Revert "ibmvnic: remove never executed if statement"
[linux-block.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
11d6011c 82#include <linux/rwsem.h>
1da177e4
LT
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
0187bdfb 92#include <linux/ethtool.h>
1da177e4 93#include <linux/skbuff.h>
a7862b45 94#include <linux/bpf.h>
b5cdae32 95#include <linux/bpf_trace.h>
457c4cbc 96#include <net/net_namespace.h>
1da177e4 97#include <net/sock.h>
02d62e86 98#include <net/busy_poll.h>
1da177e4 99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
b14a9fc4 101#include <net/dsa.h>
1da177e4 102#include <net/dst.h>
fc4099f1 103#include <net/dst_metadata.h>
1da177e4 104#include <net/pkt_sched.h>
87d83093 105#include <net/pkt_cls.h>
1da177e4 106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
caeda9b9 132#include <linux/inetdevice.h>
c445477d 133#include <linux/cpu_rmap.h>
c5905afb 134#include <linux/static_key.h>
af12fa6e 135#include <linux/hashtable.h>
60877a32 136#include <linux/vmalloc.h>
529d0489 137#include <linux/if_macvlan.h>
e7fd2885 138#include <linux/errqueue.h>
3b47d303 139#include <linux/hrtimer.h>
357b6cc5 140#include <linux/netfilter_ingress.h>
40e4e713 141#include <linux/crash_dump.h>
b72b5bf6 142#include <linux/sctp.h>
ae847f40 143#include <net/udp_tunnel.h>
6621dd29 144#include <linux/net_namespace.h>
aaa5d90b 145#include <linux/indirect_call_wrapper.h>
af3836df 146#include <net/devlink.h>
bd869245 147#include <linux/pm_runtime.h>
1da177e4 148
342709ef
PE
149#include "net-sysfs.h"
150
d565b0a1
HX
151#define MAX_GRO_SKBS 8
152
5d38a079
HX
153/* This should be increased if a protocol with a bigger head is added. */
154#define GRO_MAX_HEAD (MAX_HEADER + 128)
155
1da177e4 156static DEFINE_SPINLOCK(ptype_lock);
62532da9 157static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
158struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159struct list_head ptype_all __read_mostly; /* Taps */
62532da9 160static struct list_head offload_base __read_mostly;
1da177e4 161
ae78dbfa 162static int netif_rx_internal(struct sk_buff *skb);
54951194 163static int call_netdevice_notifiers_info(unsigned long val,
54951194 164 struct netdev_notifier_info *info);
26372605
PM
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
90b602f8 168static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 169
1da177e4 170/*
7562f876 171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
172 * semaphore.
173 *
c6d14c84 174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
7562f876 177 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
1da177e4 189DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
190EXPORT_SYMBOL(dev_base_lock);
191
6c557001
FW
192static DEFINE_MUTEX(ifalias_mutex);
193
af12fa6e
ET
194/* protects napi_hash addition/deletion and napi_gen_id */
195static DEFINE_SPINLOCK(napi_hash_lock);
196
52bd2d62 197static unsigned int napi_gen_id = NR_CPUS;
6180d9de 198static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 199
11d6011c 200static DECLARE_RWSEM(devnet_rename_sem);
c91f6df2 201
4e985ada
TG
202static inline void dev_base_seq_inc(struct net *net)
203{
643aa9cb 204 while (++net->dev_base_seq == 0)
205 ;
4e985ada
TG
206}
207
881d966b 208static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 209{
8387ff25 210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 211
08e9897d 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
213}
214
881d966b 215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 216{
7c28bd0b 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
218}
219
e36fa2f7 220static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
221{
222#ifdef CONFIG_RPS
e36fa2f7 223 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
224#endif
225}
226
e36fa2f7 227static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
228{
229#ifdef CONFIG_RPS
e36fa2f7 230 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
231#endif
232}
233
ff927412
JP
234static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
235 const char *name)
236{
237 struct netdev_name_node *name_node;
238
239 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
240 if (!name_node)
241 return NULL;
242 INIT_HLIST_NODE(&name_node->hlist);
243 name_node->dev = dev;
244 name_node->name = name;
245 return name_node;
246}
247
248static struct netdev_name_node *
249netdev_name_node_head_alloc(struct net_device *dev)
250{
36fbf1e5
JP
251 struct netdev_name_node *name_node;
252
253 name_node = netdev_name_node_alloc(dev, dev->name);
254 if (!name_node)
255 return NULL;
256 INIT_LIST_HEAD(&name_node->list);
257 return name_node;
ff927412
JP
258}
259
260static void netdev_name_node_free(struct netdev_name_node *name_node)
261{
262 kfree(name_node);
263}
264
265static void netdev_name_node_add(struct net *net,
266 struct netdev_name_node *name_node)
267{
268 hlist_add_head_rcu(&name_node->hlist,
269 dev_name_hash(net, name_node->name));
270}
271
272static void netdev_name_node_del(struct netdev_name_node *name_node)
273{
274 hlist_del_rcu(&name_node->hlist);
275}
276
277static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
278 const char *name)
279{
280 struct hlist_head *head = dev_name_hash(net, name);
281 struct netdev_name_node *name_node;
282
283 hlist_for_each_entry(name_node, head, hlist)
284 if (!strcmp(name_node->name, name))
285 return name_node;
286 return NULL;
287}
288
289static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
290 const char *name)
291{
292 struct hlist_head *head = dev_name_hash(net, name);
293 struct netdev_name_node *name_node;
294
295 hlist_for_each_entry_rcu(name_node, head, hlist)
296 if (!strcmp(name_node->name, name))
297 return name_node;
298 return NULL;
299}
300
36fbf1e5
JP
301int netdev_name_node_alt_create(struct net_device *dev, const char *name)
302{
303 struct netdev_name_node *name_node;
304 struct net *net = dev_net(dev);
305
306 name_node = netdev_name_node_lookup(net, name);
307 if (name_node)
308 return -EEXIST;
309 name_node = netdev_name_node_alloc(dev, name);
310 if (!name_node)
311 return -ENOMEM;
312 netdev_name_node_add(net, name_node);
313 /* The node that holds dev->name acts as a head of per-device list. */
314 list_add_tail(&name_node->list, &dev->name_node->list);
315
316 return 0;
317}
318EXPORT_SYMBOL(netdev_name_node_alt_create);
319
320static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
321{
322 list_del(&name_node->list);
323 netdev_name_node_del(name_node);
324 kfree(name_node->name);
325 netdev_name_node_free(name_node);
326}
327
328int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
329{
330 struct netdev_name_node *name_node;
331 struct net *net = dev_net(dev);
332
333 name_node = netdev_name_node_lookup(net, name);
334 if (!name_node)
335 return -ENOENT;
e08ad805
ED
336 /* lookup might have found our primary name or a name belonging
337 * to another device.
338 */
339 if (name_node == dev->name_node || name_node->dev != dev)
340 return -EINVAL;
341
36fbf1e5
JP
342 __netdev_name_node_alt_destroy(name_node);
343
344 return 0;
345}
346EXPORT_SYMBOL(netdev_name_node_alt_destroy);
347
348static void netdev_name_node_alt_flush(struct net_device *dev)
349{
350 struct netdev_name_node *name_node, *tmp;
351
352 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
353 __netdev_name_node_alt_destroy(name_node);
354}
355
ce286d32 356/* Device list insertion */
53759be9 357static void list_netdevice(struct net_device *dev)
ce286d32 358{
c346dca1 359 struct net *net = dev_net(dev);
ce286d32
EB
360
361 ASSERT_RTNL();
362
363 write_lock_bh(&dev_base_lock);
c6d14c84 364 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 365 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
366 hlist_add_head_rcu(&dev->index_hlist,
367 dev_index_hash(net, dev->ifindex));
ce286d32 368 write_unlock_bh(&dev_base_lock);
4e985ada
TG
369
370 dev_base_seq_inc(net);
ce286d32
EB
371}
372
fb699dfd
ED
373/* Device list removal
374 * caller must respect a RCU grace period before freeing/reusing dev
375 */
ce286d32
EB
376static void unlist_netdevice(struct net_device *dev)
377{
378 ASSERT_RTNL();
379
380 /* Unlink dev from the device chain */
381 write_lock_bh(&dev_base_lock);
c6d14c84 382 list_del_rcu(&dev->dev_list);
ff927412 383 netdev_name_node_del(dev->name_node);
fb699dfd 384 hlist_del_rcu(&dev->index_hlist);
ce286d32 385 write_unlock_bh(&dev_base_lock);
4e985ada
TG
386
387 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
388}
389
1da177e4
LT
390/*
391 * Our notifier list
392 */
393
f07d5b94 394static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
395
396/*
397 * Device drivers call our routines to queue packets here. We empty the
398 * queue in the local softnet handler.
399 */
bea3348e 400
9958da05 401DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 402EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 403
1a33e10e
CW
404#ifdef CONFIG_LOCKDEP
405/*
406 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
407 * according to dev->type
408 */
409static const unsigned short netdev_lock_type[] = {
410 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
411 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
412 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
413 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
414 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
415 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
416 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
417 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
418 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
419 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
420 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
421 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
422 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
423 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
424 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
425
426static const char *const netdev_lock_name[] = {
427 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
428 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
429 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
430 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
431 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
432 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
433 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
434 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
435 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
436 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
437 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
438 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
439 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
440 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
441 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
442
443static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
845e0ebb 444static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
1a33e10e
CW
445
446static inline unsigned short netdev_lock_pos(unsigned short dev_type)
447{
448 int i;
449
450 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
451 if (netdev_lock_type[i] == dev_type)
452 return i;
453 /* the last key is used by default */
454 return ARRAY_SIZE(netdev_lock_type) - 1;
455}
456
457static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
458 unsigned short dev_type)
459{
460 int i;
461
462 i = netdev_lock_pos(dev_type);
463 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
464 netdev_lock_name[i]);
465}
845e0ebb
CW
466
467static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
468{
469 int i;
470
471 i = netdev_lock_pos(dev->type);
472 lockdep_set_class_and_name(&dev->addr_list_lock,
473 &netdev_addr_lock_key[i],
474 netdev_lock_name[i]);
475}
1a33e10e
CW
476#else
477static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
478 unsigned short dev_type)
479{
480}
845e0ebb
CW
481
482static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
483{
484}
1a33e10e
CW
485#endif
486
1da177e4 487/*******************************************************************************
eb13da1a 488 *
489 * Protocol management and registration routines
490 *
491 *******************************************************************************/
1da177e4 492
1da177e4 493
1da177e4
LT
494/*
495 * Add a protocol ID to the list. Now that the input handler is
496 * smarter we can dispense with all the messy stuff that used to be
497 * here.
498 *
499 * BEWARE!!! Protocol handlers, mangling input packets,
500 * MUST BE last in hash buckets and checking protocol handlers
501 * MUST start from promiscuous ptype_all chain in net_bh.
502 * It is true now, do not change it.
503 * Explanation follows: if protocol handler, mangling packet, will
504 * be the first on list, it is not able to sense, that packet
505 * is cloned and should be copied-on-write, so that it will
506 * change it and subsequent readers will get broken packet.
507 * --ANK (980803)
508 */
509
c07b68e8
ED
510static inline struct list_head *ptype_head(const struct packet_type *pt)
511{
512 if (pt->type == htons(ETH_P_ALL))
7866a621 513 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 514 else
7866a621
SN
515 return pt->dev ? &pt->dev->ptype_specific :
516 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
517}
518
1da177e4
LT
519/**
520 * dev_add_pack - add packet handler
521 * @pt: packet type declaration
522 *
523 * Add a protocol handler to the networking stack. The passed &packet_type
524 * is linked into kernel lists and may not be freed until it has been
525 * removed from the kernel lists.
526 *
4ec93edb 527 * This call does not sleep therefore it can not
1da177e4
LT
528 * guarantee all CPU's that are in middle of receiving packets
529 * will see the new packet type (until the next received packet).
530 */
531
532void dev_add_pack(struct packet_type *pt)
533{
c07b68e8 534 struct list_head *head = ptype_head(pt);
1da177e4 535
c07b68e8
ED
536 spin_lock(&ptype_lock);
537 list_add_rcu(&pt->list, head);
538 spin_unlock(&ptype_lock);
1da177e4 539}
d1b19dff 540EXPORT_SYMBOL(dev_add_pack);
1da177e4 541
1da177e4
LT
542/**
543 * __dev_remove_pack - remove packet handler
544 * @pt: packet type declaration
545 *
546 * Remove a protocol handler that was previously added to the kernel
547 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
548 * from the kernel lists and can be freed or reused once this function
4ec93edb 549 * returns.
1da177e4
LT
550 *
551 * The packet type might still be in use by receivers
552 * and must not be freed until after all the CPU's have gone
553 * through a quiescent state.
554 */
555void __dev_remove_pack(struct packet_type *pt)
556{
c07b68e8 557 struct list_head *head = ptype_head(pt);
1da177e4
LT
558 struct packet_type *pt1;
559
c07b68e8 560 spin_lock(&ptype_lock);
1da177e4
LT
561
562 list_for_each_entry(pt1, head, list) {
563 if (pt == pt1) {
564 list_del_rcu(&pt->list);
565 goto out;
566 }
567 }
568
7b6cd1ce 569 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 570out:
c07b68e8 571 spin_unlock(&ptype_lock);
1da177e4 572}
d1b19dff
ED
573EXPORT_SYMBOL(__dev_remove_pack);
574
1da177e4
LT
575/**
576 * dev_remove_pack - remove packet handler
577 * @pt: packet type declaration
578 *
579 * Remove a protocol handler that was previously added to the kernel
580 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
581 * from the kernel lists and can be freed or reused once this function
582 * returns.
583 *
584 * This call sleeps to guarantee that no CPU is looking at the packet
585 * type after return.
586 */
587void dev_remove_pack(struct packet_type *pt)
588{
589 __dev_remove_pack(pt);
4ec93edb 590
1da177e4
LT
591 synchronize_net();
592}
d1b19dff 593EXPORT_SYMBOL(dev_remove_pack);
1da177e4 594
62532da9
VY
595
596/**
597 * dev_add_offload - register offload handlers
598 * @po: protocol offload declaration
599 *
600 * Add protocol offload handlers to the networking stack. The passed
601 * &proto_offload is linked into kernel lists and may not be freed until
602 * it has been removed from the kernel lists.
603 *
604 * This call does not sleep therefore it can not
605 * guarantee all CPU's that are in middle of receiving packets
606 * will see the new offload handlers (until the next received packet).
607 */
608void dev_add_offload(struct packet_offload *po)
609{
bdef7de4 610 struct packet_offload *elem;
62532da9
VY
611
612 spin_lock(&offload_lock);
bdef7de4
DM
613 list_for_each_entry(elem, &offload_base, list) {
614 if (po->priority < elem->priority)
615 break;
616 }
617 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
618 spin_unlock(&offload_lock);
619}
620EXPORT_SYMBOL(dev_add_offload);
621
622/**
623 * __dev_remove_offload - remove offload handler
624 * @po: packet offload declaration
625 *
626 * Remove a protocol offload handler that was previously added to the
627 * kernel offload handlers by dev_add_offload(). The passed &offload_type
628 * is removed from the kernel lists and can be freed or reused once this
629 * function returns.
630 *
631 * The packet type might still be in use by receivers
632 * and must not be freed until after all the CPU's have gone
633 * through a quiescent state.
634 */
1d143d9f 635static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
636{
637 struct list_head *head = &offload_base;
638 struct packet_offload *po1;
639
c53aa505 640 spin_lock(&offload_lock);
62532da9
VY
641
642 list_for_each_entry(po1, head, list) {
643 if (po == po1) {
644 list_del_rcu(&po->list);
645 goto out;
646 }
647 }
648
649 pr_warn("dev_remove_offload: %p not found\n", po);
650out:
c53aa505 651 spin_unlock(&offload_lock);
62532da9 652}
62532da9
VY
653
654/**
655 * dev_remove_offload - remove packet offload handler
656 * @po: packet offload declaration
657 *
658 * Remove a packet offload handler that was previously added to the kernel
659 * offload handlers by dev_add_offload(). The passed &offload_type is
660 * removed from the kernel lists and can be freed or reused once this
661 * function returns.
662 *
663 * This call sleeps to guarantee that no CPU is looking at the packet
664 * type after return.
665 */
666void dev_remove_offload(struct packet_offload *po)
667{
668 __dev_remove_offload(po);
669
670 synchronize_net();
671}
672EXPORT_SYMBOL(dev_remove_offload);
673
1da177e4 674/******************************************************************************
eb13da1a 675 *
676 * Device Boot-time Settings Routines
677 *
678 ******************************************************************************/
1da177e4
LT
679
680/* Boot time configuration table */
681static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
682
683/**
684 * netdev_boot_setup_add - add new setup entry
685 * @name: name of the device
686 * @map: configured settings for the device
687 *
688 * Adds new setup entry to the dev_boot_setup list. The function
689 * returns 0 on error and 1 on success. This is a generic routine to
690 * all netdevices.
691 */
692static int netdev_boot_setup_add(char *name, struct ifmap *map)
693{
694 struct netdev_boot_setup *s;
695 int i;
696
697 s = dev_boot_setup;
698 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
699 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
700 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 701 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
702 memcpy(&s[i].map, map, sizeof(s[i].map));
703 break;
704 }
705 }
706
707 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
708}
709
710/**
722c9a0c 711 * netdev_boot_setup_check - check boot time settings
712 * @dev: the netdevice
1da177e4 713 *
722c9a0c 714 * Check boot time settings for the device.
715 * The found settings are set for the device to be used
716 * later in the device probing.
717 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
718 */
719int netdev_boot_setup_check(struct net_device *dev)
720{
721 struct netdev_boot_setup *s = dev_boot_setup;
722 int i;
723
724 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
725 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 726 !strcmp(dev->name, s[i].name)) {
722c9a0c 727 dev->irq = s[i].map.irq;
728 dev->base_addr = s[i].map.base_addr;
729 dev->mem_start = s[i].map.mem_start;
730 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
731 return 1;
732 }
733 }
734 return 0;
735}
d1b19dff 736EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
737
738
739/**
722c9a0c 740 * netdev_boot_base - get address from boot time settings
741 * @prefix: prefix for network device
742 * @unit: id for network device
743 *
744 * Check boot time settings for the base address of device.
745 * The found settings are set for the device to be used
746 * later in the device probing.
747 * Returns 0 if no settings found.
1da177e4
LT
748 */
749unsigned long netdev_boot_base(const char *prefix, int unit)
750{
751 const struct netdev_boot_setup *s = dev_boot_setup;
752 char name[IFNAMSIZ];
753 int i;
754
755 sprintf(name, "%s%d", prefix, unit);
756
757 /*
758 * If device already registered then return base of 1
759 * to indicate not to probe for this interface
760 */
881d966b 761 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
762 return 1;
763
764 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
765 if (!strcmp(name, s[i].name))
766 return s[i].map.base_addr;
767 return 0;
768}
769
770/*
771 * Saves at boot time configured settings for any netdevice.
772 */
773int __init netdev_boot_setup(char *str)
774{
775 int ints[5];
776 struct ifmap map;
777
778 str = get_options(str, ARRAY_SIZE(ints), ints);
779 if (!str || !*str)
780 return 0;
781
782 /* Save settings */
783 memset(&map, 0, sizeof(map));
784 if (ints[0] > 0)
785 map.irq = ints[1];
786 if (ints[0] > 1)
787 map.base_addr = ints[2];
788 if (ints[0] > 2)
789 map.mem_start = ints[3];
790 if (ints[0] > 3)
791 map.mem_end = ints[4];
792
793 /* Add new entry to the list */
794 return netdev_boot_setup_add(str, &map);
795}
796
797__setup("netdev=", netdev_boot_setup);
798
799/*******************************************************************************
eb13da1a 800 *
801 * Device Interface Subroutines
802 *
803 *******************************************************************************/
1da177e4 804
a54acb3a
ND
805/**
806 * dev_get_iflink - get 'iflink' value of a interface
807 * @dev: targeted interface
808 *
809 * Indicates the ifindex the interface is linked to.
810 * Physical interfaces have the same 'ifindex' and 'iflink' values.
811 */
812
813int dev_get_iflink(const struct net_device *dev)
814{
815 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
816 return dev->netdev_ops->ndo_get_iflink(dev);
817
7a66bbc9 818 return dev->ifindex;
a54acb3a
ND
819}
820EXPORT_SYMBOL(dev_get_iflink);
821
fc4099f1
PS
822/**
823 * dev_fill_metadata_dst - Retrieve tunnel egress information.
824 * @dev: targeted interface
825 * @skb: The packet.
826 *
827 * For better visibility of tunnel traffic OVS needs to retrieve
828 * egress tunnel information for a packet. Following API allows
829 * user to get this info.
830 */
831int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
832{
833 struct ip_tunnel_info *info;
834
835 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
836 return -EINVAL;
837
838 info = skb_tunnel_info_unclone(skb);
839 if (!info)
840 return -ENOMEM;
841 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
842 return -EINVAL;
843
844 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
845}
846EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
847
1da177e4
LT
848/**
849 * __dev_get_by_name - find a device by its name
c4ea43c5 850 * @net: the applicable net namespace
1da177e4
LT
851 * @name: name to find
852 *
853 * Find an interface by name. Must be called under RTNL semaphore
854 * or @dev_base_lock. If the name is found a pointer to the device
855 * is returned. If the name is not found then %NULL is returned. The
856 * reference counters are not incremented so the caller must be
857 * careful with locks.
858 */
859
881d966b 860struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 861{
ff927412 862 struct netdev_name_node *node_name;
1da177e4 863
ff927412
JP
864 node_name = netdev_name_node_lookup(net, name);
865 return node_name ? node_name->dev : NULL;
1da177e4 866}
d1b19dff 867EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 868
72c9528b 869/**
722c9a0c 870 * dev_get_by_name_rcu - find a device by its name
871 * @net: the applicable net namespace
872 * @name: name to find
873 *
874 * Find an interface by name.
875 * If the name is found a pointer to the device is returned.
876 * If the name is not found then %NULL is returned.
877 * The reference counters are not incremented so the caller must be
878 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
879 */
880
881struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882{
ff927412 883 struct netdev_name_node *node_name;
72c9528b 884
ff927412
JP
885 node_name = netdev_name_node_lookup_rcu(net, name);
886 return node_name ? node_name->dev : NULL;
72c9528b
ED
887}
888EXPORT_SYMBOL(dev_get_by_name_rcu);
889
1da177e4
LT
890/**
891 * dev_get_by_name - find a device by its name
c4ea43c5 892 * @net: the applicable net namespace
1da177e4
LT
893 * @name: name to find
894 *
895 * Find an interface by name. This can be called from any
896 * context and does its own locking. The returned handle has
897 * the usage count incremented and the caller must use dev_put() to
898 * release it when it is no longer needed. %NULL is returned if no
899 * matching device is found.
900 */
901
881d966b 902struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
903{
904 struct net_device *dev;
905
72c9528b
ED
906 rcu_read_lock();
907 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
908 if (dev)
909 dev_hold(dev);
72c9528b 910 rcu_read_unlock();
1da177e4
LT
911 return dev;
912}
d1b19dff 913EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
914
915/**
916 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 917 * @net: the applicable net namespace
1da177e4
LT
918 * @ifindex: index of device
919 *
920 * Search for an interface by index. Returns %NULL if the device
921 * is not found or a pointer to the device. The device has not
922 * had its reference counter increased so the caller must be careful
923 * about locking. The caller must hold either the RTNL semaphore
924 * or @dev_base_lock.
925 */
926
881d966b 927struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 928{
0bd8d536
ED
929 struct net_device *dev;
930 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 931
b67bfe0d 932 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
933 if (dev->ifindex == ifindex)
934 return dev;
0bd8d536 935
1da177e4
LT
936 return NULL;
937}
d1b19dff 938EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 939
fb699dfd
ED
940/**
941 * dev_get_by_index_rcu - find a device by its ifindex
942 * @net: the applicable net namespace
943 * @ifindex: index of device
944 *
945 * Search for an interface by index. Returns %NULL if the device
946 * is not found or a pointer to the device. The device has not
947 * had its reference counter increased so the caller must be careful
948 * about locking. The caller must hold RCU lock.
949 */
950
951struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
952{
fb699dfd
ED
953 struct net_device *dev;
954 struct hlist_head *head = dev_index_hash(net, ifindex);
955
b67bfe0d 956 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
957 if (dev->ifindex == ifindex)
958 return dev;
959
960 return NULL;
961}
962EXPORT_SYMBOL(dev_get_by_index_rcu);
963
1da177e4
LT
964
965/**
966 * dev_get_by_index - find a device by its ifindex
c4ea43c5 967 * @net: the applicable net namespace
1da177e4
LT
968 * @ifindex: index of device
969 *
970 * Search for an interface by index. Returns NULL if the device
971 * is not found or a pointer to the device. The device returned has
972 * had a reference added and the pointer is safe until the user calls
973 * dev_put to indicate they have finished with it.
974 */
975
881d966b 976struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
977{
978 struct net_device *dev;
979
fb699dfd
ED
980 rcu_read_lock();
981 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
982 if (dev)
983 dev_hold(dev);
fb699dfd 984 rcu_read_unlock();
1da177e4
LT
985 return dev;
986}
d1b19dff 987EXPORT_SYMBOL(dev_get_by_index);
1da177e4 988
90b602f8
ML
989/**
990 * dev_get_by_napi_id - find a device by napi_id
991 * @napi_id: ID of the NAPI struct
992 *
993 * Search for an interface by NAPI ID. Returns %NULL if the device
994 * is not found or a pointer to the device. The device has not had
995 * its reference counter increased so the caller must be careful
996 * about locking. The caller must hold RCU lock.
997 */
998
999struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1000{
1001 struct napi_struct *napi;
1002
1003 WARN_ON_ONCE(!rcu_read_lock_held());
1004
1005 if (napi_id < MIN_NAPI_ID)
1006 return NULL;
1007
1008 napi = napi_by_id(napi_id);
1009
1010 return napi ? napi->dev : NULL;
1011}
1012EXPORT_SYMBOL(dev_get_by_napi_id);
1013
5dbe7c17
NS
1014/**
1015 * netdev_get_name - get a netdevice name, knowing its ifindex.
1016 * @net: network namespace
1017 * @name: a pointer to the buffer where the name will be stored.
1018 * @ifindex: the ifindex of the interface to get the name from.
5dbe7c17
NS
1019 */
1020int netdev_get_name(struct net *net, char *name, int ifindex)
1021{
1022 struct net_device *dev;
11d6011c 1023 int ret;
5dbe7c17 1024
11d6011c 1025 down_read(&devnet_rename_sem);
5dbe7c17 1026 rcu_read_lock();
11d6011c 1027
5dbe7c17
NS
1028 dev = dev_get_by_index_rcu(net, ifindex);
1029 if (!dev) {
11d6011c
AD
1030 ret = -ENODEV;
1031 goto out;
5dbe7c17
NS
1032 }
1033
1034 strcpy(name, dev->name);
5dbe7c17 1035
11d6011c
AD
1036 ret = 0;
1037out:
1038 rcu_read_unlock();
1039 up_read(&devnet_rename_sem);
1040 return ret;
5dbe7c17
NS
1041}
1042
1da177e4 1043/**
941666c2 1044 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 1045 * @net: the applicable net namespace
1da177e4
LT
1046 * @type: media type of device
1047 * @ha: hardware address
1048 *
1049 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
1050 * is not found or a pointer to the device.
1051 * The caller must hold RCU or RTNL.
941666c2 1052 * The returned device has not had its ref count increased
1da177e4
LT
1053 * and the caller must therefore be careful about locking
1054 *
1da177e4
LT
1055 */
1056
941666c2
ED
1057struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1058 const char *ha)
1da177e4
LT
1059{
1060 struct net_device *dev;
1061
941666c2 1062 for_each_netdev_rcu(net, dev)
1da177e4
LT
1063 if (dev->type == type &&
1064 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
1065 return dev;
1066
1067 return NULL;
1da177e4 1068}
941666c2 1069EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 1070
881d966b 1071struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
1072{
1073 struct net_device *dev;
1074
4e9cac2b 1075 ASSERT_RTNL();
881d966b 1076 for_each_netdev(net, dev)
4e9cac2b 1077 if (dev->type == type)
7562f876
PE
1078 return dev;
1079
1080 return NULL;
4e9cac2b 1081}
4e9cac2b
PM
1082EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1083
881d966b 1084struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 1085{
99fe3c39 1086 struct net_device *dev, *ret = NULL;
4e9cac2b 1087
99fe3c39
ED
1088 rcu_read_lock();
1089 for_each_netdev_rcu(net, dev)
1090 if (dev->type == type) {
1091 dev_hold(dev);
1092 ret = dev;
1093 break;
1094 }
1095 rcu_read_unlock();
1096 return ret;
1da177e4 1097}
1da177e4
LT
1098EXPORT_SYMBOL(dev_getfirstbyhwtype);
1099
1100/**
6c555490 1101 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1102 * @net: the applicable net namespace
1da177e4
LT
1103 * @if_flags: IFF_* values
1104 * @mask: bitmask of bits in if_flags to check
1105 *
1106 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1107 * is not found or a pointer to the device. Must be called inside
6c555490 1108 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1109 */
1110
6c555490
WC
1111struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1112 unsigned short mask)
1da177e4 1113{
7562f876 1114 struct net_device *dev, *ret;
1da177e4 1115
6c555490
WC
1116 ASSERT_RTNL();
1117
7562f876 1118 ret = NULL;
6c555490 1119 for_each_netdev(net, dev) {
1da177e4 1120 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1121 ret = dev;
1da177e4
LT
1122 break;
1123 }
1124 }
7562f876 1125 return ret;
1da177e4 1126}
6c555490 1127EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1128
1129/**
1130 * dev_valid_name - check if name is okay for network device
1131 * @name: name string
1132 *
1133 * Network device names need to be valid file names to
c7fa9d18
DM
1134 * to allow sysfs to work. We also disallow any kind of
1135 * whitespace.
1da177e4 1136 */
95f050bf 1137bool dev_valid_name(const char *name)
1da177e4 1138{
c7fa9d18 1139 if (*name == '\0')
95f050bf 1140 return false;
a9d48205 1141 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1142 return false;
c7fa9d18 1143 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1144 return false;
c7fa9d18
DM
1145
1146 while (*name) {
a4176a93 1147 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1148 return false;
c7fa9d18
DM
1149 name++;
1150 }
95f050bf 1151 return true;
1da177e4 1152}
d1b19dff 1153EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1154
1155/**
b267b179
EB
1156 * __dev_alloc_name - allocate a name for a device
1157 * @net: network namespace to allocate the device name in
1da177e4 1158 * @name: name format string
b267b179 1159 * @buf: scratch buffer and result name string
1da177e4
LT
1160 *
1161 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1162 * id. It scans list of devices to build up a free map, then chooses
1163 * the first empty slot. The caller must hold the dev_base or rtnl lock
1164 * while allocating the name and adding the device in order to avoid
1165 * duplicates.
1166 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1168 */
1169
b267b179 1170static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1171{
1172 int i = 0;
1da177e4
LT
1173 const char *p;
1174 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1175 unsigned long *inuse;
1da177e4
LT
1176 struct net_device *d;
1177
93809105
RV
1178 if (!dev_valid_name(name))
1179 return -EINVAL;
1180
51f299dd 1181 p = strchr(name, '%');
1da177e4
LT
1182 if (p) {
1183 /*
1184 * Verify the string as this thing may have come from
1185 * the user. There must be either one "%d" and no other "%"
1186 * characters.
1187 */
1188 if (p[1] != 'd' || strchr(p + 2, '%'))
1189 return -EINVAL;
1190
1191 /* Use one page as a bit array of possible slots */
cfcabdcc 1192 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1193 if (!inuse)
1194 return -ENOMEM;
1195
881d966b 1196 for_each_netdev(net, d) {
1da177e4
LT
1197 if (!sscanf(d->name, name, &i))
1198 continue;
1199 if (i < 0 || i >= max_netdevices)
1200 continue;
1201
1202 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1203 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1204 if (!strncmp(buf, d->name, IFNAMSIZ))
1205 set_bit(i, inuse);
1206 }
1207
1208 i = find_first_zero_bit(inuse, max_netdevices);
1209 free_page((unsigned long) inuse);
1210 }
1211
6224abda 1212 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1213 if (!__dev_get_by_name(net, buf))
1da177e4 1214 return i;
1da177e4
LT
1215
1216 /* It is possible to run out of possible slots
1217 * when the name is long and there isn't enough space left
1218 * for the digits, or if all bits are used.
1219 */
029b6d14 1220 return -ENFILE;
1da177e4
LT
1221}
1222
2c88b855
RV
1223static int dev_alloc_name_ns(struct net *net,
1224 struct net_device *dev,
1225 const char *name)
1226{
1227 char buf[IFNAMSIZ];
1228 int ret;
1229
c46d7642 1230 BUG_ON(!net);
2c88b855
RV
1231 ret = __dev_alloc_name(net, name, buf);
1232 if (ret >= 0)
1233 strlcpy(dev->name, buf, IFNAMSIZ);
1234 return ret;
1da177e4
LT
1235}
1236
b267b179
EB
1237/**
1238 * dev_alloc_name - allocate a name for a device
1239 * @dev: device
1240 * @name: name format string
1241 *
1242 * Passed a format string - eg "lt%d" it will try and find a suitable
1243 * id. It scans list of devices to build up a free map, then chooses
1244 * the first empty slot. The caller must hold the dev_base or rtnl lock
1245 * while allocating the name and adding the device in order to avoid
1246 * duplicates.
1247 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1248 * Returns the number of the unit assigned or a negative errno code.
1249 */
1250
1251int dev_alloc_name(struct net_device *dev, const char *name)
1252{
c46d7642 1253 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1254}
d1b19dff 1255EXPORT_SYMBOL(dev_alloc_name);
b267b179 1256
bacb7e18
ED
1257static int dev_get_valid_name(struct net *net, struct net_device *dev,
1258 const char *name)
828de4f6 1259{
55a5ec9b
DM
1260 BUG_ON(!net);
1261
1262 if (!dev_valid_name(name))
1263 return -EINVAL;
1264
1265 if (strchr(name, '%'))
1266 return dev_alloc_name_ns(net, dev, name);
1267 else if (__dev_get_by_name(net, name))
1268 return -EEXIST;
1269 else if (dev->name != name)
1270 strlcpy(dev->name, name, IFNAMSIZ);
1271
1272 return 0;
d9031024 1273}
1da177e4
LT
1274
1275/**
1276 * dev_change_name - change name of a device
1277 * @dev: device
1278 * @newname: name (or format string) must be at least IFNAMSIZ
1279 *
1280 * Change name of a device, can pass format strings "eth%d".
1281 * for wildcarding.
1282 */
cf04a4c7 1283int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1284{
238fa362 1285 unsigned char old_assign_type;
fcc5a03a 1286 char oldname[IFNAMSIZ];
1da177e4 1287 int err = 0;
fcc5a03a 1288 int ret;
881d966b 1289 struct net *net;
1da177e4
LT
1290
1291 ASSERT_RTNL();
c346dca1 1292 BUG_ON(!dev_net(dev));
1da177e4 1293
c346dca1 1294 net = dev_net(dev);
8065a779
SWL
1295
1296 /* Some auto-enslaved devices e.g. failover slaves are
1297 * special, as userspace might rename the device after
1298 * the interface had been brought up and running since
1299 * the point kernel initiated auto-enslavement. Allow
1300 * live name change even when these slave devices are
1301 * up and running.
1302 *
1303 * Typically, users of these auto-enslaving devices
1304 * don't actually care about slave name change, as
1305 * they are supposed to operate on master interface
1306 * directly.
1307 */
1308 if (dev->flags & IFF_UP &&
1309 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1310 return -EBUSY;
1311
11d6011c 1312 down_write(&devnet_rename_sem);
c91f6df2
BH
1313
1314 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
11d6011c 1315 up_write(&devnet_rename_sem);
c8d90dca 1316 return 0;
c91f6df2 1317 }
c8d90dca 1318
fcc5a03a
HX
1319 memcpy(oldname, dev->name, IFNAMSIZ);
1320
828de4f6 1321 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1322 if (err < 0) {
11d6011c 1323 up_write(&devnet_rename_sem);
d9031024 1324 return err;
c91f6df2 1325 }
1da177e4 1326
6fe82a39
VF
1327 if (oldname[0] && !strchr(oldname, '%'))
1328 netdev_info(dev, "renamed from %s\n", oldname);
1329
238fa362
TG
1330 old_assign_type = dev->name_assign_type;
1331 dev->name_assign_type = NET_NAME_RENAMED;
1332
fcc5a03a 1333rollback:
a1b3f594
EB
1334 ret = device_rename(&dev->dev, dev->name);
1335 if (ret) {
1336 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1337 dev->name_assign_type = old_assign_type;
11d6011c 1338 up_write(&devnet_rename_sem);
a1b3f594 1339 return ret;
dcc99773 1340 }
7f988eab 1341
11d6011c 1342 up_write(&devnet_rename_sem);
c91f6df2 1343
5bb025fa
VF
1344 netdev_adjacent_rename_links(dev, oldname);
1345
7f988eab 1346 write_lock_bh(&dev_base_lock);
ff927412 1347 netdev_name_node_del(dev->name_node);
72c9528b
ED
1348 write_unlock_bh(&dev_base_lock);
1349
1350 synchronize_rcu();
1351
1352 write_lock_bh(&dev_base_lock);
ff927412 1353 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1354 write_unlock_bh(&dev_base_lock);
1355
056925ab 1356 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1357 ret = notifier_to_errno(ret);
1358
1359 if (ret) {
91e9c07b
ED
1360 /* err >= 0 after dev_alloc_name() or stores the first errno */
1361 if (err >= 0) {
fcc5a03a 1362 err = ret;
11d6011c 1363 down_write(&devnet_rename_sem);
fcc5a03a 1364 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1365 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1366 dev->name_assign_type = old_assign_type;
1367 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1368 goto rollback;
91e9c07b 1369 } else {
7b6cd1ce 1370 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1371 dev->name, ret);
fcc5a03a
HX
1372 }
1373 }
1da177e4
LT
1374
1375 return err;
1376}
1377
0b815a1a
SH
1378/**
1379 * dev_set_alias - change ifalias of a device
1380 * @dev: device
1381 * @alias: name up to IFALIASZ
f0db275a 1382 * @len: limit of bytes to copy from info
0b815a1a
SH
1383 *
1384 * Set ifalias for a device,
1385 */
1386int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1387{
6c557001 1388 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1389
1390 if (len >= IFALIASZ)
1391 return -EINVAL;
1392
6c557001
FW
1393 if (len) {
1394 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1395 if (!new_alias)
1396 return -ENOMEM;
1397
1398 memcpy(new_alias->ifalias, alias, len);
1399 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1400 }
1401
6c557001 1402 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1403 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1404 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1405 mutex_unlock(&ifalias_mutex);
1406
1407 if (new_alias)
1408 kfree_rcu(new_alias, rcuhead);
0b815a1a 1409
0b815a1a
SH
1410 return len;
1411}
0fe554a4 1412EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1413
6c557001
FW
1414/**
1415 * dev_get_alias - get ifalias of a device
1416 * @dev: device
20e88320 1417 * @name: buffer to store name of ifalias
6c557001
FW
1418 * @len: size of buffer
1419 *
1420 * get ifalias for a device. Caller must make sure dev cannot go
1421 * away, e.g. rcu read lock or own a reference count to device.
1422 */
1423int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1424{
1425 const struct dev_ifalias *alias;
1426 int ret = 0;
1427
1428 rcu_read_lock();
1429 alias = rcu_dereference(dev->ifalias);
1430 if (alias)
1431 ret = snprintf(name, len, "%s", alias->ifalias);
1432 rcu_read_unlock();
1433
1434 return ret;
1435}
0b815a1a 1436
d8a33ac4 1437/**
3041a069 1438 * netdev_features_change - device changes features
d8a33ac4
SH
1439 * @dev: device to cause notification
1440 *
1441 * Called to indicate a device has changed features.
1442 */
1443void netdev_features_change(struct net_device *dev)
1444{
056925ab 1445 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1446}
1447EXPORT_SYMBOL(netdev_features_change);
1448
1da177e4
LT
1449/**
1450 * netdev_state_change - device changes state
1451 * @dev: device to cause notification
1452 *
1453 * Called to indicate a device has changed state. This function calls
1454 * the notifier chains for netdev_chain and sends a NEWLINK message
1455 * to the routing socket.
1456 */
1457void netdev_state_change(struct net_device *dev)
1458{
1459 if (dev->flags & IFF_UP) {
51d0c047
DA
1460 struct netdev_notifier_change_info change_info = {
1461 .info.dev = dev,
1462 };
54951194 1463
51d0c047 1464 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1465 &change_info.info);
7f294054 1466 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1467 }
1468}
d1b19dff 1469EXPORT_SYMBOL(netdev_state_change);
1da177e4 1470
ee89bab1 1471/**
722c9a0c 1472 * netdev_notify_peers - notify network peers about existence of @dev
1473 * @dev: network device
ee89bab1
AW
1474 *
1475 * Generate traffic such that interested network peers are aware of
1476 * @dev, such as by generating a gratuitous ARP. This may be used when
1477 * a device wants to inform the rest of the network about some sort of
1478 * reconfiguration such as a failover event or virtual machine
1479 * migration.
1480 */
1481void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1482{
ee89bab1
AW
1483 rtnl_lock();
1484 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1485 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1486 rtnl_unlock();
c1da4ac7 1487}
ee89bab1 1488EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1489
40c900aa 1490static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1491{
d314774c 1492 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1493 int ret;
1da177e4 1494
e46b66bc
BH
1495 ASSERT_RTNL();
1496
bd869245
HK
1497 if (!netif_device_present(dev)) {
1498 /* may be detached because parent is runtime-suspended */
1499 if (dev->dev.parent)
1500 pm_runtime_resume(dev->dev.parent);
1501 if (!netif_device_present(dev))
1502 return -ENODEV;
1503 }
1da177e4 1504
ca99ca14
NH
1505 /* Block netpoll from trying to do any rx path servicing.
1506 * If we don't do this there is a chance ndo_poll_controller
1507 * or ndo_poll may be running while we open the device
1508 */
66b5552f 1509 netpoll_poll_disable(dev);
ca99ca14 1510
40c900aa 1511 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1512 ret = notifier_to_errno(ret);
1513 if (ret)
1514 return ret;
1515
1da177e4 1516 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1517
d314774c
SH
1518 if (ops->ndo_validate_addr)
1519 ret = ops->ndo_validate_addr(dev);
bada339b 1520
d314774c
SH
1521 if (!ret && ops->ndo_open)
1522 ret = ops->ndo_open(dev);
1da177e4 1523
66b5552f 1524 netpoll_poll_enable(dev);
ca99ca14 1525
bada339b
JG
1526 if (ret)
1527 clear_bit(__LINK_STATE_START, &dev->state);
1528 else {
1da177e4 1529 dev->flags |= IFF_UP;
4417da66 1530 dev_set_rx_mode(dev);
1da177e4 1531 dev_activate(dev);
7bf23575 1532 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1533 }
bada339b 1534
1da177e4
LT
1535 return ret;
1536}
1537
1538/**
bd380811 1539 * dev_open - prepare an interface for use.
