net-core: rx_otherhost_dropped to core_stats
[linux-block.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
11d6011c 82#include <linux/rwsem.h>
1da177e4
LT
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
0187bdfb 92#include <linux/ethtool.h>
1da177e4 93#include <linux/skbuff.h>
29863d41 94#include <linux/kthread.h>
a7862b45 95#include <linux/bpf.h>
b5cdae32 96#include <linux/bpf_trace.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4 98#include <net/sock.h>
02d62e86 99#include <net/busy_poll.h>
1da177e4 100#include <linux/rtnetlink.h>
1da177e4 101#include <linux/stat.h>
b14a9fc4 102#include <net/dsa.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
04f00ab2 105#include <net/gro.h>
1da177e4 106#include <net/pkt_sched.h>
87d83093 107#include <net/pkt_cls.h>
1da177e4 108#include <net/checksum.h>
44540960 109#include <net/xfrm.h>
1da177e4
LT
110#include <linux/highmem.h>
111#include <linux/init.h>
1da177e4 112#include <linux/module.h>
1da177e4
LT
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
1da177e4 116#include <net/iw_handler.h>
1da177e4 117#include <asm/current.h>
5bdb9886 118#include <linux/audit.h>
db217334 119#include <linux/dmaengine.h>
f6a78bfc 120#include <linux/err.h>
c7fa9d18 121#include <linux/ctype.h>
723e98b7 122#include <linux/if_arp.h>
6de329e2 123#include <linux/if_vlan.h>
8f0f2223 124#include <linux/ip.h>
ad55dcaf 125#include <net/ip.h>
25cd9ba0 126#include <net/mpls.h>
8f0f2223
DM
127#include <linux/ipv6.h>
128#include <linux/in.h>
b6b2fed1
DM
129#include <linux/jhash.h>
130#include <linux/random.h>
9cbc1cb8 131#include <trace/events/napi.h>
cf66ba58 132#include <trace/events/net.h>
07dc22e7 133#include <trace/events/skb.h>
70713ddd 134#include <trace/events/qdisc.h>
caeda9b9 135#include <linux/inetdevice.h>
c445477d 136#include <linux/cpu_rmap.h>
c5905afb 137#include <linux/static_key.h>
af12fa6e 138#include <linux/hashtable.h>
60877a32 139#include <linux/vmalloc.h>
529d0489 140#include <linux/if_macvlan.h>
e7fd2885 141#include <linux/errqueue.h>
3b47d303 142#include <linux/hrtimer.h>
7463acfb 143#include <linux/netfilter_netdev.h>
40e4e713 144#include <linux/crash_dump.h>
b72b5bf6 145#include <linux/sctp.h>
ae847f40 146#include <net/udp_tunnel.h>
6621dd29 147#include <linux/net_namespace.h>
aaa5d90b 148#include <linux/indirect_call_wrapper.h>
af3836df 149#include <net/devlink.h>
bd869245 150#include <linux/pm_runtime.h>
3744741a 151#include <linux/prandom.h>
127d7355 152#include <linux/once_lite.h>
1da177e4 153
6264f58c 154#include "dev.h"
342709ef
PE
155#include "net-sysfs.h"
156
5d38a079 157
1da177e4 158static DEFINE_SPINLOCK(ptype_lock);
900ff8c6
CW
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
1da177e4 161
ae78dbfa 162static int netif_rx_internal(struct sk_buff *skb);
54951194 163static int call_netdevice_notifiers_info(unsigned long val,
54951194 164 struct netdev_notifier_info *info);
26372605
PM
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
90b602f8 168static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 169
1da177e4 170/*
7562f876 171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
172 * semaphore.
173 *
c6d14c84 174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
7562f876 177 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
1da177e4 189DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
190EXPORT_SYMBOL(dev_base_lock);
191
6c557001
FW
192static DEFINE_MUTEX(ifalias_mutex);
193
af12fa6e
ET
194/* protects napi_hash addition/deletion and napi_gen_id */
195static DEFINE_SPINLOCK(napi_hash_lock);
196
52bd2d62 197static unsigned int napi_gen_id = NR_CPUS;
6180d9de 198static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 199
11d6011c 200static DECLARE_RWSEM(devnet_rename_sem);
c91f6df2 201
4e985ada
TG
202static inline void dev_base_seq_inc(struct net *net)
203{
643aa9cb 204 while (++net->dev_base_seq == 0)
205 ;
4e985ada
TG
206}
207
881d966b 208static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 209{
8387ff25 210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 211
08e9897d 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
213}
214
881d966b 215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 216{
7c28bd0b 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
218}
219
e722db8d
SAS
220static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
152102c7 222{
e722db8d
SAS
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
152102c7
CG
227}
228
e722db8d 229static inline void rps_lock_irq_disable(struct softnet_data *sd)
152102c7 230{
e722db8d
SAS
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235}
236
237static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239{
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244}
245
246static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247{
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
152102c7
CG
252}
253
ff927412
JP
254static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256{
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266}
267
268static struct netdev_name_node *
269netdev_name_node_head_alloc(struct net_device *dev)
270{
36fbf1e5
JP
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
ff927412
JP
278}
279
280static void netdev_name_node_free(struct netdev_name_node *name_node)
281{
282 kfree(name_node);
283}
284
285static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287{
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290}
291
292static void netdev_name_node_del(struct netdev_name_node *name_node)
293{
294 hlist_del_rcu(&name_node->hlist);
295}
296
297static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299{
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307}
308
309static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311{
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319}
320
75ea27d0
AT
321bool netdev_name_in_use(struct net *net, const char *name)
322{
323 return netdev_name_node_lookup(net, name);
324}
325EXPORT_SYMBOL(netdev_name_in_use);
326
36fbf1e5
JP
327int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343}
36fbf1e5
JP
344
345static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346{
347 list_del(&name_node->list);
348 netdev_name_node_del(name_node);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
351}
352
353int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354{
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
357
358 name_node = netdev_name_node_lookup(net, name);
359 if (!name_node)
360 return -ENOENT;
e08ad805
ED
361 /* lookup might have found our primary name or a name belonging
362 * to another device.
363 */
364 if (name_node == dev->name_node || name_node->dev != dev)
365 return -EINVAL;
366
36fbf1e5
JP
367 __netdev_name_node_alt_destroy(name_node);
368
369 return 0;
370}
36fbf1e5
JP
371
372static void netdev_name_node_alt_flush(struct net_device *dev)
373{
374 struct netdev_name_node *name_node, *tmp;
375
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
378}
379
ce286d32 380/* Device list insertion */
53759be9 381static void list_netdevice(struct net_device *dev)
ce286d32 382{
c346dca1 383 struct net *net = dev_net(dev);
ce286d32
EB
384
385 ASSERT_RTNL();
386
fd888e85 387 write_lock(&dev_base_lock);
c6d14c84 388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 389 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
390 hlist_add_head_rcu(&dev->index_hlist,
391 dev_index_hash(net, dev->ifindex));
fd888e85 392 write_unlock(&dev_base_lock);
4e985ada
TG
393
394 dev_base_seq_inc(net);
ce286d32
EB
395}
396
fb699dfd
ED
397/* Device list removal
398 * caller must respect a RCU grace period before freeing/reusing dev
399 */
ce286d32
EB
400static void unlist_netdevice(struct net_device *dev)
401{
402 ASSERT_RTNL();
403
404 /* Unlink dev from the device chain */
fd888e85 405 write_lock(&dev_base_lock);
c6d14c84 406 list_del_rcu(&dev->dev_list);
ff927412 407 netdev_name_node_del(dev->name_node);
fb699dfd 408 hlist_del_rcu(&dev->index_hlist);
fd888e85 409 write_unlock(&dev_base_lock);
4e985ada
TG
410
411 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
412}
413
1da177e4
LT
414/*
415 * Our notifier list
416 */
417
f07d5b94 418static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
419
420/*
421 * Device drivers call our routines to queue packets here. We empty the
422 * queue in the local softnet handler.
423 */
bea3348e 424
9958da05 425DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 426EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 427
1a33e10e
CW
428#ifdef CONFIG_LOCKDEP
429/*
430 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
431 * according to dev->type
432 */
433static const unsigned short netdev_lock_type[] = {
434 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
435 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
436 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
437 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
438 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
439 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
440 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
441 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
442 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
443 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
444 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
445 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
446 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
447 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
448 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
449
450static const char *const netdev_lock_name[] = {
451 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
452 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
453 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
454 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
455 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
456 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
457 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
458 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
459 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
460 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
461 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
462 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
463 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
464 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
465 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
466
467static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
845e0ebb 468static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
1a33e10e
CW
469
470static inline unsigned short netdev_lock_pos(unsigned short dev_type)
471{
472 int i;
473
474 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
475 if (netdev_lock_type[i] == dev_type)
476 return i;
477 /* the last key is used by default */
478 return ARRAY_SIZE(netdev_lock_type) - 1;
479}
480
481static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 unsigned short dev_type)
483{
484 int i;
485
486 i = netdev_lock_pos(dev_type);
487 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
488 netdev_lock_name[i]);
489}
845e0ebb
CW
490
491static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
492{
493 int i;
494
495 i = netdev_lock_pos(dev->type);
496 lockdep_set_class_and_name(&dev->addr_list_lock,
497 &netdev_addr_lock_key[i],
498 netdev_lock_name[i]);
499}
1a33e10e
CW
500#else
501static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
502 unsigned short dev_type)
503{
504}
845e0ebb
CW
505
506static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
507{
508}
1a33e10e
CW
509#endif
510
1da177e4 511/*******************************************************************************
eb13da1a 512 *
513 * Protocol management and registration routines
514 *
515 *******************************************************************************/
1da177e4 516
1da177e4 517
1da177e4
LT
518/*
519 * Add a protocol ID to the list. Now that the input handler is
520 * smarter we can dispense with all the messy stuff that used to be
521 * here.
522 *
523 * BEWARE!!! Protocol handlers, mangling input packets,
524 * MUST BE last in hash buckets and checking protocol handlers
525 * MUST start from promiscuous ptype_all chain in net_bh.
526 * It is true now, do not change it.
527 * Explanation follows: if protocol handler, mangling packet, will
528 * be the first on list, it is not able to sense, that packet
529 * is cloned and should be copied-on-write, so that it will
530 * change it and subsequent readers will get broken packet.
531 * --ANK (980803)
532 */
533
c07b68e8
ED
534static inline struct list_head *ptype_head(const struct packet_type *pt)
535{
536 if (pt->type == htons(ETH_P_ALL))
7866a621 537 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 538 else
7866a621
SN
539 return pt->dev ? &pt->dev->ptype_specific :
540 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
541}
542
1da177e4
LT
543/**
544 * dev_add_pack - add packet handler
545 * @pt: packet type declaration
546 *
547 * Add a protocol handler to the networking stack. The passed &packet_type
548 * is linked into kernel lists and may not be freed until it has been
549 * removed from the kernel lists.
550 *
4ec93edb 551 * This call does not sleep therefore it can not
1da177e4
LT
552 * guarantee all CPU's that are in middle of receiving packets
553 * will see the new packet type (until the next received packet).
554 */
555
556void dev_add_pack(struct packet_type *pt)
557{
c07b68e8 558 struct list_head *head = ptype_head(pt);
1da177e4 559
c07b68e8
ED
560 spin_lock(&ptype_lock);
561 list_add_rcu(&pt->list, head);
562 spin_unlock(&ptype_lock);
1da177e4 563}
d1b19dff 564EXPORT_SYMBOL(dev_add_pack);
1da177e4 565
1da177e4
LT
566/**
567 * __dev_remove_pack - remove packet handler
568 * @pt: packet type declaration
569 *
570 * Remove a protocol handler that was previously added to the kernel
571 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
572 * from the kernel lists and can be freed or reused once this function
4ec93edb 573 * returns.
1da177e4
LT
574 *
575 * The packet type might still be in use by receivers
576 * and must not be freed until after all the CPU's have gone
577 * through a quiescent state.
578 */
579void __dev_remove_pack(struct packet_type *pt)
580{
c07b68e8 581 struct list_head *head = ptype_head(pt);
1da177e4
LT
582 struct packet_type *pt1;
583
c07b68e8 584 spin_lock(&ptype_lock);
1da177e4
LT
585
586 list_for_each_entry(pt1, head, list) {
587 if (pt == pt1) {
588 list_del_rcu(&pt->list);
589 goto out;
590 }
591 }
592
7b6cd1ce 593 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 594out:
c07b68e8 595 spin_unlock(&ptype_lock);
1da177e4 596}
d1b19dff
ED
597EXPORT_SYMBOL(__dev_remove_pack);
598
1da177e4
LT
599/**
600 * dev_remove_pack - remove packet handler
601 * @pt: packet type declaration
602 *
603 * Remove a protocol handler that was previously added to the kernel
604 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
605 * from the kernel lists and can be freed or reused once this function
606 * returns.
607 *
608 * This call sleeps to guarantee that no CPU is looking at the packet
609 * type after return.
610 */
611void dev_remove_pack(struct packet_type *pt)
612{
613 __dev_remove_pack(pt);
4ec93edb 614
1da177e4
LT
615 synchronize_net();
616}
d1b19dff 617EXPORT_SYMBOL(dev_remove_pack);
1da177e4 618
62532da9 619
1da177e4 620/*******************************************************************************
eb13da1a 621 *
622 * Device Interface Subroutines
623 *
624 *******************************************************************************/
1da177e4 625
a54acb3a
ND
626/**
627 * dev_get_iflink - get 'iflink' value of a interface
628 * @dev: targeted interface
629 *
630 * Indicates the ifindex the interface is linked to.
631 * Physical interfaces have the same 'ifindex' and 'iflink' values.
632 */
633
634int dev_get_iflink(const struct net_device *dev)
635{
636 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
637 return dev->netdev_ops->ndo_get_iflink(dev);
638
7a66bbc9 639 return dev->ifindex;
a54acb3a
ND
640}
641EXPORT_SYMBOL(dev_get_iflink);
642
fc4099f1
PS
643/**
644 * dev_fill_metadata_dst - Retrieve tunnel egress information.
645 * @dev: targeted interface
646 * @skb: The packet.
647 *
648 * For better visibility of tunnel traffic OVS needs to retrieve
649 * egress tunnel information for a packet. Following API allows
650 * user to get this info.
651 */
652int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
653{
654 struct ip_tunnel_info *info;
655
656 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
657 return -EINVAL;
658
659 info = skb_tunnel_info_unclone(skb);
660 if (!info)
661 return -ENOMEM;
662 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
663 return -EINVAL;
664
665 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
666}
667EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
668
ddb94eaf
PNA
669static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
670{
671 int k = stack->num_paths++;
672
673 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
674 return NULL;
675
676 return &stack->path[k];
677}
678
679int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
680 struct net_device_path_stack *stack)
681{
682 const struct net_device *last_dev;
683 struct net_device_path_ctx ctx = {
684 .dev = dev,
685 .daddr = daddr,
686 };
687 struct net_device_path *path;
688 int ret = 0;
689
690 stack->num_paths = 0;
691 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
692 last_dev = ctx.dev;
693 path = dev_fwd_path(stack);
694 if (!path)
695 return -1;
696
697 memset(path, 0, sizeof(struct net_device_path));
698 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
699 if (ret < 0)
700 return -1;
701
702 if (WARN_ON_ONCE(last_dev == ctx.dev))
703 return -1;
704 }
a333215e
FF
705
706 if (!ctx.dev)
707 return ret;
708
ddb94eaf
PNA
709 path = dev_fwd_path(stack);
710 if (!path)
711 return -1;
712 path->type = DEV_PATH_ETHERNET;
713 path->dev = ctx.dev;
714
715 return ret;
716}
717EXPORT_SYMBOL_GPL(dev_fill_forward_path);
718
1da177e4
LT
719/**
720 * __dev_get_by_name - find a device by its name
c4ea43c5 721 * @net: the applicable net namespace
1da177e4
LT
722 * @name: name to find
723 *
724 * Find an interface by name. Must be called under RTNL semaphore
725 * or @dev_base_lock. If the name is found a pointer to the device
726 * is returned. If the name is not found then %NULL is returned. The
727 * reference counters are not incremented so the caller must be
728 * careful with locks.
729 */
730
881d966b 731struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 732{
ff927412 733 struct netdev_name_node *node_name;
1da177e4 734
ff927412
JP
735 node_name = netdev_name_node_lookup(net, name);
736 return node_name ? node_name->dev : NULL;
1da177e4 737}
d1b19dff 738EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 739
72c9528b 740/**
722c9a0c 741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
750 */
751
752struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753{
ff927412 754 struct netdev_name_node *node_name;
72c9528b 755
ff927412
JP
756 node_name = netdev_name_node_lookup_rcu(net, name);
757 return node_name ? node_name->dev : NULL;
72c9528b
ED
758}
759EXPORT_SYMBOL(dev_get_by_name_rcu);
760
1da177e4
LT
761/**
762 * dev_get_by_name - find a device by its name
c4ea43c5 763 * @net: the applicable net namespace
1da177e4
LT
764 * @name: name to find
765 *
766 * Find an interface by name. This can be called from any
767 * context and does its own locking. The returned handle has
768 * the usage count incremented and the caller must use dev_put() to
769 * release it when it is no longer needed. %NULL is returned if no
770 * matching device is found.
771 */
772
881d966b 773struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
774{
775 struct net_device *dev;
776
72c9528b
ED
777 rcu_read_lock();
778 dev = dev_get_by_name_rcu(net, name);
1160dfa1 779 dev_hold(dev);
72c9528b 780 rcu_read_unlock();
1da177e4
LT
781 return dev;
782}
d1b19dff 783EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
784
785/**
786 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 787 * @net: the applicable net namespace
1da177e4
LT
788 * @ifindex: index of device
789 *
790 * Search for an interface by index. Returns %NULL if the device
791 * is not found or a pointer to the device. The device has not
792 * had its reference counter increased so the caller must be careful
793 * about locking. The caller must hold either the RTNL semaphore
794 * or @dev_base_lock.
795 */
796
881d966b 797struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 798{
0bd8d536
ED
799 struct net_device *dev;
800 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 801
b67bfe0d 802 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
803 if (dev->ifindex == ifindex)
804 return dev;
0bd8d536 805
1da177e4
LT
806 return NULL;
807}
d1b19dff 808EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 809
fb699dfd
ED
810/**
811 * dev_get_by_index_rcu - find a device by its ifindex
812 * @net: the applicable net namespace
813 * @ifindex: index of device
814 *
815 * Search for an interface by index. Returns %NULL if the device
816 * is not found or a pointer to the device. The device has not
817 * had its reference counter increased so the caller must be careful
818 * about locking. The caller must hold RCU lock.
819 */
820
821struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
822{
fb699dfd
ED
823 struct net_device *dev;
824 struct hlist_head *head = dev_index_hash(net, ifindex);
825
b67bfe0d 826 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
827 if (dev->ifindex == ifindex)
828 return dev;
829
830 return NULL;
831}
832EXPORT_SYMBOL(dev_get_by_index_rcu);
833
1da177e4
LT
834
835/**
836 * dev_get_by_index - find a device by its ifindex
c4ea43c5 837 * @net: the applicable net namespace
1da177e4
LT
838 * @ifindex: index of device
839 *
840 * Search for an interface by index. Returns NULL if the device
841 * is not found or a pointer to the device. The device returned has
842 * had a reference added and the pointer is safe until the user calls
843 * dev_put to indicate they have finished with it.
844 */
845
881d966b 846struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
847{
848 struct net_device *dev;
849
fb699dfd
ED
850 rcu_read_lock();
851 dev = dev_get_by_index_rcu(net, ifindex);
1160dfa1 852 dev_hold(dev);
fb699dfd 853 rcu_read_unlock();
1da177e4
LT
854 return dev;
855}
d1b19dff 856EXPORT_SYMBOL(dev_get_by_index);
1da177e4 857
90b602f8
ML
858/**
859 * dev_get_by_napi_id - find a device by napi_id
860 * @napi_id: ID of the NAPI struct
861 *
862 * Search for an interface by NAPI ID. Returns %NULL if the device
863 * is not found or a pointer to the device. The device has not had
864 * its reference counter increased so the caller must be careful
865 * about locking. The caller must hold RCU lock.
866 */
867
868struct net_device *dev_get_by_napi_id(unsigned int napi_id)
869{
870 struct napi_struct *napi;
871
872 WARN_ON_ONCE(!rcu_read_lock_held());
873
874 if (napi_id < MIN_NAPI_ID)
875 return NULL;
876
877 napi = napi_by_id(napi_id);
878
879 return napi ? napi->dev : NULL;
880}
881EXPORT_SYMBOL(dev_get_by_napi_id);
882
5dbe7c17
NS
883/**
884 * netdev_get_name - get a netdevice name, knowing its ifindex.
885 * @net: network namespace
886 * @name: a pointer to the buffer where the name will be stored.
887 * @ifindex: the ifindex of the interface to get the name from.
5dbe7c17
NS
888 */
889int netdev_get_name(struct net *net, char *name, int ifindex)
890{
891 struct net_device *dev;
11d6011c 892 int ret;
5dbe7c17 893
11d6011c 894 down_read(&devnet_rename_sem);
5dbe7c17 895 rcu_read_lock();
11d6011c 896
5dbe7c17
NS
897 dev = dev_get_by_index_rcu(net, ifindex);
898 if (!dev) {
11d6011c
AD
899 ret = -ENODEV;
900 goto out;
5dbe7c17
NS
901 }
902
903 strcpy(name, dev->name);
5dbe7c17 904
11d6011c
AD
905 ret = 0;
906out:
907 rcu_read_unlock();
908 up_read(&devnet_rename_sem);
909 return ret;
5dbe7c17
NS
910}
911
1da177e4 912/**
941666c2 913 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 914 * @net: the applicable net namespace
1da177e4
LT
915 * @type: media type of device
916 * @ha: hardware address
917 *
918 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
919 * is not found or a pointer to the device.
920 * The caller must hold RCU or RTNL.
941666c2 921 * The returned device has not had its ref count increased
1da177e4
LT
922 * and the caller must therefore be careful about locking
923 *
1da177e4
LT
924 */
925
941666c2
ED
926struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
927 const char *ha)
1da177e4
LT
928{
929 struct net_device *dev;
930
941666c2 931 for_each_netdev_rcu(net, dev)
1da177e4
LT
932 if (dev->type == type &&
933 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
934 return dev;
935
936 return NULL;
1da177e4 937}
941666c2 938EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 939
881d966b 940struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 941{
99fe3c39 942 struct net_device *dev, *ret = NULL;
4e9cac2b 943
99fe3c39
ED
944 rcu_read_lock();
945 for_each_netdev_rcu(net, dev)
946 if (dev->type == type) {
947 dev_hold(dev);
948 ret = dev;
949 break;
950 }
951 rcu_read_unlock();
952 return ret;
1da177e4 953}
1da177e4
LT
954EXPORT_SYMBOL(dev_getfirstbyhwtype);
955
956/**
6c555490 957 * __dev_get_by_flags - find any device with given flags
c4ea43c5 958 * @net: the applicable net namespace
1da177e4
LT
959 * @if_flags: IFF_* values
960 * @mask: bitmask of bits in if_flags to check
961 *
962 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 963 * is not found or a pointer to the device. Must be called inside
6c555490 964 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
965 */
966
6c555490
WC
967struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 unsigned short mask)
1da177e4 969{
7562f876 970 struct net_device *dev, *ret;
1da177e4 971
6c555490
WC
972 ASSERT_RTNL();
973
7562f876 974 ret = NULL;
6c555490 975 for_each_netdev(net, dev) {
1da177e4 976 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 977 ret = dev;
1da177e4
LT
978 break;
979 }
980 }
7562f876 981 return ret;
1da177e4 982}
6c555490 983EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
984
985/**
986 * dev_valid_name - check if name is okay for network device
987 * @name: name string
988 *
989 * Network device names need to be valid file names to
4250b75b 990 * allow sysfs to work. We also disallow any kind of
c7fa9d18 991 * whitespace.
1da177e4 992 */
95f050bf 993bool dev_valid_name(const char *name)
1da177e4 994{
c7fa9d18 995 if (*name == '\0')
95f050bf 996 return false;
a9d48205 997 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 998 return false;
c7fa9d18 999 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1000 return false;
c7fa9d18
DM
1001
1002 while (*name) {
a4176a93 1003 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1004 return false;
c7fa9d18
DM
1005 name++;
1006 }
95f050bf 1007 return true;
1da177e4 1008}
d1b19dff 1009EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1010
1011/**
b267b179
EB
1012 * __dev_alloc_name - allocate a name for a device
1013 * @net: network namespace to allocate the device name in
1da177e4 1014 * @name: name format string
b267b179 1015 * @buf: scratch buffer and result name string
1da177e4
LT
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1024 */
1025
b267b179 1026static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1027{
1028 int i = 0;
1da177e4
LT
1029 const char *p;
1030 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1031 unsigned long *inuse;
1da177e4
LT
1032 struct net_device *d;
1033
93809105
RV
1034 if (!dev_valid_name(name))
1035 return -EINVAL;
1036
51f299dd 1037 p = strchr(name, '%');
1da177e4
LT
1038 if (p) {
1039 /*
1040 * Verify the string as this thing may have come from
1041 * the user. There must be either one "%d" and no other "%"
1042 * characters.
1043 */
1044 if (p[1] != 'd' || strchr(p + 2, '%'))
1045 return -EINVAL;
1046
1047 /* Use one page as a bit array of possible slots */
cfcabdcc 1048 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1049 if (!inuse)
1050 return -ENOMEM;
1051
881d966b 1052 for_each_netdev(net, d) {
6c015a22
JB
1053 struct netdev_name_node *name_node;
1054 list_for_each_entry(name_node, &d->name_node->list, list) {
1055 if (!sscanf(name_node->name, name, &i))
1056 continue;
1057 if (i < 0 || i >= max_netdevices)
1058 continue;
1059
1060 /* avoid cases where sscanf is not exact inverse of printf */
1061 snprintf(buf, IFNAMSIZ, name, i);
1062 if (!strncmp(buf, name_node->name, IFNAMSIZ))
25ee1660 1063 __set_bit(i, inuse);
6c015a22 1064 }
1da177e4
LT
1065 if (!sscanf(d->name, name, &i))
1066 continue;
1067 if (i < 0 || i >= max_netdevices)
1068 continue;
1069
1070 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1071 snprintf(buf, IFNAMSIZ, name, i);
1da177e4 1072 if (!strncmp(buf, d->name, IFNAMSIZ))
25ee1660 1073 __set_bit(i, inuse);
1da177e4
LT
1074 }
1075
1076 i = find_first_zero_bit(inuse, max_netdevices);
1077 free_page((unsigned long) inuse);
1078 }
1079
6224abda 1080 snprintf(buf, IFNAMSIZ, name, i);
75ea27d0 1081 if (!netdev_name_in_use(net, buf))
1da177e4 1082 return i;
1da177e4
LT
1083
1084 /* It is possible to run out of possible slots
1085 * when the name is long and there isn't enough space left
1086 * for the digits, or if all bits are used.
1087 */
029b6d14 1088 return -ENFILE;
1da177e4
LT
1089}
1090
2c88b855
RV
1091static int dev_alloc_name_ns(struct net *net,
1092 struct net_device *dev,
1093 const char *name)
1094{
1095 char buf[IFNAMSIZ];
1096 int ret;
1097
c46d7642 1098 BUG_ON(!net);
2c88b855
RV
1099 ret = __dev_alloc_name(net, name, buf);
1100 if (ret >= 0)
1101 strlcpy(dev->name, buf, IFNAMSIZ);
1102 return ret;
1da177e4
LT
1103}
1104
b267b179
EB
1105/**
1106 * dev_alloc_name - allocate a name for a device
1107 * @dev: device
1108 * @name: name format string
1109 *
1110 * Passed a format string - eg "lt%d" it will try and find a suitable
1111 * id. It scans list of devices to build up a free map, then chooses
1112 * the first empty slot. The caller must hold the dev_base or rtnl lock
1113 * while allocating the name and adding the device in order to avoid
1114 * duplicates.
1115 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1116 * Returns the number of the unit assigned or a negative errno code.
1117 */
1118
1119int dev_alloc_name(struct net_device *dev, const char *name)
1120{
c46d7642 1121 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1122}
d1b19dff 1123EXPORT_SYMBOL(dev_alloc_name);
b267b179 1124
bacb7e18
ED
1125static int dev_get_valid_name(struct net *net, struct net_device *dev,
1126 const char *name)
828de4f6 1127{
55a5ec9b
DM
1128 BUG_ON(!net);
1129
1130 if (!dev_valid_name(name))
1131 return -EINVAL;
1132
1133 if (strchr(name, '%'))
1134 return dev_alloc_name_ns(net, dev, name);
75ea27d0 1135 else if (netdev_name_in_use(net, name))
55a5ec9b
DM
1136 return -EEXIST;
1137 else if (dev->name != name)
1138 strlcpy(dev->name, name, IFNAMSIZ);
1139
1140 return 0;
d9031024 1141}
1da177e4
LT
1142
1143/**
1144 * dev_change_name - change name of a device
1145 * @dev: device
1146 * @newname: name (or format string) must be at least IFNAMSIZ
1147 *
1148 * Change name of a device, can pass format strings "eth%d".
1149 * for wildcarding.
1150 */
cf04a4c7 1151int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1152{
238fa362 1153 unsigned char old_assign_type;
fcc5a03a 1154 char oldname[IFNAMSIZ];
1da177e4 1155 int err = 0;
fcc5a03a 1156 int ret;
881d966b 1157 struct net *net;
1da177e4
LT
1158
1159 ASSERT_RTNL();
c346dca1 1160 BUG_ON(!dev_net(dev));
1da177e4 1161
c346dca1 1162 net = dev_net(dev);
8065a779
SWL
1163
1164 /* Some auto-enslaved devices e.g. failover slaves are
1165 * special, as userspace might rename the device after
1166 * the interface had been brought up and running since
1167 * the point kernel initiated auto-enslavement. Allow
1168 * live name change even when these slave devices are
1169 * up and running.
1170 *
1171 * Typically, users of these auto-enslaving devices
1172 * don't actually care about slave name change, as
1173 * they are supposed to operate on master interface
1174 * directly.
1175 */
1176 if (dev->flags & IFF_UP &&
1177 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1178 return -EBUSY;
1179
11d6011c 1180 down_write(&devnet_rename_sem);
c91f6df2
BH
1181
1182 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
11d6011c 1183 up_write(&devnet_rename_sem);
c8d90dca 1184 return 0;
c91f6df2 1185 }
c8d90dca 1186
fcc5a03a
HX
1187 memcpy(oldname, dev->name, IFNAMSIZ);
1188
828de4f6 1189 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1190 if (err < 0) {
11d6011c 1191 up_write(&devnet_rename_sem);
d9031024 1192 return err;
c91f6df2 1193 }
1da177e4 1194
6fe82a39
VF
1195 if (oldname[0] && !strchr(oldname, '%'))
1196 netdev_info(dev, "renamed from %s\n", oldname);
1197
238fa362
TG
1198 old_assign_type = dev->name_assign_type;
1199 dev->name_assign_type = NET_NAME_RENAMED;
1200
fcc5a03a 1201rollback:
a1b3f594
EB
1202 ret = device_rename(&dev->dev, dev->name);
1203 if (ret) {
1204 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1205 dev->name_assign_type = old_assign_type;
11d6011c 1206 up_write(&devnet_rename_sem);
a1b3f594 1207 return ret;
dcc99773 1208 }
7f988eab 1209
11d6011c 1210 up_write(&devnet_rename_sem);
c91f6df2 1211
5bb025fa
VF
1212 netdev_adjacent_rename_links(dev, oldname);
1213
fd888e85 1214 write_lock(&dev_base_lock);
ff927412 1215 netdev_name_node_del(dev->name_node);
fd888e85 1216 write_unlock(&dev_base_lock);
72c9528b
ED
1217
1218 synchronize_rcu();
1219
fd888e85 1220 write_lock(&dev_base_lock);
ff927412 1221 netdev_name_node_add(net, dev->name_node);
fd888e85 1222 write_unlock(&dev_base_lock);
7f988eab 1223
056925ab 1224 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1225 ret = notifier_to_errno(ret);
1226
1227 if (ret) {
91e9c07b
ED
1228 /* err >= 0 after dev_alloc_name() or stores the first errno */
1229 if (err >= 0) {
fcc5a03a 1230 err = ret;
11d6011c 1231 down_write(&devnet_rename_sem);
fcc5a03a 1232 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1233 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1234 dev->name_assign_type = old_assign_type;
1235 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1236 goto rollback;
91e9c07b 1237 } else {
5b92be64
JB
1238 netdev_err(dev, "name change rollback failed: %d\n",
1239 ret);
fcc5a03a
HX
1240 }
1241 }
1da177e4
LT
1242
1243 return err;
1244}
1245
0b815a1a
SH
1246/**
1247 * dev_set_alias - change ifalias of a device
1248 * @dev: device
1249 * @alias: name up to IFALIASZ
f0db275a 1250 * @len: limit of bytes to copy from info
0b815a1a
SH
1251 *
1252 * Set ifalias for a device,
1253 */
1254int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1255{
6c557001 1256 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1257
1258 if (len >= IFALIASZ)
1259 return -EINVAL;
1260
6c557001
FW
1261 if (len) {
1262 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1263 if (!new_alias)
1264 return -ENOMEM;
1265
1266 memcpy(new_alias->ifalias, alias, len);
1267 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1268 }
1269
6c557001 1270 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1271 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1272 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1273 mutex_unlock(&ifalias_mutex);
1274
1275 if (new_alias)
1276 kfree_rcu(new_alias, rcuhead);
0b815a1a 1277
0b815a1a
SH
1278 return len;
1279}
0fe554a4 1280EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1281
6c557001
FW
1282/**
1283 * dev_get_alias - get ifalias of a device
1284 * @dev: device
20e88320 1285 * @name: buffer to store name of ifalias
6c557001
FW
1286 * @len: size of buffer
1287 *
1288 * get ifalias for a device. Caller must make sure dev cannot go
1289 * away, e.g. rcu read lock or own a reference count to device.
1290 */
1291int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1292{
1293 const struct dev_ifalias *alias;
1294 int ret = 0;
1295
1296 rcu_read_lock();
1297 alias = rcu_dereference(dev->ifalias);
1298 if (alias)
1299 ret = snprintf(name, len, "%s", alias->ifalias);
1300 rcu_read_unlock();
1301
1302 return ret;
1303}
0b815a1a 1304
d8a33ac4 1305/**
3041a069 1306 * netdev_features_change - device changes features
d8a33ac4
SH
1307 * @dev: device to cause notification
1308 *
1309 * Called to indicate a device has changed features.
1310 */
1311void netdev_features_change(struct net_device *dev)
1312{
056925ab 1313 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1314}
1315EXPORT_SYMBOL(netdev_features_change);
1316
1da177e4
LT
1317/**
1318 * netdev_state_change - device changes state
1319 * @dev: device to cause notification
1320 *
1321 * Called to indicate a device has changed state. This function calls
1322 * the notifier chains for netdev_chain and sends a NEWLINK message
1323 * to the routing socket.
1324 */
1325void netdev_state_change(struct net_device *dev)
1326{
1327 if (dev->flags & IFF_UP) {
51d0c047
DA
1328 struct netdev_notifier_change_info change_info = {
1329 .info.dev = dev,
1330 };
54951194 1331
51d0c047 1332 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1333 &change_info.info);
7f294054 1334 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1335 }
1336}
d1b19dff 1337EXPORT_SYMBOL(netdev_state_change);
1da177e4 1338
7061eb8c
LP
1339/**
1340 * __netdev_notify_peers - notify network peers about existence of @dev,
1341 * to be called when rtnl lock is already held.
1342 * @dev: network device
1343 *
1344 * Generate traffic such that interested network peers are aware of
1345 * @dev, such as by generating a gratuitous ARP. This may be used when
1346 * a device wants to inform the rest of the network about some sort of
1347 * reconfiguration such as a failover event or virtual machine
1348 * migration.
1349 */
1350void __netdev_notify_peers(struct net_device *dev)
1351{
1352 ASSERT_RTNL();
1353 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1354 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1355}
1356EXPORT_SYMBOL(__netdev_notify_peers);
1357
ee89bab1 1358/**
722c9a0c 1359 * netdev_notify_peers - notify network peers about existence of @dev
1360 * @dev: network device
ee89bab1
AW
1361 *
1362 * Generate traffic such that interested network peers are aware of
1363 * @dev, such as by generating a gratuitous ARP. This may be used when
1364 * a device wants to inform the rest of the network about some sort of
1365 * reconfiguration such as a failover event or virtual machine
1366 * migration.
1367 */
1368void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1369{
ee89bab1 1370 rtnl_lock();
7061eb8c 1371 __netdev_notify_peers(dev);
ee89bab1 1372 rtnl_unlock();
c1da4ac7 1373}
ee89bab1 1374EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1375
29863d41
WW
1376static int napi_threaded_poll(void *data);
1377
1378static int napi_kthread_create(struct napi_struct *n)
1379{
1380 int err = 0;
1381
1382 /* Create and wake up the kthread once to put it in
1383 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1384 * warning and work with loadavg.
1385 */
1386 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1387 n->dev->name, n->napi_id);
1388 if (IS_ERR(n->thread)) {
1389 err = PTR_ERR(n->thread);
1390 pr_err("kthread_run failed with err %d\n", err);
1391 n->thread = NULL;
1392 }
1393
1394 return err;
1395}
1396
40c900aa 1397static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1398{
d314774c 1399 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1400 int ret;
1da177e4 1401
e46b66bc 1402 ASSERT_RTNL();
d07b26f5 1403 dev_addr_check(dev);
e46b66bc 1404
bd869245
HK
1405 if (!netif_device_present(dev)) {
1406 /* may be detached because parent is runtime-suspended */
1407 if (dev->dev.parent)
1408 pm_runtime_resume(dev->dev.parent);
1409 if (!netif_device_present(dev))
1410 return -ENODEV;
1411 }
1da177e4 1412
ca99ca14
NH
1413 /* Block netpoll from trying to do any rx path servicing.
1414 * If we don't do this there is a chance ndo_poll_controller
1415 * or ndo_poll may be running while we open the device
1416 */
66b5552f 1417 netpoll_poll_disable(dev);
ca99ca14 1418
40c900aa 1419 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1420 ret = notifier_to_errno(ret);
1421 if (ret)
1422 return ret;
1423
1da177e4 1424 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1425
d314774c
SH
1426 if (ops->ndo_validate_addr)
1427 ret = ops->ndo_validate_addr(dev);
bada339b 1428
d314774c
SH
1429 if (!ret && ops->ndo_open)
1430 ret = ops->ndo_open(dev);
1da177e4 1431
66b5552f 1432 netpoll_poll_enable(dev);
ca99ca14 1433
bada339b
JG
1434 if (ret)
1435 clear_bit(__LINK_STATE_START, &dev->state);
1436 else {
1da177e4 1437 dev->flags |= IFF_UP;
4417da66 1438 dev_set_rx_mode(dev);
1da177e4 1439 dev_activate(dev);
7bf23575 1440 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1441 }
bada339b 1442
1da177e4
LT
1443 return ret;
1444}
1445
1446/**
bd380811 1447 * dev_open - prepare an interface for use.
00f54e68
PM
1448 * @dev: device to open
1449 * @extack: netlink extended ack
1da177e4 1450 *
bd380811
PM
1451 * Takes a device from down to up state. The device's private open
1452 * function is invoked and then the multicast lists are loaded. Finally
1453 * the device is moved into the up state and a %NETDEV_UP message is
1454 * sent to the netdev notifier chain.
1455 *
1456 * Calling this function on an active interface is a nop. On a failure
1457 * a negative errno code is returned.
1da177e4 1458 */
00f54e68 1459int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1460{
1461 int ret;
1462
bd380811
PM
1463 if (dev->flags & IFF_UP)
1464 return 0;
1465
40c900aa 1466 ret = __dev_open(dev, extack);
bd380811
PM
1467 if (ret < 0)
1468 return ret;
1469
7f294054 1470 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1471 call_netdevice_notifiers(NETDEV_UP, dev);
1472
1473 return ret;
1474}
1475EXPORT_SYMBOL(dev_open);
1476
7051b88a 1477static void __dev_close_many(struct list_head *head)
1da177e4 1478{
44345724 1479 struct net_device *dev;
e46b66bc 1480
bd380811 1481 ASSERT_RTNL();
9d5010db
DM
1482 might_sleep();
1483
5cde2829 1484 list_for_each_entry(dev, head, close_list) {
3f4df206 1485 /* Temporarily disable netpoll until the interface is down */
66b5552f 1486 netpoll_poll_disable(dev);
3f4df206 1487
44345724 1488 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1489
44345724 1490 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1491
44345724
OP
1492 /* Synchronize to scheduled poll. We cannot touch poll list, it
1493 * can be even on different cpu. So just clear netif_running().
1494 *
1495 * dev->stop() will invoke napi_disable() on all of it's
1496 * napi_struct instances on this device.
1497 */
4e857c58 1498 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1499 }
1da177e4 1500
44345724 1501 dev_deactivate_many(head);
d8b2a4d2 1502
5cde2829 1503 list_for_each_entry(dev, head, close_list) {
44345724 1504 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1505
44345724
OP
1506 /*
1507 * Call the device specific close. This cannot fail.
1508 * Only if device is UP
1509 *
1510 * We allow it to be called even after a DETACH hot-plug
1511 * event.
1512 */
1513 if (ops->ndo_stop)
1514 ops->ndo_stop(dev);
1515
44345724 1516 dev->flags &= ~IFF_UP;
66b5552f 1517 netpoll_poll_enable(dev);
44345724 1518 }
44345724
OP
1519}
1520
7051b88a 1521static void __dev_close(struct net_device *dev)
44345724
OP
1522{
1523 LIST_HEAD(single);
1524
5cde2829 1525 list_add(&dev->close_list, &single);
7051b88a 1526 __dev_close_many(&single);
f87e6f47 1527 list_del(&single);
44345724
OP
1528}
1529
7051b88a 1530void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1531{
1532 struct net_device *dev, *tmp;
1da177e4 1533
5cde2829
EB
1534 /* Remove the devices that don't need to be closed */
1535 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1536 if (!(dev->flags & IFF_UP))
5cde2829 1537 list_del_init(&dev->close_list);
44345724
OP
1538
1539 __dev_close_many(head);
1da177e4 1540
5cde2829 1541 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1542 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1543 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1544 if (unlink)
1545 list_del_init(&dev->close_list);
44345724 1546 }
bd380811 1547}
99c4a26a 1548EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1549
1550/**
1551 * dev_close - shutdown an interface.
1552 * @dev: device to shutdown
1553 *
1554 * This function moves an active device into down state. A
1555 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1556 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1557 * chain.
1558 */
7051b88a 1559void dev_close(struct net_device *dev)
bd380811 1560{
e14a5993
ED
1561 if (dev->flags & IFF_UP) {
1562 LIST_HEAD(single);
1da177e4 1563
5cde2829 1564 list_add(&dev->close_list, &single);
99c4a26a 1565 dev_close_many(&single, true);
e14a5993
ED
1566 list_del(&single);
1567 }
1da177e4 1568}
d1b19dff 1569EXPORT_SYMBOL(dev_close);
1da177e4
LT
1570
1571
0187bdfb
BH
1572/**
1573 * dev_disable_lro - disable Large Receive Offload on a device
1574 * @dev: device
1575 *
1576 * Disable Large Receive Offload (LRO) on a net device. Must be
1577 * called under RTNL. This is needed if received packets may be
1578 * forwarded to another interface.
1579 */
1580void dev_disable_lro(struct net_device *dev)
1581{
fbe168ba
MK
1582 struct net_device *lower_dev;
1583 struct list_head *iter;
529d0489 1584
bc5787c6
MM
1585 dev->wanted_features &= ~NETIF_F_LRO;
1586 netdev_update_features(dev);
27660515 1587
22d5969f
MM
1588 if (unlikely(dev->features & NETIF_F_LRO))
1589 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1590
1591 netdev_for_each_lower_dev(dev, lower_dev, iter)
1592 dev_disable_lro(lower_dev);
0187bdfb
BH
1593}
1594EXPORT_SYMBOL(dev_disable_lro);
1595
56f5aa77
MC
1596/**
1597 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1598 * @dev: device
1599 *
1600 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1601 * called under RTNL. This is needed if Generic XDP is installed on
1602 * the device.
