bpf: Fix tail_call_reachable rejection for interpreter when jit failed
[linux-2.6-block.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
11d6011c 82#include <linux/rwsem.h>
1da177e4
LT
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
0187bdfb 92#include <linux/ethtool.h>
1da177e4 93#include <linux/skbuff.h>
29863d41 94#include <linux/kthread.h>
a7862b45 95#include <linux/bpf.h>
b5cdae32 96#include <linux/bpf_trace.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4 98#include <net/sock.h>
02d62e86 99#include <net/busy_poll.h>
1da177e4 100#include <linux/rtnetlink.h>
1da177e4 101#include <linux/stat.h>
b14a9fc4 102#include <net/dsa.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
04f00ab2 105#include <net/gro.h>
1da177e4 106#include <net/pkt_sched.h>
87d83093 107#include <net/pkt_cls.h>
1da177e4 108#include <net/checksum.h>
44540960 109#include <net/xfrm.h>
1da177e4
LT
110#include <linux/highmem.h>
111#include <linux/init.h>
1da177e4 112#include <linux/module.h>
1da177e4
LT
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
1da177e4 116#include <net/iw_handler.h>
1da177e4 117#include <asm/current.h>
5bdb9886 118#include <linux/audit.h>
db217334 119#include <linux/dmaengine.h>
f6a78bfc 120#include <linux/err.h>
c7fa9d18 121#include <linux/ctype.h>
723e98b7 122#include <linux/if_arp.h>
6de329e2 123#include <linux/if_vlan.h>
8f0f2223 124#include <linux/ip.h>
ad55dcaf 125#include <net/ip.h>
25cd9ba0 126#include <net/mpls.h>
8f0f2223
DM
127#include <linux/ipv6.h>
128#include <linux/in.h>
b6b2fed1
DM
129#include <linux/jhash.h>
130#include <linux/random.h>
9cbc1cb8 131#include <trace/events/napi.h>
cf66ba58 132#include <trace/events/net.h>
07dc22e7 133#include <trace/events/skb.h>
caeda9b9 134#include <linux/inetdevice.h>
c445477d 135#include <linux/cpu_rmap.h>
c5905afb 136#include <linux/static_key.h>
af12fa6e 137#include <linux/hashtable.h>
60877a32 138#include <linux/vmalloc.h>
529d0489 139#include <linux/if_macvlan.h>
e7fd2885 140#include <linux/errqueue.h>
3b47d303 141#include <linux/hrtimer.h>
357b6cc5 142#include <linux/netfilter_ingress.h>
40e4e713 143#include <linux/crash_dump.h>
b72b5bf6 144#include <linux/sctp.h>
ae847f40 145#include <net/udp_tunnel.h>
6621dd29 146#include <linux/net_namespace.h>
aaa5d90b 147#include <linux/indirect_call_wrapper.h>
af3836df 148#include <net/devlink.h>
bd869245 149#include <linux/pm_runtime.h>
3744741a 150#include <linux/prandom.h>
127d7355 151#include <linux/once_lite.h>
1da177e4 152
342709ef
PE
153#include "net-sysfs.h"
154
d565b0a1
HX
155#define MAX_GRO_SKBS 8
156
5d38a079
HX
157/* This should be increased if a protocol with a bigger head is added. */
158#define GRO_MAX_HEAD (MAX_HEADER + 128)
159
1da177e4 160static DEFINE_SPINLOCK(ptype_lock);
62532da9 161static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
162struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
163struct list_head ptype_all __read_mostly; /* Taps */
62532da9 164static struct list_head offload_base __read_mostly;
1da177e4 165
ae78dbfa 166static int netif_rx_internal(struct sk_buff *skb);
54951194 167static int call_netdevice_notifiers_info(unsigned long val,
54951194 168 struct netdev_notifier_info *info);
26372605
PM
169static int call_netdevice_notifiers_extack(unsigned long val,
170 struct net_device *dev,
171 struct netlink_ext_ack *extack);
90b602f8 172static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 173
1da177e4 174/*
7562f876 175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
176 * semaphore.
177 *
c6d14c84 178 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
7562f876 181 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
1da177e4 193DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
194EXPORT_SYMBOL(dev_base_lock);
195
6c557001
FW
196static DEFINE_MUTEX(ifalias_mutex);
197
af12fa6e
ET
198/* protects napi_hash addition/deletion and napi_gen_id */
199static DEFINE_SPINLOCK(napi_hash_lock);
200
52bd2d62 201static unsigned int napi_gen_id = NR_CPUS;
6180d9de 202static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 203
11d6011c 204static DECLARE_RWSEM(devnet_rename_sem);
c91f6df2 205
4e985ada
TG
206static inline void dev_base_seq_inc(struct net *net)
207{
643aa9cb 208 while (++net->dev_base_seq == 0)
209 ;
4e985ada
TG
210}
211
881d966b 212static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 213{
8387ff25 214 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 215
08e9897d 216 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
217}
218
881d966b 219static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 220{
7c28bd0b 221 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
222}
223
e36fa2f7 224static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
225{
226#ifdef CONFIG_RPS
e36fa2f7 227 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
228#endif
229}
230
e36fa2f7 231static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
232{
233#ifdef CONFIG_RPS
e36fa2f7 234 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
235#endif
236}
237
ff927412
JP
238static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
239 const char *name)
240{
241 struct netdev_name_node *name_node;
242
243 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
244 if (!name_node)
245 return NULL;
246 INIT_HLIST_NODE(&name_node->hlist);
247 name_node->dev = dev;
248 name_node->name = name;
249 return name_node;
250}
251
252static struct netdev_name_node *
253netdev_name_node_head_alloc(struct net_device *dev)
254{
36fbf1e5
JP
255 struct netdev_name_node *name_node;
256
257 name_node = netdev_name_node_alloc(dev, dev->name);
258 if (!name_node)
259 return NULL;
260 INIT_LIST_HEAD(&name_node->list);
261 return name_node;
ff927412
JP
262}
263
264static void netdev_name_node_free(struct netdev_name_node *name_node)
265{
266 kfree(name_node);
267}
268
269static void netdev_name_node_add(struct net *net,
270 struct netdev_name_node *name_node)
271{
272 hlist_add_head_rcu(&name_node->hlist,
273 dev_name_hash(net, name_node->name));
274}
275
276static void netdev_name_node_del(struct netdev_name_node *name_node)
277{
278 hlist_del_rcu(&name_node->hlist);
279}
280
281static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
282 const char *name)
283{
284 struct hlist_head *head = dev_name_hash(net, name);
285 struct netdev_name_node *name_node;
286
287 hlist_for_each_entry(name_node, head, hlist)
288 if (!strcmp(name_node->name, name))
289 return name_node;
290 return NULL;
291}
292
293static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
294 const char *name)
295{
296 struct hlist_head *head = dev_name_hash(net, name);
297 struct netdev_name_node *name_node;
298
299 hlist_for_each_entry_rcu(name_node, head, hlist)
300 if (!strcmp(name_node->name, name))
301 return name_node;
302 return NULL;
303}
304
36fbf1e5
JP
305int netdev_name_node_alt_create(struct net_device *dev, const char *name)
306{
307 struct netdev_name_node *name_node;
308 struct net *net = dev_net(dev);
309
310 name_node = netdev_name_node_lookup(net, name);
311 if (name_node)
312 return -EEXIST;
313 name_node = netdev_name_node_alloc(dev, name);
314 if (!name_node)
315 return -ENOMEM;
316 netdev_name_node_add(net, name_node);
317 /* The node that holds dev->name acts as a head of per-device list. */
318 list_add_tail(&name_node->list, &dev->name_node->list);
319
320 return 0;
321}
322EXPORT_SYMBOL(netdev_name_node_alt_create);
323
324static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
325{
326 list_del(&name_node->list);
327 netdev_name_node_del(name_node);
328 kfree(name_node->name);
329 netdev_name_node_free(name_node);
330}
331
332int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
333{
334 struct netdev_name_node *name_node;
335 struct net *net = dev_net(dev);
336
337 name_node = netdev_name_node_lookup(net, name);
338 if (!name_node)
339 return -ENOENT;
e08ad805
ED
340 /* lookup might have found our primary name or a name belonging
341 * to another device.
342 */
343 if (name_node == dev->name_node || name_node->dev != dev)
344 return -EINVAL;
345
36fbf1e5
JP
346 __netdev_name_node_alt_destroy(name_node);
347
348 return 0;
349}
350EXPORT_SYMBOL(netdev_name_node_alt_destroy);
351
352static void netdev_name_node_alt_flush(struct net_device *dev)
353{
354 struct netdev_name_node *name_node, *tmp;
355
356 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
357 __netdev_name_node_alt_destroy(name_node);
358}
359
ce286d32 360/* Device list insertion */
53759be9 361static void list_netdevice(struct net_device *dev)
ce286d32 362{
c346dca1 363 struct net *net = dev_net(dev);
ce286d32
EB
364
365 ASSERT_RTNL();
366
367 write_lock_bh(&dev_base_lock);
c6d14c84 368 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 369 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
370 hlist_add_head_rcu(&dev->index_hlist,
371 dev_index_hash(net, dev->ifindex));
ce286d32 372 write_unlock_bh(&dev_base_lock);
4e985ada
TG
373
374 dev_base_seq_inc(net);
ce286d32
EB
375}
376
fb699dfd
ED
377/* Device list removal
378 * caller must respect a RCU grace period before freeing/reusing dev
379 */
ce286d32
EB
380static void unlist_netdevice(struct net_device *dev)
381{
382 ASSERT_RTNL();
383
384 /* Unlink dev from the device chain */
385 write_lock_bh(&dev_base_lock);
c6d14c84 386 list_del_rcu(&dev->dev_list);
ff927412 387 netdev_name_node_del(dev->name_node);
fb699dfd 388 hlist_del_rcu(&dev->index_hlist);
ce286d32 389 write_unlock_bh(&dev_base_lock);
4e985ada
TG
390
391 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
392}
393
1da177e4
LT
394/*
395 * Our notifier list
396 */
397
f07d5b94 398static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
399
400/*
401 * Device drivers call our routines to queue packets here. We empty the
402 * queue in the local softnet handler.
403 */
bea3348e 404
9958da05 405DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 406EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 407
1a33e10e
CW
408#ifdef CONFIG_LOCKDEP
409/*
410 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
411 * according to dev->type
412 */
413static const unsigned short netdev_lock_type[] = {
414 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
415 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
416 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
417 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
418 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
419 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
420 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
421 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
422 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
423 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
424 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
425 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
426 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
427 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
428 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
429
430static const char *const netdev_lock_name[] = {
431 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
432 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
433 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
434 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
435 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
436 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
437 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
438 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
439 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
440 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
441 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
442 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
443 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
444 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
445 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
446
447static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
845e0ebb 448static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
1a33e10e
CW
449
450static inline unsigned short netdev_lock_pos(unsigned short dev_type)
451{
452 int i;
453
454 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
455 if (netdev_lock_type[i] == dev_type)
456 return i;
457 /* the last key is used by default */
458 return ARRAY_SIZE(netdev_lock_type) - 1;
459}
460
461static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
462 unsigned short dev_type)
463{
464 int i;
465
466 i = netdev_lock_pos(dev_type);
467 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
468 netdev_lock_name[i]);
469}
845e0ebb
CW
470
471static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
472{
473 int i;
474
475 i = netdev_lock_pos(dev->type);
476 lockdep_set_class_and_name(&dev->addr_list_lock,
477 &netdev_addr_lock_key[i],
478 netdev_lock_name[i]);
479}
1a33e10e
CW
480#else
481static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 unsigned short dev_type)
483{
484}
845e0ebb
CW
485
486static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
487{
488}
1a33e10e
CW
489#endif
490
1da177e4 491/*******************************************************************************
eb13da1a 492 *
493 * Protocol management and registration routines
494 *
495 *******************************************************************************/
1da177e4 496
1da177e4 497
1da177e4
LT
498/*
499 * Add a protocol ID to the list. Now that the input handler is
500 * smarter we can dispense with all the messy stuff that used to be
501 * here.
502 *
503 * BEWARE!!! Protocol handlers, mangling input packets,
504 * MUST BE last in hash buckets and checking protocol handlers
505 * MUST start from promiscuous ptype_all chain in net_bh.
506 * It is true now, do not change it.
507 * Explanation follows: if protocol handler, mangling packet, will
508 * be the first on list, it is not able to sense, that packet
509 * is cloned and should be copied-on-write, so that it will
510 * change it and subsequent readers will get broken packet.
511 * --ANK (980803)
512 */
513
c07b68e8
ED
514static inline struct list_head *ptype_head(const struct packet_type *pt)
515{
516 if (pt->type == htons(ETH_P_ALL))
7866a621 517 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 518 else
7866a621
SN
519 return pt->dev ? &pt->dev->ptype_specific :
520 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
521}
522
1da177e4
LT
523/**
524 * dev_add_pack - add packet handler
525 * @pt: packet type declaration
526 *
527 * Add a protocol handler to the networking stack. The passed &packet_type
528 * is linked into kernel lists and may not be freed until it has been
529 * removed from the kernel lists.
530 *
4ec93edb 531 * This call does not sleep therefore it can not
1da177e4
LT
532 * guarantee all CPU's that are in middle of receiving packets
533 * will see the new packet type (until the next received packet).
534 */
535
536void dev_add_pack(struct packet_type *pt)
537{
c07b68e8 538 struct list_head *head = ptype_head(pt);
1da177e4 539
c07b68e8
ED
540 spin_lock(&ptype_lock);
541 list_add_rcu(&pt->list, head);
542 spin_unlock(&ptype_lock);
1da177e4 543}
d1b19dff 544EXPORT_SYMBOL(dev_add_pack);
1da177e4 545
1da177e4
LT
546/**
547 * __dev_remove_pack - remove packet handler
548 * @pt: packet type declaration
549 *
550 * Remove a protocol handler that was previously added to the kernel
551 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
552 * from the kernel lists and can be freed or reused once this function
4ec93edb 553 * returns.
1da177e4
LT
554 *
555 * The packet type might still be in use by receivers
556 * and must not be freed until after all the CPU's have gone
557 * through a quiescent state.
558 */
559void __dev_remove_pack(struct packet_type *pt)
560{
c07b68e8 561 struct list_head *head = ptype_head(pt);
1da177e4
LT
562 struct packet_type *pt1;
563
c07b68e8 564 spin_lock(&ptype_lock);
1da177e4
LT
565
566 list_for_each_entry(pt1, head, list) {
567 if (pt == pt1) {
568 list_del_rcu(&pt->list);
569 goto out;
570 }
571 }
572
7b6cd1ce 573 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 574out:
c07b68e8 575 spin_unlock(&ptype_lock);
1da177e4 576}
d1b19dff
ED
577EXPORT_SYMBOL(__dev_remove_pack);
578
1da177e4
LT
579/**
580 * dev_remove_pack - remove packet handler
581 * @pt: packet type declaration
582 *
583 * Remove a protocol handler that was previously added to the kernel
584 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
585 * from the kernel lists and can be freed or reused once this function
586 * returns.
587 *
588 * This call sleeps to guarantee that no CPU is looking at the packet
589 * type after return.
590 */
591void dev_remove_pack(struct packet_type *pt)
592{
593 __dev_remove_pack(pt);
4ec93edb 594
1da177e4
LT
595 synchronize_net();
596}
d1b19dff 597EXPORT_SYMBOL(dev_remove_pack);
1da177e4 598
62532da9
VY
599
600/**
601 * dev_add_offload - register offload handlers
602 * @po: protocol offload declaration
603 *
604 * Add protocol offload handlers to the networking stack. The passed
605 * &proto_offload is linked into kernel lists and may not be freed until
606 * it has been removed from the kernel lists.
607 *
608 * This call does not sleep therefore it can not
609 * guarantee all CPU's that are in middle of receiving packets
610 * will see the new offload handlers (until the next received packet).
611 */
612void dev_add_offload(struct packet_offload *po)
613{
bdef7de4 614 struct packet_offload *elem;
62532da9
VY
615
616 spin_lock(&offload_lock);
bdef7de4
DM
617 list_for_each_entry(elem, &offload_base, list) {
618 if (po->priority < elem->priority)
619 break;
620 }
621 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
622 spin_unlock(&offload_lock);
623}
624EXPORT_SYMBOL(dev_add_offload);
625
626/**
627 * __dev_remove_offload - remove offload handler
628 * @po: packet offload declaration
629 *
630 * Remove a protocol offload handler that was previously added to the
631 * kernel offload handlers by dev_add_offload(). The passed &offload_type
632 * is removed from the kernel lists and can be freed or reused once this
633 * function returns.
634 *
635 * The packet type might still be in use by receivers
636 * and must not be freed until after all the CPU's have gone
637 * through a quiescent state.
