net: phy: aquantia: add SGMII statistics
[linux-2.6-block.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4 96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
b5cdae32 98#include <linux/bpf_trace.h>
457c4cbc 99#include <net/net_namespace.h>
1da177e4 100#include <net/sock.h>
02d62e86 101#include <net/busy_poll.h>
1da177e4 102#include <linux/rtnetlink.h>
1da177e4 103#include <linux/stat.h>
1da177e4 104#include <net/dst.h>
fc4099f1 105#include <net/dst_metadata.h>
1da177e4 106#include <net/pkt_sched.h>
87d83093 107#include <net/pkt_cls.h>
1da177e4 108#include <net/checksum.h>
44540960 109#include <net/xfrm.h>
1da177e4
LT
110#include <linux/highmem.h>
111#include <linux/init.h>
1da177e4 112#include <linux/module.h>
1da177e4
LT
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
1da177e4 116#include <net/iw_handler.h>
1da177e4 117#include <asm/current.h>
5bdb9886 118#include <linux/audit.h>
db217334 119#include <linux/dmaengine.h>
f6a78bfc 120#include <linux/err.h>
c7fa9d18 121#include <linux/ctype.h>
723e98b7 122#include <linux/if_arp.h>
6de329e2 123#include <linux/if_vlan.h>
8f0f2223 124#include <linux/ip.h>
ad55dcaf 125#include <net/ip.h>
25cd9ba0 126#include <net/mpls.h>
8f0f2223
DM
127#include <linux/ipv6.h>
128#include <linux/in.h>
b6b2fed1
DM
129#include <linux/jhash.h>
130#include <linux/random.h>
9cbc1cb8 131#include <trace/events/napi.h>
cf66ba58 132#include <trace/events/net.h>
07dc22e7 133#include <trace/events/skb.h>
5acbbd42 134#include <linux/pci.h>
caeda9b9 135#include <linux/inetdevice.h>
c445477d 136#include <linux/cpu_rmap.h>
c5905afb 137#include <linux/static_key.h>
af12fa6e 138#include <linux/hashtable.h>
60877a32 139#include <linux/vmalloc.h>
529d0489 140#include <linux/if_macvlan.h>
e7fd2885 141#include <linux/errqueue.h>
3b47d303 142#include <linux/hrtimer.h>
e687ad60 143#include <linux/netfilter_ingress.h>
40e4e713 144#include <linux/crash_dump.h>
b72b5bf6 145#include <linux/sctp.h>
ae847f40 146#include <net/udp_tunnel.h>
6621dd29 147#include <linux/net_namespace.h>
aaa5d90b 148#include <linux/indirect_call_wrapper.h>
af3836df 149#include <net/devlink.h>
1da177e4 150
342709ef
PE
151#include "net-sysfs.h"
152
d565b0a1
HX
153#define MAX_GRO_SKBS 8
154
5d38a079
HX
155/* This should be increased if a protocol with a bigger head is added. */
156#define GRO_MAX_HEAD (MAX_HEADER + 128)
157
1da177e4 158static DEFINE_SPINLOCK(ptype_lock);
62532da9 159static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161struct list_head ptype_all __read_mostly; /* Taps */
62532da9 162static struct list_head offload_base __read_mostly;
1da177e4 163
ae78dbfa 164static int netif_rx_internal(struct sk_buff *skb);
54951194 165static int call_netdevice_notifiers_info(unsigned long val,
54951194 166 struct netdev_notifier_info *info);
26372605
PM
167static int call_netdevice_notifiers_extack(unsigned long val,
168 struct net_device *dev,
169 struct netlink_ext_ack *extack);
90b602f8 170static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 171
1da177e4 172/*
7562f876 173 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
174 * semaphore.
175 *
c6d14c84 176 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
177 *
178 * Writers must hold the rtnl semaphore while they loop through the
7562f876 179 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
180 * actual updates. This allows pure readers to access the list even
181 * while a writer is preparing to update it.
182 *
183 * To put it another way, dev_base_lock is held for writing only to
184 * protect against pure readers; the rtnl semaphore provides the
185 * protection against other writers.
186 *
187 * See, for example usages, register_netdevice() and
188 * unregister_netdevice(), which must be called with the rtnl
189 * semaphore held.
190 */
1da177e4 191DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
192EXPORT_SYMBOL(dev_base_lock);
193
6c557001
FW
194static DEFINE_MUTEX(ifalias_mutex);
195
af12fa6e
ET
196/* protects napi_hash addition/deletion and napi_gen_id */
197static DEFINE_SPINLOCK(napi_hash_lock);
198
52bd2d62 199static unsigned int napi_gen_id = NR_CPUS;
6180d9de 200static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 201
18afa4b0 202static seqcount_t devnet_rename_seq;
c91f6df2 203
4e985ada
TG
204static inline void dev_base_seq_inc(struct net *net)
205{
643aa9cb 206 while (++net->dev_base_seq == 0)
207 ;
4e985ada
TG
208}
209
881d966b 210static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 211{
8387ff25 212 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 213
08e9897d 214 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
215}
216
881d966b 217static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 218{
7c28bd0b 219 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
220}
221
e36fa2f7 222static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
223{
224#ifdef CONFIG_RPS
e36fa2f7 225 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
226#endif
227}
228
e36fa2f7 229static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
230{
231#ifdef CONFIG_RPS
e36fa2f7 232 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
233#endif
234}
235
ce286d32 236/* Device list insertion */
53759be9 237static void list_netdevice(struct net_device *dev)
ce286d32 238{
c346dca1 239 struct net *net = dev_net(dev);
ce286d32
EB
240
241 ASSERT_RTNL();
242
243 write_lock_bh(&dev_base_lock);
c6d14c84 244 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 245 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
246 hlist_add_head_rcu(&dev->index_hlist,
247 dev_index_hash(net, dev->ifindex));
ce286d32 248 write_unlock_bh(&dev_base_lock);
4e985ada
TG
249
250 dev_base_seq_inc(net);
ce286d32
EB
251}
252
fb699dfd
ED
253/* Device list removal
254 * caller must respect a RCU grace period before freeing/reusing dev
255 */
ce286d32
EB
256static void unlist_netdevice(struct net_device *dev)
257{
258 ASSERT_RTNL();
259
260 /* Unlink dev from the device chain */
261 write_lock_bh(&dev_base_lock);
c6d14c84 262 list_del_rcu(&dev->dev_list);
72c9528b 263 hlist_del_rcu(&dev->name_hlist);
fb699dfd 264 hlist_del_rcu(&dev->index_hlist);
ce286d32 265 write_unlock_bh(&dev_base_lock);
4e985ada
TG
266
267 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
268}
269
1da177e4
LT
270/*
271 * Our notifier list
272 */
273
f07d5b94 274static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
275
276/*
277 * Device drivers call our routines to queue packets here. We empty the
278 * queue in the local softnet handler.
279 */
bea3348e 280
9958da05 281DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 282EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 283
cf508b12 284#ifdef CONFIG_LOCKDEP
723e98b7 285/*
c773e847 286 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
287 * according to dev->type
288 */
643aa9cb 289static const unsigned short netdev_lock_type[] = {
290 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
291 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
292 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
293 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
294 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
295 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
296 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
297 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
298 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
299 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
300 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
301 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
302 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
303 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
304 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 305
643aa9cb 306static const char *const netdev_lock_name[] = {
307 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
308 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
309 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
310 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
311 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
312 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
313 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
314 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
315 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
316 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
317 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
318 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
319 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
320 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
321 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
322
323static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 324static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
325
326static inline unsigned short netdev_lock_pos(unsigned short dev_type)
327{
328 int i;
329
330 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
331 if (netdev_lock_type[i] == dev_type)
332 return i;
333 /* the last key is used by default */
334 return ARRAY_SIZE(netdev_lock_type) - 1;
335}
336
cf508b12
DM
337static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
338 unsigned short dev_type)
723e98b7
JP
339{
340 int i;
341
342 i = netdev_lock_pos(dev_type);
343 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
344 netdev_lock_name[i]);
345}
cf508b12
DM
346
347static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348{
349 int i;
350
351 i = netdev_lock_pos(dev->type);
352 lockdep_set_class_and_name(&dev->addr_list_lock,
353 &netdev_addr_lock_key[i],
354 netdev_lock_name[i]);
355}
723e98b7 356#else
cf508b12
DM
357static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
358 unsigned short dev_type)
359{
360}
361static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
362{
363}
364#endif
1da177e4
LT
365
366/*******************************************************************************
eb13da1a 367 *
368 * Protocol management and registration routines
369 *
370 *******************************************************************************/
1da177e4 371
1da177e4 372
1da177e4
LT
373/*
374 * Add a protocol ID to the list. Now that the input handler is
375 * smarter we can dispense with all the messy stuff that used to be
376 * here.
377 *
378 * BEWARE!!! Protocol handlers, mangling input packets,
379 * MUST BE last in hash buckets and checking protocol handlers
380 * MUST start from promiscuous ptype_all chain in net_bh.
381 * It is true now, do not change it.
382 * Explanation follows: if protocol handler, mangling packet, will
383 * be the first on list, it is not able to sense, that packet
384 * is cloned and should be copied-on-write, so that it will
385 * change it and subsequent readers will get broken packet.
386 * --ANK (980803)
387 */
388
c07b68e8
ED
389static inline struct list_head *ptype_head(const struct packet_type *pt)
390{
391 if (pt->type == htons(ETH_P_ALL))
7866a621 392 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 393 else
7866a621
SN
394 return pt->dev ? &pt->dev->ptype_specific :
395 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
396}
397
1da177e4
LT
398/**
399 * dev_add_pack - add packet handler
400 * @pt: packet type declaration
401 *
402 * Add a protocol handler to the networking stack. The passed &packet_type
403 * is linked into kernel lists and may not be freed until it has been
404 * removed from the kernel lists.
405 *
4ec93edb 406 * This call does not sleep therefore it can not
1da177e4
LT
407 * guarantee all CPU's that are in middle of receiving packets
408 * will see the new packet type (until the next received packet).
409 */
410
411void dev_add_pack(struct packet_type *pt)
412{
c07b68e8 413 struct list_head *head = ptype_head(pt);
1da177e4 414
c07b68e8
ED
415 spin_lock(&ptype_lock);
416 list_add_rcu(&pt->list, head);
417 spin_unlock(&ptype_lock);
1da177e4 418}
d1b19dff 419EXPORT_SYMBOL(dev_add_pack);
1da177e4 420
1da177e4
LT
421/**
422 * __dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
424 *
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
4ec93edb 428 * returns.
1da177e4
LT
429 *
430 * The packet type might still be in use by receivers
431 * and must not be freed until after all the CPU's have gone
432 * through a quiescent state.
433 */
434void __dev_remove_pack(struct packet_type *pt)
435{
c07b68e8 436 struct list_head *head = ptype_head(pt);
1da177e4
LT
437 struct packet_type *pt1;
438
c07b68e8 439 spin_lock(&ptype_lock);
1da177e4
LT
440
441 list_for_each_entry(pt1, head, list) {
442 if (pt == pt1) {
443 list_del_rcu(&pt->list);
444 goto out;
445 }
446 }
447
7b6cd1ce 448 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 449out:
c07b68e8 450 spin_unlock(&ptype_lock);
1da177e4 451}
d1b19dff
ED
452EXPORT_SYMBOL(__dev_remove_pack);
453
1da177e4
LT
454/**
455 * dev_remove_pack - remove packet handler
456 * @pt: packet type declaration
457 *
458 * Remove a protocol handler that was previously added to the kernel
459 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
460 * from the kernel lists and can be freed or reused once this function
461 * returns.
462 *
463 * This call sleeps to guarantee that no CPU is looking at the packet
464 * type after return.
465 */
466void dev_remove_pack(struct packet_type *pt)
467{
468 __dev_remove_pack(pt);
4ec93edb 469
1da177e4
LT
470 synchronize_net();
471}
d1b19dff 472EXPORT_SYMBOL(dev_remove_pack);
1da177e4 473
62532da9
VY
474
475/**
476 * dev_add_offload - register offload handlers
477 * @po: protocol offload declaration
478 *
479 * Add protocol offload handlers to the networking stack. The passed
480 * &proto_offload is linked into kernel lists and may not be freed until
481 * it has been removed from the kernel lists.
482 *
483 * This call does not sleep therefore it can not
484 * guarantee all CPU's that are in middle of receiving packets
485 * will see the new offload handlers (until the next received packet).
486 */
487void dev_add_offload(struct packet_offload *po)
488{
bdef7de4 489 struct packet_offload *elem;
62532da9
VY
490
491 spin_lock(&offload_lock);
bdef7de4
DM
492 list_for_each_entry(elem, &offload_base, list) {
493 if (po->priority < elem->priority)
494 break;
495 }
496 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
497 spin_unlock(&offload_lock);
498}
499EXPORT_SYMBOL(dev_add_offload);
500
501/**
502 * __dev_remove_offload - remove offload handler
503 * @po: packet offload declaration
504 *
505 * Remove a protocol offload handler that was previously added to the
506 * kernel offload handlers by dev_add_offload(). The passed &offload_type
507 * is removed from the kernel lists and can be freed or reused once this
508 * function returns.
509 *
510 * The packet type might still be in use by receivers
511 * and must not be freed until after all the CPU's have gone
512 * through a quiescent state.
513 */
1d143d9f 514static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
515{
516 struct list_head *head = &offload_base;
517 struct packet_offload *po1;
518
c53aa505 519 spin_lock(&offload_lock);
62532da9
VY
520
521 list_for_each_entry(po1, head, list) {
522 if (po == po1) {
523 list_del_rcu(&po->list);
524 goto out;
525 }
526 }
527
528 pr_warn("dev_remove_offload: %p not found\n", po);
529out:
c53aa505 530 spin_unlock(&offload_lock);
62532da9 531}
62532da9
VY
532
533/**
534 * dev_remove_offload - remove packet offload handler
535 * @po: packet offload declaration
536 *
537 * Remove a packet offload handler that was previously added to the kernel
538 * offload handlers by dev_add_offload(). The passed &offload_type is
539 * removed from the kernel lists and can be freed or reused once this
540 * function returns.
541 *
542 * This call sleeps to guarantee that no CPU is looking at the packet
543 * type after return.
544 */
545void dev_remove_offload(struct packet_offload *po)
546{
547 __dev_remove_offload(po);
548
549 synchronize_net();
550}
551EXPORT_SYMBOL(dev_remove_offload);
552
1da177e4 553/******************************************************************************
eb13da1a 554 *
555 * Device Boot-time Settings Routines
556 *
557 ******************************************************************************/
1da177e4
LT
558
559/* Boot time configuration table */
560static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
561
562/**
563 * netdev_boot_setup_add - add new setup entry
564 * @name: name of the device
565 * @map: configured settings for the device
566 *
567 * Adds new setup entry to the dev_boot_setup list. The function
568 * returns 0 on error and 1 on success. This is a generic routine to
569 * all netdevices.
570 */
571static int netdev_boot_setup_add(char *name, struct ifmap *map)
572{
573 struct netdev_boot_setup *s;
574 int i;
575
576 s = dev_boot_setup;
577 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
578 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
579 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 580 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
581 memcpy(&s[i].map, map, sizeof(s[i].map));
582 break;
583 }
584 }
585
586 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
587}
588
589/**
722c9a0c 590 * netdev_boot_setup_check - check boot time settings
591 * @dev: the netdevice
1da177e4 592 *
722c9a0c 593 * Check boot time settings for the device.
594 * The found settings are set for the device to be used
595 * later in the device probing.
596 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
597 */
598int netdev_boot_setup_check(struct net_device *dev)
599{
600 struct netdev_boot_setup *s = dev_boot_setup;
601 int i;
602
603 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
604 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 605 !strcmp(dev->name, s[i].name)) {
722c9a0c 606 dev->irq = s[i].map.irq;
607 dev->base_addr = s[i].map.base_addr;
608 dev->mem_start = s[i].map.mem_start;
609 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
610 return 1;
611 }
612 }
613 return 0;
614}
d1b19dff 615EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
616
617
618/**
722c9a0c 619 * netdev_boot_base - get address from boot time settings
620 * @prefix: prefix for network device
621 * @unit: id for network device
622 *
623 * Check boot time settings for the base address of device.
624 * The found settings are set for the device to be used
625 * later in the device probing.
626 * Returns 0 if no settings found.
1da177e4
LT
627 */
628unsigned long netdev_boot_base(const char *prefix, int unit)
629{
630 const struct netdev_boot_setup *s = dev_boot_setup;
631 char name[IFNAMSIZ];
632 int i;
633
634 sprintf(name, "%s%d", prefix, unit);
635
636 /*
637 * If device already registered then return base of 1
638 * to indicate not to probe for this interface
639 */
881d966b 640 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
641 return 1;
642
643 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
644 if (!strcmp(name, s[i].name))
645 return s[i].map.base_addr;
646 return 0;
647}
648
649/*
650 * Saves at boot time configured settings for any netdevice.
651 */
652int __init netdev_boot_setup(char *str)
653{
654 int ints[5];
655 struct ifmap map;
656
657 str = get_options(str, ARRAY_SIZE(ints), ints);
658 if (!str || !*str)
659 return 0;
660
661 /* Save settings */
662 memset(&map, 0, sizeof(map));
663 if (ints[0] > 0)
664 map.irq = ints[1];
665 if (ints[0] > 1)
666 map.base_addr = ints[2];
667 if (ints[0] > 2)
668 map.mem_start = ints[3];
669 if (ints[0] > 3)
670 map.mem_end = ints[4];
671
672 /* Add new entry to the list */
673 return netdev_boot_setup_add(str, &map);
674}
675
676__setup("netdev=", netdev_boot_setup);
677
678/*******************************************************************************
eb13da1a 679 *
680 * Device Interface Subroutines
681 *
682 *******************************************************************************/
1da177e4 683
a54acb3a
ND
684/**
685 * dev_get_iflink - get 'iflink' value of a interface
686 * @dev: targeted interface
687 *
688 * Indicates the ifindex the interface is linked to.
689 * Physical interfaces have the same 'ifindex' and 'iflink' values.
690 */
691
692int dev_get_iflink(const struct net_device *dev)
693{
694 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
695 return dev->netdev_ops->ndo_get_iflink(dev);
696
7a66bbc9 697 return dev->ifindex;
a54acb3a
ND
698}
699EXPORT_SYMBOL(dev_get_iflink);
700
fc4099f1
PS
701/**
702 * dev_fill_metadata_dst - Retrieve tunnel egress information.
703 * @dev: targeted interface
704 * @skb: The packet.
705 *
706 * For better visibility of tunnel traffic OVS needs to retrieve
707 * egress tunnel information for a packet. Following API allows
708 * user to get this info.
709 */
710int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
711{
712 struct ip_tunnel_info *info;
713
714 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
715 return -EINVAL;
716
717 info = skb_tunnel_info_unclone(skb);
718 if (!info)
719 return -ENOMEM;
720 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
721 return -EINVAL;
722
723 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
724}
725EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
726
1da177e4
LT
727/**
728 * __dev_get_by_name - find a device by its name
c4ea43c5 729 * @net: the applicable net namespace
1da177e4
LT
730 * @name: name to find
731 *
732 * Find an interface by name. Must be called under RTNL semaphore
733 * or @dev_base_lock. If the name is found a pointer to the device
734 * is returned. If the name is not found then %NULL is returned. The
735 * reference counters are not incremented so the caller must be
736 * careful with locks.
737 */
738
881d966b 739struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 740{
0bd8d536
ED
741 struct net_device *dev;
742 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 743
b67bfe0d 744 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
745 if (!strncmp(dev->name, name, IFNAMSIZ))
746 return dev;
0bd8d536 747
1da177e4
LT
748 return NULL;
749}
d1b19dff 750EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 751
72c9528b 752/**
722c9a0c 753 * dev_get_by_name_rcu - find a device by its name
754 * @net: the applicable net namespace
755 * @name: name to find
756 *
757 * Find an interface by name.
758 * If the name is found a pointer to the device is returned.
759 * If the name is not found then %NULL is returned.
760 * The reference counters are not incremented so the caller must be
761 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
762 */
763
764struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
765{
72c9528b
ED
766 struct net_device *dev;
767 struct hlist_head *head = dev_name_hash(net, name);
768
b67bfe0d 769 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
770 if (!strncmp(dev->name, name, IFNAMSIZ))
771 return dev;
772
773 return NULL;
774}
775EXPORT_SYMBOL(dev_get_by_name_rcu);
776
1da177e4
LT
777/**
778 * dev_get_by_name - find a device by its name
c4ea43c5 779 * @net: the applicable net namespace
1da177e4
LT
780 * @name: name to find
781 *
782 * Find an interface by name. This can be called from any
783 * context and does its own locking. The returned handle has
784 * the usage count incremented and the caller must use dev_put() to
785 * release it when it is no longer needed. %NULL is returned if no
786 * matching device is found.
787 */
788
881d966b 789struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
790{
791 struct net_device *dev;
792
72c9528b
ED
793 rcu_read_lock();
794 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
795 if (dev)
796 dev_hold(dev);
72c9528b 797 rcu_read_unlock();
1da177e4
LT
798 return dev;
799}
d1b19dff 800EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
801
802/**
803 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 804 * @net: the applicable net namespace
1da177e4
LT
805 * @ifindex: index of device
806 *
807 * Search for an interface by index. Returns %NULL if the device
808 * is not found or a pointer to the device. The device has not
809 * had its reference counter increased so the caller must be careful
810 * about locking. The caller must hold either the RTNL semaphore
811 * or @dev_base_lock.
812 */
813
881d966b 814struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 815{
0bd8d536
ED
816 struct net_device *dev;
817 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 818
b67bfe0d 819 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
820 if (dev->ifindex == ifindex)
821 return dev;
0bd8d536 822
1da177e4
LT
823 return NULL;
824}
d1b19dff 825EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 826
fb699dfd
ED
827/**
828 * dev_get_by_index_rcu - find a device by its ifindex
829 * @net: the applicable net namespace
830 * @ifindex: index of device
831 *
832 * Search for an interface by index. Returns %NULL if the device
833 * is not found or a pointer to the device. The device has not
834 * had its reference counter increased so the caller must be careful
835 * about locking. The caller must hold RCU lock.
836 */
837
838struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
839{
fb699dfd
ED
840 struct net_device *dev;
841 struct hlist_head *head = dev_index_hash(net, ifindex);
842
b67bfe0d 843 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
844 if (dev->ifindex == ifindex)
845 return dev;
846
847 return NULL;
848}
849EXPORT_SYMBOL(dev_get_by_index_rcu);
850
1da177e4
LT
851
852/**
853 * dev_get_by_index - find a device by its ifindex
c4ea43c5 854 * @net: the applicable net namespace
1da177e4
LT
855 * @ifindex: index of device
856 *
857 * Search for an interface by index. Returns NULL if the device
858 * is not found or a pointer to the device. The device returned has
859 * had a reference added and the pointer is safe until the user calls
860 * dev_put to indicate they have finished with it.
861 */
862
881d966b 863struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
864{
865 struct net_device *dev;
866
fb699dfd
ED
867 rcu_read_lock();
868 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
869 if (dev)
870 dev_hold(dev);
fb699dfd 871 rcu_read_unlock();
1da177e4
LT
872 return dev;
873}
d1b19dff 874EXPORT_SYMBOL(dev_get_by_index);
1da177e4 875
90b602f8
ML
876/**
877 * dev_get_by_napi_id - find a device by napi_id
878 * @napi_id: ID of the NAPI struct
879 *
880 * Search for an interface by NAPI ID. Returns %NULL if the device
881 * is not found or a pointer to the device. The device has not had
882 * its reference counter increased so the caller must be careful
883 * about locking. The caller must hold RCU lock.
884 */
885
886struct net_device *dev_get_by_napi_id(unsigned int napi_id)
887{
888 struct napi_struct *napi;
889
890 WARN_ON_ONCE(!rcu_read_lock_held());
891
892 if (napi_id < MIN_NAPI_ID)
893 return NULL;
894
895 napi = napi_by_id(napi_id);
896
897 return napi ? napi->dev : NULL;
898}
899EXPORT_SYMBOL(dev_get_by_napi_id);
900
5dbe7c17
NS
901/**
902 * netdev_get_name - get a netdevice name, knowing its ifindex.
903 * @net: network namespace
904 * @name: a pointer to the buffer where the name will be stored.
905 * @ifindex: the ifindex of the interface to get the name from.
906 *
907 * The use of raw_seqcount_begin() and cond_resched() before
908 * retrying is required as we want to give the writers a chance
909 * to complete when CONFIG_PREEMPT is not set.
910 */
911int netdev_get_name(struct net *net, char *name, int ifindex)
912{
913 struct net_device *dev;
914 unsigned int seq;
915
916retry:
917 seq = raw_seqcount_begin(&devnet_rename_seq);
918 rcu_read_lock();
919 dev = dev_get_by_index_rcu(net, ifindex);
920 if (!dev) {
921 rcu_read_unlock();
922 return -ENODEV;
923 }
924
925 strcpy(name, dev->name);
926 rcu_read_unlock();
927 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
928 cond_resched();
929 goto retry;
930 }
931
932 return 0;
933}
934
1da177e4 935/**
941666c2 936 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 937 * @net: the applicable net namespace
1da177e4
LT
938 * @type: media type of device
939 * @ha: hardware address
940 *
941 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
942 * is not found or a pointer to the device.
943 * The caller must hold RCU or RTNL.
941666c2 944 * The returned device has not had its ref count increased
1da177e4
LT
945 * and the caller must therefore be careful about locking
946 *
1da177e4
LT
947 */
948
941666c2
ED
949struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
950 const char *ha)
1da177e4
LT
951{
952 struct net_device *dev;
953
941666c2 954 for_each_netdev_rcu(net, dev)
1da177e4
LT
955 if (dev->type == type &&
956 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
957 return dev;
958
959 return NULL;
1da177e4 960}
941666c2 961EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 962
881d966b 963struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
964{
965 struct net_device *dev;
966
4e9cac2b 967 ASSERT_RTNL();
881d966b 968 for_each_netdev(net, dev)
4e9cac2b 969 if (dev->type == type)
7562f876
PE
970 return dev;
971
972 return NULL;
4e9cac2b 973}
4e9cac2b
PM
974EXPORT_SYMBOL(__dev_getfirstbyhwtype);
975
881d966b 976struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 977{
99fe3c39 978 struct net_device *dev, *ret = NULL;
4e9cac2b 979
99fe3c39
ED
980 rcu_read_lock();
981 for_each_netdev_rcu(net, dev)
982 if (dev->type == type) {
983 dev_hold(dev);
984 ret = dev;
985 break;
986 }
987 rcu_read_unlock();
988 return ret;
1da177e4 989}
1da177e4
LT
990EXPORT_SYMBOL(dev_getfirstbyhwtype);
991
992/**
6c555490 993 * __dev_get_by_flags - find any device with given flags
c4ea43c5 994 * @net: the applicable net namespace
1da177e4
LT
995 * @if_flags: IFF_* values
996 * @mask: bitmask of bits in if_flags to check
997 *
998 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 999 * is not found or a pointer to the device. Must be called inside
6c555490 1000 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1001 */
1002
6c555490
WC
1003struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1004 unsigned short mask)
1da177e4 1005{
7562f876 1006 struct net_device *dev, *ret;
1da177e4 1007
6c555490
WC
1008 ASSERT_RTNL();
1009
7562f876 1010 ret = NULL;
6c555490 1011 for_each_netdev(net, dev) {
1da177e4 1012 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1013 ret = dev;
1da177e4
LT
1014 break;
1015 }
1016 }
7562f876 1017 return ret;
1da177e4 1018}
6c555490 1019EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1020
1021/**
1022 * dev_valid_name - check if name is okay for network device
1023 * @name: name string
1024 *
1025 * Network device names need to be valid file names to
c7fa9d18
DM
1026 * to allow sysfs to work. We also disallow any kind of
1027 * whitespace.
1da177e4 1028 */
95f050bf 1029bool dev_valid_name(const char *name)
1da177e4 1030{
c7fa9d18 1031 if (*name == '\0')
95f050bf 1032 return false;
a9d48205 1033 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1034 return false;
c7fa9d18 1035 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1036 return false;
c7fa9d18
DM
1037
1038 while (*name) {
a4176a93 1039 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1040 return false;
c7fa9d18
DM
1041 name++;
1042 }
95f050bf 1043 return true;
1da177e4 1044}
d1b19dff 1045EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1046
1047/**
b267b179
EB
1048 * __dev_alloc_name - allocate a name for a device
1049 * @net: network namespace to allocate the device name in
1da177e4 1050 * @name: name format string
b267b179 1051 * @buf: scratch buffer and result name string
1da177e4
LT
1052 *
1053 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1054 * id. It scans list of devices to build up a free map, then chooses
1055 * the first empty slot. The caller must hold the dev_base or rtnl lock
1056 * while allocating the name and adding the device in order to avoid
1057 * duplicates.
1058 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1059 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1060 */
1061
b267b179 1062static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1063{
1064 int i = 0;
1da177e4
LT
1065 const char *p;
1066 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1067 unsigned long *inuse;
1da177e4
LT
1068 struct net_device *d;
1069
93809105
RV
1070 if (!dev_valid_name(name))
1071 return -EINVAL;
1072
51f299dd 1073 p = strchr(name, '%');
1da177e4
LT
1074 if (p) {
1075 /*
1076 * Verify the string as this thing may have come from
1077 * the user. There must be either one "%d" and no other "%"
1078 * characters.
1079 */
1080 if (p[1] != 'd' || strchr(p + 2, '%'))
1081 return -EINVAL;
1082
1083 /* Use one page as a bit array of possible slots */
cfcabdcc 1084 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1085 if (!inuse)
1086 return -ENOMEM;
1087
881d966b 1088 for_each_netdev(net, d) {
1da177e4
LT
1089 if (!sscanf(d->name, name, &i))
1090 continue;
1091 if (i < 0 || i >= max_netdevices)
1092 continue;
1093
1094 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1095 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1096 if (!strncmp(buf, d->name, IFNAMSIZ))
1097 set_bit(i, inuse);
1098 }
1099
1100 i = find_first_zero_bit(inuse, max_netdevices);
1101 free_page((unsigned long) inuse);
1102 }
1103
6224abda 1104 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1105 if (!__dev_get_by_name(net, buf))
1da177e4 1106 return i;
1da177e4
LT
1107
1108 /* It is possible to run out of possible slots
1109 * when the name is long and there isn't enough space left
1110 * for the digits, or if all bits are used.
1111 */
029b6d14 1112 return -ENFILE;
1da177e4
LT
1113}
1114
2c88b855
RV
1115static int dev_alloc_name_ns(struct net *net,
1116 struct net_device *dev,
1117 const char *name)
1118{
1119 char buf[IFNAMSIZ];
1120 int ret;
1121
c46d7642 1122 BUG_ON(!net);
2c88b855
RV
1123 ret = __dev_alloc_name(net, name, buf);
1124 if (ret >= 0)
1125 strlcpy(dev->name, buf, IFNAMSIZ);
1126 return ret;
1da177e4
LT
1127}
1128
b267b179
EB
1129/**
1130 * dev_alloc_name - allocate a name for a device
1131 * @dev: device
1132 * @name: name format string
1133 *
1134 * Passed a format string - eg "lt%d" it will try and find a suitable
1135 * id. It scans list of devices to build up a free map, then chooses
1136 * the first empty slot. The caller must hold the dev_base or rtnl lock
1137 * while allocating the name and adding the device in order to avoid
1138 * duplicates.
1139 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1140 * Returns the number of the unit assigned or a negative errno code.
1141 */
1142
1143int dev_alloc_name(struct net_device *dev, const char *name)
1144{
c46d7642 1145 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1146}
d1b19dff 1147EXPORT_SYMBOL(dev_alloc_name);
b267b179 1148
0ad646c8
CW
1149int dev_get_valid_name(struct net *net, struct net_device *dev,
1150 const char *name)
828de4f6 1151{
55a5ec9b
DM
1152 BUG_ON(!net);
1153
1154 if (!dev_valid_name(name))
1155 return -EINVAL;
1156
1157 if (strchr(name, '%'))
1158 return dev_alloc_name_ns(net, dev, name);
1159 else if (__dev_get_by_name(net, name))
1160 return -EEXIST;
1161 else if (dev->name != name)
1162 strlcpy(dev->name, name, IFNAMSIZ);
1163
1164 return 0;
d9031024 1165}
0ad646c8 1166EXPORT_SYMBOL(dev_get_valid_name);
1da177e4
LT
1167
1168/**
1169 * dev_change_name - change name of a device
1170 * @dev: device
1171 * @newname: name (or format string) must be at least IFNAMSIZ
1172 *
1173 * Change name of a device, can pass format strings "eth%d".
1174 * for wildcarding.
1175 */
cf04a4c7 1176int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1177{
238fa362 1178 unsigned char old_assign_type;
fcc5a03a 1179 char oldname[IFNAMSIZ];
1da177e4 1180 int err = 0;
fcc5a03a 1181 int ret;
881d966b 1182 struct net *net;
1da177e4
LT
1183
1184 ASSERT_RTNL();
c346dca1 1185 BUG_ON(!dev_net(dev));
1da177e4 1186
c346dca1 1187 net = dev_net(dev);
1da177e4
LT
1188 if (dev->flags & IFF_UP)
1189 return -EBUSY;
1190
30e6c9fa 1191 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1192
1193 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1194 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1195 return 0;
c91f6df2 1196 }
c8d90dca 1197
fcc5a03a
HX
1198 memcpy(oldname, dev->name, IFNAMSIZ);
1199
828de4f6 1200 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1201 if (err < 0) {
30e6c9fa 1202 write_seqcount_end(&devnet_rename_seq);
d9031024 1203 return err;
c91f6df2 1204 }
1da177e4 1205
6fe82a39
VF
1206 if (oldname[0] && !strchr(oldname, '%'))
1207 netdev_info(dev, "renamed from %s\n", oldname);
1208
238fa362
TG
1209 old_assign_type = dev->name_assign_type;
1210 dev->name_assign_type = NET_NAME_RENAMED;
1211
fcc5a03a 1212rollback:
a1b3f594
EB
1213 ret = device_rename(&dev->dev, dev->name);
1214 if (ret) {
1215 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1216 dev->name_assign_type = old_assign_type;
30e6c9fa 1217 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1218 return ret;
dcc99773 1219 }
7f988eab 1220
30e6c9fa 1221 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1222
5bb025fa
VF
1223 netdev_adjacent_rename_links(dev, oldname);
1224
7f988eab 1225 write_lock_bh(&dev_base_lock);
372b2312 1226 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1227 write_unlock_bh(&dev_base_lock);
1228
1229 synchronize_rcu();
1230
1231 write_lock_bh(&dev_base_lock);
1232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1233 write_unlock_bh(&dev_base_lock);
1234
056925ab 1235 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1236 ret = notifier_to_errno(ret);
1237
1238 if (ret) {
91e9c07b
ED
1239 /* err >= 0 after dev_alloc_name() or stores the first errno */
1240 if (err >= 0) {
fcc5a03a 1241 err = ret;
30e6c9fa 1242 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1243 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1244 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1245 dev->name_assign_type = old_assign_type;
1246 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1247 goto rollback;
91e9c07b 1248 } else {
7b6cd1ce 1249 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1250 dev->name, ret);
fcc5a03a
HX
1251 }
1252 }
1da177e4
LT
1253
1254 return err;
1255}
1256
0b815a1a
SH
1257/**
1258 * dev_set_alias - change ifalias of a device
1259 * @dev: device
1260 * @alias: name up to IFALIASZ
f0db275a 1261 * @len: limit of bytes to copy from info
0b815a1a
SH
1262 *
1263 * Set ifalias for a device,
1264 */
1265int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1266{
6c557001 1267 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1268
1269 if (len >= IFALIASZ)
1270 return -EINVAL;
1271
6c557001
FW
1272 if (len) {
1273 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1274 if (!new_alias)
1275 return -ENOMEM;
1276
1277 memcpy(new_alias->ifalias, alias, len);
1278 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1279 }
1280
6c557001
FW
1281 mutex_lock(&ifalias_mutex);
1282 rcu_swap_protected(dev->ifalias, new_alias,
1283 mutex_is_locked(&ifalias_mutex));
1284 mutex_unlock(&ifalias_mutex);
1285
1286 if (new_alias)
1287 kfree_rcu(new_alias, rcuhead);
0b815a1a 1288
0b815a1a
SH
1289 return len;
1290}
0fe554a4 1291EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1292
6c557001
FW
1293/**
1294 * dev_get_alias - get ifalias of a device
1295 * @dev: device
20e88320 1296 * @name: buffer to store name of ifalias
6c557001
FW
1297 * @len: size of buffer
1298 *
1299 * get ifalias for a device. Caller must make sure dev cannot go
1300 * away, e.g. rcu read lock or own a reference count to device.
1301 */
1302int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1303{
1304 const struct dev_ifalias *alias;
1305 int ret = 0;
1306
1307 rcu_read_lock();
1308 alias = rcu_dereference(dev->ifalias);
1309 if (alias)
1310 ret = snprintf(name, len, "%s", alias->ifalias);
1311 rcu_read_unlock();
1312
1313 return ret;
1314}
0b815a1a 1315
d8a33ac4 1316/**
3041a069 1317 * netdev_features_change - device changes features
d8a33ac4
SH
1318 * @dev: device to cause notification
1319 *
1320 * Called to indicate a device has changed features.
1321 */
1322void netdev_features_change(struct net_device *dev)
1323{
056925ab 1324 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1325}
1326EXPORT_SYMBOL(netdev_features_change);
1327
1da177e4
LT
1328/**
1329 * netdev_state_change - device changes state
1330 * @dev: device to cause notification
1331 *
1332 * Called to indicate a device has changed state. This function calls
1333 * the notifier chains for netdev_chain and sends a NEWLINK message
1334 * to the routing socket.
1335 */
1336void netdev_state_change(struct net_device *dev)
1337{
1338 if (dev->flags & IFF_UP) {
51d0c047
DA
1339 struct netdev_notifier_change_info change_info = {
1340 .info.dev = dev,
1341 };
54951194 1342
51d0c047 1343 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1344 &change_info.info);
7f294054 1345 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1346 }
1347}
d1b19dff 1348EXPORT_SYMBOL(netdev_state_change);
1da177e4 1349
ee89bab1 1350/**
722c9a0c 1351 * netdev_notify_peers - notify network peers about existence of @dev
1352 * @dev: network device
ee89bab1
AW
1353 *
1354 * Generate traffic such that interested network peers are aware of
1355 * @dev, such as by generating a gratuitous ARP. This may be used when
1356 * a device wants to inform the rest of the network about some sort of
1357 * reconfiguration such as a failover event or virtual machine
1358 * migration.