1603 */
1604static void dev_disable_gro_hw(struct net_device *dev)
1605{
1606 dev->wanted_features &= ~NETIF_F_GRO_HW;
1607 netdev_update_features(dev);
1608
1609 if (unlikely(dev->features & NETIF_F_GRO_HW))
1610 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1611}
1612
ede2762d
KT
1613const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1614{
1615#define N(val) \
1616 case NETDEV_##val: \
1617 return "NETDEV_" __stringify(val);
1618 switch (cmd) {
1619 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1620 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1621 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1622 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1623 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1624 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1625 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1626 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1627 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
9309f97a
PM
1628 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1629 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
3f5ecd8a 1630 }
ede2762d
KT
1631#undef N
1632 return "UNKNOWN_NETDEV_EVENT";
1633}
1634EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1635
351638e7
JP
1636static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1637 struct net_device *dev)
1638{
51d0c047
DA
1639 struct netdev_notifier_info info = {
1640 .dev = dev,
1641 };
351638e7 1642
351638e7
JP
1643 return nb->notifier_call(nb, val, &info);
1644}
0187bdfb 1645
afa0df59
JP
1646static int call_netdevice_register_notifiers(struct notifier_block *nb,
1647 struct net_device *dev)
1648{
1649 int err;
1650
1651 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1652 err = notifier_to_errno(err);
1653 if (err)
1654 return err;
1655
1656 if (!(dev->flags & IFF_UP))
1657 return 0;
1658
1659 call_netdevice_notifier(nb, NETDEV_UP, dev);
1660 return 0;
1661}
1662
1663static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1664 struct net_device *dev)
1665{
1666 if (dev->flags & IFF_UP) {
1667 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1668 dev);
1669 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1670 }
1671 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1672}
1673
1674static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1675 struct net *net)
1676{
1677 struct net_device *dev;
1678 int err;
1679
1680 for_each_netdev(net, dev) {
1681 err = call_netdevice_register_notifiers(nb, dev);
1682 if (err)
1683 goto rollback;
1684 }
1685 return 0;
1686
1687rollback:
1688 for_each_netdev_continue_reverse(net, dev)
1689 call_netdevice_unregister_notifiers(nb, dev);
1690 return err;
1691}
1692
1693static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1694 struct net *net)
1695{
1696 struct net_device *dev;
1697
1698 for_each_netdev(net, dev)
1699 call_netdevice_unregister_notifiers(nb, dev);
1700}
1701
881d966b
EB
1702static int dev_boot_phase = 1;
1703
1da177e4 1704/**
722c9a0c 1705 * register_netdevice_notifier - register a network notifier block
1706 * @nb: notifier
1da177e4 1707 *
722c9a0c 1708 * Register a notifier to be called when network device events occur.
1709 * The notifier passed is linked into the kernel structures and must
1710 * not be reused until it has been unregistered. A negative errno code
1711 * is returned on a failure.
1da177e4 1712 *
722c9a0c 1713 * When registered all registration and up events are replayed
1714 * to the new notifier to allow device to have a race free
1715 * view of the network device list.
1da177e4
LT
1716 */
1717
1718int register_netdevice_notifier(struct notifier_block *nb)
1719{
881d966b 1720 struct net *net;
1da177e4
LT
1721 int err;
1722
328fbe74
KT
1723 /* Close race with setup_net() and cleanup_net() */
1724 down_write(&pernet_ops_rwsem);
1da177e4 1725 rtnl_lock();
f07d5b94 1726 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1727 if (err)
1728 goto unlock;
881d966b
EB
1729 if (dev_boot_phase)
1730 goto unlock;
1731 for_each_net(net) {
afa0df59
JP
1732 err = call_netdevice_register_net_notifiers(nb, net);
1733 if (err)
1734 goto rollback;
1da177e4 1735 }
fcc5a03a
HX
1736
1737unlock:
1da177e4 1738 rtnl_unlock();
328fbe74 1739 up_write(&pernet_ops_rwsem);
1da177e4 1740 return err;
fcc5a03a
HX
1741
1742rollback:
afa0df59
JP
1743 for_each_net_continue_reverse(net)
1744 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1745
1746 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1747 goto unlock;
1da177e4 1748}
d1b19dff 1749EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1750
1751/**
722c9a0c 1752 * unregister_netdevice_notifier - unregister a network notifier block
1753 * @nb: notifier
1da177e4 1754 *
722c9a0c 1755 * Unregister a notifier previously registered by
1756 * register_netdevice_notifier(). The notifier is unlinked into the
1757 * kernel structures and may then be reused. A negative errno code
1758 * is returned on a failure.
7d3d43da 1759 *
722c9a0c 1760 * After unregistering unregister and down device events are synthesized
1761 * for all devices on the device list to the removed notifier to remove
1762 * the need for special case cleanup code.
1da177e4
LT
1763 */
1764
1765int unregister_netdevice_notifier(struct notifier_block *nb)
1766{
7d3d43da 1767 struct net *net;
9f514950
HX
1768 int err;
1769
328fbe74
KT
1770 /* Close race with setup_net() and cleanup_net() */
1771 down_write(&pernet_ops_rwsem);
9f514950 1772 rtnl_lock();
f07d5b94 1773 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1774 if (err)
1775 goto unlock;
1776
48b3a137
JP
1777 for_each_net(net)
1778 call_netdevice_unregister_net_notifiers(nb, net);
1779
7d3d43da 1780unlock:
9f514950 1781 rtnl_unlock();
328fbe74 1782 up_write(&pernet_ops_rwsem);
9f514950 1783 return err;
1da177e4 1784}
d1b19dff 1785EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1786
1f637703
JP
1787static int __register_netdevice_notifier_net(struct net *net,
1788 struct notifier_block *nb,
1789 bool ignore_call_fail)
1790{
1791 int err;
1792
1793 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1794 if (err)
1795 return err;
1796 if (dev_boot_phase)
1797 return 0;
1798
1799 err = call_netdevice_register_net_notifiers(nb, net);
1800 if (err && !ignore_call_fail)
1801 goto chain_unregister;
1802
1803 return 0;
1804
1805chain_unregister:
1806 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1807 return err;
1808}
1809
1810static int __unregister_netdevice_notifier_net(struct net *net,
1811 struct notifier_block *nb)
1812{
1813 int err;
1814
1815 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1816 if (err)
1817 return err;
1818
1819 call_netdevice_unregister_net_notifiers(nb, net);
1820 return 0;
1821}
1822
a30c7b42
JP
1823/**
1824 * register_netdevice_notifier_net - register a per-netns network notifier block
1825 * @net: network namespace
1826 * @nb: notifier
1827 *
1828 * Register a notifier to be called when network device events occur.
1829 * The notifier passed is linked into the kernel structures and must
1830 * not be reused until it has been unregistered. A negative errno code
1831 * is returned on a failure.
1832 *
1833 * When registered all registration and up events are replayed
1834 * to the new notifier to allow device to have a race free
1835 * view of the network device list.
1836 */
1837
1838int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1839{
1840 int err;
1841
1842 rtnl_lock();
1f637703 1843 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1844 rtnl_unlock();
1845 return err;
a30c7b42
JP
1846}
1847EXPORT_SYMBOL(register_netdevice_notifier_net);
1848
1849/**
1850 * unregister_netdevice_notifier_net - unregister a per-netns
1851 * network notifier block
1852 * @net: network namespace
1853 * @nb: notifier
1854 *
1855 * Unregister a notifier previously registered by
1856 * register_netdevice_notifier(). The notifier is unlinked into the
1857 * kernel structures and may then be reused. A negative errno code
1858 * is returned on a failure.
1859 *
1860 * After unregistering unregister and down device events are synthesized
1861 * for all devices on the device list to the removed notifier to remove
1862 * the need for special case cleanup code.
1863 */
1864
1865int unregister_netdevice_notifier_net(struct net *net,
1866 struct notifier_block *nb)
1867{
1868 int err;
1869
1870 rtnl_lock();
1f637703 1871 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1872 rtnl_unlock();
1873 return err;
1874}
1875EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1876
93642e14
JP
1877int register_netdevice_notifier_dev_net(struct net_device *dev,
1878 struct notifier_block *nb,
1879 struct netdev_net_notifier *nn)
1880{
1881 int err;
a30c7b42 1882
93642e14
JP
1883 rtnl_lock();
1884 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1885 if (!err) {
1886 nn->nb = nb;
1887 list_add(&nn->list, &dev->net_notifier_list);
1888 }
a30c7b42
JP
1889 rtnl_unlock();
1890 return err;
1891}
93642e14
JP
1892EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1893
1894int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1895 struct notifier_block *nb,
1896 struct netdev_net_notifier *nn)
1897{
1898 int err;
1899
1900 rtnl_lock();
1901 list_del(&nn->list);
1902 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1903 rtnl_unlock();
1904 return err;
1905}
1906EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1907
1908static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1909 struct net *net)
1910{
1911 struct netdev_net_notifier *nn;
1912
1913 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1914 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1915 __register_netdevice_notifier_net(net, nn->nb, true);
1916 }
1917}
a30c7b42 1918
351638e7
JP
1919/**
1920 * call_netdevice_notifiers_info - call all network notifier blocks
1921 * @val: value passed unmodified to notifier function
351638e7
JP
1922 * @info: notifier information data
1923 *
1924 * Call all network notifier blocks. Parameters and return value
1925 * are as for raw_notifier_call_chain().
1926 */
1927
1d143d9f 1928static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1929 struct netdev_notifier_info *info)
351638e7 1930{
a30c7b42
JP
1931 struct net *net = dev_net(info->dev);
1932 int ret;
1933
351638e7 1934 ASSERT_RTNL();
a30c7b42
JP
1935
1936 /* Run per-netns notifier block chain first, then run the global one.
1937 * Hopefully, one day, the global one is going to be removed after
1938 * all notifier block registrators get converted to be per-netns.
1939 */
1940 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1941 if (ret & NOTIFY_STOP_MASK)
1942 return ret;
351638e7
JP
1943 return raw_notifier_call_chain(&netdev_chain, val, info);
1944}
351638e7 1945
9309f97a
PM
1946/**
1947 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1948 * for and rollback on error
1949 * @val_up: value passed unmodified to notifier function
1950 * @val_down: value passed unmodified to the notifier function when
1951 * recovering from an error on @val_up
1952 * @info: notifier information data
1953 *
1954 * Call all per-netns network notifier blocks, but not notifier blocks on
1955 * the global notifier chain. Parameters and return value are as for
1956 * raw_notifier_call_chain_robust().
1957 */
1958
1959static int
1960call_netdevice_notifiers_info_robust(unsigned long val_up,
1961 unsigned long val_down,
1962 struct netdev_notifier_info *info)
1963{
1964 struct net *net = dev_net(info->dev);
1965
1966 ASSERT_RTNL();
1967
1968 return raw_notifier_call_chain_robust(&net->netdev_chain,
1969 val_up, val_down, info);
1970}
1971
26372605
PM
1972static int call_netdevice_notifiers_extack(unsigned long val,
1973 struct net_device *dev,
1974 struct netlink_ext_ack *extack)
1975{
1976 struct netdev_notifier_info info = {
1977 .dev = dev,
1978 .extack = extack,
1979 };
1980
1981 return call_netdevice_notifiers_info(val, &info);
1982}
1983
1da177e4
LT
1984/**
1985 * call_netdevice_notifiers - call all network notifier blocks
1986 * @val: value passed unmodified to notifier function
c4ea43c5 1987 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1988 *
1989 * Call all network notifier blocks. Parameters and return value
f07d5b94 1990 * are as for raw_notifier_call_chain().
1da177e4
LT
1991 */
1992
ad7379d4 1993int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1994{
26372605 1995 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 1996}
edf947f1 1997EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1998
af7d6cce
SD
1999/**
2000 * call_netdevice_notifiers_mtu - call all network notifier blocks
2001 * @val: value passed unmodified to notifier function
2002 * @dev: net_device pointer passed unmodified to notifier function
2003 * @arg: additional u32 argument passed to the notifier function
2004 *
2005 * Call all network notifier blocks. Parameters and return value
2006 * are as for raw_notifier_call_chain().
2007 */
2008static int call_netdevice_notifiers_mtu(unsigned long val,
2009 struct net_device *dev, u32 arg)
2010{
2011 struct netdev_notifier_info_ext info = {
2012 .info.dev = dev,
2013 .ext.mtu = arg,
2014 };
2015
2016 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2017
2018 return call_netdevice_notifiers_info(val, &info.info);
2019}
2020
1cf51900 2021#ifdef CONFIG_NET_INGRESS
aabf6772 2022static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2023
2024void net_inc_ingress_queue(void)
2025{
aabf6772 2026 static_branch_inc(&ingress_needed_key);
4577139b
DB
2027}
2028EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2029
2030void net_dec_ingress_queue(void)
2031{
aabf6772 2032 static_branch_dec(&ingress_needed_key);
4577139b
DB
2033}
2034EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2035#endif
2036
1f211a1b 2037#ifdef CONFIG_NET_EGRESS
aabf6772 2038static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2039
2040void net_inc_egress_queue(void)
2041{
aabf6772 2042 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2043}
2044EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2045
2046void net_dec_egress_queue(void)
2047{
aabf6772 2048 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2049}
2050EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2051#endif
2052
27942a15
MKL
2053DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2054EXPORT_SYMBOL(netstamp_needed_key);
e9666d10 2055#ifdef CONFIG_JUMP_LABEL
b90e5794 2056static atomic_t netstamp_needed_deferred;
13baa00a 2057static atomic_t netstamp_wanted;
5fa8bbda 2058static void netstamp_clear(struct work_struct *work)
1da177e4 2059{
b90e5794 2060 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2061 int wanted;
b90e5794 2062
13baa00a
ED
2063 wanted = atomic_add_return(deferred, &netstamp_wanted);
2064 if (wanted > 0)
39e83922 2065 static_branch_enable(&netstamp_needed_key);
13baa00a 2066 else
39e83922 2067 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2068}
2069static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2070#endif
5fa8bbda
ED
2071
2072void net_enable_timestamp(void)
2073{
e9666d10 2074#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2075 int wanted;
2076
2077 while (1) {
2078 wanted = atomic_read(&netstamp_wanted);
2079 if (wanted <= 0)
2080 break;
2081 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2082 return;
2083 }
2084 atomic_inc(&netstamp_needed_deferred);
2085 schedule_work(&netstamp_work);
2086#else
39e83922 2087 static_branch_inc(&netstamp_needed_key);
13baa00a 2088#endif
1da177e4 2089}
d1b19dff 2090EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2091
2092void net_disable_timestamp(void)
2093{
e9666d10 2094#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2095 int wanted;
2096
2097 while (1) {
2098 wanted = atomic_read(&netstamp_wanted);
2099 if (wanted <= 1)
2100 break;
2101 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2102 return;
2103 }
2104 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2105 schedule_work(&netstamp_work);
2106#else
39e83922 2107 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2108#endif
1da177e4 2109}
d1b19dff 2110EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2111
3b098e2d 2112static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2113{
2456e855 2114 skb->tstamp = 0;
27942a15 2115 skb->mono_delivery_time = 0;
39e83922 2116 if (static_branch_unlikely(&netstamp_needed_key))
d93376f5 2117 skb->tstamp = ktime_get_real();
1da177e4
LT
2118}
2119
39e83922
DB
2120#define net_timestamp_check(COND, SKB) \
2121 if (static_branch_unlikely(&netstamp_needed_key)) { \
2122 if ((COND) && !(SKB)->tstamp) \
d93376f5 2123 (SKB)->tstamp = ktime_get_real(); \
39e83922 2124 } \
3b098e2d 2125
f4b05d27 2126bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0 2127{
5f7d5728 2128 return __is_skb_forwardable(dev, skb, true);
79b569f0 2129}
1ee481fb 2130EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2131
5f7d5728
JDB
2132static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2133 bool check_mtu)
a0265d28 2134{
5f7d5728 2135 int ret = ____dev_forward_skb(dev, skb, check_mtu);
a0265d28 2136
4e3264d2
MKL
2137 if (likely(!ret)) {
2138 skb->protocol = eth_type_trans(skb, dev);
2139 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2140 }
a0265d28 2141
4e3264d2 2142 return ret;
a0265d28 2143}
5f7d5728
JDB
2144
2145int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2146{
2147 return __dev_forward_skb2(dev, skb, true);
2148}
a0265d28
HX
2149EXPORT_SYMBOL_GPL(__dev_forward_skb);
2150
44540960
AB
2151/**
2152 * dev_forward_skb - loopback an skb to another netif
2153 *
2154 * @dev: destination network device
2155 * @skb: buffer to forward
2156 *
2157 * return values:
2158 * NET_RX_SUCCESS (no congestion)
6ec82562 2159 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2160 *
2161 * dev_forward_skb can be used for injecting an skb from the
2162 * start_xmit function of one device into the receive queue
2163 * of another device.
2164 *
2165 * The receiving device may be in another namespace, so
2166 * we have to clear all information in the skb that could
2167 * impact namespace isolation.
2168 */
2169int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2170{
a0265d28 2171 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2172}
2173EXPORT_SYMBOL_GPL(dev_forward_skb);
2174
5f7d5728
JDB
2175int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2176{
2177 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2178}
2179
71d9dec2
CG
2180static inline int deliver_skb(struct sk_buff *skb,
2181 struct packet_type *pt_prev,
2182 struct net_device *orig_dev)
2183{
1f8b977a 2184 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2185 return -ENOMEM;
63354797 2186 refcount_inc(&skb->users);
71d9dec2
CG
2187 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2188}
2189
7866a621
SN
2190static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2191 struct packet_type **pt,
fbcb2170
JP
2192 struct net_device *orig_dev,
2193 __be16 type,
7866a621
SN
2194 struct list_head *ptype_list)
2195{
2196 struct packet_type *ptype, *pt_prev = *pt;
2197
2198 list_for_each_entry_rcu(ptype, ptype_list, list) {
2199 if (ptype->type != type)
2200 continue;
2201 if (pt_prev)
fbcb2170 2202 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2203 pt_prev = ptype;
2204 }
2205 *pt = pt_prev;
2206}
2207
c0de08d0
EL
2208static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2209{
a3d744e9 2210 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2211 return false;
2212
2213 if (ptype->id_match)
2214 return ptype->id_match(ptype, skb->sk);
2215 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2216 return true;
2217
2218 return false;
2219}
2220
9f9a742d
MR
2221/**
2222 * dev_nit_active - return true if any network interface taps are in use
2223 *
2224 * @dev: network device to check for the presence of taps
2225 */
2226bool dev_nit_active(struct net_device *dev)
2227{
2228 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2229}
2230EXPORT_SYMBOL_GPL(dev_nit_active);
2231
1da177e4
LT
2232/*
2233 * Support routine. Sends outgoing frames to any network
2234 * taps currently in use.
2235 */
2236
74b20582 2237void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2238{
2239 struct packet_type *ptype;
71d9dec2
CG
2240 struct sk_buff *skb2 = NULL;
2241 struct packet_type *pt_prev = NULL;
7866a621 2242 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2243
1da177e4 2244 rcu_read_lock();
7866a621
SN
2245again:
2246 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2247 if (ptype->ignore_outgoing)
2248 continue;
2249
1da177e4
LT
2250 /* Never send packets back to the socket
2251 * they originated from - MvS (miquels@drinkel.ow.org)
2252 */
7866a621
SN
2253 if (skb_loop_sk(ptype, skb))
2254 continue;
71d9dec2 2255
7866a621
SN
2256 if (pt_prev) {
2257 deliver_skb(skb2, pt_prev, skb->dev);
2258 pt_prev = ptype;
2259 continue;
2260 }
1da177e4 2261
7866a621
SN
2262 /* need to clone skb, done only once */
2263 skb2 = skb_clone(skb, GFP_ATOMIC);
2264 if (!skb2)
2265 goto out_unlock;
70978182 2266
7866a621 2267 net_timestamp_set(skb2);
1da177e4 2268
7866a621
SN
2269 /* skb->nh should be correctly
2270 * set by sender, so that the second statement is
2271 * just protection against buggy protocols.
2272 */
2273 skb_reset_mac_header(skb2);
2274
2275 if (skb_network_header(skb2) < skb2->data ||
2276 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2277 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2278 ntohs(skb2->protocol),
2279 dev->name);
2280 skb_reset_network_header(skb2);
1da177e4 2281 }
7866a621
SN
2282
2283 skb2->transport_header = skb2->network_header;
2284 skb2->pkt_type = PACKET_OUTGOING;
2285 pt_prev = ptype;
2286 }
2287
2288 if (ptype_list == &ptype_all) {
2289 ptype_list = &dev->ptype_all;
2290 goto again;
1da177e4 2291 }
7866a621 2292out_unlock:
581fe0ea
WB
2293 if (pt_prev) {
2294 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2295 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2296 else
2297 kfree_skb(skb2);
2298 }
1da177e4
LT
2299 rcu_read_unlock();
2300}
74b20582 2301EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2302
2c53040f
BH
2303/**
2304 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2305 * @dev: Network device
2306 * @txq: number of queues available
2307 *
2308 * If real_num_tx_queues is changed the tc mappings may no longer be
2309 * valid. To resolve this verify the tc mapping remains valid and if
2310 * not NULL the mapping. With no priorities mapping to this
2311 * offset/count pair it will no longer be used. In the worst case TC0
2312 * is invalid nothing can be done so disable priority mappings. If is
2313 * expected that drivers will fix this mapping if they can before
2314 * calling netif_set_real_num_tx_queues.
2315 */
bb134d22 2316static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2317{
2318 int i;
2319 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2320
2321 /* If TC0 is invalidated disable TC mapping */
2322 if (tc->offset + tc->count > txq) {
5b92be64 2323 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2324 dev->num_tc = 0;
2325 return;
2326 }
2327
2328 /* Invalidated prio to tc mappings set to TC0 */
2329 for (i = 1; i < TC_BITMASK + 1; i++) {
2330 int q = netdev_get_prio_tc_map(dev, i);
2331
2332 tc = &dev->tc_to_txq[q];
2333 if (tc->offset + tc->count > txq) {
5b92be64
JB
2334 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2335 i, q);
4f57c087
JF
2336 netdev_set_prio_tc_map(dev, i, 0);
2337 }
2338 }
2339}
2340
8d059b0f
AD
2341int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2342{
2343 if (dev->num_tc) {
2344 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345 int i;
2346
ffcfe25b 2347 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2348 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2349 if ((txq - tc->offset) < tc->count)
2350 return i;
2351 }
2352
ffcfe25b 2353 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2354 return -1;
2355 }
2356
2357 return 0;
2358}
8a5f2166 2359EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2360
537c00de 2361#ifdef CONFIG_XPS
5da9ace3
VO
2362static struct static_key xps_needed __read_mostly;
2363static struct static_key xps_rxqs_needed __read_mostly;
537c00de
AD
2364static DEFINE_MUTEX(xps_map_mutex);
2365#define xmap_dereference(P) \
2366 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2367
6234f874 2368static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2d05bf01 2369 struct xps_dev_maps *old_maps, int tci, u16 index)
537c00de 2370{
10cdc3f3
AD
2371 struct xps_map *map = NULL;
2372 int pos;
537c00de 2373
10cdc3f3 2374 if (dev_maps)
80d19669 2375 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2376 if (!map)
2377 return false;
537c00de 2378
6234f874
AD
2379 for (pos = map->len; pos--;) {
2380 if (map->queues[pos] != index)
2381 continue;
2382
2383 if (map->len > 1) {
2384 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2385 break;
537c00de 2386 }
6234f874 2387
2d05bf01
AT
2388 if (old_maps)
2389 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
80d19669 2390 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2391 kfree_rcu(map, rcu);
2392 return false;
537c00de
AD
2393 }
2394
6234f874 2395 return true;
10cdc3f3
AD
2396}
2397
6234f874
AD
2398static bool remove_xps_queue_cpu(struct net_device *dev,
2399 struct xps_dev_maps *dev_maps,
2400 int cpu, u16 offset, u16 count)
2401{
255c04a8 2402 int num_tc = dev_maps->num_tc;
184c449f
AD
2403 bool active = false;
2404 int tci;
6234f874 2405
184c449f
AD
2406 for (tci = cpu * num_tc; num_tc--; tci++) {
2407 int i, j;
2408
2409 for (i = count, j = offset; i--; j++) {
2d05bf01 2410 if (!remove_xps_queue(dev_maps, NULL, tci, j))
184c449f
AD
2411 break;
2412 }
2413
2414 active |= i < 0;
6234f874
AD
2415 }
2416
184c449f 2417 return active;
6234f874
AD
2418}
2419
867d0ad4
SD
2420static void reset_xps_maps(struct net_device *dev,
2421 struct xps_dev_maps *dev_maps,
044ab86d 2422 enum xps_map_type type)
867d0ad4 2423{
867d0ad4 2424 static_key_slow_dec_cpuslocked(&xps_needed);
044ab86d
AT
2425 if (type == XPS_RXQS)
2426 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2427
2428 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2429
867d0ad4
SD
2430 kfree_rcu(dev_maps, rcu);
2431}
2432
044ab86d
AT
2433static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2434 u16 offset, u16 count)
80d19669 2435{
044ab86d 2436 struct xps_dev_maps *dev_maps;
80d19669
AN
2437 bool active = false;
2438 int i, j;
2439
044ab86d
AT
2440 dev_maps = xmap_dereference(dev->xps_maps[type]);
2441 if (!dev_maps)
2442 return;
2443
6f36158e
AT
2444 for (j = 0; j < dev_maps->nr_ids; j++)
2445 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
867d0ad4 2446 if (!active)
044ab86d 2447 reset_xps_maps(dev, dev_maps, type);
80d19669 2448
044ab86d 2449 if (type == XPS_CPUS) {
6f36158e 2450 for (i = offset + (count - 1); count--; i--)
f28c020f 2451 netdev_queue_numa_node_write(
6f36158e 2452 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
80d19669
AN
2453 }
2454}
2455
6234f874
AD
2456static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2457 u16 count)
10cdc3f3 2458{
04157469
AN
2459 if (!static_key_false(&xps_needed))
2460 return;
10cdc3f3 2461
4d99f660 2462 cpus_read_lock();
04157469 2463 mutex_lock(&xps_map_mutex);
10cdc3f3 2464
044ab86d
AT
2465 if (static_key_false(&xps_rxqs_needed))
2466 clean_xps_maps(dev, XPS_RXQS, offset, count);
80d19669 2467
044ab86d 2468 clean_xps_maps(dev, XPS_CPUS, offset, count);
024e9679 2469
537c00de 2470 mutex_unlock(&xps_map_mutex);
4d99f660 2471 cpus_read_unlock();
537c00de
AD
2472}
2473
6234f874
AD
2474static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2475{
2476 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2477}
2478
80d19669
AN
2479static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2480 u16 index, bool is_rxqs_map)
01c5f864
AD
2481{
2482 struct xps_map *new_map;
2483 int alloc_len = XPS_MIN_MAP_ALLOC;
2484 int i, pos;
2485
2486 for (pos = 0; map && pos < map->len; pos++) {
2487 if (map->queues[pos] != index)
2488 continue;
2489 return map;
2490 }
2491
80d19669 2492 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2493 if (map) {
2494 if (pos < map->alloc_len)
2495 return map;
2496
2497 alloc_len = map->alloc_len * 2;
2498 }
2499
80d19669
AN
2500 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2501 * map
2502 */
2503 if (is_rxqs_map)
2504 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2505 else
2506 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2507 cpu_to_node(attr_index));
01c5f864
AD
2508 if (!new_map)
2509 return NULL;
2510
2511 for (i = 0; i < pos; i++)
2512 new_map->queues[i] = map->queues[i];
2513 new_map->alloc_len = alloc_len;
2514 new_map->len = pos;
2515
2516 return new_map;
2517}
2518
402fbb99
AT
2519/* Copy xps maps at a given index */
2520static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2521 struct xps_dev_maps *new_dev_maps, int index,
2522 int tc, bool skip_tc)
2523{
2524 int i, tci = index * dev_maps->num_tc;
2525 struct xps_map *map;
2526
2527 /* copy maps belonging to foreign traffic classes */
2528 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2529 if (i == tc && skip_tc)
2530 continue;
2531
2532 /* fill in the new device map from the old device map */
2533 map = xmap_dereference(dev_maps->attr_map[tci]);
2534 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2535 }
2536}
2537
4d99f660 2538/* Must be called under cpus_read_lock */
80d19669 2539int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
044ab86d 2540 u16 index, enum xps_map_type type)
537c00de 2541{
2d05bf01 2542 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
6f36158e 2543 const unsigned long *online_mask = NULL;
255c04a8 2544 bool active = false, copy = false;
80d19669 2545 int i, j, tci, numa_node_id = -2;
184c449f 2546 int maps_sz, num_tc = 1, tc = 0;
537c00de 2547 struct xps_map *map, *new_map;
80d19669 2548 unsigned int nr_ids;
537c00de 2549
184c449f 2550 if (dev->num_tc) {
ffcfe25b 2551 /* Do not allow XPS on subordinate device directly */
184c449f 2552 num_tc = dev->num_tc;
ffcfe25b
AD
2553 if (num_tc < 0)
2554 return -EINVAL;
2555
2556 /* If queue belongs to subordinate dev use its map */
2557 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2558
184c449f
AD
2559 tc = netdev_txq_to_tc(dev, index);
2560 if (tc < 0)
2561 return -EINVAL;
2562 }
2563
537c00de 2564 mutex_lock(&xps_map_mutex);
044ab86d
AT
2565
2566 dev_maps = xmap_dereference(dev->xps_maps[type]);
2567 if (type == XPS_RXQS) {
80d19669 2568 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
80d19669
AN
2569 nr_ids = dev->num_rx_queues;
2570 } else {
2571 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
6f36158e 2572 if (num_possible_cpus() > 1)
80d19669 2573 online_mask = cpumask_bits(cpu_online_mask);
80d19669
AN
2574 nr_ids = nr_cpu_ids;
2575 }
537c00de 2576
80d19669
AN
2577 if (maps_sz < L1_CACHE_BYTES)
2578 maps_sz = L1_CACHE_BYTES;
537c00de 2579
255c04a8 2580 /* The old dev_maps could be larger or smaller than the one we're
5478fcd0
AT
2581 * setting up now, as dev->num_tc or nr_ids could have been updated in
2582 * between. We could try to be smart, but let's be safe instead and only
2583 * copy foreign traffic classes if the two map sizes match.
255c04a8 2584 */
5478fcd0
AT
2585 if (dev_maps &&
2586 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
255c04a8
AT
2587 copy = true;
2588
01c5f864 2589 /* allocate memory for queue storage */
80d19669
AN
2590 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2591 j < nr_ids;) {
2bb60cb9 2592 if (!new_dev_maps) {
255c04a8
AT
2593 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2594 if (!new_dev_maps) {
2595 mutex_unlock(&xps_map_mutex);
2596 return -ENOMEM;
2597 }
2598
5478fcd0 2599 new_dev_maps->nr_ids = nr_ids;
255c04a8 2600 new_dev_maps->num_tc = num_tc;
2bb60cb9 2601 }
01c5f864 2602
80d19669 2603 tci = j * num_tc + tc;
255c04a8 2604 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
01c5f864 2605
044ab86d 2606 map = expand_xps_map(map, j, index, type == XPS_RXQS);
01c5f864
AD
2607 if (!map)
2608 goto error;
2609
80d19669 2610 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2611 }
2612
2613 if (!new_dev_maps)
2614 goto out_no_new_maps;
2615
867d0ad4
SD
2616 if (!dev_maps) {
2617 /* Increment static keys at most once per type */
2618 static_key_slow_inc_cpuslocked(&xps_needed);
044ab86d 2619 if (type == XPS_RXQS)
867d0ad4
SD
2620 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2621 }
04157469 2622
6f36158e 2623 for (j = 0; j < nr_ids; j++) {
402fbb99 2624 bool skip_tc = false;
184c449f 2625
80d19669 2626 tci = j * num_tc + tc;
80d19669
AN
2627 if (netif_attr_test_mask(j, mask, nr_ids) &&
2628 netif_attr_test_online(j, online_mask, nr_ids)) {
2629 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2630 int pos = 0;
2631
402fbb99
AT
2632 skip_tc = true;
2633
80d19669 2634 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2635 while ((pos < map->len) && (map->queues[pos] != index))
2636 pos++;
2637
2638 if (pos == map->len)
2639 map->queues[map->len++] = index;
537c00de 2640#ifdef CONFIG_NUMA
044ab86d 2641 if (type == XPS_CPUS) {
80d19669
AN
2642 if (numa_node_id == -2)
2643 numa_node_id = cpu_to_node(j);
2644 else if (numa_node_id != cpu_to_node(j))
2645 numa_node_id = -1;
2646 }
537c00de 2647#endif
537c00de 2648 }
01c5f864 2649
402fbb99
AT
2650 if (copy)
2651 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2652 skip_tc);
537c00de
AD
2653 }
2654
044ab86d 2655 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
01c5f864 2656
537c00de 2657 /* Cleanup old maps */
184c449f
AD
2658 if (!dev_maps)
2659 goto out_no_old_maps;
2660
6f36158e 2661 for (j = 0; j < dev_maps->nr_ids; j++) {
255c04a8 2662 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
80d19669 2663 map = xmap_dereference(dev_maps->attr_map[tci]);
255c04a8
AT
2664 if (!map)
2665 continue;
2666
2667 if (copy) {
2668 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2669 if (map == new_map)
2670 continue;
2671 }
2672
75b2758a 2673 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
255c04a8 2674 kfree_rcu(map, rcu);
01c5f864 2675 }
537c00de
AD
2676 }
2677
2d05bf01 2678 old_dev_maps = dev_maps;
184c449f
AD
2679
2680out_no_old_maps:
01c5f864
AD
2681 dev_maps = new_dev_maps;
2682 active = true;
537c00de 2683
01c5f864 2684out_no_new_maps:
044ab86d 2685 if (type == XPS_CPUS)
80d19669
AN
2686 /* update Tx queue numa node */
2687 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2688 (numa_node_id >= 0) ?
2689 numa_node_id : NUMA_NO_NODE);
537c00de 2690
01c5f864
AD
2691 if (!dev_maps)
2692 goto out_no_maps;
2693
80d19669 2694 /* removes tx-queue from unused CPUs/rx-queues */
6f36158e 2695 for (j = 0; j < dev_maps->nr_ids; j++) {
132f743b
AT
2696 tci = j * dev_maps->num_tc;
2697
2698 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2699 if (i == tc &&
2700 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2701 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2702 continue;
2703
2d05bf01
AT
2704 active |= remove_xps_queue(dev_maps,
2705 copy ? old_dev_maps : NULL,
2706 tci, index);
132f743b 2707 }
01c5f864
AD
2708 }
2709
2d05bf01
AT
2710 if (old_dev_maps)
2711 kfree_rcu(old_dev_maps, rcu);
2712
01c5f864 2713 /* free map if not active */
867d0ad4 2714 if (!active)
044ab86d 2715 reset_xps_maps(dev, dev_maps, type);
01c5f864
AD
2716
2717out_no_maps:
537c00de
AD
2718 mutex_unlock(&xps_map_mutex);
2719
2720 return 0;
2721error:
01c5f864 2722 /* remove any maps that we added */
6f36158e 2723 for (j = 0; j < nr_ids; j++) {
80d19669
AN
2724 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2725 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
255c04a8 2726 map = copy ?
80d19669 2727 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2728 NULL;
2729 if (new_map && new_map != map)
2730 kfree(new_map);
2731 }
01c5f864
AD
2732 }
2733
537c00de
AD
2734 mutex_unlock(&xps_map_mutex);
2735
537c00de
AD
2736 kfree(new_dev_maps);
2737 return -ENOMEM;
2738}
4d99f660 2739EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2740
2741int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2742 u16 index)
2743{
4d99f660
AV
2744 int ret;
2745
2746 cpus_read_lock();
044ab86d 2747 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
4d99f660
AV
2748 cpus_read_unlock();
2749
2750 return ret;
80d19669 2751}
537c00de
AD
2752EXPORT_SYMBOL(netif_set_xps_queue);
2753
2754#endif
ffcfe25b
AD
2755static void netdev_unbind_all_sb_channels(struct net_device *dev)
2756{
2757 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2758
2759 /* Unbind any subordinate channels */
2760 while (txq-- != &dev->_tx[0]) {
2761 if (txq->sb_dev)
2762 netdev_unbind_sb_channel(dev, txq->sb_dev);
2763 }
2764}
2765
9cf1f6a8
AD
2766void netdev_reset_tc(struct net_device *dev)
2767{
6234f874
AD
2768#ifdef CONFIG_XPS
2769 netif_reset_xps_queues_gt(dev, 0);
2770#endif
ffcfe25b
AD
2771 netdev_unbind_all_sb_channels(dev);
2772
2773 /* Reset TC configuration of device */
9cf1f6a8
AD
2774 dev->num_tc = 0;
2775 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2776 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2777}
2778EXPORT_SYMBOL(netdev_reset_tc);
2779
2780int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2781{
2782 if (tc >= dev->num_tc)
2783 return -EINVAL;
2784
6234f874
AD
2785#ifdef CONFIG_XPS
2786 netif_reset_xps_queues(dev, offset, count);
2787#endif
9cf1f6a8
AD
2788 dev->tc_to_txq[tc].count = count;
2789 dev->tc_to_txq[tc].offset = offset;
2790 return 0;
2791}
2792EXPORT_SYMBOL(netdev_set_tc_queue);
2793
2794int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2795{
2796 if (num_tc > TC_MAX_QUEUE)
2797 return -EINVAL;
2798
6234f874
AD
2799#ifdef CONFIG_XPS
2800 netif_reset_xps_queues_gt(dev, 0);
2801#endif
ffcfe25b
AD
2802 netdev_unbind_all_sb_channels(dev);
2803
9cf1f6a8
AD
2804 dev->num_tc = num_tc;
2805 return 0;
2806}
2807EXPORT_SYMBOL(netdev_set_num_tc);
2808
ffcfe25b
AD
2809void netdev_unbind_sb_channel(struct net_device *dev,
2810 struct net_device *sb_dev)
2811{
2812 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2813
2814#ifdef CONFIG_XPS
2815 netif_reset_xps_queues_gt(sb_dev, 0);
2816#endif
2817 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2818 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2819
2820 while (txq-- != &dev->_tx[0]) {
2821 if (txq->sb_dev == sb_dev)
2822 txq->sb_dev = NULL;
2823 }
2824}
2825EXPORT_SYMBOL(netdev_unbind_sb_channel);
2826
2827int netdev_bind_sb_channel_queue(struct net_device *dev,
2828 struct net_device *sb_dev,
2829 u8 tc, u16 count, u16 offset)
2830{
2831 /* Make certain the sb_dev and dev are already configured */
2832 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2833 return -EINVAL;
2834
2835 /* We cannot hand out queues we don't have */
2836 if ((offset + count) > dev->real_num_tx_queues)
2837 return -EINVAL;
2838
2839 /* Record the mapping */
2840 sb_dev->tc_to_txq[tc].count = count;
2841 sb_dev->tc_to_txq[tc].offset = offset;
2842
2843 /* Provide a way for Tx queue to find the tc_to_txq map or
2844 * XPS map for itself.
2845 */
2846 while (count--)
2847 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2848
2849 return 0;
2850}
2851EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2852
2853int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2854{
2855 /* Do not use a multiqueue device to represent a subordinate channel */
2856 if (netif_is_multiqueue(dev))
2857 return -ENODEV;
2858
2859 /* We allow channels 1 - 32767 to be used for subordinate channels.
2860 * Channel 0 is meant to be "native" mode and used only to represent
2861 * the main root device. We allow writing 0 to reset the device back
2862 * to normal mode after being used as a subordinate channel.
2863 */
2864 if (channel > S16_MAX)
2865 return -EINVAL;
2866
2867 dev->num_tc = -channel;
2868
2869 return 0;
2870}
2871EXPORT_SYMBOL(netdev_set_sb_channel);
2872
f0796d5c
JF
2873/*
2874 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2875 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2876 */
e6484930 2877int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2878{
ac5b7019 2879 bool disabling;
1d24eb48
TH
2880 int rc;
2881
ac5b7019
JK
2882 disabling = txq < dev->real_num_tx_queues;
2883
e6484930
TH
2884 if (txq < 1 || txq > dev->num_tx_queues)
2885 return -EINVAL;
f0796d5c 2886
5c56580b
BH
2887 if (dev->reg_state == NETREG_REGISTERED ||
2888 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2889 ASSERT_RTNL();
2890
1d24eb48
TH
2891 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2892 txq);
bf264145
TH
2893 if (rc)
2894 return rc;
2895
4f57c087
JF
2896 if (dev->num_tc)
2897 netif_setup_tc(dev, txq);
2898
1e080f17
JK
2899 dev_qdisc_change_real_num_tx(dev, txq);
2900
ac5b7019
JK
2901 dev->real_num_tx_queues = txq;
2902
2903 if (disabling) {
2904 synchronize_net();
e6484930 2905 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2906#ifdef CONFIG_XPS
2907 netif_reset_xps_queues_gt(dev, txq);
2908#endif
2909 }
ac5b7019
JK
2910 } else {
2911 dev->real_num_tx_queues = txq;
f0796d5c 2912 }
e6484930 2913
e6484930 2914 return 0;
f0796d5c
JF
2915}
2916EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2917
a953be53 2918#ifdef CONFIG_SYSFS
62fe0b40
BH
2919/**
2920 * netif_set_real_num_rx_queues - set actual number of RX queues used
2921 * @dev: Network device
2922 * @rxq: Actual number of RX queues
2923 *
2924 * This must be called either with the rtnl_lock held or before
2925 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2926 * negative error code. If called before registration, it always
2927 * succeeds.
62fe0b40
BH
2928 */
2929int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2930{
2931 int rc;
2932
bd25fa7b
TH
2933 if (rxq < 1 || rxq > dev->num_rx_queues)
2934 return -EINVAL;
2935
62fe0b40
BH
2936 if (dev->reg_state == NETREG_REGISTERED) {
2937 ASSERT_RTNL();
2938
62fe0b40
BH
2939 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2940 rxq);
2941 if (rc)
2942 return rc;
62fe0b40
BH
2943 }
2944
2945 dev->real_num_rx_queues = rxq;
2946 return 0;
2947}
2948EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2949#endif
2950
271e5b7d
JK
2951/**
2952 * netif_set_real_num_queues - set actual number of RX and TX queues used
2953 * @dev: Network device
2954 * @txq: Actual number of TX queues
2955 * @rxq: Actual number of RX queues
2956 *
2957 * Set the real number of both TX and RX queues.
2958 * Does nothing if the number of queues is already correct.
2959 */
2960int netif_set_real_num_queues(struct net_device *dev,
2961 unsigned int txq, unsigned int rxq)
2962{
2963 unsigned int old_rxq = dev->real_num_rx_queues;
2964 int err;
2965
2966 if (txq < 1 || txq > dev->num_tx_queues ||
2967 rxq < 1 || rxq > dev->num_rx_queues)
2968 return -EINVAL;
2969
2970 /* Start from increases, so the error path only does decreases -
2971 * decreases can't fail.
2972 */
2973 if (rxq > dev->real_num_rx_queues) {
2974 err = netif_set_real_num_rx_queues(dev, rxq);
2975 if (err)
2976 return err;
2977 }
2978 if (txq > dev->real_num_tx_queues) {
2979 err = netif_set_real_num_tx_queues(dev, txq);
2980 if (err)
2981 goto undo_rx;
2982 }
2983 if (rxq < dev->real_num_rx_queues)
2984 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2985 if (txq < dev->real_num_tx_queues)
2986 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2987
2988 return 0;
2989undo_rx:
2990 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2991 return err;
2992}
2993EXPORT_SYMBOL(netif_set_real_num_queues);
2994
2c53040f
BH
2995/**
2996 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87 2997 *
046e1537
ÍH
2998 * Default value is the number of physical cores if there are only 1 or 2, or
2999 * divided by 2 if there are more.
16917b87 3000 */
a55b138b 3001int netif_get_num_default_rss_queues(void)
16917b87 3002{
046e1537
ÍH
3003 cpumask_var_t cpus;
3004 int cpu, count = 0;
3005
3006 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3007 return 1;
3008
3009 cpumask_copy(cpus, cpu_online_mask);
3010 for_each_cpu(cpu, cpus) {
3011 ++count;
3012 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3013 }
3014 free_cpumask_var(cpus);
3015
3016 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
16917b87
YM
3017}
3018EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3019
3bcb846c 3020static void __netif_reschedule(struct Qdisc *q)
56079431 3021{
def82a1d
JP
3022 struct softnet_data *sd;
3023 unsigned long flags;
56079431 3024
def82a1d 3025 local_irq_save(flags);
903ceff7 3026 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
3027 q->next_sched = NULL;
3028 *sd->output_queue_tailp = q;
3029 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
3030 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3031 local_irq_restore(flags);
3032}
3033
3034void __netif_schedule(struct Qdisc *q)
3035{
3036 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3037 __netif_reschedule(q);
56079431
DV
3038}
3039EXPORT_SYMBOL(__netif_schedule);
3040
e6247027
ED
3041struct dev_kfree_skb_cb {
3042 enum skb_free_reason reason;
3043};
3044
3045static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 3046{
e6247027
ED
3047 return (struct dev_kfree_skb_cb *)skb->cb;
3048}
3049
46e5da40
JF
3050void netif_schedule_queue(struct netdev_queue *txq)
3051{
3052 rcu_read_lock();
5be5515a 3053 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
3054 struct Qdisc *q = rcu_dereference(txq->qdisc);
3055
3056 __netif_schedule(q);
3057 }
3058 rcu_read_unlock();
3059}
3060EXPORT_SYMBOL(netif_schedule_queue);
3061
46e5da40
JF
3062void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3063{
3064 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3065 struct Qdisc *q;
3066
3067 rcu_read_lock();
3068 q = rcu_dereference(dev_queue->qdisc);
3069 __netif_schedule(q);
3070 rcu_read_unlock();
3071 }
3072}
3073EXPORT_SYMBOL(netif_tx_wake_queue);
3074
e6247027 3075void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3076{
e6247027 3077 unsigned long flags;
56079431 3078
9899886d
MJ
3079 if (unlikely(!skb))
3080 return;
3081
63354797 3082 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3083 smp_rmb();
63354797
RE
3084 refcount_set(&skb->users, 0);
3085 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3086 return;
bea3348e 3087 }
e6247027
ED
3088 get_kfree_skb_cb(skb)->reason = reason;
3089 local_irq_save(flags);
3090 skb->next = __this_cpu_read(softnet_data.completion_queue);
3091 __this_cpu_write(softnet_data.completion_queue, skb);
3092 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3093 local_irq_restore(flags);
56079431 3094}
e6247027 3095EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3096
e6247027 3097void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3098{
afa79d08 3099 if (in_hardirq() || irqs_disabled())
e6247027 3100 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3101 else
3102 dev_kfree_skb(skb);
3103}
e6247027 3104EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3105
3106
bea3348e
SH
3107/**
3108 * netif_device_detach - mark device as removed
3109 * @dev: network device
3110 *
3111 * Mark device as removed from system and therefore no longer available.
