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4939
b0e28f1e 4940 rcu_read_unlock();
cece1945 4941 preempt_enable();
adc9300e
ED
4942 } else
4943#endif
fec5e652
TH
4944 {
4945 unsigned int qtail;
f4563a75 4946
fec5e652
TH
4947 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4948 put_cpu();
4949 }
b0e28f1e 4950 return ret;
1da177e4 4951}
ae78dbfa
BH
4952
4953/**
4954 * netif_rx - post buffer to the network code
4955 * @skb: buffer to post
4956 *
4957 * This function receives a packet from a device driver and queues it for
4958 * the upper (protocol) levels to process. It always succeeds. The buffer
4959 * may be dropped during processing for congestion control or by the
4960 * protocol layers.
4961 *
4962 * return values:
4963 * NET_RX_SUCCESS (no congestion)
4964 * NET_RX_DROP (packet was dropped)
4965 *
4966 */
4967
4968int netif_rx(struct sk_buff *skb)
4969{
b0e3f1bd
GB
4970 int ret;
4971
ae78dbfa
BH
4972 trace_netif_rx_entry(skb);
4973
b0e3f1bd
GB
4974 ret = netif_rx_internal(skb);
4975 trace_netif_rx_exit(ret);
4976
4977 return ret;
ae78dbfa 4978}
d1b19dff 4979EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4980
4981int netif_rx_ni(struct sk_buff *skb)
4982{
4983 int err;
4984
ae78dbfa
BH
4985 trace_netif_rx_ni_entry(skb);
4986
1da177e4 4987 preempt_disable();
ae78dbfa 4988 err = netif_rx_internal(skb);
1da177e4
LT
4989 if (local_softirq_pending())
4990 do_softirq();
4991 preempt_enable();
b0e3f1bd 4992 trace_netif_rx_ni_exit(err);
1da177e4
LT
4993
4994 return err;
4995}
1da177e4
LT
4996EXPORT_SYMBOL(netif_rx_ni);
4997
c11171a4
SAS
4998int netif_rx_any_context(struct sk_buff *skb)
4999{
5000 /*
5001 * If invoked from contexts which do not invoke bottom half
5002 * processing either at return from interrupt or when softrqs are
5003 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5004 * directly.
5005 */
5006 if (in_interrupt())
5007 return netif_rx(skb);
5008 else
5009 return netif_rx_ni(skb);
5010}
5011EXPORT_SYMBOL(netif_rx_any_context);
5012
0766f788 5013static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 5014{
903ceff7 5015 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
5016
5017 if (sd->completion_queue) {
5018 struct sk_buff *clist;
5019
5020 local_irq_disable();
5021 clist = sd->completion_queue;
5022 sd->completion_queue = NULL;
5023 local_irq_enable();
5024
5025 while (clist) {
5026 struct sk_buff *skb = clist;
f4563a75 5027
1da177e4
LT
5028 clist = clist->next;
5029
63354797 5030 WARN_ON(refcount_read(&skb->users));
e6247027
ED
5031 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5032 trace_consume_skb(skb);
5033 else
5034 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
5035
5036 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5037 __kfree_skb(skb);
5038 else
5039 __kfree_skb_defer(skb);
1da177e4
LT
5040 }
5041 }
5042
5043 if (sd->output_queue) {
37437bb2 5044 struct Qdisc *head;
1da177e4
LT
5045
5046 local_irq_disable();
5047 head = sd->output_queue;
5048 sd->output_queue = NULL;
a9cbd588 5049 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
5050 local_irq_enable();
5051
102b55ee
YL
5052 rcu_read_lock();
5053
1da177e4 5054 while (head) {
37437bb2 5055 struct Qdisc *q = head;
6b3ba914 5056 spinlock_t *root_lock = NULL;
37437bb2 5057
1da177e4
LT
5058 head = head->next_sched;
5059
3bcb846c
ED
5060 /* We need to make sure head->next_sched is read
5061 * before clearing __QDISC_STATE_SCHED
5062 */
5063 smp_mb__before_atomic();
102b55ee
YL
5064
5065 if (!(q->flags & TCQ_F_NOLOCK)) {
5066 root_lock = qdisc_lock(q);
5067 spin_lock(root_lock);
5068 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5069 &q->state))) {
5070 /* There is a synchronize_net() between
5071 * STATE_DEACTIVATED flag being set and
5072 * qdisc_reset()/some_qdisc_is_busy() in
5073 * dev_deactivate(), so we can safely bail out
5074 * early here to avoid data race between
5075 * qdisc_deactivate() and some_qdisc_is_busy()
5076 * for lockless qdisc.
5077 */
5078 clear_bit(__QDISC_STATE_SCHED, &q->state);
5079 continue;
5080 }
5081
3bcb846c
ED
5082 clear_bit(__QDISC_STATE_SCHED, &q->state);
5083 qdisc_run(q);
6b3ba914
JF
5084 if (root_lock)
5085 spin_unlock(root_lock);
1da177e4 5086 }
102b55ee
YL
5087
5088 rcu_read_unlock();
1da177e4 5089 }
f53c7239
SK
5090
5091 xfrm_dev_backlog(sd);
1da177e4
LT
5092}
5093
181402a5 5094#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
5095/* This hook is defined here for ATM LANE */
5096int (*br_fdb_test_addr_hook)(struct net_device *dev,
5097 unsigned char *addr) __read_mostly;
4fb019a0 5098EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 5099#endif
1da177e4 5100
1f211a1b
DB
5101static inline struct sk_buff *
5102sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
9aa1206e 5103 struct net_device *orig_dev, bool *another)
f697c3e8 5104{
e7582bab 5105#ifdef CONFIG_NET_CLS_ACT
46209401 5106 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 5107 struct tcf_result cl_res;
24824a09 5108
c9e99fd0
DB
5109 /* If there's at least one ingress present somewhere (so
5110 * we get here via enabled static key), remaining devices
5111 * that are not configured with an ingress qdisc will bail
d2788d34 5112 * out here.
c9e99fd0 5113 */
46209401 5114 if (!miniq)
4577139b 5115 return skb;
46209401 5116
f697c3e8
HX
5117 if (*pt_prev) {
5118 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5119 *pt_prev = NULL;
1da177e4
LT
5120 }
5121
3365495c 5122 qdisc_skb_cb(skb)->pkt_len = skb->len;
aadaca9e 5123 qdisc_skb_cb(skb)->mru = 0;
7baf2429 5124 qdisc_skb_cb(skb)->post_ct = false;
8dc07fdb 5125 skb->tc_at_ingress = 1;
46209401 5126 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 5127
7d17c544
PB
5128 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5129 &cl_res, false)) {
d2788d34
DB
5130 case TC_ACT_OK:
5131 case TC_ACT_RECLASSIFY:
5132 skb->tc_index = TC_H_MIN(cl_res.classid);
5133 break;
5134 case TC_ACT_SHOT:
46209401 5135 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
5136 kfree_skb(skb);
5137 return NULL;
d2788d34
DB
5138 case TC_ACT_STOLEN:
5139 case TC_ACT_QUEUED:
e25ea21f 5140 case TC_ACT_TRAP:
8a3a4c6e 5141 consume_skb(skb);
d2788d34 5142 return NULL;
27b29f63
AS
5143 case TC_ACT_REDIRECT:
5144 /* skb_mac_header check was done by cls/act_bpf, so
5145 * we can safely push the L2 header back before
5146 * redirecting to another netdev
5147 */
5148 __skb_push(skb, skb->mac_len);
9aa1206e
DB
5149 if (skb_do_redirect(skb) == -EAGAIN) {
5150 __skb_pull(skb, skb->mac_len);
5151 *another = true;
5152 break;
5153 }
27b29f63 5154 return NULL;
720f22fe 5155 case TC_ACT_CONSUMED:
cd11b164 5156 return NULL;
d2788d34
DB
5157 default:
5158 break;
f697c3e8 5159 }
e7582bab 5160#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
5161 return skb;
5162}
1da177e4 5163
24b27fc4
MB
5164/**
5165 * netdev_is_rx_handler_busy - check if receive handler is registered
5166 * @dev: device to check
5167 *
5168 * Check if a receive handler is already registered for a given device.
5169 * Return true if there one.
5170 *
5171 * The caller must hold the rtnl_mutex.
5172 */
5173bool netdev_is_rx_handler_busy(struct net_device *dev)
5174{
5175 ASSERT_RTNL();
5176 return dev && rtnl_dereference(dev->rx_handler);
5177}
5178EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5179
ab95bfe0
JP
5180/**
5181 * netdev_rx_handler_register - register receive handler
5182 * @dev: device to register a handler for
5183 * @rx_handler: receive handler to register
93e2c32b 5184 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 5185 *
e227867f 5186 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
5187 * called from __netif_receive_skb. A negative errno code is returned
5188 * on a failure.
5189 *
5190 * The caller must hold the rtnl_mutex.
8a4eb573
JP
5191 *
5192 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
5193 */
5194int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
5195 rx_handler_func_t *rx_handler,
5196 void *rx_handler_data)
ab95bfe0 5197{
1b7cd004 5198 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
5199 return -EBUSY;
5200
f5426250
PA
5201 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5202 return -EINVAL;
5203
00cfec37 5204 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 5205 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
5206 rcu_assign_pointer(dev->rx_handler, rx_handler);
5207
5208 return 0;
5209}
5210EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5211
5212/**
5213 * netdev_rx_handler_unregister - unregister receive handler
5214 * @dev: device to unregister a handler from
5215 *
166ec369 5216 * Unregister a receive handler from a device.
ab95bfe0
JP
5217 *
5218 * The caller must hold the rtnl_mutex.
5219 */
5220void netdev_rx_handler_unregister(struct net_device *dev)
5221{
5222
5223 ASSERT_RTNL();
a9b3cd7f 5224 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
5225 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5226 * section has a guarantee to see a non NULL rx_handler_data
5227 * as well.
5228 */
5229 synchronize_net();
a9b3cd7f 5230 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
5231}
5232EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5233
b4b9e355
MG
5234/*
5235 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5236 * the special handling of PFMEMALLOC skbs.
5237 */
5238static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5239{
5240 switch (skb->protocol) {
2b8837ae
JP
5241 case htons(ETH_P_ARP):
5242 case htons(ETH_P_IP):
5243 case htons(ETH_P_IPV6):
5244 case htons(ETH_P_8021Q):
5245 case htons(ETH_P_8021AD):
b4b9e355
MG
5246 return true;
5247 default:
5248 return false;
5249 }
5250}
5251
e687ad60
PN
5252static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5253 int *ret, struct net_device *orig_dev)
5254{
5255 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
5256 int ingress_retval;
5257
e687ad60
PN
5258 if (*pt_prev) {
5259 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5260 *pt_prev = NULL;
5261 }
5262
2c1e2703
AC
5263 rcu_read_lock();
5264 ingress_retval = nf_hook_ingress(skb);
5265 rcu_read_unlock();
5266 return ingress_retval;
e687ad60
PN
5267 }
5268 return 0;
5269}
e687ad60 5270
c0bbbdc3 5271static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
88eb1944 5272 struct packet_type **ppt_prev)
1da177e4
LT
5273{
5274 struct packet_type *ptype, *pt_prev;
ab95bfe0 5275 rx_handler_func_t *rx_handler;
c0bbbdc3 5276 struct sk_buff *skb = *pskb;
f2ccd8fa 5277 struct net_device *orig_dev;
8a4eb573 5278 bool deliver_exact = false;
1da177e4 5279 int ret = NET_RX_DROP;
252e3346 5280 __be16 type;
1da177e4 5281
588f0330 5282 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5283
cf66ba58 5284 trace_netif_receive_skb(skb);
9b22ea56 5285
cc9bd5ce 5286 orig_dev = skb->dev;
8f903c70 5287
c1d2bbe1 5288 skb_reset_network_header(skb);
fda55eca
ED
5289 if (!skb_transport_header_was_set(skb))
5290 skb_reset_transport_header(skb);
0b5c9db1 5291 skb_reset_mac_len(skb);
1da177e4
LT
5292
5293 pt_prev = NULL;
5294
63d8ea7f 5295another_round:
b6858177 5296 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5297
5298 __this_cpu_inc(softnet_data.processed);
5299
458bf2f2
SH
5300 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5301 int ret2;
5302
5303 preempt_disable();
5304 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5305 preempt_enable();
5306
c0bbbdc3
BS
5307 if (ret2 != XDP_PASS) {
5308 ret = NET_RX_DROP;
5309 goto out;
5310 }
458bf2f2
SH
5311 skb_reset_mac_len(skb);
5312 }
5313
324cefaf 5314 if (eth_type_vlan(skb->protocol)) {
0d5501c1 5315 skb = skb_vlan_untag(skb);
bcc6d479 5316 if (unlikely(!skb))
2c17d27c 5317 goto out;
bcc6d479
JP
5318 }
5319
e7246e12
WB
5320 if (skb_skip_tc_classify(skb))
5321 goto skip_classify;
1da177e4 5322
9754e293 5323 if (pfmemalloc)
b4b9e355
MG
5324 goto skip_taps;
5325
1da177e4 5326 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5327 if (pt_prev)
5328 ret = deliver_skb(skb, pt_prev, orig_dev);
5329 pt_prev = ptype;
5330 }
5331
5332 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5333 if (pt_prev)
5334 ret = deliver_skb(skb, pt_prev, orig_dev);
5335 pt_prev = ptype;
1da177e4
LT
5336 }
5337
b4b9e355 5338skip_taps:
1cf51900 5339#ifdef CONFIG_NET_INGRESS
aabf6772 5340 if (static_branch_unlikely(&ingress_needed_key)) {
9aa1206e
DB
5341 bool another = false;
5342
5343 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5344 &another);
5345 if (another)
5346 goto another_round;
4577139b 5347 if (!skb)
2c17d27c 5348 goto out;
e687ad60
PN
5349
5350 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5351 goto out;
4577139b 5352 }
1cf51900 5353#endif
2c64605b 5354 skb_reset_redirect(skb);
e7246e12 5355skip_classify:
9754e293 5356 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5357 goto drop;
5358
df8a39de 5359 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5360 if (pt_prev) {
5361 ret = deliver_skb(skb, pt_prev, orig_dev);
5362 pt_prev = NULL;
5363 }
48cc32d3 5364 if (vlan_do_receive(&skb))
2425717b
JF
5365 goto another_round;
5366 else if (unlikely(!skb))
2c17d27c 5367 goto out;
2425717b
JF
5368 }
5369
48cc32d3 5370 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5371 if (rx_handler) {
5372 if (pt_prev) {
5373 ret = deliver_skb(skb, pt_prev, orig_dev);
5374 pt_prev = NULL;
5375 }
8a4eb573
JP
5376 switch (rx_handler(&skb)) {
5377 case RX_HANDLER_CONSUMED:
3bc1b1ad 5378 ret = NET_RX_SUCCESS;
2c17d27c 5379 goto out;
8a4eb573 5380 case RX_HANDLER_ANOTHER:
63d8ea7f 5381 goto another_round;
8a4eb573
JP
5382 case RX_HANDLER_EXACT:
5383 deliver_exact = true;
b1866bff 5384 break;
8a4eb573
JP
5385 case RX_HANDLER_PASS:
5386 break;
5387 default:
5388 BUG();
5389 }
ab95bfe0 5390 }
1da177e4 5391
b14a9fc4 5392 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
36b2f61a
GV
5393check_vlan_id:
5394 if (skb_vlan_tag_get_id(skb)) {
5395 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5396 * find vlan device.
5397 */
d4b812de 5398 skb->pkt_type = PACKET_OTHERHOST;
324cefaf 5399 } else if (eth_type_vlan(skb->protocol)) {
36b2f61a
GV
5400 /* Outer header is 802.1P with vlan 0, inner header is
5401 * 802.1Q or 802.1AD and vlan_do_receive() above could
5402 * not find vlan dev for vlan id 0.
5403 */
5404 __vlan_hwaccel_clear_tag(skb);
5405 skb = skb_vlan_untag(skb);
5406 if (unlikely(!skb))
5407 goto out;
5408 if (vlan_do_receive(&skb))
5409 /* After stripping off 802.1P header with vlan 0
5410 * vlan dev is found for inner header.
5411 */
5412 goto another_round;
5413 else if (unlikely(!skb))
5414 goto out;
5415 else
5416 /* We have stripped outer 802.1P vlan 0 header.
5417 * But could not find vlan dev.
5418 * check again for vlan id to set OTHERHOST.
5419 */
5420 goto check_vlan_id;
5421 }
d4b812de
ED
5422 /* Note: we might in the future use prio bits
5423 * and set skb->priority like in vlan_do_receive()
5424 * For the time being, just ignore Priority Code Point
5425 */
b1817524 5426 __vlan_hwaccel_clear_tag(skb);
d4b812de 5427 }
48cc32d3 5428
7866a621
SN
5429 type = skb->protocol;
5430
63d8ea7f 5431 /* deliver only exact match when indicated */
7866a621
SN
5432 if (likely(!deliver_exact)) {
5433 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5434 &ptype_base[ntohs(type) &
5435 PTYPE_HASH_MASK]);
5436 }
1f3c8804 5437
7866a621
SN
5438 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5439 &orig_dev->ptype_specific);
5440
5441 if (unlikely(skb->dev != orig_dev)) {
5442 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443 &skb->dev->ptype_specific);
1da177e4
LT
5444 }
5445
5446 if (pt_prev) {
1f8b977a 5447 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5448 goto drop;
88eb1944 5449 *ppt_prev = pt_prev;
1da177e4 5450 } else {
b4b9e355 5451drop:
6e7333d3
JW
5452 if (!deliver_exact)
5453 atomic_long_inc(&skb->dev->rx_dropped);
5454 else
5455 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5456 kfree_skb(skb);
5457 /* Jamal, now you will not able to escape explaining
5458 * me how you were going to use this. :-)
5459 */
5460 ret = NET_RX_DROP;
5461 }
5462
2c17d27c 5463out:
c0bbbdc3
BS
5464 /* The invariant here is that if *ppt_prev is not NULL
5465 * then skb should also be non-NULL.
5466 *
5467 * Apparently *ppt_prev assignment above holds this invariant due to
5468 * skb dereferencing near it.
5469 */
5470 *pskb = skb;
9754e293
DM
5471 return ret;
5472}
5473
88eb1944
EC
5474static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5475{
5476 struct net_device *orig_dev = skb->dev;
5477 struct packet_type *pt_prev = NULL;
5478 int ret;
5479
c0bbbdc3 5480 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
88eb1944 5481 if (pt_prev)
f5737cba
PA
5482 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5483 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5484 return ret;
5485}
5486
1c601d82
JDB
5487/**
5488 * netif_receive_skb_core - special purpose version of netif_receive_skb
5489 * @skb: buffer to process
5490 *
5491 * More direct receive version of netif_receive_skb(). It should
5492 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5493 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5494 *
5495 * This function may only be called from softirq context and interrupts
5496 * should be enabled.
5497 *
5498 * Return values (usually ignored):
5499 * NET_RX_SUCCESS: no congestion
5500 * NET_RX_DROP: packet was dropped
5501 */
5502int netif_receive_skb_core(struct sk_buff *skb)
5503{
5504 int ret;
5505
5506 rcu_read_lock();
88eb1944 5507 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5508 rcu_read_unlock();
5509
5510 return ret;
5511}
5512EXPORT_SYMBOL(netif_receive_skb_core);
5513
88eb1944
EC
5514static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5515 struct packet_type *pt_prev,
5516 struct net_device *orig_dev)
4ce0017a
EC
5517{
5518 struct sk_buff *skb, *next;
5519
88eb1944
EC
5520 if (!pt_prev)
5521 return;
5522 if (list_empty(head))
5523 return;
17266ee9 5524 if (pt_prev->list_func != NULL)
fdf71426
PA
5525 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5526 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5527 else
9a5a90d1
AL
5528 list_for_each_entry_safe(skb, next, head, list) {
5529 skb_list_del_init(skb);
fdf71426 5530 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5531 }
88eb1944
EC
5532}
5533
5534static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5535{
5536 /* Fast-path assumptions:
5537 * - There is no RX handler.
5538 * - Only one packet_type matches.
5539 * If either of these fails, we will end up doing some per-packet
5540 * processing in-line, then handling the 'last ptype' for the whole
5541 * sublist. This can't cause out-of-order delivery to any single ptype,
5542 * because the 'last ptype' must be constant across the sublist, and all
5543 * other ptypes are handled per-packet.
5544 */
5545 /* Current (common) ptype of sublist */
5546 struct packet_type *pt_curr = NULL;
5547 /* Current (common) orig_dev of sublist */
5548 struct net_device *od_curr = NULL;
5549 struct list_head sublist;
5550 struct sk_buff *skb, *next;
5551
9af86f93 5552 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5553 list_for_each_entry_safe(skb, next, head, list) {
5554 struct net_device *orig_dev = skb->dev;
5555 struct packet_type *pt_prev = NULL;
5556
22f6bbb7 5557 skb_list_del_init(skb);
c0bbbdc3 5558 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
9af86f93
EC
5559 if (!pt_prev)
5560 continue;
88eb1944
EC
5561 if (pt_curr != pt_prev || od_curr != orig_dev) {
5562 /* dispatch old sublist */
88eb1944
EC
5563 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5564 /* start new sublist */
9af86f93 5565 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5566 pt_curr = pt_prev;
5567 od_curr = orig_dev;
5568 }
9af86f93 5569 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5570 }
5571
5572 /* dispatch final sublist */
9af86f93 5573 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5574}
5575
9754e293
DM
5576static int __netif_receive_skb(struct sk_buff *skb)
5577{
5578 int ret;
5579
5580 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5581 unsigned int noreclaim_flag;
9754e293
DM
5582
5583 /*
5584 * PFMEMALLOC skbs are special, they should
5585 * - be delivered to SOCK_MEMALLOC sockets only
5586 * - stay away from userspace
5587 * - have bounded memory usage
5588 *
5589 * Use PF_MEMALLOC as this saves us from propagating the allocation
5590 * context down to all allocation sites.
5591 */
f1083048 5592 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5593 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5594 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5595 } else
88eb1944 5596 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5597
1da177e4
LT
5598 return ret;
5599}
0a9627f2 5600
4ce0017a
EC
5601static void __netif_receive_skb_list(struct list_head *head)
5602{
5603 unsigned long noreclaim_flag = 0;
5604 struct sk_buff *skb, *next;
5605 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5606
5607 list_for_each_entry_safe(skb, next, head, list) {
5608 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5609 struct list_head sublist;
5610
5611 /* Handle the previous sublist */
5612 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5613 if (!list_empty(&sublist))
5614 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5615 pfmemalloc = !pfmemalloc;
5616 /* See comments in __netif_receive_skb */
5617 if (pfmemalloc)
5618 noreclaim_flag = memalloc_noreclaim_save();
5619 else
5620 memalloc_noreclaim_restore(noreclaim_flag);
5621 }
5622 }
5623 /* Handle the remaining sublist */
b9f463d6
EC
5624 if (!list_empty(head))
5625 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5626 /* Restore pflags */
5627 if (pfmemalloc)
5628 memalloc_noreclaim_restore(noreclaim_flag);
5629}
5630
f4e63525 5631static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5632{
58038695 5633 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5634 struct bpf_prog *new = xdp->prog;
5635 int ret = 0;
5636
fbee97fe
DA
5637 if (new) {
5638 u32 i;
5639
984fe94f
YZ
5640 mutex_lock(&new->aux->used_maps_mutex);
5641
fbee97fe
DA
5642 /* generic XDP does not work with DEVMAPs that can
5643 * have a bpf_prog installed on an entry
5644 */
5645 for (i = 0; i < new->aux->used_map_cnt; i++) {
984fe94f
YZ
5646 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5647 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5648 mutex_unlock(&new->aux->used_maps_mutex);
92164774 5649 return -EINVAL;
984fe94f 5650 }
fbee97fe 5651 }
984fe94f
YZ
5652
5653 mutex_unlock(&new->aux->used_maps_mutex);
fbee97fe
DA
5654 }
5655
b5cdae32 5656 switch (xdp->command) {
58038695 5657 case XDP_SETUP_PROG:
b5cdae32
DM
5658 rcu_assign_pointer(dev->xdp_prog, new);
5659 if (old)
5660 bpf_prog_put(old);
5661
5662 if (old && !new) {
02786475 5663 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5664 } else if (new && !old) {
02786475 5665 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5666 dev_disable_lro(dev);
56f5aa77 5667 dev_disable_gro_hw(dev);
b5cdae32
DM
5668 }
5669 break;
b5cdae32 5670
b5cdae32
DM
5671 default:
5672 ret = -EINVAL;
5673 break;
5674 }
5675
5676 return ret;
5677}
5678
ae78dbfa 5679static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5680{
2c17d27c
JA
5681 int ret;
5682
588f0330 5683 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5684
c1f19b51
RC
5685 if (skb_defer_rx_timestamp(skb))
5686 return NET_RX_SUCCESS;
5687
bbbe211c 5688 rcu_read_lock();
df334545 5689#ifdef CONFIG_RPS
dc05360f 5690 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5691 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5692 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5693
3b098e2d
ED
5694 if (cpu >= 0) {
5695 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5696 rcu_read_unlock();
adc9300e 5697 return ret;
3b098e2d 5698 }
fec5e652 5699 }
1e94d72f 5700#endif
2c17d27c
JA
5701 ret = __netif_receive_skb(skb);
5702 rcu_read_unlock();
5703 return ret;
0a9627f2 5704}
ae78dbfa 5705
7da517a3
EC
5706static void netif_receive_skb_list_internal(struct list_head *head)
5707{
7da517a3 5708 struct sk_buff *skb, *next;
8c057efa 5709 struct list_head sublist;
7da517a3 5710
8c057efa 5711 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5712 list_for_each_entry_safe(skb, next, head, list) {
5713 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5714 skb_list_del_init(skb);
8c057efa
EC
5715 if (!skb_defer_rx_timestamp(skb))
5716 list_add_tail(&skb->list, &sublist);
7da517a3 5717 }
8c057efa 5718 list_splice_init(&sublist, head);
7da517a3 5719
7da517a3
EC
5720 rcu_read_lock();
5721#ifdef CONFIG_RPS
dc05360f 5722 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5723 list_for_each_entry_safe(skb, next, head, list) {
5724 struct rps_dev_flow voidflow, *rflow = &voidflow;
5725 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5726
5727 if (cpu >= 0) {
8c057efa 5728 /* Will be handled, remove from list */
22f6bbb7 5729 skb_list_del_init(skb);
8c057efa 5730 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5731 }
5732 }
5733 }
5734#endif
5735 __netif_receive_skb_list(head);
5736 rcu_read_unlock();
5737}
5738
ae78dbfa
BH
5739/**
5740 * netif_receive_skb - process receive buffer from network
5741 * @skb: buffer to process
5742 *
5743 * netif_receive_skb() is the main receive data processing function.
5744 * It always succeeds. The buffer may be dropped during processing
5745 * for congestion control or by the protocol layers.
5746 *
5747 * This function may only be called from softirq context and interrupts
5748 * should be enabled.
5749 *
5750 * Return values (usually ignored):
5751 * NET_RX_SUCCESS: no congestion
5752 * NET_RX_DROP: packet was dropped
5753 */
04eb4489 5754int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5755{
b0e3f1bd
GB
5756 int ret;
5757
ae78dbfa
BH
5758 trace_netif_receive_skb_entry(skb);
5759
b0e3f1bd
GB
5760 ret = netif_receive_skb_internal(skb);
5761 trace_netif_receive_skb_exit(ret);
5762
5763 return ret;
ae78dbfa 5764}
04eb4489 5765EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5766
f6ad8c1b
EC
5767/**
5768 * netif_receive_skb_list - process many receive buffers from network
5769 * @head: list of skbs to process.