1359 */
1360void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1361{
ee89bab1
AW
1362 rtnl_lock();
1363 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1364 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1365 rtnl_unlock();
c1da4ac7 1366}
ee89bab1 1367EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1368
40c900aa 1369static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1370{
d314774c 1371 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1372 int ret;
1da177e4 1373
e46b66bc
BH
1374 ASSERT_RTNL();
1375
1da177e4
LT
1376 if (!netif_device_present(dev))
1377 return -ENODEV;
1378
ca99ca14
NH
1379 /* Block netpoll from trying to do any rx path servicing.
1380 * If we don't do this there is a chance ndo_poll_controller
1381 * or ndo_poll may be running while we open the device
1382 */
66b5552f 1383 netpoll_poll_disable(dev);
ca99ca14 1384
40c900aa 1385 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1386 ret = notifier_to_errno(ret);
1387 if (ret)
1388 return ret;
1389
1da177e4 1390 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1391
d314774c
SH
1392 if (ops->ndo_validate_addr)
1393 ret = ops->ndo_validate_addr(dev);
bada339b 1394
d314774c
SH
1395 if (!ret && ops->ndo_open)
1396 ret = ops->ndo_open(dev);
1da177e4 1397
66b5552f 1398 netpoll_poll_enable(dev);
ca99ca14 1399
bada339b
JG
1400 if (ret)
1401 clear_bit(__LINK_STATE_START, &dev->state);
1402 else {
1da177e4 1403 dev->flags |= IFF_UP;
4417da66 1404 dev_set_rx_mode(dev);
1da177e4 1405 dev_activate(dev);
7bf23575 1406 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1407 }
bada339b 1408
1da177e4
LT
1409 return ret;
1410}
1411
1412/**
bd380811 1413 * dev_open - prepare an interface for use.
00f54e68
PM
1414 * @dev: device to open
1415 * @extack: netlink extended ack
1da177e4 1416 *
bd380811
PM
1417 * Takes a device from down to up state. The device's private open
1418 * function is invoked and then the multicast lists are loaded. Finally
1419 * the device is moved into the up state and a %NETDEV_UP message is
1420 * sent to the netdev notifier chain.
1421 *
1422 * Calling this function on an active interface is a nop. On a failure
1423 * a negative errno code is returned.
1da177e4 1424 */
00f54e68 1425int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1426{
1427 int ret;
1428
bd380811
PM
1429 if (dev->flags & IFF_UP)
1430 return 0;
1431
40c900aa 1432 ret = __dev_open(dev, extack);
bd380811
PM
1433 if (ret < 0)
1434 return ret;
1435
7f294054 1436 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1437 call_netdevice_notifiers(NETDEV_UP, dev);
1438
1439 return ret;
1440}
1441EXPORT_SYMBOL(dev_open);
1442
7051b88a 1443static void __dev_close_many(struct list_head *head)
1da177e4 1444{
44345724 1445 struct net_device *dev;
e46b66bc 1446
bd380811 1447 ASSERT_RTNL();
9d5010db
DM
1448 might_sleep();
1449
5cde2829 1450 list_for_each_entry(dev, head, close_list) {
3f4df206 1451 /* Temporarily disable netpoll until the interface is down */
66b5552f 1452 netpoll_poll_disable(dev);
3f4df206 1453
44345724 1454 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1455
44345724 1456 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1457
44345724
OP
1458 /* Synchronize to scheduled poll. We cannot touch poll list, it
1459 * can be even on different cpu. So just clear netif_running().
1460 *
1461 * dev->stop() will invoke napi_disable() on all of it's
1462 * napi_struct instances on this device.
1463 */
4e857c58 1464 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1465 }
1da177e4 1466
44345724 1467 dev_deactivate_many(head);
d8b2a4d2 1468
5cde2829 1469 list_for_each_entry(dev, head, close_list) {
44345724 1470 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1471
44345724
OP
1472 /*
1473 * Call the device specific close. This cannot fail.
1474 * Only if device is UP
1475 *
1476 * We allow it to be called even after a DETACH hot-plug
1477 * event.
1478 */
1479 if (ops->ndo_stop)
1480 ops->ndo_stop(dev);
1481
44345724 1482 dev->flags &= ~IFF_UP;
66b5552f 1483 netpoll_poll_enable(dev);
44345724 1484 }
44345724
OP
1485}
1486
7051b88a 1487static void __dev_close(struct net_device *dev)
44345724
OP
1488{
1489 LIST_HEAD(single);
1490
5cde2829 1491 list_add(&dev->close_list, &single);
7051b88a 1492 __dev_close_many(&single);
f87e6f47 1493 list_del(&single);
44345724
OP
1494}
1495
7051b88a 1496void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1497{
1498 struct net_device *dev, *tmp;
1da177e4 1499
5cde2829
EB
1500 /* Remove the devices that don't need to be closed */
1501 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1502 if (!(dev->flags & IFF_UP))
5cde2829 1503 list_del_init(&dev->close_list);
44345724
OP
1504
1505 __dev_close_many(head);
1da177e4 1506
5cde2829 1507 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1508 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1509 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1510 if (unlink)
1511 list_del_init(&dev->close_list);
44345724 1512 }
bd380811 1513}
99c4a26a 1514EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1515
1516/**
1517 * dev_close - shutdown an interface.
1518 * @dev: device to shutdown
1519 *
1520 * This function moves an active device into down state. A
1521 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1522 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1523 * chain.
1524 */
7051b88a 1525void dev_close(struct net_device *dev)
bd380811 1526{
e14a5993
ED
1527 if (dev->flags & IFF_UP) {
1528 LIST_HEAD(single);
1da177e4 1529
5cde2829 1530 list_add(&dev->close_list, &single);
99c4a26a 1531 dev_close_many(&single, true);
e14a5993
ED
1532 list_del(&single);
1533 }
1da177e4 1534}
d1b19dff 1535EXPORT_SYMBOL(dev_close);
1da177e4
LT
1536
1537
0187bdfb
BH
1538/**
1539 * dev_disable_lro - disable Large Receive Offload on a device
1540 * @dev: device
1541 *
1542 * Disable Large Receive Offload (LRO) on a net device. Must be
1543 * called under RTNL. This is needed if received packets may be
1544 * forwarded to another interface.
1545 */
1546void dev_disable_lro(struct net_device *dev)
1547{
fbe168ba
MK
1548 struct net_device *lower_dev;
1549 struct list_head *iter;
529d0489 1550
bc5787c6
MM
1551 dev->wanted_features &= ~NETIF_F_LRO;
1552 netdev_update_features(dev);
27660515 1553
22d5969f
MM
1554 if (unlikely(dev->features & NETIF_F_LRO))
1555 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1556
1557 netdev_for_each_lower_dev(dev, lower_dev, iter)
1558 dev_disable_lro(lower_dev);
0187bdfb
BH
1559}
1560EXPORT_SYMBOL(dev_disable_lro);
1561
56f5aa77
MC
1562/**
1563 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1564 * @dev: device
1565 *
1566 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1567 * called under RTNL. This is needed if Generic XDP is installed on
1568 * the device.
1569 */
1570static void dev_disable_gro_hw(struct net_device *dev)
1571{
1572 dev->wanted_features &= ~NETIF_F_GRO_HW;
1573 netdev_update_features(dev);
1574
1575 if (unlikely(dev->features & NETIF_F_GRO_HW))
1576 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1577}
1578
ede2762d
KT
1579const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1580{
1581#define N(val) \
1582 case NETDEV_##val: \
1583 return "NETDEV_" __stringify(val);
1584 switch (cmd) {
1585 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1586 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1587 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1588 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1589 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1590 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1591 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1592 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1593 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1594 N(PRE_CHANGEADDR)
3f5ecd8a 1595 }
ede2762d
KT
1596#undef N
1597 return "UNKNOWN_NETDEV_EVENT";
1598}
1599EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1600
351638e7
JP
1601static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1602 struct net_device *dev)
1603{
51d0c047
DA
1604 struct netdev_notifier_info info = {
1605 .dev = dev,
1606 };
351638e7 1607
351638e7
JP
1608 return nb->notifier_call(nb, val, &info);
1609}
0187bdfb 1610
881d966b
EB
1611static int dev_boot_phase = 1;
1612
1da177e4 1613/**
722c9a0c 1614 * register_netdevice_notifier - register a network notifier block
1615 * @nb: notifier
1da177e4 1616 *
722c9a0c 1617 * Register a notifier to be called when network device events occur.
1618 * The notifier passed is linked into the kernel structures and must
1619 * not be reused until it has been unregistered. A negative errno code
1620 * is returned on a failure.
1da177e4 1621 *
722c9a0c 1622 * When registered all registration and up events are replayed
1623 * to the new notifier to allow device to have a race free
1624 * view of the network device list.
1da177e4
LT
1625 */
1626
1627int register_netdevice_notifier(struct notifier_block *nb)
1628{
1629 struct net_device *dev;
fcc5a03a 1630 struct net_device *last;
881d966b 1631 struct net *net;
1da177e4
LT
1632 int err;
1633
328fbe74
KT
1634 /* Close race with setup_net() and cleanup_net() */
1635 down_write(&pernet_ops_rwsem);
1da177e4 1636 rtnl_lock();
f07d5b94 1637 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1638 if (err)
1639 goto unlock;
881d966b
EB
1640 if (dev_boot_phase)
1641 goto unlock;
1642 for_each_net(net) {
1643 for_each_netdev(net, dev) {
351638e7 1644 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1645 err = notifier_to_errno(err);
1646 if (err)
1647 goto rollback;
1648
1649 if (!(dev->flags & IFF_UP))
1650 continue;
1da177e4 1651
351638e7 1652 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1653 }
1da177e4 1654 }
fcc5a03a
HX
1655
1656unlock:
1da177e4 1657 rtnl_unlock();
328fbe74 1658 up_write(&pernet_ops_rwsem);
1da177e4 1659 return err;
fcc5a03a
HX
1660
1661rollback:
1662 last = dev;
881d966b
EB
1663 for_each_net(net) {
1664 for_each_netdev(net, dev) {
1665 if (dev == last)
8f891489 1666 goto outroll;
fcc5a03a 1667
881d966b 1668 if (dev->flags & IFF_UP) {
351638e7
JP
1669 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670 dev);
1671 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1672 }
351638e7 1673 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1674 }
fcc5a03a 1675 }
c67625a1 1676
8f891489 1677outroll:
c67625a1 1678 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1679 goto unlock;
1da177e4 1680}
d1b19dff 1681EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1682
1683/**
722c9a0c 1684 * unregister_netdevice_notifier - unregister a network notifier block
1685 * @nb: notifier
1da177e4 1686 *
722c9a0c 1687 * Unregister a notifier previously registered by
1688 * register_netdevice_notifier(). The notifier is unlinked into the
1689 * kernel structures and may then be reused. A negative errno code
1690 * is returned on a failure.
7d3d43da 1691 *
722c9a0c 1692 * After unregistering unregister and down device events are synthesized
1693 * for all devices on the device list to the removed notifier to remove
1694 * the need for special case cleanup code.
1da177e4
LT
1695 */
1696
1697int unregister_netdevice_notifier(struct notifier_block *nb)
1698{
7d3d43da
EB
1699 struct net_device *dev;
1700 struct net *net;
9f514950
HX
1701 int err;
1702
328fbe74
KT
1703 /* Close race with setup_net() and cleanup_net() */
1704 down_write(&pernet_ops_rwsem);
9f514950 1705 rtnl_lock();
f07d5b94 1706 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1707 if (err)
1708 goto unlock;
1709
1710 for_each_net(net) {
1711 for_each_netdev(net, dev) {
1712 if (dev->flags & IFF_UP) {
351638e7
JP
1713 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714 dev);
1715 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1716 }
351638e7 1717 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1718 }
1719 }
1720unlock:
9f514950 1721 rtnl_unlock();
328fbe74 1722 up_write(&pernet_ops_rwsem);
9f514950 1723 return err;
1da177e4 1724}
d1b19dff 1725EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1726
351638e7
JP
1727/**
1728 * call_netdevice_notifiers_info - call all network notifier blocks
1729 * @val: value passed unmodified to notifier function
351638e7
JP
1730 * @info: notifier information data
1731 *
1732 * Call all network notifier blocks. Parameters and return value
1733 * are as for raw_notifier_call_chain().
1734 */
1735
1d143d9f 1736static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1737 struct netdev_notifier_info *info)
351638e7
JP
1738{
1739 ASSERT_RTNL();
351638e7
JP
1740 return raw_notifier_call_chain(&netdev_chain, val, info);
1741}
351638e7 1742
26372605
PM
1743static int call_netdevice_notifiers_extack(unsigned long val,
1744 struct net_device *dev,
1745 struct netlink_ext_ack *extack)
1746{
1747 struct netdev_notifier_info info = {
1748 .dev = dev,
1749 .extack = extack,
1750 };
1751
1752 return call_netdevice_notifiers_info(val, &info);
1753}
1754
1da177e4
LT
1755/**
1756 * call_netdevice_notifiers - call all network notifier blocks
1757 * @val: value passed unmodified to notifier function
c4ea43c5 1758 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1759 *
1760 * Call all network notifier blocks. Parameters and return value
f07d5b94 1761 * are as for raw_notifier_call_chain().
1da177e4
LT
1762 */
1763
ad7379d4 1764int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1765{
26372605 1766 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 1767}
edf947f1 1768EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1769
af7d6cce
SD
1770/**
1771 * call_netdevice_notifiers_mtu - call all network notifier blocks
1772 * @val: value passed unmodified to notifier function
1773 * @dev: net_device pointer passed unmodified to notifier function
1774 * @arg: additional u32 argument passed to the notifier function
1775 *
1776 * Call all network notifier blocks. Parameters and return value
1777 * are as for raw_notifier_call_chain().
1778 */
1779static int call_netdevice_notifiers_mtu(unsigned long val,
1780 struct net_device *dev, u32 arg)
1781{
1782 struct netdev_notifier_info_ext info = {
1783 .info.dev = dev,
1784 .ext.mtu = arg,
1785 };
1786
1787 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1788
1789 return call_netdevice_notifiers_info(val, &info.info);
1790}
1791
1cf51900 1792#ifdef CONFIG_NET_INGRESS
aabf6772 1793static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
1794
1795void net_inc_ingress_queue(void)
1796{
aabf6772 1797 static_branch_inc(&ingress_needed_key);
4577139b
DB
1798}
1799EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1800
1801void net_dec_ingress_queue(void)
1802{
aabf6772 1803 static_branch_dec(&ingress_needed_key);
4577139b
DB
1804}
1805EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1806#endif
1807
1f211a1b 1808#ifdef CONFIG_NET_EGRESS
aabf6772 1809static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
1810
1811void net_inc_egress_queue(void)
1812{
aabf6772 1813 static_branch_inc(&egress_needed_key);
1f211a1b
DB
1814}
1815EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1816
1817void net_dec_egress_queue(void)
1818{
aabf6772 1819 static_branch_dec(&egress_needed_key);
1f211a1b
DB
1820}
1821EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1822#endif
1823
39e83922 1824static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 1825#ifdef CONFIG_JUMP_LABEL
b90e5794 1826static atomic_t netstamp_needed_deferred;
13baa00a 1827static atomic_t netstamp_wanted;
5fa8bbda 1828static void netstamp_clear(struct work_struct *work)
1da177e4 1829{
b90e5794 1830 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1831 int wanted;
b90e5794 1832
13baa00a
ED
1833 wanted = atomic_add_return(deferred, &netstamp_wanted);
1834 if (wanted > 0)
39e83922 1835 static_branch_enable(&netstamp_needed_key);
13baa00a 1836 else
39e83922 1837 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
1838}
1839static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1840#endif
5fa8bbda
ED
1841
1842void net_enable_timestamp(void)
1843{
e9666d10 1844#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
1845 int wanted;
1846
1847 while (1) {
1848 wanted = atomic_read(&netstamp_wanted);
1849 if (wanted <= 0)
1850 break;
1851 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1852 return;
1853 }
1854 atomic_inc(&netstamp_needed_deferred);
1855 schedule_work(&netstamp_work);
1856#else
39e83922 1857 static_branch_inc(&netstamp_needed_key);
13baa00a 1858#endif
1da177e4 1859}
d1b19dff 1860EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1861
1862void net_disable_timestamp(void)
1863{
e9666d10 1864#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
1865 int wanted;
1866
1867 while (1) {
1868 wanted = atomic_read(&netstamp_wanted);
1869 if (wanted <= 1)
1870 break;
1871 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1872 return;
1873 }
1874 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1875 schedule_work(&netstamp_work);
1876#else
39e83922 1877 static_branch_dec(&netstamp_needed_key);
5fa8bbda 1878#endif
1da177e4 1879}
d1b19dff 1880EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1881
3b098e2d 1882static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1883{
2456e855 1884 skb->tstamp = 0;
39e83922 1885 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 1886 __net_timestamp(skb);
1da177e4
LT
1887}
1888
39e83922
DB
1889#define net_timestamp_check(COND, SKB) \
1890 if (static_branch_unlikely(&netstamp_needed_key)) { \
1891 if ((COND) && !(SKB)->tstamp) \
1892 __net_timestamp(SKB); \
1893 } \
3b098e2d 1894
f4b05d27 1895bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1896{
1897 unsigned int len;
1898
1899 if (!(dev->flags & IFF_UP))
1900 return false;
1901
1902 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1903 if (skb->len <= len)
1904 return true;
1905
1906 /* if TSO is enabled, we don't care about the length as the packet
1907 * could be forwarded without being segmented before
1908 */
1909 if (skb_is_gso(skb))
1910 return true;
1911
1912 return false;
1913}
1ee481fb 1914EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1915
a0265d28
HX
1916int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1917{
4e3264d2 1918 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1919
4e3264d2
MKL
1920 if (likely(!ret)) {
1921 skb->protocol = eth_type_trans(skb, dev);
1922 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1923 }
a0265d28 1924
4e3264d2 1925 return ret;
a0265d28
HX
1926}
1927EXPORT_SYMBOL_GPL(__dev_forward_skb);
1928
44540960
AB
1929/**
1930 * dev_forward_skb - loopback an skb to another netif
1931 *
1932 * @dev: destination network device
1933 * @skb: buffer to forward
1934 *
1935 * return values:
1936 * NET_RX_SUCCESS (no congestion)
6ec82562 1937 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1938 *
1939 * dev_forward_skb can be used for injecting an skb from the
1940 * start_xmit function of one device into the receive queue
1941 * of another device.
1942 *
1943 * The receiving device may be in another namespace, so
1944 * we have to clear all information in the skb that could
1945 * impact namespace isolation.
1946 */
1947int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1948{
a0265d28 1949 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1950}
1951EXPORT_SYMBOL_GPL(dev_forward_skb);
1952
71d9dec2
CG
1953static inline int deliver_skb(struct sk_buff *skb,
1954 struct packet_type *pt_prev,
1955 struct net_device *orig_dev)
1956{
1f8b977a 1957 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1958 return -ENOMEM;
63354797 1959 refcount_inc(&skb->users);
71d9dec2
CG
1960 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1961}
1962
7866a621
SN
1963static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1964 struct packet_type **pt,
fbcb2170
JP
1965 struct net_device *orig_dev,
1966 __be16 type,
7866a621
SN
1967 struct list_head *ptype_list)
1968{
1969 struct packet_type *ptype, *pt_prev = *pt;
1970
1971 list_for_each_entry_rcu(ptype, ptype_list, list) {
1972 if (ptype->type != type)
1973 continue;
1974 if (pt_prev)
fbcb2170 1975 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1976 pt_prev = ptype;
1977 }
1978 *pt = pt_prev;
1979}
1980
c0de08d0
EL
1981static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1982{
a3d744e9 1983 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1984 return false;
1985
1986 if (ptype->id_match)
1987 return ptype->id_match(ptype, skb->sk);
1988 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1989 return true;
1990
1991 return false;
1992}
1993
9f9a742d
MR
1994/**
1995 * dev_nit_active - return true if any network interface taps are in use
1996 *
1997 * @dev: network device to check for the presence of taps
1998 */
1999bool dev_nit_active(struct net_device *dev)
2000{
2001 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2002}
2003EXPORT_SYMBOL_GPL(dev_nit_active);
2004
1da177e4
LT
2005/*
2006 * Support routine. Sends outgoing frames to any network
2007 * taps currently in use.
2008 */
2009
74b20582 2010void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2011{
2012 struct packet_type *ptype;
71d9dec2
CG
2013 struct sk_buff *skb2 = NULL;
2014 struct packet_type *pt_prev = NULL;
7866a621 2015 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2016
1da177e4 2017 rcu_read_lock();
7866a621
SN
2018again:
2019 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2020 if (ptype->ignore_outgoing)
2021 continue;
2022
1da177e4
LT
2023 /* Never send packets back to the socket
2024 * they originated from - MvS (miquels@drinkel.ow.org)
2025 */
7866a621
SN
2026 if (skb_loop_sk(ptype, skb))
2027 continue;
71d9dec2 2028
7866a621
SN
2029 if (pt_prev) {
2030 deliver_skb(skb2, pt_prev, skb->dev);
2031 pt_prev = ptype;
2032 continue;
2033 }
1da177e4 2034
7866a621
SN
2035 /* need to clone skb, done only once */
2036 skb2 = skb_clone(skb, GFP_ATOMIC);
2037 if (!skb2)
2038 goto out_unlock;
70978182 2039
7866a621 2040 net_timestamp_set(skb2);
1da177e4 2041
7866a621
SN
2042 /* skb->nh should be correctly
2043 * set by sender, so that the second statement is
2044 * just protection against buggy protocols.
2045 */
2046 skb_reset_mac_header(skb2);
2047
2048 if (skb_network_header(skb2) < skb2->data ||
2049 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2050 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2051 ntohs(skb2->protocol),
2052 dev->name);
2053 skb_reset_network_header(skb2);
1da177e4 2054 }
7866a621
SN
2055
2056 skb2->transport_header = skb2->network_header;
2057 skb2->pkt_type = PACKET_OUTGOING;
2058 pt_prev = ptype;
2059 }
2060
2061 if (ptype_list == &ptype_all) {
2062 ptype_list = &dev->ptype_all;
2063 goto again;
1da177e4 2064 }
7866a621 2065out_unlock:
581fe0ea
WB
2066 if (pt_prev) {
2067 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2068 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2069 else
2070 kfree_skb(skb2);
2071 }
1da177e4
LT
2072 rcu_read_unlock();
2073}
74b20582 2074EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2075
2c53040f
BH
2076/**
2077 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2078 * @dev: Network device
2079 * @txq: number of queues available
2080 *
2081 * If real_num_tx_queues is changed the tc mappings may no longer be
2082 * valid. To resolve this verify the tc mapping remains valid and if
2083 * not NULL the mapping. With no priorities mapping to this
2084 * offset/count pair it will no longer be used. In the worst case TC0
2085 * is invalid nothing can be done so disable priority mappings. If is
2086 * expected that drivers will fix this mapping if they can before
2087 * calling netif_set_real_num_tx_queues.
2088 */
bb134d22 2089static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2090{
2091 int i;
2092 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2093
2094 /* If TC0 is invalidated disable TC mapping */
2095 if (tc->offset + tc->count > txq) {
7b6cd1ce 2096 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2097 dev->num_tc = 0;
2098 return;
2099 }
2100
2101 /* Invalidated prio to tc mappings set to TC0 */
2102 for (i = 1; i < TC_BITMASK + 1; i++) {
2103 int q = netdev_get_prio_tc_map(dev, i);
2104
2105 tc = &dev->tc_to_txq[q];
2106 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2107 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2108 i, q);
4f57c087
JF
2109 netdev_set_prio_tc_map(dev, i, 0);
2110 }
2111 }
2112}
2113
8d059b0f
AD
2114int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2115{
2116 if (dev->num_tc) {
2117 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2118 int i;
2119
ffcfe25b 2120 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2121 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2122 if ((txq - tc->offset) < tc->count)
2123 return i;
2124 }
2125
ffcfe25b 2126 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2127 return -1;
2128 }
2129
2130 return 0;
2131}
8a5f2166 2132EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2133
537c00de 2134#ifdef CONFIG_XPS
04157469
AN
2135struct static_key xps_needed __read_mostly;
2136EXPORT_SYMBOL(xps_needed);
2137struct static_key xps_rxqs_needed __read_mostly;
2138EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2139static DEFINE_MUTEX(xps_map_mutex);
2140#define xmap_dereference(P) \
2141 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2142
6234f874
AD
2143static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2144 int tci, u16 index)
537c00de 2145{
10cdc3f3
AD
2146 struct xps_map *map = NULL;
2147 int pos;
537c00de 2148
10cdc3f3 2149 if (dev_maps)
80d19669 2150 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2151 if (!map)
2152 return false;
537c00de 2153
6234f874
AD
2154 for (pos = map->len; pos--;) {
2155 if (map->queues[pos] != index)
2156 continue;
2157
2158 if (map->len > 1) {
2159 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2160 break;
537c00de 2161 }
6234f874 2162
80d19669 2163 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2164 kfree_rcu(map, rcu);
2165 return false;
537c00de
AD
2166 }
2167
6234f874 2168 return true;
10cdc3f3
AD
2169}
2170
6234f874
AD
2171static bool remove_xps_queue_cpu(struct net_device *dev,
2172 struct xps_dev_maps *dev_maps,
2173 int cpu, u16 offset, u16 count)
2174{
184c449f
AD
2175 int num_tc = dev->num_tc ? : 1;
2176 bool active = false;
2177 int tci;
6234f874 2178
184c449f
AD
2179 for (tci = cpu * num_tc; num_tc--; tci++) {
2180 int i, j;
2181
2182 for (i = count, j = offset; i--; j++) {
6358d49a 2183 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2184 break;
2185 }
2186
2187 active |= i < 0;
6234f874
AD
2188 }
2189
184c449f 2190 return active;
6234f874
AD
2191}
2192
867d0ad4
SD
2193static void reset_xps_maps(struct net_device *dev,
2194 struct xps_dev_maps *dev_maps,
2195 bool is_rxqs_map)
2196{
2197 if (is_rxqs_map) {
2198 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2199 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2200 } else {
2201 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2202 }
2203 static_key_slow_dec_cpuslocked(&xps_needed);
2204 kfree_rcu(dev_maps, rcu);
2205}
2206
80d19669
AN
2207static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2208 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2209 u16 offset, u16 count, bool is_rxqs_map)
2210{
2211 bool active = false;
2212 int i, j;
2213
2214 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2215 j < nr_ids;)
2216 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2217 count);
867d0ad4
SD
2218 if (!active)
2219 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2220
f28c020f
SD
2221 if (!is_rxqs_map) {
2222 for (i = offset + (count - 1); count--; i--) {
2223 netdev_queue_numa_node_write(
2224 netdev_get_tx_queue(dev, i),
2225 NUMA_NO_NODE);
80d19669 2226 }
80d19669
AN
2227 }
2228}
2229
6234f874
AD
2230static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2231 u16 count)
10cdc3f3 2232{
80d19669 2233 const unsigned long *possible_mask = NULL;
10cdc3f3 2234 struct xps_dev_maps *dev_maps;
80d19669 2235 unsigned int nr_ids;
10cdc3f3 2236
04157469
AN
2237 if (!static_key_false(&xps_needed))
2238 return;
10cdc3f3 2239
4d99f660 2240 cpus_read_lock();
04157469 2241 mutex_lock(&xps_map_mutex);
10cdc3f3 2242
04157469
AN
2243 if (static_key_false(&xps_rxqs_needed)) {
2244 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2245 if (dev_maps) {
2246 nr_ids = dev->num_rx_queues;
2247 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2248 offset, count, true);
2249 }
537c00de
AD
2250 }
2251
80d19669
AN
2252 dev_maps = xmap_dereference(dev->xps_cpus_map);
2253 if (!dev_maps)
2254 goto out_no_maps;
2255
2256 if (num_possible_cpus() > 1)
2257 possible_mask = cpumask_bits(cpu_possible_mask);
2258 nr_ids = nr_cpu_ids;
2259 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2260 false);
024e9679 2261
537c00de
AD
2262out_no_maps:
2263 mutex_unlock(&xps_map_mutex);
4d99f660 2264 cpus_read_unlock();
537c00de
AD
2265}
2266
6234f874
AD
2267static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2268{
2269 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2270}
2271
80d19669
AN
2272static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2273 u16 index, bool is_rxqs_map)
01c5f864
AD
2274{
2275 struct xps_map *new_map;
2276 int alloc_len = XPS_MIN_MAP_ALLOC;
2277 int i, pos;
2278
2279 for (pos = 0; map && pos < map->len; pos++) {
2280 if (map->queues[pos] != index)
2281 continue;
2282 return map;
2283 }
2284
80d19669 2285 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2286 if (map) {
2287 if (pos < map->alloc_len)
2288 return map;
2289
2290 alloc_len = map->alloc_len * 2;
2291 }
2292
80d19669
AN
2293 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2294 * map
2295 */
2296 if (is_rxqs_map)
2297 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2298 else
2299 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2300 cpu_to_node(attr_index));
01c5f864
AD
2301 if (!new_map)
2302 return NULL;
2303
2304 for (i = 0; i < pos; i++)
2305 new_map->queues[i] = map->queues[i];
2306 new_map->alloc_len = alloc_len;
2307 new_map->len = pos;
2308
2309 return new_map;
2310}
2311
4d99f660 2312/* Must be called under cpus_read_lock */
80d19669
AN
2313int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2314 u16 index, bool is_rxqs_map)
537c00de 2315{
80d19669 2316 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2317 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2318 int i, j, tci, numa_node_id = -2;
184c449f 2319 int maps_sz, num_tc = 1, tc = 0;
537c00de 2320 struct xps_map *map, *new_map;
01c5f864 2321 bool active = false;
80d19669 2322 unsigned int nr_ids;
537c00de 2323
184c449f 2324 if (dev->num_tc) {
ffcfe25b 2325 /* Do not allow XPS on subordinate device directly */
184c449f 2326 num_tc = dev->num_tc;
ffcfe25b
AD
2327 if (num_tc < 0)
2328 return -EINVAL;
2329
2330 /* If queue belongs to subordinate dev use its map */
2331 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2332
184c449f
AD
2333 tc = netdev_txq_to_tc(dev, index);
2334 if (tc < 0)
2335 return -EINVAL;
2336 }
2337
537c00de 2338 mutex_lock(&xps_map_mutex);
80d19669
AN
2339 if (is_rxqs_map) {
2340 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2341 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2342 nr_ids = dev->num_rx_queues;
2343 } else {
2344 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2345 if (num_possible_cpus() > 1) {
2346 online_mask = cpumask_bits(cpu_online_mask);
2347 possible_mask = cpumask_bits(cpu_possible_mask);
2348 }
2349 dev_maps = xmap_dereference(dev->xps_cpus_map);
2350 nr_ids = nr_cpu_ids;
2351 }
537c00de 2352
80d19669
AN
2353 if (maps_sz < L1_CACHE_BYTES)
2354 maps_sz = L1_CACHE_BYTES;
537c00de 2355
01c5f864 2356 /* allocate memory for queue storage */
80d19669
AN
2357 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2358 j < nr_ids;) {
01c5f864
AD
2359 if (!new_dev_maps)
2360 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2361 if (!new_dev_maps) {
2362 mutex_unlock(&xps_map_mutex);
01c5f864 2363 return -ENOMEM;
2bb60cb9 2364 }
01c5f864 2365
80d19669
AN
2366 tci = j * num_tc + tc;
2367 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2368 NULL;
2369
80d19669 2370 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2371 if (!map)
2372 goto error;
2373
80d19669 2374 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2375 }
2376
2377 if (!new_dev_maps)
2378 goto out_no_new_maps;
2379
867d0ad4
SD
2380 if (!dev_maps) {
2381 /* Increment static keys at most once per type */
2382 static_key_slow_inc_cpuslocked(&xps_needed);
2383 if (is_rxqs_map)
2384 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2385 }
04157469 2386
80d19669
AN
2387 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2388 j < nr_ids;) {
184c449f 2389 /* copy maps belonging to foreign traffic classes */
80d19669 2390 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2391 /* fill in the new device map from the old device map */
80d19669
AN
2392 map = xmap_dereference(dev_maps->attr_map[tci]);
2393 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2394 }
2395
2396 /* We need to explicitly update tci as prevous loop
2397 * could break out early if dev_maps is NULL.
2398 */
80d19669 2399 tci = j * num_tc + tc;
184c449f 2400
80d19669
AN
2401 if (netif_attr_test_mask(j, mask, nr_ids) &&
2402 netif_attr_test_online(j, online_mask, nr_ids)) {
2403 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2404 int pos = 0;
2405
80d19669 2406 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2407 while ((pos < map->len) && (map->queues[pos] != index))
2408 pos++;
2409
2410 if (pos == map->len)
2411 map->queues[map->len++] = index;
537c00de 2412#ifdef CONFIG_NUMA
80d19669
AN
2413 if (!is_rxqs_map) {
2414 if (numa_node_id == -2)
2415 numa_node_id = cpu_to_node(j);
2416 else if (numa_node_id != cpu_to_node(j))
2417 numa_node_id = -1;
2418 }
537c00de 2419#endif
01c5f864
AD
2420 } else if (dev_maps) {
2421 /* fill in the new device map from the old device map */
80d19669
AN
2422 map = xmap_dereference(dev_maps->attr_map[tci]);
2423 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2424 }
01c5f864 2425
184c449f
AD
2426 /* copy maps belonging to foreign traffic classes */
2427 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2428 /* fill in the new device map from the old device map */
80d19669
AN
2429 map = xmap_dereference(dev_maps->attr_map[tci]);
2430 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2431 }
537c00de
AD
2432 }
2433
80d19669
AN
2434 if (is_rxqs_map)
2435 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2436 else
2437 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2438
537c00de 2439 /* Cleanup old maps */
184c449f
AD
2440 if (!dev_maps)
2441 goto out_no_old_maps;
2442
80d19669
AN
2443 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2444 j < nr_ids;) {
2445 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2446 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2447 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2448 if (map && map != new_map)
2449 kfree_rcu(map, rcu);
2450 }
537c00de
AD
2451 }
2452
184c449f
AD
2453 kfree_rcu(dev_maps, rcu);
2454
2455out_no_old_maps:
01c5f864
AD
2456 dev_maps = new_dev_maps;
2457 active = true;
537c00de 2458
01c5f864 2459out_no_new_maps:
80d19669
AN
2460 if (!is_rxqs_map) {
2461 /* update Tx queue numa node */
2462 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2463 (numa_node_id >= 0) ?
2464 numa_node_id : NUMA_NO_NODE);
2465 }
537c00de 2466
01c5f864
AD
2467 if (!dev_maps)
2468 goto out_no_maps;
2469
80d19669
AN
2470 /* removes tx-queue from unused CPUs/rx-queues */
2471 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2472 j < nr_ids;) {
2473 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2474 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2475 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2476 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2477 active |= remove_xps_queue(dev_maps, tci, index);
2478 for (i = num_tc - tc, tci++; --i; tci++)
2479 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2480 }
2481
2482 /* free map if not active */
867d0ad4
SD
2483 if (!active)
2484 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2485
2486out_no_maps:
537c00de
AD
2487 mutex_unlock(&xps_map_mutex);
2488
2489 return 0;
2490error:
01c5f864 2491 /* remove any maps that we added */
80d19669
AN
2492 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2493 j < nr_ids;) {
2494 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2495 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2496 map = dev_maps ?
80d19669 2497 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2498 NULL;
2499 if (new_map && new_map != map)
2500 kfree(new_map);
2501 }
01c5f864
AD
2502 }
2503
537c00de
AD
2504 mutex_unlock(&xps_map_mutex);
2505
537c00de
AD
2506 kfree(new_dev_maps);
2507 return -ENOMEM;
2508}
4d99f660 2509EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2510
2511int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2512 u16 index)
2513{
4d99f660
AV
2514 int ret;
2515
2516 cpus_read_lock();
2517 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2518 cpus_read_unlock();
2519
2520 return ret;
80d19669 2521}
537c00de
AD
2522EXPORT_SYMBOL(netif_set_xps_queue);
2523
2524#endif
ffcfe25b
AD
2525static void netdev_unbind_all_sb_channels(struct net_device *dev)
2526{
2527 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2528
2529 /* Unbind any subordinate channels */
2530 while (txq-- != &dev->_tx[0]) {
2531 if (txq->sb_dev)
2532 netdev_unbind_sb_channel(dev, txq->sb_dev);
2533 }
2534}
2535
9cf1f6a8
AD
2536void netdev_reset_tc(struct net_device *dev)
2537{
6234f874
AD
2538#ifdef CONFIG_XPS
2539 netif_reset_xps_queues_gt(dev, 0);
2540#endif
ffcfe25b
AD
2541 netdev_unbind_all_sb_channels(dev);
2542
2543 /* Reset TC configuration of device */
9cf1f6a8
AD
2544 dev->num_tc = 0;
2545 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2546 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2547}
2548EXPORT_SYMBOL(netdev_reset_tc);
2549
2550int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2551{
2552 if (tc >= dev->num_tc)
2553 return -EINVAL;
2554
6234f874
AD
2555#ifdef CONFIG_XPS
2556 netif_reset_xps_queues(dev, offset, count);
2557#endif
9cf1f6a8
AD
2558 dev->tc_to_txq[tc].count = count;
2559 dev->tc_to_txq[tc].offset = offset;
2560 return 0;
2561}
2562EXPORT_SYMBOL(netdev_set_tc_queue);
2563
2564int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2565{
2566 if (num_tc > TC_MAX_QUEUE)
2567 return -EINVAL;
2568
6234f874
AD
2569#ifdef CONFIG_XPS
2570 netif_reset_xps_queues_gt(dev, 0);
2571#endif
ffcfe25b
AD
2572 netdev_unbind_all_sb_channels(dev);
2573
9cf1f6a8
AD
2574 dev->num_tc = num_tc;
2575 return 0;
2576}
2577EXPORT_SYMBOL(netdev_set_num_tc);
2578
ffcfe25b
AD
2579void netdev_unbind_sb_channel(struct net_device *dev,
2580 struct net_device *sb_dev)
2581{
2582 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2583
2584#ifdef CONFIG_XPS
2585 netif_reset_xps_queues_gt(sb_dev, 0);
2586#endif
2587 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2588 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2589
2590 while (txq-- != &dev->_tx[0]) {
2591 if (txq->sb_dev == sb_dev)
2592 txq->sb_dev = NULL;
2593 }
2594}
2595EXPORT_SYMBOL(netdev_unbind_sb_channel);
2596
2597int netdev_bind_sb_channel_queue(struct net_device *dev,
2598 struct net_device *sb_dev,
2599 u8 tc, u16 count, u16 offset)
2600{
2601 /* Make certain the sb_dev and dev are already configured */
2602 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2603 return -EINVAL;
2604
2605 /* We cannot hand out queues we don't have */
2606 if ((offset + count) > dev->real_num_tx_queues)
2607 return -EINVAL;
2608
2609 /* Record the mapping */
2610 sb_dev->tc_to_txq[tc].count = count;
2611 sb_dev->tc_to_txq[tc].offset = offset;
2612
2613 /* Provide a way for Tx queue to find the tc_to_txq map or
2614 * XPS map for itself.