638 */
1d143d9f 639static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
640{
641 struct list_head *head = &offload_base;
642 struct packet_offload *po1;
643
c53aa505 644 spin_lock(&offload_lock);
62532da9
VY
645
646 list_for_each_entry(po1, head, list) {
647 if (po == po1) {
648 list_del_rcu(&po->list);
649 goto out;
650 }
651 }
652
653 pr_warn("dev_remove_offload: %p not found\n", po);
654out:
c53aa505 655 spin_unlock(&offload_lock);
62532da9 656}
62532da9
VY
657
658/**
659 * dev_remove_offload - remove packet offload handler
660 * @po: packet offload declaration
661 *
662 * Remove a packet offload handler that was previously added to the kernel
663 * offload handlers by dev_add_offload(). The passed &offload_type is
664 * removed from the kernel lists and can be freed or reused once this
665 * function returns.
666 *
667 * This call sleeps to guarantee that no CPU is looking at the packet
668 * type after return.
669 */
670void dev_remove_offload(struct packet_offload *po)
671{
672 __dev_remove_offload(po);
673
674 synchronize_net();
675}
676EXPORT_SYMBOL(dev_remove_offload);
677
1da177e4 678/******************************************************************************
eb13da1a 679 *
680 * Device Boot-time Settings Routines
681 *
682 ******************************************************************************/
1da177e4
LT
683
684/* Boot time configuration table */
685static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
686
687/**
688 * netdev_boot_setup_add - add new setup entry
689 * @name: name of the device
690 * @map: configured settings for the device
691 *
692 * Adds new setup entry to the dev_boot_setup list. The function
693 * returns 0 on error and 1 on success. This is a generic routine to
694 * all netdevices.
695 */
696static int netdev_boot_setup_add(char *name, struct ifmap *map)
697{
698 struct netdev_boot_setup *s;
699 int i;
700
701 s = dev_boot_setup;
702 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
703 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
704 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 705 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
706 memcpy(&s[i].map, map, sizeof(s[i].map));
707 break;
708 }
709 }
710
711 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
712}
713
714/**
722c9a0c 715 * netdev_boot_setup_check - check boot time settings
716 * @dev: the netdevice
1da177e4 717 *
722c9a0c 718 * Check boot time settings for the device.
719 * The found settings are set for the device to be used
720 * later in the device probing.
721 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
722 */
723int netdev_boot_setup_check(struct net_device *dev)
724{
725 struct netdev_boot_setup *s = dev_boot_setup;
726 int i;
727
728 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
729 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 730 !strcmp(dev->name, s[i].name)) {
722c9a0c 731 dev->irq = s[i].map.irq;
732 dev->base_addr = s[i].map.base_addr;
733 dev->mem_start = s[i].map.mem_start;
734 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
735 return 1;
736 }
737 }
738 return 0;
739}
d1b19dff 740EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
741
742
743/**
722c9a0c 744 * netdev_boot_base - get address from boot time settings
745 * @prefix: prefix for network device
746 * @unit: id for network device
747 *
748 * Check boot time settings for the base address of device.
749 * The found settings are set for the device to be used
750 * later in the device probing.
751 * Returns 0 if no settings found.
1da177e4
LT
752 */
753unsigned long netdev_boot_base(const char *prefix, int unit)
754{
755 const struct netdev_boot_setup *s = dev_boot_setup;
756 char name[IFNAMSIZ];
757 int i;
758
759 sprintf(name, "%s%d", prefix, unit);
760
761 /*
762 * If device already registered then return base of 1
763 * to indicate not to probe for this interface
764 */
881d966b 765 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
766 return 1;
767
768 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
769 if (!strcmp(name, s[i].name))
770 return s[i].map.base_addr;
771 return 0;
772}
773
774/*
775 * Saves at boot time configured settings for any netdevice.
776 */
777int __init netdev_boot_setup(char *str)
778{
779 int ints[5];
780 struct ifmap map;
781
782 str = get_options(str, ARRAY_SIZE(ints), ints);
783 if (!str || !*str)
784 return 0;
785
786 /* Save settings */
787 memset(&map, 0, sizeof(map));
788 if (ints[0] > 0)
789 map.irq = ints[1];
790 if (ints[0] > 1)
791 map.base_addr = ints[2];
792 if (ints[0] > 2)
793 map.mem_start = ints[3];
794 if (ints[0] > 3)
795 map.mem_end = ints[4];
796
797 /* Add new entry to the list */
798 return netdev_boot_setup_add(str, &map);
799}
800
801__setup("netdev=", netdev_boot_setup);
802
803/*******************************************************************************
eb13da1a 804 *
805 * Device Interface Subroutines
806 *
807 *******************************************************************************/
1da177e4 808
a54acb3a
ND
809/**
810 * dev_get_iflink - get 'iflink' value of a interface
811 * @dev: targeted interface
812 *
813 * Indicates the ifindex the interface is linked to.
814 * Physical interfaces have the same 'ifindex' and 'iflink' values.
815 */
816
817int dev_get_iflink(const struct net_device *dev)
818{
819 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
820 return dev->netdev_ops->ndo_get_iflink(dev);
821
7a66bbc9 822 return dev->ifindex;
a54acb3a
ND
823}
824EXPORT_SYMBOL(dev_get_iflink);
825
fc4099f1
PS
826/**
827 * dev_fill_metadata_dst - Retrieve tunnel egress information.
828 * @dev: targeted interface
829 * @skb: The packet.
830 *
831 * For better visibility of tunnel traffic OVS needs to retrieve
832 * egress tunnel information for a packet. Following API allows
833 * user to get this info.
834 */
835int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
836{
837 struct ip_tunnel_info *info;
838
839 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
840 return -EINVAL;
841
842 info = skb_tunnel_info_unclone(skb);
843 if (!info)
844 return -ENOMEM;
845 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
846 return -EINVAL;
847
848 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
849}
850EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
851
ddb94eaf
PNA
852static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
853{
854 int k = stack->num_paths++;
855
856 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
857 return NULL;
858
859 return &stack->path[k];
860}
861
862int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
863 struct net_device_path_stack *stack)
864{
865 const struct net_device *last_dev;
866 struct net_device_path_ctx ctx = {
867 .dev = dev,
868 .daddr = daddr,
869 };
870 struct net_device_path *path;
871 int ret = 0;
872
873 stack->num_paths = 0;
874 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
875 last_dev = ctx.dev;
876 path = dev_fwd_path(stack);
877 if (!path)
878 return -1;
879
880 memset(path, 0, sizeof(struct net_device_path));
881 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
882 if (ret < 0)
883 return -1;
884
885 if (WARN_ON_ONCE(last_dev == ctx.dev))
886 return -1;
887 }
888 path = dev_fwd_path(stack);
889 if (!path)
890 return -1;
891 path->type = DEV_PATH_ETHERNET;
892 path->dev = ctx.dev;
893
894 return ret;
895}
896EXPORT_SYMBOL_GPL(dev_fill_forward_path);
897
1da177e4
LT
898/**
899 * __dev_get_by_name - find a device by its name
c4ea43c5 900 * @net: the applicable net namespace
1da177e4
LT
901 * @name: name to find
902 *
903 * Find an interface by name. Must be called under RTNL semaphore
904 * or @dev_base_lock. If the name is found a pointer to the device
905 * is returned. If the name is not found then %NULL is returned. The
906 * reference counters are not incremented so the caller must be
907 * careful with locks.
908 */
909
881d966b 910struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 911{
ff927412 912 struct netdev_name_node *node_name;
1da177e4 913
ff927412
JP
914 node_name = netdev_name_node_lookup(net, name);
915 return node_name ? node_name->dev : NULL;
1da177e4 916}
d1b19dff 917EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 918
72c9528b 919/**
722c9a0c 920 * dev_get_by_name_rcu - find a device by its name
921 * @net: the applicable net namespace
922 * @name: name to find
923 *
924 * Find an interface by name.
925 * If the name is found a pointer to the device is returned.
926 * If the name is not found then %NULL is returned.
927 * The reference counters are not incremented so the caller must be
928 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
929 */
930
931struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
932{
ff927412 933 struct netdev_name_node *node_name;
72c9528b 934
ff927412
JP
935 node_name = netdev_name_node_lookup_rcu(net, name);
936 return node_name ? node_name->dev : NULL;
72c9528b
ED
937}
938EXPORT_SYMBOL(dev_get_by_name_rcu);
939
1da177e4
LT
940/**
941 * dev_get_by_name - find a device by its name
c4ea43c5 942 * @net: the applicable net namespace
1da177e4
LT
943 * @name: name to find
944 *
945 * Find an interface by name. This can be called from any
946 * context and does its own locking. The returned handle has
947 * the usage count incremented and the caller must use dev_put() to
948 * release it when it is no longer needed. %NULL is returned if no
949 * matching device is found.
950 */
951
881d966b 952struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
953{
954 struct net_device *dev;
955
72c9528b
ED
956 rcu_read_lock();
957 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
958 if (dev)
959 dev_hold(dev);
72c9528b 960 rcu_read_unlock();
1da177e4
LT
961 return dev;
962}
d1b19dff 963EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
964
965/**
966 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 967 * @net: the applicable net namespace
1da177e4
LT
968 * @ifindex: index of device
969 *
970 * Search for an interface by index. Returns %NULL if the device
971 * is not found or a pointer to the device. The device has not
972 * had its reference counter increased so the caller must be careful
973 * about locking. The caller must hold either the RTNL semaphore
974 * or @dev_base_lock.
975 */
976
881d966b 977struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 978{
0bd8d536
ED
979 struct net_device *dev;
980 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 981
b67bfe0d 982 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
983 if (dev->ifindex == ifindex)
984 return dev;
0bd8d536 985
1da177e4
LT
986 return NULL;
987}
d1b19dff 988EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 989
fb699dfd
ED
990/**
991 * dev_get_by_index_rcu - find a device by its ifindex
992 * @net: the applicable net namespace
993 * @ifindex: index of device
994 *
995 * Search for an interface by index. Returns %NULL if the device
996 * is not found or a pointer to the device. The device has not
997 * had its reference counter increased so the caller must be careful
998 * about locking. The caller must hold RCU lock.
999 */
1000
1001struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1002{
fb699dfd
ED
1003 struct net_device *dev;
1004 struct hlist_head *head = dev_index_hash(net, ifindex);
1005
b67bfe0d 1006 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
1007 if (dev->ifindex == ifindex)
1008 return dev;
1009
1010 return NULL;
1011}
1012EXPORT_SYMBOL(dev_get_by_index_rcu);
1013
1da177e4
LT
1014
1015/**
1016 * dev_get_by_index - find a device by its ifindex
c4ea43c5 1017 * @net: the applicable net namespace
1da177e4
LT
1018 * @ifindex: index of device
1019 *
1020 * Search for an interface by index. Returns NULL if the device
1021 * is not found or a pointer to the device. The device returned has
1022 * had a reference added and the pointer is safe until the user calls
1023 * dev_put to indicate they have finished with it.
1024 */
1025
881d966b 1026struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
1027{
1028 struct net_device *dev;
1029
fb699dfd
ED
1030 rcu_read_lock();
1031 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
1032 if (dev)
1033 dev_hold(dev);
fb699dfd 1034 rcu_read_unlock();
1da177e4
LT
1035 return dev;
1036}
d1b19dff 1037EXPORT_SYMBOL(dev_get_by_index);
1da177e4 1038
90b602f8
ML
1039/**
1040 * dev_get_by_napi_id - find a device by napi_id
1041 * @napi_id: ID of the NAPI struct
1042 *
1043 * Search for an interface by NAPI ID. Returns %NULL if the device
1044 * is not found or a pointer to the device. The device has not had
1045 * its reference counter increased so the caller must be careful
1046 * about locking. The caller must hold RCU lock.
1047 */
1048
1049struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1050{
1051 struct napi_struct *napi;
1052
1053 WARN_ON_ONCE(!rcu_read_lock_held());
1054
1055 if (napi_id < MIN_NAPI_ID)
1056 return NULL;
1057
1058 napi = napi_by_id(napi_id);
1059
1060 return napi ? napi->dev : NULL;
1061}
1062EXPORT_SYMBOL(dev_get_by_napi_id);
1063
5dbe7c17
NS
1064/**
1065 * netdev_get_name - get a netdevice name, knowing its ifindex.
1066 * @net: network namespace
1067 * @name: a pointer to the buffer where the name will be stored.
1068 * @ifindex: the ifindex of the interface to get the name from.
5dbe7c17
NS
1069 */
1070int netdev_get_name(struct net *net, char *name, int ifindex)
1071{
1072 struct net_device *dev;
11d6011c 1073 int ret;
5dbe7c17 1074
11d6011c 1075 down_read(&devnet_rename_sem);
5dbe7c17 1076 rcu_read_lock();
11d6011c 1077
5dbe7c17
NS
1078 dev = dev_get_by_index_rcu(net, ifindex);
1079 if (!dev) {
11d6011c
AD
1080 ret = -ENODEV;
1081 goto out;
5dbe7c17
NS
1082 }
1083
1084 strcpy(name, dev->name);
5dbe7c17 1085
11d6011c
AD
1086 ret = 0;
1087out:
1088 rcu_read_unlock();
1089 up_read(&devnet_rename_sem);
1090 return ret;
5dbe7c17
NS
1091}
1092
1da177e4 1093/**
941666c2 1094 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 1095 * @net: the applicable net namespace
1da177e4
LT
1096 * @type: media type of device
1097 * @ha: hardware address
1098 *
1099 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
1100 * is not found or a pointer to the device.
1101 * The caller must hold RCU or RTNL.
941666c2 1102 * The returned device has not had its ref count increased
1da177e4
LT
1103 * and the caller must therefore be careful about locking
1104 *
1da177e4
LT
1105 */
1106
941666c2
ED
1107struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1108 const char *ha)
1da177e4
LT
1109{
1110 struct net_device *dev;
1111
941666c2 1112 for_each_netdev_rcu(net, dev)
1da177e4
LT
1113 if (dev->type == type &&
1114 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
1115 return dev;
1116
1117 return NULL;
1da177e4 1118}
941666c2 1119EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 1120
881d966b 1121struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 1122{
99fe3c39 1123 struct net_device *dev, *ret = NULL;
4e9cac2b 1124
99fe3c39
ED
1125 rcu_read_lock();
1126 for_each_netdev_rcu(net, dev)
1127 if (dev->type == type) {
1128 dev_hold(dev);
1129 ret = dev;
1130 break;
1131 }
1132 rcu_read_unlock();
1133 return ret;
1da177e4 1134}
1da177e4
LT
1135EXPORT_SYMBOL(dev_getfirstbyhwtype);
1136
1137/**
6c555490 1138 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1139 * @net: the applicable net namespace
1da177e4
LT
1140 * @if_flags: IFF_* values
1141 * @mask: bitmask of bits in if_flags to check
1142 *
1143 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1144 * is not found or a pointer to the device. Must be called inside
6c555490 1145 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1146 */
1147
6c555490
WC
1148struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1149 unsigned short mask)
1da177e4 1150{
7562f876 1151 struct net_device *dev, *ret;
1da177e4 1152
6c555490
WC
1153 ASSERT_RTNL();
1154
7562f876 1155 ret = NULL;
6c555490 1156 for_each_netdev(net, dev) {
1da177e4 1157 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1158 ret = dev;
1da177e4
LT
1159 break;
1160 }
1161 }
7562f876 1162 return ret;
1da177e4 1163}
6c555490 1164EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1165
1166/**
1167 * dev_valid_name - check if name is okay for network device
1168 * @name: name string
1169 *
1170 * Network device names need to be valid file names to
4250b75b 1171 * allow sysfs to work. We also disallow any kind of
c7fa9d18 1172 * whitespace.
1da177e4 1173 */
95f050bf 1174bool dev_valid_name(const char *name)
1da177e4 1175{
c7fa9d18 1176 if (*name == '\0')
95f050bf 1177 return false;
a9d48205 1178 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1179 return false;
c7fa9d18 1180 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1181 return false;
c7fa9d18
DM
1182
1183 while (*name) {
a4176a93 1184 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1185 return false;
c7fa9d18
DM
1186 name++;
1187 }
95f050bf 1188 return true;
1da177e4 1189}
d1b19dff 1190EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1191
1192/**
b267b179
EB
1193 * __dev_alloc_name - allocate a name for a device
1194 * @net: network namespace to allocate the device name in
1da177e4 1195 * @name: name format string
b267b179 1196 * @buf: scratch buffer and result name string
1da177e4
LT
1197 *
1198 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1199 * id. It scans list of devices to build up a free map, then chooses
1200 * the first empty slot. The caller must hold the dev_base or rtnl lock
1201 * while allocating the name and adding the device in order to avoid
1202 * duplicates.