5770 *
7da517a3
EC
5771 * Since return value of netif_receive_skb() is normally ignored, and
5772 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5773 *
5774 * This function may only be called from softirq context and interrupts
5775 * should be enabled.
5776 */
5777void netif_receive_skb_list(struct list_head *head)
5778{
7da517a3 5779 struct sk_buff *skb;
f6ad8c1b 5780
b9f463d6
EC
5781 if (list_empty(head))
5782 return;
b0e3f1bd
GB
5783 if (trace_netif_receive_skb_list_entry_enabled()) {
5784 list_for_each_entry(skb, head, list)
5785 trace_netif_receive_skb_list_entry(skb);
5786 }
7da517a3 5787 netif_receive_skb_list_internal(head);
b0e3f1bd 5788 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5789}
5790EXPORT_SYMBOL(netif_receive_skb_list);
5791
ce1e2a77 5792static DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5793
5794/* Network device is going away, flush any packets still pending */
5795static void flush_backlog(struct work_struct *work)
6e583ce5 5796{
6e583ce5 5797 struct sk_buff *skb, *tmp;
145dd5f9
PA
5798 struct softnet_data *sd;
5799
5800 local_bh_disable();
5801 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5802
145dd5f9 5803 local_irq_disable();
e36fa2f7 5804 rps_lock(sd);
6e7676c1 5805 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5806 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5807 __skb_unlink(skb, &sd->input_pkt_queue);
7df5cb75 5808 dev_kfree_skb_irq(skb);
76cc8b13 5809 input_queue_head_incr(sd);
6e583ce5 5810 }
6e7676c1 5811 }
e36fa2f7 5812 rps_unlock(sd);
145dd5f9 5813 local_irq_enable();
6e7676c1
CG
5814
5815 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5816 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5817 __skb_unlink(skb, &sd->process_queue);
5818 kfree_skb(skb);
76cc8b13 5819 input_queue_head_incr(sd);
6e7676c1
CG
5820 }
5821 }
145dd5f9
PA
5822 local_bh_enable();
5823}
5824
2de79ee2
PA
5825static bool flush_required(int cpu)
5826{
5827#if IS_ENABLED(CONFIG_RPS)
5828 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5829 bool do_flush;
5830
5831 local_irq_disable();
5832 rps_lock(sd);
5833
5834 /* as insertion into process_queue happens with the rps lock held,
5835 * process_queue access may race only with dequeue
5836 */
5837 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5838 !skb_queue_empty_lockless(&sd->process_queue);
5839 rps_unlock(sd);
5840 local_irq_enable();
5841
5842 return do_flush;
5843#endif
5844 /* without RPS we can't safely check input_pkt_queue: during a
5845 * concurrent remote skb_queue_splice() we can detect as empty both
5846 * input_pkt_queue and process_queue even if the latter could end-up
5847 * containing a lot of packets.
5848 */
5849 return true;
5850}
5851
41852497 5852static void flush_all_backlogs(void)
145dd5f9 5853{
2de79ee2 5854 static cpumask_t flush_cpus;
145dd5f9
PA
5855 unsigned int cpu;
5856
2de79ee2
PA
5857 /* since we are under rtnl lock protection we can use static data
5858 * for the cpumask and avoid allocating on stack the possibly
5859 * large mask
5860 */
5861 ASSERT_RTNL();
5862
145dd5f9
PA
5863 get_online_cpus();
5864
2de79ee2
PA
5865 cpumask_clear(&flush_cpus);
5866 for_each_online_cpu(cpu) {
5867 if (flush_required(cpu)) {
5868 queue_work_on(cpu, system_highpri_wq,
5869 per_cpu_ptr(&flush_works, cpu));
5870 cpumask_set_cpu(cpu, &flush_cpus);
5871 }
5872 }
145dd5f9 5873
2de79ee2 5874 /* we can have in flight packet[s] on the cpus we are not flushing,
0cbe1e57 5875 * synchronize_net() in unregister_netdevice_many() will take care of
2de79ee2
PA
5876 * them
5877 */
5878 for_each_cpu(cpu, &flush_cpus)
41852497 5879 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5880
5881 put_online_cpus();
6e583ce5
SH
5882}
5883
c8079432
MM
5884/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5885static void gro_normal_list(struct napi_struct *napi)
5886{
5887 if (!napi->rx_count)
5888 return;
5889 netif_receive_skb_list_internal(&napi->rx_list);
5890 INIT_LIST_HEAD(&napi->rx_list);
5891 napi->rx_count = 0;
5892}
5893
5894/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5895 * pass the whole batch up to the stack.
5896 */
8dc1c444 5897static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
c8079432
MM
5898{
5899 list_add_tail(&skb->list, &napi->rx_list);
8dc1c444
ED
5900 napi->rx_count += segs;
5901 if (napi->rx_count >= gro_normal_batch)
c8079432
MM
5902 gro_normal_list(napi);
5903}
5904
c8079432 5905static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5906{
22061d80 5907 struct packet_offload *ptype;
d565b0a1 5908 __be16 type = skb->protocol;
22061d80 5909 struct list_head *head = &offload_base;
d565b0a1
HX
5910 int err = -ENOENT;
5911
c3c7c254
ED
5912 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5913
fc59f9a3
HX
5914 if (NAPI_GRO_CB(skb)->count == 1) {
5915 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5916 goto out;
fc59f9a3 5917 }
d565b0a1
HX
5918
5919 rcu_read_lock();
5920 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5921 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5922 continue;
5923
aaa5d90b
PA
5924 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5925 ipv6_gro_complete, inet_gro_complete,
5926 skb, 0);
d565b0a1
HX
5927 break;
5928 }
5929 rcu_read_unlock();
5930
5931 if (err) {
5932 WARN_ON(&ptype->list == head);
5933 kfree_skb(skb);
5934 return NET_RX_SUCCESS;
5935 }
5936
5937out:
8dc1c444 5938 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
c8079432 5939 return NET_RX_SUCCESS;
d565b0a1
HX
5940}
5941
6312fe77 5942static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5943 bool flush_old)
d565b0a1 5944{
6312fe77 5945 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5946 struct sk_buff *skb, *p;
2e71a6f8 5947
07d78363 5948 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5949 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5950 return;
992cba7e 5951 skb_list_del_init(skb);
c8079432 5952 napi_gro_complete(napi, skb);
6312fe77 5953 napi->gro_hash[index].count--;
d565b0a1 5954 }
d9f37d01
LR
5955
5956 if (!napi->gro_hash[index].count)
5957 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5958}
07d78363 5959
6312fe77 5960/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5961 * youngest packets at the head of it.
5962 * Complete skbs in reverse order to reduce latencies.
5963 */
5964void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5965{
42519ede
ED
5966 unsigned long bitmask = napi->gro_bitmask;
5967 unsigned int i, base = ~0U;
07d78363 5968
42519ede
ED
5969 while ((i = ffs(bitmask)) != 0) {
5970 bitmask >>= i;
5971 base += i;
5972 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5973 }
07d78363 5974}
86cac58b 5975EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5976
0ccf4d50
AL
5977static void gro_list_prepare(const struct list_head *head,
5978 const struct sk_buff *skb)
89c5fa33 5979{
89c5fa33 5980 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5981 u32 hash = skb_get_hash_raw(skb);
d4546c25 5982 struct sk_buff *p;
89c5fa33 5983
07d78363 5984 list_for_each_entry(p, head, list) {
89c5fa33
ED
5985 unsigned long diffs;
5986
0b4cec8c
TH
5987 NAPI_GRO_CB(p)->flush = 0;
5988
5989 if (hash != skb_get_hash_raw(p)) {
5990 NAPI_GRO_CB(p)->same_flow = 0;
5991 continue;
5992 }
5993
89c5fa33 5994 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5995 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5996 if (skb_vlan_tag_present(p))
fc5141cb 5997 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
ce87fc6c 5998 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5999 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
6000 if (maclen == ETH_HLEN)
6001 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 6002 skb_mac_header(skb));
89c5fa33
ED
6003 else if (!diffs)
6004 diffs = memcmp(skb_mac_header(p),
a50e233c 6005 skb_mac_header(skb),
89c5fa33
ED
6006 maclen);
6007 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
6008 }
6009}
6010
7ad18ff6 6011static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
299603e8
JC
6012{
6013 const struct skb_shared_info *pinfo = skb_shinfo(skb);
6014 const skb_frag_t *frag0 = &pinfo->frags[0];
6015
6016 NAPI_GRO_CB(skb)->data_offset = 0;
6017 NAPI_GRO_CB(skb)->frag0 = NULL;
6018 NAPI_GRO_CB(skb)->frag0_len = 0;
6019
8aef998d 6020 if (!skb_headlen(skb) && pinfo->nr_frags &&
38ec4944 6021 !PageHighMem(skb_frag_page(frag0)) &&
7ad18ff6 6022 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
299603e8 6023 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
6024 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6025 skb_frag_size(frag0),
6026 skb->end - skb->tail);
89c5fa33
ED
6027 }
6028}
6029
a50e233c
ED
6030static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6031{
6032 struct skb_shared_info *pinfo = skb_shinfo(skb);
6033
6034 BUG_ON(skb->end - skb->tail < grow);
6035
6036 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6037
6038 skb->data_len -= grow;
6039 skb->tail += grow;
6040
b54c9d5b 6041 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
6042 skb_frag_size_sub(&pinfo->frags[0], grow);
6043
6044 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6045 skb_frag_unref(skb, 0);
6046 memmove(pinfo->frags, pinfo->frags + 1,
6047 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6048 }
6049}
6050
c8079432 6051static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 6052{
6312fe77 6053 struct sk_buff *oldest;
07d78363 6054
6312fe77 6055 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 6056
6312fe77 6057 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
6058 * impossible.
6059 */
6060 if (WARN_ON_ONCE(!oldest))
6061 return;
6062
d9f37d01
LR
6063 /* Do not adjust napi->gro_hash[].count, caller is adding a new
6064 * SKB to the chain.
07d78363 6065 */
ece23711 6066 skb_list_del_init(oldest);
c8079432 6067 napi_gro_complete(napi, oldest);
07d78363
DM
6068}
6069
bb728820 6070static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 6071{
d0eed5c3
AL
6072 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6073 struct gro_list *gro_list = &napi->gro_hash[bucket];
d4546c25 6074 struct list_head *head = &offload_base;
22061d80 6075 struct packet_offload *ptype;
d565b0a1 6076 __be16 type = skb->protocol;
d4546c25 6077 struct sk_buff *pp = NULL;
5b252f0c 6078 enum gro_result ret;
d4546c25 6079 int same_flow;
a50e233c 6080 int grow;
d565b0a1 6081
b5cdae32 6082 if (netif_elide_gro(skb->dev))
d565b0a1
HX
6083 goto normal;
6084
9dc2c313 6085 gro_list_prepare(&gro_list->list, skb);
89c5fa33 6086
d565b0a1
HX
6087 rcu_read_lock();
6088 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 6089 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
6090 continue;
6091
86911732 6092 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 6093 skb_reset_mac_len(skb);
d565b0a1 6094 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 6095 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 6096 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 6097 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 6098 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 6099 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 6100 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 6101 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 6102
662880f4
TH
6103 /* Setup for GRO checksum validation */
6104 switch (skb->ip_summed) {
6105 case CHECKSUM_COMPLETE:
6106 NAPI_GRO_CB(skb)->csum = skb->csum;
6107 NAPI_GRO_CB(skb)->csum_valid = 1;
6108 NAPI_GRO_CB(skb)->csum_cnt = 0;
6109 break;
6110 case CHECKSUM_UNNECESSARY:
6111 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6112 NAPI_GRO_CB(skb)->csum_valid = 0;
6113 break;
6114 default:
6115 NAPI_GRO_CB(skb)->csum_cnt = 0;
6116 NAPI_GRO_CB(skb)->csum_valid = 0;
6117 }
d565b0a1 6118
aaa5d90b
PA
6119 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6120 ipv6_gro_receive, inet_gro_receive,
9dc2c313 6121 &gro_list->list, skb);
d565b0a1
HX
6122 break;
6123 }
6124 rcu_read_unlock();
6125
6126 if (&ptype->list == head)
6127 goto normal;
6128
45586c70 6129 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
6130 ret = GRO_CONSUMED;
6131 goto ok;
6132 }
6133
0da2afd5 6134 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 6135 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 6136
d565b0a1 6137 if (pp) {
992cba7e 6138 skb_list_del_init(pp);
c8079432 6139 napi_gro_complete(napi, pp);
9dc2c313 6140 gro_list->count--;
d565b0a1
HX
6141 }
6142
0da2afd5 6143 if (same_flow)
d565b0a1
HX
6144 goto ok;
6145
600adc18 6146 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 6147 goto normal;
d565b0a1 6148
9dc2c313
AL
6149 if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6150 gro_flush_oldest(napi, &gro_list->list);
6151 else
6152 gro_list->count++;
6153
d565b0a1 6154 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 6155 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 6156 NAPI_GRO_CB(skb)->last = skb;
86911732 6157 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
9dc2c313 6158 list_add(&skb->list, &gro_list->list);
5d0d9be8 6159 ret = GRO_HELD;
d565b0a1 6160
ad0f9904 6161pull:
a50e233c
ED
6162 grow = skb_gro_offset(skb) - skb_headlen(skb);
6163 if (grow > 0)
6164 gro_pull_from_frag0(skb, grow);
d565b0a1 6165ok:
9dc2c313 6166 if (gro_list->count) {
d0eed5c3
AL
6167 if (!test_bit(bucket, &napi->gro_bitmask))
6168 __set_bit(bucket, &napi->gro_bitmask);
6169 } else if (test_bit(bucket, &napi->gro_bitmask)) {
6170 __clear_bit(bucket, &napi->gro_bitmask);
d9f37d01
LR
6171 }
6172
5d0d9be8 6173 return ret;
d565b0a1
HX
6174
6175normal:
ad0f9904
HX
6176 ret = GRO_NORMAL;
6177 goto pull;
5d38a079 6178}
96e93eab 6179
bf5a755f
JC
6180struct packet_offload *gro_find_receive_by_type(__be16 type)
6181{
6182 struct list_head *offload_head = &offload_base;
6183 struct packet_offload *ptype;
6184
6185 list_for_each_entry_rcu(ptype, offload_head, list) {
6186 if (ptype->type != type || !ptype->callbacks.gro_receive)
6187 continue;
6188 return ptype;
6189 }
6190 return NULL;
6191}
e27a2f83 6192EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
6193
6194struct packet_offload *gro_find_complete_by_type(__be16 type)
6195{
6196 struct list_head *offload_head = &offload_base;
6197 struct packet_offload *ptype;
6198
6199 list_for_each_entry_rcu(ptype, offload_head, list) {
6200 if (ptype->type != type || !ptype->callbacks.gro_complete)
6201 continue;
6202 return ptype;
6203 }
6204 return NULL;
6205}
e27a2f83 6206EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 6207
6570bc79
AL
6208static gro_result_t napi_skb_finish(struct napi_struct *napi,
6209 struct sk_buff *skb,
6210 gro_result_t ret)
5d38a079 6211{
5d0d9be8
HX
6212 switch (ret) {
6213 case GRO_NORMAL:
8dc1c444 6214 gro_normal_one(napi, skb, 1);
c7c4b3b6 6215 break;
5d38a079 6216
daa86548 6217 case GRO_MERGED_FREE:
e44699d2
MK
6218 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6219 napi_skb_free_stolen_head(skb);
6220 else
9243adfc 6221 __kfree_skb_defer(skb);
daa86548
ED
6222 break;
6223
5b252f0c
BH
6224 case GRO_HELD:
6225 case GRO_MERGED:
25393d3f 6226 case GRO_CONSUMED:
5b252f0c 6227 break;
5d38a079
HX
6228 }
6229
c7c4b3b6 6230 return ret;
5d0d9be8 6231}
5d0d9be8 6232
c7c4b3b6 6233gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 6234{
b0e3f1bd
GB
6235 gro_result_t ret;
6236
93f93a44 6237 skb_mark_napi_id(skb, napi);
ae78dbfa 6238 trace_napi_gro_receive_entry(skb);
86911732 6239
7ad18ff6 6240 skb_gro_reset_offset(skb, 0);
a50e233c 6241
6570bc79 6242 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
6243 trace_napi_gro_receive_exit(ret);
6244
6245 return ret;
d565b0a1
HX
6246}
6247EXPORT_SYMBOL(napi_gro_receive);
6248
d0c2b0d2 6249static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 6250{
93a35f59
ED
6251 if (unlikely(skb->pfmemalloc)) {
6252 consume_skb(skb);
6253 return;
6254 }
96e93eab 6255 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
6256 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6257 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 6258 __vlan_hwaccel_clear_tag(skb);
66c46d74 6259 skb->dev = napi->dev;
6d152e23 6260 skb->skb_iif = 0;
33d9a2c7
ED
6261
6262 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6263 skb->pkt_type = PACKET_HOST;
6264
c3caf119
JC
6265 skb->encapsulation = 0;
6266 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 6267 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 6268 skb_ext_reset(skb);
96e93eab
HX
6269
6270 napi->skb = skb;
6271}
96e93eab 6272
76620aaf 6273struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 6274{
5d38a079 6275 struct sk_buff *skb = napi->skb;
5d38a079
HX
6276
6277 if (!skb) {
fd11a83d 6278 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
6279 if (skb) {
6280 napi->skb = skb;
6281 skb_mark_napi_id(skb, napi);
6282 }
80595d59 6283 }
96e93eab
HX
6284 return skb;
6285}
76620aaf 6286EXPORT_SYMBOL(napi_get_frags);
96e93eab 6287
a50e233c
ED
6288static gro_result_t napi_frags_finish(struct napi_struct *napi,
6289 struct sk_buff *skb,
6290 gro_result_t ret)
96e93eab 6291{
5d0d9be8
HX
6292 switch (ret) {
6293 case GRO_NORMAL:
a50e233c
ED
6294 case GRO_HELD:
6295 __skb_push(skb, ETH_HLEN);
6296 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61 6297 if (ret == GRO_NORMAL)
8dc1c444 6298 gro_normal_one(napi, skb, 1);
86911732 6299 break;
5d38a079 6300
e44699d2
MK
6301 case GRO_MERGED_FREE:
6302 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6303 napi_skb_free_stolen_head(skb);
6304 else
6305 napi_reuse_skb(napi, skb);
6306 break;
6307
5b252f0c 6308 case GRO_MERGED:
25393d3f 6309 case GRO_CONSUMED:
5b252f0c 6310 break;
5d0d9be8 6311 }
5d38a079 6312
c7c4b3b6 6313 return ret;
5d38a079 6314}
5d0d9be8 6315
a50e233c
ED
6316/* Upper GRO stack assumes network header starts at gro_offset=0
6317 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6318 * We copy ethernet header into skb->data to have a common layout.
6319 */
4adb9c4a 6320static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
6321{
6322 struct sk_buff *skb = napi->skb;
a50e233c
ED
6323 const struct ethhdr *eth;
6324 unsigned int hlen = sizeof(*eth);
76620aaf
HX
6325
6326 napi->skb = NULL;
6327
a50e233c 6328 skb_reset_mac_header(skb);
7ad18ff6 6329 skb_gro_reset_offset(skb, hlen);
a50e233c 6330
a50e233c
ED
6331 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6332 eth = skb_gro_header_slow(skb, hlen, 0);
6333 if (unlikely(!eth)) {
4da46ceb
AC
6334 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6335 __func__, napi->dev->name);
a50e233c
ED
6336 napi_reuse_skb(napi, skb);
6337 return NULL;
6338 }
6339 } else {
a4270d67 6340 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6341 gro_pull_from_frag0(skb, hlen);
6342 NAPI_GRO_CB(skb)->frag0 += hlen;
6343 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6344 }
a50e233c
ED
6345 __skb_pull(skb, hlen);
6346
6347 /*
6348 * This works because the only protocols we care about don't require
6349 * special handling.
6350 * We'll fix it up properly in napi_frags_finish()
6351 */
6352 skb->protocol = eth->h_proto;
76620aaf 6353
76620aaf
HX
6354 return skb;
6355}
76620aaf 6356
c7c4b3b6 6357gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6358{
b0e3f1bd 6359 gro_result_t ret;
76620aaf 6360 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8 6361
ae78dbfa
BH
6362 trace_napi_gro_frags_entry(skb);
6363
b0e3f1bd
GB
6364 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6365 trace_napi_gro_frags_exit(ret);
6366
6367 return ret;
5d0d9be8 6368}
5d38a079
HX
6369EXPORT_SYMBOL(napi_gro_frags);
6370
573e8fca
TH
6371/* Compute the checksum from gro_offset and return the folded value
6372 * after adding in any pseudo checksum.
6373 */
6374__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6375{
6376 __wsum wsum;
6377 __sum16 sum;
6378
6379 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6380
6381 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6382 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6383 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6384 if (likely(!sum)) {
6385 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6386 !skb->csum_complete_sw)
7fe50ac8 6387 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6388 }
6389
6390 NAPI_GRO_CB(skb)->csum = wsum;
6391 NAPI_GRO_CB(skb)->csum_valid = 1;
6392
6393 return sum;
6394}
6395EXPORT_SYMBOL(__skb_gro_checksum_complete);
6396
773fc8f6 6397static void net_rps_send_ipi(struct softnet_data *remsd)
6398{
6399#ifdef CONFIG_RPS
6400 while (remsd) {
6401 struct softnet_data *next = remsd->rps_ipi_next;
6402
6403 if (cpu_online(remsd->cpu))
6404 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6405 remsd = next;
6406 }
6407#endif
6408}
6409
e326bed2 6410/*
855abcf0 6411 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6412 * Note: called with local irq disabled, but exits with local irq enabled.
6413 */
6414static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6415{
6416#ifdef CONFIG_RPS
6417 struct softnet_data *remsd = sd->rps_ipi_list;
6418
6419 if (remsd) {
6420 sd->rps_ipi_list = NULL;
6421
6422 local_irq_enable();
6423
6424 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6425 net_rps_send_ipi(remsd);
e326bed2
ED
6426 } else
6427#endif
6428 local_irq_enable();
6429}
6430
d75b1ade
ED
6431static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6432{
6433#ifdef CONFIG_RPS
6434 return sd->rps_ipi_list != NULL;
6435#else
6436 return false;
6437#endif
6438}
6439
bea3348e 6440static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6441{
eecfd7c4 6442 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6443 bool again = true;
6444 int work = 0;
1da177e4 6445
e326bed2
ED
6446 /* Check if we have pending ipi, its better to send them now,
6447 * not waiting net_rx_action() end.
6448 */
d75b1ade 6449 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6450 local_irq_disable();
6451 net_rps_action_and_irq_enable(sd);
6452 }
d75b1ade 6453
3d48b53f 6454 napi->weight = dev_rx_weight;
145dd5f9 6455 while (again) {
1da177e4 6456 struct sk_buff *skb;
6e7676c1
CG
6457
6458 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6459 rcu_read_lock();
6e7676c1 6460 __netif_receive_skb(skb);
2c17d27c 6461 rcu_read_unlock();
76cc8b13 6462 input_queue_head_incr(sd);
145dd5f9 6463 if (++work >= quota)
76cc8b13 6464 return work;
145dd5f9 6465
6e7676c1 6466 }
1da177e4 6467
145dd5f9 6468 local_irq_disable();
e36fa2f7 6469 rps_lock(sd);
11ef7a89 6470 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6471 /*
6472 * Inline a custom version of __napi_complete().
6473 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6474 * and NAPI_STATE_SCHED is the only possible flag set
6475 * on backlog.
6476 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6477 * and we dont need an smp_mb() memory barrier.
6478 */
eecfd7c4 6479 napi->state = 0;
145dd5f9
PA
6480 again = false;
6481 } else {
6482 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6483 &sd->process_queue);
bea3348e 6484 }
e36fa2f7 6485 rps_unlock(sd);
145dd5f9 6486 local_irq_enable();
6e7676c1 6487 }
1da177e4 6488
bea3348e
SH
6489 return work;
6490}
1da177e4 6491
bea3348e
SH
6492/**
6493 * __napi_schedule - schedule for receive
c4ea43c5 6494 * @n: entry to schedule
bea3348e 6495 *
bc9ad166
ED
6496 * The entry's receive function will be scheduled to run.
6497 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6498 */
b5606c2d 6499void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6500{
6501 unsigned long flags;
1da177e4 6502
bea3348e 6503 local_irq_save(flags);
903ceff7 6504 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6505 local_irq_restore(flags);
1da177e4 6506}
bea3348e
SH
6507EXPORT_SYMBOL(__napi_schedule);
6508
39e6c820
ED
6509/**
6510 * napi_schedule_prep - check if napi can be scheduled
6511 * @n: napi context
6512 *
6513 * Test if NAPI routine is already running, and if not mark
ee1a4c84 6514 * it as running. This is used as a condition variable to
39e6c820
ED
6515 * insure only one NAPI poll instance runs. We also make
6516 * sure there is no pending NAPI disable.
6517 */
6518bool napi_schedule_prep(struct napi_struct *n)
6519{
6520 unsigned long val, new;
6521
6522 do {
6523 val = READ_ONCE(n->state);
6524 if (unlikely(val & NAPIF_STATE_DISABLE))
6525 return false;
6526 new = val | NAPIF_STATE_SCHED;
6527
6528 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6529 * This was suggested by Alexander Duyck, as compiler
6530 * emits better code than :
6531 * if (val & NAPIF_STATE_SCHED)
6532 * new |= NAPIF_STATE_MISSED;
6533 */
6534 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6535 NAPIF_STATE_MISSED;
6536 } while (cmpxchg(&n->state, val, new) != val);
6537
6538 return !(val & NAPIF_STATE_SCHED);
6539}
6540EXPORT_SYMBOL(napi_schedule_prep);
6541
bc9ad166
ED
6542/**
6543 * __napi_schedule_irqoff - schedule for receive
6544 * @n: entry to schedule
6545 *
8380c81d
SAS
6546 * Variant of __napi_schedule() assuming hard irqs are masked.
6547 *
6548 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6549 * because the interrupt disabled assumption might not be true
6550 * due to force-threaded interrupts and spinlock substitution.
bc9ad166
ED
6551 */
6552void __napi_schedule_irqoff(struct napi_struct *n)
6553{
8380c81d
SAS
6554 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6555 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6556 else
6557 __napi_schedule(n);
bc9ad166
ED
6558}
6559EXPORT_SYMBOL(__napi_schedule_irqoff);
6560
364b6055 6561bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6562{
6f8b12d6
ED
6563 unsigned long flags, val, new, timeout = 0;
6564 bool ret = true;
d565b0a1
HX
6565
6566 /*
217f6974
ED
6567 * 1) Don't let napi dequeue from the cpu poll list
6568 * just in case its running on a different cpu.