3112 */
56079431
DV
3113void netif_device_detach(struct net_device *dev)
3114{
3115 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3116 netif_running(dev)) {
d543103a 3117 netif_tx_stop_all_queues(dev);
56079431
DV
3118 }
3119}
3120EXPORT_SYMBOL(netif_device_detach);
3121
bea3348e
SH
3122/**
3123 * netif_device_attach - mark device as attached
3124 * @dev: network device
3125 *
3126 * Mark device as attached from system and restart if needed.
3127 */
56079431
DV
3128void netif_device_attach(struct net_device *dev)
3129{
3130 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3131 netif_running(dev)) {
d543103a 3132 netif_tx_wake_all_queues(dev);
4ec93edb 3133 __netdev_watchdog_up(dev);
56079431
DV
3134 }
3135}
3136EXPORT_SYMBOL(netif_device_attach);
3137
5605c762
JP
3138/*
3139 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3140 * to be used as a distribution range.
3141 */
eadec877
AD
3142static u16 skb_tx_hash(const struct net_device *dev,
3143 const struct net_device *sb_dev,
3144 struct sk_buff *skb)
5605c762
JP
3145{
3146 u32 hash;
3147 u16 qoffset = 0;
1b837d48 3148 u16 qcount = dev->real_num_tx_queues;
5605c762 3149
eadec877
AD
3150 if (dev->num_tc) {
3151 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3152
3153 qoffset = sb_dev->tc_to_txq[tc].offset;
3154 qcount = sb_dev->tc_to_txq[tc].count;
0c57eeec
MC
3155 if (unlikely(!qcount)) {
3156 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3157 sb_dev->name, qoffset, tc);
3158 qoffset = 0;
3159 qcount = dev->real_num_tx_queues;
3160 }
eadec877
AD
3161 }
3162
5605c762
JP
3163 if (skb_rx_queue_recorded(skb)) {
3164 hash = skb_get_rx_queue(skb);
6e11d157
AN
3165 if (hash >= qoffset)
3166 hash -= qoffset;
1b837d48
AD
3167 while (unlikely(hash >= qcount))
3168 hash -= qcount;
eadec877 3169 return hash + qoffset;
5605c762
JP
3170 }
3171
3172 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3173}
5605c762 3174
36c92474
BH
3175static void skb_warn_bad_offload(const struct sk_buff *skb)
3176{
84d15ae5 3177 static const netdev_features_t null_features;
36c92474 3178 struct net_device *dev = skb->dev;
88ad4175 3179 const char *name = "";
36c92474 3180
c846ad9b
BG
3181 if (!net_ratelimit())
3182 return;
3183
88ad4175
BM
3184 if (dev) {
3185 if (dev->dev.parent)
3186 name = dev_driver_string(dev->dev.parent);
3187 else
3188 name = netdev_name(dev);
3189 }
6413139d
WB
3190 skb_dump(KERN_WARNING, skb, false);
3191 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3192 name, dev ? &dev->features : &null_features,
6413139d 3193 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3194}
3195
1da177e4
LT
3196/*
3197 * Invalidate hardware checksum when packet is to be mangled, and
3198 * complete checksum manually on outgoing path.
3199 */
84fa7933 3200int skb_checksum_help(struct sk_buff *skb)
1da177e4 3201{
d3bc23e7 3202 __wsum csum;
663ead3b 3203 int ret = 0, offset;
1da177e4 3204
84fa7933 3205 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3206 goto out_set_summed;
3207
3aefd7d6 3208 if (unlikely(skb_is_gso(skb))) {
36c92474
BH
3209 skb_warn_bad_offload(skb);
3210 return -EINVAL;
1da177e4
LT
3211 }
3212
cef401de
ED
3213 /* Before computing a checksum, we should make sure no frag could
3214 * be modified by an external entity : checksum could be wrong.
3215 */
3216 if (skb_has_shared_frag(skb)) {
3217 ret = __skb_linearize(skb);
3218 if (ret)
3219 goto out;
3220 }
3221
55508d60 3222 offset = skb_checksum_start_offset(skb);
a030847e
HX
3223 BUG_ON(offset >= skb_headlen(skb));
3224 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3225
3226 offset += skb->csum_offset;
3227 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3228
8211fbfa
HK
3229 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3230 if (ret)
3231 goto out;
1da177e4 3232
4f2e4ad5 3233 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3234out_set_summed:
1da177e4 3235 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3236out:
1da177e4
LT
3237 return ret;
3238}
d1b19dff 3239EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3240
b72b5bf6
DC
3241int skb_crc32c_csum_help(struct sk_buff *skb)
3242{
3243 __le32 crc32c_csum;
3244 int ret = 0, offset, start;
3245
3246 if (skb->ip_summed != CHECKSUM_PARTIAL)
3247 goto out;
3248
3249 if (unlikely(skb_is_gso(skb)))
3250 goto out;
3251
3252 /* Before computing a checksum, we should make sure no frag could
3253 * be modified by an external entity : checksum could be wrong.
3254 */
3255 if (unlikely(skb_has_shared_frag(skb))) {
3256 ret = __skb_linearize(skb);
3257 if (ret)
3258 goto out;
3259 }
3260 start = skb_checksum_start_offset(skb);
3261 offset = start + offsetof(struct sctphdr, checksum);
3262 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3263 ret = -EINVAL;
3264 goto out;
3265 }
8211fbfa
HK
3266
3267 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3268 if (ret)
3269 goto out;
3270
b72b5bf6
DC
3271 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3272 skb->len - start, ~(__u32)0,
3273 crc32c_csum_stub));
3274 *(__le32 *)(skb->data + offset) = crc32c_csum;
3275 skb->ip_summed = CHECKSUM_NONE;
dba00306 3276 skb->csum_not_inet = 0;
b72b5bf6
DC
3277out:
3278 return ret;
3279}
3280
53d6471c 3281__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3282{
252e3346 3283 __be16 type = skb->protocol;
f6a78bfc 3284
19acc327
PS
3285 /* Tunnel gso handlers can set protocol to ethernet. */
3286 if (type == htons(ETH_P_TEB)) {
3287 struct ethhdr *eth;
3288
3289 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3290 return 0;
3291
1dfe82eb 3292 eth = (struct ethhdr *)skb->data;
19acc327
PS
3293 type = eth->h_proto;
3294 }
3295
d4bcef3f 3296 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3297}
3298
05e8ef4a
PS
3299/* openvswitch calls this on rx path, so we need a different check.
3300 */
3301static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3302{
3303 if (tx_path)
0c19f846
WB
3304 return skb->ip_summed != CHECKSUM_PARTIAL &&
3305 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3306
3307 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3308}
3309
3310/**
3311 * __skb_gso_segment - Perform segmentation on skb.
3312 * @skb: buffer to segment
3313 * @features: features for the output path (see dev->features)
3314 * @tx_path: whether it is called in TX path
3315 *
3316 * This function segments the given skb and returns a list of segments.
3317 *
3318 * It may return NULL if the skb requires no segmentation. This is
3319 * only possible when GSO is used for verifying header integrity.
9207f9d4 3320 *
a08e7fd9 3321 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3322 */
3323struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3324 netdev_features_t features, bool tx_path)
3325{
b2504a5d
ED
3326 struct sk_buff *segs;
3327
05e8ef4a
PS
3328 if (unlikely(skb_needs_check(skb, tx_path))) {
3329 int err;
3330
b2504a5d 3331 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3332 err = skb_cow_head(skb, 0);
3333 if (err < 0)
05e8ef4a
PS
3334 return ERR_PTR(err);
3335 }
3336
802ab55a
AD
3337 /* Only report GSO partial support if it will enable us to
3338 * support segmentation on this frame without needing additional
3339 * work.
3340 */
3341 if (features & NETIF_F_GSO_PARTIAL) {
3342 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3343 struct net_device *dev = skb->dev;
3344
3345 partial_features |= dev->features & dev->gso_partial_features;
3346 if (!skb_gso_ok(skb, features | partial_features))
3347 features &= ~NETIF_F_GSO_PARTIAL;
3348 }
3349
a08e7fd9 3350 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3351 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3352
68c33163 3353 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3354 SKB_GSO_CB(skb)->encap_level = 0;
3355
05e8ef4a
PS
3356 skb_reset_mac_header(skb);
3357 skb_reset_mac_len(skb);
3358
b2504a5d
ED
3359 segs = skb_mac_gso_segment(skb, features);
3360
3a1296a3 3361 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3362 skb_warn_bad_offload(skb);
3363
3364 return segs;
05e8ef4a 3365}
12b0004d 3366EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3367
fb286bb2
HX
3368/* Take action when hardware reception checksum errors are detected. */
3369#ifdef CONFIG_BUG
127d7355
TL
3370static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3371{
5b92be64 3372 netdev_err(dev, "hw csum failure\n");
127d7355
TL
3373 skb_dump(KERN_ERR, skb, true);
3374 dump_stack();
3375}
3376
7fe50ac8 3377void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2 3378{
127d7355 3379 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
fb286bb2
HX
3380}
3381EXPORT_SYMBOL(netdev_rx_csum_fault);
3382#endif
3383
ab74cfeb 3384/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3385static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3386{
3d3a8533 3387#ifdef CONFIG_HIGHMEM
1da177e4 3388 int i;
f4563a75 3389
5acbbd42 3390 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3391 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3392 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3393
ea2ab693 3394 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3395 return 1;
ea2ab693 3396 }
5acbbd42 3397 }
3d3a8533 3398#endif
1da177e4
LT
3399 return 0;
3400}
1da177e4 3401
3b392ddb
SH
3402/* If MPLS offload request, verify we are testing hardware MPLS features
3403 * instead of standard features for the netdev.
3404 */
d0edc7bf 3405#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3406static netdev_features_t net_mpls_features(struct sk_buff *skb,
3407 netdev_features_t features,
3408 __be16 type)
3409{
25cd9ba0 3410 if (eth_p_mpls(type))
3b392ddb
SH
3411 features &= skb->dev->mpls_features;
3412
3413 return features;
3414}
3415#else
3416static netdev_features_t net_mpls_features(struct sk_buff *skb,
3417 netdev_features_t features,
3418 __be16 type)
3419{
3420 return features;
3421}
3422#endif
3423
c8f44aff 3424static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3425 netdev_features_t features)
f01a5236 3426{
3b392ddb
SH
3427 __be16 type;
3428
9fc95f50 3429 type = skb_network_protocol(skb, NULL);
3b392ddb 3430 features = net_mpls_features(skb, features, type);
53d6471c 3431
c0d680e5 3432 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3433 !can_checksum_protocol(features, type)) {
996e8021 3434 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3435 }
7be2c82c
ED
3436 if (illegal_highdma(skb->dev, skb))
3437 features &= ~NETIF_F_SG;
f01a5236
JG
3438
3439 return features;
3440}
3441
e38f3025
TM
3442netdev_features_t passthru_features_check(struct sk_buff *skb,
3443 struct net_device *dev,
3444 netdev_features_t features)
3445{
3446 return features;
3447}
3448EXPORT_SYMBOL(passthru_features_check);
3449
7ce23672 3450static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3451 struct net_device *dev,
3452 netdev_features_t features)
3453{
3454 return vlan_features_check(skb, features);
3455}
3456
cbc53e08
AD
3457static netdev_features_t gso_features_check(const struct sk_buff *skb,
3458 struct net_device *dev,
3459 netdev_features_t features)
3460{
3461 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3462
6d872df3 3463 if (gso_segs > READ_ONCE(dev->gso_max_segs))
cbc53e08
AD
3464 return features & ~NETIF_F_GSO_MASK;
3465
1d155dfd
HK
3466 if (!skb_shinfo(skb)->gso_type) {
3467 skb_warn_bad_offload(skb);
3468 return features & ~NETIF_F_GSO_MASK;
3469 }
3470
802ab55a
AD
3471 /* Support for GSO partial features requires software
3472 * intervention before we can actually process the packets
3473 * so we need to strip support for any partial features now
3474 * and we can pull them back in after we have partially
3475 * segmented the frame.
3476 */
3477 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3478 features &= ~dev->gso_partial_features;
3479
3480 /* Make sure to clear the IPv4 ID mangling feature if the
3481 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3482 */
3483 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3484 struct iphdr *iph = skb->encapsulation ?
3485 inner_ip_hdr(skb) : ip_hdr(skb);
3486
3487 if (!(iph->frag_off & htons(IP_DF)))
3488 features &= ~NETIF_F_TSO_MANGLEID;
3489 }
3490
3491 return features;
3492}
3493
c1e756bf 3494netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3495{
5f35227e 3496 struct net_device *dev = skb->dev;
fcbeb976 3497 netdev_features_t features = dev->features;
58e998c6 3498
cbc53e08
AD
3499 if (skb_is_gso(skb))
3500 features = gso_features_check(skb, dev, features);
30b678d8 3501
5f35227e
JG
3502 /* If encapsulation offload request, verify we are testing
3503 * hardware encapsulation features instead of standard
3504 * features for the netdev
3505 */
3506 if (skb->encapsulation)
3507 features &= dev->hw_enc_features;
3508
f5a7fb88
TM
3509 if (skb_vlan_tagged(skb))
3510 features = netdev_intersect_features(features,
3511 dev->vlan_features |
3512 NETIF_F_HW_VLAN_CTAG_TX |
3513 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3514
5f35227e
JG
3515 if (dev->netdev_ops->ndo_features_check)
3516 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3517 features);
8cb65d00
TM
3518 else
3519 features &= dflt_features_check(skb, dev, features);
5f35227e 3520
c1e756bf 3521 return harmonize_features(skb, features);
58e998c6 3522}
c1e756bf 3523EXPORT_SYMBOL(netif_skb_features);
58e998c6 3524
2ea25513 3525static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3526 struct netdev_queue *txq, bool more)
f6a78bfc 3527{
2ea25513
DM
3528 unsigned int len;
3529 int rc;
00829823 3530
9f9a742d 3531 if (dev_nit_active(dev))
2ea25513 3532 dev_queue_xmit_nit(skb, dev);
fc741216 3533
2ea25513 3534 len = skb->len;
3744741a 3535 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
2ea25513 3536 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3537 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3538 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3539
2ea25513
DM
3540 return rc;
3541}
7b9c6090 3542
8dcda22a
DM
3543struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3544 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3545{
3546 struct sk_buff *skb = first;
3547 int rc = NETDEV_TX_OK;
7b9c6090 3548
7f2e870f
DM
3549 while (skb) {
3550 struct sk_buff *next = skb->next;
fc70fb64 3551
a8305bff 3552 skb_mark_not_on_list(skb);
95f6b3dd 3553 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3554 if (unlikely(!dev_xmit_complete(rc))) {
3555 skb->next = next;
3556 goto out;
3557 }
6afff0ca 3558
7f2e870f 3559 skb = next;
fe60faa5 3560 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3561 rc = NETDEV_TX_BUSY;
3562 break;
9ccb8975 3563 }
7f2e870f 3564 }
9ccb8975 3565
7f2e870f
DM
3566out:
3567 *ret = rc;
3568 return skb;
3569}
b40863c6 3570
1ff0dc94
ED
3571static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3572 netdev_features_t features)
f6a78bfc 3573{
df8a39de 3574 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3575 !vlan_hw_offload_capable(features, skb->vlan_proto))
3576 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3577 return skb;
3578}
f6a78bfc 3579
43c26a1a
DC
3580int skb_csum_hwoffload_help(struct sk_buff *skb,
3581 const netdev_features_t features)
3582{
fa821170 3583 if (unlikely(skb_csum_is_sctp(skb)))
43c26a1a
DC
3584 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3585 skb_crc32c_csum_help(skb);
3586
62fafcd6
XL
3587 if (features & NETIF_F_HW_CSUM)
3588 return 0;
3589
3590 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3591 switch (skb->csum_offset) {
3592 case offsetof(struct tcphdr, check):
3593 case offsetof(struct udphdr, check):
3594 return 0;
3595 }
3596 }
3597
3598 return skb_checksum_help(skb);
43c26a1a
DC
3599}
3600EXPORT_SYMBOL(skb_csum_hwoffload_help);
3601
f53c7239 3602static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3603{
3604 netdev_features_t features;
f6a78bfc 3605
eae3f88e
DM
3606 features = netif_skb_features(skb);
3607 skb = validate_xmit_vlan(skb, features);
3608 if (unlikely(!skb))
3609 goto out_null;
7b9c6090 3610
ebf4e808
IL
3611 skb = sk_validate_xmit_skb(skb, dev);
3612 if (unlikely(!skb))
3613 goto out_null;
3614
8b86a61d 3615 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3616 struct sk_buff *segs;
3617
3618 segs = skb_gso_segment(skb, features);
cecda693 3619 if (IS_ERR(segs)) {
af6dabc9 3620 goto out_kfree_skb;
cecda693
JW
3621 } else if (segs) {
3622 consume_skb(skb);
3623 skb = segs;
f6a78bfc 3624 }
eae3f88e
DM
3625 } else {
3626 if (skb_needs_linearize(skb, features) &&
3627 __skb_linearize(skb))
3628 goto out_kfree_skb;
4ec93edb 3629
eae3f88e
DM
3630 /* If packet is not checksummed and device does not
3631 * support checksumming for this protocol, complete
3632 * checksumming here.
3633 */
3634 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3635 if (skb->encapsulation)
3636 skb_set_inner_transport_header(skb,
3637 skb_checksum_start_offset(skb));
3638 else
3639 skb_set_transport_header(skb,
3640 skb_checksum_start_offset(skb));
43c26a1a 3641 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3642 goto out_kfree_skb;
7b9c6090 3643 }
0c772159 3644 }
7b9c6090 3645
f53c7239 3646 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3647
eae3f88e 3648 return skb;
fc70fb64 3649
f6a78bfc
HX
3650out_kfree_skb:
3651 kfree_skb(skb);
eae3f88e 3652out_null:
625788b5 3653 dev_core_stats_tx_dropped_inc(dev);
eae3f88e
DM
3654 return NULL;
3655}
6afff0ca 3656
f53c7239 3657struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3658{
3659 struct sk_buff *next, *head = NULL, *tail;
3660
bec3cfdc 3661 for (; skb != NULL; skb = next) {
55a93b3e 3662 next = skb->next;
a8305bff 3663 skb_mark_not_on_list(skb);
bec3cfdc
ED
3664
3665 /* in case skb wont be segmented, point to itself */
3666 skb->prev = skb;
3667
f53c7239 3668 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3669 if (!skb)
3670 continue;
55a93b3e 3671
bec3cfdc
ED
3672 if (!head)
3673 head = skb;
3674 else
3675 tail->next = skb;
3676 /* If skb was segmented, skb->prev points to
3677 * the last segment. If not, it still contains skb.
3678 */
3679 tail = skb->prev;
55a93b3e
ED
3680 }
3681 return head;
f6a78bfc 3682}
104ba78c 3683EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3684
1def9238
ED
3685static void qdisc_pkt_len_init(struct sk_buff *skb)
3686{
3687 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3688
3689 qdisc_skb_cb(skb)->pkt_len = skb->len;
3690
3691 /* To get more precise estimation of bytes sent on wire,
3692 * we add to pkt_len the headers size of all segments
3693 */
a0dce875 3694 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3695 unsigned int hdr_len;
15e5a030 3696 u16 gso_segs = shinfo->gso_segs;
1def9238 3697
757b8b1d
ED
3698 /* mac layer + network layer */
3699 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3700
3701 /* + transport layer */
7c68d1a6
ED
3702 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3703 const struct tcphdr *th;
3704 struct tcphdr _tcphdr;
3705
3706 th = skb_header_pointer(skb, skb_transport_offset(skb),
3707 sizeof(_tcphdr), &_tcphdr);
3708 if (likely(th))
3709 hdr_len += __tcp_hdrlen(th);
3710 } else {
3711 struct udphdr _udphdr;
3712
3713 if (skb_header_pointer(skb, skb_transport_offset(skb),
3714 sizeof(_udphdr), &_udphdr))
3715 hdr_len += sizeof(struct udphdr);
3716 }
15e5a030
JW
3717
3718 if (shinfo->gso_type & SKB_GSO_DODGY)
3719 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3720 shinfo->gso_size);
3721
3722 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3723 }
3724}
3725
70713ddd
QX
3726static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3727 struct sk_buff **to_free,
3728 struct netdev_queue *txq)
3729{
3730 int rc;
3731
3732 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3733 if (rc == NET_XMIT_SUCCESS)
3734 trace_qdisc_enqueue(q, txq, skb);
3735 return rc;
3736}
3737
bbd8a0d3
KK
3738static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3739 struct net_device *dev,
3740 struct netdev_queue *txq)
3741{
3742 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3743 struct sk_buff *to_free = NULL;
a2da570d 3744 bool contended;
bbd8a0d3
KK
3745 int rc;
3746
a2da570d 3747 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3748
3749 if (q->flags & TCQ_F_NOLOCK) {
c4fef01b
YL
3750 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3751 qdisc_run_begin(q)) {
3752 /* Retest nolock_qdisc_is_empty() within the protection
3753 * of q->seqlock to protect from racing with requeuing.
3754 */
3755 if (unlikely(!nolock_qdisc_is_empty(q))) {
70713ddd 3756 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
c4fef01b
YL
3757 __qdisc_run(q);
3758 qdisc_run_end(q);
3759
3760 goto no_lock_out;
3761 }
3762
3763 qdisc_bstats_cpu_update(q, skb);
3764 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3765 !nolock_qdisc_is_empty(q))
3766 __qdisc_run(q);
3767
3768 qdisc_run_end(q);
3769 return NET_XMIT_SUCCESS;
3770 }
3771
70713ddd 3772 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
c4fef01b 3773 qdisc_run(q);
6b3ba914 3774
c4fef01b 3775no_lock_out:
6b3ba914 3776 if (unlikely(to_free))
7faef054
MD
3777 kfree_skb_list_reason(to_free,
3778 SKB_DROP_REASON_QDISC_DROP);
6b3ba914
JF
3779 return rc;
3780 }
3781
79640a4c
ED
3782 /*
3783 * Heuristic to force contended enqueues to serialize on a
3784 * separate lock before trying to get qdisc main lock.
f9eb8aea 3785 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3786 * often and dequeue packets faster.
64445dda
SAS
3787 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3788 * and then other tasks will only enqueue packets. The packets will be
3789 * sent after the qdisc owner is scheduled again. To prevent this
3790 * scenario the task always serialize on the lock.
79640a4c 3791 */
a9aa5e33 3792 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
79640a4c
ED
3793 if (unlikely(contended))
3794 spin_lock(&q->busylock);
3795
bbd8a0d3
KK
3796 spin_lock(root_lock);
3797 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3798 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3799 rc = NET_XMIT_DROP;
3800 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3801 qdisc_run_begin(q)) {
bbd8a0d3
KK
3802 /*
3803 * This is a work-conserving queue; there are no old skbs
3804 * waiting to be sent out; and the qdisc is not running -
3805 * xmit the skb directly.
3806 */
bfe0d029 3807
bfe0d029
ED
3808 qdisc_bstats_update(q, skb);
3809
55a93b3e 3810 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3811 if (unlikely(contended)) {
3812 spin_unlock(&q->busylock);
3813 contended = false;
3814 }
bbd8a0d3 3815 __qdisc_run(q);
6c148184 3816 }
bbd8a0d3 3817
6c148184 3818 qdisc_run_end(q);
bbd8a0d3
KK
3819 rc = NET_XMIT_SUCCESS;
3820 } else {
70713ddd 3821 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
79640a4c
ED
3822 if (qdisc_run_begin(q)) {
3823 if (unlikely(contended)) {
3824 spin_unlock(&q->busylock);
3825 contended = false;
3826 }
3827 __qdisc_run(q);
6c148184 3828 qdisc_run_end(q);
79640a4c 3829 }
bbd8a0d3
KK
3830 }
3831 spin_unlock(root_lock);
520ac30f 3832 if (unlikely(to_free))
7faef054 3833 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
79640a4c
ED
3834 if (unlikely(contended))
3835 spin_unlock(&q->busylock);
bbd8a0d3
KK
3836 return rc;
3837}
3838
86f8515f 3839#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3840static void skb_update_prio(struct sk_buff *skb)
3841{
4dcb31d4
ED
3842 const struct netprio_map *map;
3843 const struct sock *sk;
3844 unsigned int prioidx;
5bc1421e 3845
4dcb31d4
ED
3846 if (skb->priority)
3847 return;
3848 map = rcu_dereference_bh(skb->dev->priomap);
3849 if (!map)
3850 return;
3851 sk = skb_to_full_sk(skb);
3852 if (!sk)
3853 return;
91c68ce2 3854
4dcb31d4
ED
3855 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3856
3857 if (prioidx < map->priomap_len)
3858 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3859}
3860#else
3861#define skb_update_prio(skb)
3862#endif
3863
95603e22
MM
3864/**
3865 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3866 * @net: network namespace this loopback is happening in
3867 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3868 * @skb: buffer to transmit
3869 */
0c4b51f0 3870int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3871{
3872 skb_reset_mac_header(skb);
3873 __skb_pull(skb, skb_network_offset(skb));
3874 skb->pkt_type = PACKET_LOOPBACK;
9122a70a
CS
3875 if (skb->ip_summed == CHECKSUM_NONE)
3876 skb->ip_summed = CHECKSUM_UNNECESSARY;
95603e22
MM
3877 WARN_ON(!skb_dst(skb));
3878 skb_dst_force(skb);
ad0a043f 3879 netif_rx(skb);
95603e22
MM
3880 return 0;
3881}
3882EXPORT_SYMBOL(dev_loopback_xmit);
3883
1f211a1b
DB
3884#ifdef CONFIG_NET_EGRESS
3885static struct sk_buff *
3886sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3887{
42df6e1d 3888#ifdef CONFIG_NET_CLS_ACT
46209401 3889 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3890 struct tcf_result cl_res;
3891
46209401 3892 if (!miniq)
1f211a1b
DB
3893 return skb;
3894
8dc07fdb 3895 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
ec624fe7
PB
3896 tc_skb_cb(skb)->mru = 0;
3897 tc_skb_cb(skb)->post_ct = false;
46209401 3898 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3899
3aa26055 3900 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3901 case TC_ACT_OK:
3902 case TC_ACT_RECLASSIFY:
3903 skb->tc_index = TC_H_MIN(cl_res.classid);
3904 break;
3905 case TC_ACT_SHOT:
46209401 3906 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3907 *ret = NET_XMIT_DROP;
98b4d7a4 3908 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
7e2c3aea 3909 return NULL;
1f211a1b
DB
3910 case TC_ACT_STOLEN:
3911 case TC_ACT_QUEUED:
e25ea21f 3912 case TC_ACT_TRAP:
1f211a1b 3913 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3914 consume_skb(skb);
1f211a1b
DB
3915 return NULL;
3916 case TC_ACT_REDIRECT:
3917 /* No need to push/pop skb's mac_header here on egress! */
3918 skb_do_redirect(skb);
3919 *ret = NET_XMIT_SUCCESS;
3920 return NULL;
3921 default:
3922 break;
3923 }
42df6e1d 3924#endif /* CONFIG_NET_CLS_ACT */
357b6cc5 3925
1f211a1b
DB
3926 return skb;
3927}
3928#endif /* CONFIG_NET_EGRESS */
3929
fc9bab24
AN
3930#ifdef CONFIG_XPS
3931static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3932 struct xps_dev_maps *dev_maps, unsigned int tci)
3933{
255c04a8 3934 int tc = netdev_get_prio_tc_map(dev, skb->priority);
fc9bab24
AN
3935 struct xps_map *map;
3936 int queue_index = -1;
3937
5478fcd0 3938 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
255c04a8
AT
3939 return queue_index;
3940
3941 tci *= dev_maps->num_tc;
3942 tci += tc;
fc9bab24
AN
3943
3944 map = rcu_dereference(dev_maps->attr_map[tci]);
3945 if (map) {
3946 if (map->len == 1)
3947 queue_index = map->queues[0];
3948 else
3949 queue_index = map->queues[reciprocal_scale(
3950 skb_get_hash(skb), map->len)];
3951 if (unlikely(queue_index >= dev->real_num_tx_queues))
3952 queue_index = -1;
3953 }
3954 return queue_index;
3955}
3956#endif
3957
eadec877
AD
3958static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3959 struct sk_buff *skb)
638b2a69
JP
3960{
3961#ifdef CONFIG_XPS
3962 struct xps_dev_maps *dev_maps;
fc9bab24 3963 struct sock *sk = skb->sk;
638b2a69
JP
3964 int queue_index = -1;
3965
04157469
AN
3966 if (!static_key_false(&xps_needed))
3967 return -1;
3968
638b2a69 3969 rcu_read_lock();
fc9bab24
AN
3970 if (!static_key_false(&xps_rxqs_needed))
3971 goto get_cpus_map;
3972
044ab86d 3973 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
638b2a69 3974 if (dev_maps) {
fc9bab24 3975 int tci = sk_rx_queue_get(sk);
184c449f 3976
5478fcd0 3977 if (tci >= 0)
fc9bab24
AN
3978 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3979 tci);
3980 }
184c449f 3981
fc9bab24
AN
3982get_cpus_map:
3983 if (queue_index < 0) {
044ab86d 3984 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
fc9bab24
AN
3985 if (dev_maps) {
3986 unsigned int tci = skb->sender_cpu - 1;
3987
3988 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3989 tci);
638b2a69
JP
3990 }
3991 }
3992 rcu_read_unlock();
3993
3994 return queue_index;
3995#else
3996 return -1;
3997#endif
3998}
3999
a4ea8a3d 4000u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 4001 struct net_device *sb_dev)
a4ea8a3d
AD
4002{
4003 return 0;
4004}
4005EXPORT_SYMBOL(dev_pick_tx_zero);
4006
4007u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 4008 struct net_device *sb_dev)
a4ea8a3d
AD
4009{
4010 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4011}
4012EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4013
b71b5837
PA
4014u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4015 struct net_device *sb_dev)
638b2a69
JP
4016{
4017 struct sock *sk = skb->sk;
4018 int queue_index = sk_tx_queue_get(sk);
4019
eadec877
AD
4020 sb_dev = sb_dev ? : dev;
4021
638b2a69
JP
4022 if (queue_index < 0 || skb->ooo_okay ||
4023 queue_index >= dev->real_num_tx_queues) {
eadec877 4024 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 4025
638b2a69 4026 if (new_index < 0)
eadec877 4027 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
4028
4029 if (queue_index != new_index && sk &&
004a5d01 4030 sk_fullsock(sk) &&
638b2a69
JP
4031 rcu_access_pointer(sk->sk_dst_cache))
4032 sk_tx_queue_set(sk, new_index);
4033
4034 queue_index = new_index;
4035 }
4036
4037 return queue_index;
4038}
b71b5837 4039EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 4040
4bd97d51
PA
4041struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4042 struct sk_buff *skb,
4043 struct net_device *sb_dev)
638b2a69
JP
4044{
4045 int queue_index = 0;
4046
4047#ifdef CONFIG_XPS
52bd2d62
ED
4048 u32 sender_cpu = skb->sender_cpu - 1;
4049
4050 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
4051 skb->sender_cpu = raw_smp_processor_id() + 1;
4052#endif
4053
4054 if (dev->real_num_tx_queues != 1) {
4055 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 4056
638b2a69 4057 if (ops->ndo_select_queue)
a350ecce 4058 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 4059 else
4bd97d51 4060 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 4061
d584527c 4062 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
4063 }
4064
4065 skb_set_queue_mapping(skb, queue_index);
4066 return netdev_get_tx_queue(dev, queue_index);
4067}
4068
d29f749e 4069/**
9d08dd3d 4070 * __dev_queue_xmit - transmit a buffer
d29f749e 4071 * @skb: buffer to transmit
eadec877 4072 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
4073 *
4074 * Queue a buffer for transmission to a network device. The caller must
4075 * have set the device and priority and built the buffer before calling
4076 * this function. The function can be called from an interrupt.
4077 *
4078 * A negative errno code is returned on a failure. A success does not
4079 * guarantee the frame will be transmitted as it may be dropped due
4080 * to congestion or traffic shaping.
4081 *
4082 * -----------------------------------------------------------------------------------
4083 * I notice this method can also return errors from the queue disciplines,
4084 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4085 * be positive.
4086 *
4087 * Regardless of the return value, the skb is consumed, so it is currently
4088 * difficult to retry a send to this method. (You can bump the ref count
4089 * before sending to hold a reference for retry if you are careful.)
4090 *
4091 * When calling this method, interrupts MUST be enabled. This is because
4092 * the BH enable code must have IRQs enabled so that it will not deadlock.
4093 * --BLG
4094 */
eadec877 4095static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
4096{
4097 struct net_device *dev = skb->dev;
dc2b4847 4098 struct netdev_queue *txq;
1da177e4
LT
4099 struct Qdisc *q;
4100 int rc = -ENOMEM;
f53c7239 4101 bool again = false;
1da177e4 4102
6d1ccff6
ED
4103 skb_reset_mac_header(skb);
4104
e7fd2885 4105 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
e7ed11ee 4106 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
e7fd2885 4107
4ec93edb
YH
4108 /* Disable soft irqs for various locks below. Also
4109 * stops preemption for RCU.
1da177e4 4110 */
4ec93edb 4111 rcu_read_lock_bh();
1da177e4 4112
5bc1421e
NH
4113 skb_update_prio(skb);
4114
1f211a1b
DB
4115 qdisc_pkt_len_init(skb);
4116#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4117 skb->tc_at_ingress = 0;
42df6e1d
LW
4118#endif
4119#ifdef CONFIG_NET_EGRESS
aabf6772 4120 if (static_branch_unlikely(&egress_needed_key)) {
42df6e1d
LW
4121 if (nf_hook_egress_active()) {
4122 skb = nf_hook_egress(skb, &rc, dev);
4123 if (!skb)
4124 goto out;
4125 }
4126 nf_skip_egress(skb, true);
1f211a1b
DB
4127 skb = sch_handle_egress(skb, &rc, dev);
4128 if (!skb)
4129 goto out;
42df6e1d 4130 nf_skip_egress(skb, false);
1f211a1b 4131 }
1f211a1b 4132#endif
02875878
ED
4133 /* If device/qdisc don't need skb->dst, release it right now while
4134 * its hot in this cpu cache.
4135 */
4136 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4137 skb_dst_drop(skb);
4138 else
4139 skb_dst_force(skb);
4140
4bd97d51 4141 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4142 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4143
cf66ba58 4144 trace_net_dev_queue(skb);
1da177e4 4145 if (q->enqueue) {
bbd8a0d3 4146 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4147 goto out;
1da177e4
LT
4148 }
4149
4150 /* The device has no queue. Common case for software devices:
eb13da1a 4151 * loopback, all the sorts of tunnels...
1da177e4 4152
eb13da1a 4153 * Really, it is unlikely that netif_tx_lock protection is necessary
4154 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4155 * counters.)
4156 * However, it is possible, that they rely on protection
4157 * made by us here.
1da177e4 4158
eb13da1a 4159 * Check this and shot the lock. It is not prone from deadlocks.
4160 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4161 */
4162 if (dev->flags & IFF_UP) {
4163 int cpu = smp_processor_id(); /* ok because BHs are off */
4164
7a10d8c8
ED
4165 /* Other cpus might concurrently change txq->xmit_lock_owner
4166 * to -1 or to their cpu id, but not to our id.
4167 */
4168 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
97cdcf37 4169 if (dev_xmit_recursion())
745e20f1
ED
4170 goto recursion_alert;
4171
f53c7239 4172 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4173 if (!skb)
d21fd63e 4174 goto out;
1f59533f 4175
3744741a 4176 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
c773e847 4177 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4178
73466498 4179 if (!netif_xmit_stopped(txq)) {
97cdcf37 4180 dev_xmit_recursion_inc();
ce93718f 4181 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4182 dev_xmit_recursion_dec();
572a9d7b 4183 if (dev_xmit_complete(rc)) {
c773e847 4184 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4185 goto out;
4186 }
4187 }
c773e847 4188 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4189 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4190 dev->name);
1da177e4
LT
4191 } else {
4192 /* Recursion is detected! It is possible,
745e20f1
ED
4193 * unfortunately
4194 */
4195recursion_alert:
e87cc472
JP
4196 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4197 dev->name);
1da177e4
LT
4198 }
4199 }
4200
4201 rc = -ENETDOWN;
d4828d85 4202 rcu_read_unlock_bh();
1da177e4 4203
625788b5 4204 dev_core_stats_tx_dropped_inc(dev);
1f59533f 4205 kfree_skb_list(skb);
1da177e4
LT
4206 return rc;
4207out:
d4828d85 4208 rcu_read_unlock_bh();
1da177e4
LT
4209 return rc;
4210}
f663dd9a 4211
2b4aa3ce 4212int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4213{
4214 return __dev_queue_xmit(skb, NULL);
4215}
2b4aa3ce 4216EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4217
eadec877 4218int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4219{
eadec877 4220 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4221}
4222EXPORT_SYMBOL(dev_queue_xmit_accel);
4223
36ccdf85 4224int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
865b03f2
MK
4225{
4226 struct net_device *dev = skb->dev;
4227 struct sk_buff *orig_skb = skb;
4228 struct netdev_queue *txq;
4229 int ret = NETDEV_TX_BUSY;
4230 bool again = false;
4231
4232 if (unlikely(!netif_running(dev) ||
4233 !netif_carrier_ok(dev)))
4234 goto drop;
4235
4236 skb = validate_xmit_skb_list(skb, dev, &again);
4237 if (skb != orig_skb)
4238 goto drop;
4239
4240 skb_set_queue_mapping(skb, queue_id);
4241 txq = skb_get_tx_queue(dev, skb);
3744741a 4242 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
865b03f2
MK
4243
4244 local_bh_disable();
4245
0ad6f6e7 4246 dev_xmit_recursion_inc();
865b03f2
MK
4247 HARD_TX_LOCK(dev, txq, smp_processor_id());
4248 if (!netif_xmit_frozen_or_drv_stopped(txq))
4249 ret = netdev_start_xmit(skb, dev, txq, false);
4250 HARD_TX_UNLOCK(dev, txq);
0ad6f6e7 4251 dev_xmit_recursion_dec();
865b03f2
MK
4252
4253 local_bh_enable();
865b03f2
MK
4254 return ret;
4255drop:
625788b5 4256 dev_core_stats_tx_dropped_inc(dev);
865b03f2
MK
4257 kfree_skb_list(skb);
4258 return NET_XMIT_DROP;
4259}
36ccdf85 4260EXPORT_SYMBOL(__dev_direct_xmit);
1da177e4 4261
eb13da1a 4262/*************************************************************************
4263 * Receiver routines
4264 *************************************************************************/
1da177e4 4265
6b2bedc3 4266int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4267EXPORT_SYMBOL(netdev_max_backlog);
4268
3b098e2d 4269int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4270int netdev_budget __read_mostly = 300;
a4837980
KK
4271/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4272unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4273int weight_p __read_mostly = 64; /* old backlog weight */
4274int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4275int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4276int dev_rx_weight __read_mostly = 64;
4277int dev_tx_weight __read_mostly = 64;
1da177e4 4278
eecfd7c4
ED
4279/* Called with irq disabled */
4280static inline void ____napi_schedule(struct softnet_data *sd,
4281 struct napi_struct *napi)
4282{
29863d41
WW
4283 struct task_struct *thread;
4284
fbd9a2ce
SAS
4285 lockdep_assert_irqs_disabled();
4286
29863d41
WW
4287 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4288 /* Paired with smp_mb__before_atomic() in
5fdd2f0e
WW
4289 * napi_enable()/dev_set_threaded().
4290 * Use READ_ONCE() to guarantee a complete
4291 * read on napi->thread. Only call
29863d41
WW
4292 * wake_up_process() when it's not NULL.
4293 */
4294 thread = READ_ONCE(napi->thread);
4295 if (thread) {
cb038357
WW
4296 /* Avoid doing set_bit() if the thread is in
4297 * INTERRUPTIBLE state, cause napi_thread_wait()
4298 * makes sure to proceed with napi polling
4299 * if the thread is explicitly woken from here.
4300 */
2f064a59 4301 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
cb038357 4302 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
29863d41
WW
4303 wake_up_process(thread);
4304 return;
4305 }
4306 }
4307
eecfd7c4
ED
4308 list_add_tail(&napi->poll_list, &sd->poll_list);
4309 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4310}
4311
bfb564e7
KK
4312#ifdef CONFIG_RPS
4313
4314/* One global table that all flow-based protocols share. */
6e3f7faf 4315struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4316EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4317u32 rps_cpu_mask __read_mostly;
4318EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4319
dc05360f 4320struct static_key_false rps_needed __read_mostly;
3df97ba8 4321EXPORT_SYMBOL(rps_needed);
dc05360f 4322struct static_key_false rfs_needed __read_mostly;
13bfff25 4323EXPORT_SYMBOL(rfs_needed);
adc9300e 4324
c445477d
BH
4325static struct rps_dev_flow *
4326set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4327 struct rps_dev_flow *rflow, u16 next_cpu)
4328{
a31196b0 4329 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4330#ifdef CONFIG_RFS_ACCEL
4331 struct netdev_rx_queue *rxqueue;
4332 struct rps_dev_flow_table *flow_table;
4333 struct rps_dev_flow *old_rflow;
4334 u32 flow_id;
4335 u16 rxq_index;
4336 int rc;
4337
4338 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4339 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4340 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4341 goto out;
4342 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4343 if (rxq_index == skb_get_rx_queue(skb))
4344 goto out;
4345
4346 rxqueue = dev->_rx + rxq_index;
4347 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4348 if (!flow_table)
4349 goto out;
61b905da 4350 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4351 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4352 rxq_index, flow_id);
4353 if (rc < 0)
4354 goto out;
4355 old_rflow = rflow;
4356 rflow = &flow_table->flows[flow_id];
c445477d
BH
4357 rflow->filter = rc;
4358 if (old_rflow->filter == rflow->filter)
4359 old_rflow->filter = RPS_NO_FILTER;
4360 out:
4361#endif
4362 rflow->last_qtail =
09994d1b 4363 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4364 }
4365
09994d1b 4366 rflow->cpu = next_cpu;
c445477d
BH
4367 return rflow;
4368}
4369
bfb564e7
KK
4370/*
4371 * get_rps_cpu is called from netif_receive_skb and returns the target
4372 * CPU from the RPS map of the receiving queue for a given skb.
4373 * rcu_read_lock must be held on entry.
4374 */
4375static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4376 struct rps_dev_flow **rflowp)
4377{
567e4b79
ED
4378 const struct rps_sock_flow_table *sock_flow_table;
4379 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4380 struct rps_dev_flow_table *flow_table;
567e4b79 4381 struct rps_map *map;
bfb564e7 4382 int cpu = -1;
567e4b79 4383 u32 tcpu;
61b905da 4384 u32 hash;
bfb564e7
KK
4385
4386 if (skb_rx_queue_recorded(skb)) {
4387 u16 index = skb_get_rx_queue(skb);
567e4b79 4388
62fe0b40
BH
4389 if (unlikely(index >= dev->real_num_rx_queues)) {
4390 WARN_ONCE(dev->real_num_rx_queues > 1,
4391 "%s received packet on queue %u, but number "
4392 "of RX queues is %u\n",
4393 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4394 goto done;
4395 }
567e4b79
ED
4396 rxqueue += index;
4397 }
bfb564e7 4398
567e4b79
ED
4399 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4400
4401 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4402 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4403 if (!flow_table && !map)
bfb564e7
KK
4404 goto done;
4405
2d47b459 4406 skb_reset_network_header(skb);
61b905da
TH
4407 hash = skb_get_hash(skb);
4408 if (!hash)
bfb564e7
KK
4409 goto done;
4410
fec5e652
TH
4411 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4412 if (flow_table && sock_flow_table) {
fec5e652 4413 struct rps_dev_flow *rflow;
567e4b79
ED
4414 u32 next_cpu;
4415 u32 ident;
4416
4417 /* First check into global flow table if there is a match */
4418 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4419 if ((ident ^ hash) & ~rps_cpu_mask)
4420 goto try_rps;
fec5e652 4421
567e4b79
ED
4422 next_cpu = ident & rps_cpu_mask;
4423
4424 /* OK, now we know there is a match,
4425 * we can look at the local (per receive queue) flow table
4426 */
61b905da 4427 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4428 tcpu = rflow->cpu;
4429
fec5e652
TH
4430 /*
4431 * If the desired CPU (where last recvmsg was done) is
4432 * different from current CPU (one in the rx-queue flow
4433 * table entry), switch if one of the following holds:
a31196b0 4434 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4435 * - Current CPU is offline.