2615 */
2616 while (count--)
2617 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2618
2619 return 0;
2620}
2621EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2622
2623int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2624{
2625 /* Do not use a multiqueue device to represent a subordinate channel */
2626 if (netif_is_multiqueue(dev))
2627 return -ENODEV;
2628
2629 /* We allow channels 1 - 32767 to be used for subordinate channels.
2630 * Channel 0 is meant to be "native" mode and used only to represent
2631 * the main root device. We allow writing 0 to reset the device back
2632 * to normal mode after being used as a subordinate channel.
2633 */
2634 if (channel > S16_MAX)
2635 return -EINVAL;
2636
2637 dev->num_tc = -channel;
2638
2639 return 0;
2640}
2641EXPORT_SYMBOL(netdev_set_sb_channel);
2642
f0796d5c
JF
2643/*
2644 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2645 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2646 */
e6484930 2647int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2648{
ac5b7019 2649 bool disabling;
1d24eb48
TH
2650 int rc;
2651
ac5b7019
JK
2652 disabling = txq < dev->real_num_tx_queues;
2653
e6484930
TH
2654 if (txq < 1 || txq > dev->num_tx_queues)
2655 return -EINVAL;
f0796d5c 2656
5c56580b
BH
2657 if (dev->reg_state == NETREG_REGISTERED ||
2658 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2659 ASSERT_RTNL();
2660
1d24eb48
TH
2661 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2662 txq);
bf264145
TH
2663 if (rc)
2664 return rc;
2665
4f57c087
JF
2666 if (dev->num_tc)
2667 netif_setup_tc(dev, txq);
2668
ac5b7019
JK
2669 dev->real_num_tx_queues = txq;
2670
2671 if (disabling) {
2672 synchronize_net();
e6484930 2673 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2674#ifdef CONFIG_XPS
2675 netif_reset_xps_queues_gt(dev, txq);
2676#endif
2677 }
ac5b7019
JK
2678 } else {
2679 dev->real_num_tx_queues = txq;
f0796d5c 2680 }
e6484930 2681
e6484930 2682 return 0;
f0796d5c
JF
2683}
2684EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2685
a953be53 2686#ifdef CONFIG_SYSFS
62fe0b40
BH
2687/**
2688 * netif_set_real_num_rx_queues - set actual number of RX queues used
2689 * @dev: Network device
2690 * @rxq: Actual number of RX queues
2691 *
2692 * This must be called either with the rtnl_lock held or before
2693 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2694 * negative error code. If called before registration, it always
2695 * succeeds.
62fe0b40
BH
2696 */
2697int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2698{
2699 int rc;
2700
bd25fa7b
TH
2701 if (rxq < 1 || rxq > dev->num_rx_queues)
2702 return -EINVAL;
2703
62fe0b40
BH
2704 if (dev->reg_state == NETREG_REGISTERED) {
2705 ASSERT_RTNL();
2706
62fe0b40
BH
2707 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2708 rxq);
2709 if (rc)
2710 return rc;
62fe0b40
BH
2711 }
2712
2713 dev->real_num_rx_queues = rxq;
2714 return 0;
2715}
2716EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2717#endif
2718
2c53040f
BH
2719/**
2720 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2721 *
2722 * This routine should set an upper limit on the number of RSS queues
2723 * used by default by multiqueue devices.
2724 */
a55b138b 2725int netif_get_num_default_rss_queues(void)
16917b87 2726{
40e4e713
HS
2727 return is_kdump_kernel() ?
2728 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2729}
2730EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2731
3bcb846c 2732static void __netif_reschedule(struct Qdisc *q)
56079431 2733{
def82a1d
JP
2734 struct softnet_data *sd;
2735 unsigned long flags;
56079431 2736
def82a1d 2737 local_irq_save(flags);
903ceff7 2738 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2739 q->next_sched = NULL;
2740 *sd->output_queue_tailp = q;
2741 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2742 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2743 local_irq_restore(flags);
2744}
2745
2746void __netif_schedule(struct Qdisc *q)
2747{
2748 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2749 __netif_reschedule(q);
56079431
DV
2750}
2751EXPORT_SYMBOL(__netif_schedule);
2752
e6247027
ED
2753struct dev_kfree_skb_cb {
2754 enum skb_free_reason reason;
2755};
2756
2757static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2758{
e6247027
ED
2759 return (struct dev_kfree_skb_cb *)skb->cb;
2760}
2761
46e5da40
JF
2762void netif_schedule_queue(struct netdev_queue *txq)
2763{
2764 rcu_read_lock();
2765 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2766 struct Qdisc *q = rcu_dereference(txq->qdisc);
2767
2768 __netif_schedule(q);
2769 }
2770 rcu_read_unlock();
2771}
2772EXPORT_SYMBOL(netif_schedule_queue);
2773
46e5da40
JF
2774void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2775{
2776 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2777 struct Qdisc *q;
2778
2779 rcu_read_lock();
2780 q = rcu_dereference(dev_queue->qdisc);
2781 __netif_schedule(q);
2782 rcu_read_unlock();
2783 }
2784}
2785EXPORT_SYMBOL(netif_tx_wake_queue);
2786
e6247027 2787void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2788{
e6247027 2789 unsigned long flags;
56079431 2790
9899886d
MJ
2791 if (unlikely(!skb))
2792 return;
2793
63354797 2794 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2795 smp_rmb();
63354797
RE
2796 refcount_set(&skb->users, 0);
2797 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2798 return;
bea3348e 2799 }
e6247027
ED
2800 get_kfree_skb_cb(skb)->reason = reason;
2801 local_irq_save(flags);
2802 skb->next = __this_cpu_read(softnet_data.completion_queue);
2803 __this_cpu_write(softnet_data.completion_queue, skb);
2804 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2805 local_irq_restore(flags);
56079431 2806}
e6247027 2807EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2808
e6247027 2809void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2810{
2811 if (in_irq() || irqs_disabled())
e6247027 2812 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2813 else
2814 dev_kfree_skb(skb);
2815}
e6247027 2816EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2817
2818
bea3348e
SH
2819/**
2820 * netif_device_detach - mark device as removed
2821 * @dev: network device
2822 *
2823 * Mark device as removed from system and therefore no longer available.
2824 */
56079431
DV
2825void netif_device_detach(struct net_device *dev)
2826{
2827 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2828 netif_running(dev)) {
d543103a 2829 netif_tx_stop_all_queues(dev);
56079431
DV
2830 }
2831}
2832EXPORT_SYMBOL(netif_device_detach);
2833
bea3348e
SH
2834/**
2835 * netif_device_attach - mark device as attached
2836 * @dev: network device
2837 *
2838 * Mark device as attached from system and restart if needed.
2839 */
56079431
DV
2840void netif_device_attach(struct net_device *dev)
2841{
2842 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2843 netif_running(dev)) {
d543103a 2844 netif_tx_wake_all_queues(dev);
4ec93edb 2845 __netdev_watchdog_up(dev);
56079431
DV
2846 }
2847}
2848EXPORT_SYMBOL(netif_device_attach);
2849
5605c762
JP
2850/*
2851 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2852 * to be used as a distribution range.
2853 */
eadec877
AD
2854static u16 skb_tx_hash(const struct net_device *dev,
2855 const struct net_device *sb_dev,
2856 struct sk_buff *skb)
5605c762
JP
2857{
2858 u32 hash;
2859 u16 qoffset = 0;
1b837d48 2860 u16 qcount = dev->real_num_tx_queues;
5605c762 2861
eadec877
AD
2862 if (dev->num_tc) {
2863 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2864
2865 qoffset = sb_dev->tc_to_txq[tc].offset;
2866 qcount = sb_dev->tc_to_txq[tc].count;
2867 }
2868
5605c762
JP
2869 if (skb_rx_queue_recorded(skb)) {
2870 hash = skb_get_rx_queue(skb);
1b837d48
AD
2871 while (unlikely(hash >= qcount))
2872 hash -= qcount;
eadec877 2873 return hash + qoffset;
5605c762
JP
2874 }
2875
2876 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2877}
5605c762 2878
36c92474
BH
2879static void skb_warn_bad_offload(const struct sk_buff *skb)
2880{
84d15ae5 2881 static const netdev_features_t null_features;
36c92474 2882 struct net_device *dev = skb->dev;
88ad4175 2883 const char *name = "";
36c92474 2884
c846ad9b
BG
2885 if (!net_ratelimit())
2886 return;
2887
88ad4175
BM
2888 if (dev) {
2889 if (dev->dev.parent)
2890 name = dev_driver_string(dev->dev.parent);
2891 else
2892 name = netdev_name(dev);
2893 }
36c92474
BH
2894 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2895 "gso_type=%d ip_summed=%d\n",
88ad4175 2896 name, dev ? &dev->features : &null_features,
65e9d2fa 2897 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2898 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2899 skb_shinfo(skb)->gso_type, skb->ip_summed);
2900}
2901
1da177e4
LT
2902/*
2903 * Invalidate hardware checksum when packet is to be mangled, and
2904 * complete checksum manually on outgoing path.
2905 */
84fa7933 2906int skb_checksum_help(struct sk_buff *skb)
1da177e4 2907{
d3bc23e7 2908 __wsum csum;
663ead3b 2909 int ret = 0, offset;
1da177e4 2910
84fa7933 2911 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2912 goto out_set_summed;
2913
2914 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2915 skb_warn_bad_offload(skb);
2916 return -EINVAL;
1da177e4
LT
2917 }
2918
cef401de
ED
2919 /* Before computing a checksum, we should make sure no frag could
2920 * be modified by an external entity : checksum could be wrong.
2921 */
2922 if (skb_has_shared_frag(skb)) {
2923 ret = __skb_linearize(skb);
2924 if (ret)
2925 goto out;
2926 }
2927
55508d60 2928 offset = skb_checksum_start_offset(skb);
a030847e
HX
2929 BUG_ON(offset >= skb_headlen(skb));
2930 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2931
2932 offset += skb->csum_offset;
2933 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2934
2935 if (skb_cloned(skb) &&
2936 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2937 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2938 if (ret)
2939 goto out;
2940 }
2941
4f2e4ad5 2942 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2943out_set_summed:
1da177e4 2944 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2945out:
1da177e4
LT
2946 return ret;
2947}
d1b19dff 2948EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2949
b72b5bf6
DC
2950int skb_crc32c_csum_help(struct sk_buff *skb)
2951{
2952 __le32 crc32c_csum;
2953 int ret = 0, offset, start;
2954
2955 if (skb->ip_summed != CHECKSUM_PARTIAL)
2956 goto out;
2957
2958 if (unlikely(skb_is_gso(skb)))
2959 goto out;
2960
2961 /* Before computing a checksum, we should make sure no frag could
2962 * be modified by an external entity : checksum could be wrong.
2963 */
2964 if (unlikely(skb_has_shared_frag(skb))) {
2965 ret = __skb_linearize(skb);
2966 if (ret)
2967 goto out;
2968 }
2969 start = skb_checksum_start_offset(skb);
2970 offset = start + offsetof(struct sctphdr, checksum);
2971 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2972 ret = -EINVAL;
2973 goto out;
2974 }
2975 if (skb_cloned(skb) &&
2976 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2977 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2978 if (ret)
2979 goto out;
2980 }
2981 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2982 skb->len - start, ~(__u32)0,
2983 crc32c_csum_stub));
2984 *(__le32 *)(skb->data + offset) = crc32c_csum;
2985 skb->ip_summed = CHECKSUM_NONE;
dba00306 2986 skb->csum_not_inet = 0;
b72b5bf6
DC
2987out:
2988 return ret;
2989}
2990
53d6471c 2991__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2992{
252e3346 2993 __be16 type = skb->protocol;
f6a78bfc 2994
19acc327
PS
2995 /* Tunnel gso handlers can set protocol to ethernet. */
2996 if (type == htons(ETH_P_TEB)) {
2997 struct ethhdr *eth;
2998
2999 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3000 return 0;
3001
1dfe82eb 3002 eth = (struct ethhdr *)skb->data;
19acc327
PS
3003 type = eth->h_proto;
3004 }
3005
d4bcef3f 3006 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3007}
3008
3009/**
3010 * skb_mac_gso_segment - mac layer segmentation handler.
3011 * @skb: buffer to segment
3012 * @features: features for the output path (see dev->features)
3013 */
3014struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3015 netdev_features_t features)
3016{
3017 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3018 struct packet_offload *ptype;
53d6471c
VY
3019 int vlan_depth = skb->mac_len;
3020 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3021
3022 if (unlikely(!type))
3023 return ERR_PTR(-EINVAL);
3024
53d6471c 3025 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3026
3027 rcu_read_lock();
22061d80 3028 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3029 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3030 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3031 break;
3032 }
3033 }
3034 rcu_read_unlock();
3035
98e399f8 3036 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3037
f6a78bfc
HX
3038 return segs;
3039}
05e8ef4a
PS
3040EXPORT_SYMBOL(skb_mac_gso_segment);
3041
3042
3043/* openvswitch calls this on rx path, so we need a different check.
3044 */
3045static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3046{
3047 if (tx_path)
0c19f846
WB
3048 return skb->ip_summed != CHECKSUM_PARTIAL &&
3049 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3050
3051 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3052}
3053
3054/**
3055 * __skb_gso_segment - Perform segmentation on skb.
3056 * @skb: buffer to segment
3057 * @features: features for the output path (see dev->features)
3058 * @tx_path: whether it is called in TX path
3059 *
3060 * This function segments the given skb and returns a list of segments.
3061 *
3062 * It may return NULL if the skb requires no segmentation. This is
3063 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
3064 *
3065 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3066 */
3067struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3068 netdev_features_t features, bool tx_path)
3069{
b2504a5d
ED
3070 struct sk_buff *segs;
3071
05e8ef4a
PS
3072 if (unlikely(skb_needs_check(skb, tx_path))) {
3073 int err;
3074
b2504a5d 3075 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3076 err = skb_cow_head(skb, 0);
3077 if (err < 0)
05e8ef4a
PS
3078 return ERR_PTR(err);
3079 }
3080
802ab55a
AD
3081 /* Only report GSO partial support if it will enable us to
3082 * support segmentation on this frame without needing additional
3083 * work.
3084 */
3085 if (features & NETIF_F_GSO_PARTIAL) {
3086 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3087 struct net_device *dev = skb->dev;
3088
3089 partial_features |= dev->features & dev->gso_partial_features;
3090 if (!skb_gso_ok(skb, features | partial_features))
3091 features &= ~NETIF_F_GSO_PARTIAL;
3092 }
3093
9207f9d4
KK
3094 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3095 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3096
68c33163 3097 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3098 SKB_GSO_CB(skb)->encap_level = 0;
3099
05e8ef4a
PS
3100 skb_reset_mac_header(skb);
3101 skb_reset_mac_len(skb);
3102
b2504a5d
ED
3103 segs = skb_mac_gso_segment(skb, features);
3104
8d74e9f8 3105 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3106 skb_warn_bad_offload(skb);
3107
3108 return segs;
05e8ef4a 3109}
12b0004d 3110EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3111
fb286bb2
HX
3112/* Take action when hardware reception checksum errors are detected. */
3113#ifdef CONFIG_BUG
7fe50ac8 3114void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3115{
3116 if (net_ratelimit()) {
7b6cd1ce 3117 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
7fe50ac8
CW
3118 if (dev)
3119 pr_err("dev features: %pNF\n", &dev->features);
3120 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3121 skb->len, skb->data_len, skb->pkt_type,
3122 skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3123 skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3124 skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
fb286bb2
HX
3125 dump_stack();
3126 }
3127}
3128EXPORT_SYMBOL(netdev_rx_csum_fault);
3129#endif
3130
ab74cfeb 3131/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3132static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3133{
3d3a8533 3134#ifdef CONFIG_HIGHMEM
1da177e4 3135 int i;
f4563a75 3136
5acbbd42 3137 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3138 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3139 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3140
ea2ab693 3141 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3142 return 1;
ea2ab693 3143 }
5acbbd42 3144 }
3d3a8533 3145#endif
1da177e4
LT
3146 return 0;
3147}
1da177e4 3148
3b392ddb
SH
3149/* If MPLS offload request, verify we are testing hardware MPLS features
3150 * instead of standard features for the netdev.
3151 */
d0edc7bf 3152#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3153static netdev_features_t net_mpls_features(struct sk_buff *skb,
3154 netdev_features_t features,
3155 __be16 type)
3156{
25cd9ba0 3157 if (eth_p_mpls(type))
3b392ddb
SH
3158 features &= skb->dev->mpls_features;
3159
3160 return features;
3161}
3162#else
3163static netdev_features_t net_mpls_features(struct sk_buff *skb,
3164 netdev_features_t features,
3165 __be16 type)
3166{
3167 return features;
3168}
3169#endif
3170
c8f44aff 3171static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3172 netdev_features_t features)
f01a5236 3173{
53d6471c 3174 int tmp;
3b392ddb
SH
3175 __be16 type;
3176
3177 type = skb_network_protocol(skb, &tmp);
3178 features = net_mpls_features(skb, features, type);
53d6471c 3179
c0d680e5 3180 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3181 !can_checksum_protocol(features, type)) {
996e8021 3182 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3183 }
7be2c82c
ED
3184 if (illegal_highdma(skb->dev, skb))
3185 features &= ~NETIF_F_SG;
f01a5236
JG
3186
3187 return features;
3188}
3189
e38f3025
TM
3190netdev_features_t passthru_features_check(struct sk_buff *skb,
3191 struct net_device *dev,
3192 netdev_features_t features)
3193{
3194 return features;
3195}
3196EXPORT_SYMBOL(passthru_features_check);
3197
7ce23672 3198static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3199 struct net_device *dev,
3200 netdev_features_t features)
3201{
3202 return vlan_features_check(skb, features);
3203}
3204
cbc53e08
AD
3205static netdev_features_t gso_features_check(const struct sk_buff *skb,
3206 struct net_device *dev,
3207 netdev_features_t features)
3208{
3209 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3210
3211 if (gso_segs > dev->gso_max_segs)
3212 return features & ~NETIF_F_GSO_MASK;
3213
802ab55a
AD
3214 /* Support for GSO partial features requires software
3215 * intervention before we can actually process the packets
3216 * so we need to strip support for any partial features now
3217 * and we can pull them back in after we have partially
3218 * segmented the frame.
3219 */
3220 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3221 features &= ~dev->gso_partial_features;
3222
3223 /* Make sure to clear the IPv4 ID mangling feature if the
3224 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3225 */
3226 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3227 struct iphdr *iph = skb->encapsulation ?
3228 inner_ip_hdr(skb) : ip_hdr(skb);
3229
3230 if (!(iph->frag_off & htons(IP_DF)))
3231 features &= ~NETIF_F_TSO_MANGLEID;
3232 }
3233
3234 return features;
3235}
3236
c1e756bf 3237netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3238{
5f35227e 3239 struct net_device *dev = skb->dev;
fcbeb976 3240 netdev_features_t features = dev->features;
58e998c6 3241
cbc53e08
AD
3242 if (skb_is_gso(skb))
3243 features = gso_features_check(skb, dev, features);
30b678d8 3244
5f35227e
JG
3245 /* If encapsulation offload request, verify we are testing
3246 * hardware encapsulation features instead of standard
3247 * features for the netdev
3248 */
3249 if (skb->encapsulation)
3250 features &= dev->hw_enc_features;
3251
f5a7fb88
TM
3252 if (skb_vlan_tagged(skb))
3253 features = netdev_intersect_features(features,
3254 dev->vlan_features |
3255 NETIF_F_HW_VLAN_CTAG_TX |
3256 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3257
5f35227e
JG
3258 if (dev->netdev_ops->ndo_features_check)
3259 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3260 features);
8cb65d00
TM
3261 else
3262 features &= dflt_features_check(skb, dev, features);
5f35227e 3263
c1e756bf 3264 return harmonize_features(skb, features);
58e998c6 3265}
c1e756bf 3266EXPORT_SYMBOL(netif_skb_features);
58e998c6 3267
2ea25513 3268static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3269 struct netdev_queue *txq, bool more)
f6a78bfc 3270{
2ea25513
DM
3271 unsigned int len;
3272 int rc;
00829823 3273
9f9a742d 3274 if (dev_nit_active(dev))
2ea25513 3275 dev_queue_xmit_nit(skb, dev);
fc741216 3276
2ea25513
DM
3277 len = skb->len;
3278 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3279 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3280 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3281
2ea25513
DM
3282 return rc;
3283}
7b9c6090 3284
8dcda22a
DM
3285struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3286 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3287{
3288 struct sk_buff *skb = first;
3289 int rc = NETDEV_TX_OK;
7b9c6090 3290
7f2e870f
DM
3291 while (skb) {
3292 struct sk_buff *next = skb->next;
fc70fb64 3293
a8305bff 3294 skb_mark_not_on_list(skb);
95f6b3dd 3295 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3296 if (unlikely(!dev_xmit_complete(rc))) {
3297 skb->next = next;
3298 goto out;
3299 }
6afff0ca 3300
7f2e870f 3301 skb = next;
fe60faa5 3302 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3303 rc = NETDEV_TX_BUSY;
3304 break;
9ccb8975 3305 }
7f2e870f 3306 }
9ccb8975 3307
7f2e870f
DM
3308out:
3309 *ret = rc;
3310 return skb;
3311}
b40863c6 3312
1ff0dc94
ED
3313static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3314 netdev_features_t features)
f6a78bfc 3315{
df8a39de 3316 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3317 !vlan_hw_offload_capable(features, skb->vlan_proto))
3318 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3319 return skb;
3320}
f6a78bfc 3321
43c26a1a
DC
3322int skb_csum_hwoffload_help(struct sk_buff *skb,
3323 const netdev_features_t features)
3324{
3325 if (unlikely(skb->csum_not_inet))
3326 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3327 skb_crc32c_csum_help(skb);
3328
3329 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3330}
3331EXPORT_SYMBOL(skb_csum_hwoffload_help);
3332
f53c7239 3333static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3334{
3335 netdev_features_t features;
f6a78bfc 3336
eae3f88e
DM
3337 features = netif_skb_features(skb);
3338 skb = validate_xmit_vlan(skb, features);
3339 if (unlikely(!skb))
3340 goto out_null;
7b9c6090 3341
ebf4e808
IL
3342 skb = sk_validate_xmit_skb(skb, dev);
3343 if (unlikely(!skb))
3344 goto out_null;
3345
8b86a61d 3346 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3347 struct sk_buff *segs;
3348
3349 segs = skb_gso_segment(skb, features);
cecda693 3350 if (IS_ERR(segs)) {
af6dabc9 3351 goto out_kfree_skb;
cecda693
JW
3352 } else if (segs) {
3353 consume_skb(skb);
3354 skb = segs;
f6a78bfc 3355 }
eae3f88e
DM
3356 } else {
3357 if (skb_needs_linearize(skb, features) &&
3358 __skb_linearize(skb))
3359 goto out_kfree_skb;
4ec93edb 3360
eae3f88e
DM
3361 /* If packet is not checksummed and device does not
3362 * support checksumming for this protocol, complete
3363 * checksumming here.
3364 */
3365 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3366 if (skb->encapsulation)
3367 skb_set_inner_transport_header(skb,
3368 skb_checksum_start_offset(skb));
3369 else
3370 skb_set_transport_header(skb,
3371 skb_checksum_start_offset(skb));
43c26a1a 3372 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3373 goto out_kfree_skb;
7b9c6090 3374 }
0c772159 3375 }
7b9c6090 3376
f53c7239 3377 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3378
eae3f88e 3379 return skb;
fc70fb64 3380
f6a78bfc
HX
3381out_kfree_skb:
3382 kfree_skb(skb);
eae3f88e 3383out_null:
d21fd63e 3384 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3385 return NULL;
3386}
6afff0ca 3387
f53c7239 3388struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3389{
3390 struct sk_buff *next, *head = NULL, *tail;
3391
bec3cfdc 3392 for (; skb != NULL; skb = next) {
55a93b3e 3393 next = skb->next;
a8305bff 3394 skb_mark_not_on_list(skb);
bec3cfdc
ED
3395
3396 /* in case skb wont be segmented, point to itself */
3397 skb->prev = skb;
3398
f53c7239 3399 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3400 if (!skb)
3401 continue;
55a93b3e 3402
bec3cfdc
ED
3403 if (!head)
3404 head = skb;
3405 else
3406 tail->next = skb;
3407 /* If skb was segmented, skb->prev points to
3408 * the last segment. If not, it still contains skb.
3409 */
3410 tail = skb->prev;
55a93b3e
ED
3411 }
3412 return head;
f6a78bfc 3413}
104ba78c 3414EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3415
1def9238
ED
3416static void qdisc_pkt_len_init(struct sk_buff *skb)
3417{
3418 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3419
3420 qdisc_skb_cb(skb)->pkt_len = skb->len;
3421
3422 /* To get more precise estimation of bytes sent on wire,
3423 * we add to pkt_len the headers size of all segments
3424 */
a0dce875 3425 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3426 unsigned int hdr_len;
15e5a030 3427 u16 gso_segs = shinfo->gso_segs;
1def9238 3428
757b8b1d
ED
3429 /* mac layer + network layer */
3430 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3431
3432 /* + transport layer */
7c68d1a6
ED
3433 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3434 const struct tcphdr *th;
3435 struct tcphdr _tcphdr;
3436
3437 th = skb_header_pointer(skb, skb_transport_offset(skb),
3438 sizeof(_tcphdr), &_tcphdr);
3439 if (likely(th))
3440 hdr_len += __tcp_hdrlen(th);
3441 } else {
3442 struct udphdr _udphdr;
3443
3444 if (skb_header_pointer(skb, skb_transport_offset(skb),
3445 sizeof(_udphdr), &_udphdr))
3446 hdr_len += sizeof(struct udphdr);
3447 }
15e5a030
JW
3448
3449 if (shinfo->gso_type & SKB_GSO_DODGY)
3450 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3451 shinfo->gso_size);
3452
3453 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3454 }
3455}
3456
bbd8a0d3
KK
3457static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3458 struct net_device *dev,
3459 struct netdev_queue *txq)
3460{
3461 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3462 struct sk_buff *to_free = NULL;
a2da570d 3463 bool contended;
bbd8a0d3
KK
3464 int rc;
3465
a2da570d 3466 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3467
3468 if (q->flags & TCQ_F_NOLOCK) {
3469 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3470 __qdisc_drop(skb, &to_free);
3471 rc = NET_XMIT_DROP;
ba27b4cd
PA
3472 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3473 qdisc_run_begin(q)) {
3474 qdisc_bstats_cpu_update(q, skb);
3475
3476 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3477 __qdisc_run(q);
3478
3479 qdisc_run_end(q);
3480 rc = NET_XMIT_SUCCESS;
6b3ba914
JF
3481 } else {
3482 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
32f7b44d 3483 qdisc_run(q);
6b3ba914
JF
3484 }
3485
3486 if (unlikely(to_free))
3487 kfree_skb_list(to_free);
3488 return rc;
3489 }
3490
79640a4c
ED
3491 /*
3492 * Heuristic to force contended enqueues to serialize on a
3493 * separate lock before trying to get qdisc main lock.
f9eb8aea 3494 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3495 * often and dequeue packets faster.
79640a4c 3496 */
a2da570d 3497 contended = qdisc_is_running(q);
79640a4c
ED
3498 if (unlikely(contended))
3499 spin_lock(&q->busylock);
3500
bbd8a0d3
KK
3501 spin_lock(root_lock);
3502 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3503 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3504 rc = NET_XMIT_DROP;
3505 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3506 qdisc_run_begin(q)) {
bbd8a0d3
KK
3507 /*
3508 * This is a work-conserving queue; there are no old skbs
3509 * waiting to be sent out; and the qdisc is not running -
3510 * xmit the skb directly.
3511 */
bfe0d029 3512
bfe0d029
ED
3513 qdisc_bstats_update(q, skb);
3514
55a93b3e 3515 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3516 if (unlikely(contended)) {
3517 spin_unlock(&q->busylock);
3518 contended = false;
3519 }
bbd8a0d3 3520 __qdisc_run(q);
6c148184 3521 }
bbd8a0d3 3522
6c148184 3523 qdisc_run_end(q);
bbd8a0d3
KK
3524 rc = NET_XMIT_SUCCESS;
3525 } else {
520ac30f 3526 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3527 if (qdisc_run_begin(q)) {
3528 if (unlikely(contended)) {
3529 spin_unlock(&q->busylock);
3530 contended = false;
3531 }
3532 __qdisc_run(q);
6c148184 3533 qdisc_run_end(q);
79640a4c 3534 }
bbd8a0d3
KK
3535 }
3536 spin_unlock(root_lock);
520ac30f
ED
3537 if (unlikely(to_free))
3538 kfree_skb_list(to_free);
79640a4c
ED
3539 if (unlikely(contended))
3540 spin_unlock(&q->busylock);
bbd8a0d3
KK
3541 return rc;
3542}
3543
86f8515f 3544#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3545static void skb_update_prio(struct sk_buff *skb)
3546{
4dcb31d4
ED
3547 const struct netprio_map *map;
3548 const struct sock *sk;
3549 unsigned int prioidx;
5bc1421e 3550
4dcb31d4
ED
3551 if (skb->priority)
3552 return;
3553 map = rcu_dereference_bh(skb->dev->priomap);
3554 if (!map)
3555 return;
3556 sk = skb_to_full_sk(skb);
3557 if (!sk)
3558 return;
91c68ce2 3559
4dcb31d4
ED
3560 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3561
3562 if (prioidx < map->priomap_len)
3563 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3564}
3565#else
3566#define skb_update_prio(skb)
3567#endif
3568
f60e5990 3569DEFINE_PER_CPU(int, xmit_recursion);
3570EXPORT_SYMBOL(xmit_recursion);
3571
95603e22
MM
3572/**
3573 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3574 * @net: network namespace this loopback is happening in
3575 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3576 * @skb: buffer to transmit
3577 */
0c4b51f0 3578int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3579{
3580 skb_reset_mac_header(skb);
3581 __skb_pull(skb, skb_network_offset(skb));
3582 skb->pkt_type = PACKET_LOOPBACK;
3583 skb->ip_summed = CHECKSUM_UNNECESSARY;
3584 WARN_ON(!skb_dst(skb));
3585 skb_dst_force(skb);
3586 netif_rx_ni(skb);
3587 return 0;
3588}
3589EXPORT_SYMBOL(dev_loopback_xmit);
3590
1f211a1b
DB
3591#ifdef CONFIG_NET_EGRESS
3592static struct sk_buff *
3593sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3594{
46209401 3595 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3596 struct tcf_result cl_res;
3597
46209401 3598 if (!miniq)
1f211a1b
DB
3599 return skb;
3600
8dc07fdb 3601 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3602 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3603
46209401 3604 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3605 case TC_ACT_OK:
3606 case TC_ACT_RECLASSIFY:
3607 skb->tc_index = TC_H_MIN(cl_res.classid);
3608 break;
3609 case TC_ACT_SHOT:
46209401 3610 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3611 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3612 kfree_skb(skb);
3613 return NULL;
1f211a1b
DB
3614 case TC_ACT_STOLEN:
3615 case TC_ACT_QUEUED:
e25ea21f 3616 case TC_ACT_TRAP:
1f211a1b 3617 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3618 consume_skb(skb);
1f211a1b
DB
3619 return NULL;
3620 case TC_ACT_REDIRECT:
3621 /* No need to push/pop skb's mac_header here on egress! */
3622 skb_do_redirect(skb);
3623 *ret = NET_XMIT_SUCCESS;
3624 return NULL;
3625 default:
3626 break;
3627 }
3628
3629 return skb;
3630}
3631#endif /* CONFIG_NET_EGRESS */
3632
fc9bab24
AN
3633#ifdef CONFIG_XPS
3634static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3635 struct xps_dev_maps *dev_maps, unsigned int tci)
3636{
3637 struct xps_map *map;
3638 int queue_index = -1;
3639
3640 if (dev->num_tc) {
3641 tci *= dev->num_tc;
3642 tci += netdev_get_prio_tc_map(dev, skb->priority);
3643 }
3644
3645 map = rcu_dereference(dev_maps->attr_map[tci]);
3646 if (map) {
3647 if (map->len == 1)
3648 queue_index = map->queues[0];
3649 else
3650 queue_index = map->queues[reciprocal_scale(
3651 skb_get_hash(skb), map->len)];
3652 if (unlikely(queue_index >= dev->real_num_tx_queues))
3653 queue_index = -1;
3654 }
3655 return queue_index;
3656}
3657#endif
3658
eadec877
AD
3659static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3660 struct sk_buff *skb)
638b2a69
JP
3661{
3662#ifdef CONFIG_XPS
3663 struct xps_dev_maps *dev_maps;
fc9bab24 3664 struct sock *sk = skb->sk;
638b2a69
JP
3665 int queue_index = -1;
3666
04157469
AN
3667 if (!static_key_false(&xps_needed))
3668 return -1;
3669
638b2a69 3670 rcu_read_lock();
fc9bab24
AN
3671 if (!static_key_false(&xps_rxqs_needed))
3672 goto get_cpus_map;
3673
eadec877 3674 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3675 if (dev_maps) {
fc9bab24 3676 int tci = sk_rx_queue_get(sk);
184c449f 3677
fc9bab24
AN
3678 if (tci >= 0 && tci < dev->num_rx_queues)
3679 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3680 tci);
3681 }
184c449f 3682
fc9bab24
AN
3683get_cpus_map:
3684 if (queue_index < 0) {
eadec877 3685 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3686 if (dev_maps) {
3687 unsigned int tci = skb->sender_cpu - 1;
3688
3689 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3690 tci);
638b2a69
JP
3691 }
3692 }
3693 rcu_read_unlock();
3694
3695 return queue_index;
3696#else
3697 return -1;
3698#endif
3699}
3700
a4ea8a3d 3701u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3702 struct net_device *sb_dev)
a4ea8a3d
AD
3703{
3704 return 0;
3705}
3706EXPORT_SYMBOL(dev_pick_tx_zero);
3707
3708u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3709 struct net_device *sb_dev)
a4ea8a3d
AD
3710{
3711 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3712}
3713EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3714
b71b5837
PA
3715u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3716 struct net_device *sb_dev)
638b2a69
JP
3717{
3718 struct sock *sk = skb->sk;
3719 int queue_index = sk_tx_queue_get(sk);
3720
eadec877
AD
3721 sb_dev = sb_dev ? : dev;
3722
638b2a69
JP
3723 if (queue_index < 0 || skb->ooo_okay ||
3724 queue_index >= dev->real_num_tx_queues) {
eadec877 3725 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3726
638b2a69 3727 if (new_index < 0)
eadec877 3728 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3729
3730 if (queue_index != new_index && sk &&
004a5d01 3731 sk_fullsock(sk) &&
638b2a69
JP
3732 rcu_access_pointer(sk->sk_dst_cache))
3733 sk_tx_queue_set(sk, new_index);
3734
3735 queue_index = new_index;
3736 }
3737
3738 return queue_index;
3739}
b71b5837 3740EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 3741
4bd97d51
PA
3742struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3743 struct sk_buff *skb,
3744 struct net_device *sb_dev)
638b2a69
JP
3745{
3746 int queue_index = 0;
3747
3748#ifdef CONFIG_XPS
52bd2d62
ED
3749 u32 sender_cpu = skb->sender_cpu - 1;
3750
3751 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3752 skb->sender_cpu = raw_smp_processor_id() + 1;
3753#endif
3754
3755 if (dev->real_num_tx_queues != 1) {
3756 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3757
638b2a69 3758 if (ops->ndo_select_queue)
a350ecce 3759 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 3760 else
4bd97d51 3761 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 3762
d584527c 3763 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
3764 }
3765
3766 skb_set_queue_mapping(skb, queue_index);
3767 return netdev_get_tx_queue(dev, queue_index);
3768}
3769
d29f749e 3770/**
9d08dd3d 3771 * __dev_queue_xmit - transmit a buffer
d29f749e 3772 * @skb: buffer to transmit
eadec877 3773 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
3774 *
3775 * Queue a buffer for transmission to a network device. The caller must
3776 * have set the device and priority and built the buffer before calling
3777 * this function. The function can be called from an interrupt.
3778 *
3779 * A negative errno code is returned on a failure. A success does not
3780 * guarantee the frame will be transmitted as it may be dropped due
3781 * to congestion or traffic shaping.
3782 *
3783 * -----------------------------------------------------------------------------------
3784 * I notice this method can also return errors from the queue disciplines,
3785 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3786 * be positive.
3787 *
3788 * Regardless of the return value, the skb is consumed, so it is currently
3789 * difficult to retry a send to this method. (You can bump the ref count
3790 * before sending to hold a reference for retry if you are careful.)
3791 *
3792 * When calling this method, interrupts MUST be enabled. This is because
3793 * the BH enable code must have IRQs enabled so that it will not deadlock.
3794 * --BLG
3795 */
eadec877 3796static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
3797{
3798 struct net_device *dev = skb->dev;
dc2b4847 3799 struct netdev_queue *txq;
1da177e4
LT
3800 struct Qdisc *q;
3801 int rc = -ENOMEM;
f53c7239 3802 bool again = false;
1da177e4 3803
6d1ccff6
ED
3804 skb_reset_mac_header(skb);
3805
e7fd2885
WB
3806 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3807 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3808
4ec93edb
YH
3809 /* Disable soft irqs for various locks below. Also
3810 * stops preemption for RCU.
1da177e4 3811 */
4ec93edb 3812 rcu_read_lock_bh();
1da177e4 3813
5bc1421e
NH
3814 skb_update_prio(skb);
3815
1f211a1b
DB
3816 qdisc_pkt_len_init(skb);
3817#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3818 skb->tc_at_ingress = 0;
1f211a1b 3819# ifdef CONFIG_NET_EGRESS
aabf6772 3820 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
3821 skb = sch_handle_egress(skb, &rc, dev);
3822 if (!skb)
3823 goto out;
3824 }
3825# endif
3826#endif
02875878
ED
3827 /* If device/qdisc don't need skb->dst, release it right now while
3828 * its hot in this cpu cache.
3829 */
3830 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3831 skb_dst_drop(skb);
3832 else
3833 skb_dst_force(skb);
3834
4bd97d51 3835 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 3836 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3837
cf66ba58 3838 trace_net_dev_queue(skb);
1da177e4 3839 if (q->enqueue) {
bbd8a0d3 3840 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3841 goto out;
1da177e4
LT
3842 }
3843
3844 /* The device has no queue. Common case for software devices:
eb13da1a 3845 * loopback, all the sorts of tunnels...
1da177e4 3846
eb13da1a 3847 * Really, it is unlikely that netif_tx_lock protection is necessary
3848 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3849 * counters.)