6569 * 2) If we are busy polling, do nothing here, we have
6570 * the guarantee we will be called later.
d565b0a1 6571 */
217f6974
ED
6572 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6573 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6574 return false;
d565b0a1 6575
6f8b12d6
ED
6576 if (work_done) {
6577 if (n->gro_bitmask)
7e417a66
ED
6578 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6579 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
6580 }
6581 if (n->defer_hard_irqs_count > 0) {
6582 n->defer_hard_irqs_count--;
7e417a66 6583 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
6584 if (timeout)
6585 ret = false;
6586 }
6587 if (n->gro_bitmask) {
605108ac
PA
6588 /* When the NAPI instance uses a timeout and keeps postponing
6589 * it, we need to bound somehow the time packets are kept in
6590 * the GRO layer
6591 */
6592 napi_gro_flush(n, !!timeout);
3b47d303 6593 }
c8079432
MM
6594
6595 gro_normal_list(n);
6596
02c1602e 6597 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6598 /* If n->poll_list is not empty, we need to mask irqs */
6599 local_irq_save(flags);
02c1602e 6600 list_del_init(&n->poll_list);
d75b1ade
ED
6601 local_irq_restore(flags);
6602 }
39e6c820
ED
6603
6604 do {
6605 val = READ_ONCE(n->state);
6606
6607 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6608
7fd3253a 6609 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
cb038357 6610 NAPIF_STATE_SCHED_THREADED |
7fd3253a 6611 NAPIF_STATE_PREFER_BUSY_POLL);
39e6c820
ED
6612
6613 /* If STATE_MISSED was set, leave STATE_SCHED set,
6614 * because we will call napi->poll() one more time.
6615 * This C code was suggested by Alexander Duyck to help gcc.
6616 */
6617 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6618 NAPIF_STATE_SCHED;
6619 } while (cmpxchg(&n->state, val, new) != val);
6620
6621 if (unlikely(val & NAPIF_STATE_MISSED)) {
6622 __napi_schedule(n);
6623 return false;
6624 }
6625
6f8b12d6
ED
6626 if (timeout)
6627 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6628 HRTIMER_MODE_REL_PINNED);
6629 return ret;
d565b0a1 6630}
3b47d303 6631EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6632
af12fa6e 6633/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6634static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6635{
6636 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6637 struct napi_struct *napi;
6638
6639 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6640 if (napi->napi_id == napi_id)
6641 return napi;
6642
6643 return NULL;
6644}
02d62e86
ED
6645
6646#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6647
7fd3253a 6648static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
217f6974 6649{
7fd3253a
BT
6650 if (!skip_schedule) {
6651 gro_normal_list(napi);
6652 __napi_schedule(napi);
6653 return;
6654 }
217f6974 6655
7fd3253a
BT
6656 if (napi->gro_bitmask) {
6657 /* flush too old packets
6658 * If HZ < 1000, flush all packets.
6659 */
6660 napi_gro_flush(napi, HZ >= 1000);
6661 }
217f6974 6662
7fd3253a
BT
6663 gro_normal_list(napi);
6664 clear_bit(NAPI_STATE_SCHED, &napi->state);
6665}
6666
7c951caf
BT
6667static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6668 u16 budget)
217f6974 6669{
7fd3253a
BT
6670 bool skip_schedule = false;
6671 unsigned long timeout;
217f6974
ED
6672 int rc;
6673
39e6c820
ED
6674 /* Busy polling means there is a high chance device driver hard irq
6675 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6676 * set in napi_schedule_prep().
6677 * Since we are about to call napi->poll() once more, we can safely
6678 * clear NAPI_STATE_MISSED.
6679 *
6680 * Note: x86 could use a single "lock and ..." instruction
6681 * to perform these two clear_bit()
6682 */
6683 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6684 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6685
6686 local_bh_disable();
6687
7fd3253a
BT
6688 if (prefer_busy_poll) {
6689 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6690 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6691 if (napi->defer_hard_irqs_count && timeout) {
6692 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6693 skip_schedule = true;
6694 }
6695 }
6696
217f6974
ED
6697 /* All we really want here is to re-enable device interrupts.
6698 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6699 */
7c951caf 6700 rc = napi->poll(napi, budget);
323ebb61
EC
6701 /* We can't gro_normal_list() here, because napi->poll() might have
6702 * rearmed the napi (napi_complete_done()) in which case it could
6703 * already be running on another CPU.
6704 */
7c951caf 6705 trace_napi_poll(napi, rc, budget);
217f6974 6706 netpoll_poll_unlock(have_poll_lock);
7c951caf 6707 if (rc == budget)
7fd3253a 6708 __busy_poll_stop(napi, skip_schedule);
217f6974 6709 local_bh_enable();
217f6974
ED
6710}
6711
7db6b048
SS
6712void napi_busy_loop(unsigned int napi_id,
6713 bool (*loop_end)(void *, unsigned long),
7c951caf 6714 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
02d62e86 6715{
7db6b048 6716 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6717 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6718 void *have_poll_lock = NULL;
02d62e86 6719 struct napi_struct *napi;
217f6974
ED
6720
6721restart:
217f6974 6722 napi_poll = NULL;
02d62e86 6723
2a028ecb 6724 rcu_read_lock();
02d62e86 6725
545cd5e5 6726 napi = napi_by_id(napi_id);
02d62e86
ED
6727 if (!napi)
6728 goto out;
6729
217f6974
ED
6730 preempt_disable();
6731 for (;;) {
2b5cd0df
AD
6732 int work = 0;
6733
2a028ecb 6734 local_bh_disable();
217f6974
ED
6735 if (!napi_poll) {
6736 unsigned long val = READ_ONCE(napi->state);
6737
6738 /* If multiple threads are competing for this napi,
6739 * we avoid dirtying napi->state as much as we can.
6740 */
6741 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
7fd3253a
BT
6742 NAPIF_STATE_IN_BUSY_POLL)) {
6743 if (prefer_busy_poll)
6744 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6745 goto count;
7fd3253a 6746 }
217f6974
ED
6747 if (cmpxchg(&napi->state, val,
6748 val | NAPIF_STATE_IN_BUSY_POLL |
7fd3253a
BT
6749 NAPIF_STATE_SCHED) != val) {
6750 if (prefer_busy_poll)
6751 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6752 goto count;
7fd3253a 6753 }
217f6974
ED
6754 have_poll_lock = netpoll_poll_lock(napi);
6755 napi_poll = napi->poll;
6756 }
7c951caf
BT
6757 work = napi_poll(napi, budget);
6758 trace_napi_poll(napi, work, budget);
323ebb61 6759 gro_normal_list(napi);
217f6974 6760count:
2b5cd0df 6761 if (work > 0)
7db6b048 6762 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6763 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6764 local_bh_enable();
02d62e86 6765
7db6b048 6766 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6767 break;
02d62e86 6768
217f6974
ED
6769 if (unlikely(need_resched())) {
6770 if (napi_poll)
7c951caf 6771 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974
ED
6772 preempt_enable();
6773 rcu_read_unlock();
6774 cond_resched();
7db6b048 6775 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6776 return;
217f6974
ED
6777 goto restart;
6778 }
6cdf89b1 6779 cpu_relax();
217f6974
ED
6780 }
6781 if (napi_poll)
7c951caf 6782 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974 6783 preempt_enable();
02d62e86 6784out:
2a028ecb 6785 rcu_read_unlock();
02d62e86 6786}
7db6b048 6787EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6788
6789#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6790
149d6ad8 6791static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6792{
4d092dd2 6793 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
52bd2d62 6794 return;
af12fa6e 6795
52bd2d62 6796 spin_lock(&napi_hash_lock);
af12fa6e 6797
545cd5e5 6798 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6799 do {
545cd5e5
AD
6800 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6801 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6802 } while (napi_by_id(napi_gen_id));
6803 napi->napi_id = napi_gen_id;
af12fa6e 6804
52bd2d62
ED
6805 hlist_add_head_rcu(&napi->napi_hash_node,
6806 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6807
52bd2d62 6808 spin_unlock(&napi_hash_lock);
af12fa6e 6809}
af12fa6e
ET
6810
6811/* Warning : caller is responsible to make sure rcu grace period
6812 * is respected before freeing memory containing @napi
6813 */
5198d545 6814static void napi_hash_del(struct napi_struct *napi)
af12fa6e
ET
6815{
6816 spin_lock(&napi_hash_lock);
6817
4d092dd2 6818 hlist_del_init_rcu(&napi->napi_hash_node);
5198d545 6819
af12fa6e
ET
6820 spin_unlock(&napi_hash_lock);
6821}
af12fa6e 6822
3b47d303
ED
6823static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6824{
6825 struct napi_struct *napi;
6826
6827 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6828
6829 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6830 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6831 */
6f8b12d6 6832 if (!napi_disable_pending(napi) &&
7fd3253a
BT
6833 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6834 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
39e6c820 6835 __napi_schedule_irqoff(napi);
7fd3253a 6836 }
3b47d303
ED
6837
6838 return HRTIMER_NORESTART;
6839}
6840
7c4ec749 6841static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6842{
07d78363
DM
6843 int i;
6844
6312fe77
LR
6845 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6846 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6847 napi->gro_hash[i].count = 0;
6848 }
7c4ec749
DM
6849 napi->gro_bitmask = 0;
6850}
6851
5fdd2f0e
WW
6852int dev_set_threaded(struct net_device *dev, bool threaded)
6853{
6854 struct napi_struct *napi;
6855 int err = 0;
6856
6857 if (dev->threaded == threaded)
6858 return 0;
6859
6860 if (threaded) {
6861 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6862 if (!napi->thread) {
6863 err = napi_kthread_create(napi);
6864 if (err) {
6865 threaded = false;
6866 break;
6867 }
6868 }
6869 }
6870 }
6871
6872 dev->threaded = threaded;
6873
6874 /* Make sure kthread is created before THREADED bit
6875 * is set.
6876 */
6877 smp_mb__before_atomic();
6878
6879 /* Setting/unsetting threaded mode on a napi might not immediately
6880 * take effect, if the current napi instance is actively being
6881 * polled. In this case, the switch between threaded mode and
6882 * softirq mode will happen in the next round of napi_schedule().
6883 * This should not cause hiccups/stalls to the live traffic.
6884 */
6885 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6886 if (threaded)
6887 set_bit(NAPI_STATE_THREADED, &napi->state);
6888 else
6889 clear_bit(NAPI_STATE_THREADED, &napi->state);
6890 }
6891
6892 return err;
6893}
8f64860f 6894EXPORT_SYMBOL(dev_set_threaded);
5fdd2f0e 6895
7c4ec749
DM
6896void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6897 int (*poll)(struct napi_struct *, int), int weight)
6898{
4d092dd2
JK
6899 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6900 return;
6901
7c4ec749 6902 INIT_LIST_HEAD(&napi->poll_list);
4d092dd2 6903 INIT_HLIST_NODE(&napi->napi_hash_node);
7c4ec749
DM
6904 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6905 napi->timer.function = napi_watchdog;
6906 init_gro_hash(napi);
5d38a079 6907 napi->skb = NULL;
323ebb61
EC
6908 INIT_LIST_HEAD(&napi->rx_list);
6909 napi->rx_count = 0;
d565b0a1 6910 napi->poll = poll;
82dc3c63 6911 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6912 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6913 weight);
d565b0a1 6914 napi->weight = weight;
d565b0a1 6915 napi->dev = dev;
5d38a079 6916#ifdef CONFIG_NETPOLL
d565b0a1
HX
6917 napi->poll_owner = -1;
6918#endif
6919 set_bit(NAPI_STATE_SCHED, &napi->state);
96e97bc0
JK
6920 set_bit(NAPI_STATE_NPSVC, &napi->state);
6921 list_add_rcu(&napi->dev_list, &dev->napi_list);
93d05d4a 6922 napi_hash_add(napi);
29863d41
WW
6923 /* Create kthread for this napi if dev->threaded is set.
6924 * Clear dev->threaded if kthread creation failed so that
6925 * threaded mode will not be enabled in napi_enable().
6926 */
6927 if (dev->threaded && napi_kthread_create(napi))
6928 dev->threaded = 0;
d565b0a1
HX
6929}
6930EXPORT_SYMBOL(netif_napi_add);
6931
3b47d303
ED
6932void napi_disable(struct napi_struct *n)
6933{
6934 might_sleep();
6935 set_bit(NAPI_STATE_DISABLE, &n->state);
6936
6937 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6938 msleep(1);
2d8bff12
NH
6939 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6940 msleep(1);
3b47d303
ED
6941
6942 hrtimer_cancel(&n->timer);
6943
7fd3253a 6944 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
3b47d303 6945 clear_bit(NAPI_STATE_DISABLE, &n->state);
29863d41 6946 clear_bit(NAPI_STATE_THREADED, &n->state);
3b47d303
ED
6947}
6948EXPORT_SYMBOL(napi_disable);
6949
29863d41
WW
6950/**
6951 * napi_enable - enable NAPI scheduling
6952 * @n: NAPI context
6953 *
6954 * Resume NAPI from being scheduled on this context.
6955 * Must be paired with napi_disable.
6956 */
6957void napi_enable(struct napi_struct *n)
6958{
6959 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6960 smp_mb__before_atomic();
6961 clear_bit(NAPI_STATE_SCHED, &n->state);
6962 clear_bit(NAPI_STATE_NPSVC, &n->state);
6963 if (n->dev->threaded && n->thread)
6964 set_bit(NAPI_STATE_THREADED, &n->state);
6965}
6966EXPORT_SYMBOL(napi_enable);
6967
07d78363 6968static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6969{
07d78363 6970 int i;
d4546c25 6971
07d78363
DM
6972 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6973 struct sk_buff *skb, *n;
6974
6312fe77 6975 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6976 kfree_skb(skb);
6312fe77 6977 napi->gro_hash[i].count = 0;
07d78363 6978 }
d4546c25
DM
6979}
6980
93d05d4a 6981/* Must be called in process context */
5198d545 6982void __netif_napi_del(struct napi_struct *napi)
d565b0a1 6983{
4d092dd2
JK
6984 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6985 return;
6986
5198d545 6987 napi_hash_del(napi);
5251ef82 6988 list_del_rcu(&napi->dev_list);
76620aaf 6989 napi_free_frags(napi);
d565b0a1 6990
07d78363 6991 flush_gro_hash(napi);
d9f37d01 6992 napi->gro_bitmask = 0;
29863d41
WW
6993
6994 if (napi->thread) {
6995 kthread_stop(napi->thread);
6996 napi->thread = NULL;
6997 }
d565b0a1 6998}
5198d545 6999EXPORT_SYMBOL(__netif_napi_del);
d565b0a1 7000
898f8015 7001static int __napi_poll(struct napi_struct *n, bool *repoll)
726ce70e 7002{
726ce70e
HX
7003 int work, weight;
7004
726ce70e
HX
7005 weight = n->weight;
7006
7007 /* This NAPI_STATE_SCHED test is for avoiding a race
7008 * with netpoll's poll_napi(). Only the entity which
7009 * obtains the lock and sees NAPI_STATE_SCHED set will
7010 * actually make the ->poll() call. Therefore we avoid
7011 * accidentally calling ->poll() when NAPI is not scheduled.
7012 */
7013 work = 0;
7014 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7015 work = n->poll(n, weight);
1db19db7 7016 trace_napi_poll(n, work, weight);
726ce70e
HX
7017 }
7018
427d5838
ED
7019 if (unlikely(work > weight))
7020 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7021 n->poll, work, weight);
726ce70e
HX
7022
7023 if (likely(work < weight))
898f8015 7024 return work;
726ce70e
HX
7025
7026 /* Drivers must not modify the NAPI state if they
7027 * consume the entire weight. In such cases this code
7028 * still "owns" the NAPI instance and therefore can
7029 * move the instance around on the list at-will.
7030 */
7031 if (unlikely(napi_disable_pending(n))) {
7032 napi_complete(n);
898f8015 7033 return work;
726ce70e
HX
7034 }
7035
7fd3253a
BT
7036 /* The NAPI context has more processing work, but busy-polling
7037 * is preferred. Exit early.
7038 */
7039 if (napi_prefer_busy_poll(n)) {
7040 if (napi_complete_done(n, work)) {
7041 /* If timeout is not set, we need to make sure
7042 * that the NAPI is re-scheduled.
7043 */
7044 napi_schedule(n);
7045 }
898f8015 7046 return work;
7fd3253a
BT
7047 }
7048
d9f37d01 7049 if (n->gro_bitmask) {
726ce70e
HX
7050 /* flush too old packets
7051 * If HZ < 1000, flush all packets.
7052 */
7053 napi_gro_flush(n, HZ >= 1000);
7054 }
7055
c8079432
MM
7056 gro_normal_list(n);
7057
001ce546
HX
7058 /* Some drivers may have called napi_schedule
7059 * prior to exhausting their budget.
7060 */
7061 if (unlikely(!list_empty(&n->poll_list))) {
7062 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7063 n->dev ? n->dev->name : "backlog");
898f8015 7064 return work;
001ce546
HX
7065 }
7066
898f8015
FF
7067 *repoll = true;
7068
7069 return work;
7070}
7071
7072static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7073{
7074 bool do_repoll = false;
7075 void *have;
7076 int work;
7077
7078 list_del_init(&n->poll_list);
7079
7080 have = netpoll_poll_lock(n);
7081
7082 work = __napi_poll(n, &do_repoll);
7083
7084 if (do_repoll)
7085 list_add_tail(&n->poll_list, repoll);
726ce70e 7086
726ce70e
HX
7087 netpoll_poll_unlock(have);
7088
7089 return work;
7090}
7091
29863d41
WW
7092static int napi_thread_wait(struct napi_struct *napi)
7093{
cb038357
WW
7094 bool woken = false;
7095
29863d41
WW
7096 set_current_state(TASK_INTERRUPTIBLE);
7097
27f0ad71 7098 while (!kthread_should_stop()) {
cb038357
WW
7099 /* Testing SCHED_THREADED bit here to make sure the current
7100 * kthread owns this napi and could poll on this napi.
7101 * Testing SCHED bit is not enough because SCHED bit might be
7102 * set by some other busy poll thread or by napi_disable().
7103 */
7104 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
29863d41
WW
7105 WARN_ON(!list_empty(&napi->poll_list));
7106 __set_current_state(TASK_RUNNING);
7107 return 0;
7108 }
7109
7110 schedule();
cb038357
WW
7111 /* woken being true indicates this thread owns this napi. */
7112 woken = true;
29863d41
WW
7113 set_current_state(TASK_INTERRUPTIBLE);
7114 }
7115 __set_current_state(TASK_RUNNING);
27f0ad71 7116
29863d41
WW
7117 return -1;
7118}
7119
7120static int napi_threaded_poll(void *data)
7121{
7122 struct napi_struct *napi = data;
7123 void *have;
7124
7125 while (!napi_thread_wait(napi)) {
7126 for (;;) {
7127 bool repoll = false;
7128
7129 local_bh_disable();
7130
7131 have = netpoll_poll_lock(napi);
7132 __napi_poll(napi, &repoll);
7133 netpoll_poll_unlock(have);
7134
29863d41
WW
7135 local_bh_enable();
7136
7137 if (!repoll)
7138 break;
7139
7140 cond_resched();
7141 }
7142 }
7143 return 0;
7144}
7145
0766f788 7146static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 7147{
903ceff7 7148 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
7149 unsigned long time_limit = jiffies +
7150 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 7151 int budget = netdev_budget;
d75b1ade
ED
7152 LIST_HEAD(list);
7153 LIST_HEAD(repoll);
53fb95d3 7154
1da177e4 7155 local_irq_disable();
d75b1ade
ED
7156 list_splice_init(&sd->poll_list, &list);
7157 local_irq_enable();
1da177e4 7158
ceb8d5bf 7159 for (;;) {
bea3348e 7160 struct napi_struct *n;
1da177e4 7161
ceb8d5bf
HX
7162 if (list_empty(&list)) {
7163 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
fec6e49b 7164 return;
ceb8d5bf
HX
7165 break;
7166 }
7167
6bd373eb
HX
7168 n = list_first_entry(&list, struct napi_struct, poll_list);
7169 budget -= napi_poll(n, &repoll);
7170
d75b1ade 7171 /* If softirq window is exhausted then punt.
24f8b238
SH
7172 * Allow this to run for 2 jiffies since which will allow
7173 * an average latency of 1.5/HZ.
bea3348e 7174 */
ceb8d5bf
HX
7175 if (unlikely(budget <= 0 ||
7176 time_after_eq(jiffies, time_limit))) {
7177 sd->time_squeeze++;
7178 break;
7179 }
1da177e4 7180 }
d75b1ade 7181
d75b1ade
ED
7182 local_irq_disable();
7183
7184 list_splice_tail_init(&sd->poll_list, &list);
7185 list_splice_tail(&repoll, &list);
7186 list_splice(&list, &sd->poll_list);
7187 if (!list_empty(&sd->poll_list))
7188 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7189
e326bed2 7190 net_rps_action_and_irq_enable(sd);
1da177e4
LT
7191}
7192
aa9d8560 7193struct netdev_adjacent {
9ff162a8 7194 struct net_device *dev;
5d261913
VF
7195
7196 /* upper master flag, there can only be one master device per list */
9ff162a8 7197 bool master;
5d261913 7198
32b6d34f
TY
7199 /* lookup ignore flag */
7200 bool ignore;
7201
5d261913
VF
7202 /* counter for the number of times this device was added to us */
7203 u16 ref_nr;
7204
402dae96
VF
7205 /* private field for the users */
7206 void *private;
7207
9ff162a8
JP
7208 struct list_head list;
7209 struct rcu_head rcu;
9ff162a8
JP
7210};
7211
6ea29da1 7212static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 7213 struct list_head *adj_list)
9ff162a8 7214{
5d261913 7215 struct netdev_adjacent *adj;
5d261913 7216
2f268f12 7217 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
7218 if (adj->dev == adj_dev)
7219 return adj;
9ff162a8
JP
7220 }
7221 return NULL;
7222}
7223
eff74233
TY
7224static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7225 struct netdev_nested_priv *priv)
f1170fd4 7226{
eff74233 7227 struct net_device *dev = (struct net_device *)priv->data;
f1170fd4
DA
7228
7229 return upper_dev == dev;
7230}
7231
9ff162a8
JP
7232/**
7233 * netdev_has_upper_dev - Check if device is linked to an upper device
7234 * @dev: device
7235 * @upper_dev: upper device to check
7236 *
7237 * Find out if a device is linked to specified upper device and return true
7238 * in case it is. Note that this checks only immediate upper device,
7239 * not through a complete stack of devices. The caller must hold the RTNL lock.
7240 */
7241bool netdev_has_upper_dev(struct net_device *dev,
7242 struct net_device *upper_dev)
7243{
eff74233
TY
7244 struct netdev_nested_priv priv = {
7245 .data = (void *)upper_dev,
7246 };
7247
9ff162a8
JP
7248 ASSERT_RTNL();
7249
32b6d34f 7250 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 7251 &priv);
9ff162a8
JP
7252}
7253EXPORT_SYMBOL(netdev_has_upper_dev);
7254
1a3f060c 7255/**
c1639be9 7256 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
1a3f060c
DA
7257 * @dev: device
7258 * @upper_dev: upper device to check
7259 *
7260 * Find out if a device is linked to specified upper device and return true
7261 * in case it is. Note that this checks the entire upper device chain.
7262 * The caller must hold rcu lock.
7263 */
7264
1a3f060c
DA
7265bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7266 struct net_device *upper_dev)
7267{
eff74233
TY
7268 struct netdev_nested_priv priv = {
7269 .data = (void *)upper_dev,
7270 };
7271
32b6d34f 7272 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 7273 &priv);
1a3f060c
DA
7274}
7275EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7276
9ff162a8
JP
7277/**
7278 * netdev_has_any_upper_dev - Check if device is linked to some device
7279 * @dev: device
7280 *
7281 * Find out if a device is linked to an upper device and return true in case
7282 * it is. The caller must hold the RTNL lock.
7283 */
25cc72a3 7284bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
7285{
7286 ASSERT_RTNL();
7287
f1170fd4 7288 return !list_empty(&dev->adj_list.upper);
9ff162a8 7289}
25cc72a3 7290EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
7291
7292/**
7293 * netdev_master_upper_dev_get - Get master upper device
7294 * @dev: device
7295 *
7296 * Find a master upper device and return pointer to it or NULL in case
7297 * it's not there. The caller must hold the RTNL lock.
7298 */
7299struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7300{
aa9d8560 7301 struct netdev_adjacent *upper;
9ff162a8
JP
7302
7303 ASSERT_RTNL();
7304
2f268f12 7305 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
7306 return NULL;
7307
2f268f12 7308 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 7309 struct netdev_adjacent, list);
9ff162a8
JP
7310 if (likely(upper->master))
7311 return upper->dev;
7312 return NULL;
7313}
7314EXPORT_SYMBOL(netdev_master_upper_dev_get);
7315
32b6d34f
TY
7316static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7317{
7318 struct netdev_adjacent *upper;
7319
7320 ASSERT_RTNL();
7321
7322 if (list_empty(&dev->adj_list.upper))
7323 return NULL;
7324
7325 upper = list_first_entry(&dev->adj_list.upper,
7326 struct netdev_adjacent, list);
7327 if (likely(upper->master) && !upper->ignore)
7328 return upper->dev;
7329 return NULL;
7330}
7331
0f524a80
DA
7332/**
7333 * netdev_has_any_lower_dev - Check if device is linked to some device
7334 * @dev: device
7335 *
7336 * Find out if a device is linked to a lower device and return true in case
7337 * it is. The caller must hold the RTNL lock.
7338 */
7339static bool netdev_has_any_lower_dev(struct net_device *dev)
7340{
7341 ASSERT_RTNL();
7342
7343 return !list_empty(&dev->adj_list.lower);
7344}
7345
b6ccba4c
VF
7346void *netdev_adjacent_get_private(struct list_head *adj_list)
7347{
7348 struct netdev_adjacent *adj;
7349
7350 adj = list_entry(adj_list, struct netdev_adjacent, list);
7351
7352 return adj->private;
7353}
7354EXPORT_SYMBOL(netdev_adjacent_get_private);
7355
44a40855
VY
7356/**
7357 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7358 * @dev: device
7359 * @iter: list_head ** of the current position
7360 *
7361 * Gets the next device from the dev's upper list, starting from iter
7362 * position. The caller must hold RCU read lock.