1203 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1204 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1205 */
1206
b267b179 1207static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1208{
1209 int i = 0;
1da177e4
LT
1210 const char *p;
1211 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1212 unsigned long *inuse;
1da177e4
LT
1213 struct net_device *d;
1214
93809105
RV
1215 if (!dev_valid_name(name))
1216 return -EINVAL;
1217
51f299dd 1218 p = strchr(name, '%');
1da177e4
LT
1219 if (p) {
1220 /*
1221 * Verify the string as this thing may have come from
1222 * the user. There must be either one "%d" and no other "%"
1223 * characters.
1224 */
1225 if (p[1] != 'd' || strchr(p + 2, '%'))
1226 return -EINVAL;
1227
1228 /* Use one page as a bit array of possible slots */
cfcabdcc 1229 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1230 if (!inuse)
1231 return -ENOMEM;
1232
881d966b 1233 for_each_netdev(net, d) {
6c015a22
JB
1234 struct netdev_name_node *name_node;
1235 list_for_each_entry(name_node, &d->name_node->list, list) {
1236 if (!sscanf(name_node->name, name, &i))
1237 continue;
1238 if (i < 0 || i >= max_netdevices)
1239 continue;
1240
1241 /* avoid cases where sscanf is not exact inverse of printf */
1242 snprintf(buf, IFNAMSIZ, name, i);
1243 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1244 set_bit(i, inuse);
1245 }
1da177e4
LT
1246 if (!sscanf(d->name, name, &i))
1247 continue;
1248 if (i < 0 || i >= max_netdevices)
1249 continue;
1250
1251 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1252 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1253 if (!strncmp(buf, d->name, IFNAMSIZ))
1254 set_bit(i, inuse);
1255 }
1256
1257 i = find_first_zero_bit(inuse, max_netdevices);
1258 free_page((unsigned long) inuse);
1259 }
1260
6224abda 1261 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1262 if (!__dev_get_by_name(net, buf))
1da177e4 1263 return i;
1da177e4
LT
1264
1265 /* It is possible to run out of possible slots
1266 * when the name is long and there isn't enough space left
1267 * for the digits, or if all bits are used.
1268 */
029b6d14 1269 return -ENFILE;
1da177e4
LT
1270}
1271
2c88b855
RV
1272static int dev_alloc_name_ns(struct net *net,
1273 struct net_device *dev,
1274 const char *name)
1275{
1276 char buf[IFNAMSIZ];
1277 int ret;
1278
c46d7642 1279 BUG_ON(!net);
2c88b855
RV
1280 ret = __dev_alloc_name(net, name, buf);
1281 if (ret >= 0)
1282 strlcpy(dev->name, buf, IFNAMSIZ);
1283 return ret;
1da177e4
LT
1284}
1285
b267b179
EB
1286/**
1287 * dev_alloc_name - allocate a name for a device
1288 * @dev: device
1289 * @name: name format string
1290 *
1291 * Passed a format string - eg "lt%d" it will try and find a suitable
1292 * id. It scans list of devices to build up a free map, then chooses
1293 * the first empty slot. The caller must hold the dev_base or rtnl lock
1294 * while allocating the name and adding the device in order to avoid
1295 * duplicates.
1296 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1297 * Returns the number of the unit assigned or a negative errno code.
1298 */
1299
1300int dev_alloc_name(struct net_device *dev, const char *name)
1301{
c46d7642 1302 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1303}
d1b19dff 1304EXPORT_SYMBOL(dev_alloc_name);
b267b179 1305
bacb7e18
ED
1306static int dev_get_valid_name(struct net *net, struct net_device *dev,
1307 const char *name)
828de4f6 1308{
55a5ec9b
DM
1309 BUG_ON(!net);
1310
1311 if (!dev_valid_name(name))
1312 return -EINVAL;
1313
1314 if (strchr(name, '%'))
1315 return dev_alloc_name_ns(net, dev, name);
1316 else if (__dev_get_by_name(net, name))
1317 return -EEXIST;
1318 else if (dev->name != name)
1319 strlcpy(dev->name, name, IFNAMSIZ);
1320
1321 return 0;
d9031024 1322}
1da177e4
LT
1323
1324/**
1325 * dev_change_name - change name of a device
1326 * @dev: device
1327 * @newname: name (or format string) must be at least IFNAMSIZ
1328 *
1329 * Change name of a device, can pass format strings "eth%d".
1330 * for wildcarding.
1331 */
cf04a4c7 1332int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1333{
238fa362 1334 unsigned char old_assign_type;
fcc5a03a 1335 char oldname[IFNAMSIZ];
1da177e4 1336 int err = 0;
fcc5a03a 1337 int ret;
881d966b 1338 struct net *net;
1da177e4
LT
1339
1340 ASSERT_RTNL();
c346dca1 1341 BUG_ON(!dev_net(dev));
1da177e4 1342
c346dca1 1343 net = dev_net(dev);
8065a779
SWL
1344
1345 /* Some auto-enslaved devices e.g. failover slaves are
1346 * special, as userspace might rename the device after
1347 * the interface had been brought up and running since
1348 * the point kernel initiated auto-enslavement. Allow
1349 * live name change even when these slave devices are
1350 * up and running.
1351 *
1352 * Typically, users of these auto-enslaving devices
1353 * don't actually care about slave name change, as
1354 * they are supposed to operate on master interface
1355 * directly.
1356 */
1357 if (dev->flags & IFF_UP &&
1358 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1359 return -EBUSY;
1360
11d6011c 1361 down_write(&devnet_rename_sem);
c91f6df2
BH
1362
1363 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
11d6011c 1364 up_write(&devnet_rename_sem);
c8d90dca 1365 return 0;
c91f6df2 1366 }
c8d90dca 1367
fcc5a03a
HX
1368 memcpy(oldname, dev->name, IFNAMSIZ);
1369
828de4f6 1370 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1371 if (err < 0) {
11d6011c 1372 up_write(&devnet_rename_sem);
d9031024 1373 return err;
c91f6df2 1374 }
1da177e4 1375
6fe82a39
VF
1376 if (oldname[0] && !strchr(oldname, '%'))
1377 netdev_info(dev, "renamed from %s\n", oldname);
1378
238fa362
TG
1379 old_assign_type = dev->name_assign_type;
1380 dev->name_assign_type = NET_NAME_RENAMED;
1381
fcc5a03a 1382rollback:
a1b3f594
EB
1383 ret = device_rename(&dev->dev, dev->name);
1384 if (ret) {
1385 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1386 dev->name_assign_type = old_assign_type;
11d6011c 1387 up_write(&devnet_rename_sem);
a1b3f594 1388 return ret;
dcc99773 1389 }
7f988eab 1390
11d6011c 1391 up_write(&devnet_rename_sem);
c91f6df2 1392
5bb025fa
VF
1393 netdev_adjacent_rename_links(dev, oldname);
1394
7f988eab 1395 write_lock_bh(&dev_base_lock);
ff927412 1396 netdev_name_node_del(dev->name_node);
72c9528b
ED
1397 write_unlock_bh(&dev_base_lock);
1398
1399 synchronize_rcu();
1400
1401 write_lock_bh(&dev_base_lock);
ff927412 1402 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1403 write_unlock_bh(&dev_base_lock);
1404
056925ab 1405 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1406 ret = notifier_to_errno(ret);
1407
1408 if (ret) {
91e9c07b
ED
1409 /* err >= 0 after dev_alloc_name() or stores the first errno */
1410 if (err >= 0) {
fcc5a03a 1411 err = ret;
11d6011c 1412 down_write(&devnet_rename_sem);
fcc5a03a 1413 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1414 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1415 dev->name_assign_type = old_assign_type;
1416 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1417 goto rollback;
91e9c07b 1418 } else {
7b6cd1ce 1419 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1420 dev->name, ret);
fcc5a03a
HX
1421 }
1422 }
1da177e4
LT
1423
1424 return err;
1425}
1426
0b815a1a
SH
1427/**
1428 * dev_set_alias - change ifalias of a device
1429 * @dev: device
1430 * @alias: name up to IFALIASZ
f0db275a 1431 * @len: limit of bytes to copy from info
0b815a1a
SH
1432 *
1433 * Set ifalias for a device,
1434 */
1435int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1436{
6c557001 1437 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1438
1439 if (len >= IFALIASZ)
1440 return -EINVAL;
1441
6c557001
FW
1442 if (len) {
1443 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1444 if (!new_alias)
1445 return -ENOMEM;
1446
1447 memcpy(new_alias->ifalias, alias, len);
1448 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1449 }
1450
6c557001 1451 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1452 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1453 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1454 mutex_unlock(&ifalias_mutex);
1455
1456 if (new_alias)
1457 kfree_rcu(new_alias, rcuhead);
0b815a1a 1458
0b815a1a
SH
1459 return len;
1460}
0fe554a4 1461EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1462
6c557001
FW
1463/**
1464 * dev_get_alias - get ifalias of a device
1465 * @dev: device
20e88320 1466 * @name: buffer to store name of ifalias
6c557001
FW
1467 * @len: size of buffer
1468 *
1469 * get ifalias for a device. Caller must make sure dev cannot go
1470 * away, e.g. rcu read lock or own a reference count to device.
1471 */
1472int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1473{
1474 const struct dev_ifalias *alias;
1475 int ret = 0;
1476
1477 rcu_read_lock();
1478 alias = rcu_dereference(dev->ifalias);
1479 if (alias)
1480 ret = snprintf(name, len, "%s", alias->ifalias);
1481 rcu_read_unlock();
1482
1483 return ret;
1484}
0b815a1a 1485
d8a33ac4 1486/**
3041a069 1487 * netdev_features_change - device changes features
d8a33ac4
SH
1488 * @dev: device to cause notification
1489 *
1490 * Called to indicate a device has changed features.
1491 */
1492void netdev_features_change(struct net_device *dev)
1493{
056925ab 1494 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1495}
1496EXPORT_SYMBOL(netdev_features_change);
1497
1da177e4
LT
1498/**
1499 * netdev_state_change - device changes state
1500 * @dev: device to cause notification
1501 *
1502 * Called to indicate a device has changed state. This function calls
1503 * the notifier chains for netdev_chain and sends a NEWLINK message
1504 * to the routing socket.
1505 */
1506void netdev_state_change(struct net_device *dev)
1507{
1508 if (dev->flags & IFF_UP) {
51d0c047
DA
1509 struct netdev_notifier_change_info change_info = {
1510 .info.dev = dev,
1511 };
54951194 1512
51d0c047 1513 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1514 &change_info.info);
7f294054 1515 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1516 }
1517}
d1b19dff 1518EXPORT_SYMBOL(netdev_state_change);
1da177e4 1519
7061eb8c
LP
1520/**
1521 * __netdev_notify_peers - notify network peers about existence of @dev,
1522 * to be called when rtnl lock is already held.
1523 * @dev: network device
1524 *
1525 * Generate traffic such that interested network peers are aware of
1526 * @dev, such as by generating a gratuitous ARP. This may be used when
1527 * a device wants to inform the rest of the network about some sort of
1528 * reconfiguration such as a failover event or virtual machine
1529 * migration.
1530 */
1531void __netdev_notify_peers(struct net_device *dev)
1532{
1533 ASSERT_RTNL();
1534 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1535 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1536}
1537EXPORT_SYMBOL(__netdev_notify_peers);
1538
ee89bab1 1539/**
722c9a0c 1540 * netdev_notify_peers - notify network peers about existence of @dev
1541 * @dev: network device
ee89bab1
AW
1542 *
1543 * Generate traffic such that interested network peers are aware of
1544 * @dev, such as by generating a gratuitous ARP. This may be used when
1545 * a device wants to inform the rest of the network about some sort of
1546 * reconfiguration such as a failover event or virtual machine
1547 * migration.
1548 */
1549void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1550{
ee89bab1 1551 rtnl_lock();
7061eb8c 1552 __netdev_notify_peers(dev);
ee89bab1 1553 rtnl_unlock();
c1da4ac7 1554}
ee89bab1 1555EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1556
29863d41
WW
1557static int napi_threaded_poll(void *data);
1558
1559static int napi_kthread_create(struct napi_struct *n)
1560{
1561 int err = 0;
1562
1563 /* Create and wake up the kthread once to put it in
1564 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1565 * warning and work with loadavg.
1566 */
1567 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1568 n->dev->name, n->napi_id);
1569 if (IS_ERR(n->thread)) {
1570 err = PTR_ERR(n->thread);
1571 pr_err("kthread_run failed with err %d\n", err);
1572 n->thread = NULL;
1573 }
1574
1575 return err;
1576}
1577
40c900aa 1578static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1579{
d314774c 1580 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1581 int ret;
1da177e4 1582
e46b66bc
BH
1583 ASSERT_RTNL();
1584
bd869245
HK
1585 if (!netif_device_present(dev)) {
1586 /* may be detached because parent is runtime-suspended */
1587 if (dev->dev.parent)
1588 pm_runtime_resume(dev->dev.parent);
1589 if (!netif_device_present(dev))
1590 return -ENODEV;
1591 }
1da177e4 1592
ca99ca14
NH
1593 /* Block netpoll from trying to do any rx path servicing.
1594 * If we don't do this there is a chance ndo_poll_controller
1595 * or ndo_poll may be running while we open the device
1596 */
66b5552f 1597 netpoll_poll_disable(dev);
ca99ca14 1598
40c900aa 1599 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1600 ret = notifier_to_errno(ret);
1601 if (ret)
1602 return ret;
1603
1da177e4 1604 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1605
d314774c
SH
1606 if (ops->ndo_validate_addr)
1607 ret = ops->ndo_validate_addr(dev);
bada339b 1608
d314774c
SH
1609 if (!ret && ops->ndo_open)
1610 ret = ops->ndo_open(dev);
1da177e4 1611
66b5552f 1612 netpoll_poll_enable(dev);
ca99ca14 1613
bada339b
JG
1614 if (ret)
1615 clear_bit(__LINK_STATE_START, &dev->state);
1616 else {
1da177e4 1617 dev->flags |= IFF_UP;
4417da66 1618 dev_set_rx_mode(dev);
1da177e4 1619 dev_activate(dev);
7bf23575 1620 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1621 }
bada339b 1622
1da177e4
LT
1623 return ret;
1624}
1625
1626/**
bd380811 1627 * dev_open - prepare an interface for use.
00f54e68
PM
1628 * @dev: device to open
1629 * @extack: netlink extended ack
1da177e4 1630 *
bd380811
PM
1631 * Takes a device from down to up state. The device's private open
1632 * function is invoked and then the multicast lists are loaded. Finally
1633 * the device is moved into the up state and a %NETDEV_UP message is
1634 * sent to the netdev notifier chain.
1635 *
1636 * Calling this function on an active interface is a nop. On a failure
1637 * a negative errno code is returned.
1da177e4 1638 */
00f54e68 1639int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1640{
1641 int ret;
1642
bd380811
PM
1643 if (dev->flags & IFF_UP)
1644 return 0;
1645
40c900aa 1646 ret = __dev_open(dev, extack);
bd380811
PM
1647 if (ret < 0)
1648 return ret;
1649
7f294054 1650 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1651 call_netdevice_notifiers(NETDEV_UP, dev);
1652
1653 return ret;
1654}
1655EXPORT_SYMBOL(dev_open);
1656
7051b88a 1657static void __dev_close_many(struct list_head *head)
1da177e4 1658{
44345724 1659 struct net_device *dev;
e46b66bc 1660
bd380811 1661 ASSERT_RTNL();
9d5010db
DM
1662 might_sleep();
1663
5cde2829 1664 list_for_each_entry(dev, head, close_list) {
3f4df206 1665 /* Temporarily disable netpoll until the interface is down */
66b5552f 1666 netpoll_poll_disable(dev);
3f4df206 1667
44345724 1668 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1669
44345724 1670 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1671
44345724
OP
1672 /* Synchronize to scheduled poll. We cannot touch poll list, it
1673 * can be even on different cpu. So just clear netif_running().
1674 *
1675 * dev->stop() will invoke napi_disable() on all of it's
1676 * napi_struct instances on this device.
1677 */
4e857c58 1678 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1679 }
1da177e4 1680
44345724 1681 dev_deactivate_many(head);
d8b2a4d2 1682
5cde2829 1683 list_for_each_entry(dev, head, close_list) {
44345724 1684 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1685
44345724
OP
1686 /*
1687 * Call the device specific close. This cannot fail.
1688 * Only if device is UP
1689 *
1690 * We allow it to be called even after a DETACH hot-plug
1691 * event.