3850 * However, it is possible, that they rely on protection
3851 * made by us here.
1da177e4 3852
eb13da1a 3853 * Check this and shot the lock. It is not prone from deadlocks.
3854 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3855 */
3856 if (dev->flags & IFF_UP) {
3857 int cpu = smp_processor_id(); /* ok because BHs are off */
3858
c773e847 3859 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3860 if (unlikely(__this_cpu_read(xmit_recursion) >
3861 XMIT_RECURSION_LIMIT))
745e20f1
ED
3862 goto recursion_alert;
3863
f53c7239 3864 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 3865 if (!skb)
d21fd63e 3866 goto out;
1f59533f 3867
c773e847 3868 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3869
73466498 3870 if (!netif_xmit_stopped(txq)) {
745e20f1 3871 __this_cpu_inc(xmit_recursion);
ce93718f 3872 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3873 __this_cpu_dec(xmit_recursion);
572a9d7b 3874 if (dev_xmit_complete(rc)) {
c773e847 3875 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3876 goto out;
3877 }
3878 }
c773e847 3879 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3880 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3881 dev->name);
1da177e4
LT
3882 } else {
3883 /* Recursion is detected! It is possible,
745e20f1
ED
3884 * unfortunately
3885 */
3886recursion_alert:
e87cc472
JP
3887 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3888 dev->name);
1da177e4
LT
3889 }
3890 }
3891
3892 rc = -ENETDOWN;
d4828d85 3893 rcu_read_unlock_bh();
1da177e4 3894
015f0688 3895 atomic_long_inc(&dev->tx_dropped);
1f59533f 3896 kfree_skb_list(skb);
1da177e4
LT
3897 return rc;
3898out:
d4828d85 3899 rcu_read_unlock_bh();
1da177e4
LT
3900 return rc;
3901}
f663dd9a 3902
2b4aa3ce 3903int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3904{
3905 return __dev_queue_xmit(skb, NULL);
3906}
2b4aa3ce 3907EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3908
eadec877 3909int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 3910{
eadec877 3911 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
3912}
3913EXPORT_SYMBOL(dev_queue_xmit_accel);
3914
865b03f2
MK
3915int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3916{
3917 struct net_device *dev = skb->dev;
3918 struct sk_buff *orig_skb = skb;
3919 struct netdev_queue *txq;
3920 int ret = NETDEV_TX_BUSY;
3921 bool again = false;
3922
3923 if (unlikely(!netif_running(dev) ||
3924 !netif_carrier_ok(dev)))
3925 goto drop;
3926
3927 skb = validate_xmit_skb_list(skb, dev, &again);
3928 if (skb != orig_skb)
3929 goto drop;
3930
3931 skb_set_queue_mapping(skb, queue_id);
3932 txq = skb_get_tx_queue(dev, skb);
3933
3934 local_bh_disable();
3935
3936 HARD_TX_LOCK(dev, txq, smp_processor_id());
3937 if (!netif_xmit_frozen_or_drv_stopped(txq))
3938 ret = netdev_start_xmit(skb, dev, txq, false);
3939 HARD_TX_UNLOCK(dev, txq);
3940
3941 local_bh_enable();
3942
3943 if (!dev_xmit_complete(ret))
3944 kfree_skb(skb);
3945
3946 return ret;
3947drop:
3948 atomic_long_inc(&dev->tx_dropped);
3949 kfree_skb_list(skb);
3950 return NET_XMIT_DROP;
3951}
3952EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 3953
eb13da1a 3954/*************************************************************************
3955 * Receiver routines
3956 *************************************************************************/
1da177e4 3957
6b2bedc3 3958int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3959EXPORT_SYMBOL(netdev_max_backlog);
3960
3b098e2d 3961int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3962int netdev_budget __read_mostly = 300;
7acf8a1e 3963unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3964int weight_p __read_mostly = 64; /* old backlog weight */
3965int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3966int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3967int dev_rx_weight __read_mostly = 64;
3968int dev_tx_weight __read_mostly = 64;
1da177e4 3969
eecfd7c4
ED
3970/* Called with irq disabled */
3971static inline void ____napi_schedule(struct softnet_data *sd,
3972 struct napi_struct *napi)
3973{
3974 list_add_tail(&napi->poll_list, &sd->poll_list);
3975 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3976}
3977
bfb564e7
KK
3978#ifdef CONFIG_RPS
3979
3980/* One global table that all flow-based protocols share. */
6e3f7faf 3981struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3982EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3983u32 rps_cpu_mask __read_mostly;
3984EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3985
dc05360f 3986struct static_key_false rps_needed __read_mostly;
3df97ba8 3987EXPORT_SYMBOL(rps_needed);
dc05360f 3988struct static_key_false rfs_needed __read_mostly;
13bfff25 3989EXPORT_SYMBOL(rfs_needed);
adc9300e 3990
c445477d
BH
3991static struct rps_dev_flow *
3992set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3993 struct rps_dev_flow *rflow, u16 next_cpu)
3994{
a31196b0 3995 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3996#ifdef CONFIG_RFS_ACCEL
3997 struct netdev_rx_queue *rxqueue;
3998 struct rps_dev_flow_table *flow_table;
3999 struct rps_dev_flow *old_rflow;
4000 u32 flow_id;
4001 u16 rxq_index;
4002 int rc;
4003
4004 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4005 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4006 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4007 goto out;
4008 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4009 if (rxq_index == skb_get_rx_queue(skb))
4010 goto out;
4011
4012 rxqueue = dev->_rx + rxq_index;
4013 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4014 if (!flow_table)
4015 goto out;
61b905da 4016 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4017 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4018 rxq_index, flow_id);
4019 if (rc < 0)
4020 goto out;
4021 old_rflow = rflow;
4022 rflow = &flow_table->flows[flow_id];
c445477d
BH
4023 rflow->filter = rc;
4024 if (old_rflow->filter == rflow->filter)
4025 old_rflow->filter = RPS_NO_FILTER;
4026 out:
4027#endif
4028 rflow->last_qtail =
09994d1b 4029 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4030 }
4031
09994d1b 4032 rflow->cpu = next_cpu;
c445477d
BH
4033 return rflow;
4034}
4035
bfb564e7
KK
4036/*
4037 * get_rps_cpu is called from netif_receive_skb and returns the target
4038 * CPU from the RPS map of the receiving queue for a given skb.
4039 * rcu_read_lock must be held on entry.
4040 */
4041static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4042 struct rps_dev_flow **rflowp)
4043{
567e4b79
ED
4044 const struct rps_sock_flow_table *sock_flow_table;
4045 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4046 struct rps_dev_flow_table *flow_table;
567e4b79 4047 struct rps_map *map;
bfb564e7 4048 int cpu = -1;
567e4b79 4049 u32 tcpu;
61b905da 4050 u32 hash;
bfb564e7
KK
4051
4052 if (skb_rx_queue_recorded(skb)) {
4053 u16 index = skb_get_rx_queue(skb);
567e4b79 4054
62fe0b40
BH
4055 if (unlikely(index >= dev->real_num_rx_queues)) {
4056 WARN_ONCE(dev->real_num_rx_queues > 1,
4057 "%s received packet on queue %u, but number "
4058 "of RX queues is %u\n",
4059 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4060 goto done;
4061 }
567e4b79
ED
4062 rxqueue += index;
4063 }
bfb564e7 4064
567e4b79
ED
4065 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4066
4067 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4068 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4069 if (!flow_table && !map)
bfb564e7
KK
4070 goto done;
4071
2d47b459 4072 skb_reset_network_header(skb);
61b905da
TH
4073 hash = skb_get_hash(skb);
4074 if (!hash)
bfb564e7
KK
4075 goto done;
4076
fec5e652
TH
4077 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4078 if (flow_table && sock_flow_table) {
fec5e652 4079 struct rps_dev_flow *rflow;
567e4b79
ED
4080 u32 next_cpu;
4081 u32 ident;
4082
4083 /* First check into global flow table if there is a match */
4084 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4085 if ((ident ^ hash) & ~rps_cpu_mask)
4086 goto try_rps;
fec5e652 4087
567e4b79
ED
4088 next_cpu = ident & rps_cpu_mask;
4089
4090 /* OK, now we know there is a match,
4091 * we can look at the local (per receive queue) flow table
4092 */
61b905da 4093 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4094 tcpu = rflow->cpu;
4095
fec5e652
TH
4096 /*
4097 * If the desired CPU (where last recvmsg was done) is
4098 * different from current CPU (one in the rx-queue flow
4099 * table entry), switch if one of the following holds:
a31196b0 4100 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4101 * - Current CPU is offline.
4102 * - The current CPU's queue tail has advanced beyond the
4103 * last packet that was enqueued using this table entry.
4104 * This guarantees that all previous packets for the flow
4105 * have been dequeued, thus preserving in order delivery.
4106 */
4107 if (unlikely(tcpu != next_cpu) &&
a31196b0 4108 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4109 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4110 rflow->last_qtail)) >= 0)) {
4111 tcpu = next_cpu;
c445477d 4112 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4113 }
c445477d 4114
a31196b0 4115 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4116 *rflowp = rflow;
4117 cpu = tcpu;
4118 goto done;
4119 }
4120 }
4121
567e4b79
ED
4122try_rps:
4123
0a9627f2 4124 if (map) {
8fc54f68 4125 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4126 if (cpu_online(tcpu)) {
4127 cpu = tcpu;
4128 goto done;
4129 }
4130 }
4131
4132done:
0a9627f2
TH
4133 return cpu;
4134}
4135
c445477d
BH
4136#ifdef CONFIG_RFS_ACCEL
4137
4138/**
4139 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4140 * @dev: Device on which the filter was set
4141 * @rxq_index: RX queue index
4142 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4143 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4144 *
4145 * Drivers that implement ndo_rx_flow_steer() should periodically call
4146 * this function for each installed filter and remove the filters for
4147 * which it returns %true.
4148 */
4149bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4150 u32 flow_id, u16 filter_id)
4151{
4152 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4153 struct rps_dev_flow_table *flow_table;
4154 struct rps_dev_flow *rflow;
4155 bool expire = true;
a31196b0 4156 unsigned int cpu;
c445477d
BH
4157
4158 rcu_read_lock();
4159 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4160 if (flow_table && flow_id <= flow_table->mask) {
4161 rflow = &flow_table->flows[flow_id];
6aa7de05 4162 cpu = READ_ONCE(rflow->cpu);
a31196b0 4163 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4164 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4165 rflow->last_qtail) <
4166 (int)(10 * flow_table->mask)))
4167 expire = false;
4168 }
4169 rcu_read_unlock();
4170 return expire;
4171}
4172EXPORT_SYMBOL(rps_may_expire_flow);
4173
4174#endif /* CONFIG_RFS_ACCEL */
4175
0a9627f2 4176/* Called from hardirq (IPI) context */
e36fa2f7 4177static void rps_trigger_softirq(void *data)
0a9627f2 4178{
e36fa2f7
ED
4179 struct softnet_data *sd = data;
4180
eecfd7c4 4181 ____napi_schedule(sd, &sd->backlog);
dee42870 4182 sd->received_rps++;
0a9627f2 4183}
e36fa2f7 4184
fec5e652 4185#endif /* CONFIG_RPS */
0a9627f2 4186
e36fa2f7
ED
4187/*
4188 * Check if this softnet_data structure is another cpu one
4189 * If yes, queue it to our IPI list and return 1
4190 * If no, return 0
4191 */
4192static int rps_ipi_queued(struct softnet_data *sd)
4193{
4194#ifdef CONFIG_RPS
903ceff7 4195 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4196
4197 if (sd != mysd) {
4198 sd->rps_ipi_next = mysd->rps_ipi_list;
4199 mysd->rps_ipi_list = sd;
4200
4201 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4202 return 1;
4203 }
4204#endif /* CONFIG_RPS */
4205 return 0;
4206}
4207
99bbc707
WB
4208#ifdef CONFIG_NET_FLOW_LIMIT
4209int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4210#endif
4211
4212static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4213{
4214#ifdef CONFIG_NET_FLOW_LIMIT
4215 struct sd_flow_limit *fl;
4216 struct softnet_data *sd;
4217 unsigned int old_flow, new_flow;
4218
4219 if (qlen < (netdev_max_backlog >> 1))
4220 return false;
4221
903ceff7 4222 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4223
4224 rcu_read_lock();
4225 fl = rcu_dereference(sd->flow_limit);
4226 if (fl) {
3958afa1 4227 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4228 old_flow = fl->history[fl->history_head];
4229 fl->history[fl->history_head] = new_flow;
4230
4231 fl->history_head++;
4232 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4233
4234 if (likely(fl->buckets[old_flow]))
4235 fl->buckets[old_flow]--;
4236
4237 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4238 fl->count++;
4239 rcu_read_unlock();
4240 return true;
4241 }
4242 }
4243 rcu_read_unlock();
4244#endif
4245 return false;
4246}
4247
0a9627f2
TH
4248/*
4249 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4250 * queue (may be a remote CPU queue).
4251 */
fec5e652
TH
4252static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4253 unsigned int *qtail)
0a9627f2 4254{
e36fa2f7 4255 struct softnet_data *sd;
0a9627f2 4256 unsigned long flags;
99bbc707 4257 unsigned int qlen;
0a9627f2 4258
e36fa2f7 4259 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4260
4261 local_irq_save(flags);
0a9627f2 4262
e36fa2f7 4263 rps_lock(sd);
e9e4dd32
JA
4264 if (!netif_running(skb->dev))
4265 goto drop;
99bbc707
WB
4266 qlen = skb_queue_len(&sd->input_pkt_queue);
4267 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4268 if (qlen) {
0a9627f2 4269enqueue:
e36fa2f7 4270 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4271 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4272 rps_unlock(sd);
152102c7 4273 local_irq_restore(flags);
0a9627f2
TH
4274 return NET_RX_SUCCESS;
4275 }
4276
ebda37c2
ED
4277 /* Schedule NAPI for backlog device
4278 * We can use non atomic operation since we own the queue lock
4279 */
4280 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4281 if (!rps_ipi_queued(sd))
eecfd7c4 4282 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4283 }
4284 goto enqueue;
4285 }
4286
e9e4dd32 4287drop:
dee42870 4288 sd->dropped++;
e36fa2f7 4289 rps_unlock(sd);
0a9627f2 4290
0a9627f2
TH
4291 local_irq_restore(flags);
4292
caf586e5 4293 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4294 kfree_skb(skb);
4295 return NET_RX_DROP;
4296}
1da177e4 4297
e817f856
JDB
4298static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4299{
4300 struct net_device *dev = skb->dev;
4301 struct netdev_rx_queue *rxqueue;
4302
4303 rxqueue = dev->_rx;
4304
4305 if (skb_rx_queue_recorded(skb)) {
4306 u16 index = skb_get_rx_queue(skb);
4307
4308 if (unlikely(index >= dev->real_num_rx_queues)) {
4309 WARN_ONCE(dev->real_num_rx_queues > 1,
4310 "%s received packet on queue %u, but number "
4311 "of RX queues is %u\n",
4312 dev->name, index, dev->real_num_rx_queues);
4313
4314 return rxqueue; /* Return first rxqueue */
4315 }
4316 rxqueue += index;
4317 }
4318 return rxqueue;
4319}
4320
d4455169 4321static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4322 struct xdp_buff *xdp,
d4455169
JF
4323 struct bpf_prog *xdp_prog)
4324{
e817f856 4325 struct netdev_rx_queue *rxqueue;
198d83bb 4326 void *orig_data, *orig_data_end;
de8f3a83 4327 u32 metalen, act = XDP_DROP;
29724956
JDB
4328 __be16 orig_eth_type;
4329 struct ethhdr *eth;
4330 bool orig_bcast;
d4455169
JF
4331 int hlen, off;
4332 u32 mac_len;
4333
4334 /* Reinjected packets coming from act_mirred or similar should
4335 * not get XDP generic processing.
4336 */
cd11b164 4337 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
d4455169
JF
4338 return XDP_PASS;
4339
de8f3a83
DB
4340 /* XDP packets must be linear and must have sufficient headroom
4341 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4342 * native XDP provides, thus we need to do it here as well.
4343 */
4344 if (skb_is_nonlinear(skb) ||
4345 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4346 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4347 int troom = skb->tail + skb->data_len - skb->end;
4348
4349 /* In case we have to go down the path and also linearize,
4350 * then lets do the pskb_expand_head() work just once here.
4351 */
4352 if (pskb_expand_head(skb,
4353 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4354 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4355 goto do_drop;
2d17d8d7 4356 if (skb_linearize(skb))
de8f3a83
DB
4357 goto do_drop;
4358 }
d4455169
JF
4359
4360 /* The XDP program wants to see the packet starting at the MAC
4361 * header.
4362 */
4363 mac_len = skb->data - skb_mac_header(skb);
4364 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4365 xdp->data = skb->data - mac_len;
4366 xdp->data_meta = xdp->data;
4367 xdp->data_end = xdp->data + hlen;
4368 xdp->data_hard_start = skb->data - skb_headroom(skb);
4369 orig_data_end = xdp->data_end;
4370 orig_data = xdp->data;
29724956
JDB
4371 eth = (struct ethhdr *)xdp->data;
4372 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4373 orig_eth_type = eth->h_proto;
d4455169 4374
e817f856 4375 rxqueue = netif_get_rxqueue(skb);
02671e23 4376 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4377
02671e23 4378 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4379
02671e23 4380 off = xdp->data - orig_data;
d4455169
JF
4381 if (off > 0)
4382 __skb_pull(skb, off);
4383 else if (off < 0)
4384 __skb_push(skb, -off);
92dd5452 4385 skb->mac_header += off;
d4455169 4386
198d83bb
NS
4387 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4388 * pckt.
4389 */
02671e23 4390 off = orig_data_end - xdp->data_end;
f7613120 4391 if (off != 0) {
02671e23 4392 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
f7613120 4393 skb->len -= off;
02671e23 4394
f7613120 4395 }
198d83bb 4396
29724956
JDB
4397 /* check if XDP changed eth hdr such SKB needs update */
4398 eth = (struct ethhdr *)xdp->data;
4399 if ((orig_eth_type != eth->h_proto) ||
4400 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4401 __skb_push(skb, ETH_HLEN);
4402 skb->protocol = eth_type_trans(skb, skb->dev);
4403 }
4404
d4455169 4405 switch (act) {
6103aa96 4406 case XDP_REDIRECT:
d4455169
JF
4407 case XDP_TX:
4408 __skb_push(skb, mac_len);
de8f3a83 4409 break;
d4455169 4410 case XDP_PASS:
02671e23 4411 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4412 if (metalen)
4413 skb_metadata_set(skb, metalen);
d4455169 4414 break;
d4455169
JF
4415 default:
4416 bpf_warn_invalid_xdp_action(act);
4417 /* fall through */
4418 case XDP_ABORTED:
4419 trace_xdp_exception(skb->dev, xdp_prog, act);
4420 /* fall through */
4421 case XDP_DROP:
4422 do_drop:
4423 kfree_skb(skb);
4424 break;
4425 }
4426
4427 return act;
4428}
4429
4430/* When doing generic XDP we have to bypass the qdisc layer and the
4431 * network taps in order to match in-driver-XDP behavior.
4432 */
7c497478 4433void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4434{
4435 struct net_device *dev = skb->dev;
4436 struct netdev_queue *txq;
4437 bool free_skb = true;
4438 int cpu, rc;
4439
4bd97d51 4440 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4441 cpu = smp_processor_id();
4442 HARD_TX_LOCK(dev, txq, cpu);
4443 if (!netif_xmit_stopped(txq)) {
4444 rc = netdev_start_xmit(skb, dev, txq, 0);
4445 if (dev_xmit_complete(rc))
4446 free_skb = false;
4447 }
4448 HARD_TX_UNLOCK(dev, txq);
4449 if (free_skb) {
4450 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4451 kfree_skb(skb);
4452 }
4453}
7c497478 4454EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169 4455
02786475 4456static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4457
7c497478 4458int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4459{
d4455169 4460 if (xdp_prog) {
02671e23
BT
4461 struct xdp_buff xdp;
4462 u32 act;
6103aa96 4463 int err;
d4455169 4464
02671e23 4465 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4466 if (act != XDP_PASS) {
6103aa96
JF
4467 switch (act) {
4468 case XDP_REDIRECT:
2facaad6 4469 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4470 &xdp, xdp_prog);
6103aa96
JF
4471 if (err)
4472 goto out_redir;
02671e23 4473 break;
6103aa96 4474 case XDP_TX:
d4455169 4475 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4476 break;
4477 }
d4455169
JF
4478 return XDP_DROP;
4479 }
4480 }
4481 return XDP_PASS;
6103aa96 4482out_redir:
6103aa96
JF
4483 kfree_skb(skb);
4484 return XDP_DROP;
d4455169 4485}
7c497478 4486EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4487
ae78dbfa 4488static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4489{
b0e28f1e 4490 int ret;
1da177e4 4491
588f0330 4492 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4493
cf66ba58 4494 trace_netif_rx(skb);
d4455169 4495
02786475 4496 if (static_branch_unlikely(&generic_xdp_needed_key)) {
bbbe211c
JF
4497 int ret;
4498
4499 preempt_disable();
4500 rcu_read_lock();
4501 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4502 rcu_read_unlock();
4503 preempt_enable();
d4455169 4504
6103aa96
JF
4505 /* Consider XDP consuming the packet a success from
4506 * the netdev point of view we do not want to count
4507 * this as an error.
4508 */
d4455169 4509 if (ret != XDP_PASS)
6103aa96 4510 return NET_RX_SUCCESS;
d4455169
JF
4511 }
4512
df334545 4513#ifdef CONFIG_RPS
dc05360f 4514 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4515 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4516 int cpu;
4517
cece1945 4518 preempt_disable();
b0e28f1e 4519 rcu_read_lock();
fec5e652
TH
4520
4521 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4522 if (cpu < 0)
4523 cpu = smp_processor_id();
fec5e652
TH
4524
4525 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4526
b0e28f1e 4527 rcu_read_unlock();
cece1945 4528 preempt_enable();
adc9300e
ED
4529 } else
4530#endif
fec5e652
TH
4531 {
4532 unsigned int qtail;
f4563a75 4533
fec5e652
TH
4534 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4535 put_cpu();
4536 }
b0e28f1e 4537 return ret;
1da177e4 4538}
ae78dbfa
BH
4539
4540/**
4541 * netif_rx - post buffer to the network code
4542 * @skb: buffer to post
4543 *
4544 * This function receives a packet from a device driver and queues it for
4545 * the upper (protocol) levels to process. It always succeeds. The buffer
4546 * may be dropped during processing for congestion control or by the
4547 * protocol layers.
4548 *
4549 * return values:
4550 * NET_RX_SUCCESS (no congestion)
4551 * NET_RX_DROP (packet was dropped)
4552 *
4553 */
4554
4555int netif_rx(struct sk_buff *skb)
4556{
b0e3f1bd
GB
4557 int ret;
4558
ae78dbfa
BH
4559 trace_netif_rx_entry(skb);
4560
b0e3f1bd
GB
4561 ret = netif_rx_internal(skb);
4562 trace_netif_rx_exit(ret);
4563
4564 return ret;
ae78dbfa 4565}
d1b19dff 4566EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4567
4568int netif_rx_ni(struct sk_buff *skb)
4569{
4570 int err;
4571
ae78dbfa
BH
4572 trace_netif_rx_ni_entry(skb);
4573
1da177e4 4574 preempt_disable();
ae78dbfa 4575 err = netif_rx_internal(skb);
1da177e4
LT
4576 if (local_softirq_pending())
4577 do_softirq();
4578 preempt_enable();
b0e3f1bd 4579 trace_netif_rx_ni_exit(err);
1da177e4
LT
4580
4581 return err;
4582}
1da177e4
LT
4583EXPORT_SYMBOL(netif_rx_ni);
4584
0766f788 4585static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4586{
903ceff7 4587 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4588
4589 if (sd->completion_queue) {
4590 struct sk_buff *clist;
4591
4592 local_irq_disable();
4593 clist = sd->completion_queue;
4594 sd->completion_queue = NULL;
4595 local_irq_enable();
4596
4597 while (clist) {
4598 struct sk_buff *skb = clist;
f4563a75 4599
1da177e4
LT
4600 clist = clist->next;
4601
63354797 4602 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4603 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4604 trace_consume_skb(skb);
4605 else
4606 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4607
4608 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4609 __kfree_skb(skb);
4610 else
4611 __kfree_skb_defer(skb);
1da177e4 4612 }
15fad714
JDB
4613
4614 __kfree_skb_flush();
1da177e4
LT
4615 }
4616
4617 if (sd->output_queue) {
37437bb2 4618 struct Qdisc *head;
1da177e4
LT
4619
4620 local_irq_disable();
4621 head = sd->output_queue;
4622 sd->output_queue = NULL;
a9cbd588 4623 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4624 local_irq_enable();
4625
4626 while (head) {
37437bb2 4627 struct Qdisc *q = head;
6b3ba914 4628 spinlock_t *root_lock = NULL;
37437bb2 4629
1da177e4
LT
4630 head = head->next_sched;
4631
6b3ba914
JF
4632 if (!(q->flags & TCQ_F_NOLOCK)) {
4633 root_lock = qdisc_lock(q);
4634 spin_lock(root_lock);
4635 }
3bcb846c
ED
4636 /* We need to make sure head->next_sched is read
4637 * before clearing __QDISC_STATE_SCHED
4638 */
4639 smp_mb__before_atomic();
4640 clear_bit(__QDISC_STATE_SCHED, &q->state);
4641 qdisc_run(q);
6b3ba914
JF
4642 if (root_lock)
4643 spin_unlock(root_lock);
1da177e4
LT
4644 }
4645 }
f53c7239
SK
4646
4647 xfrm_dev_backlog(sd);
1da177e4
LT
4648}
4649
181402a5 4650#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4651/* This hook is defined here for ATM LANE */
4652int (*br_fdb_test_addr_hook)(struct net_device *dev,
4653 unsigned char *addr) __read_mostly;
4fb019a0 4654EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4655#endif
1da177e4 4656
1f211a1b
DB
4657static inline struct sk_buff *
4658sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4659 struct net_device *orig_dev)
f697c3e8 4660{
e7582bab 4661#ifdef CONFIG_NET_CLS_ACT
46209401 4662 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4663 struct tcf_result cl_res;
24824a09 4664
c9e99fd0
DB
4665 /* If there's at least one ingress present somewhere (so
4666 * we get here via enabled static key), remaining devices
4667 * that are not configured with an ingress qdisc will bail
d2788d34 4668 * out here.
c9e99fd0 4669 */
46209401 4670 if (!miniq)
4577139b 4671 return skb;
46209401 4672
f697c3e8
HX
4673 if (*pt_prev) {
4674 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4675 *pt_prev = NULL;
1da177e4
LT
4676 }
4677
3365495c 4678 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4679 skb->tc_at_ingress = 1;
46209401 4680 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4681
46209401 4682 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
4683 case TC_ACT_OK:
4684 case TC_ACT_RECLASSIFY:
4685 skb->tc_index = TC_H_MIN(cl_res.classid);
4686 break;
4687 case TC_ACT_SHOT:
46209401 4688 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4689 kfree_skb(skb);
4690 return NULL;
d2788d34
DB
4691 case TC_ACT_STOLEN:
4692 case TC_ACT_QUEUED:
e25ea21f 4693 case TC_ACT_TRAP:
8a3a4c6e 4694 consume_skb(skb);
d2788d34 4695 return NULL;
27b29f63
AS
4696 case TC_ACT_REDIRECT:
4697 /* skb_mac_header check was done by cls/act_bpf, so
4698 * we can safely push the L2 header back before
4699 * redirecting to another netdev
4700 */
4701 __skb_push(skb, skb->mac_len);
4702 skb_do_redirect(skb);
4703 return NULL;
cd11b164
PA
4704 case TC_ACT_REINSERT:
4705 /* this does not scrub the packet, and updates stats on error */
4706 skb_tc_reinsert(skb, &cl_res);
4707 return NULL;
d2788d34
DB
4708 default:
4709 break;
f697c3e8 4710 }
e7582bab 4711#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4712 return skb;
4713}
1da177e4 4714
24b27fc4
MB
4715/**
4716 * netdev_is_rx_handler_busy - check if receive handler is registered
4717 * @dev: device to check
4718 *
4719 * Check if a receive handler is already registered for a given device.
4720 * Return true if there one.
4721 *
4722 * The caller must hold the rtnl_mutex.
4723 */
4724bool netdev_is_rx_handler_busy(struct net_device *dev)
4725{
4726 ASSERT_RTNL();
4727 return dev && rtnl_dereference(dev->rx_handler);
4728}
4729EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4730
ab95bfe0
JP
4731/**
4732 * netdev_rx_handler_register - register receive handler
4733 * @dev: device to register a handler for
4734 * @rx_handler: receive handler to register
93e2c32b 4735 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4736 *
e227867f 4737 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4738 * called from __netif_receive_skb. A negative errno code is returned
4739 * on a failure.
4740 *
4741 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4742 *
4743 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4744 */
4745int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4746 rx_handler_func_t *rx_handler,
4747 void *rx_handler_data)
ab95bfe0 4748{
1b7cd004 4749 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4750 return -EBUSY;
4751
f5426250
PA
4752 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4753 return -EINVAL;
4754
00cfec37 4755 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4756 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4757 rcu_assign_pointer(dev->rx_handler, rx_handler);
4758
4759 return 0;
4760}
4761EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4762
4763/**
4764 * netdev_rx_handler_unregister - unregister receive handler
4765 * @dev: device to unregister a handler from
4766 *
166ec369 4767 * Unregister a receive handler from a device.
ab95bfe0
JP
4768 *
4769 * The caller must hold the rtnl_mutex.
4770 */
4771void netdev_rx_handler_unregister(struct net_device *dev)
4772{
4773
4774 ASSERT_RTNL();
a9b3cd7f 4775 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4776 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4777 * section has a guarantee to see a non NULL rx_handler_data
4778 * as well.
4779 */
4780 synchronize_net();
a9b3cd7f 4781 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4782}
4783EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4784
b4b9e355
MG
4785/*
4786 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4787 * the special handling of PFMEMALLOC skbs.
4788 */
4789static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4790{
4791 switch (skb->protocol) {
2b8837ae
JP
4792 case htons(ETH_P_ARP):
4793 case htons(ETH_P_IP):
4794 case htons(ETH_P_IPV6):
4795 case htons(ETH_P_8021Q):
4796 case htons(ETH_P_8021AD):
b4b9e355
MG
4797 return true;
4798 default:
4799 return false;
4800 }
4801}
4802
e687ad60
PN
4803static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4804 int *ret, struct net_device *orig_dev)
4805{
e7582bab 4806#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4807 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4808 int ingress_retval;
4809
e687ad60
PN
4810 if (*pt_prev) {
4811 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4812 *pt_prev = NULL;
4813 }
4814
2c1e2703
AC
4815 rcu_read_lock();
4816 ingress_retval = nf_hook_ingress(skb);
4817 rcu_read_unlock();
4818 return ingress_retval;
e687ad60 4819 }
e7582bab 4820#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4821 return 0;
4822}
e687ad60 4823
88eb1944
EC
4824static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4825 struct packet_type **ppt_prev)
1da177e4
LT
4826{
4827 struct packet_type *ptype, *pt_prev;
ab95bfe0 4828 rx_handler_func_t *rx_handler;
f2ccd8fa 4829 struct net_device *orig_dev;
8a4eb573 4830 bool deliver_exact = false;
1da177e4 4831 int ret = NET_RX_DROP;
252e3346 4832 __be16 type;
1da177e4 4833
588f0330 4834 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4835
cf66ba58 4836 trace_netif_receive_skb(skb);
9b22ea56 4837
cc9bd5ce 4838 orig_dev = skb->dev;
8f903c70 4839
c1d2bbe1 4840 skb_reset_network_header(skb);
fda55eca
ED
4841 if (!skb_transport_header_was_set(skb))
4842 skb_reset_transport_header(skb);
0b5c9db1 4843 skb_reset_mac_len(skb);
1da177e4
LT
4844
4845 pt_prev = NULL;
4846
63d8ea7f 4847another_round:
b6858177 4848 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4849
4850 __this_cpu_inc(softnet_data.processed);
4851
8ad227ff
PM
4852 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4853 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4854 skb = skb_vlan_untag(skb);
bcc6d479 4855 if (unlikely(!skb))
2c17d27c 4856 goto out;
bcc6d479
JP
4857 }
4858
e7246e12
WB
4859 if (skb_skip_tc_classify(skb))
4860 goto skip_classify;
1da177e4 4861
9754e293 4862 if (pfmemalloc)
b4b9e355
MG
4863 goto skip_taps;
4864
1da177e4 4865 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4866 if (pt_prev)
4867 ret = deliver_skb(skb, pt_prev, orig_dev);
4868 pt_prev = ptype;
4869 }
4870
4871 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4872 if (pt_prev)
4873 ret = deliver_skb(skb, pt_prev, orig_dev);
4874 pt_prev = ptype;
1da177e4
LT
4875 }
4876
b4b9e355 4877skip_taps:
1cf51900 4878#ifdef CONFIG_NET_INGRESS
aabf6772 4879 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 4880 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4881 if (!skb)
2c17d27c 4882 goto out;
e687ad60
PN
4883
4884 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4885 goto out;
4577139b 4886 }
1cf51900 4887#endif
a5135bcf 4888 skb_reset_tc(skb);
e7246e12 4889skip_classify:
9754e293 4890 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4891 goto drop;
4892
df8a39de 4893 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4894 if (pt_prev) {
4895 ret = deliver_skb(skb, pt_prev, orig_dev);
4896 pt_prev = NULL;
4897 }
48cc32d3 4898 if (vlan_do_receive(&skb))
2425717b
JF
4899 goto another_round;
4900 else if (unlikely(!skb))
2c17d27c 4901 goto out;
2425717b
JF
4902 }
4903
48cc32d3 4904 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4905 if (rx_handler) {
4906 if (pt_prev) {
4907 ret = deliver_skb(skb, pt_prev, orig_dev);
4908 pt_prev = NULL;
4909 }
8a4eb573
JP
4910 switch (rx_handler(&skb)) {
4911 case RX_HANDLER_CONSUMED:
3bc1b1ad 4912 ret = NET_RX_SUCCESS;
2c17d27c 4913 goto out;
8a4eb573 4914 case RX_HANDLER_ANOTHER:
63d8ea7f 4915 goto another_round;
8a4eb573
JP
4916 case RX_HANDLER_EXACT:
4917 deliver_exact = true;
4918 case RX_HANDLER_PASS:
4919 break;
4920 default:
4921 BUG();
4922 }
ab95bfe0 4923 }
1da177e4 4924
df8a39de
JP
4925 if (unlikely(skb_vlan_tag_present(skb))) {
4926 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4927 skb->pkt_type = PACKET_OTHERHOST;
4928 /* Note: we might in the future use prio bits
4929 * and set skb->priority like in vlan_do_receive()
4930 * For the time being, just ignore Priority Code Point
4931 */
b1817524 4932 __vlan_hwaccel_clear_tag(skb);
d4b812de 4933 }
48cc32d3 4934
7866a621
SN
4935 type = skb->protocol;
4936
63d8ea7f 4937 /* deliver only exact match when indicated */
7866a621
SN
4938 if (likely(!deliver_exact)) {
4939 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4940 &ptype_base[ntohs(type) &
4941 PTYPE_HASH_MASK]);
4942 }
1f3c8804 4943
7866a621
SN
4944 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4945 &orig_dev->ptype_specific);
4946
4947 if (unlikely(skb->dev != orig_dev)) {
4948 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4949 &skb->dev->ptype_specific);
1da177e4
LT
4950 }
4951
4952 if (pt_prev) {
1f8b977a 4953 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4954 goto drop;
88eb1944 4955 *ppt_prev = pt_prev;
1da177e4 4956 } else {
b4b9e355 4957drop:
6e7333d3
JW
4958 if (!deliver_exact)
4959 atomic_long_inc(&skb->dev->rx_dropped);
4960 else
4961 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4962 kfree_skb(skb);
4963 /* Jamal, now you will not able to escape explaining
4964 * me how you were going to use this. :-)
4965 */
4966 ret = NET_RX_DROP;
4967 }
4968
2c17d27c 4969out:
9754e293
DM
4970 return ret;
4971}
4972
88eb1944
EC
4973static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4974{
4975 struct net_device *orig_dev = skb->dev;
4976 struct packet_type *pt_prev = NULL;
4977 int ret;
4978
4979 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4980 if (pt_prev)
4981 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4982 return ret;
4983}
4984
1c601d82
JDB
4985/**
4986 * netif_receive_skb_core - special purpose version of netif_receive_skb
4987 * @skb: buffer to process
4988 *
4989 * More direct receive version of netif_receive_skb(). It should
4990 * only be used by callers that have a need to skip RPS and Generic XDP.
4991 * Caller must also take care of handling if (page_is_)pfmemalloc.
4992 *
4993 * This function may only be called from softirq context and interrupts
4994 * should be enabled.
4995 *
4996 * Return values (usually ignored):
4997 * NET_RX_SUCCESS: no congestion
4998 * NET_RX_DROP: packet was dropped
4999 */
5000int netif_receive_skb_core(struct sk_buff *skb)
5001{
5002 int ret;
5003
5004 rcu_read_lock();
88eb1944 5005 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5006 rcu_read_unlock();
5007
5008 return ret;
5009}
5010EXPORT_SYMBOL(netif_receive_skb_core);
5011
88eb1944
EC
5012static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5013 struct packet_type *pt_prev,
5014 struct net_device *orig_dev)
4ce0017a
EC
5015{
5016 struct sk_buff *skb, *next;
5017
88eb1944
EC
5018 if (!pt_prev)
5019 return;
5020 if (list_empty(head))
5021 return;
17266ee9
EC
5022 if (pt_prev->list_func != NULL)
5023 pt_prev->list_func(head, pt_prev, orig_dev);
5024 else
5025 list_for_each_entry_safe(skb, next, head, list)
5026 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
88eb1944
EC
5027}
5028
5029static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5030{
5031 /* Fast-path assumptions:
5032 * - There is no RX handler.
5033 * - Only one packet_type matches.
5034 * If either of these fails, we will end up doing some per-packet
5035 * processing in-line, then handling the 'last ptype' for the whole
5036 * sublist. This can't cause out-of-order delivery to any single ptype,
5037 * because the 'last ptype' must be constant across the sublist, and all
5038 * other ptypes are handled per-packet.