7363 */
7364struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7365 struct list_head **iter)
7366{
7367 struct netdev_adjacent *upper;
7368
7369 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7370
7371 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7372
7373 if (&upper->list == &dev->adj_list.upper)
7374 return NULL;
7375
7376 *iter = &upper->list;
7377
7378 return upper->dev;
7379}
7380EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7381
32b6d34f
TY
7382static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7383 struct list_head **iter,
7384 bool *ignore)
5343da4c
TY
7385{
7386 struct netdev_adjacent *upper;
7387
7388 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7389
7390 if (&upper->list == &dev->adj_list.upper)
7391 return NULL;
7392
7393 *iter = &upper->list;
32b6d34f 7394 *ignore = upper->ignore;
5343da4c
TY
7395
7396 return upper->dev;
7397}
7398
1a3f060c
DA
7399static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7400 struct list_head **iter)
7401{
7402 struct netdev_adjacent *upper;
7403
7404 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7405
7406 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7407
7408 if (&upper->list == &dev->adj_list.upper)
7409 return NULL;
7410
7411 *iter = &upper->list;
7412
7413 return upper->dev;
7414}
7415
32b6d34f
TY
7416static int __netdev_walk_all_upper_dev(struct net_device *dev,
7417 int (*fn)(struct net_device *dev,
eff74233
TY
7418 struct netdev_nested_priv *priv),
7419 struct netdev_nested_priv *priv)
5343da4c
TY
7420{
7421 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7422 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7423 int ret, cur = 0;
32b6d34f 7424 bool ignore;
5343da4c
TY
7425
7426 now = dev;
7427 iter = &dev->adj_list.upper;
7428
7429 while (1) {
7430 if (now != dev) {
eff74233 7431 ret = fn(now, priv);
5343da4c
TY
7432 if (ret)
7433 return ret;
7434 }
7435
7436 next = NULL;
7437 while (1) {
32b6d34f 7438 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
7439 if (!udev)
7440 break;
32b6d34f
TY
7441 if (ignore)
7442 continue;
5343da4c
TY
7443
7444 next = udev;
7445 niter = &udev->adj_list.upper;
7446 dev_stack[cur] = now;
7447 iter_stack[cur++] = iter;
7448 break;
7449 }
7450
7451 if (!next) {
7452 if (!cur)
7453 return 0;
7454 next = dev_stack[--cur];
7455 niter = iter_stack[cur];
7456 }
7457
7458 now = next;
7459 iter = niter;
7460 }
7461
7462 return 0;
7463}
7464
1a3f060c
DA
7465int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7466 int (*fn)(struct net_device *dev,
eff74233
TY
7467 struct netdev_nested_priv *priv),
7468 struct netdev_nested_priv *priv)
1a3f060c 7469{
5343da4c
TY
7470 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7471 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7472 int ret, cur = 0;
1a3f060c 7473
5343da4c
TY
7474 now = dev;
7475 iter = &dev->adj_list.upper;
1a3f060c 7476
5343da4c
TY
7477 while (1) {
7478 if (now != dev) {
eff74233 7479 ret = fn(now, priv);
5343da4c
TY
7480 if (ret)
7481 return ret;
7482 }
7483
7484 next = NULL;
7485 while (1) {
7486 udev = netdev_next_upper_dev_rcu(now, &iter);
7487 if (!udev)
7488 break;
7489
7490 next = udev;
7491 niter = &udev->adj_list.upper;
7492 dev_stack[cur] = now;
7493 iter_stack[cur++] = iter;
7494 break;
7495 }
7496
7497 if (!next) {
7498 if (!cur)
7499 return 0;
7500 next = dev_stack[--cur];
7501 niter = iter_stack[cur];
7502 }
7503
7504 now = next;
7505 iter = niter;
1a3f060c
DA
7506 }
7507
7508 return 0;
7509}
7510EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7511
32b6d34f
TY
7512static bool __netdev_has_upper_dev(struct net_device *dev,
7513 struct net_device *upper_dev)
7514{
eff74233 7515 struct netdev_nested_priv priv = {
1fc70edb 7516 .flags = 0,
eff74233
TY
7517 .data = (void *)upper_dev,
7518 };
7519
32b6d34f
TY
7520 ASSERT_RTNL();
7521
7522 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
eff74233 7523 &priv);
32b6d34f
TY
7524}
7525
31088a11
VF
7526/**
7527 * netdev_lower_get_next_private - Get the next ->private from the
7528 * lower neighbour list
7529 * @dev: device
7530 * @iter: list_head ** of the current position
7531 *
7532 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7533 * list, starting from iter position. The caller must hold either hold the
7534 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 7535 * list will remain unchanged.
31088a11
VF
7536 */
7537void *netdev_lower_get_next_private(struct net_device *dev,
7538 struct list_head **iter)
7539{
7540 struct netdev_adjacent *lower;
7541
7542 lower = list_entry(*iter, struct netdev_adjacent, list);
7543
7544 if (&lower->list == &dev->adj_list.lower)
7545 return NULL;
7546
6859e7df 7547 *iter = lower->list.next;
31088a11
VF
7548
7549 return lower->private;
7550}
7551EXPORT_SYMBOL(netdev_lower_get_next_private);
7552
7553/**
7554 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7555 * lower neighbour list, RCU
7556 * variant
7557 * @dev: device
7558 * @iter: list_head ** of the current position
7559 *
7560 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7561 * list, starting from iter position. The caller must hold RCU read lock.
7562 */
7563void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7564 struct list_head **iter)
7565{
7566 struct netdev_adjacent *lower;
7567
7568 WARN_ON_ONCE(!rcu_read_lock_held());
7569
7570 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7571
7572 if (&lower->list == &dev->adj_list.lower)
7573 return NULL;
7574
6859e7df 7575 *iter = &lower->list;
31088a11
VF
7576
7577 return lower->private;
7578}
7579EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7580
4085ebe8
VY
7581/**
7582 * netdev_lower_get_next - Get the next device from the lower neighbour
7583 * list
7584 * @dev: device
7585 * @iter: list_head ** of the current position
7586 *
7587 * Gets the next netdev_adjacent from the dev's lower neighbour
7588 * list, starting from iter position. The caller must hold RTNL lock or
7589 * its own locking that guarantees that the neighbour lower
b469139e 7590 * list will remain unchanged.
4085ebe8
VY
7591 */
7592void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7593{
7594 struct netdev_adjacent *lower;
7595
cfdd28be 7596 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7597
7598 if (&lower->list == &dev->adj_list.lower)
7599 return NULL;
7600
cfdd28be 7601 *iter = lower->list.next;
4085ebe8
VY
7602
7603 return lower->dev;
7604}
7605EXPORT_SYMBOL(netdev_lower_get_next);
7606
1a3f060c
DA
7607static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7608 struct list_head **iter)
7609{
7610 struct netdev_adjacent *lower;
7611
46b5ab1a 7612 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7613
7614 if (&lower->list == &dev->adj_list.lower)
7615 return NULL;
7616
46b5ab1a 7617 *iter = &lower->list;
1a3f060c
DA
7618
7619 return lower->dev;
7620}
7621
32b6d34f
TY
7622static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7623 struct list_head **iter,
7624 bool *ignore)
7625{
7626 struct netdev_adjacent *lower;
7627
7628 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7629
7630 if (&lower->list == &dev->adj_list.lower)
7631 return NULL;
7632
7633 *iter = &lower->list;
7634 *ignore = lower->ignore;
7635
7636 return lower->dev;
7637}
7638
1a3f060c
DA
7639int netdev_walk_all_lower_dev(struct net_device *dev,
7640 int (*fn)(struct net_device *dev,
eff74233
TY
7641 struct netdev_nested_priv *priv),
7642 struct netdev_nested_priv *priv)
1a3f060c 7643{
5343da4c
TY
7644 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7645 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7646 int ret, cur = 0;
1a3f060c 7647
5343da4c
TY
7648 now = dev;
7649 iter = &dev->adj_list.lower;
1a3f060c 7650
5343da4c
TY
7651 while (1) {
7652 if (now != dev) {
eff74233 7653 ret = fn(now, priv);
5343da4c
TY
7654 if (ret)
7655 return ret;
7656 }
7657
7658 next = NULL;
7659 while (1) {
7660 ldev = netdev_next_lower_dev(now, &iter);
7661 if (!ldev)
7662 break;
7663
7664 next = ldev;
7665 niter = &ldev->adj_list.lower;
7666 dev_stack[cur] = now;
7667 iter_stack[cur++] = iter;
7668 break;
7669 }
7670
7671 if (!next) {
7672 if (!cur)
7673 return 0;
7674 next = dev_stack[--cur];
7675 niter = iter_stack[cur];
7676 }
7677
7678 now = next;
7679 iter = niter;
1a3f060c
DA
7680 }
7681
7682 return 0;
7683}
7684EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7685
32b6d34f
TY
7686static int __netdev_walk_all_lower_dev(struct net_device *dev,
7687 int (*fn)(struct net_device *dev,
eff74233
TY
7688 struct netdev_nested_priv *priv),
7689 struct netdev_nested_priv *priv)
32b6d34f
TY
7690{
7691 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7692 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7693 int ret, cur = 0;
7694 bool ignore;
7695
7696 now = dev;
7697 iter = &dev->adj_list.lower;
7698
7699 while (1) {
7700 if (now != dev) {
eff74233 7701 ret = fn(now, priv);
32b6d34f
TY
7702 if (ret)
7703 return ret;
7704 }
7705
7706 next = NULL;
7707 while (1) {
7708 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7709 if (!ldev)
7710 break;
7711 if (ignore)
7712 continue;
7713
7714 next = ldev;
7715 niter = &ldev->adj_list.lower;
7716 dev_stack[cur] = now;
7717 iter_stack[cur++] = iter;
7718 break;
7719 }
7720
7721 if (!next) {
7722 if (!cur)
7723 return 0;
7724 next = dev_stack[--cur];
7725 niter = iter_stack[cur];
7726 }
7727
7728 now = next;
7729 iter = niter;
7730 }
7731
7732 return 0;
7733}
7734
7151affe
TY
7735struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7736 struct list_head **iter)
1a3f060c
DA
7737{
7738 struct netdev_adjacent *lower;
7739
7740 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7741 if (&lower->list == &dev->adj_list.lower)
7742 return NULL;
7743
7744 *iter = &lower->list;
7745
7746 return lower->dev;
7747}
7151affe 7748EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7749
5343da4c
TY
7750static u8 __netdev_upper_depth(struct net_device *dev)
7751{
7752 struct net_device *udev;
7753 struct list_head *iter;
7754 u8 max_depth = 0;
32b6d34f 7755 bool ignore;
5343da4c
TY
7756
7757 for (iter = &dev->adj_list.upper,
32b6d34f 7758 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7759 udev;
32b6d34f
TY
7760 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7761 if (ignore)
7762 continue;
5343da4c
TY
7763 if (max_depth < udev->upper_level)
7764 max_depth = udev->upper_level;
7765 }
7766
7767 return max_depth;
7768}
7769
7770static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7771{
7772 struct net_device *ldev;
7773 struct list_head *iter;
5343da4c 7774 u8 max_depth = 0;
32b6d34f 7775 bool ignore;
1a3f060c
DA
7776
7777 for (iter = &dev->adj_list.lower,
32b6d34f 7778 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7779 ldev;
32b6d34f
TY
7780 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7781 if (ignore)
7782 continue;
5343da4c
TY
7783 if (max_depth < ldev->lower_level)
7784 max_depth = ldev->lower_level;
7785 }
1a3f060c 7786
5343da4c
TY
7787 return max_depth;
7788}
7789
eff74233
TY
7790static int __netdev_update_upper_level(struct net_device *dev,
7791 struct netdev_nested_priv *__unused)
5343da4c
TY
7792{
7793 dev->upper_level = __netdev_upper_depth(dev) + 1;
7794 return 0;
7795}
7796
eff74233 7797static int __netdev_update_lower_level(struct net_device *dev,
1fc70edb 7798 struct netdev_nested_priv *priv)
5343da4c
TY
7799{
7800 dev->lower_level = __netdev_lower_depth(dev) + 1;
1fc70edb
TY
7801
7802#ifdef CONFIG_LOCKDEP
7803 if (!priv)
7804 return 0;
7805
7806 if (priv->flags & NESTED_SYNC_IMM)
7807 dev->nested_level = dev->lower_level - 1;
7808 if (priv->flags & NESTED_SYNC_TODO)
7809 net_unlink_todo(dev);
7810#endif
5343da4c
TY
7811 return 0;
7812}
7813
7814int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7815 int (*fn)(struct net_device *dev,
eff74233
TY
7816 struct netdev_nested_priv *priv),
7817 struct netdev_nested_priv *priv)
5343da4c
TY
7818{
7819 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7820 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7821 int ret, cur = 0;
7822
7823 now = dev;
7824 iter = &dev->adj_list.lower;
7825
7826 while (1) {
7827 if (now != dev) {
eff74233 7828 ret = fn(now, priv);
5343da4c
TY
7829 if (ret)
7830 return ret;
7831 }
7832
7833 next = NULL;
7834 while (1) {
7835 ldev = netdev_next_lower_dev_rcu(now, &iter);
7836 if (!ldev)
7837 break;
7838
7839 next = ldev;
7840 niter = &ldev->adj_list.lower;
7841 dev_stack[cur] = now;
7842 iter_stack[cur++] = iter;
7843 break;
7844 }
7845
7846 if (!next) {
7847 if (!cur)
7848 return 0;
7849 next = dev_stack[--cur];
7850 niter = iter_stack[cur];
7851 }
7852
7853 now = next;
7854 iter = niter;
1a3f060c
DA
7855 }
7856
7857 return 0;
7858}
7859EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7860
e001bfad 7861/**
7862 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7863 * lower neighbour list, RCU
7864 * variant
7865 * @dev: device
7866 *
7867 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7868 * list. The caller must hold RCU read lock.
7869 */
7870void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7871{
7872 struct netdev_adjacent *lower;
7873
7874 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7875 struct netdev_adjacent, list);
7876 if (lower)
7877 return lower->private;
7878 return NULL;
7879}
7880EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7881
9ff162a8
JP
7882/**
7883 * netdev_master_upper_dev_get_rcu - Get master upper device
7884 * @dev: device
7885 *
7886 * Find a master upper device and return pointer to it or NULL in case
7887 * it's not there. The caller must hold the RCU read lock.
7888 */
7889struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7890{
aa9d8560 7891 struct netdev_adjacent *upper;
9ff162a8 7892
2f268f12 7893 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7894 struct netdev_adjacent, list);
9ff162a8
JP
7895 if (upper && likely(upper->master))
7896 return upper->dev;
7897 return NULL;
7898}
7899EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7900
0a59f3a9 7901static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7902 struct net_device *adj_dev,
7903 struct list_head *dev_list)
7904{
7905 char linkname[IFNAMSIZ+7];
f4563a75 7906
3ee32707
VF
7907 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7908 "upper_%s" : "lower_%s", adj_dev->name);
7909 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7910 linkname);
7911}
0a59f3a9 7912static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7913 char *name,
7914 struct list_head *dev_list)
7915{
7916 char linkname[IFNAMSIZ+7];
f4563a75 7917
3ee32707
VF
7918 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7919 "upper_%s" : "lower_%s", name);
7920 sysfs_remove_link(&(dev->dev.kobj), linkname);
7921}
7922
7ce64c79
AF
7923static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7924 struct net_device *adj_dev,
7925 struct list_head *dev_list)
7926{
7927 return (dev_list == &dev->adj_list.upper ||
7928 dev_list == &dev->adj_list.lower) &&
7929 net_eq(dev_net(dev), dev_net(adj_dev));
7930}
3ee32707 7931
5d261913
VF
7932static int __netdev_adjacent_dev_insert(struct net_device *dev,
7933 struct net_device *adj_dev,
7863c054 7934 struct list_head *dev_list,
402dae96 7935 void *private, bool master)
5d261913
VF
7936{
7937 struct netdev_adjacent *adj;
842d67a7 7938 int ret;
5d261913 7939
6ea29da1 7940 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7941
7942 if (adj) {
790510d9 7943 adj->ref_nr += 1;
67b62f98
DA
7944 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7945 dev->name, adj_dev->name, adj->ref_nr);
7946
5d261913
VF
7947 return 0;
7948 }
7949
7950 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7951 if (!adj)
7952 return -ENOMEM;
7953
7954 adj->dev = adj_dev;
7955 adj->master = master;
790510d9 7956 adj->ref_nr = 1;
402dae96 7957 adj->private = private;
32b6d34f 7958 adj->ignore = false;
5d261913 7959 dev_hold(adj_dev);
2f268f12 7960
67b62f98
DA
7961 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7962 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7963
7ce64c79 7964 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7965 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7966 if (ret)
7967 goto free_adj;
7968 }
7969
7863c054 7970 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7971 if (master) {
7972 ret = sysfs_create_link(&(dev->dev.kobj),
7973 &(adj_dev->dev.kobj), "master");
7974 if (ret)
5831d66e 7975 goto remove_symlinks;
842d67a7 7976
7863c054 7977 list_add_rcu(&adj->list, dev_list);
842d67a7 7978 } else {
7863c054 7979 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7980 }
5d261913
VF
7981
7982 return 0;
842d67a7 7983
5831d66e 7984remove_symlinks:
7ce64c79 7985 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7986 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7987free_adj:
7988 kfree(adj);
974daef7 7989 dev_put(adj_dev);
842d67a7
VF
7990
7991 return ret;
5d261913
VF
7992}
7993
1d143d9f 7994static void __netdev_adjacent_dev_remove(struct net_device *dev,
7995 struct net_device *adj_dev,
93409033 7996 u16 ref_nr,
1d143d9f 7997 struct list_head *dev_list)
5d261913
VF
7998{
7999 struct netdev_adjacent *adj;
8000
67b62f98
DA
8001 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8002 dev->name, adj_dev->name, ref_nr);
8003
6ea29da1 8004 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 8005
2f268f12 8006 if (!adj) {
67b62f98 8007 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 8008 dev->name, adj_dev->name);
67b62f98
DA
8009 WARN_ON(1);
8010 return;
2f268f12 8011 }
5d261913 8012
93409033 8013 if (adj->ref_nr > ref_nr) {
67b62f98
DA
8014 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8015 dev->name, adj_dev->name, ref_nr,
8016 adj->ref_nr - ref_nr);
93409033 8017 adj->ref_nr -= ref_nr;
5d261913
VF
8018 return;
8019 }
8020
842d67a7
VF
8021 if (adj->master)
8022 sysfs_remove_link(&(dev->dev.kobj), "master");
8023
7ce64c79 8024 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 8025 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 8026
5d261913 8027 list_del_rcu(&adj->list);
67b62f98 8028 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 8029 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
8030 dev_put(adj_dev);
8031 kfree_rcu(adj, rcu);
8032}
8033
1d143d9f 8034static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8035 struct net_device *upper_dev,
8036 struct list_head *up_list,
8037 struct list_head *down_list,
8038 void *private, bool master)
5d261913
VF
8039{
8040 int ret;
8041
790510d9 8042 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 8043 private, master);
5d261913
VF
8044 if (ret)
8045 return ret;
8046
790510d9 8047 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 8048 private, false);
5d261913 8049 if (ret) {
790510d9 8050 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
8051 return ret;
8052 }
8053
8054 return 0;
8055}
8056
1d143d9f 8057static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8058 struct net_device *upper_dev,
93409033 8059 u16 ref_nr,
1d143d9f 8060 struct list_head *up_list,
8061 struct list_head *down_list)
5d261913 8062{
93409033
AC
8063 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8064 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
8065}
8066
1d143d9f 8067static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8068 struct net_device *upper_dev,
8069 void *private, bool master)
2f268f12 8070{
f1170fd4
DA
8071 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8072 &dev->adj_list.upper,
8073 &upper_dev->adj_list.lower,
8074 private, master);
5d261913
VF
8075}
8076
1d143d9f 8077static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8078 struct net_device *upper_dev)
2f268f12 8079{
93409033 8080 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
8081 &dev->adj_list.upper,
8082 &upper_dev->adj_list.lower);
8083}
5d261913 8084
9ff162a8 8085static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 8086 struct net_device *upper_dev, bool master,
42ab19ee 8087 void *upper_priv, void *upper_info,
1fc70edb 8088 struct netdev_nested_priv *priv,
42ab19ee 8089 struct netlink_ext_ack *extack)
9ff162a8 8090{
51d0c047
DA
8091 struct netdev_notifier_changeupper_info changeupper_info = {
8092 .info = {
8093 .dev = dev,
42ab19ee 8094 .extack = extack,
51d0c047
DA
8095 },
8096 .upper_dev = upper_dev,
8097 .master = master,
8098 .linking = true,
8099 .upper_info = upper_info,
8100 };
50d629e7 8101 struct net_device *master_dev;
5d261913 8102 int ret = 0;
9ff162a8
JP
8103
8104 ASSERT_RTNL();
8105
8106 if (dev == upper_dev)
8107 return -EBUSY;
8108
8109 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 8110 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
8111 return -EBUSY;
8112
5343da4c
TY
8113 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8114 return -EMLINK;
8115
50d629e7 8116 if (!master) {
32b6d34f 8117 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
8118 return -EEXIST;
8119 } else {
32b6d34f 8120 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
8121 if (master_dev)
8122 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8123 }
9ff162a8 8124
51d0c047 8125 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
8126 &changeupper_info.info);
8127 ret = notifier_to_errno(ret);
8128 if (ret)
8129 return ret;
8130
6dffb044 8131 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 8132 master);
5d261913
VF
8133 if (ret)
8134 return ret;
9ff162a8 8135
51d0c047 8136 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
8137 &changeupper_info.info);
8138 ret = notifier_to_errno(ret);
8139 if (ret)
f1170fd4 8140 goto rollback;
b03804e7 8141
5343da4c 8142 __netdev_update_upper_level(dev, NULL);
32b6d34f 8143 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 8144
1fc70edb 8145 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 8146 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 8147 priv);
5343da4c 8148
9ff162a8 8149 return 0;
5d261913 8150
f1170fd4 8151rollback:
2f268f12 8152 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
8153
8154 return ret;
9ff162a8
JP
8155}
8156
8157/**
8158 * netdev_upper_dev_link - Add a link to the upper device
8159 * @dev: device
8160 * @upper_dev: new upper device
7a006d59 8161 * @extack: netlink extended ack
9ff162a8
JP
8162 *
8163 * Adds a link to device which is upper to this one. The caller must hold
8164 * the RTNL lock. On a failure a negative errno code is returned.
8165 * On success the reference counts are adjusted and the function
8166 * returns zero.
8167 */
8168int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
8169 struct net_device *upper_dev,
8170 struct netlink_ext_ack *extack)
9ff162a8 8171{
1fc70edb
TY
8172 struct netdev_nested_priv priv = {
8173 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8174 .data = NULL,
8175 };
8176
42ab19ee 8177 return __netdev_upper_dev_link(dev, upper_dev, false,
1fc70edb 8178 NULL, NULL, &priv, extack);
9ff162a8
JP
8179}
8180EXPORT_SYMBOL(netdev_upper_dev_link);
8181
8182/**
8183 * netdev_master_upper_dev_link - Add a master link to the upper device
8184 * @dev: device
8185 * @upper_dev: new upper device
6dffb044 8186 * @upper_priv: upper device private
29bf24af 8187 * @upper_info: upper info to be passed down via notifier
7a006d59 8188 * @extack: netlink extended ack
9ff162a8
JP
8189 *
8190 * Adds a link to device which is upper to this one. In this case, only
8191 * one master upper device can be linked, although other non-master devices
8192 * might be linked as well. The caller must hold the RTNL lock.
8193 * On a failure a negative errno code is returned. On success the reference
8194 * counts are adjusted and the function returns zero.
8195 */
8196int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 8197 struct net_device *upper_dev,
42ab19ee
DA
8198 void *upper_priv, void *upper_info,
8199 struct netlink_ext_ack *extack)
9ff162a8 8200{
1fc70edb
TY
8201 struct netdev_nested_priv priv = {
8202 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8203 .data = NULL,
8204 };
8205
29bf24af 8206 return __netdev_upper_dev_link(dev, upper_dev, true,
1fc70edb 8207 upper_priv, upper_info, &priv, extack);
9ff162a8
JP
8208}
8209EXPORT_SYMBOL(netdev_master_upper_dev_link);
8210
fe8300fd 8211static void __netdev_upper_dev_unlink(struct net_device *dev,
1fc70edb
TY
8212 struct net_device *upper_dev,
8213 struct netdev_nested_priv *priv)
9ff162a8 8214{
51d0c047
DA
8215 struct netdev_notifier_changeupper_info changeupper_info = {
8216 .info = {
8217 .dev = dev,
8218 },
8219 .upper_dev = upper_dev,
8220 .linking = false,
8221 };
f4563a75 8222
9ff162a8
JP
8223 ASSERT_RTNL();
8224
0e4ead9d 8225 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 8226
51d0c047 8227 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
8228 &changeupper_info.info);
8229
2f268f12 8230 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 8231
51d0c047 8232 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 8233 &changeupper_info.info);
5343da4c
TY
8234
8235 __netdev_update_upper_level(dev, NULL);
32b6d34f 8236 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 8237
1fc70edb 8238 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 8239 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 8240 priv);
9ff162a8 8241}
fe8300fd
TY
8242
8243/**
8244 * netdev_upper_dev_unlink - Removes a link to upper device
8245 * @dev: device
8246 * @upper_dev: new upper device
8247 *
8248 * Removes a link to device which is upper to this one. The caller must hold
8249 * the RTNL lock.
8250 */
8251void netdev_upper_dev_unlink(struct net_device *dev,
8252 struct net_device *upper_dev)
8253{
1fc70edb
TY
8254 struct netdev_nested_priv priv = {
8255 .flags = NESTED_SYNC_TODO,
8256 .data = NULL,
8257 };
8258
8259 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
9ff162a8
JP
8260}
8261EXPORT_SYMBOL(netdev_upper_dev_unlink);
8262
32b6d34f
TY
8263static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8264 struct net_device *lower_dev,
8265 bool val)
8266{
8267 struct netdev_adjacent *adj;
8268
8269 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8270 if (adj)
8271 adj->ignore = val;
8272
8273 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8274 if (adj)
8275 adj->ignore = val;
8276}
8277
8278static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8279 struct net_device *lower_dev)
8280{
8281 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8282}
8283
8284static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8285 struct net_device *lower_dev)
8286{
8287 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8288}
8289
8290int netdev_adjacent_change_prepare(struct net_device *old_dev,
8291 struct net_device *new_dev,
8292 struct net_device *dev,
8293 struct netlink_ext_ack *extack)
8294{
1fc70edb
TY
8295 struct netdev_nested_priv priv = {
8296 .flags = 0,
8297 .data = NULL,
8298 };
32b6d34f
TY
8299 int err;
8300
8301 if (!new_dev)
8302 return 0;
8303
8304 if (old_dev && new_dev != old_dev)
8305 netdev_adjacent_dev_disable(dev, old_dev);
1fc70edb
TY
8306 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8307 extack);
32b6d34f
TY
8308 if (err) {
8309 if (old_dev && new_dev != old_dev)
8310 netdev_adjacent_dev_enable(dev, old_dev);
8311 return err;
8312 }
8313
8314 return 0;
8315}
8316EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8317
8318void netdev_adjacent_change_commit(struct net_device *old_dev,
8319 struct net_device *new_dev,
8320 struct net_device *dev)
8321{
1fc70edb
TY
8322 struct netdev_nested_priv priv = {
8323 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8324 .data = NULL,
8325 };
8326
32b6d34f
TY
8327 if (!new_dev || !old_dev)
8328 return;
8329
8330 if (new_dev == old_dev)
8331 return;
8332
8333 netdev_adjacent_dev_enable(dev, old_dev);
1fc70edb 8334 __netdev_upper_dev_unlink(old_dev, dev, &priv);
32b6d34f
TY
8335}
8336EXPORT_SYMBOL(netdev_adjacent_change_commit);
8337
8338void netdev_adjacent_change_abort(struct net_device *old_dev,
8339 struct net_device *new_dev,
8340 struct net_device *dev)
8341{
1fc70edb
TY
8342 struct netdev_nested_priv priv = {
8343 .flags = 0,
8344 .data = NULL,
8345 };
8346
32b6d34f
TY
8347 if (!new_dev)
8348 return;
8349
8350 if (old_dev && new_dev != old_dev)
8351 netdev_adjacent_dev_enable(dev, old_dev);
8352
1fc70edb 8353 __netdev_upper_dev_unlink(new_dev, dev, &priv);
32b6d34f
TY
8354}
8355EXPORT_SYMBOL(netdev_adjacent_change_abort);
8356
61bd3857
MS
8357/**
8358 * netdev_bonding_info_change - Dispatch event about slave change
8359 * @dev: device
4a26e453 8360 * @bonding_info: info to dispatch
61bd3857
MS
8361 *
8362 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8363 * The caller must hold the RTNL lock.