4436 * - The current CPU's queue tail has advanced beyond the
4437 * last packet that was enqueued using this table entry.
4438 * This guarantees that all previous packets for the flow
4439 * have been dequeued, thus preserving in order delivery.
4440 */
4441 if (unlikely(tcpu != next_cpu) &&
a31196b0 4442 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4443 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4444 rflow->last_qtail)) >= 0)) {
4445 tcpu = next_cpu;
c445477d 4446 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4447 }
c445477d 4448
a31196b0 4449 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4450 *rflowp = rflow;
4451 cpu = tcpu;
4452 goto done;
4453 }
4454 }
4455
567e4b79
ED
4456try_rps:
4457
0a9627f2 4458 if (map) {
8fc54f68 4459 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4460 if (cpu_online(tcpu)) {
4461 cpu = tcpu;
4462 goto done;
4463 }
4464 }
4465
4466done:
0a9627f2
TH
4467 return cpu;
4468}
4469
c445477d
BH
4470#ifdef CONFIG_RFS_ACCEL
4471
4472/**
4473 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4474 * @dev: Device on which the filter was set
4475 * @rxq_index: RX queue index
4476 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4477 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4478 *
4479 * Drivers that implement ndo_rx_flow_steer() should periodically call
4480 * this function for each installed filter and remove the filters for
4481 * which it returns %true.
4482 */
4483bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4484 u32 flow_id, u16 filter_id)
4485{
4486 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4487 struct rps_dev_flow_table *flow_table;
4488 struct rps_dev_flow *rflow;
4489 bool expire = true;
a31196b0 4490 unsigned int cpu;
c445477d
BH
4491
4492 rcu_read_lock();
4493 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4494 if (flow_table && flow_id <= flow_table->mask) {
4495 rflow = &flow_table->flows[flow_id];
6aa7de05 4496 cpu = READ_ONCE(rflow->cpu);
a31196b0 4497 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4498 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4499 rflow->last_qtail) <
4500 (int)(10 * flow_table->mask)))
4501 expire = false;
4502 }
4503 rcu_read_unlock();
4504 return expire;
4505}
4506EXPORT_SYMBOL(rps_may_expire_flow);
4507
4508#endif /* CONFIG_RFS_ACCEL */
4509
0a9627f2 4510/* Called from hardirq (IPI) context */
e36fa2f7 4511static void rps_trigger_softirq(void *data)
0a9627f2 4512{
e36fa2f7
ED
4513 struct softnet_data *sd = data;
4514
eecfd7c4 4515 ____napi_schedule(sd, &sd->backlog);
dee42870 4516 sd->received_rps++;
0a9627f2 4517}
e36fa2f7 4518
fec5e652 4519#endif /* CONFIG_RPS */
0a9627f2 4520
e36fa2f7
ED
4521/*
4522 * Check if this softnet_data structure is another cpu one
4523 * If yes, queue it to our IPI list and return 1
4524 * If no, return 0
4525 */
e722db8d 4526static int napi_schedule_rps(struct softnet_data *sd)
e36fa2f7 4527{
903ceff7 4528 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7 4529
e722db8d 4530#ifdef CONFIG_RPS
e36fa2f7
ED
4531 if (sd != mysd) {
4532 sd->rps_ipi_next = mysd->rps_ipi_list;
4533 mysd->rps_ipi_list = sd;
4534
4535 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4536 return 1;
4537 }
4538#endif /* CONFIG_RPS */
e722db8d 4539 __napi_schedule_irqoff(&mysd->backlog);
e36fa2f7
ED
4540 return 0;
4541}
4542
99bbc707
WB
4543#ifdef CONFIG_NET_FLOW_LIMIT
4544int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4545#endif
4546
4547static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4548{
4549#ifdef CONFIG_NET_FLOW_LIMIT
4550 struct sd_flow_limit *fl;
4551 struct softnet_data *sd;
4552 unsigned int old_flow, new_flow;
4553
4554 if (qlen < (netdev_max_backlog >> 1))
4555 return false;
4556
903ceff7 4557 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4558
4559 rcu_read_lock();
4560 fl = rcu_dereference(sd->flow_limit);
4561 if (fl) {
3958afa1 4562 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4563 old_flow = fl->history[fl->history_head];
4564 fl->history[fl->history_head] = new_flow;
4565
4566 fl->history_head++;
4567 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4568
4569 if (likely(fl->buckets[old_flow]))
4570 fl->buckets[old_flow]--;
4571
4572 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4573 fl->count++;
4574 rcu_read_unlock();
4575 return true;
4576 }
4577 }
4578 rcu_read_unlock();
4579#endif
4580 return false;
4581}
4582
0a9627f2
TH
4583/*
4584 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4585 * queue (may be a remote CPU queue).
4586 */
fec5e652
TH
4587static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4588 unsigned int *qtail)
0a9627f2 4589{
44f0bd40 4590 enum skb_drop_reason reason;
e36fa2f7 4591 struct softnet_data *sd;
0a9627f2 4592 unsigned long flags;
99bbc707 4593 unsigned int qlen;
0a9627f2 4594
44f0bd40 4595 reason = SKB_DROP_REASON_NOT_SPECIFIED;
e36fa2f7 4596 sd = &per_cpu(softnet_data, cpu);
0a9627f2 4597
e722db8d 4598 rps_lock_irqsave(sd, &flags);
e9e4dd32
JA
4599 if (!netif_running(skb->dev))
4600 goto drop;
99bbc707
WB
4601 qlen = skb_queue_len(&sd->input_pkt_queue);
4602 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4603 if (qlen) {
0a9627f2 4604enqueue:
e36fa2f7 4605 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4606 input_queue_tail_incr_save(sd, qtail);
e722db8d 4607 rps_unlock_irq_restore(sd, &flags);
0a9627f2
TH
4608 return NET_RX_SUCCESS;
4609 }
4610
ebda37c2
ED
4611 /* Schedule NAPI for backlog device
4612 * We can use non atomic operation since we own the queue lock
4613 */
e722db8d
SAS
4614 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4615 napi_schedule_rps(sd);
0a9627f2
TH
4616 goto enqueue;
4617 }
44f0bd40 4618 reason = SKB_DROP_REASON_CPU_BACKLOG;
0a9627f2 4619
e9e4dd32 4620drop:
dee42870 4621 sd->dropped++;
e722db8d 4622 rps_unlock_irq_restore(sd, &flags);
0a9627f2 4623
625788b5 4624 dev_core_stats_rx_dropped_inc(skb->dev);
44f0bd40 4625 kfree_skb_reason(skb, reason);
0a9627f2
TH
4626 return NET_RX_DROP;
4627}
1da177e4 4628
e817f856
JDB
4629static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4630{
4631 struct net_device *dev = skb->dev;
4632 struct netdev_rx_queue *rxqueue;
4633
4634 rxqueue = dev->_rx;
4635
4636 if (skb_rx_queue_recorded(skb)) {
4637 u16 index = skb_get_rx_queue(skb);
4638
4639 if (unlikely(index >= dev->real_num_rx_queues)) {
4640 WARN_ONCE(dev->real_num_rx_queues > 1,
4641 "%s received packet on queue %u, but number "
4642 "of RX queues is %u\n",
4643 dev->name, index, dev->real_num_rx_queues);
4644
4645 return rxqueue; /* Return first rxqueue */
4646 }
4647 rxqueue += index;
4648 }
4649 return rxqueue;
4650}
4651
fe21cb91
KKD
4652u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4653 struct bpf_prog *xdp_prog)
d4455169 4654{
be9df4af 4655 void *orig_data, *orig_data_end, *hard_start;
e817f856 4656 struct netdev_rx_queue *rxqueue;
22b60343 4657 bool orig_bcast, orig_host;
43b5169d 4658 u32 mac_len, frame_sz;
29724956
JDB
4659 __be16 orig_eth_type;
4660 struct ethhdr *eth;
fe21cb91 4661 u32 metalen, act;
be9df4af 4662 int off;
d4455169 4663
d4455169
JF
4664 /* The XDP program wants to see the packet starting at the MAC
4665 * header.
4666 */
4667 mac_len = skb->data - skb_mac_header(skb);
be9df4af 4668 hard_start = skb->data - skb_headroom(skb);
a075767b
JDB
4669
4670 /* SKB "head" area always have tailroom for skb_shared_info */
be9df4af 4671 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
43b5169d 4672 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
a075767b 4673
be9df4af
LB
4674 rxqueue = netif_get_rxqueue(skb);
4675 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4676 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4677 skb_headlen(skb) + mac_len, true);
a075767b 4678
02671e23
BT
4679 orig_data_end = xdp->data_end;
4680 orig_data = xdp->data;
29724956 4681 eth = (struct ethhdr *)xdp->data;
22b60343 4682 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
29724956
JDB
4683 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4684 orig_eth_type = eth->h_proto;
d4455169 4685
02671e23 4686 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4687
065af355 4688 /* check if bpf_xdp_adjust_head was used */
02671e23 4689 off = xdp->data - orig_data;
065af355
JDB
4690 if (off) {
4691 if (off > 0)
4692 __skb_pull(skb, off);
4693 else if (off < 0)
4694 __skb_push(skb, -off);
4695
4696 skb->mac_header += off;
4697 skb_reset_network_header(skb);
4698 }
d4455169 4699
a075767b
JDB
4700 /* check if bpf_xdp_adjust_tail was used */
4701 off = xdp->data_end - orig_data_end;
f7613120 4702 if (off != 0) {
02671e23 4703 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
a075767b 4704 skb->len += off; /* positive on grow, negative on shrink */
f7613120 4705 }
198d83bb 4706
29724956
JDB
4707 /* check if XDP changed eth hdr such SKB needs update */
4708 eth = (struct ethhdr *)xdp->data;
4709 if ((orig_eth_type != eth->h_proto) ||
22b60343
MW
4710 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4711 skb->dev->dev_addr)) ||
29724956
JDB
4712 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4713 __skb_push(skb, ETH_HLEN);
22b60343 4714 skb->pkt_type = PACKET_HOST;
29724956
JDB
4715 skb->protocol = eth_type_trans(skb, skb->dev);
4716 }
4717
fe21cb91
KKD
4718 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4719 * before calling us again on redirect path. We do not call do_redirect
4720 * as we leave that up to the caller.
4721 *
4722 * Caller is responsible for managing lifetime of skb (i.e. calling
4723 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4724 */
d4455169 4725 switch (act) {
6103aa96 4726 case XDP_REDIRECT:
d4455169
JF
4727 case XDP_TX:
4728 __skb_push(skb, mac_len);
de8f3a83 4729 break;
d4455169 4730 case XDP_PASS:
02671e23 4731 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4732 if (metalen)
4733 skb_metadata_set(skb, metalen);
d4455169 4734 break;
fe21cb91
KKD
4735 }
4736
4737 return act;
4738}
4739
4740static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4741 struct xdp_buff *xdp,
4742 struct bpf_prog *xdp_prog)
4743{
4744 u32 act = XDP_DROP;
4745
4746 /* Reinjected packets coming from act_mirred or similar should
4747 * not get XDP generic processing.
4748 */
4749 if (skb_is_redirected(skb))
4750 return XDP_PASS;
4751
4752 /* XDP packets must be linear and must have sufficient headroom
4753 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4754 * native XDP provides, thus we need to do it here as well.
4755 */
4756 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4757 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4758 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4759 int troom = skb->tail + skb->data_len - skb->end;
4760
4761 /* In case we have to go down the path and also linearize,
4762 * then lets do the pskb_expand_head() work just once here.
4763 */
4764 if (pskb_expand_head(skb,
4765 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4766 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4767 goto do_drop;
4768 if (skb_linearize(skb))
4769 goto do_drop;
4770 }
4771
4772 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4773 switch (act) {
4774 case XDP_REDIRECT:
4775 case XDP_TX:
4776 case XDP_PASS:
4777 break;
d4455169 4778 default:
c8064e5b 4779 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
df561f66 4780 fallthrough;
d4455169
JF
4781 case XDP_ABORTED:
4782 trace_xdp_exception(skb->dev, xdp_prog, act);
df561f66 4783 fallthrough;
d4455169
JF
4784 case XDP_DROP:
4785 do_drop:
4786 kfree_skb(skb);
4787 break;
4788 }
4789
4790 return act;
4791}
4792
4793/* When doing generic XDP we have to bypass the qdisc layer and the
4794 * network taps in order to match in-driver-XDP behavior.
4795 */
7c497478 4796void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4797{
4798 struct net_device *dev = skb->dev;
4799 struct netdev_queue *txq;
4800 bool free_skb = true;
4801 int cpu, rc;
4802
4bd97d51 4803 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4804 cpu = smp_processor_id();
4805 HARD_TX_LOCK(dev, txq, cpu);
4806 if (!netif_xmit_stopped(txq)) {
4807 rc = netdev_start_xmit(skb, dev, txq, 0);
4808 if (dev_xmit_complete(rc))
4809 free_skb = false;
4810 }
4811 HARD_TX_UNLOCK(dev, txq);
4812 if (free_skb) {
4813 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4814 kfree_skb(skb);
4815 }
4816}
4817
02786475 4818static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4819
7c497478 4820int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4821{
d4455169 4822 if (xdp_prog) {
02671e23
BT
4823 struct xdp_buff xdp;
4824 u32 act;
6103aa96 4825 int err;
d4455169 4826
02671e23 4827 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4828 if (act != XDP_PASS) {
6103aa96
JF
4829 switch (act) {
4830 case XDP_REDIRECT:
2facaad6 4831 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4832 &xdp, xdp_prog);
6103aa96
JF
4833 if (err)
4834 goto out_redir;
02671e23 4835 break;
6103aa96 4836 case XDP_TX:
d4455169 4837 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4838 break;
4839 }
d4455169
JF
4840 return XDP_DROP;
4841 }
4842 }
4843 return XDP_PASS;
6103aa96 4844out_redir:
7e726ed8 4845 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
6103aa96 4846 return XDP_DROP;
d4455169 4847}
7c497478 4848EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4849
ae78dbfa 4850static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4851{
b0e28f1e 4852 int ret;
1da177e4 4853
588f0330 4854 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4855
cf66ba58 4856 trace_netif_rx(skb);
d4455169 4857
df334545 4858#ifdef CONFIG_RPS
dc05360f 4859 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4860 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4861 int cpu;
4862
4863 rcu_read_lock();
fec5e652
TH
4864
4865 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4866 if (cpu < 0)
4867 cpu = smp_processor_id();
fec5e652
TH
4868
4869 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4870
b0e28f1e 4871 rcu_read_unlock();
adc9300e
ED
4872 } else
4873#endif
fec5e652
TH
4874 {
4875 unsigned int qtail;
f4563a75 4876
f234ae29 4877 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
fec5e652 4878 }
b0e28f1e 4879 return ret;
1da177e4 4880}
ae78dbfa 4881
baebdf48
SAS
4882/**
4883 * __netif_rx - Slightly optimized version of netif_rx
4884 * @skb: buffer to post
4885 *
4886 * This behaves as netif_rx except that it does not disable bottom halves.
4887 * As a result this function may only be invoked from the interrupt context
4888 * (either hard or soft interrupt).
4889 */
4890int __netif_rx(struct sk_buff *skb)
4891{
4892 int ret;
4893
351bdbb6 4894 lockdep_assert_once(hardirq_count() | softirq_count());
baebdf48
SAS
4895
4896 trace_netif_rx_entry(skb);
4897 ret = netif_rx_internal(skb);
4898 trace_netif_rx_exit(ret);
4899 return ret;
4900}
4901EXPORT_SYMBOL(__netif_rx);
4902
ae78dbfa
BH
4903/**
4904 * netif_rx - post buffer to the network code
4905 * @skb: buffer to post
4906 *
4907 * This function receives a packet from a device driver and queues it for
baebdf48
SAS
4908 * the upper (protocol) levels to process via the backlog NAPI device. It
4909 * always succeeds. The buffer may be dropped during processing for
4910 * congestion control or by the protocol layers.
4911 * The network buffer is passed via the backlog NAPI device. Modern NIC
4912 * driver should use NAPI and GRO.
167053f8
SAS
4913 * This function can used from interrupt and from process context. The
4914 * caller from process context must not disable interrupts before invoking
4915 * this function.
ae78dbfa
BH
4916 *
4917 * return values:
4918 * NET_RX_SUCCESS (no congestion)
4919 * NET_RX_DROP (packet was dropped)
4920 *
4921 */
ae78dbfa
BH
4922int netif_rx(struct sk_buff *skb)
4923{
167053f8 4924 bool need_bh_off = !(hardirq_count() | softirq_count());
b0e3f1bd
GB
4925 int ret;
4926
167053f8
SAS
4927 if (need_bh_off)
4928 local_bh_disable();
ae78dbfa 4929 trace_netif_rx_entry(skb);
b0e3f1bd
GB
4930 ret = netif_rx_internal(skb);
4931 trace_netif_rx_exit(ret);
167053f8
SAS
4932 if (need_bh_off)
4933 local_bh_enable();
b0e3f1bd 4934 return ret;
ae78dbfa 4935}
d1b19dff 4936EXPORT_SYMBOL(netif_rx);
1da177e4 4937
0766f788 4938static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4939{
903ceff7 4940 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4941
4942 if (sd->completion_queue) {
4943 struct sk_buff *clist;
4944
4945 local_irq_disable();
4946 clist = sd->completion_queue;
4947 sd->completion_queue = NULL;
4948 local_irq_enable();
4949
4950 while (clist) {
4951 struct sk_buff *skb = clist;
f4563a75 4952
1da177e4
LT
4953 clist = clist->next;
4954
63354797 4955 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4956 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4957 trace_consume_skb(skb);
4958 else
c504e5c2
MD
4959 trace_kfree_skb(skb, net_tx_action,
4960 SKB_DROP_REASON_NOT_SPECIFIED);
15fad714
JDB
4961
4962 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4963 __kfree_skb(skb);
4964 else
4965 __kfree_skb_defer(skb);
1da177e4
LT
4966 }
4967 }
4968
4969 if (sd->output_queue) {
37437bb2 4970 struct Qdisc *head;
1da177e4
LT
4971
4972 local_irq_disable();
4973 head = sd->output_queue;
4974 sd->output_queue = NULL;
a9cbd588 4975 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4976 local_irq_enable();
4977
102b55ee
YL
4978 rcu_read_lock();
4979
1da177e4 4980 while (head) {
37437bb2 4981 struct Qdisc *q = head;
6b3ba914 4982 spinlock_t *root_lock = NULL;
37437bb2 4983
1da177e4
LT
4984 head = head->next_sched;
4985
3bcb846c
ED
4986 /* We need to make sure head->next_sched is read
4987 * before clearing __QDISC_STATE_SCHED
4988 */
4989 smp_mb__before_atomic();
102b55ee
YL
4990
4991 if (!(q->flags & TCQ_F_NOLOCK)) {
4992 root_lock = qdisc_lock(q);
4993 spin_lock(root_lock);
4994 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4995 &q->state))) {
4996 /* There is a synchronize_net() between
4997 * STATE_DEACTIVATED flag being set and
4998 * qdisc_reset()/some_qdisc_is_busy() in
4999 * dev_deactivate(), so we can safely bail out
5000 * early here to avoid data race between
5001 * qdisc_deactivate() and some_qdisc_is_busy()
5002 * for lockless qdisc.
5003 */
5004 clear_bit(__QDISC_STATE_SCHED, &q->state);
5005 continue;
5006 }
5007
3bcb846c
ED
5008 clear_bit(__QDISC_STATE_SCHED, &q->state);
5009 qdisc_run(q);
6b3ba914
JF
5010 if (root_lock)
5011 spin_unlock(root_lock);
1da177e4 5012 }
102b55ee
YL
5013
5014 rcu_read_unlock();
1da177e4 5015 }
f53c7239
SK
5016
5017 xfrm_dev_backlog(sd);
1da177e4
LT
5018}
5019
181402a5 5020#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
5021/* This hook is defined here for ATM LANE */
5022int (*br_fdb_test_addr_hook)(struct net_device *dev,
5023 unsigned char *addr) __read_mostly;
4fb019a0 5024EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 5025#endif
1da177e4 5026
1f211a1b
DB
5027static inline struct sk_buff *
5028sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
9aa1206e 5029 struct net_device *orig_dev, bool *another)
f697c3e8 5030{
e7582bab 5031#ifdef CONFIG_NET_CLS_ACT
46209401 5032 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 5033 struct tcf_result cl_res;
24824a09 5034
c9e99fd0
DB
5035 /* If there's at least one ingress present somewhere (so
5036 * we get here via enabled static key), remaining devices
5037 * that are not configured with an ingress qdisc will bail
d2788d34 5038 * out here.
c9e99fd0 5039 */
46209401 5040 if (!miniq)
4577139b 5041 return skb;
46209401 5042
f697c3e8
HX
5043 if (*pt_prev) {
5044 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5045 *pt_prev = NULL;
1da177e4
LT
5046 }
5047
3365495c 5048 qdisc_skb_cb(skb)->pkt_len = skb->len;
ec624fe7
PB
5049 tc_skb_cb(skb)->mru = 0;
5050 tc_skb_cb(skb)->post_ct = false;
8dc07fdb 5051 skb->tc_at_ingress = 1;
46209401 5052 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 5053
3aa26055 5054 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
5055 case TC_ACT_OK:
5056 case TC_ACT_RECLASSIFY:
5057 skb->tc_index = TC_H_MIN(cl_res.classid);
5058 break;
5059 case TC_ACT_SHOT:
46209401 5060 mini_qdisc_qstats_cpu_drop(miniq);
a568aff2 5061 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
8a3a4c6e 5062 return NULL;
d2788d34
DB
5063 case TC_ACT_STOLEN:
5064 case TC_ACT_QUEUED:
e25ea21f 5065 case TC_ACT_TRAP:
8a3a4c6e 5066 consume_skb(skb);
d2788d34 5067 return NULL;
27b29f63
AS
5068 case TC_ACT_REDIRECT:
5069 /* skb_mac_header check was done by cls/act_bpf, so
5070 * we can safely push the L2 header back before
5071 * redirecting to another netdev
5072 */
5073 __skb_push(skb, skb->mac_len);
9aa1206e
DB
5074 if (skb_do_redirect(skb) == -EAGAIN) {
5075 __skb_pull(skb, skb->mac_len);
5076 *another = true;
5077 break;
5078 }
27b29f63 5079 return NULL;
720f22fe 5080 case TC_ACT_CONSUMED:
cd11b164 5081 return NULL;
d2788d34
DB
5082 default:
5083 break;
f697c3e8 5084 }
e7582bab 5085#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
5086 return skb;
5087}
1da177e4 5088
24b27fc4
MB
5089/**
5090 * netdev_is_rx_handler_busy - check if receive handler is registered
5091 * @dev: device to check
5092 *
5093 * Check if a receive handler is already registered for a given device.
5094 * Return true if there one.
5095 *
5096 * The caller must hold the rtnl_mutex.
5097 */
5098bool netdev_is_rx_handler_busy(struct net_device *dev)
5099{
5100 ASSERT_RTNL();
5101 return dev && rtnl_dereference(dev->rx_handler);
5102}
5103EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5104
ab95bfe0
JP
5105/**
5106 * netdev_rx_handler_register - register receive handler
5107 * @dev: device to register a handler for
5108 * @rx_handler: receive handler to register
93e2c32b 5109 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 5110 *
e227867f 5111 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
5112 * called from __netif_receive_skb. A negative errno code is returned
5113 * on a failure.
5114 *
5115 * The caller must hold the rtnl_mutex.
8a4eb573
JP
5116 *
5117 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
5118 */
5119int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
5120 rx_handler_func_t *rx_handler,
5121 void *rx_handler_data)
ab95bfe0 5122{
1b7cd004 5123 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
5124 return -EBUSY;
5125
f5426250
PA
5126 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5127 return -EINVAL;
5128
00cfec37 5129 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 5130 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
5131 rcu_assign_pointer(dev->rx_handler, rx_handler);
5132
5133 return 0;
5134}
5135EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5136
5137/**
5138 * netdev_rx_handler_unregister - unregister receive handler
5139 * @dev: device to unregister a handler from
5140 *
166ec369 5141 * Unregister a receive handler from a device.
ab95bfe0
JP
5142 *
5143 * The caller must hold the rtnl_mutex.
5144 */
5145void netdev_rx_handler_unregister(struct net_device *dev)
5146{
5147
5148 ASSERT_RTNL();
a9b3cd7f 5149 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
5150 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5151 * section has a guarantee to see a non NULL rx_handler_data
5152 * as well.
5153 */
5154 synchronize_net();
a9b3cd7f 5155 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
5156}
5157EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5158
b4b9e355
MG
5159/*
5160 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5161 * the special handling of PFMEMALLOC skbs.
5162 */
5163static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5164{
5165 switch (skb->protocol) {
2b8837ae
JP
5166 case htons(ETH_P_ARP):
5167 case htons(ETH_P_IP):
5168 case htons(ETH_P_IPV6):
5169 case htons(ETH_P_8021Q):
5170 case htons(ETH_P_8021AD):
b4b9e355
MG
5171 return true;
5172 default:
5173 return false;
5174 }
5175}
5176
e687ad60
PN
5177static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5178 int *ret, struct net_device *orig_dev)
5179{
5180 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
5181 int ingress_retval;
5182
e687ad60
PN
5183 if (*pt_prev) {
5184 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5185 *pt_prev = NULL;
5186 }
5187
2c1e2703
AC
5188 rcu_read_lock();
5189 ingress_retval = nf_hook_ingress(skb);
5190 rcu_read_unlock();
5191 return ingress_retval;
e687ad60
PN
5192 }
5193 return 0;
5194}
e687ad60 5195
c0bbbdc3 5196static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
88eb1944 5197 struct packet_type **ppt_prev)
1da177e4
LT
5198{
5199 struct packet_type *ptype, *pt_prev;
ab95bfe0 5200 rx_handler_func_t *rx_handler;
c0bbbdc3 5201 struct sk_buff *skb = *pskb;
f2ccd8fa 5202 struct net_device *orig_dev;
8a4eb573 5203 bool deliver_exact = false;
1da177e4 5204 int ret = NET_RX_DROP;
252e3346 5205 __be16 type;
1da177e4 5206
588f0330 5207 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5208
cf66ba58 5209 trace_netif_receive_skb(skb);
9b22ea56 5210
cc9bd5ce 5211 orig_dev = skb->dev;
8f903c70 5212
c1d2bbe1 5213 skb_reset_network_header(skb);
fda55eca
ED
5214 if (!skb_transport_header_was_set(skb))
5215 skb_reset_transport_header(skb);
0b5c9db1 5216 skb_reset_mac_len(skb);
1da177e4
LT
5217
5218 pt_prev = NULL;
5219
63d8ea7f 5220another_round:
b6858177 5221 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5222
5223 __this_cpu_inc(softnet_data.processed);
5224
458bf2f2
SH
5225 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5226 int ret2;
5227
2b4cd14f 5228 migrate_disable();
458bf2f2 5229 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
2b4cd14f 5230 migrate_enable();
458bf2f2 5231
c0bbbdc3
BS
5232 if (ret2 != XDP_PASS) {
5233 ret = NET_RX_DROP;
5234 goto out;
5235 }
458bf2f2
SH
5236 }
5237
324cefaf 5238 if (eth_type_vlan(skb->protocol)) {
0d5501c1 5239 skb = skb_vlan_untag(skb);
bcc6d479 5240 if (unlikely(!skb))
2c17d27c 5241 goto out;
bcc6d479
JP
5242 }
5243
cd14e9b7 5244 if (skb_skip_tc_classify(skb))
e7246e12 5245 goto skip_classify;
1da177e4 5246
9754e293 5247 if (pfmemalloc)
b4b9e355
MG
5248 goto skip_taps;
5249
1da177e4 5250 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5251 if (pt_prev)
5252 ret = deliver_skb(skb, pt_prev, orig_dev);
5253 pt_prev = ptype;
5254 }
5255
5256 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5257 if (pt_prev)
5258 ret = deliver_skb(skb, pt_prev, orig_dev);
5259 pt_prev = ptype;
1da177e4
LT
5260 }
5261
b4b9e355 5262skip_taps:
1cf51900 5263#ifdef CONFIG_NET_INGRESS
aabf6772 5264 if (static_branch_unlikely(&ingress_needed_key)) {
9aa1206e
DB
5265 bool another = false;
5266
42df6e1d 5267 nf_skip_egress(skb, true);
9aa1206e
DB
5268 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5269 &another);
5270 if (another)
5271 goto another_round;
4577139b 5272 if (!skb)
2c17d27c 5273 goto out;
e687ad60 5274
42df6e1d 5275 nf_skip_egress(skb, false);
e687ad60 5276 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5277 goto out;
cd14e9b7 5278 }
1cf51900 5279#endif
2c64605b 5280 skb_reset_redirect(skb);
e7246e12 5281skip_classify:
9754e293 5282 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5283 goto drop;
5284
df8a39de 5285 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5286 if (pt_prev) {
5287 ret = deliver_skb(skb, pt_prev, orig_dev);
5288 pt_prev = NULL;
5289 }
48cc32d3 5290 if (vlan_do_receive(&skb))
2425717b
JF
5291 goto another_round;
5292 else if (unlikely(!skb))
2c17d27c 5293 goto out;
2425717b
JF
5294 }
5295
48cc32d3 5296 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5297 if (rx_handler) {
5298 if (pt_prev) {
5299 ret = deliver_skb(skb, pt_prev, orig_dev);
5300 pt_prev = NULL;
5301 }
8a4eb573
JP
5302 switch (rx_handler(&skb)) {
5303 case RX_HANDLER_CONSUMED:
3bc1b1ad 5304 ret = NET_RX_SUCCESS;
2c17d27c 5305 goto out;
8a4eb573 5306 case RX_HANDLER_ANOTHER:
63d8ea7f 5307 goto another_round;
8a4eb573
JP
5308 case RX_HANDLER_EXACT:
5309 deliver_exact = true;
b1866bff 5310 break;
8a4eb573
JP
5311 case RX_HANDLER_PASS:
5312 break;
5313 default:
5314 BUG();
5315 }
ab95bfe0 5316 }
1da177e4 5317
b14a9fc4 5318 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
36b2f61a
GV
5319check_vlan_id:
5320 if (skb_vlan_tag_get_id(skb)) {
5321 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5322 * find vlan device.
5323 */
d4b812de 5324 skb->pkt_type = PACKET_OTHERHOST;
324cefaf 5325 } else if (eth_type_vlan(skb->protocol)) {
36b2f61a
GV
5326 /* Outer header is 802.1P with vlan 0, inner header is
5327 * 802.1Q or 802.1AD and vlan_do_receive() above could
5328 * not find vlan dev for vlan id 0.
5329 */
5330 __vlan_hwaccel_clear_tag(skb);
5331 skb = skb_vlan_untag(skb);
5332 if (unlikely(!skb))
5333 goto out;
5334 if (vlan_do_receive(&skb))
5335 /* After stripping off 802.1P header with vlan 0
5336 * vlan dev is found for inner header.
5337 */
5338 goto another_round;
5339 else if (unlikely(!skb))
5340 goto out;
5341 else
5342 /* We have stripped outer 802.1P vlan 0 header.
5343 * But could not find vlan dev.
5344 * check again for vlan id to set OTHERHOST.
5345 */
5346 goto check_vlan_id;
5347 }
d4b812de
ED
5348 /* Note: we might in the future use prio bits
5349 * and set skb->priority like in vlan_do_receive()
5350 * For the time being, just ignore Priority Code Point
5351 */
b1817524 5352 __vlan_hwaccel_clear_tag(skb);
d4b812de 5353 }
48cc32d3 5354
7866a621
SN
5355 type = skb->protocol;
5356
63d8ea7f 5357 /* deliver only exact match when indicated */
7866a621
SN
5358 if (likely(!deliver_exact)) {
5359 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5360 &ptype_base[ntohs(type) &
5361 PTYPE_HASH_MASK]);
5362 }
1f3c8804 5363
7866a621
SN
5364 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5365 &orig_dev->ptype_specific);
5366
5367 if (unlikely(skb->dev != orig_dev)) {
5368 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5369 &skb->dev->ptype_specific);
1da177e4
LT
5370 }
5371
5372 if (pt_prev) {
1f8b977a 5373 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5374 goto drop;
88eb1944 5375 *ppt_prev = pt_prev;
1da177e4 5376 } else {
b4b9e355 5377drop:
6c2728b7 5378 if (!deliver_exact) {
625788b5 5379 dev_core_stats_rx_dropped_inc(skb->dev);
6c2728b7
MD
5380 kfree_skb_reason(skb, SKB_DROP_REASON_PTYPE_ABSENT);
5381 } else {
625788b5 5382 dev_core_stats_rx_nohandler_inc(skb->dev);
6c2728b7
MD
5383 kfree_skb(skb);
5384 }
1da177e4
LT
5385 /* Jamal, now you will not able to escape explaining
5386 * me how you were going to use this. :-)
5387 */
5388 ret = NET_RX_DROP;
5389 }
5390
2c17d27c 5391out:
c0bbbdc3
BS
5392 /* The invariant here is that if *ppt_prev is not NULL
5393 * then skb should also be non-NULL.
5394 *
5395 * Apparently *ppt_prev assignment above holds this invariant due to
5396 * skb dereferencing near it.
5397 */
5398 *pskb = skb;
9754e293
DM
5399 return ret;
5400}
5401
88eb1944
EC
5402static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5403{
5404 struct net_device *orig_dev = skb->dev;
5405 struct packet_type *pt_prev = NULL;
5406 int ret;
5407
c0bbbdc3 5408 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
88eb1944 5409 if (pt_prev)
f5737cba
PA
5410 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5411 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5412 return ret;
5413}
5414
1c601d82
JDB
5415/**
5416 * netif_receive_skb_core - special purpose version of netif_receive_skb
5417 * @skb: buffer to process
5418 *
5419 * More direct receive version of netif_receive_skb(). It should
5420 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5421 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5422 *
5423 * This function may only be called from softirq context and interrupts
5424 * should be enabled.
5425 *
5426 * Return values (usually ignored):
5427 * NET_RX_SUCCESS: no congestion
5428 * NET_RX_DROP: packet was dropped
5429 */
5430int netif_receive_skb_core(struct sk_buff *skb)
5431{
5432 int ret;
5433
5434 rcu_read_lock();
88eb1944 5435 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5436 rcu_read_unlock();
5437
5438 return ret;
5439}
5440EXPORT_SYMBOL(netif_receive_skb_core);
5441
88eb1944
EC
5442static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5443 struct packet_type *pt_prev,
5444 struct net_device *orig_dev)
4ce0017a
EC
5445{
5446 struct sk_buff *skb, *next;
5447
88eb1944
EC
5448 if (!pt_prev)
5449 return;
5450 if (list_empty(head))
5451 return;
17266ee9 5452 if (pt_prev->list_func != NULL)
fdf71426
PA
5453 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5454 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5455 else
9a5a90d1
AL
5456 list_for_each_entry_safe(skb, next, head, list) {
5457 skb_list_del_init(skb);
fdf71426 5458 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5459 }
88eb1944
EC
5460}
5461
5462static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5463{
5464 /* Fast-path assumptions:
5465 * - There is no RX handler.
5466 * - Only one packet_type matches.
5467 * If either of these fails, we will end up doing some per-packet
5468 * processing in-line, then handling the 'last ptype' for the whole
5469 * sublist. This can't cause out-of-order delivery to any single ptype,
5470 * because the 'last ptype' must be constant across the sublist, and all
5471 * other ptypes are handled per-packet.
5472 */
5473 /* Current (common) ptype of sublist */
5474 struct packet_type *pt_curr = NULL;
5475 /* Current (common) orig_dev of sublist */
5476 struct net_device *od_curr = NULL;
5477 struct list_head sublist;
5478 struct sk_buff *skb, *next;
5479
9af86f93 5480 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5481 list_for_each_entry_safe(skb, next, head, list) {
5482 struct net_device *orig_dev = skb->dev;
5483 struct packet_type *pt_prev = NULL;
5484
22f6bbb7 5485 skb_list_del_init(skb);
c0bbbdc3 5486 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
9af86f93
EC
5487 if (!pt_prev)
5488 continue;
88eb1944
EC
5489 if (pt_curr != pt_prev || od_curr != orig_dev) {
5490 /* dispatch old sublist */
88eb1944
EC
5491 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5492 /* start new sublist */
9af86f93 5493 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5494 pt_curr = pt_prev;
5495 od_curr = orig_dev;
5496 }
9af86f93 5497 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5498 }
5499
5500 /* dispatch final sublist */
9af86f93 5501 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5502}
5503
9754e293
DM
5504static int __netif_receive_skb(struct sk_buff *skb)
5505{
5506 int ret;
5507
5508 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5509 unsigned int noreclaim_flag;
9754e293
DM
5510
5511 /*
5512 * PFMEMALLOC skbs are special, they should
5513 * - be delivered to SOCK_MEMALLOC sockets only
5514 * - stay away from userspace
5515 * - have bounded memory usage
5516 *
5517 * Use PF_MEMALLOC as this saves us from propagating the allocation
5518 * context down to all allocation sites.
5519 */
f1083048 5520 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5521 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5522 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5523 } else
88eb1944 5524 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5525
1da177e4
LT
5526 return ret;
5527}
0a9627f2 5528
4ce0017a
EC
5529static void __netif_receive_skb_list(struct list_head *head)
5530{
5531 unsigned long noreclaim_flag = 0;
5532 struct sk_buff *skb, *next;
5533 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5534
5535 list_for_each_entry_safe(skb, next, head, list) {
5536 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5537 struct list_head sublist;
5538
5539 /* Handle the previous sublist */
5540 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5541 if (!list_empty(&sublist))
5542 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5543 pfmemalloc = !pfmemalloc;
5544 /* See comments in __netif_receive_skb */
5545 if (pfmemalloc)
5546 noreclaim_flag = memalloc_noreclaim_save();
5547 else
5548 memalloc_noreclaim_restore(noreclaim_flag);
5549 }
5550 }
5551 /* Handle the remaining sublist */
b9f463d6
EC
5552 if (!list_empty(head))
5553 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5554 /* Restore pflags */
5555 if (pfmemalloc)
5556 memalloc_noreclaim_restore(noreclaim_flag);
5557}
5558
f4e63525 5559static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5560{
58038695 5561 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5562 struct bpf_prog *new = xdp->prog;
5563 int ret = 0;
5564
5565 switch (xdp->command) {
58038695 5566 case XDP_SETUP_PROG:
b5cdae32
DM
5567 rcu_assign_pointer(dev->xdp_prog, new);
5568 if (old)
5569 bpf_prog_put(old);
5570
5571 if (old && !new) {
02786475 5572 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5573 } else if (new && !old) {
02786475 5574 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5575 dev_disable_lro(dev);
56f5aa77 5576 dev_disable_gro_hw(dev);
b5cdae32
DM
5577 }
5578 break;
b5cdae32 5579
b5cdae32
DM
5580 default:
5581 ret = -EINVAL;
5582 break;
5583 }
5584
5585 return ret;
5586}
5587
ae78dbfa 5588static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5589{
2c17d27c
JA
5590 int ret;
5591
588f0330 5592 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5593
c1f19b51
RC
5594 if (skb_defer_rx_timestamp(skb))
5595 return NET_RX_SUCCESS;
5596
bbbe211c 5597 rcu_read_lock();
df334545 5598#ifdef CONFIG_RPS
dc05360f 5599 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5600 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5601 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5602
3b098e2d
ED
5603 if (cpu >= 0) {
5604 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5605 rcu_read_unlock();
adc9300e 5606 return ret;
3b098e2d 5607 }
fec5e652 5608 }
1e94d72f 5609#endif
2c17d27c
JA
5610 ret = __netif_receive_skb(skb);
5611 rcu_read_unlock();
5612 return ret;
0a9627f2 5613}
ae78dbfa 5614
587652bb 5615void netif_receive_skb_list_internal(struct list_head *head)
7da517a3 5616{
7da517a3 5617 struct sk_buff *skb, *next;
8c057efa 5618 struct list_head sublist;
7da517a3 5619
8c057efa 5620 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5621 list_for_each_entry_safe(skb, next, head, list) {
5622 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5623 skb_list_del_init(skb);
8c057efa
EC
5624 if (!skb_defer_rx_timestamp(skb))
5625 list_add_tail(&skb->list, &sublist);
7da517a3 5626 }
8c057efa 5627 list_splice_init(&sublist, head);
7da517a3 5628
7da517a3
EC
5629 rcu_read_lock();
5630#ifdef CONFIG_RPS
dc05360f 5631 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5632 list_for_each_entry_safe(skb, next, head, list) {
5633 struct rps_dev_flow voidflow, *rflow = &voidflow;
5634 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5635
5636 if (cpu >= 0) {
8c057efa 5637 /* Will be handled, remove from list */
22f6bbb7 5638 skb_list_del_init(skb);
8c057efa 5639 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5640 }
5641 }
5642 }
5643#endif
5644 __netif_receive_skb_list(head);
5645 rcu_read_unlock();
5646}
5647
ae78dbfa
BH
5648/**
5649 * netif_receive_skb - process receive buffer from network
5650 * @skb: buffer to process
5651 *
5652 * netif_receive_skb() is the main receive data processing function.
5653 * It always succeeds. The buffer may be dropped during processing
5654 * for congestion control or by the protocol layers.
5655 *
5656 * This function may only be called from softirq context and interrupts
5657 * should be enabled.
5658 *
5659 * Return values (usually ignored):
5660 * NET_RX_SUCCESS: no congestion
5661 * NET_RX_DROP: packet was dropped
5662 */
04eb4489 5663int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5664{
b0e3f1bd
GB
5665 int ret;
5666
ae78dbfa
BH
5667 trace_netif_receive_skb_entry(skb);
5668
b0e3f1bd
GB
5669 ret = netif_receive_skb_internal(skb);
5670 trace_netif_receive_skb_exit(ret);
5671
5672 return ret;
ae78dbfa 5673}
04eb4489 5674EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5675
f6ad8c1b
EC
5676/**
5677 * netif_receive_skb_list - process many receive buffers from network
5678 * @head: list of skbs to process.
5679 *
7da517a3
EC
5680 * Since return value of netif_receive_skb() is normally ignored, and
5681 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5682 *
5683 * This function may only be called from softirq context and interrupts
5684 * should be enabled.
5685 */
5686void netif_receive_skb_list(struct list_head *head)
5687{
7da517a3 5688 struct sk_buff *skb;
f6ad8c1b 5689
b9f463d6
EC
5690 if (list_empty(head))
5691 return;
b0e3f1bd
GB
5692 if (trace_netif_receive_skb_list_entry_enabled()) {
5693 list_for_each_entry(skb, head, list)
5694 trace_netif_receive_skb_list_entry(skb);
5695 }
7da517a3 5696 netif_receive_skb_list_internal(head);
b0e3f1bd 5697 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5698}
5699EXPORT_SYMBOL(netif_receive_skb_list);
5700
ce1e2a77 5701static DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5702
5703/* Network device is going away, flush any packets still pending */
5704static void flush_backlog(struct work_struct *work)
6e583ce5 5705{
6e583ce5 5706 struct sk_buff *skb, *tmp;
145dd5f9
PA
5707 struct softnet_data *sd;
5708
5709 local_bh_disable();
5710 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5711
e722db8d 5712 rps_lock_irq_disable(sd);
6e7676c1 5713 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5714 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5715 __skb_unlink(skb, &sd->input_pkt_queue);
7df5cb75 5716 dev_kfree_skb_irq(skb);
76cc8b13 5717 input_queue_head_incr(sd);
6e583ce5 5718 }
6e7676c1 5719 }
e722db8d 5720 rps_unlock_irq_enable(sd);
6e7676c1
CG
5721
5722 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5723 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5724 __skb_unlink(skb, &sd->process_queue);
5725 kfree_skb(skb);
76cc8b13 5726 input_queue_head_incr(sd);
6e7676c1
CG
5727 }
5728 }
145dd5f9
PA
5729 local_bh_enable();
5730}
5731
2de79ee2
PA
5732static bool flush_required(int cpu)
5733{
5734#if IS_ENABLED(CONFIG_RPS)
5735 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5736 bool do_flush;
5737
e722db8d 5738 rps_lock_irq_disable(sd);
2de79ee2
PA
5739
5740 /* as insertion into process_queue happens with the rps lock held,
5741 * process_queue access may race only with dequeue
5742 */
5743 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5744 !skb_queue_empty_lockless(&sd->process_queue);
e722db8d 5745 rps_unlock_irq_enable(sd);
2de79ee2
PA
5746
5747 return do_flush;
5748#endif
5749 /* without RPS we can't safely check input_pkt_queue: during a
5750 * concurrent remote skb_queue_splice() we can detect as empty both
5751 * input_pkt_queue and process_queue even if the latter could end-up
5752 * containing a lot of packets.