5039 */
5040 /* Current (common) ptype of sublist */
5041 struct packet_type *pt_curr = NULL;
5042 /* Current (common) orig_dev of sublist */
5043 struct net_device *od_curr = NULL;
5044 struct list_head sublist;
5045 struct sk_buff *skb, *next;
5046
9af86f93 5047 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5048 list_for_each_entry_safe(skb, next, head, list) {
5049 struct net_device *orig_dev = skb->dev;
5050 struct packet_type *pt_prev = NULL;
5051
22f6bbb7 5052 skb_list_del_init(skb);
88eb1944 5053 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
9af86f93
EC
5054 if (!pt_prev)
5055 continue;
88eb1944
EC
5056 if (pt_curr != pt_prev || od_curr != orig_dev) {
5057 /* dispatch old sublist */
88eb1944
EC
5058 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5059 /* start new sublist */
9af86f93 5060 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5061 pt_curr = pt_prev;
5062 od_curr = orig_dev;
5063 }
9af86f93 5064 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5065 }
5066
5067 /* dispatch final sublist */
9af86f93 5068 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5069}
5070
9754e293
DM
5071static int __netif_receive_skb(struct sk_buff *skb)
5072{
5073 int ret;
5074
5075 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5076 unsigned int noreclaim_flag;
9754e293
DM
5077
5078 /*
5079 * PFMEMALLOC skbs are special, they should
5080 * - be delivered to SOCK_MEMALLOC sockets only
5081 * - stay away from userspace
5082 * - have bounded memory usage
5083 *
5084 * Use PF_MEMALLOC as this saves us from propagating the allocation
5085 * context down to all allocation sites.
5086 */
f1083048 5087 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5088 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5089 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5090 } else
88eb1944 5091 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5092
1da177e4
LT
5093 return ret;
5094}
0a9627f2 5095
4ce0017a
EC
5096static void __netif_receive_skb_list(struct list_head *head)
5097{
5098 unsigned long noreclaim_flag = 0;
5099 struct sk_buff *skb, *next;
5100 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5101
5102 list_for_each_entry_safe(skb, next, head, list) {
5103 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5104 struct list_head sublist;
5105
5106 /* Handle the previous sublist */
5107 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5108 if (!list_empty(&sublist))
5109 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5110 pfmemalloc = !pfmemalloc;
5111 /* See comments in __netif_receive_skb */
5112 if (pfmemalloc)
5113 noreclaim_flag = memalloc_noreclaim_save();
5114 else
5115 memalloc_noreclaim_restore(noreclaim_flag);
5116 }
5117 }
5118 /* Handle the remaining sublist */
b9f463d6
EC
5119 if (!list_empty(head))
5120 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5121 /* Restore pflags */
5122 if (pfmemalloc)
5123 memalloc_noreclaim_restore(noreclaim_flag);
5124}
5125
f4e63525 5126static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5127{
58038695 5128 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5129 struct bpf_prog *new = xdp->prog;
5130 int ret = 0;
5131
5132 switch (xdp->command) {
58038695 5133 case XDP_SETUP_PROG:
b5cdae32
DM
5134 rcu_assign_pointer(dev->xdp_prog, new);
5135 if (old)
5136 bpf_prog_put(old);
5137
5138 if (old && !new) {
02786475 5139 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5140 } else if (new && !old) {
02786475 5141 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5142 dev_disable_lro(dev);
56f5aa77 5143 dev_disable_gro_hw(dev);
b5cdae32
DM
5144 }
5145 break;
b5cdae32
DM
5146
5147 case XDP_QUERY_PROG:
58038695 5148 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
5149 break;
5150
5151 default:
5152 ret = -EINVAL;
5153 break;
5154 }
5155
5156 return ret;
5157}
5158
ae78dbfa 5159static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5160{
2c17d27c
JA
5161 int ret;
5162
588f0330 5163 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5164
c1f19b51
RC
5165 if (skb_defer_rx_timestamp(skb))
5166 return NET_RX_SUCCESS;
5167
02786475 5168 if (static_branch_unlikely(&generic_xdp_needed_key)) {
bbbe211c 5169 int ret;
b5cdae32 5170
bbbe211c
JF
5171 preempt_disable();
5172 rcu_read_lock();
5173 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5174 rcu_read_unlock();
5175 preempt_enable();
5176
5177 if (ret != XDP_PASS)
d4455169 5178 return NET_RX_DROP;
b5cdae32
DM
5179 }
5180
bbbe211c 5181 rcu_read_lock();
df334545 5182#ifdef CONFIG_RPS
dc05360f 5183 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5184 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5185 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5186
3b098e2d
ED
5187 if (cpu >= 0) {
5188 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5189 rcu_read_unlock();
adc9300e 5190 return ret;
3b098e2d 5191 }
fec5e652 5192 }
1e94d72f 5193#endif
2c17d27c
JA
5194 ret = __netif_receive_skb(skb);
5195 rcu_read_unlock();
5196 return ret;
0a9627f2 5197}
ae78dbfa 5198
7da517a3
EC
5199static void netif_receive_skb_list_internal(struct list_head *head)
5200{
5201 struct bpf_prog *xdp_prog = NULL;
5202 struct sk_buff *skb, *next;
8c057efa 5203 struct list_head sublist;
7da517a3 5204
8c057efa 5205 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5206 list_for_each_entry_safe(skb, next, head, list) {
5207 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5208 skb_list_del_init(skb);
8c057efa
EC
5209 if (!skb_defer_rx_timestamp(skb))
5210 list_add_tail(&skb->list, &sublist);
7da517a3 5211 }
8c057efa 5212 list_splice_init(&sublist, head);
7da517a3
EC
5213
5214 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5215 preempt_disable();
5216 rcu_read_lock();
5217 list_for_each_entry_safe(skb, next, head, list) {
5218 xdp_prog = rcu_dereference(skb->dev->xdp_prog);
22f6bbb7 5219 skb_list_del_init(skb);
8c057efa
EC
5220 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5221 list_add_tail(&skb->list, &sublist);
7da517a3
EC
5222 }
5223 rcu_read_unlock();
5224 preempt_enable();
8c057efa
EC
5225 /* Put passed packets back on main list */
5226 list_splice_init(&sublist, head);
7da517a3
EC
5227 }
5228
5229 rcu_read_lock();
5230#ifdef CONFIG_RPS
dc05360f 5231 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5232 list_for_each_entry_safe(skb, next, head, list) {
5233 struct rps_dev_flow voidflow, *rflow = &voidflow;
5234 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5235
5236 if (cpu >= 0) {
8c057efa 5237 /* Will be handled, remove from list */
22f6bbb7 5238 skb_list_del_init(skb);
8c057efa 5239 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5240 }
5241 }
5242 }
5243#endif
5244 __netif_receive_skb_list(head);
5245 rcu_read_unlock();
5246}
5247
ae78dbfa
BH
5248/**
5249 * netif_receive_skb - process receive buffer from network
5250 * @skb: buffer to process
5251 *
5252 * netif_receive_skb() is the main receive data processing function.
5253 * It always succeeds. The buffer may be dropped during processing
5254 * for congestion control or by the protocol layers.
5255 *
5256 * This function may only be called from softirq context and interrupts
5257 * should be enabled.
5258 *
5259 * Return values (usually ignored):
5260 * NET_RX_SUCCESS: no congestion
5261 * NET_RX_DROP: packet was dropped
5262 */
04eb4489 5263int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5264{
b0e3f1bd
GB
5265 int ret;
5266
ae78dbfa
BH
5267 trace_netif_receive_skb_entry(skb);
5268
b0e3f1bd
GB
5269 ret = netif_receive_skb_internal(skb);
5270 trace_netif_receive_skb_exit(ret);
5271
5272 return ret;
ae78dbfa 5273}
04eb4489 5274EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5275
f6ad8c1b
EC
5276/**
5277 * netif_receive_skb_list - process many receive buffers from network
5278 * @head: list of skbs to process.
5279 *
7da517a3
EC
5280 * Since return value of netif_receive_skb() is normally ignored, and
5281 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5282 *
5283 * This function may only be called from softirq context and interrupts
5284 * should be enabled.
5285 */
5286void netif_receive_skb_list(struct list_head *head)
5287{
7da517a3 5288 struct sk_buff *skb;
f6ad8c1b 5289
b9f463d6
EC
5290 if (list_empty(head))
5291 return;
b0e3f1bd
GB
5292 if (trace_netif_receive_skb_list_entry_enabled()) {
5293 list_for_each_entry(skb, head, list)
5294 trace_netif_receive_skb_list_entry(skb);
5295 }
7da517a3 5296 netif_receive_skb_list_internal(head);
b0e3f1bd 5297 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5298}
5299EXPORT_SYMBOL(netif_receive_skb_list);
5300
41852497 5301DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5302
5303/* Network device is going away, flush any packets still pending */
5304static void flush_backlog(struct work_struct *work)
6e583ce5 5305{
6e583ce5 5306 struct sk_buff *skb, *tmp;
145dd5f9
PA
5307 struct softnet_data *sd;
5308
5309 local_bh_disable();
5310 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5311
145dd5f9 5312 local_irq_disable();
e36fa2f7 5313 rps_lock(sd);
6e7676c1 5314 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5315 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5316 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 5317 kfree_skb(skb);
76cc8b13 5318 input_queue_head_incr(sd);
6e583ce5 5319 }
6e7676c1 5320 }
e36fa2f7 5321 rps_unlock(sd);
145dd5f9 5322 local_irq_enable();
6e7676c1
CG
5323
5324 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5325 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5326 __skb_unlink(skb, &sd->process_queue);
5327 kfree_skb(skb);
76cc8b13 5328 input_queue_head_incr(sd);
6e7676c1
CG
5329 }
5330 }
145dd5f9
PA
5331 local_bh_enable();
5332}
5333
41852497 5334static void flush_all_backlogs(void)
145dd5f9
PA
5335{
5336 unsigned int cpu;
5337
5338 get_online_cpus();
5339
41852497
ED
5340 for_each_online_cpu(cpu)
5341 queue_work_on(cpu, system_highpri_wq,
5342 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5343
5344 for_each_online_cpu(cpu)
41852497 5345 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5346
5347 put_online_cpus();
6e583ce5
SH
5348}
5349
aaa5d90b
PA
5350INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5351INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
d565b0a1
HX
5352static int napi_gro_complete(struct sk_buff *skb)
5353{
22061d80 5354 struct packet_offload *ptype;
d565b0a1 5355 __be16 type = skb->protocol;
22061d80 5356 struct list_head *head = &offload_base;
d565b0a1
HX
5357 int err = -ENOENT;
5358
c3c7c254
ED
5359 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5360
fc59f9a3
HX
5361 if (NAPI_GRO_CB(skb)->count == 1) {
5362 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5363 goto out;
fc59f9a3 5364 }
d565b0a1
HX
5365
5366 rcu_read_lock();
5367 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5368 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5369 continue;
5370
aaa5d90b
PA
5371 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5372 ipv6_gro_complete, inet_gro_complete,
5373 skb, 0);
d565b0a1
HX
5374 break;
5375 }
5376 rcu_read_unlock();
5377
5378 if (err) {
5379 WARN_ON(&ptype->list == head);
5380 kfree_skb(skb);
5381 return NET_RX_SUCCESS;
5382 }
5383
5384out:
ae78dbfa 5385 return netif_receive_skb_internal(skb);
d565b0a1
HX
5386}
5387
6312fe77 5388static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5389 bool flush_old)
d565b0a1 5390{
6312fe77 5391 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5392 struct sk_buff *skb, *p;
2e71a6f8 5393
07d78363 5394 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5395 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5396 return;
992cba7e 5397 skb_list_del_init(skb);
d565b0a1 5398 napi_gro_complete(skb);
6312fe77 5399 napi->gro_hash[index].count--;
d565b0a1 5400 }
d9f37d01
LR
5401
5402 if (!napi->gro_hash[index].count)
5403 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5404}
07d78363 5405
6312fe77 5406/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5407 * youngest packets at the head of it.
5408 * Complete skbs in reverse order to reduce latencies.
5409 */
5410void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5411{
42519ede
ED
5412 unsigned long bitmask = napi->gro_bitmask;
5413 unsigned int i, base = ~0U;
07d78363 5414
42519ede
ED
5415 while ((i = ffs(bitmask)) != 0) {
5416 bitmask >>= i;
5417 base += i;
5418 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5419 }
07d78363 5420}
86cac58b 5421EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5422
07d78363
DM
5423static struct list_head *gro_list_prepare(struct napi_struct *napi,
5424 struct sk_buff *skb)
89c5fa33 5425{
89c5fa33 5426 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5427 u32 hash = skb_get_hash_raw(skb);
07d78363 5428 struct list_head *head;
d4546c25 5429 struct sk_buff *p;
89c5fa33 5430
6312fe77 5431 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5432 list_for_each_entry(p, head, list) {
89c5fa33
ED
5433 unsigned long diffs;
5434
0b4cec8c
TH
5435 NAPI_GRO_CB(p)->flush = 0;
5436
5437 if (hash != skb_get_hash_raw(p)) {
5438 NAPI_GRO_CB(p)->same_flow = 0;
5439 continue;
5440 }
5441
89c5fa33 5442 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5443 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5444 if (skb_vlan_tag_present(p))
5445 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 5446 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5447 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5448 if (maclen == ETH_HLEN)
5449 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5450 skb_mac_header(skb));
89c5fa33
ED
5451 else if (!diffs)
5452 diffs = memcmp(skb_mac_header(p),
a50e233c 5453 skb_mac_header(skb),
89c5fa33
ED
5454 maclen);
5455 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5456 }
07d78363
DM
5457
5458 return head;
89c5fa33
ED
5459}
5460
299603e8
JC
5461static void skb_gro_reset_offset(struct sk_buff *skb)
5462{
5463 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5464 const skb_frag_t *frag0 = &pinfo->frags[0];
5465
5466 NAPI_GRO_CB(skb)->data_offset = 0;
5467 NAPI_GRO_CB(skb)->frag0 = NULL;
5468 NAPI_GRO_CB(skb)->frag0_len = 0;
5469
5470 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5471 pinfo->nr_frags &&
5472 !PageHighMem(skb_frag_page(frag0))) {
5473 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5474 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5475 skb_frag_size(frag0),
5476 skb->end - skb->tail);
89c5fa33
ED
5477 }
5478}
5479
a50e233c
ED
5480static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5481{
5482 struct skb_shared_info *pinfo = skb_shinfo(skb);
5483
5484 BUG_ON(skb->end - skb->tail < grow);
5485
5486 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5487
5488 skb->data_len -= grow;
5489 skb->tail += grow;
5490
5491 pinfo->frags[0].page_offset += grow;
5492 skb_frag_size_sub(&pinfo->frags[0], grow);
5493
5494 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5495 skb_frag_unref(skb, 0);
5496 memmove(pinfo->frags, pinfo->frags + 1,
5497 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5498 }
5499}
5500
6312fe77 5501static void gro_flush_oldest(struct list_head *head)
07d78363 5502{
6312fe77 5503 struct sk_buff *oldest;
07d78363 5504
6312fe77 5505 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5506
6312fe77 5507 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5508 * impossible.
5509 */
5510 if (WARN_ON_ONCE(!oldest))
5511 return;
5512
d9f37d01
LR
5513 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5514 * SKB to the chain.
07d78363 5515 */
ece23711 5516 skb_list_del_init(oldest);
07d78363
DM
5517 napi_gro_complete(oldest);
5518}
5519
aaa5d90b
PA
5520INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5521 struct sk_buff *));
5522INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5523 struct sk_buff *));
bb728820 5524static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5525{
6312fe77 5526 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5527 struct list_head *head = &offload_base;
22061d80 5528 struct packet_offload *ptype;
d565b0a1 5529 __be16 type = skb->protocol;
07d78363 5530 struct list_head *gro_head;
d4546c25 5531 struct sk_buff *pp = NULL;
5b252f0c 5532 enum gro_result ret;
d4546c25 5533 int same_flow;
a50e233c 5534 int grow;
d565b0a1 5535
b5cdae32 5536 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5537 goto normal;
5538
07d78363 5539 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5540
d565b0a1
HX
5541 rcu_read_lock();
5542 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5543 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5544 continue;
5545
86911732 5546 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5547 skb_reset_mac_len(skb);
d565b0a1 5548 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5549 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5550 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5551 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5552 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5553 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5554 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5555 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5556
662880f4
TH
5557 /* Setup for GRO checksum validation */
5558 switch (skb->ip_summed) {
5559 case CHECKSUM_COMPLETE:
5560 NAPI_GRO_CB(skb)->csum = skb->csum;
5561 NAPI_GRO_CB(skb)->csum_valid = 1;
5562 NAPI_GRO_CB(skb)->csum_cnt = 0;
5563 break;
5564 case CHECKSUM_UNNECESSARY:
5565 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5566 NAPI_GRO_CB(skb)->csum_valid = 0;
5567 break;
5568 default:
5569 NAPI_GRO_CB(skb)->csum_cnt = 0;
5570 NAPI_GRO_CB(skb)->csum_valid = 0;
5571 }
d565b0a1 5572
aaa5d90b
PA
5573 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5574 ipv6_gro_receive, inet_gro_receive,
5575 gro_head, skb);
d565b0a1
HX
5576 break;
5577 }
5578 rcu_read_unlock();
5579
5580 if (&ptype->list == head)
5581 goto normal;
5582
25393d3f
SK
5583 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5584 ret = GRO_CONSUMED;
5585 goto ok;
5586 }
5587
0da2afd5 5588 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5589 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5590
d565b0a1 5591 if (pp) {
992cba7e 5592 skb_list_del_init(pp);
d4546c25 5593 napi_gro_complete(pp);
6312fe77 5594 napi->gro_hash[hash].count--;
d565b0a1
HX
5595 }
5596
0da2afd5 5597 if (same_flow)
d565b0a1
HX
5598 goto ok;
5599
600adc18 5600 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5601 goto normal;
d565b0a1 5602
6312fe77
LR
5603 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5604 gro_flush_oldest(gro_head);
600adc18 5605 } else {
6312fe77 5606 napi->gro_hash[hash].count++;
600adc18 5607 }
d565b0a1 5608 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5609 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5610 NAPI_GRO_CB(skb)->last = skb;
86911732 5611 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5612 list_add(&skb->list, gro_head);
5d0d9be8 5613 ret = GRO_HELD;
d565b0a1 5614
ad0f9904 5615pull:
a50e233c
ED
5616 grow = skb_gro_offset(skb) - skb_headlen(skb);
5617 if (grow > 0)
5618 gro_pull_from_frag0(skb, grow);
d565b0a1 5619ok:
d9f37d01
LR
5620 if (napi->gro_hash[hash].count) {
5621 if (!test_bit(hash, &napi->gro_bitmask))
5622 __set_bit(hash, &napi->gro_bitmask);
5623 } else if (test_bit(hash, &napi->gro_bitmask)) {
5624 __clear_bit(hash, &napi->gro_bitmask);
5625 }
5626
5d0d9be8 5627 return ret;
d565b0a1
HX
5628
5629normal:
ad0f9904
HX
5630 ret = GRO_NORMAL;
5631 goto pull;
5d38a079 5632}
96e93eab 5633
bf5a755f
JC
5634struct packet_offload *gro_find_receive_by_type(__be16 type)
5635{
5636 struct list_head *offload_head = &offload_base;
5637 struct packet_offload *ptype;
5638
5639 list_for_each_entry_rcu(ptype, offload_head, list) {
5640 if (ptype->type != type || !ptype->callbacks.gro_receive)
5641 continue;
5642 return ptype;
5643 }
5644 return NULL;
5645}
e27a2f83 5646EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
5647
5648struct packet_offload *gro_find_complete_by_type(__be16 type)
5649{
5650 struct list_head *offload_head = &offload_base;
5651 struct packet_offload *ptype;
5652
5653 list_for_each_entry_rcu(ptype, offload_head, list) {
5654 if (ptype->type != type || !ptype->callbacks.gro_complete)
5655 continue;
5656 return ptype;
5657 }
5658 return NULL;
5659}
e27a2f83 5660EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5661
e44699d2
MK
5662static void napi_skb_free_stolen_head(struct sk_buff *skb)
5663{
5664 skb_dst_drop(skb);
5665 secpath_reset(skb);
5666 kmem_cache_free(skbuff_head_cache, skb);
5667}
5668
bb728820 5669static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 5670{
5d0d9be8
HX
5671 switch (ret) {
5672 case GRO_NORMAL:
ae78dbfa 5673 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
5674 ret = GRO_DROP;
5675 break;
5d38a079 5676
5d0d9be8 5677 case GRO_DROP:
5d38a079
HX
5678 kfree_skb(skb);
5679 break;
5b252f0c 5680
daa86548 5681 case GRO_MERGED_FREE:
e44699d2
MK
5682 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5683 napi_skb_free_stolen_head(skb);
5684 else
d7e8883c 5685 __kfree_skb(skb);
daa86548
ED
5686 break;
5687
5b252f0c
BH
5688 case GRO_HELD:
5689 case GRO_MERGED:
25393d3f 5690 case GRO_CONSUMED:
5b252f0c 5691 break;
5d38a079
HX
5692 }
5693
c7c4b3b6 5694 return ret;
5d0d9be8 5695}
5d0d9be8 5696
c7c4b3b6 5697gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 5698{
b0e3f1bd
GB
5699 gro_result_t ret;
5700
93f93a44 5701 skb_mark_napi_id(skb, napi);
ae78dbfa 5702 trace_napi_gro_receive_entry(skb);
86911732 5703
a50e233c
ED
5704 skb_gro_reset_offset(skb);
5705
b0e3f1bd
GB
5706 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5707 trace_napi_gro_receive_exit(ret);
5708
5709 return ret;
d565b0a1
HX
5710}
5711EXPORT_SYMBOL(napi_gro_receive);
5712
d0c2b0d2 5713static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5714{
93a35f59
ED
5715 if (unlikely(skb->pfmemalloc)) {
5716 consume_skb(skb);
5717 return;
5718 }
96e93eab 5719 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5720 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5721 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 5722 __vlan_hwaccel_clear_tag(skb);
66c46d74 5723 skb->dev = napi->dev;
6d152e23 5724 skb->skb_iif = 0;
33d9a2c7
ED
5725
5726 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5727 skb->pkt_type = PACKET_HOST;
5728
c3caf119
JC
5729 skb->encapsulation = 0;
5730 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5731 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 5732 secpath_reset(skb);
96e93eab
HX
5733
5734 napi->skb = skb;
5735}
96e93eab 5736
76620aaf 5737struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5738{
5d38a079 5739 struct sk_buff *skb = napi->skb;
5d38a079
HX
5740
5741 if (!skb) {
fd11a83d 5742 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5743 if (skb) {
5744 napi->skb = skb;
5745 skb_mark_napi_id(skb, napi);
5746 }
80595d59 5747 }
96e93eab
HX
5748 return skb;
5749}
76620aaf 5750EXPORT_SYMBOL(napi_get_frags);
96e93eab 5751
a50e233c
ED
5752static gro_result_t napi_frags_finish(struct napi_struct *napi,
5753 struct sk_buff *skb,
5754 gro_result_t ret)
96e93eab 5755{
5d0d9be8
HX
5756 switch (ret) {
5757 case GRO_NORMAL:
a50e233c
ED
5758 case GRO_HELD:
5759 __skb_push(skb, ETH_HLEN);
5760 skb->protocol = eth_type_trans(skb, skb->dev);
5761 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 5762 ret = GRO_DROP;
86911732 5763 break;
5d38a079 5764
5d0d9be8 5765 case GRO_DROP:
5d0d9be8
HX
5766 napi_reuse_skb(napi, skb);
5767 break;
5b252f0c 5768
e44699d2
MK
5769 case GRO_MERGED_FREE:
5770 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5771 napi_skb_free_stolen_head(skb);
5772 else
5773 napi_reuse_skb(napi, skb);
5774 break;
5775
5b252f0c 5776 case GRO_MERGED:
25393d3f 5777 case GRO_CONSUMED:
5b252f0c 5778 break;
5d0d9be8 5779 }
5d38a079 5780
c7c4b3b6 5781 return ret;
5d38a079 5782}
5d0d9be8 5783
a50e233c
ED
5784/* Upper GRO stack assumes network header starts at gro_offset=0
5785 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5786 * We copy ethernet header into skb->data to have a common layout.
5787 */
4adb9c4a 5788static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5789{
5790 struct sk_buff *skb = napi->skb;
a50e233c
ED
5791 const struct ethhdr *eth;
5792 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5793
5794 napi->skb = NULL;
5795
a50e233c
ED
5796 skb_reset_mac_header(skb);
5797 skb_gro_reset_offset(skb);
5798
5799 eth = skb_gro_header_fast(skb, 0);
5800 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5801 eth = skb_gro_header_slow(skb, hlen, 0);
5802 if (unlikely(!eth)) {
4da46ceb
AC
5803 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5804 __func__, napi->dev->name);
a50e233c
ED
5805 napi_reuse_skb(napi, skb);
5806 return NULL;
5807 }
5808 } else {
5809 gro_pull_from_frag0(skb, hlen);
5810 NAPI_GRO_CB(skb)->frag0 += hlen;
5811 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5812 }
a50e233c
ED
5813 __skb_pull(skb, hlen);
5814
5815 /*
5816 * This works because the only protocols we care about don't require
5817 * special handling.
5818 * We'll fix it up properly in napi_frags_finish()
5819 */
5820 skb->protocol = eth->h_proto;
76620aaf 5821
76620aaf
HX
5822 return skb;
5823}
76620aaf 5824
c7c4b3b6 5825gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5826{
b0e3f1bd 5827 gro_result_t ret;
76620aaf 5828 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5829
5830 if (!skb)
c7c4b3b6 5831 return GRO_DROP;
5d0d9be8 5832
ae78dbfa
BH
5833 trace_napi_gro_frags_entry(skb);
5834
b0e3f1bd
GB
5835 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5836 trace_napi_gro_frags_exit(ret);
5837
5838 return ret;
5d0d9be8 5839}
5d38a079
HX
5840EXPORT_SYMBOL(napi_gro_frags);
5841
573e8fca
TH
5842/* Compute the checksum from gro_offset and return the folded value
5843 * after adding in any pseudo checksum.
5844 */
5845__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5846{
5847 __wsum wsum;
5848 __sum16 sum;
5849
5850 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5851
5852 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5853 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 5854 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
5855 if (likely(!sum)) {
5856 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5857 !skb->csum_complete_sw)
7fe50ac8 5858 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
5859 }
5860
5861 NAPI_GRO_CB(skb)->csum = wsum;
5862 NAPI_GRO_CB(skb)->csum_valid = 1;
5863
5864 return sum;
5865}
5866EXPORT_SYMBOL(__skb_gro_checksum_complete);
5867
773fc8f6 5868static void net_rps_send_ipi(struct softnet_data *remsd)
5869{
5870#ifdef CONFIG_RPS
5871 while (remsd) {
5872 struct softnet_data *next = remsd->rps_ipi_next;
5873
5874 if (cpu_online(remsd->cpu))
5875 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5876 remsd = next;
5877 }
5878#endif
5879}
5880
e326bed2 5881/*
855abcf0 5882 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5883 * Note: called with local irq disabled, but exits with local irq enabled.
5884 */
5885static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5886{
5887#ifdef CONFIG_RPS
5888 struct softnet_data *remsd = sd->rps_ipi_list;
5889
5890 if (remsd) {
5891 sd->rps_ipi_list = NULL;
5892
5893 local_irq_enable();
5894
5895 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5896 net_rps_send_ipi(remsd);
e326bed2
ED
5897 } else
5898#endif
5899 local_irq_enable();
5900}
5901
d75b1ade
ED
5902static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5903{
5904#ifdef CONFIG_RPS
5905 return sd->rps_ipi_list != NULL;
5906#else
5907 return false;
5908#endif
5909}
5910
bea3348e 5911static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5912{
eecfd7c4 5913 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5914 bool again = true;
5915 int work = 0;
1da177e4 5916
e326bed2
ED
5917 /* Check if we have pending ipi, its better to send them now,
5918 * not waiting net_rx_action() end.
5919 */
d75b1ade 5920 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5921 local_irq_disable();
5922 net_rps_action_and_irq_enable(sd);
5923 }
d75b1ade 5924
3d48b53f 5925 napi->weight = dev_rx_weight;
145dd5f9 5926 while (again) {
1da177e4 5927 struct sk_buff *skb;
6e7676c1
CG
5928
5929 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5930 rcu_read_lock();
6e7676c1 5931 __netif_receive_skb(skb);
2c17d27c 5932 rcu_read_unlock();
76cc8b13 5933 input_queue_head_incr(sd);
145dd5f9 5934 if (++work >= quota)
76cc8b13 5935 return work;
145dd5f9 5936
6e7676c1 5937 }
1da177e4 5938
145dd5f9 5939 local_irq_disable();
e36fa2f7 5940 rps_lock(sd);
11ef7a89 5941 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5942 /*
5943 * Inline a custom version of __napi_complete().
5944 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5945 * and NAPI_STATE_SCHED is the only possible flag set
5946 * on backlog.
5947 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5948 * and we dont need an smp_mb() memory barrier.
5949 */
eecfd7c4 5950 napi->state = 0;
145dd5f9
PA
5951 again = false;
5952 } else {
5953 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5954 &sd->process_queue);
bea3348e 5955 }
e36fa2f7 5956 rps_unlock(sd);
145dd5f9 5957 local_irq_enable();
6e7676c1 5958 }
1da177e4 5959
bea3348e
SH
5960 return work;
5961}
1da177e4 5962
bea3348e
SH
5963/**
5964 * __napi_schedule - schedule for receive
c4ea43c5 5965 * @n: entry to schedule
bea3348e 5966 *
bc9ad166
ED
5967 * The entry's receive function will be scheduled to run.
5968 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5969 */
b5606c2d 5970void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5971{
5972 unsigned long flags;
1da177e4 5973
bea3348e 5974 local_irq_save(flags);
903ceff7 5975 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5976 local_irq_restore(flags);
1da177e4 5977}
bea3348e
SH
5978EXPORT_SYMBOL(__napi_schedule);
5979
39e6c820
ED
5980/**
5981 * napi_schedule_prep - check if napi can be scheduled
5982 * @n: napi context
5983 *
5984 * Test if NAPI routine is already running, and if not mark
5985 * it as running. This is used as a condition variable
5986 * insure only one NAPI poll instance runs. We also make
5987 * sure there is no pending NAPI disable.
5988 */
5989bool napi_schedule_prep(struct napi_struct *n)
5990{
5991 unsigned long val, new;
5992
5993 do {
5994 val = READ_ONCE(n->state);
5995 if (unlikely(val & NAPIF_STATE_DISABLE))
5996 return false;
5997 new = val | NAPIF_STATE_SCHED;
5998
5999 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6000 * This was suggested by Alexander Duyck, as compiler
6001 * emits better code than :
6002 * if (val & NAPIF_STATE_SCHED)
6003 * new |= NAPIF_STATE_MISSED;
6004 */
6005 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6006 NAPIF_STATE_MISSED;
6007 } while (cmpxchg(&n->state, val, new) != val);
6008
6009 return !(val & NAPIF_STATE_SCHED);
6010}
6011EXPORT_SYMBOL(napi_schedule_prep);
6012
bc9ad166
ED
6013/**
6014 * __napi_schedule_irqoff - schedule for receive
6015 * @n: entry to schedule
6016 *
6017 * Variant of __napi_schedule() assuming hard irqs are masked
6018 */
6019void __napi_schedule_irqoff(struct napi_struct *n)
6020{
6021 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6022}
6023EXPORT_SYMBOL(__napi_schedule_irqoff);
6024
364b6055 6025bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6026{
39e6c820 6027 unsigned long flags, val, new;
d565b0a1
HX
6028
6029 /*
217f6974
ED
6030 * 1) Don't let napi dequeue from the cpu poll list
6031 * just in case its running on a different cpu.
6032 * 2) If we are busy polling, do nothing here, we have
6033 * the guarantee we will be called later.
d565b0a1 6034 */
217f6974
ED
6035 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6036 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6037 return false;
d565b0a1 6038
d9f37d01 6039 if (n->gro_bitmask) {
3b47d303 6040 unsigned long timeout = 0;
d75b1ade 6041
3b47d303
ED
6042 if (work_done)
6043 timeout = n->dev->gro_flush_timeout;
6044
605108ac
PA
6045 /* When the NAPI instance uses a timeout and keeps postponing
6046 * it, we need to bound somehow the time packets are kept in
6047 * the GRO layer
6048 */
6049 napi_gro_flush(n, !!timeout);
3b47d303
ED
6050 if (timeout)
6051 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6052 HRTIMER_MODE_REL_PINNED);
3b47d303 6053 }
02c1602e 6054 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6055 /* If n->poll_list is not empty, we need to mask irqs */
6056 local_irq_save(flags);
02c1602e 6057 list_del_init(&n->poll_list);
d75b1ade
ED
6058 local_irq_restore(flags);
6059 }
39e6c820
ED
6060
6061 do {
6062 val = READ_ONCE(n->state);
6063
6064 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6065
6066 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6067
6068 /* If STATE_MISSED was set, leave STATE_SCHED set,
6069 * because we will call napi->poll() one more time.
6070 * This C code was suggested by Alexander Duyck to help gcc.
6071 */
6072 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6073 NAPIF_STATE_SCHED;
6074 } while (cmpxchg(&n->state, val, new) != val);
6075
6076 if (unlikely(val & NAPIF_STATE_MISSED)) {
6077 __napi_schedule(n);
6078 return false;
6079 }
6080
364b6055 6081 return true;
d565b0a1 6082}
3b47d303 6083EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6084
af12fa6e 6085/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6086static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6087{
6088 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6089 struct napi_struct *napi;
6090
6091 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6092 if (napi->napi_id == napi_id)
6093 return napi;
6094
6095 return NULL;
6096}
02d62e86
ED
6097
6098#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6099
ce6aea93 6100#define BUSY_POLL_BUDGET 8
217f6974
ED
6101
6102static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6103{
6104 int rc;
6105
39e6c820
ED
6106 /* Busy polling means there is a high chance device driver hard irq
6107 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6108 * set in napi_schedule_prep().
6109 * Since we are about to call napi->poll() once more, we can safely
6110 * clear NAPI_STATE_MISSED.
6111 *
6112 * Note: x86 could use a single "lock and ..." instruction
6113 * to perform these two clear_bit()
6114 */
6115 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6116 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6117
6118 local_bh_disable();
6119
6120 /* All we really want here is to re-enable device interrupts.
6121 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6122 */
6123 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1e22391e 6124 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974
ED
6125 netpoll_poll_unlock(have_poll_lock);
6126 if (rc == BUSY_POLL_BUDGET)
6127 __napi_schedule(napi);
6128 local_bh_enable();
217f6974
ED
6129}
6130
7db6b048
SS
6131void napi_busy_loop(unsigned int napi_id,
6132 bool (*loop_end)(void *, unsigned long),
6133 void *loop_end_arg)
02d62e86 6134{
7db6b048 6135 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6136 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6137 void *have_poll_lock = NULL;
02d62e86 6138 struct napi_struct *napi;
217f6974
ED
6139
6140restart:
217f6974 6141 napi_poll = NULL;
02d62e86 6142
2a028ecb 6143 rcu_read_lock();
02d62e86 6144
545cd5e5 6145 napi = napi_by_id(napi_id);
02d62e86
ED
6146 if (!napi)
6147 goto out;
6148
217f6974
ED
6149 preempt_disable();
6150 for (;;) {
2b5cd0df
AD
6151 int work = 0;
6152
2a028ecb 6153 local_bh_disable();
217f6974
ED
6154 if (!napi_poll) {
6155 unsigned long val = READ_ONCE(napi->state);
6156
6157 /* If multiple threads are competing for this napi,
6158 * we avoid dirtying napi->state as much as we can.
6159 */
6160 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6161 NAPIF_STATE_IN_BUSY_POLL))
6162 goto count;
6163 if (cmpxchg(&napi->state, val,
6164 val | NAPIF_STATE_IN_BUSY_POLL |
6165 NAPIF_STATE_SCHED) != val)
6166 goto count;
6167 have_poll_lock = netpoll_poll_lock(napi);
6168 napi_poll = napi->poll;
6169 }
2b5cd0df
AD
6170 work = napi_poll(napi, BUSY_POLL_BUDGET);
6171 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 6172count:
2b5cd0df 6173 if (work > 0)
7db6b048 6174 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6175 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6176 local_bh_enable();
02d62e86 6177
7db6b048 6178 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6179 break;
02d62e86 6180
217f6974
ED
6181 if (unlikely(need_resched())) {
6182 if (napi_poll)
6183 busy_poll_stop(napi, have_poll_lock);
6184 preempt_enable();
6185 rcu_read_unlock();
6186 cond_resched();
7db6b048 6187 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6188 return;
217f6974
ED
6189 goto restart;
6190 }
6cdf89b1 6191 cpu_relax();
217f6974
ED
6192 }
6193 if (napi_poll)
6194 busy_poll_stop(napi, have_poll_lock);
6195 preempt_enable();
02d62e86 6196out:
2a028ecb 6197 rcu_read_unlock();
02d62e86 6198}
7db6b048 6199EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6200
6201#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6202
149d6ad8 6203static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6204{
d64b5e85
ED
6205 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6206 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 6207 return;
af12fa6e 6208
52bd2d62 6209 spin_lock(&napi_hash_lock);
af12fa6e 6210
545cd5e5 6211 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6212 do {
545cd5e5
AD
6213 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6214 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6215 } while (napi_by_id(napi_gen_id));
6216 napi->napi_id = napi_gen_id;
af12fa6e 6217
52bd2d62
ED
6218 hlist_add_head_rcu(&napi->napi_hash_node,
6219 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6220
52bd2d62 6221 spin_unlock(&napi_hash_lock);
af12fa6e 6222}
af12fa6e
ET
6223
6224/* Warning : caller is responsible to make sure rcu grace period
6225 * is respected before freeing memory containing @napi
6226 */
34cbe27e 6227bool napi_hash_del(struct napi_struct *napi)
af12fa6e 6228{
34cbe27e
ED
6229 bool rcu_sync_needed = false;
6230
af12fa6e
ET
6231 spin_lock(&napi_hash_lock);
6232
34cbe27e
ED
6233 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6234 rcu_sync_needed = true;
af12fa6e 6235 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 6236 }
af12fa6e 6237 spin_unlock(&napi_hash_lock);
34cbe27e 6238 return rcu_sync_needed;
af12fa6e
ET
6239}
6240EXPORT_SYMBOL_GPL(napi_hash_del);
6241
3b47d303
ED
6242static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6243{
6244 struct napi_struct *napi;
6245
6246 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6247
6248 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6249 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6250 */
d9f37d01 6251 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
39e6c820
ED
6252 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6253 __napi_schedule_irqoff(napi);
3b47d303
ED
6254
6255 return HRTIMER_NORESTART;
6256}
6257
7c4ec749 6258static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6259{
07d78363
DM
6260 int i;
6261
6312fe77
LR
6262 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6263 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6264 napi->gro_hash[i].count = 0;
6265 }
7c4ec749
DM
6266 napi->gro_bitmask = 0;
6267}
6268
6269void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6270 int (*poll)(struct napi_struct *, int), int weight)
6271{
6272 INIT_LIST_HEAD(&napi->poll_list);
6273 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6274 napi->timer.function = napi_watchdog;
6275 init_gro_hash(napi);
5d38a079 6276 napi->skb = NULL;
d565b0a1 6277 napi->poll = poll;
82dc3c63 6278 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6279 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6280 weight);
d565b0a1
HX
6281 napi->weight = weight;
6282 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 6283 napi->dev = dev;
5d38a079 6284#ifdef CONFIG_NETPOLL
d565b0a1
HX
6285 napi->poll_owner = -1;
6286#endif
6287 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 6288 napi_hash_add(napi);
d565b0a1
HX
6289}
6290EXPORT_SYMBOL(netif_napi_add);
6291
3b47d303
ED
6292void napi_disable(struct napi_struct *n)
6293{
6294 might_sleep();
6295 set_bit(NAPI_STATE_DISABLE, &n->state);
6296
6297 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6298 msleep(1);
2d8bff12
NH
6299 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6300 msleep(1);
3b47d303
ED
6301
6302 hrtimer_cancel(&n->timer);
6303
6304 clear_bit(NAPI_STATE_DISABLE, &n->state);
6305}
6306EXPORT_SYMBOL(napi_disable);
6307
07d78363 6308static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6309{
07d78363 6310 int i;
d4546c25 6311
07d78363
DM
6312 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6313 struct sk_buff *skb, *n;
6314
6312fe77 6315 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6316 kfree_skb(skb);
6312fe77 6317 napi->gro_hash[i].count = 0;
07d78363 6318 }
d4546c25
DM
6319}
6320
93d05d4a 6321/* Must be called in process context */
d565b0a1
HX
6322void netif_napi_del(struct napi_struct *napi)
6323{
93d05d4a
ED
6324 might_sleep();
6325 if (napi_hash_del(napi))
6326 synchronize_net();
d7b06636 6327 list_del_init(&napi->dev_list);
76620aaf 6328 napi_free_frags(napi);
d565b0a1 6329
07d78363 6330 flush_gro_hash(napi);
d9f37d01 6331 napi->gro_bitmask = 0;
d565b0a1
HX
6332}
6333EXPORT_SYMBOL(netif_napi_del);
6334
726ce70e
HX
6335static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6336{
6337 void *have;
6338 int work, weight;
6339
6340 list_del_init(&n->poll_list);
6341
6342 have = netpoll_poll_lock(n);
6343
6344 weight = n->weight;
6345
6346 /* This NAPI_STATE_SCHED test is for avoiding a race
6347 * with netpoll's poll_napi(). Only the entity which
6348 * obtains the lock and sees NAPI_STATE_SCHED set will
6349 * actually make the ->poll() call. Therefore we avoid
6350 * accidentally calling ->poll() when NAPI is not scheduled.