00f54e68
PM
1540 * @dev: device to open
1541 * @extack: netlink extended ack
1da177e4 1542 *
bd380811
PM
1543 * Takes a device from down to up state. The device's private open
1544 * function is invoked and then the multicast lists are loaded. Finally
1545 * the device is moved into the up state and a %NETDEV_UP message is
1546 * sent to the netdev notifier chain.
1547 *
1548 * Calling this function on an active interface is a nop. On a failure
1549 * a negative errno code is returned.
1da177e4 1550 */
00f54e68 1551int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1552{
1553 int ret;
1554
bd380811
PM
1555 if (dev->flags & IFF_UP)
1556 return 0;
1557
40c900aa 1558 ret = __dev_open(dev, extack);
bd380811
PM
1559 if (ret < 0)
1560 return ret;
1561
7f294054 1562 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1563 call_netdevice_notifiers(NETDEV_UP, dev);
1564
1565 return ret;
1566}
1567EXPORT_SYMBOL(dev_open);
1568
7051b88a 1569static void __dev_close_many(struct list_head *head)
1da177e4 1570{
44345724 1571 struct net_device *dev;
e46b66bc 1572
bd380811 1573 ASSERT_RTNL();
9d5010db
DM
1574 might_sleep();
1575
5cde2829 1576 list_for_each_entry(dev, head, close_list) {
3f4df206 1577 /* Temporarily disable netpoll until the interface is down */
66b5552f 1578 netpoll_poll_disable(dev);
3f4df206 1579
44345724 1580 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1581
44345724 1582 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1583
44345724
OP
1584 /* Synchronize to scheduled poll. We cannot touch poll list, it
1585 * can be even on different cpu. So just clear netif_running().
1586 *
1587 * dev->stop() will invoke napi_disable() on all of it's
1588 * napi_struct instances on this device.
1589 */
4e857c58 1590 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1591 }
1da177e4 1592
44345724 1593 dev_deactivate_many(head);
d8b2a4d2 1594
5cde2829 1595 list_for_each_entry(dev, head, close_list) {
44345724 1596 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1597
44345724
OP
1598 /*
1599 * Call the device specific close. This cannot fail.
1600 * Only if device is UP
1601 *
1602 * We allow it to be called even after a DETACH hot-plug
1603 * event.
1604 */
1605 if (ops->ndo_stop)
1606 ops->ndo_stop(dev);
1607
44345724 1608 dev->flags &= ~IFF_UP;
66b5552f 1609 netpoll_poll_enable(dev);
44345724 1610 }
44345724
OP
1611}
1612
7051b88a 1613static void __dev_close(struct net_device *dev)
44345724
OP
1614{
1615 LIST_HEAD(single);
1616
5cde2829 1617 list_add(&dev->close_list, &single);
7051b88a 1618 __dev_close_many(&single);
f87e6f47 1619 list_del(&single);
44345724
OP
1620}
1621
7051b88a 1622void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1623{
1624 struct net_device *dev, *tmp;
1da177e4 1625
5cde2829
EB
1626 /* Remove the devices that don't need to be closed */
1627 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1628 if (!(dev->flags & IFF_UP))
5cde2829 1629 list_del_init(&dev->close_list);
44345724
OP
1630
1631 __dev_close_many(head);
1da177e4 1632
5cde2829 1633 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1634 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1635 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1636 if (unlink)
1637 list_del_init(&dev->close_list);
44345724 1638 }
bd380811 1639}
99c4a26a 1640EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1641
1642/**
1643 * dev_close - shutdown an interface.
1644 * @dev: device to shutdown
1645 *
1646 * This function moves an active device into down state. A
1647 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1648 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1649 * chain.
1650 */
7051b88a 1651void dev_close(struct net_device *dev)
bd380811 1652{
e14a5993
ED
1653 if (dev->flags & IFF_UP) {
1654 LIST_HEAD(single);
1da177e4 1655
5cde2829 1656 list_add(&dev->close_list, &single);
99c4a26a 1657 dev_close_many(&single, true);
e14a5993
ED
1658 list_del(&single);
1659 }
1da177e4 1660}
d1b19dff 1661EXPORT_SYMBOL(dev_close);
1da177e4
LT
1662
1663
0187bdfb
BH
1664/**
1665 * dev_disable_lro - disable Large Receive Offload on a device
1666 * @dev: device
1667 *
1668 * Disable Large Receive Offload (LRO) on a net device. Must be
1669 * called under RTNL. This is needed if received packets may be
1670 * forwarded to another interface.
1671 */
1672void dev_disable_lro(struct net_device *dev)
1673{
fbe168ba
MK
1674 struct net_device *lower_dev;
1675 struct list_head *iter;
529d0489 1676
bc5787c6
MM
1677 dev->wanted_features &= ~NETIF_F_LRO;
1678 netdev_update_features(dev);
27660515 1679
22d5969f
MM
1680 if (unlikely(dev->features & NETIF_F_LRO))
1681 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1682
1683 netdev_for_each_lower_dev(dev, lower_dev, iter)
1684 dev_disable_lro(lower_dev);
0187bdfb
BH
1685}
1686EXPORT_SYMBOL(dev_disable_lro);
1687
56f5aa77
MC
1688/**
1689 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1690 * @dev: device
1691 *
1692 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1693 * called under RTNL. This is needed if Generic XDP is installed on
1694 * the device.
1695 */
1696static void dev_disable_gro_hw(struct net_device *dev)
1697{
1698 dev->wanted_features &= ~NETIF_F_GRO_HW;
1699 netdev_update_features(dev);
1700
1701 if (unlikely(dev->features & NETIF_F_GRO_HW))
1702 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1703}
1704
ede2762d
KT
1705const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1706{
1707#define N(val) \
1708 case NETDEV_##val: \
1709 return "NETDEV_" __stringify(val);
1710 switch (cmd) {
1711 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1712 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1713 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1714 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1715 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1716 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1717 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1718 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1719 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1720 N(PRE_CHANGEADDR)
3f5ecd8a 1721 }
ede2762d
KT
1722#undef N
1723 return "UNKNOWN_NETDEV_EVENT";
1724}
1725EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1726
351638e7
JP
1727static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1728 struct net_device *dev)
1729{
51d0c047
DA
1730 struct netdev_notifier_info info = {
1731 .dev = dev,
1732 };
351638e7 1733
351638e7
JP
1734 return nb->notifier_call(nb, val, &info);
1735}
0187bdfb 1736
afa0df59
JP
1737static int call_netdevice_register_notifiers(struct notifier_block *nb,
1738 struct net_device *dev)
1739{
1740 int err;
1741
1742 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1743 err = notifier_to_errno(err);
1744 if (err)
1745 return err;
1746
1747 if (!(dev->flags & IFF_UP))
1748 return 0;
1749
1750 call_netdevice_notifier(nb, NETDEV_UP, dev);
1751 return 0;
1752}
1753
1754static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1755 struct net_device *dev)
1756{
1757 if (dev->flags & IFF_UP) {
1758 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1759 dev);
1760 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1761 }
1762 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1763}
1764
1765static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1766 struct net *net)
1767{
1768 struct net_device *dev;
1769 int err;
1770
1771 for_each_netdev(net, dev) {
1772 err = call_netdevice_register_notifiers(nb, dev);
1773 if (err)
1774 goto rollback;
1775 }
1776 return 0;
1777
1778rollback:
1779 for_each_netdev_continue_reverse(net, dev)
1780 call_netdevice_unregister_notifiers(nb, dev);
1781 return err;
1782}
1783
1784static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1785 struct net *net)
1786{
1787 struct net_device *dev;
1788
1789 for_each_netdev(net, dev)
1790 call_netdevice_unregister_notifiers(nb, dev);
1791}
1792
881d966b
EB
1793static int dev_boot_phase = 1;
1794
1da177e4 1795/**
722c9a0c 1796 * register_netdevice_notifier - register a network notifier block
1797 * @nb: notifier
1da177e4 1798 *
722c9a0c 1799 * Register a notifier to be called when network device events occur.
1800 * The notifier passed is linked into the kernel structures and must
1801 * not be reused until it has been unregistered. A negative errno code
1802 * is returned on a failure.
1da177e4 1803 *
722c9a0c 1804 * When registered all registration and up events are replayed
1805 * to the new notifier to allow device to have a race free
1806 * view of the network device list.
1da177e4
LT
1807 */
1808
1809int register_netdevice_notifier(struct notifier_block *nb)
1810{
881d966b 1811 struct net *net;
1da177e4
LT
1812 int err;
1813
328fbe74
KT
1814 /* Close race with setup_net() and cleanup_net() */
1815 down_write(&pernet_ops_rwsem);
1da177e4 1816 rtnl_lock();
f07d5b94 1817 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1818 if (err)
1819 goto unlock;
881d966b
EB
1820 if (dev_boot_phase)
1821 goto unlock;
1822 for_each_net(net) {
afa0df59
JP
1823 err = call_netdevice_register_net_notifiers(nb, net);
1824 if (err)
1825 goto rollback;
1da177e4 1826 }
fcc5a03a
HX
1827
1828unlock:
1da177e4 1829 rtnl_unlock();
328fbe74 1830 up_write(&pernet_ops_rwsem);
1da177e4 1831 return err;
fcc5a03a
HX
1832
1833rollback:
afa0df59
JP
1834 for_each_net_continue_reverse(net)
1835 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1836
1837 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1838 goto unlock;
1da177e4 1839}
d1b19dff 1840EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1841
1842/**
722c9a0c 1843 * unregister_netdevice_notifier - unregister a network notifier block
1844 * @nb: notifier
1da177e4 1845 *
722c9a0c 1846 * Unregister a notifier previously registered by
1847 * register_netdevice_notifier(). The notifier is unlinked into the
1848 * kernel structures and may then be reused. A negative errno code
1849 * is returned on a failure.
7d3d43da 1850 *
722c9a0c 1851 * After unregistering unregister and down device events are synthesized
1852 * for all devices on the device list to the removed notifier to remove
1853 * the need for special case cleanup code.
1da177e4
LT
1854 */
1855
1856int unregister_netdevice_notifier(struct notifier_block *nb)
1857{
7d3d43da 1858 struct net *net;
9f514950
HX
1859 int err;
1860
328fbe74
KT
1861 /* Close race with setup_net() and cleanup_net() */
1862 down_write(&pernet_ops_rwsem);
9f514950 1863 rtnl_lock();
f07d5b94 1864 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1865 if (err)
1866 goto unlock;
1867
48b3a137
JP
1868 for_each_net(net)
1869 call_netdevice_unregister_net_notifiers(nb, net);
1870
7d3d43da 1871unlock:
9f514950 1872 rtnl_unlock();
328fbe74 1873 up_write(&pernet_ops_rwsem);
9f514950 1874 return err;
1da177e4 1875}
d1b19dff 1876EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1877
1f637703
JP
1878static int __register_netdevice_notifier_net(struct net *net,
1879 struct notifier_block *nb,
1880 bool ignore_call_fail)
1881{
1882 int err;
1883
1884 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1885 if (err)
1886 return err;
1887 if (dev_boot_phase)
1888 return 0;
1889
1890 err = call_netdevice_register_net_notifiers(nb, net);
1891 if (err && !ignore_call_fail)
1892 goto chain_unregister;
1893
1894 return 0;
1895
1896chain_unregister:
1897 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1898 return err;
1899}
1900
1901static int __unregister_netdevice_notifier_net(struct net *net,
1902 struct notifier_block *nb)
1903{
1904 int err;
1905
1906 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1907 if (err)
1908 return err;
1909
1910 call_netdevice_unregister_net_notifiers(nb, net);
1911 return 0;
1912}
1913
a30c7b42
JP
1914/**
1915 * register_netdevice_notifier_net - register a per-netns network notifier block
1916 * @net: network namespace
1917 * @nb: notifier
1918 *
1919 * Register a notifier to be called when network device events occur.
1920 * The notifier passed is linked into the kernel structures and must
1921 * not be reused until it has been unregistered. A negative errno code
1922 * is returned on a failure.
1923 *
1924 * When registered all registration and up events are replayed
1925 * to the new notifier to allow device to have a race free
1926 * view of the network device list.
1927 */
1928
1929int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1930{
1931 int err;
1932
1933 rtnl_lock();
1f637703 1934 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1935 rtnl_unlock();
1936 return err;
a30c7b42
JP
1937}
1938EXPORT_SYMBOL(register_netdevice_notifier_net);
1939
1940/**
1941 * unregister_netdevice_notifier_net - unregister a per-netns
1942 * network notifier block
1943 * @net: network namespace
1944 * @nb: notifier
1945 *
1946 * Unregister a notifier previously registered by
1947 * register_netdevice_notifier(). The notifier is unlinked into the
1948 * kernel structures and may then be reused. A negative errno code
1949 * is returned on a failure.
1950 *
1951 * After unregistering unregister and down device events are synthesized
1952 * for all devices on the device list to the removed notifier to remove
1953 * the need for special case cleanup code.
1954 */
1955
1956int unregister_netdevice_notifier_net(struct net *net,
1957 struct notifier_block *nb)
1958{
1959 int err;
1960
1961 rtnl_lock();
1f637703 1962 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1963 rtnl_unlock();
1964 return err;
1965}
1966EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1967
93642e14
JP
1968int register_netdevice_notifier_dev_net(struct net_device *dev,
1969 struct notifier_block *nb,
1970 struct netdev_net_notifier *nn)
1971{
1972 int err;
a30c7b42 1973
93642e14
JP
1974 rtnl_lock();
1975 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1976 if (!err) {
1977 nn->nb = nb;
1978 list_add(&nn->list, &dev->net_notifier_list);
1979 }
a30c7b42
JP
1980 rtnl_unlock();
1981 return err;
1982}
93642e14
JP
1983EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1984
1985int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1986 struct notifier_block *nb,
1987 struct netdev_net_notifier *nn)
1988{
1989 int err;
1990
1991 rtnl_lock();
1992 list_del(&nn->list);
1993 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1994 rtnl_unlock();
1995 return err;
1996}
1997EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1998
1999static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2000 struct net *net)
2001{
2002 struct netdev_net_notifier *nn;
2003
2004 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2005 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2006 __register_netdevice_notifier_net(net, nn->nb, true);
2007 }
2008}
a30c7b42 2009
351638e7
JP
2010/**
2011 * call_netdevice_notifiers_info - call all network notifier blocks
2012 * @val: value passed unmodified to notifier function
351638e7
JP
2013 * @info: notifier information data
2014 *
2015 * Call all network notifier blocks. Parameters and return value
2016 * are as for raw_notifier_call_chain().
2017 */
2018
1d143d9f 2019static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 2020 struct netdev_notifier_info *info)
351638e7 2021{
a30c7b42
JP
2022 struct net *net = dev_net(info->dev);
2023 int ret;
2024
351638e7 2025 ASSERT_RTNL();
a30c7b42
JP
2026
2027 /* Run per-netns notifier block chain first, then run the global one.
2028 * Hopefully, one day, the global one is going to be removed after
2029 * all notifier block registrators get converted to be per-netns.
2030 */
2031 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2032 if (ret & NOTIFY_STOP_MASK)
2033 return ret;
351638e7
JP
2034 return raw_notifier_call_chain(&netdev_chain, val, info);
2035}
351638e7 2036
26372605
PM
2037static int call_netdevice_notifiers_extack(unsigned long val,
2038 struct net_device *dev,
2039 struct netlink_ext_ack *extack)
2040{
2041 struct netdev_notifier_info info = {
2042 .dev = dev,
2043 .extack = extack,
2044 };
2045
2046 return call_netdevice_notifiers_info(val, &info);
2047}
2048
1da177e4
LT
2049/**
2050 * call_netdevice_notifiers - call all network notifier blocks
2051 * @val: value passed unmodified to notifier function
c4ea43c5 2052 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
2053 *
2054 * Call all network notifier blocks. Parameters and return value
f07d5b94 2055 * are as for raw_notifier_call_chain().
1da177e4
LT
2056 */
2057
ad7379d4 2058int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 2059{
26372605 2060 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 2061}
edf947f1 2062EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 2063
af7d6cce
SD
2064/**
2065 * call_netdevice_notifiers_mtu - call all network notifier blocks
2066 * @val: value passed unmodified to notifier function
2067 * @dev: net_device pointer passed unmodified to notifier function
2068 * @arg: additional u32 argument passed to the notifier function
2069 *
2070 * Call all network notifier blocks. Parameters and return value
2071 * are as for raw_notifier_call_chain().
2072 */
2073static int call_netdevice_notifiers_mtu(unsigned long val,
2074 struct net_device *dev, u32 arg)
2075{
2076 struct netdev_notifier_info_ext info = {
2077 .info.dev = dev,
2078 .ext.mtu = arg,
2079 };
2080
2081 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2082
2083 return call_netdevice_notifiers_info(val, &info.info);
2084}
2085
1cf51900 2086#ifdef CONFIG_NET_INGRESS
aabf6772 2087static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2088
2089void net_inc_ingress_queue(void)
2090{
aabf6772 2091 static_branch_inc(&ingress_needed_key);
4577139b
DB
2092}
2093EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2094
2095void net_dec_ingress_queue(void)
2096{
aabf6772 2097 static_branch_dec(&ingress_needed_key);
4577139b
DB
2098}
2099EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2100#endif
2101
1f211a1b 2102#ifdef CONFIG_NET_EGRESS
aabf6772 2103static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2104
2105void net_inc_egress_queue(void)
2106{
aabf6772 2107 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2108}
2109EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2110
2111void net_dec_egress_queue(void)
2112{
aabf6772 2113 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2114}
2115EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2116#endif
2117
39e83922 2118static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2119#ifdef CONFIG_JUMP_LABEL
b90e5794 2120static atomic_t netstamp_needed_deferred;
13baa00a 2121static atomic_t netstamp_wanted;
5fa8bbda 2122static void netstamp_clear(struct work_struct *work)
1da177e4 2123{
b90e5794 2124 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2125 int wanted;
b90e5794 2126
13baa00a
ED
2127 wanted = atomic_add_return(deferred, &netstamp_wanted);
2128 if (wanted > 0)
39e83922 2129 static_branch_enable(&netstamp_needed_key);
13baa00a 2130 else
39e83922 2131 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2132}
2133static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2134#endif
5fa8bbda
ED
2135
2136void net_enable_timestamp(void)
2137{
e9666d10 2138#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2139 int wanted;
2140
2141 while (1) {
2142 wanted = atomic_read(&netstamp_wanted);
2143 if (wanted <= 0)
2144 break;
2145 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2146 return;
2147 }
2148 atomic_inc(&netstamp_needed_deferred);
2149 schedule_work(&netstamp_work);
2150#else
39e83922 2151 static_branch_inc(&netstamp_needed_key);
13baa00a 2152#endif
1da177e4 2153}
d1b19dff 2154EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2155
2156void net_disable_timestamp(void)
2157{
e9666d10 2158#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2159 int wanted;
2160
2161 while (1) {
2162 wanted = atomic_read(&netstamp_wanted);
2163 if (wanted <= 1)
2164 break;
2165 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2166 return;
2167 }
2168 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2169 schedule_work(&netstamp_work);
2170#else
39e83922 2171 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2172#endif
1da177e4 2173}
d1b19dff 2174EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2175
3b098e2d 2176static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2177{
2456e855 2178 skb->tstamp = 0;
39e83922 2179 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2180 __net_timestamp(skb);
1da177e4
LT
2181}
2182
39e83922
DB
2183#define net_timestamp_check(COND, SKB) \
2184 if (static_branch_unlikely(&netstamp_needed_key)) { \
2185 if ((COND) && !(SKB)->tstamp) \
2186 __net_timestamp(SKB); \
2187 } \
3b098e2d 2188
f4b05d27 2189bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
2190{
2191 unsigned int len;
2192
2193 if (!(dev->flags & IFF_UP))
2194 return false;
2195
2196 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2197 if (skb->len <= len)
2198 return true;
2199
2200 /* if TSO is enabled, we don't care about the length as the packet
2201 * could be forwarded without being segmented before
2202 */
2203 if (skb_is_gso(skb))
2204 return true;
2205
2206 return false;
2207}
1ee481fb 2208EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2209
a0265d28
HX
2210int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2211{
4e3264d2 2212 int ret = ____dev_forward_skb(dev, skb);
a0265d28 2213
4e3264d2
MKL
2214 if (likely(!ret)) {
2215 skb->protocol = eth_type_trans(skb, dev);
2216 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2217 }
a0265d28 2218
4e3264d2 2219 return ret;
a0265d28
HX
2220}
2221EXPORT_SYMBOL_GPL(__dev_forward_skb);
2222
44540960
AB
2223/**
2224 * dev_forward_skb - loopback an skb to another netif
2225 *
2226 * @dev: destination network device
2227 * @skb: buffer to forward
2228 *
2229 * return values:
2230 * NET_RX_SUCCESS (no congestion)
6ec82562 2231 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2232 *
2233 * dev_forward_skb can be used for injecting an skb from the
2234 * start_xmit function of one device into the receive queue
2235 * of another device.
2236 *
2237 * The receiving device may be in another namespace, so
2238 * we have to clear all information in the skb that could
2239 * impact namespace isolation.
2240 */
2241int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2242{
a0265d28 2243 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2244}
2245EXPORT_SYMBOL_GPL(dev_forward_skb);
2246
71d9dec2
CG
2247static inline int deliver_skb(struct sk_buff *skb,
2248 struct packet_type *pt_prev,
2249 struct net_device *orig_dev)
2250{
1f8b977a 2251 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2252 return -ENOMEM;
63354797 2253 refcount_inc(&skb->users);
71d9dec2
CG
2254 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2255}
2256
7866a621
SN
2257static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2258 struct packet_type **pt,
fbcb2170
JP
2259 struct net_device *orig_dev,
2260 __be16 type,
7866a621
SN
2261 struct list_head *ptype_list)
2262{
2263 struct packet_type *ptype, *pt_prev = *pt;
2264
2265 list_for_each_entry_rcu(ptype, ptype_list, list) {
2266 if (ptype->type != type)
2267 continue;
2268 if (pt_prev)
fbcb2170 2269 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2270 pt_prev = ptype;
2271 }
2272 *pt = pt_prev;
2273}
2274
c0de08d0
EL
2275static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2276{
a3d744e9 2277 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2278 return false;
2279
2280 if (ptype->id_match)
2281 return ptype->id_match(ptype, skb->sk);
2282 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2283 return true;
2284
2285 return false;
2286}
2287
9f9a742d
MR
2288/**
2289 * dev_nit_active - return true if any network interface taps are in use
2290 *
2291 * @dev: network device to check for the presence of taps
2292 */
2293bool dev_nit_active(struct net_device *dev)
2294{
2295 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2296}
2297EXPORT_SYMBOL_GPL(dev_nit_active);
2298
1da177e4
LT
2299/*
2300 * Support routine. Sends outgoing frames to any network
2301 * taps currently in use.
2302 */
2303
74b20582 2304void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2305{
2306 struct packet_type *ptype;
71d9dec2
CG
2307 struct sk_buff *skb2 = NULL;
2308 struct packet_type *pt_prev = NULL;
7866a621 2309 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2310
1da177e4 2311 rcu_read_lock();
7866a621
SN
2312again:
2313 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2314 if (ptype->ignore_outgoing)
2315 continue;
2316
1da177e4
LT
2317 /* Never send packets back to the socket
2318 * they originated from - MvS (miquels@drinkel.ow.org)
2319 */
7866a621
SN
2320 if (skb_loop_sk(ptype, skb))
2321 continue;
71d9dec2 2322
7866a621
SN
2323 if (pt_prev) {
2324 deliver_skb(skb2, pt_prev, skb->dev);
2325 pt_prev = ptype;
2326 continue;
2327 }
1da177e4 2328
7866a621
SN
2329 /* need to clone skb, done only once */
2330 skb2 = skb_clone(skb, GFP_ATOMIC);
2331 if (!skb2)
2332 goto out_unlock;
70978182 2333
7866a621 2334 net_timestamp_set(skb2);
1da177e4 2335
7866a621
SN
2336 /* skb->nh should be correctly
2337 * set by sender, so that the second statement is
2338 * just protection against buggy protocols.
2339 */
2340 skb_reset_mac_header(skb2);
2341
2342 if (skb_network_header(skb2) < skb2->data ||
2343 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2344 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2345 ntohs(skb2->protocol),
2346 dev->name);
2347 skb_reset_network_header(skb2);
1da177e4 2348 }
7866a621
SN
2349
2350 skb2->transport_header = skb2->network_header;
2351 skb2->pkt_type = PACKET_OUTGOING;
2352 pt_prev = ptype;
2353 }
2354
2355 if (ptype_list == &ptype_all) {
2356 ptype_list = &dev->ptype_all;
2357 goto again;
1da177e4 2358 }
7866a621 2359out_unlock:
581fe0ea
WB
2360 if (pt_prev) {
2361 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2362 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2363 else
2364 kfree_skb(skb2);
2365 }
1da177e4
LT
2366 rcu_read_unlock();
2367}
74b20582 2368EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2369
2c53040f
BH
2370/**
2371 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2372 * @dev: Network device
2373 * @txq: number of queues available
2374 *
2375 * If real_num_tx_queues is changed the tc mappings may no longer be
2376 * valid. To resolve this verify the tc mapping remains valid and if
2377 * not NULL the mapping. With no priorities mapping to this
2378 * offset/count pair it will no longer be used. In the worst case TC0
2379 * is invalid nothing can be done so disable priority mappings. If is
2380 * expected that drivers will fix this mapping if they can before
2381 * calling netif_set_real_num_tx_queues.
2382 */
bb134d22 2383static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2384{
2385 int i;
2386 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2387
2388 /* If TC0 is invalidated disable TC mapping */
2389 if (tc->offset + tc->count > txq) {
7b6cd1ce 2390 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2391 dev->num_tc = 0;
2392 return;
2393 }
2394
2395 /* Invalidated prio to tc mappings set to TC0 */
2396 for (i = 1; i < TC_BITMASK + 1; i++) {
2397 int q = netdev_get_prio_tc_map(dev, i);
2398
2399 tc = &dev->tc_to_txq[q];
2400 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2401 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2402 i, q);
4f57c087
JF
2403 netdev_set_prio_tc_map(dev, i, 0);
2404 }
2405 }
2406}
2407
8d059b0f
AD
2408int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2409{
2410 if (dev->num_tc) {
2411 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2412 int i;
2413
ffcfe25b 2414 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2415 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2416 if ((txq - tc->offset) < tc->count)
2417 return i;
2418 }
2419
ffcfe25b 2420 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2421 return -1;
2422 }
2423
2424 return 0;
2425}
8a5f2166 2426EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2427
537c00de 2428#ifdef CONFIG_XPS
04157469
AN
2429struct static_key xps_needed __read_mostly;
2430EXPORT_SYMBOL(xps_needed);
2431struct static_key xps_rxqs_needed __read_mostly;
2432EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2433static DEFINE_MUTEX(xps_map_mutex);
2434#define xmap_dereference(P) \
2435 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2436
6234f874
AD
2437static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2438 int tci, u16 index)
537c00de 2439{
10cdc3f3
AD
2440 struct xps_map *map = NULL;
2441 int pos;
537c00de 2442
10cdc3f3 2443 if (dev_maps)
80d19669 2444 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2445 if (!map)
2446 return false;
537c00de 2447
6234f874
AD
2448 for (pos = map->len; pos--;) {
2449 if (map->queues[pos] != index)
2450 continue;
2451
2452 if (map->len > 1) {
2453 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2454 break;
537c00de 2455 }
6234f874 2456
80d19669 2457 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2458 kfree_rcu(map, rcu);
2459 return false;
537c00de
AD
2460 }
2461
6234f874 2462 return true;
10cdc3f3
AD
2463}
2464
6234f874
AD
2465static bool remove_xps_queue_cpu(struct net_device *dev,
2466 struct xps_dev_maps *dev_maps,
2467 int cpu, u16 offset, u16 count)
2468{
184c449f
AD
2469 int num_tc = dev->num_tc ? : 1;
2470 bool active = false;
2471 int tci;
6234f874 2472
184c449f
AD
2473 for (tci = cpu * num_tc; num_tc--; tci++) {
2474 int i, j;
2475
2476 for (i = count, j = offset; i--; j++) {
6358d49a 2477 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2478 break;
2479 }
2480
2481 active |= i < 0;
6234f874
AD
2482 }
2483
184c449f 2484 return active;
6234f874
AD
2485}
2486
867d0ad4
SD
2487static void reset_xps_maps(struct net_device *dev,
2488 struct xps_dev_maps *dev_maps,
2489 bool is_rxqs_map)
2490{
2491 if (is_rxqs_map) {
2492 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2493 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2494 } else {
2495 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2496 }
2497 static_key_slow_dec_cpuslocked(&xps_needed);
2498 kfree_rcu(dev_maps, rcu);
2499}
2500
80d19669
AN
2501static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2502 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2503 u16 offset, u16 count, bool is_rxqs_map)
2504{
2505 bool active = false;
2506 int i, j;
2507
2508 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2509 j < nr_ids;)
2510 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2511 count);
867d0ad4
SD
2512 if (!active)
2513 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2514
f28c020f
SD
2515 if (!is_rxqs_map) {
2516 for (i = offset + (count - 1); count--; i--) {
2517 netdev_queue_numa_node_write(
2518 netdev_get_tx_queue(dev, i),
2519 NUMA_NO_NODE);
80d19669 2520 }
80d19669
AN
2521 }
2522}
2523
6234f874
AD
2524static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2525 u16 count)
10cdc3f3 2526{
80d19669 2527 const unsigned long *possible_mask = NULL;
10cdc3f3 2528 struct xps_dev_maps *dev_maps;
80d19669 2529 unsigned int nr_ids;
10cdc3f3 2530
04157469
AN
2531 if (!static_key_false(&xps_needed))
2532 return;
10cdc3f3 2533
4d99f660 2534 cpus_read_lock();
04157469 2535 mutex_lock(&xps_map_mutex);
10cdc3f3 2536
04157469
AN
2537 if (static_key_false(&xps_rxqs_needed)) {
2538 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2539 if (dev_maps) {
2540 nr_ids = dev->num_rx_queues;
2541 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2542 offset, count, true);
2543 }
537c00de
AD
2544 }
2545
80d19669
AN
2546 dev_maps = xmap_dereference(dev->xps_cpus_map);
2547 if (!dev_maps)
2548 goto out_no_maps;
2549
2550 if (num_possible_cpus() > 1)
2551 possible_mask = cpumask_bits(cpu_possible_mask);
2552 nr_ids = nr_cpu_ids;
2553 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2554 false);
024e9679 2555
537c00de
AD
2556out_no_maps:
2557 mutex_unlock(&xps_map_mutex);
4d99f660 2558 cpus_read_unlock();
537c00de
AD
2559}
2560
6234f874
AD
2561static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2562{
2563 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2564}
2565
80d19669
AN
2566static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2567 u16 index, bool is_rxqs_map)
01c5f864
AD
2568{
2569 struct xps_map *new_map;
2570 int alloc_len = XPS_MIN_MAP_ALLOC;
2571 int i, pos;
2572
2573 for (pos = 0; map && pos < map->len; pos++) {
2574 if (map->queues[pos] != index)
2575 continue;
2576 return map;
2577 }
2578
80d19669 2579 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2580 if (map) {
2581 if (pos < map->alloc_len)
2582 return map;
2583
2584 alloc_len = map->alloc_len * 2;
2585 }
2586
80d19669
AN
2587 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2588 * map
2589 */
2590 if (is_rxqs_map)
2591 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2592 else
2593 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2594 cpu_to_node(attr_index));
01c5f864
AD
2595 if (!new_map)
2596 return NULL;
2597
2598 for (i = 0; i < pos; i++)
2599 new_map->queues[i] = map->queues[i];
2600 new_map->alloc_len = alloc_len;
2601 new_map->len = pos;
2602
2603 return new_map;
2604}
2605
4d99f660 2606/* Must be called under cpus_read_lock */
80d19669
AN
2607int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2608 u16 index, bool is_rxqs_map)
537c00de 2609{
80d19669 2610 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2611 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2612 int i, j, tci, numa_node_id = -2;
184c449f 2613 int maps_sz, num_tc = 1, tc = 0;
537c00de 2614 struct xps_map *map, *new_map;
01c5f864 2615 bool active = false;
80d19669 2616 unsigned int nr_ids;
537c00de 2617
184c449f 2618 if (dev->num_tc) {
ffcfe25b 2619 /* Do not allow XPS on subordinate device directly */
184c449f 2620 num_tc = dev->num_tc;
ffcfe25b
AD
2621 if (num_tc < 0)
2622 return -EINVAL;
2623
2624 /* If queue belongs to subordinate dev use its map */
2625 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2626
184c449f
AD
2627 tc = netdev_txq_to_tc(dev, index);
2628 if (tc < 0)
2629 return -EINVAL;
2630 }
2631
537c00de 2632 mutex_lock(&xps_map_mutex);
80d19669
AN
2633 if (is_rxqs_map) {
2634 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2635 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2636 nr_ids = dev->num_rx_queues;
2637 } else {
2638 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2639 if (num_possible_cpus() > 1) {
2640 online_mask = cpumask_bits(cpu_online_mask);
2641 possible_mask = cpumask_bits(cpu_possible_mask);
2642 }
2643 dev_maps = xmap_dereference(dev->xps_cpus_map);
2644 nr_ids = nr_cpu_ids;
2645 }
537c00de 2646
80d19669
AN
2647 if (maps_sz < L1_CACHE_BYTES)
2648 maps_sz = L1_CACHE_BYTES;
537c00de 2649
01c5f864 2650 /* allocate memory for queue storage */
80d19669
AN
2651 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2652 j < nr_ids;) {
01c5f864
AD
2653 if (!new_dev_maps)
2654 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2655 if (!new_dev_maps) {
2656 mutex_unlock(&xps_map_mutex);
01c5f864 2657 return -ENOMEM;
2bb60cb9 2658 }
01c5f864 2659
80d19669
AN
2660 tci = j * num_tc + tc;
2661 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2662 NULL;
2663
80d19669 2664 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2665 if (!map)
2666 goto error;
2667
80d19669 2668 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2669 }
2670
2671 if (!new_dev_maps)
2672 goto out_no_new_maps;
2673
867d0ad4
SD
2674 if (!dev_maps) {
2675 /* Increment static keys at most once per type */
2676 static_key_slow_inc_cpuslocked(&xps_needed);
2677 if (is_rxqs_map)
2678 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2679 }
04157469 2680
80d19669
AN
2681 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2682 j < nr_ids;) {
184c449f 2683 /* copy maps belonging to foreign traffic classes */
80d19669 2684 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2685 /* fill in the new device map from the old device map */
80d19669
AN
2686 map = xmap_dereference(dev_maps->attr_map[tci]);
2687 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2688 }
2689
2690 /* We need to explicitly update tci as prevous loop
2691 * could break out early if dev_maps is NULL.
2692 */
80d19669 2693 tci = j * num_tc + tc;
184c449f 2694
80d19669
AN
2695 if (netif_attr_test_mask(j, mask, nr_ids) &&
2696 netif_attr_test_online(j, online_mask, nr_ids)) {
2697 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2698 int pos = 0;
2699
80d19669 2700 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2701 while ((pos < map->len) && (map->queues[pos] != index))
2702 pos++;
2703
2704 if (pos == map->len)
2705 map->queues[map->len++] = index;
537c00de 2706#ifdef CONFIG_NUMA
80d19669
AN
2707 if (!is_rxqs_map) {
2708 if (numa_node_id == -2)
2709 numa_node_id = cpu_to_node(j);
2710 else if (numa_node_id != cpu_to_node(j))
2711 numa_node_id = -1;
2712 }
537c00de 2713#endif
01c5f864
AD
2714 } else if (dev_maps) {
2715 /* fill in the new device map from the old device map */
80d19669
AN
2716 map = xmap_dereference(dev_maps->attr_map[tci]);
2717 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2718 }
01c5f864 2719
184c449f
AD
2720 /* copy maps belonging to foreign traffic classes */
2721 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2722 /* fill in the new device map from the old device map */
80d19669
AN
2723 map = xmap_dereference(dev_maps->attr_map[tci]);
2724 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2725 }
537c00de
AD
2726 }
2727
80d19669
AN
2728 if (is_rxqs_map)
2729 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2730 else
2731 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2732
537c00de 2733 /* Cleanup old maps */
184c449f
AD
2734 if (!dev_maps)
2735 goto out_no_old_maps;
2736
80d19669
AN
2737 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2738 j < nr_ids;) {
2739 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2740 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2741 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2742 if (map && map != new_map)
2743 kfree_rcu(map, rcu);
2744 }
537c00de
AD
2745 }
2746
184c449f
AD
2747 kfree_rcu(dev_maps, rcu);
2748
2749out_no_old_maps:
01c5f864
AD
2750 dev_maps = new_dev_maps;
2751 active = true;
537c00de 2752
01c5f864 2753out_no_new_maps:
80d19669
AN
2754 if (!is_rxqs_map) {
2755 /* update Tx queue numa node */
2756 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2757 (numa_node_id >= 0) ?
2758 numa_node_id : NUMA_NO_NODE);
2759 }
537c00de 2760
01c5f864
AD
2761 if (!dev_maps)
2762 goto out_no_maps;
2763
80d19669
AN
2764 /* removes tx-queue from unused CPUs/rx-queues */
2765 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2766 j < nr_ids;) {
2767 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2768 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2769 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2770 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2771 active |= remove_xps_queue(dev_maps, tci, index);
2772 for (i = num_tc - tc, tci++; --i; tci++)
2773 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2774 }
2775
2776 /* free map if not active */
867d0ad4
SD
2777 if (!active)
2778 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2779
2780out_no_maps:
537c00de
AD
2781 mutex_unlock(&xps_map_mutex);
2782
2783 return 0;
2784error:
01c5f864 2785 /* remove any maps that we added */
80d19669
AN
2786 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2787 j < nr_ids;) {
2788 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2789 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2790 map = dev_maps ?
80d19669 2791 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2792 NULL;
2793 if (new_map && new_map != map)
2794 kfree(new_map);
2795 }
01c5f864
AD
2796 }
2797
537c00de
AD
2798 mutex_unlock(&xps_map_mutex);
2799
537c00de
AD
2800 kfree(new_dev_maps);
2801 return -ENOMEM;
2802}
4d99f660 2803EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2804
2805int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2806 u16 index)
2807{
4d99f660
AV
2808 int ret;
2809
2810 cpus_read_lock();
2811 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2812 cpus_read_unlock();
2813
2814 return ret;
80d19669 2815}
537c00de
AD
2816EXPORT_SYMBOL(netif_set_xps_queue);
2817
2818#endif
ffcfe25b
AD
2819static void netdev_unbind_all_sb_channels(struct net_device *dev)
2820{
2821 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2822
2823 /* Unbind any subordinate channels */
2824 while (txq-- != &dev->_tx[0]) {
2825 if (txq->sb_dev)
2826 netdev_unbind_sb_channel(dev, txq->sb_dev);
2827 }
2828}
2829
9cf1f6a8
AD
2830void netdev_reset_tc(struct net_device *dev)
2831{
6234f874
AD
2832#ifdef CONFIG_XPS
2833 netif_reset_xps_queues_gt(dev, 0);
2834#endif
ffcfe25b
AD
2835 netdev_unbind_all_sb_channels(dev);
2836
2837 /* Reset TC configuration of device */
9cf1f6a8
AD
2838 dev->num_tc = 0;
2839 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2840 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2841}
2842EXPORT_SYMBOL(netdev_reset_tc);
2843
2844int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2845{
2846 if (tc >= dev->num_tc)
2847 return -EINVAL;
2848
6234f874
AD
2849#ifdef CONFIG_XPS
2850 netif_reset_xps_queues(dev, offset, count);
2851#endif
9cf1f6a8
AD
2852 dev->tc_to_txq[tc].count = count;
2853 dev->tc_to_txq[tc].offset = offset;
2854 return 0;
2855}
2856EXPORT_SYMBOL(netdev_set_tc_queue);
2857
2858int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2859{
2860 if (num_tc > TC_MAX_QUEUE)
2861 return -EINVAL;
2862
6234f874
AD
2863#ifdef CONFIG_XPS
2864 netif_reset_xps_queues_gt(dev, 0);
2865#endif
ffcfe25b
AD
2866 netdev_unbind_all_sb_channels(dev);
2867
9cf1f6a8
AD
2868 dev->num_tc = num_tc;
2869 return 0;
2870}
2871EXPORT_SYMBOL(netdev_set_num_tc);
2872
ffcfe25b
AD
2873void netdev_unbind_sb_channel(struct net_device *dev,
2874 struct net_device *sb_dev)
2875{
2876 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2877
2878#ifdef CONFIG_XPS
2879 netif_reset_xps_queues_gt(sb_dev, 0);
2880#endif
2881 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2882 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2883
2884 while (txq-- != &dev->_tx[0]) {
2885 if (txq->sb_dev == sb_dev)
2886 txq->sb_dev = NULL;
2887 }
2888}
2889EXPORT_SYMBOL(netdev_unbind_sb_channel);
2890
2891int netdev_bind_sb_channel_queue(struct net_device *dev,
2892 struct net_device *sb_dev,
2893 u8 tc, u16 count, u16 offset)
2894{
2895 /* Make certain the sb_dev and dev are already configured */
2896 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2897 return -EINVAL;
2898
2899 /* We cannot hand out queues we don't have */
2900 if ((offset + count) > dev->real_num_tx_queues)
2901 return -EINVAL;
2902
2903 /* Record the mapping */
2904 sb_dev->tc_to_txq[tc].count = count;
2905 sb_dev->tc_to_txq[tc].offset = offset;
2906
2907 /* Provide a way for Tx queue to find the tc_to_txq map or
2908 * XPS map for itself.
2909 */
2910 while (count--)
2911 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2912
2913 return 0;
2914}
2915EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2916
2917int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2918{
2919 /* Do not use a multiqueue device to represent a subordinate channel */
2920 if (netif_is_multiqueue(dev))
2921 return -ENODEV;
2922
2923 /* We allow channels 1 - 32767 to be used for subordinate channels.
2924 * Channel 0 is meant to be "native" mode and used only to represent
2925 * the main root device. We allow writing 0 to reset the device back
2926 * to normal mode after being used as a subordinate channel.