8364 */
8365void netdev_bonding_info_change(struct net_device *dev,
8366 struct netdev_bonding_info *bonding_info)
8367{
51d0c047
DA
8368 struct netdev_notifier_bonding_info info = {
8369 .info.dev = dev,
8370 };
61bd3857
MS
8371
8372 memcpy(&info.bonding_info, bonding_info,
8373 sizeof(struct netdev_bonding_info));
51d0c047 8374 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
8375 &info.info);
8376}
8377EXPORT_SYMBOL(netdev_bonding_info_change);
8378
cff9f12b
MG
8379/**
8380 * netdev_get_xmit_slave - Get the xmit slave of master device
8842500d 8381 * @dev: device
cff9f12b
MG
8382 * @skb: The packet
8383 * @all_slaves: assume all the slaves are active
8384 *
8385 * The reference counters are not incremented so the caller must be
8386 * careful with locks. The caller must hold RCU lock.
8387 * %NULL is returned if no slave is found.
8388 */
8389
8390struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8391 struct sk_buff *skb,
8392 bool all_slaves)
8393{
8394 const struct net_device_ops *ops = dev->netdev_ops;
8395
8396 if (!ops->ndo_get_xmit_slave)
8397 return NULL;
8398 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8399}
8400EXPORT_SYMBOL(netdev_get_xmit_slave);
8401
719a402c
TT
8402static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8403 struct sock *sk)
8404{
8405 const struct net_device_ops *ops = dev->netdev_ops;
8406
8407 if (!ops->ndo_sk_get_lower_dev)
8408 return NULL;
8409 return ops->ndo_sk_get_lower_dev(dev, sk);
8410}
8411
8412/**
8413 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8414 * @dev: device
8415 * @sk: the socket
8416 *
8417 * %NULL is returned if no lower device is found.
8418 */
8419
8420struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8421 struct sock *sk)
8422{
8423 struct net_device *lower;
8424
8425 lower = netdev_sk_get_lower_dev(dev, sk);
8426 while (lower) {
8427 dev = lower;
8428 lower = netdev_sk_get_lower_dev(dev, sk);
8429 }
8430
8431 return dev;
8432}
8433EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8434
2ce1ee17 8435static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
8436{
8437 struct netdev_adjacent *iter;
8438
8439 struct net *net = dev_net(dev);
8440
8441 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8442 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8443 continue;
8444 netdev_adjacent_sysfs_add(iter->dev, dev,
8445 &iter->dev->adj_list.lower);
8446 netdev_adjacent_sysfs_add(dev, iter->dev,
8447 &dev->adj_list.upper);
8448 }
8449
8450 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8451 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8452 continue;
8453 netdev_adjacent_sysfs_add(iter->dev, dev,
8454 &iter->dev->adj_list.upper);
8455 netdev_adjacent_sysfs_add(dev, iter->dev,
8456 &dev->adj_list.lower);
8457 }
8458}
8459
2ce1ee17 8460static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
8461{
8462 struct netdev_adjacent *iter;
8463
8464 struct net *net = dev_net(dev);
8465
8466 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8467 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8468 continue;
8469 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8470 &iter->dev->adj_list.lower);
8471 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8472 &dev->adj_list.upper);
8473 }
8474
8475 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8476 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8477 continue;
8478 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8479 &iter->dev->adj_list.upper);
8480 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8481 &dev->adj_list.lower);
8482 }
8483}
8484
5bb025fa 8485void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 8486{
5bb025fa 8487 struct netdev_adjacent *iter;
402dae96 8488
4c75431a
AF
8489 struct net *net = dev_net(dev);
8490
5bb025fa 8491 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8492 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8493 continue;
5bb025fa
VF
8494 netdev_adjacent_sysfs_del(iter->dev, oldname,
8495 &iter->dev->adj_list.lower);
8496 netdev_adjacent_sysfs_add(iter->dev, dev,
8497 &iter->dev->adj_list.lower);
8498 }
402dae96 8499
5bb025fa 8500 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8501 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8502 continue;
5bb025fa
VF
8503 netdev_adjacent_sysfs_del(iter->dev, oldname,
8504 &iter->dev->adj_list.upper);
8505 netdev_adjacent_sysfs_add(iter->dev, dev,
8506 &iter->dev->adj_list.upper);
8507 }
402dae96 8508}
402dae96
VF
8509
8510void *netdev_lower_dev_get_private(struct net_device *dev,
8511 struct net_device *lower_dev)
8512{
8513 struct netdev_adjacent *lower;
8514
8515 if (!lower_dev)
8516 return NULL;
6ea29da1 8517 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
8518 if (!lower)
8519 return NULL;
8520
8521 return lower->private;
8522}
8523EXPORT_SYMBOL(netdev_lower_dev_get_private);
8524
4085ebe8 8525
04d48266 8526/**
c1639be9 8527 * netdev_lower_state_changed - Dispatch event about lower device state change
04d48266
JP
8528 * @lower_dev: device
8529 * @lower_state_info: state to dispatch
8530 *
8531 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8532 * The caller must hold the RTNL lock.
8533 */
8534void netdev_lower_state_changed(struct net_device *lower_dev,
8535 void *lower_state_info)
8536{
51d0c047
DA
8537 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8538 .info.dev = lower_dev,
8539 };
04d48266
JP
8540
8541 ASSERT_RTNL();
8542 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 8543 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
8544 &changelowerstate_info.info);
8545}
8546EXPORT_SYMBOL(netdev_lower_state_changed);
8547
b6c40d68
PM
8548static void dev_change_rx_flags(struct net_device *dev, int flags)
8549{
d314774c
SH
8550 const struct net_device_ops *ops = dev->netdev_ops;
8551
d2615bf4 8552 if (ops->ndo_change_rx_flags)
d314774c 8553 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
8554}
8555
991fb3f7 8556static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 8557{
b536db93 8558 unsigned int old_flags = dev->flags;
d04a48b0
EB
8559 kuid_t uid;
8560 kgid_t gid;
1da177e4 8561
24023451
PM
8562 ASSERT_RTNL();
8563
dad9b335
WC
8564 dev->flags |= IFF_PROMISC;
8565 dev->promiscuity += inc;
8566 if (dev->promiscuity == 0) {
8567 /*
8568 * Avoid overflow.
8569 * If inc causes overflow, untouch promisc and return error.
8570 */
8571 if (inc < 0)
8572 dev->flags &= ~IFF_PROMISC;
8573 else {
8574 dev->promiscuity -= inc;
7b6cd1ce
JP
8575 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8576 dev->name);
dad9b335
WC
8577 return -EOVERFLOW;
8578 }
8579 }
52609c0b 8580 if (dev->flags != old_flags) {
7b6cd1ce
JP
8581 pr_info("device %s %s promiscuous mode\n",
8582 dev->name,
8583 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
8584 if (audit_enabled) {
8585 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
8586 audit_log(audit_context(), GFP_ATOMIC,
8587 AUDIT_ANOM_PROMISCUOUS,
8588 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8589 dev->name, (dev->flags & IFF_PROMISC),
8590 (old_flags & IFF_PROMISC),
8591 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8592 from_kuid(&init_user_ns, uid),
8593 from_kgid(&init_user_ns, gid),
8594 audit_get_sessionid(current));
8192b0c4 8595 }
24023451 8596
b6c40d68 8597 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 8598 }
991fb3f7
ND
8599 if (notify)
8600 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 8601 return 0;
1da177e4
LT
8602}
8603
4417da66
PM
8604/**
8605 * dev_set_promiscuity - update promiscuity count on a device
8606 * @dev: device
8607 * @inc: modifier
8608 *
8609 * Add or remove promiscuity from a device. While the count in the device
8610 * remains above zero the interface remains promiscuous. Once it hits zero
8611 * the device reverts back to normal filtering operation. A negative inc
8612 * value is used to drop promiscuity on the device.
dad9b335 8613 * Return 0 if successful or a negative errno code on error.
4417da66 8614 */
dad9b335 8615int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 8616{
b536db93 8617 unsigned int old_flags = dev->flags;
dad9b335 8618 int err;
4417da66 8619
991fb3f7 8620 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 8621 if (err < 0)
dad9b335 8622 return err;
4417da66
PM
8623 if (dev->flags != old_flags)
8624 dev_set_rx_mode(dev);
dad9b335 8625 return err;
4417da66 8626}
d1b19dff 8627EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 8628
991fb3f7 8629static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 8630{
991fb3f7 8631 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 8632
24023451
PM
8633 ASSERT_RTNL();
8634
1da177e4 8635 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8636 dev->allmulti += inc;
8637 if (dev->allmulti == 0) {
8638 /*
8639 * Avoid overflow.
8640 * If inc causes overflow, untouch allmulti and return error.
8641 */
8642 if (inc < 0)
8643 dev->flags &= ~IFF_ALLMULTI;
8644 else {
8645 dev->allmulti -= inc;
7b6cd1ce
JP
8646 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8647 dev->name);
dad9b335
WC
8648 return -EOVERFLOW;
8649 }
8650 }
24023451 8651 if (dev->flags ^ old_flags) {
b6c40d68 8652 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8653 dev_set_rx_mode(dev);
991fb3f7
ND
8654 if (notify)
8655 __dev_notify_flags(dev, old_flags,
8656 dev->gflags ^ old_gflags);
24023451 8657 }
dad9b335 8658 return 0;
4417da66 8659}
991fb3f7
ND
8660
8661/**
8662 * dev_set_allmulti - update allmulti count on a device
8663 * @dev: device
8664 * @inc: modifier
8665 *
8666 * Add or remove reception of all multicast frames to a device. While the
8667 * count in the device remains above zero the interface remains listening
8668 * to all interfaces. Once it hits zero the device reverts back to normal
8669 * filtering operation. A negative @inc value is used to drop the counter
8670 * when releasing a resource needing all multicasts.
8671 * Return 0 if successful or a negative errno code on error.
8672 */
8673
8674int dev_set_allmulti(struct net_device *dev, int inc)
8675{
8676 return __dev_set_allmulti(dev, inc, true);
8677}
d1b19dff 8678EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8679
8680/*
8681 * Upload unicast and multicast address lists to device and
8682 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8683 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8684 * are present.
8685 */
8686void __dev_set_rx_mode(struct net_device *dev)
8687{
d314774c
SH
8688 const struct net_device_ops *ops = dev->netdev_ops;
8689
4417da66
PM
8690 /* dev_open will call this function so the list will stay sane. */
8691 if (!(dev->flags&IFF_UP))
8692 return;
8693
8694 if (!netif_device_present(dev))
40b77c94 8695 return;
4417da66 8696
01789349 8697 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8698 /* Unicast addresses changes may only happen under the rtnl,
8699 * therefore calling __dev_set_promiscuity here is safe.
8700 */
32e7bfc4 8701 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8702 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8703 dev->uc_promisc = true;
32e7bfc4 8704 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8705 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8706 dev->uc_promisc = false;
4417da66 8707 }
4417da66 8708 }
01789349
JP
8709
8710 if (ops->ndo_set_rx_mode)
8711 ops->ndo_set_rx_mode(dev);
4417da66
PM
8712}
8713
8714void dev_set_rx_mode(struct net_device *dev)
8715{
b9e40857 8716 netif_addr_lock_bh(dev);
4417da66 8717 __dev_set_rx_mode(dev);
b9e40857 8718 netif_addr_unlock_bh(dev);
1da177e4
LT
8719}
8720
f0db275a
SH
8721/**
8722 * dev_get_flags - get flags reported to userspace
8723 * @dev: device
8724 *
8725 * Get the combination of flag bits exported through APIs to userspace.
8726 */
95c96174 8727unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8728{
95c96174 8729 unsigned int flags;
1da177e4
LT
8730
8731 flags = (dev->flags & ~(IFF_PROMISC |
8732 IFF_ALLMULTI |
b00055aa
SR
8733 IFF_RUNNING |
8734 IFF_LOWER_UP |
8735 IFF_DORMANT)) |
1da177e4
LT
8736 (dev->gflags & (IFF_PROMISC |
8737 IFF_ALLMULTI));
8738
b00055aa
SR
8739 if (netif_running(dev)) {
8740 if (netif_oper_up(dev))
8741 flags |= IFF_RUNNING;
8742 if (netif_carrier_ok(dev))
8743 flags |= IFF_LOWER_UP;
8744 if (netif_dormant(dev))
8745 flags |= IFF_DORMANT;
8746 }
1da177e4
LT
8747
8748 return flags;
8749}
d1b19dff 8750EXPORT_SYMBOL(dev_get_flags);
1da177e4 8751
6d040321
PM
8752int __dev_change_flags(struct net_device *dev, unsigned int flags,
8753 struct netlink_ext_ack *extack)
1da177e4 8754{
b536db93 8755 unsigned int old_flags = dev->flags;
bd380811 8756 int ret;
1da177e4 8757
24023451
PM
8758 ASSERT_RTNL();
8759
1da177e4
LT
8760 /*
8761 * Set the flags on our device.
8762 */
8763
8764 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8765 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8766 IFF_AUTOMEDIA)) |
8767 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8768 IFF_ALLMULTI));
8769
8770 /*
8771 * Load in the correct multicast list now the flags have changed.
8772 */
8773
b6c40d68
PM
8774 if ((old_flags ^ flags) & IFF_MULTICAST)
8775 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8776
4417da66 8777 dev_set_rx_mode(dev);
1da177e4
LT
8778
8779 /*
8780 * Have we downed the interface. We handle IFF_UP ourselves
8781 * according to user attempts to set it, rather than blindly
8782 * setting it.
8783 */
8784
8785 ret = 0;
7051b88a 8786 if ((old_flags ^ flags) & IFF_UP) {
8787 if (old_flags & IFF_UP)
8788 __dev_close(dev);
8789 else
40c900aa 8790 ret = __dev_open(dev, extack);
7051b88a 8791 }
1da177e4 8792
1da177e4 8793 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8794 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8795 unsigned int old_flags = dev->flags;
d1b19dff 8796
1da177e4 8797 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8798
8799 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8800 if (dev->flags != old_flags)
8801 dev_set_rx_mode(dev);
1da177e4
LT
8802 }
8803
8804 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8805 * is important. Some (broken) drivers set IFF_PROMISC, when
8806 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8807 */
8808 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8809 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8810
1da177e4 8811 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8812 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8813 }
8814
bd380811
PM
8815 return ret;
8816}
8817
a528c219
ND
8818void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8819 unsigned int gchanges)
bd380811
PM
8820{
8821 unsigned int changes = dev->flags ^ old_flags;
8822
a528c219 8823 if (gchanges)
7f294054 8824 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8825
bd380811
PM
8826 if (changes & IFF_UP) {
8827 if (dev->flags & IFF_UP)
8828 call_netdevice_notifiers(NETDEV_UP, dev);
8829 else
8830 call_netdevice_notifiers(NETDEV_DOWN, dev);
8831 }
8832
8833 if (dev->flags & IFF_UP &&
be9efd36 8834 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8835 struct netdev_notifier_change_info change_info = {
8836 .info = {
8837 .dev = dev,
8838 },
8839 .flags_changed = changes,
8840 };
be9efd36 8841
51d0c047 8842 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8843 }
bd380811
PM
8844}
8845
8846/**
8847 * dev_change_flags - change device settings
8848 * @dev: device
8849 * @flags: device state flags
567c5e13 8850 * @extack: netlink extended ack
bd380811
PM
8851 *
8852 * Change settings on device based state flags. The flags are
8853 * in the userspace exported format.
8854 */
567c5e13
PM
8855int dev_change_flags(struct net_device *dev, unsigned int flags,
8856 struct netlink_ext_ack *extack)
bd380811 8857{
b536db93 8858 int ret;
991fb3f7 8859 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8860
6d040321 8861 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8862 if (ret < 0)
8863 return ret;
8864
991fb3f7 8865 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8866 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8867 return ret;
8868}
d1b19dff 8869EXPORT_SYMBOL(dev_change_flags);
1da177e4 8870
f51048c3 8871int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8872{
8873 const struct net_device_ops *ops = dev->netdev_ops;
8874
8875 if (ops->ndo_change_mtu)
8876 return ops->ndo_change_mtu(dev, new_mtu);
8877
501a90c9
ED
8878 /* Pairs with all the lockless reads of dev->mtu in the stack */
8879 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8880 return 0;
8881}
f51048c3 8882EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8883
d836f5c6
ED
8884int dev_validate_mtu(struct net_device *dev, int new_mtu,
8885 struct netlink_ext_ack *extack)
8886{
8887 /* MTU must be positive, and in range */
8888 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8889 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8890 return -EINVAL;
8891 }
8892
8893 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8894 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8895 return -EINVAL;
8896 }
8897 return 0;
8898}
8899
f0db275a 8900/**
7a4c53be 8901 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8902 * @dev: device
8903 * @new_mtu: new transfer unit
7a4c53be 8904 * @extack: netlink extended ack
f0db275a
SH
8905 *
8906 * Change the maximum transfer size of the network device.
8907 */
7a4c53be
SH
8908int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8909 struct netlink_ext_ack *extack)
1da177e4 8910{
2315dc91 8911 int err, orig_mtu;
1da177e4
LT
8912
8913 if (new_mtu == dev->mtu)
8914 return 0;
8915
d836f5c6
ED
8916 err = dev_validate_mtu(dev, new_mtu, extack);
8917 if (err)
8918 return err;
1da177e4
LT
8919
8920 if (!netif_device_present(dev))
8921 return -ENODEV;
8922
1d486bfb
VF
8923 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8924 err = notifier_to_errno(err);
8925 if (err)
8926 return err;
d314774c 8927
2315dc91
VF
8928 orig_mtu = dev->mtu;
8929 err = __dev_set_mtu(dev, new_mtu);
d314774c 8930
2315dc91 8931 if (!err) {
af7d6cce
SD
8932 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8933 orig_mtu);
2315dc91
VF
8934 err = notifier_to_errno(err);
8935 if (err) {
8936 /* setting mtu back and notifying everyone again,
8937 * so that they have a chance to revert changes.
8938 */
8939 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8940 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8941 new_mtu);
2315dc91
VF
8942 }
8943 }
1da177e4
LT
8944 return err;
8945}
7a4c53be
SH
8946
8947int dev_set_mtu(struct net_device *dev, int new_mtu)
8948{
8949 struct netlink_ext_ack extack;
8950 int err;
8951
a6bcfc89 8952 memset(&extack, 0, sizeof(extack));
7a4c53be 8953 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8954 if (err && extack._msg)
7a4c53be
SH
8955 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8956 return err;
8957}
d1b19dff 8958EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8959
6a643ddb
CW
8960/**
8961 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8962 * @dev: device
8963 * @new_len: new tx queue length
8964 */
8965int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8966{
8967 unsigned int orig_len = dev->tx_queue_len;
8968 int res;
8969
8970 if (new_len != (unsigned int)new_len)
8971 return -ERANGE;
8972
8973 if (new_len != orig_len) {
8974 dev->tx_queue_len = new_len;
8975 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8976 res = notifier_to_errno(res);
7effaf06
TT
8977 if (res)
8978 goto err_rollback;
8979 res = dev_qdisc_change_tx_queue_len(dev);
8980 if (res)
8981 goto err_rollback;
6a643ddb
CW
8982 }
8983
8984 return 0;
7effaf06
TT
8985
8986err_rollback:
8987 netdev_err(dev, "refused to change device tx_queue_len\n");
8988 dev->tx_queue_len = orig_len;
8989 return res;
6a643ddb
CW
8990}
8991
cbda10fa
VD
8992/**
8993 * dev_set_group - Change group this device belongs to
8994 * @dev: device
8995 * @new_group: group this device should belong to
8996 */
8997void dev_set_group(struct net_device *dev, int new_group)
8998{
8999 dev->group = new_group;
9000}
9001EXPORT_SYMBOL(dev_set_group);
9002
d59cdf94
PM
9003/**
9004 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9005 * @dev: device
9006 * @addr: new address
9007 * @extack: netlink extended ack
9008 */
9009int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9010 struct netlink_ext_ack *extack)
9011{
9012 struct netdev_notifier_pre_changeaddr_info info = {
9013 .info.dev = dev,
9014 .info.extack = extack,
9015 .dev_addr = addr,
9016 };
9017 int rc;
9018
9019 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9020 return notifier_to_errno(rc);
9021}
9022EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9023
f0db275a
SH
9024/**
9025 * dev_set_mac_address - Change Media Access Control Address
9026 * @dev: device
9027 * @sa: new address
3a37a963 9028 * @extack: netlink extended ack
f0db275a
SH
9029 *
9030 * Change the hardware (MAC) address of the device
9031 */
3a37a963
PM
9032int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9033 struct netlink_ext_ack *extack)
1da177e4 9034{
d314774c 9035 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
9036 int err;
9037
d314774c 9038 if (!ops->ndo_set_mac_address)
1da177e4
LT
9039 return -EOPNOTSUPP;
9040 if (sa->sa_family != dev->type)
9041 return -EINVAL;
9042 if (!netif_device_present(dev))
9043 return -ENODEV;
d59cdf94
PM
9044 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9045 if (err)
9046 return err;
d314774c 9047 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
9048 if (err)
9049 return err;
fbdeca2d 9050 dev->addr_assign_type = NET_ADDR_SET;
f6521516 9051 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 9052 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 9053 return 0;
1da177e4 9054}
d1b19dff 9055EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 9056
3b23a32a
CW
9057static DECLARE_RWSEM(dev_addr_sem);
9058
9059int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9060 struct netlink_ext_ack *extack)
9061{
9062 int ret;
9063
9064 down_write(&dev_addr_sem);
9065 ret = dev_set_mac_address(dev, sa, extack);
9066 up_write(&dev_addr_sem);
9067 return ret;
9068}
9069EXPORT_SYMBOL(dev_set_mac_address_user);
9070
9071int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9072{
9073 size_t size = sizeof(sa->sa_data);
9074 struct net_device *dev;
9075 int ret = 0;
9076
9077 down_read(&dev_addr_sem);
9078 rcu_read_lock();
9079
9080 dev = dev_get_by_name_rcu(net, dev_name);
9081 if (!dev) {
9082 ret = -ENODEV;
9083 goto unlock;
9084 }
9085 if (!dev->addr_len)
9086 memset(sa->sa_data, 0, size);
9087 else
9088 memcpy(sa->sa_data, dev->dev_addr,
9089 min_t(size_t, size, dev->addr_len));
9090 sa->sa_family = dev->type;
9091
9092unlock:
9093 rcu_read_unlock();
9094 up_read(&dev_addr_sem);
9095 return ret;
9096}
9097EXPORT_SYMBOL(dev_get_mac_address);
9098
4bf84c35
JP
9099/**
9100 * dev_change_carrier - Change device carrier
9101 * @dev: device
691b3b7e 9102 * @new_carrier: new value
4bf84c35
JP
9103 *
9104 * Change device carrier
9105 */
9106int dev_change_carrier(struct net_device *dev, bool new_carrier)
9107{
9108 const struct net_device_ops *ops = dev->netdev_ops;
9109
9110 if (!ops->ndo_change_carrier)
9111 return -EOPNOTSUPP;
9112 if (!netif_device_present(dev))
9113 return -ENODEV;
9114 return ops->ndo_change_carrier(dev, new_carrier);
9115}
9116EXPORT_SYMBOL(dev_change_carrier);
9117
66b52b0d
JP
9118/**
9119 * dev_get_phys_port_id - Get device physical port ID
9120 * @dev: device
9121 * @ppid: port ID
9122 *
9123 * Get device physical port ID
9124 */
9125int dev_get_phys_port_id(struct net_device *dev,
02637fce 9126 struct netdev_phys_item_id *ppid)
66b52b0d
JP
9127{
9128 const struct net_device_ops *ops = dev->netdev_ops;
9129
9130 if (!ops->ndo_get_phys_port_id)
9131 return -EOPNOTSUPP;
9132 return ops->ndo_get_phys_port_id(dev, ppid);
9133}
9134EXPORT_SYMBOL(dev_get_phys_port_id);
9135
db24a904
DA
9136/**
9137 * dev_get_phys_port_name - Get device physical port name
9138 * @dev: device
9139 * @name: port name
ed49e650 9140 * @len: limit of bytes to copy to name
db24a904
DA
9141 *
9142 * Get device physical port name
9143 */
9144int dev_get_phys_port_name(struct net_device *dev,
9145 char *name, size_t len)
9146{
9147 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 9148 int err;
db24a904 9149
af3836df
JP
9150 if (ops->ndo_get_phys_port_name) {
9151 err = ops->ndo_get_phys_port_name(dev, name, len);
9152 if (err != -EOPNOTSUPP)
9153 return err;
9154 }
9155 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
9156}
9157EXPORT_SYMBOL(dev_get_phys_port_name);
9158
d6abc596
FF
9159/**
9160 * dev_get_port_parent_id - Get the device's port parent identifier
9161 * @dev: network device
9162 * @ppid: pointer to a storage for the port's parent identifier
9163 * @recurse: allow/disallow recursion to lower devices
9164 *
9165 * Get the devices's port parent identifier
9166 */
9167int dev_get_port_parent_id(struct net_device *dev,
9168 struct netdev_phys_item_id *ppid,
9169 bool recurse)
9170{
9171 const struct net_device_ops *ops = dev->netdev_ops;
9172 struct netdev_phys_item_id first = { };
9173 struct net_device *lower_dev;
9174 struct list_head *iter;
7e1146e8
JP
9175 int err;
9176
9177 if (ops->ndo_get_port_parent_id) {
9178 err = ops->ndo_get_port_parent_id(dev, ppid);
9179 if (err != -EOPNOTSUPP)
9180 return err;
9181 }
d6abc596 9182
7e1146e8
JP
9183 err = devlink_compat_switch_id_get(dev, ppid);
9184 if (!err || err != -EOPNOTSUPP)
9185 return err;
d6abc596
FF
9186
9187 if (!recurse)
7e1146e8 9188 return -EOPNOTSUPP;
d6abc596
FF
9189
9190 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9191 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9192 if (err)
9193 break;
9194 if (!first.id_len)
9195 first = *ppid;
9196 else if (memcmp(&first, ppid, sizeof(*ppid)))
e1b9efe6 9197 return -EOPNOTSUPP;
d6abc596
FF
9198 }
9199
9200 return err;
9201}
9202EXPORT_SYMBOL(dev_get_port_parent_id);
9203
9204/**
9205 * netdev_port_same_parent_id - Indicate if two network devices have
9206 * the same port parent identifier
9207 * @a: first network device
9208 * @b: second network device
9209 */
9210bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9211{
9212 struct netdev_phys_item_id a_id = { };
9213 struct netdev_phys_item_id b_id = { };
9214
9215 if (dev_get_port_parent_id(a, &a_id, true) ||
9216 dev_get_port_parent_id(b, &b_id, true))
9217 return false;
9218
9219 return netdev_phys_item_id_same(&a_id, &b_id);
9220}
9221EXPORT_SYMBOL(netdev_port_same_parent_id);
9222
d746d707
AK
9223/**
9224 * dev_change_proto_down - update protocol port state information
9225 * @dev: device
9226 * @proto_down: new value
9227 *
9228 * This info can be used by switch drivers to set the phys state of the
9229 * port.