1692 */
1693 if (ops->ndo_stop)
1694 ops->ndo_stop(dev);
1695
44345724 1696 dev->flags &= ~IFF_UP;
66b5552f 1697 netpoll_poll_enable(dev);
44345724 1698 }
44345724
OP
1699}
1700
7051b88a 1701static void __dev_close(struct net_device *dev)
44345724
OP
1702{
1703 LIST_HEAD(single);
1704
5cde2829 1705 list_add(&dev->close_list, &single);
7051b88a 1706 __dev_close_many(&single);
f87e6f47 1707 list_del(&single);
44345724
OP
1708}
1709
7051b88a 1710void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1711{
1712 struct net_device *dev, *tmp;
1da177e4 1713
5cde2829
EB
1714 /* Remove the devices that don't need to be closed */
1715 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1716 if (!(dev->flags & IFF_UP))
5cde2829 1717 list_del_init(&dev->close_list);
44345724
OP
1718
1719 __dev_close_many(head);
1da177e4 1720
5cde2829 1721 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1722 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1723 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1724 if (unlink)
1725 list_del_init(&dev->close_list);
44345724 1726 }
bd380811 1727}
99c4a26a 1728EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1729
1730/**
1731 * dev_close - shutdown an interface.
1732 * @dev: device to shutdown
1733 *
1734 * This function moves an active device into down state. A
1735 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1736 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1737 * chain.
1738 */
7051b88a 1739void dev_close(struct net_device *dev)
bd380811 1740{
e14a5993
ED
1741 if (dev->flags & IFF_UP) {
1742 LIST_HEAD(single);
1da177e4 1743
5cde2829 1744 list_add(&dev->close_list, &single);
99c4a26a 1745 dev_close_many(&single, true);
e14a5993
ED
1746 list_del(&single);
1747 }
1da177e4 1748}
d1b19dff 1749EXPORT_SYMBOL(dev_close);
1da177e4
LT
1750
1751
0187bdfb
BH
1752/**
1753 * dev_disable_lro - disable Large Receive Offload on a device
1754 * @dev: device
1755 *
1756 * Disable Large Receive Offload (LRO) on a net device. Must be
1757 * called under RTNL. This is needed if received packets may be
1758 * forwarded to another interface.
1759 */
1760void dev_disable_lro(struct net_device *dev)
1761{
fbe168ba
MK
1762 struct net_device *lower_dev;
1763 struct list_head *iter;
529d0489 1764
bc5787c6
MM
1765 dev->wanted_features &= ~NETIF_F_LRO;
1766 netdev_update_features(dev);
27660515 1767
22d5969f
MM
1768 if (unlikely(dev->features & NETIF_F_LRO))
1769 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1770
1771 netdev_for_each_lower_dev(dev, lower_dev, iter)
1772 dev_disable_lro(lower_dev);
0187bdfb
BH
1773}
1774EXPORT_SYMBOL(dev_disable_lro);
1775
56f5aa77
MC
1776/**
1777 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1778 * @dev: device
1779 *
1780 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1781 * called under RTNL. This is needed if Generic XDP is installed on
1782 * the device.
1783 */
1784static void dev_disable_gro_hw(struct net_device *dev)
1785{
1786 dev->wanted_features &= ~NETIF_F_GRO_HW;
1787 netdev_update_features(dev);
1788
1789 if (unlikely(dev->features & NETIF_F_GRO_HW))
1790 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1791}
1792
ede2762d
KT
1793const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1794{
1795#define N(val) \
1796 case NETDEV_##val: \
1797 return "NETDEV_" __stringify(val);
1798 switch (cmd) {
1799 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1800 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1801 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1802 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1803 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1804 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1805 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1806 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1807 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1808 N(PRE_CHANGEADDR)
3f5ecd8a 1809 }
ede2762d
KT
1810#undef N
1811 return "UNKNOWN_NETDEV_EVENT";
1812}
1813EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1814
351638e7
JP
1815static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1816 struct net_device *dev)
1817{
51d0c047
DA
1818 struct netdev_notifier_info info = {
1819 .dev = dev,
1820 };
351638e7 1821
351638e7
JP
1822 return nb->notifier_call(nb, val, &info);
1823}
0187bdfb 1824
afa0df59
JP
1825static int call_netdevice_register_notifiers(struct notifier_block *nb,
1826 struct net_device *dev)
1827{
1828 int err;
1829
1830 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1831 err = notifier_to_errno(err);
1832 if (err)
1833 return err;
1834
1835 if (!(dev->flags & IFF_UP))
1836 return 0;
1837
1838 call_netdevice_notifier(nb, NETDEV_UP, dev);
1839 return 0;
1840}
1841
1842static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1843 struct net_device *dev)
1844{
1845 if (dev->flags & IFF_UP) {
1846 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1847 dev);
1848 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1849 }
1850 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1851}
1852
1853static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1854 struct net *net)
1855{
1856 struct net_device *dev;
1857 int err;
1858
1859 for_each_netdev(net, dev) {
1860 err = call_netdevice_register_notifiers(nb, dev);
1861 if (err)
1862 goto rollback;
1863 }
1864 return 0;
1865
1866rollback:
1867 for_each_netdev_continue_reverse(net, dev)
1868 call_netdevice_unregister_notifiers(nb, dev);
1869 return err;
1870}
1871
1872static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1873 struct net *net)
1874{
1875 struct net_device *dev;
1876
1877 for_each_netdev(net, dev)
1878 call_netdevice_unregister_notifiers(nb, dev);
1879}
1880
881d966b
EB
1881static int dev_boot_phase = 1;
1882
1da177e4 1883/**
722c9a0c 1884 * register_netdevice_notifier - register a network notifier block
1885 * @nb: notifier
1da177e4 1886 *
722c9a0c 1887 * Register a notifier to be called when network device events occur.
1888 * The notifier passed is linked into the kernel structures and must
1889 * not be reused until it has been unregistered. A negative errno code
1890 * is returned on a failure.
1da177e4 1891 *
722c9a0c 1892 * When registered all registration and up events are replayed
1893 * to the new notifier to allow device to have a race free
1894 * view of the network device list.
1da177e4
LT
1895 */
1896
1897int register_netdevice_notifier(struct notifier_block *nb)
1898{
881d966b 1899 struct net *net;
1da177e4
LT
1900 int err;
1901
328fbe74
KT
1902 /* Close race with setup_net() and cleanup_net() */
1903 down_write(&pernet_ops_rwsem);
1da177e4 1904 rtnl_lock();
f07d5b94 1905 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1906 if (err)
1907 goto unlock;
881d966b
EB
1908 if (dev_boot_phase)
1909 goto unlock;
1910 for_each_net(net) {
afa0df59
JP
1911 err = call_netdevice_register_net_notifiers(nb, net);
1912 if (err)
1913 goto rollback;
1da177e4 1914 }
fcc5a03a
HX
1915
1916unlock:
1da177e4 1917 rtnl_unlock();
328fbe74 1918 up_write(&pernet_ops_rwsem);
1da177e4 1919 return err;
fcc5a03a
HX
1920
1921rollback:
afa0df59
JP
1922 for_each_net_continue_reverse(net)
1923 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1924
1925 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1926 goto unlock;
1da177e4 1927}
d1b19dff 1928EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1929
1930/**
722c9a0c 1931 * unregister_netdevice_notifier - unregister a network notifier block
1932 * @nb: notifier
1da177e4 1933 *
722c9a0c 1934 * Unregister a notifier previously registered by
1935 * register_netdevice_notifier(). The notifier is unlinked into the
1936 * kernel structures and may then be reused. A negative errno code
1937 * is returned on a failure.
7d3d43da 1938 *
722c9a0c 1939 * After unregistering unregister and down device events are synthesized
1940 * for all devices on the device list to the removed notifier to remove
1941 * the need for special case cleanup code.
1da177e4
LT
1942 */
1943
1944int unregister_netdevice_notifier(struct notifier_block *nb)
1945{
7d3d43da 1946 struct net *net;
9f514950
HX
1947 int err;
1948
328fbe74
KT
1949 /* Close race with setup_net() and cleanup_net() */
1950 down_write(&pernet_ops_rwsem);
9f514950 1951 rtnl_lock();
f07d5b94 1952 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1953 if (err)
1954 goto unlock;
1955
48b3a137
JP
1956 for_each_net(net)
1957 call_netdevice_unregister_net_notifiers(nb, net);
1958
7d3d43da 1959unlock:
9f514950 1960 rtnl_unlock();
328fbe74 1961 up_write(&pernet_ops_rwsem);
9f514950 1962 return err;
1da177e4 1963}
d1b19dff 1964EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1965
1f637703
JP
1966static int __register_netdevice_notifier_net(struct net *net,
1967 struct notifier_block *nb,
1968 bool ignore_call_fail)
1969{
1970 int err;
1971
1972 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1973 if (err)
1974 return err;
1975 if (dev_boot_phase)
1976 return 0;
1977
1978 err = call_netdevice_register_net_notifiers(nb, net);
1979 if (err && !ignore_call_fail)
1980 goto chain_unregister;
1981
1982 return 0;
1983
1984chain_unregister:
1985 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1986 return err;
1987}
1988
1989static int __unregister_netdevice_notifier_net(struct net *net,
1990 struct notifier_block *nb)
1991{
1992 int err;
1993
1994 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1995 if (err)
1996 return err;
1997
1998 call_netdevice_unregister_net_notifiers(nb, net);
1999 return 0;
2000}
2001
a30c7b42
JP
2002/**
2003 * register_netdevice_notifier_net - register a per-netns network notifier block
2004 * @net: network namespace
2005 * @nb: notifier
2006 *
2007 * Register a notifier to be called when network device events occur.
2008 * The notifier passed is linked into the kernel structures and must
2009 * not be reused until it has been unregistered. A negative errno code
2010 * is returned on a failure.
2011 *
2012 * When registered all registration and up events are replayed
2013 * to the new notifier to allow device to have a race free
2014 * view of the network device list.
2015 */
2016
2017int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2018{
2019 int err;
2020
2021 rtnl_lock();
1f637703 2022 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
2023 rtnl_unlock();
2024 return err;
a30c7b42
JP
2025}
2026EXPORT_SYMBOL(register_netdevice_notifier_net);
2027
2028/**
2029 * unregister_netdevice_notifier_net - unregister a per-netns
2030 * network notifier block
2031 * @net: network namespace
2032 * @nb: notifier
2033 *
2034 * Unregister a notifier previously registered by
2035 * register_netdevice_notifier(). The notifier is unlinked into the
2036 * kernel structures and may then be reused. A negative errno code
2037 * is returned on a failure.
2038 *
2039 * After unregistering unregister and down device events are synthesized
2040 * for all devices on the device list to the removed notifier to remove
2041 * the need for special case cleanup code.
2042 */
2043
2044int unregister_netdevice_notifier_net(struct net *net,
2045 struct notifier_block *nb)
2046{
2047 int err;
2048
2049 rtnl_lock();
1f637703 2050 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
2051 rtnl_unlock();
2052 return err;
2053}
2054EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 2055
93642e14
JP
2056int register_netdevice_notifier_dev_net(struct net_device *dev,
2057 struct notifier_block *nb,
2058 struct netdev_net_notifier *nn)
2059{
2060 int err;
a30c7b42 2061
93642e14
JP
2062 rtnl_lock();
2063 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2064 if (!err) {
2065 nn->nb = nb;
2066 list_add(&nn->list, &dev->net_notifier_list);
2067 }
a30c7b42
JP
2068 rtnl_unlock();
2069 return err;
2070}
93642e14
JP
2071EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2072
2073int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2074 struct notifier_block *nb,
2075 struct netdev_net_notifier *nn)
2076{
2077 int err;
2078
2079 rtnl_lock();
2080 list_del(&nn->list);
2081 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2082 rtnl_unlock();
2083 return err;
2084}
2085EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2086
2087static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2088 struct net *net)
2089{
2090 struct netdev_net_notifier *nn;
2091
2092 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2093 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2094 __register_netdevice_notifier_net(net, nn->nb, true);
2095 }
2096}
a30c7b42 2097
351638e7
JP
2098/**
2099 * call_netdevice_notifiers_info - call all network notifier blocks
2100 * @val: value passed unmodified to notifier function
351638e7
JP
2101 * @info: notifier information data
2102 *
2103 * Call all network notifier blocks. Parameters and return value
2104 * are as for raw_notifier_call_chain().
2105 */
2106
1d143d9f 2107static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 2108 struct netdev_notifier_info *info)
351638e7 2109{
a30c7b42
JP
2110 struct net *net = dev_net(info->dev);
2111 int ret;
2112
351638e7 2113 ASSERT_RTNL();
a30c7b42
JP
2114
2115 /* Run per-netns notifier block chain first, then run the global one.
2116 * Hopefully, one day, the global one is going to be removed after
2117 * all notifier block registrators get converted to be per-netns.
2118 */
2119 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2120 if (ret & NOTIFY_STOP_MASK)
2121 return ret;
351638e7
JP
2122 return raw_notifier_call_chain(&netdev_chain, val, info);
2123}
351638e7 2124
26372605
PM
2125static int call_netdevice_notifiers_extack(unsigned long val,
2126 struct net_device *dev,
2127 struct netlink_ext_ack *extack)
2128{
2129 struct netdev_notifier_info info = {
2130 .dev = dev,
2131 .extack = extack,
2132 };
2133
2134 return call_netdevice_notifiers_info(val, &info);
2135}
2136
1da177e4
LT
2137/**
2138 * call_netdevice_notifiers - call all network notifier blocks
2139 * @val: value passed unmodified to notifier function
c4ea43c5 2140 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
2141 *
2142 * Call all network notifier blocks. Parameters and return value
f07d5b94 2143 * are as for raw_notifier_call_chain().
1da177e4
LT
2144 */
2145
ad7379d4 2146int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 2147{
26372605 2148 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 2149}
edf947f1 2150EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 2151
af7d6cce
SD
2152/**
2153 * call_netdevice_notifiers_mtu - call all network notifier blocks
2154 * @val: value passed unmodified to notifier function
2155 * @dev: net_device pointer passed unmodified to notifier function
2156 * @arg: additional u32 argument passed to the notifier function
2157 *
2158 * Call all network notifier blocks. Parameters and return value
2159 * are as for raw_notifier_call_chain().
2160 */
2161static int call_netdevice_notifiers_mtu(unsigned long val,
2162 struct net_device *dev, u32 arg)
2163{
2164 struct netdev_notifier_info_ext info = {
2165 .info.dev = dev,
2166 .ext.mtu = arg,
2167 };
2168
2169 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2170
2171 return call_netdevice_notifiers_info(val, &info.info);
2172}
2173
1cf51900 2174#ifdef CONFIG_NET_INGRESS
aabf6772 2175static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2176
2177void net_inc_ingress_queue(void)
2178{
aabf6772 2179 static_branch_inc(&ingress_needed_key);
4577139b
DB
2180}
2181EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2182
2183void net_dec_ingress_queue(void)
2184{
aabf6772 2185 static_branch_dec(&ingress_needed_key);
4577139b
DB
2186}
2187EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2188#endif
2189
1f211a1b 2190#ifdef CONFIG_NET_EGRESS
aabf6772 2191static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2192
2193void net_inc_egress_queue(void)
2194{
aabf6772 2195 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2196}
2197EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2198
2199void net_dec_egress_queue(void)
2200{
aabf6772 2201 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2202}
2203EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2204#endif
2205
39e83922 2206static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2207#ifdef CONFIG_JUMP_LABEL
b90e5794 2208static atomic_t netstamp_needed_deferred;
13baa00a 2209static atomic_t netstamp_wanted;
5fa8bbda 2210static void netstamp_clear(struct work_struct *work)
1da177e4 2211{
b90e5794 2212 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2213 int wanted;
b90e5794 2214
13baa00a
ED
2215 wanted = atomic_add_return(deferred, &netstamp_wanted);
2216 if (wanted > 0)
39e83922 2217 static_branch_enable(&netstamp_needed_key);
13baa00a 2218 else
39e83922 2219 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2220}
2221static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2222#endif
5fa8bbda
ED
2223
2224void net_enable_timestamp(void)
2225{
e9666d10 2226#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2227 int wanted;
2228
2229 while (1) {
2230 wanted = atomic_read(&netstamp_wanted);
2231 if (wanted <= 0)
2232 break;
2233 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2234 return;
2235 }
2236 atomic_inc(&netstamp_needed_deferred);
2237 schedule_work(&netstamp_work);
2238#else
39e83922 2239 static_branch_inc(&netstamp_needed_key);
13baa00a 2240#endif
1da177e4 2241}
d1b19dff 2242EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2243
2244void net_disable_timestamp(void)
2245{
e9666d10 2246#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2247 int wanted;
2248
2249 while (1) {
2250 wanted = atomic_read(&netstamp_wanted);
2251 if (wanted <= 1)
2252 break;
2253 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2254 return;
2255 }
2256 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2257 schedule_work(&netstamp_work);
2258#else
39e83922 2259 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2260#endif
1da177e4 2261}
d1b19dff 2262EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2263
3b098e2d 2264static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2265{
2456e855 2266 skb->tstamp = 0;
39e83922 2267 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2268 __net_timestamp(skb);
1da177e4
LT
2269}
2270
39e83922
DB
2271#define net_timestamp_check(COND, SKB) \
2272 if (static_branch_unlikely(&netstamp_needed_key)) { \
2273 if ((COND) && !(SKB)->tstamp) \
2274 __net_timestamp(SKB); \
2275 } \
3b098e2d 2276
f4b05d27 2277bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0 2278{
5f7d5728 2279 return __is_skb_forwardable(dev, skb, true);
79b569f0 2280}
1ee481fb 2281EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2282
5f7d5728
JDB
2283static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2284 bool check_mtu)
a0265d28 2285{
5f7d5728 2286 int ret = ____dev_forward_skb(dev, skb, check_mtu);
a0265d28 2287
4e3264d2
MKL
2288 if (likely(!ret)) {
2289 skb->protocol = eth_type_trans(skb, dev);
2290 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2291 }
a0265d28 2292
4e3264d2 2293 return ret;
a0265d28 2294}
5f7d5728
JDB
2295
2296int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2297{
2298 return __dev_forward_skb2(dev, skb, true);
2299}
a0265d28
HX
2300EXPORT_SYMBOL_GPL(__dev_forward_skb);
2301
44540960
AB
2302/**
2303 * dev_forward_skb - loopback an skb to another netif
2304 *
2305 * @dev: destination network device
2306 * @skb: buffer to forward
2307 *
2308 * return values:
2309 * NET_RX_SUCCESS (no congestion)
6ec82562 2310 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2311 *
2312 * dev_forward_skb can be used for injecting an skb from the
2313 * start_xmit function of one device into the receive queue
2314 * of another device.