2927 */
2928 if (channel > S16_MAX)
2929 return -EINVAL;
2930
2931 dev->num_tc = -channel;
2932
2933 return 0;
2934}
2935EXPORT_SYMBOL(netdev_set_sb_channel);
2936
f0796d5c
JF
2937/*
2938 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2939 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2940 */
e6484930 2941int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2942{
ac5b7019 2943 bool disabling;
1d24eb48
TH
2944 int rc;
2945
ac5b7019
JK
2946 disabling = txq < dev->real_num_tx_queues;
2947
e6484930
TH
2948 if (txq < 1 || txq > dev->num_tx_queues)
2949 return -EINVAL;
f0796d5c 2950
5c56580b
BH
2951 if (dev->reg_state == NETREG_REGISTERED ||
2952 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2953 ASSERT_RTNL();
2954
1d24eb48
TH
2955 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2956 txq);
bf264145
TH
2957 if (rc)
2958 return rc;
2959
4f57c087
JF
2960 if (dev->num_tc)
2961 netif_setup_tc(dev, txq);
2962
ac5b7019
JK
2963 dev->real_num_tx_queues = txq;
2964
2965 if (disabling) {
2966 synchronize_net();
e6484930 2967 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2968#ifdef CONFIG_XPS
2969 netif_reset_xps_queues_gt(dev, txq);
2970#endif
2971 }
ac5b7019
JK
2972 } else {
2973 dev->real_num_tx_queues = txq;
f0796d5c 2974 }
e6484930 2975
e6484930 2976 return 0;
f0796d5c
JF
2977}
2978EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2979
a953be53 2980#ifdef CONFIG_SYSFS
62fe0b40
BH
2981/**
2982 * netif_set_real_num_rx_queues - set actual number of RX queues used
2983 * @dev: Network device
2984 * @rxq: Actual number of RX queues
2985 *
2986 * This must be called either with the rtnl_lock held or before
2987 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2988 * negative error code. If called before registration, it always
2989 * succeeds.
62fe0b40
BH
2990 */
2991int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2992{
2993 int rc;
2994
bd25fa7b
TH
2995 if (rxq < 1 || rxq > dev->num_rx_queues)
2996 return -EINVAL;
2997
62fe0b40
BH
2998 if (dev->reg_state == NETREG_REGISTERED) {
2999 ASSERT_RTNL();
3000
62fe0b40
BH
3001 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3002 rxq);
3003 if (rc)
3004 return rc;
62fe0b40
BH
3005 }
3006
3007 dev->real_num_rx_queues = rxq;
3008 return 0;
3009}
3010EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3011#endif
3012
2c53040f
BH
3013/**
3014 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
3015 *
3016 * This routine should set an upper limit on the number of RSS queues
3017 * used by default by multiqueue devices.
3018 */
a55b138b 3019int netif_get_num_default_rss_queues(void)
16917b87 3020{
40e4e713
HS
3021 return is_kdump_kernel() ?
3022 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
3023}
3024EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3025
3bcb846c 3026static void __netif_reschedule(struct Qdisc *q)
56079431 3027{
def82a1d
JP
3028 struct softnet_data *sd;
3029 unsigned long flags;
56079431 3030
def82a1d 3031 local_irq_save(flags);
903ceff7 3032 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
3033 q->next_sched = NULL;
3034 *sd->output_queue_tailp = q;
3035 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
3036 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3037 local_irq_restore(flags);
3038}
3039
3040void __netif_schedule(struct Qdisc *q)
3041{
3042 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3043 __netif_reschedule(q);
56079431
DV
3044}
3045EXPORT_SYMBOL(__netif_schedule);
3046
e6247027
ED
3047struct dev_kfree_skb_cb {
3048 enum skb_free_reason reason;
3049};
3050
3051static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 3052{
e6247027
ED
3053 return (struct dev_kfree_skb_cb *)skb->cb;
3054}
3055
46e5da40
JF
3056void netif_schedule_queue(struct netdev_queue *txq)
3057{
3058 rcu_read_lock();
5be5515a 3059 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
3060 struct Qdisc *q = rcu_dereference(txq->qdisc);
3061
3062 __netif_schedule(q);
3063 }
3064 rcu_read_unlock();
3065}
3066EXPORT_SYMBOL(netif_schedule_queue);
3067
46e5da40
JF
3068void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3069{
3070 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3071 struct Qdisc *q;
3072
3073 rcu_read_lock();
3074 q = rcu_dereference(dev_queue->qdisc);
3075 __netif_schedule(q);
3076 rcu_read_unlock();
3077 }
3078}
3079EXPORT_SYMBOL(netif_tx_wake_queue);
3080
e6247027 3081void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3082{
e6247027 3083 unsigned long flags;
56079431 3084
9899886d
MJ
3085 if (unlikely(!skb))
3086 return;
3087
63354797 3088 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3089 smp_rmb();
63354797
RE
3090 refcount_set(&skb->users, 0);
3091 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3092 return;
bea3348e 3093 }
e6247027
ED
3094 get_kfree_skb_cb(skb)->reason = reason;
3095 local_irq_save(flags);
3096 skb->next = __this_cpu_read(softnet_data.completion_queue);
3097 __this_cpu_write(softnet_data.completion_queue, skb);
3098 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3099 local_irq_restore(flags);
56079431 3100}
e6247027 3101EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3102
e6247027 3103void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3104{
3105 if (in_irq() || irqs_disabled())
e6247027 3106 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3107 else
3108 dev_kfree_skb(skb);
3109}
e6247027 3110EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3111
3112
bea3348e
SH
3113/**
3114 * netif_device_detach - mark device as removed
3115 * @dev: network device
3116 *
3117 * Mark device as removed from system and therefore no longer available.
3118 */
56079431
DV
3119void netif_device_detach(struct net_device *dev)
3120{
3121 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3122 netif_running(dev)) {
d543103a 3123 netif_tx_stop_all_queues(dev);
56079431
DV
3124 }
3125}
3126EXPORT_SYMBOL(netif_device_detach);
3127
bea3348e
SH
3128/**
3129 * netif_device_attach - mark device as attached
3130 * @dev: network device
3131 *
3132 * Mark device as attached from system and restart if needed.
3133 */
56079431
DV
3134void netif_device_attach(struct net_device *dev)
3135{
3136 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3137 netif_running(dev)) {
d543103a 3138 netif_tx_wake_all_queues(dev);
4ec93edb 3139 __netdev_watchdog_up(dev);
56079431
DV
3140 }
3141}
3142EXPORT_SYMBOL(netif_device_attach);
3143
5605c762
JP
3144/*
3145 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3146 * to be used as a distribution range.
3147 */
eadec877
AD
3148static u16 skb_tx_hash(const struct net_device *dev,
3149 const struct net_device *sb_dev,
3150 struct sk_buff *skb)
5605c762
JP
3151{
3152 u32 hash;
3153 u16 qoffset = 0;
1b837d48 3154 u16 qcount = dev->real_num_tx_queues;
5605c762 3155
eadec877
AD
3156 if (dev->num_tc) {
3157 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3158
3159 qoffset = sb_dev->tc_to_txq[tc].offset;
3160 qcount = sb_dev->tc_to_txq[tc].count;
3161 }
3162
5605c762
JP
3163 if (skb_rx_queue_recorded(skb)) {
3164 hash = skb_get_rx_queue(skb);
6e11d157
AN
3165 if (hash >= qoffset)
3166 hash -= qoffset;
1b837d48
AD
3167 while (unlikely(hash >= qcount))
3168 hash -= qcount;
eadec877 3169 return hash + qoffset;
5605c762
JP
3170 }
3171
3172 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3173}
5605c762 3174
36c92474
BH
3175static void skb_warn_bad_offload(const struct sk_buff *skb)
3176{
84d15ae5 3177 static const netdev_features_t null_features;
36c92474 3178 struct net_device *dev = skb->dev;
88ad4175 3179 const char *name = "";
36c92474 3180
c846ad9b
BG
3181 if (!net_ratelimit())
3182 return;
3183
88ad4175
BM
3184 if (dev) {
3185 if (dev->dev.parent)
3186 name = dev_driver_string(dev->dev.parent);
3187 else
3188 name = netdev_name(dev);
3189 }
6413139d
WB
3190 skb_dump(KERN_WARNING, skb, false);
3191 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3192 name, dev ? &dev->features : &null_features,
6413139d 3193 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3194}
3195
1da177e4
LT
3196/*
3197 * Invalidate hardware checksum when packet is to be mangled, and
3198 * complete checksum manually on outgoing path.
3199 */
84fa7933 3200int skb_checksum_help(struct sk_buff *skb)
1da177e4 3201{
d3bc23e7 3202 __wsum csum;
663ead3b 3203 int ret = 0, offset;
1da177e4 3204
84fa7933 3205 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3206 goto out_set_summed;
3207
3208 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
3209 skb_warn_bad_offload(skb);
3210 return -EINVAL;
1da177e4
LT
3211 }
3212
cef401de
ED
3213 /* Before computing a checksum, we should make sure no frag could
3214 * be modified by an external entity : checksum could be wrong.
3215 */
3216 if (skb_has_shared_frag(skb)) {
3217 ret = __skb_linearize(skb);
3218 if (ret)
3219 goto out;
3220 }
3221
55508d60 3222 offset = skb_checksum_start_offset(skb);
a030847e
HX
3223 BUG_ON(offset >= skb_headlen(skb));
3224 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3225
3226 offset += skb->csum_offset;
3227 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3228
8211fbfa
HK
3229 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3230 if (ret)
3231 goto out;
1da177e4 3232
4f2e4ad5 3233 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3234out_set_summed:
1da177e4 3235 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3236out:
1da177e4
LT
3237 return ret;
3238}
d1b19dff 3239EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3240
b72b5bf6
DC
3241int skb_crc32c_csum_help(struct sk_buff *skb)
3242{
3243 __le32 crc32c_csum;
3244 int ret = 0, offset, start;
3245
3246 if (skb->ip_summed != CHECKSUM_PARTIAL)
3247 goto out;
3248
3249 if (unlikely(skb_is_gso(skb)))
3250 goto out;
3251
3252 /* Before computing a checksum, we should make sure no frag could
3253 * be modified by an external entity : checksum could be wrong.
3254 */
3255 if (unlikely(skb_has_shared_frag(skb))) {
3256 ret = __skb_linearize(skb);
3257 if (ret)
3258 goto out;
3259 }
3260 start = skb_checksum_start_offset(skb);
3261 offset = start + offsetof(struct sctphdr, checksum);
3262 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3263 ret = -EINVAL;
3264 goto out;
3265 }
8211fbfa
HK
3266
3267 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3268 if (ret)
3269 goto out;
3270
b72b5bf6
DC
3271 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3272 skb->len - start, ~(__u32)0,
3273 crc32c_csum_stub));
3274 *(__le32 *)(skb->data + offset) = crc32c_csum;
3275 skb->ip_summed = CHECKSUM_NONE;
dba00306 3276 skb->csum_not_inet = 0;
b72b5bf6
DC
3277out:
3278 return ret;
3279}
3280
53d6471c 3281__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3282{
252e3346 3283 __be16 type = skb->protocol;
f6a78bfc 3284
19acc327
PS
3285 /* Tunnel gso handlers can set protocol to ethernet. */
3286 if (type == htons(ETH_P_TEB)) {
3287 struct ethhdr *eth;
3288
3289 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3290 return 0;
3291
1dfe82eb 3292 eth = (struct ethhdr *)skb->data;
19acc327
PS
3293 type = eth->h_proto;
3294 }
3295
d4bcef3f 3296 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3297}
3298
3299/**
3300 * skb_mac_gso_segment - mac layer segmentation handler.
3301 * @skb: buffer to segment
3302 * @features: features for the output path (see dev->features)
3303 */
3304struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3305 netdev_features_t features)
3306{
3307 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3308 struct packet_offload *ptype;
53d6471c
VY
3309 int vlan_depth = skb->mac_len;
3310 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3311
3312 if (unlikely(!type))
3313 return ERR_PTR(-EINVAL);
3314
53d6471c 3315 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3316
3317 rcu_read_lock();
22061d80 3318 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3319 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3320 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3321 break;
3322 }
3323 }
3324 rcu_read_unlock();
3325
98e399f8 3326 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3327
f6a78bfc
HX
3328 return segs;
3329}
05e8ef4a
PS
3330EXPORT_SYMBOL(skb_mac_gso_segment);
3331
3332
3333/* openvswitch calls this on rx path, so we need a different check.
3334 */
3335static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3336{
3337 if (tx_path)
0c19f846
WB
3338 return skb->ip_summed != CHECKSUM_PARTIAL &&
3339 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3340
3341 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3342}
3343
3344/**
3345 * __skb_gso_segment - Perform segmentation on skb.
3346 * @skb: buffer to segment
3347 * @features: features for the output path (see dev->features)
3348 * @tx_path: whether it is called in TX path
3349 *
3350 * This function segments the given skb and returns a list of segments.
3351 *
3352 * It may return NULL if the skb requires no segmentation. This is
3353 * only possible when GSO is used for verifying header integrity.
9207f9d4 3354 *
a08e7fd9 3355 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3356 */
3357struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3358 netdev_features_t features, bool tx_path)
3359{
b2504a5d
ED
3360 struct sk_buff *segs;
3361
05e8ef4a
PS
3362 if (unlikely(skb_needs_check(skb, tx_path))) {
3363 int err;
3364
b2504a5d 3365 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3366 err = skb_cow_head(skb, 0);
3367 if (err < 0)
05e8ef4a
PS
3368 return ERR_PTR(err);
3369 }
3370
802ab55a
AD
3371 /* Only report GSO partial support if it will enable us to
3372 * support segmentation on this frame without needing additional
3373 * work.
3374 */
3375 if (features & NETIF_F_GSO_PARTIAL) {
3376 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3377 struct net_device *dev = skb->dev;
3378
3379 partial_features |= dev->features & dev->gso_partial_features;
3380 if (!skb_gso_ok(skb, features | partial_features))
3381 features &= ~NETIF_F_GSO_PARTIAL;
3382 }
3383
a08e7fd9 3384 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3385 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3386
68c33163 3387 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3388 SKB_GSO_CB(skb)->encap_level = 0;
3389
05e8ef4a
PS
3390 skb_reset_mac_header(skb);
3391 skb_reset_mac_len(skb);
3392
b2504a5d
ED
3393 segs = skb_mac_gso_segment(skb, features);
3394
3a1296a3 3395 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3396 skb_warn_bad_offload(skb);
3397
3398 return segs;
05e8ef4a 3399}
12b0004d 3400EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3401
fb286bb2
HX
3402/* Take action when hardware reception checksum errors are detected. */
3403#ifdef CONFIG_BUG
7fe50ac8 3404void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3405{
3406 if (net_ratelimit()) {
7b6cd1ce 3407 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3408 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3409 dump_stack();
3410 }
3411}
3412EXPORT_SYMBOL(netdev_rx_csum_fault);
3413#endif
3414
ab74cfeb 3415/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3416static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3417{
3d3a8533 3418#ifdef CONFIG_HIGHMEM
1da177e4 3419 int i;
f4563a75 3420
5acbbd42 3421 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3422 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3423 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3424
ea2ab693 3425 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3426 return 1;
ea2ab693 3427 }
5acbbd42 3428 }
3d3a8533 3429#endif
1da177e4
LT
3430 return 0;
3431}
1da177e4 3432
3b392ddb
SH
3433/* If MPLS offload request, verify we are testing hardware MPLS features
3434 * instead of standard features for the netdev.
3435 */
d0edc7bf 3436#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3437static netdev_features_t net_mpls_features(struct sk_buff *skb,
3438 netdev_features_t features,
3439 __be16 type)
3440{
25cd9ba0 3441 if (eth_p_mpls(type))
3b392ddb
SH
3442 features &= skb->dev->mpls_features;
3443
3444 return features;
3445}
3446#else
3447static netdev_features_t net_mpls_features(struct sk_buff *skb,
3448 netdev_features_t features,
3449 __be16 type)
3450{
3451 return features;
3452}
3453#endif
3454
c8f44aff 3455static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3456 netdev_features_t features)
f01a5236 3457{
3b392ddb
SH
3458 __be16 type;
3459
9fc95f50 3460 type = skb_network_protocol(skb, NULL);
3b392ddb 3461 features = net_mpls_features(skb, features, type);
53d6471c 3462
c0d680e5 3463 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3464 !can_checksum_protocol(features, type)) {
996e8021 3465 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3466 }
7be2c82c
ED
3467 if (illegal_highdma(skb->dev, skb))
3468 features &= ~NETIF_F_SG;
f01a5236
JG
3469
3470 return features;
3471}
3472
e38f3025
TM
3473netdev_features_t passthru_features_check(struct sk_buff *skb,
3474 struct net_device *dev,
3475 netdev_features_t features)
3476{
3477 return features;
3478}
3479EXPORT_SYMBOL(passthru_features_check);
3480
7ce23672 3481static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3482 struct net_device *dev,
3483 netdev_features_t features)
3484{
3485 return vlan_features_check(skb, features);
3486}
3487
cbc53e08
AD
3488static netdev_features_t gso_features_check(const struct sk_buff *skb,
3489 struct net_device *dev,
3490 netdev_features_t features)
3491{
3492 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3493
3494 if (gso_segs > dev->gso_max_segs)
3495 return features & ~NETIF_F_GSO_MASK;
3496
802ab55a
AD
3497 /* Support for GSO partial features requires software
3498 * intervention before we can actually process the packets
3499 * so we need to strip support for any partial features now
3500 * and we can pull them back in after we have partially
3501 * segmented the frame.
3502 */
3503 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3504 features &= ~dev->gso_partial_features;
3505
3506 /* Make sure to clear the IPv4 ID mangling feature if the
3507 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3508 */
3509 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3510 struct iphdr *iph = skb->encapsulation ?
3511 inner_ip_hdr(skb) : ip_hdr(skb);
3512
3513 if (!(iph->frag_off & htons(IP_DF)))
3514 features &= ~NETIF_F_TSO_MANGLEID;
3515 }
3516
3517 return features;
3518}
3519
c1e756bf 3520netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3521{
5f35227e 3522 struct net_device *dev = skb->dev;
fcbeb976 3523 netdev_features_t features = dev->features;
58e998c6 3524
cbc53e08
AD
3525 if (skb_is_gso(skb))
3526 features = gso_features_check(skb, dev, features);
30b678d8 3527
5f35227e
JG
3528 /* If encapsulation offload request, verify we are testing
3529 * hardware encapsulation features instead of standard
3530 * features for the netdev
3531 */
3532 if (skb->encapsulation)
3533 features &= dev->hw_enc_features;
3534
f5a7fb88
TM
3535 if (skb_vlan_tagged(skb))
3536 features = netdev_intersect_features(features,
3537 dev->vlan_features |
3538 NETIF_F_HW_VLAN_CTAG_TX |
3539 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3540
5f35227e
JG
3541 if (dev->netdev_ops->ndo_features_check)
3542 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3543 features);
8cb65d00
TM
3544 else
3545 features &= dflt_features_check(skb, dev, features);
5f35227e 3546
c1e756bf 3547 return harmonize_features(skb, features);
58e998c6 3548}
c1e756bf 3549EXPORT_SYMBOL(netif_skb_features);
58e998c6 3550
2ea25513 3551static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3552 struct netdev_queue *txq, bool more)
f6a78bfc 3553{
2ea25513
DM
3554 unsigned int len;
3555 int rc;
00829823 3556
9f9a742d 3557 if (dev_nit_active(dev))
2ea25513 3558 dev_queue_xmit_nit(skb, dev);
fc741216 3559
2ea25513
DM
3560 len = skb->len;
3561 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3562 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3563 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3564
2ea25513
DM
3565 return rc;
3566}
7b9c6090 3567
8dcda22a
DM
3568struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3569 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3570{
3571 struct sk_buff *skb = first;
3572 int rc = NETDEV_TX_OK;
7b9c6090 3573
7f2e870f
DM
3574 while (skb) {
3575 struct sk_buff *next = skb->next;
fc70fb64 3576
a8305bff 3577 skb_mark_not_on_list(skb);
95f6b3dd 3578 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3579 if (unlikely(!dev_xmit_complete(rc))) {
3580 skb->next = next;
3581 goto out;
3582 }
6afff0ca 3583
7f2e870f 3584 skb = next;
fe60faa5 3585 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3586 rc = NETDEV_TX_BUSY;
3587 break;
9ccb8975 3588 }
7f2e870f 3589 }
9ccb8975 3590
7f2e870f
DM
3591out:
3592 *ret = rc;
3593 return skb;
3594}
b40863c6 3595
1ff0dc94
ED
3596static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3597 netdev_features_t features)
f6a78bfc 3598{
df8a39de 3599 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3600 !vlan_hw_offload_capable(features, skb->vlan_proto))
3601 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3602 return skb;
3603}
f6a78bfc 3604
43c26a1a
DC
3605int skb_csum_hwoffload_help(struct sk_buff *skb,
3606 const netdev_features_t features)
3607{
3608 if (unlikely(skb->csum_not_inet))
3609 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3610 skb_crc32c_csum_help(skb);
3611
3612 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3613}
3614EXPORT_SYMBOL(skb_csum_hwoffload_help);
3615
f53c7239 3616static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3617{
3618 netdev_features_t features;
f6a78bfc 3619
eae3f88e
DM
3620 features = netif_skb_features(skb);
3621 skb = validate_xmit_vlan(skb, features);
3622 if (unlikely(!skb))
3623 goto out_null;
7b9c6090 3624
ebf4e808
IL
3625 skb = sk_validate_xmit_skb(skb, dev);
3626 if (unlikely(!skb))
3627 goto out_null;
3628
8b86a61d 3629 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3630 struct sk_buff *segs;
3631
3632 segs = skb_gso_segment(skb, features);
cecda693 3633 if (IS_ERR(segs)) {
af6dabc9 3634 goto out_kfree_skb;
cecda693
JW
3635 } else if (segs) {
3636 consume_skb(skb);
3637 skb = segs;
f6a78bfc 3638 }
eae3f88e
DM
3639 } else {
3640 if (skb_needs_linearize(skb, features) &&
3641 __skb_linearize(skb))
3642 goto out_kfree_skb;
4ec93edb 3643
eae3f88e
DM
3644 /* If packet is not checksummed and device does not
3645 * support checksumming for this protocol, complete
3646 * checksumming here.
3647 */
3648 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3649 if (skb->encapsulation)
3650 skb_set_inner_transport_header(skb,
3651 skb_checksum_start_offset(skb));
3652 else
3653 skb_set_transport_header(skb,
3654 skb_checksum_start_offset(skb));
43c26a1a 3655 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3656 goto out_kfree_skb;
7b9c6090 3657 }
0c772159 3658 }
7b9c6090 3659
f53c7239 3660 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3661
eae3f88e 3662 return skb;
fc70fb64 3663
f6a78bfc
HX
3664out_kfree_skb:
3665 kfree_skb(skb);
eae3f88e 3666out_null:
d21fd63e 3667 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3668 return NULL;
3669}
6afff0ca 3670
f53c7239 3671struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3672{
3673 struct sk_buff *next, *head = NULL, *tail;
3674
bec3cfdc 3675 for (; skb != NULL; skb = next) {
55a93b3e 3676 next = skb->next;
a8305bff 3677 skb_mark_not_on_list(skb);
bec3cfdc
ED
3678
3679 /* in case skb wont be segmented, point to itself */
3680 skb->prev = skb;
3681
f53c7239 3682 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3683 if (!skb)
3684 continue;
55a93b3e 3685
bec3cfdc
ED
3686 if (!head)
3687 head = skb;
3688 else
3689 tail->next = skb;
3690 /* If skb was segmented, skb->prev points to
3691 * the last segment. If not, it still contains skb.
3692 */
3693 tail = skb->prev;
55a93b3e
ED
3694 }
3695 return head;
f6a78bfc 3696}
104ba78c 3697EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3698
1def9238
ED
3699static void qdisc_pkt_len_init(struct sk_buff *skb)
3700{
3701 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3702
3703 qdisc_skb_cb(skb)->pkt_len = skb->len;
3704
3705 /* To get more precise estimation of bytes sent on wire,
3706 * we add to pkt_len the headers size of all segments
3707 */
a0dce875 3708 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3709 unsigned int hdr_len;
15e5a030 3710 u16 gso_segs = shinfo->gso_segs;
1def9238 3711
757b8b1d
ED
3712 /* mac layer + network layer */
3713 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3714
3715 /* + transport layer */
7c68d1a6
ED
3716 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3717 const struct tcphdr *th;
3718 struct tcphdr _tcphdr;
3719
3720 th = skb_header_pointer(skb, skb_transport_offset(skb),
3721 sizeof(_tcphdr), &_tcphdr);
3722 if (likely(th))
3723 hdr_len += __tcp_hdrlen(th);
3724 } else {
3725 struct udphdr _udphdr;
3726
3727 if (skb_header_pointer(skb, skb_transport_offset(skb),
3728 sizeof(_udphdr), &_udphdr))
3729 hdr_len += sizeof(struct udphdr);
3730 }
15e5a030
JW
3731
3732 if (shinfo->gso_type & SKB_GSO_DODGY)
3733 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3734 shinfo->gso_size);
3735
3736 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3737 }
3738}
3739
bbd8a0d3
KK
3740static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3741 struct net_device *dev,
3742 struct netdev_queue *txq)
3743{
3744 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3745 struct sk_buff *to_free = NULL;
a2da570d 3746 bool contended;
bbd8a0d3
KK
3747 int rc;
3748
a2da570d 3749 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3750
3751 if (q->flags & TCQ_F_NOLOCK) {
ac5c66f2 3752 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
379349e9 3753 qdisc_run(q);
6b3ba914
JF
3754
3755 if (unlikely(to_free))
3756 kfree_skb_list(to_free);
3757 return rc;
3758 }
3759
79640a4c
ED
3760 /*
3761 * Heuristic to force contended enqueues to serialize on a
3762 * separate lock before trying to get qdisc main lock.
f9eb8aea 3763 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3764 * often and dequeue packets faster.
79640a4c 3765 */
a2da570d 3766 contended = qdisc_is_running(q);
79640a4c
ED
3767 if (unlikely(contended))
3768 spin_lock(&q->busylock);
3769
bbd8a0d3
KK
3770 spin_lock(root_lock);
3771 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3772 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3773 rc = NET_XMIT_DROP;
3774 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3775 qdisc_run_begin(q)) {
bbd8a0d3
KK
3776 /*
3777 * This is a work-conserving queue; there are no old skbs
3778 * waiting to be sent out; and the qdisc is not running -
3779 * xmit the skb directly.
3780 */
bfe0d029 3781
bfe0d029
ED
3782 qdisc_bstats_update(q, skb);
3783
55a93b3e 3784 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3785 if (unlikely(contended)) {
3786 spin_unlock(&q->busylock);
3787 contended = false;
3788 }
bbd8a0d3 3789 __qdisc_run(q);
6c148184 3790 }
bbd8a0d3 3791
6c148184 3792 qdisc_run_end(q);
bbd8a0d3
KK
3793 rc = NET_XMIT_SUCCESS;
3794 } else {
ac5c66f2 3795 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3796 if (qdisc_run_begin(q)) {
3797 if (unlikely(contended)) {
3798 spin_unlock(&q->busylock);
3799 contended = false;
3800 }
3801 __qdisc_run(q);
6c148184 3802 qdisc_run_end(q);
79640a4c 3803 }
bbd8a0d3
KK
3804 }
3805 spin_unlock(root_lock);
520ac30f
ED
3806 if (unlikely(to_free))
3807 kfree_skb_list(to_free);
79640a4c
ED
3808 if (unlikely(contended))
3809 spin_unlock(&q->busylock);
bbd8a0d3
KK
3810 return rc;
3811}
3812
86f8515f 3813#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3814static void skb_update_prio(struct sk_buff *skb)
3815{
4dcb31d4
ED
3816 const struct netprio_map *map;
3817 const struct sock *sk;
3818 unsigned int prioidx;
5bc1421e 3819
4dcb31d4
ED
3820 if (skb->priority)
3821 return;
3822 map = rcu_dereference_bh(skb->dev->priomap);
3823 if (!map)
3824 return;
3825 sk = skb_to_full_sk(skb);
3826 if (!sk)
3827 return;
91c68ce2 3828
4dcb31d4
ED
3829 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3830
3831 if (prioidx < map->priomap_len)
3832 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3833}
3834#else
3835#define skb_update_prio(skb)
3836#endif
3837
95603e22
MM
3838/**
3839 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3840 * @net: network namespace this loopback is happening in
3841 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3842 * @skb: buffer to transmit
3843 */
0c4b51f0 3844int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3845{
3846 skb_reset_mac_header(skb);
3847 __skb_pull(skb, skb_network_offset(skb));
3848 skb->pkt_type = PACKET_LOOPBACK;
3849 skb->ip_summed = CHECKSUM_UNNECESSARY;
3850 WARN_ON(!skb_dst(skb));
3851 skb_dst_force(skb);
3852 netif_rx_ni(skb);
3853 return 0;
3854}
3855EXPORT_SYMBOL(dev_loopback_xmit);
3856
1f211a1b
DB
3857#ifdef CONFIG_NET_EGRESS
3858static struct sk_buff *
3859sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3860{
46209401 3861 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3862 struct tcf_result cl_res;
3863
46209401 3864 if (!miniq)
1f211a1b
DB
3865 return skb;
3866
8dc07fdb 3867 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3868 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3869
46209401 3870 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3871 case TC_ACT_OK:
3872 case TC_ACT_RECLASSIFY:
3873 skb->tc_index = TC_H_MIN(cl_res.classid);
3874 break;
3875 case TC_ACT_SHOT:
46209401 3876 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3877 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3878 kfree_skb(skb);
3879 return NULL;
1f211a1b
DB
3880 case TC_ACT_STOLEN:
3881 case TC_ACT_QUEUED:
e25ea21f 3882 case TC_ACT_TRAP:
1f211a1b 3883 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3884 consume_skb(skb);
1f211a1b
DB
3885 return NULL;
3886 case TC_ACT_REDIRECT:
3887 /* No need to push/pop skb's mac_header here on egress! */
3888 skb_do_redirect(skb);
3889 *ret = NET_XMIT_SUCCESS;
3890 return NULL;
3891 default:
3892 break;
3893 }
357b6cc5 3894
1f211a1b
DB
3895 return skb;
3896}
3897#endif /* CONFIG_NET_EGRESS */
3898
fc9bab24
AN
3899#ifdef CONFIG_XPS
3900static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3901 struct xps_dev_maps *dev_maps, unsigned int tci)
3902{
3903 struct xps_map *map;
3904 int queue_index = -1;
3905
3906 if (dev->num_tc) {
3907 tci *= dev->num_tc;
3908 tci += netdev_get_prio_tc_map(dev, skb->priority);
3909 }
3910
3911 map = rcu_dereference(dev_maps->attr_map[tci]);
3912 if (map) {
3913 if (map->len == 1)
3914 queue_index = map->queues[0];
3915 else
3916 queue_index = map->queues[reciprocal_scale(
3917 skb_get_hash(skb), map->len)];
3918 if (unlikely(queue_index >= dev->real_num_tx_queues))
3919 queue_index = -1;
3920 }
3921 return queue_index;
3922}
3923#endif
3924
eadec877
AD
3925static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3926 struct sk_buff *skb)
638b2a69
JP
3927{
3928#ifdef CONFIG_XPS
3929 struct xps_dev_maps *dev_maps;
fc9bab24 3930 struct sock *sk = skb->sk;
638b2a69
JP
3931 int queue_index = -1;
3932
04157469
AN
3933 if (!static_key_false(&xps_needed))
3934 return -1;
3935
638b2a69 3936 rcu_read_lock();
fc9bab24
AN
3937 if (!static_key_false(&xps_rxqs_needed))
3938 goto get_cpus_map;
3939
eadec877 3940 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3941 if (dev_maps) {
fc9bab24 3942 int tci = sk_rx_queue_get(sk);
184c449f 3943
fc9bab24
AN
3944 if (tci >= 0 && tci < dev->num_rx_queues)
3945 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3946 tci);
3947 }
184c449f 3948
fc9bab24
AN
3949get_cpus_map:
3950 if (queue_index < 0) {
eadec877 3951 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3952 if (dev_maps) {
3953 unsigned int tci = skb->sender_cpu - 1;
3954
3955 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3956 tci);
638b2a69
JP
3957 }
3958 }
3959 rcu_read_unlock();
3960
3961 return queue_index;
3962#else
3963 return -1;
3964#endif
3965}
3966
a4ea8a3d 3967u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3968 struct net_device *sb_dev)
a4ea8a3d
AD
3969{
3970 return 0;
3971}
3972EXPORT_SYMBOL(dev_pick_tx_zero);
3973
3974u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3975 struct net_device *sb_dev)
a4ea8a3d
AD
3976{
3977 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3978}
3979EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3980
b71b5837
PA
3981u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3982 struct net_device *sb_dev)
638b2a69
JP
3983{
3984 struct sock *sk = skb->sk;
3985 int queue_index = sk_tx_queue_get(sk);
3986
eadec877
AD
3987 sb_dev = sb_dev ? : dev;
3988
638b2a69
JP
3989 if (queue_index < 0 || skb->ooo_okay ||
3990 queue_index >= dev->real_num_tx_queues) {
eadec877 3991 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3992
638b2a69 3993 if (new_index < 0)
eadec877 3994 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3995
3996 if (queue_index != new_index && sk &&
004a5d01 3997 sk_fullsock(sk) &&
638b2a69
JP
3998 rcu_access_pointer(sk->sk_dst_cache))
3999 sk_tx_queue_set(sk, new_index);
4000
4001 queue_index = new_index;
4002 }
4003
4004 return queue_index;
4005}
b71b5837 4006EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 4007
4bd97d51
PA
4008struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4009 struct sk_buff *skb,
4010 struct net_device *sb_dev)
638b2a69
JP
4011{
4012 int queue_index = 0;
4013
4014#ifdef CONFIG_XPS
52bd2d62
ED
4015 u32 sender_cpu = skb->sender_cpu - 1;
4016
4017 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
4018 skb->sender_cpu = raw_smp_processor_id() + 1;
4019#endif
4020
4021 if (dev->real_num_tx_queues != 1) {
4022 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 4023
638b2a69 4024 if (ops->ndo_select_queue)
a350ecce 4025 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 4026 else
4bd97d51 4027 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 4028
d584527c 4029 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
4030 }
4031
4032 skb_set_queue_mapping(skb, queue_index);
4033 return netdev_get_tx_queue(dev, queue_index);
4034}
4035
d29f749e 4036/**
9d08dd3d 4037 * __dev_queue_xmit - transmit a buffer
d29f749e 4038 * @skb: buffer to transmit
eadec877 4039 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
4040 *
4041 * Queue a buffer for transmission to a network device. The caller must
4042 * have set the device and priority and built the buffer before calling
4043 * this function. The function can be called from an interrupt.
4044 *
4045 * A negative errno code is returned on a failure. A success does not
4046 * guarantee the frame will be transmitted as it may be dropped due
4047 * to congestion or traffic shaping.
4048 *
4049 * -----------------------------------------------------------------------------------
4050 * I notice this method can also return errors from the queue disciplines,
4051 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4052 * be positive.
4053 *
4054 * Regardless of the return value, the skb is consumed, so it is currently
4055 * difficult to retry a send to this method. (You can bump the ref count
4056 * before sending to hold a reference for retry if you are careful.)
4057 *
4058 * When calling this method, interrupts MUST be enabled. This is because
4059 * the BH enable code must have IRQs enabled so that it will not deadlock.
4060 * --BLG
4061 */
eadec877 4062static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
4063{
4064 struct net_device *dev = skb->dev;
dc2b4847 4065 struct netdev_queue *txq;
1da177e4
LT
4066 struct Qdisc *q;
4067 int rc = -ENOMEM;
f53c7239 4068 bool again = false;
1da177e4 4069
6d1ccff6
ED
4070 skb_reset_mac_header(skb);
4071
e7fd2885
WB
4072 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4073 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4074
4ec93edb
YH
4075 /* Disable soft irqs for various locks below. Also
4076 * stops preemption for RCU.
1da177e4 4077 */
4ec93edb 4078 rcu_read_lock_bh();
1da177e4 4079
5bc1421e
NH
4080 skb_update_prio(skb);
4081
1f211a1b
DB
4082 qdisc_pkt_len_init(skb);
4083#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4084 skb->tc_at_ingress = 0;
357b6cc5 4085# ifdef CONFIG_NET_EGRESS
aabf6772 4086 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4087 skb = sch_handle_egress(skb, &rc, dev);
4088 if (!skb)
4089 goto out;
4090 }
357b6cc5 4091# endif
1f211a1b 4092#endif
02875878
ED
4093 /* If device/qdisc don't need skb->dst, release it right now while
4094 * its hot in this cpu cache.
4095 */
4096 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4097 skb_dst_drop(skb);
4098 else
4099 skb_dst_force(skb);
4100
4bd97d51 4101 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4102 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4103
cf66ba58 4104 trace_net_dev_queue(skb);
1da177e4 4105 if (q->enqueue) {
bbd8a0d3 4106 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4107 goto out;
1da177e4
LT
4108 }
4109
4110 /* The device has no queue. Common case for software devices:
eb13da1a 4111 * loopback, all the sorts of tunnels...
1da177e4 4112
eb13da1a 4113 * Really, it is unlikely that netif_tx_lock protection is necessary
4114 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4115 * counters.)
4116 * However, it is possible, that they rely on protection
4117 * made by us here.
1da177e4 4118
eb13da1a 4119 * Check this and shot the lock. It is not prone from deadlocks.
4120 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4121 */
4122 if (dev->flags & IFF_UP) {
4123 int cpu = smp_processor_id(); /* ok because BHs are off */
4124
c773e847 4125 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4126 if (dev_xmit_recursion())
745e20f1
ED
4127 goto recursion_alert;
4128
f53c7239 4129 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4130 if (!skb)
d21fd63e 4131 goto out;
1f59533f 4132
c773e847 4133 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4134
73466498 4135 if (!netif_xmit_stopped(txq)) {
97cdcf37 4136 dev_xmit_recursion_inc();
ce93718f 4137 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4138 dev_xmit_recursion_dec();
572a9d7b 4139 if (dev_xmit_complete(rc)) {
c773e847 4140 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4141 goto out;
4142 }
4143 }
c773e847 4144 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4145 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4146 dev->name);
1da177e4
LT
4147 } else {
4148 /* Recursion is detected! It is possible,
745e20f1
ED
4149 * unfortunately
4150 */
4151recursion_alert:
e87cc472
JP
4152 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4153 dev->name);
1da177e4
LT
4154 }
4155 }
4156
4157 rc = -ENETDOWN;
d4828d85 4158 rcu_read_unlock_bh();
1da177e4 4159
015f0688 4160 atomic_long_inc(&dev->tx_dropped);
1f59533f 4161 kfree_skb_list(skb);
1da177e4
LT
4162 return rc;
4163out:
d4828d85 4164 rcu_read_unlock_bh();
1da177e4
LT
4165 return rc;
4166}
f663dd9a 4167
2b4aa3ce 4168int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4169{
4170 return __dev_queue_xmit(skb, NULL);
4171}
2b4aa3ce 4172EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4173
eadec877 4174int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4175{
eadec877 4176 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4177}
4178EXPORT_SYMBOL(dev_queue_xmit_accel);
4179
865b03f2
MK
4180int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4181{
4182 struct net_device *dev = skb->dev;
4183 struct sk_buff *orig_skb = skb;
4184 struct netdev_queue *txq;
4185 int ret = NETDEV_TX_BUSY;
4186 bool again = false;
4187
4188 if (unlikely(!netif_running(dev) ||
4189 !netif_carrier_ok(dev)))
4190 goto drop;
4191
4192 skb = validate_xmit_skb_list(skb, dev, &again);
4193 if (skb != orig_skb)
4194 goto drop;
4195
4196 skb_set_queue_mapping(skb, queue_id);
4197 txq = skb_get_tx_queue(dev, skb);
4198
4199 local_bh_disable();
4200
0ad6f6e7 4201 dev_xmit_recursion_inc();
865b03f2
MK
4202 HARD_TX_LOCK(dev, txq, smp_processor_id());
4203 if (!netif_xmit_frozen_or_drv_stopped(txq))
4204 ret = netdev_start_xmit(skb, dev, txq, false);
4205 HARD_TX_UNLOCK(dev, txq);
0ad6f6e7 4206 dev_xmit_recursion_dec();
865b03f2
MK
4207
4208 local_bh_enable();
4209
4210 if (!dev_xmit_complete(ret))
4211 kfree_skb(skb);
4212
4213 return ret;
4214drop:
4215 atomic_long_inc(&dev->tx_dropped);
4216 kfree_skb_list(skb);
4217 return NET_XMIT_DROP;
4218}
4219EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 4220
eb13da1a 4221/*************************************************************************
4222 * Receiver routines
4223 *************************************************************************/
1da177e4 4224
6b2bedc3 4225int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4226EXPORT_SYMBOL(netdev_max_backlog);
4227
3b098e2d 4228int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4229int netdev_budget __read_mostly = 300;
a4837980
KK
4230/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4231unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4232int weight_p __read_mostly = 64; /* old backlog weight */
4233int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4234int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4235int dev_rx_weight __read_mostly = 64;
4236int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4237/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4238int gro_normal_batch __read_mostly = 8;
1da177e4 4239
eecfd7c4
ED
4240/* Called with irq disabled */
4241static inline void ____napi_schedule(struct softnet_data *sd,
4242 struct napi_struct *napi)
4243{
4244 list_add_tail(&napi->poll_list, &sd->poll_list);
4245 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4246}
4247
bfb564e7
KK
4248#ifdef CONFIG_RPS
4249
4250/* One global table that all flow-based protocols share. */
6e3f7faf 4251struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4252EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4253u32 rps_cpu_mask __read_mostly;
4254EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4255
dc05360f 4256struct static_key_false rps_needed __read_mostly;
3df97ba8 4257EXPORT_SYMBOL(rps_needed);
dc05360f 4258struct static_key_false rfs_needed __read_mostly;
13bfff25 4259EXPORT_SYMBOL(rfs_needed);
adc9300e 4260
c445477d
BH
4261static struct rps_dev_flow *
4262set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4263 struct rps_dev_flow *rflow, u16 next_cpu)
4264{
a31196b0 4265 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4266#ifdef CONFIG_RFS_ACCEL
4267 struct netdev_rx_queue *rxqueue;
4268 struct rps_dev_flow_table *flow_table;
4269 struct rps_dev_flow *old_rflow;
4270 u32 flow_id;
4271 u16 rxq_index;
4272 int rc;
4273
4274 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4275 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4276 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4277 goto out;
4278 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4279 if (rxq_index == skb_get_rx_queue(skb))
4280 goto out;
4281
4282 rxqueue = dev->_rx + rxq_index;
4283 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4284 if (!flow_table)
4285 goto out;
61b905da 4286 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4287 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4288 rxq_index, flow_id);
4289 if (rc < 0)
4290 goto out;
4291 old_rflow = rflow;
4292 rflow = &flow_table->flows[flow_id];
c445477d
BH
4293 rflow->filter = rc;
4294 if (old_rflow->filter == rflow->filter)
4295 old_rflow->filter = RPS_NO_FILTER;
4296 out:
4297#endif
4298 rflow->last_qtail =
09994d1b 4299 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4300 }
4301
09994d1b 4302 rflow->cpu = next_cpu;
c445477d
BH
4303 return rflow;
4304}
4305
bfb564e7
KK
4306/*
4307 * get_rps_cpu is called from netif_receive_skb and returns the target
4308 * CPU from the RPS map of the receiving queue for a given skb.
4309 * rcu_read_lock must be held on entry.