9230 */
9231int dev_change_proto_down(struct net_device *dev, bool proto_down)
9232{
9233 const struct net_device_ops *ops = dev->netdev_ops;
9234
9235 if (!ops->ndo_change_proto_down)
9236 return -EOPNOTSUPP;
9237 if (!netif_device_present(dev))
9238 return -ENODEV;
9239 return ops->ndo_change_proto_down(dev, proto_down);
9240}
9241EXPORT_SYMBOL(dev_change_proto_down);
9242
b5899679
AR
9243/**
9244 * dev_change_proto_down_generic - generic implementation for
9245 * ndo_change_proto_down that sets carrier according to
9246 * proto_down.
9247 *
9248 * @dev: device
9249 * @proto_down: new value
9250 */
9251int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9252{
9253 if (proto_down)
9254 netif_carrier_off(dev);
9255 else
9256 netif_carrier_on(dev);
9257 dev->proto_down = proto_down;
9258 return 0;
9259}
9260EXPORT_SYMBOL(dev_change_proto_down_generic);
9261
829eb208
RP
9262/**
9263 * dev_change_proto_down_reason - proto down reason
9264 *
9265 * @dev: device
9266 * @mask: proto down mask
9267 * @value: proto down value
9268 */
9269void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9270 u32 value)
9271{
9272 int b;
9273
9274 if (!mask) {
9275 dev->proto_down_reason = value;
9276 } else {
9277 for_each_set_bit(b, &mask, 32) {
9278 if (value & (1 << b))
9279 dev->proto_down_reason |= BIT(b);
9280 else
9281 dev->proto_down_reason &= ~BIT(b);
9282 }
9283 }
9284}
9285EXPORT_SYMBOL(dev_change_proto_down_reason);
9286
aa8d3a71
AN
9287struct bpf_xdp_link {
9288 struct bpf_link link;
9289 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9290 int flags;
9291};
9292
c8a36f19 9293static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
d67b9cd2 9294{
7f0a8382
AN
9295 if (flags & XDP_FLAGS_HW_MODE)
9296 return XDP_MODE_HW;
9297 if (flags & XDP_FLAGS_DRV_MODE)
9298 return XDP_MODE_DRV;
c8a36f19
AN
9299 if (flags & XDP_FLAGS_SKB_MODE)
9300 return XDP_MODE_SKB;
9301 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
7f0a8382 9302}
d67b9cd2 9303
7f0a8382
AN
9304static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9305{
9306 switch (mode) {
9307 case XDP_MODE_SKB:
9308 return generic_xdp_install;
9309 case XDP_MODE_DRV:
9310 case XDP_MODE_HW:
9311 return dev->netdev_ops->ndo_bpf;
9312 default:
9313 return NULL;
5d867245 9314 }
7f0a8382 9315}
118b4aa2 9316
aa8d3a71
AN
9317static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9318 enum bpf_xdp_mode mode)
9319{
9320 return dev->xdp_state[mode].link;
9321}
9322
7f0a8382
AN
9323static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9324 enum bpf_xdp_mode mode)
9325{
aa8d3a71
AN
9326 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9327
9328 if (link)
9329 return link->link.prog;
7f0a8382
AN
9330 return dev->xdp_state[mode].prog;
9331}
9332
998f1729
THJ
9333static u8 dev_xdp_prog_count(struct net_device *dev)
9334{
9335 u8 count = 0;
9336 int i;
9337
9338 for (i = 0; i < __MAX_XDP_MODE; i++)
9339 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9340 count++;
9341 return count;
9342}
9343
7f0a8382
AN
9344u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9345{
9346 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
118b4aa2 9347
7f0a8382
AN
9348 return prog ? prog->aux->id : 0;
9349}
58038695 9350
aa8d3a71
AN
9351static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9352 struct bpf_xdp_link *link)
9353{
9354 dev->xdp_state[mode].link = link;
9355 dev->xdp_state[mode].prog = NULL;
d67b9cd2
DB
9356}
9357
7f0a8382
AN
9358static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9359 struct bpf_prog *prog)
9360{
aa8d3a71 9361 dev->xdp_state[mode].link = NULL;
7f0a8382 9362 dev->xdp_state[mode].prog = prog;
d67b9cd2
DB
9363}
9364
7f0a8382
AN
9365static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9366 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9367 u32 flags, struct bpf_prog *prog)
d67b9cd2 9368{
f4e63525 9369 struct netdev_bpf xdp;
7e6897f9
BT
9370 int err;
9371
d67b9cd2 9372 memset(&xdp, 0, sizeof(xdp));
7f0a8382 9373 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
d67b9cd2 9374 xdp.extack = extack;
32d60277 9375 xdp.flags = flags;
d67b9cd2
DB
9376 xdp.prog = prog;
9377
7f0a8382
AN
9378 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9379 * "moved" into driver), so they don't increment it on their own, but
9380 * they do decrement refcnt when program is detached or replaced.
9381 * Given net_device also owns link/prog, we need to bump refcnt here
9382 * to prevent drivers from underflowing it.
9383 */
9384 if (prog)
9385 bpf_prog_inc(prog);
7e6897f9 9386 err = bpf_op(dev, &xdp);
7f0a8382
AN
9387 if (err) {
9388 if (prog)
9389 bpf_prog_put(prog);
9390 return err;
9391 }
7e6897f9 9392
7f0a8382
AN
9393 if (mode != XDP_MODE_HW)
9394 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
7e6897f9 9395
7f0a8382 9396 return 0;
d67b9cd2
DB
9397}
9398
bd0b2e7f
JK
9399static void dev_xdp_uninstall(struct net_device *dev)
9400{
aa8d3a71 9401 struct bpf_xdp_link *link;
7f0a8382
AN
9402 struct bpf_prog *prog;
9403 enum bpf_xdp_mode mode;
9404 bpf_op_t bpf_op;
bd0b2e7f 9405
7f0a8382 9406 ASSERT_RTNL();
bd0b2e7f 9407
7f0a8382
AN
9408 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9409 prog = dev_xdp_prog(dev, mode);
9410 if (!prog)
9411 continue;
bd0b2e7f 9412
7f0a8382
AN
9413 bpf_op = dev_xdp_bpf_op(dev, mode);
9414 if (!bpf_op)
9415 continue;
bd0b2e7f 9416
7f0a8382
AN
9417 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9418
aa8d3a71
AN
9419 /* auto-detach link from net device */
9420 link = dev_xdp_link(dev, mode);
9421 if (link)
9422 link->dev = NULL;
9423 else
9424 bpf_prog_put(prog);
9425
9426 dev_xdp_set_link(dev, mode, NULL);
7f0a8382 9427 }
bd0b2e7f
JK
9428}
9429
d4baa936 9430static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
aa8d3a71
AN
9431 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9432 struct bpf_prog *old_prog, u32 flags)
a7862b45 9433{
998f1729 9434 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
d4baa936
AN
9435 struct bpf_prog *cur_prog;
9436 enum bpf_xdp_mode mode;
7f0a8382 9437 bpf_op_t bpf_op;
a7862b45
BB
9438 int err;
9439
85de8576
DB
9440 ASSERT_RTNL();
9441
aa8d3a71
AN
9442 /* either link or prog attachment, never both */
9443 if (link && (new_prog || old_prog))
9444 return -EINVAL;
9445 /* link supports only XDP mode flags */
9446 if (link && (flags & ~XDP_FLAGS_MODES)) {
9447 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9448 return -EINVAL;
9449 }
998f1729
THJ
9450 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9451 if (num_modes > 1) {
d4baa936
AN
9452 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9453 return -EINVAL;
9454 }
998f1729
THJ
9455 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9456 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9457 NL_SET_ERR_MSG(extack,
9458 "More than one program loaded, unset mode is ambiguous");
9459 return -EINVAL;
9460 }
d4baa936
AN
9461 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9462 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9463 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9464 return -EINVAL;
01dde20c 9465 }
a25717d2 9466
c8a36f19 9467 mode = dev_xdp_mode(dev, flags);
aa8d3a71
AN
9468 /* can't replace attached link */
9469 if (dev_xdp_link(dev, mode)) {
9470 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9471 return -EBUSY;
01dde20c 9472 }
c14a9f63 9473
d4baa936 9474 cur_prog = dev_xdp_prog(dev, mode);
aa8d3a71
AN
9475 /* can't replace attached prog with link */
9476 if (link && cur_prog) {
9477 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9478 return -EBUSY;
9479 }
d4baa936
AN
9480 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9481 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9482 return -EEXIST;
92234c8f 9483 }
c14a9f63 9484
aa8d3a71
AN
9485 /* put effective new program into new_prog */
9486 if (link)
9487 new_prog = link->link.prog;
85de8576 9488
d4baa936
AN
9489 if (new_prog) {
9490 bool offload = mode == XDP_MODE_HW;
7f0a8382
AN
9491 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9492 ? XDP_MODE_DRV : XDP_MODE_SKB;
441a3303 9493
068d9d1e
AN
9494 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9495 NL_SET_ERR_MSG(extack, "XDP program already attached");
9496 return -EBUSY;
9497 }
d4baa936 9498 if (!offload && dev_xdp_prog(dev, other_mode)) {
7f0a8382 9499 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
d67b9cd2 9500 return -EEXIST;
01dde20c 9501 }
d4baa936 9502 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
7f0a8382 9503 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
441a3303
JK
9504 return -EINVAL;
9505 }
d4baa936 9506 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
fbee97fe 9507 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
fbee97fe
DA
9508 return -EINVAL;
9509 }
d4baa936
AN
9510 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9511 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
92164774
LB
9512 return -EINVAL;
9513 }
d4baa936 9514 }
92164774 9515
d4baa936
AN
9516 /* don't call drivers if the effective program didn't change */
9517 if (new_prog != cur_prog) {
9518 bpf_op = dev_xdp_bpf_op(dev, mode);
9519 if (!bpf_op) {
9520 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9521 return -EOPNOTSUPP;
c14a9f63 9522 }
a7862b45 9523
d4baa936
AN
9524 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9525 if (err)
9526 return err;
7f0a8382 9527 }
d4baa936 9528
aa8d3a71
AN
9529 if (link)
9530 dev_xdp_set_link(dev, mode, link);
9531 else
9532 dev_xdp_set_prog(dev, mode, new_prog);
d4baa936
AN
9533 if (cur_prog)
9534 bpf_prog_put(cur_prog);
a7862b45 9535
7f0a8382 9536 return 0;
a7862b45 9537}
a7862b45 9538
aa8d3a71
AN
9539static int dev_xdp_attach_link(struct net_device *dev,
9540 struct netlink_ext_ack *extack,
9541 struct bpf_xdp_link *link)
9542{
9543 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9544}
9545
9546static int dev_xdp_detach_link(struct net_device *dev,
9547 struct netlink_ext_ack *extack,
9548 struct bpf_xdp_link *link)
9549{
9550 enum bpf_xdp_mode mode;
9551 bpf_op_t bpf_op;
9552
9553 ASSERT_RTNL();
9554
c8a36f19 9555 mode = dev_xdp_mode(dev, link->flags);
aa8d3a71
AN
9556 if (dev_xdp_link(dev, mode) != link)
9557 return -EINVAL;
9558
9559 bpf_op = dev_xdp_bpf_op(dev, mode);
9560 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9561 dev_xdp_set_link(dev, mode, NULL);
9562 return 0;
9563}
9564
9565static void bpf_xdp_link_release(struct bpf_link *link)
9566{
9567 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9568
9569 rtnl_lock();
9570
9571 /* if racing with net_device's tear down, xdp_link->dev might be
9572 * already NULL, in which case link was already auto-detached
9573 */
73b11c2a 9574 if (xdp_link->dev) {
aa8d3a71 9575 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
73b11c2a
AN
9576 xdp_link->dev = NULL;
9577 }
aa8d3a71
AN
9578
9579 rtnl_unlock();
9580}
9581
73b11c2a
AN
9582static int bpf_xdp_link_detach(struct bpf_link *link)
9583{
9584 bpf_xdp_link_release(link);
9585 return 0;
9586}
9587
aa8d3a71
AN
9588static void bpf_xdp_link_dealloc(struct bpf_link *link)
9589{
9590 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9591
9592 kfree(xdp_link);
9593}
9594
c1931c97
AN
9595static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9596 struct seq_file *seq)
9597{
9598 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9599 u32 ifindex = 0;
9600
9601 rtnl_lock();
9602 if (xdp_link->dev)
9603 ifindex = xdp_link->dev->ifindex;
9604 rtnl_unlock();
9605
9606 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9607}
9608
9609static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9610 struct bpf_link_info *info)
9611{
9612 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9613 u32 ifindex = 0;
9614
9615 rtnl_lock();
9616 if (xdp_link->dev)
9617 ifindex = xdp_link->dev->ifindex;
9618 rtnl_unlock();
9619
9620 info->xdp.ifindex = ifindex;
9621 return 0;
9622}
9623
026a4c28
AN
9624static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9625 struct bpf_prog *old_prog)
9626{
9627 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9628 enum bpf_xdp_mode mode;
9629 bpf_op_t bpf_op;
9630 int err = 0;
9631
9632 rtnl_lock();
9633
9634 /* link might have been auto-released already, so fail */
9635 if (!xdp_link->dev) {
9636 err = -ENOLINK;
9637 goto out_unlock;
9638 }
9639
9640 if (old_prog && link->prog != old_prog) {
9641 err = -EPERM;
9642 goto out_unlock;
9643 }
9644 old_prog = link->prog;
9645 if (old_prog == new_prog) {
9646 /* no-op, don't disturb drivers */
9647 bpf_prog_put(new_prog);
9648 goto out_unlock;
9649 }
9650
c8a36f19 9651 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
026a4c28
AN
9652 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9653 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9654 xdp_link->flags, new_prog);
9655 if (err)
9656 goto out_unlock;
9657
9658 old_prog = xchg(&link->prog, new_prog);
9659 bpf_prog_put(old_prog);
9660
9661out_unlock:
9662 rtnl_unlock();
9663 return err;
9664}
9665
aa8d3a71
AN
9666static const struct bpf_link_ops bpf_xdp_link_lops = {
9667 .release = bpf_xdp_link_release,
9668 .dealloc = bpf_xdp_link_dealloc,
73b11c2a 9669 .detach = bpf_xdp_link_detach,
c1931c97
AN
9670 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9671 .fill_link_info = bpf_xdp_link_fill_link_info,
026a4c28 9672 .update_prog = bpf_xdp_link_update,
aa8d3a71
AN
9673};
9674
9675int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9676{
9677 struct net *net = current->nsproxy->net_ns;
9678 struct bpf_link_primer link_primer;
9679 struct bpf_xdp_link *link;
9680 struct net_device *dev;
9681 int err, fd;
9682
9683 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9684 if (!dev)
9685 return -EINVAL;
9686
9687 link = kzalloc(sizeof(*link), GFP_USER);
9688 if (!link) {
9689 err = -ENOMEM;
9690 goto out_put_dev;
9691 }
9692
9693 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9694 link->dev = dev;
9695 link->flags = attr->link_create.flags;
9696
9697 err = bpf_link_prime(&link->link, &link_primer);
9698 if (err) {
9699 kfree(link);
9700 goto out_put_dev;
9701 }
9702
9703 rtnl_lock();
9704 err = dev_xdp_attach_link(dev, NULL, link);
9705 rtnl_unlock();
9706
9707 if (err) {
9708 bpf_link_cleanup(&link_primer);
9709 goto out_put_dev;
9710 }
9711
9712 fd = bpf_link_settle(&link_primer);
9713 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9714 dev_put(dev);
9715 return fd;
9716
9717out_put_dev:
9718 dev_put(dev);
9719 return err;
9720}
9721
d4baa936
AN
9722/**
9723 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9724 * @dev: device
9725 * @extack: netlink extended ack
9726 * @fd: new program fd or negative value to clear
9727 * @expected_fd: old program fd that userspace expects to replace or clear
9728 * @flags: xdp-related flags
9729 *
9730 * Set or clear a bpf program for a device
9731 */
9732int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9733 int fd, int expected_fd, u32 flags)
9734{
c8a36f19 9735 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
d4baa936
AN
9736 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9737 int err;
9738
9739 ASSERT_RTNL();
9740
9741 if (fd >= 0) {
9742 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9743 mode != XDP_MODE_SKB);
9744 if (IS_ERR(new_prog))
9745 return PTR_ERR(new_prog);
9746 }
9747
9748 if (expected_fd >= 0) {
9749 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9750 mode != XDP_MODE_SKB);
9751 if (IS_ERR(old_prog)) {
9752 err = PTR_ERR(old_prog);
9753 old_prog = NULL;
9754 goto err_out;
c14a9f63 9755 }
a7862b45
BB
9756 }
9757
aa8d3a71 9758 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
a7862b45 9759
d4baa936
AN
9760err_out:
9761 if (err && new_prog)
9762 bpf_prog_put(new_prog);
9763 if (old_prog)
9764 bpf_prog_put(old_prog);
a7862b45
BB
9765 return err;
9766}
a7862b45 9767
1da177e4
LT
9768/**
9769 * dev_new_index - allocate an ifindex
c4ea43c5 9770 * @net: the applicable net namespace
1da177e4
LT
9771 *
9772 * Returns a suitable unique value for a new device interface
9773 * number. The caller must hold the rtnl semaphore or the
9774 * dev_base_lock to be sure it remains unique.
9775 */
881d966b 9776static int dev_new_index(struct net *net)
1da177e4 9777{
aa79e66e 9778 int ifindex = net->ifindex;
f4563a75 9779
1da177e4
LT
9780 for (;;) {
9781 if (++ifindex <= 0)
9782 ifindex = 1;
881d966b 9783 if (!__dev_get_by_index(net, ifindex))
aa79e66e 9784 return net->ifindex = ifindex;
1da177e4
LT
9785 }
9786}
9787
1da177e4 9788/* Delayed registration/unregisteration */
3b5b34fd 9789static LIST_HEAD(net_todo_list);
200b916f 9790DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 9791
6f05f629 9792static void net_set_todo(struct net_device *dev)
1da177e4 9793{
1da177e4 9794 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 9795 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
9796}
9797
fd867d51
JW
9798static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9799 struct net_device *upper, netdev_features_t features)
9800{
9801 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9802 netdev_features_t feature;
5ba3f7d6 9803 int feature_bit;
fd867d51 9804
3b89ea9c 9805 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9806 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9807 if (!(upper->wanted_features & feature)
9808 && (features & feature)) {
9809 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9810 &feature, upper->name);
9811 features &= ~feature;
9812 }
9813 }
9814
9815 return features;
9816}
9817
9818static void netdev_sync_lower_features(struct net_device *upper,
9819 struct net_device *lower, netdev_features_t features)
9820{
9821 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9822 netdev_features_t feature;
5ba3f7d6 9823 int feature_bit;
fd867d51 9824
3b89ea9c 9825 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9826 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9827 if (!(features & feature) && (lower->features & feature)) {
9828 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9829 &feature, lower->name);
9830 lower->wanted_features &= ~feature;
dd912306 9831 __netdev_update_features(lower);
fd867d51
JW
9832
9833 if (unlikely(lower->features & feature))
9834 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9835 &feature, lower->name);
dd912306
CW
9836 else
9837 netdev_features_change(lower);
fd867d51
JW
9838 }
9839 }
9840}
9841
c8f44aff
MM
9842static netdev_features_t netdev_fix_features(struct net_device *dev,
9843 netdev_features_t features)
b63365a2 9844{
57422dc5
MM
9845 /* Fix illegal checksum combinations */
9846 if ((features & NETIF_F_HW_CSUM) &&
9847 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 9848 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
9849 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9850 }
9851
b63365a2 9852 /* TSO requires that SG is present as well. */
ea2d3688 9853 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 9854 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 9855 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
9856 }
9857
ec5f0615
PS
9858 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9859 !(features & NETIF_F_IP_CSUM)) {
9860 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9861 features &= ~NETIF_F_TSO;
9862 features &= ~NETIF_F_TSO_ECN;
9863 }
9864
9865 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9866 !(features & NETIF_F_IPV6_CSUM)) {
9867 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9868 features &= ~NETIF_F_TSO6;
9869 }
9870
b1dc497b
AD
9871 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9872 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9873 features &= ~NETIF_F_TSO_MANGLEID;
9874
31d8b9e0
BH
9875 /* TSO ECN requires that TSO is present as well. */
9876 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9877 features &= ~NETIF_F_TSO_ECN;
9878
212b573f
MM
9879 /* Software GSO depends on SG. */
9880 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 9881 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
9882 features &= ~NETIF_F_GSO;
9883 }
9884
802ab55a
AD
9885 /* GSO partial features require GSO partial be set */
9886 if ((features & dev->gso_partial_features) &&
9887 !(features & NETIF_F_GSO_PARTIAL)) {
9888 netdev_dbg(dev,
9889 "Dropping partially supported GSO features since no GSO partial.\n");
9890 features &= ~dev->gso_partial_features;
9891 }
9892
fb1f5f79
MC
9893 if (!(features & NETIF_F_RXCSUM)) {
9894 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9895 * successfully merged by hardware must also have the
9896 * checksum verified by hardware. If the user does not
9897 * want to enable RXCSUM, logically, we should disable GRO_HW.
9898 */
9899 if (features & NETIF_F_GRO_HW) {
9900 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9901 features &= ~NETIF_F_GRO_HW;
9902 }
9903 }
9904
de8d5ab2
GP
9905 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9906 if (features & NETIF_F_RXFCS) {
9907 if (features & NETIF_F_LRO) {
9908 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9909 features &= ~NETIF_F_LRO;
9910 }
9911
9912 if (features & NETIF_F_GRO_HW) {
9913 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9914 features &= ~NETIF_F_GRO_HW;
9915 }
e6c6a929
GP
9916 }
9917
25537d71
TT
9918 if (features & NETIF_F_HW_TLS_TX) {
9919 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9920 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9921 bool hw_csum = features & NETIF_F_HW_CSUM;
9922
9923 if (!ip_csum && !hw_csum) {
9924 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9925 features &= ~NETIF_F_HW_TLS_TX;
9926 }
ae0b04b2
TT
9927 }
9928
a3eb4e9d
TT
9929 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9930 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9931 features &= ~NETIF_F_HW_TLS_RX;
9932 }
9933
b63365a2
HX
9934 return features;
9935}
b63365a2 9936
6cb6a27c 9937int __netdev_update_features(struct net_device *dev)
5455c699 9938{
fd867d51 9939 struct net_device *upper, *lower;
c8f44aff 9940 netdev_features_t features;
fd867d51 9941 struct list_head *iter;
e7868a85 9942 int err = -1;
5455c699 9943
87267485
MM
9944 ASSERT_RTNL();
9945
5455c699
MM
9946 features = netdev_get_wanted_features(dev);
9947
9948 if (dev->netdev_ops->ndo_fix_features)
9949 features = dev->netdev_ops->ndo_fix_features(dev, features);
9950
9951 /* driver might be less strict about feature dependencies */
9952 features = netdev_fix_features(dev, features);
9953
4250b75b 9954 /* some features can't be enabled if they're off on an upper device */
fd867d51
JW
9955 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9956 features = netdev_sync_upper_features(dev, upper, features);
9957
5455c699 9958 if (dev->features == features)
e7868a85 9959 goto sync_lower;
5455c699 9960
c8f44aff
MM
9961 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9962 &dev->features, &features);
5455c699
MM
9963
9964 if (dev->netdev_ops->ndo_set_features)
9965 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9966 else
9967 err = 0;
5455c699 9968
6cb6a27c 9969 if (unlikely(err < 0)) {
5455c699 9970 netdev_err(dev,
c8f44aff
MM
9971 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9972 err, &features, &dev->features);
17b85d29
NA
9973 /* return non-0 since some features might have changed and
9974 * it's better to fire a spurious notification than miss it
9975 */
9976 return -1;
6cb6a27c
MM
9977 }
9978
e7868a85 9979sync_lower:
fd867d51
JW
9980 /* some features must be disabled on lower devices when disabled
9981 * on an upper device (think: bonding master or bridge)
9982 */
9983 netdev_for_each_lower_dev(dev, lower, iter)
9984 netdev_sync_lower_features(dev, lower, features);
9985
ae847f40
SD
9986 if (!err) {
9987 netdev_features_t diff = features ^ dev->features;
9988
9989 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9990 /* udp_tunnel_{get,drop}_rx_info both need
9991 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9992 * device, or they won't do anything.
9993 * Thus we need to update dev->features
9994 * *before* calling udp_tunnel_get_rx_info,
9995 * but *after* calling udp_tunnel_drop_rx_info.
9996 */
9997 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9998 dev->features = features;
9999 udp_tunnel_get_rx_info(dev);
10000 } else {
10001 udp_tunnel_drop_rx_info(dev);
10002 }
10003 }
10004
9daae9bd
GP
10005 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10006 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10007 dev->features = features;
10008 err |= vlan_get_rx_ctag_filter_info(dev);
10009 } else {
10010 vlan_drop_rx_ctag_filter_info(dev);
10011 }
10012 }
10013
10014 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10015 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10016 dev->features = features;
10017 err |= vlan_get_rx_stag_filter_info(dev);
10018 } else {
10019 vlan_drop_rx_stag_filter_info(dev);
10020 }
10021 }
10022
6cb6a27c 10023 dev->features = features;
ae847f40 10024 }
6cb6a27c 10025
e7868a85 10026 return err < 0 ? 0 : 1;
6cb6a27c
MM
10027}
10028
afe12cc8
MM
10029/**
10030 * netdev_update_features - recalculate device features
10031 * @dev: the device to check
10032 *
10033 * Recalculate dev->features set and send notifications if it
10034 * has changed. Should be called after driver or hardware dependent
10035 * conditions might have changed that influence the features.
10036 */
6cb6a27c
MM
10037void netdev_update_features(struct net_device *dev)
10038{
10039 if (__netdev_update_features(dev))
10040 netdev_features_change(dev);
5455c699
MM
10041}
10042EXPORT_SYMBOL(netdev_update_features);
10043
afe12cc8
MM
10044/**
10045 * netdev_change_features - recalculate device features
10046 * @dev: the device to check
10047 *
10048 * Recalculate dev->features set and send notifications even
10049 * if they have not changed. Should be called instead of
10050 * netdev_update_features() if also dev->vlan_features might
10051 * have changed to allow the changes to be propagated to stacked
10052 * VLAN devices.
10053 */
10054void netdev_change_features(struct net_device *dev)
10055{
10056 __netdev_update_features(dev);
10057 netdev_features_change(dev);
10058}
10059EXPORT_SYMBOL(netdev_change_features);
10060
fc4a7489
PM
10061/**
10062 * netif_stacked_transfer_operstate - transfer operstate
10063 * @rootdev: the root or lower level device to transfer state from
10064 * @dev: the device to transfer operstate to
10065 *
10066 * Transfer operational state from root to device. This is normally
10067 * called when a stacking relationship exists between the root
10068 * device and the device(a leaf device).