6351 */
6352 work = 0;
6353 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6354 work = n->poll(n, weight);
1db19db7 6355 trace_napi_poll(n, work, weight);
726ce70e
HX
6356 }
6357
6358 WARN_ON_ONCE(work > weight);
6359
6360 if (likely(work < weight))
6361 goto out_unlock;
6362
6363 /* Drivers must not modify the NAPI state if they
6364 * consume the entire weight. In such cases this code
6365 * still "owns" the NAPI instance and therefore can
6366 * move the instance around on the list at-will.
6367 */
6368 if (unlikely(napi_disable_pending(n))) {
6369 napi_complete(n);
6370 goto out_unlock;
6371 }
6372
d9f37d01 6373 if (n->gro_bitmask) {
726ce70e
HX
6374 /* flush too old packets
6375 * If HZ < 1000, flush all packets.
6376 */
6377 napi_gro_flush(n, HZ >= 1000);
6378 }
6379
001ce546
HX
6380 /* Some drivers may have called napi_schedule
6381 * prior to exhausting their budget.
6382 */
6383 if (unlikely(!list_empty(&n->poll_list))) {
6384 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6385 n->dev ? n->dev->name : "backlog");
6386 goto out_unlock;
6387 }
6388
726ce70e
HX
6389 list_add_tail(&n->poll_list, repoll);
6390
6391out_unlock:
6392 netpoll_poll_unlock(have);
6393
6394 return work;
6395}
6396
0766f788 6397static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6398{
903ceff7 6399 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6400 unsigned long time_limit = jiffies +
6401 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6402 int budget = netdev_budget;
d75b1ade
ED
6403 LIST_HEAD(list);
6404 LIST_HEAD(repoll);
53fb95d3 6405
1da177e4 6406 local_irq_disable();
d75b1ade
ED
6407 list_splice_init(&sd->poll_list, &list);
6408 local_irq_enable();
1da177e4 6409
ceb8d5bf 6410 for (;;) {
bea3348e 6411 struct napi_struct *n;
1da177e4 6412
ceb8d5bf
HX
6413 if (list_empty(&list)) {
6414 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6415 goto out;
ceb8d5bf
HX
6416 break;
6417 }
6418
6bd373eb
HX
6419 n = list_first_entry(&list, struct napi_struct, poll_list);
6420 budget -= napi_poll(n, &repoll);
6421
d75b1ade 6422 /* If softirq window is exhausted then punt.
24f8b238
SH
6423 * Allow this to run for 2 jiffies since which will allow
6424 * an average latency of 1.5/HZ.
bea3348e 6425 */
ceb8d5bf
HX
6426 if (unlikely(budget <= 0 ||
6427 time_after_eq(jiffies, time_limit))) {
6428 sd->time_squeeze++;
6429 break;
6430 }
1da177e4 6431 }
d75b1ade 6432
d75b1ade
ED
6433 local_irq_disable();
6434
6435 list_splice_tail_init(&sd->poll_list, &list);
6436 list_splice_tail(&repoll, &list);
6437 list_splice(&list, &sd->poll_list);
6438 if (!list_empty(&sd->poll_list))
6439 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6440
e326bed2 6441 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6442out:
6443 __kfree_skb_flush();
1da177e4
LT
6444}
6445
aa9d8560 6446struct netdev_adjacent {
9ff162a8 6447 struct net_device *dev;
5d261913
VF
6448
6449 /* upper master flag, there can only be one master device per list */
9ff162a8 6450 bool master;
5d261913 6451
5d261913
VF
6452 /* counter for the number of times this device was added to us */
6453 u16 ref_nr;
6454
402dae96
VF
6455 /* private field for the users */
6456 void *private;
6457
9ff162a8
JP
6458 struct list_head list;
6459 struct rcu_head rcu;
9ff162a8
JP
6460};
6461
6ea29da1 6462static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6463 struct list_head *adj_list)
9ff162a8 6464{
5d261913 6465 struct netdev_adjacent *adj;
5d261913 6466
2f268f12 6467 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6468 if (adj->dev == adj_dev)
6469 return adj;
9ff162a8
JP
6470 }
6471 return NULL;
6472}
6473
f1170fd4
DA
6474static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6475{
6476 struct net_device *dev = data;
6477
6478 return upper_dev == dev;
6479}
6480
9ff162a8
JP
6481/**
6482 * netdev_has_upper_dev - Check if device is linked to an upper device
6483 * @dev: device
6484 * @upper_dev: upper device to check
6485 *
6486 * Find out if a device is linked to specified upper device and return true
6487 * in case it is. Note that this checks only immediate upper device,
6488 * not through a complete stack of devices. The caller must hold the RTNL lock.
6489 */
6490bool netdev_has_upper_dev(struct net_device *dev,
6491 struct net_device *upper_dev)
6492{
6493 ASSERT_RTNL();
6494
f1170fd4
DA
6495 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6496 upper_dev);
9ff162a8
JP
6497}
6498EXPORT_SYMBOL(netdev_has_upper_dev);
6499
1a3f060c
DA
6500/**
6501 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6502 * @dev: device
6503 * @upper_dev: upper device to check
6504 *
6505 * Find out if a device is linked to specified upper device and return true
6506 * in case it is. Note that this checks the entire upper device chain.
6507 * The caller must hold rcu lock.
6508 */
6509
1a3f060c
DA
6510bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6511 struct net_device *upper_dev)
6512{
6513 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6514 upper_dev);
6515}
6516EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6517
9ff162a8
JP
6518/**
6519 * netdev_has_any_upper_dev - Check if device is linked to some device
6520 * @dev: device
6521 *
6522 * Find out if a device is linked to an upper device and return true in case
6523 * it is. The caller must hold the RTNL lock.
6524 */
25cc72a3 6525bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6526{
6527 ASSERT_RTNL();
6528
f1170fd4 6529 return !list_empty(&dev->adj_list.upper);
9ff162a8 6530}
25cc72a3 6531EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6532
6533/**
6534 * netdev_master_upper_dev_get - Get master upper device
6535 * @dev: device
6536 *
6537 * Find a master upper device and return pointer to it or NULL in case
6538 * it's not there. The caller must hold the RTNL lock.
6539 */
6540struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6541{
aa9d8560 6542 struct netdev_adjacent *upper;
9ff162a8
JP
6543
6544 ASSERT_RTNL();
6545
2f268f12 6546 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6547 return NULL;
6548
2f268f12 6549 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6550 struct netdev_adjacent, list);
9ff162a8
JP
6551 if (likely(upper->master))
6552 return upper->dev;
6553 return NULL;
6554}
6555EXPORT_SYMBOL(netdev_master_upper_dev_get);
6556
0f524a80
DA
6557/**
6558 * netdev_has_any_lower_dev - Check if device is linked to some device
6559 * @dev: device
6560 *
6561 * Find out if a device is linked to a lower device and return true in case
6562 * it is. The caller must hold the RTNL lock.
6563 */
6564static bool netdev_has_any_lower_dev(struct net_device *dev)
6565{
6566 ASSERT_RTNL();
6567
6568 return !list_empty(&dev->adj_list.lower);
6569}
6570
b6ccba4c
VF
6571void *netdev_adjacent_get_private(struct list_head *adj_list)
6572{
6573 struct netdev_adjacent *adj;
6574
6575 adj = list_entry(adj_list, struct netdev_adjacent, list);
6576
6577 return adj->private;
6578}
6579EXPORT_SYMBOL(netdev_adjacent_get_private);
6580
44a40855
VY
6581/**
6582 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6583 * @dev: device
6584 * @iter: list_head ** of the current position
6585 *
6586 * Gets the next device from the dev's upper list, starting from iter
6587 * position. The caller must hold RCU read lock.
6588 */
6589struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6590 struct list_head **iter)
6591{
6592 struct netdev_adjacent *upper;
6593
6594 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6595
6596 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6597
6598 if (&upper->list == &dev->adj_list.upper)
6599 return NULL;
6600
6601 *iter = &upper->list;
6602
6603 return upper->dev;
6604}
6605EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6606
1a3f060c
DA
6607static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6608 struct list_head **iter)
6609{
6610 struct netdev_adjacent *upper;
6611
6612 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6613
6614 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6615
6616 if (&upper->list == &dev->adj_list.upper)
6617 return NULL;
6618
6619 *iter = &upper->list;
6620
6621 return upper->dev;
6622}
6623
6624int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6625 int (*fn)(struct net_device *dev,
6626 void *data),
6627 void *data)
6628{
6629 struct net_device *udev;
6630 struct list_head *iter;
6631 int ret;
6632
6633 for (iter = &dev->adj_list.upper,
6634 udev = netdev_next_upper_dev_rcu(dev, &iter);
6635 udev;
6636 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6637 /* first is the upper device itself */
6638 ret = fn(udev, data);
6639 if (ret)
6640 return ret;
6641
6642 /* then look at all of its upper devices */
6643 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6644 if (ret)
6645 return ret;
6646 }
6647
6648 return 0;
6649}
6650EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6651
31088a11
VF
6652/**
6653 * netdev_lower_get_next_private - Get the next ->private from the
6654 * lower neighbour list
6655 * @dev: device
6656 * @iter: list_head ** of the current position
6657 *
6658 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6659 * list, starting from iter position. The caller must hold either hold the
6660 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 6661 * list will remain unchanged.
31088a11
VF
6662 */
6663void *netdev_lower_get_next_private(struct net_device *dev,
6664 struct list_head **iter)
6665{
6666 struct netdev_adjacent *lower;
6667
6668 lower = list_entry(*iter, struct netdev_adjacent, list);
6669
6670 if (&lower->list == &dev->adj_list.lower)
6671 return NULL;
6672
6859e7df 6673 *iter = lower->list.next;
31088a11
VF
6674
6675 return lower->private;
6676}
6677EXPORT_SYMBOL(netdev_lower_get_next_private);
6678
6679/**
6680 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6681 * lower neighbour list, RCU
6682 * variant
6683 * @dev: device
6684 * @iter: list_head ** of the current position
6685 *
6686 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6687 * list, starting from iter position. The caller must hold RCU read lock.
6688 */
6689void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6690 struct list_head **iter)
6691{
6692 struct netdev_adjacent *lower;
6693
6694 WARN_ON_ONCE(!rcu_read_lock_held());
6695
6696 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6697
6698 if (&lower->list == &dev->adj_list.lower)
6699 return NULL;
6700
6859e7df 6701 *iter = &lower->list;
31088a11
VF
6702
6703 return lower->private;
6704}
6705EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6706
4085ebe8
VY
6707/**
6708 * netdev_lower_get_next - Get the next device from the lower neighbour
6709 * list
6710 * @dev: device
6711 * @iter: list_head ** of the current position
6712 *
6713 * Gets the next netdev_adjacent from the dev's lower neighbour
6714 * list, starting from iter position. The caller must hold RTNL lock or
6715 * its own locking that guarantees that the neighbour lower
b469139e 6716 * list will remain unchanged.
4085ebe8
VY
6717 */
6718void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6719{
6720 struct netdev_adjacent *lower;
6721
cfdd28be 6722 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
6723
6724 if (&lower->list == &dev->adj_list.lower)
6725 return NULL;
6726
cfdd28be 6727 *iter = lower->list.next;
4085ebe8
VY
6728
6729 return lower->dev;
6730}
6731EXPORT_SYMBOL(netdev_lower_get_next);
6732
1a3f060c
DA
6733static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6734 struct list_head **iter)
6735{
6736 struct netdev_adjacent *lower;
6737
46b5ab1a 6738 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
6739
6740 if (&lower->list == &dev->adj_list.lower)
6741 return NULL;
6742
46b5ab1a 6743 *iter = &lower->list;
1a3f060c
DA
6744
6745 return lower->dev;
6746}
6747
6748int netdev_walk_all_lower_dev(struct net_device *dev,
6749 int (*fn)(struct net_device *dev,
6750 void *data),
6751 void *data)
6752{
6753 struct net_device *ldev;
6754 struct list_head *iter;
6755 int ret;
6756
6757 for (iter = &dev->adj_list.lower,
6758 ldev = netdev_next_lower_dev(dev, &iter);
6759 ldev;
6760 ldev = netdev_next_lower_dev(dev, &iter)) {
6761 /* first is the lower device itself */
6762 ret = fn(ldev, data);
6763 if (ret)
6764 return ret;
6765
6766 /* then look at all of its lower devices */
6767 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6768 if (ret)
6769 return ret;
6770 }
6771
6772 return 0;
6773}
6774EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6775
1a3f060c
DA
6776static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6777 struct list_head **iter)
6778{
6779 struct netdev_adjacent *lower;
6780
6781 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6782 if (&lower->list == &dev->adj_list.lower)
6783 return NULL;
6784
6785 *iter = &lower->list;
6786
6787 return lower->dev;
6788}
6789
6790int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6791 int (*fn)(struct net_device *dev,
6792 void *data),
6793 void *data)
6794{
6795 struct net_device *ldev;
6796 struct list_head *iter;
6797 int ret;
6798
6799 for (iter = &dev->adj_list.lower,
6800 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6801 ldev;
6802 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6803 /* first is the lower device itself */
6804 ret = fn(ldev, data);
6805 if (ret)
6806 return ret;
6807
6808 /* then look at all of its lower devices */
6809 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6810 if (ret)
6811 return ret;
6812 }
6813
6814 return 0;
6815}
6816EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6817
e001bfad 6818/**
6819 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6820 * lower neighbour list, RCU
6821 * variant
6822 * @dev: device
6823 *
6824 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6825 * list. The caller must hold RCU read lock.
6826 */
6827void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6828{
6829 struct netdev_adjacent *lower;
6830
6831 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6832 struct netdev_adjacent, list);
6833 if (lower)
6834 return lower->private;
6835 return NULL;
6836}
6837EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6838
9ff162a8
JP
6839/**
6840 * netdev_master_upper_dev_get_rcu - Get master upper device
6841 * @dev: device
6842 *
6843 * Find a master upper device and return pointer to it or NULL in case
6844 * it's not there. The caller must hold the RCU read lock.
6845 */
6846struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6847{
aa9d8560 6848 struct netdev_adjacent *upper;
9ff162a8 6849
2f268f12 6850 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6851 struct netdev_adjacent, list);
9ff162a8
JP
6852 if (upper && likely(upper->master))
6853 return upper->dev;
6854 return NULL;
6855}
6856EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6857
0a59f3a9 6858static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6859 struct net_device *adj_dev,
6860 struct list_head *dev_list)
6861{
6862 char linkname[IFNAMSIZ+7];
f4563a75 6863
3ee32707
VF
6864 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6865 "upper_%s" : "lower_%s", adj_dev->name);
6866 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6867 linkname);
6868}
0a59f3a9 6869static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6870 char *name,
6871 struct list_head *dev_list)
6872{
6873 char linkname[IFNAMSIZ+7];
f4563a75 6874
3ee32707
VF
6875 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6876 "upper_%s" : "lower_%s", name);
6877 sysfs_remove_link(&(dev->dev.kobj), linkname);
6878}
6879
7ce64c79
AF
6880static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6881 struct net_device *adj_dev,
6882 struct list_head *dev_list)
6883{
6884 return (dev_list == &dev->adj_list.upper ||
6885 dev_list == &dev->adj_list.lower) &&
6886 net_eq(dev_net(dev), dev_net(adj_dev));
6887}
3ee32707 6888
5d261913
VF
6889static int __netdev_adjacent_dev_insert(struct net_device *dev,
6890 struct net_device *adj_dev,
7863c054 6891 struct list_head *dev_list,
402dae96 6892 void *private, bool master)
5d261913
VF
6893{
6894 struct netdev_adjacent *adj;
842d67a7 6895 int ret;
5d261913 6896
6ea29da1 6897 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6898
6899 if (adj) {
790510d9 6900 adj->ref_nr += 1;
67b62f98
DA
6901 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6902 dev->name, adj_dev->name, adj->ref_nr);
6903
5d261913
VF
6904 return 0;
6905 }
6906
6907 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6908 if (!adj)
6909 return -ENOMEM;
6910
6911 adj->dev = adj_dev;
6912 adj->master = master;
790510d9 6913 adj->ref_nr = 1;
402dae96 6914 adj->private = private;
5d261913 6915 dev_hold(adj_dev);
2f268f12 6916
67b62f98
DA
6917 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6918 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6919
7ce64c79 6920 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6921 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6922 if (ret)
6923 goto free_adj;
6924 }
6925
7863c054 6926 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6927 if (master) {
6928 ret = sysfs_create_link(&(dev->dev.kobj),
6929 &(adj_dev->dev.kobj), "master");
6930 if (ret)
5831d66e 6931 goto remove_symlinks;
842d67a7 6932
7863c054 6933 list_add_rcu(&adj->list, dev_list);
842d67a7 6934 } else {
7863c054 6935 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6936 }
5d261913
VF
6937
6938 return 0;
842d67a7 6939
5831d66e 6940remove_symlinks:
7ce64c79 6941 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6942 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6943free_adj:
6944 kfree(adj);
974daef7 6945 dev_put(adj_dev);
842d67a7
VF
6946
6947 return ret;
5d261913
VF
6948}
6949
1d143d9f 6950static void __netdev_adjacent_dev_remove(struct net_device *dev,
6951 struct net_device *adj_dev,
93409033 6952 u16 ref_nr,
1d143d9f 6953 struct list_head *dev_list)
5d261913
VF
6954{
6955 struct netdev_adjacent *adj;
6956
67b62f98
DA
6957 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6958 dev->name, adj_dev->name, ref_nr);
6959
6ea29da1 6960 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6961
2f268f12 6962 if (!adj) {
67b62f98 6963 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6964 dev->name, adj_dev->name);
67b62f98
DA
6965 WARN_ON(1);
6966 return;
2f268f12 6967 }
5d261913 6968
93409033 6969 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6970 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6971 dev->name, adj_dev->name, ref_nr,
6972 adj->ref_nr - ref_nr);
93409033 6973 adj->ref_nr -= ref_nr;
5d261913
VF
6974 return;
6975 }
6976
842d67a7
VF
6977 if (adj->master)
6978 sysfs_remove_link(&(dev->dev.kobj), "master");
6979
7ce64c79 6980 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6981 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6982
5d261913 6983 list_del_rcu(&adj->list);
67b62f98 6984 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6985 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6986 dev_put(adj_dev);
6987 kfree_rcu(adj, rcu);
6988}
6989
1d143d9f 6990static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6991 struct net_device *upper_dev,
6992 struct list_head *up_list,
6993 struct list_head *down_list,
6994 void *private, bool master)
5d261913
VF
6995{
6996 int ret;
6997
790510d9 6998 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6999 private, master);
5d261913
VF
7000 if (ret)
7001 return ret;
7002
790510d9 7003 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7004 private, false);
5d261913 7005 if (ret) {
790510d9 7006 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7007 return ret;
7008 }
7009
7010 return 0;
7011}
7012
1d143d9f 7013static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7014 struct net_device *upper_dev,
93409033 7015 u16 ref_nr,
1d143d9f 7016 struct list_head *up_list,
7017 struct list_head *down_list)
5d261913 7018{
93409033
AC
7019 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7020 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7021}
7022
1d143d9f 7023static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7024 struct net_device *upper_dev,
7025 void *private, bool master)
2f268f12 7026{
f1170fd4
DA
7027 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7028 &dev->adj_list.upper,
7029 &upper_dev->adj_list.lower,
7030 private, master);
5d261913
VF
7031}
7032
1d143d9f 7033static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7034 struct net_device *upper_dev)
2f268f12 7035{
93409033 7036 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7037 &dev->adj_list.upper,
7038 &upper_dev->adj_list.lower);
7039}
5d261913 7040
9ff162a8 7041static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7042 struct net_device *upper_dev, bool master,
42ab19ee
DA
7043 void *upper_priv, void *upper_info,
7044 struct netlink_ext_ack *extack)
9ff162a8 7045{
51d0c047
DA
7046 struct netdev_notifier_changeupper_info changeupper_info = {
7047 .info = {
7048 .dev = dev,
42ab19ee 7049 .extack = extack,
51d0c047
DA
7050 },
7051 .upper_dev = upper_dev,
7052 .master = master,
7053 .linking = true,
7054 .upper_info = upper_info,
7055 };
50d629e7 7056 struct net_device *master_dev;
5d261913 7057 int ret = 0;
9ff162a8
JP
7058
7059 ASSERT_RTNL();
7060
7061 if (dev == upper_dev)
7062 return -EBUSY;
7063
7064 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 7065 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7066 return -EBUSY;
7067
50d629e7
MM
7068 if (!master) {
7069 if (netdev_has_upper_dev(dev, upper_dev))
7070 return -EEXIST;
7071 } else {
7072 master_dev = netdev_master_upper_dev_get(dev);
7073 if (master_dev)
7074 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7075 }
9ff162a8 7076
51d0c047 7077 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7078 &changeupper_info.info);
7079 ret = notifier_to_errno(ret);
7080 if (ret)
7081 return ret;
7082
6dffb044 7083 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7084 master);
5d261913
VF
7085 if (ret)
7086 return ret;
9ff162a8 7087
51d0c047 7088 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7089 &changeupper_info.info);
7090 ret = notifier_to_errno(ret);
7091 if (ret)
f1170fd4 7092 goto rollback;
b03804e7 7093
9ff162a8 7094 return 0;
5d261913 7095
f1170fd4 7096rollback:
2f268f12 7097 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7098
7099 return ret;
9ff162a8
JP
7100}
7101
7102/**
7103 * netdev_upper_dev_link - Add a link to the upper device
7104 * @dev: device
7105 * @upper_dev: new upper device
7a006d59 7106 * @extack: netlink extended ack
9ff162a8
JP
7107 *
7108 * Adds a link to device which is upper to this one. The caller must hold
7109 * the RTNL lock. On a failure a negative errno code is returned.
7110 * On success the reference counts are adjusted and the function
7111 * returns zero.
7112 */
7113int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7114 struct net_device *upper_dev,
7115 struct netlink_ext_ack *extack)
9ff162a8 7116{
42ab19ee
DA
7117 return __netdev_upper_dev_link(dev, upper_dev, false,
7118 NULL, NULL, extack);
9ff162a8
JP
7119}
7120EXPORT_SYMBOL(netdev_upper_dev_link);
7121
7122/**
7123 * netdev_master_upper_dev_link - Add a master link to the upper device
7124 * @dev: device
7125 * @upper_dev: new upper device
6dffb044 7126 * @upper_priv: upper device private
29bf24af 7127 * @upper_info: upper info to be passed down via notifier
7a006d59 7128 * @extack: netlink extended ack
9ff162a8
JP
7129 *
7130 * Adds a link to device which is upper to this one. In this case, only
7131 * one master upper device can be linked, although other non-master devices
7132 * might be linked as well. The caller must hold the RTNL lock.
7133 * On a failure a negative errno code is returned. On success the reference
7134 * counts are adjusted and the function returns zero.
7135 */
7136int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7137 struct net_device *upper_dev,
42ab19ee
DA
7138 void *upper_priv, void *upper_info,
7139 struct netlink_ext_ack *extack)
9ff162a8 7140{
29bf24af 7141 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7142 upper_priv, upper_info, extack);
9ff162a8
JP
7143}
7144EXPORT_SYMBOL(netdev_master_upper_dev_link);
7145
7146/**
7147 * netdev_upper_dev_unlink - Removes a link to upper device
7148 * @dev: device
7149 * @upper_dev: new upper device
7150 *
7151 * Removes a link to device which is upper to this one. The caller must hold
7152 * the RTNL lock.
7153 */
7154void netdev_upper_dev_unlink(struct net_device *dev,
7155 struct net_device *upper_dev)
7156{
51d0c047
DA
7157 struct netdev_notifier_changeupper_info changeupper_info = {
7158 .info = {
7159 .dev = dev,
7160 },
7161 .upper_dev = upper_dev,
7162 .linking = false,
7163 };
f4563a75 7164
9ff162a8
JP
7165 ASSERT_RTNL();
7166
0e4ead9d 7167 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7168
51d0c047 7169 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7170 &changeupper_info.info);
7171
2f268f12 7172 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7173
51d0c047 7174 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7175 &changeupper_info.info);
9ff162a8
JP
7176}
7177EXPORT_SYMBOL(netdev_upper_dev_unlink);
7178
61bd3857
MS
7179/**
7180 * netdev_bonding_info_change - Dispatch event about slave change
7181 * @dev: device
4a26e453 7182 * @bonding_info: info to dispatch
61bd3857
MS
7183 *
7184 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7185 * The caller must hold the RTNL lock.
7186 */
7187void netdev_bonding_info_change(struct net_device *dev,
7188 struct netdev_bonding_info *bonding_info)
7189{
51d0c047
DA
7190 struct netdev_notifier_bonding_info info = {
7191 .info.dev = dev,
7192 };
61bd3857
MS
7193
7194 memcpy(&info.bonding_info, bonding_info,
7195 sizeof(struct netdev_bonding_info));
51d0c047 7196 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7197 &info.info);
7198}
7199EXPORT_SYMBOL(netdev_bonding_info_change);
7200
2ce1ee17 7201static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7202{
7203 struct netdev_adjacent *iter;
7204
7205 struct net *net = dev_net(dev);
7206
7207 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7208 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7209 continue;
7210 netdev_adjacent_sysfs_add(iter->dev, dev,
7211 &iter->dev->adj_list.lower);
7212 netdev_adjacent_sysfs_add(dev, iter->dev,
7213 &dev->adj_list.upper);
7214 }
7215
7216 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7217 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7218 continue;
7219 netdev_adjacent_sysfs_add(iter->dev, dev,
7220 &iter->dev->adj_list.upper);
7221 netdev_adjacent_sysfs_add(dev, iter->dev,
7222 &dev->adj_list.lower);
7223 }
7224}
7225
2ce1ee17 7226static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
7227{
7228 struct netdev_adjacent *iter;
7229
7230 struct net *net = dev_net(dev);
7231
7232 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7233 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7234 continue;
7235 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7236 &iter->dev->adj_list.lower);
7237 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7238 &dev->adj_list.upper);
7239 }
7240
7241 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7242 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7243 continue;
7244 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7245 &iter->dev->adj_list.upper);
7246 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7247 &dev->adj_list.lower);
7248 }
7249}
7250
5bb025fa 7251void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 7252{
5bb025fa 7253 struct netdev_adjacent *iter;
402dae96 7254
4c75431a
AF
7255 struct net *net = dev_net(dev);
7256
5bb025fa 7257 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7258 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7259 continue;
5bb025fa
VF
7260 netdev_adjacent_sysfs_del(iter->dev, oldname,
7261 &iter->dev->adj_list.lower);
7262 netdev_adjacent_sysfs_add(iter->dev, dev,
7263 &iter->dev->adj_list.lower);
7264 }
402dae96 7265
5bb025fa 7266 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7267 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7268 continue;
5bb025fa
VF
7269 netdev_adjacent_sysfs_del(iter->dev, oldname,
7270 &iter->dev->adj_list.upper);
7271 netdev_adjacent_sysfs_add(iter->dev, dev,
7272 &iter->dev->adj_list.upper);
7273 }
402dae96 7274}
402dae96
VF
7275
7276void *netdev_lower_dev_get_private(struct net_device *dev,
7277 struct net_device *lower_dev)
7278{
7279 struct netdev_adjacent *lower;
7280
7281 if (!lower_dev)
7282 return NULL;
6ea29da1 7283 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
7284 if (!lower)
7285 return NULL;
7286
7287 return lower->private;
7288}
7289EXPORT_SYMBOL(netdev_lower_dev_get_private);
7290
4085ebe8 7291
952fcfd0 7292int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
7293{
7294 struct net_device *lower = NULL;
7295 struct list_head *iter;
7296 int max_nest = -1;
7297 int nest;
7298
7299 ASSERT_RTNL();
7300
7301 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 7302 nest = dev_get_nest_level(lower);
4085ebe8
VY
7303 if (max_nest < nest)
7304 max_nest = nest;
7305 }
7306
952fcfd0 7307 return max_nest + 1;
4085ebe8
VY
7308}
7309EXPORT_SYMBOL(dev_get_nest_level);
7310
04d48266
JP
7311/**
7312 * netdev_lower_change - Dispatch event about lower device state change
7313 * @lower_dev: device
7314 * @lower_state_info: state to dispatch
7315 *
7316 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7317 * The caller must hold the RTNL lock.
7318 */
7319void netdev_lower_state_changed(struct net_device *lower_dev,
7320 void *lower_state_info)
7321{
51d0c047
DA
7322 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7323 .info.dev = lower_dev,
7324 };
04d48266
JP
7325
7326 ASSERT_RTNL();
7327 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 7328 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
7329 &changelowerstate_info.info);
7330}
7331EXPORT_SYMBOL(netdev_lower_state_changed);
7332
b6c40d68
PM
7333static void dev_change_rx_flags(struct net_device *dev, int flags)
7334{
d314774c
SH
7335 const struct net_device_ops *ops = dev->netdev_ops;
7336
d2615bf4 7337 if (ops->ndo_change_rx_flags)
d314774c 7338 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
7339}
7340
991fb3f7 7341static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 7342{
b536db93 7343 unsigned int old_flags = dev->flags;
d04a48b0
EB
7344 kuid_t uid;
7345 kgid_t gid;
1da177e4 7346
24023451
PM
7347 ASSERT_RTNL();
7348
dad9b335
WC
7349 dev->flags |= IFF_PROMISC;
7350 dev->promiscuity += inc;
7351 if (dev->promiscuity == 0) {
7352 /*
7353 * Avoid overflow.
7354 * If inc causes overflow, untouch promisc and return error.
7355 */
7356 if (inc < 0)
7357 dev->flags &= ~IFF_PROMISC;
7358 else {
7359 dev->promiscuity -= inc;
7b6cd1ce
JP
7360 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7361 dev->name);
dad9b335
WC
7362 return -EOVERFLOW;
7363 }
7364 }
52609c0b 7365 if (dev->flags != old_flags) {
7b6cd1ce
JP
7366 pr_info("device %s %s promiscuous mode\n",
7367 dev->name,
7368 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
7369 if (audit_enabled) {
7370 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
7371 audit_log(audit_context(), GFP_ATOMIC,
7372 AUDIT_ANOM_PROMISCUOUS,
7373 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7374 dev->name, (dev->flags & IFF_PROMISC),
7375 (old_flags & IFF_PROMISC),
7376 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7377 from_kuid(&init_user_ns, uid),
7378 from_kgid(&init_user_ns, gid),
7379 audit_get_sessionid(current));
8192b0c4 7380 }
24023451 7381
b6c40d68 7382 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 7383 }
991fb3f7
ND
7384 if (notify)
7385 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 7386 return 0;
1da177e4
LT
7387}
7388
4417da66
PM
7389/**
7390 * dev_set_promiscuity - update promiscuity count on a device
7391 * @dev: device
7392 * @inc: modifier
7393 *
7394 * Add or remove promiscuity from a device. While the count in the device
7395 * remains above zero the interface remains promiscuous. Once it hits zero
7396 * the device reverts back to normal filtering operation. A negative inc
7397 * value is used to drop promiscuity on the device.
dad9b335 7398 * Return 0 if successful or a negative errno code on error.
4417da66 7399 */
dad9b335 7400int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 7401{
b536db93 7402 unsigned int old_flags = dev->flags;
dad9b335 7403 int err;
4417da66 7404
991fb3f7 7405 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 7406 if (err < 0)
dad9b335 7407 return err;
4417da66
PM
7408 if (dev->flags != old_flags)
7409 dev_set_rx_mode(dev);
dad9b335 7410 return err;
4417da66 7411}
d1b19dff 7412EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 7413
991fb3f7 7414static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 7415{
991fb3f7 7416 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 7417
24023451
PM
7418 ASSERT_RTNL();
7419
1da177e4 7420 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
7421 dev->allmulti += inc;
7422 if (dev->allmulti == 0) {
7423 /*
7424 * Avoid overflow.
7425 * If inc causes overflow, untouch allmulti and return error.
7426 */
7427 if (inc < 0)
7428 dev->flags &= ~IFF_ALLMULTI;
7429 else {
7430 dev->allmulti -= inc;
7b6cd1ce
JP
7431 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7432 dev->name);
dad9b335
WC
7433 return -EOVERFLOW;
7434 }
7435 }
24023451 7436 if (dev->flags ^ old_flags) {
b6c40d68 7437 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 7438 dev_set_rx_mode(dev);
991fb3f7
ND
7439 if (notify)
7440 __dev_notify_flags(dev, old_flags,
7441 dev->gflags ^ old_gflags);
24023451 7442 }
dad9b335 7443 return 0;
4417da66 7444}
991fb3f7
ND
7445
7446/**
7447 * dev_set_allmulti - update allmulti count on a device
7448 * @dev: device
7449 * @inc: modifier
7450 *
7451 * Add or remove reception of all multicast frames to a device. While the
7452 * count in the device remains above zero the interface remains listening
7453 * to all interfaces. Once it hits zero the device reverts back to normal
7454 * filtering operation. A negative @inc value is used to drop the counter
7455 * when releasing a resource needing all multicasts.
7456 * Return 0 if successful or a negative errno code on error.
7457 */
7458
7459int dev_set_allmulti(struct net_device *dev, int inc)
7460{
7461 return __dev_set_allmulti(dev, inc, true);
7462}
d1b19dff 7463EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
7464
7465/*
7466 * Upload unicast and multicast address lists to device and
7467 * configure RX filtering. When the device doesn't support unicast
53ccaae1 7468 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
7469 * are present.
7470 */
7471void __dev_set_rx_mode(struct net_device *dev)
7472{
d314774c
SH
7473 const struct net_device_ops *ops = dev->netdev_ops;
7474
4417da66
PM
7475 /* dev_open will call this function so the list will stay sane. */
7476 if (!(dev->flags&IFF_UP))
7477 return;
7478
7479 if (!netif_device_present(dev))
40b77c94 7480 return;
4417da66 7481
01789349 7482 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
7483 /* Unicast addresses changes may only happen under the rtnl,
7484 * therefore calling __dev_set_promiscuity here is safe.
7485 */
32e7bfc4 7486 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 7487 __dev_set_promiscuity(dev, 1, false);
2d348d1f 7488 dev->uc_promisc = true;
32e7bfc4 7489 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 7490 __dev_set_promiscuity(dev, -1, false);
2d348d1f 7491 dev->uc_promisc = false;
4417da66 7492 }
4417da66 7493 }
01789349
JP
7494
7495 if (ops->ndo_set_rx_mode)
7496 ops->ndo_set_rx_mode(dev);
4417da66
PM
7497}
7498
7499void dev_set_rx_mode(struct net_device *dev)
7500{
b9e40857 7501 netif_addr_lock_bh(dev);
4417da66 7502 __dev_set_rx_mode(dev);
b9e40857 7503 netif_addr_unlock_bh(dev);
1da177e4
LT
7504}
7505
f0db275a
SH
7506/**
7507 * dev_get_flags - get flags reported to userspace
7508 * @dev: device
7509 *
7510 * Get the combination of flag bits exported through APIs to userspace.
7511 */
95c96174 7512unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 7513{
95c96174 7514 unsigned int flags;
1da177e4
LT
7515
7516 flags = (dev->flags & ~(IFF_PROMISC |
7517 IFF_ALLMULTI |
b00055aa
SR
7518 IFF_RUNNING |
7519 IFF_LOWER_UP |
7520 IFF_DORMANT)) |
1da177e4
LT
7521 (dev->gflags & (IFF_PROMISC |
7522 IFF_ALLMULTI));
7523
b00055aa
SR
7524 if (netif_running(dev)) {
7525 if (netif_oper_up(dev))
7526 flags |= IFF_RUNNING;
7527 if (netif_carrier_ok(dev))
7528 flags |= IFF_LOWER_UP;
7529 if (netif_dormant(dev))
7530 flags |= IFF_DORMANT;
7531 }
1da177e4
LT
7532
7533 return flags;
7534}
d1b19dff 7535EXPORT_SYMBOL(dev_get_flags);
1da177e4 7536
6d040321
PM
7537int __dev_change_flags(struct net_device *dev, unsigned int flags,
7538 struct netlink_ext_ack *extack)
1da177e4 7539{
b536db93 7540 unsigned int old_flags = dev->flags;
bd380811 7541 int ret;
1da177e4 7542
24023451
PM
7543 ASSERT_RTNL();
7544
1da177e4
LT
7545 /*
7546 * Set the flags on our device.