4310 */
4311static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4312 struct rps_dev_flow **rflowp)
4313{
567e4b79
ED
4314 const struct rps_sock_flow_table *sock_flow_table;
4315 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4316 struct rps_dev_flow_table *flow_table;
567e4b79 4317 struct rps_map *map;
bfb564e7 4318 int cpu = -1;
567e4b79 4319 u32 tcpu;
61b905da 4320 u32 hash;
bfb564e7
KK
4321
4322 if (skb_rx_queue_recorded(skb)) {
4323 u16 index = skb_get_rx_queue(skb);
567e4b79 4324
62fe0b40
BH
4325 if (unlikely(index >= dev->real_num_rx_queues)) {
4326 WARN_ONCE(dev->real_num_rx_queues > 1,
4327 "%s received packet on queue %u, but number "
4328 "of RX queues is %u\n",
4329 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4330 goto done;
4331 }
567e4b79
ED
4332 rxqueue += index;
4333 }
bfb564e7 4334
567e4b79
ED
4335 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4336
4337 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4338 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4339 if (!flow_table && !map)
bfb564e7
KK
4340 goto done;
4341
2d47b459 4342 skb_reset_network_header(skb);
61b905da
TH
4343 hash = skb_get_hash(skb);
4344 if (!hash)
bfb564e7
KK
4345 goto done;
4346
fec5e652
TH
4347 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4348 if (flow_table && sock_flow_table) {
fec5e652 4349 struct rps_dev_flow *rflow;
567e4b79
ED
4350 u32 next_cpu;
4351 u32 ident;
4352
4353 /* First check into global flow table if there is a match */
4354 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4355 if ((ident ^ hash) & ~rps_cpu_mask)
4356 goto try_rps;
fec5e652 4357
567e4b79
ED
4358 next_cpu = ident & rps_cpu_mask;
4359
4360 /* OK, now we know there is a match,
4361 * we can look at the local (per receive queue) flow table
4362 */
61b905da 4363 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4364 tcpu = rflow->cpu;
4365
fec5e652
TH
4366 /*
4367 * If the desired CPU (where last recvmsg was done) is
4368 * different from current CPU (one in the rx-queue flow
4369 * table entry), switch if one of the following holds:
a31196b0 4370 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4371 * - Current CPU is offline.
4372 * - The current CPU's queue tail has advanced beyond the
4373 * last packet that was enqueued using this table entry.
4374 * This guarantees that all previous packets for the flow
4375 * have been dequeued, thus preserving in order delivery.
4376 */
4377 if (unlikely(tcpu != next_cpu) &&
a31196b0 4378 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4379 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4380 rflow->last_qtail)) >= 0)) {
4381 tcpu = next_cpu;
c445477d 4382 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4383 }
c445477d 4384
a31196b0 4385 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4386 *rflowp = rflow;
4387 cpu = tcpu;
4388 goto done;
4389 }
4390 }
4391
567e4b79
ED
4392try_rps:
4393
0a9627f2 4394 if (map) {
8fc54f68 4395 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4396 if (cpu_online(tcpu)) {
4397 cpu = tcpu;
4398 goto done;
4399 }
4400 }
4401
4402done:
0a9627f2
TH
4403 return cpu;
4404}
4405
c445477d
BH
4406#ifdef CONFIG_RFS_ACCEL
4407
4408/**
4409 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4410 * @dev: Device on which the filter was set
4411 * @rxq_index: RX queue index
4412 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4413 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4414 *
4415 * Drivers that implement ndo_rx_flow_steer() should periodically call
4416 * this function for each installed filter and remove the filters for
4417 * which it returns %true.
4418 */
4419bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4420 u32 flow_id, u16 filter_id)
4421{
4422 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4423 struct rps_dev_flow_table *flow_table;
4424 struct rps_dev_flow *rflow;
4425 bool expire = true;
a31196b0 4426 unsigned int cpu;
c445477d
BH
4427
4428 rcu_read_lock();
4429 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430 if (flow_table && flow_id <= flow_table->mask) {
4431 rflow = &flow_table->flows[flow_id];
6aa7de05 4432 cpu = READ_ONCE(rflow->cpu);
a31196b0 4433 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4434 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4435 rflow->last_qtail) <
4436 (int)(10 * flow_table->mask)))
4437 expire = false;
4438 }
4439 rcu_read_unlock();
4440 return expire;
4441}
4442EXPORT_SYMBOL(rps_may_expire_flow);
4443
4444#endif /* CONFIG_RFS_ACCEL */
4445
0a9627f2 4446/* Called from hardirq (IPI) context */
e36fa2f7 4447static void rps_trigger_softirq(void *data)
0a9627f2 4448{
e36fa2f7
ED
4449 struct softnet_data *sd = data;
4450
eecfd7c4 4451 ____napi_schedule(sd, &sd->backlog);
dee42870 4452 sd->received_rps++;
0a9627f2 4453}
e36fa2f7 4454
fec5e652 4455#endif /* CONFIG_RPS */
0a9627f2 4456
e36fa2f7
ED
4457/*
4458 * Check if this softnet_data structure is another cpu one
4459 * If yes, queue it to our IPI list and return 1
4460 * If no, return 0
4461 */
4462static int rps_ipi_queued(struct softnet_data *sd)
4463{
4464#ifdef CONFIG_RPS
903ceff7 4465 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4466
4467 if (sd != mysd) {
4468 sd->rps_ipi_next = mysd->rps_ipi_list;
4469 mysd->rps_ipi_list = sd;
4470
4471 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472 return 1;
4473 }
4474#endif /* CONFIG_RPS */
4475 return 0;
4476}
4477
99bbc707
WB
4478#ifdef CONFIG_NET_FLOW_LIMIT
4479int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4480#endif
4481
4482static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4483{
4484#ifdef CONFIG_NET_FLOW_LIMIT
4485 struct sd_flow_limit *fl;
4486 struct softnet_data *sd;
4487 unsigned int old_flow, new_flow;
4488
4489 if (qlen < (netdev_max_backlog >> 1))
4490 return false;
4491
903ceff7 4492 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4493
4494 rcu_read_lock();
4495 fl = rcu_dereference(sd->flow_limit);
4496 if (fl) {
3958afa1 4497 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4498 old_flow = fl->history[fl->history_head];
4499 fl->history[fl->history_head] = new_flow;
4500
4501 fl->history_head++;
4502 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4503
4504 if (likely(fl->buckets[old_flow]))
4505 fl->buckets[old_flow]--;
4506
4507 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4508 fl->count++;
4509 rcu_read_unlock();
4510 return true;
4511 }
4512 }
4513 rcu_read_unlock();
4514#endif
4515 return false;
4516}
4517
0a9627f2
TH
4518/*
4519 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4520 * queue (may be a remote CPU queue).
4521 */
fec5e652
TH
4522static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4523 unsigned int *qtail)
0a9627f2 4524{
e36fa2f7 4525 struct softnet_data *sd;
0a9627f2 4526 unsigned long flags;
99bbc707 4527 unsigned int qlen;
0a9627f2 4528
e36fa2f7 4529 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4530
4531 local_irq_save(flags);
0a9627f2 4532
e36fa2f7 4533 rps_lock(sd);
e9e4dd32
JA
4534 if (!netif_running(skb->dev))
4535 goto drop;
99bbc707
WB
4536 qlen = skb_queue_len(&sd->input_pkt_queue);
4537 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4538 if (qlen) {
0a9627f2 4539enqueue:
e36fa2f7 4540 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4541 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4542 rps_unlock(sd);
152102c7 4543 local_irq_restore(flags);
0a9627f2
TH
4544 return NET_RX_SUCCESS;
4545 }
4546
ebda37c2
ED
4547 /* Schedule NAPI for backlog device
4548 * We can use non atomic operation since we own the queue lock
4549 */
4550 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4551 if (!rps_ipi_queued(sd))
eecfd7c4 4552 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4553 }
4554 goto enqueue;
4555 }
4556
e9e4dd32 4557drop:
dee42870 4558 sd->dropped++;
e36fa2f7 4559 rps_unlock(sd);
0a9627f2 4560
0a9627f2
TH
4561 local_irq_restore(flags);
4562
caf586e5 4563 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4564 kfree_skb(skb);
4565 return NET_RX_DROP;
4566}
1da177e4 4567
e817f856
JDB
4568static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4569{
4570 struct net_device *dev = skb->dev;
4571 struct netdev_rx_queue *rxqueue;
4572
4573 rxqueue = dev->_rx;
4574
4575 if (skb_rx_queue_recorded(skb)) {
4576 u16 index = skb_get_rx_queue(skb);
4577
4578 if (unlikely(index >= dev->real_num_rx_queues)) {
4579 WARN_ONCE(dev->real_num_rx_queues > 1,
4580 "%s received packet on queue %u, but number "
4581 "of RX queues is %u\n",
4582 dev->name, index, dev->real_num_rx_queues);
4583
4584 return rxqueue; /* Return first rxqueue */
4585 }
4586 rxqueue += index;
4587 }
4588 return rxqueue;
4589}
4590
d4455169 4591static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4592 struct xdp_buff *xdp,
d4455169
JF
4593 struct bpf_prog *xdp_prog)
4594{
e817f856 4595 struct netdev_rx_queue *rxqueue;
198d83bb 4596 void *orig_data, *orig_data_end;
de8f3a83 4597 u32 metalen, act = XDP_DROP;
29724956
JDB
4598 __be16 orig_eth_type;
4599 struct ethhdr *eth;
4600 bool orig_bcast;
d4455169
JF
4601 int hlen, off;
4602 u32 mac_len;
4603
4604 /* Reinjected packets coming from act_mirred or similar should
4605 * not get XDP generic processing.
4606 */
2c64605b 4607 if (skb_is_redirected(skb))
d4455169
JF
4608 return XDP_PASS;
4609
de8f3a83
DB
4610 /* XDP packets must be linear and must have sufficient headroom
4611 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4612 * native XDP provides, thus we need to do it here as well.
4613 */
ad1e03b2 4614 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
de8f3a83
DB
4615 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4616 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4617 int troom = skb->tail + skb->data_len - skb->end;
4618
4619 /* In case we have to go down the path and also linearize,
4620 * then lets do the pskb_expand_head() work just once here.
4621 */
4622 if (pskb_expand_head(skb,
4623 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4624 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4625 goto do_drop;
2d17d8d7 4626 if (skb_linearize(skb))
de8f3a83
DB
4627 goto do_drop;
4628 }
d4455169
JF
4629
4630 /* The XDP program wants to see the packet starting at the MAC
4631 * header.
4632 */
4633 mac_len = skb->data - skb_mac_header(skb);
4634 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4635 xdp->data = skb->data - mac_len;
4636 xdp->data_meta = xdp->data;
4637 xdp->data_end = xdp->data + hlen;
4638 xdp->data_hard_start = skb->data - skb_headroom(skb);
a075767b
JDB
4639
4640 /* SKB "head" area always have tailroom for skb_shared_info */
4641 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4642 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4643
02671e23
BT
4644 orig_data_end = xdp->data_end;
4645 orig_data = xdp->data;
29724956
JDB
4646 eth = (struct ethhdr *)xdp->data;
4647 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4648 orig_eth_type = eth->h_proto;
d4455169 4649
e817f856 4650 rxqueue = netif_get_rxqueue(skb);
02671e23 4651 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4652
02671e23 4653 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4654
065af355 4655 /* check if bpf_xdp_adjust_head was used */
02671e23 4656 off = xdp->data - orig_data;
065af355
JDB
4657 if (off) {
4658 if (off > 0)
4659 __skb_pull(skb, off);
4660 else if (off < 0)
4661 __skb_push(skb, -off);
4662
4663 skb->mac_header += off;
4664 skb_reset_network_header(skb);
4665 }
d4455169 4666
a075767b
JDB
4667 /* check if bpf_xdp_adjust_tail was used */
4668 off = xdp->data_end - orig_data_end;
f7613120 4669 if (off != 0) {
02671e23 4670 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
a075767b 4671 skb->len += off; /* positive on grow, negative on shrink */
f7613120 4672 }
198d83bb 4673
29724956
JDB
4674 /* check if XDP changed eth hdr such SKB needs update */
4675 eth = (struct ethhdr *)xdp->data;
4676 if ((orig_eth_type != eth->h_proto) ||
4677 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4678 __skb_push(skb, ETH_HLEN);
4679 skb->protocol = eth_type_trans(skb, skb->dev);
4680 }
4681
d4455169 4682 switch (act) {
6103aa96 4683 case XDP_REDIRECT:
d4455169
JF
4684 case XDP_TX:
4685 __skb_push(skb, mac_len);
de8f3a83 4686 break;
d4455169 4687 case XDP_PASS:
02671e23 4688 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4689 if (metalen)
4690 skb_metadata_set(skb, metalen);
d4455169 4691 break;
d4455169
JF
4692 default:
4693 bpf_warn_invalid_xdp_action(act);
df561f66 4694 fallthrough;
d4455169
JF
4695 case XDP_ABORTED:
4696 trace_xdp_exception(skb->dev, xdp_prog, act);
df561f66 4697 fallthrough;
d4455169
JF
4698 case XDP_DROP:
4699 do_drop:
4700 kfree_skb(skb);
4701 break;
4702 }
4703
4704 return act;
4705}
4706
4707/* When doing generic XDP we have to bypass the qdisc layer and the
4708 * network taps in order to match in-driver-XDP behavior.
4709 */
7c497478 4710void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4711{
4712 struct net_device *dev = skb->dev;
4713 struct netdev_queue *txq;
4714 bool free_skb = true;
4715 int cpu, rc;
4716
4bd97d51 4717 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4718 cpu = smp_processor_id();
4719 HARD_TX_LOCK(dev, txq, cpu);
4720 if (!netif_xmit_stopped(txq)) {
4721 rc = netdev_start_xmit(skb, dev, txq, 0);
4722 if (dev_xmit_complete(rc))
4723 free_skb = false;
4724 }
4725 HARD_TX_UNLOCK(dev, txq);
4726 if (free_skb) {
4727 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4728 kfree_skb(skb);
4729 }
4730}
4731
02786475 4732static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4733
7c497478 4734int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4735{
d4455169 4736 if (xdp_prog) {
02671e23
BT
4737 struct xdp_buff xdp;
4738 u32 act;
6103aa96 4739 int err;
d4455169 4740
02671e23 4741 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4742 if (act != XDP_PASS) {
6103aa96
JF
4743 switch (act) {
4744 case XDP_REDIRECT:
2facaad6 4745 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4746 &xdp, xdp_prog);
6103aa96
JF
4747 if (err)
4748 goto out_redir;
02671e23 4749 break;
6103aa96 4750 case XDP_TX:
d4455169 4751 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4752 break;
4753 }
d4455169
JF
4754 return XDP_DROP;
4755 }
4756 }
4757 return XDP_PASS;
6103aa96 4758out_redir:
6103aa96
JF
4759 kfree_skb(skb);
4760 return XDP_DROP;
d4455169 4761}
7c497478 4762EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4763
ae78dbfa 4764static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4765{
b0e28f1e 4766 int ret;
1da177e4 4767
588f0330 4768 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4769
cf66ba58 4770 trace_netif_rx(skb);
d4455169 4771
df334545 4772#ifdef CONFIG_RPS
dc05360f 4773 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4774 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4775 int cpu;
4776
cece1945 4777 preempt_disable();
b0e28f1e 4778 rcu_read_lock();
fec5e652
TH
4779
4780 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4781 if (cpu < 0)
4782 cpu = smp_processor_id();
fec5e652
TH
4783
4784 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4785
b0e28f1e 4786 rcu_read_unlock();
cece1945 4787 preempt_enable();
adc9300e
ED
4788 } else
4789#endif
fec5e652
TH
4790 {
4791 unsigned int qtail;
f4563a75 4792
fec5e652
TH
4793 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4794 put_cpu();
4795 }
b0e28f1e 4796 return ret;
1da177e4 4797}
ae78dbfa
BH
4798
4799/**
4800 * netif_rx - post buffer to the network code
4801 * @skb: buffer to post
4802 *
4803 * This function receives a packet from a device driver and queues it for
4804 * the upper (protocol) levels to process. It always succeeds. The buffer
4805 * may be dropped during processing for congestion control or by the
4806 * protocol layers.
4807 *
4808 * return values:
4809 * NET_RX_SUCCESS (no congestion)
4810 * NET_RX_DROP (packet was dropped)
4811 *
4812 */
4813
4814int netif_rx(struct sk_buff *skb)
4815{
b0e3f1bd
GB
4816 int ret;
4817
ae78dbfa
BH
4818 trace_netif_rx_entry(skb);
4819
b0e3f1bd
GB
4820 ret = netif_rx_internal(skb);
4821 trace_netif_rx_exit(ret);
4822
4823 return ret;
ae78dbfa 4824}
d1b19dff 4825EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4826
4827int netif_rx_ni(struct sk_buff *skb)
4828{
4829 int err;
4830
ae78dbfa
BH
4831 trace_netif_rx_ni_entry(skb);
4832
1da177e4 4833 preempt_disable();
ae78dbfa 4834 err = netif_rx_internal(skb);
1da177e4
LT
4835 if (local_softirq_pending())
4836 do_softirq();
4837 preempt_enable();
b0e3f1bd 4838 trace_netif_rx_ni_exit(err);
1da177e4
LT
4839
4840 return err;
4841}
1da177e4
LT
4842EXPORT_SYMBOL(netif_rx_ni);
4843
0766f788 4844static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4845{
903ceff7 4846 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4847
4848 if (sd->completion_queue) {
4849 struct sk_buff *clist;
4850
4851 local_irq_disable();
4852 clist = sd->completion_queue;
4853 sd->completion_queue = NULL;
4854 local_irq_enable();
4855
4856 while (clist) {
4857 struct sk_buff *skb = clist;
f4563a75 4858
1da177e4
LT
4859 clist = clist->next;
4860
63354797 4861 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4862 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4863 trace_consume_skb(skb);
4864 else
4865 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4866
4867 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4868 __kfree_skb(skb);
4869 else
4870 __kfree_skb_defer(skb);
1da177e4 4871 }
15fad714
JDB
4872
4873 __kfree_skb_flush();
1da177e4
LT
4874 }
4875
4876 if (sd->output_queue) {
37437bb2 4877 struct Qdisc *head;
1da177e4
LT
4878
4879 local_irq_disable();
4880 head = sd->output_queue;
4881 sd->output_queue = NULL;
a9cbd588 4882 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4883 local_irq_enable();
4884
4885 while (head) {
37437bb2 4886 struct Qdisc *q = head;
6b3ba914 4887 spinlock_t *root_lock = NULL;
37437bb2 4888
1da177e4
LT
4889 head = head->next_sched;
4890
6b3ba914
JF
4891 if (!(q->flags & TCQ_F_NOLOCK)) {
4892 root_lock = qdisc_lock(q);
4893 spin_lock(root_lock);
4894 }
3bcb846c
ED
4895 /* We need to make sure head->next_sched is read
4896 * before clearing __QDISC_STATE_SCHED
4897 */
4898 smp_mb__before_atomic();
4899 clear_bit(__QDISC_STATE_SCHED, &q->state);
4900 qdisc_run(q);
6b3ba914
JF
4901 if (root_lock)
4902 spin_unlock(root_lock);
1da177e4
LT
4903 }
4904 }
f53c7239
SK
4905
4906 xfrm_dev_backlog(sd);
1da177e4
LT
4907}
4908
181402a5 4909#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4910/* This hook is defined here for ATM LANE */
4911int (*br_fdb_test_addr_hook)(struct net_device *dev,
4912 unsigned char *addr) __read_mostly;
4fb019a0 4913EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4914#endif
1da177e4 4915
1f211a1b
DB
4916static inline struct sk_buff *
4917sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4918 struct net_device *orig_dev)
f697c3e8 4919{
e7582bab 4920#ifdef CONFIG_NET_CLS_ACT
46209401 4921 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4922 struct tcf_result cl_res;
24824a09 4923
c9e99fd0
DB
4924 /* If there's at least one ingress present somewhere (so
4925 * we get here via enabled static key), remaining devices
4926 * that are not configured with an ingress qdisc will bail
d2788d34 4927 * out here.
c9e99fd0 4928 */
46209401 4929 if (!miniq)
4577139b 4930 return skb;
46209401 4931
f697c3e8
HX
4932 if (*pt_prev) {
4933 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4934 *pt_prev = NULL;
1da177e4
LT
4935 }
4936
3365495c 4937 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4938 skb->tc_at_ingress = 1;
46209401 4939 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4940
7d17c544
PB
4941 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4942 &cl_res, false)) {
d2788d34
DB
4943 case TC_ACT_OK:
4944 case TC_ACT_RECLASSIFY:
4945 skb->tc_index = TC_H_MIN(cl_res.classid);
4946 break;
4947 case TC_ACT_SHOT:
46209401 4948 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4949 kfree_skb(skb);
4950 return NULL;
d2788d34
DB
4951 case TC_ACT_STOLEN:
4952 case TC_ACT_QUEUED:
e25ea21f 4953 case TC_ACT_TRAP:
8a3a4c6e 4954 consume_skb(skb);
d2788d34 4955 return NULL;
27b29f63
AS
4956 case TC_ACT_REDIRECT:
4957 /* skb_mac_header check was done by cls/act_bpf, so
4958 * we can safely push the L2 header back before
4959 * redirecting to another netdev
4960 */
4961 __skb_push(skb, skb->mac_len);
4962 skb_do_redirect(skb);
4963 return NULL;
720f22fe 4964 case TC_ACT_CONSUMED:
cd11b164 4965 return NULL;
d2788d34
DB
4966 default:
4967 break;
f697c3e8 4968 }
e7582bab 4969#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4970 return skb;
4971}
1da177e4 4972
24b27fc4
MB
4973/**
4974 * netdev_is_rx_handler_busy - check if receive handler is registered
4975 * @dev: device to check
4976 *
4977 * Check if a receive handler is already registered for a given device.
4978 * Return true if there one.
4979 *
4980 * The caller must hold the rtnl_mutex.
4981 */
4982bool netdev_is_rx_handler_busy(struct net_device *dev)
4983{
4984 ASSERT_RTNL();
4985 return dev && rtnl_dereference(dev->rx_handler);
4986}
4987EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4988
ab95bfe0
JP
4989/**
4990 * netdev_rx_handler_register - register receive handler
4991 * @dev: device to register a handler for
4992 * @rx_handler: receive handler to register
93e2c32b 4993 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4994 *
e227867f 4995 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4996 * called from __netif_receive_skb. A negative errno code is returned
4997 * on a failure.
4998 *
4999 * The caller must hold the rtnl_mutex.
8a4eb573
JP
5000 *
5001 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
5002 */
5003int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
5004 rx_handler_func_t *rx_handler,
5005 void *rx_handler_data)
ab95bfe0 5006{
1b7cd004 5007 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
5008 return -EBUSY;
5009
f5426250
PA
5010 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5011 return -EINVAL;
5012
00cfec37 5013 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 5014 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
5015 rcu_assign_pointer(dev->rx_handler, rx_handler);
5016
5017 return 0;
5018}
5019EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5020
5021/**
5022 * netdev_rx_handler_unregister - unregister receive handler
5023 * @dev: device to unregister a handler from
5024 *
166ec369 5025 * Unregister a receive handler from a device.
ab95bfe0
JP
5026 *
5027 * The caller must hold the rtnl_mutex.
5028 */
5029void netdev_rx_handler_unregister(struct net_device *dev)
5030{
5031
5032 ASSERT_RTNL();
a9b3cd7f 5033 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
5034 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5035 * section has a guarantee to see a non NULL rx_handler_data
5036 * as well.
5037 */
5038 synchronize_net();
a9b3cd7f 5039 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
5040}
5041EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5042
b4b9e355
MG
5043/*
5044 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5045 * the special handling of PFMEMALLOC skbs.
5046 */
5047static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5048{
5049 switch (skb->protocol) {
2b8837ae
JP
5050 case htons(ETH_P_ARP):
5051 case htons(ETH_P_IP):
5052 case htons(ETH_P_IPV6):
5053 case htons(ETH_P_8021Q):
5054 case htons(ETH_P_8021AD):
b4b9e355
MG
5055 return true;
5056 default:
5057 return false;
5058 }
5059}
5060
e687ad60
PN
5061static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5062 int *ret, struct net_device *orig_dev)
5063{
5064 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
5065 int ingress_retval;
5066
e687ad60
PN
5067 if (*pt_prev) {
5068 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5069 *pt_prev = NULL;
5070 }
5071
2c1e2703
AC
5072 rcu_read_lock();
5073 ingress_retval = nf_hook_ingress(skb);
5074 rcu_read_unlock();
5075 return ingress_retval;
e687ad60
PN
5076 }
5077 return 0;
5078}
e687ad60 5079
c0bbbdc3 5080static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
88eb1944 5081 struct packet_type **ppt_prev)
1da177e4
LT
5082{
5083 struct packet_type *ptype, *pt_prev;
ab95bfe0 5084 rx_handler_func_t *rx_handler;
c0bbbdc3 5085 struct sk_buff *skb = *pskb;
f2ccd8fa 5086 struct net_device *orig_dev;
8a4eb573 5087 bool deliver_exact = false;
1da177e4 5088 int ret = NET_RX_DROP;
252e3346 5089 __be16 type;
1da177e4 5090
588f0330 5091 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5092
cf66ba58 5093 trace_netif_receive_skb(skb);
9b22ea56 5094
cc9bd5ce 5095 orig_dev = skb->dev;
8f903c70 5096
c1d2bbe1 5097 skb_reset_network_header(skb);
fda55eca
ED
5098 if (!skb_transport_header_was_set(skb))
5099 skb_reset_transport_header(skb);
0b5c9db1 5100 skb_reset_mac_len(skb);
1da177e4
LT
5101
5102 pt_prev = NULL;
5103
63d8ea7f 5104another_round:
b6858177 5105 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5106
5107 __this_cpu_inc(softnet_data.processed);
5108
458bf2f2
SH
5109 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5110 int ret2;
5111
5112 preempt_disable();
5113 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5114 preempt_enable();
5115
c0bbbdc3
BS
5116 if (ret2 != XDP_PASS) {
5117 ret = NET_RX_DROP;
5118 goto out;
5119 }
458bf2f2
SH
5120 skb_reset_mac_len(skb);
5121 }
5122
8ad227ff
PM
5123 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5124 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 5125 skb = skb_vlan_untag(skb);
bcc6d479 5126 if (unlikely(!skb))
2c17d27c 5127 goto out;
bcc6d479
JP
5128 }
5129
e7246e12
WB
5130 if (skb_skip_tc_classify(skb))
5131 goto skip_classify;
1da177e4 5132
9754e293 5133 if (pfmemalloc)
b4b9e355
MG
5134 goto skip_taps;
5135
1da177e4 5136 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5137 if (pt_prev)
5138 ret = deliver_skb(skb, pt_prev, orig_dev);
5139 pt_prev = ptype;
5140 }
5141
5142 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5143 if (pt_prev)
5144 ret = deliver_skb(skb, pt_prev, orig_dev);
5145 pt_prev = ptype;
1da177e4
LT
5146 }
5147
b4b9e355 5148skip_taps:
1cf51900 5149#ifdef CONFIG_NET_INGRESS
aabf6772 5150 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 5151 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 5152 if (!skb)
2c17d27c 5153 goto out;
e687ad60
PN
5154
5155 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5156 goto out;
4577139b 5157 }
1cf51900 5158#endif
2c64605b 5159 skb_reset_redirect(skb);
e7246e12 5160skip_classify:
9754e293 5161 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5162 goto drop;
5163
df8a39de 5164 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5165 if (pt_prev) {
5166 ret = deliver_skb(skb, pt_prev, orig_dev);
5167 pt_prev = NULL;
5168 }
48cc32d3 5169 if (vlan_do_receive(&skb))
2425717b
JF
5170 goto another_round;
5171 else if (unlikely(!skb))
2c17d27c 5172 goto out;
2425717b
JF
5173 }
5174
48cc32d3 5175 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5176 if (rx_handler) {
5177 if (pt_prev) {
5178 ret = deliver_skb(skb, pt_prev, orig_dev);
5179 pt_prev = NULL;
5180 }
8a4eb573
JP
5181 switch (rx_handler(&skb)) {
5182 case RX_HANDLER_CONSUMED:
3bc1b1ad 5183 ret = NET_RX_SUCCESS;
2c17d27c 5184 goto out;
8a4eb573 5185 case RX_HANDLER_ANOTHER:
63d8ea7f 5186 goto another_round;
8a4eb573
JP
5187 case RX_HANDLER_EXACT:
5188 deliver_exact = true;
5189 case RX_HANDLER_PASS:
5190 break;
5191 default:
5192 BUG();
5193 }
ab95bfe0 5194 }
1da177e4 5195
b14a9fc4 5196 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
36b2f61a
GV
5197check_vlan_id:
5198 if (skb_vlan_tag_get_id(skb)) {
5199 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5200 * find vlan device.
5201 */
d4b812de 5202 skb->pkt_type = PACKET_OTHERHOST;
36b2f61a
GV
5203 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5204 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5205 /* Outer header is 802.1P with vlan 0, inner header is
5206 * 802.1Q or 802.1AD and vlan_do_receive() above could
5207 * not find vlan dev for vlan id 0.
5208 */
5209 __vlan_hwaccel_clear_tag(skb);
5210 skb = skb_vlan_untag(skb);
5211 if (unlikely(!skb))
5212 goto out;
5213 if (vlan_do_receive(&skb))
5214 /* After stripping off 802.1P header with vlan 0
5215 * vlan dev is found for inner header.
5216 */
5217 goto another_round;
5218 else if (unlikely(!skb))
5219 goto out;
5220 else
5221 /* We have stripped outer 802.1P vlan 0 header.
5222 * But could not find vlan dev.
5223 * check again for vlan id to set OTHERHOST.
5224 */
5225 goto check_vlan_id;
5226 }
d4b812de
ED
5227 /* Note: we might in the future use prio bits
5228 * and set skb->priority like in vlan_do_receive()
5229 * For the time being, just ignore Priority Code Point
5230 */
b1817524 5231 __vlan_hwaccel_clear_tag(skb);
d4b812de 5232 }
48cc32d3 5233
7866a621
SN
5234 type = skb->protocol;
5235
63d8ea7f 5236 /* deliver only exact match when indicated */
7866a621
SN
5237 if (likely(!deliver_exact)) {
5238 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5239 &ptype_base[ntohs(type) &
5240 PTYPE_HASH_MASK]);
5241 }
1f3c8804 5242
7866a621
SN
5243 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5244 &orig_dev->ptype_specific);
5245
5246 if (unlikely(skb->dev != orig_dev)) {
5247 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5248 &skb->dev->ptype_specific);
1da177e4
LT
5249 }
5250
5251 if (pt_prev) {
1f8b977a 5252 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5253 goto drop;
88eb1944 5254 *ppt_prev = pt_prev;
1da177e4 5255 } else {
b4b9e355 5256drop:
6e7333d3
JW
5257 if (!deliver_exact)
5258 atomic_long_inc(&skb->dev->rx_dropped);
5259 else
5260 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5261 kfree_skb(skb);
5262 /* Jamal, now you will not able to escape explaining
5263 * me how you were going to use this. :-)
5264 */
5265 ret = NET_RX_DROP;
5266 }
5267
2c17d27c 5268out:
c0bbbdc3
BS
5269 /* The invariant here is that if *ppt_prev is not NULL
5270 * then skb should also be non-NULL.
5271 *
5272 * Apparently *ppt_prev assignment above holds this invariant due to
5273 * skb dereferencing near it.
5274 */
5275 *pskb = skb;
9754e293
DM
5276 return ret;
5277}
5278
88eb1944
EC
5279static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5280{
5281 struct net_device *orig_dev = skb->dev;
5282 struct packet_type *pt_prev = NULL;
5283 int ret;
5284
c0bbbdc3 5285 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
88eb1944 5286 if (pt_prev)
f5737cba
PA
5287 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5288 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5289 return ret;
5290}
5291
1c601d82
JDB
5292/**
5293 * netif_receive_skb_core - special purpose version of netif_receive_skb
5294 * @skb: buffer to process
5295 *
5296 * More direct receive version of netif_receive_skb(). It should
5297 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5298 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5299 *
5300 * This function may only be called from softirq context and interrupts
5301 * should be enabled.
5302 *
5303 * Return values (usually ignored):
5304 * NET_RX_SUCCESS: no congestion
5305 * NET_RX_DROP: packet was dropped
5306 */
5307int netif_receive_skb_core(struct sk_buff *skb)
5308{
5309 int ret;
5310
5311 rcu_read_lock();
88eb1944 5312 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5313 rcu_read_unlock();
5314
5315 return ret;
5316}
5317EXPORT_SYMBOL(netif_receive_skb_core);
5318
88eb1944
EC
5319static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5320 struct packet_type *pt_prev,
5321 struct net_device *orig_dev)
4ce0017a
EC
5322{
5323 struct sk_buff *skb, *next;
5324
88eb1944
EC
5325 if (!pt_prev)
5326 return;
5327 if (list_empty(head))
5328 return;
17266ee9 5329 if (pt_prev->list_func != NULL)
fdf71426
PA
5330 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5331 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5332 else
9a5a90d1
AL
5333 list_for_each_entry_safe(skb, next, head, list) {
5334 skb_list_del_init(skb);
fdf71426 5335 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5336 }
88eb1944
EC
5337}
5338
5339static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5340{
5341 /* Fast-path assumptions:
5342 * - There is no RX handler.
5343 * - Only one packet_type matches.
5344 * If either of these fails, we will end up doing some per-packet
5345 * processing in-line, then handling the 'last ptype' for the whole
5346 * sublist. This can't cause out-of-order delivery to any single ptype,
5347 * because the 'last ptype' must be constant across the sublist, and all
5348 * other ptypes are handled per-packet.
5349 */
5350 /* Current (common) ptype of sublist */
5351 struct packet_type *pt_curr = NULL;
5352 /* Current (common) orig_dev of sublist */
5353 struct net_device *od_curr = NULL;
5354 struct list_head sublist;
5355 struct sk_buff *skb, *next;
5356
9af86f93 5357 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5358 list_for_each_entry_safe(skb, next, head, list) {
5359 struct net_device *orig_dev = skb->dev;
5360 struct packet_type *pt_prev = NULL;
5361
22f6bbb7 5362 skb_list_del_init(skb);
c0bbbdc3 5363 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
9af86f93
EC
5364 if (!pt_prev)
5365 continue;
88eb1944
EC
5366 if (pt_curr != pt_prev || od_curr != orig_dev) {
5367 /* dispatch old sublist */
88eb1944
EC
5368 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5369 /* start new sublist */
9af86f93 5370 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5371 pt_curr = pt_prev;
5372 od_curr = orig_dev;
5373 }
9af86f93 5374 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5375 }
5376
5377 /* dispatch final sublist */
9af86f93 5378 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5379}
5380
9754e293
DM
5381static int __netif_receive_skb(struct sk_buff *skb)
5382{
5383 int ret;
5384
5385 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5386 unsigned int noreclaim_flag;
9754e293
DM
5387
5388 /*
5389 * PFMEMALLOC skbs are special, they should
5390 * - be delivered to SOCK_MEMALLOC sockets only
5391 * - stay away from userspace
5392 * - have bounded memory usage
5393 *
5394 * Use PF_MEMALLOC as this saves us from propagating the allocation
5395 * context down to all allocation sites.
5396 */
f1083048 5397 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5398 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5399 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5400 } else
88eb1944 5401 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5402
1da177e4
LT
5403 return ret;
5404}
0a9627f2 5405
4ce0017a
EC
5406static void __netif_receive_skb_list(struct list_head *head)
5407{
5408 unsigned long noreclaim_flag = 0;
5409 struct sk_buff *skb, *next;
5410 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5411
5412 list_for_each_entry_safe(skb, next, head, list) {
5413 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5414 struct list_head sublist;
5415
5416 /* Handle the previous sublist */
5417 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5418 if (!list_empty(&sublist))
5419 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5420 pfmemalloc = !pfmemalloc;
5421 /* See comments in __netif_receive_skb */
5422 if (pfmemalloc)
5423 noreclaim_flag = memalloc_noreclaim_save();
5424 else
5425 memalloc_noreclaim_restore(noreclaim_flag);
5426 }
5427 }
5428 /* Handle the remaining sublist */
b9f463d6
EC
5429 if (!list_empty(head))
5430 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5431 /* Restore pflags */
5432 if (pfmemalloc)
5433 memalloc_noreclaim_restore(noreclaim_flag);
5434}
5435
f4e63525 5436static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5437{
58038695 5438 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5439 struct bpf_prog *new = xdp->prog;
5440 int ret = 0;
5441
fbee97fe
DA
5442 if (new) {
5443 u32 i;
5444
5445 /* generic XDP does not work with DEVMAPs that can
5446 * have a bpf_prog installed on an entry
5447 */
5448 for (i = 0; i < new->aux->used_map_cnt; i++) {
5449 if (dev_map_can_have_prog(new->aux->used_maps[i]))
5450 return -EINVAL;
92164774
LB
5451 if (cpu_map_prog_allowed(new->aux->used_maps[i]))
5452 return -EINVAL;
fbee97fe
DA
5453 }
5454 }
5455
b5cdae32 5456 switch (xdp->command) {
58038695 5457 case XDP_SETUP_PROG:
b5cdae32
DM
5458 rcu_assign_pointer(dev->xdp_prog, new);
5459 if (old)
5460 bpf_prog_put(old);
5461
5462 if (old && !new) {
02786475 5463 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5464 } else if (new && !old) {
02786475 5465 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5466 dev_disable_lro(dev);
56f5aa77 5467 dev_disable_gro_hw(dev);
b5cdae32
DM
5468 }
5469 break;
b5cdae32 5470
b5cdae32
DM
5471 default:
5472 ret = -EINVAL;
5473 break;
5474 }
5475
5476 return ret;
5477}
5478
ae78dbfa 5479static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5480{
2c17d27c
JA
5481 int ret;
5482
588f0330 5483 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5484
c1f19b51
RC
5485 if (skb_defer_rx_timestamp(skb))
5486 return NET_RX_SUCCESS;
5487
bbbe211c 5488 rcu_read_lock();
df334545 5489#ifdef CONFIG_RPS
dc05360f 5490 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5491 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5492 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5493
3b098e2d
ED
5494 if (cpu >= 0) {
5495 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5496 rcu_read_unlock();
adc9300e 5497 return ret;
3b098e2d 5498 }
fec5e652 5499 }
1e94d72f 5500#endif
2c17d27c
JA
5501 ret = __netif_receive_skb(skb);
5502 rcu_read_unlock();
5503 return ret;
0a9627f2 5504}
ae78dbfa 5505
7da517a3
EC
5506static void netif_receive_skb_list_internal(struct list_head *head)
5507{
7da517a3 5508 struct sk_buff *skb, *next;
8c057efa 5509 struct list_head sublist;
7da517a3 5510
8c057efa 5511 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5512 list_for_each_entry_safe(skb, next, head, list) {
5513 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5514 skb_list_del_init(skb);
8c057efa
EC
5515 if (!skb_defer_rx_timestamp(skb))
5516 list_add_tail(&skb->list, &sublist);
7da517a3 5517 }
8c057efa 5518 list_splice_init(&sublist, head);
7da517a3 5519
7da517a3
EC
5520 rcu_read_lock();
5521#ifdef CONFIG_RPS
dc05360f 5522 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5523 list_for_each_entry_safe(skb, next, head, list) {
5524 struct rps_dev_flow voidflow, *rflow = &voidflow;
5525 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5526
5527 if (cpu >= 0) {
8c057efa 5528 /* Will be handled, remove from list */
22f6bbb7 5529 skb_list_del_init(skb);
8c057efa 5530 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5531 }
5532 }
5533 }
5534#endif
5535 __netif_receive_skb_list(head);
5536 rcu_read_unlock();
5537}
5538
ae78dbfa
BH
5539/**
5540 * netif_receive_skb - process receive buffer from network
5541 * @skb: buffer to process
5542 *
5543 * netif_receive_skb() is the main receive data processing function.
5544 * It always succeeds. The buffer may be dropped during processing
5545 * for congestion control or by the protocol layers.
5546 *
5547 * This function may only be called from softirq context and interrupts
5548 * should be enabled.
5549 *
5550 * Return values (usually ignored):
5551 * NET_RX_SUCCESS: no congestion
5552 * NET_RX_DROP: packet was dropped
5553 */
04eb4489 5554int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5555{
b0e3f1bd
GB
5556 int ret;
5557
ae78dbfa
BH
5558 trace_netif_receive_skb_entry(skb);
5559
b0e3f1bd
GB
5560 ret = netif_receive_skb_internal(skb);
5561 trace_netif_receive_skb_exit(ret);
5562
5563 return ret;
ae78dbfa 5564}
04eb4489 5565EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5566
f6ad8c1b
EC
5567/**
5568 * netif_receive_skb_list - process many receive buffers from network
5569 * @head: list of skbs to process.
5570 *
7da517a3
EC
5571 * Since return value of netif_receive_skb() is normally ignored, and
5572 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5573 *
5574 * This function may only be called from softirq context and interrupts
5575 * should be enabled.
5576 */
5577void netif_receive_skb_list(struct list_head *head)
5578{
7da517a3 5579 struct sk_buff *skb;
f6ad8c1b 5580
b9f463d6
EC
5581 if (list_empty(head))
5582 return;
b0e3f1bd
GB
5583 if (trace_netif_receive_skb_list_entry_enabled()) {
5584 list_for_each_entry(skb, head, list)
5585 trace_netif_receive_skb_list_entry(skb);
5586 }
7da517a3 5587 netif_receive_skb_list_internal(head);
b0e3f1bd 5588 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5589}
5590EXPORT_SYMBOL(netif_receive_skb_list);
5591
ce1e2a77 5592static DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5593
5594/* Network device is going away, flush any packets still pending */
5595static void flush_backlog(struct work_struct *work)
6e583ce5 5596{
6e583ce5 5597 struct sk_buff *skb, *tmp;
145dd5f9
PA
5598 struct softnet_data *sd;
5599
5600 local_bh_disable();
5601 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5602
145dd5f9 5603 local_irq_disable();
e36fa2f7 5604 rps_lock(sd);
6e7676c1 5605 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5606 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5607 __skb_unlink(skb, &sd->input_pkt_queue);
7df5cb75 5608 dev_kfree_skb_irq(skb);
76cc8b13 5609 input_queue_head_incr(sd);
6e583ce5 5610 }
6e7676c1 5611 }
e36fa2f7 5612 rps_unlock(sd);
145dd5f9 5613 local_irq_enable();
6e7676c1
CG
5614
5615 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5616 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5617 __skb_unlink(skb, &sd->process_queue);
5618 kfree_skb(skb);
76cc8b13 5619 input_queue_head_incr(sd);
6e7676c1
CG
5620 }
5621 }
145dd5f9
PA
5622 local_bh_enable();
5623}
5624
2de79ee2
PA
5625static bool flush_required(int cpu)
5626{
5627#if IS_ENABLED(CONFIG_RPS)
5628 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5629 bool do_flush;
5630
5631 local_irq_disable();
5632 rps_lock(sd);
5633
5634 /* as insertion into process_queue happens with the rps lock held,
5635 * process_queue access may race only with dequeue
5636 */
5637 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5638 !skb_queue_empty_lockless(&sd->process_queue);
5639 rps_unlock(sd);
5640 local_irq_enable();
5641
5642 return do_flush;
5643#endif
5644 /* without RPS we can't safely check input_pkt_queue: during a
5645 * concurrent remote skb_queue_splice() we can detect as empty both
5646 * input_pkt_queue and process_queue even if the latter could end-up
5647 * containing a lot of packets.