5753 */
5754 return true;
5755}
5756
41852497 5757static void flush_all_backlogs(void)
145dd5f9 5758{
2de79ee2 5759 static cpumask_t flush_cpus;
145dd5f9
PA
5760 unsigned int cpu;
5761
2de79ee2
PA
5762 /* since we are under rtnl lock protection we can use static data
5763 * for the cpumask and avoid allocating on stack the possibly
5764 * large mask
5765 */
5766 ASSERT_RTNL();
5767
372bbdd5 5768 cpus_read_lock();
145dd5f9 5769
2de79ee2
PA
5770 cpumask_clear(&flush_cpus);
5771 for_each_online_cpu(cpu) {
5772 if (flush_required(cpu)) {
5773 queue_work_on(cpu, system_highpri_wq,
5774 per_cpu_ptr(&flush_works, cpu));
5775 cpumask_set_cpu(cpu, &flush_cpus);
5776 }
5777 }
145dd5f9 5778
2de79ee2 5779 /* we can have in flight packet[s] on the cpus we are not flushing,
0cbe1e57 5780 * synchronize_net() in unregister_netdevice_many() will take care of
2de79ee2
PA
5781 * them
5782 */
5783 for_each_cpu(cpu, &flush_cpus)
41852497 5784 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9 5785
372bbdd5 5786 cpus_read_unlock();
6e583ce5
SH
5787}
5788
773fc8f6 5789static void net_rps_send_ipi(struct softnet_data *remsd)
5790{
5791#ifdef CONFIG_RPS
5792 while (remsd) {
5793 struct softnet_data *next = remsd->rps_ipi_next;
5794
5795 if (cpu_online(remsd->cpu))
5796 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5797 remsd = next;
5798 }
5799#endif
5800}
5801
e326bed2 5802/*
855abcf0 5803 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5804 * Note: called with local irq disabled, but exits with local irq enabled.
5805 */
5806static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5807{
5808#ifdef CONFIG_RPS
5809 struct softnet_data *remsd = sd->rps_ipi_list;
5810
5811 if (remsd) {
5812 sd->rps_ipi_list = NULL;
5813
5814 local_irq_enable();
5815
5816 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5817 net_rps_send_ipi(remsd);
e326bed2
ED
5818 } else
5819#endif
5820 local_irq_enable();
5821}
5822
d75b1ade
ED
5823static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5824{
5825#ifdef CONFIG_RPS
5826 return sd->rps_ipi_list != NULL;
5827#else
5828 return false;
5829#endif
5830}
5831
bea3348e 5832static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5833{
eecfd7c4 5834 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5835 bool again = true;
5836 int work = 0;
1da177e4 5837
e326bed2
ED
5838 /* Check if we have pending ipi, its better to send them now,
5839 * not waiting net_rx_action() end.
5840 */
d75b1ade 5841 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5842 local_irq_disable();
5843 net_rps_action_and_irq_enable(sd);
5844 }
d75b1ade 5845
3d48b53f 5846 napi->weight = dev_rx_weight;
145dd5f9 5847 while (again) {
1da177e4 5848 struct sk_buff *skb;
6e7676c1
CG
5849
5850 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5851 rcu_read_lock();
6e7676c1 5852 __netif_receive_skb(skb);
2c17d27c 5853 rcu_read_unlock();
76cc8b13 5854 input_queue_head_incr(sd);
145dd5f9 5855 if (++work >= quota)
76cc8b13 5856 return work;
145dd5f9 5857
6e7676c1 5858 }
1da177e4 5859
e722db8d 5860 rps_lock_irq_disable(sd);
11ef7a89 5861 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5862 /*
5863 * Inline a custom version of __napi_complete().
5864 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5865 * and NAPI_STATE_SCHED is the only possible flag set
5866 * on backlog.
5867 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5868 * and we dont need an smp_mb() memory barrier.
5869 */
eecfd7c4 5870 napi->state = 0;
145dd5f9
PA
5871 again = false;
5872 } else {
5873 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5874 &sd->process_queue);
bea3348e 5875 }
e722db8d 5876 rps_unlock_irq_enable(sd);
6e7676c1 5877 }
1da177e4 5878
bea3348e
SH
5879 return work;
5880}
1da177e4 5881
bea3348e
SH
5882/**
5883 * __napi_schedule - schedule for receive
c4ea43c5 5884 * @n: entry to schedule
bea3348e 5885 *
bc9ad166
ED
5886 * The entry's receive function will be scheduled to run.
5887 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5888 */
b5606c2d 5889void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5890{
5891 unsigned long flags;
1da177e4 5892
bea3348e 5893 local_irq_save(flags);
903ceff7 5894 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5895 local_irq_restore(flags);
1da177e4 5896}
bea3348e
SH
5897EXPORT_SYMBOL(__napi_schedule);
5898
39e6c820
ED
5899/**
5900 * napi_schedule_prep - check if napi can be scheduled
5901 * @n: napi context
5902 *
5903 * Test if NAPI routine is already running, and if not mark
ee1a4c84 5904 * it as running. This is used as a condition variable to
39e6c820
ED
5905 * insure only one NAPI poll instance runs. We also make
5906 * sure there is no pending NAPI disable.
5907 */
5908bool napi_schedule_prep(struct napi_struct *n)
5909{
5910 unsigned long val, new;
5911
5912 do {
5913 val = READ_ONCE(n->state);
5914 if (unlikely(val & NAPIF_STATE_DISABLE))
5915 return false;
5916 new = val | NAPIF_STATE_SCHED;
5917
5918 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5919 * This was suggested by Alexander Duyck, as compiler
5920 * emits better code than :
5921 * if (val & NAPIF_STATE_SCHED)
5922 * new |= NAPIF_STATE_MISSED;
5923 */
5924 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5925 NAPIF_STATE_MISSED;
5926 } while (cmpxchg(&n->state, val, new) != val);
5927
5928 return !(val & NAPIF_STATE_SCHED);
5929}
5930EXPORT_SYMBOL(napi_schedule_prep);
5931
bc9ad166
ED
5932/**
5933 * __napi_schedule_irqoff - schedule for receive
5934 * @n: entry to schedule
5935 *
8380c81d
SAS
5936 * Variant of __napi_schedule() assuming hard irqs are masked.
5937 *
5938 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5939 * because the interrupt disabled assumption might not be true
5940 * due to force-threaded interrupts and spinlock substitution.
bc9ad166
ED
5941 */
5942void __napi_schedule_irqoff(struct napi_struct *n)
5943{
8380c81d
SAS
5944 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5945 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5946 else
5947 __napi_schedule(n);
bc9ad166
ED
5948}
5949EXPORT_SYMBOL(__napi_schedule_irqoff);
5950
364b6055 5951bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5952{
6f8b12d6
ED
5953 unsigned long flags, val, new, timeout = 0;
5954 bool ret = true;
d565b0a1
HX
5955
5956 /*
217f6974
ED
5957 * 1) Don't let napi dequeue from the cpu poll list
5958 * just in case its running on a different cpu.
5959 * 2) If we are busy polling, do nothing here, we have
5960 * the guarantee we will be called later.
d565b0a1 5961 */
217f6974
ED
5962 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5963 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5964 return false;
d565b0a1 5965
6f8b12d6
ED
5966 if (work_done) {
5967 if (n->gro_bitmask)
7e417a66
ED
5968 timeout = READ_ONCE(n->dev->gro_flush_timeout);
5969 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
5970 }
5971 if (n->defer_hard_irqs_count > 0) {
5972 n->defer_hard_irqs_count--;
7e417a66 5973 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
5974 if (timeout)
5975 ret = false;
5976 }
5977 if (n->gro_bitmask) {
605108ac
PA
5978 /* When the NAPI instance uses a timeout and keeps postponing
5979 * it, we need to bound somehow the time packets are kept in
5980 * the GRO layer
5981 */
5982 napi_gro_flush(n, !!timeout);
3b47d303 5983 }
c8079432
MM
5984
5985 gro_normal_list(n);
5986
02c1602e 5987 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5988 /* If n->poll_list is not empty, we need to mask irqs */
5989 local_irq_save(flags);
02c1602e 5990 list_del_init(&n->poll_list);
d75b1ade
ED
5991 local_irq_restore(flags);
5992 }
39e6c820
ED
5993
5994 do {
5995 val = READ_ONCE(n->state);
5996
5997 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5998
7fd3253a 5999 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
cb038357 6000 NAPIF_STATE_SCHED_THREADED |
7fd3253a 6001 NAPIF_STATE_PREFER_BUSY_POLL);
39e6c820
ED
6002
6003 /* If STATE_MISSED was set, leave STATE_SCHED set,
6004 * because we will call napi->poll() one more time.
6005 * This C code was suggested by Alexander Duyck to help gcc.
6006 */
6007 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6008 NAPIF_STATE_SCHED;
6009 } while (cmpxchg(&n->state, val, new) != val);
6010
6011 if (unlikely(val & NAPIF_STATE_MISSED)) {
6012 __napi_schedule(n);
6013 return false;
6014 }
6015
6f8b12d6
ED
6016 if (timeout)
6017 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6018 HRTIMER_MODE_REL_PINNED);
6019 return ret;
d565b0a1 6020}
3b47d303 6021EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6022
af12fa6e 6023/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6024static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6025{
6026 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6027 struct napi_struct *napi;
6028
6029 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6030 if (napi->napi_id == napi_id)
6031 return napi;
6032
6033 return NULL;
6034}
02d62e86
ED
6035
6036#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6037
7fd3253a 6038static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
217f6974 6039{
7fd3253a
BT
6040 if (!skip_schedule) {
6041 gro_normal_list(napi);
6042 __napi_schedule(napi);
6043 return;
6044 }
217f6974 6045
7fd3253a
BT
6046 if (napi->gro_bitmask) {
6047 /* flush too old packets
6048 * If HZ < 1000, flush all packets.
6049 */
6050 napi_gro_flush(napi, HZ >= 1000);
6051 }
217f6974 6052
7fd3253a
BT
6053 gro_normal_list(napi);
6054 clear_bit(NAPI_STATE_SCHED, &napi->state);
6055}
6056
7c951caf
BT
6057static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6058 u16 budget)
217f6974 6059{
7fd3253a
BT
6060 bool skip_schedule = false;
6061 unsigned long timeout;
217f6974
ED
6062 int rc;
6063
39e6c820
ED
6064 /* Busy polling means there is a high chance device driver hard irq
6065 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6066 * set in napi_schedule_prep().
6067 * Since we are about to call napi->poll() once more, we can safely
6068 * clear NAPI_STATE_MISSED.
6069 *
6070 * Note: x86 could use a single "lock and ..." instruction
6071 * to perform these two clear_bit()
6072 */
6073 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6074 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6075
6076 local_bh_disable();
6077
7fd3253a
BT
6078 if (prefer_busy_poll) {
6079 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6080 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6081 if (napi->defer_hard_irqs_count && timeout) {
6082 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6083 skip_schedule = true;
6084 }
6085 }
6086
217f6974
ED
6087 /* All we really want here is to re-enable device interrupts.
6088 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6089 */
7c951caf 6090 rc = napi->poll(napi, budget);
323ebb61
EC
6091 /* We can't gro_normal_list() here, because napi->poll() might have
6092 * rearmed the napi (napi_complete_done()) in which case it could
6093 * already be running on another CPU.
6094 */
7c951caf 6095 trace_napi_poll(napi, rc, budget);
217f6974 6096 netpoll_poll_unlock(have_poll_lock);
7c951caf 6097 if (rc == budget)
7fd3253a 6098 __busy_poll_stop(napi, skip_schedule);
217f6974 6099 local_bh_enable();
217f6974
ED
6100}
6101
7db6b048
SS
6102void napi_busy_loop(unsigned int napi_id,
6103 bool (*loop_end)(void *, unsigned long),
7c951caf 6104 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
02d62e86 6105{
7db6b048 6106 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6107 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6108 void *have_poll_lock = NULL;
02d62e86 6109 struct napi_struct *napi;
217f6974
ED
6110
6111restart:
217f6974 6112 napi_poll = NULL;
02d62e86 6113
2a028ecb 6114 rcu_read_lock();
02d62e86 6115
545cd5e5 6116 napi = napi_by_id(napi_id);
02d62e86
ED
6117 if (!napi)
6118 goto out;
6119
217f6974
ED
6120 preempt_disable();
6121 for (;;) {
2b5cd0df
AD
6122 int work = 0;
6123
2a028ecb 6124 local_bh_disable();
217f6974
ED
6125 if (!napi_poll) {
6126 unsigned long val = READ_ONCE(napi->state);
6127
6128 /* If multiple threads are competing for this napi,
6129 * we avoid dirtying napi->state as much as we can.
6130 */
6131 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
7fd3253a
BT
6132 NAPIF_STATE_IN_BUSY_POLL)) {
6133 if (prefer_busy_poll)
6134 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6135 goto count;
7fd3253a 6136 }
217f6974
ED
6137 if (cmpxchg(&napi->state, val,
6138 val | NAPIF_STATE_IN_BUSY_POLL |
7fd3253a
BT
6139 NAPIF_STATE_SCHED) != val) {
6140 if (prefer_busy_poll)
6141 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6142 goto count;
7fd3253a 6143 }
217f6974
ED
6144 have_poll_lock = netpoll_poll_lock(napi);
6145 napi_poll = napi->poll;
6146 }
7c951caf
BT
6147 work = napi_poll(napi, budget);
6148 trace_napi_poll(napi, work, budget);
323ebb61 6149 gro_normal_list(napi);
217f6974 6150count:
2b5cd0df 6151 if (work > 0)
7db6b048 6152 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6153 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6154 local_bh_enable();
02d62e86 6155
7db6b048 6156 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6157 break;
02d62e86 6158
217f6974
ED
6159 if (unlikely(need_resched())) {
6160 if (napi_poll)
7c951caf 6161 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974
ED
6162 preempt_enable();
6163 rcu_read_unlock();
6164 cond_resched();
7db6b048 6165 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6166 return;
217f6974
ED
6167 goto restart;
6168 }
6cdf89b1 6169 cpu_relax();
217f6974
ED
6170 }
6171 if (napi_poll)
7c951caf 6172 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974 6173 preempt_enable();
02d62e86 6174out:
2a028ecb 6175 rcu_read_unlock();
02d62e86 6176}
7db6b048 6177EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6178
6179#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6180
149d6ad8 6181static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6182{
4d092dd2 6183 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
52bd2d62 6184 return;
af12fa6e 6185
52bd2d62 6186 spin_lock(&napi_hash_lock);
af12fa6e 6187
545cd5e5 6188 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6189 do {
545cd5e5
AD
6190 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6191 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6192 } while (napi_by_id(napi_gen_id));
6193 napi->napi_id = napi_gen_id;
af12fa6e 6194
52bd2d62
ED
6195 hlist_add_head_rcu(&napi->napi_hash_node,
6196 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6197
52bd2d62 6198 spin_unlock(&napi_hash_lock);
af12fa6e 6199}
af12fa6e
ET
6200
6201/* Warning : caller is responsible to make sure rcu grace period
6202 * is respected before freeing memory containing @napi
6203 */
5198d545 6204static void napi_hash_del(struct napi_struct *napi)
af12fa6e
ET
6205{
6206 spin_lock(&napi_hash_lock);
6207
4d092dd2 6208 hlist_del_init_rcu(&napi->napi_hash_node);
5198d545 6209
af12fa6e
ET
6210 spin_unlock(&napi_hash_lock);
6211}
af12fa6e 6212
3b47d303
ED
6213static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6214{
6215 struct napi_struct *napi;
6216
6217 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6218
6219 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6220 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6221 */
6f8b12d6 6222 if (!napi_disable_pending(napi) &&
7fd3253a
BT
6223 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6224 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
39e6c820 6225 __napi_schedule_irqoff(napi);
7fd3253a 6226 }
3b47d303
ED
6227
6228 return HRTIMER_NORESTART;
6229}
6230
7c4ec749 6231static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6232{
07d78363
DM
6233 int i;
6234
6312fe77
LR
6235 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6236 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6237 napi->gro_hash[i].count = 0;
6238 }
7c4ec749
DM
6239 napi->gro_bitmask = 0;
6240}
6241
5fdd2f0e
WW
6242int dev_set_threaded(struct net_device *dev, bool threaded)
6243{
6244 struct napi_struct *napi;
6245 int err = 0;
6246
6247 if (dev->threaded == threaded)
6248 return 0;
6249
6250 if (threaded) {
6251 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6252 if (!napi->thread) {
6253 err = napi_kthread_create(napi);
6254 if (err) {
6255 threaded = false;
6256 break;
6257 }
6258 }
6259 }
6260 }
6261
6262 dev->threaded = threaded;
6263
6264 /* Make sure kthread is created before THREADED bit
6265 * is set.
6266 */
6267 smp_mb__before_atomic();
6268
6269 /* Setting/unsetting threaded mode on a napi might not immediately
6270 * take effect, if the current napi instance is actively being
6271 * polled. In this case, the switch between threaded mode and
6272 * softirq mode will happen in the next round of napi_schedule().
6273 * This should not cause hiccups/stalls to the live traffic.
6274 */
6275 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6276 if (threaded)
6277 set_bit(NAPI_STATE_THREADED, &napi->state);
6278 else
6279 clear_bit(NAPI_STATE_THREADED, &napi->state);
6280 }
6281
6282 return err;
6283}
8f64860f 6284EXPORT_SYMBOL(dev_set_threaded);
5fdd2f0e 6285
7c4ec749
DM
6286void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6287 int (*poll)(struct napi_struct *, int), int weight)
6288{
4d092dd2
JK
6289 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6290 return;
6291
7c4ec749 6292 INIT_LIST_HEAD(&napi->poll_list);
4d092dd2 6293 INIT_HLIST_NODE(&napi->napi_hash_node);
7c4ec749
DM
6294 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6295 napi->timer.function = napi_watchdog;
6296 init_gro_hash(napi);
5d38a079 6297 napi->skb = NULL;
323ebb61
EC
6298 INIT_LIST_HEAD(&napi->rx_list);
6299 napi->rx_count = 0;
d565b0a1 6300 napi->poll = poll;
82dc3c63 6301 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6302 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6303 weight);
d565b0a1 6304 napi->weight = weight;
d565b0a1 6305 napi->dev = dev;
5d38a079 6306#ifdef CONFIG_NETPOLL
d565b0a1
HX
6307 napi->poll_owner = -1;
6308#endif
6309 set_bit(NAPI_STATE_SCHED, &napi->state);
96e97bc0
JK
6310 set_bit(NAPI_STATE_NPSVC, &napi->state);
6311 list_add_rcu(&napi->dev_list, &dev->napi_list);
93d05d4a 6312 napi_hash_add(napi);
29863d41
WW
6313 /* Create kthread for this napi if dev->threaded is set.
6314 * Clear dev->threaded if kthread creation failed so that
6315 * threaded mode will not be enabled in napi_enable().
6316 */
6317 if (dev->threaded && napi_kthread_create(napi))
6318 dev->threaded = 0;
d565b0a1
HX
6319}
6320EXPORT_SYMBOL(netif_napi_add);
6321
3b47d303
ED
6322void napi_disable(struct napi_struct *n)
6323{
719c5719
JK
6324 unsigned long val, new;
6325
3b47d303
ED
6326 might_sleep();
6327 set_bit(NAPI_STATE_DISABLE, &n->state);
6328
0315a075 6329 for ( ; ; ) {
719c5719
JK
6330 val = READ_ONCE(n->state);
6331 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6332 usleep_range(20, 200);
6333 continue;
6334 }
6335
6336 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6337 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
0315a075
AL
6338
6339 if (cmpxchg(&n->state, val, new) == val)
6340 break;
6341 }
3b47d303
ED
6342
6343 hrtimer_cancel(&n->timer);
6344
6345 clear_bit(NAPI_STATE_DISABLE, &n->state);
6346}
6347EXPORT_SYMBOL(napi_disable);
6348
29863d41
WW
6349/**
6350 * napi_enable - enable NAPI scheduling
6351 * @n: NAPI context
6352 *
6353 * Resume NAPI from being scheduled on this context.
6354 * Must be paired with napi_disable.
6355 */
6356void napi_enable(struct napi_struct *n)
6357{
3765996e
XZ
6358 unsigned long val, new;
6359
6360 do {
6361 val = READ_ONCE(n->state);
6362 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6363
6364 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6365 if (n->dev->threaded && n->thread)
6366 new |= NAPIF_STATE_THREADED;
6367 } while (cmpxchg(&n->state, val, new) != val);
29863d41
WW
6368}
6369EXPORT_SYMBOL(napi_enable);
6370
07d78363 6371static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6372{
07d78363 6373 int i;
d4546c25 6374
07d78363
DM
6375 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6376 struct sk_buff *skb, *n;
6377
6312fe77 6378 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6379 kfree_skb(skb);
6312fe77 6380 napi->gro_hash[i].count = 0;
07d78363 6381 }
d4546c25
DM
6382}
6383
93d05d4a 6384/* Must be called in process context */
5198d545 6385void __netif_napi_del(struct napi_struct *napi)
d565b0a1 6386{
4d092dd2
JK
6387 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6388 return;
6389
5198d545 6390 napi_hash_del(napi);
5251ef82 6391 list_del_rcu(&napi->dev_list);
76620aaf 6392 napi_free_frags(napi);
d565b0a1 6393
07d78363 6394 flush_gro_hash(napi);
d9f37d01 6395 napi->gro_bitmask = 0;
29863d41
WW
6396
6397 if (napi->thread) {
6398 kthread_stop(napi->thread);
6399 napi->thread = NULL;
6400 }
d565b0a1 6401}
5198d545 6402EXPORT_SYMBOL(__netif_napi_del);
d565b0a1 6403
898f8015 6404static int __napi_poll(struct napi_struct *n, bool *repoll)
726ce70e 6405{
726ce70e
HX
6406 int work, weight;
6407
726ce70e
HX
6408 weight = n->weight;
6409
6410 /* This NAPI_STATE_SCHED test is for avoiding a race
6411 * with netpoll's poll_napi(). Only the entity which
6412 * obtains the lock and sees NAPI_STATE_SCHED set will
6413 * actually make the ->poll() call. Therefore we avoid
6414 * accidentally calling ->poll() when NAPI is not scheduled.
6415 */
6416 work = 0;
6417 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6418 work = n->poll(n, weight);
1db19db7 6419 trace_napi_poll(n, work, weight);
726ce70e
HX
6420 }
6421
427d5838 6422 if (unlikely(work > weight))
5b92be64
JB
6423 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6424 n->poll, work, weight);
726ce70e
HX
6425
6426 if (likely(work < weight))
898f8015 6427 return work;
726ce70e
HX
6428
6429 /* Drivers must not modify the NAPI state if they
6430 * consume the entire weight. In such cases this code
6431 * still "owns" the NAPI instance and therefore can
6432 * move the instance around on the list at-will.
6433 */
6434 if (unlikely(napi_disable_pending(n))) {
6435 napi_complete(n);
898f8015 6436 return work;
726ce70e
HX
6437 }
6438
7fd3253a
BT
6439 /* The NAPI context has more processing work, but busy-polling
6440 * is preferred. Exit early.
6441 */
6442 if (napi_prefer_busy_poll(n)) {
6443 if (napi_complete_done(n, work)) {
6444 /* If timeout is not set, we need to make sure
6445 * that the NAPI is re-scheduled.
6446 */
6447 napi_schedule(n);
6448 }
898f8015 6449 return work;
7fd3253a
BT
6450 }
6451
d9f37d01 6452 if (n->gro_bitmask) {
726ce70e
HX
6453 /* flush too old packets
6454 * If HZ < 1000, flush all packets.
6455 */
6456 napi_gro_flush(n, HZ >= 1000);
6457 }
6458
c8079432
MM
6459 gro_normal_list(n);
6460
001ce546
HX
6461 /* Some drivers may have called napi_schedule
6462 * prior to exhausting their budget.
6463 */
6464 if (unlikely(!list_empty(&n->poll_list))) {
6465 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6466 n->dev ? n->dev->name : "backlog");
898f8015 6467 return work;
001ce546
HX
6468 }
6469
898f8015
FF
6470 *repoll = true;
6471
6472 return work;
6473}
6474
6475static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6476{
6477 bool do_repoll = false;
6478 void *have;
6479 int work;
6480
6481 list_del_init(&n->poll_list);
6482
6483 have = netpoll_poll_lock(n);
6484
6485 work = __napi_poll(n, &do_repoll);
6486
6487 if (do_repoll)
6488 list_add_tail(&n->poll_list, repoll);
726ce70e 6489
726ce70e
HX
6490 netpoll_poll_unlock(have);
6491
6492 return work;
6493}
6494
29863d41
WW
6495static int napi_thread_wait(struct napi_struct *napi)
6496{
cb038357
WW
6497 bool woken = false;
6498
29863d41
WW
6499 set_current_state(TASK_INTERRUPTIBLE);
6500
27f0ad71 6501 while (!kthread_should_stop()) {
cb038357
WW
6502 /* Testing SCHED_THREADED bit here to make sure the current
6503 * kthread owns this napi and could poll on this napi.
6504 * Testing SCHED bit is not enough because SCHED bit might be
6505 * set by some other busy poll thread or by napi_disable().
6506 */
6507 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
29863d41
WW
6508 WARN_ON(!list_empty(&napi->poll_list));
6509 __set_current_state(TASK_RUNNING);
6510 return 0;
6511 }
6512
6513 schedule();
cb038357
WW
6514 /* woken being true indicates this thread owns this napi. */
6515 woken = true;
29863d41
WW
6516 set_current_state(TASK_INTERRUPTIBLE);
6517 }
6518 __set_current_state(TASK_RUNNING);
27f0ad71 6519
29863d41
WW
6520 return -1;
6521}
6522
6523static int napi_threaded_poll(void *data)
6524{
6525 struct napi_struct *napi = data;
6526 void *have;
6527
6528 while (!napi_thread_wait(napi)) {
6529 for (;;) {
6530 bool repoll = false;
6531
6532 local_bh_disable();
6533
6534 have = netpoll_poll_lock(napi);
6535 __napi_poll(napi, &repoll);
6536 netpoll_poll_unlock(have);
6537
29863d41
WW
6538 local_bh_enable();
6539
6540 if (!repoll)
6541 break;
6542
6543 cond_resched();
6544 }
6545 }
6546 return 0;
6547}
6548
0766f788 6549static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6550{
903ceff7 6551 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6552 unsigned long time_limit = jiffies +
6553 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6554 int budget = netdev_budget;
d75b1ade
ED
6555 LIST_HEAD(list);
6556 LIST_HEAD(repoll);
53fb95d3 6557
1da177e4 6558 local_irq_disable();
d75b1ade
ED
6559 list_splice_init(&sd->poll_list, &list);
6560 local_irq_enable();
1da177e4 6561
ceb8d5bf 6562 for (;;) {
bea3348e 6563 struct napi_struct *n;
1da177e4 6564
ceb8d5bf
HX
6565 if (list_empty(&list)) {
6566 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
fec6e49b 6567 return;
ceb8d5bf
HX
6568 break;
6569 }
6570
6bd373eb
HX
6571 n = list_first_entry(&list, struct napi_struct, poll_list);
6572 budget -= napi_poll(n, &repoll);
6573
d75b1ade 6574 /* If softirq window is exhausted then punt.
24f8b238
SH
6575 * Allow this to run for 2 jiffies since which will allow
6576 * an average latency of 1.5/HZ.
bea3348e 6577 */
ceb8d5bf
HX
6578 if (unlikely(budget <= 0 ||
6579 time_after_eq(jiffies, time_limit))) {
6580 sd->time_squeeze++;
6581 break;
6582 }
1da177e4 6583 }
d75b1ade 6584
d75b1ade
ED
6585 local_irq_disable();
6586
6587 list_splice_tail_init(&sd->poll_list, &list);
6588 list_splice_tail(&repoll, &list);
6589 list_splice(&list, &sd->poll_list);
6590 if (!list_empty(&sd->poll_list))
6591 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6592
e326bed2 6593 net_rps_action_and_irq_enable(sd);
1da177e4
LT
6594}
6595
aa9d8560 6596struct netdev_adjacent {
9ff162a8 6597 struct net_device *dev;
f77159a3 6598 netdevice_tracker dev_tracker;
5d261913
VF
6599
6600 /* upper master flag, there can only be one master device per list */
9ff162a8 6601 bool master;
5d261913 6602
32b6d34f
TY
6603 /* lookup ignore flag */
6604 bool ignore;
6605
5d261913
VF
6606 /* counter for the number of times this device was added to us */
6607 u16 ref_nr;
6608
402dae96
VF
6609 /* private field for the users */
6610 void *private;
6611
9ff162a8
JP
6612 struct list_head list;
6613 struct rcu_head rcu;
9ff162a8
JP
6614};
6615
6ea29da1 6616static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6617 struct list_head *adj_list)
9ff162a8 6618{
5d261913 6619 struct netdev_adjacent *adj;
5d261913 6620
2f268f12 6621 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6622 if (adj->dev == adj_dev)
6623 return adj;
9ff162a8
JP
6624 }
6625 return NULL;
6626}
6627
eff74233
TY
6628static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6629 struct netdev_nested_priv *priv)
f1170fd4 6630{
eff74233 6631 struct net_device *dev = (struct net_device *)priv->data;
f1170fd4
DA
6632
6633 return upper_dev == dev;
6634}
6635
9ff162a8
JP
6636/**
6637 * netdev_has_upper_dev - Check if device is linked to an upper device
6638 * @dev: device
6639 * @upper_dev: upper device to check
6640 *
6641 * Find out if a device is linked to specified upper device and return true
6642 * in case it is. Note that this checks only immediate upper device,
6643 * not through a complete stack of devices. The caller must hold the RTNL lock.
6644 */
6645bool netdev_has_upper_dev(struct net_device *dev,
6646 struct net_device *upper_dev)
6647{
eff74233
TY
6648 struct netdev_nested_priv priv = {
6649 .data = (void *)upper_dev,
6650 };
6651
9ff162a8
JP
6652 ASSERT_RTNL();
6653
32b6d34f 6654 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 6655 &priv);
9ff162a8
JP
6656}
6657EXPORT_SYMBOL(netdev_has_upper_dev);
6658
1a3f060c 6659/**
c1639be9 6660 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
1a3f060c
DA
6661 * @dev: device
6662 * @upper_dev: upper device to check
6663 *
6664 * Find out if a device is linked to specified upper device and return true
6665 * in case it is. Note that this checks the entire upper device chain.
6666 * The caller must hold rcu lock.
6667 */
6668
1a3f060c
DA
6669bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6670 struct net_device *upper_dev)
6671{
eff74233
TY
6672 struct netdev_nested_priv priv = {
6673 .data = (void *)upper_dev,
6674 };
6675
32b6d34f 6676 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 6677 &priv);
1a3f060c
DA
6678}
6679EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6680
9ff162a8
JP
6681/**
6682 * netdev_has_any_upper_dev - Check if device is linked to some device
6683 * @dev: device
6684 *
6685 * Find out if a device is linked to an upper device and return true in case
6686 * it is. The caller must hold the RTNL lock.
6687 */
25cc72a3 6688bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6689{
6690 ASSERT_RTNL();
6691
f1170fd4 6692 return !list_empty(&dev->adj_list.upper);
9ff162a8 6693}
25cc72a3 6694EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6695
6696/**
6697 * netdev_master_upper_dev_get - Get master upper device
6698 * @dev: device
6699 *
6700 * Find a master upper device and return pointer to it or NULL in case
6701 * it's not there. The caller must hold the RTNL lock.
6702 */
6703struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6704{
aa9d8560 6705 struct netdev_adjacent *upper;
9ff162a8
JP
6706
6707 ASSERT_RTNL();
6708
2f268f12 6709 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6710 return NULL;
6711
2f268f12 6712 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6713 struct netdev_adjacent, list);
9ff162a8
JP
6714 if (likely(upper->master))
6715 return upper->dev;
6716 return NULL;
6717}
6718EXPORT_SYMBOL(netdev_master_upper_dev_get);
6719
32b6d34f
TY
6720static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6721{
6722 struct netdev_adjacent *upper;
6723
6724 ASSERT_RTNL();
6725
6726 if (list_empty(&dev->adj_list.upper))
6727 return NULL;
6728
6729 upper = list_first_entry(&dev->adj_list.upper,
6730 struct netdev_adjacent, list);
6731 if (likely(upper->master) && !upper->ignore)
6732 return upper->dev;
6733 return NULL;
6734}
6735
0f524a80
DA
6736/**
6737 * netdev_has_any_lower_dev - Check if device is linked to some device
6738 * @dev: device
6739 *
6740 * Find out if a device is linked to a lower device and return true in case
6741 * it is. The caller must hold the RTNL lock.
6742 */
6743static bool netdev_has_any_lower_dev(struct net_device *dev)
6744{
6745 ASSERT_RTNL();
6746
6747 return !list_empty(&dev->adj_list.lower);
6748}
6749
b6ccba4c
VF
6750void *netdev_adjacent_get_private(struct list_head *adj_list)
6751{
6752 struct netdev_adjacent *adj;
6753
6754 adj = list_entry(adj_list, struct netdev_adjacent, list);
6755
6756 return adj->private;
6757}
6758EXPORT_SYMBOL(netdev_adjacent_get_private);
6759
44a40855
VY
6760/**
6761 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6762 * @dev: device
6763 * @iter: list_head ** of the current position
6764 *
6765 * Gets the next device from the dev's upper list, starting from iter
6766 * position. The caller must hold RCU read lock.
6767 */
6768struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6769 struct list_head **iter)
6770{
6771 struct netdev_adjacent *upper;
6772
6773 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6774
6775 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6776
6777 if (&upper->list == &dev->adj_list.upper)
6778 return NULL;
6779
6780 *iter = &upper->list;
6781
6782 return upper->dev;
6783}
6784EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6785
32b6d34f
TY
6786static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6787 struct list_head **iter,
6788 bool *ignore)
5343da4c
TY
6789{
6790 struct netdev_adjacent *upper;
6791
6792 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6793
6794 if (&upper->list == &dev->adj_list.upper)
6795 return NULL;
6796
6797 *iter = &upper->list;
32b6d34f 6798 *ignore = upper->ignore;
5343da4c
TY
6799
6800 return upper->dev;
6801}
6802
1a3f060c
DA
6803static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6804 struct list_head **iter)
6805{
6806 struct netdev_adjacent *upper;
6807
6808 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6809
6810 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6811
6812 if (&upper->list == &dev->adj_list.upper)
6813 return NULL;
6814
6815 *iter = &upper->list;
6816
6817 return upper->dev;
6818}
6819
32b6d34f
TY
6820static int __netdev_walk_all_upper_dev(struct net_device *dev,
6821 int (*fn)(struct net_device *dev,
eff74233
TY
6822 struct netdev_nested_priv *priv),
6823 struct netdev_nested_priv *priv)
5343da4c
TY
6824{
6825 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6826 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6827 int ret, cur = 0;
32b6d34f 6828 bool ignore;
5343da4c
TY
6829
6830 now = dev;
6831 iter = &dev->adj_list.upper;
6832
6833 while (1) {
6834 if (now != dev) {
eff74233 6835 ret = fn(now, priv);
5343da4c
TY
6836 if (ret)
6837 return ret;
6838 }
6839
6840 next = NULL;
6841 while (1) {
32b6d34f 6842 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
6843 if (!udev)
6844 break;
32b6d34f
TY
6845 if (ignore)
6846 continue;
5343da4c
TY
6847
6848 next = udev;
6849 niter = &udev->adj_list.upper;
6850 dev_stack[cur] = now;
6851 iter_stack[cur++] = iter;
6852 break;
6853 }
6854
6855 if (!next) {
6856 if (!cur)
6857 return 0;
6858 next = dev_stack[--cur];
6859 niter = iter_stack[cur];
6860 }
6861
6862 now = next;
6863 iter = niter;
6864 }
6865
6866 return 0;
6867}
6868
1a3f060c
DA
6869int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6870 int (*fn)(struct net_device *dev,
eff74233
TY
6871 struct netdev_nested_priv *priv),
6872 struct netdev_nested_priv *priv)
1a3f060c 6873{
5343da4c
TY
6874 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6875 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6876 int ret, cur = 0;
1a3f060c 6877
5343da4c
TY
6878 now = dev;
6879 iter = &dev->adj_list.upper;
1a3f060c 6880
5343da4c
TY
6881 while (1) {
6882 if (now != dev) {
eff74233 6883 ret = fn(now, priv);
5343da4c
TY
6884 if (ret)
6885 return ret;
6886 }
6887
6888 next = NULL;
6889 while (1) {
6890 udev = netdev_next_upper_dev_rcu(now, &iter);
6891 if (!udev)
6892 break;
6893
6894 next = udev;
6895 niter = &udev->adj_list.upper;
6896 dev_stack[cur] = now;
6897 iter_stack[cur++] = iter;
6898 break;
6899 }
6900
6901 if (!next) {
6902 if (!cur)
6903 return 0;
6904 next = dev_stack[--cur];
6905 niter = iter_stack[cur];
6906 }
6907
6908 now = next;
6909 iter = niter;
1a3f060c
DA
6910 }
6911
6912 return 0;
6913}
6914EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6915
32b6d34f
TY
6916static bool __netdev_has_upper_dev(struct net_device *dev,
6917 struct net_device *upper_dev)
6918{
eff74233 6919 struct netdev_nested_priv priv = {
1fc70edb 6920 .flags = 0,
eff74233
TY
6921 .data = (void *)upper_dev,
6922 };
6923
32b6d34f
TY
6924 ASSERT_RTNL();
6925
6926 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
eff74233 6927 &priv);
32b6d34f
TY
6928}
6929
31088a11
VF
6930/**
6931 * netdev_lower_get_next_private - Get the next ->private from the
6932 * lower neighbour list
6933 * @dev: device
6934 * @iter: list_head ** of the current position
6935 *
6936 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6937 * list, starting from iter position. The caller must hold either hold the
6938 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 6939 * list will remain unchanged.
31088a11
VF
6940 */
6941void *netdev_lower_get_next_private(struct net_device *dev,
6942 struct list_head **iter)
6943{
6944 struct netdev_adjacent *lower;
6945
6946 lower = list_entry(*iter, struct netdev_adjacent, list);
6947
6948 if (&lower->list == &dev->adj_list.lower)
6949 return NULL;
6950
6859e7df 6951 *iter = lower->list.next;
31088a11
VF
6952
6953 return lower->private;
6954}
6955EXPORT_SYMBOL(netdev_lower_get_next_private);
6956
6957/**
6958 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6959 * lower neighbour list, RCU
6960 * variant
6961 * @dev: device
6962 * @iter: list_head ** of the current position
6963 *
6964 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6965 * list, starting from iter position. The caller must hold RCU read lock.
6966 */
6967void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6968 struct list_head **iter)
6969{
6970 struct netdev_adjacent *lower;
6971
68918669 6972 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
31088a11
VF
6973
6974 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6975
6976 if (&lower->list == &dev->adj_list.lower)
6977 return NULL;
6978
6859e7df 6979 *iter = &lower->list;
31088a11
VF
6980
6981 return lower->private;
6982}
6983EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6984
4085ebe8
VY
6985/**
6986 * netdev_lower_get_next - Get the next device from the lower neighbour
6987 * list
6988 * @dev: device
6989 * @iter: list_head ** of the current position
6990 *
6991 * Gets the next netdev_adjacent from the dev's lower neighbour
6992 * list, starting from iter position. The caller must hold RTNL lock or
6993 * its own locking that guarantees that the neighbour lower
b469139e 6994 * list will remain unchanged.
4085ebe8
VY
6995 */
6996void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6997{
6998 struct netdev_adjacent *lower;
6999
cfdd28be 7000 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7001
7002 if (&lower->list == &dev->adj_list.lower)
7003 return NULL;
7004
cfdd28be 7005 *iter = lower->list.next;
4085ebe8
VY
7006
7007 return lower->dev;
7008}
7009EXPORT_SYMBOL(netdev_lower_get_next);
7010
1a3f060c
DA
7011static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7012 struct list_head **iter)
7013{
7014 struct netdev_adjacent *lower;
7015
46b5ab1a 7016 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7017
7018 if (&lower->list == &dev->adj_list.lower)
7019 return NULL;
7020
46b5ab1a 7021 *iter = &lower->list;
1a3f060c
DA
7022
7023 return lower->dev;
7024}
7025
32b6d34f
TY
7026static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7027 struct list_head **iter,
7028 bool *ignore)
7029{
7030 struct netdev_adjacent *lower;
7031
7032 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7033
7034 if (&lower->list == &dev->adj_list.lower)
7035 return NULL;
7036
7037 *iter = &lower->list;
7038 *ignore = lower->ignore;
7039
7040 return lower->dev;
7041}
7042
1a3f060c
DA
7043int netdev_walk_all_lower_dev(struct net_device *dev,
7044 int (*fn)(struct net_device *dev,
eff74233
TY
7045 struct netdev_nested_priv *priv),
7046 struct netdev_nested_priv *priv)
1a3f060c 7047{
5343da4c
TY
7048 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7049 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7050 int ret, cur = 0;
1a3f060c 7051
5343da4c
TY
7052 now = dev;
7053 iter = &dev->adj_list.lower;
1a3f060c 7054
5343da4c
TY
7055 while (1) {
7056 if (now != dev) {
eff74233 7057 ret = fn(now, priv);
5343da4c
TY
7058 if (ret)
7059 return ret;
7060 }
7061
7062 next = NULL;
7063 while (1) {
7064 ldev = netdev_next_lower_dev(now, &iter);
7065 if (!ldev)
7066 break;
7067
7068 next = ldev;
7069 niter = &ldev->adj_list.lower;
7070 dev_stack[cur] = now;
7071 iter_stack[cur++] = iter;
7072 break;
7073 }
7074
7075 if (!next) {
7076 if (!cur)
7077 return 0;
7078 next = dev_stack[--cur];
7079 niter = iter_stack[cur];
7080 }
7081
7082 now = next;
7083 iter = niter;
1a3f060c
DA
7084 }
7085
7086 return 0;
7087}
7088EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7089
32b6d34f
TY
7090static int __netdev_walk_all_lower_dev(struct net_device *dev,
7091 int (*fn)(struct net_device *dev,
eff74233
TY
7092 struct netdev_nested_priv *priv),
7093 struct netdev_nested_priv *priv)
32b6d34f
TY
7094{
7095 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7096 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7097 int ret, cur = 0;
7098 bool ignore;
7099
7100 now = dev;
7101 iter = &dev->adj_list.lower;
7102
7103 while (1) {
7104 if (now != dev) {
eff74233 7105 ret = fn(now, priv);
32b6d34f
TY
7106 if (ret)
7107 return ret;
7108 }
7109
7110 next = NULL;
7111 while (1) {
7112 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7113 if (!ldev)
7114 break;
7115 if (ignore)
7116 continue;
7117
7118 next = ldev;
7119 niter = &ldev->adj_list.lower;
7120 dev_stack[cur] = now;
7121 iter_stack[cur++] = iter;
7122 break;
7123 }
7124
7125 if (!next) {
7126 if (!cur)
7127 return 0;
7128 next = dev_stack[--cur];
7129 niter = iter_stack[cur];
7130 }
7131
7132 now = next;
7133 iter = niter;
7134 }
7135
7136 return 0;
7137}
7138
7151affe
TY
7139struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7140 struct list_head **iter)
1a3f060c
DA
7141{
7142 struct netdev_adjacent *lower;
7143
7144 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7145 if (&lower->list == &dev->adj_list.lower)
7146 return NULL;
7147
7148 *iter = &lower->list;
7149
7150 return lower->dev;
7151}
7151affe 7152EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7153
5343da4c
TY
7154static u8 __netdev_upper_depth(struct net_device *dev)
7155{
7156 struct net_device *udev;
7157 struct list_head *iter;
7158 u8 max_depth = 0;
32b6d34f 7159 bool ignore;
5343da4c
TY
7160
7161 for (iter = &dev->adj_list.upper,
32b6d34f 7162 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7163 udev;
32b6d34f
TY
7164 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7165 if (ignore)
7166 continue;
5343da4c
TY
7167 if (max_depth < udev->upper_level)
7168 max_depth = udev->upper_level;
7169 }
7170
7171 return max_depth;
7172}
7173
7174static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7175{
7176 struct net_device *ldev;
7177 struct list_head *iter;
5343da4c 7178 u8 max_depth = 0;
32b6d34f 7179 bool ignore;
1a3f060c
DA
7180
7181 for (iter = &dev->adj_list.lower,
32b6d34f 7182 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7183 ldev;
32b6d34f
TY
7184 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7185 if (ignore)
7186 continue;
5343da4c
TY
7187 if (max_depth < ldev->lower_level)
7188 max_depth = ldev->lower_level;
7189 }
1a3f060c 7190
5343da4c
TY
7191 return max_depth;
7192}
7193
eff74233
TY
7194static int __netdev_update_upper_level(struct net_device *dev,
7195 struct netdev_nested_priv *__unused)
5343da4c
TY
7196{
7197 dev->upper_level = __netdev_upper_depth(dev) + 1;
7198 return 0;
7199}
7200
f32404ae
JB
7201#ifdef CONFIG_LOCKDEP
7202static LIST_HEAD(net_unlink_list);
7203
7204static void net_unlink_todo(struct net_device *dev)
7205{
7206 if (list_empty(&dev->unlink_list))
7207 list_add_tail(&dev->unlink_list, &net_unlink_list);
7208}
7209#endif
7210
eff74233 7211static int __netdev_update_lower_level(struct net_device *dev,
1fc70edb 7212 struct netdev_nested_priv *priv)
5343da4c
TY
7213{
7214 dev->lower_level = __netdev_lower_depth(dev) + 1;
1fc70edb
TY
7215
7216#ifdef CONFIG_LOCKDEP
7217 if (!priv)
7218 return 0;
7219
7220 if (priv->flags & NESTED_SYNC_IMM)
7221 dev->nested_level = dev->lower_level - 1;
7222 if (priv->flags & NESTED_SYNC_TODO)
7223 net_unlink_todo(dev);
7224#endif
5343da4c
TY
7225 return 0;
7226}
7227
7228int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7229 int (*fn)(struct net_device *dev,
eff74233
TY
7230 struct netdev_nested_priv *priv),
7231 struct netdev_nested_priv *priv)
5343da4c
TY
7232{
7233 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7234 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7235 int ret, cur = 0;
7236
7237 now = dev;
7238 iter = &dev->adj_list.lower;
7239
7240 while (1) {
7241 if (now != dev) {
eff74233 7242 ret = fn(now, priv);
5343da4c
TY
7243 if (ret)
7244 return ret;
7245 }
7246
7247 next = NULL;
7248 while (1) {
7249 ldev = netdev_next_lower_dev_rcu(now, &iter);
7250 if (!ldev)
7251 break;
7252
7253 next = ldev;
7254 niter = &ldev->adj_list.lower;
7255 dev_stack[cur] = now;
7256 iter_stack[cur++] = iter;
7257 break;
7258 }
7259
7260 if (!next) {
7261 if (!cur)
7262 return 0;
7263 next = dev_stack[--cur];
7264 niter = iter_stack[cur];
7265 }
7266
7267 now = next;
7268 iter = niter;
1a3f060c
DA
7269 }
7270
7271 return 0;
7272}
7273EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7274
e001bfad 7275/**
7276 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7277 * lower neighbour list, RCU
7278 * variant
7279 * @dev: device
7280 *
7281 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7282 * list. The caller must hold RCU read lock.