10069 */
10070void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10071 struct net_device *dev)
10072{
10073 if (rootdev->operstate == IF_OPER_DORMANT)
10074 netif_dormant_on(dev);
10075 else
10076 netif_dormant_off(dev);
10077
eec517cd
AL
10078 if (rootdev->operstate == IF_OPER_TESTING)
10079 netif_testing_on(dev);
10080 else
10081 netif_testing_off(dev);
10082
0575c86b
ZS
10083 if (netif_carrier_ok(rootdev))
10084 netif_carrier_on(dev);
10085 else
10086 netif_carrier_off(dev);
fc4a7489
PM
10087}
10088EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10089
1b4bf461
ED
10090static int netif_alloc_rx_queues(struct net_device *dev)
10091{
1b4bf461 10092 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 10093 struct netdev_rx_queue *rx;
10595902 10094 size_t sz = count * sizeof(*rx);
e817f856 10095 int err = 0;
1b4bf461 10096
bd25fa7b 10097 BUG_ON(count < 1);
1b4bf461 10098
dcda9b04 10099 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
10100 if (!rx)
10101 return -ENOMEM;
10102
bd25fa7b
TH
10103 dev->_rx = rx;
10104
e817f856 10105 for (i = 0; i < count; i++) {
fe822240 10106 rx[i].dev = dev;
e817f856
JDB
10107
10108 /* XDP RX-queue setup */
b02e5a0e 10109 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
e817f856
JDB
10110 if (err < 0)
10111 goto err_rxq_info;
10112 }
1b4bf461 10113 return 0;
e817f856
JDB
10114
10115err_rxq_info:
10116 /* Rollback successful reg's and free other resources */
10117 while (i--)
10118 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 10119 kvfree(dev->_rx);
e817f856
JDB
10120 dev->_rx = NULL;
10121 return err;
10122}
10123
10124static void netif_free_rx_queues(struct net_device *dev)
10125{
10126 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
10127
10128 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10129 if (!dev->_rx)
10130 return;
10131
e817f856 10132 for (i = 0; i < count; i++)
82aaff2f
JK
10133 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10134
10135 kvfree(dev->_rx);
1b4bf461
ED
10136}
10137
aa942104
CG
10138static void netdev_init_one_queue(struct net_device *dev,
10139 struct netdev_queue *queue, void *_unused)
10140{
10141 /* Initialize queue lock */
10142 spin_lock_init(&queue->_xmit_lock);
1a33e10e 10143 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
aa942104 10144 queue->xmit_lock_owner = -1;
b236da69 10145 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 10146 queue->dev = dev;
114cf580
TH
10147#ifdef CONFIG_BQL
10148 dql_init(&queue->dql, HZ);
10149#endif
aa942104
CG
10150}
10151
60877a32
ED
10152static void netif_free_tx_queues(struct net_device *dev)
10153{
4cb28970 10154 kvfree(dev->_tx);
60877a32
ED
10155}
10156
e6484930
TH
10157static int netif_alloc_netdev_queues(struct net_device *dev)
10158{
10159 unsigned int count = dev->num_tx_queues;
10160 struct netdev_queue *tx;
60877a32 10161 size_t sz = count * sizeof(*tx);
e6484930 10162
d339727c
ED
10163 if (count < 1 || count > 0xffff)
10164 return -EINVAL;
62b5942a 10165
dcda9b04 10166 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
10167 if (!tx)
10168 return -ENOMEM;
10169
e6484930 10170 dev->_tx = tx;
1d24eb48 10171
e6484930
TH
10172 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10173 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
10174
10175 return 0;
e6484930
TH
10176}
10177
a2029240
DV
10178void netif_tx_stop_all_queues(struct net_device *dev)
10179{
10180 unsigned int i;
10181
10182 for (i = 0; i < dev->num_tx_queues; i++) {
10183 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 10184
a2029240
DV
10185 netif_tx_stop_queue(txq);
10186 }
10187}
10188EXPORT_SYMBOL(netif_tx_stop_all_queues);
10189
1da177e4
LT
10190/**
10191 * register_netdevice - register a network device
10192 * @dev: device to register
10193 *
10194 * Take a completed network device structure and add it to the kernel
10195 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10196 * chain. 0 is returned on success. A negative errno code is returned
10197 * on a failure to set up the device, or if the name is a duplicate.
10198 *
10199 * Callers must hold the rtnl semaphore. You may want
10200 * register_netdev() instead of this.
10201 *
10202 * BUGS:
10203 * The locking appears insufficient to guarantee two parallel registers
10204 * will not get the same name.
10205 */
10206
10207int register_netdevice(struct net_device *dev)
10208{
1da177e4 10209 int ret;
d314774c 10210 struct net *net = dev_net(dev);
1da177e4 10211
e283de3a
FF
10212 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10213 NETDEV_FEATURE_COUNT);
1da177e4
LT
10214 BUG_ON(dev_boot_phase);
10215 ASSERT_RTNL();
10216
b17a7c17
SH
10217 might_sleep();
10218
1da177e4
LT
10219 /* When net_device's are persistent, this will be fatal. */
10220 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 10221 BUG_ON(!net);
1da177e4 10222
9000edb7
JK
10223 ret = ethtool_check_ops(dev->ethtool_ops);
10224 if (ret)
10225 return ret;
10226
f1f28aa3 10227 spin_lock_init(&dev->addr_list_lock);
845e0ebb 10228 netdev_set_addr_lockdep_class(dev);
1da177e4 10229
828de4f6 10230 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
10231 if (ret < 0)
10232 goto out;
10233
9077f052 10234 ret = -ENOMEM;
ff927412
JP
10235 dev->name_node = netdev_name_node_head_alloc(dev);
10236 if (!dev->name_node)
10237 goto out;
10238
1da177e4 10239 /* Init, if this function is available */
d314774c
SH
10240 if (dev->netdev_ops->ndo_init) {
10241 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
10242 if (ret) {
10243 if (ret > 0)
10244 ret = -EIO;
42c17fa6 10245 goto err_free_name;
1da177e4
LT
10246 }
10247 }
4ec93edb 10248
f646968f
PM
10249 if (((dev->hw_features | dev->features) &
10250 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
10251 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10252 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10253 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10254 ret = -EINVAL;
10255 goto err_uninit;
10256 }
10257
9c7dafbf
PE
10258 ret = -EBUSY;
10259 if (!dev->ifindex)
10260 dev->ifindex = dev_new_index(net);
10261 else if (__dev_get_by_index(net, dev->ifindex))
10262 goto err_uninit;
10263
5455c699
MM
10264 /* Transfer changeable features to wanted_features and enable
10265 * software offloads (GSO and GRO).
10266 */
1a3c998f 10267 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 10268 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122 10269
876c4384 10270 if (dev->udp_tunnel_nic_info) {
d764a122
SD
10271 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10272 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10273 }
10274
14d1232f 10275 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 10276
cbc53e08 10277 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 10278 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 10279
7f348a60
AD
10280 /* If IPv4 TCP segmentation offload is supported we should also
10281 * allow the device to enable segmenting the frame with the option
10282 * of ignoring a static IP ID value. This doesn't enable the
10283 * feature itself but allows the user to enable it later.
10284 */
cbc53e08
AD
10285 if (dev->hw_features & NETIF_F_TSO)
10286 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
10287 if (dev->vlan_features & NETIF_F_TSO)
10288 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10289 if (dev->mpls_features & NETIF_F_TSO)
10290 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10291 if (dev->hw_enc_features & NETIF_F_TSO)
10292 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 10293
1180e7d6 10294 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 10295 */
1180e7d6 10296 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 10297
ee579677
PS
10298 /* Make NETIF_F_SG inheritable to tunnel devices.
10299 */
802ab55a 10300 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 10301
0d89d203
SH
10302 /* Make NETIF_F_SG inheritable to MPLS.
10303 */
10304 dev->mpls_features |= NETIF_F_SG;
10305
7ffbe3fd
JB
10306 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10307 ret = notifier_to_errno(ret);
10308 if (ret)
10309 goto err_uninit;
10310
8b41d188 10311 ret = netdev_register_kobject(dev);
cb626bf5
JH
10312 if (ret) {
10313 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 10314 goto err_uninit;
cb626bf5 10315 }
b17a7c17
SH
10316 dev->reg_state = NETREG_REGISTERED;
10317
6cb6a27c 10318 __netdev_update_features(dev);
8e9b59b2 10319
1da177e4
LT
10320 /*
10321 * Default initial state at registry is that the
10322 * device is present.
10323 */
10324
10325 set_bit(__LINK_STATE_PRESENT, &dev->state);
10326
8f4cccbb
BH
10327 linkwatch_init_dev(dev);
10328
1da177e4 10329 dev_init_scheduler(dev);
1da177e4 10330 dev_hold(dev);
ce286d32 10331 list_netdevice(dev);
7bf23575 10332 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 10333
948b337e
JP
10334 /* If the device has permanent device address, driver should
10335 * set dev_addr and also addr_assign_type should be set to
10336 * NET_ADDR_PERM (default value).
10337 */
10338 if (dev->addr_assign_type == NET_ADDR_PERM)
10339 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10340
1da177e4 10341 /* Notify protocols, that a new device appeared. */
056925ab 10342 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 10343 ret = notifier_to_errno(ret);
93ee31f1 10344 if (ret) {
766b0515
JK
10345 /* Expect explicit free_netdev() on failure */
10346 dev->needs_free_netdev = false;
037e56bd 10347 unregister_netdevice_queue(dev, NULL);
766b0515 10348 goto out;
93ee31f1 10349 }
d90a909e
EB
10350 /*
10351 * Prevent userspace races by waiting until the network
10352 * device is fully setup before sending notifications.
10353 */
a2835763
PM
10354 if (!dev->rtnl_link_ops ||
10355 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 10356 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
10357
10358out:
10359 return ret;
7ce1b0ed
HX
10360
10361err_uninit:
d314774c
SH
10362 if (dev->netdev_ops->ndo_uninit)
10363 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
10364 if (dev->priv_destructor)
10365 dev->priv_destructor(dev);
42c17fa6
DC
10366err_free_name:
10367 netdev_name_node_free(dev->name_node);
7ce1b0ed 10368 goto out;
1da177e4 10369}
d1b19dff 10370EXPORT_SYMBOL(register_netdevice);
1da177e4 10371
937f1ba5
BH
10372/**
10373 * init_dummy_netdev - init a dummy network device for NAPI
10374 * @dev: device to init
10375 *
10376 * This takes a network device structure and initialize the minimum
10377 * amount of fields so it can be used to schedule NAPI polls without
10378 * registering a full blown interface. This is to be used by drivers
10379 * that need to tie several hardware interfaces to a single NAPI
10380 * poll scheduler due to HW limitations.
10381 */
10382int init_dummy_netdev(struct net_device *dev)
10383{
10384 /* Clear everything. Note we don't initialize spinlocks
10385 * are they aren't supposed to be taken by any of the
10386 * NAPI code and this dummy netdev is supposed to be
10387 * only ever used for NAPI polls
10388 */
10389 memset(dev, 0, sizeof(struct net_device));
10390
10391 /* make sure we BUG if trying to hit standard
10392 * register/unregister code path
10393 */
10394 dev->reg_state = NETREG_DUMMY;
10395
937f1ba5
BH
10396 /* NAPI wants this */
10397 INIT_LIST_HEAD(&dev->napi_list);
10398
10399 /* a dummy interface is started by default */
10400 set_bit(__LINK_STATE_PRESENT, &dev->state);
10401 set_bit(__LINK_STATE_START, &dev->state);
10402
35edfdc7
JE
10403 /* napi_busy_loop stats accounting wants this */
10404 dev_net_set(dev, &init_net);
10405
29b4433d
ED
10406 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10407 * because users of this 'device' dont need to change
10408 * its refcount.
10409 */
10410
937f1ba5
BH
10411 return 0;
10412}
10413EXPORT_SYMBOL_GPL(init_dummy_netdev);
10414
10415
1da177e4
LT
10416/**
10417 * register_netdev - register a network device
10418 * @dev: device to register
10419 *
10420 * Take a completed network device structure and add it to the kernel
10421 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10422 * chain. 0 is returned on success. A negative errno code is returned
10423 * on a failure to set up the device, or if the name is a duplicate.
10424 *
38b4da38 10425 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
10426 * and expands the device name if you passed a format string to
10427 * alloc_netdev.
10428 */
10429int register_netdev(struct net_device *dev)
10430{
10431 int err;
10432
b0f3debc
KT
10433 if (rtnl_lock_killable())
10434 return -EINTR;
1da177e4 10435 err = register_netdevice(dev);
1da177e4
LT
10436 rtnl_unlock();
10437 return err;
10438}
10439EXPORT_SYMBOL(register_netdev);
10440
29b4433d
ED
10441int netdev_refcnt_read(const struct net_device *dev)
10442{
919067cc 10443#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10444 int i, refcnt = 0;
10445
10446 for_each_possible_cpu(i)
10447 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10448 return refcnt;
919067cc
ED
10449#else
10450 return refcount_read(&dev->dev_refcnt);
10451#endif
29b4433d
ED
10452}
10453EXPORT_SYMBOL(netdev_refcnt_read);
10454
5aa3afe1
DV
10455int netdev_unregister_timeout_secs __read_mostly = 10;
10456
de2b541b
MCC
10457#define WAIT_REFS_MIN_MSECS 1
10458#define WAIT_REFS_MAX_MSECS 250
2c53040f 10459/**
1da177e4 10460 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 10461 * @dev: target net_device
1da177e4
LT
10462 *
10463 * This is called when unregistering network devices.
10464 *
10465 * Any protocol or device that holds a reference should register
10466 * for netdevice notification, and cleanup and put back the
10467 * reference if they receive an UNREGISTER event.
10468 * We can get stuck here if buggy protocols don't correctly
4ec93edb 10469 * call dev_put.
1da177e4
LT
10470 */
10471static void netdev_wait_allrefs(struct net_device *dev)
10472{
10473 unsigned long rebroadcast_time, warning_time;
0e4be9e5 10474 int wait = 0, refcnt;
1da177e4 10475
e014debe
ED
10476 linkwatch_forget_dev(dev);
10477
1da177e4 10478 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
10479 refcnt = netdev_refcnt_read(dev);
10480
add2d736 10481 while (refcnt != 1) {
1da177e4 10482 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 10483 rtnl_lock();
1da177e4
LT
10484
10485 /* Rebroadcast unregister notification */
056925ab 10486 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 10487
748e2d93 10488 __rtnl_unlock();
0115e8e3 10489 rcu_barrier();
748e2d93
ED
10490 rtnl_lock();
10491
1da177e4
LT
10492 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10493 &dev->state)) {
10494 /* We must not have linkwatch events
10495 * pending on unregister. If this
10496 * happens, we simply run the queue
10497 * unscheduled, resulting in a noop
10498 * for this device.
10499 */
10500 linkwatch_run_queue();
10501 }
10502
6756ae4b 10503 __rtnl_unlock();
1da177e4
LT
10504
10505 rebroadcast_time = jiffies;
10506 }
10507
0e4be9e5
FR
10508 if (!wait) {
10509 rcu_barrier();
10510 wait = WAIT_REFS_MIN_MSECS;
10511 } else {
10512 msleep(wait);
10513 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10514 }
1da177e4 10515
29b4433d
ED
10516 refcnt = netdev_refcnt_read(dev);
10517
6c996e19 10518 if (refcnt != 1 &&
5aa3afe1
DV
10519 time_after(jiffies, warning_time +
10520 netdev_unregister_timeout_secs * HZ)) {
7b6cd1ce
JP
10521 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10522 dev->name, refcnt);
1da177e4
LT
10523 warning_time = jiffies;
10524 }
10525 }
10526}
10527
10528/* The sequence is:
10529 *
10530 * rtnl_lock();
10531 * ...
10532 * register_netdevice(x1);
10533 * register_netdevice(x2);
10534 * ...
10535 * unregister_netdevice(y1);
10536 * unregister_netdevice(y2);
10537 * ...
10538 * rtnl_unlock();
10539 * free_netdev(y1);
10540 * free_netdev(y2);
10541 *
58ec3b4d 10542 * We are invoked by rtnl_unlock().
1da177e4 10543 * This allows us to deal with problems:
b17a7c17 10544 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
10545 * without deadlocking with linkwatch via keventd.
10546 * 2) Since we run with the RTNL semaphore not held, we can sleep
10547 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
10548 *
10549 * We must not return until all unregister events added during
10550 * the interval the lock was held have been completed.
1da177e4 10551 */
1da177e4
LT
10552void netdev_run_todo(void)
10553{
626ab0e6 10554 struct list_head list;
1fc70edb
TY
10555#ifdef CONFIG_LOCKDEP
10556 struct list_head unlink_list;
10557
10558 list_replace_init(&net_unlink_list, &unlink_list);
10559
10560 while (!list_empty(&unlink_list)) {
10561 struct net_device *dev = list_first_entry(&unlink_list,
10562 struct net_device,
10563 unlink_list);
0e8b8d6a 10564 list_del_init(&dev->unlink_list);
1fc70edb
TY
10565 dev->nested_level = dev->lower_level - 1;
10566 }
10567#endif
1da177e4 10568
1da177e4 10569 /* Snapshot list, allow later requests */
626ab0e6 10570 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
10571
10572 __rtnl_unlock();
626ab0e6 10573
0115e8e3
ED
10574
10575 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
10576 if (!list_empty(&list))
10577 rcu_barrier();
10578
1da177e4
LT
10579 while (!list_empty(&list)) {
10580 struct net_device *dev
e5e26d75 10581 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
10582 list_del(&dev->todo_list);
10583
b17a7c17 10584 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 10585 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
10586 dev->name, dev->reg_state);
10587 dump_stack();
10588 continue;
10589 }
1da177e4 10590
b17a7c17 10591 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 10592
b17a7c17 10593 netdev_wait_allrefs(dev);
1da177e4 10594
b17a7c17 10595 /* paranoia */
add2d736 10596 BUG_ON(netdev_refcnt_read(dev) != 1);
7866a621
SN
10597 BUG_ON(!list_empty(&dev->ptype_all));
10598 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
10599 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10600 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 10601#if IS_ENABLED(CONFIG_DECNET)
547b792c 10602 WARN_ON(dev->dn_ptr);
330c7272 10603#endif
cf124db5
DM
10604 if (dev->priv_destructor)
10605 dev->priv_destructor(dev);
10606 if (dev->needs_free_netdev)
10607 free_netdev(dev);
9093bbb2 10608
50624c93
EB
10609 /* Report a network device has been unregistered */
10610 rtnl_lock();
10611 dev_net(dev)->dev_unreg_count--;
10612 __rtnl_unlock();
10613 wake_up(&netdev_unregistering_wq);
10614
9093bbb2
SH
10615 /* Free network device */
10616 kobject_put(&dev->dev.kobj);
1da177e4 10617 }
1da177e4
LT
10618}
10619
9256645a
JW
10620/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10621 * all the same fields in the same order as net_device_stats, with only
10622 * the type differing, but rtnl_link_stats64 may have additional fields
10623 * at the end for newer counters.
3cfde79c 10624 */
77a1abf5
ED
10625void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10626 const struct net_device_stats *netdev_stats)
3cfde79c
BH
10627{
10628#if BITS_PER_LONG == 64
9256645a 10629 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 10630 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
10631 /* zero out counters that only exist in rtnl_link_stats64 */
10632 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10633 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 10634#else
9256645a 10635 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
10636 const unsigned long *src = (const unsigned long *)netdev_stats;
10637 u64 *dst = (u64 *)stats64;
10638
9256645a 10639 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
10640 for (i = 0; i < n; i++)
10641 dst[i] = src[i];
9256645a
JW
10642 /* zero out counters that only exist in rtnl_link_stats64 */
10643 memset((char *)stats64 + n * sizeof(u64), 0,
10644 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
10645#endif
10646}
77a1abf5 10647EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 10648
eeda3fd6
SH
10649/**
10650 * dev_get_stats - get network device statistics
10651 * @dev: device to get statistics from
28172739 10652 * @storage: place to store stats
eeda3fd6 10653 *
d7753516
BH
10654 * Get network statistics from device. Return @storage.
10655 * The device driver may provide its own method by setting
10656 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10657 * otherwise the internal statistics structure is used.
eeda3fd6 10658 */
d7753516
BH
10659struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10660 struct rtnl_link_stats64 *storage)
7004bf25 10661{
eeda3fd6
SH
10662 const struct net_device_ops *ops = dev->netdev_ops;
10663
28172739
ED
10664 if (ops->ndo_get_stats64) {
10665 memset(storage, 0, sizeof(*storage));
caf586e5
ED
10666 ops->ndo_get_stats64(dev, storage);
10667 } else if (ops->ndo_get_stats) {
3cfde79c 10668 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
10669 } else {
10670 netdev_stats_to_stats64(storage, &dev->stats);
28172739 10671 }
6f64ec74
ED
10672 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10673 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10674 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 10675 return storage;
c45d286e 10676}
eeda3fd6 10677EXPORT_SYMBOL(dev_get_stats);
c45d286e 10678
44fa32f0
HK
10679/**
10680 * dev_fetch_sw_netstats - get per-cpu network device statistics
10681 * @s: place to store stats
10682 * @netstats: per-cpu network stats to read from
10683 *
10684 * Read per-cpu network statistics and populate the related fields in @s.
10685 */
10686void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10687 const struct pcpu_sw_netstats __percpu *netstats)
10688{
10689 int cpu;
10690
10691 for_each_possible_cpu(cpu) {
10692 const struct pcpu_sw_netstats *stats;
10693 struct pcpu_sw_netstats tmp;
10694 unsigned int start;
10695
10696 stats = per_cpu_ptr(netstats, cpu);
10697 do {
10698 start = u64_stats_fetch_begin_irq(&stats->syncp);
10699 tmp.rx_packets = stats->rx_packets;
10700 tmp.rx_bytes = stats->rx_bytes;
10701 tmp.tx_packets = stats->tx_packets;
10702 tmp.tx_bytes = stats->tx_bytes;
10703 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10704
10705 s->rx_packets += tmp.rx_packets;
10706 s->rx_bytes += tmp.rx_bytes;
10707 s->tx_packets += tmp.tx_packets;
10708 s->tx_bytes += tmp.tx_bytes;
10709 }
10710}
10711EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10712
a1839426
HK
10713/**
10714 * dev_get_tstats64 - ndo_get_stats64 implementation
10715 * @dev: device to get statistics from
10716 * @s: place to store stats
10717 *
10718 * Populate @s from dev->stats and dev->tstats. Can be used as
10719 * ndo_get_stats64() callback.
10720 */
10721void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10722{
10723 netdev_stats_to_stats64(s, &dev->stats);
10724 dev_fetch_sw_netstats(s, dev->tstats);
10725}
10726EXPORT_SYMBOL_GPL(dev_get_tstats64);
10727
24824a09 10728struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 10729{
24824a09 10730 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 10731
24824a09
ED
10732#ifdef CONFIG_NET_CLS_ACT
10733 if (queue)
10734 return queue;
10735 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10736 if (!queue)
10737 return NULL;
10738 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 10739 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
10740 queue->qdisc_sleeping = &noop_qdisc;
10741 rcu_assign_pointer(dev->ingress_queue, queue);
10742#endif
10743 return queue;
bb949fbd
DM
10744}
10745
2c60db03
ED
10746static const struct ethtool_ops default_ethtool_ops;
10747
d07d7507
SG
10748void netdev_set_default_ethtool_ops(struct net_device *dev,
10749 const struct ethtool_ops *ops)
10750{
10751 if (dev->ethtool_ops == &default_ethtool_ops)
10752 dev->ethtool_ops = ops;
10753}
10754EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10755
74d332c1
ED
10756void netdev_freemem(struct net_device *dev)
10757{
10758 char *addr = (char *)dev - dev->padded;
10759
4cb28970 10760 kvfree(addr);
74d332c1
ED
10761}
10762
1da177e4 10763/**
722c9a0c 10764 * alloc_netdev_mqs - allocate network device
10765 * @sizeof_priv: size of private data to allocate space for
10766 * @name: device name format string
10767 * @name_assign_type: origin of device name
10768 * @setup: callback to initialize device
10769 * @txqs: the number of TX subqueues to allocate
10770 * @rxqs: the number of RX subqueues to allocate
10771 *
10772 * Allocates a struct net_device with private data area for driver use
10773 * and performs basic initialization. Also allocates subqueue structs
10774 * for each queue on the device.
1da177e4 10775 */
36909ea4 10776struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 10777 unsigned char name_assign_type,
36909ea4
TH
10778 void (*setup)(struct net_device *),
10779 unsigned int txqs, unsigned int rxqs)
1da177e4 10780{
1da177e4 10781 struct net_device *dev;
52a59bd5 10782 unsigned int alloc_size;
1ce8e7b5 10783 struct net_device *p;
1da177e4 10784
b6fe17d6
SH
10785 BUG_ON(strlen(name) >= sizeof(dev->name));
10786
36909ea4 10787 if (txqs < 1) {
7b6cd1ce 10788 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
10789 return NULL;
10790 }
10791
36909ea4 10792 if (rxqs < 1) {
7b6cd1ce 10793 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
10794 return NULL;
10795 }
36909ea4 10796
fd2ea0a7 10797 alloc_size = sizeof(struct net_device);
d1643d24
AD
10798 if (sizeof_priv) {
10799 /* ensure 32-byte alignment of private area */
1ce8e7b5 10800 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
10801 alloc_size += sizeof_priv;
10802 }
10803 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 10804 alloc_size += NETDEV_ALIGN - 1;
1da177e4 10805
dcda9b04 10806 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 10807 if (!p)
1da177e4 10808 return NULL;
1da177e4 10809
1ce8e7b5 10810 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 10811 dev->padded = (char *)dev - (char *)p;
ab9c73cc 10812
919067cc 10813#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10814 dev->pcpu_refcnt = alloc_percpu(int);
10815 if (!dev->pcpu_refcnt)
74d332c1 10816 goto free_dev;
add2d736
ED
10817 dev_hold(dev);
10818#else
10819 refcount_set(&dev->dev_refcnt, 1);
919067cc 10820#endif
ab9c73cc 10821
ab9c73cc 10822 if (dev_addr_init(dev))
29b4433d 10823 goto free_pcpu;
ab9c73cc 10824
22bedad3 10825 dev_mc_init(dev);
a748ee24 10826 dev_uc_init(dev);
ccffad25 10827
c346dca1 10828 dev_net_set(dev, &init_net);
1da177e4 10829
8d3bdbd5 10830 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 10831 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
10832 dev->upper_level = 1;
10833 dev->lower_level = 1;
1fc70edb
TY
10834#ifdef CONFIG_LOCKDEP
10835 dev->nested_level = 0;
10836 INIT_LIST_HEAD(&dev->unlink_list);
10837#endif
8d3bdbd5 10838
8d3bdbd5
DM
10839 INIT_LIST_HEAD(&dev->napi_list);
10840 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 10841 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 10842 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
10843 INIT_LIST_HEAD(&dev->adj_list.upper);
10844 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
10845 INIT_LIST_HEAD(&dev->ptype_all);
10846 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 10847 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
10848#ifdef CONFIG_NET_SCHED
10849 hash_init(dev->qdisc_hash);
10850#endif
02875878 10851 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
10852 setup(dev);
10853
a813104d 10854 if (!dev->tx_queue_len) {
f84bb1ea 10855 dev->priv_flags |= IFF_NO_QUEUE;
11597084 10856 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 10857 }
906470c1 10858
36909ea4
TH
10859 dev->num_tx_queues = txqs;
10860 dev->real_num_tx_queues = txqs;
ed9af2e8 10861 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 10862 goto free_all;
e8a0464c 10863
36909ea4
TH
10864 dev->num_rx_queues = rxqs;
10865 dev->real_num_rx_queues = rxqs;
fe822240 10866 if (netif_alloc_rx_queues(dev))
8d3bdbd5 10867 goto free_all;
0a9627f2 10868
1da177e4 10869 strcpy(dev->name, name);
c835a677 10870 dev->name_assign_type = name_assign_type;
cbda10fa 10871 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
10872 if (!dev->ethtool_ops)
10873 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 10874
357b6cc5 10875 nf_hook_ingress_init(dev);
e687ad60 10876
1da177e4 10877 return dev;
ab9c73cc 10878
8d3bdbd5
DM
10879free_all:
10880 free_netdev(dev);
10881 return NULL;
10882
29b4433d 10883free_pcpu:
919067cc 10884#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d 10885 free_percpu(dev->pcpu_refcnt);
74d332c1 10886free_dev:
919067cc 10887#endif
74d332c1 10888 netdev_freemem(dev);
ab9c73cc 10889 return NULL;
1da177e4 10890}
36909ea4 10891EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
10892
10893/**
722c9a0c 10894 * free_netdev - free network device
10895 * @dev: device
1da177e4 10896 *
722c9a0c 10897 * This function does the last stage of destroying an allocated device
10898 * interface. The reference to the device object is released. If this
10899 * is the last reference then it will be freed.Must be called in process
10900 * context.