5648 */
5649 return true;
5650}
5651
41852497 5652static void flush_all_backlogs(void)
145dd5f9 5653{
2de79ee2 5654 static cpumask_t flush_cpus;
145dd5f9
PA
5655 unsigned int cpu;
5656
2de79ee2
PA
5657 /* since we are under rtnl lock protection we can use static data
5658 * for the cpumask and avoid allocating on stack the possibly
5659 * large mask
5660 */
5661 ASSERT_RTNL();
5662
145dd5f9
PA
5663 get_online_cpus();
5664
2de79ee2
PA
5665 cpumask_clear(&flush_cpus);
5666 for_each_online_cpu(cpu) {
5667 if (flush_required(cpu)) {
5668 queue_work_on(cpu, system_highpri_wq,
5669 per_cpu_ptr(&flush_works, cpu));
5670 cpumask_set_cpu(cpu, &flush_cpus);
5671 }
5672 }
145dd5f9 5673
2de79ee2
PA
5674 /* we can have in flight packet[s] on the cpus we are not flushing,
5675 * synchronize_net() in rollback_registered_many() will take care of
5676 * them
5677 */
5678 for_each_cpu(cpu, &flush_cpus)
41852497 5679 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5680
5681 put_online_cpus();
6e583ce5
SH
5682}
5683
c8079432
MM
5684/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5685static void gro_normal_list(struct napi_struct *napi)
5686{
5687 if (!napi->rx_count)
5688 return;
5689 netif_receive_skb_list_internal(&napi->rx_list);
5690 INIT_LIST_HEAD(&napi->rx_list);
5691 napi->rx_count = 0;
5692}
5693
5694/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5695 * pass the whole batch up to the stack.
5696 */
5697static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5698{
5699 list_add_tail(&skb->list, &napi->rx_list);
5700 if (++napi->rx_count >= gro_normal_batch)
5701 gro_normal_list(napi);
5702}
5703
aaa5d90b
PA
5704INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5705INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
c8079432 5706static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5707{
22061d80 5708 struct packet_offload *ptype;
d565b0a1 5709 __be16 type = skb->protocol;
22061d80 5710 struct list_head *head = &offload_base;
d565b0a1
HX
5711 int err = -ENOENT;
5712
c3c7c254
ED
5713 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5714
fc59f9a3
HX
5715 if (NAPI_GRO_CB(skb)->count == 1) {
5716 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5717 goto out;
fc59f9a3 5718 }
d565b0a1
HX
5719
5720 rcu_read_lock();
5721 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5722 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5723 continue;
5724
aaa5d90b
PA
5725 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5726 ipv6_gro_complete, inet_gro_complete,
5727 skb, 0);
d565b0a1
HX
5728 break;
5729 }
5730 rcu_read_unlock();
5731
5732 if (err) {
5733 WARN_ON(&ptype->list == head);
5734 kfree_skb(skb);
5735 return NET_RX_SUCCESS;
5736 }
5737
5738out:
c8079432
MM
5739 gro_normal_one(napi, skb);
5740 return NET_RX_SUCCESS;
d565b0a1
HX
5741}
5742
6312fe77 5743static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5744 bool flush_old)
d565b0a1 5745{
6312fe77 5746 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5747 struct sk_buff *skb, *p;
2e71a6f8 5748
07d78363 5749 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5750 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5751 return;
992cba7e 5752 skb_list_del_init(skb);
c8079432 5753 napi_gro_complete(napi, skb);
6312fe77 5754 napi->gro_hash[index].count--;
d565b0a1 5755 }
d9f37d01
LR
5756
5757 if (!napi->gro_hash[index].count)
5758 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5759}
07d78363 5760
6312fe77 5761/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5762 * youngest packets at the head of it.
5763 * Complete skbs in reverse order to reduce latencies.
5764 */
5765void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5766{
42519ede
ED
5767 unsigned long bitmask = napi->gro_bitmask;
5768 unsigned int i, base = ~0U;
07d78363 5769
42519ede
ED
5770 while ((i = ffs(bitmask)) != 0) {
5771 bitmask >>= i;
5772 base += i;
5773 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5774 }
07d78363 5775}
86cac58b 5776EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5777
07d78363
DM
5778static struct list_head *gro_list_prepare(struct napi_struct *napi,
5779 struct sk_buff *skb)
89c5fa33 5780{
89c5fa33 5781 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5782 u32 hash = skb_get_hash_raw(skb);
07d78363 5783 struct list_head *head;
d4546c25 5784 struct sk_buff *p;
89c5fa33 5785
6312fe77 5786 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5787 list_for_each_entry(p, head, list) {
89c5fa33
ED
5788 unsigned long diffs;
5789
0b4cec8c
TH
5790 NAPI_GRO_CB(p)->flush = 0;
5791
5792 if (hash != skb_get_hash_raw(p)) {
5793 NAPI_GRO_CB(p)->same_flow = 0;
5794 continue;
5795 }
5796
89c5fa33 5797 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5798 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5799 if (skb_vlan_tag_present(p))
fc5141cb 5800 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
ce87fc6c 5801 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5802 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5803 if (maclen == ETH_HLEN)
5804 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5805 skb_mac_header(skb));
89c5fa33
ED
5806 else if (!diffs)
5807 diffs = memcmp(skb_mac_header(p),
a50e233c 5808 skb_mac_header(skb),
89c5fa33
ED
5809 maclen);
5810 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5811 }
07d78363
DM
5812
5813 return head;
89c5fa33
ED
5814}
5815
299603e8
JC
5816static void skb_gro_reset_offset(struct sk_buff *skb)
5817{
5818 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5819 const skb_frag_t *frag0 = &pinfo->frags[0];
5820
5821 NAPI_GRO_CB(skb)->data_offset = 0;
5822 NAPI_GRO_CB(skb)->frag0 = NULL;
5823 NAPI_GRO_CB(skb)->frag0_len = 0;
5824
8aef998d 5825 if (!skb_headlen(skb) && pinfo->nr_frags &&
299603e8
JC
5826 !PageHighMem(skb_frag_page(frag0))) {
5827 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5828 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5829 skb_frag_size(frag0),
5830 skb->end - skb->tail);
89c5fa33
ED
5831 }
5832}
5833
a50e233c
ED
5834static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5835{
5836 struct skb_shared_info *pinfo = skb_shinfo(skb);
5837
5838 BUG_ON(skb->end - skb->tail < grow);
5839
5840 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5841
5842 skb->data_len -= grow;
5843 skb->tail += grow;
5844
b54c9d5b 5845 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5846 skb_frag_size_sub(&pinfo->frags[0], grow);
5847
5848 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5849 skb_frag_unref(skb, 0);
5850 memmove(pinfo->frags, pinfo->frags + 1,
5851 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5852 }
5853}
5854
c8079432 5855static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 5856{
6312fe77 5857 struct sk_buff *oldest;
07d78363 5858
6312fe77 5859 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5860
6312fe77 5861 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5862 * impossible.
5863 */
5864 if (WARN_ON_ONCE(!oldest))
5865 return;
5866
d9f37d01
LR
5867 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5868 * SKB to the chain.
07d78363 5869 */
ece23711 5870 skb_list_del_init(oldest);
c8079432 5871 napi_gro_complete(napi, oldest);
07d78363
DM
5872}
5873
aaa5d90b
PA
5874INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5875 struct sk_buff *));
5876INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5877 struct sk_buff *));
bb728820 5878static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5879{
6312fe77 5880 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5881 struct list_head *head = &offload_base;
22061d80 5882 struct packet_offload *ptype;
d565b0a1 5883 __be16 type = skb->protocol;
07d78363 5884 struct list_head *gro_head;
d4546c25 5885 struct sk_buff *pp = NULL;
5b252f0c 5886 enum gro_result ret;
d4546c25 5887 int same_flow;
a50e233c 5888 int grow;
d565b0a1 5889
b5cdae32 5890 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5891 goto normal;
5892
07d78363 5893 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5894
d565b0a1
HX
5895 rcu_read_lock();
5896 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5897 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5898 continue;
5899
86911732 5900 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5901 skb_reset_mac_len(skb);
d565b0a1 5902 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5903 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5904 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5905 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5906 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5907 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5908 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5909 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5910
662880f4
TH
5911 /* Setup for GRO checksum validation */
5912 switch (skb->ip_summed) {
5913 case CHECKSUM_COMPLETE:
5914 NAPI_GRO_CB(skb)->csum = skb->csum;
5915 NAPI_GRO_CB(skb)->csum_valid = 1;
5916 NAPI_GRO_CB(skb)->csum_cnt = 0;
5917 break;
5918 case CHECKSUM_UNNECESSARY:
5919 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5920 NAPI_GRO_CB(skb)->csum_valid = 0;
5921 break;
5922 default:
5923 NAPI_GRO_CB(skb)->csum_cnt = 0;
5924 NAPI_GRO_CB(skb)->csum_valid = 0;
5925 }
d565b0a1 5926
aaa5d90b
PA
5927 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5928 ipv6_gro_receive, inet_gro_receive,
5929 gro_head, skb);
d565b0a1
HX
5930 break;
5931 }
5932 rcu_read_unlock();
5933
5934 if (&ptype->list == head)
5935 goto normal;
5936
45586c70 5937 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
5938 ret = GRO_CONSUMED;
5939 goto ok;
5940 }
5941
0da2afd5 5942 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5943 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5944
d565b0a1 5945 if (pp) {
992cba7e 5946 skb_list_del_init(pp);
c8079432 5947 napi_gro_complete(napi, pp);
6312fe77 5948 napi->gro_hash[hash].count--;
d565b0a1
HX
5949 }
5950
0da2afd5 5951 if (same_flow)
d565b0a1
HX
5952 goto ok;
5953
600adc18 5954 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5955 goto normal;
d565b0a1 5956
6312fe77 5957 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
c8079432 5958 gro_flush_oldest(napi, gro_head);
600adc18 5959 } else {
6312fe77 5960 napi->gro_hash[hash].count++;
600adc18 5961 }
d565b0a1 5962 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5963 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5964 NAPI_GRO_CB(skb)->last = skb;
86911732 5965 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5966 list_add(&skb->list, gro_head);
5d0d9be8 5967 ret = GRO_HELD;
d565b0a1 5968
ad0f9904 5969pull:
a50e233c
ED
5970 grow = skb_gro_offset(skb) - skb_headlen(skb);
5971 if (grow > 0)
5972 gro_pull_from_frag0(skb, grow);
d565b0a1 5973ok:
d9f37d01
LR
5974 if (napi->gro_hash[hash].count) {
5975 if (!test_bit(hash, &napi->gro_bitmask))
5976 __set_bit(hash, &napi->gro_bitmask);
5977 } else if (test_bit(hash, &napi->gro_bitmask)) {
5978 __clear_bit(hash, &napi->gro_bitmask);
5979 }
5980
5d0d9be8 5981 return ret;
d565b0a1
HX
5982
5983normal:
ad0f9904
HX
5984 ret = GRO_NORMAL;
5985 goto pull;
5d38a079 5986}
96e93eab 5987
bf5a755f
JC
5988struct packet_offload *gro_find_receive_by_type(__be16 type)
5989{
5990 struct list_head *offload_head = &offload_base;
5991 struct packet_offload *ptype;
5992
5993 list_for_each_entry_rcu(ptype, offload_head, list) {
5994 if (ptype->type != type || !ptype->callbacks.gro_receive)
5995 continue;
5996 return ptype;
5997 }
5998 return NULL;
5999}
e27a2f83 6000EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
6001
6002struct packet_offload *gro_find_complete_by_type(__be16 type)
6003{
6004 struct list_head *offload_head = &offload_base;
6005 struct packet_offload *ptype;
6006
6007 list_for_each_entry_rcu(ptype, offload_head, list) {
6008 if (ptype->type != type || !ptype->callbacks.gro_complete)
6009 continue;
6010 return ptype;
6011 }
6012 return NULL;
6013}
e27a2f83 6014EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 6015
e44699d2
MK
6016static void napi_skb_free_stolen_head(struct sk_buff *skb)
6017{
6018 skb_dst_drop(skb);
174e2381 6019 skb_ext_put(skb);
e44699d2
MK
6020 kmem_cache_free(skbuff_head_cache, skb);
6021}
6022
6570bc79
AL
6023static gro_result_t napi_skb_finish(struct napi_struct *napi,
6024 struct sk_buff *skb,
6025 gro_result_t ret)
5d38a079 6026{
5d0d9be8
HX
6027 switch (ret) {
6028 case GRO_NORMAL:
6570bc79 6029 gro_normal_one(napi, skb);
c7c4b3b6 6030 break;
5d38a079 6031
5d0d9be8 6032 case GRO_DROP:
5d38a079
HX
6033 kfree_skb(skb);
6034 break;
5b252f0c 6035
daa86548 6036 case GRO_MERGED_FREE:
e44699d2
MK
6037 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6038 napi_skb_free_stolen_head(skb);
6039 else
d7e8883c 6040 __kfree_skb(skb);
daa86548
ED
6041 break;
6042
5b252f0c
BH
6043 case GRO_HELD:
6044 case GRO_MERGED:
25393d3f 6045 case GRO_CONSUMED:
5b252f0c 6046 break;
5d38a079
HX
6047 }
6048
c7c4b3b6 6049 return ret;
5d0d9be8 6050}
5d0d9be8 6051
c7c4b3b6 6052gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 6053{
b0e3f1bd
GB
6054 gro_result_t ret;
6055
93f93a44 6056 skb_mark_napi_id(skb, napi);
ae78dbfa 6057 trace_napi_gro_receive_entry(skb);
86911732 6058
a50e233c
ED
6059 skb_gro_reset_offset(skb);
6060
6570bc79 6061 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
6062 trace_napi_gro_receive_exit(ret);
6063
6064 return ret;
d565b0a1
HX
6065}
6066EXPORT_SYMBOL(napi_gro_receive);
6067
d0c2b0d2 6068static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 6069{
93a35f59
ED
6070 if (unlikely(skb->pfmemalloc)) {
6071 consume_skb(skb);
6072 return;
6073 }
96e93eab 6074 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
6075 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6076 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 6077 __vlan_hwaccel_clear_tag(skb);
66c46d74 6078 skb->dev = napi->dev;
6d152e23 6079 skb->skb_iif = 0;
33d9a2c7
ED
6080
6081 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6082 skb->pkt_type = PACKET_HOST;
6083
c3caf119
JC
6084 skb->encapsulation = 0;
6085 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 6086 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 6087 skb_ext_reset(skb);
96e93eab
HX
6088
6089 napi->skb = skb;
6090}
96e93eab 6091
76620aaf 6092struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 6093{
5d38a079 6094 struct sk_buff *skb = napi->skb;
5d38a079
HX
6095
6096 if (!skb) {
fd11a83d 6097 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
6098 if (skb) {
6099 napi->skb = skb;
6100 skb_mark_napi_id(skb, napi);
6101 }
80595d59 6102 }
96e93eab
HX
6103 return skb;
6104}
76620aaf 6105EXPORT_SYMBOL(napi_get_frags);
96e93eab 6106
a50e233c
ED
6107static gro_result_t napi_frags_finish(struct napi_struct *napi,
6108 struct sk_buff *skb,
6109 gro_result_t ret)
96e93eab 6110{
5d0d9be8
HX
6111 switch (ret) {
6112 case GRO_NORMAL:
a50e233c
ED
6113 case GRO_HELD:
6114 __skb_push(skb, ETH_HLEN);
6115 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61
EC
6116 if (ret == GRO_NORMAL)
6117 gro_normal_one(napi, skb);
86911732 6118 break;
5d38a079 6119
5d0d9be8 6120 case GRO_DROP:
5d0d9be8
HX
6121 napi_reuse_skb(napi, skb);
6122 break;
5b252f0c 6123
e44699d2
MK
6124 case GRO_MERGED_FREE:
6125 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6126 napi_skb_free_stolen_head(skb);
6127 else
6128 napi_reuse_skb(napi, skb);
6129 break;
6130
5b252f0c 6131 case GRO_MERGED:
25393d3f 6132 case GRO_CONSUMED:
5b252f0c 6133 break;
5d0d9be8 6134 }
5d38a079 6135
c7c4b3b6 6136 return ret;
5d38a079 6137}
5d0d9be8 6138
a50e233c
ED
6139/* Upper GRO stack assumes network header starts at gro_offset=0
6140 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6141 * We copy ethernet header into skb->data to have a common layout.
6142 */
4adb9c4a 6143static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
6144{
6145 struct sk_buff *skb = napi->skb;
a50e233c
ED
6146 const struct ethhdr *eth;
6147 unsigned int hlen = sizeof(*eth);
76620aaf
HX
6148
6149 napi->skb = NULL;
6150
a50e233c
ED
6151 skb_reset_mac_header(skb);
6152 skb_gro_reset_offset(skb);
6153
a50e233c
ED
6154 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6155 eth = skb_gro_header_slow(skb, hlen, 0);
6156 if (unlikely(!eth)) {
4da46ceb
AC
6157 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6158 __func__, napi->dev->name);
a50e233c
ED
6159 napi_reuse_skb(napi, skb);
6160 return NULL;
6161 }
6162 } else {
a4270d67 6163 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6164 gro_pull_from_frag0(skb, hlen);
6165 NAPI_GRO_CB(skb)->frag0 += hlen;
6166 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6167 }
a50e233c
ED
6168 __skb_pull(skb, hlen);
6169
6170 /*
6171 * This works because the only protocols we care about don't require
6172 * special handling.
6173 * We'll fix it up properly in napi_frags_finish()
6174 */
6175 skb->protocol = eth->h_proto;
76620aaf 6176
76620aaf
HX
6177 return skb;
6178}
76620aaf 6179
c7c4b3b6 6180gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6181{
b0e3f1bd 6182 gro_result_t ret;
76620aaf 6183 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
6184
6185 if (!skb)
c7c4b3b6 6186 return GRO_DROP;
5d0d9be8 6187
ae78dbfa
BH
6188 trace_napi_gro_frags_entry(skb);
6189
b0e3f1bd
GB
6190 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6191 trace_napi_gro_frags_exit(ret);
6192
6193 return ret;
5d0d9be8 6194}
5d38a079
HX
6195EXPORT_SYMBOL(napi_gro_frags);
6196
573e8fca
TH
6197/* Compute the checksum from gro_offset and return the folded value
6198 * after adding in any pseudo checksum.
6199 */
6200__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6201{
6202 __wsum wsum;
6203 __sum16 sum;
6204
6205 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6206
6207 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6208 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6209 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6210 if (likely(!sum)) {
6211 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6212 !skb->csum_complete_sw)
7fe50ac8 6213 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6214 }
6215
6216 NAPI_GRO_CB(skb)->csum = wsum;
6217 NAPI_GRO_CB(skb)->csum_valid = 1;
6218
6219 return sum;
6220}
6221EXPORT_SYMBOL(__skb_gro_checksum_complete);
6222
773fc8f6 6223static void net_rps_send_ipi(struct softnet_data *remsd)
6224{
6225#ifdef CONFIG_RPS
6226 while (remsd) {
6227 struct softnet_data *next = remsd->rps_ipi_next;
6228
6229 if (cpu_online(remsd->cpu))
6230 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6231 remsd = next;
6232 }
6233#endif
6234}
6235
e326bed2 6236/*
855abcf0 6237 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6238 * Note: called with local irq disabled, but exits with local irq enabled.
6239 */
6240static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6241{
6242#ifdef CONFIG_RPS
6243 struct softnet_data *remsd = sd->rps_ipi_list;
6244
6245 if (remsd) {
6246 sd->rps_ipi_list = NULL;
6247
6248 local_irq_enable();
6249
6250 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6251 net_rps_send_ipi(remsd);
e326bed2
ED
6252 } else
6253#endif
6254 local_irq_enable();
6255}
6256
d75b1ade
ED
6257static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6258{
6259#ifdef CONFIG_RPS
6260 return sd->rps_ipi_list != NULL;
6261#else
6262 return false;
6263#endif
6264}
6265
bea3348e 6266static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6267{
eecfd7c4 6268 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6269 bool again = true;
6270 int work = 0;
1da177e4 6271
e326bed2
ED
6272 /* Check if we have pending ipi, its better to send them now,
6273 * not waiting net_rx_action() end.
6274 */
d75b1ade 6275 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6276 local_irq_disable();
6277 net_rps_action_and_irq_enable(sd);
6278 }
d75b1ade 6279
3d48b53f 6280 napi->weight = dev_rx_weight;
145dd5f9 6281 while (again) {
1da177e4 6282 struct sk_buff *skb;
6e7676c1
CG
6283
6284 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6285 rcu_read_lock();
6e7676c1 6286 __netif_receive_skb(skb);
2c17d27c 6287 rcu_read_unlock();
76cc8b13 6288 input_queue_head_incr(sd);
145dd5f9 6289 if (++work >= quota)
76cc8b13 6290 return work;
145dd5f9 6291
6e7676c1 6292 }
1da177e4 6293
145dd5f9 6294 local_irq_disable();
e36fa2f7 6295 rps_lock(sd);
11ef7a89 6296 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6297 /*
6298 * Inline a custom version of __napi_complete().
6299 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6300 * and NAPI_STATE_SCHED is the only possible flag set
6301 * on backlog.
6302 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6303 * and we dont need an smp_mb() memory barrier.
6304 */
eecfd7c4 6305 napi->state = 0;
145dd5f9
PA
6306 again = false;
6307 } else {
6308 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6309 &sd->process_queue);
bea3348e 6310 }
e36fa2f7 6311 rps_unlock(sd);
145dd5f9 6312 local_irq_enable();
6e7676c1 6313 }
1da177e4 6314
bea3348e
SH
6315 return work;
6316}
1da177e4 6317
bea3348e
SH
6318/**
6319 * __napi_schedule - schedule for receive
c4ea43c5 6320 * @n: entry to schedule
bea3348e 6321 *
bc9ad166
ED
6322 * The entry's receive function will be scheduled to run.
6323 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6324 */
b5606c2d 6325void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6326{
6327 unsigned long flags;
1da177e4 6328
bea3348e 6329 local_irq_save(flags);
903ceff7 6330 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6331 local_irq_restore(flags);
1da177e4 6332}
bea3348e
SH
6333EXPORT_SYMBOL(__napi_schedule);
6334
39e6c820
ED
6335/**
6336 * napi_schedule_prep - check if napi can be scheduled
6337 * @n: napi context
6338 *
6339 * Test if NAPI routine is already running, and if not mark
ee1a4c84 6340 * it as running. This is used as a condition variable to
39e6c820
ED
6341 * insure only one NAPI poll instance runs. We also make
6342 * sure there is no pending NAPI disable.
6343 */
6344bool napi_schedule_prep(struct napi_struct *n)
6345{
6346 unsigned long val, new;
6347
6348 do {
6349 val = READ_ONCE(n->state);
6350 if (unlikely(val & NAPIF_STATE_DISABLE))
6351 return false;
6352 new = val | NAPIF_STATE_SCHED;
6353
6354 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6355 * This was suggested by Alexander Duyck, as compiler
6356 * emits better code than :
6357 * if (val & NAPIF_STATE_SCHED)
6358 * new |= NAPIF_STATE_MISSED;
6359 */
6360 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6361 NAPIF_STATE_MISSED;
6362 } while (cmpxchg(&n->state, val, new) != val);
6363
6364 return !(val & NAPIF_STATE_SCHED);
6365}
6366EXPORT_SYMBOL(napi_schedule_prep);
6367
bc9ad166
ED
6368/**
6369 * __napi_schedule_irqoff - schedule for receive
6370 * @n: entry to schedule
6371 *
6372 * Variant of __napi_schedule() assuming hard irqs are masked
6373 */
6374void __napi_schedule_irqoff(struct napi_struct *n)
6375{
6376 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6377}
6378EXPORT_SYMBOL(__napi_schedule_irqoff);
6379
364b6055 6380bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6381{
6f8b12d6
ED
6382 unsigned long flags, val, new, timeout = 0;
6383 bool ret = true;
d565b0a1
HX
6384
6385 /*
217f6974
ED
6386 * 1) Don't let napi dequeue from the cpu poll list
6387 * just in case its running on a different cpu.
6388 * 2) If we are busy polling, do nothing here, we have
6389 * the guarantee we will be called later.
d565b0a1 6390 */
217f6974
ED
6391 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6392 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6393 return false;
d565b0a1 6394
6f8b12d6
ED
6395 if (work_done) {
6396 if (n->gro_bitmask)
7e417a66
ED
6397 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6398 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
6399 }
6400 if (n->defer_hard_irqs_count > 0) {
6401 n->defer_hard_irqs_count--;
7e417a66 6402 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
6403 if (timeout)
6404 ret = false;
6405 }
6406 if (n->gro_bitmask) {
605108ac
PA
6407 /* When the NAPI instance uses a timeout and keeps postponing
6408 * it, we need to bound somehow the time packets are kept in
6409 * the GRO layer
6410 */
6411 napi_gro_flush(n, !!timeout);
3b47d303 6412 }
c8079432
MM
6413
6414 gro_normal_list(n);
6415
02c1602e 6416 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6417 /* If n->poll_list is not empty, we need to mask irqs */
6418 local_irq_save(flags);
02c1602e 6419 list_del_init(&n->poll_list);
d75b1ade
ED
6420 local_irq_restore(flags);
6421 }
39e6c820
ED
6422
6423 do {
6424 val = READ_ONCE(n->state);
6425
6426 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6427
6428 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6429
6430 /* If STATE_MISSED was set, leave STATE_SCHED set,
6431 * because we will call napi->poll() one more time.
6432 * This C code was suggested by Alexander Duyck to help gcc.
6433 */
6434 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6435 NAPIF_STATE_SCHED;
6436 } while (cmpxchg(&n->state, val, new) != val);
6437
6438 if (unlikely(val & NAPIF_STATE_MISSED)) {
6439 __napi_schedule(n);
6440 return false;
6441 }
6442
6f8b12d6
ED
6443 if (timeout)
6444 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6445 HRTIMER_MODE_REL_PINNED);
6446 return ret;
d565b0a1 6447}
3b47d303 6448EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6449
af12fa6e 6450/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6451static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6452{
6453 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6454 struct napi_struct *napi;
6455
6456 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6457 if (napi->napi_id == napi_id)
6458 return napi;
6459
6460 return NULL;
6461}
02d62e86
ED
6462
6463#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6464
ce6aea93 6465#define BUSY_POLL_BUDGET 8
217f6974
ED
6466
6467static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6468{
6469 int rc;
6470
39e6c820
ED
6471 /* Busy polling means there is a high chance device driver hard irq
6472 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6473 * set in napi_schedule_prep().
6474 * Since we are about to call napi->poll() once more, we can safely
6475 * clear NAPI_STATE_MISSED.
6476 *
6477 * Note: x86 could use a single "lock and ..." instruction
6478 * to perform these two clear_bit()
6479 */
6480 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6481 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6482
6483 local_bh_disable();
6484
6485 /* All we really want here is to re-enable device interrupts.
6486 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6487 */
6488 rc = napi->poll(napi, BUSY_POLL_BUDGET);
323ebb61
EC
6489 /* We can't gro_normal_list() here, because napi->poll() might have
6490 * rearmed the napi (napi_complete_done()) in which case it could
6491 * already be running on another CPU.
6492 */
1e22391e 6493 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974 6494 netpoll_poll_unlock(have_poll_lock);
323ebb61
EC
6495 if (rc == BUSY_POLL_BUDGET) {
6496 /* As the whole budget was spent, we still own the napi so can
6497 * safely handle the rx_list.
6498 */
6499 gro_normal_list(napi);
217f6974 6500 __napi_schedule(napi);
323ebb61 6501 }
217f6974 6502 local_bh_enable();
217f6974
ED
6503}
6504
7db6b048
SS
6505void napi_busy_loop(unsigned int napi_id,
6506 bool (*loop_end)(void *, unsigned long),
6507 void *loop_end_arg)
02d62e86 6508{
7db6b048 6509 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6510 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6511 void *have_poll_lock = NULL;
02d62e86 6512 struct napi_struct *napi;
217f6974
ED
6513
6514restart:
217f6974 6515 napi_poll = NULL;
02d62e86 6516
2a028ecb 6517 rcu_read_lock();
02d62e86 6518
545cd5e5 6519 napi = napi_by_id(napi_id);
02d62e86
ED
6520 if (!napi)
6521 goto out;
6522
217f6974
ED
6523 preempt_disable();
6524 for (;;) {
2b5cd0df
AD
6525 int work = 0;
6526
2a028ecb 6527 local_bh_disable();
217f6974
ED
6528 if (!napi_poll) {
6529 unsigned long val = READ_ONCE(napi->state);
6530
6531 /* If multiple threads are competing for this napi,
6532 * we avoid dirtying napi->state as much as we can.
6533 */
6534 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6535 NAPIF_STATE_IN_BUSY_POLL))
6536 goto count;
6537 if (cmpxchg(&napi->state, val,
6538 val | NAPIF_STATE_IN_BUSY_POLL |
6539 NAPIF_STATE_SCHED) != val)
6540 goto count;
6541 have_poll_lock = netpoll_poll_lock(napi);
6542 napi_poll = napi->poll;
6543 }
2b5cd0df
AD
6544 work = napi_poll(napi, BUSY_POLL_BUDGET);
6545 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
323ebb61 6546 gro_normal_list(napi);
217f6974 6547count:
2b5cd0df 6548 if (work > 0)
7db6b048 6549 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6550 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6551 local_bh_enable();
02d62e86 6552
7db6b048 6553 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6554 break;
02d62e86 6555
217f6974
ED
6556 if (unlikely(need_resched())) {
6557 if (napi_poll)
6558 busy_poll_stop(napi, have_poll_lock);
6559 preempt_enable();
6560 rcu_read_unlock();
6561 cond_resched();
7db6b048 6562 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6563 return;
217f6974
ED
6564 goto restart;
6565 }
6cdf89b1 6566 cpu_relax();
217f6974
ED
6567 }
6568 if (napi_poll)
6569 busy_poll_stop(napi, have_poll_lock);
6570 preempt_enable();
02d62e86 6571out:
2a028ecb 6572 rcu_read_unlock();
02d62e86 6573}
7db6b048 6574EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6575
6576#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6577
149d6ad8 6578static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6579{
4d092dd2 6580 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
52bd2d62 6581 return;
af12fa6e 6582
52bd2d62 6583 spin_lock(&napi_hash_lock);
af12fa6e 6584
545cd5e5 6585 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6586 do {
545cd5e5
AD
6587 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6588 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6589 } while (napi_by_id(napi_gen_id));
6590 napi->napi_id = napi_gen_id;
af12fa6e 6591
52bd2d62
ED
6592 hlist_add_head_rcu(&napi->napi_hash_node,
6593 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6594
52bd2d62 6595 spin_unlock(&napi_hash_lock);
af12fa6e 6596}
af12fa6e
ET
6597
6598/* Warning : caller is responsible to make sure rcu grace period
6599 * is respected before freeing memory containing @napi
6600 */
5198d545 6601static void napi_hash_del(struct napi_struct *napi)
af12fa6e
ET
6602{
6603 spin_lock(&napi_hash_lock);
6604
4d092dd2 6605 hlist_del_init_rcu(&napi->napi_hash_node);
5198d545 6606
af12fa6e
ET
6607 spin_unlock(&napi_hash_lock);
6608}
af12fa6e 6609
3b47d303
ED
6610static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6611{
6612 struct napi_struct *napi;
6613
6614 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6615
6616 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6617 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6618 */
6f8b12d6 6619 if (!napi_disable_pending(napi) &&
39e6c820
ED
6620 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6621 __napi_schedule_irqoff(napi);
3b47d303
ED
6622
6623 return HRTIMER_NORESTART;
6624}
6625
7c4ec749 6626static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6627{
07d78363
DM
6628 int i;
6629
6312fe77
LR
6630 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6631 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6632 napi->gro_hash[i].count = 0;
6633 }
7c4ec749
DM
6634 napi->gro_bitmask = 0;
6635}
6636
6637void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6638 int (*poll)(struct napi_struct *, int), int weight)
6639{
4d092dd2
JK
6640 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6641 return;
6642
7c4ec749 6643 INIT_LIST_HEAD(&napi->poll_list);
4d092dd2 6644 INIT_HLIST_NODE(&napi->napi_hash_node);
7c4ec749
DM
6645 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6646 napi->timer.function = napi_watchdog;
6647 init_gro_hash(napi);
5d38a079 6648 napi->skb = NULL;
323ebb61
EC
6649 INIT_LIST_HEAD(&napi->rx_list);
6650 napi->rx_count = 0;
d565b0a1 6651 napi->poll = poll;
82dc3c63 6652 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6653 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6654 weight);
d565b0a1 6655 napi->weight = weight;
d565b0a1 6656 napi->dev = dev;
5d38a079 6657#ifdef CONFIG_NETPOLL
d565b0a1
HX
6658 napi->poll_owner = -1;
6659#endif
6660 set_bit(NAPI_STATE_SCHED, &napi->state);
96e97bc0
JK
6661 set_bit(NAPI_STATE_NPSVC, &napi->state);
6662 list_add_rcu(&napi->dev_list, &dev->napi_list);
93d05d4a 6663 napi_hash_add(napi);
d565b0a1
HX
6664}
6665EXPORT_SYMBOL(netif_napi_add);
6666
3b47d303
ED
6667void napi_disable(struct napi_struct *n)
6668{
6669 might_sleep();
6670 set_bit(NAPI_STATE_DISABLE, &n->state);
6671
6672 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6673 msleep(1);
2d8bff12
NH
6674 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6675 msleep(1);
3b47d303
ED
6676
6677 hrtimer_cancel(&n->timer);
6678
6679 clear_bit(NAPI_STATE_DISABLE, &n->state);
6680}
6681EXPORT_SYMBOL(napi_disable);
6682
07d78363 6683static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6684{
07d78363 6685 int i;
d4546c25 6686
07d78363
DM
6687 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6688 struct sk_buff *skb, *n;
6689
6312fe77 6690 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6691 kfree_skb(skb);
6312fe77 6692 napi->gro_hash[i].count = 0;
07d78363 6693 }
d4546c25
DM
6694}
6695
93d05d4a 6696/* Must be called in process context */
5198d545 6697void __netif_napi_del(struct napi_struct *napi)
d565b0a1 6698{
4d092dd2
JK
6699 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6700 return;
6701
5198d545 6702 napi_hash_del(napi);
5251ef82 6703 list_del_rcu(&napi->dev_list);
76620aaf 6704 napi_free_frags(napi);
d565b0a1 6705
07d78363 6706 flush_gro_hash(napi);
d9f37d01 6707 napi->gro_bitmask = 0;
d565b0a1 6708}
5198d545 6709EXPORT_SYMBOL(__netif_napi_del);
d565b0a1 6710
726ce70e
HX
6711static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6712{
6713 void *have;
6714 int work, weight;
6715
6716 list_del_init(&n->poll_list);
6717
6718 have = netpoll_poll_lock(n);
6719
6720 weight = n->weight;
6721
6722 /* This NAPI_STATE_SCHED test is for avoiding a race
6723 * with netpoll's poll_napi(). Only the entity which
6724 * obtains the lock and sees NAPI_STATE_SCHED set will
6725 * actually make the ->poll() call. Therefore we avoid
6726 * accidentally calling ->poll() when NAPI is not scheduled.
6727 */
6728 work = 0;
6729 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6730 work = n->poll(n, weight);
1db19db7 6731 trace_napi_poll(n, work, weight);
726ce70e
HX
6732 }
6733
427d5838
ED
6734 if (unlikely(work > weight))
6735 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6736 n->poll, work, weight);
726ce70e
HX
6737
6738 if (likely(work < weight))
6739 goto out_unlock;
6740
6741 /* Drivers must not modify the NAPI state if they
6742 * consume the entire weight. In such cases this code
6743 * still "owns" the NAPI instance and therefore can
6744 * move the instance around on the list at-will.
6745 */
6746 if (unlikely(napi_disable_pending(n))) {
6747 napi_complete(n);
6748 goto out_unlock;
6749 }
6750
d9f37d01 6751 if (n->gro_bitmask) {
726ce70e
HX
6752 /* flush too old packets
6753 * If HZ < 1000, flush all packets.
6754 */
6755 napi_gro_flush(n, HZ >= 1000);
6756 }
6757
c8079432
MM
6758 gro_normal_list(n);
6759
001ce546
HX
6760 /* Some drivers may have called napi_schedule
6761 * prior to exhausting their budget.
6762 */
6763 if (unlikely(!list_empty(&n->poll_list))) {
6764 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6765 n->dev ? n->dev->name : "backlog");
6766 goto out_unlock;
6767 }
6768
726ce70e
HX
6769 list_add_tail(&n->poll_list, repoll);
6770
6771out_unlock:
6772 netpoll_poll_unlock(have);
6773
6774 return work;
6775}
6776
0766f788 6777static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6778{
903ceff7 6779 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6780 unsigned long time_limit = jiffies +
6781 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6782 int budget = netdev_budget;
d75b1ade
ED
6783 LIST_HEAD(list);
6784 LIST_HEAD(repoll);
53fb95d3 6785
1da177e4 6786 local_irq_disable();
d75b1ade
ED
6787 list_splice_init(&sd->poll_list, &list);
6788 local_irq_enable();
1da177e4 6789
ceb8d5bf 6790 for (;;) {
bea3348e 6791 struct napi_struct *n;
1da177e4 6792
ceb8d5bf
HX
6793 if (list_empty(&list)) {
6794 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6795 goto out;
ceb8d5bf
HX
6796 break;
6797 }
6798
6bd373eb
HX
6799 n = list_first_entry(&list, struct napi_struct, poll_list);
6800 budget -= napi_poll(n, &repoll);
6801
d75b1ade 6802 /* If softirq window is exhausted then punt.
24f8b238
SH
6803 * Allow this to run for 2 jiffies since which will allow
6804 * an average latency of 1.5/HZ.
bea3348e 6805 */
ceb8d5bf
HX
6806 if (unlikely(budget <= 0 ||
6807 time_after_eq(jiffies, time_limit))) {
6808 sd->time_squeeze++;
6809 break;
6810 }
1da177e4 6811 }
d75b1ade 6812
d75b1ade
ED
6813 local_irq_disable();
6814
6815 list_splice_tail_init(&sd->poll_list, &list);
6816 list_splice_tail(&repoll, &list);
6817 list_splice(&list, &sd->poll_list);
6818 if (!list_empty(&sd->poll_list))
6819 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6820
e326bed2 6821 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6822out:
6823 __kfree_skb_flush();
1da177e4
LT
6824}
6825
aa9d8560 6826struct netdev_adjacent {
9ff162a8 6827 struct net_device *dev;
5d261913
VF
6828
6829 /* upper master flag, there can only be one master device per list */
9ff162a8 6830 bool master;
5d261913 6831
32b6d34f
TY
6832 /* lookup ignore flag */
6833 bool ignore;
6834
5d261913
VF
6835 /* counter for the number of times this device was added to us */
6836 u16 ref_nr;
6837
402dae96
VF
6838 /* private field for the users */
6839 void *private;
6840
9ff162a8
JP
6841 struct list_head list;
6842 struct rcu_head rcu;
9ff162a8
JP
6843};
6844
6ea29da1 6845static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6846 struct list_head *adj_list)
9ff162a8 6847{
5d261913 6848 struct netdev_adjacent *adj;
5d261913 6849
2f268f12 6850 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6851 if (adj->dev == adj_dev)
6852 return adj;
9ff162a8
JP
6853 }
6854 return NULL;
6855}
6856
32b6d34f 6857static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
f1170fd4
DA
6858{
6859 struct net_device *dev = data;
6860
6861 return upper_dev == dev;
6862}
6863
9ff162a8
JP
6864/**
6865 * netdev_has_upper_dev - Check if device is linked to an upper device
6866 * @dev: device
6867 * @upper_dev: upper device to check
6868 *
6869 * Find out if a device is linked to specified upper device and return true
6870 * in case it is. Note that this checks only immediate upper device,
6871 * not through a complete stack of devices. The caller must hold the RTNL lock.
6872 */
6873bool netdev_has_upper_dev(struct net_device *dev,
6874 struct net_device *upper_dev)
6875{
6876 ASSERT_RTNL();
6877
32b6d34f 6878 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
f1170fd4 6879 upper_dev);
9ff162a8
JP
6880}
6881EXPORT_SYMBOL(netdev_has_upper_dev);
6882
1a3f060c
DA
6883/**
6884 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6885 * @dev: device
6886 * @upper_dev: upper device to check
6887 *
6888 * Find out if a device is linked to specified upper device and return true
6889 * in case it is. Note that this checks the entire upper device chain.
6890 * The caller must hold rcu lock.
6891 */
6892
1a3f060c
DA
6893bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6894 struct net_device *upper_dev)
6895{
32b6d34f 6896 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
1a3f060c
DA
6897 upper_dev);
6898}
6899EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6900
9ff162a8
JP
6901/**
6902 * netdev_has_any_upper_dev - Check if device is linked to some device
6903 * @dev: device
6904 *
6905 * Find out if a device is linked to an upper device and return true in case
6906 * it is. The caller must hold the RTNL lock.
6907 */
25cc72a3 6908bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6909{
6910 ASSERT_RTNL();
6911
f1170fd4 6912 return !list_empty(&dev->adj_list.upper);
9ff162a8 6913}
25cc72a3 6914EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6915
6916/**
6917 * netdev_master_upper_dev_get - Get master upper device
6918 * @dev: device
6919 *
6920 * Find a master upper device and return pointer to it or NULL in case
6921 * it's not there. The caller must hold the RTNL lock.
6922 */
6923struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6924{
aa9d8560 6925 struct netdev_adjacent *upper;
9ff162a8
JP
6926
6927 ASSERT_RTNL();
6928
2f268f12 6929 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6930 return NULL;
6931
2f268f12 6932 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6933 struct netdev_adjacent, list);
9ff162a8
JP
6934 if (likely(upper->master))
6935 return upper->dev;
6936 return NULL;
6937}
6938EXPORT_SYMBOL(netdev_master_upper_dev_get);
6939
32b6d34f
TY
6940static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6941{
6942 struct netdev_adjacent *upper;
6943
6944 ASSERT_RTNL();
6945
6946 if (list_empty(&dev->adj_list.upper))
6947 return NULL;
6948
6949 upper = list_first_entry(&dev->adj_list.upper,
6950 struct netdev_adjacent, list);
6951 if (likely(upper->master) && !upper->ignore)
6952 return upper->dev;
6953 return NULL;
6954}
6955
0f524a80
DA
6956/**
6957 * netdev_has_any_lower_dev - Check if device is linked to some device
6958 * @dev: device
6959 *
6960 * Find out if a device is linked to a lower device and return true in case
6961 * it is. The caller must hold the RTNL lock.