7283 */
7284void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7285{
7286 struct netdev_adjacent *lower;
7287
7288 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7289 struct netdev_adjacent, list);
7290 if (lower)
7291 return lower->private;
7292 return NULL;
7293}
7294EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7295
9ff162a8
JP
7296/**
7297 * netdev_master_upper_dev_get_rcu - Get master upper device
7298 * @dev: device
7299 *
7300 * Find a master upper device and return pointer to it or NULL in case
7301 * it's not there. The caller must hold the RCU read lock.
7302 */
7303struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7304{
aa9d8560 7305 struct netdev_adjacent *upper;
9ff162a8 7306
2f268f12 7307 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7308 struct netdev_adjacent, list);
9ff162a8
JP
7309 if (upper && likely(upper->master))
7310 return upper->dev;
7311 return NULL;
7312}
7313EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7314
0a59f3a9 7315static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7316 struct net_device *adj_dev,
7317 struct list_head *dev_list)
7318{
7319 char linkname[IFNAMSIZ+7];
f4563a75 7320
3ee32707
VF
7321 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7322 "upper_%s" : "lower_%s", adj_dev->name);
7323 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7324 linkname);
7325}
0a59f3a9 7326static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7327 char *name,
7328 struct list_head *dev_list)
7329{
7330 char linkname[IFNAMSIZ+7];
f4563a75 7331
3ee32707
VF
7332 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7333 "upper_%s" : "lower_%s", name);
7334 sysfs_remove_link(&(dev->dev.kobj), linkname);
7335}
7336
7ce64c79
AF
7337static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7338 struct net_device *adj_dev,
7339 struct list_head *dev_list)
7340{
7341 return (dev_list == &dev->adj_list.upper ||
7342 dev_list == &dev->adj_list.lower) &&
7343 net_eq(dev_net(dev), dev_net(adj_dev));
7344}
3ee32707 7345
5d261913
VF
7346static int __netdev_adjacent_dev_insert(struct net_device *dev,
7347 struct net_device *adj_dev,
7863c054 7348 struct list_head *dev_list,
402dae96 7349 void *private, bool master)
5d261913
VF
7350{
7351 struct netdev_adjacent *adj;
842d67a7 7352 int ret;
5d261913 7353
6ea29da1 7354 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7355
7356 if (adj) {
790510d9 7357 adj->ref_nr += 1;
67b62f98
DA
7358 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7359 dev->name, adj_dev->name, adj->ref_nr);
7360
5d261913
VF
7361 return 0;
7362 }
7363
7364 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7365 if (!adj)
7366 return -ENOMEM;
7367
7368 adj->dev = adj_dev;
7369 adj->master = master;
790510d9 7370 adj->ref_nr = 1;
402dae96 7371 adj->private = private;
32b6d34f 7372 adj->ignore = false;
f77159a3 7373 dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
2f268f12 7374
67b62f98
DA
7375 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7376 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7377
7ce64c79 7378 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7379 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7380 if (ret)
7381 goto free_adj;
7382 }
7383
7863c054 7384 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7385 if (master) {
7386 ret = sysfs_create_link(&(dev->dev.kobj),
7387 &(adj_dev->dev.kobj), "master");
7388 if (ret)
5831d66e 7389 goto remove_symlinks;
842d67a7 7390
7863c054 7391 list_add_rcu(&adj->list, dev_list);
842d67a7 7392 } else {
7863c054 7393 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7394 }
5d261913
VF
7395
7396 return 0;
842d67a7 7397
5831d66e 7398remove_symlinks:
7ce64c79 7399 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7400 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7 7401free_adj:
f77159a3 7402 dev_put_track(adj_dev, &adj->dev_tracker);
842d67a7
VF
7403 kfree(adj);
7404
7405 return ret;
5d261913
VF
7406}
7407
1d143d9f 7408static void __netdev_adjacent_dev_remove(struct net_device *dev,
7409 struct net_device *adj_dev,
93409033 7410 u16 ref_nr,
1d143d9f 7411 struct list_head *dev_list)
5d261913
VF
7412{
7413 struct netdev_adjacent *adj;
7414
67b62f98
DA
7415 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7416 dev->name, adj_dev->name, ref_nr);
7417
6ea29da1 7418 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7419
2f268f12 7420 if (!adj) {
67b62f98 7421 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7422 dev->name, adj_dev->name);
67b62f98
DA
7423 WARN_ON(1);
7424 return;
2f268f12 7425 }
5d261913 7426
93409033 7427 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7428 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7429 dev->name, adj_dev->name, ref_nr,
7430 adj->ref_nr - ref_nr);
93409033 7431 adj->ref_nr -= ref_nr;
5d261913
VF
7432 return;
7433 }
7434
842d67a7
VF
7435 if (adj->master)
7436 sysfs_remove_link(&(dev->dev.kobj), "master");
7437
7ce64c79 7438 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7439 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7440
5d261913 7441 list_del_rcu(&adj->list);
67b62f98 7442 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7443 adj_dev->name, dev->name, adj_dev->name);
f77159a3 7444 dev_put_track(adj_dev, &adj->dev_tracker);
5d261913
VF
7445 kfree_rcu(adj, rcu);
7446}
7447
1d143d9f 7448static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7449 struct net_device *upper_dev,
7450 struct list_head *up_list,
7451 struct list_head *down_list,
7452 void *private, bool master)
5d261913
VF
7453{
7454 int ret;
7455
790510d9 7456 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7457 private, master);
5d261913
VF
7458 if (ret)
7459 return ret;
7460
790510d9 7461 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7462 private, false);
5d261913 7463 if (ret) {
790510d9 7464 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7465 return ret;
7466 }
7467
7468 return 0;
7469}
7470
1d143d9f 7471static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7472 struct net_device *upper_dev,
93409033 7473 u16 ref_nr,
1d143d9f 7474 struct list_head *up_list,
7475 struct list_head *down_list)
5d261913 7476{
93409033
AC
7477 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7478 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7479}
7480
1d143d9f 7481static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7482 struct net_device *upper_dev,
7483 void *private, bool master)
2f268f12 7484{
f1170fd4
DA
7485 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7486 &dev->adj_list.upper,
7487 &upper_dev->adj_list.lower,
7488 private, master);
5d261913
VF
7489}
7490
1d143d9f 7491static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7492 struct net_device *upper_dev)
2f268f12 7493{
93409033 7494 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7495 &dev->adj_list.upper,
7496 &upper_dev->adj_list.lower);
7497}
5d261913 7498
9ff162a8 7499static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7500 struct net_device *upper_dev, bool master,
42ab19ee 7501 void *upper_priv, void *upper_info,
1fc70edb 7502 struct netdev_nested_priv *priv,
42ab19ee 7503 struct netlink_ext_ack *extack)
9ff162a8 7504{
51d0c047
DA
7505 struct netdev_notifier_changeupper_info changeupper_info = {
7506 .info = {
7507 .dev = dev,
42ab19ee 7508 .extack = extack,
51d0c047
DA
7509 },
7510 .upper_dev = upper_dev,
7511 .master = master,
7512 .linking = true,
7513 .upper_info = upper_info,
7514 };
50d629e7 7515 struct net_device *master_dev;
5d261913 7516 int ret = 0;
9ff162a8
JP
7517
7518 ASSERT_RTNL();
7519
7520 if (dev == upper_dev)
7521 return -EBUSY;
7522
7523 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7524 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7525 return -EBUSY;
7526
5343da4c
TY
7527 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7528 return -EMLINK;
7529
50d629e7 7530 if (!master) {
32b6d34f 7531 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7532 return -EEXIST;
7533 } else {
32b6d34f 7534 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7535 if (master_dev)
7536 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7537 }
9ff162a8 7538
51d0c047 7539 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7540 &changeupper_info.info);
7541 ret = notifier_to_errno(ret);
7542 if (ret)
7543 return ret;
7544
6dffb044 7545 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7546 master);
5d261913
VF
7547 if (ret)
7548 return ret;
9ff162a8 7549
51d0c047 7550 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7551 &changeupper_info.info);
7552 ret = notifier_to_errno(ret);
7553 if (ret)
f1170fd4 7554 goto rollback;
b03804e7 7555
5343da4c 7556 __netdev_update_upper_level(dev, NULL);
32b6d34f 7557 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 7558
1fc70edb 7559 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 7560 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 7561 priv);
5343da4c 7562
9ff162a8 7563 return 0;
5d261913 7564
f1170fd4 7565rollback:
2f268f12 7566 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7567
7568 return ret;
9ff162a8
JP
7569}
7570
7571/**
7572 * netdev_upper_dev_link - Add a link to the upper device
7573 * @dev: device
7574 * @upper_dev: new upper device
7a006d59 7575 * @extack: netlink extended ack
9ff162a8
JP
7576 *
7577 * Adds a link to device which is upper to this one. The caller must hold
7578 * the RTNL lock. On a failure a negative errno code is returned.
7579 * On success the reference counts are adjusted and the function
7580 * returns zero.
7581 */
7582int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7583 struct net_device *upper_dev,
7584 struct netlink_ext_ack *extack)
9ff162a8 7585{
1fc70edb
TY
7586 struct netdev_nested_priv priv = {
7587 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7588 .data = NULL,
7589 };
7590
42ab19ee 7591 return __netdev_upper_dev_link(dev, upper_dev, false,
1fc70edb 7592 NULL, NULL, &priv, extack);
9ff162a8
JP
7593}
7594EXPORT_SYMBOL(netdev_upper_dev_link);
7595
7596/**
7597 * netdev_master_upper_dev_link - Add a master link to the upper device
7598 * @dev: device
7599 * @upper_dev: new upper device
6dffb044 7600 * @upper_priv: upper device private
29bf24af 7601 * @upper_info: upper info to be passed down via notifier
7a006d59 7602 * @extack: netlink extended ack
9ff162a8
JP
7603 *
7604 * Adds a link to device which is upper to this one. In this case, only
7605 * one master upper device can be linked, although other non-master devices
7606 * might be linked as well. The caller must hold the RTNL lock.
7607 * On a failure a negative errno code is returned. On success the reference
7608 * counts are adjusted and the function returns zero.
7609 */
7610int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7611 struct net_device *upper_dev,
42ab19ee
DA
7612 void *upper_priv, void *upper_info,
7613 struct netlink_ext_ack *extack)
9ff162a8 7614{
1fc70edb
TY
7615 struct netdev_nested_priv priv = {
7616 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7617 .data = NULL,
7618 };
7619
29bf24af 7620 return __netdev_upper_dev_link(dev, upper_dev, true,
1fc70edb 7621 upper_priv, upper_info, &priv, extack);
9ff162a8
JP
7622}
7623EXPORT_SYMBOL(netdev_master_upper_dev_link);
7624
fe8300fd 7625static void __netdev_upper_dev_unlink(struct net_device *dev,
1fc70edb
TY
7626 struct net_device *upper_dev,
7627 struct netdev_nested_priv *priv)
9ff162a8 7628{
51d0c047
DA
7629 struct netdev_notifier_changeupper_info changeupper_info = {
7630 .info = {
7631 .dev = dev,
7632 },
7633 .upper_dev = upper_dev,
7634 .linking = false,
7635 };
f4563a75 7636
9ff162a8
JP
7637 ASSERT_RTNL();
7638
0e4ead9d 7639 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7640
51d0c047 7641 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7642 &changeupper_info.info);
7643
2f268f12 7644 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7645
51d0c047 7646 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7647 &changeupper_info.info);
5343da4c
TY
7648
7649 __netdev_update_upper_level(dev, NULL);
32b6d34f 7650 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 7651
1fc70edb 7652 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 7653 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 7654 priv);
9ff162a8 7655}
fe8300fd
TY
7656
7657/**
7658 * netdev_upper_dev_unlink - Removes a link to upper device
7659 * @dev: device
7660 * @upper_dev: new upper device
7661 *
7662 * Removes a link to device which is upper to this one. The caller must hold
7663 * the RTNL lock.
7664 */
7665void netdev_upper_dev_unlink(struct net_device *dev,
7666 struct net_device *upper_dev)
7667{
1fc70edb
TY
7668 struct netdev_nested_priv priv = {
7669 .flags = NESTED_SYNC_TODO,
7670 .data = NULL,
7671 };
7672
7673 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
9ff162a8
JP
7674}
7675EXPORT_SYMBOL(netdev_upper_dev_unlink);
7676
32b6d34f
TY
7677static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7678 struct net_device *lower_dev,
7679 bool val)
7680{
7681 struct netdev_adjacent *adj;
7682
7683 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7684 if (adj)
7685 adj->ignore = val;
7686
7687 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7688 if (adj)
7689 adj->ignore = val;
7690}
7691
7692static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7693 struct net_device *lower_dev)
7694{
7695 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7696}
7697
7698static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7699 struct net_device *lower_dev)
7700{
7701 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7702}
7703
7704int netdev_adjacent_change_prepare(struct net_device *old_dev,
7705 struct net_device *new_dev,
7706 struct net_device *dev,
7707 struct netlink_ext_ack *extack)
7708{
1fc70edb
TY
7709 struct netdev_nested_priv priv = {
7710 .flags = 0,
7711 .data = NULL,
7712 };
32b6d34f
TY
7713 int err;
7714
7715 if (!new_dev)
7716 return 0;
7717
7718 if (old_dev && new_dev != old_dev)
7719 netdev_adjacent_dev_disable(dev, old_dev);
1fc70edb
TY
7720 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7721 extack);
32b6d34f
TY
7722 if (err) {
7723 if (old_dev && new_dev != old_dev)
7724 netdev_adjacent_dev_enable(dev, old_dev);
7725 return err;
7726 }
7727
7728 return 0;
7729}
7730EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7731
7732void netdev_adjacent_change_commit(struct net_device *old_dev,
7733 struct net_device *new_dev,
7734 struct net_device *dev)
7735{
1fc70edb
TY
7736 struct netdev_nested_priv priv = {
7737 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7738 .data = NULL,
7739 };
7740
32b6d34f
TY
7741 if (!new_dev || !old_dev)
7742 return;
7743
7744 if (new_dev == old_dev)
7745 return;
7746
7747 netdev_adjacent_dev_enable(dev, old_dev);
1fc70edb 7748 __netdev_upper_dev_unlink(old_dev, dev, &priv);
32b6d34f
TY
7749}
7750EXPORT_SYMBOL(netdev_adjacent_change_commit);
7751
7752void netdev_adjacent_change_abort(struct net_device *old_dev,
7753 struct net_device *new_dev,
7754 struct net_device *dev)
7755{
1fc70edb
TY
7756 struct netdev_nested_priv priv = {
7757 .flags = 0,
7758 .data = NULL,
7759 };
7760
32b6d34f
TY
7761 if (!new_dev)
7762 return;
7763
7764 if (old_dev && new_dev != old_dev)
7765 netdev_adjacent_dev_enable(dev, old_dev);
7766
1fc70edb 7767 __netdev_upper_dev_unlink(new_dev, dev, &priv);
32b6d34f
TY
7768}
7769EXPORT_SYMBOL(netdev_adjacent_change_abort);
7770
61bd3857
MS
7771/**
7772 * netdev_bonding_info_change - Dispatch event about slave change
7773 * @dev: device
4a26e453 7774 * @bonding_info: info to dispatch
61bd3857
MS
7775 *
7776 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7777 * The caller must hold the RTNL lock.
7778 */
7779void netdev_bonding_info_change(struct net_device *dev,
7780 struct netdev_bonding_info *bonding_info)
7781{
51d0c047
DA
7782 struct netdev_notifier_bonding_info info = {
7783 .info.dev = dev,
7784 };
61bd3857
MS
7785
7786 memcpy(&info.bonding_info, bonding_info,
7787 sizeof(struct netdev_bonding_info));
51d0c047 7788 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7789 &info.info);
7790}
7791EXPORT_SYMBOL(netdev_bonding_info_change);
7792
9309f97a
PM
7793static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7794 struct netlink_ext_ack *extack)
7795{
7796 struct netdev_notifier_offload_xstats_info info = {
7797 .info.dev = dev,
7798 .info.extack = extack,
7799 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7800 };
7801 int err;
7802 int rc;
7803
7804 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7805 GFP_KERNEL);
7806 if (!dev->offload_xstats_l3)
7807 return -ENOMEM;
7808
7809 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7810 NETDEV_OFFLOAD_XSTATS_DISABLE,
7811 &info.info);
7812 err = notifier_to_errno(rc);
7813 if (err)
7814 goto free_stats;
7815
7816 return 0;
7817
7818free_stats:
7819 kfree(dev->offload_xstats_l3);
7820 dev->offload_xstats_l3 = NULL;
7821 return err;
7822}
7823
7824int netdev_offload_xstats_enable(struct net_device *dev,
7825 enum netdev_offload_xstats_type type,
7826 struct netlink_ext_ack *extack)
7827{
7828 ASSERT_RTNL();
7829
7830 if (netdev_offload_xstats_enabled(dev, type))
7831 return -EALREADY;
7832
7833 switch (type) {
7834 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7835 return netdev_offload_xstats_enable_l3(dev, extack);
7836 }
7837
7838 WARN_ON(1);
7839 return -EINVAL;
7840}
7841EXPORT_SYMBOL(netdev_offload_xstats_enable);
7842
7843static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7844{
7845 struct netdev_notifier_offload_xstats_info info = {
7846 .info.dev = dev,
7847 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7848 };
7849
7850 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7851 &info.info);
7852 kfree(dev->offload_xstats_l3);
7853 dev->offload_xstats_l3 = NULL;
7854}
7855
7856int netdev_offload_xstats_disable(struct net_device *dev,
7857 enum netdev_offload_xstats_type type)
7858{
7859 ASSERT_RTNL();
7860
7861 if (!netdev_offload_xstats_enabled(dev, type))
7862 return -EALREADY;
7863
7864 switch (type) {
7865 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7866 netdev_offload_xstats_disable_l3(dev);
7867 return 0;
7868 }
7869
7870 WARN_ON(1);
7871 return -EINVAL;
7872}
7873EXPORT_SYMBOL(netdev_offload_xstats_disable);
7874
7875static void netdev_offload_xstats_disable_all(struct net_device *dev)
7876{
7877 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7878}
7879
7880static struct rtnl_hw_stats64 *
7881netdev_offload_xstats_get_ptr(const struct net_device *dev,
7882 enum netdev_offload_xstats_type type)
7883{
7884 switch (type) {
7885 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7886 return dev->offload_xstats_l3;
7887 }
7888
7889 WARN_ON(1);
7890 return NULL;
7891}
7892
7893bool netdev_offload_xstats_enabled(const struct net_device *dev,
7894 enum netdev_offload_xstats_type type)
7895{
7896 ASSERT_RTNL();
7897
7898 return netdev_offload_xstats_get_ptr(dev, type);
7899}
7900EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7901
7902struct netdev_notifier_offload_xstats_ru {
7903 bool used;
7904};
7905
7906struct netdev_notifier_offload_xstats_rd {
7907 struct rtnl_hw_stats64 stats;
7908 bool used;
7909};
7910
7911static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
7912 const struct rtnl_hw_stats64 *src)
7913{
7914 dest->rx_packets += src->rx_packets;
7915 dest->tx_packets += src->tx_packets;
7916 dest->rx_bytes += src->rx_bytes;
7917 dest->tx_bytes += src->tx_bytes;
7918 dest->rx_errors += src->rx_errors;
7919 dest->tx_errors += src->tx_errors;
7920 dest->rx_dropped += src->rx_dropped;
7921 dest->tx_dropped += src->tx_dropped;
7922 dest->multicast += src->multicast;
7923}
7924
7925static int netdev_offload_xstats_get_used(struct net_device *dev,
7926 enum netdev_offload_xstats_type type,
7927 bool *p_used,
7928 struct netlink_ext_ack *extack)
7929{
7930 struct netdev_notifier_offload_xstats_ru report_used = {};
7931 struct netdev_notifier_offload_xstats_info info = {
7932 .info.dev = dev,
7933 .info.extack = extack,
7934 .type = type,
7935 .report_used = &report_used,
7936 };
7937 int rc;
7938
7939 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
7940 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
7941 &info.info);
7942 *p_used = report_used.used;
7943 return notifier_to_errno(rc);
7944}
7945
7946static int netdev_offload_xstats_get_stats(struct net_device *dev,
7947 enum netdev_offload_xstats_type type,
7948 struct rtnl_hw_stats64 *p_stats,
7949 bool *p_used,
7950 struct netlink_ext_ack *extack)
7951{
7952 struct netdev_notifier_offload_xstats_rd report_delta = {};
7953 struct netdev_notifier_offload_xstats_info info = {
7954 .info.dev = dev,
7955 .info.extack = extack,
7956 .type = type,
7957 .report_delta = &report_delta,
7958 };
7959 struct rtnl_hw_stats64 *stats;
7960 int rc;
7961
7962 stats = netdev_offload_xstats_get_ptr(dev, type);
7963 if (WARN_ON(!stats))
7964 return -EINVAL;
7965
7966 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
7967 &info.info);
7968
7969 /* Cache whatever we got, even if there was an error, otherwise the
7970 * successful stats retrievals would get lost.
7971 */
7972 netdev_hw_stats64_add(stats, &report_delta.stats);
7973
7974 if (p_stats)
7975 *p_stats = *stats;
7976 *p_used = report_delta.used;
7977
7978 return notifier_to_errno(rc);
7979}
7980
7981int netdev_offload_xstats_get(struct net_device *dev,
7982 enum netdev_offload_xstats_type type,
7983 struct rtnl_hw_stats64 *p_stats, bool *p_used,
7984 struct netlink_ext_ack *extack)
7985{
7986 ASSERT_RTNL();
7987
7988 if (p_stats)
7989 return netdev_offload_xstats_get_stats(dev, type, p_stats,
7990 p_used, extack);
7991 else
7992 return netdev_offload_xstats_get_used(dev, type, p_used,
7993 extack);
7994}
7995EXPORT_SYMBOL(netdev_offload_xstats_get);
7996
7997void
7998netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
7999 const struct rtnl_hw_stats64 *stats)
8000{
8001 report_delta->used = true;
8002 netdev_hw_stats64_add(&report_delta->stats, stats);
8003}
8004EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8005
8006void
8007netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8008{
8009 report_used->used = true;
8010}
8011EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8012
8013void netdev_offload_xstats_push_delta(struct net_device *dev,
8014 enum netdev_offload_xstats_type type,
8015 const struct rtnl_hw_stats64 *p_stats)
8016{
8017 struct rtnl_hw_stats64 *stats;
8018
8019 ASSERT_RTNL();
8020
8021 stats = netdev_offload_xstats_get_ptr(dev, type);
8022 if (WARN_ON(!stats))
8023 return;
8024
8025 netdev_hw_stats64_add(stats, p_stats);
8026}
8027EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8028
cff9f12b
MG
8029/**
8030 * netdev_get_xmit_slave - Get the xmit slave of master device
8842500d 8031 * @dev: device
cff9f12b
MG
8032 * @skb: The packet
8033 * @all_slaves: assume all the slaves are active
8034 *
8035 * The reference counters are not incremented so the caller must be
8036 * careful with locks. The caller must hold RCU lock.
8037 * %NULL is returned if no slave is found.
8038 */
8039
8040struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8041 struct sk_buff *skb,
8042 bool all_slaves)
8043{
8044 const struct net_device_ops *ops = dev->netdev_ops;
8045
8046 if (!ops->ndo_get_xmit_slave)
8047 return NULL;
8048 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8049}
8050EXPORT_SYMBOL(netdev_get_xmit_slave);
8051
719a402c
TT
8052static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8053 struct sock *sk)
8054{
8055 const struct net_device_ops *ops = dev->netdev_ops;
8056
8057 if (!ops->ndo_sk_get_lower_dev)
8058 return NULL;
8059 return ops->ndo_sk_get_lower_dev(dev, sk);
8060}
8061
8062/**
8063 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8064 * @dev: device
8065 * @sk: the socket
8066 *
8067 * %NULL is returned if no lower device is found.
8068 */
8069
8070struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8071 struct sock *sk)
8072{
8073 struct net_device *lower;
8074
8075 lower = netdev_sk_get_lower_dev(dev, sk);
8076 while (lower) {
8077 dev = lower;
8078 lower = netdev_sk_get_lower_dev(dev, sk);
8079 }
8080
8081 return dev;
8082}
8083EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8084
2ce1ee17 8085static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
8086{
8087 struct netdev_adjacent *iter;
8088
8089 struct net *net = dev_net(dev);
8090
8091 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8092 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8093 continue;
8094 netdev_adjacent_sysfs_add(iter->dev, dev,
8095 &iter->dev->adj_list.lower);
8096 netdev_adjacent_sysfs_add(dev, iter->dev,
8097 &dev->adj_list.upper);
8098 }
8099
8100 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8101 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8102 continue;
8103 netdev_adjacent_sysfs_add(iter->dev, dev,
8104 &iter->dev->adj_list.upper);
8105 netdev_adjacent_sysfs_add(dev, iter->dev,
8106 &dev->adj_list.lower);
8107 }
8108}
8109
2ce1ee17 8110static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
8111{
8112 struct netdev_adjacent *iter;
8113
8114 struct net *net = dev_net(dev);
8115
8116 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8117 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8118 continue;
8119 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8120 &iter->dev->adj_list.lower);
8121 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8122 &dev->adj_list.upper);
8123 }
8124
8125 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8126 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8127 continue;
8128 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8129 &iter->dev->adj_list.upper);
8130 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8131 &dev->adj_list.lower);
8132 }
8133}
8134
5bb025fa 8135void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 8136{
5bb025fa 8137 struct netdev_adjacent *iter;
402dae96 8138
4c75431a
AF
8139 struct net *net = dev_net(dev);
8140
5bb025fa 8141 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8142 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8143 continue;
5bb025fa
VF
8144 netdev_adjacent_sysfs_del(iter->dev, oldname,
8145 &iter->dev->adj_list.lower);
8146 netdev_adjacent_sysfs_add(iter->dev, dev,
8147 &iter->dev->adj_list.lower);
8148 }
402dae96 8149
5bb025fa 8150 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8151 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8152 continue;
5bb025fa
VF
8153 netdev_adjacent_sysfs_del(iter->dev, oldname,
8154 &iter->dev->adj_list.upper);
8155 netdev_adjacent_sysfs_add(iter->dev, dev,
8156 &iter->dev->adj_list.upper);
8157 }
402dae96 8158}
402dae96
VF
8159
8160void *netdev_lower_dev_get_private(struct net_device *dev,
8161 struct net_device *lower_dev)
8162{
8163 struct netdev_adjacent *lower;
8164
8165 if (!lower_dev)
8166 return NULL;
6ea29da1 8167 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
8168 if (!lower)
8169 return NULL;
8170
8171 return lower->private;
8172}
8173EXPORT_SYMBOL(netdev_lower_dev_get_private);
8174
4085ebe8 8175
04d48266 8176/**
c1639be9 8177 * netdev_lower_state_changed - Dispatch event about lower device state change
04d48266
JP
8178 * @lower_dev: device
8179 * @lower_state_info: state to dispatch
8180 *
8181 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8182 * The caller must hold the RTNL lock.
8183 */
8184void netdev_lower_state_changed(struct net_device *lower_dev,
8185 void *lower_state_info)
8186{
51d0c047
DA
8187 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8188 .info.dev = lower_dev,
8189 };
04d48266
JP
8190
8191 ASSERT_RTNL();
8192 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 8193 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
8194 &changelowerstate_info.info);
8195}
8196EXPORT_SYMBOL(netdev_lower_state_changed);
8197
b6c40d68
PM
8198static void dev_change_rx_flags(struct net_device *dev, int flags)
8199{
d314774c
SH
8200 const struct net_device_ops *ops = dev->netdev_ops;
8201
d2615bf4 8202 if (ops->ndo_change_rx_flags)
d314774c 8203 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
8204}
8205
991fb3f7 8206static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 8207{
b536db93 8208 unsigned int old_flags = dev->flags;
d04a48b0
EB
8209 kuid_t uid;
8210 kgid_t gid;
1da177e4 8211
24023451
PM
8212 ASSERT_RTNL();
8213
dad9b335
WC
8214 dev->flags |= IFF_PROMISC;
8215 dev->promiscuity += inc;
8216 if (dev->promiscuity == 0) {
8217 /*
8218 * Avoid overflow.
8219 * If inc causes overflow, untouch promisc and return error.
8220 */
8221 if (inc < 0)
8222 dev->flags &= ~IFF_PROMISC;
8223 else {
8224 dev->promiscuity -= inc;
5b92be64 8225 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
dad9b335
WC
8226 return -EOVERFLOW;
8227 }
8228 }
52609c0b 8229 if (dev->flags != old_flags) {
7b6cd1ce
JP
8230 pr_info("device %s %s promiscuous mode\n",
8231 dev->name,
8232 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
8233 if (audit_enabled) {
8234 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
8235 audit_log(audit_context(), GFP_ATOMIC,
8236 AUDIT_ANOM_PROMISCUOUS,
8237 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8238 dev->name, (dev->flags & IFF_PROMISC),
8239 (old_flags & IFF_PROMISC),
8240 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8241 from_kuid(&init_user_ns, uid),
8242 from_kgid(&init_user_ns, gid),
8243 audit_get_sessionid(current));
8192b0c4 8244 }
24023451 8245
b6c40d68 8246 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 8247 }
991fb3f7
ND
8248 if (notify)
8249 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 8250 return 0;
1da177e4
LT
8251}
8252
4417da66
PM
8253/**
8254 * dev_set_promiscuity - update promiscuity count on a device
8255 * @dev: device
8256 * @inc: modifier
8257 *
8258 * Add or remove promiscuity from a device. While the count in the device
8259 * remains above zero the interface remains promiscuous. Once it hits zero
8260 * the device reverts back to normal filtering operation. A negative inc
8261 * value is used to drop promiscuity on the device.
dad9b335 8262 * Return 0 if successful or a negative errno code on error.
4417da66 8263 */
dad9b335 8264int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 8265{
b536db93 8266 unsigned int old_flags = dev->flags;
dad9b335 8267 int err;
4417da66 8268
991fb3f7 8269 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 8270 if (err < 0)
dad9b335 8271 return err;
4417da66
PM
8272 if (dev->flags != old_flags)
8273 dev_set_rx_mode(dev);
dad9b335 8274 return err;
4417da66 8275}
d1b19dff 8276EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 8277
991fb3f7 8278static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 8279{
991fb3f7 8280 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 8281
24023451
PM
8282 ASSERT_RTNL();
8283
1da177e4 8284 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8285 dev->allmulti += inc;
8286 if (dev->allmulti == 0) {
8287 /*
8288 * Avoid overflow.
8289 * If inc causes overflow, untouch allmulti and return error.
8290 */
8291 if (inc < 0)
8292 dev->flags &= ~IFF_ALLMULTI;
8293 else {
8294 dev->allmulti -= inc;
5b92be64 8295 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
dad9b335
WC
8296 return -EOVERFLOW;
8297 }
8298 }
24023451 8299 if (dev->flags ^ old_flags) {
b6c40d68 8300 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8301 dev_set_rx_mode(dev);
991fb3f7
ND
8302 if (notify)
8303 __dev_notify_flags(dev, old_flags,
8304 dev->gflags ^ old_gflags);
24023451 8305 }
dad9b335 8306 return 0;
4417da66 8307}
991fb3f7
ND
8308
8309/**
8310 * dev_set_allmulti - update allmulti count on a device
8311 * @dev: device
8312 * @inc: modifier
8313 *
8314 * Add or remove reception of all multicast frames to a device. While the
8315 * count in the device remains above zero the interface remains listening
8316 * to all interfaces. Once it hits zero the device reverts back to normal
8317 * filtering operation. A negative @inc value is used to drop the counter
8318 * when releasing a resource needing all multicasts.
8319 * Return 0 if successful or a negative errno code on error.
8320 */
8321
8322int dev_set_allmulti(struct net_device *dev, int inc)
8323{
8324 return __dev_set_allmulti(dev, inc, true);
8325}
d1b19dff 8326EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8327
8328/*
8329 * Upload unicast and multicast address lists to device and
8330 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8331 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8332 * are present.
8333 */
8334void __dev_set_rx_mode(struct net_device *dev)
8335{
d314774c
SH
8336 const struct net_device_ops *ops = dev->netdev_ops;
8337
4417da66
PM
8338 /* dev_open will call this function so the list will stay sane. */
8339 if (!(dev->flags&IFF_UP))
8340 return;
8341
8342 if (!netif_device_present(dev))
40b77c94 8343 return;
4417da66 8344
01789349 8345 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8346 /* Unicast addresses changes may only happen under the rtnl,
8347 * therefore calling __dev_set_promiscuity here is safe.
8348 */
32e7bfc4 8349 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8350 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8351 dev->uc_promisc = true;
32e7bfc4 8352 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8353 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8354 dev->uc_promisc = false;
4417da66 8355 }
4417da66 8356 }
01789349
JP
8357
8358 if (ops->ndo_set_rx_mode)
8359 ops->ndo_set_rx_mode(dev);
4417da66
PM
8360}
8361
8362void dev_set_rx_mode(struct net_device *dev)
8363{
b9e40857 8364 netif_addr_lock_bh(dev);
4417da66 8365 __dev_set_rx_mode(dev);
b9e40857 8366 netif_addr_unlock_bh(dev);
1da177e4
LT
8367}
8368
f0db275a
SH
8369/**
8370 * dev_get_flags - get flags reported to userspace
8371 * @dev: device
8372 *
8373 * Get the combination of flag bits exported through APIs to userspace.
8374 */
95c96174 8375unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8376{
95c96174 8377 unsigned int flags;
1da177e4
LT
8378
8379 flags = (dev->flags & ~(IFF_PROMISC |
8380 IFF_ALLMULTI |
b00055aa
SR
8381 IFF_RUNNING |
8382 IFF_LOWER_UP |
8383 IFF_DORMANT)) |
1da177e4
LT
8384 (dev->gflags & (IFF_PROMISC |
8385 IFF_ALLMULTI));
8386
b00055aa
SR
8387 if (netif_running(dev)) {
8388 if (netif_oper_up(dev))
8389 flags |= IFF_RUNNING;
8390 if (netif_carrier_ok(dev))
8391 flags |= IFF_LOWER_UP;
8392 if (netif_dormant(dev))
8393 flags |= IFF_DORMANT;
8394 }
1da177e4
LT
8395
8396 return flags;
8397}
d1b19dff 8398EXPORT_SYMBOL(dev_get_flags);
1da177e4 8399
6d040321
PM
8400int __dev_change_flags(struct net_device *dev, unsigned int flags,
8401 struct netlink_ext_ack *extack)
1da177e4 8402{
b536db93 8403 unsigned int old_flags = dev->flags;
bd380811 8404 int ret;
1da177e4 8405
24023451
PM
8406 ASSERT_RTNL();
8407
1da177e4
LT
8408 /*
8409 * Set the flags on our device.
8410 */
8411
8412 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8413 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8414 IFF_AUTOMEDIA)) |
8415 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8416 IFF_ALLMULTI));
8417
8418 /*
8419 * Load in the correct multicast list now the flags have changed.
8420 */
8421
b6c40d68
PM
8422 if ((old_flags ^ flags) & IFF_MULTICAST)
8423 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8424
4417da66 8425 dev_set_rx_mode(dev);
1da177e4
LT
8426
8427 /*
8428 * Have we downed the interface. We handle IFF_UP ourselves
8429 * according to user attempts to set it, rather than blindly
8430 * setting it.
8431 */
8432
8433 ret = 0;
7051b88a 8434 if ((old_flags ^ flags) & IFF_UP) {
8435 if (old_flags & IFF_UP)
8436 __dev_close(dev);
8437 else
40c900aa 8438 ret = __dev_open(dev, extack);
7051b88a 8439 }
1da177e4 8440
1da177e4 8441 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8442 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8443 unsigned int old_flags = dev->flags;
d1b19dff 8444
1da177e4 8445 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8446
8447 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8448 if (dev->flags != old_flags)
8449 dev_set_rx_mode(dev);
1da177e4
LT
8450 }
8451
8452 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8453 * is important. Some (broken) drivers set IFF_PROMISC, when
8454 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8455 */
8456 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8457 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8458
1da177e4 8459 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8460 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8461 }
8462
bd380811
PM
8463 return ret;
8464}
8465
a528c219
ND
8466void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8467 unsigned int gchanges)
bd380811
PM
8468{
8469 unsigned int changes = dev->flags ^ old_flags;
8470
a528c219 8471 if (gchanges)
7f294054 8472 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8473
bd380811
PM
8474 if (changes & IFF_UP) {
8475 if (dev->flags & IFF_UP)
8476 call_netdevice_notifiers(NETDEV_UP, dev);
8477 else
8478 call_netdevice_notifiers(NETDEV_DOWN, dev);
8479 }
8480
8481 if (dev->flags & IFF_UP &&
be9efd36 8482 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8483 struct netdev_notifier_change_info change_info = {
8484 .info = {
8485 .dev = dev,
8486 },
8487 .flags_changed = changes,
8488 };
be9efd36 8489
51d0c047 8490 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8491 }
bd380811
PM
8492}
8493
8494/**
8495 * dev_change_flags - change device settings
8496 * @dev: device
8497 * @flags: device state flags
567c5e13 8498 * @extack: netlink extended ack
bd380811
PM
8499 *
8500 * Change settings on device based state flags. The flags are
8501 * in the userspace exported format.
8502 */
567c5e13
PM
8503int dev_change_flags(struct net_device *dev, unsigned int flags,
8504 struct netlink_ext_ack *extack)
bd380811 8505{
b536db93 8506 int ret;
991fb3f7 8507 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8508
6d040321 8509 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8510 if (ret < 0)
8511 return ret;
8512
991fb3f7 8513 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8514 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8515 return ret;
8516}
d1b19dff 8517EXPORT_SYMBOL(dev_change_flags);
1da177e4 8518
f51048c3 8519int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8520{
8521 const struct net_device_ops *ops = dev->netdev_ops;
8522
8523 if (ops->ndo_change_mtu)
8524 return ops->ndo_change_mtu(dev, new_mtu);
8525
501a90c9
ED
8526 /* Pairs with all the lockless reads of dev->mtu in the stack */
8527 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8528 return 0;
8529}
f51048c3 8530EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8531
d836f5c6
ED
8532int dev_validate_mtu(struct net_device *dev, int new_mtu,
8533 struct netlink_ext_ack *extack)
8534{
8535 /* MTU must be positive, and in range */
8536 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8537 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8538 return -EINVAL;
8539 }
8540
8541 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8542 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8543 return -EINVAL;
8544 }
8545 return 0;
8546}
8547
f0db275a 8548/**
7a4c53be 8549 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8550 * @dev: device
8551 * @new_mtu: new transfer unit
7a4c53be 8552 * @extack: netlink extended ack
f0db275a
SH
8553 *
8554 * Change the maximum transfer size of the network device.
8555 */
7a4c53be
SH
8556int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8557 struct netlink_ext_ack *extack)
1da177e4 8558{
2315dc91 8559 int err, orig_mtu;
1da177e4
LT
8560
8561 if (new_mtu == dev->mtu)
8562 return 0;
8563
d836f5c6
ED
8564 err = dev_validate_mtu(dev, new_mtu, extack);
8565 if (err)
8566 return err;
1da177e4
LT
8567
8568 if (!netif_device_present(dev))
8569 return -ENODEV;
8570
1d486bfb
VF
8571 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8572 err = notifier_to_errno(err);
8573 if (err)
8574 return err;
d314774c 8575
2315dc91
VF
8576 orig_mtu = dev->mtu;
8577 err = __dev_set_mtu(dev, new_mtu);
d314774c 8578
2315dc91 8579 if (!err) {
af7d6cce
SD
8580 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8581 orig_mtu);
2315dc91
VF
8582 err = notifier_to_errno(err);
8583 if (err) {
8584 /* setting mtu back and notifying everyone again,
8585 * so that they have a chance to revert changes.