2315 *
2316 * The receiving device may be in another namespace, so
2317 * we have to clear all information in the skb that could
2318 * impact namespace isolation.
2319 */
2320int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2321{
a0265d28 2322 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2323}
2324EXPORT_SYMBOL_GPL(dev_forward_skb);
2325
5f7d5728
JDB
2326int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2327{
2328 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2329}
2330
71d9dec2
CG
2331static inline int deliver_skb(struct sk_buff *skb,
2332 struct packet_type *pt_prev,
2333 struct net_device *orig_dev)
2334{
1f8b977a 2335 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2336 return -ENOMEM;
63354797 2337 refcount_inc(&skb->users);
71d9dec2
CG
2338 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2339}
2340
7866a621
SN
2341static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2342 struct packet_type **pt,
fbcb2170
JP
2343 struct net_device *orig_dev,
2344 __be16 type,
7866a621
SN
2345 struct list_head *ptype_list)
2346{
2347 struct packet_type *ptype, *pt_prev = *pt;
2348
2349 list_for_each_entry_rcu(ptype, ptype_list, list) {
2350 if (ptype->type != type)
2351 continue;
2352 if (pt_prev)
fbcb2170 2353 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2354 pt_prev = ptype;
2355 }
2356 *pt = pt_prev;
2357}
2358
c0de08d0
EL
2359static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2360{
a3d744e9 2361 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2362 return false;
2363
2364 if (ptype->id_match)
2365 return ptype->id_match(ptype, skb->sk);
2366 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2367 return true;
2368
2369 return false;
2370}
2371
9f9a742d
MR
2372/**
2373 * dev_nit_active - return true if any network interface taps are in use
2374 *
2375 * @dev: network device to check for the presence of taps
2376 */
2377bool dev_nit_active(struct net_device *dev)
2378{
2379 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2380}
2381EXPORT_SYMBOL_GPL(dev_nit_active);
2382
1da177e4
LT
2383/*
2384 * Support routine. Sends outgoing frames to any network
2385 * taps currently in use.
2386 */
2387
74b20582 2388void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2389{
2390 struct packet_type *ptype;
71d9dec2
CG
2391 struct sk_buff *skb2 = NULL;
2392 struct packet_type *pt_prev = NULL;
7866a621 2393 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2394
1da177e4 2395 rcu_read_lock();
7866a621
SN
2396again:
2397 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2398 if (ptype->ignore_outgoing)
2399 continue;
2400
1da177e4
LT
2401 /* Never send packets back to the socket
2402 * they originated from - MvS (miquels@drinkel.ow.org)
2403 */
7866a621
SN
2404 if (skb_loop_sk(ptype, skb))
2405 continue;
71d9dec2 2406
7866a621
SN
2407 if (pt_prev) {
2408 deliver_skb(skb2, pt_prev, skb->dev);
2409 pt_prev = ptype;
2410 continue;
2411 }
1da177e4 2412
7866a621
SN
2413 /* need to clone skb, done only once */
2414 skb2 = skb_clone(skb, GFP_ATOMIC);
2415 if (!skb2)
2416 goto out_unlock;
70978182 2417
7866a621 2418 net_timestamp_set(skb2);
1da177e4 2419
7866a621
SN
2420 /* skb->nh should be correctly
2421 * set by sender, so that the second statement is
2422 * just protection against buggy protocols.
2423 */
2424 skb_reset_mac_header(skb2);
2425
2426 if (skb_network_header(skb2) < skb2->data ||
2427 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2428 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2429 ntohs(skb2->protocol),
2430 dev->name);
2431 skb_reset_network_header(skb2);
1da177e4 2432 }
7866a621
SN
2433
2434 skb2->transport_header = skb2->network_header;
2435 skb2->pkt_type = PACKET_OUTGOING;
2436 pt_prev = ptype;
2437 }
2438
2439 if (ptype_list == &ptype_all) {
2440 ptype_list = &dev->ptype_all;
2441 goto again;
1da177e4 2442 }
7866a621 2443out_unlock:
581fe0ea
WB
2444 if (pt_prev) {
2445 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2446 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2447 else
2448 kfree_skb(skb2);
2449 }
1da177e4
LT
2450 rcu_read_unlock();
2451}
74b20582 2452EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2453
2c53040f
BH
2454/**
2455 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2456 * @dev: Network device
2457 * @txq: number of queues available
2458 *
2459 * If real_num_tx_queues is changed the tc mappings may no longer be
2460 * valid. To resolve this verify the tc mapping remains valid and if
2461 * not NULL the mapping. With no priorities mapping to this
2462 * offset/count pair it will no longer be used. In the worst case TC0
2463 * is invalid nothing can be done so disable priority mappings. If is
2464 * expected that drivers will fix this mapping if they can before
2465 * calling netif_set_real_num_tx_queues.
2466 */
bb134d22 2467static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2468{
2469 int i;
2470 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2471
2472 /* If TC0 is invalidated disable TC mapping */
2473 if (tc->offset + tc->count > txq) {
7b6cd1ce 2474 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2475 dev->num_tc = 0;
2476 return;
2477 }
2478
2479 /* Invalidated prio to tc mappings set to TC0 */
2480 for (i = 1; i < TC_BITMASK + 1; i++) {
2481 int q = netdev_get_prio_tc_map(dev, i);
2482
2483 tc = &dev->tc_to_txq[q];
2484 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2485 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2486 i, q);
4f57c087
JF
2487 netdev_set_prio_tc_map(dev, i, 0);
2488 }
2489 }
2490}
2491
8d059b0f
AD
2492int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2493{
2494 if (dev->num_tc) {
2495 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2496 int i;
2497
ffcfe25b 2498 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2499 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2500 if ((txq - tc->offset) < tc->count)
2501 return i;
2502 }
2503
ffcfe25b 2504 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2505 return -1;
2506 }
2507
2508 return 0;
2509}
8a5f2166 2510EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2511
537c00de 2512#ifdef CONFIG_XPS
5da9ace3
VO
2513static struct static_key xps_needed __read_mostly;
2514static struct static_key xps_rxqs_needed __read_mostly;
537c00de
AD
2515static DEFINE_MUTEX(xps_map_mutex);
2516#define xmap_dereference(P) \
2517 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2518
6234f874 2519static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2d05bf01 2520 struct xps_dev_maps *old_maps, int tci, u16 index)
537c00de 2521{
10cdc3f3
AD
2522 struct xps_map *map = NULL;
2523 int pos;
537c00de 2524
10cdc3f3 2525 if (dev_maps)
80d19669 2526 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2527 if (!map)
2528 return false;
537c00de 2529
6234f874
AD
2530 for (pos = map->len; pos--;) {
2531 if (map->queues[pos] != index)
2532 continue;
2533
2534 if (map->len > 1) {
2535 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2536 break;
537c00de 2537 }
6234f874 2538
2d05bf01
AT
2539 if (old_maps)
2540 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
80d19669 2541 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2542 kfree_rcu(map, rcu);
2543 return false;
537c00de
AD
2544 }
2545
6234f874 2546 return true;
10cdc3f3
AD
2547}
2548
6234f874
AD
2549static bool remove_xps_queue_cpu(struct net_device *dev,
2550 struct xps_dev_maps *dev_maps,
2551 int cpu, u16 offset, u16 count)
2552{
255c04a8 2553 int num_tc = dev_maps->num_tc;
184c449f
AD
2554 bool active = false;
2555 int tci;
6234f874 2556
184c449f
AD
2557 for (tci = cpu * num_tc; num_tc--; tci++) {
2558 int i, j;
2559
2560 for (i = count, j = offset; i--; j++) {
2d05bf01 2561 if (!remove_xps_queue(dev_maps, NULL, tci, j))
184c449f
AD
2562 break;
2563 }
2564
2565 active |= i < 0;
6234f874
AD
2566 }
2567
184c449f 2568 return active;
6234f874
AD
2569}
2570
867d0ad4
SD
2571static void reset_xps_maps(struct net_device *dev,
2572 struct xps_dev_maps *dev_maps,
044ab86d 2573 enum xps_map_type type)
867d0ad4 2574{
867d0ad4 2575 static_key_slow_dec_cpuslocked(&xps_needed);
044ab86d
AT
2576 if (type == XPS_RXQS)
2577 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2578
2579 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2580
867d0ad4
SD
2581 kfree_rcu(dev_maps, rcu);
2582}
2583
044ab86d
AT
2584static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2585 u16 offset, u16 count)
80d19669 2586{
044ab86d 2587 struct xps_dev_maps *dev_maps;
80d19669
AN
2588 bool active = false;
2589 int i, j;
2590
044ab86d
AT
2591 dev_maps = xmap_dereference(dev->xps_maps[type]);
2592 if (!dev_maps)
2593 return;
2594
6f36158e
AT
2595 for (j = 0; j < dev_maps->nr_ids; j++)
2596 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
867d0ad4 2597 if (!active)
044ab86d 2598 reset_xps_maps(dev, dev_maps, type);
80d19669 2599
044ab86d 2600 if (type == XPS_CPUS) {
6f36158e 2601 for (i = offset + (count - 1); count--; i--)
f28c020f 2602 netdev_queue_numa_node_write(
6f36158e 2603 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
80d19669
AN
2604 }
2605}
2606
6234f874
AD
2607static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2608 u16 count)
10cdc3f3 2609{
04157469
AN
2610 if (!static_key_false(&xps_needed))
2611 return;
10cdc3f3 2612
4d99f660 2613 cpus_read_lock();
04157469 2614 mutex_lock(&xps_map_mutex);
10cdc3f3 2615
044ab86d
AT
2616 if (static_key_false(&xps_rxqs_needed))
2617 clean_xps_maps(dev, XPS_RXQS, offset, count);
80d19669 2618
044ab86d 2619 clean_xps_maps(dev, XPS_CPUS, offset, count);
024e9679 2620
537c00de 2621 mutex_unlock(&xps_map_mutex);
4d99f660 2622 cpus_read_unlock();
537c00de
AD
2623}
2624
6234f874
AD
2625static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2626{
2627 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2628}
2629
80d19669
AN
2630static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2631 u16 index, bool is_rxqs_map)
01c5f864
AD
2632{
2633 struct xps_map *new_map;
2634 int alloc_len = XPS_MIN_MAP_ALLOC;
2635 int i, pos;
2636
2637 for (pos = 0; map && pos < map->len; pos++) {
2638 if (map->queues[pos] != index)
2639 continue;
2640 return map;
2641 }
2642
80d19669 2643 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2644 if (map) {
2645 if (pos < map->alloc_len)
2646 return map;
2647
2648 alloc_len = map->alloc_len * 2;
2649 }
2650
80d19669
AN
2651 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2652 * map
2653 */
2654 if (is_rxqs_map)
2655 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2656 else
2657 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2658 cpu_to_node(attr_index));
01c5f864
AD
2659 if (!new_map)
2660 return NULL;
2661
2662 for (i = 0; i < pos; i++)
2663 new_map->queues[i] = map->queues[i];
2664 new_map->alloc_len = alloc_len;
2665 new_map->len = pos;
2666
2667 return new_map;
2668}
2669
402fbb99
AT
2670/* Copy xps maps at a given index */
2671static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2672 struct xps_dev_maps *new_dev_maps, int index,
2673 int tc, bool skip_tc)
2674{
2675 int i, tci = index * dev_maps->num_tc;
2676 struct xps_map *map;
2677
2678 /* copy maps belonging to foreign traffic classes */
2679 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2680 if (i == tc && skip_tc)
2681 continue;
2682
2683 /* fill in the new device map from the old device map */
2684 map = xmap_dereference(dev_maps->attr_map[tci]);
2685 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2686 }
2687}
2688
4d99f660 2689/* Must be called under cpus_read_lock */
80d19669 2690int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
044ab86d 2691 u16 index, enum xps_map_type type)
537c00de 2692{
2d05bf01 2693 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
6f36158e 2694 const unsigned long *online_mask = NULL;
255c04a8 2695 bool active = false, copy = false;
80d19669 2696 int i, j, tci, numa_node_id = -2;
184c449f 2697 int maps_sz, num_tc = 1, tc = 0;
537c00de 2698 struct xps_map *map, *new_map;
80d19669 2699 unsigned int nr_ids;
537c00de 2700
184c449f 2701 if (dev->num_tc) {
ffcfe25b 2702 /* Do not allow XPS on subordinate device directly */
184c449f 2703 num_tc = dev->num_tc;
ffcfe25b
AD
2704 if (num_tc < 0)
2705 return -EINVAL;
2706
2707 /* If queue belongs to subordinate dev use its map */
2708 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2709
184c449f
AD
2710 tc = netdev_txq_to_tc(dev, index);
2711 if (tc < 0)
2712 return -EINVAL;
2713 }
2714
537c00de 2715 mutex_lock(&xps_map_mutex);
044ab86d
AT
2716
2717 dev_maps = xmap_dereference(dev->xps_maps[type]);
2718 if (type == XPS_RXQS) {
80d19669 2719 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
80d19669
AN
2720 nr_ids = dev->num_rx_queues;
2721 } else {
2722 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
6f36158e 2723 if (num_possible_cpus() > 1)
80d19669 2724 online_mask = cpumask_bits(cpu_online_mask);
80d19669
AN
2725 nr_ids = nr_cpu_ids;
2726 }
537c00de 2727
80d19669
AN
2728 if (maps_sz < L1_CACHE_BYTES)
2729 maps_sz = L1_CACHE_BYTES;
537c00de 2730
255c04a8 2731 /* The old dev_maps could be larger or smaller than the one we're
5478fcd0
AT
2732 * setting up now, as dev->num_tc or nr_ids could have been updated in
2733 * between. We could try to be smart, but let's be safe instead and only
2734 * copy foreign traffic classes if the two map sizes match.