7547 */
7548
7549 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7550 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7551 IFF_AUTOMEDIA)) |
7552 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7553 IFF_ALLMULTI));
7554
7555 /*
7556 * Load in the correct multicast list now the flags have changed.
7557 */
7558
b6c40d68
PM
7559 if ((old_flags ^ flags) & IFF_MULTICAST)
7560 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 7561
4417da66 7562 dev_set_rx_mode(dev);
1da177e4
LT
7563
7564 /*
7565 * Have we downed the interface. We handle IFF_UP ourselves
7566 * according to user attempts to set it, rather than blindly
7567 * setting it.
7568 */
7569
7570 ret = 0;
7051b88a 7571 if ((old_flags ^ flags) & IFF_UP) {
7572 if (old_flags & IFF_UP)
7573 __dev_close(dev);
7574 else
40c900aa 7575 ret = __dev_open(dev, extack);
7051b88a 7576 }
1da177e4 7577
1da177e4 7578 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 7579 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 7580 unsigned int old_flags = dev->flags;
d1b19dff 7581
1da177e4 7582 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
7583
7584 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7585 if (dev->flags != old_flags)
7586 dev_set_rx_mode(dev);
1da177e4
LT
7587 }
7588
7589 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 7590 * is important. Some (broken) drivers set IFF_PROMISC, when
7591 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
7592 */
7593 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
7594 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7595
1da177e4 7596 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 7597 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
7598 }
7599
bd380811
PM
7600 return ret;
7601}
7602
a528c219
ND
7603void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7604 unsigned int gchanges)
bd380811
PM
7605{
7606 unsigned int changes = dev->flags ^ old_flags;
7607
a528c219 7608 if (gchanges)
7f294054 7609 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 7610
bd380811
PM
7611 if (changes & IFF_UP) {
7612 if (dev->flags & IFF_UP)
7613 call_netdevice_notifiers(NETDEV_UP, dev);
7614 else
7615 call_netdevice_notifiers(NETDEV_DOWN, dev);
7616 }
7617
7618 if (dev->flags & IFF_UP &&
be9efd36 7619 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
7620 struct netdev_notifier_change_info change_info = {
7621 .info = {
7622 .dev = dev,
7623 },
7624 .flags_changed = changes,
7625 };
be9efd36 7626
51d0c047 7627 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 7628 }
bd380811
PM
7629}
7630
7631/**
7632 * dev_change_flags - change device settings
7633 * @dev: device
7634 * @flags: device state flags
567c5e13 7635 * @extack: netlink extended ack
bd380811
PM
7636 *
7637 * Change settings on device based state flags. The flags are
7638 * in the userspace exported format.
7639 */
567c5e13
PM
7640int dev_change_flags(struct net_device *dev, unsigned int flags,
7641 struct netlink_ext_ack *extack)
bd380811 7642{
b536db93 7643 int ret;
991fb3f7 7644 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 7645
6d040321 7646 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
7647 if (ret < 0)
7648 return ret;
7649
991fb3f7 7650 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 7651 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
7652 return ret;
7653}
d1b19dff 7654EXPORT_SYMBOL(dev_change_flags);
1da177e4 7655
f51048c3 7656int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
7657{
7658 const struct net_device_ops *ops = dev->netdev_ops;
7659
7660 if (ops->ndo_change_mtu)
7661 return ops->ndo_change_mtu(dev, new_mtu);
7662
7663 dev->mtu = new_mtu;
7664 return 0;
7665}
f51048c3 7666EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 7667
f0db275a 7668/**
7a4c53be 7669 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
7670 * @dev: device
7671 * @new_mtu: new transfer unit
7a4c53be 7672 * @extack: netlink extended ack
f0db275a
SH
7673 *
7674 * Change the maximum transfer size of the network device.
7675 */
7a4c53be
SH
7676int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7677 struct netlink_ext_ack *extack)
1da177e4 7678{
2315dc91 7679 int err, orig_mtu;
1da177e4
LT
7680
7681 if (new_mtu == dev->mtu)
7682 return 0;
7683
61e84623
JW
7684 /* MTU must be positive, and in range */
7685 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7a4c53be 7686 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
1da177e4 7687 return -EINVAL;
61e84623
JW
7688 }
7689
7690 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7a4c53be 7691 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
61e84623
JW
7692 return -EINVAL;
7693 }
1da177e4
LT
7694
7695 if (!netif_device_present(dev))
7696 return -ENODEV;
7697
1d486bfb
VF
7698 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7699 err = notifier_to_errno(err);
7700 if (err)
7701 return err;
d314774c 7702
2315dc91
VF
7703 orig_mtu = dev->mtu;
7704 err = __dev_set_mtu(dev, new_mtu);
d314774c 7705
2315dc91 7706 if (!err) {
af7d6cce
SD
7707 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7708 orig_mtu);
2315dc91
VF
7709 err = notifier_to_errno(err);
7710 if (err) {
7711 /* setting mtu back and notifying everyone again,
7712 * so that they have a chance to revert changes.
7713 */
7714 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
7715 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7716 new_mtu);
2315dc91
VF
7717 }
7718 }
1da177e4
LT
7719 return err;
7720}
7a4c53be
SH
7721
7722int dev_set_mtu(struct net_device *dev, int new_mtu)
7723{
7724 struct netlink_ext_ack extack;
7725 int err;
7726
a6bcfc89 7727 memset(&extack, 0, sizeof(extack));
7a4c53be 7728 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 7729 if (err && extack._msg)
7a4c53be
SH
7730 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7731 return err;
7732}
d1b19dff 7733EXPORT_SYMBOL(dev_set_mtu);
1da177e4 7734
6a643ddb
CW
7735/**
7736 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7737 * @dev: device
7738 * @new_len: new tx queue length
7739 */
7740int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7741{
7742 unsigned int orig_len = dev->tx_queue_len;
7743 int res;
7744
7745 if (new_len != (unsigned int)new_len)
7746 return -ERANGE;
7747
7748 if (new_len != orig_len) {
7749 dev->tx_queue_len = new_len;
7750 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7751 res = notifier_to_errno(res);
7effaf06
TT
7752 if (res)
7753 goto err_rollback;
7754 res = dev_qdisc_change_tx_queue_len(dev);
7755 if (res)
7756 goto err_rollback;
6a643ddb
CW
7757 }
7758
7759 return 0;
7effaf06
TT
7760
7761err_rollback:
7762 netdev_err(dev, "refused to change device tx_queue_len\n");
7763 dev->tx_queue_len = orig_len;
7764 return res;
6a643ddb
CW
7765}
7766
cbda10fa
VD
7767/**
7768 * dev_set_group - Change group this device belongs to
7769 * @dev: device
7770 * @new_group: group this device should belong to
7771 */
7772void dev_set_group(struct net_device *dev, int new_group)
7773{
7774 dev->group = new_group;
7775}
7776EXPORT_SYMBOL(dev_set_group);
7777
d59cdf94
PM
7778/**
7779 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7780 * @dev: device
7781 * @addr: new address
7782 * @extack: netlink extended ack
7783 */
7784int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7785 struct netlink_ext_ack *extack)
7786{
7787 struct netdev_notifier_pre_changeaddr_info info = {
7788 .info.dev = dev,
7789 .info.extack = extack,
7790 .dev_addr = addr,
7791 };
7792 int rc;
7793
7794 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7795 return notifier_to_errno(rc);
7796}
7797EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7798
f0db275a
SH
7799/**
7800 * dev_set_mac_address - Change Media Access Control Address
7801 * @dev: device
7802 * @sa: new address
3a37a963 7803 * @extack: netlink extended ack
f0db275a
SH
7804 *
7805 * Change the hardware (MAC) address of the device
7806 */
3a37a963
PM
7807int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7808 struct netlink_ext_ack *extack)
1da177e4 7809{
d314774c 7810 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
7811 int err;
7812
d314774c 7813 if (!ops->ndo_set_mac_address)
1da177e4
LT
7814 return -EOPNOTSUPP;
7815 if (sa->sa_family != dev->type)
7816 return -EINVAL;
7817 if (!netif_device_present(dev))
7818 return -ENODEV;
d59cdf94
PM
7819 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7820 if (err)
7821 return err;
d314774c 7822 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
7823 if (err)
7824 return err;
fbdeca2d 7825 dev->addr_assign_type = NET_ADDR_SET;
f6521516 7826 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 7827 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 7828 return 0;
1da177e4 7829}
d1b19dff 7830EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 7831
4bf84c35
JP
7832/**
7833 * dev_change_carrier - Change device carrier
7834 * @dev: device
691b3b7e 7835 * @new_carrier: new value
4bf84c35
JP
7836 *
7837 * Change device carrier
7838 */
7839int dev_change_carrier(struct net_device *dev, bool new_carrier)
7840{
7841 const struct net_device_ops *ops = dev->netdev_ops;
7842
7843 if (!ops->ndo_change_carrier)
7844 return -EOPNOTSUPP;
7845 if (!netif_device_present(dev))
7846 return -ENODEV;
7847 return ops->ndo_change_carrier(dev, new_carrier);
7848}
7849EXPORT_SYMBOL(dev_change_carrier);
7850
66b52b0d
JP
7851/**
7852 * dev_get_phys_port_id - Get device physical port ID
7853 * @dev: device
7854 * @ppid: port ID
7855 *
7856 * Get device physical port ID
7857 */
7858int dev_get_phys_port_id(struct net_device *dev,
02637fce 7859 struct netdev_phys_item_id *ppid)
66b52b0d
JP
7860{
7861 const struct net_device_ops *ops = dev->netdev_ops;
7862
7863 if (!ops->ndo_get_phys_port_id)
7864 return -EOPNOTSUPP;
7865 return ops->ndo_get_phys_port_id(dev, ppid);
7866}
7867EXPORT_SYMBOL(dev_get_phys_port_id);
7868
db24a904
DA
7869/**
7870 * dev_get_phys_port_name - Get device physical port name
7871 * @dev: device
7872 * @name: port name
ed49e650 7873 * @len: limit of bytes to copy to name
db24a904
DA
7874 *
7875 * Get device physical port name
7876 */
7877int dev_get_phys_port_name(struct net_device *dev,
7878 char *name, size_t len)
7879{
7880 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 7881 int err;
db24a904 7882
af3836df
JP
7883 if (ops->ndo_get_phys_port_name) {
7884 err = ops->ndo_get_phys_port_name(dev, name, len);
7885 if (err != -EOPNOTSUPP)
7886 return err;
7887 }
7888 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
7889}
7890EXPORT_SYMBOL(dev_get_phys_port_name);
7891
d6abc596
FF
7892/**
7893 * dev_get_port_parent_id - Get the device's port parent identifier
7894 * @dev: network device
7895 * @ppid: pointer to a storage for the port's parent identifier
7896 * @recurse: allow/disallow recursion to lower devices
7897 *
7898 * Get the devices's port parent identifier
7899 */
7900int dev_get_port_parent_id(struct net_device *dev,
7901 struct netdev_phys_item_id *ppid,
7902 bool recurse)
7903{
7904 const struct net_device_ops *ops = dev->netdev_ops;
7905 struct netdev_phys_item_id first = { };
7906 struct net_device *lower_dev;
7907 struct list_head *iter;
7908 int err = -EOPNOTSUPP;
7909
7910 if (ops->ndo_get_port_parent_id)
7911 return ops->ndo_get_port_parent_id(dev, ppid);
7912
7913 if (!recurse)
7914 return err;
7915
7916 netdev_for_each_lower_dev(dev, lower_dev, iter) {
7917 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7918 if (err)
7919 break;
7920 if (!first.id_len)
7921 first = *ppid;
7922 else if (memcmp(&first, ppid, sizeof(*ppid)))
7923 return -ENODATA;
7924 }
7925
7926 return err;
7927}
7928EXPORT_SYMBOL(dev_get_port_parent_id);
7929
7930/**
7931 * netdev_port_same_parent_id - Indicate if two network devices have
7932 * the same port parent identifier
7933 * @a: first network device
7934 * @b: second network device
7935 */
7936bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7937{
7938 struct netdev_phys_item_id a_id = { };
7939 struct netdev_phys_item_id b_id = { };
7940
7941 if (dev_get_port_parent_id(a, &a_id, true) ||
7942 dev_get_port_parent_id(b, &b_id, true))
7943 return false;
7944
7945 return netdev_phys_item_id_same(&a_id, &b_id);
7946}
7947EXPORT_SYMBOL(netdev_port_same_parent_id);
7948
d746d707
AK
7949/**
7950 * dev_change_proto_down - update protocol port state information
7951 * @dev: device
7952 * @proto_down: new value
7953 *
7954 * This info can be used by switch drivers to set the phys state of the
7955 * port.
7956 */
7957int dev_change_proto_down(struct net_device *dev, bool proto_down)
7958{
7959 const struct net_device_ops *ops = dev->netdev_ops;
7960
7961 if (!ops->ndo_change_proto_down)
7962 return -EOPNOTSUPP;
7963 if (!netif_device_present(dev))
7964 return -ENODEV;
7965 return ops->ndo_change_proto_down(dev, proto_down);
7966}
7967EXPORT_SYMBOL(dev_change_proto_down);
7968
b5899679
AR
7969/**
7970 * dev_change_proto_down_generic - generic implementation for
7971 * ndo_change_proto_down that sets carrier according to
7972 * proto_down.
7973 *
7974 * @dev: device
7975 * @proto_down: new value
7976 */
7977int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7978{
7979 if (proto_down)
7980 netif_carrier_off(dev);
7981 else
7982 netif_carrier_on(dev);
7983 dev->proto_down = proto_down;
7984 return 0;
7985}
7986EXPORT_SYMBOL(dev_change_proto_down_generic);
7987
a25717d2
JK
7988u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7989 enum bpf_netdev_command cmd)
d67b9cd2 7990{
a25717d2 7991 struct netdev_bpf xdp;
d67b9cd2 7992
a25717d2
JK
7993 if (!bpf_op)
7994 return 0;
118b4aa2 7995
a25717d2
JK
7996 memset(&xdp, 0, sizeof(xdp));
7997 xdp.command = cmd;
118b4aa2 7998
a25717d2
JK
7999 /* Query must always succeed. */
8000 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
58038695 8001
6b867589 8002 return xdp.prog_id;
d67b9cd2
DB
8003}
8004
f4e63525 8005static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 8006 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
8007 struct bpf_prog *prog)
8008{
f4e63525 8009 struct netdev_bpf xdp;
d67b9cd2
DB
8010
8011 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
8012 if (flags & XDP_FLAGS_HW_MODE)
8013 xdp.command = XDP_SETUP_PROG_HW;
8014 else
8015 xdp.command = XDP_SETUP_PROG;
d67b9cd2 8016 xdp.extack = extack;
32d60277 8017 xdp.flags = flags;
d67b9cd2
DB
8018 xdp.prog = prog;
8019
f4e63525 8020 return bpf_op(dev, &xdp);
d67b9cd2
DB
8021}
8022
bd0b2e7f
JK
8023static void dev_xdp_uninstall(struct net_device *dev)
8024{
8025 struct netdev_bpf xdp;
8026 bpf_op_t ndo_bpf;
8027
8028 /* Remove generic XDP */
8029 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8030
8031 /* Remove from the driver */
8032 ndo_bpf = dev->netdev_ops->ndo_bpf;
8033 if (!ndo_bpf)
8034 return;
8035
a25717d2
JK
8036 memset(&xdp, 0, sizeof(xdp));
8037 xdp.command = XDP_QUERY_PROG;
8038 WARN_ON(ndo_bpf(dev, &xdp));
8039 if (xdp.prog_id)
8040 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8041 NULL));
bd0b2e7f 8042
a25717d2
JK
8043 /* Remove HW offload */
8044 memset(&xdp, 0, sizeof(xdp));
8045 xdp.command = XDP_QUERY_PROG_HW;
8046 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8047 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8048 NULL));
bd0b2e7f
JK
8049}
8050
a7862b45
BB
8051/**
8052 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8053 * @dev: device
b5d60989 8054 * @extack: netlink extended ack
a7862b45 8055 * @fd: new program fd or negative value to clear
85de8576 8056 * @flags: xdp-related flags
a7862b45
BB
8057 *
8058 * Set or clear a bpf program for a device
8059 */
ddf9f970
JK
8060int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8061 int fd, u32 flags)
a7862b45
BB
8062{
8063 const struct net_device_ops *ops = dev->netdev_ops;
a25717d2 8064 enum bpf_netdev_command query;
a7862b45 8065 struct bpf_prog *prog = NULL;
f4e63525 8066 bpf_op_t bpf_op, bpf_chk;
9ee963d6 8067 bool offload;
a7862b45
BB
8068 int err;
8069
85de8576
DB
8070 ASSERT_RTNL();
8071
9ee963d6
JK
8072 offload = flags & XDP_FLAGS_HW_MODE;
8073 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
a25717d2 8074
f4e63525 8075 bpf_op = bpf_chk = ops->ndo_bpf;
01dde20c
MF
8076 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8077 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
0489df9a 8078 return -EOPNOTSUPP;
01dde20c 8079 }
f4e63525
JK
8080 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8081 bpf_op = generic_xdp_install;
8082 if (bpf_op == bpf_chk)
8083 bpf_chk = generic_xdp_install;
b5cdae32 8084
a7862b45 8085 if (fd >= 0) {
9ee963d6 8086 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
01dde20c 8087 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
d67b9cd2 8088 return -EEXIST;
01dde20c 8089 }
d67b9cd2 8090 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
01dde20c
MF
8091 __dev_xdp_query(dev, bpf_op, query)) {
8092 NL_SET_ERR_MSG(extack, "XDP program already attached");
d67b9cd2 8093 return -EBUSY;
01dde20c 8094 }
85de8576 8095
288b3de5
JK
8096 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8097 bpf_op == ops->ndo_bpf);
a7862b45
BB
8098 if (IS_ERR(prog))
8099 return PTR_ERR(prog);
441a3303 8100
9ee963d6 8101 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
441a3303
JK
8102 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8103 bpf_prog_put(prog);
8104 return -EINVAL;
8105 }
a7862b45
BB
8106 }
8107
f4e63525 8108 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
8109 if (err < 0 && prog)
8110 bpf_prog_put(prog);
8111
8112 return err;
8113}
a7862b45 8114
1da177e4
LT
8115/**
8116 * dev_new_index - allocate an ifindex
c4ea43c5 8117 * @net: the applicable net namespace
1da177e4
LT
8118 *
8119 * Returns a suitable unique value for a new device interface
8120 * number. The caller must hold the rtnl semaphore or the
8121 * dev_base_lock to be sure it remains unique.
8122 */
881d966b 8123static int dev_new_index(struct net *net)
1da177e4 8124{
aa79e66e 8125 int ifindex = net->ifindex;
f4563a75 8126
1da177e4
LT
8127 for (;;) {
8128 if (++ifindex <= 0)
8129 ifindex = 1;
881d966b 8130 if (!__dev_get_by_index(net, ifindex))
aa79e66e 8131 return net->ifindex = ifindex;
1da177e4
LT
8132 }
8133}
8134
1da177e4 8135/* Delayed registration/unregisteration */
3b5b34fd 8136static LIST_HEAD(net_todo_list);
200b916f 8137DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 8138
6f05f629 8139static void net_set_todo(struct net_device *dev)
1da177e4 8140{
1da177e4 8141 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 8142 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
8143}
8144
9b5e383c 8145static void rollback_registered_many(struct list_head *head)
93ee31f1 8146{
e93737b0 8147 struct net_device *dev, *tmp;
5cde2829 8148 LIST_HEAD(close_head);
9b5e383c 8149
93ee31f1
DL
8150 BUG_ON(dev_boot_phase);
8151 ASSERT_RTNL();
8152
e93737b0 8153 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 8154 /* Some devices call without registering
e93737b0
KK
8155 * for initialization unwind. Remove those
8156 * devices and proceed with the remaining.
9b5e383c
ED
8157 */
8158 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
8159 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8160 dev->name, dev);
93ee31f1 8161
9b5e383c 8162 WARN_ON(1);
e93737b0
KK
8163 list_del(&dev->unreg_list);
8164 continue;
9b5e383c 8165 }
449f4544 8166 dev->dismantle = true;
9b5e383c 8167 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 8168 }
93ee31f1 8169
44345724 8170 /* If device is running, close it first. */
5cde2829
EB
8171 list_for_each_entry(dev, head, unreg_list)
8172 list_add_tail(&dev->close_list, &close_head);
99c4a26a 8173 dev_close_many(&close_head, true);
93ee31f1 8174
44345724 8175 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
8176 /* And unlink it from device chain. */
8177 unlist_netdevice(dev);
93ee31f1 8178
9b5e383c
ED
8179 dev->reg_state = NETREG_UNREGISTERING;
8180 }
41852497 8181 flush_all_backlogs();
93ee31f1
DL
8182
8183 synchronize_net();
8184
9b5e383c 8185 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
8186 struct sk_buff *skb = NULL;
8187
9b5e383c
ED
8188 /* Shutdown queueing discipline. */
8189 dev_shutdown(dev);
93ee31f1 8190
bd0b2e7f 8191 dev_xdp_uninstall(dev);
93ee31f1 8192
9b5e383c 8193 /* Notify protocols, that we are about to destroy
eb13da1a 8194 * this device. They should clean all the things.
8195 */
9b5e383c 8196 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 8197
395eea6c
MB
8198 if (!dev->rtnl_link_ops ||
8199 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 8200 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 8201 GFP_KERNEL, NULL, 0);
395eea6c 8202
9b5e383c
ED
8203 /*
8204 * Flush the unicast and multicast chains
8205 */
a748ee24 8206 dev_uc_flush(dev);
22bedad3 8207 dev_mc_flush(dev);
93ee31f1 8208
9b5e383c
ED
8209 if (dev->netdev_ops->ndo_uninit)
8210 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 8211
395eea6c
MB
8212 if (skb)
8213 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 8214
9ff162a8
JP
8215 /* Notifier chain MUST detach us all upper devices. */
8216 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 8217 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 8218
9b5e383c
ED
8219 /* Remove entries from kobject tree */
8220 netdev_unregister_kobject(dev);
024e9679
AD
8221#ifdef CONFIG_XPS
8222 /* Remove XPS queueing entries */
8223 netif_reset_xps_queues_gt(dev, 0);
8224#endif
9b5e383c 8225 }
93ee31f1 8226
850a545b 8227 synchronize_net();
395264d5 8228
a5ee1551 8229 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
8230 dev_put(dev);
8231}
8232
8233static void rollback_registered(struct net_device *dev)
8234{
8235 LIST_HEAD(single);
8236
8237 list_add(&dev->unreg_list, &single);
8238 rollback_registered_many(&single);
ceaaec98 8239 list_del(&single);
93ee31f1
DL
8240}
8241
fd867d51
JW
8242static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8243 struct net_device *upper, netdev_features_t features)
8244{
8245 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8246 netdev_features_t feature;
5ba3f7d6 8247 int feature_bit;
fd867d51 8248
3b89ea9c 8249 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8250 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8251 if (!(upper->wanted_features & feature)
8252 && (features & feature)) {
8253 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8254 &feature, upper->name);
8255 features &= ~feature;
8256 }
8257 }
8258
8259 return features;
8260}
8261
8262static void netdev_sync_lower_features(struct net_device *upper,
8263 struct net_device *lower, netdev_features_t features)
8264{
8265 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8266 netdev_features_t feature;
5ba3f7d6 8267 int feature_bit;
fd867d51 8268
3b89ea9c 8269 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 8270 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
8271 if (!(features & feature) && (lower->features & feature)) {
8272 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8273 &feature, lower->name);
8274 lower->wanted_features &= ~feature;
8275 netdev_update_features(lower);
8276
8277 if (unlikely(lower->features & feature))
8278 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8279 &feature, lower->name);
8280 }
8281 }
8282}
8283
c8f44aff
MM
8284static netdev_features_t netdev_fix_features(struct net_device *dev,
8285 netdev_features_t features)
b63365a2 8286{
57422dc5
MM
8287 /* Fix illegal checksum combinations */
8288 if ((features & NETIF_F_HW_CSUM) &&
8289 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 8290 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
8291 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8292 }
8293
b63365a2 8294 /* TSO requires that SG is present as well. */
ea2d3688 8295 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 8296 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 8297 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
8298 }
8299
ec5f0615
PS
8300 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8301 !(features & NETIF_F_IP_CSUM)) {
8302 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8303 features &= ~NETIF_F_TSO;
8304 features &= ~NETIF_F_TSO_ECN;
8305 }
8306
8307 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8308 !(features & NETIF_F_IPV6_CSUM)) {
8309 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8310 features &= ~NETIF_F_TSO6;
8311 }
8312
b1dc497b
AD
8313 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8314 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8315 features &= ~NETIF_F_TSO_MANGLEID;
8316
31d8b9e0
BH
8317 /* TSO ECN requires that TSO is present as well. */
8318 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8319 features &= ~NETIF_F_TSO_ECN;
8320
212b573f
MM
8321 /* Software GSO depends on SG. */
8322 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 8323 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
8324 features &= ~NETIF_F_GSO;
8325 }
8326
802ab55a
AD
8327 /* GSO partial features require GSO partial be set */
8328 if ((features & dev->gso_partial_features) &&
8329 !(features & NETIF_F_GSO_PARTIAL)) {
8330 netdev_dbg(dev,
8331 "Dropping partially supported GSO features since no GSO partial.\n");
8332 features &= ~dev->gso_partial_features;
8333 }
8334
fb1f5f79
MC
8335 if (!(features & NETIF_F_RXCSUM)) {
8336 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8337 * successfully merged by hardware must also have the
8338 * checksum verified by hardware. If the user does not
8339 * want to enable RXCSUM, logically, we should disable GRO_HW.
8340 */
8341 if (features & NETIF_F_GRO_HW) {
8342 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8343 features &= ~NETIF_F_GRO_HW;
8344 }
8345 }
8346
de8d5ab2
GP
8347 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8348 if (features & NETIF_F_RXFCS) {
8349 if (features & NETIF_F_LRO) {
8350 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8351 features &= ~NETIF_F_LRO;
8352 }
8353
8354 if (features & NETIF_F_GRO_HW) {
8355 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8356 features &= ~NETIF_F_GRO_HW;
8357 }
e6c6a929
GP
8358 }
8359
b63365a2
HX
8360 return features;
8361}
b63365a2 8362
6cb6a27c 8363int __netdev_update_features(struct net_device *dev)
5455c699 8364{
fd867d51 8365 struct net_device *upper, *lower;
c8f44aff 8366 netdev_features_t features;
fd867d51 8367 struct list_head *iter;
e7868a85 8368 int err = -1;
5455c699 8369
87267485
MM
8370 ASSERT_RTNL();
8371
5455c699
MM
8372 features = netdev_get_wanted_features(dev);
8373
8374 if (dev->netdev_ops->ndo_fix_features)
8375 features = dev->netdev_ops->ndo_fix_features(dev, features);
8376
8377 /* driver might be less strict about feature dependencies */
8378 features = netdev_fix_features(dev, features);
8379
fd867d51
JW
8380 /* some features can't be enabled if they're off an an upper device */
8381 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8382 features = netdev_sync_upper_features(dev, upper, features);
8383
5455c699 8384 if (dev->features == features)
e7868a85 8385 goto sync_lower;
5455c699 8386
c8f44aff
MM
8387 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8388 &dev->features, &features);
5455c699
MM
8389
8390 if (dev->netdev_ops->ndo_set_features)
8391 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
8392 else
8393 err = 0;
5455c699 8394
6cb6a27c 8395 if (unlikely(err < 0)) {
5455c699 8396 netdev_err(dev,
c8f44aff
MM
8397 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8398 err, &features, &dev->features);
17b85d29
NA
8399 /* return non-0 since some features might have changed and
8400 * it's better to fire a spurious notification than miss it
8401 */
8402 return -1;
6cb6a27c
MM
8403 }
8404
e7868a85 8405sync_lower:
fd867d51
JW
8406 /* some features must be disabled on lower devices when disabled
8407 * on an upper device (think: bonding master or bridge)
8408 */
8409 netdev_for_each_lower_dev(dev, lower, iter)
8410 netdev_sync_lower_features(dev, lower, features);
8411
ae847f40
SD
8412 if (!err) {
8413 netdev_features_t diff = features ^ dev->features;
8414
8415 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8416 /* udp_tunnel_{get,drop}_rx_info both need
8417 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8418 * device, or they won't do anything.
8419 * Thus we need to update dev->features
8420 * *before* calling udp_tunnel_get_rx_info,
8421 * but *after* calling udp_tunnel_drop_rx_info.
8422 */
8423 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8424 dev->features = features;
8425 udp_tunnel_get_rx_info(dev);
8426 } else {
8427 udp_tunnel_drop_rx_info(dev);
8428 }
8429 }
8430
9daae9bd
GP
8431 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8432 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8433 dev->features = features;
8434 err |= vlan_get_rx_ctag_filter_info(dev);
8435 } else {
8436 vlan_drop_rx_ctag_filter_info(dev);
8437 }
8438 }
8439
8440 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8441 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8442 dev->features = features;
8443 err |= vlan_get_rx_stag_filter_info(dev);
8444 } else {
8445 vlan_drop_rx_stag_filter_info(dev);
8446 }
8447 }
8448
6cb6a27c 8449 dev->features = features;
ae847f40 8450 }
6cb6a27c 8451
e7868a85 8452 return err < 0 ? 0 : 1;
6cb6a27c
MM
8453}
8454
afe12cc8
MM
8455/**
8456 * netdev_update_features - recalculate device features
8457 * @dev: the device to check
8458 *
8459 * Recalculate dev->features set and send notifications if it
8460 * has changed. Should be called after driver or hardware dependent
8461 * conditions might have changed that influence the features.
8462 */
6cb6a27c
MM
8463void netdev_update_features(struct net_device *dev)
8464{
8465 if (__netdev_update_features(dev))
8466 netdev_features_change(dev);
5455c699
MM
8467}
8468EXPORT_SYMBOL(netdev_update_features);
8469
afe12cc8
MM
8470/**
8471 * netdev_change_features - recalculate device features
8472 * @dev: the device to check
8473 *
8474 * Recalculate dev->features set and send notifications even
8475 * if they have not changed. Should be called instead of
8476 * netdev_update_features() if also dev->vlan_features might
8477 * have changed to allow the changes to be propagated to stacked
8478 * VLAN devices.
8479 */
8480void netdev_change_features(struct net_device *dev)
8481{
8482 __netdev_update_features(dev);
8483 netdev_features_change(dev);
8484}
8485EXPORT_SYMBOL(netdev_change_features);
8486
fc4a7489
PM
8487/**
8488 * netif_stacked_transfer_operstate - transfer operstate
8489 * @rootdev: the root or lower level device to transfer state from
8490 * @dev: the device to transfer operstate to
8491 *
8492 * Transfer operational state from root to device. This is normally
8493 * called when a stacking relationship exists between the root
8494 * device and the device(a leaf device).
8495 */
8496void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8497 struct net_device *dev)
8498{
8499 if (rootdev->operstate == IF_OPER_DORMANT)
8500 netif_dormant_on(dev);
8501 else
8502 netif_dormant_off(dev);
8503
0575c86b
ZS
8504 if (netif_carrier_ok(rootdev))
8505 netif_carrier_on(dev);
8506 else
8507 netif_carrier_off(dev);
fc4a7489
PM
8508}
8509EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8510
1b4bf461
ED
8511static int netif_alloc_rx_queues(struct net_device *dev)
8512{
1b4bf461 8513 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 8514 struct netdev_rx_queue *rx;
10595902 8515 size_t sz = count * sizeof(*rx);
e817f856 8516 int err = 0;
1b4bf461 8517
bd25fa7b 8518 BUG_ON(count < 1);
1b4bf461 8519
dcda9b04 8520 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8521 if (!rx)
8522 return -ENOMEM;
8523
bd25fa7b
TH
8524 dev->_rx = rx;
8525
e817f856 8526 for (i = 0; i < count; i++) {
fe822240 8527 rx[i].dev = dev;
e817f856
JDB
8528
8529 /* XDP RX-queue setup */
8530 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8531 if (err < 0)
8532 goto err_rxq_info;
8533 }
1b4bf461 8534 return 0;
e817f856
JDB
8535
8536err_rxq_info:
8537 /* Rollback successful reg's and free other resources */
8538 while (i--)
8539 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 8540 kvfree(dev->_rx);
e817f856
JDB
8541 dev->_rx = NULL;
8542 return err;
8543}
8544
8545static void netif_free_rx_queues(struct net_device *dev)
8546{
8547 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
8548
8549 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8550 if (!dev->_rx)
8551 return;
8552
e817f856 8553 for (i = 0; i < count; i++)
82aaff2f
JK
8554 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8555
8556 kvfree(dev->_rx);
1b4bf461
ED
8557}
8558
aa942104
CG
8559static void netdev_init_one_queue(struct net_device *dev,
8560 struct netdev_queue *queue, void *_unused)
8561{
8562 /* Initialize queue lock */
8563 spin_lock_init(&queue->_xmit_lock);
8564 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8565 queue->xmit_lock_owner = -1;
b236da69 8566 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 8567 queue->dev = dev;
114cf580
TH
8568#ifdef CONFIG_BQL
8569 dql_init(&queue->dql, HZ);
8570#endif
aa942104
CG
8571}
8572
60877a32
ED
8573static void netif_free_tx_queues(struct net_device *dev)
8574{
4cb28970 8575 kvfree(dev->_tx);
60877a32
ED
8576}
8577
e6484930
TH
8578static int netif_alloc_netdev_queues(struct net_device *dev)
8579{
8580 unsigned int count = dev->num_tx_queues;
8581 struct netdev_queue *tx;
60877a32 8582 size_t sz = count * sizeof(*tx);
e6484930 8583
d339727c
ED
8584 if (count < 1 || count > 0xffff)
8585 return -EINVAL;
62b5942a 8586
dcda9b04 8587 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
8588 if (!tx)
8589 return -ENOMEM;
8590
e6484930 8591 dev->_tx = tx;
1d24eb48 8592
e6484930
TH
8593 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8594 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
8595
8596 return 0;
e6484930
TH
8597}
8598
a2029240
DV
8599void netif_tx_stop_all_queues(struct net_device *dev)
8600{
8601 unsigned int i;
8602
8603 for (i = 0; i < dev->num_tx_queues; i++) {
8604 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 8605
a2029240
DV
8606 netif_tx_stop_queue(txq);
8607 }
8608}
8609EXPORT_SYMBOL(netif_tx_stop_all_queues);
8610
1da177e4
LT
8611/**
8612 * register_netdevice - register a network device
8613 * @dev: device to register
8614 *
8615 * Take a completed network device structure and add it to the kernel
8616 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8617 * chain. 0 is returned on success. A negative errno code is returned
8618 * on a failure to set up the device, or if the name is a duplicate.
8619 *
8620 * Callers must hold the rtnl semaphore. You may want
8621 * register_netdev() instead of this.
8622 *
8623 * BUGS:
8624 * The locking appears insufficient to guarantee two parallel registers
8625 * will not get the same name.
8626 */
8627
8628int register_netdevice(struct net_device *dev)
8629{
1da177e4 8630 int ret;
d314774c 8631 struct net *net = dev_net(dev);
1da177e4 8632
e283de3a
FF
8633 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8634 NETDEV_FEATURE_COUNT);
1da177e4
LT
8635 BUG_ON(dev_boot_phase);
8636 ASSERT_RTNL();
8637
b17a7c17
SH
8638 might_sleep();
8639
1da177e4
LT
8640 /* When net_device's are persistent, this will be fatal. */
8641 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 8642 BUG_ON(!net);
1da177e4 8643
f1f28aa3 8644 spin_lock_init(&dev->addr_list_lock);
cf508b12 8645 netdev_set_addr_lockdep_class(dev);
1da177e4 8646
828de4f6 8647 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
8648 if (ret < 0)
8649 goto out;
8650
1da177e4 8651 /* Init, if this function is available */
d314774c
SH
8652 if (dev->netdev_ops->ndo_init) {
8653 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
8654 if (ret) {
8655 if (ret > 0)
8656 ret = -EIO;
90833aa4 8657 goto out;
1da177e4
LT
8658 }
8659 }
4ec93edb 8660
f646968f
PM
8661 if (((dev->hw_features | dev->features) &
8662 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
8663 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8664 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8665 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8666 ret = -EINVAL;
8667 goto err_uninit;
8668 }
8669
9c7dafbf
PE
8670 ret = -EBUSY;
8671 if (!dev->ifindex)
8672 dev->ifindex = dev_new_index(net);
8673 else if (__dev_get_by_index(net, dev->ifindex))
8674 goto err_uninit;
8675
5455c699
MM
8676 /* Transfer changeable features to wanted_features and enable
8677 * software offloads (GSO and GRO).
8678 */
8679 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 8680 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
8681
8682 if (dev->netdev_ops->ndo_udp_tunnel_add) {
8683 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8684 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8685 }
8686
14d1232f 8687 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 8688
cbc53e08 8689 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 8690 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 8691
7f348a60
AD
8692 /* If IPv4 TCP segmentation offload is supported we should also
8693 * allow the device to enable segmenting the frame with the option
8694 * of ignoring a static IP ID value. This doesn't enable the
8695 * feature itself but allows the user to enable it later.
8696 */
cbc53e08
AD
8697 if (dev->hw_features & NETIF_F_TSO)
8698 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
8699 if (dev->vlan_features & NETIF_F_TSO)
8700 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8701 if (dev->mpls_features & NETIF_F_TSO)
8702 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8703 if (dev->hw_enc_features & NETIF_F_TSO)
8704 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 8705
1180e7d6 8706 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 8707 */
1180e7d6 8708 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 8709
ee579677
PS
8710 /* Make NETIF_F_SG inheritable to tunnel devices.
8711 */
802ab55a 8712 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 8713
0d89d203
SH
8714 /* Make NETIF_F_SG inheritable to MPLS.
8715 */
8716 dev->mpls_features |= NETIF_F_SG;
8717
7ffbe3fd
JB
8718 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8719 ret = notifier_to_errno(ret);
8720 if (ret)
8721 goto err_uninit;
8722
8b41d188 8723 ret = netdev_register_kobject(dev);
b17a7c17 8724 if (ret)
7ce1b0ed 8725 goto err_uninit;
b17a7c17
SH
8726 dev->reg_state = NETREG_REGISTERED;
8727
6cb6a27c 8728 __netdev_update_features(dev);
8e9b59b2 8729
1da177e4
LT
8730 /*
8731 * Default initial state at registry is that the
8732 * device is present.