6962 */
6963static bool netdev_has_any_lower_dev(struct net_device *dev)
6964{
6965 ASSERT_RTNL();
6966
6967 return !list_empty(&dev->adj_list.lower);
6968}
6969
b6ccba4c
VF
6970void *netdev_adjacent_get_private(struct list_head *adj_list)
6971{
6972 struct netdev_adjacent *adj;
6973
6974 adj = list_entry(adj_list, struct netdev_adjacent, list);
6975
6976 return adj->private;
6977}
6978EXPORT_SYMBOL(netdev_adjacent_get_private);
6979
44a40855
VY
6980/**
6981 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6982 * @dev: device
6983 * @iter: list_head ** of the current position
6984 *
6985 * Gets the next device from the dev's upper list, starting from iter
6986 * position. The caller must hold RCU read lock.
6987 */
6988struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6989 struct list_head **iter)
6990{
6991 struct netdev_adjacent *upper;
6992
6993 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6994
6995 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6996
6997 if (&upper->list == &dev->adj_list.upper)
6998 return NULL;
6999
7000 *iter = &upper->list;
7001
7002 return upper->dev;
7003}
7004EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7005
32b6d34f
TY
7006static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7007 struct list_head **iter,
7008 bool *ignore)
5343da4c
TY
7009{
7010 struct netdev_adjacent *upper;
7011
7012 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7013
7014 if (&upper->list == &dev->adj_list.upper)
7015 return NULL;
7016
7017 *iter = &upper->list;
32b6d34f 7018 *ignore = upper->ignore;
5343da4c
TY
7019
7020 return upper->dev;
7021}
7022
1a3f060c
DA
7023static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7024 struct list_head **iter)
7025{
7026 struct netdev_adjacent *upper;
7027
7028 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7029
7030 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7031
7032 if (&upper->list == &dev->adj_list.upper)
7033 return NULL;
7034
7035 *iter = &upper->list;
7036
7037 return upper->dev;
7038}
7039
32b6d34f
TY
7040static int __netdev_walk_all_upper_dev(struct net_device *dev,
7041 int (*fn)(struct net_device *dev,
7042 void *data),
7043 void *data)
5343da4c
TY
7044{
7045 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7046 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7047 int ret, cur = 0;
32b6d34f 7048 bool ignore;
5343da4c
TY
7049
7050 now = dev;
7051 iter = &dev->adj_list.upper;
7052
7053 while (1) {
7054 if (now != dev) {
7055 ret = fn(now, data);
7056 if (ret)
7057 return ret;
7058 }
7059
7060 next = NULL;
7061 while (1) {
32b6d34f 7062 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
7063 if (!udev)
7064 break;
32b6d34f
TY
7065 if (ignore)
7066 continue;
5343da4c
TY
7067
7068 next = udev;
7069 niter = &udev->adj_list.upper;
7070 dev_stack[cur] = now;
7071 iter_stack[cur++] = iter;
7072 break;
7073 }
7074
7075 if (!next) {
7076 if (!cur)
7077 return 0;
7078 next = dev_stack[--cur];
7079 niter = iter_stack[cur];
7080 }
7081
7082 now = next;
7083 iter = niter;
7084 }
7085
7086 return 0;
7087}
7088
1a3f060c
DA
7089int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7090 int (*fn)(struct net_device *dev,
7091 void *data),
7092 void *data)
7093{
5343da4c
TY
7094 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7095 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7096 int ret, cur = 0;
1a3f060c 7097
5343da4c
TY
7098 now = dev;
7099 iter = &dev->adj_list.upper;
1a3f060c 7100
5343da4c
TY
7101 while (1) {
7102 if (now != dev) {
7103 ret = fn(now, data);
7104 if (ret)
7105 return ret;
7106 }
7107
7108 next = NULL;
7109 while (1) {
7110 udev = netdev_next_upper_dev_rcu(now, &iter);
7111 if (!udev)
7112 break;
7113
7114 next = udev;
7115 niter = &udev->adj_list.upper;
7116 dev_stack[cur] = now;
7117 iter_stack[cur++] = iter;
7118 break;
7119 }
7120
7121 if (!next) {
7122 if (!cur)
7123 return 0;
7124 next = dev_stack[--cur];
7125 niter = iter_stack[cur];
7126 }
7127
7128 now = next;
7129 iter = niter;
1a3f060c
DA
7130 }
7131
7132 return 0;
7133}
7134EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7135
32b6d34f
TY
7136static bool __netdev_has_upper_dev(struct net_device *dev,
7137 struct net_device *upper_dev)
7138{
7139 ASSERT_RTNL();
7140
7141 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7142 upper_dev);
7143}
7144
31088a11
VF
7145/**
7146 * netdev_lower_get_next_private - Get the next ->private from the
7147 * lower neighbour list
7148 * @dev: device
7149 * @iter: list_head ** of the current position
7150 *
7151 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7152 * list, starting from iter position. The caller must hold either hold the
7153 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 7154 * list will remain unchanged.
31088a11
VF
7155 */
7156void *netdev_lower_get_next_private(struct net_device *dev,
7157 struct list_head **iter)
7158{
7159 struct netdev_adjacent *lower;
7160
7161 lower = list_entry(*iter, struct netdev_adjacent, list);
7162
7163 if (&lower->list == &dev->adj_list.lower)
7164 return NULL;
7165
6859e7df 7166 *iter = lower->list.next;
31088a11
VF
7167
7168 return lower->private;
7169}
7170EXPORT_SYMBOL(netdev_lower_get_next_private);
7171
7172/**
7173 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7174 * lower neighbour list, RCU
7175 * variant
7176 * @dev: device
7177 * @iter: list_head ** of the current position
7178 *
7179 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7180 * list, starting from iter position. The caller must hold RCU read lock.
7181 */
7182void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7183 struct list_head **iter)
7184{
7185 struct netdev_adjacent *lower;
7186
7187 WARN_ON_ONCE(!rcu_read_lock_held());
7188
7189 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7190
7191 if (&lower->list == &dev->adj_list.lower)
7192 return NULL;
7193
6859e7df 7194 *iter = &lower->list;
31088a11
VF
7195
7196 return lower->private;
7197}
7198EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7199
4085ebe8
VY
7200/**
7201 * netdev_lower_get_next - Get the next device from the lower neighbour
7202 * list
7203 * @dev: device
7204 * @iter: list_head ** of the current position
7205 *
7206 * Gets the next netdev_adjacent from the dev's lower neighbour
7207 * list, starting from iter position. The caller must hold RTNL lock or
7208 * its own locking that guarantees that the neighbour lower
b469139e 7209 * list will remain unchanged.
4085ebe8
VY
7210 */
7211void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7212{
7213 struct netdev_adjacent *lower;
7214
cfdd28be 7215 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7216
7217 if (&lower->list == &dev->adj_list.lower)
7218 return NULL;
7219
cfdd28be 7220 *iter = lower->list.next;
4085ebe8
VY
7221
7222 return lower->dev;
7223}
7224EXPORT_SYMBOL(netdev_lower_get_next);
7225
1a3f060c
DA
7226static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7227 struct list_head **iter)
7228{
7229 struct netdev_adjacent *lower;
7230
46b5ab1a 7231 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7232
7233 if (&lower->list == &dev->adj_list.lower)
7234 return NULL;
7235
46b5ab1a 7236 *iter = &lower->list;
1a3f060c
DA
7237
7238 return lower->dev;
7239}
7240
32b6d34f
TY
7241static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7242 struct list_head **iter,
7243 bool *ignore)
7244{
7245 struct netdev_adjacent *lower;
7246
7247 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7248
7249 if (&lower->list == &dev->adj_list.lower)
7250 return NULL;
7251
7252 *iter = &lower->list;
7253 *ignore = lower->ignore;
7254
7255 return lower->dev;
7256}
7257
1a3f060c
DA
7258int netdev_walk_all_lower_dev(struct net_device *dev,
7259 int (*fn)(struct net_device *dev,
7260 void *data),
7261 void *data)
7262{
5343da4c
TY
7263 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7264 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7265 int ret, cur = 0;
1a3f060c 7266
5343da4c
TY
7267 now = dev;
7268 iter = &dev->adj_list.lower;
1a3f060c 7269
5343da4c
TY
7270 while (1) {
7271 if (now != dev) {
7272 ret = fn(now, data);
7273 if (ret)
7274 return ret;
7275 }
7276
7277 next = NULL;
7278 while (1) {
7279 ldev = netdev_next_lower_dev(now, &iter);
7280 if (!ldev)
7281 break;
7282
7283 next = ldev;
7284 niter = &ldev->adj_list.lower;
7285 dev_stack[cur] = now;
7286 iter_stack[cur++] = iter;
7287 break;
7288 }
7289
7290 if (!next) {
7291 if (!cur)
7292 return 0;
7293 next = dev_stack[--cur];
7294 niter = iter_stack[cur];
7295 }
7296
7297 now = next;
7298 iter = niter;
1a3f060c
DA
7299 }
7300
7301 return 0;
7302}
7303EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7304
32b6d34f
TY
7305static int __netdev_walk_all_lower_dev(struct net_device *dev,
7306 int (*fn)(struct net_device *dev,
7307 void *data),
7308 void *data)
7309{
7310 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7311 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7312 int ret, cur = 0;
7313 bool ignore;
7314
7315 now = dev;
7316 iter = &dev->adj_list.lower;
7317
7318 while (1) {
7319 if (now != dev) {
7320 ret = fn(now, data);
7321 if (ret)
7322 return ret;
7323 }
7324
7325 next = NULL;
7326 while (1) {
7327 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7328 if (!ldev)
7329 break;
7330 if (ignore)
7331 continue;
7332
7333 next = ldev;
7334 niter = &ldev->adj_list.lower;
7335 dev_stack[cur] = now;
7336 iter_stack[cur++] = iter;
7337 break;
7338 }
7339
7340 if (!next) {
7341 if (!cur)
7342 return 0;
7343 next = dev_stack[--cur];
7344 niter = iter_stack[cur];
7345 }
7346
7347 now = next;
7348 iter = niter;
7349 }
7350
7351 return 0;
7352}
7353
7151affe
TY
7354struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7355 struct list_head **iter)
1a3f060c
DA
7356{
7357 struct netdev_adjacent *lower;
7358
7359 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7360 if (&lower->list == &dev->adj_list.lower)
7361 return NULL;
7362
7363 *iter = &lower->list;
7364
7365 return lower->dev;
7366}
7151affe 7367EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7368
5343da4c
TY
7369static u8 __netdev_upper_depth(struct net_device *dev)
7370{
7371 struct net_device *udev;
7372 struct list_head *iter;
7373 u8 max_depth = 0;
32b6d34f 7374 bool ignore;
5343da4c
TY
7375
7376 for (iter = &dev->adj_list.upper,
32b6d34f 7377 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7378 udev;
32b6d34f
TY
7379 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7380 if (ignore)
7381 continue;
5343da4c
TY
7382 if (max_depth < udev->upper_level)
7383 max_depth = udev->upper_level;
7384 }
7385
7386 return max_depth;
7387}
7388
7389static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7390{
7391 struct net_device *ldev;
7392 struct list_head *iter;
5343da4c 7393 u8 max_depth = 0;
32b6d34f 7394 bool ignore;
1a3f060c
DA
7395
7396 for (iter = &dev->adj_list.lower,
32b6d34f 7397 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7398 ldev;
32b6d34f
TY
7399 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7400 if (ignore)
7401 continue;
5343da4c
TY
7402 if (max_depth < ldev->lower_level)
7403 max_depth = ldev->lower_level;
7404 }
1a3f060c 7405
5343da4c
TY
7406 return max_depth;
7407}
7408
7409static int __netdev_update_upper_level(struct net_device *dev, void *data)
7410{
7411 dev->upper_level = __netdev_upper_depth(dev) + 1;
7412 return 0;
7413}
7414
7415static int __netdev_update_lower_level(struct net_device *dev, void *data)
7416{
7417 dev->lower_level = __netdev_lower_depth(dev) + 1;
7418 return 0;
7419}
7420
7421int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7422 int (*fn)(struct net_device *dev,
7423 void *data),
7424 void *data)
7425{
7426 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7427 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7428 int ret, cur = 0;
7429
7430 now = dev;
7431 iter = &dev->adj_list.lower;
7432
7433 while (1) {
7434 if (now != dev) {
7435 ret = fn(now, data);
7436 if (ret)
7437 return ret;
7438 }
7439
7440 next = NULL;
7441 while (1) {
7442 ldev = netdev_next_lower_dev_rcu(now, &iter);
7443 if (!ldev)
7444 break;
7445
7446 next = ldev;
7447 niter = &ldev->adj_list.lower;
7448 dev_stack[cur] = now;
7449 iter_stack[cur++] = iter;
7450 break;
7451 }
7452
7453 if (!next) {
7454 if (!cur)
7455 return 0;
7456 next = dev_stack[--cur];
7457 niter = iter_stack[cur];
7458 }
7459
7460 now = next;
7461 iter = niter;
1a3f060c
DA
7462 }
7463
7464 return 0;
7465}
7466EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7467
e001bfad 7468/**
7469 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7470 * lower neighbour list, RCU
7471 * variant
7472 * @dev: device
7473 *
7474 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7475 * list. The caller must hold RCU read lock.
7476 */
7477void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7478{
7479 struct netdev_adjacent *lower;
7480
7481 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7482 struct netdev_adjacent, list);
7483 if (lower)
7484 return lower->private;
7485 return NULL;
7486}
7487EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7488
9ff162a8
JP
7489/**
7490 * netdev_master_upper_dev_get_rcu - Get master upper device
7491 * @dev: device
7492 *
7493 * Find a master upper device and return pointer to it or NULL in case
7494 * it's not there. The caller must hold the RCU read lock.
7495 */
7496struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7497{
aa9d8560 7498 struct netdev_adjacent *upper;
9ff162a8 7499
2f268f12 7500 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7501 struct netdev_adjacent, list);
9ff162a8
JP
7502 if (upper && likely(upper->master))
7503 return upper->dev;
7504 return NULL;
7505}
7506EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7507
0a59f3a9 7508static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7509 struct net_device *adj_dev,
7510 struct list_head *dev_list)
7511{
7512 char linkname[IFNAMSIZ+7];
f4563a75 7513
3ee32707
VF
7514 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7515 "upper_%s" : "lower_%s", adj_dev->name);
7516 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7517 linkname);
7518}
0a59f3a9 7519static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7520 char *name,
7521 struct list_head *dev_list)
7522{
7523 char linkname[IFNAMSIZ+7];
f4563a75 7524
3ee32707
VF
7525 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7526 "upper_%s" : "lower_%s", name);
7527 sysfs_remove_link(&(dev->dev.kobj), linkname);
7528}
7529
7ce64c79
AF
7530static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7531 struct net_device *adj_dev,
7532 struct list_head *dev_list)
7533{
7534 return (dev_list == &dev->adj_list.upper ||
7535 dev_list == &dev->adj_list.lower) &&
7536 net_eq(dev_net(dev), dev_net(adj_dev));
7537}
3ee32707 7538
5d261913
VF
7539static int __netdev_adjacent_dev_insert(struct net_device *dev,
7540 struct net_device *adj_dev,
7863c054 7541 struct list_head *dev_list,
402dae96 7542 void *private, bool master)
5d261913
VF
7543{
7544 struct netdev_adjacent *adj;
842d67a7 7545 int ret;
5d261913 7546
6ea29da1 7547 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7548
7549 if (adj) {
790510d9 7550 adj->ref_nr += 1;
67b62f98
DA
7551 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7552 dev->name, adj_dev->name, adj->ref_nr);
7553
5d261913
VF
7554 return 0;
7555 }
7556
7557 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7558 if (!adj)
7559 return -ENOMEM;
7560
7561 adj->dev = adj_dev;
7562 adj->master = master;
790510d9 7563 adj->ref_nr = 1;
402dae96 7564 adj->private = private;
32b6d34f 7565 adj->ignore = false;
5d261913 7566 dev_hold(adj_dev);
2f268f12 7567
67b62f98
DA
7568 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7569 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7570
7ce64c79 7571 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7572 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7573 if (ret)
7574 goto free_adj;
7575 }
7576
7863c054 7577 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7578 if (master) {
7579 ret = sysfs_create_link(&(dev->dev.kobj),
7580 &(adj_dev->dev.kobj), "master");
7581 if (ret)
5831d66e 7582 goto remove_symlinks;
842d67a7 7583
7863c054 7584 list_add_rcu(&adj->list, dev_list);
842d67a7 7585 } else {
7863c054 7586 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7587 }
5d261913
VF
7588
7589 return 0;
842d67a7 7590
5831d66e 7591remove_symlinks:
7ce64c79 7592 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7593 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7594free_adj:
7595 kfree(adj);
974daef7 7596 dev_put(adj_dev);
842d67a7
VF
7597
7598 return ret;
5d261913
VF
7599}
7600
1d143d9f 7601static void __netdev_adjacent_dev_remove(struct net_device *dev,
7602 struct net_device *adj_dev,
93409033 7603 u16 ref_nr,
1d143d9f 7604 struct list_head *dev_list)
5d261913
VF
7605{
7606 struct netdev_adjacent *adj;
7607
67b62f98
DA
7608 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7609 dev->name, adj_dev->name, ref_nr);
7610
6ea29da1 7611 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7612
2f268f12 7613 if (!adj) {
67b62f98 7614 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7615 dev->name, adj_dev->name);
67b62f98
DA
7616 WARN_ON(1);
7617 return;
2f268f12 7618 }
5d261913 7619
93409033 7620 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7621 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7622 dev->name, adj_dev->name, ref_nr,
7623 adj->ref_nr - ref_nr);
93409033 7624 adj->ref_nr -= ref_nr;
5d261913
VF
7625 return;
7626 }
7627
842d67a7
VF
7628 if (adj->master)
7629 sysfs_remove_link(&(dev->dev.kobj), "master");
7630
7ce64c79 7631 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7632 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7633
5d261913 7634 list_del_rcu(&adj->list);
67b62f98 7635 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7636 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7637 dev_put(adj_dev);
7638 kfree_rcu(adj, rcu);
7639}
7640
1d143d9f 7641static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7642 struct net_device *upper_dev,
7643 struct list_head *up_list,
7644 struct list_head *down_list,
7645 void *private, bool master)
5d261913
VF
7646{
7647 int ret;
7648
790510d9 7649 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7650 private, master);
5d261913
VF
7651 if (ret)
7652 return ret;
7653
790510d9 7654 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7655 private, false);
5d261913 7656 if (ret) {
790510d9 7657 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7658 return ret;
7659 }
7660
7661 return 0;
7662}
7663
1d143d9f 7664static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7665 struct net_device *upper_dev,
93409033 7666 u16 ref_nr,
1d143d9f 7667 struct list_head *up_list,
7668 struct list_head *down_list)
5d261913 7669{
93409033
AC
7670 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7671 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7672}
7673
1d143d9f 7674static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7675 struct net_device *upper_dev,
7676 void *private, bool master)
2f268f12 7677{
f1170fd4
DA
7678 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7679 &dev->adj_list.upper,
7680 &upper_dev->adj_list.lower,
7681 private, master);
5d261913
VF
7682}
7683
1d143d9f 7684static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7685 struct net_device *upper_dev)
2f268f12 7686{
93409033 7687 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7688 &dev->adj_list.upper,
7689 &upper_dev->adj_list.lower);
7690}
5d261913 7691
9ff162a8 7692static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7693 struct net_device *upper_dev, bool master,
42ab19ee
DA
7694 void *upper_priv, void *upper_info,
7695 struct netlink_ext_ack *extack)
9ff162a8 7696{
51d0c047
DA
7697 struct netdev_notifier_changeupper_info changeupper_info = {
7698 .info = {
7699 .dev = dev,
42ab19ee 7700 .extack = extack,
51d0c047
DA
7701 },
7702 .upper_dev = upper_dev,
7703 .master = master,
7704 .linking = true,
7705 .upper_info = upper_info,
7706 };
50d629e7 7707 struct net_device *master_dev;
5d261913 7708 int ret = 0;
9ff162a8
JP
7709
7710 ASSERT_RTNL();
7711
7712 if (dev == upper_dev)
7713 return -EBUSY;
7714
7715 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7716 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7717 return -EBUSY;
7718
5343da4c
TY
7719 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7720 return -EMLINK;
7721
50d629e7 7722 if (!master) {
32b6d34f 7723 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7724 return -EEXIST;
7725 } else {
32b6d34f 7726 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7727 if (master_dev)
7728 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7729 }
9ff162a8 7730
51d0c047 7731 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7732 &changeupper_info.info);
7733 ret = notifier_to_errno(ret);
7734 if (ret)
7735 return ret;
7736
6dffb044 7737 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7738 master);
5d261913
VF
7739 if (ret)
7740 return ret;
9ff162a8 7741
51d0c047 7742 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7743 &changeupper_info.info);
7744 ret = notifier_to_errno(ret);
7745 if (ret)
f1170fd4 7746 goto rollback;
b03804e7 7747
5343da4c 7748 __netdev_update_upper_level(dev, NULL);
32b6d34f 7749 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7750
7751 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7752 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7753 NULL);
5343da4c 7754
9ff162a8 7755 return 0;
5d261913 7756
f1170fd4 7757rollback:
2f268f12 7758 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7759
7760 return ret;
9ff162a8
JP
7761}
7762
7763/**
7764 * netdev_upper_dev_link - Add a link to the upper device
7765 * @dev: device
7766 * @upper_dev: new upper device
7a006d59 7767 * @extack: netlink extended ack
9ff162a8
JP
7768 *
7769 * Adds a link to device which is upper to this one. The caller must hold
7770 * the RTNL lock. On a failure a negative errno code is returned.
7771 * On success the reference counts are adjusted and the function
7772 * returns zero.
7773 */
7774int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7775 struct net_device *upper_dev,
7776 struct netlink_ext_ack *extack)
9ff162a8 7777{
42ab19ee
DA
7778 return __netdev_upper_dev_link(dev, upper_dev, false,
7779 NULL, NULL, extack);
9ff162a8
JP
7780}
7781EXPORT_SYMBOL(netdev_upper_dev_link);
7782
7783/**
7784 * netdev_master_upper_dev_link - Add a master link to the upper device
7785 * @dev: device
7786 * @upper_dev: new upper device
6dffb044 7787 * @upper_priv: upper device private
29bf24af 7788 * @upper_info: upper info to be passed down via notifier
7a006d59 7789 * @extack: netlink extended ack
9ff162a8
JP
7790 *
7791 * Adds a link to device which is upper to this one. In this case, only
7792 * one master upper device can be linked, although other non-master devices
7793 * might be linked as well. The caller must hold the RTNL lock.
7794 * On a failure a negative errno code is returned. On success the reference
7795 * counts are adjusted and the function returns zero.
7796 */
7797int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7798 struct net_device *upper_dev,
42ab19ee
DA
7799 void *upper_priv, void *upper_info,
7800 struct netlink_ext_ack *extack)
9ff162a8 7801{
29bf24af 7802 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7803 upper_priv, upper_info, extack);
9ff162a8
JP
7804}
7805EXPORT_SYMBOL(netdev_master_upper_dev_link);
7806
7807/**
7808 * netdev_upper_dev_unlink - Removes a link to upper device
7809 * @dev: device
7810 * @upper_dev: new upper device
7811 *
7812 * Removes a link to device which is upper to this one. The caller must hold
7813 * the RTNL lock.
7814 */
7815void netdev_upper_dev_unlink(struct net_device *dev,
7816 struct net_device *upper_dev)
7817{
51d0c047
DA
7818 struct netdev_notifier_changeupper_info changeupper_info = {
7819 .info = {
7820 .dev = dev,
7821 },
7822 .upper_dev = upper_dev,
7823 .linking = false,
7824 };
f4563a75 7825
9ff162a8
JP
7826 ASSERT_RTNL();
7827
0e4ead9d 7828 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7829
51d0c047 7830 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7831 &changeupper_info.info);
7832
2f268f12 7833 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7834
51d0c047 7835 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7836 &changeupper_info.info);
5343da4c
TY
7837
7838 __netdev_update_upper_level(dev, NULL);
32b6d34f 7839 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7840
7841 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7842 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7843 NULL);
9ff162a8
JP
7844}
7845EXPORT_SYMBOL(netdev_upper_dev_unlink);
7846
32b6d34f
TY
7847static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7848 struct net_device *lower_dev,
7849 bool val)
7850{
7851 struct netdev_adjacent *adj;
7852
7853 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7854 if (adj)
7855 adj->ignore = val;
7856
7857 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7858 if (adj)
7859 adj->ignore = val;
7860}
7861
7862static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7863 struct net_device *lower_dev)
7864{
7865 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7866}
7867
7868static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7869 struct net_device *lower_dev)
7870{
7871 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7872}
7873
7874int netdev_adjacent_change_prepare(struct net_device *old_dev,
7875 struct net_device *new_dev,
7876 struct net_device *dev,
7877 struct netlink_ext_ack *extack)
7878{
7879 int err;
7880
7881 if (!new_dev)
7882 return 0;
7883
7884 if (old_dev && new_dev != old_dev)
7885 netdev_adjacent_dev_disable(dev, old_dev);
7886
7887 err = netdev_upper_dev_link(new_dev, dev, extack);
7888 if (err) {
7889 if (old_dev && new_dev != old_dev)
7890 netdev_adjacent_dev_enable(dev, old_dev);
7891 return err;
7892 }
7893
7894 return 0;
7895}
7896EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7897
7898void netdev_adjacent_change_commit(struct net_device *old_dev,
7899 struct net_device *new_dev,
7900 struct net_device *dev)
7901{
7902 if (!new_dev || !old_dev)
7903 return;
7904
7905 if (new_dev == old_dev)
7906 return;
7907
7908 netdev_adjacent_dev_enable(dev, old_dev);
7909 netdev_upper_dev_unlink(old_dev, dev);
7910}
7911EXPORT_SYMBOL(netdev_adjacent_change_commit);
7912
7913void netdev_adjacent_change_abort(struct net_device *old_dev,
7914 struct net_device *new_dev,
7915 struct net_device *dev)
7916{
7917 if (!new_dev)
7918 return;
7919
7920 if (old_dev && new_dev != old_dev)
7921 netdev_adjacent_dev_enable(dev, old_dev);
7922
7923 netdev_upper_dev_unlink(new_dev, dev);
7924}
7925EXPORT_SYMBOL(netdev_adjacent_change_abort);
7926
61bd3857
MS
7927/**
7928 * netdev_bonding_info_change - Dispatch event about slave change
7929 * @dev: device
4a26e453 7930 * @bonding_info: info to dispatch
61bd3857
MS
7931 *
7932 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7933 * The caller must hold the RTNL lock.
7934 */
7935void netdev_bonding_info_change(struct net_device *dev,
7936 struct netdev_bonding_info *bonding_info)
7937{
51d0c047
DA
7938 struct netdev_notifier_bonding_info info = {
7939 .info.dev = dev,
7940 };
61bd3857
MS
7941
7942 memcpy(&info.bonding_info, bonding_info,
7943 sizeof(struct netdev_bonding_info));
51d0c047 7944 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7945 &info.info);
7946}
7947EXPORT_SYMBOL(netdev_bonding_info_change);
7948
cff9f12b
MG
7949/**
7950 * netdev_get_xmit_slave - Get the xmit slave of master device
8842500d 7951 * @dev: device
cff9f12b
MG
7952 * @skb: The packet
7953 * @all_slaves: assume all the slaves are active
7954 *
7955 * The reference counters are not incremented so the caller must be
7956 * careful with locks. The caller must hold RCU lock.
7957 * %NULL is returned if no slave is found.
7958 */
7959
7960struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7961 struct sk_buff *skb,
7962 bool all_slaves)
7963{
7964 const struct net_device_ops *ops = dev->netdev_ops;
7965
7966 if (!ops->ndo_get_xmit_slave)
7967 return NULL;
7968 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7969}
7970EXPORT_SYMBOL(netdev_get_xmit_slave);
7971
2ce1ee17 7972static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7973{
7974 struct netdev_adjacent *iter;
7975
7976 struct net *net = dev_net(dev);
7977
7978 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7979 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7980 continue;
7981 netdev_adjacent_sysfs_add(iter->dev, dev,
7982 &iter->dev->adj_list.lower);
7983 netdev_adjacent_sysfs_add(dev, iter->dev,
7984 &dev->adj_list.upper);
7985 }
7986
7987 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7988 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7989 continue;
7990 netdev_adjacent_sysfs_add(iter->dev, dev,
7991 &iter->dev->adj_list.upper);
7992 netdev_adjacent_sysfs_add(dev, iter->dev,
7993 &dev->adj_list.lower);
7994 }
7995}
7996
2ce1ee17 7997static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
7998{
7999 struct netdev_adjacent *iter;
8000
8001 struct net *net = dev_net(dev);
8002
8003 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8004 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8005 continue;
8006 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8007 &iter->dev->adj_list.lower);
8008 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8009 &dev->adj_list.upper);
8010 }
8011
8012 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8013 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8014 continue;
8015 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8016 &iter->dev->adj_list.upper);
8017 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8018 &dev->adj_list.lower);
8019 }
8020}
8021
5bb025fa 8022void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 8023{
5bb025fa 8024 struct netdev_adjacent *iter;
402dae96 8025
4c75431a
AF
8026 struct net *net = dev_net(dev);
8027
5bb025fa 8028 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8029 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8030 continue;
5bb025fa
VF
8031 netdev_adjacent_sysfs_del(iter->dev, oldname,
8032 &iter->dev->adj_list.lower);
8033 netdev_adjacent_sysfs_add(iter->dev, dev,
8034 &iter->dev->adj_list.lower);
8035 }
402dae96 8036
5bb025fa 8037 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8038 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8039 continue;
5bb025fa
VF
8040 netdev_adjacent_sysfs_del(iter->dev, oldname,
8041 &iter->dev->adj_list.upper);
8042 netdev_adjacent_sysfs_add(iter->dev, dev,
8043 &iter->dev->adj_list.upper);
8044 }
402dae96 8045}
402dae96
VF
8046
8047void *netdev_lower_dev_get_private(struct net_device *dev,
8048 struct net_device *lower_dev)
8049{
8050 struct netdev_adjacent *lower;
8051
8052 if (!lower_dev)
8053 return NULL;
6ea29da1 8054 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
8055 if (!lower)
8056 return NULL;
8057
8058 return lower->private;
8059}
8060EXPORT_SYMBOL(netdev_lower_dev_get_private);
8061
4085ebe8 8062
04d48266
JP
8063/**
8064 * netdev_lower_change - Dispatch event about lower device state change
8065 * @lower_dev: device
8066 * @lower_state_info: state to dispatch
8067 *
8068 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8069 * The caller must hold the RTNL lock.
8070 */
8071void netdev_lower_state_changed(struct net_device *lower_dev,
8072 void *lower_state_info)
8073{
51d0c047
DA
8074 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8075 .info.dev = lower_dev,
8076 };
04d48266
JP
8077
8078 ASSERT_RTNL();
8079 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 8080 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
8081 &changelowerstate_info.info);
8082}
8083EXPORT_SYMBOL(netdev_lower_state_changed);
8084
b6c40d68
PM
8085static void dev_change_rx_flags(struct net_device *dev, int flags)
8086{
d314774c
SH
8087 const struct net_device_ops *ops = dev->netdev_ops;
8088
d2615bf4 8089 if (ops->ndo_change_rx_flags)
d314774c 8090 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
8091}
8092
991fb3f7 8093static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 8094{
b536db93 8095 unsigned int old_flags = dev->flags;
d04a48b0
EB
8096 kuid_t uid;
8097 kgid_t gid;
1da177e4 8098
24023451
PM
8099 ASSERT_RTNL();
8100
dad9b335
WC
8101 dev->flags |= IFF_PROMISC;
8102 dev->promiscuity += inc;
8103 if (dev->promiscuity == 0) {
8104 /*
8105 * Avoid overflow.
8106 * If inc causes overflow, untouch promisc and return error.
8107 */
8108 if (inc < 0)
8109 dev->flags &= ~IFF_PROMISC;
8110 else {
8111 dev->promiscuity -= inc;
7b6cd1ce
JP
8112 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8113 dev->name);
dad9b335
WC
8114 return -EOVERFLOW;
8115 }
8116 }
52609c0b 8117 if (dev->flags != old_flags) {
7b6cd1ce
JP
8118 pr_info("device %s %s promiscuous mode\n",
8119 dev->name,
8120 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
8121 if (audit_enabled) {
8122 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
8123 audit_log(audit_context(), GFP_ATOMIC,
8124 AUDIT_ANOM_PROMISCUOUS,
8125 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8126 dev->name, (dev->flags & IFF_PROMISC),
8127 (old_flags & IFF_PROMISC),
8128 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8129 from_kuid(&init_user_ns, uid),
8130 from_kgid(&init_user_ns, gid),
8131 audit_get_sessionid(current));
8192b0c4 8132 }
24023451 8133
b6c40d68 8134 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 8135 }
991fb3f7
ND
8136 if (notify)
8137 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 8138 return 0;
1da177e4
LT
8139}
8140
4417da66
PM
8141/**
8142 * dev_set_promiscuity - update promiscuity count on a device
8143 * @dev: device
8144 * @inc: modifier
8145 *
8146 * Add or remove promiscuity from a device. While the count in the device
8147 * remains above zero the interface remains promiscuous. Once it hits zero
8148 * the device reverts back to normal filtering operation. A negative inc
8149 * value is used to drop promiscuity on the device.
dad9b335 8150 * Return 0 if successful or a negative errno code on error.
4417da66 8151 */
dad9b335 8152int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 8153{
b536db93 8154 unsigned int old_flags = dev->flags;
dad9b335 8155 int err;
4417da66 8156
991fb3f7 8157 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 8158 if (err < 0)
dad9b335 8159 return err;
4417da66
PM
8160 if (dev->flags != old_flags)
8161 dev_set_rx_mode(dev);
dad9b335 8162 return err;
4417da66 8163}
d1b19dff 8164EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 8165
991fb3f7 8166static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 8167{
991fb3f7 8168 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 8169
24023451
PM
8170 ASSERT_RTNL();
8171
1da177e4 8172 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8173 dev->allmulti += inc;
8174 if (dev->allmulti == 0) {
8175 /*
8176 * Avoid overflow.
8177 * If inc causes overflow, untouch allmulti and return error.
8178 */
8179 if (inc < 0)
8180 dev->flags &= ~IFF_ALLMULTI;
8181 else {
8182 dev->allmulti -= inc;
7b6cd1ce
JP
8183 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8184 dev->name);
dad9b335
WC
8185 return -EOVERFLOW;
8186 }
8187 }
24023451 8188 if (dev->flags ^ old_flags) {
b6c40d68 8189 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8190 dev_set_rx_mode(dev);
991fb3f7
ND
8191 if (notify)
8192 __dev_notify_flags(dev, old_flags,
8193 dev->gflags ^ old_gflags);
24023451 8194 }
dad9b335 8195 return 0;
4417da66 8196}
991fb3f7
ND
8197
8198/**
8199 * dev_set_allmulti - update allmulti count on a device
8200 * @dev: device
8201 * @inc: modifier
8202 *
8203 * Add or remove reception of all multicast frames to a device. While the
8204 * count in the device remains above zero the interface remains listening
8205 * to all interfaces. Once it hits zero the device reverts back to normal
8206 * filtering operation. A negative @inc value is used to drop the counter
8207 * when releasing a resource needing all multicasts.
8208 * Return 0 if successful or a negative errno code on error.
8209 */
8210
8211int dev_set_allmulti(struct net_device *dev, int inc)
8212{
8213 return __dev_set_allmulti(dev, inc, true);
8214}
d1b19dff 8215EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8216
8217/*
8218 * Upload unicast and multicast address lists to device and
8219 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8220 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8221 * are present.
8222 */
8223void __dev_set_rx_mode(struct net_device *dev)
8224{
d314774c
SH
8225 const struct net_device_ops *ops = dev->netdev_ops;
8226
4417da66
PM
8227 /* dev_open will call this function so the list will stay sane. */
8228 if (!(dev->flags&IFF_UP))
8229 return;
8230
8231 if (!netif_device_present(dev))
40b77c94 8232 return;
4417da66 8233
01789349 8234 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8235 /* Unicast addresses changes may only happen under the rtnl,
8236 * therefore calling __dev_set_promiscuity here is safe.
8237 */
32e7bfc4 8238 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8239 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8240 dev->uc_promisc = true;
32e7bfc4 8241 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8242 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8243 dev->uc_promisc = false;
4417da66 8244 }
4417da66 8245 }
01789349
JP
8246
8247 if (ops->ndo_set_rx_mode)
8248 ops->ndo_set_rx_mode(dev);
4417da66
PM
8249}
8250
8251void dev_set_rx_mode(struct net_device *dev)
8252{
b9e40857 8253 netif_addr_lock_bh(dev);
4417da66 8254 __dev_set_rx_mode(dev);
b9e40857 8255 netif_addr_unlock_bh(dev);
1da177e4
LT
8256}
8257
f0db275a
SH
8258/**
8259 * dev_get_flags - get flags reported to userspace
8260 * @dev: device
8261 *
8262 * Get the combination of flag bits exported through APIs to userspace.
8263 */
95c96174 8264unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8265{
95c96174 8266 unsigned int flags;
1da177e4
LT
8267
8268 flags = (dev->flags & ~(IFF_PROMISC |
8269 IFF_ALLMULTI |
b00055aa
SR
8270 IFF_RUNNING |
8271 IFF_LOWER_UP |
8272 IFF_DORMANT)) |
1da177e4
LT
8273 (dev->gflags & (IFF_PROMISC |
8274 IFF_ALLMULTI));
8275
b00055aa
SR
8276 if (netif_running(dev)) {
8277 if (netif_oper_up(dev))
8278 flags |= IFF_RUNNING;
8279 if (netif_carrier_ok(dev))
8280 flags |= IFF_LOWER_UP;
8281 if (netif_dormant(dev))
8282 flags |= IFF_DORMANT;
8283 }
1da177e4
LT
8284
8285 return flags;
8286}
d1b19dff 8287EXPORT_SYMBOL(dev_get_flags);
1da177e4 8288
6d040321
PM
8289int __dev_change_flags(struct net_device *dev, unsigned int flags,
8290 struct netlink_ext_ack *extack)
1da177e4 8291{
b536db93 8292 unsigned int old_flags = dev->flags;
bd380811 8293 int ret;
1da177e4 8294
24023451
PM
8295 ASSERT_RTNL();
8296
1da177e4
LT
8297 /*
8298 * Set the flags on our device.
8299 */
8300
8301 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8302 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8303 IFF_AUTOMEDIA)) |
8304 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8305 IFF_ALLMULTI));
8306
8307 /*
8308 * Load in the correct multicast list now the flags have changed.
8309 */
8310
b6c40d68
PM
8311 if ((old_flags ^ flags) & IFF_MULTICAST)
8312 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8313
4417da66 8314 dev_set_rx_mode(dev);
1da177e4
LT
8315
8316 /*
8317 * Have we downed the interface. We handle IFF_UP ourselves
8318 * according to user attempts to set it, rather than blindly
8319 * setting it.
8320 */
8321
8322 ret = 0;
7051b88a 8323 if ((old_flags ^ flags) & IFF_UP) {
8324 if (old_flags & IFF_UP)
8325 __dev_close(dev);
8326 else
40c900aa 8327 ret = __dev_open(dev, extack);
7051b88a 8328 }
1da177e4 8329
1da177e4 8330 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8331 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8332 unsigned int old_flags = dev->flags;
d1b19dff 8333
1da177e4 8334 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8335
8336 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8337 if (dev->flags != old_flags)
8338 dev_set_rx_mode(dev);
1da177e4
LT
8339 }
8340
8341 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8342 * is important. Some (broken) drivers set IFF_PROMISC, when
8343 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8344 */
8345 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8346 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8347
1da177e4 8348 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8349 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8350 }
8351
bd380811
PM
8352 return ret;
8353}
8354
a528c219
ND
8355void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8356 unsigned int gchanges)
bd380811
PM
8357{
8358 unsigned int changes = dev->flags ^ old_flags;
8359
a528c219 8360 if (gchanges)
7f294054 8361 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8362
bd380811
PM
8363 if (changes & IFF_UP) {
8364 if (dev->flags & IFF_UP)
8365 call_netdevice_notifiers(NETDEV_UP, dev);
8366 else
8367 call_netdevice_notifiers(NETDEV_DOWN, dev);
8368 }
8369
8370 if (dev->flags & IFF_UP &&
be9efd36 8371 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8372 struct netdev_notifier_change_info change_info = {
8373 .info = {
8374 .dev = dev,
8375 },
8376 .flags_changed = changes,
8377 };
be9efd36 8378
51d0c047 8379 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8380 }
bd380811
PM
8381}
8382
8383/**
8384 * dev_change_flags - change device settings
8385 * @dev: device
8386 * @flags: device state flags
567c5e13 8387 * @extack: netlink extended ack
bd380811
PM
8388 *
8389 * Change settings on device based state flags. The flags are
8390 * in the userspace exported format.
8391 */
567c5e13
PM
8392int dev_change_flags(struct net_device *dev, unsigned int flags,
8393 struct netlink_ext_ack *extack)
bd380811 8394{
b536db93 8395 int ret;
991fb3f7 8396 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8397
6d040321 8398 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8399 if (ret < 0)
8400 return ret;
8401
991fb3f7 8402 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8403 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8404 return ret;
8405}
d1b19dff 8406EXPORT_SYMBOL(dev_change_flags);
1da177e4 8407
f51048c3 8408int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8409{
8410 const struct net_device_ops *ops = dev->netdev_ops;
8411
8412 if (ops->ndo_change_mtu)
8413 return ops->ndo_change_mtu(dev, new_mtu);
8414
501a90c9
ED
8415 /* Pairs with all the lockless reads of dev->mtu in the stack */
8416 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8417 return 0;
8418}
f51048c3 8419EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8420
d836f5c6
ED
8421int dev_validate_mtu(struct net_device *dev, int new_mtu,
8422 struct netlink_ext_ack *extack)
8423{
8424 /* MTU must be positive, and in range */
8425 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8426 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8427 return -EINVAL;
8428 }
8429
8430 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8431 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8432 return -EINVAL;
8433 }
8434 return 0;
8435}
8436
f0db275a 8437/**
7a4c53be 8438 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8439 * @dev: device
8440 * @new_mtu: new transfer unit
7a4c53be 8441 * @extack: netlink extended ack
f0db275a
SH
8442 *
8443 * Change the maximum transfer size of the network device.
8444 */
7a4c53be
SH
8445int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8446 struct netlink_ext_ack *extack)
1da177e4 8447{
2315dc91 8448 int err, orig_mtu;
1da177e4
LT
8449
8450 if (new_mtu == dev->mtu)
8451 return 0;
8452
d836f5c6
ED
8453 err = dev_validate_mtu(dev, new_mtu, extack);
8454 if (err)
8455 return err;
1da177e4
LT
8456
8457 if (!netif_device_present(dev))
8458 return -ENODEV;
8459
1d486bfb
VF
8460 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8461 err = notifier_to_errno(err);
8462 if (err)
8463 return err;
d314774c 8464
2315dc91
VF
8465 orig_mtu = dev->mtu;
8466 err = __dev_set_mtu(dev, new_mtu);
d314774c 8467
2315dc91 8468 if (!err) {
af7d6cce
SD
8469 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8470 orig_mtu);
2315dc91
VF
8471 err = notifier_to_errno(err);
8472 if (err) {
8473 /* setting mtu back and notifying everyone again,
8474 * so that they have a chance to revert changes.