255c04a8 2735 */
5478fcd0
AT
2736 if (dev_maps &&
2737 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
255c04a8
AT
2738 copy = true;
2739
01c5f864 2740 /* allocate memory for queue storage */
80d19669
AN
2741 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2742 j < nr_ids;) {
2bb60cb9 2743 if (!new_dev_maps) {
255c04a8
AT
2744 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2745 if (!new_dev_maps) {
2746 mutex_unlock(&xps_map_mutex);
2747 return -ENOMEM;
2748 }
2749
5478fcd0 2750 new_dev_maps->nr_ids = nr_ids;
255c04a8 2751 new_dev_maps->num_tc = num_tc;
2bb60cb9 2752 }
01c5f864 2753
80d19669 2754 tci = j * num_tc + tc;
255c04a8 2755 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
01c5f864 2756
044ab86d 2757 map = expand_xps_map(map, j, index, type == XPS_RXQS);
01c5f864
AD
2758 if (!map)
2759 goto error;
2760
80d19669 2761 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2762 }
2763
2764 if (!new_dev_maps)
2765 goto out_no_new_maps;
2766
867d0ad4
SD
2767 if (!dev_maps) {
2768 /* Increment static keys at most once per type */
2769 static_key_slow_inc_cpuslocked(&xps_needed);
044ab86d 2770 if (type == XPS_RXQS)
867d0ad4
SD
2771 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2772 }
04157469 2773
6f36158e 2774 for (j = 0; j < nr_ids; j++) {
402fbb99 2775 bool skip_tc = false;
184c449f 2776
80d19669 2777 tci = j * num_tc + tc;
80d19669
AN
2778 if (netif_attr_test_mask(j, mask, nr_ids) &&
2779 netif_attr_test_online(j, online_mask, nr_ids)) {
2780 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2781 int pos = 0;
2782
402fbb99
AT
2783 skip_tc = true;
2784
80d19669 2785 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2786 while ((pos < map->len) && (map->queues[pos] != index))
2787 pos++;
2788
2789 if (pos == map->len)
2790 map->queues[map->len++] = index;
537c00de 2791#ifdef CONFIG_NUMA
044ab86d 2792 if (type == XPS_CPUS) {
80d19669
AN
2793 if (numa_node_id == -2)
2794 numa_node_id = cpu_to_node(j);
2795 else if (numa_node_id != cpu_to_node(j))
2796 numa_node_id = -1;
2797 }
537c00de 2798#endif
537c00de 2799 }
01c5f864 2800
402fbb99
AT
2801 if (copy)
2802 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2803 skip_tc);
537c00de
AD
2804 }
2805
044ab86d 2806 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
01c5f864 2807
537c00de 2808 /* Cleanup old maps */
184c449f
AD
2809 if (!dev_maps)
2810 goto out_no_old_maps;
2811
6f36158e 2812 for (j = 0; j < dev_maps->nr_ids; j++) {
255c04a8 2813 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
80d19669 2814 map = xmap_dereference(dev_maps->attr_map[tci]);
255c04a8
AT
2815 if (!map)
2816 continue;
2817
2818 if (copy) {
2819 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2820 if (map == new_map)
2821 continue;
2822 }
2823
75b2758a 2824 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
255c04a8 2825 kfree_rcu(map, rcu);
01c5f864 2826 }
537c00de
AD
2827 }
2828
2d05bf01 2829 old_dev_maps = dev_maps;
184c449f
AD
2830
2831out_no_old_maps:
01c5f864
AD
2832 dev_maps = new_dev_maps;
2833 active = true;
537c00de 2834
01c5f864 2835out_no_new_maps:
044ab86d 2836 if (type == XPS_CPUS)
80d19669
AN
2837 /* update Tx queue numa node */
2838 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2839 (numa_node_id >= 0) ?
2840 numa_node_id : NUMA_NO_NODE);
537c00de 2841
01c5f864
AD
2842 if (!dev_maps)
2843 goto out_no_maps;
2844
80d19669 2845 /* removes tx-queue from unused CPUs/rx-queues */
6f36158e 2846 for (j = 0; j < dev_maps->nr_ids; j++) {
132f743b
AT
2847 tci = j * dev_maps->num_tc;
2848
2849 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2850 if (i == tc &&
2851 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2852 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2853 continue;
2854
2d05bf01
AT
2855 active |= remove_xps_queue(dev_maps,
2856 copy ? old_dev_maps : NULL,
2857 tci, index);
132f743b 2858 }
01c5f864
AD
2859 }
2860
2d05bf01
AT
2861 if (old_dev_maps)
2862 kfree_rcu(old_dev_maps, rcu);
2863
01c5f864 2864 /* free map if not active */
867d0ad4 2865 if (!active)
044ab86d 2866 reset_xps_maps(dev, dev_maps, type);
01c5f864
AD
2867
2868out_no_maps:
537c00de
AD
2869 mutex_unlock(&xps_map_mutex);
2870
2871 return 0;
2872error:
01c5f864 2873 /* remove any maps that we added */
6f36158e 2874 for (j = 0; j < nr_ids; j++) {
80d19669
AN
2875 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2876 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
255c04a8 2877 map = copy ?
80d19669 2878 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2879 NULL;
2880 if (new_map && new_map != map)
2881 kfree(new_map);
2882 }
01c5f864
AD
2883 }
2884
537c00de
AD
2885 mutex_unlock(&xps_map_mutex);
2886
537c00de
AD
2887 kfree(new_dev_maps);
2888 return -ENOMEM;
2889}
4d99f660 2890EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2891
2892int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2893 u16 index)
2894{
4d99f660
AV
2895 int ret;
2896
2897 cpus_read_lock();
044ab86d 2898 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
4d99f660
AV
2899 cpus_read_unlock();
2900
2901 return ret;
80d19669 2902}
537c00de
AD
2903EXPORT_SYMBOL(netif_set_xps_queue);
2904
2905#endif
ffcfe25b
AD
2906static void netdev_unbind_all_sb_channels(struct net_device *dev)
2907{
2908 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2909
2910 /* Unbind any subordinate channels */
2911 while (txq-- != &dev->_tx[0]) {
2912 if (txq->sb_dev)
2913 netdev_unbind_sb_channel(dev, txq->sb_dev);
2914 }
2915}
2916
9cf1f6a8
AD
2917void netdev_reset_tc(struct net_device *dev)
2918{
6234f874
AD
2919#ifdef CONFIG_XPS
2920 netif_reset_xps_queues_gt(dev, 0);
2921#endif
ffcfe25b
AD
2922 netdev_unbind_all_sb_channels(dev);
2923
2924 /* Reset TC configuration of device */
9cf1f6a8
AD
2925 dev->num_tc = 0;
2926 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2927 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2928}
2929EXPORT_SYMBOL(netdev_reset_tc);
2930
2931int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2932{
2933 if (tc >= dev->num_tc)
2934 return -EINVAL;
2935
6234f874
AD
2936#ifdef CONFIG_XPS
2937 netif_reset_xps_queues(dev, offset, count);
2938#endif
9cf1f6a8
AD
2939 dev->tc_to_txq[tc].count = count;
2940 dev->tc_to_txq[tc].offset = offset;
2941 return 0;
2942}
2943EXPORT_SYMBOL(netdev_set_tc_queue);
2944
2945int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2946{
2947 if (num_tc > TC_MAX_QUEUE)
2948 return -EINVAL;
2949
6234f874
AD
2950#ifdef CONFIG_XPS
2951 netif_reset_xps_queues_gt(dev, 0);
2952#endif
ffcfe25b
AD
2953 netdev_unbind_all_sb_channels(dev);
2954
9cf1f6a8
AD
2955 dev->num_tc = num_tc;
2956 return 0;
2957}
2958EXPORT_SYMBOL(netdev_set_num_tc);
2959
ffcfe25b
AD
2960void netdev_unbind_sb_channel(struct net_device *dev,
2961 struct net_device *sb_dev)
2962{
2963 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2964
2965#ifdef CONFIG_XPS
2966 netif_reset_xps_queues_gt(sb_dev, 0);
2967#endif
2968 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2969 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2970
2971 while (txq-- != &dev->_tx[0]) {
2972 if (txq->sb_dev == sb_dev)
2973 txq->sb_dev = NULL;
2974 }
2975}
2976EXPORT_SYMBOL(netdev_unbind_sb_channel);
2977
2978int netdev_bind_sb_channel_queue(struct net_device *dev,
2979 struct net_device *sb_dev,
2980 u8 tc, u16 count, u16 offset)
2981{
2982 /* Make certain the sb_dev and dev are already configured */
2983 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2984 return -EINVAL;
2985
2986 /* We cannot hand out queues we don't have */
2987 if ((offset + count) > dev->real_num_tx_queues)
2988 return -EINVAL;
2989
2990 /* Record the mapping */
2991 sb_dev->tc_to_txq[tc].count = count;
2992 sb_dev->tc_to_txq[tc].offset = offset;
2993
2994 /* Provide a way for Tx queue to find the tc_to_txq map or
2995 * XPS map for itself.
2996 */
2997 while (count--)
2998 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2999
3000 return 0;
3001}
3002EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3003
3004int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3005{
3006 /* Do not use a multiqueue device to represent a subordinate channel */
3007 if (netif_is_multiqueue(dev))
3008 return -ENODEV;
3009
3010 /* We allow channels 1 - 32767 to be used for subordinate channels.
3011 * Channel 0 is meant to be "native" mode and used only to represent
3012 * the main root device. We allow writing 0 to reset the device back
3013 * to normal mode after being used as a subordinate channel.
3014 */
3015 if (channel > S16_MAX)
3016 return -EINVAL;
3017
3018 dev->num_tc = -channel;
3019
3020 return 0;
3021}
3022EXPORT_SYMBOL(netdev_set_sb_channel);
3023
f0796d5c
JF
3024/*
3025 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 3026 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 3027 */
e6484930 3028int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 3029{
ac5b7019 3030 bool disabling;
1d24eb48
TH
3031 int rc;
3032
ac5b7019
JK
3033 disabling = txq < dev->real_num_tx_queues;
3034
e6484930
TH
3035 if (txq < 1 || txq > dev->num_tx_queues)
3036 return -EINVAL;
f0796d5c 3037
5c56580b
BH
3038 if (dev->reg_state == NETREG_REGISTERED ||
3039 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
3040 ASSERT_RTNL();
3041
1d24eb48
TH
3042 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3043 txq);
bf264145
TH
3044 if (rc)
3045 return rc;
3046
4f57c087
JF
3047 if (dev->num_tc)
3048 netif_setup_tc(dev, txq);
3049
ac5b7019
JK
3050 dev->real_num_tx_queues = txq;
3051
3052 if (disabling) {
3053 synchronize_net();
e6484930 3054 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
3055#ifdef CONFIG_XPS
3056 netif_reset_xps_queues_gt(dev, txq);
3057#endif
3058 }
ac5b7019
JK
3059 } else {
3060 dev->real_num_tx_queues = txq;
f0796d5c 3061 }
e6484930 3062
e6484930 3063 return 0;
f0796d5c
JF
3064}
3065EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 3066
a953be53 3067#ifdef CONFIG_SYSFS
62fe0b40
BH
3068/**
3069 * netif_set_real_num_rx_queues - set actual number of RX queues used
3070 * @dev: Network device
3071 * @rxq: Actual number of RX queues
3072 *
3073 * This must be called either with the rtnl_lock held or before
3074 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
3075 * negative error code. If called before registration, it always
3076 * succeeds.
62fe0b40
BH
3077 */
3078int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3079{
3080 int rc;
3081
bd25fa7b
TH
3082 if (rxq < 1 || rxq > dev->num_rx_queues)
3083 return -EINVAL;
3084
62fe0b40
BH
3085 if (dev->reg_state == NETREG_REGISTERED) {
3086 ASSERT_RTNL();
3087
62fe0b40
BH
3088 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3089 rxq);
3090 if (rc)
3091 return rc;
62fe0b40
BH
3092 }
3093
3094 dev->real_num_rx_queues = rxq;
3095 return 0;
3096}
3097EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3098#endif
3099
2c53040f
BH
3100/**
3101 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
3102 *
3103 * This routine should set an upper limit on the number of RSS queues
3104 * used by default by multiqueue devices.
3105 */
a55b138b 3106int netif_get_num_default_rss_queues(void)
16917b87 3107{
40e4e713
HS
3108 return is_kdump_kernel() ?
3109 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
3110}
3111EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3112
3bcb846c 3113static void __netif_reschedule(struct Qdisc *q)
56079431 3114{
def82a1d
JP
3115 struct softnet_data *sd;
3116 unsigned long flags;
56079431 3117
def82a1d 3118 local_irq_save(flags);
903ceff7 3119 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
3120 q->next_sched = NULL;
3121 *sd->output_queue_tailp = q;
3122 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
3123 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3124 local_irq_restore(flags);
3125}
3126
3127void __netif_schedule(struct Qdisc *q)
3128{
3129 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3130 __netif_reschedule(q);
56079431
DV
3131}
3132EXPORT_SYMBOL(__netif_schedule);
3133
e6247027
ED
3134struct dev_kfree_skb_cb {
3135 enum skb_free_reason reason;
3136};
3137
3138static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 3139{
e6247027
ED
3140 return (struct dev_kfree_skb_cb *)skb->cb;
3141}
3142
46e5da40
JF
3143void netif_schedule_queue(struct netdev_queue *txq)
3144{
3145 rcu_read_lock();
5be5515a 3146 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
3147 struct Qdisc *q = rcu_dereference(txq->qdisc);
3148
3149 __netif_schedule(q);
3150 }
3151 rcu_read_unlock();
3152}
3153EXPORT_SYMBOL(netif_schedule_queue);
3154
46e5da40
JF
3155void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3156{
3157 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3158 struct Qdisc *q;
3159
3160 rcu_read_lock();
3161 q = rcu_dereference(dev_queue->qdisc);
3162 __netif_schedule(q);
3163 rcu_read_unlock();
3164 }
3165}
3166EXPORT_SYMBOL(netif_tx_wake_queue);
3167
e6247027 3168void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3169{
e6247027 3170 unsigned long flags;
56079431 3171
9899886d
MJ
3172 if (unlikely(!skb))
3173 return;
3174
63354797 3175 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3176 smp_rmb();
63354797
RE
3177 refcount_set(&skb->users, 0);
3178 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3179 return;
bea3348e 3180 }
e6247027
ED
3181 get_kfree_skb_cb(skb)->reason = reason;
3182 local_irq_save(flags);
3183 skb->next = __this_cpu_read(softnet_data.completion_queue);
3184 __this_cpu_write(softnet_data.completion_queue, skb);
3185 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3186 local_irq_restore(flags);
56079431 3187}
e6247027 3188EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3189
e6247027 3190void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3191{
3192 if (in_irq() || irqs_disabled())
e6247027 3193 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3194 else
3195 dev_kfree_skb(skb);
3196}
e6247027 3197EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3198
3199
bea3348e
SH
3200/**
3201 * netif_device_detach - mark device as removed
3202 * @dev: network device
3203 *
3204 * Mark device as removed from system and therefore no longer available.
3205 */
56079431
DV
3206void netif_device_detach(struct net_device *dev)
3207{
3208 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3209 netif_running(dev)) {
d543103a 3210 netif_tx_stop_all_queues(dev);
56079431
DV
3211 }
3212}
3213EXPORT_SYMBOL(netif_device_detach);
3214
bea3348e
SH
3215/**
3216 * netif_device_attach - mark device as attached
3217 * @dev: network device
3218 *
3219 * Mark device as attached from system and restart if needed.
3220 */
56079431
DV
3221void netif_device_attach(struct net_device *dev)
3222{
3223 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3224 netif_running(dev)) {
d543103a 3225 netif_tx_wake_all_queues(dev);
4ec93edb 3226 __netdev_watchdog_up(dev);
56079431
DV
3227 }
3228}
3229EXPORT_SYMBOL(netif_device_attach);
3230
5605c762
JP
3231/*
3232 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3233 * to be used as a distribution range.
3234 */
eadec877
AD
3235static u16 skb_tx_hash(const struct net_device *dev,
3236 const struct net_device *sb_dev,
3237 struct sk_buff *skb)
5605c762
JP
3238{
3239 u32 hash;
3240 u16 qoffset = 0;
1b837d48 3241 u16 qcount = dev->real_num_tx_queues;
5605c762 3242
eadec877
AD
3243 if (dev->num_tc) {
3244 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3245
3246 qoffset = sb_dev->tc_to_txq[tc].offset;
3247 qcount = sb_dev->tc_to_txq[tc].count;
3248 }
3249
5605c762
JP
3250 if (skb_rx_queue_recorded(skb)) {
3251 hash = skb_get_rx_queue(skb);
6e11d157
AN
3252 if (hash >= qoffset)
3253 hash -= qoffset;
1b837d48
AD
3254 while (unlikely(hash >= qcount))
3255 hash -= qcount;
eadec877 3256 return hash + qoffset;
5605c762
JP
3257 }
3258
3259 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3260}
5605c762 3261
36c92474
BH
3262static void skb_warn_bad_offload(const struct sk_buff *skb)
3263{
84d15ae5 3264 static const netdev_features_t null_features;
36c92474 3265 struct net_device *dev = skb->dev;
88ad4175 3266 const char *name = "";
36c92474 3267
c846ad9b
BG
3268 if (!net_ratelimit())
3269 return;
3270
88ad4175
BM
3271 if (dev) {
3272 if (dev->dev.parent)
3273 name = dev_driver_string(dev->dev.parent);
3274 else
3275 name = netdev_name(dev);
3276 }
6413139d
WB
3277 skb_dump(KERN_WARNING, skb, false);
3278 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3279 name, dev ? &dev->features : &null_features,
6413139d 3280 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3281}
3282
1da177e4
LT
3283/*
3284 * Invalidate hardware checksum when packet is to be mangled, and
3285 * complete checksum manually on outgoing path.
3286 */
84fa7933 3287int skb_checksum_help(struct sk_buff *skb)
1da177e4 3288{
d3bc23e7 3289 __wsum csum;
663ead3b 3290 int ret = 0, offset;
1da177e4 3291
84fa7933 3292 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3293 goto out_set_summed;
3294
3aefd7d6 3295 if (unlikely(skb_is_gso(skb))) {
36c92474
BH
3296 skb_warn_bad_offload(skb);
3297 return -EINVAL;
1da177e4
LT
3298 }
3299
cef401de
ED
3300 /* Before computing a checksum, we should make sure no frag could
3301 * be modified by an external entity : checksum could be wrong.