8733 */
8734
8735 set_bit(__LINK_STATE_PRESENT, &dev->state);
8736
8f4cccbb
BH
8737 linkwatch_init_dev(dev);
8738
1da177e4 8739 dev_init_scheduler(dev);
1da177e4 8740 dev_hold(dev);
ce286d32 8741 list_netdevice(dev);
7bf23575 8742 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 8743
948b337e
JP
8744 /* If the device has permanent device address, driver should
8745 * set dev_addr and also addr_assign_type should be set to
8746 * NET_ADDR_PERM (default value).
8747 */
8748 if (dev->addr_assign_type == NET_ADDR_PERM)
8749 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8750
1da177e4 8751 /* Notify protocols, that a new device appeared. */
056925ab 8752 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 8753 ret = notifier_to_errno(ret);
93ee31f1
DL
8754 if (ret) {
8755 rollback_registered(dev);
8756 dev->reg_state = NETREG_UNREGISTERED;
8757 }
d90a909e
EB
8758 /*
8759 * Prevent userspace races by waiting until the network
8760 * device is fully setup before sending notifications.
8761 */
a2835763
PM
8762 if (!dev->rtnl_link_ops ||
8763 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 8764 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
8765
8766out:
8767 return ret;
7ce1b0ed
HX
8768
8769err_uninit:
d314774c
SH
8770 if (dev->netdev_ops->ndo_uninit)
8771 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
8772 if (dev->priv_destructor)
8773 dev->priv_destructor(dev);
7ce1b0ed 8774 goto out;
1da177e4 8775}
d1b19dff 8776EXPORT_SYMBOL(register_netdevice);
1da177e4 8777
937f1ba5
BH
8778/**
8779 * init_dummy_netdev - init a dummy network device for NAPI
8780 * @dev: device to init
8781 *
8782 * This takes a network device structure and initialize the minimum
8783 * amount of fields so it can be used to schedule NAPI polls without
8784 * registering a full blown interface. This is to be used by drivers
8785 * that need to tie several hardware interfaces to a single NAPI
8786 * poll scheduler due to HW limitations.
8787 */
8788int init_dummy_netdev(struct net_device *dev)
8789{
8790 /* Clear everything. Note we don't initialize spinlocks
8791 * are they aren't supposed to be taken by any of the
8792 * NAPI code and this dummy netdev is supposed to be
8793 * only ever used for NAPI polls
8794 */
8795 memset(dev, 0, sizeof(struct net_device));
8796
8797 /* make sure we BUG if trying to hit standard
8798 * register/unregister code path
8799 */
8800 dev->reg_state = NETREG_DUMMY;
8801
937f1ba5
BH
8802 /* NAPI wants this */
8803 INIT_LIST_HEAD(&dev->napi_list);
8804
8805 /* a dummy interface is started by default */
8806 set_bit(__LINK_STATE_PRESENT, &dev->state);
8807 set_bit(__LINK_STATE_START, &dev->state);
8808
35edfdc7
JE
8809 /* napi_busy_loop stats accounting wants this */
8810 dev_net_set(dev, &init_net);
8811
29b4433d
ED
8812 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8813 * because users of this 'device' dont need to change
8814 * its refcount.
8815 */
8816
937f1ba5
BH
8817 return 0;
8818}
8819EXPORT_SYMBOL_GPL(init_dummy_netdev);
8820
8821
1da177e4
LT
8822/**
8823 * register_netdev - register a network device
8824 * @dev: device to register
8825 *
8826 * Take a completed network device structure and add it to the kernel
8827 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8828 * chain. 0 is returned on success. A negative errno code is returned
8829 * on a failure to set up the device, or if the name is a duplicate.
8830 *
38b4da38 8831 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
8832 * and expands the device name if you passed a format string to
8833 * alloc_netdev.
8834 */
8835int register_netdev(struct net_device *dev)
8836{
8837 int err;
8838
b0f3debc
KT
8839 if (rtnl_lock_killable())
8840 return -EINTR;
1da177e4 8841 err = register_netdevice(dev);
1da177e4
LT
8842 rtnl_unlock();
8843 return err;
8844}
8845EXPORT_SYMBOL(register_netdev);
8846
29b4433d
ED
8847int netdev_refcnt_read(const struct net_device *dev)
8848{
8849 int i, refcnt = 0;
8850
8851 for_each_possible_cpu(i)
8852 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8853 return refcnt;
8854}
8855EXPORT_SYMBOL(netdev_refcnt_read);
8856
2c53040f 8857/**
1da177e4 8858 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 8859 * @dev: target net_device
1da177e4
LT
8860 *
8861 * This is called when unregistering network devices.
8862 *
8863 * Any protocol or device that holds a reference should register
8864 * for netdevice notification, and cleanup and put back the
8865 * reference if they receive an UNREGISTER event.
8866 * We can get stuck here if buggy protocols don't correctly
4ec93edb 8867 * call dev_put.
1da177e4
LT
8868 */
8869static void netdev_wait_allrefs(struct net_device *dev)
8870{
8871 unsigned long rebroadcast_time, warning_time;
29b4433d 8872 int refcnt;
1da177e4 8873
e014debe
ED
8874 linkwatch_forget_dev(dev);
8875
1da177e4 8876 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
8877 refcnt = netdev_refcnt_read(dev);
8878
8879 while (refcnt != 0) {
1da177e4 8880 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 8881 rtnl_lock();
1da177e4
LT
8882
8883 /* Rebroadcast unregister notification */
056925ab 8884 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 8885
748e2d93 8886 __rtnl_unlock();
0115e8e3 8887 rcu_barrier();
748e2d93
ED
8888 rtnl_lock();
8889
1da177e4
LT
8890 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8891 &dev->state)) {
8892 /* We must not have linkwatch events
8893 * pending on unregister. If this
8894 * happens, we simply run the queue
8895 * unscheduled, resulting in a noop
8896 * for this device.
8897 */
8898 linkwatch_run_queue();
8899 }
8900
6756ae4b 8901 __rtnl_unlock();
1da177e4
LT
8902
8903 rebroadcast_time = jiffies;
8904 }
8905
8906 msleep(250);
8907
29b4433d
ED
8908 refcnt = netdev_refcnt_read(dev);
8909
1da177e4 8910 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
8911 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8912 dev->name, refcnt);
1da177e4
LT
8913 warning_time = jiffies;
8914 }
8915 }
8916}
8917
8918/* The sequence is:
8919 *
8920 * rtnl_lock();
8921 * ...
8922 * register_netdevice(x1);
8923 * register_netdevice(x2);
8924 * ...
8925 * unregister_netdevice(y1);
8926 * unregister_netdevice(y2);
8927 * ...
8928 * rtnl_unlock();
8929 * free_netdev(y1);
8930 * free_netdev(y2);
8931 *
58ec3b4d 8932 * We are invoked by rtnl_unlock().
1da177e4 8933 * This allows us to deal with problems:
b17a7c17 8934 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
8935 * without deadlocking with linkwatch via keventd.
8936 * 2) Since we run with the RTNL semaphore not held, we can sleep
8937 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
8938 *
8939 * We must not return until all unregister events added during
8940 * the interval the lock was held have been completed.
1da177e4 8941 */
1da177e4
LT
8942void netdev_run_todo(void)
8943{
626ab0e6 8944 struct list_head list;
1da177e4 8945
1da177e4 8946 /* Snapshot list, allow later requests */
626ab0e6 8947 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
8948
8949 __rtnl_unlock();
626ab0e6 8950
0115e8e3
ED
8951
8952 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
8953 if (!list_empty(&list))
8954 rcu_barrier();
8955
1da177e4
LT
8956 while (!list_empty(&list)) {
8957 struct net_device *dev
e5e26d75 8958 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
8959 list_del(&dev->todo_list);
8960
b17a7c17 8961 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 8962 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
8963 dev->name, dev->reg_state);
8964 dump_stack();
8965 continue;
8966 }
1da177e4 8967
b17a7c17 8968 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 8969
b17a7c17 8970 netdev_wait_allrefs(dev);
1da177e4 8971
b17a7c17 8972 /* paranoia */
29b4433d 8973 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
8974 BUG_ON(!list_empty(&dev->ptype_all));
8975 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
8976 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8977 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 8978#if IS_ENABLED(CONFIG_DECNET)
547b792c 8979 WARN_ON(dev->dn_ptr);
330c7272 8980#endif
cf124db5
DM
8981 if (dev->priv_destructor)
8982 dev->priv_destructor(dev);
8983 if (dev->needs_free_netdev)
8984 free_netdev(dev);
9093bbb2 8985
50624c93
EB
8986 /* Report a network device has been unregistered */
8987 rtnl_lock();
8988 dev_net(dev)->dev_unreg_count--;
8989 __rtnl_unlock();
8990 wake_up(&netdev_unregistering_wq);
8991
9093bbb2
SH
8992 /* Free network device */
8993 kobject_put(&dev->dev.kobj);
1da177e4 8994 }
1da177e4
LT
8995}
8996
9256645a
JW
8997/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8998 * all the same fields in the same order as net_device_stats, with only
8999 * the type differing, but rtnl_link_stats64 may have additional fields
9000 * at the end for newer counters.
3cfde79c 9001 */
77a1abf5
ED
9002void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9003 const struct net_device_stats *netdev_stats)
3cfde79c
BH
9004{
9005#if BITS_PER_LONG == 64
9256645a 9006 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 9007 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
9008 /* zero out counters that only exist in rtnl_link_stats64 */
9009 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9010 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 9011#else
9256645a 9012 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
9013 const unsigned long *src = (const unsigned long *)netdev_stats;
9014 u64 *dst = (u64 *)stats64;
9015
9256645a 9016 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
9017 for (i = 0; i < n; i++)
9018 dst[i] = src[i];
9256645a
JW
9019 /* zero out counters that only exist in rtnl_link_stats64 */
9020 memset((char *)stats64 + n * sizeof(u64), 0,
9021 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
9022#endif
9023}
77a1abf5 9024EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 9025
eeda3fd6
SH
9026/**
9027 * dev_get_stats - get network device statistics
9028 * @dev: device to get statistics from
28172739 9029 * @storage: place to store stats
eeda3fd6 9030 *
d7753516
BH
9031 * Get network statistics from device. Return @storage.
9032 * The device driver may provide its own method by setting
9033 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9034 * otherwise the internal statistics structure is used.
eeda3fd6 9035 */
d7753516
BH
9036struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9037 struct rtnl_link_stats64 *storage)
7004bf25 9038{
eeda3fd6
SH
9039 const struct net_device_ops *ops = dev->netdev_ops;
9040
28172739
ED
9041 if (ops->ndo_get_stats64) {
9042 memset(storage, 0, sizeof(*storage));
caf586e5
ED
9043 ops->ndo_get_stats64(dev, storage);
9044 } else if (ops->ndo_get_stats) {
3cfde79c 9045 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
9046 } else {
9047 netdev_stats_to_stats64(storage, &dev->stats);
28172739 9048 }
6f64ec74
ED
9049 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9050 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9051 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 9052 return storage;
c45d286e 9053}
eeda3fd6 9054EXPORT_SYMBOL(dev_get_stats);
c45d286e 9055
24824a09 9056struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 9057{
24824a09 9058 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 9059
24824a09
ED
9060#ifdef CONFIG_NET_CLS_ACT
9061 if (queue)
9062 return queue;
9063 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9064 if (!queue)
9065 return NULL;
9066 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 9067 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
9068 queue->qdisc_sleeping = &noop_qdisc;
9069 rcu_assign_pointer(dev->ingress_queue, queue);
9070#endif
9071 return queue;
bb949fbd
DM
9072}
9073
2c60db03
ED
9074static const struct ethtool_ops default_ethtool_ops;
9075
d07d7507
SG
9076void netdev_set_default_ethtool_ops(struct net_device *dev,
9077 const struct ethtool_ops *ops)
9078{
9079 if (dev->ethtool_ops == &default_ethtool_ops)
9080 dev->ethtool_ops = ops;
9081}
9082EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9083
74d332c1
ED
9084void netdev_freemem(struct net_device *dev)
9085{
9086 char *addr = (char *)dev - dev->padded;
9087
4cb28970 9088 kvfree(addr);
74d332c1
ED
9089}
9090
1da177e4 9091/**
722c9a0c 9092 * alloc_netdev_mqs - allocate network device
9093 * @sizeof_priv: size of private data to allocate space for
9094 * @name: device name format string
9095 * @name_assign_type: origin of device name
9096 * @setup: callback to initialize device
9097 * @txqs: the number of TX subqueues to allocate
9098 * @rxqs: the number of RX subqueues to allocate
9099 *
9100 * Allocates a struct net_device with private data area for driver use
9101 * and performs basic initialization. Also allocates subqueue structs
9102 * for each queue on the device.
1da177e4 9103 */
36909ea4 9104struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 9105 unsigned char name_assign_type,
36909ea4
TH
9106 void (*setup)(struct net_device *),
9107 unsigned int txqs, unsigned int rxqs)
1da177e4 9108{
1da177e4 9109 struct net_device *dev;
52a59bd5 9110 unsigned int alloc_size;
1ce8e7b5 9111 struct net_device *p;
1da177e4 9112
b6fe17d6
SH
9113 BUG_ON(strlen(name) >= sizeof(dev->name));
9114
36909ea4 9115 if (txqs < 1) {
7b6cd1ce 9116 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
9117 return NULL;
9118 }
9119
36909ea4 9120 if (rxqs < 1) {
7b6cd1ce 9121 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
9122 return NULL;
9123 }
36909ea4 9124
fd2ea0a7 9125 alloc_size = sizeof(struct net_device);
d1643d24
AD
9126 if (sizeof_priv) {
9127 /* ensure 32-byte alignment of private area */
1ce8e7b5 9128 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
9129 alloc_size += sizeof_priv;
9130 }
9131 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 9132 alloc_size += NETDEV_ALIGN - 1;
1da177e4 9133
dcda9b04 9134 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 9135 if (!p)
1da177e4 9136 return NULL;
1da177e4 9137
1ce8e7b5 9138 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 9139 dev->padded = (char *)dev - (char *)p;
ab9c73cc 9140
29b4433d
ED
9141 dev->pcpu_refcnt = alloc_percpu(int);
9142 if (!dev->pcpu_refcnt)
74d332c1 9143 goto free_dev;
ab9c73cc 9144
ab9c73cc 9145 if (dev_addr_init(dev))
29b4433d 9146 goto free_pcpu;
ab9c73cc 9147
22bedad3 9148 dev_mc_init(dev);
a748ee24 9149 dev_uc_init(dev);
ccffad25 9150
c346dca1 9151 dev_net_set(dev, &init_net);
1da177e4 9152
8d3bdbd5 9153 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 9154 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 9155
8d3bdbd5
DM
9156 INIT_LIST_HEAD(&dev->napi_list);
9157 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 9158 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 9159 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
9160 INIT_LIST_HEAD(&dev->adj_list.upper);
9161 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
9162 INIT_LIST_HEAD(&dev->ptype_all);
9163 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
9164#ifdef CONFIG_NET_SCHED
9165 hash_init(dev->qdisc_hash);
9166#endif
02875878 9167 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
9168 setup(dev);
9169
a813104d 9170 if (!dev->tx_queue_len) {
f84bb1ea 9171 dev->priv_flags |= IFF_NO_QUEUE;
11597084 9172 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 9173 }
906470c1 9174
36909ea4
TH
9175 dev->num_tx_queues = txqs;
9176 dev->real_num_tx_queues = txqs;
ed9af2e8 9177 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 9178 goto free_all;
e8a0464c 9179
36909ea4
TH
9180 dev->num_rx_queues = rxqs;
9181 dev->real_num_rx_queues = rxqs;
fe822240 9182 if (netif_alloc_rx_queues(dev))
8d3bdbd5 9183 goto free_all;
0a9627f2 9184
1da177e4 9185 strcpy(dev->name, name);
c835a677 9186 dev->name_assign_type = name_assign_type;
cbda10fa 9187 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
9188 if (!dev->ethtool_ops)
9189 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
9190
9191 nf_hook_ingress_init(dev);
9192
1da177e4 9193 return dev;
ab9c73cc 9194
8d3bdbd5
DM
9195free_all:
9196 free_netdev(dev);
9197 return NULL;
9198
29b4433d
ED
9199free_pcpu:
9200 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
9201free_dev:
9202 netdev_freemem(dev);
ab9c73cc 9203 return NULL;
1da177e4 9204}
36909ea4 9205EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
9206
9207/**
722c9a0c 9208 * free_netdev - free network device
9209 * @dev: device
1da177e4 9210 *
722c9a0c 9211 * This function does the last stage of destroying an allocated device
9212 * interface. The reference to the device object is released. If this
9213 * is the last reference then it will be freed.Must be called in process
9214 * context.
1da177e4
LT
9215 */
9216void free_netdev(struct net_device *dev)
9217{
d565b0a1
HX
9218 struct napi_struct *p, *n;
9219
93d05d4a 9220 might_sleep();
60877a32 9221 netif_free_tx_queues(dev);
e817f856 9222 netif_free_rx_queues(dev);
e8a0464c 9223
33d480ce 9224 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 9225
f001fde5
JP
9226 /* Flush device addresses */
9227 dev_addr_flush(dev);
9228
d565b0a1
HX
9229 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9230 netif_napi_del(p);
9231
29b4433d
ED
9232 free_percpu(dev->pcpu_refcnt);
9233 dev->pcpu_refcnt = NULL;
9234
3041a069 9235 /* Compatibility with error handling in drivers */
1da177e4 9236 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 9237 netdev_freemem(dev);
1da177e4
LT
9238 return;
9239 }
9240
9241 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9242 dev->reg_state = NETREG_RELEASED;
9243
43cb76d9
GKH
9244 /* will free via device release */
9245 put_device(&dev->dev);
1da177e4 9246}
d1b19dff 9247EXPORT_SYMBOL(free_netdev);
4ec93edb 9248
f0db275a
SH
9249/**
9250 * synchronize_net - Synchronize with packet receive processing
9251 *
9252 * Wait for packets currently being received to be done.
9253 * Does not block later packets from starting.
9254 */
4ec93edb 9255void synchronize_net(void)
1da177e4
LT
9256{
9257 might_sleep();
be3fc413
ED
9258 if (rtnl_is_locked())
9259 synchronize_rcu_expedited();
9260 else
9261 synchronize_rcu();
1da177e4 9262}
d1b19dff 9263EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
9264
9265/**
44a0873d 9266 * unregister_netdevice_queue - remove device from the kernel
1da177e4 9267 * @dev: device
44a0873d 9268 * @head: list
6ebfbc06 9269 *
1da177e4 9270 * This function shuts down a device interface and removes it
d59b54b1 9271 * from the kernel tables.
44a0873d 9272 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
9273 *
9274 * Callers must hold the rtnl semaphore. You may want
9275 * unregister_netdev() instead of this.
9276 */
9277
44a0873d 9278void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 9279{
a6620712
HX
9280 ASSERT_RTNL();
9281
44a0873d 9282 if (head) {
9fdce099 9283 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
9284 } else {
9285 rollback_registered(dev);
9286 /* Finish processing unregister after unlock */
9287 net_set_todo(dev);
9288 }
1da177e4 9289}
44a0873d 9290EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 9291
9b5e383c
ED
9292/**
9293 * unregister_netdevice_many - unregister many devices
9294 * @head: list of devices
87757a91
ED
9295 *
9296 * Note: As most callers use a stack allocated list_head,
9297 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
9298 */
9299void unregister_netdevice_many(struct list_head *head)
9300{
9301 struct net_device *dev;
9302
9303 if (!list_empty(head)) {
9304 rollback_registered_many(head);
9305 list_for_each_entry(dev, head, unreg_list)
9306 net_set_todo(dev);
87757a91 9307 list_del(head);
9b5e383c
ED
9308 }
9309}
63c8099d 9310EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 9311
1da177e4
LT
9312/**
9313 * unregister_netdev - remove device from the kernel
9314 * @dev: device
9315 *
9316 * This function shuts down a device interface and removes it
d59b54b1 9317 * from the kernel tables.
1da177e4
LT
9318 *
9319 * This is just a wrapper for unregister_netdevice that takes
9320 * the rtnl semaphore. In general you want to use this and not
9321 * unregister_netdevice.
9322 */
9323void unregister_netdev(struct net_device *dev)
9324{
9325 rtnl_lock();
9326 unregister_netdevice(dev);
9327 rtnl_unlock();
9328}
1da177e4
LT
9329EXPORT_SYMBOL(unregister_netdev);
9330
ce286d32
EB
9331/**
9332 * dev_change_net_namespace - move device to different nethost namespace
9333 * @dev: device
9334 * @net: network namespace
9335 * @pat: If not NULL name pattern to try if the current device name
9336 * is already taken in the destination network namespace.
9337 *
9338 * This function shuts down a device interface and moves it
9339 * to a new network namespace. On success 0 is returned, on
9340 * a failure a netagive errno code is returned.
9341 *
9342 * Callers must hold the rtnl semaphore.
9343 */
9344
9345int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9346{
38e01b30 9347 int err, new_nsid, new_ifindex;
ce286d32
EB
9348
9349 ASSERT_RTNL();
9350
9351 /* Don't allow namespace local devices to be moved. */
9352 err = -EINVAL;
9353 if (dev->features & NETIF_F_NETNS_LOCAL)
9354 goto out;
9355
9356 /* Ensure the device has been registrered */
ce286d32
EB
9357 if (dev->reg_state != NETREG_REGISTERED)
9358 goto out;
9359
9360 /* Get out if there is nothing todo */
9361 err = 0;
878628fb 9362 if (net_eq(dev_net(dev), net))
ce286d32
EB
9363 goto out;
9364
9365 /* Pick the destination device name, and ensure
9366 * we can use it in the destination network namespace.
9367 */
9368 err = -EEXIST;
d9031024 9369 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
9370 /* We get here if we can't use the current device name */
9371 if (!pat)
9372 goto out;
7892bd08
LR
9373 err = dev_get_valid_name(net, dev, pat);
9374 if (err < 0)
ce286d32
EB
9375 goto out;
9376 }
9377
9378 /*
9379 * And now a mini version of register_netdevice unregister_netdevice.
9380 */
9381
9382 /* If device is running close it first. */
9b772652 9383 dev_close(dev);
ce286d32
EB
9384
9385 /* And unlink it from device chain */
ce286d32
EB
9386 unlist_netdevice(dev);
9387
9388 synchronize_net();
9389
9390 /* Shutdown queueing discipline. */
9391 dev_shutdown(dev);
9392
9393 /* Notify protocols, that we are about to destroy
eb13da1a 9394 * this device. They should clean all the things.
9395 *
9396 * Note that dev->reg_state stays at NETREG_REGISTERED.
9397 * This is wanted because this way 8021q and macvlan know
9398 * the device is just moving and can keep their slaves up.
9399 */
ce286d32 9400 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 9401 rcu_barrier();
38e01b30 9402
c36ac8e2 9403 new_nsid = peernet2id_alloc(dev_net(dev), net);
38e01b30
ND
9404 /* If there is an ifindex conflict assign a new one */
9405 if (__dev_get_by_index(net, dev->ifindex))
9406 new_ifindex = dev_new_index(net);
9407 else
9408 new_ifindex = dev->ifindex;
9409
9410 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9411 new_ifindex);
ce286d32
EB
9412
9413 /*
9414 * Flush the unicast and multicast chains
9415 */
a748ee24 9416 dev_uc_flush(dev);
22bedad3 9417 dev_mc_flush(dev);
ce286d32 9418
4e66ae2e
SH
9419 /* Send a netdev-removed uevent to the old namespace */
9420 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 9421 netdev_adjacent_del_links(dev);
4e66ae2e 9422
ce286d32 9423 /* Actually switch the network namespace */
c346dca1 9424 dev_net_set(dev, net);
38e01b30 9425 dev->ifindex = new_ifindex;
ce286d32 9426
4e66ae2e
SH
9427 /* Send a netdev-add uevent to the new namespace */
9428 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 9429 netdev_adjacent_add_links(dev);
4e66ae2e 9430
8b41d188 9431 /* Fixup kobjects */
a1b3f594 9432 err = device_rename(&dev->dev, dev->name);
8b41d188 9433 WARN_ON(err);
ce286d32
EB
9434
9435 /* Add the device back in the hashes */
9436 list_netdevice(dev);
9437
9438 /* Notify protocols, that a new device appeared. */
9439 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9440
d90a909e
EB
9441 /*
9442 * Prevent userspace races by waiting until the network
9443 * device is fully setup before sending notifications.
9444 */
7f294054 9445 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 9446
ce286d32
EB
9447 synchronize_net();
9448 err = 0;
9449out:
9450 return err;
9451}
463d0183 9452EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 9453
f0bf90de 9454static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
9455{
9456 struct sk_buff **list_skb;
1da177e4 9457 struct sk_buff *skb;
f0bf90de 9458 unsigned int cpu;
97d8b6e3 9459 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 9460
1da177e4
LT
9461 local_irq_disable();
9462 cpu = smp_processor_id();
9463 sd = &per_cpu(softnet_data, cpu);
9464 oldsd = &per_cpu(softnet_data, oldcpu);
9465
9466 /* Find end of our completion_queue. */
9467 list_skb = &sd->completion_queue;
9468 while (*list_skb)
9469 list_skb = &(*list_skb)->next;
9470 /* Append completion queue from offline CPU. */
9471 *list_skb = oldsd->completion_queue;
9472 oldsd->completion_queue = NULL;
9473
1da177e4 9474 /* Append output queue from offline CPU. */
a9cbd588
CG
9475 if (oldsd->output_queue) {
9476 *sd->output_queue_tailp = oldsd->output_queue;
9477 sd->output_queue_tailp = oldsd->output_queue_tailp;
9478 oldsd->output_queue = NULL;
9479 oldsd->output_queue_tailp = &oldsd->output_queue;
9480 }
ac64da0b
ED
9481 /* Append NAPI poll list from offline CPU, with one exception :
9482 * process_backlog() must be called by cpu owning percpu backlog.
9483 * We properly handle process_queue & input_pkt_queue later.
9484 */
9485 while (!list_empty(&oldsd->poll_list)) {
9486 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9487 struct napi_struct,
9488 poll_list);
9489
9490 list_del_init(&napi->poll_list);
9491 if (napi->poll == process_backlog)
9492 napi->state = 0;
9493 else
9494 ____napi_schedule(sd, napi);
264524d5 9495 }
1da177e4
LT
9496
9497 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9498 local_irq_enable();
9499
773fc8f6 9500#ifdef CONFIG_RPS
9501 remsd = oldsd->rps_ipi_list;
9502 oldsd->rps_ipi_list = NULL;
9503#endif
9504 /* send out pending IPI's on offline CPU */
9505 net_rps_send_ipi(remsd);
9506
1da177e4 9507 /* Process offline CPU's input_pkt_queue */
76cc8b13 9508 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 9509 netif_rx_ni(skb);
76cc8b13 9510 input_queue_head_incr(oldsd);
fec5e652 9511 }
ac64da0b 9512 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 9513 netif_rx_ni(skb);
76cc8b13
TH
9514 input_queue_head_incr(oldsd);
9515 }
1da177e4 9516
f0bf90de 9517 return 0;
1da177e4 9518}
1da177e4 9519
7f353bf2 9520/**
b63365a2
HX
9521 * netdev_increment_features - increment feature set by one
9522 * @all: current feature set
9523 * @one: new feature set
9524 * @mask: mask feature set
7f353bf2
HX
9525 *
9526 * Computes a new feature set after adding a device with feature set
b63365a2
HX
9527 * @one to the master device with current feature set @all. Will not
9528 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 9529 */
c8f44aff
MM
9530netdev_features_t netdev_increment_features(netdev_features_t all,
9531 netdev_features_t one, netdev_features_t mask)
b63365a2 9532{
c8cd0989 9533 if (mask & NETIF_F_HW_CSUM)
a188222b 9534 mask |= NETIF_F_CSUM_MASK;
1742f183 9535 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 9536
a188222b 9537 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 9538 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 9539
1742f183 9540 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
9541 if (all & NETIF_F_HW_CSUM)
9542 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
9543
9544 return all;
9545}
b63365a2 9546EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 9547
430f03cd 9548static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
9549{
9550 int i;
9551 struct hlist_head *hash;
9552
6da2ec56 9553 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
9554 if (hash != NULL)
9555 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9556 INIT_HLIST_HEAD(&hash[i]);
9557
9558 return hash;
9559}
9560
881d966b 9561/* Initialize per network namespace state */
4665079c 9562static int __net_init netdev_init(struct net *net)
881d966b 9563{
d9f37d01 9564 BUILD_BUG_ON(GRO_HASH_BUCKETS >
ccdb5171 9565 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
d9f37d01 9566
734b6541
RM
9567 if (net != &init_net)
9568 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 9569
30d97d35
PE
9570 net->dev_name_head = netdev_create_hash();
9571 if (net->dev_name_head == NULL)
9572 goto err_name;
881d966b 9573
30d97d35
PE
9574 net->dev_index_head = netdev_create_hash();
9575 if (net->dev_index_head == NULL)
9576 goto err_idx;
881d966b
EB
9577
9578 return 0;
30d97d35
PE
9579
9580err_idx:
9581 kfree(net->dev_name_head);
9582err_name:
9583 return -ENOMEM;
881d966b
EB
9584}
9585
f0db275a
SH
9586/**
9587 * netdev_drivername - network driver for the device
9588 * @dev: network device
f0db275a
SH
9589 *
9590 * Determine network driver for device.
9591 */
3019de12 9592const char *netdev_drivername(const struct net_device *dev)
6579e57b 9593{
cf04a4c7
SH
9594 const struct device_driver *driver;
9595 const struct device *parent;
3019de12 9596 const char *empty = "";
6579e57b
AV
9597
9598 parent = dev->dev.parent;
6579e57b 9599 if (!parent)
3019de12 9600 return empty;
6579e57b
AV
9601
9602 driver = parent->driver;
9603 if (driver && driver->name)
3019de12
DM
9604 return driver->name;
9605 return empty;
6579e57b
AV
9606}
9607
6ea754eb
JP
9608static void __netdev_printk(const char *level, const struct net_device *dev,
9609 struct va_format *vaf)
256df2f3 9610{
b004ff49 9611 if (dev && dev->dev.parent) {
6ea754eb
JP
9612 dev_printk_emit(level[1] - '0',
9613 dev->dev.parent,
9614 "%s %s %s%s: %pV",
9615 dev_driver_string(dev->dev.parent),
9616 dev_name(dev->dev.parent),
9617 netdev_name(dev), netdev_reg_state(dev),
9618 vaf);
b004ff49 9619 } else if (dev) {
6ea754eb
JP
9620 printk("%s%s%s: %pV",
9621 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 9622 } else {
6ea754eb 9623 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 9624 }
256df2f3
JP
9625}
9626
6ea754eb
JP
9627void netdev_printk(const char *level, const struct net_device *dev,
9628 const char *format, ...)
256df2f3
JP
9629{
9630 struct va_format vaf;
9631 va_list args;
256df2f3
JP
9632
9633 va_start(args, format);
9634
9635 vaf.fmt = format;
9636 vaf.va = &args;
9637
6ea754eb 9638 __netdev_printk(level, dev, &vaf);
b004ff49 9639
256df2f3 9640 va_end(args);
256df2f3
JP
9641}
9642EXPORT_SYMBOL(netdev_printk);
9643
9644#define define_netdev_printk_level(func, level) \
6ea754eb 9645void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 9646{ \
256df2f3
JP
9647 struct va_format vaf; \
9648 va_list args; \
9649 \
9650 va_start(args, fmt); \
9651 \
9652 vaf.fmt = fmt; \
9653 vaf.va = &args; \
9654 \
6ea754eb 9655 __netdev_printk(level, dev, &vaf); \
b004ff49 9656 \
256df2f3 9657 va_end(args); \
256df2f3
JP
9658} \
9659EXPORT_SYMBOL(func);
9660
9661define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9662define_netdev_printk_level(netdev_alert, KERN_ALERT);
9663define_netdev_printk_level(netdev_crit, KERN_CRIT);
9664define_netdev_printk_level(netdev_err, KERN_ERR);
9665define_netdev_printk_level(netdev_warn, KERN_WARNING);
9666define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9667define_netdev_printk_level(netdev_info, KERN_INFO);
9668
4665079c 9669static void __net_exit netdev_exit(struct net *net)
881d966b
EB
9670{
9671 kfree(net->dev_name_head);
9672 kfree(net->dev_index_head);
ee21b18b
VA
9673 if (net != &init_net)
9674 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
9675}
9676
022cbae6 9677static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
9678 .init = netdev_init,
9679 .exit = netdev_exit,
9680};
9681
4665079c 9682static void __net_exit default_device_exit(struct net *net)
ce286d32 9683{
e008b5fc 9684 struct net_device *dev, *aux;
ce286d32 9685 /*
e008b5fc 9686 * Push all migratable network devices back to the
ce286d32
EB
9687 * initial network namespace
9688 */
9689 rtnl_lock();
e008b5fc 9690 for_each_netdev_safe(net, dev, aux) {
ce286d32 9691 int err;
aca51397 9692 char fb_name[IFNAMSIZ];
ce286d32
EB
9693
9694 /* Ignore unmoveable devices (i.e. loopback) */
9695 if (dev->features & NETIF_F_NETNS_LOCAL)
9696 continue;
9697
e008b5fc
EB
9698 /* Leave virtual devices for the generic cleanup */
9699 if (dev->rtnl_link_ops)
9700 continue;
d0c082ce 9701
25985edc 9702 /* Push remaining network devices to init_net */
aca51397
PE
9703 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9704 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 9705 if (err) {
7b6cd1ce
JP
9706 pr_emerg("%s: failed to move %s to init_net: %d\n",
9707 __func__, dev->name, err);
aca51397 9708 BUG();
ce286d32
EB
9709 }
9710 }
9711 rtnl_unlock();
9712}
9713
50624c93
EB
9714static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9715{
9716 /* Return with the rtnl_lock held when there are no network
9717 * devices unregistering in any network namespace in net_list.
9718 */
9719 struct net *net;
9720 bool unregistering;
ff960a73 9721 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 9722
ff960a73 9723 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 9724 for (;;) {
50624c93
EB
9725 unregistering = false;
9726 rtnl_lock();
9727 list_for_each_entry(net, net_list, exit_list) {
9728 if (net->dev_unreg_count > 0) {
9729 unregistering = true;
9730 break;
9731 }
9732 }
9733 if (!unregistering)
9734 break;
9735 __rtnl_unlock();
ff960a73
PZ
9736
9737 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 9738 }
ff960a73 9739 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
9740}
9741
04dc7f6b
EB
9742static void __net_exit default_device_exit_batch(struct list_head *net_list)
9743{
9744 /* At exit all network devices most be removed from a network
b595076a 9745 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
9746 * Do this across as many network namespaces as possible to
9747 * improve batching efficiency.
9748 */
9749 struct net_device *dev;
9750 struct net *net;
9751 LIST_HEAD(dev_kill_list);
9752
50624c93
EB
9753 /* To prevent network device cleanup code from dereferencing
9754 * loopback devices or network devices that have been freed
9755 * wait here for all pending unregistrations to complete,
9756 * before unregistring the loopback device and allowing the
9757 * network namespace be freed.
9758 *
9759 * The netdev todo list containing all network devices
9760 * unregistrations that happen in default_device_exit_batch
9761 * will run in the rtnl_unlock() at the end of
9762 * default_device_exit_batch.
9763 */
9764 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
9765 list_for_each_entry(net, net_list, exit_list) {
9766 for_each_netdev_reverse(net, dev) {
b0ab2fab 9767 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
9768 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9769 else
9770 unregister_netdevice_queue(dev, &dev_kill_list);
9771 }
9772 }
9773 unregister_netdevice_many(&dev_kill_list);
9774 rtnl_unlock();
9775}
9776
022cbae6 9777static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 9778 .exit = default_device_exit,
04dc7f6b 9779 .exit_batch = default_device_exit_batch,
ce286d32
EB
9780};
9781
1da177e4
LT
9782/*
9783 * Initialize the DEV module. At boot time this walks the device list and
9784 * unhooks any devices that fail to initialise (normally hardware not
9785 * present) and leaves us with a valid list of present and active devices.
9786 *
9787 */
9788
9789/*
9790 * This is called single threaded during boot, so no need
9791 * to take the rtnl semaphore.
9792 */
9793static int __init net_dev_init(void)
9794{
9795 int i, rc = -ENOMEM;
9796
9797 BUG_ON(!dev_boot_phase);
9798
1da177e4
LT
9799 if (dev_proc_init())
9800 goto out;
9801
8b41d188 9802 if (netdev_kobject_init())
1da177e4
LT
9803 goto out;
9804
9805 INIT_LIST_HEAD(&ptype_all);
82d8a867 9806 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
9807 INIT_LIST_HEAD(&ptype_base[i]);
9808
62532da9
VY
9809 INIT_LIST_HEAD(&offload_base);
9810
881d966b
EB
9811 if (register_pernet_subsys(&netdev_net_ops))
9812 goto out;
1da177e4
LT
9813
9814 /*
9815 * Initialise the packet receive queues.
9816 */
9817
6f912042 9818 for_each_possible_cpu(i) {
41852497 9819 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 9820 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 9821
41852497
ED
9822 INIT_WORK(flush, flush_backlog);
9823
e36fa2f7 9824 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 9825 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
9826#ifdef CONFIG_XFRM_OFFLOAD
9827 skb_queue_head_init(&sd->xfrm_backlog);
9828#endif
e36fa2f7 9829 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 9830 sd->output_queue_tailp = &sd->output_queue;
df334545 9831#ifdef CONFIG_RPS
e36fa2f7
ED
9832 sd->csd.func = rps_trigger_softirq;
9833 sd->csd.info = sd;
e36fa2f7 9834 sd->cpu = i;
1e94d72f 9835#endif
0a9627f2 9836
7c4ec749 9837 init_gro_hash(&sd->backlog);
e36fa2f7
ED
9838 sd->backlog.poll = process_backlog;
9839 sd->backlog.weight = weight_p;
1da177e4
LT
9840 }
9841
1da177e4
LT
9842 dev_boot_phase = 0;
9843
505d4f73
EB
9844 /* The loopback device is special if any other network devices
9845 * is present in a network namespace the loopback device must
9846 * be present. Since we now dynamically allocate and free the
9847 * loopback device ensure this invariant is maintained by
9848 * keeping the loopback device as the first device on the
9849 * list of network devices. Ensuring the loopback devices
9850 * is the first device that appears and the last network device
9851 * that disappears.
9852 */
9853 if (register_pernet_device(&loopback_net_ops))
9854 goto out;
9855
9856 if (register_pernet_device(&default_device_ops))
9857 goto out;
9858
962cf36c
CM
9859 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9860 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 9861
f0bf90de
SAS
9862 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9863 NULL, dev_cpu_dead);
9864 WARN_ON(rc < 0);
1da177e4
LT
9865 rc = 0;
9866out:
9867 return rc;
9868}
9869
9870subsys_initcall(net_dev_init);