8586 */
8587 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8588 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8589 new_mtu);
2315dc91
VF
8590 }
8591 }
1da177e4
LT
8592 return err;
8593}
7a4c53be
SH
8594
8595int dev_set_mtu(struct net_device *dev, int new_mtu)
8596{
8597 struct netlink_ext_ack extack;
8598 int err;
8599
a6bcfc89 8600 memset(&extack, 0, sizeof(extack));
7a4c53be 8601 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8602 if (err && extack._msg)
7a4c53be
SH
8603 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8604 return err;
8605}
d1b19dff 8606EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8607
6a643ddb
CW
8608/**
8609 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8610 * @dev: device
8611 * @new_len: new tx queue length
8612 */
8613int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8614{
8615 unsigned int orig_len = dev->tx_queue_len;
8616 int res;
8617
8618 if (new_len != (unsigned int)new_len)
8619 return -ERANGE;
8620
8621 if (new_len != orig_len) {
8622 dev->tx_queue_len = new_len;
8623 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8624 res = notifier_to_errno(res);
7effaf06
TT
8625 if (res)
8626 goto err_rollback;
8627 res = dev_qdisc_change_tx_queue_len(dev);
8628 if (res)
8629 goto err_rollback;
6a643ddb
CW
8630 }
8631
8632 return 0;
7effaf06
TT
8633
8634err_rollback:
8635 netdev_err(dev, "refused to change device tx_queue_len\n");
8636 dev->tx_queue_len = orig_len;
8637 return res;
6a643ddb
CW
8638}
8639
cbda10fa
VD
8640/**
8641 * dev_set_group - Change group this device belongs to
8642 * @dev: device
8643 * @new_group: group this device should belong to
8644 */
8645void dev_set_group(struct net_device *dev, int new_group)
8646{
8647 dev->group = new_group;
8648}
cbda10fa 8649
d59cdf94
PM
8650/**
8651 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8652 * @dev: device
8653 * @addr: new address
8654 * @extack: netlink extended ack
8655 */
8656int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8657 struct netlink_ext_ack *extack)
8658{
8659 struct netdev_notifier_pre_changeaddr_info info = {
8660 .info.dev = dev,
8661 .info.extack = extack,
8662 .dev_addr = addr,
8663 };
8664 int rc;
8665
8666 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8667 return notifier_to_errno(rc);
8668}
8669EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8670
f0db275a
SH
8671/**
8672 * dev_set_mac_address - Change Media Access Control Address
8673 * @dev: device
8674 * @sa: new address
3a37a963 8675 * @extack: netlink extended ack
f0db275a
SH
8676 *
8677 * Change the hardware (MAC) address of the device
8678 */
3a37a963
PM
8679int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8680 struct netlink_ext_ack *extack)
1da177e4 8681{
d314774c 8682 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8683 int err;
8684
d314774c 8685 if (!ops->ndo_set_mac_address)
1da177e4
LT
8686 return -EOPNOTSUPP;
8687 if (sa->sa_family != dev->type)
8688 return -EINVAL;
8689 if (!netif_device_present(dev))
8690 return -ENODEV;
d59cdf94
PM
8691 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8692 if (err)
8693 return err;
d314774c 8694 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8695 if (err)
8696 return err;
fbdeca2d 8697 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8698 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8699 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8700 return 0;
1da177e4 8701}
d1b19dff 8702EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8703
3b23a32a
CW
8704static DECLARE_RWSEM(dev_addr_sem);
8705
8706int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8707 struct netlink_ext_ack *extack)
8708{
8709 int ret;
8710
8711 down_write(&dev_addr_sem);
8712 ret = dev_set_mac_address(dev, sa, extack);
8713 up_write(&dev_addr_sem);
8714 return ret;
8715}
8716EXPORT_SYMBOL(dev_set_mac_address_user);
8717
8718int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8719{
8720 size_t size = sizeof(sa->sa_data);
8721 struct net_device *dev;
8722 int ret = 0;
8723
8724 down_read(&dev_addr_sem);
8725 rcu_read_lock();
8726
8727 dev = dev_get_by_name_rcu(net, dev_name);
8728 if (!dev) {
8729 ret = -ENODEV;
8730 goto unlock;
8731 }
8732 if (!dev->addr_len)
8733 memset(sa->sa_data, 0, size);
8734 else
8735 memcpy(sa->sa_data, dev->dev_addr,
8736 min_t(size_t, size, dev->addr_len));
8737 sa->sa_family = dev->type;
8738
8739unlock:
8740 rcu_read_unlock();
8741 up_read(&dev_addr_sem);
8742 return ret;
8743}
8744EXPORT_SYMBOL(dev_get_mac_address);
8745
4bf84c35
JP
8746/**
8747 * dev_change_carrier - Change device carrier
8748 * @dev: device
691b3b7e 8749 * @new_carrier: new value
4bf84c35
JP
8750 *
8751 * Change device carrier
8752 */
8753int dev_change_carrier(struct net_device *dev, bool new_carrier)
8754{
8755 const struct net_device_ops *ops = dev->netdev_ops;
8756
8757 if (!ops->ndo_change_carrier)
8758 return -EOPNOTSUPP;
8759 if (!netif_device_present(dev))
8760 return -ENODEV;
8761 return ops->ndo_change_carrier(dev, new_carrier);
8762}
4bf84c35 8763
66b52b0d
JP
8764/**
8765 * dev_get_phys_port_id - Get device physical port ID
8766 * @dev: device
8767 * @ppid: port ID
8768 *
8769 * Get device physical port ID
8770 */
8771int dev_get_phys_port_id(struct net_device *dev,
02637fce 8772 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8773{
8774 const struct net_device_ops *ops = dev->netdev_ops;
8775
8776 if (!ops->ndo_get_phys_port_id)
8777 return -EOPNOTSUPP;
8778 return ops->ndo_get_phys_port_id(dev, ppid);
8779}
66b52b0d 8780
db24a904
DA
8781/**
8782 * dev_get_phys_port_name - Get device physical port name
8783 * @dev: device
8784 * @name: port name
ed49e650 8785 * @len: limit of bytes to copy to name
db24a904
DA
8786 *
8787 * Get device physical port name
8788 */
8789int dev_get_phys_port_name(struct net_device *dev,
8790 char *name, size_t len)
8791{
8792 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8793 int err;
db24a904 8794
af3836df
JP
8795 if (ops->ndo_get_phys_port_name) {
8796 err = ops->ndo_get_phys_port_name(dev, name, len);
8797 if (err != -EOPNOTSUPP)
8798 return err;
8799 }
8800 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904 8801}
db24a904 8802
d6abc596
FF
8803/**
8804 * dev_get_port_parent_id - Get the device's port parent identifier
8805 * @dev: network device
8806 * @ppid: pointer to a storage for the port's parent identifier
8807 * @recurse: allow/disallow recursion to lower devices
8808 *
8809 * Get the devices's port parent identifier
8810 */
8811int dev_get_port_parent_id(struct net_device *dev,
8812 struct netdev_phys_item_id *ppid,
8813 bool recurse)
8814{
8815 const struct net_device_ops *ops = dev->netdev_ops;
8816 struct netdev_phys_item_id first = { };
8817 struct net_device *lower_dev;
8818 struct list_head *iter;
7e1146e8
JP
8819 int err;
8820
8821 if (ops->ndo_get_port_parent_id) {
8822 err = ops->ndo_get_port_parent_id(dev, ppid);
8823 if (err != -EOPNOTSUPP)
8824 return err;
8825 }
d6abc596 8826
7e1146e8 8827 err = devlink_compat_switch_id_get(dev, ppid);
c0288ae8 8828 if (!recurse || err != -EOPNOTSUPP)
7e1146e8 8829 return err;
d6abc596 8830
d6abc596 8831 netdev_for_each_lower_dev(dev, lower_dev, iter) {
c0288ae8 8832 err = dev_get_port_parent_id(lower_dev, ppid, true);
d6abc596
FF
8833 if (err)
8834 break;
8835 if (!first.id_len)
8836 first = *ppid;
8837 else if (memcmp(&first, ppid, sizeof(*ppid)))
e1b9efe6 8838 return -EOPNOTSUPP;
d6abc596
FF
8839 }
8840
8841 return err;
8842}
8843EXPORT_SYMBOL(dev_get_port_parent_id);
8844
8845/**
8846 * netdev_port_same_parent_id - Indicate if two network devices have
8847 * the same port parent identifier
8848 * @a: first network device
8849 * @b: second network device
8850 */
8851bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8852{
8853 struct netdev_phys_item_id a_id = { };
8854 struct netdev_phys_item_id b_id = { };
8855
8856 if (dev_get_port_parent_id(a, &a_id, true) ||
8857 dev_get_port_parent_id(b, &b_id, true))
8858 return false;
8859
8860 return netdev_phys_item_id_same(&a_id, &b_id);
8861}
8862EXPORT_SYMBOL(netdev_port_same_parent_id);
8863
d746d707 8864/**
2106efda
JK
8865 * dev_change_proto_down - set carrier according to proto_down.
8866 *
d746d707
AK
8867 * @dev: device
8868 * @proto_down: new value
d746d707
AK
8869 */
8870int dev_change_proto_down(struct net_device *dev, bool proto_down)
8871{
2106efda 8872 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
d746d707
AK
8873 return -EOPNOTSUPP;
8874 if (!netif_device_present(dev))
8875 return -ENODEV;
b5899679
AR
8876 if (proto_down)
8877 netif_carrier_off(dev);
8878 else
8879 netif_carrier_on(dev);
8880 dev->proto_down = proto_down;
8881 return 0;
8882}
b5899679 8883
829eb208
RP
8884/**
8885 * dev_change_proto_down_reason - proto down reason
8886 *
8887 * @dev: device
8888 * @mask: proto down mask
8889 * @value: proto down value
8890 */
8891void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8892 u32 value)
8893{
8894 int b;
8895
8896 if (!mask) {
8897 dev->proto_down_reason = value;
8898 } else {
8899 for_each_set_bit(b, &mask, 32) {
8900 if (value & (1 << b))
8901 dev->proto_down_reason |= BIT(b);
8902 else
8903 dev->proto_down_reason &= ~BIT(b);
8904 }
8905 }
8906}
829eb208 8907
aa8d3a71
AN
8908struct bpf_xdp_link {
8909 struct bpf_link link;
8910 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8911 int flags;
8912};
8913
c8a36f19 8914static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
d67b9cd2 8915{
7f0a8382
AN
8916 if (flags & XDP_FLAGS_HW_MODE)
8917 return XDP_MODE_HW;
8918 if (flags & XDP_FLAGS_DRV_MODE)
8919 return XDP_MODE_DRV;
c8a36f19
AN
8920 if (flags & XDP_FLAGS_SKB_MODE)
8921 return XDP_MODE_SKB;
8922 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
7f0a8382 8923}
d67b9cd2 8924
7f0a8382
AN
8925static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8926{
8927 switch (mode) {
8928 case XDP_MODE_SKB:
8929 return generic_xdp_install;
8930 case XDP_MODE_DRV:
8931 case XDP_MODE_HW:
8932 return dev->netdev_ops->ndo_bpf;
8933 default:
8934 return NULL;
5d867245 8935 }
7f0a8382 8936}
118b4aa2 8937
aa8d3a71
AN
8938static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8939 enum bpf_xdp_mode mode)
8940{
8941 return dev->xdp_state[mode].link;
8942}
8943
7f0a8382
AN
8944static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8945 enum bpf_xdp_mode mode)
8946{
aa8d3a71
AN
8947 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8948
8949 if (link)
8950 return link->link.prog;
7f0a8382
AN
8951 return dev->xdp_state[mode].prog;
8952}
8953
879af96f 8954u8 dev_xdp_prog_count(struct net_device *dev)
998f1729
THJ
8955{
8956 u8 count = 0;
8957 int i;
8958
8959 for (i = 0; i < __MAX_XDP_MODE; i++)
8960 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8961 count++;
8962 return count;
8963}
879af96f 8964EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
998f1729 8965
7f0a8382
AN
8966u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8967{
8968 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
118b4aa2 8969
7f0a8382
AN
8970 return prog ? prog->aux->id : 0;
8971}
58038695 8972
aa8d3a71
AN
8973static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8974 struct bpf_xdp_link *link)
8975{
8976 dev->xdp_state[mode].link = link;
8977 dev->xdp_state[mode].prog = NULL;
d67b9cd2
DB
8978}
8979
7f0a8382
AN
8980static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8981 struct bpf_prog *prog)
8982{
aa8d3a71 8983 dev->xdp_state[mode].link = NULL;
7f0a8382 8984 dev->xdp_state[mode].prog = prog;
d67b9cd2
DB
8985}
8986
7f0a8382
AN
8987static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8988 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8989 u32 flags, struct bpf_prog *prog)
d67b9cd2 8990{
f4e63525 8991 struct netdev_bpf xdp;
7e6897f9
BT
8992 int err;
8993
d67b9cd2 8994 memset(&xdp, 0, sizeof(xdp));
7f0a8382 8995 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
d67b9cd2 8996 xdp.extack = extack;
32d60277 8997 xdp.flags = flags;
d67b9cd2
DB
8998 xdp.prog = prog;
8999
7f0a8382
AN
9000 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9001 * "moved" into driver), so they don't increment it on their own, but
9002 * they do decrement refcnt when program is detached or replaced.
9003 * Given net_device also owns link/prog, we need to bump refcnt here
9004 * to prevent drivers from underflowing it.
9005 */
9006 if (prog)
9007 bpf_prog_inc(prog);
7e6897f9 9008 err = bpf_op(dev, &xdp);
7f0a8382
AN
9009 if (err) {
9010 if (prog)
9011 bpf_prog_put(prog);
9012 return err;
9013 }
7e6897f9 9014
7f0a8382
AN
9015 if (mode != XDP_MODE_HW)
9016 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
7e6897f9 9017
7f0a8382 9018 return 0;
d67b9cd2
DB
9019}
9020
bd0b2e7f
JK
9021static void dev_xdp_uninstall(struct net_device *dev)
9022{
aa8d3a71 9023 struct bpf_xdp_link *link;
7f0a8382
AN
9024 struct bpf_prog *prog;
9025 enum bpf_xdp_mode mode;
9026 bpf_op_t bpf_op;
bd0b2e7f 9027
7f0a8382 9028 ASSERT_RTNL();
bd0b2e7f 9029
7f0a8382
AN
9030 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9031 prog = dev_xdp_prog(dev, mode);
9032 if (!prog)
9033 continue;
bd0b2e7f 9034
7f0a8382
AN
9035 bpf_op = dev_xdp_bpf_op(dev, mode);
9036 if (!bpf_op)
9037 continue;
bd0b2e7f 9038
7f0a8382
AN
9039 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9040
aa8d3a71
AN
9041 /* auto-detach link from net device */
9042 link = dev_xdp_link(dev, mode);
9043 if (link)
9044 link->dev = NULL;
9045 else
9046 bpf_prog_put(prog);
9047
9048 dev_xdp_set_link(dev, mode, NULL);
7f0a8382 9049 }
bd0b2e7f
JK
9050}
9051
d4baa936 9052static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
aa8d3a71
AN
9053 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9054 struct bpf_prog *old_prog, u32 flags)
a7862b45 9055{
998f1729 9056 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
d4baa936 9057 struct bpf_prog *cur_prog;
879af96f
JM
9058 struct net_device *upper;
9059 struct list_head *iter;
d4baa936 9060 enum bpf_xdp_mode mode;
7f0a8382 9061 bpf_op_t bpf_op;
a7862b45
BB
9062 int err;
9063
85de8576
DB
9064 ASSERT_RTNL();
9065
aa8d3a71
AN
9066 /* either link or prog attachment, never both */
9067 if (link && (new_prog || old_prog))
9068 return -EINVAL;
9069 /* link supports only XDP mode flags */
9070 if (link && (flags & ~XDP_FLAGS_MODES)) {
9071 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9072 return -EINVAL;
9073 }
998f1729
THJ
9074 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9075 if (num_modes > 1) {
d4baa936
AN
9076 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9077 return -EINVAL;
9078 }
998f1729
THJ
9079 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9080 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9081 NL_SET_ERR_MSG(extack,
9082 "More than one program loaded, unset mode is ambiguous");
9083 return -EINVAL;
9084 }
d4baa936
AN
9085 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9086 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9087 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9088 return -EINVAL;
01dde20c 9089 }
a25717d2 9090
c8a36f19 9091 mode = dev_xdp_mode(dev, flags);
aa8d3a71
AN
9092 /* can't replace attached link */
9093 if (dev_xdp_link(dev, mode)) {
9094 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9095 return -EBUSY;
01dde20c 9096 }
c14a9f63 9097
879af96f
JM
9098 /* don't allow if an upper device already has a program */
9099 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9100 if (dev_xdp_prog_count(upper) > 0) {
9101 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9102 return -EEXIST;
9103 }
9104 }
9105
d4baa936 9106 cur_prog = dev_xdp_prog(dev, mode);
aa8d3a71
AN
9107 /* can't replace attached prog with link */
9108 if (link && cur_prog) {
9109 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9110 return -EBUSY;
9111 }
d4baa936
AN
9112 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9113 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9114 return -EEXIST;
92234c8f 9115 }
c14a9f63 9116
aa8d3a71
AN
9117 /* put effective new program into new_prog */
9118 if (link)
9119 new_prog = link->link.prog;
85de8576 9120
d4baa936
AN
9121 if (new_prog) {
9122 bool offload = mode == XDP_MODE_HW;
7f0a8382
AN
9123 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9124 ? XDP_MODE_DRV : XDP_MODE_SKB;
441a3303 9125
068d9d1e
AN
9126 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9127 NL_SET_ERR_MSG(extack, "XDP program already attached");
9128 return -EBUSY;
9129 }
d4baa936 9130 if (!offload && dev_xdp_prog(dev, other_mode)) {
7f0a8382 9131 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
d67b9cd2 9132 return -EEXIST;
01dde20c 9133 }
d4baa936 9134 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
7f0a8382 9135 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
441a3303
JK
9136 return -EINVAL;
9137 }
d4baa936 9138 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
fbee97fe 9139 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
fbee97fe
DA
9140 return -EINVAL;
9141 }
d4baa936
AN
9142 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9143 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
92164774
LB
9144 return -EINVAL;
9145 }
d4baa936 9146 }
92164774 9147
d4baa936
AN
9148 /* don't call drivers if the effective program didn't change */
9149 if (new_prog != cur_prog) {
9150 bpf_op = dev_xdp_bpf_op(dev, mode);
9151 if (!bpf_op) {
9152 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9153 return -EOPNOTSUPP;
c14a9f63 9154 }
a7862b45 9155
d4baa936
AN
9156 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9157 if (err)
9158 return err;
7f0a8382 9159 }
d4baa936 9160
aa8d3a71
AN
9161 if (link)
9162 dev_xdp_set_link(dev, mode, link);
9163 else
9164 dev_xdp_set_prog(dev, mode, new_prog);
d4baa936
AN
9165 if (cur_prog)
9166 bpf_prog_put(cur_prog);
a7862b45 9167
7f0a8382 9168 return 0;
a7862b45 9169}
a7862b45 9170
aa8d3a71
AN
9171static int dev_xdp_attach_link(struct net_device *dev,
9172 struct netlink_ext_ack *extack,
9173 struct bpf_xdp_link *link)
9174{
9175 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9176}
9177
9178static int dev_xdp_detach_link(struct net_device *dev,
9179 struct netlink_ext_ack *extack,
9180 struct bpf_xdp_link *link)
9181{
9182 enum bpf_xdp_mode mode;
9183 bpf_op_t bpf_op;
9184
9185 ASSERT_RTNL();
9186
c8a36f19 9187 mode = dev_xdp_mode(dev, link->flags);
aa8d3a71
AN
9188 if (dev_xdp_link(dev, mode) != link)
9189 return -EINVAL;
9190
9191 bpf_op = dev_xdp_bpf_op(dev, mode);
9192 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9193 dev_xdp_set_link(dev, mode, NULL);
9194 return 0;
9195}
9196
9197static void bpf_xdp_link_release(struct bpf_link *link)
9198{
9199 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9200
9201 rtnl_lock();
9202
9203 /* if racing with net_device's tear down, xdp_link->dev might be
9204 * already NULL, in which case link was already auto-detached
9205 */
73b11c2a 9206 if (xdp_link->dev) {
aa8d3a71 9207 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
73b11c2a
AN
9208 xdp_link->dev = NULL;
9209 }
aa8d3a71
AN
9210
9211 rtnl_unlock();
9212}
9213
73b11c2a
AN
9214static int bpf_xdp_link_detach(struct bpf_link *link)
9215{
9216 bpf_xdp_link_release(link);
9217 return 0;
9218}
9219
aa8d3a71
AN
9220static void bpf_xdp_link_dealloc(struct bpf_link *link)
9221{
9222 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9223
9224 kfree(xdp_link);
9225}
9226
c1931c97
AN
9227static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9228 struct seq_file *seq)
9229{
9230 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9231 u32 ifindex = 0;
9232
9233 rtnl_lock();
9234 if (xdp_link->dev)
9235 ifindex = xdp_link->dev->ifindex;
9236 rtnl_unlock();
9237
9238 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9239}
9240
9241static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9242 struct bpf_link_info *info)
9243{
9244 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9245 u32 ifindex = 0;
9246
9247 rtnl_lock();
9248 if (xdp_link->dev)
9249 ifindex = xdp_link->dev->ifindex;
9250 rtnl_unlock();
9251
9252 info->xdp.ifindex = ifindex;
9253 return 0;
9254}
9255
026a4c28
AN
9256static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9257 struct bpf_prog *old_prog)
9258{
9259 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9260 enum bpf_xdp_mode mode;
9261 bpf_op_t bpf_op;
9262 int err = 0;
9263
9264 rtnl_lock();
9265
9266 /* link might have been auto-released already, so fail */
9267 if (!xdp_link->dev) {
9268 err = -ENOLINK;
9269 goto out_unlock;
9270 }
9271
9272 if (old_prog && link->prog != old_prog) {
9273 err = -EPERM;
9274 goto out_unlock;
9275 }
9276 old_prog = link->prog;
382778ed
THJ
9277 if (old_prog->type != new_prog->type ||
9278 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9279 err = -EINVAL;
9280 goto out_unlock;
9281 }
9282
026a4c28
AN
9283 if (old_prog == new_prog) {
9284 /* no-op, don't disturb drivers */
9285 bpf_prog_put(new_prog);
9286 goto out_unlock;
9287 }
9288
c8a36f19 9289 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
026a4c28
AN
9290 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9291 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9292 xdp_link->flags, new_prog);
9293 if (err)
9294 goto out_unlock;
9295
9296 old_prog = xchg(&link->prog, new_prog);
9297 bpf_prog_put(old_prog);
9298
9299out_unlock:
9300 rtnl_unlock();
9301 return err;
9302}
9303
aa8d3a71
AN
9304static const struct bpf_link_ops bpf_xdp_link_lops = {
9305 .release = bpf_xdp_link_release,
9306 .dealloc = bpf_xdp_link_dealloc,
73b11c2a 9307 .detach = bpf_xdp_link_detach,
c1931c97
AN
9308 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9309 .fill_link_info = bpf_xdp_link_fill_link_info,
026a4c28 9310 .update_prog = bpf_xdp_link_update,
aa8d3a71
AN
9311};
9312
9313int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9314{
9315 struct net *net = current->nsproxy->net_ns;
9316 struct bpf_link_primer link_primer;
9317 struct bpf_xdp_link *link;
9318 struct net_device *dev;
9319 int err, fd;
9320
5acc7d3e 9321 rtnl_lock();
aa8d3a71 9322 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
5acc7d3e
XZ
9323 if (!dev) {
9324 rtnl_unlock();
aa8d3a71 9325 return -EINVAL;
5acc7d3e 9326 }
aa8d3a71
AN
9327
9328 link = kzalloc(sizeof(*link), GFP_USER);
9329 if (!link) {
9330 err = -ENOMEM;
5acc7d3e 9331 goto unlock;
aa8d3a71
AN
9332 }
9333
9334 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9335 link->dev = dev;
9336 link->flags = attr->link_create.flags;
9337
9338 err = bpf_link_prime(&link->link, &link_primer);
9339 if (err) {
9340 kfree(link);
5acc7d3e 9341 goto unlock;
aa8d3a71
AN
9342 }
9343
aa8d3a71
AN
9344 err = dev_xdp_attach_link(dev, NULL, link);
9345 rtnl_unlock();
9346
9347 if (err) {
5acc7d3e 9348 link->dev = NULL;
aa8d3a71
AN
9349 bpf_link_cleanup(&link_primer);
9350 goto out_put_dev;
9351 }
9352
9353 fd = bpf_link_settle(&link_primer);
9354 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9355 dev_put(dev);
9356 return fd;
9357
5acc7d3e
XZ
9358unlock:
9359 rtnl_unlock();
9360
aa8d3a71
AN
9361out_put_dev:
9362 dev_put(dev);
9363 return err;
9364}
9365
d4baa936
AN
9366/**
9367 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9368 * @dev: device
9369 * @extack: netlink extended ack
9370 * @fd: new program fd or negative value to clear
9371 * @expected_fd: old program fd that userspace expects to replace or clear
9372 * @flags: xdp-related flags
9373 *
9374 * Set or clear a bpf program for a device
9375 */
9376int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9377 int fd, int expected_fd, u32 flags)
9378{
c8a36f19 9379 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
d4baa936
AN
9380 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9381 int err;
9382
9383 ASSERT_RTNL();
9384
9385 if (fd >= 0) {
9386 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9387 mode != XDP_MODE_SKB);
9388 if (IS_ERR(new_prog))
9389 return PTR_ERR(new_prog);
9390 }
9391
9392 if (expected_fd >= 0) {
9393 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9394 mode != XDP_MODE_SKB);
9395 if (IS_ERR(old_prog)) {
9396 err = PTR_ERR(old_prog);
9397 old_prog = NULL;
9398 goto err_out;
c14a9f63 9399 }
a7862b45
BB
9400 }
9401
aa8d3a71 9402 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
a7862b45 9403
d4baa936
AN
9404err_out:
9405 if (err && new_prog)
9406 bpf_prog_put(new_prog);
9407 if (old_prog)
9408 bpf_prog_put(old_prog);
a7862b45
BB
9409 return err;
9410}
a7862b45 9411
1da177e4
LT
9412/**
9413 * dev_new_index - allocate an ifindex
c4ea43c5 9414 * @net: the applicable net namespace
1da177e4
LT
9415 *
9416 * Returns a suitable unique value for a new device interface
9417 * number. The caller must hold the rtnl semaphore or the
9418 * dev_base_lock to be sure it remains unique.
9419 */
881d966b 9420static int dev_new_index(struct net *net)
1da177e4 9421{
aa79e66e 9422 int ifindex = net->ifindex;
f4563a75 9423
1da177e4
LT
9424 for (;;) {
9425 if (++ifindex <= 0)
9426 ifindex = 1;
881d966b 9427 if (!__dev_get_by_index(net, ifindex))
aa79e66e 9428 return net->ifindex = ifindex;
1da177e4
LT
9429 }
9430}
9431
1da177e4 9432/* Delayed registration/unregisteration */
0b5c21bb 9433LIST_HEAD(net_todo_list);
200b916f 9434DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 9435
6f05f629 9436static void net_set_todo(struct net_device *dev)
1da177e4 9437{
1da177e4 9438 list_add_tail(&dev->todo_list, &net_todo_list);
ede6c39c 9439 atomic_inc(&dev_net(dev)->dev_unreg_count);
1da177e4
LT
9440}
9441
fd867d51
JW
9442static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9443 struct net_device *upper, netdev_features_t features)
9444{
9445 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9446 netdev_features_t feature;
5ba3f7d6 9447 int feature_bit;
fd867d51 9448
3b89ea9c 9449 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9450 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9451 if (!(upper->wanted_features & feature)
9452 && (features & feature)) {
9453 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9454 &feature, upper->name);
9455 features &= ~feature;
9456 }
9457 }
9458
9459 return features;
9460}
9461
9462static void netdev_sync_lower_features(struct net_device *upper,
9463 struct net_device *lower, netdev_features_t features)
9464{
9465 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9466 netdev_features_t feature;
5ba3f7d6 9467 int feature_bit;
fd867d51 9468
3b89ea9c 9469 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9470 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9471 if (!(features & feature) && (lower->features & feature)) {
9472 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9473 &feature, lower->name);
9474 lower->wanted_features &= ~feature;
dd912306 9475 __netdev_update_features(lower);
fd867d51
JW
9476
9477 if (unlikely(lower->features & feature))
9478 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9479 &feature, lower->name);
dd912306
CW
9480 else
9481 netdev_features_change(lower);
fd867d51
JW
9482 }
9483 }
9484}
9485
c8f44aff
MM
9486static netdev_features_t netdev_fix_features(struct net_device *dev,
9487 netdev_features_t features)
b63365a2 9488{
57422dc5
MM
9489 /* Fix illegal checksum combinations */
9490 if ((features & NETIF_F_HW_CSUM) &&
9491 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 9492 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
9493 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9494 }
9495
b63365a2 9496 /* TSO requires that SG is present as well. */
ea2d3688 9497 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 9498 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 9499 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
9500 }
9501
ec5f0615
PS
9502 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9503 !(features & NETIF_F_IP_CSUM)) {
9504 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9505 features &= ~NETIF_F_TSO;
9506 features &= ~NETIF_F_TSO_ECN;
9507 }
9508
9509 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9510 !(features & NETIF_F_IPV6_CSUM)) {
9511 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9512 features &= ~NETIF_F_TSO6;
9513 }
9514
b1dc497b
AD
9515 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9516 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9517 features &= ~NETIF_F_TSO_MANGLEID;
9518
31d8b9e0
BH
9519 /* TSO ECN requires that TSO is present as well. */
9520 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9521 features &= ~NETIF_F_TSO_ECN;
9522
212b573f
MM
9523 /* Software GSO depends on SG. */
9524 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 9525 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
9526 features &= ~NETIF_F_GSO;
9527 }
9528
802ab55a
AD
9529 /* GSO partial features require GSO partial be set */
9530 if ((features & dev->gso_partial_features) &&
9531 !(features & NETIF_F_GSO_PARTIAL)) {
9532 netdev_dbg(dev,
9533 "Dropping partially supported GSO features since no GSO partial.\n");
9534 features &= ~dev->gso_partial_features;
9535 }
9536
fb1f5f79
MC
9537 if (!(features & NETIF_F_RXCSUM)) {
9538 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9539 * successfully merged by hardware must also have the
9540 * checksum verified by hardware. If the user does not
9541 * want to enable RXCSUM, logically, we should disable GRO_HW.
9542 */
9543 if (features & NETIF_F_GRO_HW) {
9544 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9545 features &= ~NETIF_F_GRO_HW;
9546 }
9547 }
9548
de8d5ab2
GP
9549 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9550 if (features & NETIF_F_RXFCS) {
9551 if (features & NETIF_F_LRO) {
9552 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9553 features &= ~NETIF_F_LRO;
9554 }
9555
9556 if (features & NETIF_F_GRO_HW) {
9557 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9558 features &= ~NETIF_F_GRO_HW;
9559 }
e6c6a929
GP
9560 }
9561
54b2b3ec
BB
9562 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9563 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9564 features &= ~NETIF_F_LRO;
9565 }
9566
25537d71
TT
9567 if (features & NETIF_F_HW_TLS_TX) {
9568 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9569 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9570 bool hw_csum = features & NETIF_F_HW_CSUM;
9571
9572 if (!ip_csum && !hw_csum) {
9573 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9574 features &= ~NETIF_F_HW_TLS_TX;
9575 }
ae0b04b2
TT
9576 }
9577
a3eb4e9d
TT
9578 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9579 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9580 features &= ~NETIF_F_HW_TLS_RX;
9581 }
9582
b63365a2
HX
9583 return features;
9584}
b63365a2 9585
6cb6a27c 9586int __netdev_update_features(struct net_device *dev)
5455c699 9587{
fd867d51 9588 struct net_device *upper, *lower;
c8f44aff 9589 netdev_features_t features;
fd867d51 9590 struct list_head *iter;
e7868a85 9591 int err = -1;
5455c699 9592
87267485
MM
9593 ASSERT_RTNL();
9594
5455c699
MM
9595 features = netdev_get_wanted_features(dev);
9596
9597 if (dev->netdev_ops->ndo_fix_features)
9598 features = dev->netdev_ops->ndo_fix_features(dev, features);
9599
9600 /* driver might be less strict about feature dependencies */
9601 features = netdev_fix_features(dev, features);
9602
4250b75b 9603 /* some features can't be enabled if they're off on an upper device */
fd867d51
JW
9604 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9605 features = netdev_sync_upper_features(dev, upper, features);
9606
5455c699 9607 if (dev->features == features)
e7868a85 9608 goto sync_lower;
5455c699 9609
c8f44aff
MM
9610 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9611 &dev->features, &features);
5455c699
MM
9612
9613 if (dev->netdev_ops->ndo_set_features)
9614 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9615 else
9616 err = 0;
5455c699 9617
6cb6a27c 9618 if (unlikely(err < 0)) {
5455c699 9619 netdev_err(dev,
c8f44aff
MM
9620 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9621 err, &features, &dev->features);
17b85d29
NA
9622 /* return non-0 since some features might have changed and
9623 * it's better to fire a spurious notification than miss it
9624 */
9625 return -1;
6cb6a27c
MM
9626 }
9627
e7868a85 9628sync_lower:
fd867d51
JW
9629 /* some features must be disabled on lower devices when disabled
9630 * on an upper device (think: bonding master or bridge)
9631 */
9632 netdev_for_each_lower_dev(dev, lower, iter)
9633 netdev_sync_lower_features(dev, lower, features);
9634
ae847f40
SD
9635 if (!err) {
9636 netdev_features_t diff = features ^ dev->features;
9637
9638 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9639 /* udp_tunnel_{get,drop}_rx_info both need
9640 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9641 * device, or they won't do anything.
9642 * Thus we need to update dev->features
9643 * *before* calling udp_tunnel_get_rx_info,
9644 * but *after* calling udp_tunnel_drop_rx_info.
9645 */
9646 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9647 dev->features = features;
9648 udp_tunnel_get_rx_info(dev);
9649 } else {
9650 udp_tunnel_drop_rx_info(dev);
9651 }
9652 }
9653
9daae9bd
GP
9654 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9655 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9656 dev->features = features;
9657 err |= vlan_get_rx_ctag_filter_info(dev);
9658 } else {
9659 vlan_drop_rx_ctag_filter_info(dev);
9660 }
9661 }
9662
9663 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9664 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9665 dev->features = features;
9666 err |= vlan_get_rx_stag_filter_info(dev);
9667 } else {
9668 vlan_drop_rx_stag_filter_info(dev);
9669 }
9670 }
9671
6cb6a27c 9672 dev->features = features;
ae847f40 9673 }
6cb6a27c 9674
e7868a85 9675 return err < 0 ? 0 : 1;
6cb6a27c
MM
9676}
9677
afe12cc8
MM
9678/**
9679 * netdev_update_features - recalculate device features
9680 * @dev: the device to check
9681 *
9682 * Recalculate dev->features set and send notifications if it
9683 * has changed. Should be called after driver or hardware dependent
9684 * conditions might have changed that influence the features.
9685 */
6cb6a27c
MM
9686void netdev_update_features(struct net_device *dev)
9687{
9688 if (__netdev_update_features(dev))
9689 netdev_features_change(dev);
5455c699
MM
9690}
9691EXPORT_SYMBOL(netdev_update_features);
9692
afe12cc8
MM
9693/**
9694 * netdev_change_features - recalculate device features
9695 * @dev: the device to check
9696 *
9697 * Recalculate dev->features set and send notifications even
9698 * if they have not changed. Should be called instead of
9699 * netdev_update_features() if also dev->vlan_features might
9700 * have changed to allow the changes to be propagated to stacked
9701 * VLAN devices.
9702 */
9703void netdev_change_features(struct net_device *dev)
9704{
9705 __netdev_update_features(dev);
9706 netdev_features_change(dev);
9707}
9708EXPORT_SYMBOL(netdev_change_features);
9709
fc4a7489
PM
9710/**
9711 * netif_stacked_transfer_operstate - transfer operstate
9712 * @rootdev: the root or lower level device to transfer state from
9713 * @dev: the device to transfer operstate to
9714 *
9715 * Transfer operational state from root to device. This is normally
9716 * called when a stacking relationship exists between the root
9717 * device and the device(a leaf device).
9718 */
9719void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9720 struct net_device *dev)
9721{
9722 if (rootdev->operstate == IF_OPER_DORMANT)
9723 netif_dormant_on(dev);
9724 else
9725 netif_dormant_off(dev);
9726
eec517cd
AL
9727 if (rootdev->operstate == IF_OPER_TESTING)
9728 netif_testing_on(dev);
9729 else
9730 netif_testing_off(dev);
9731
0575c86b
ZS
9732 if (netif_carrier_ok(rootdev))
9733 netif_carrier_on(dev);
9734 else
9735 netif_carrier_off(dev);
fc4a7489
PM
9736}
9737EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9738
1b4bf461
ED
9739static int netif_alloc_rx_queues(struct net_device *dev)
9740{
1b4bf461 9741 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 9742 struct netdev_rx_queue *rx;
10595902 9743 size_t sz = count * sizeof(*rx);
e817f856 9744 int err = 0;
1b4bf461 9745
bd25fa7b 9746 BUG_ON(count < 1);
1b4bf461 9747
c948f51c 9748 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9749 if (!rx)
9750 return -ENOMEM;
9751
bd25fa7b
TH
9752 dev->_rx = rx;
9753
e817f856 9754 for (i = 0; i < count; i++) {
fe822240 9755 rx[i].dev = dev;
e817f856
JDB
9756
9757 /* XDP RX-queue setup */
b02e5a0e 9758 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
e817f856
JDB
9759 if (err < 0)
9760 goto err_rxq_info;
9761 }
1b4bf461 9762 return 0;
e817f856
JDB
9763
9764err_rxq_info:
9765 /* Rollback successful reg's and free other resources */
9766 while (i--)
9767 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 9768 kvfree(dev->_rx);
e817f856
JDB
9769 dev->_rx = NULL;
9770 return err;
9771}
9772
9773static void netif_free_rx_queues(struct net_device *dev)
9774{
9775 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
9776
9777 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9778 if (!dev->_rx)
9779 return;
9780
e817f856 9781 for (i = 0; i < count; i++)
82aaff2f
JK
9782 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9783
9784 kvfree(dev->_rx);
1b4bf461
ED
9785}
9786
aa942104
CG
9787static void netdev_init_one_queue(struct net_device *dev,
9788 struct netdev_queue *queue, void *_unused)
9789{
9790 /* Initialize queue lock */
9791 spin_lock_init(&queue->_xmit_lock);
1a33e10e 9792 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
aa942104 9793 queue->xmit_lock_owner = -1;
b236da69 9794 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 9795 queue->dev = dev;
114cf580
TH
9796#ifdef CONFIG_BQL
9797 dql_init(&queue->dql, HZ);
9798#endif
aa942104
CG
9799}
9800
60877a32
ED
9801static void netif_free_tx_queues(struct net_device *dev)
9802{
4cb28970 9803 kvfree(dev->_tx);
60877a32
ED
9804}
9805
e6484930
TH
9806static int netif_alloc_netdev_queues(struct net_device *dev)
9807{
9808 unsigned int count = dev->num_tx_queues;
9809 struct netdev_queue *tx;
60877a32 9810 size_t sz = count * sizeof(*tx);
e6484930 9811
d339727c
ED
9812 if (count < 1 || count > 0xffff)
9813 return -EINVAL;
62b5942a 9814
c948f51c 9815 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9816 if (!tx)
9817 return -ENOMEM;
9818
e6484930 9819 dev->_tx = tx;
1d24eb48 9820
e6484930
TH
9821 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9822 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
9823
9824 return 0;
e6484930
TH
9825}
9826
a2029240
DV
9827void netif_tx_stop_all_queues(struct net_device *dev)
9828{
9829 unsigned int i;
9830
9831 for (i = 0; i < dev->num_tx_queues; i++) {
9832 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 9833
a2029240
DV
9834 netif_tx_stop_queue(txq);
9835 }
9836}
9837EXPORT_SYMBOL(netif_tx_stop_all_queues);
9838
1da177e4
LT
9839/**
9840 * register_netdevice - register a network device
9841 * @dev: device to register
9842 *
9843 * Take a completed network device structure and add it to the kernel
9844 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9845 * chain. 0 is returned on success. A negative errno code is returned
9846 * on a failure to set up the device, or if the name is a duplicate.
9847 *
9848 * Callers must hold the rtnl semaphore. You may want
9849 * register_netdev() instead of this.
9850 *
9851 * BUGS:
9852 * The locking appears insufficient to guarantee two parallel registers
9853 * will not get the same name.
9854 */
9855
9856int register_netdevice(struct net_device *dev)
9857{
1da177e4 9858 int ret;
d314774c 9859 struct net *net = dev_net(dev);
1da177e4 9860
e283de3a
FF
9861 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9862 NETDEV_FEATURE_COUNT);
1da177e4
LT
9863 BUG_ON(dev_boot_phase);
9864 ASSERT_RTNL();
9865
b17a7c17
SH
9866 might_sleep();
9867
1da177e4
LT
9868 /* When net_device's are persistent, this will be fatal. */
9869 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 9870 BUG_ON(!net);
1da177e4 9871
9000edb7
JK
9872 ret = ethtool_check_ops(dev->ethtool_ops);
9873 if (ret)
9874 return ret;
9875
f1f28aa3 9876 spin_lock_init(&dev->addr_list_lock);
845e0ebb 9877 netdev_set_addr_lockdep_class(dev);
1da177e4 9878
828de4f6 9879 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
9880 if (ret < 0)
9881 goto out;
9882
9077f052 9883 ret = -ENOMEM;
ff927412
JP
9884 dev->name_node = netdev_name_node_head_alloc(dev);
9885 if (!dev->name_node)
9886 goto out;
9887
1da177e4 9888 /* Init, if this function is available */
d314774c
SH
9889 if (dev->netdev_ops->ndo_init) {
9890 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
9891 if (ret) {
9892 if (ret > 0)
9893 ret = -EIO;
42c17fa6 9894 goto err_free_name;
1da177e4
LT
9895 }
9896 }
4ec93edb 9897
f646968f
PM
9898 if (((dev->hw_features | dev->features) &
9899 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
9900 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9901 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9902 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9903 ret = -EINVAL;
9904 goto err_uninit;
9905 }
9906
9c7dafbf
PE
9907 ret = -EBUSY;
9908 if (!dev->ifindex)
9909 dev->ifindex = dev_new_index(net);
9910 else if (__dev_get_by_index(net, dev->ifindex))
9911 goto err_uninit;
9912
5455c699
MM
9913 /* Transfer changeable features to wanted_features and enable
9914 * software offloads (GSO and GRO).
9915 */
1a3c998f 9916 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 9917 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122 9918
876c4384 9919 if (dev->udp_tunnel_nic_info) {
d764a122
SD
9920 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9921 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9922 }
9923
14d1232f 9924 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 9925
cbc53e08 9926 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 9927 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 9928
7f348a60
AD
9929 /* If IPv4 TCP segmentation offload is supported we should also
9930 * allow the device to enable segmenting the frame with the option
9931 * of ignoring a static IP ID value. This doesn't enable the
9932 * feature itself but allows the user to enable it later.
9933 */
cbc53e08
AD
9934 if (dev->hw_features & NETIF_F_TSO)
9935 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
9936 if (dev->vlan_features & NETIF_F_TSO)
9937 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9938 if (dev->mpls_features & NETIF_F_TSO)
9939 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9940 if (dev->hw_enc_features & NETIF_F_TSO)
9941 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 9942
1180e7d6 9943 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 9944 */
1180e7d6 9945 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 9946
ee579677
PS
9947 /* Make NETIF_F_SG inheritable to tunnel devices.
9948 */
802ab55a 9949 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 9950
0d89d203
SH
9951 /* Make NETIF_F_SG inheritable to MPLS.
9952 */
9953 dev->mpls_features |= NETIF_F_SG;
9954
7ffbe3fd
JB
9955 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9956 ret = notifier_to_errno(ret);
9957 if (ret)
9958 goto err_uninit;
9959
8b41d188 9960 ret = netdev_register_kobject(dev);
cb626bf5
JH
9961 if (ret) {
9962 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 9963 goto err_uninit;
cb626bf5 9964 }
b17a7c17
SH
9965 dev->reg_state = NETREG_REGISTERED;
9966
6cb6a27c 9967 __netdev_update_features(dev);
8e9b59b2 9968
1da177e4
LT
9969 /*
9970 * Default initial state at registry is that the
9971 * device is present.
9972 */
9973
9974 set_bit(__LINK_STATE_PRESENT, &dev->state);
9975
8f4cccbb
BH
9976 linkwatch_init_dev(dev);
9977
1da177e4 9978 dev_init_scheduler(dev);
b2309a71
ED
9979
9980 dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
ce286d32 9981 list_netdevice(dev);
b2309a71 9982
7bf23575 9983 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 9984
948b337e
JP
9985 /* If the device has permanent device address, driver should
9986 * set dev_addr and also addr_assign_type should be set to
9987 * NET_ADDR_PERM (default value).
9988 */
9989 if (dev->addr_assign_type == NET_ADDR_PERM)
9990 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9991
1da177e4 9992 /* Notify protocols, that a new device appeared. */
056925ab 9993 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 9994 ret = notifier_to_errno(ret);
93ee31f1 9995 if (ret) {
766b0515
JK
9996 /* Expect explicit free_netdev() on failure */
9997 dev->needs_free_netdev = false;
037e56bd 9998 unregister_netdevice_queue(dev, NULL);
766b0515 9999 goto out;
93ee31f1 10000 }
d90a909e
EB
10001 /*
10002 * Prevent userspace races by waiting until the network
10003 * device is fully setup before sending notifications.
10004 */
a2835763
PM
10005 if (!dev->rtnl_link_ops ||
10006 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 10007 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
10008
10009out:
10010 return ret;
7ce1b0ed
HX
10011
10012err_uninit:
d314774c
SH
10013 if (dev->netdev_ops->ndo_uninit)
10014 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
10015 if (dev->priv_destructor)
10016 dev->priv_destructor(dev);
42c17fa6
DC
10017err_free_name:
10018 netdev_name_node_free(dev->name_node);
7ce1b0ed 10019 goto out;
1da177e4 10020}
d1b19dff 10021EXPORT_SYMBOL(register_netdevice);
1da177e4 10022
937f1ba5
BH
10023/**
10024 * init_dummy_netdev - init a dummy network device for NAPI
10025 * @dev: device to init
10026 *
10027 * This takes a network device structure and initialize the minimum
10028 * amount of fields so it can be used to schedule NAPI polls without
10029 * registering a full blown interface. This is to be used by drivers
10030 * that need to tie several hardware interfaces to a single NAPI
10031 * poll scheduler due to HW limitations.
10032 */
10033int init_dummy_netdev(struct net_device *dev)
10034{
10035 /* Clear everything. Note we don't initialize spinlocks
10036 * are they aren't supposed to be taken by any of the
10037 * NAPI code and this dummy netdev is supposed to be
10038 * only ever used for NAPI polls
10039 */
10040 memset(dev, 0, sizeof(struct net_device));
10041
10042 /* make sure we BUG if trying to hit standard
10043 * register/unregister code path
10044 */
10045 dev->reg_state = NETREG_DUMMY;
10046
937f1ba5
BH
10047 /* NAPI wants this */
10048 INIT_LIST_HEAD(&dev->napi_list);
10049
10050 /* a dummy interface is started by default */
10051 set_bit(__LINK_STATE_PRESENT, &dev->state);
10052 set_bit(__LINK_STATE_START, &dev->state);
10053
35edfdc7
JE
10054 /* napi_busy_loop stats accounting wants this */
10055 dev_net_set(dev, &init_net);
10056
29b4433d
ED
10057 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10058 * because users of this 'device' dont need to change
10059 * its refcount.
10060 */
10061
937f1ba5
BH
10062 return 0;
10063}
10064EXPORT_SYMBOL_GPL(init_dummy_netdev);
10065
10066
1da177e4
LT
10067/**
10068 * register_netdev - register a network device
10069 * @dev: device to register
10070 *
10071 * Take a completed network device structure and add it to the kernel
10072 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10073 * chain. 0 is returned on success. A negative errno code is returned
10074 * on a failure to set up the device, or if the name is a duplicate.