3302 */
3303 if (skb_has_shared_frag(skb)) {
3304 ret = __skb_linearize(skb);
3305 if (ret)
3306 goto out;
3307 }
3308
55508d60 3309 offset = skb_checksum_start_offset(skb);
a030847e
HX
3310 BUG_ON(offset >= skb_headlen(skb));
3311 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3312
3313 offset += skb->csum_offset;
3314 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3315
8211fbfa
HK
3316 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3317 if (ret)
3318 goto out;
1da177e4 3319
4f2e4ad5 3320 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3321out_set_summed:
1da177e4 3322 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3323out:
1da177e4
LT
3324 return ret;
3325}
d1b19dff 3326EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3327
b72b5bf6
DC
3328int skb_crc32c_csum_help(struct sk_buff *skb)
3329{
3330 __le32 crc32c_csum;
3331 int ret = 0, offset, start;
3332
3333 if (skb->ip_summed != CHECKSUM_PARTIAL)
3334 goto out;
3335
3336 if (unlikely(skb_is_gso(skb)))
3337 goto out;
3338
3339 /* Before computing a checksum, we should make sure no frag could
3340 * be modified by an external entity : checksum could be wrong.
3341 */
3342 if (unlikely(skb_has_shared_frag(skb))) {
3343 ret = __skb_linearize(skb);
3344 if (ret)
3345 goto out;
3346 }
3347 start = skb_checksum_start_offset(skb);
3348 offset = start + offsetof(struct sctphdr, checksum);
3349 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3350 ret = -EINVAL;
3351 goto out;
3352 }
8211fbfa
HK
3353
3354 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3355 if (ret)
3356 goto out;
3357
b72b5bf6
DC
3358 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3359 skb->len - start, ~(__u32)0,
3360 crc32c_csum_stub));
3361 *(__le32 *)(skb->data + offset) = crc32c_csum;
3362 skb->ip_summed = CHECKSUM_NONE;
dba00306 3363 skb->csum_not_inet = 0;
b72b5bf6
DC
3364out:
3365 return ret;
3366}
3367
53d6471c 3368__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3369{
252e3346 3370 __be16 type = skb->protocol;
f6a78bfc 3371
19acc327
PS
3372 /* Tunnel gso handlers can set protocol to ethernet. */
3373 if (type == htons(ETH_P_TEB)) {
3374 struct ethhdr *eth;
3375
3376 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3377 return 0;
3378
1dfe82eb 3379 eth = (struct ethhdr *)skb->data;
19acc327
PS
3380 type = eth->h_proto;
3381 }
3382
d4bcef3f 3383 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3384}
3385
3386/**
3387 * skb_mac_gso_segment - mac layer segmentation handler.
3388 * @skb: buffer to segment
3389 * @features: features for the output path (see dev->features)
3390 */
3391struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3392 netdev_features_t features)
3393{
3394 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3395 struct packet_offload *ptype;
53d6471c
VY
3396 int vlan_depth = skb->mac_len;
3397 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3398
3399 if (unlikely(!type))
3400 return ERR_PTR(-EINVAL);
3401
53d6471c 3402 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3403
3404 rcu_read_lock();
22061d80 3405 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3406 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3407 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3408 break;
3409 }
3410 }
3411 rcu_read_unlock();
3412
98e399f8 3413 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3414
f6a78bfc
HX
3415 return segs;
3416}
05e8ef4a
PS
3417EXPORT_SYMBOL(skb_mac_gso_segment);
3418
3419
3420/* openvswitch calls this on rx path, so we need a different check.
3421 */
3422static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3423{
3424 if (tx_path)
0c19f846
WB
3425 return skb->ip_summed != CHECKSUM_PARTIAL &&
3426 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3427
3428 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3429}
3430
3431/**
3432 * __skb_gso_segment - Perform segmentation on skb.
3433 * @skb: buffer to segment
3434 * @features: features for the output path (see dev->features)
3435 * @tx_path: whether it is called in TX path
3436 *
3437 * This function segments the given skb and returns a list of segments.
3438 *
3439 * It may return NULL if the skb requires no segmentation. This is
3440 * only possible when GSO is used for verifying header integrity.
9207f9d4 3441 *
a08e7fd9 3442 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3443 */
3444struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3445 netdev_features_t features, bool tx_path)
3446{
b2504a5d
ED
3447 struct sk_buff *segs;
3448
05e8ef4a
PS
3449 if (unlikely(skb_needs_check(skb, tx_path))) {
3450 int err;
3451
b2504a5d 3452 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3453 err = skb_cow_head(skb, 0);
3454 if (err < 0)
05e8ef4a
PS
3455 return ERR_PTR(err);
3456 }
3457
802ab55a
AD
3458 /* Only report GSO partial support if it will enable us to
3459 * support segmentation on this frame without needing additional
3460 * work.
3461 */
3462 if (features & NETIF_F_GSO_PARTIAL) {
3463 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3464 struct net_device *dev = skb->dev;
3465
3466 partial_features |= dev->features & dev->gso_partial_features;
3467 if (!skb_gso_ok(skb, features | partial_features))
3468 features &= ~NETIF_F_GSO_PARTIAL;
3469 }
3470
a08e7fd9 3471 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3472 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3473
68c33163 3474 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3475 SKB_GSO_CB(skb)->encap_level = 0;
3476
05e8ef4a
PS
3477 skb_reset_mac_header(skb);
3478 skb_reset_mac_len(skb);
3479
b2504a5d
ED
3480 segs = skb_mac_gso_segment(skb, features);
3481
3a1296a3 3482 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3483 skb_warn_bad_offload(skb);
3484
3485 return segs;
05e8ef4a 3486}
12b0004d 3487EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3488
fb286bb2
HX
3489/* Take action when hardware reception checksum errors are detected. */
3490#ifdef CONFIG_BUG
127d7355
TL
3491static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3492{
3493 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494 skb_dump(KERN_ERR, skb, true);
3495 dump_stack();
3496}
3497
7fe50ac8 3498void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2 3499{
127d7355 3500 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
fb286bb2
HX
3501}
3502EXPORT_SYMBOL(netdev_rx_csum_fault);
3503#endif
3504
ab74cfeb 3505/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3506static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3507{
3d3a8533 3508#ifdef CONFIG_HIGHMEM
1da177e4 3509 int i;
f4563a75 3510
5acbbd42 3511 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3514
ea2ab693 3515 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3516 return 1;
ea2ab693 3517 }
5acbbd42 3518 }
3d3a8533 3519#endif
1da177e4
LT
3520 return 0;
3521}
1da177e4 3522
3b392ddb
SH
3523/* If MPLS offload request, verify we are testing hardware MPLS features
3524 * instead of standard features for the netdev.
3525 */
d0edc7bf 3526#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3527static netdev_features_t net_mpls_features(struct sk_buff *skb,
3528 netdev_features_t features,
3529 __be16 type)
3530{
25cd9ba0 3531 if (eth_p_mpls(type))
3b392ddb
SH
3532 features &= skb->dev->mpls_features;
3533
3534 return features;
3535}
3536#else
3537static netdev_features_t net_mpls_features(struct sk_buff *skb,
3538 netdev_features_t features,
3539 __be16 type)
3540{
3541 return features;
3542}
3543#endif
3544
c8f44aff 3545static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3546 netdev_features_t features)
f01a5236 3547{
3b392ddb
SH
3548 __be16 type;
3549
9fc95f50 3550 type = skb_network_protocol(skb, NULL);
3b392ddb 3551 features = net_mpls_features(skb, features, type);
53d6471c 3552
c0d680e5 3553 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3554 !can_checksum_protocol(features, type)) {
996e8021 3555 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3556 }
7be2c82c
ED
3557 if (illegal_highdma(skb->dev, skb))
3558 features &= ~NETIF_F_SG;
f01a5236
JG
3559
3560 return features;
3561}
3562
e38f3025
TM
3563netdev_features_t passthru_features_check(struct sk_buff *skb,
3564 struct net_device *dev,
3565 netdev_features_t features)
3566{
3567 return features;
3568}
3569EXPORT_SYMBOL(passthru_features_check);
3570
7ce23672 3571static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3572 struct net_device *dev,
3573 netdev_features_t features)
3574{
3575 return vlan_features_check(skb, features);
3576}
3577
cbc53e08
AD
3578static netdev_features_t gso_features_check(const struct sk_buff *skb,
3579 struct net_device *dev,
3580 netdev_features_t features)
3581{
3582 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3583
3584 if (gso_segs > dev->gso_max_segs)
3585 return features & ~NETIF_F_GSO_MASK;
3586
1d155dfd
HK
3587 if (!skb_shinfo(skb)->gso_type) {
3588 skb_warn_bad_offload(skb);
3589 return features & ~NETIF_F_GSO_MASK;
3590 }
3591
802ab55a
AD
3592 /* Support for GSO partial features requires software
3593 * intervention before we can actually process the packets
3594 * so we need to strip support for any partial features now
3595 * and we can pull them back in after we have partially
3596 * segmented the frame.
3597 */
3598 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3599 features &= ~dev->gso_partial_features;
3600
3601 /* Make sure to clear the IPv4 ID mangling feature if the
3602 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3603 */
3604 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3605 struct iphdr *iph = skb->encapsulation ?
3606 inner_ip_hdr(skb) : ip_hdr(skb);
3607
3608 if (!(iph->frag_off & htons(IP_DF)))
3609 features &= ~NETIF_F_TSO_MANGLEID;
3610 }
3611
3612 return features;
3613}
3614
c1e756bf 3615netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3616{
5f35227e 3617 struct net_device *dev = skb->dev;
fcbeb976 3618 netdev_features_t features = dev->features;
58e998c6 3619
cbc53e08
AD
3620 if (skb_is_gso(skb))
3621 features = gso_features_check(skb, dev, features);
30b678d8 3622
5f35227e
JG
3623 /* If encapsulation offload request, verify we are testing
3624 * hardware encapsulation features instead of standard
3625 * features for the netdev
3626 */
3627 if (skb->encapsulation)
3628 features &= dev->hw_enc_features;
3629
f5a7fb88
TM
3630 if (skb_vlan_tagged(skb))
3631 features = netdev_intersect_features(features,
3632 dev->vlan_features |
3633 NETIF_F_HW_VLAN_CTAG_TX |
3634 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3635
5f35227e
JG
3636 if (dev->netdev_ops->ndo_features_check)
3637 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3638 features);
8cb65d00
TM
3639 else
3640 features &= dflt_features_check(skb, dev, features);
5f35227e 3641
c1e756bf 3642 return harmonize_features(skb, features);
58e998c6 3643}
c1e756bf 3644EXPORT_SYMBOL(netif_skb_features);
58e998c6 3645
2ea25513 3646static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3647 struct netdev_queue *txq, bool more)
f6a78bfc 3648{
2ea25513
DM
3649 unsigned int len;
3650 int rc;
00829823 3651
9f9a742d 3652 if (dev_nit_active(dev))
2ea25513 3653 dev_queue_xmit_nit(skb, dev);
fc741216 3654
2ea25513 3655 len = skb->len;
3744741a 3656 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
2ea25513 3657 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3658 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3659 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3660
2ea25513
DM
3661 return rc;
3662}
7b9c6090 3663
8dcda22a
DM
3664struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3665 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3666{
3667 struct sk_buff *skb = first;
3668 int rc = NETDEV_TX_OK;
7b9c6090 3669
7f2e870f
DM
3670 while (skb) {
3671 struct sk_buff *next = skb->next;
fc70fb64 3672
a8305bff 3673 skb_mark_not_on_list(skb);
95f6b3dd 3674 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3675 if (unlikely(!dev_xmit_complete(rc))) {
3676 skb->next = next;
3677 goto out;
3678 }
6afff0ca 3679
7f2e870f 3680 skb = next;
fe60faa5 3681 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3682 rc = NETDEV_TX_BUSY;
3683 break;
9ccb8975 3684 }
7f2e870f 3685 }
9ccb8975 3686
7f2e870f
DM
3687out:
3688 *ret = rc;
3689 return skb;
3690}
b40863c6 3691
1ff0dc94
ED
3692static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3693 netdev_features_t features)
f6a78bfc 3694{
df8a39de 3695 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3696 !vlan_hw_offload_capable(features, skb->vlan_proto))
3697 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3698 return skb;
3699}
f6a78bfc 3700
43c26a1a
DC
3701int skb_csum_hwoffload_help(struct sk_buff *skb,
3702 const netdev_features_t features)
3703{
fa821170 3704 if (unlikely(skb_csum_is_sctp(skb)))
43c26a1a
DC
3705 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3706 skb_crc32c_csum_help(skb);
3707
62fafcd6
XL
3708 if (features & NETIF_F_HW_CSUM)
3709 return 0;
3710
3711 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3712 switch (skb->csum_offset) {
3713 case offsetof(struct tcphdr, check):
3714 case offsetof(struct udphdr, check):
3715 return 0;
3716 }
3717 }
3718
3719 return skb_checksum_help(skb);
43c26a1a
DC
3720}
3721EXPORT_SYMBOL(skb_csum_hwoffload_help);
3722
f53c7239 3723static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3724{
3725 netdev_features_t features;
f6a78bfc 3726
eae3f88e
DM
3727 features = netif_skb_features(skb);
3728 skb = validate_xmit_vlan(skb, features);
3729 if (unlikely(!skb))
3730 goto out_null;
7b9c6090 3731
ebf4e808
IL
3732 skb = sk_validate_xmit_skb(skb, dev);
3733 if (unlikely(!skb))
3734 goto out_null;
3735
8b86a61d 3736 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3737 struct sk_buff *segs;
3738
3739 segs = skb_gso_segment(skb, features);
cecda693 3740 if (IS_ERR(segs)) {
af6dabc9 3741 goto out_kfree_skb;
cecda693
JW
3742 } else if (segs) {
3743 consume_skb(skb);
3744 skb = segs;
f6a78bfc 3745 }
eae3f88e
DM
3746 } else {
3747 if (skb_needs_linearize(skb, features) &&
3748 __skb_linearize(skb))
3749 goto out_kfree_skb;
4ec93edb 3750
eae3f88e
DM
3751 /* If packet is not checksummed and device does not
3752 * support checksumming for this protocol, complete
3753 * checksumming here.
3754 */
3755 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3756 if (skb->encapsulation)
3757 skb_set_inner_transport_header(skb,
3758 skb_checksum_start_offset(skb));
3759 else
3760 skb_set_transport_header(skb,
3761 skb_checksum_start_offset(skb));
43c26a1a 3762 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3763 goto out_kfree_skb;
7b9c6090 3764 }
0c772159 3765 }
7b9c6090 3766
f53c7239 3767 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3768
eae3f88e 3769 return skb;
fc70fb64 3770
f6a78bfc
HX
3771out_kfree_skb:
3772 kfree_skb(skb);
eae3f88e 3773out_null:
d21fd63e 3774 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3775 return NULL;
3776}
6afff0ca 3777
f53c7239 3778struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3779{
3780 struct sk_buff *next, *head = NULL, *tail;
3781
bec3cfdc 3782 for (; skb != NULL; skb = next) {
55a93b3e 3783 next = skb->next;
a8305bff 3784 skb_mark_not_on_list(skb);
bec3cfdc
ED
3785
3786 /* in case skb wont be segmented, point to itself */
3787 skb->prev = skb;
3788
f53c7239 3789 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3790 if (!skb)
3791 continue;
55a93b3e 3792
bec3cfdc
ED
3793 if (!head)
3794 head = skb;
3795 else
3796 tail->next = skb;
3797 /* If skb was segmented, skb->prev points to
3798 * the last segment. If not, it still contains skb.
3799 */
3800 tail = skb->prev;
55a93b3e
ED
3801 }
3802 return head;
f6a78bfc 3803}
104ba78c 3804EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3805
1def9238
ED
3806static void qdisc_pkt_len_init(struct sk_buff *skb)
3807{
3808 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3809
3810 qdisc_skb_cb(skb)->pkt_len = skb->len;
3811
3812 /* To get more precise estimation of bytes sent on wire,
3813 * we add to pkt_len the headers size of all segments
3814 */
a0dce875 3815 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3816 unsigned int hdr_len;
15e5a030 3817 u16 gso_segs = shinfo->gso_segs;
1def9238 3818
757b8b1d
ED
3819 /* mac layer + network layer */
3820 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3821
3822 /* + transport layer */
7c68d1a6
ED
3823 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3824 const struct tcphdr *th;
3825 struct tcphdr _tcphdr;
3826
3827 th = skb_header_pointer(skb, skb_transport_offset(skb),
3828 sizeof(_tcphdr), &_tcphdr);
3829 if (likely(th))
3830 hdr_len += __tcp_hdrlen(th);
3831 } else {
3832 struct udphdr _udphdr;
3833
3834 if (skb_header_pointer(skb, skb_transport_offset(skb),
3835 sizeof(_udphdr), &_udphdr))
3836 hdr_len += sizeof(struct udphdr);
3837 }
15e5a030
JW
3838
3839 if (shinfo->gso_type & SKB_GSO_DODGY)
3840 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3841 shinfo->gso_size);
3842
3843 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3844 }
3845}
3846
bbd8a0d3
KK
3847static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3848 struct net_device *dev,
3849 struct netdev_queue *txq)
3850{
3851 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3852 struct sk_buff *to_free = NULL;
a2da570d 3853 bool contended;
bbd8a0d3
KK
3854 int rc;
3855
a2da570d 3856 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3857
3858 if (q->flags & TCQ_F_NOLOCK) {
c4fef01b
YL
3859 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3860 qdisc_run_begin(q)) {
3861 /* Retest nolock_qdisc_is_empty() within the protection
3862 * of q->seqlock to protect from racing with requeuing.