8475 */
8476 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8477 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8478 new_mtu);
2315dc91
VF
8479 }
8480 }
1da177e4
LT
8481 return err;
8482}
7a4c53be
SH
8483
8484int dev_set_mtu(struct net_device *dev, int new_mtu)
8485{
8486 struct netlink_ext_ack extack;
8487 int err;
8488
a6bcfc89 8489 memset(&extack, 0, sizeof(extack));
7a4c53be 8490 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8491 if (err && extack._msg)
7a4c53be
SH
8492 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8493 return err;
8494}
d1b19dff 8495EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8496
6a643ddb
CW
8497/**
8498 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8499 * @dev: device
8500 * @new_len: new tx queue length
8501 */
8502int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8503{
8504 unsigned int orig_len = dev->tx_queue_len;
8505 int res;
8506
8507 if (new_len != (unsigned int)new_len)
8508 return -ERANGE;
8509
8510 if (new_len != orig_len) {
8511 dev->tx_queue_len = new_len;
8512 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8513 res = notifier_to_errno(res);
7effaf06
TT
8514 if (res)
8515 goto err_rollback;
8516 res = dev_qdisc_change_tx_queue_len(dev);
8517 if (res)
8518 goto err_rollback;
6a643ddb
CW
8519 }
8520
8521 return 0;
7effaf06
TT
8522
8523err_rollback:
8524 netdev_err(dev, "refused to change device tx_queue_len\n");
8525 dev->tx_queue_len = orig_len;
8526 return res;
6a643ddb
CW
8527}
8528
cbda10fa
VD
8529/**
8530 * dev_set_group - Change group this device belongs to
8531 * @dev: device
8532 * @new_group: group this device should belong to
8533 */
8534void dev_set_group(struct net_device *dev, int new_group)
8535{
8536 dev->group = new_group;
8537}
8538EXPORT_SYMBOL(dev_set_group);
8539
d59cdf94
PM
8540/**
8541 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8542 * @dev: device
8543 * @addr: new address
8544 * @extack: netlink extended ack
8545 */
8546int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8547 struct netlink_ext_ack *extack)
8548{
8549 struct netdev_notifier_pre_changeaddr_info info = {
8550 .info.dev = dev,
8551 .info.extack = extack,
8552 .dev_addr = addr,
8553 };
8554 int rc;
8555
8556 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8557 return notifier_to_errno(rc);
8558}
8559EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8560
f0db275a
SH
8561/**
8562 * dev_set_mac_address - Change Media Access Control Address
8563 * @dev: device
8564 * @sa: new address
3a37a963 8565 * @extack: netlink extended ack
f0db275a
SH
8566 *
8567 * Change the hardware (MAC) address of the device
8568 */
3a37a963
PM
8569int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8570 struct netlink_ext_ack *extack)
1da177e4 8571{
d314774c 8572 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8573 int err;
8574
d314774c 8575 if (!ops->ndo_set_mac_address)
1da177e4
LT
8576 return -EOPNOTSUPP;
8577 if (sa->sa_family != dev->type)
8578 return -EINVAL;
8579 if (!netif_device_present(dev))
8580 return -ENODEV;
d59cdf94
PM
8581 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8582 if (err)
8583 return err;
d314774c 8584 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8585 if (err)
8586 return err;
fbdeca2d 8587 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8588 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8589 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8590 return 0;
1da177e4 8591}
d1b19dff 8592EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8593
4bf84c35
JP
8594/**
8595 * dev_change_carrier - Change device carrier
8596 * @dev: device
691b3b7e 8597 * @new_carrier: new value
4bf84c35
JP
8598 *
8599 * Change device carrier
8600 */
8601int dev_change_carrier(struct net_device *dev, bool new_carrier)
8602{
8603 const struct net_device_ops *ops = dev->netdev_ops;
8604
8605 if (!ops->ndo_change_carrier)
8606 return -EOPNOTSUPP;
8607 if (!netif_device_present(dev))
8608 return -ENODEV;
8609 return ops->ndo_change_carrier(dev, new_carrier);
8610}
8611EXPORT_SYMBOL(dev_change_carrier);
8612
66b52b0d
JP
8613/**
8614 * dev_get_phys_port_id - Get device physical port ID
8615 * @dev: device
8616 * @ppid: port ID
8617 *
8618 * Get device physical port ID
8619 */
8620int dev_get_phys_port_id(struct net_device *dev,
02637fce 8621 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8622{
8623 const struct net_device_ops *ops = dev->netdev_ops;
8624
8625 if (!ops->ndo_get_phys_port_id)
8626 return -EOPNOTSUPP;
8627 return ops->ndo_get_phys_port_id(dev, ppid);
8628}
8629EXPORT_SYMBOL(dev_get_phys_port_id);
8630
db24a904
DA
8631/**
8632 * dev_get_phys_port_name - Get device physical port name
8633 * @dev: device
8634 * @name: port name
ed49e650 8635 * @len: limit of bytes to copy to name
db24a904
DA
8636 *
8637 * Get device physical port name
8638 */
8639int dev_get_phys_port_name(struct net_device *dev,
8640 char *name, size_t len)
8641{
8642 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8643 int err;
db24a904 8644
af3836df
JP
8645 if (ops->ndo_get_phys_port_name) {
8646 err = ops->ndo_get_phys_port_name(dev, name, len);
8647 if (err != -EOPNOTSUPP)
8648 return err;
8649 }
8650 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
8651}
8652EXPORT_SYMBOL(dev_get_phys_port_name);
8653
d6abc596
FF
8654/**
8655 * dev_get_port_parent_id - Get the device's port parent identifier
8656 * @dev: network device
8657 * @ppid: pointer to a storage for the port's parent identifier
8658 * @recurse: allow/disallow recursion to lower devices
8659 *
8660 * Get the devices's port parent identifier
8661 */
8662int dev_get_port_parent_id(struct net_device *dev,
8663 struct netdev_phys_item_id *ppid,
8664 bool recurse)
8665{
8666 const struct net_device_ops *ops = dev->netdev_ops;
8667 struct netdev_phys_item_id first = { };
8668 struct net_device *lower_dev;
8669 struct list_head *iter;
7e1146e8
JP
8670 int err;
8671
8672 if (ops->ndo_get_port_parent_id) {
8673 err = ops->ndo_get_port_parent_id(dev, ppid);
8674 if (err != -EOPNOTSUPP)
8675 return err;
8676 }
d6abc596 8677
7e1146e8
JP
8678 err = devlink_compat_switch_id_get(dev, ppid);
8679 if (!err || err != -EOPNOTSUPP)
8680 return err;
d6abc596
FF
8681
8682 if (!recurse)
7e1146e8 8683 return -EOPNOTSUPP;
d6abc596
FF
8684
8685 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8686 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8687 if (err)
8688 break;
8689 if (!first.id_len)
8690 first = *ppid;
8691 else if (memcmp(&first, ppid, sizeof(*ppid)))
8692 return -ENODATA;
8693 }
8694
8695 return err;
8696}
8697EXPORT_SYMBOL(dev_get_port_parent_id);
8698
8699/**
8700 * netdev_port_same_parent_id - Indicate if two network devices have
8701 * the same port parent identifier
8702 * @a: first network device
8703 * @b: second network device
8704 */
8705bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8706{
8707 struct netdev_phys_item_id a_id = { };
8708 struct netdev_phys_item_id b_id = { };
8709
8710 if (dev_get_port_parent_id(a, &a_id, true) ||
8711 dev_get_port_parent_id(b, &b_id, true))
8712 return false;
8713
8714 return netdev_phys_item_id_same(&a_id, &b_id);
8715}
8716EXPORT_SYMBOL(netdev_port_same_parent_id);
8717
d746d707
AK
8718/**
8719 * dev_change_proto_down - update protocol port state information
8720 * @dev: device
8721 * @proto_down: new value
8722 *
8723 * This info can be used by switch drivers to set the phys state of the
8724 * port.
8725 */
8726int dev_change_proto_down(struct net_device *dev, bool proto_down)
8727{
8728 const struct net_device_ops *ops = dev->netdev_ops;
8729
8730 if (!ops->ndo_change_proto_down)
8731 return -EOPNOTSUPP;
8732 if (!netif_device_present(dev))
8733 return -ENODEV;
8734 return ops->ndo_change_proto_down(dev, proto_down);
8735}
8736EXPORT_SYMBOL(dev_change_proto_down);
8737
b5899679
AR
8738/**
8739 * dev_change_proto_down_generic - generic implementation for
8740 * ndo_change_proto_down that sets carrier according to
8741 * proto_down.
8742 *
8743 * @dev: device
8744 * @proto_down: new value
8745 */
8746int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8747{
8748 if (proto_down)
8749 netif_carrier_off(dev);
8750 else
8751 netif_carrier_on(dev);
8752 dev->proto_down = proto_down;
8753 return 0;
8754}
8755EXPORT_SYMBOL(dev_change_proto_down_generic);
8756
829eb208
RP
8757/**
8758 * dev_change_proto_down_reason - proto down reason
8759 *
8760 * @dev: device
8761 * @mask: proto down mask
8762 * @value: proto down value
8763 */
8764void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8765 u32 value)
8766{
8767 int b;
8768
8769 if (!mask) {
8770 dev->proto_down_reason = value;
8771 } else {
8772 for_each_set_bit(b, &mask, 32) {
8773 if (value & (1 << b))
8774 dev->proto_down_reason |= BIT(b);
8775 else
8776 dev->proto_down_reason &= ~BIT(b);
8777 }
8778 }
8779}
8780EXPORT_SYMBOL(dev_change_proto_down_reason);
8781
aa8d3a71
AN
8782struct bpf_xdp_link {
8783 struct bpf_link link;
8784 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8785 int flags;
8786};
8787
c8a36f19 8788static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
d67b9cd2 8789{
7f0a8382
AN
8790 if (flags & XDP_FLAGS_HW_MODE)
8791 return XDP_MODE_HW;
8792 if (flags & XDP_FLAGS_DRV_MODE)
8793 return XDP_MODE_DRV;
c8a36f19
AN
8794 if (flags & XDP_FLAGS_SKB_MODE)
8795 return XDP_MODE_SKB;
8796 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
7f0a8382 8797}
d67b9cd2 8798
7f0a8382
AN
8799static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8800{
8801 switch (mode) {
8802 case XDP_MODE_SKB:
8803 return generic_xdp_install;
8804 case XDP_MODE_DRV:
8805 case XDP_MODE_HW:
8806 return dev->netdev_ops->ndo_bpf;
8807 default:
8808 return NULL;
8809 };
8810}
118b4aa2 8811
aa8d3a71
AN
8812static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8813 enum bpf_xdp_mode mode)
8814{
8815 return dev->xdp_state[mode].link;
8816}
8817
7f0a8382
AN
8818static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8819 enum bpf_xdp_mode mode)
8820{
aa8d3a71
AN
8821 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8822
8823 if (link)
8824 return link->link.prog;
7f0a8382
AN
8825 return dev->xdp_state[mode].prog;
8826}
8827
8828u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8829{
8830 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
118b4aa2 8831
7f0a8382
AN
8832 return prog ? prog->aux->id : 0;
8833}
58038695 8834
aa8d3a71
AN
8835static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8836 struct bpf_xdp_link *link)
8837{
8838 dev->xdp_state[mode].link = link;
8839 dev->xdp_state[mode].prog = NULL;
d67b9cd2
DB
8840}
8841
7f0a8382
AN
8842static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8843 struct bpf_prog *prog)
8844{
aa8d3a71 8845 dev->xdp_state[mode].link = NULL;
7f0a8382 8846 dev->xdp_state[mode].prog = prog;
d67b9cd2
DB
8847}
8848
7f0a8382
AN
8849static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8850 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8851 u32 flags, struct bpf_prog *prog)
d67b9cd2 8852{
f4e63525 8853 struct netdev_bpf xdp;
7e6897f9
BT
8854 int err;
8855
d67b9cd2 8856 memset(&xdp, 0, sizeof(xdp));
7f0a8382 8857 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
d67b9cd2 8858 xdp.extack = extack;
32d60277 8859 xdp.flags = flags;
d67b9cd2
DB
8860 xdp.prog = prog;
8861
7f0a8382
AN
8862 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8863 * "moved" into driver), so they don't increment it on their own, but
8864 * they do decrement refcnt when program is detached or replaced.
8865 * Given net_device also owns link/prog, we need to bump refcnt here
8866 * to prevent drivers from underflowing it.
8867 */
8868 if (prog)
8869 bpf_prog_inc(prog);
7e6897f9 8870 err = bpf_op(dev, &xdp);
7f0a8382
AN
8871 if (err) {
8872 if (prog)
8873 bpf_prog_put(prog);
8874 return err;
8875 }
7e6897f9 8876
7f0a8382
AN
8877 if (mode != XDP_MODE_HW)
8878 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
7e6897f9 8879
7f0a8382 8880 return 0;
d67b9cd2
DB
8881}
8882
bd0b2e7f
JK
8883static void dev_xdp_uninstall(struct net_device *dev)
8884{
aa8d3a71 8885 struct bpf_xdp_link *link;
7f0a8382
AN
8886 struct bpf_prog *prog;
8887 enum bpf_xdp_mode mode;
8888 bpf_op_t bpf_op;
bd0b2e7f 8889
7f0a8382 8890 ASSERT_RTNL();
bd0b2e7f 8891
7f0a8382
AN
8892 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8893 prog = dev_xdp_prog(dev, mode);
8894 if (!prog)
8895 continue;
bd0b2e7f 8896
7f0a8382
AN
8897 bpf_op = dev_xdp_bpf_op(dev, mode);
8898 if (!bpf_op)
8899 continue;
bd0b2e7f 8900
7f0a8382
AN
8901 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8902
aa8d3a71
AN
8903 /* auto-detach link from net device */
8904 link = dev_xdp_link(dev, mode);
8905 if (link)
8906 link->dev = NULL;
8907 else
8908 bpf_prog_put(prog);
8909
8910 dev_xdp_set_link(dev, mode, NULL);
7f0a8382 8911 }
bd0b2e7f
JK
8912}
8913
d4baa936 8914static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
aa8d3a71
AN
8915 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8916 struct bpf_prog *old_prog, u32 flags)
a7862b45 8917{
d4baa936
AN
8918 struct bpf_prog *cur_prog;
8919 enum bpf_xdp_mode mode;
7f0a8382 8920 bpf_op_t bpf_op;
a7862b45
BB
8921 int err;
8922
85de8576
DB
8923 ASSERT_RTNL();
8924
aa8d3a71
AN
8925 /* either link or prog attachment, never both */
8926 if (link && (new_prog || old_prog))
8927 return -EINVAL;
8928 /* link supports only XDP mode flags */
8929 if (link && (flags & ~XDP_FLAGS_MODES)) {
8930 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8931 return -EINVAL;
8932 }
d4baa936
AN
8933 /* just one XDP mode bit should be set, zero defaults to SKB mode */
8934 if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
8935 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8936 return -EINVAL;
8937 }
8938 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8939 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8940 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8941 return -EINVAL;
01dde20c 8942 }
a25717d2 8943
c8a36f19 8944 mode = dev_xdp_mode(dev, flags);
aa8d3a71
AN
8945 /* can't replace attached link */
8946 if (dev_xdp_link(dev, mode)) {
8947 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8948 return -EBUSY;
01dde20c 8949 }
c14a9f63 8950
d4baa936 8951 cur_prog = dev_xdp_prog(dev, mode);
aa8d3a71
AN
8952 /* can't replace attached prog with link */
8953 if (link && cur_prog) {
8954 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8955 return -EBUSY;
8956 }
d4baa936
AN
8957 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8958 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8959 return -EEXIST;
92234c8f 8960 }
c14a9f63 8961
aa8d3a71
AN
8962 /* put effective new program into new_prog */
8963 if (link)
8964 new_prog = link->link.prog;
85de8576 8965
d4baa936
AN
8966 if (new_prog) {
8967 bool offload = mode == XDP_MODE_HW;
7f0a8382
AN
8968 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8969 ? XDP_MODE_DRV : XDP_MODE_SKB;
441a3303 8970
068d9d1e
AN
8971 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8972 NL_SET_ERR_MSG(extack, "XDP program already attached");
8973 return -EBUSY;
8974 }
d4baa936 8975 if (!offload && dev_xdp_prog(dev, other_mode)) {
7f0a8382 8976 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
d67b9cd2 8977 return -EEXIST;
01dde20c 8978 }
d4baa936 8979 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
7f0a8382 8980 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
441a3303
JK
8981 return -EINVAL;
8982 }
d4baa936 8983 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
fbee97fe 8984 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
fbee97fe
DA
8985 return -EINVAL;
8986 }
d4baa936
AN
8987 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
8988 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
92164774
LB
8989 return -EINVAL;
8990 }
d4baa936 8991 }
92164774 8992
d4baa936
AN
8993 /* don't call drivers if the effective program didn't change */
8994 if (new_prog != cur_prog) {
8995 bpf_op = dev_xdp_bpf_op(dev, mode);
8996 if (!bpf_op) {
8997 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
8998 return -EOPNOTSUPP;
c14a9f63 8999 }
a7862b45 9000
d4baa936
AN
9001 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9002 if (err)
9003 return err;
7f0a8382 9004 }
d4baa936 9005
aa8d3a71
AN
9006 if (link)
9007 dev_xdp_set_link(dev, mode, link);
9008 else
9009 dev_xdp_set_prog(dev, mode, new_prog);
d4baa936
AN
9010 if (cur_prog)
9011 bpf_prog_put(cur_prog);
a7862b45 9012
7f0a8382 9013 return 0;
a7862b45 9014}
a7862b45 9015
aa8d3a71
AN
9016static int dev_xdp_attach_link(struct net_device *dev,
9017 struct netlink_ext_ack *extack,
9018 struct bpf_xdp_link *link)
9019{
9020 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9021}
9022
9023static int dev_xdp_detach_link(struct net_device *dev,
9024 struct netlink_ext_ack *extack,
9025 struct bpf_xdp_link *link)
9026{
9027 enum bpf_xdp_mode mode;
9028 bpf_op_t bpf_op;
9029
9030 ASSERT_RTNL();
9031
c8a36f19 9032 mode = dev_xdp_mode(dev, link->flags);
aa8d3a71
AN
9033 if (dev_xdp_link(dev, mode) != link)
9034 return -EINVAL;
9035
9036 bpf_op = dev_xdp_bpf_op(dev, mode);
9037 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9038 dev_xdp_set_link(dev, mode, NULL);
9039 return 0;
9040}
9041
9042static void bpf_xdp_link_release(struct bpf_link *link)
9043{
9044 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9045
9046 rtnl_lock();
9047
9048 /* if racing with net_device's tear down, xdp_link->dev might be
9049 * already NULL, in which case link was already auto-detached
9050 */
73b11c2a 9051 if (xdp_link->dev) {
aa8d3a71 9052 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
73b11c2a
AN
9053 xdp_link->dev = NULL;
9054 }
aa8d3a71
AN
9055
9056 rtnl_unlock();
9057}
9058
73b11c2a
AN
9059static int bpf_xdp_link_detach(struct bpf_link *link)
9060{
9061 bpf_xdp_link_release(link);
9062 return 0;
9063}
9064
aa8d3a71
AN
9065static void bpf_xdp_link_dealloc(struct bpf_link *link)
9066{
9067 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9068
9069 kfree(xdp_link);
9070}
9071
c1931c97
AN
9072static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9073 struct seq_file *seq)
9074{
9075 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9076 u32 ifindex = 0;
9077
9078 rtnl_lock();
9079 if (xdp_link->dev)
9080 ifindex = xdp_link->dev->ifindex;
9081 rtnl_unlock();
9082
9083 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9084}
9085
9086static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9087 struct bpf_link_info *info)
9088{
9089 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9090 u32 ifindex = 0;
9091
9092 rtnl_lock();
9093 if (xdp_link->dev)
9094 ifindex = xdp_link->dev->ifindex;
9095 rtnl_unlock();
9096
9097 info->xdp.ifindex = ifindex;
9098 return 0;
9099}
9100
026a4c28
AN
9101static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9102 struct bpf_prog *old_prog)
9103{
9104 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9105 enum bpf_xdp_mode mode;
9106 bpf_op_t bpf_op;
9107 int err = 0;
9108
9109 rtnl_lock();
9110
9111 /* link might have been auto-released already, so fail */
9112 if (!xdp_link->dev) {
9113 err = -ENOLINK;
9114 goto out_unlock;
9115 }
9116
9117 if (old_prog && link->prog != old_prog) {
9118 err = -EPERM;
9119 goto out_unlock;
9120 }
9121 old_prog = link->prog;
9122 if (old_prog == new_prog) {
9123 /* no-op, don't disturb drivers */
9124 bpf_prog_put(new_prog);
9125 goto out_unlock;
9126 }
9127
c8a36f19 9128 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
026a4c28
AN
9129 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9130 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9131 xdp_link->flags, new_prog);
9132 if (err)
9133 goto out_unlock;
9134
9135 old_prog = xchg(&link->prog, new_prog);
9136 bpf_prog_put(old_prog);
9137
9138out_unlock:
9139 rtnl_unlock();
9140 return err;
9141}
9142
aa8d3a71
AN
9143static const struct bpf_link_ops bpf_xdp_link_lops = {
9144 .release = bpf_xdp_link_release,
9145 .dealloc = bpf_xdp_link_dealloc,
73b11c2a 9146 .detach = bpf_xdp_link_detach,
c1931c97
AN
9147 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9148 .fill_link_info = bpf_xdp_link_fill_link_info,
026a4c28 9149 .update_prog = bpf_xdp_link_update,
aa8d3a71
AN
9150};
9151
9152int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9153{
9154 struct net *net = current->nsproxy->net_ns;
9155 struct bpf_link_primer link_primer;
9156 struct bpf_xdp_link *link;
9157 struct net_device *dev;
9158 int err, fd;
9159
9160 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9161 if (!dev)
9162 return -EINVAL;
9163
9164 link = kzalloc(sizeof(*link), GFP_USER);
9165 if (!link) {
9166 err = -ENOMEM;
9167 goto out_put_dev;
9168 }
9169
9170 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9171 link->dev = dev;
9172 link->flags = attr->link_create.flags;
9173
9174 err = bpf_link_prime(&link->link, &link_primer);
9175 if (err) {
9176 kfree(link);
9177 goto out_put_dev;
9178 }
9179
9180 rtnl_lock();
9181 err = dev_xdp_attach_link(dev, NULL, link);
9182 rtnl_unlock();
9183
9184 if (err) {
9185 bpf_link_cleanup(&link_primer);
9186 goto out_put_dev;
9187 }
9188
9189 fd = bpf_link_settle(&link_primer);
9190 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9191 dev_put(dev);
9192 return fd;
9193
9194out_put_dev:
9195 dev_put(dev);
9196 return err;
9197}
9198
d4baa936
AN
9199/**
9200 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9201 * @dev: device
9202 * @extack: netlink extended ack
9203 * @fd: new program fd or negative value to clear
9204 * @expected_fd: old program fd that userspace expects to replace or clear
9205 * @flags: xdp-related flags
9206 *
9207 * Set or clear a bpf program for a device
9208 */
9209int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9210 int fd, int expected_fd, u32 flags)
9211{
c8a36f19 9212 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
d4baa936
AN
9213 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9214 int err;
9215
9216 ASSERT_RTNL();
9217
9218 if (fd >= 0) {
9219 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9220 mode != XDP_MODE_SKB);
9221 if (IS_ERR(new_prog))
9222 return PTR_ERR(new_prog);
9223 }
9224
9225 if (expected_fd >= 0) {
9226 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9227 mode != XDP_MODE_SKB);
9228 if (IS_ERR(old_prog)) {
9229 err = PTR_ERR(old_prog);
9230 old_prog = NULL;
9231 goto err_out;
c14a9f63 9232 }
a7862b45
BB
9233 }
9234
aa8d3a71 9235 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
a7862b45 9236
d4baa936
AN
9237err_out:
9238 if (err && new_prog)
9239 bpf_prog_put(new_prog);
9240 if (old_prog)
9241 bpf_prog_put(old_prog);
a7862b45
BB
9242 return err;
9243}
a7862b45 9244
1da177e4
LT
9245/**
9246 * dev_new_index - allocate an ifindex
c4ea43c5 9247 * @net: the applicable net namespace
1da177e4
LT
9248 *
9249 * Returns a suitable unique value for a new device interface
9250 * number. The caller must hold the rtnl semaphore or the
9251 * dev_base_lock to be sure it remains unique.
9252 */
881d966b 9253static int dev_new_index(struct net *net)
1da177e4 9254{
aa79e66e 9255 int ifindex = net->ifindex;
f4563a75 9256
1da177e4
LT
9257 for (;;) {
9258 if (++ifindex <= 0)
9259 ifindex = 1;
881d966b 9260 if (!__dev_get_by_index(net, ifindex))
aa79e66e 9261 return net->ifindex = ifindex;
1da177e4
LT
9262 }
9263}
9264
1da177e4 9265/* Delayed registration/unregisteration */
3b5b34fd 9266static LIST_HEAD(net_todo_list);
200b916f 9267DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 9268
6f05f629 9269static void net_set_todo(struct net_device *dev)
1da177e4 9270{
1da177e4 9271 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 9272 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
9273}
9274
9b5e383c 9275static void rollback_registered_many(struct list_head *head)
93ee31f1 9276{
e93737b0 9277 struct net_device *dev, *tmp;
5cde2829 9278 LIST_HEAD(close_head);
9b5e383c 9279
93ee31f1
DL
9280 BUG_ON(dev_boot_phase);
9281 ASSERT_RTNL();
9282
e93737b0 9283 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 9284 /* Some devices call without registering
e93737b0
KK
9285 * for initialization unwind. Remove those
9286 * devices and proceed with the remaining.
9b5e383c
ED
9287 */
9288 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
9289 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9290 dev->name, dev);
93ee31f1 9291
9b5e383c 9292 WARN_ON(1);
e93737b0
KK
9293 list_del(&dev->unreg_list);
9294 continue;
9b5e383c 9295 }
449f4544 9296 dev->dismantle = true;
9b5e383c 9297 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 9298 }
93ee31f1 9299
44345724 9300 /* If device is running, close it first. */
5cde2829
EB
9301 list_for_each_entry(dev, head, unreg_list)
9302 list_add_tail(&dev->close_list, &close_head);
99c4a26a 9303 dev_close_many(&close_head, true);
93ee31f1 9304
44345724 9305 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
9306 /* And unlink it from device chain. */
9307 unlist_netdevice(dev);
93ee31f1 9308
9b5e383c
ED
9309 dev->reg_state = NETREG_UNREGISTERING;
9310 }
41852497 9311 flush_all_backlogs();
93ee31f1
DL
9312
9313 synchronize_net();
9314
9b5e383c 9315 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
9316 struct sk_buff *skb = NULL;
9317
9b5e383c
ED
9318 /* Shutdown queueing discipline. */
9319 dev_shutdown(dev);
93ee31f1 9320
bd0b2e7f 9321 dev_xdp_uninstall(dev);
93ee31f1 9322
9b5e383c 9323 /* Notify protocols, that we are about to destroy
eb13da1a 9324 * this device. They should clean all the things.
9325 */
9b5e383c 9326 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 9327
395eea6c
MB
9328 if (!dev->rtnl_link_ops ||
9329 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 9330 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 9331 GFP_KERNEL, NULL, 0);
395eea6c 9332
9b5e383c
ED
9333 /*
9334 * Flush the unicast and multicast chains
9335 */
a748ee24 9336 dev_uc_flush(dev);
22bedad3 9337 dev_mc_flush(dev);
93ee31f1 9338
36fbf1e5 9339 netdev_name_node_alt_flush(dev);
ff927412
JP
9340 netdev_name_node_free(dev->name_node);
9341
9b5e383c
ED
9342 if (dev->netdev_ops->ndo_uninit)
9343 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 9344
395eea6c
MB
9345 if (skb)
9346 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 9347
9ff162a8
JP
9348 /* Notifier chain MUST detach us all upper devices. */
9349 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 9350 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 9351
9b5e383c
ED
9352 /* Remove entries from kobject tree */
9353 netdev_unregister_kobject(dev);
024e9679
AD
9354#ifdef CONFIG_XPS
9355 /* Remove XPS queueing entries */
9356 netif_reset_xps_queues_gt(dev, 0);
9357#endif
9b5e383c 9358 }
93ee31f1 9359
850a545b 9360 synchronize_net();
395264d5 9361
a5ee1551 9362 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
9363 dev_put(dev);
9364}
9365
9366static void rollback_registered(struct net_device *dev)
9367{
9368 LIST_HEAD(single);
9369
9370 list_add(&dev->unreg_list, &single);
9371 rollback_registered_many(&single);
ceaaec98 9372 list_del(&single);
93ee31f1
DL
9373}
9374
fd867d51
JW
9375static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9376 struct net_device *upper, netdev_features_t features)
9377{
9378 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9379 netdev_features_t feature;
5ba3f7d6 9380 int feature_bit;
fd867d51 9381
3b89ea9c 9382 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9383 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9384 if (!(upper->wanted_features & feature)
9385 && (features & feature)) {
9386 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9387 &feature, upper->name);
9388 features &= ~feature;
9389 }
9390 }
9391
9392 return features;
9393}
9394
9395static void netdev_sync_lower_features(struct net_device *upper,
9396 struct net_device *lower, netdev_features_t features)
9397{
9398 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9399 netdev_features_t feature;
5ba3f7d6 9400 int feature_bit;
fd867d51 9401
3b89ea9c 9402 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9403 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9404 if (!(features & feature) && (lower->features & feature)) {
9405 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9406 &feature, lower->name);
9407 lower->wanted_features &= ~feature;
dd912306 9408 __netdev_update_features(lower);
fd867d51
JW
9409
9410 if (unlikely(lower->features & feature))
9411 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9412 &feature, lower->name);
dd912306
CW
9413 else
9414 netdev_features_change(lower);
fd867d51
JW
9415 }
9416 }
9417}
9418
c8f44aff
MM
9419static netdev_features_t netdev_fix_features(struct net_device *dev,
9420 netdev_features_t features)
b63365a2 9421{
57422dc5
MM
9422 /* Fix illegal checksum combinations */
9423 if ((features & NETIF_F_HW_CSUM) &&
9424 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 9425 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
9426 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9427 }
9428
b63365a2 9429 /* TSO requires that SG is present as well. */
ea2d3688 9430 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 9431 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 9432 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
9433 }
9434
ec5f0615
PS
9435 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9436 !(features & NETIF_F_IP_CSUM)) {
9437 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9438 features &= ~NETIF_F_TSO;
9439 features &= ~NETIF_F_TSO_ECN;
9440 }
9441
9442 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9443 !(features & NETIF_F_IPV6_CSUM)) {
9444 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9445 features &= ~NETIF_F_TSO6;
9446 }
9447
b1dc497b
AD
9448 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9449 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9450 features &= ~NETIF_F_TSO_MANGLEID;
9451
31d8b9e0
BH
9452 /* TSO ECN requires that TSO is present as well. */
9453 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9454 features &= ~NETIF_F_TSO_ECN;
9455
212b573f
MM
9456 /* Software GSO depends on SG. */
9457 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 9458 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
9459 features &= ~NETIF_F_GSO;
9460 }
9461
802ab55a
AD
9462 /* GSO partial features require GSO partial be set */
9463 if ((features & dev->gso_partial_features) &&
9464 !(features & NETIF_F_GSO_PARTIAL)) {
9465 netdev_dbg(dev,
9466 "Dropping partially supported GSO features since no GSO partial.\n");
9467 features &= ~dev->gso_partial_features;
9468 }
9469
fb1f5f79
MC
9470 if (!(features & NETIF_F_RXCSUM)) {
9471 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9472 * successfully merged by hardware must also have the
9473 * checksum verified by hardware. If the user does not
9474 * want to enable RXCSUM, logically, we should disable GRO_HW.
9475 */
9476 if (features & NETIF_F_GRO_HW) {
9477 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9478 features &= ~NETIF_F_GRO_HW;
9479 }
9480 }
9481
de8d5ab2
GP
9482 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9483 if (features & NETIF_F_RXFCS) {
9484 if (features & NETIF_F_LRO) {
9485 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9486 features &= ~NETIF_F_LRO;
9487 }
9488
9489 if (features & NETIF_F_GRO_HW) {
9490 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9491 features &= ~NETIF_F_GRO_HW;
9492 }
e6c6a929
GP
9493 }
9494
b63365a2
HX
9495 return features;
9496}
b63365a2 9497
6cb6a27c 9498int __netdev_update_features(struct net_device *dev)
5455c699 9499{
fd867d51 9500 struct net_device *upper, *lower;
c8f44aff 9501 netdev_features_t features;
fd867d51 9502 struct list_head *iter;
e7868a85 9503 int err = -1;
5455c699 9504
87267485
MM
9505 ASSERT_RTNL();
9506
5455c699
MM
9507 features = netdev_get_wanted_features(dev);
9508
9509 if (dev->netdev_ops->ndo_fix_features)
9510 features = dev->netdev_ops->ndo_fix_features(dev, features);
9511
9512 /* driver might be less strict about feature dependencies */
9513 features = netdev_fix_features(dev, features);
9514
fd867d51
JW
9515 /* some features can't be enabled if they're off an an upper device */
9516 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9517 features = netdev_sync_upper_features(dev, upper, features);
9518
5455c699 9519 if (dev->features == features)
e7868a85 9520 goto sync_lower;
5455c699 9521
c8f44aff
MM
9522 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9523 &dev->features, &features);
5455c699
MM
9524
9525 if (dev->netdev_ops->ndo_set_features)
9526 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9527 else
9528 err = 0;
5455c699 9529
6cb6a27c 9530 if (unlikely(err < 0)) {
5455c699 9531 netdev_err(dev,
c8f44aff
MM
9532 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9533 err, &features, &dev->features);
17b85d29
NA
9534 /* return non-0 since some features might have changed and
9535 * it's better to fire a spurious notification than miss it
9536 */
9537 return -1;
6cb6a27c
MM
9538 }
9539
e7868a85 9540sync_lower:
fd867d51
JW
9541 /* some features must be disabled on lower devices when disabled
9542 * on an upper device (think: bonding master or bridge)
9543 */
9544 netdev_for_each_lower_dev(dev, lower, iter)
9545 netdev_sync_lower_features(dev, lower, features);
9546
ae847f40
SD
9547 if (!err) {
9548 netdev_features_t diff = features ^ dev->features;
9549
9550 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9551 /* udp_tunnel_{get,drop}_rx_info both need
9552 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9553 * device, or they won't do anything.
9554 * Thus we need to update dev->features
9555 * *before* calling udp_tunnel_get_rx_info,
9556 * but *after* calling udp_tunnel_drop_rx_info.
9557 */
9558 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9559 dev->features = features;
9560 udp_tunnel_get_rx_info(dev);
9561 } else {
9562 udp_tunnel_drop_rx_info(dev);
9563 }
9564 }
9565
9daae9bd
GP
9566 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9567 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9568 dev->features = features;
9569 err |= vlan_get_rx_ctag_filter_info(dev);
9570 } else {
9571 vlan_drop_rx_ctag_filter_info(dev);
9572 }
9573 }
9574
9575 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9576 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9577 dev->features = features;
9578 err |= vlan_get_rx_stag_filter_info(dev);
9579 } else {
9580 vlan_drop_rx_stag_filter_info(dev);
9581 }
9582 }
9583
6cb6a27c 9584 dev->features = features;
ae847f40 9585 }
6cb6a27c 9586
e7868a85 9587 return err < 0 ? 0 : 1;
6cb6a27c
MM
9588}
9589
afe12cc8
MM
9590/**
9591 * netdev_update_features - recalculate device features
9592 * @dev: the device to check
9593 *
9594 * Recalculate dev->features set and send notifications if it
9595 * has changed. Should be called after driver or hardware dependent
9596 * conditions might have changed that influence the features.
9597 */
6cb6a27c
MM
9598void netdev_update_features(struct net_device *dev)
9599{
9600 if (__netdev_update_features(dev))
9601 netdev_features_change(dev);
5455c699
MM
9602}
9603EXPORT_SYMBOL(netdev_update_features);
9604
afe12cc8
MM
9605/**
9606 * netdev_change_features - recalculate device features
9607 * @dev: the device to check
9608 *
9609 * Recalculate dev->features set and send notifications even
9610 * if they have not changed. Should be called instead of
9611 * netdev_update_features() if also dev->vlan_features might
9612 * have changed to allow the changes to be propagated to stacked
9613 * VLAN devices.
9614 */
9615void netdev_change_features(struct net_device *dev)
9616{
9617 __netdev_update_features(dev);
9618 netdev_features_change(dev);
9619}
9620EXPORT_SYMBOL(netdev_change_features);
9621
fc4a7489
PM
9622/**
9623 * netif_stacked_transfer_operstate - transfer operstate
9624 * @rootdev: the root or lower level device to transfer state from
9625 * @dev: the device to transfer operstate to
9626 *
9627 * Transfer operational state from root to device. This is normally
9628 * called when a stacking relationship exists between the root
9629 * device and the device(a leaf device).
9630 */
9631void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9632 struct net_device *dev)
9633{
9634 if (rootdev->operstate == IF_OPER_DORMANT)
9635 netif_dormant_on(dev);
9636 else
9637 netif_dormant_off(dev);
9638
eec517cd
AL
9639 if (rootdev->operstate == IF_OPER_TESTING)
9640 netif_testing_on(dev);
9641 else
9642 netif_testing_off(dev);
9643
0575c86b
ZS
9644 if (netif_carrier_ok(rootdev))
9645 netif_carrier_on(dev);
9646 else
9647 netif_carrier_off(dev);
fc4a7489
PM
9648}
9649EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9650
1b4bf461
ED
9651static int netif_alloc_rx_queues(struct net_device *dev)
9652{
1b4bf461 9653 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 9654 struct netdev_rx_queue *rx;
10595902 9655 size_t sz = count * sizeof(*rx);
e817f856 9656 int err = 0;
1b4bf461 9657
bd25fa7b 9658 BUG_ON(count < 1);
1b4bf461 9659
dcda9b04 9660 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9661 if (!rx)
9662 return -ENOMEM;
9663
bd25fa7b
TH
9664 dev->_rx = rx;
9665
e817f856 9666 for (i = 0; i < count; i++) {
fe822240 9667 rx[i].dev = dev;
e817f856
JDB
9668
9669 /* XDP RX-queue setup */
9670 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9671 if (err < 0)
9672 goto err_rxq_info;
9673 }
1b4bf461 9674 return 0;
e817f856
JDB
9675
9676err_rxq_info:
9677 /* Rollback successful reg's and free other resources */
9678 while (i--)
9679 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 9680 kvfree(dev->_rx);
e817f856
JDB
9681 dev->_rx = NULL;
9682 return err;
9683}
9684
9685static void netif_free_rx_queues(struct net_device *dev)
9686{
9687 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
9688
9689 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9690 if (!dev->_rx)
9691 return;
9692
e817f856 9693 for (i = 0; i < count; i++)
82aaff2f
JK
9694 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9695
9696 kvfree(dev->_rx);
1b4bf461
ED
9697}
9698
aa942104
CG
9699static void netdev_init_one_queue(struct net_device *dev,
9700 struct netdev_queue *queue, void *_unused)
9701{
9702 /* Initialize queue lock */
9703 spin_lock_init(&queue->_xmit_lock);
1a33e10e 9704 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
aa942104 9705 queue->xmit_lock_owner = -1;
b236da69 9706 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 9707 queue->dev = dev;
114cf580
TH
9708#ifdef CONFIG_BQL
9709 dql_init(&queue->dql, HZ);
9710#endif
aa942104
CG
9711}
9712
60877a32
ED
9713static void netif_free_tx_queues(struct net_device *dev)
9714{
4cb28970 9715 kvfree(dev->_tx);
60877a32
ED
9716}
9717
e6484930
TH
9718static int netif_alloc_netdev_queues(struct net_device *dev)
9719{
9720 unsigned int count = dev->num_tx_queues;
9721 struct netdev_queue *tx;
60877a32 9722 size_t sz = count * sizeof(*tx);
e6484930 9723
d339727c
ED
9724 if (count < 1 || count > 0xffff)
9725 return -EINVAL;
62b5942a 9726
dcda9b04 9727 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9728 if (!tx)
9729 return -ENOMEM;
9730
e6484930 9731 dev->_tx = tx;
1d24eb48 9732
e6484930
TH
9733 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9734 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
9735
9736 return 0;
e6484930
TH
9737}
9738
a2029240
DV
9739void netif_tx_stop_all_queues(struct net_device *dev)
9740{
9741 unsigned int i;
9742
9743 for (i = 0; i < dev->num_tx_queues; i++) {
9744 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 9745
a2029240
DV
9746 netif_tx_stop_queue(txq);
9747 }
9748}
9749EXPORT_SYMBOL(netif_tx_stop_all_queues);
9750
1da177e4
LT
9751/**
9752 * register_netdevice - register a network device
9753 * @dev: device to register
9754 *
9755 * Take a completed network device structure and add it to the kernel
9756 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9757 * chain. 0 is returned on success. A negative errno code is returned
9758 * on a failure to set up the device, or if the name is a duplicate.
9759 *
9760 * Callers must hold the rtnl semaphore. You may want
9761 * register_netdev() instead of this.
9762 *
9763 * BUGS:
9764 * The locking appears insufficient to guarantee two parallel registers
9765 * will not get the same name.
9766 */
9767
9768int register_netdevice(struct net_device *dev)
9769{
1da177e4 9770 int ret;
d314774c 9771 struct net *net = dev_net(dev);
1da177e4 9772
e283de3a
FF
9773 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9774 NETDEV_FEATURE_COUNT);
1da177e4
LT
9775 BUG_ON(dev_boot_phase);
9776 ASSERT_RTNL();
9777
b17a7c17
SH
9778 might_sleep();
9779
1da177e4
LT
9780 /* When net_device's are persistent, this will be fatal. */
9781 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 9782 BUG_ON(!net);
1da177e4 9783
9000edb7
JK
9784 ret = ethtool_check_ops(dev->ethtool_ops);
9785 if (ret)
9786 return ret;
9787
f1f28aa3 9788 spin_lock_init(&dev->addr_list_lock);
845e0ebb 9789 netdev_set_addr_lockdep_class(dev);
1da177e4 9790
828de4f6 9791 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
9792 if (ret < 0)
9793 goto out;
9794
9077f052 9795 ret = -ENOMEM;
ff927412
JP
9796 dev->name_node = netdev_name_node_head_alloc(dev);
9797 if (!dev->name_node)
9798 goto out;
9799
1da177e4 9800 /* Init, if this function is available */
d314774c
SH
9801 if (dev->netdev_ops->ndo_init) {
9802 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
9803 if (ret) {
9804 if (ret > 0)
9805 ret = -EIO;
42c17fa6 9806 goto err_free_name;
1da177e4
LT
9807 }
9808 }
4ec93edb 9809
f646968f
PM
9810 if (((dev->hw_features | dev->features) &
9811 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
9812 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9813 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9814 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9815 ret = -EINVAL;
9816 goto err_uninit;
9817 }
9818
9c7dafbf
PE
9819 ret = -EBUSY;
9820 if (!dev->ifindex)
9821 dev->ifindex = dev_new_index(net);
9822 else if (__dev_get_by_index(net, dev->ifindex))
9823 goto err_uninit;
9824
5455c699
MM
9825 /* Transfer changeable features to wanted_features and enable
9826 * software offloads (GSO and GRO).