10075 *
38b4da38 10076 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
10077 * and expands the device name if you passed a format string to
10078 * alloc_netdev.
10079 */
10080int register_netdev(struct net_device *dev)
10081{
10082 int err;
10083
b0f3debc
KT
10084 if (rtnl_lock_killable())
10085 return -EINTR;
1da177e4 10086 err = register_netdevice(dev);
1da177e4
LT
10087 rtnl_unlock();
10088 return err;
10089}
10090EXPORT_SYMBOL(register_netdev);
10091
29b4433d
ED
10092int netdev_refcnt_read(const struct net_device *dev)
10093{
919067cc 10094#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10095 int i, refcnt = 0;
10096
10097 for_each_possible_cpu(i)
10098 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10099 return refcnt;
919067cc
ED
10100#else
10101 return refcount_read(&dev->dev_refcnt);
10102#endif
29b4433d
ED
10103}
10104EXPORT_SYMBOL(netdev_refcnt_read);
10105
5aa3afe1
DV
10106int netdev_unregister_timeout_secs __read_mostly = 10;
10107
de2b541b
MCC
10108#define WAIT_REFS_MIN_MSECS 1
10109#define WAIT_REFS_MAX_MSECS 250
2c53040f 10110/**
faab39f6
JK
10111 * netdev_wait_allrefs_any - wait until all references are gone.
10112 * @list: list of net_devices to wait on
1da177e4
LT
10113 *
10114 * This is called when unregistering network devices.
10115 *
10116 * Any protocol or device that holds a reference should register
10117 * for netdevice notification, and cleanup and put back the
10118 * reference if they receive an UNREGISTER event.
10119 * We can get stuck here if buggy protocols don't correctly
4ec93edb 10120 * call dev_put.
1da177e4 10121 */
faab39f6 10122static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
1da177e4
LT
10123{
10124 unsigned long rebroadcast_time, warning_time;
faab39f6
JK
10125 struct net_device *dev;
10126 int wait = 0;
1da177e4
LT
10127
10128 rebroadcast_time = warning_time = jiffies;
29b4433d 10129
faab39f6
JK
10130 list_for_each_entry(dev, list, todo_list)
10131 if (netdev_refcnt_read(dev) == 1)
10132 return dev;
10133
10134 while (true) {
1da177e4 10135 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 10136 rtnl_lock();
1da177e4
LT
10137
10138 /* Rebroadcast unregister notification */
faab39f6
JK
10139 list_for_each_entry(dev, list, todo_list)
10140 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 10141
748e2d93 10142 __rtnl_unlock();
0115e8e3 10143 rcu_barrier();
748e2d93
ED
10144 rtnl_lock();
10145
faab39f6
JK
10146 list_for_each_entry(dev, list, todo_list)
10147 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10148 &dev->state)) {
10149 /* We must not have linkwatch events
10150 * pending on unregister. If this
10151 * happens, we simply run the queue
10152 * unscheduled, resulting in a noop
10153 * for this device.
10154 */
10155 linkwatch_run_queue();
10156 break;
10157 }
1da177e4 10158
6756ae4b 10159 __rtnl_unlock();
1da177e4
LT
10160
10161 rebroadcast_time = jiffies;
10162 }
10163
0e4be9e5
FR
10164 if (!wait) {
10165 rcu_barrier();
10166 wait = WAIT_REFS_MIN_MSECS;
10167 } else {
10168 msleep(wait);
10169 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10170 }
1da177e4 10171
faab39f6
JK
10172 list_for_each_entry(dev, list, todo_list)
10173 if (netdev_refcnt_read(dev) == 1)
10174 return dev;
29b4433d 10175
faab39f6 10176 if (time_after(jiffies, warning_time +
5aa3afe1 10177 netdev_unregister_timeout_secs * HZ)) {
faab39f6
JK
10178 list_for_each_entry(dev, list, todo_list) {
10179 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10180 dev->name, netdev_refcnt_read(dev));
10181 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10182 }
10183
1da177e4
LT
10184 warning_time = jiffies;
10185 }
10186 }
10187}
10188
10189/* The sequence is:
10190 *
10191 * rtnl_lock();
10192 * ...
10193 * register_netdevice(x1);
10194 * register_netdevice(x2);
10195 * ...
10196 * unregister_netdevice(y1);
10197 * unregister_netdevice(y2);
10198 * ...
10199 * rtnl_unlock();
10200 * free_netdev(y1);
10201 * free_netdev(y2);
10202 *
58ec3b4d 10203 * We are invoked by rtnl_unlock().
1da177e4 10204 * This allows us to deal with problems:
b17a7c17 10205 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
10206 * without deadlocking with linkwatch via keventd.
10207 * 2) Since we run with the RTNL semaphore not held, we can sleep
10208 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
10209 *
10210 * We must not return until all unregister events added during
10211 * the interval the lock was held have been completed.
1da177e4 10212 */
1da177e4
LT
10213void netdev_run_todo(void)
10214{
ae68db14 10215 struct net_device *dev, *tmp;
626ab0e6 10216 struct list_head list;
1fc70edb
TY
10217#ifdef CONFIG_LOCKDEP
10218 struct list_head unlink_list;
10219
10220 list_replace_init(&net_unlink_list, &unlink_list);
10221
10222 while (!list_empty(&unlink_list)) {
10223 struct net_device *dev = list_first_entry(&unlink_list,
10224 struct net_device,
10225 unlink_list);
0e8b8d6a 10226 list_del_init(&dev->unlink_list);
1fc70edb
TY
10227 dev->nested_level = dev->lower_level - 1;
10228 }
10229#endif
1da177e4 10230
1da177e4 10231 /* Snapshot list, allow later requests */
626ab0e6 10232 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
10233
10234 __rtnl_unlock();
626ab0e6 10235
0115e8e3 10236 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
10237 if (!list_empty(&list))
10238 rcu_barrier();
10239
ae68db14 10240 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
b17a7c17 10241 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
ae68db14
JK
10242 netdev_WARN(dev, "run_todo but not unregistering\n");
10243 list_del(&dev->todo_list);
b17a7c17
SH
10244 continue;
10245 }
1da177e4 10246
b17a7c17 10247 dev->reg_state = NETREG_UNREGISTERED;
86213f80 10248 linkwatch_forget_dev(dev);
ae68db14
JK
10249 }
10250
10251 while (!list_empty(&list)) {
faab39f6 10252 dev = netdev_wait_allrefs_any(&list);
ae68db14 10253 list_del(&dev->todo_list);
1da177e4 10254
b17a7c17 10255 /* paranoia */
add2d736 10256 BUG_ON(netdev_refcnt_read(dev) != 1);
7866a621
SN
10257 BUG_ON(!list_empty(&dev->ptype_all));
10258 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
10259 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10260 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 10261#if IS_ENABLED(CONFIG_DECNET)
547b792c 10262 WARN_ON(dev->dn_ptr);
330c7272 10263#endif
cf124db5
DM
10264 if (dev->priv_destructor)
10265 dev->priv_destructor(dev);
10266 if (dev->needs_free_netdev)
10267 free_netdev(dev);
9093bbb2 10268
ede6c39c
ED
10269 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10270 wake_up(&netdev_unregistering_wq);
50624c93 10271
9093bbb2
SH
10272 /* Free network device */
10273 kobject_put(&dev->dev.kobj);
1da177e4 10274 }
1da177e4
LT
10275}
10276
9256645a
JW
10277/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10278 * all the same fields in the same order as net_device_stats, with only
10279 * the type differing, but rtnl_link_stats64 may have additional fields
10280 * at the end for newer counters.
3cfde79c 10281 */
77a1abf5
ED
10282void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10283 const struct net_device_stats *netdev_stats)
3cfde79c
BH
10284{
10285#if BITS_PER_LONG == 64
9256645a 10286 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 10287 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
10288 /* zero out counters that only exist in rtnl_link_stats64 */
10289 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10290 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 10291#else
9256645a 10292 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
10293 const unsigned long *src = (const unsigned long *)netdev_stats;
10294 u64 *dst = (u64 *)stats64;
10295
9256645a 10296 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
10297 for (i = 0; i < n; i++)
10298 dst[i] = src[i];
9256645a
JW
10299 /* zero out counters that only exist in rtnl_link_stats64 */
10300 memset((char *)stats64 + n * sizeof(u64), 0,
10301 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
10302#endif
10303}
77a1abf5 10304EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 10305
625788b5
ED
10306struct net_device_core_stats *netdev_core_stats_alloc(struct net_device *dev)
10307{
10308 struct net_device_core_stats __percpu *p;
10309
10310 p = alloc_percpu_gfp(struct net_device_core_stats,
10311 GFP_ATOMIC | __GFP_NOWARN);
10312
10313 if (p && cmpxchg(&dev->core_stats, NULL, p))
10314 free_percpu(p);
10315
10316 /* This READ_ONCE() pairs with the cmpxchg() above */
10317 p = READ_ONCE(dev->core_stats);
10318 if (!p)
10319 return NULL;
10320
10321 return this_cpu_ptr(p);
10322}
10323EXPORT_SYMBOL(netdev_core_stats_alloc);
10324
eeda3fd6
SH
10325/**
10326 * dev_get_stats - get network device statistics
10327 * @dev: device to get statistics from
28172739 10328 * @storage: place to store stats
eeda3fd6 10329 *
d7753516
BH
10330 * Get network statistics from device. Return @storage.
10331 * The device driver may provide its own method by setting
10332 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10333 * otherwise the internal statistics structure is used.
eeda3fd6 10334 */
d7753516
BH
10335struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10336 struct rtnl_link_stats64 *storage)
7004bf25 10337{
eeda3fd6 10338 const struct net_device_ops *ops = dev->netdev_ops;
625788b5 10339 const struct net_device_core_stats __percpu *p;
eeda3fd6 10340
28172739
ED
10341 if (ops->ndo_get_stats64) {
10342 memset(storage, 0, sizeof(*storage));
caf586e5
ED
10343 ops->ndo_get_stats64(dev, storage);
10344 } else if (ops->ndo_get_stats) {
3cfde79c 10345 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
10346 } else {
10347 netdev_stats_to_stats64(storage, &dev->stats);
28172739 10348 }
625788b5
ED
10349
10350 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10351 p = READ_ONCE(dev->core_stats);
10352 if (p) {
10353 const struct net_device_core_stats *core_stats;
10354 int i;
10355
10356 for_each_possible_cpu(i) {
10357 core_stats = per_cpu_ptr(p, i);
10358 storage->rx_dropped += local_read(&core_stats->rx_dropped);
10359 storage->tx_dropped += local_read(&core_stats->tx_dropped);
10360 storage->rx_nohandler += local_read(&core_stats->rx_nohandler);
794c24e9 10361 storage->rx_otherhost_dropped += local_read(&core_stats->rx_otherhost_dropped);
625788b5
ED
10362 }
10363 }
28172739 10364 return storage;
c45d286e 10365}
eeda3fd6 10366EXPORT_SYMBOL(dev_get_stats);
c45d286e 10367
44fa32f0
HK
10368/**
10369 * dev_fetch_sw_netstats - get per-cpu network device statistics
10370 * @s: place to store stats
10371 * @netstats: per-cpu network stats to read from
10372 *
10373 * Read per-cpu network statistics and populate the related fields in @s.
10374 */
10375void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10376 const struct pcpu_sw_netstats __percpu *netstats)
10377{
10378 int cpu;
10379
10380 for_each_possible_cpu(cpu) {
10381 const struct pcpu_sw_netstats *stats;
10382 struct pcpu_sw_netstats tmp;
10383 unsigned int start;
10384
10385 stats = per_cpu_ptr(netstats, cpu);
10386 do {
10387 start = u64_stats_fetch_begin_irq(&stats->syncp);
10388 tmp.rx_packets = stats->rx_packets;
10389 tmp.rx_bytes = stats->rx_bytes;
10390 tmp.tx_packets = stats->tx_packets;
10391 tmp.tx_bytes = stats->tx_bytes;
10392 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10393
10394 s->rx_packets += tmp.rx_packets;
10395 s->rx_bytes += tmp.rx_bytes;
10396 s->tx_packets += tmp.tx_packets;
10397 s->tx_bytes += tmp.tx_bytes;
10398 }
10399}
10400EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10401
a1839426
HK
10402/**
10403 * dev_get_tstats64 - ndo_get_stats64 implementation
10404 * @dev: device to get statistics from
10405 * @s: place to store stats
10406 *
10407 * Populate @s from dev->stats and dev->tstats. Can be used as
10408 * ndo_get_stats64() callback.
10409 */
10410void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10411{
10412 netdev_stats_to_stats64(s, &dev->stats);
10413 dev_fetch_sw_netstats(s, dev->tstats);
10414}
10415EXPORT_SYMBOL_GPL(dev_get_tstats64);
10416
24824a09 10417struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 10418{
24824a09 10419 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 10420
24824a09
ED
10421#ifdef CONFIG_NET_CLS_ACT
10422 if (queue)
10423 return queue;
10424 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10425 if (!queue)
10426 return NULL;
10427 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 10428 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
10429 queue->qdisc_sleeping = &noop_qdisc;
10430 rcu_assign_pointer(dev->ingress_queue, queue);
10431#endif
10432 return queue;
bb949fbd
DM
10433}
10434
2c60db03
ED
10435static const struct ethtool_ops default_ethtool_ops;
10436
d07d7507
SG
10437void netdev_set_default_ethtool_ops(struct net_device *dev,
10438 const struct ethtool_ops *ops)
10439{
10440 if (dev->ethtool_ops == &default_ethtool_ops)
10441 dev->ethtool_ops = ops;
10442}
10443EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10444
74d332c1
ED
10445void netdev_freemem(struct net_device *dev)
10446{
10447 char *addr = (char *)dev - dev->padded;
10448
4cb28970 10449 kvfree(addr);
74d332c1
ED
10450}
10451
1da177e4 10452/**
722c9a0c 10453 * alloc_netdev_mqs - allocate network device
10454 * @sizeof_priv: size of private data to allocate space for
10455 * @name: device name format string
10456 * @name_assign_type: origin of device name
10457 * @setup: callback to initialize device
10458 * @txqs: the number of TX subqueues to allocate
10459 * @rxqs: the number of RX subqueues to allocate
10460 *
10461 * Allocates a struct net_device with private data area for driver use
10462 * and performs basic initialization. Also allocates subqueue structs
10463 * for each queue on the device.
1da177e4 10464 */
36909ea4 10465struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 10466 unsigned char name_assign_type,
36909ea4
TH
10467 void (*setup)(struct net_device *),
10468 unsigned int txqs, unsigned int rxqs)
1da177e4 10469{
1da177e4 10470 struct net_device *dev;
52a59bd5 10471 unsigned int alloc_size;
1ce8e7b5 10472 struct net_device *p;
1da177e4 10473
b6fe17d6
SH
10474 BUG_ON(strlen(name) >= sizeof(dev->name));
10475
36909ea4 10476 if (txqs < 1) {
7b6cd1ce 10477 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
10478 return NULL;
10479 }
10480
36909ea4 10481 if (rxqs < 1) {
7b6cd1ce 10482 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
10483 return NULL;
10484 }
36909ea4 10485
fd2ea0a7 10486 alloc_size = sizeof(struct net_device);
d1643d24
AD
10487 if (sizeof_priv) {
10488 /* ensure 32-byte alignment of private area */
1ce8e7b5 10489 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
10490 alloc_size += sizeof_priv;
10491 }
10492 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 10493 alloc_size += NETDEV_ALIGN - 1;
1da177e4 10494
c948f51c 10495 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
62b5942a 10496 if (!p)
1da177e4 10497 return NULL;
1da177e4 10498
1ce8e7b5 10499 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 10500 dev->padded = (char *)dev - (char *)p;
ab9c73cc 10501
4d92b95f 10502 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
919067cc 10503#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10504 dev->pcpu_refcnt = alloc_percpu(int);
10505 if (!dev->pcpu_refcnt)
74d332c1 10506 goto free_dev;
4c6c11ea 10507 __dev_hold(dev);
add2d736
ED
10508#else
10509 refcount_set(&dev->dev_refcnt, 1);
919067cc 10510#endif
ab9c73cc 10511
ab9c73cc 10512 if (dev_addr_init(dev))
29b4433d 10513 goto free_pcpu;
ab9c73cc 10514
22bedad3 10515 dev_mc_init(dev);
a748ee24 10516 dev_uc_init(dev);
ccffad25 10517
c346dca1 10518 dev_net_set(dev, &init_net);
1da177e4 10519
8d3bdbd5 10520 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 10521 dev->gso_max_segs = GSO_MAX_SEGS;
eac1b93c 10522 dev->gro_max_size = GRO_MAX_SIZE;
5343da4c
TY
10523 dev->upper_level = 1;
10524 dev->lower_level = 1;
1fc70edb
TY
10525#ifdef CONFIG_LOCKDEP
10526 dev->nested_level = 0;
10527 INIT_LIST_HEAD(&dev->unlink_list);
10528#endif
8d3bdbd5 10529
8d3bdbd5
DM
10530 INIT_LIST_HEAD(&dev->napi_list);
10531 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 10532 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 10533 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
10534 INIT_LIST_HEAD(&dev->adj_list.upper);
10535 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
10536 INIT_LIST_HEAD(&dev->ptype_all);
10537 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 10538 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
10539#ifdef CONFIG_NET_SCHED
10540 hash_init(dev->qdisc_hash);
10541#endif
02875878 10542 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
10543 setup(dev);
10544
a813104d 10545 if (!dev->tx_queue_len) {
f84bb1ea 10546 dev->priv_flags |= IFF_NO_QUEUE;
11597084 10547 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 10548 }
906470c1 10549
36909ea4
TH
10550 dev->num_tx_queues = txqs;
10551 dev->real_num_tx_queues = txqs;
ed9af2e8 10552 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 10553 goto free_all;
e8a0464c 10554
36909ea4
TH
10555 dev->num_rx_queues = rxqs;
10556 dev->real_num_rx_queues = rxqs;
fe822240 10557 if (netif_alloc_rx_queues(dev))
8d3bdbd5 10558 goto free_all;
0a9627f2 10559
1da177e4 10560 strcpy(dev->name, name);
c835a677 10561 dev->name_assign_type = name_assign_type;
cbda10fa 10562 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
10563 if (!dev->ethtool_ops)
10564 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 10565
17d20784 10566 nf_hook_netdev_init(dev);
e687ad60 10567
1da177e4 10568 return dev;
ab9c73cc 10569
8d3bdbd5
DM
10570free_all:
10571 free_netdev(dev);
10572 return NULL;
10573
29b4433d 10574free_pcpu:
919067cc 10575#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d 10576 free_percpu(dev->pcpu_refcnt);
74d332c1 10577free_dev:
919067cc 10578#endif
74d332c1 10579 netdev_freemem(dev);
ab9c73cc 10580 return NULL;
1da177e4 10581}
36909ea4 10582EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
10583
10584/**
722c9a0c 10585 * free_netdev - free network device
10586 * @dev: device
1da177e4 10587 *
722c9a0c 10588 * This function does the last stage of destroying an allocated device
10589 * interface. The reference to the device object is released. If this
10590 * is the last reference then it will be freed.Must be called in process
10591 * context.
1da177e4
LT
10592 */
10593void free_netdev(struct net_device *dev)
10594{
d565b0a1
HX
10595 struct napi_struct *p, *n;
10596
93d05d4a 10597 might_sleep();
c269a24c
JK
10598
10599 /* When called immediately after register_netdevice() failed the unwind
10600 * handling may still be dismantling the device. Handle that case by
10601 * deferring the free.
10602 */
10603 if (dev->reg_state == NETREG_UNREGISTERING) {
10604 ASSERT_RTNL();
10605 dev->needs_free_netdev = true;
10606 return;
10607 }
10608
60877a32 10609 netif_free_tx_queues(dev);
e817f856 10610 netif_free_rx_queues(dev);
e8a0464c 10611
33d480ce 10612 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 10613
f001fde5
JP
10614 /* Flush device addresses */
10615 dev_addr_flush(dev);
10616
d565b0a1
HX
10617 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10618 netif_napi_del(p);
10619
4d92b95f 10620 ref_tracker_dir_exit(&dev->refcnt_tracker);
919067cc 10621#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10622 free_percpu(dev->pcpu_refcnt);
10623 dev->pcpu_refcnt = NULL;
919067cc 10624#endif
625788b5
ED
10625 free_percpu(dev->core_stats);
10626 dev->core_stats = NULL;
75ccae62
THJ
10627 free_percpu(dev->xdp_bulkq);
10628 dev->xdp_bulkq = NULL;
29b4433d 10629
3041a069 10630 /* Compatibility with error handling in drivers */
1da177e4 10631 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 10632 netdev_freemem(dev);
1da177e4
LT
10633 return;
10634 }
10635
10636 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10637 dev->reg_state = NETREG_RELEASED;
10638
43cb76d9
GKH
10639 /* will free via device release */
10640 put_device(&dev->dev);
1da177e4 10641}
d1b19dff 10642EXPORT_SYMBOL(free_netdev);
4ec93edb 10643
f0db275a
SH
10644/**
10645 * synchronize_net - Synchronize with packet receive processing
10646 *
10647 * Wait for packets currently being received to be done.
10648 * Does not block later packets from starting.
10649 */
4ec93edb 10650void synchronize_net(void)
1da177e4
LT
10651{
10652 might_sleep();
be3fc413
ED
10653 if (rtnl_is_locked())
10654 synchronize_rcu_expedited();
10655 else
10656 synchronize_rcu();
1da177e4 10657}
d1b19dff 10658EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
10659
10660/**
44a0873d 10661 * unregister_netdevice_queue - remove device from the kernel
1da177e4 10662 * @dev: device
44a0873d 10663 * @head: list
6ebfbc06 10664 *
1da177e4 10665 * This function shuts down a device interface and removes it
d59b54b1 10666 * from the kernel tables.
44a0873d 10667 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
10668 *
10669 * Callers must hold the rtnl semaphore. You may want
10670 * unregister_netdev() instead of this.
10671 */
10672
44a0873d 10673void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 10674{
a6620712
HX
10675 ASSERT_RTNL();
10676
44a0873d 10677 if (head) {
9fdce099 10678 list_move_tail(&dev->unreg_list, head);
44a0873d 10679 } else {
037e56bd
JK
10680 LIST_HEAD(single);
10681
10682 list_add(&dev->unreg_list, &single);
0cbe1e57 10683 unregister_netdevice_many(&single);
44a0873d 10684 }
1da177e4 10685}
44a0873d 10686EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 10687
9b5e383c
ED
10688/**
10689 * unregister_netdevice_many - unregister many devices
10690 * @head: list of devices
87757a91
ED
10691 *
10692 * Note: As most callers use a stack allocated list_head,
10693 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
10694 */
10695void unregister_netdevice_many(struct list_head *head)
bcfe2f1a
JK
10696{
10697 struct net_device *dev, *tmp;
10698 LIST_HEAD(close_head);
10699
10700 BUG_ON(dev_boot_phase);
10701 ASSERT_RTNL();
10702
0cbe1e57
JK
10703 if (list_empty(head))
10704 return;
10705
bcfe2f1a
JK
10706 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10707 /* Some devices call without registering
10708 * for initialization unwind. Remove those
10709 * devices and proceed with the remaining.
10710 */
10711 if (dev->reg_state == NETREG_UNINITIALIZED) {
10712 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10713 dev->name, dev);
10714
10715 WARN_ON(1);
10716 list_del(&dev->unreg_list);
10717 continue;
10718 }
10719 dev->dismantle = true;
10720 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10721 }
10722
10723 /* If device is running, close it first. */
10724 list_for_each_entry(dev, head, unreg_list)
10725 list_add_tail(&dev->close_list, &close_head);
10726 dev_close_many(&close_head, true);
10727
10728 list_for_each_entry(dev, head, unreg_list) {
10729 /* And unlink it from device chain. */
10730 unlist_netdevice(dev);
10731
10732 dev->reg_state = NETREG_UNREGISTERING;
10733 }
10734 flush_all_backlogs();
10735
10736 synchronize_net();
10737
10738 list_for_each_entry(dev, head, unreg_list) {
10739 struct sk_buff *skb = NULL;
10740
10741 /* Shutdown queueing discipline. */
10742 dev_shutdown(dev);
10743
10744 dev_xdp_uninstall(dev);
10745
9309f97a
PM
10746 netdev_offload_xstats_disable_all(dev);
10747
bcfe2f1a
JK
10748 /* Notify protocols, that we are about to destroy
10749 * this device. They should clean all the things.
10750 */
10751 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10752
10753 if (!dev->rtnl_link_ops ||
10754 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10755 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10756 GFP_KERNEL, NULL, 0);
10757
10758 /*
10759 * Flush the unicast and multicast chains
10760 */
10761 dev_uc_flush(dev);
10762 dev_mc_flush(dev);
10763
10764 netdev_name_node_alt_flush(dev);
10765 netdev_name_node_free(dev->name_node);
10766
10767 if (dev->netdev_ops->ndo_uninit)
10768 dev->netdev_ops->ndo_uninit(dev);
10769
10770 if (skb)
10771 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10772
10773 /* Notifier chain MUST detach us all upper devices. */
10774 WARN_ON(netdev_has_any_upper_dev(dev));
10775 WARN_ON(netdev_has_any_lower_dev(dev));
10776
10777 /* Remove entries from kobject tree */
10778 netdev_unregister_kobject(dev);
10779#ifdef CONFIG_XPS
10780 /* Remove XPS queueing entries */
10781 netif_reset_xps_queues_gt(dev, 0);
10782#endif
10783 }
10784
10785 synchronize_net();
10786
10787 list_for_each_entry(dev, head, unreg_list) {
b2309a71 10788 dev_put_track(dev, &dev->dev_registered_tracker);
bcfe2f1a
JK
10789 net_set_todo(dev);
10790 }
0cbe1e57
JK
10791
10792 list_del(head);
bcfe2f1a 10793}
0cbe1e57 10794EXPORT_SYMBOL(unregister_netdevice_many);
bcfe2f1a 10795
1da177e4
LT
10796/**
10797 * unregister_netdev - remove device from the kernel
10798 * @dev: device
10799 *
10800 * This function shuts down a device interface and removes it
d59b54b1 10801 * from the kernel tables.
1da177e4
LT
10802 *
10803 * This is just a wrapper for unregister_netdevice that takes
10804 * the rtnl semaphore. In general you want to use this and not
10805 * unregister_netdevice.
10806 */
10807void unregister_netdev(struct net_device *dev)
10808{
10809 rtnl_lock();
10810 unregister_netdevice(dev);
10811 rtnl_unlock();
10812}
1da177e4
LT
10813EXPORT_SYMBOL(unregister_netdev);
10814
ce286d32 10815/**
0854fa82 10816 * __dev_change_net_namespace - move device to different nethost namespace
ce286d32
EB
10817 * @dev: device
10818 * @net: network namespace
10819 * @pat: If not NULL name pattern to try if the current device name
10820 * is already taken in the destination network namespace.
eeb85a14
AV
10821 * @new_ifindex: If not zero, specifies device index in the target
10822 * namespace.
ce286d32
EB
10823 *
10824 * This function shuts down a device interface and moves it
10825 * to a new network namespace. On success 0 is returned, on
10826 * a failure a netagive errno code is returned.
10827 *
10828 * Callers must hold the rtnl semaphore.
10829 */
10830
0854fa82
AV
10831int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10832 const char *pat, int new_ifindex)
ce286d32 10833{
ef6a4c88 10834 struct net *net_old = dev_net(dev);
eeb85a14 10835 int err, new_nsid;
ce286d32
EB
10836
10837 ASSERT_RTNL();
10838
10839 /* Don't allow namespace local devices to be moved. */
10840 err = -EINVAL;
10841 if (dev->features & NETIF_F_NETNS_LOCAL)
10842 goto out;
10843
10844 /* Ensure the device has been registrered */
ce286d32
EB
10845 if (dev->reg_state != NETREG_REGISTERED)
10846 goto out;
10847
10848 /* Get out if there is nothing todo */
10849 err = 0;
ef6a4c88 10850 if (net_eq(net_old, net))
ce286d32
EB
10851 goto out;
10852
10853 /* Pick the destination device name, and ensure
10854 * we can use it in the destination network namespace.
10855 */
10856 err = -EEXIST;
75ea27d0 10857 if (netdev_name_in_use(net, dev->name)) {
ce286d32
EB
10858 /* We get here if we can't use the current device name */
10859 if (!pat)
10860 goto out;
7892bd08
LR
10861 err = dev_get_valid_name(net, dev, pat);
10862 if (err < 0)
ce286d32
EB
10863 goto out;
10864 }
10865
eeb85a14
AV
10866 /* Check that new_ifindex isn't used yet. */
10867 err = -EBUSY;
10868 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10869 goto out;
10870
ce286d32
EB
10871 /*
10872 * And now a mini version of register_netdevice unregister_netdevice.
10873 */
10874
10875 /* If device is running close it first. */
9b772652 10876 dev_close(dev);
ce286d32
EB
10877
10878 /* And unlink it from device chain */
ce286d32
EB
10879 unlist_netdevice(dev);
10880
10881 synchronize_net();
10882
10883 /* Shutdown queueing discipline. */
10884 dev_shutdown(dev);
10885
10886 /* Notify protocols, that we are about to destroy
eb13da1a 10887 * this device. They should clean all the things.
10888 *
10889 * Note that dev->reg_state stays at NETREG_REGISTERED.
10890 * This is wanted because this way 8021q and macvlan know
10891 * the device is just moving and can keep their slaves up.
10892 */
ce286d32 10893 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 10894 rcu_barrier();
38e01b30 10895
d4e4fdf9 10896 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30 10897 /* If there is an ifindex conflict assign a new one */
eeb85a14
AV
10898 if (!new_ifindex) {
10899 if (__dev_get_by_index(net, dev->ifindex))
10900 new_ifindex = dev_new_index(net);
10901 else
10902 new_ifindex = dev->ifindex;
10903 }
38e01b30
ND
10904
10905 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10906 new_ifindex);
ce286d32
EB
10907
10908 /*
10909 * Flush the unicast and multicast chains
10910 */
a748ee24 10911 dev_uc_flush(dev);
22bedad3 10912 dev_mc_flush(dev);
ce286d32 10913
4e66ae2e
SH
10914 /* Send a netdev-removed uevent to the old namespace */
10915 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 10916 netdev_adjacent_del_links(dev);
4e66ae2e 10917
93642e14
JP
10918 /* Move per-net netdevice notifiers that are following the netdevice */
10919 move_netdevice_notifiers_dev_net(dev, net);
10920
ce286d32 10921 /* Actually switch the network namespace */
c346dca1 10922 dev_net_set(dev, net);
38e01b30 10923 dev->ifindex = new_ifindex;
ce286d32 10924
4e66ae2e
SH
10925 /* Send a netdev-add uevent to the new namespace */
10926 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 10927 netdev_adjacent_add_links(dev);
4e66ae2e 10928
8b41d188 10929 /* Fixup kobjects */
a1b3f594 10930 err = device_rename(&dev->dev, dev->name);
8b41d188 10931 WARN_ON(err);
ce286d32 10932
ef6a4c88
CB
10933 /* Adapt owner in case owning user namespace of target network
10934 * namespace is different from the original one.
10935 */
10936 err = netdev_change_owner(dev, net_old, net);
10937 WARN_ON(err);
10938
ce286d32
EB
10939 /* Add the device back in the hashes */
10940 list_netdevice(dev);
10941
10942 /* Notify protocols, that a new device appeared. */
10943 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10944
d90a909e
EB
10945 /*
10946 * Prevent userspace races by waiting until the network
10947 * device is fully setup before sending notifications.
10948 */
7f294054 10949 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 10950
ce286d32
EB
10951 synchronize_net();
10952 err = 0;
10953out:
10954 return err;
10955}
0854fa82 10956EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
ce286d32 10957
f0bf90de 10958static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
10959{
10960 struct sk_buff **list_skb;
1da177e4 10961 struct sk_buff *skb;
f0bf90de 10962 unsigned int cpu;
97d8b6e3 10963 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 10964
1da177e4
LT
10965 local_irq_disable();
10966 cpu = smp_processor_id();
10967 sd = &per_cpu(softnet_data, cpu);
10968 oldsd = &per_cpu(softnet_data, oldcpu);
10969
10970 /* Find end of our completion_queue. */
10971 list_skb = &sd->completion_queue;
10972 while (*list_skb)
10973 list_skb = &(*list_skb)->next;
10974 /* Append completion queue from offline CPU. */
10975 *list_skb = oldsd->completion_queue;
10976 oldsd->completion_queue = NULL;
10977
1da177e4 10978 /* Append output queue from offline CPU. */
a9cbd588
CG
10979 if (oldsd->output_queue) {
10980 *sd->output_queue_tailp = oldsd->output_queue;
10981 sd->output_queue_tailp = oldsd->output_queue_tailp;
10982 oldsd->output_queue = NULL;
10983 oldsd->output_queue_tailp = &oldsd->output_queue;
10984 }
ac64da0b
ED
10985 /* Append NAPI poll list from offline CPU, with one exception :
10986 * process_backlog() must be called by cpu owning percpu backlog.
10987 * We properly handle process_queue & input_pkt_queue later.
10988 */
10989 while (!list_empty(&oldsd->poll_list)) {
10990 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10991 struct napi_struct,
10992 poll_list);
10993
10994 list_del_init(&napi->poll_list);
10995 if (napi->poll == process_backlog)
10996 napi->state = 0;
10997 else
10998 ____napi_schedule(sd, napi);
264524d5 10999 }
1da177e4
LT
11000
11001 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11002 local_irq_enable();
11003
773fc8f6 11004#ifdef CONFIG_RPS
11005 remsd = oldsd->rps_ipi_list;
11006 oldsd->rps_ipi_list = NULL;
11007#endif
11008 /* send out pending IPI's on offline CPU */
11009 net_rps_send_ipi(remsd);
11010
1da177e4 11011 /* Process offline CPU's input_pkt_queue */
76cc8b13 11012 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
ad0a043f 11013 netif_rx(skb);
76cc8b13 11014 input_queue_head_incr(oldsd);
fec5e652 11015 }
ac64da0b 11016 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
ad0a043f 11017 netif_rx(skb);
76cc8b13
TH
11018 input_queue_head_incr(oldsd);
11019 }
1da177e4 11020
f0bf90de 11021 return 0;
1da177e4 11022}
1da177e4 11023
7f353bf2 11024/**
b63365a2
HX
11025 * netdev_increment_features - increment feature set by one
11026 * @all: current feature set
11027 * @one: new feature set
11028 * @mask: mask feature set
7f353bf2
HX
11029 *
11030 * Computes a new feature set after adding a device with feature set
b63365a2
HX
11031 * @one to the master device with current feature set @all. Will not
11032 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 11033 */
c8f44aff
MM
11034netdev_features_t netdev_increment_features(netdev_features_t all,
11035 netdev_features_t one, netdev_features_t mask)
b63365a2 11036{
c8cd0989 11037 if (mask & NETIF_F_HW_CSUM)
a188222b 11038 mask |= NETIF_F_CSUM_MASK;
1742f183 11039 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 11040
a188222b 11041 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 11042 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 11043
1742f183 11044 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
11045 if (all & NETIF_F_HW_CSUM)
11046 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
11047
11048 return all;
11049}
b63365a2 11050EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 11051
430f03cd 11052static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
11053{
11054 int i;
11055 struct hlist_head *hash;
11056
6da2ec56 11057 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
11058 if (hash != NULL)
11059 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11060 INIT_HLIST_HEAD(&hash[i]);
11061
11062 return hash;
11063}
11064
881d966b 11065/* Initialize per network namespace state */
4665079c 11066static int __net_init netdev_init(struct net *net)
881d966b 11067{
d9f37d01 11068 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 11069 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 11070
9c1be193 11071 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 11072
30d97d35
PE
11073 net->dev_name_head = netdev_create_hash();
11074 if (net->dev_name_head == NULL)
11075 goto err_name;
881d966b 11076
30d97d35
PE
11077 net->dev_index_head = netdev_create_hash();
11078 if (net->dev_index_head == NULL)
11079 goto err_idx;
881d966b 11080
a30c7b42
JP
11081 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11082
881d966b 11083 return 0;
30d97d35
PE
11084
11085err_idx:
11086 kfree(net->dev_name_head);
11087err_name:
11088 return -ENOMEM;
881d966b
EB
11089}
11090
f0db275a
SH
11091/**
11092 * netdev_drivername - network driver for the device
11093 * @dev: network device
f0db275a
SH
11094 *
11095 * Determine network driver for device.
11096 */
3019de12 11097const char *netdev_drivername(const struct net_device *dev)
6579e57b 11098{
cf04a4c7
SH
11099 const struct device_driver *driver;
11100 const struct device *parent;
3019de12 11101 const char *empty = "";
6579e57b
AV
11102
11103 parent = dev->dev.parent;
6579e57b 11104 if (!parent)
3019de12 11105 return empty;
6579e57b
AV
11106
11107 driver = parent->driver;
11108 if (driver && driver->name)
3019de12
DM
11109 return driver->name;
11110 return empty;
6579e57b
AV
11111}
11112
6ea754eb
JP
11113static void __netdev_printk(const char *level, const struct net_device *dev,
11114 struct va_format *vaf)
256df2f3 11115{
b004ff49 11116 if (dev && dev->dev.parent) {
6ea754eb
JP
11117 dev_printk_emit(level[1] - '0',
11118 dev->dev.parent,
11119 "%s %s %s%s: %pV",
11120 dev_driver_string(dev->dev.parent),
11121 dev_name(dev->dev.parent),
11122 netdev_name(dev), netdev_reg_state(dev),
11123 vaf);
b004ff49 11124 } else if (dev) {
6ea754eb
JP
11125 printk("%s%s%s: %pV",
11126 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 11127 } else {
6ea754eb 11128 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 11129 }
256df2f3
JP
11130}
11131
6ea754eb
JP
11132void netdev_printk(const char *level, const struct net_device *dev,
11133 const char *format, ...)
256df2f3
JP
11134{
11135 struct va_format vaf;
11136 va_list args;
256df2f3
JP
11137
11138 va_start(args, format);
11139
11140 vaf.fmt = format;
11141 vaf.va = &args;
11142
6ea754eb 11143 __netdev_printk(level, dev, &vaf);
b004ff49 11144
256df2f3 11145 va_end(args);
256df2f3
JP
11146}
11147EXPORT_SYMBOL(netdev_printk);
11148
11149#define define_netdev_printk_level(func, level) \
6ea754eb 11150void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 11151{ \
256df2f3
JP
11152 struct va_format vaf; \
11153 va_list args; \
11154 \
11155 va_start(args, fmt); \
11156 \
11157 vaf.fmt = fmt; \
11158 vaf.va = &args; \
11159 \
6ea754eb 11160 __netdev_printk(level, dev, &vaf); \
b004ff49 11161 \
256df2f3 11162 va_end(args); \
256df2f3
JP
11163} \
11164EXPORT_SYMBOL(func);
11165
11166define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11167define_netdev_printk_level(netdev_alert, KERN_ALERT);
11168define_netdev_printk_level(netdev_crit, KERN_CRIT);
11169define_netdev_printk_level(netdev_err, KERN_ERR);
11170define_netdev_printk_level(netdev_warn, KERN_WARNING);
11171define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11172define_netdev_printk_level(netdev_info, KERN_INFO);
11173
4665079c 11174static void __net_exit netdev_exit(struct net *net)
881d966b
EB
11175{
11176 kfree(net->dev_name_head);
11177 kfree(net->dev_index_head);
ee21b18b
VA
11178 if (net != &init_net)
11179 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
11180}
11181
022cbae6 11182static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
11183 .init = netdev_init,
11184 .exit = netdev_exit,
11185};
11186
ee403248 11187static void __net_exit default_device_exit_net(struct net *net)
ce286d32 11188{
e008b5fc 11189 struct net_device *dev, *aux;
ce286d32 11190 /*
e008b5fc 11191 * Push all migratable network devices back to the
ce286d32
EB
11192 * initial network namespace
11193 */
ee403248 11194 ASSERT_RTNL();
e008b5fc 11195 for_each_netdev_safe(net, dev, aux) {
ce286d32 11196 int err;
aca51397 11197 char fb_name[IFNAMSIZ];
ce286d32
EB
11198
11199 /* Ignore unmoveable devices (i.e. loopback) */
11200 if (dev->features & NETIF_F_NETNS_LOCAL)
11201 continue;
11202
e008b5fc 11203 /* Leave virtual devices for the generic cleanup */
3a5ca857 11204 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
e008b5fc 11205 continue;
d0c082ce 11206
25985edc 11207 /* Push remaining network devices to init_net */
aca51397 11208 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
75ea27d0 11209 if (netdev_name_in_use(&init_net, fb_name))
55b40dbf 11210 snprintf(fb_name, IFNAMSIZ, "dev%%d");
0854fa82 11211 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 11212 if (err) {
7b6cd1ce
JP
11213 pr_emerg("%s: failed to move %s to init_net: %d\n",
11214 __func__, dev->name, err);
aca51397 11215 BUG();
ce286d32
EB
11216 }
11217 }
ce286d32
EB
11218}
11219
04dc7f6b
EB
11220static void __net_exit default_device_exit_batch(struct list_head *net_list)
11221{
11222 /* At exit all network devices most be removed from a network
b595076a 11223 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
11224 * Do this across as many network namespaces as possible to
11225 * improve batching efficiency.
11226 */
11227 struct net_device *dev;
11228 struct net *net;
11229 LIST_HEAD(dev_kill_list);
11230
ee403248
ED
11231 rtnl_lock();
11232 list_for_each_entry(net, net_list, exit_list) {
11233 default_device_exit_net(net);
11234 cond_resched();
11235 }
ee403248 11236
04dc7f6b
EB
11237 list_for_each_entry(net, net_list, exit_list) {
11238 for_each_netdev_reverse(net, dev) {
b0ab2fab 11239 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
11240 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11241 else
11242 unregister_netdevice_queue(dev, &dev_kill_list);
11243 }
11244 }
11245 unregister_netdevice_many(&dev_kill_list);
11246 rtnl_unlock();
11247}
11248
022cbae6 11249static struct pernet_operations __net_initdata default_device_ops = {
04dc7f6b 11250 .exit_batch = default_device_exit_batch,
ce286d32
EB
11251};
11252
1da177e4
LT
11253/*
11254 * Initialize the DEV module. At boot time this walks the device list and
11255 * unhooks any devices that fail to initialise (normally hardware not
11256 * present) and leaves us with a valid list of present and active devices.
11257 *
11258 */
11259
11260/*
11261 * This is called single threaded during boot, so no need
11262 * to take the rtnl semaphore.
11263 */
11264static int __init net_dev_init(void)
11265{
11266 int i, rc = -ENOMEM;
11267
11268 BUG_ON(!dev_boot_phase);
11269
1da177e4
LT
11270 if (dev_proc_init())
11271 goto out;
11272
8b41d188 11273 if (netdev_kobject_init())
1da177e4
LT
11274 goto out;
11275
11276 INIT_LIST_HEAD(&ptype_all);
82d8a867 11277 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
11278 INIT_LIST_HEAD(&ptype_base[i]);
11279
881d966b
EB
11280 if (register_pernet_subsys(&netdev_net_ops))
11281 goto out;
1da177e4
LT
11282
11283 /*
11284 * Initialise the packet receive queues.
11285 */
11286
6f912042 11287 for_each_possible_cpu(i) {
41852497 11288 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 11289 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 11290
41852497
ED
11291 INIT_WORK(flush, flush_backlog);
11292
e36fa2f7 11293 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 11294 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
11295#ifdef CONFIG_XFRM_OFFLOAD
11296 skb_queue_head_init(&sd->xfrm_backlog);
11297#endif
e36fa2f7 11298 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 11299 sd->output_queue_tailp = &sd->output_queue;
df334545 11300#ifdef CONFIG_RPS
545b8c8d 11301 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
e36fa2f7 11302 sd->cpu = i;
1e94d72f 11303#endif
0a9627f2 11304
7c4ec749 11305 init_gro_hash(&sd->backlog);
e36fa2f7
ED
11306 sd->backlog.poll = process_backlog;
11307 sd->backlog.weight = weight_p;
1da177e4
LT
11308 }
11309
1da177e4
LT
11310 dev_boot_phase = 0;
11311
505d4f73
EB
11312 /* The loopback device is special if any other network devices
11313 * is present in a network namespace the loopback device must
11314 * be present. Since we now dynamically allocate and free the
11315 * loopback device ensure this invariant is maintained by
11316 * keeping the loopback device as the first device on the
11317 * list of network devices. Ensuring the loopback devices
11318 * is the first device that appears and the last network device
11319 * that disappears.
11320 */
11321 if (register_pernet_device(&loopback_net_ops))
11322 goto out;
11323
11324 if (register_pernet_device(&default_device_ops))
11325 goto out;
11326
962cf36c
CM
11327 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11328 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 11329
f0bf90de
SAS
11330 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11331 NULL, dev_cpu_dead);
11332 WARN_ON(rc < 0);
1da177e4
LT
11333 rc = 0;
11334out:
11335 return rc;
11336}
11337
11338subsys_initcall(net_dev_init);