1da177e4
LT
10901 */
10902void free_netdev(struct net_device *dev)
10903{
d565b0a1
HX
10904 struct napi_struct *p, *n;
10905
93d05d4a 10906 might_sleep();
c269a24c
JK
10907
10908 /* When called immediately after register_netdevice() failed the unwind
10909 * handling may still be dismantling the device. Handle that case by
10910 * deferring the free.
10911 */
10912 if (dev->reg_state == NETREG_UNREGISTERING) {
10913 ASSERT_RTNL();
10914 dev->needs_free_netdev = true;
10915 return;
10916 }
10917
60877a32 10918 netif_free_tx_queues(dev);
e817f856 10919 netif_free_rx_queues(dev);
e8a0464c 10920
33d480ce 10921 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 10922
f001fde5
JP
10923 /* Flush device addresses */
10924 dev_addr_flush(dev);
10925
d565b0a1
HX
10926 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10927 netif_napi_del(p);
10928
919067cc 10929#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10930 free_percpu(dev->pcpu_refcnt);
10931 dev->pcpu_refcnt = NULL;
919067cc 10932#endif
75ccae62
THJ
10933 free_percpu(dev->xdp_bulkq);
10934 dev->xdp_bulkq = NULL;
29b4433d 10935
3041a069 10936 /* Compatibility with error handling in drivers */
1da177e4 10937 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 10938 netdev_freemem(dev);
1da177e4
LT
10939 return;
10940 }
10941
10942 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10943 dev->reg_state = NETREG_RELEASED;
10944
43cb76d9
GKH
10945 /* will free via device release */
10946 put_device(&dev->dev);
1da177e4 10947}
d1b19dff 10948EXPORT_SYMBOL(free_netdev);
4ec93edb 10949
f0db275a
SH
10950/**
10951 * synchronize_net - Synchronize with packet receive processing
10952 *
10953 * Wait for packets currently being received to be done.
10954 * Does not block later packets from starting.
10955 */
4ec93edb 10956void synchronize_net(void)
1da177e4
LT
10957{
10958 might_sleep();
be3fc413
ED
10959 if (rtnl_is_locked())
10960 synchronize_rcu_expedited();
10961 else
10962 synchronize_rcu();
1da177e4 10963}
d1b19dff 10964EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
10965
10966/**
44a0873d 10967 * unregister_netdevice_queue - remove device from the kernel
1da177e4 10968 * @dev: device
44a0873d 10969 * @head: list
6ebfbc06 10970 *
1da177e4 10971 * This function shuts down a device interface and removes it
d59b54b1 10972 * from the kernel tables.
44a0873d 10973 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
10974 *
10975 * Callers must hold the rtnl semaphore. You may want
10976 * unregister_netdev() instead of this.
10977 */
10978
44a0873d 10979void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 10980{
a6620712
HX
10981 ASSERT_RTNL();
10982
44a0873d 10983 if (head) {
9fdce099 10984 list_move_tail(&dev->unreg_list, head);
44a0873d 10985 } else {
037e56bd
JK
10986 LIST_HEAD(single);
10987
10988 list_add(&dev->unreg_list, &single);
0cbe1e57 10989 unregister_netdevice_many(&single);
44a0873d 10990 }
1da177e4 10991}
44a0873d 10992EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 10993
9b5e383c
ED
10994/**
10995 * unregister_netdevice_many - unregister many devices
10996 * @head: list of devices
87757a91
ED
10997 *
10998 * Note: As most callers use a stack allocated list_head,
10999 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
11000 */
11001void unregister_netdevice_many(struct list_head *head)
bcfe2f1a
JK
11002{
11003 struct net_device *dev, *tmp;
11004 LIST_HEAD(close_head);
11005
11006 BUG_ON(dev_boot_phase);
11007 ASSERT_RTNL();
11008
0cbe1e57
JK
11009 if (list_empty(head))
11010 return;
11011
bcfe2f1a
JK
11012 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11013 /* Some devices call without registering
11014 * for initialization unwind. Remove those
11015 * devices and proceed with the remaining.
11016 */
11017 if (dev->reg_state == NETREG_UNINITIALIZED) {
11018 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11019 dev->name, dev);
11020
11021 WARN_ON(1);
11022 list_del(&dev->unreg_list);
11023 continue;
11024 }
11025 dev->dismantle = true;
11026 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11027 }
11028
11029 /* If device is running, close it first. */
11030 list_for_each_entry(dev, head, unreg_list)
11031 list_add_tail(&dev->close_list, &close_head);
11032 dev_close_many(&close_head, true);
11033
11034 list_for_each_entry(dev, head, unreg_list) {
11035 /* And unlink it from device chain. */
11036 unlist_netdevice(dev);
11037
11038 dev->reg_state = NETREG_UNREGISTERING;
11039 }
11040 flush_all_backlogs();
11041
11042 synchronize_net();
11043
11044 list_for_each_entry(dev, head, unreg_list) {
11045 struct sk_buff *skb = NULL;
11046
11047 /* Shutdown queueing discipline. */
11048 dev_shutdown(dev);
11049
11050 dev_xdp_uninstall(dev);
11051
11052 /* Notify protocols, that we are about to destroy
11053 * this device. They should clean all the things.
11054 */
11055 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11056
11057 if (!dev->rtnl_link_ops ||
11058 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11059 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11060 GFP_KERNEL, NULL, 0);
11061
11062 /*
11063 * Flush the unicast and multicast chains
11064 */
11065 dev_uc_flush(dev);
11066 dev_mc_flush(dev);
11067
11068 netdev_name_node_alt_flush(dev);
11069 netdev_name_node_free(dev->name_node);
11070
11071 if (dev->netdev_ops->ndo_uninit)
11072 dev->netdev_ops->ndo_uninit(dev);
11073
11074 if (skb)
11075 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11076
11077 /* Notifier chain MUST detach us all upper devices. */
11078 WARN_ON(netdev_has_any_upper_dev(dev));
11079 WARN_ON(netdev_has_any_lower_dev(dev));
11080
11081 /* Remove entries from kobject tree */
11082 netdev_unregister_kobject(dev);
11083#ifdef CONFIG_XPS
11084 /* Remove XPS queueing entries */
11085 netif_reset_xps_queues_gt(dev, 0);
11086#endif
11087 }
11088
11089 synchronize_net();
11090
11091 list_for_each_entry(dev, head, unreg_list) {
11092 dev_put(dev);
11093 net_set_todo(dev);
11094 }
0cbe1e57
JK
11095
11096 list_del(head);
bcfe2f1a 11097}
0cbe1e57 11098EXPORT_SYMBOL(unregister_netdevice_many);
bcfe2f1a 11099
1da177e4
LT
11100/**
11101 * unregister_netdev - remove device from the kernel
11102 * @dev: device
11103 *
11104 * This function shuts down a device interface and removes it
d59b54b1 11105 * from the kernel tables.
1da177e4
LT
11106 *
11107 * This is just a wrapper for unregister_netdevice that takes
11108 * the rtnl semaphore. In general you want to use this and not
11109 * unregister_netdevice.
11110 */
11111void unregister_netdev(struct net_device *dev)
11112{
11113 rtnl_lock();
11114 unregister_netdevice(dev);
11115 rtnl_unlock();
11116}
1da177e4
LT
11117EXPORT_SYMBOL(unregister_netdev);
11118
ce286d32 11119/**
0854fa82 11120 * __dev_change_net_namespace - move device to different nethost namespace
ce286d32
EB
11121 * @dev: device
11122 * @net: network namespace
11123 * @pat: If not NULL name pattern to try if the current device name
11124 * is already taken in the destination network namespace.
eeb85a14
AV
11125 * @new_ifindex: If not zero, specifies device index in the target
11126 * namespace.
ce286d32
EB
11127 *
11128 * This function shuts down a device interface and moves it
11129 * to a new network namespace. On success 0 is returned, on
11130 * a failure a netagive errno code is returned.
11131 *
11132 * Callers must hold the rtnl semaphore.
11133 */
11134
0854fa82
AV
11135int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11136 const char *pat, int new_ifindex)
ce286d32 11137{
ef6a4c88 11138 struct net *net_old = dev_net(dev);
eeb85a14 11139 int err, new_nsid;
ce286d32
EB
11140
11141 ASSERT_RTNL();
11142
11143 /* Don't allow namespace local devices to be moved. */
11144 err = -EINVAL;
11145 if (dev->features & NETIF_F_NETNS_LOCAL)
11146 goto out;
11147
11148 /* Ensure the device has been registrered */
ce286d32
EB
11149 if (dev->reg_state != NETREG_REGISTERED)
11150 goto out;
11151
11152 /* Get out if there is nothing todo */
11153 err = 0;
ef6a4c88 11154 if (net_eq(net_old, net))
ce286d32
EB
11155 goto out;
11156
11157 /* Pick the destination device name, and ensure
11158 * we can use it in the destination network namespace.
11159 */
11160 err = -EEXIST;
d9031024 11161 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
11162 /* We get here if we can't use the current device name */
11163 if (!pat)
11164 goto out;
7892bd08
LR
11165 err = dev_get_valid_name(net, dev, pat);
11166 if (err < 0)
ce286d32
EB
11167 goto out;
11168 }
11169
eeb85a14
AV
11170 /* Check that new_ifindex isn't used yet. */
11171 err = -EBUSY;
11172 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11173 goto out;
11174
ce286d32
EB
11175 /*
11176 * And now a mini version of register_netdevice unregister_netdevice.
11177 */
11178
11179 /* If device is running close it first. */
9b772652 11180 dev_close(dev);
ce286d32
EB
11181
11182 /* And unlink it from device chain */
ce286d32
EB
11183 unlist_netdevice(dev);
11184
11185 synchronize_net();
11186
11187 /* Shutdown queueing discipline. */
11188 dev_shutdown(dev);
11189
11190 /* Notify protocols, that we are about to destroy
eb13da1a 11191 * this device. They should clean all the things.
11192 *
11193 * Note that dev->reg_state stays at NETREG_REGISTERED.
11194 * This is wanted because this way 8021q and macvlan know
11195 * the device is just moving and can keep their slaves up.
11196 */
ce286d32 11197 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 11198 rcu_barrier();
38e01b30 11199
d4e4fdf9 11200 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30 11201 /* If there is an ifindex conflict assign a new one */
eeb85a14
AV
11202 if (!new_ifindex) {
11203 if (__dev_get_by_index(net, dev->ifindex))
11204 new_ifindex = dev_new_index(net);
11205 else
11206 new_ifindex = dev->ifindex;
11207 }
38e01b30
ND
11208
11209 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11210 new_ifindex);
ce286d32
EB
11211
11212 /*
11213 * Flush the unicast and multicast chains
11214 */
a748ee24 11215 dev_uc_flush(dev);
22bedad3 11216 dev_mc_flush(dev);
ce286d32 11217
4e66ae2e
SH
11218 /* Send a netdev-removed uevent to the old namespace */
11219 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 11220 netdev_adjacent_del_links(dev);
4e66ae2e 11221
93642e14
JP
11222 /* Move per-net netdevice notifiers that are following the netdevice */
11223 move_netdevice_notifiers_dev_net(dev, net);
11224
ce286d32 11225 /* Actually switch the network namespace */
c346dca1 11226 dev_net_set(dev, net);
38e01b30 11227 dev->ifindex = new_ifindex;
ce286d32 11228
4e66ae2e
SH
11229 /* Send a netdev-add uevent to the new namespace */
11230 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 11231 netdev_adjacent_add_links(dev);
4e66ae2e 11232
8b41d188 11233 /* Fixup kobjects */
a1b3f594 11234 err = device_rename(&dev->dev, dev->name);
8b41d188 11235 WARN_ON(err);
ce286d32 11236
ef6a4c88
CB
11237 /* Adapt owner in case owning user namespace of target network
11238 * namespace is different from the original one.
11239 */
11240 err = netdev_change_owner(dev, net_old, net);
11241 WARN_ON(err);
11242
ce286d32
EB
11243 /* Add the device back in the hashes */
11244 list_netdevice(dev);
11245
11246 /* Notify protocols, that a new device appeared. */
11247 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11248
d90a909e
EB
11249 /*
11250 * Prevent userspace races by waiting until the network
11251 * device is fully setup before sending notifications.
11252 */
7f294054 11253 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 11254
ce286d32
EB
11255 synchronize_net();
11256 err = 0;
11257out:
11258 return err;
11259}
0854fa82 11260EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
ce286d32 11261
f0bf90de 11262static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
11263{
11264 struct sk_buff **list_skb;
1da177e4 11265 struct sk_buff *skb;
f0bf90de 11266 unsigned int cpu;
97d8b6e3 11267 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 11268
1da177e4
LT
11269 local_irq_disable();
11270 cpu = smp_processor_id();
11271 sd = &per_cpu(softnet_data, cpu);
11272 oldsd = &per_cpu(softnet_data, oldcpu);
11273
11274 /* Find end of our completion_queue. */
11275 list_skb = &sd->completion_queue;
11276 while (*list_skb)
11277 list_skb = &(*list_skb)->next;
11278 /* Append completion queue from offline CPU. */
11279 *list_skb = oldsd->completion_queue;
11280 oldsd->completion_queue = NULL;
11281
1da177e4 11282 /* Append output queue from offline CPU. */
a9cbd588
CG
11283 if (oldsd->output_queue) {
11284 *sd->output_queue_tailp = oldsd->output_queue;
11285 sd->output_queue_tailp = oldsd->output_queue_tailp;
11286 oldsd->output_queue = NULL;
11287 oldsd->output_queue_tailp = &oldsd->output_queue;
11288 }
ac64da0b
ED
11289 /* Append NAPI poll list from offline CPU, with one exception :
11290 * process_backlog() must be called by cpu owning percpu backlog.
11291 * We properly handle process_queue & input_pkt_queue later.
11292 */
11293 while (!list_empty(&oldsd->poll_list)) {
11294 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11295 struct napi_struct,
11296 poll_list);
11297
11298 list_del_init(&napi->poll_list);
11299 if (napi->poll == process_backlog)
11300 napi->state = 0;
11301 else
11302 ____napi_schedule(sd, napi);
264524d5 11303 }
1da177e4
LT
11304
11305 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11306 local_irq_enable();
11307
773fc8f6 11308#ifdef CONFIG_RPS
11309 remsd = oldsd->rps_ipi_list;
11310 oldsd->rps_ipi_list = NULL;
11311#endif
11312 /* send out pending IPI's on offline CPU */
11313 net_rps_send_ipi(remsd);
11314
1da177e4 11315 /* Process offline CPU's input_pkt_queue */
76cc8b13 11316 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 11317 netif_rx_ni(skb);
76cc8b13 11318 input_queue_head_incr(oldsd);
fec5e652 11319 }
ac64da0b 11320 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 11321 netif_rx_ni(skb);
76cc8b13
TH
11322 input_queue_head_incr(oldsd);
11323 }
1da177e4 11324
f0bf90de 11325 return 0;
1da177e4 11326}
1da177e4 11327
7f353bf2 11328/**
b63365a2
HX
11329 * netdev_increment_features - increment feature set by one
11330 * @all: current feature set
11331 * @one: new feature set
11332 * @mask: mask feature set
7f353bf2
HX
11333 *
11334 * Computes a new feature set after adding a device with feature set
b63365a2
HX
11335 * @one to the master device with current feature set @all. Will not
11336 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 11337 */
c8f44aff
MM
11338netdev_features_t netdev_increment_features(netdev_features_t all,
11339 netdev_features_t one, netdev_features_t mask)
b63365a2 11340{
c8cd0989 11341 if (mask & NETIF_F_HW_CSUM)
a188222b 11342 mask |= NETIF_F_CSUM_MASK;
1742f183 11343 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 11344
a188222b 11345 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 11346 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 11347
1742f183 11348 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
11349 if (all & NETIF_F_HW_CSUM)
11350 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
11351
11352 return all;
11353}
b63365a2 11354EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 11355
430f03cd 11356static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
11357{
11358 int i;
11359 struct hlist_head *hash;
11360
6da2ec56 11361 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
11362 if (hash != NULL)
11363 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11364 INIT_HLIST_HEAD(&hash[i]);
11365
11366 return hash;
11367}
11368
881d966b 11369/* Initialize per network namespace state */
4665079c 11370static int __net_init netdev_init(struct net *net)
881d966b 11371{
d9f37d01 11372 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 11373 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 11374
734b6541
RM
11375 if (net != &init_net)
11376 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 11377
30d97d35
PE
11378 net->dev_name_head = netdev_create_hash();
11379 if (net->dev_name_head == NULL)
11380 goto err_name;
881d966b 11381
30d97d35
PE
11382 net->dev_index_head = netdev_create_hash();
11383 if (net->dev_index_head == NULL)
11384 goto err_idx;
881d966b 11385
a30c7b42
JP
11386 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11387
881d966b 11388 return 0;
30d97d35
PE
11389
11390err_idx:
11391 kfree(net->dev_name_head);
11392err_name:
11393 return -ENOMEM;
881d966b
EB
11394}
11395
f0db275a
SH
11396/**
11397 * netdev_drivername - network driver for the device
11398 * @dev: network device
f0db275a
SH
11399 *
11400 * Determine network driver for device.
11401 */
3019de12 11402const char *netdev_drivername(const struct net_device *dev)
6579e57b 11403{
cf04a4c7
SH
11404 const struct device_driver *driver;
11405 const struct device *parent;
3019de12 11406 const char *empty = "";
6579e57b
AV
11407
11408 parent = dev->dev.parent;
6579e57b 11409 if (!parent)
3019de12 11410 return empty;
6579e57b
AV
11411
11412 driver = parent->driver;
11413 if (driver && driver->name)
3019de12
DM
11414 return driver->name;
11415 return empty;
6579e57b
AV
11416}
11417
6ea754eb
JP
11418static void __netdev_printk(const char *level, const struct net_device *dev,
11419 struct va_format *vaf)
256df2f3 11420{
b004ff49 11421 if (dev && dev->dev.parent) {
6ea754eb
JP
11422 dev_printk_emit(level[1] - '0',
11423 dev->dev.parent,
11424 "%s %s %s%s: %pV",
11425 dev_driver_string(dev->dev.parent),
11426 dev_name(dev->dev.parent),
11427 netdev_name(dev), netdev_reg_state(dev),
11428 vaf);
b004ff49 11429 } else if (dev) {
6ea754eb
JP
11430 printk("%s%s%s: %pV",
11431 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 11432 } else {
6ea754eb 11433 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 11434 }
256df2f3
JP
11435}
11436
6ea754eb
JP
11437void netdev_printk(const char *level, const struct net_device *dev,
11438 const char *format, ...)
256df2f3
JP
11439{
11440 struct va_format vaf;
11441 va_list args;
256df2f3
JP
11442
11443 va_start(args, format);
11444
11445 vaf.fmt = format;
11446 vaf.va = &args;
11447
6ea754eb 11448 __netdev_printk(level, dev, &vaf);
b004ff49 11449
256df2f3 11450 va_end(args);
256df2f3
JP
11451}
11452EXPORT_SYMBOL(netdev_printk);
11453
11454#define define_netdev_printk_level(func, level) \
6ea754eb 11455void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 11456{ \
256df2f3
JP
11457 struct va_format vaf; \
11458 va_list args; \
11459 \
11460 va_start(args, fmt); \
11461 \
11462 vaf.fmt = fmt; \
11463 vaf.va = &args; \
11464 \
6ea754eb 11465 __netdev_printk(level, dev, &vaf); \
b004ff49 11466 \
256df2f3 11467 va_end(args); \
256df2f3
JP
11468} \
11469EXPORT_SYMBOL(func);
11470
11471define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11472define_netdev_printk_level(netdev_alert, KERN_ALERT);
11473define_netdev_printk_level(netdev_crit, KERN_CRIT);
11474define_netdev_printk_level(netdev_err, KERN_ERR);
11475define_netdev_printk_level(netdev_warn, KERN_WARNING);
11476define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11477define_netdev_printk_level(netdev_info, KERN_INFO);
11478
4665079c 11479static void __net_exit netdev_exit(struct net *net)
881d966b
EB
11480{
11481 kfree(net->dev_name_head);
11482 kfree(net->dev_index_head);
ee21b18b
VA
11483 if (net != &init_net)
11484 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
11485}
11486
022cbae6 11487static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
11488 .init = netdev_init,
11489 .exit = netdev_exit,
11490};
11491
4665079c 11492static void __net_exit default_device_exit(struct net *net)
ce286d32 11493{
e008b5fc 11494 struct net_device *dev, *aux;
ce286d32 11495 /*
e008b5fc 11496 * Push all migratable network devices back to the
ce286d32
EB
11497 * initial network namespace
11498 */
11499 rtnl_lock();
e008b5fc 11500 for_each_netdev_safe(net, dev, aux) {
ce286d32 11501 int err;
aca51397 11502 char fb_name[IFNAMSIZ];
ce286d32
EB
11503
11504 /* Ignore unmoveable devices (i.e. loopback) */
11505 if (dev->features & NETIF_F_NETNS_LOCAL)
11506 continue;
11507
e008b5fc 11508 /* Leave virtual devices for the generic cleanup */
3a5ca857 11509 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
e008b5fc 11510 continue;
d0c082ce 11511
25985edc 11512 /* Push remaining network devices to init_net */
aca51397 11513 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
11514 if (__dev_get_by_name(&init_net, fb_name))
11515 snprintf(fb_name, IFNAMSIZ, "dev%%d");
0854fa82 11516 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 11517 if (err) {
7b6cd1ce
JP
11518 pr_emerg("%s: failed to move %s to init_net: %d\n",
11519 __func__, dev->name, err);
aca51397 11520 BUG();
ce286d32
EB
11521 }
11522 }
11523 rtnl_unlock();
11524}
11525
50624c93
EB
11526static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11527{
11528 /* Return with the rtnl_lock held when there are no network
11529 * devices unregistering in any network namespace in net_list.
11530 */
11531 struct net *net;
11532 bool unregistering;
ff960a73 11533 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 11534
ff960a73 11535 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 11536 for (;;) {
50624c93
EB
11537 unregistering = false;
11538 rtnl_lock();
11539 list_for_each_entry(net, net_list, exit_list) {
11540 if (net->dev_unreg_count > 0) {
11541 unregistering = true;
11542 break;
11543 }
11544 }
11545 if (!unregistering)
11546 break;
11547 __rtnl_unlock();
ff960a73
PZ
11548
11549 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 11550 }
ff960a73 11551 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
11552}
11553
04dc7f6b
EB
11554static void __net_exit default_device_exit_batch(struct list_head *net_list)
11555{
11556 /* At exit all network devices most be removed from a network
b595076a 11557 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
11558 * Do this across as many network namespaces as possible to
11559 * improve batching efficiency.
11560 */
11561 struct net_device *dev;
11562 struct net *net;
11563 LIST_HEAD(dev_kill_list);
11564
50624c93
EB
11565 /* To prevent network device cleanup code from dereferencing
11566 * loopback devices or network devices that have been freed
11567 * wait here for all pending unregistrations to complete,
11568 * before unregistring the loopback device and allowing the
11569 * network namespace be freed.
11570 *
11571 * The netdev todo list containing all network devices
11572 * unregistrations that happen in default_device_exit_batch
11573 * will run in the rtnl_unlock() at the end of
11574 * default_device_exit_batch.
11575 */
11576 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
11577 list_for_each_entry(net, net_list, exit_list) {
11578 for_each_netdev_reverse(net, dev) {
b0ab2fab 11579 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
11580 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11581 else
11582 unregister_netdevice_queue(dev, &dev_kill_list);
11583 }
11584 }
11585 unregister_netdevice_many(&dev_kill_list);
11586 rtnl_unlock();
11587}
11588
022cbae6 11589static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 11590 .exit = default_device_exit,
04dc7f6b 11591 .exit_batch = default_device_exit_batch,
ce286d32
EB
11592};
11593
1da177e4
LT
11594/*
11595 * Initialize the DEV module. At boot time this walks the device list and
11596 * unhooks any devices that fail to initialise (normally hardware not
11597 * present) and leaves us with a valid list of present and active devices.
11598 *
11599 */
11600
11601/*
11602 * This is called single threaded during boot, so no need
11603 * to take the rtnl semaphore.
11604 */
11605static int __init net_dev_init(void)
11606{
11607 int i, rc = -ENOMEM;
11608
11609 BUG_ON(!dev_boot_phase);
11610
1da177e4
LT
11611 if (dev_proc_init())
11612 goto out;
11613
8b41d188 11614 if (netdev_kobject_init())
1da177e4
LT
11615 goto out;
11616
11617 INIT_LIST_HEAD(&ptype_all);
82d8a867 11618 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
11619 INIT_LIST_HEAD(&ptype_base[i]);
11620
62532da9
VY
11621 INIT_LIST_HEAD(&offload_base);
11622
881d966b
EB
11623 if (register_pernet_subsys(&netdev_net_ops))
11624 goto out;
1da177e4
LT
11625
11626 /*
11627 * Initialise the packet receive queues.
11628 */
11629
6f912042 11630 for_each_possible_cpu(i) {
41852497 11631 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 11632 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 11633
41852497
ED
11634 INIT_WORK(flush, flush_backlog);
11635
e36fa2f7 11636 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 11637 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
11638#ifdef CONFIG_XFRM_OFFLOAD
11639 skb_queue_head_init(&sd->xfrm_backlog);
11640#endif
e36fa2f7 11641 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 11642 sd->output_queue_tailp = &sd->output_queue;
df334545 11643#ifdef CONFIG_RPS
545b8c8d 11644 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
e36fa2f7 11645 sd->cpu = i;
1e94d72f 11646#endif
0a9627f2 11647
7c4ec749 11648 init_gro_hash(&sd->backlog);
e36fa2f7
ED
11649 sd->backlog.poll = process_backlog;
11650 sd->backlog.weight = weight_p;
1da177e4
LT
11651 }
11652
1da177e4
LT
11653 dev_boot_phase = 0;
11654
505d4f73
EB
11655 /* The loopback device is special if any other network devices
11656 * is present in a network namespace the loopback device must
11657 * be present. Since we now dynamically allocate and free the
11658 * loopback device ensure this invariant is maintained by
11659 * keeping the loopback device as the first device on the
11660 * list of network devices. Ensuring the loopback devices
11661 * is the first device that appears and the last network device
11662 * that disappears.
11663 */
11664 if (register_pernet_device(&loopback_net_ops))
11665 goto out;
11666
11667 if (register_pernet_device(&default_device_ops))
11668 goto out;
11669
962cf36c
CM
11670 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11671 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 11672
f0bf90de
SAS
11673 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11674 NULL, dev_cpu_dead);
11675 WARN_ON(rc < 0);
1da177e4
LT
11676 rc = 0;
11677out:
11678 return rc;
11679}
11680
11681subsys_initcall(net_dev_init);