9827 */
1a3c998f 9828 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 9829 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
9830
9831 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9832 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9833 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9834 }
9835
14d1232f 9836 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 9837
cbc53e08 9838 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 9839 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 9840
7f348a60
AD
9841 /* If IPv4 TCP segmentation offload is supported we should also
9842 * allow the device to enable segmenting the frame with the option
9843 * of ignoring a static IP ID value. This doesn't enable the
9844 * feature itself but allows the user to enable it later.
9845 */
cbc53e08
AD
9846 if (dev->hw_features & NETIF_F_TSO)
9847 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
9848 if (dev->vlan_features & NETIF_F_TSO)
9849 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9850 if (dev->mpls_features & NETIF_F_TSO)
9851 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9852 if (dev->hw_enc_features & NETIF_F_TSO)
9853 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 9854
1180e7d6 9855 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 9856 */
1180e7d6 9857 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 9858
ee579677
PS
9859 /* Make NETIF_F_SG inheritable to tunnel devices.
9860 */
802ab55a 9861 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 9862
0d89d203
SH
9863 /* Make NETIF_F_SG inheritable to MPLS.
9864 */
9865 dev->mpls_features |= NETIF_F_SG;
9866
7ffbe3fd
JB
9867 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9868 ret = notifier_to_errno(ret);
9869 if (ret)
9870 goto err_uninit;
9871
8b41d188 9872 ret = netdev_register_kobject(dev);
cb626bf5
JH
9873 if (ret) {
9874 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 9875 goto err_uninit;
cb626bf5 9876 }
b17a7c17
SH
9877 dev->reg_state = NETREG_REGISTERED;
9878
6cb6a27c 9879 __netdev_update_features(dev);
8e9b59b2 9880
1da177e4
LT
9881 /*
9882 * Default initial state at registry is that the
9883 * device is present.
9884 */
9885
9886 set_bit(__LINK_STATE_PRESENT, &dev->state);
9887
8f4cccbb
BH
9888 linkwatch_init_dev(dev);
9889
1da177e4 9890 dev_init_scheduler(dev);
1da177e4 9891 dev_hold(dev);
ce286d32 9892 list_netdevice(dev);
7bf23575 9893 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 9894
948b337e
JP
9895 /* If the device has permanent device address, driver should
9896 * set dev_addr and also addr_assign_type should be set to
9897 * NET_ADDR_PERM (default value).
9898 */
9899 if (dev->addr_assign_type == NET_ADDR_PERM)
9900 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9901
1da177e4 9902 /* Notify protocols, that a new device appeared. */
056925ab 9903 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 9904 ret = notifier_to_errno(ret);
93ee31f1
DL
9905 if (ret) {
9906 rollback_registered(dev);
10cc514f
SAK
9907 rcu_barrier();
9908
93ee31f1 9909 dev->reg_state = NETREG_UNREGISTERED;
814152a8
YY
9910 /* We should put the kobject that hold in
9911 * netdev_unregister_kobject(), otherwise
9912 * the net device cannot be freed when
9913 * driver calls free_netdev(), because the
9914 * kobject is being hold.
9915 */
9916 kobject_put(&dev->dev.kobj);
93ee31f1 9917 }
d90a909e
EB
9918 /*
9919 * Prevent userspace races by waiting until the network
9920 * device is fully setup before sending notifications.
9921 */
a2835763
PM
9922 if (!dev->rtnl_link_ops ||
9923 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 9924 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
9925
9926out:
9927 return ret;
7ce1b0ed
HX
9928
9929err_uninit:
d314774c
SH
9930 if (dev->netdev_ops->ndo_uninit)
9931 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
9932 if (dev->priv_destructor)
9933 dev->priv_destructor(dev);
42c17fa6
DC
9934err_free_name:
9935 netdev_name_node_free(dev->name_node);
7ce1b0ed 9936 goto out;
1da177e4 9937}
d1b19dff 9938EXPORT_SYMBOL(register_netdevice);
1da177e4 9939
937f1ba5
BH
9940/**
9941 * init_dummy_netdev - init a dummy network device for NAPI
9942 * @dev: device to init
9943 *
9944 * This takes a network device structure and initialize the minimum
9945 * amount of fields so it can be used to schedule NAPI polls without
9946 * registering a full blown interface. This is to be used by drivers
9947 * that need to tie several hardware interfaces to a single NAPI
9948 * poll scheduler due to HW limitations.
9949 */
9950int init_dummy_netdev(struct net_device *dev)
9951{
9952 /* Clear everything. Note we don't initialize spinlocks
9953 * are they aren't supposed to be taken by any of the
9954 * NAPI code and this dummy netdev is supposed to be
9955 * only ever used for NAPI polls
9956 */
9957 memset(dev, 0, sizeof(struct net_device));
9958
9959 /* make sure we BUG if trying to hit standard
9960 * register/unregister code path
9961 */
9962 dev->reg_state = NETREG_DUMMY;
9963
937f1ba5
BH
9964 /* NAPI wants this */
9965 INIT_LIST_HEAD(&dev->napi_list);
9966
9967 /* a dummy interface is started by default */
9968 set_bit(__LINK_STATE_PRESENT, &dev->state);
9969 set_bit(__LINK_STATE_START, &dev->state);
9970
35edfdc7
JE
9971 /* napi_busy_loop stats accounting wants this */
9972 dev_net_set(dev, &init_net);
9973
29b4433d
ED
9974 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9975 * because users of this 'device' dont need to change
9976 * its refcount.
9977 */
9978
937f1ba5
BH
9979 return 0;
9980}
9981EXPORT_SYMBOL_GPL(init_dummy_netdev);
9982
9983
1da177e4
LT
9984/**
9985 * register_netdev - register a network device
9986 * @dev: device to register
9987 *
9988 * Take a completed network device structure and add it to the kernel
9989 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9990 * chain. 0 is returned on success. A negative errno code is returned
9991 * on a failure to set up the device, or if the name is a duplicate.
9992 *
38b4da38 9993 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
9994 * and expands the device name if you passed a format string to
9995 * alloc_netdev.
9996 */
9997int register_netdev(struct net_device *dev)
9998{
9999 int err;
10000
b0f3debc
KT
10001 if (rtnl_lock_killable())
10002 return -EINTR;
1da177e4 10003 err = register_netdevice(dev);
1da177e4
LT
10004 rtnl_unlock();
10005 return err;
10006}
10007EXPORT_SYMBOL(register_netdev);
10008
29b4433d
ED
10009int netdev_refcnt_read(const struct net_device *dev)
10010{
10011 int i, refcnt = 0;
10012
10013 for_each_possible_cpu(i)
10014 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10015 return refcnt;
10016}
10017EXPORT_SYMBOL(netdev_refcnt_read);
10018
2c53040f 10019/**
1da177e4 10020 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 10021 * @dev: target net_device
1da177e4
LT
10022 *
10023 * This is called when unregistering network devices.
10024 *
10025 * Any protocol or device that holds a reference should register
10026 * for netdevice notification, and cleanup and put back the
10027 * reference if they receive an UNREGISTER event.
10028 * We can get stuck here if buggy protocols don't correctly
4ec93edb 10029 * call dev_put.
1da177e4 10030 */
0e4be9e5
FR
10031#define WAIT_REFS_MIN_MSECS 1
10032#define WAIT_REFS_MAX_MSECS 250
1da177e4
LT
10033static void netdev_wait_allrefs(struct net_device *dev)
10034{
10035 unsigned long rebroadcast_time, warning_time;
0e4be9e5 10036 int wait = 0, refcnt;
1da177e4 10037
e014debe
ED
10038 linkwatch_forget_dev(dev);
10039
1da177e4 10040 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
10041 refcnt = netdev_refcnt_read(dev);
10042
10043 while (refcnt != 0) {
1da177e4 10044 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 10045 rtnl_lock();
1da177e4
LT
10046
10047 /* Rebroadcast unregister notification */
056925ab 10048 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 10049
748e2d93 10050 __rtnl_unlock();
0115e8e3 10051 rcu_barrier();
748e2d93
ED
10052 rtnl_lock();
10053
1da177e4
LT
10054 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10055 &dev->state)) {
10056 /* We must not have linkwatch events
10057 * pending on unregister. If this
10058 * happens, we simply run the queue
10059 * unscheduled, resulting in a noop
10060 * for this device.
10061 */
10062 linkwatch_run_queue();
10063 }
10064
6756ae4b 10065 __rtnl_unlock();
1da177e4
LT
10066
10067 rebroadcast_time = jiffies;
10068 }
10069
0e4be9e5
FR
10070 if (!wait) {
10071 rcu_barrier();
10072 wait = WAIT_REFS_MIN_MSECS;
10073 } else {
10074 msleep(wait);
10075 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10076 }
1da177e4 10077
29b4433d
ED
10078 refcnt = netdev_refcnt_read(dev);
10079
d7c04b05 10080 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
10081 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10082 dev->name, refcnt);
1da177e4
LT
10083 warning_time = jiffies;
10084 }
10085 }
10086}
10087
10088/* The sequence is:
10089 *
10090 * rtnl_lock();
10091 * ...
10092 * register_netdevice(x1);
10093 * register_netdevice(x2);
10094 * ...
10095 * unregister_netdevice(y1);
10096 * unregister_netdevice(y2);
10097 * ...
10098 * rtnl_unlock();
10099 * free_netdev(y1);
10100 * free_netdev(y2);
10101 *
58ec3b4d 10102 * We are invoked by rtnl_unlock().
1da177e4 10103 * This allows us to deal with problems:
b17a7c17 10104 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
10105 * without deadlocking with linkwatch via keventd.
10106 * 2) Since we run with the RTNL semaphore not held, we can sleep
10107 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
10108 *
10109 * We must not return until all unregister events added during
10110 * the interval the lock was held have been completed.
1da177e4 10111 */
1da177e4
LT
10112void netdev_run_todo(void)
10113{
626ab0e6 10114 struct list_head list;
1da177e4 10115
1da177e4 10116 /* Snapshot list, allow later requests */
626ab0e6 10117 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
10118
10119 __rtnl_unlock();
626ab0e6 10120
0115e8e3
ED
10121
10122 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
10123 if (!list_empty(&list))
10124 rcu_barrier();
10125
1da177e4
LT
10126 while (!list_empty(&list)) {
10127 struct net_device *dev
e5e26d75 10128 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
10129 list_del(&dev->todo_list);
10130
b17a7c17 10131 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 10132 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
10133 dev->name, dev->reg_state);
10134 dump_stack();
10135 continue;
10136 }
1da177e4 10137
b17a7c17 10138 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 10139
b17a7c17 10140 netdev_wait_allrefs(dev);
1da177e4 10141
b17a7c17 10142 /* paranoia */
29b4433d 10143 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
10144 BUG_ON(!list_empty(&dev->ptype_all));
10145 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
10146 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10147 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 10148#if IS_ENABLED(CONFIG_DECNET)
547b792c 10149 WARN_ON(dev->dn_ptr);
330c7272 10150#endif
cf124db5
DM
10151 if (dev->priv_destructor)
10152 dev->priv_destructor(dev);
10153 if (dev->needs_free_netdev)
10154 free_netdev(dev);
9093bbb2 10155
50624c93
EB
10156 /* Report a network device has been unregistered */
10157 rtnl_lock();
10158 dev_net(dev)->dev_unreg_count--;
10159 __rtnl_unlock();
10160 wake_up(&netdev_unregistering_wq);
10161
9093bbb2
SH
10162 /* Free network device */
10163 kobject_put(&dev->dev.kobj);
1da177e4 10164 }
1da177e4
LT
10165}
10166
9256645a
JW
10167/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10168 * all the same fields in the same order as net_device_stats, with only
10169 * the type differing, but rtnl_link_stats64 may have additional fields
10170 * at the end for newer counters.
3cfde79c 10171 */
77a1abf5
ED
10172void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10173 const struct net_device_stats *netdev_stats)
3cfde79c
BH
10174{
10175#if BITS_PER_LONG == 64
9256645a 10176 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 10177 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
10178 /* zero out counters that only exist in rtnl_link_stats64 */
10179 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10180 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 10181#else
9256645a 10182 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
10183 const unsigned long *src = (const unsigned long *)netdev_stats;
10184 u64 *dst = (u64 *)stats64;
10185
9256645a 10186 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
10187 for (i = 0; i < n; i++)
10188 dst[i] = src[i];
9256645a
JW
10189 /* zero out counters that only exist in rtnl_link_stats64 */
10190 memset((char *)stats64 + n * sizeof(u64), 0,
10191 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
10192#endif
10193}
77a1abf5 10194EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 10195
eeda3fd6
SH
10196/**
10197 * dev_get_stats - get network device statistics
10198 * @dev: device to get statistics from
28172739 10199 * @storage: place to store stats
eeda3fd6 10200 *
d7753516
BH
10201 * Get network statistics from device. Return @storage.
10202 * The device driver may provide its own method by setting
10203 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10204 * otherwise the internal statistics structure is used.
eeda3fd6 10205 */
d7753516
BH
10206struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10207 struct rtnl_link_stats64 *storage)
7004bf25 10208{
eeda3fd6
SH
10209 const struct net_device_ops *ops = dev->netdev_ops;
10210
28172739
ED
10211 if (ops->ndo_get_stats64) {
10212 memset(storage, 0, sizeof(*storage));
caf586e5
ED
10213 ops->ndo_get_stats64(dev, storage);
10214 } else if (ops->ndo_get_stats) {
3cfde79c 10215 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
10216 } else {
10217 netdev_stats_to_stats64(storage, &dev->stats);
28172739 10218 }
6f64ec74
ED
10219 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10220 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10221 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 10222 return storage;
c45d286e 10223}
eeda3fd6 10224EXPORT_SYMBOL(dev_get_stats);
c45d286e 10225
24824a09 10226struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 10227{
24824a09 10228 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 10229
24824a09
ED
10230#ifdef CONFIG_NET_CLS_ACT
10231 if (queue)
10232 return queue;
10233 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10234 if (!queue)
10235 return NULL;
10236 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 10237 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
10238 queue->qdisc_sleeping = &noop_qdisc;
10239 rcu_assign_pointer(dev->ingress_queue, queue);
10240#endif
10241 return queue;
bb949fbd
DM
10242}
10243
2c60db03
ED
10244static const struct ethtool_ops default_ethtool_ops;
10245
d07d7507
SG
10246void netdev_set_default_ethtool_ops(struct net_device *dev,
10247 const struct ethtool_ops *ops)
10248{
10249 if (dev->ethtool_ops == &default_ethtool_ops)
10250 dev->ethtool_ops = ops;
10251}
10252EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10253
74d332c1
ED
10254void netdev_freemem(struct net_device *dev)
10255{
10256 char *addr = (char *)dev - dev->padded;
10257
4cb28970 10258 kvfree(addr);
74d332c1
ED
10259}
10260
1da177e4 10261/**
722c9a0c 10262 * alloc_netdev_mqs - allocate network device
10263 * @sizeof_priv: size of private data to allocate space for
10264 * @name: device name format string
10265 * @name_assign_type: origin of device name
10266 * @setup: callback to initialize device
10267 * @txqs: the number of TX subqueues to allocate
10268 * @rxqs: the number of RX subqueues to allocate
10269 *
10270 * Allocates a struct net_device with private data area for driver use
10271 * and performs basic initialization. Also allocates subqueue structs
10272 * for each queue on the device.
1da177e4 10273 */
36909ea4 10274struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 10275 unsigned char name_assign_type,
36909ea4
TH
10276 void (*setup)(struct net_device *),
10277 unsigned int txqs, unsigned int rxqs)
1da177e4 10278{
1da177e4 10279 struct net_device *dev;
52a59bd5 10280 unsigned int alloc_size;
1ce8e7b5 10281 struct net_device *p;
1da177e4 10282
b6fe17d6
SH
10283 BUG_ON(strlen(name) >= sizeof(dev->name));
10284
36909ea4 10285 if (txqs < 1) {
7b6cd1ce 10286 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
10287 return NULL;
10288 }
10289
36909ea4 10290 if (rxqs < 1) {
7b6cd1ce 10291 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
10292 return NULL;
10293 }
36909ea4 10294
fd2ea0a7 10295 alloc_size = sizeof(struct net_device);
d1643d24
AD
10296 if (sizeof_priv) {
10297 /* ensure 32-byte alignment of private area */
1ce8e7b5 10298 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
10299 alloc_size += sizeof_priv;
10300 }
10301 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 10302 alloc_size += NETDEV_ALIGN - 1;
1da177e4 10303
dcda9b04 10304 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 10305 if (!p)
1da177e4 10306 return NULL;
1da177e4 10307
1ce8e7b5 10308 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 10309 dev->padded = (char *)dev - (char *)p;
ab9c73cc 10310
29b4433d
ED
10311 dev->pcpu_refcnt = alloc_percpu(int);
10312 if (!dev->pcpu_refcnt)
74d332c1 10313 goto free_dev;
ab9c73cc 10314
ab9c73cc 10315 if (dev_addr_init(dev))
29b4433d 10316 goto free_pcpu;
ab9c73cc 10317
22bedad3 10318 dev_mc_init(dev);
a748ee24 10319 dev_uc_init(dev);
ccffad25 10320
c346dca1 10321 dev_net_set(dev, &init_net);
1da177e4 10322
8d3bdbd5 10323 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 10324 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
10325 dev->upper_level = 1;
10326 dev->lower_level = 1;
8d3bdbd5 10327
8d3bdbd5
DM
10328 INIT_LIST_HEAD(&dev->napi_list);
10329 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 10330 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 10331 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
10332 INIT_LIST_HEAD(&dev->adj_list.upper);
10333 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
10334 INIT_LIST_HEAD(&dev->ptype_all);
10335 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 10336 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
10337#ifdef CONFIG_NET_SCHED
10338 hash_init(dev->qdisc_hash);
10339#endif
02875878 10340 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
10341 setup(dev);
10342
a813104d 10343 if (!dev->tx_queue_len) {
f84bb1ea 10344 dev->priv_flags |= IFF_NO_QUEUE;
11597084 10345 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 10346 }
906470c1 10347
36909ea4
TH
10348 dev->num_tx_queues = txqs;
10349 dev->real_num_tx_queues = txqs;
ed9af2e8 10350 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 10351 goto free_all;
e8a0464c 10352
36909ea4
TH
10353 dev->num_rx_queues = rxqs;
10354 dev->real_num_rx_queues = rxqs;
fe822240 10355 if (netif_alloc_rx_queues(dev))
8d3bdbd5 10356 goto free_all;
0a9627f2 10357
1da177e4 10358 strcpy(dev->name, name);
c835a677 10359 dev->name_assign_type = name_assign_type;
cbda10fa 10360 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
10361 if (!dev->ethtool_ops)
10362 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 10363
357b6cc5 10364 nf_hook_ingress_init(dev);
e687ad60 10365
1da177e4 10366 return dev;
ab9c73cc 10367
8d3bdbd5
DM
10368free_all:
10369 free_netdev(dev);
10370 return NULL;
10371
29b4433d
ED
10372free_pcpu:
10373 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
10374free_dev:
10375 netdev_freemem(dev);
ab9c73cc 10376 return NULL;
1da177e4 10377}
36909ea4 10378EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
10379
10380/**
722c9a0c 10381 * free_netdev - free network device
10382 * @dev: device
1da177e4 10383 *
722c9a0c 10384 * This function does the last stage of destroying an allocated device
10385 * interface. The reference to the device object is released. If this
10386 * is the last reference then it will be freed.Must be called in process
10387 * context.
1da177e4
LT
10388 */
10389void free_netdev(struct net_device *dev)
10390{
d565b0a1
HX
10391 struct napi_struct *p, *n;
10392
93d05d4a 10393 might_sleep();
60877a32 10394 netif_free_tx_queues(dev);
e817f856 10395 netif_free_rx_queues(dev);
e8a0464c 10396
33d480ce 10397 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 10398
f001fde5
JP
10399 /* Flush device addresses */
10400 dev_addr_flush(dev);
10401
d565b0a1
HX
10402 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10403 netif_napi_del(p);
10404
29b4433d
ED
10405 free_percpu(dev->pcpu_refcnt);
10406 dev->pcpu_refcnt = NULL;
75ccae62
THJ
10407 free_percpu(dev->xdp_bulkq);
10408 dev->xdp_bulkq = NULL;
29b4433d 10409
3041a069 10410 /* Compatibility with error handling in drivers */
1da177e4 10411 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 10412 netdev_freemem(dev);
1da177e4
LT
10413 return;
10414 }
10415
10416 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10417 dev->reg_state = NETREG_RELEASED;
10418
43cb76d9
GKH
10419 /* will free via device release */
10420 put_device(&dev->dev);
1da177e4 10421}
d1b19dff 10422EXPORT_SYMBOL(free_netdev);
4ec93edb 10423
f0db275a
SH
10424/**
10425 * synchronize_net - Synchronize with packet receive processing
10426 *
10427 * Wait for packets currently being received to be done.
10428 * Does not block later packets from starting.
10429 */
4ec93edb 10430void synchronize_net(void)
1da177e4
LT
10431{
10432 might_sleep();
be3fc413
ED
10433 if (rtnl_is_locked())
10434 synchronize_rcu_expedited();
10435 else
10436 synchronize_rcu();
1da177e4 10437}
d1b19dff 10438EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
10439
10440/**
44a0873d 10441 * unregister_netdevice_queue - remove device from the kernel
1da177e4 10442 * @dev: device
44a0873d 10443 * @head: list
6ebfbc06 10444 *
1da177e4 10445 * This function shuts down a device interface and removes it
d59b54b1 10446 * from the kernel tables.
44a0873d 10447 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
10448 *
10449 * Callers must hold the rtnl semaphore. You may want
10450 * unregister_netdev() instead of this.
10451 */
10452
44a0873d 10453void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 10454{
a6620712
HX
10455 ASSERT_RTNL();
10456
44a0873d 10457 if (head) {
9fdce099 10458 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
10459 } else {
10460 rollback_registered(dev);
10461 /* Finish processing unregister after unlock */
10462 net_set_todo(dev);
10463 }
1da177e4 10464}
44a0873d 10465EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 10466
9b5e383c
ED
10467/**
10468 * unregister_netdevice_many - unregister many devices
10469 * @head: list of devices
87757a91
ED
10470 *
10471 * Note: As most callers use a stack allocated list_head,
10472 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
10473 */
10474void unregister_netdevice_many(struct list_head *head)
10475{
10476 struct net_device *dev;
10477
10478 if (!list_empty(head)) {
10479 rollback_registered_many(head);
10480 list_for_each_entry(dev, head, unreg_list)
10481 net_set_todo(dev);
87757a91 10482 list_del(head);
9b5e383c
ED
10483 }
10484}
63c8099d 10485EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 10486
1da177e4
LT
10487/**
10488 * unregister_netdev - remove device from the kernel
10489 * @dev: device
10490 *
10491 * This function shuts down a device interface and removes it
d59b54b1 10492 * from the kernel tables.
1da177e4
LT
10493 *
10494 * This is just a wrapper for unregister_netdevice that takes
10495 * the rtnl semaphore. In general you want to use this and not
10496 * unregister_netdevice.
10497 */
10498void unregister_netdev(struct net_device *dev)
10499{
10500 rtnl_lock();
10501 unregister_netdevice(dev);
10502 rtnl_unlock();
10503}
1da177e4
LT
10504EXPORT_SYMBOL(unregister_netdev);
10505
ce286d32
EB
10506/**
10507 * dev_change_net_namespace - move device to different nethost namespace
10508 * @dev: device
10509 * @net: network namespace
10510 * @pat: If not NULL name pattern to try if the current device name
10511 * is already taken in the destination network namespace.
10512 *
10513 * This function shuts down a device interface and moves it
10514 * to a new network namespace. On success 0 is returned, on
10515 * a failure a netagive errno code is returned.
10516 *
10517 * Callers must hold the rtnl semaphore.
10518 */
10519
10520int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10521{
ef6a4c88 10522 struct net *net_old = dev_net(dev);
38e01b30 10523 int err, new_nsid, new_ifindex;
ce286d32
EB
10524
10525 ASSERT_RTNL();
10526
10527 /* Don't allow namespace local devices to be moved. */
10528 err = -EINVAL;
10529 if (dev->features & NETIF_F_NETNS_LOCAL)
10530 goto out;
10531
10532 /* Ensure the device has been registrered */
ce286d32
EB
10533 if (dev->reg_state != NETREG_REGISTERED)
10534 goto out;
10535
10536 /* Get out if there is nothing todo */
10537 err = 0;
ef6a4c88 10538 if (net_eq(net_old, net))
ce286d32
EB
10539 goto out;
10540
10541 /* Pick the destination device name, and ensure
10542 * we can use it in the destination network namespace.
10543 */
10544 err = -EEXIST;
d9031024 10545 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
10546 /* We get here if we can't use the current device name */
10547 if (!pat)
10548 goto out;
7892bd08
LR
10549 err = dev_get_valid_name(net, dev, pat);
10550 if (err < 0)
ce286d32
EB
10551 goto out;
10552 }
10553
10554 /*
10555 * And now a mini version of register_netdevice unregister_netdevice.
10556 */
10557
10558 /* If device is running close it first. */
9b772652 10559 dev_close(dev);
ce286d32
EB
10560
10561 /* And unlink it from device chain */
ce286d32
EB
10562 unlist_netdevice(dev);
10563
10564 synchronize_net();
10565
10566 /* Shutdown queueing discipline. */
10567 dev_shutdown(dev);
10568
10569 /* Notify protocols, that we are about to destroy
eb13da1a 10570 * this device. They should clean all the things.
10571 *
10572 * Note that dev->reg_state stays at NETREG_REGISTERED.
10573 * This is wanted because this way 8021q and macvlan know
10574 * the device is just moving and can keep their slaves up.
10575 */
ce286d32 10576 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 10577 rcu_barrier();
38e01b30 10578
d4e4fdf9 10579 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30
ND
10580 /* If there is an ifindex conflict assign a new one */
10581 if (__dev_get_by_index(net, dev->ifindex))
10582 new_ifindex = dev_new_index(net);
10583 else
10584 new_ifindex = dev->ifindex;
10585
10586 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10587 new_ifindex);
ce286d32
EB
10588
10589 /*
10590 * Flush the unicast and multicast chains
10591 */
a748ee24 10592 dev_uc_flush(dev);
22bedad3 10593 dev_mc_flush(dev);
ce286d32 10594
4e66ae2e
SH
10595 /* Send a netdev-removed uevent to the old namespace */
10596 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 10597 netdev_adjacent_del_links(dev);
4e66ae2e 10598
93642e14
JP
10599 /* Move per-net netdevice notifiers that are following the netdevice */
10600 move_netdevice_notifiers_dev_net(dev, net);
10601
ce286d32 10602 /* Actually switch the network namespace */
c346dca1 10603 dev_net_set(dev, net);
38e01b30 10604 dev->ifindex = new_ifindex;
ce286d32 10605
4e66ae2e
SH
10606 /* Send a netdev-add uevent to the new namespace */
10607 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 10608 netdev_adjacent_add_links(dev);
4e66ae2e 10609
8b41d188 10610 /* Fixup kobjects */
a1b3f594 10611 err = device_rename(&dev->dev, dev->name);
8b41d188 10612 WARN_ON(err);
ce286d32 10613
ef6a4c88
CB
10614 /* Adapt owner in case owning user namespace of target network
10615 * namespace is different from the original one.
10616 */
10617 err = netdev_change_owner(dev, net_old, net);
10618 WARN_ON(err);
10619
ce286d32
EB
10620 /* Add the device back in the hashes */
10621 list_netdevice(dev);
10622
10623 /* Notify protocols, that a new device appeared. */
10624 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10625
d90a909e
EB
10626 /*
10627 * Prevent userspace races by waiting until the network
10628 * device is fully setup before sending notifications.
10629 */
7f294054 10630 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 10631
ce286d32
EB
10632 synchronize_net();
10633 err = 0;
10634out:
10635 return err;
10636}
463d0183 10637EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 10638
f0bf90de 10639static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
10640{
10641 struct sk_buff **list_skb;
1da177e4 10642 struct sk_buff *skb;
f0bf90de 10643 unsigned int cpu;
97d8b6e3 10644 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 10645
1da177e4
LT
10646 local_irq_disable();
10647 cpu = smp_processor_id();
10648 sd = &per_cpu(softnet_data, cpu);
10649 oldsd = &per_cpu(softnet_data, oldcpu);
10650
10651 /* Find end of our completion_queue. */
10652 list_skb = &sd->completion_queue;
10653 while (*list_skb)
10654 list_skb = &(*list_skb)->next;
10655 /* Append completion queue from offline CPU. */
10656 *list_skb = oldsd->completion_queue;
10657 oldsd->completion_queue = NULL;
10658
1da177e4 10659 /* Append output queue from offline CPU. */
a9cbd588
CG
10660 if (oldsd->output_queue) {
10661 *sd->output_queue_tailp = oldsd->output_queue;
10662 sd->output_queue_tailp = oldsd->output_queue_tailp;
10663 oldsd->output_queue = NULL;
10664 oldsd->output_queue_tailp = &oldsd->output_queue;
10665 }
ac64da0b
ED
10666 /* Append NAPI poll list from offline CPU, with one exception :
10667 * process_backlog() must be called by cpu owning percpu backlog.
10668 * We properly handle process_queue & input_pkt_queue later.
10669 */
10670 while (!list_empty(&oldsd->poll_list)) {
10671 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10672 struct napi_struct,
10673 poll_list);
10674
10675 list_del_init(&napi->poll_list);
10676 if (napi->poll == process_backlog)
10677 napi->state = 0;
10678 else
10679 ____napi_schedule(sd, napi);
264524d5 10680 }
1da177e4
LT
10681
10682 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10683 local_irq_enable();
10684
773fc8f6 10685#ifdef CONFIG_RPS
10686 remsd = oldsd->rps_ipi_list;
10687 oldsd->rps_ipi_list = NULL;
10688#endif
10689 /* send out pending IPI's on offline CPU */
10690 net_rps_send_ipi(remsd);
10691
1da177e4 10692 /* Process offline CPU's input_pkt_queue */
76cc8b13 10693 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 10694 netif_rx_ni(skb);
76cc8b13 10695 input_queue_head_incr(oldsd);
fec5e652 10696 }
ac64da0b 10697 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 10698 netif_rx_ni(skb);
76cc8b13
TH
10699 input_queue_head_incr(oldsd);
10700 }
1da177e4 10701
f0bf90de 10702 return 0;
1da177e4 10703}
1da177e4 10704
7f353bf2 10705/**
b63365a2
HX
10706 * netdev_increment_features - increment feature set by one
10707 * @all: current feature set
10708 * @one: new feature set
10709 * @mask: mask feature set
7f353bf2
HX
10710 *
10711 * Computes a new feature set after adding a device with feature set
b63365a2
HX
10712 * @one to the master device with current feature set @all. Will not
10713 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 10714 */
c8f44aff
MM
10715netdev_features_t netdev_increment_features(netdev_features_t all,
10716 netdev_features_t one, netdev_features_t mask)
b63365a2 10717{
c8cd0989 10718 if (mask & NETIF_F_HW_CSUM)
a188222b 10719 mask |= NETIF_F_CSUM_MASK;
1742f183 10720 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 10721
a188222b 10722 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 10723 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 10724
1742f183 10725 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
10726 if (all & NETIF_F_HW_CSUM)
10727 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
10728
10729 return all;
10730}
b63365a2 10731EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 10732
430f03cd 10733static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
10734{
10735 int i;
10736 struct hlist_head *hash;
10737
6da2ec56 10738 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
10739 if (hash != NULL)
10740 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10741 INIT_HLIST_HEAD(&hash[i]);
10742
10743 return hash;
10744}
10745
881d966b 10746/* Initialize per network namespace state */
4665079c 10747static int __net_init netdev_init(struct net *net)
881d966b 10748{
d9f37d01 10749 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 10750 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 10751
734b6541
RM
10752 if (net != &init_net)
10753 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 10754
30d97d35
PE
10755 net->dev_name_head = netdev_create_hash();
10756 if (net->dev_name_head == NULL)
10757 goto err_name;
881d966b 10758
30d97d35
PE
10759 net->dev_index_head = netdev_create_hash();
10760 if (net->dev_index_head == NULL)
10761 goto err_idx;
881d966b 10762
a30c7b42
JP
10763 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10764
881d966b 10765 return 0;
30d97d35
PE
10766
10767err_idx:
10768 kfree(net->dev_name_head);
10769err_name:
10770 return -ENOMEM;
881d966b
EB
10771}
10772
f0db275a
SH
10773/**
10774 * netdev_drivername - network driver for the device
10775 * @dev: network device
f0db275a
SH
10776 *
10777 * Determine network driver for device.
10778 */
3019de12 10779const char *netdev_drivername(const struct net_device *dev)
6579e57b 10780{
cf04a4c7
SH
10781 const struct device_driver *driver;
10782 const struct device *parent;
3019de12 10783 const char *empty = "";
6579e57b
AV
10784
10785 parent = dev->dev.parent;
6579e57b 10786 if (!parent)
3019de12 10787 return empty;
6579e57b
AV
10788
10789 driver = parent->driver;
10790 if (driver && driver->name)
3019de12
DM
10791 return driver->name;
10792 return empty;
6579e57b
AV
10793}
10794
6ea754eb
JP
10795static void __netdev_printk(const char *level, const struct net_device *dev,
10796 struct va_format *vaf)
256df2f3 10797{
b004ff49 10798 if (dev && dev->dev.parent) {
6ea754eb
JP
10799 dev_printk_emit(level[1] - '0',
10800 dev->dev.parent,
10801 "%s %s %s%s: %pV",
10802 dev_driver_string(dev->dev.parent),
10803 dev_name(dev->dev.parent),
10804 netdev_name(dev), netdev_reg_state(dev),
10805 vaf);
b004ff49 10806 } else if (dev) {
6ea754eb
JP
10807 printk("%s%s%s: %pV",
10808 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 10809 } else {
6ea754eb 10810 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 10811 }
256df2f3
JP
10812}
10813
6ea754eb
JP
10814void netdev_printk(const char *level, const struct net_device *dev,
10815 const char *format, ...)
256df2f3
JP
10816{
10817 struct va_format vaf;
10818 va_list args;
256df2f3
JP
10819
10820 va_start(args, format);
10821
10822 vaf.fmt = format;
10823 vaf.va = &args;
10824
6ea754eb 10825 __netdev_printk(level, dev, &vaf);
b004ff49 10826
256df2f3 10827 va_end(args);
256df2f3
JP
10828}
10829EXPORT_SYMBOL(netdev_printk);
10830
10831#define define_netdev_printk_level(func, level) \
6ea754eb 10832void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 10833{ \
256df2f3
JP
10834 struct va_format vaf; \
10835 va_list args; \
10836 \
10837 va_start(args, fmt); \
10838 \
10839 vaf.fmt = fmt; \
10840 vaf.va = &args; \
10841 \
6ea754eb 10842 __netdev_printk(level, dev, &vaf); \
b004ff49 10843 \
256df2f3 10844 va_end(args); \
256df2f3
JP
10845} \
10846EXPORT_SYMBOL(func);
10847
10848define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10849define_netdev_printk_level(netdev_alert, KERN_ALERT);
10850define_netdev_printk_level(netdev_crit, KERN_CRIT);
10851define_netdev_printk_level(netdev_err, KERN_ERR);
10852define_netdev_printk_level(netdev_warn, KERN_WARNING);
10853define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10854define_netdev_printk_level(netdev_info, KERN_INFO);
10855
4665079c 10856static void __net_exit netdev_exit(struct net *net)
881d966b
EB
10857{
10858 kfree(net->dev_name_head);
10859 kfree(net->dev_index_head);
ee21b18b
VA
10860 if (net != &init_net)
10861 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
10862}
10863
022cbae6 10864static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
10865 .init = netdev_init,
10866 .exit = netdev_exit,
10867};
10868
4665079c 10869static void __net_exit default_device_exit(struct net *net)
ce286d32 10870{
e008b5fc 10871 struct net_device *dev, *aux;
ce286d32 10872 /*
e008b5fc 10873 * Push all migratable network devices back to the
ce286d32
EB
10874 * initial network namespace
10875 */
10876 rtnl_lock();
e008b5fc 10877 for_each_netdev_safe(net, dev, aux) {
ce286d32 10878 int err;
aca51397 10879 char fb_name[IFNAMSIZ];
ce286d32
EB
10880
10881 /* Ignore unmoveable devices (i.e. loopback) */
10882 if (dev->features & NETIF_F_NETNS_LOCAL)
10883 continue;
10884
e008b5fc
EB
10885 /* Leave virtual devices for the generic cleanup */
10886 if (dev->rtnl_link_ops)
10887 continue;
d0c082ce 10888
25985edc 10889 /* Push remaining network devices to init_net */
aca51397 10890 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
10891 if (__dev_get_by_name(&init_net, fb_name))
10892 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 10893 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 10894 if (err) {
7b6cd1ce
JP
10895 pr_emerg("%s: failed to move %s to init_net: %d\n",
10896 __func__, dev->name, err);
aca51397 10897 BUG();
ce286d32
EB
10898 }
10899 }
10900 rtnl_unlock();
10901}
10902
50624c93
EB
10903static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10904{
10905 /* Return with the rtnl_lock held when there are no network
10906 * devices unregistering in any network namespace in net_list.
10907 */
10908 struct net *net;
10909 bool unregistering;
ff960a73 10910 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 10911
ff960a73 10912 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 10913 for (;;) {
50624c93
EB
10914 unregistering = false;
10915 rtnl_lock();
10916 list_for_each_entry(net, net_list, exit_list) {
10917 if (net->dev_unreg_count > 0) {
10918 unregistering = true;
10919 break;
10920 }
10921 }
10922 if (!unregistering)
10923 break;
10924 __rtnl_unlock();
ff960a73
PZ
10925
10926 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 10927 }
ff960a73 10928 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
10929}
10930
04dc7f6b
EB
10931static void __net_exit default_device_exit_batch(struct list_head *net_list)
10932{
10933 /* At exit all network devices most be removed from a network
b595076a 10934 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
10935 * Do this across as many network namespaces as possible to
10936 * improve batching efficiency.
10937 */
10938 struct net_device *dev;
10939 struct net *net;
10940 LIST_HEAD(dev_kill_list);
10941
50624c93
EB
10942 /* To prevent network device cleanup code from dereferencing
10943 * loopback devices or network devices that have been freed
10944 * wait here for all pending unregistrations to complete,
10945 * before unregistring the loopback device and allowing the
10946 * network namespace be freed.
10947 *
10948 * The netdev todo list containing all network devices
10949 * unregistrations that happen in default_device_exit_batch
10950 * will run in the rtnl_unlock() at the end of
10951 * default_device_exit_batch.
10952 */
10953 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
10954 list_for_each_entry(net, net_list, exit_list) {
10955 for_each_netdev_reverse(net, dev) {
b0ab2fab 10956 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
10957 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10958 else
10959 unregister_netdevice_queue(dev, &dev_kill_list);
10960 }
10961 }
10962 unregister_netdevice_many(&dev_kill_list);
10963 rtnl_unlock();
10964}
10965
022cbae6 10966static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 10967 .exit = default_device_exit,
04dc7f6b 10968 .exit_batch = default_device_exit_batch,
ce286d32
EB
10969};
10970
1da177e4
LT
10971/*
10972 * Initialize the DEV module. At boot time this walks the device list and
10973 * unhooks any devices that fail to initialise (normally hardware not
10974 * present) and leaves us with a valid list of present and active devices.
10975 *
10976 */
10977
10978/*
10979 * This is called single threaded during boot, so no need
10980 * to take the rtnl semaphore.
10981 */
10982static int __init net_dev_init(void)
10983{
10984 int i, rc = -ENOMEM;
10985
10986 BUG_ON(!dev_boot_phase);
10987
1da177e4
LT
10988 if (dev_proc_init())
10989 goto out;
10990
8b41d188 10991 if (netdev_kobject_init())
1da177e4
LT
10992 goto out;
10993
10994 INIT_LIST_HEAD(&ptype_all);
82d8a867 10995 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
10996 INIT_LIST_HEAD(&ptype_base[i]);
10997
62532da9
VY
10998 INIT_LIST_HEAD(&offload_base);
10999
881d966b
EB
11000 if (register_pernet_subsys(&netdev_net_ops))
11001 goto out;
1da177e4
LT
11002
11003 /*
11004 * Initialise the packet receive queues.
11005 */
11006
6f912042 11007 for_each_possible_cpu(i) {
41852497 11008 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 11009 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 11010
41852497
ED
11011 INIT_WORK(flush, flush_backlog);
11012
e36fa2f7 11013 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 11014 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
11015#ifdef CONFIG_XFRM_OFFLOAD
11016 skb_queue_head_init(&sd->xfrm_backlog);
11017#endif
e36fa2f7 11018 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 11019 sd->output_queue_tailp = &sd->output_queue;
df334545 11020#ifdef CONFIG_RPS
e36fa2f7
ED
11021 sd->csd.func = rps_trigger_softirq;
11022 sd->csd.info = sd;
e36fa2f7 11023 sd->cpu = i;
1e94d72f 11024#endif
0a9627f2 11025
7c4ec749 11026 init_gro_hash(&sd->backlog);
e36fa2f7
ED
11027 sd->backlog.poll = process_backlog;
11028 sd->backlog.weight = weight_p;
1da177e4
LT
11029 }
11030
1da177e4
LT
11031 dev_boot_phase = 0;
11032
505d4f73
EB
11033 /* The loopback device is special if any other network devices
11034 * is present in a network namespace the loopback device must
11035 * be present. Since we now dynamically allocate and free the
11036 * loopback device ensure this invariant is maintained by
11037 * keeping the loopback device as the first device on the
11038 * list of network devices. Ensuring the loopback devices
11039 * is the first device that appears and the last network device
11040 * that disappears.
11041 */
11042 if (register_pernet_device(&loopback_net_ops))
11043 goto out;
11044
11045 if (register_pernet_device(&default_device_ops))
11046 goto out;
11047
962cf36c
CM
11048 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11049 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 11050
f0bf90de
SAS
11051 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11052 NULL, dev_cpu_dead);
11053 WARN_ON(rc < 0);
1da177e4
LT
11054 rc = 0;
11055out:
11056 return rc;
11057}
11058
11059subsys_initcall(net_dev_init);