3863 */
3864 if (unlikely(!nolock_qdisc_is_empty(q))) {
3865 rc = q->enqueue(skb, q, &to_free) &
3866 NET_XMIT_MASK;
3867 __qdisc_run(q);
3868 qdisc_run_end(q);
3869
3870 goto no_lock_out;
3871 }
3872
3873 qdisc_bstats_cpu_update(q, skb);
3874 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3875 !nolock_qdisc_is_empty(q))
3876 __qdisc_run(q);
3877
3878 qdisc_run_end(q);
3879 return NET_XMIT_SUCCESS;
3880 }
3881
ac5c66f2 3882 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
c4fef01b 3883 qdisc_run(q);
6b3ba914 3884
c4fef01b 3885no_lock_out:
6b3ba914
JF
3886 if (unlikely(to_free))
3887 kfree_skb_list(to_free);
3888 return rc;
3889 }
3890
79640a4c
ED
3891 /*
3892 * Heuristic to force contended enqueues to serialize on a
3893 * separate lock before trying to get qdisc main lock.
f9eb8aea 3894 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3895 * often and dequeue packets faster.
79640a4c 3896 */
a2da570d 3897 contended = qdisc_is_running(q);
79640a4c
ED
3898 if (unlikely(contended))
3899 spin_lock(&q->busylock);
3900
bbd8a0d3
KK
3901 spin_lock(root_lock);
3902 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3903 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3904 rc = NET_XMIT_DROP;
3905 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3906 qdisc_run_begin(q)) {
bbd8a0d3
KK
3907 /*
3908 * This is a work-conserving queue; there are no old skbs
3909 * waiting to be sent out; and the qdisc is not running -
3910 * xmit the skb directly.
3911 */
bfe0d029 3912
bfe0d029
ED
3913 qdisc_bstats_update(q, skb);
3914
55a93b3e 3915 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3916 if (unlikely(contended)) {
3917 spin_unlock(&q->busylock);
3918 contended = false;
3919 }
bbd8a0d3 3920 __qdisc_run(q);
6c148184 3921 }
bbd8a0d3 3922
6c148184 3923 qdisc_run_end(q);
bbd8a0d3
KK
3924 rc = NET_XMIT_SUCCESS;
3925 } else {
ac5c66f2 3926 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3927 if (qdisc_run_begin(q)) {
3928 if (unlikely(contended)) {
3929 spin_unlock(&q->busylock);
3930 contended = false;
3931 }
3932 __qdisc_run(q);
6c148184 3933 qdisc_run_end(q);
79640a4c 3934 }
bbd8a0d3
KK
3935 }
3936 spin_unlock(root_lock);
520ac30f
ED
3937 if (unlikely(to_free))
3938 kfree_skb_list(to_free);
79640a4c
ED
3939 if (unlikely(contended))
3940 spin_unlock(&q->busylock);
bbd8a0d3
KK
3941 return rc;
3942}
3943
86f8515f 3944#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3945static void skb_update_prio(struct sk_buff *skb)
3946{
4dcb31d4
ED
3947 const struct netprio_map *map;
3948 const struct sock *sk;
3949 unsigned int prioidx;
5bc1421e 3950
4dcb31d4
ED
3951 if (skb->priority)
3952 return;
3953 map = rcu_dereference_bh(skb->dev->priomap);
3954 if (!map)
3955 return;
3956 sk = skb_to_full_sk(skb);
3957 if (!sk)
3958 return;
91c68ce2 3959
4dcb31d4
ED
3960 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3961
3962 if (prioidx < map->priomap_len)
3963 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3964}
3965#else
3966#define skb_update_prio(skb)
3967#endif
3968
95603e22
MM
3969/**
3970 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3971 * @net: network namespace this loopback is happening in
3972 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3973 * @skb: buffer to transmit
3974 */
0c4b51f0 3975int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3976{
3977 skb_reset_mac_header(skb);
3978 __skb_pull(skb, skb_network_offset(skb));
3979 skb->pkt_type = PACKET_LOOPBACK;
3980 skb->ip_summed = CHECKSUM_UNNECESSARY;
3981 WARN_ON(!skb_dst(skb));
3982 skb_dst_force(skb);
3983 netif_rx_ni(skb);
3984 return 0;
3985}
3986EXPORT_SYMBOL(dev_loopback_xmit);
3987
1f211a1b
DB
3988#ifdef CONFIG_NET_EGRESS
3989static struct sk_buff *
3990sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3991{
46209401 3992 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3993 struct tcf_result cl_res;
3994
46209401 3995 if (!miniq)
1f211a1b
DB
3996 return skb;
3997
8dc07fdb 3998 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
aadaca9e 3999 qdisc_skb_cb(skb)->mru = 0;
7baf2429 4000 qdisc_skb_cb(skb)->post_ct = false;
46209401 4001 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 4002
46209401 4003 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
4004 case TC_ACT_OK:
4005 case TC_ACT_RECLASSIFY:
4006 skb->tc_index = TC_H_MIN(cl_res.classid);
4007 break;
4008 case TC_ACT_SHOT:
46209401 4009 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 4010 *ret = NET_XMIT_DROP;
7e2c3aea
DB
4011 kfree_skb(skb);
4012 return NULL;
1f211a1b
DB
4013 case TC_ACT_STOLEN:
4014 case TC_ACT_QUEUED:
e25ea21f 4015 case TC_ACT_TRAP:
1f211a1b 4016 *ret = NET_XMIT_SUCCESS;
7e2c3aea 4017 consume_skb(skb);
1f211a1b
DB
4018 return NULL;
4019 case TC_ACT_REDIRECT:
4020 /* No need to push/pop skb's mac_header here on egress! */
4021 skb_do_redirect(skb);
4022 *ret = NET_XMIT_SUCCESS;
4023 return NULL;
4024 default:
4025 break;
4026 }
357b6cc5 4027
1f211a1b
DB
4028 return skb;
4029}
4030#endif /* CONFIG_NET_EGRESS */
4031
fc9bab24
AN
4032#ifdef CONFIG_XPS
4033static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4034 struct xps_dev_maps *dev_maps, unsigned int tci)
4035{
255c04a8 4036 int tc = netdev_get_prio_tc_map(dev, skb->priority);
fc9bab24
AN
4037 struct xps_map *map;
4038 int queue_index = -1;
4039
5478fcd0 4040 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
255c04a8
AT
4041 return queue_index;
4042
4043 tci *= dev_maps->num_tc;
4044 tci += tc;
fc9bab24
AN
4045
4046 map = rcu_dereference(dev_maps->attr_map[tci]);
4047 if (map) {
4048 if (map->len == 1)
4049 queue_index = map->queues[0];
4050 else
4051 queue_index = map->queues[reciprocal_scale(
4052 skb_get_hash(skb), map->len)];
4053 if (unlikely(queue_index >= dev->real_num_tx_queues))
4054 queue_index = -1;
4055 }
4056 return queue_index;
4057}
4058#endif
4059
eadec877
AD
4060static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4061 struct sk_buff *skb)
638b2a69
JP
4062{
4063#ifdef CONFIG_XPS
4064 struct xps_dev_maps *dev_maps;
fc9bab24 4065 struct sock *sk = skb->sk;
638b2a69
JP
4066 int queue_index = -1;
4067
04157469
AN
4068 if (!static_key_false(&xps_needed))
4069 return -1;
4070
638b2a69 4071 rcu_read_lock();
fc9bab24
AN
4072 if (!static_key_false(&xps_rxqs_needed))
4073 goto get_cpus_map;
4074
044ab86d 4075 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
638b2a69 4076 if (dev_maps) {
fc9bab24 4077 int tci = sk_rx_queue_get(sk);
184c449f 4078
5478fcd0 4079 if (tci >= 0)
fc9bab24
AN
4080 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4081 tci);
4082 }
184c449f 4083
fc9bab24
AN
4084get_cpus_map:
4085 if (queue_index < 0) {
044ab86d 4086 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
fc9bab24
AN
4087 if (dev_maps) {
4088 unsigned int tci = skb->sender_cpu - 1;
4089
4090 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4091 tci);
638b2a69
JP
4092 }
4093 }
4094 rcu_read_unlock();
4095
4096 return queue_index;
4097#else
4098 return -1;
4099#endif
4100}
4101
a4ea8a3d 4102u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 4103 struct net_device *sb_dev)
a4ea8a3d
AD
4104{
4105 return 0;
4106}
4107EXPORT_SYMBOL(dev_pick_tx_zero);
4108
4109u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 4110 struct net_device *sb_dev)
a4ea8a3d
AD
4111{
4112 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4113}
4114EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4115
b71b5837
PA
4116u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4117 struct net_device *sb_dev)
638b2a69
JP
4118{
4119 struct sock *sk = skb->sk;
4120 int queue_index = sk_tx_queue_get(sk);
4121
eadec877
AD
4122 sb_dev = sb_dev ? : dev;
4123
638b2a69
JP
4124 if (queue_index < 0 || skb->ooo_okay ||
4125 queue_index >= dev->real_num_tx_queues) {
eadec877 4126 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 4127
638b2a69 4128 if (new_index < 0)
eadec877 4129 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
4130
4131 if (queue_index != new_index && sk &&
004a5d01 4132 sk_fullsock(sk) &&
638b2a69
JP
4133 rcu_access_pointer(sk->sk_dst_cache))
4134 sk_tx_queue_set(sk, new_index);
4135
4136 queue_index = new_index;
4137 }
4138
4139 return queue_index;
4140}
b71b5837 4141EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 4142
4bd97d51
PA
4143struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4144 struct sk_buff *skb,
4145 struct net_device *sb_dev)
638b2a69
JP
4146{
4147 int queue_index = 0;
4148
4149#ifdef CONFIG_XPS
52bd2d62
ED
4150 u32 sender_cpu = skb->sender_cpu - 1;
4151
4152 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
4153 skb->sender_cpu = raw_smp_processor_id() + 1;
4154#endif
4155
4156 if (dev->real_num_tx_queues != 1) {
4157 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 4158
638b2a69 4159 if (ops->ndo_select_queue)
a350ecce 4160 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 4161 else
4bd97d51 4162 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 4163
d584527c 4164 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
4165 }
4166
4167 skb_set_queue_mapping(skb, queue_index);
4168 return netdev_get_tx_queue(dev, queue_index);
4169}
4170
d29f749e 4171/**
9d08dd3d 4172 * __dev_queue_xmit - transmit a buffer
d29f749e 4173 * @skb: buffer to transmit
eadec877 4174 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
4175 *
4176 * Queue a buffer for transmission to a network device. The caller must
4177 * have set the device and priority and built the buffer before calling
4178 * this function. The function can be called from an interrupt.
4179 *
4180 * A negative errno code is returned on a failure. A success does not
4181 * guarantee the frame will be transmitted as it may be dropped due
4182 * to congestion or traffic shaping.
4183 *
4184 * -----------------------------------------------------------------------------------
4185 * I notice this method can also return errors from the queue disciplines,
4186 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4187 * be positive.
4188 *
4189 * Regardless of the return value, the skb is consumed, so it is currently
4190 * difficult to retry a send to this method. (You can bump the ref count
4191 * before sending to hold a reference for retry if you are careful.)
4192 *
4193 * When calling this method, interrupts MUST be enabled. This is because
4194 * the BH enable code must have IRQs enabled so that it will not deadlock.
4195 * --BLG
4196 */
eadec877 4197static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
4198{
4199 struct net_device *dev = skb->dev;
dc2b4847 4200 struct netdev_queue *txq;
1da177e4
LT
4201 struct Qdisc *q;
4202 int rc = -ENOMEM;
f53c7239 4203 bool again = false;
1da177e4 4204
6d1ccff6
ED
4205 skb_reset_mac_header(skb);
4206
e7fd2885 4207 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
e7ed11ee 4208 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
e7fd2885 4209
4ec93edb
YH
4210 /* Disable soft irqs for various locks below. Also
4211 * stops preemption for RCU.
1da177e4 4212 */
4ec93edb 4213 rcu_read_lock_bh();
1da177e4 4214
5bc1421e
NH
4215 skb_update_prio(skb);
4216
1f211a1b
DB
4217 qdisc_pkt_len_init(skb);
4218#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4219 skb->tc_at_ingress = 0;
357b6cc5 4220# ifdef CONFIG_NET_EGRESS
aabf6772 4221 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4222 skb = sch_handle_egress(skb, &rc, dev);
4223 if (!skb)
4224 goto out;
4225 }
357b6cc5 4226# endif
1f211a1b 4227#endif
02875878
ED
4228 /* If device/qdisc don't need skb->dst, release it right now while
4229 * its hot in this cpu cache.
4230 */
4231 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4232 skb_dst_drop(skb);
4233 else
4234 skb_dst_force(skb);
4235
4bd97d51 4236 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4237 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4238
cf66ba58 4239 trace_net_dev_queue(skb);
1da177e4 4240 if (q->enqueue) {
bbd8a0d3 4241 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4242 goto out;
1da177e4
LT
4243 }
4244
4245 /* The device has no queue. Common case for software devices:
eb13da1a 4246 * loopback, all the sorts of tunnels...
1da177e4 4247
eb13da1a 4248 * Really, it is unlikely that netif_tx_lock protection is necessary
4249 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4250 * counters.)
4251 * However, it is possible, that they rely on protection
4252 * made by us here.
1da177e4 4253
eb13da1a 4254 * Check this and shot the lock. It is not prone from deadlocks.
4255 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4256 */
4257 if (dev->flags & IFF_UP) {
4258 int cpu = smp_processor_id(); /* ok because BHs are off */
4259
c773e847 4260 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4261 if (dev_xmit_recursion())
745e20f1
ED
4262 goto recursion_alert;
4263
f53c7239 4264 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4265 if (!skb)
d21fd63e 4266 goto out;
1f59533f 4267
3744741a 4268 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
c773e847 4269 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4270
73466498 4271 if (!netif_xmit_stopped(txq)) {
97cdcf37 4272 dev_xmit_recursion_inc();
ce93718f 4273 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4274 dev_xmit_recursion_dec();
572a9d7b 4275 if (dev_xmit_complete(rc)) {
c773e847 4276 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4277 goto out;
4278 }
4279 }
c773e847 4280 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4281 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4282 dev->name);
1da177e4
LT
4283 } else {
4284 /* Recursion is detected! It is possible,
745e20f1
ED
4285 * unfortunately
4286 */
4287recursion_alert:
e87cc472
JP
4288 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4289 dev->name);
1da177e4
LT
4290 }
4291 }
4292
4293 rc = -ENETDOWN;
d4828d85 4294 rcu_read_unlock_bh();
1da177e4 4295
015f0688 4296 atomic_long_inc(&dev->tx_dropped);
1f59533f 4297 kfree_skb_list(skb);
1da177e4
LT
4298 return rc;
4299out:
d4828d85 4300 rcu_read_unlock_bh();
1da177e4
LT
4301 return rc;
4302}
f663dd9a 4303
2b4aa3ce 4304int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4305{
4306 return __dev_queue_xmit(skb, NULL);
4307}
2b4aa3ce 4308EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4309
eadec877 4310int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4311{
eadec877 4312 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4313}
4314EXPORT_SYMBOL(dev_queue_xmit_accel);
4315
36ccdf85 4316int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
865b03f2
MK
4317{
4318 struct net_device *dev = skb->dev;
4319 struct sk_buff *orig_skb = skb;
4320 struct netdev_queue *txq;
4321 int ret = NETDEV_TX_BUSY;
4322 bool again = false;
4323
4324 if (unlikely(!netif_running(dev) ||
4325 !netif_carrier_ok(dev)))
4326 goto drop;
4327
4328 skb = validate_xmit_skb_list(skb, dev, &again);
4329 if (skb != orig_skb)
4330 goto drop;
4331
4332 skb_set_queue_mapping(skb, queue_id);
4333 txq = skb_get_tx_queue(dev, skb);
3744741a 4334 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
865b03f2
MK
4335
4336 local_bh_disable();
4337
0ad6f6e7 4338 dev_xmit_recursion_inc();
865b03f2
MK
4339 HARD_TX_LOCK(dev, txq, smp_processor_id());
4340 if (!netif_xmit_frozen_or_drv_stopped(txq))
4341 ret = netdev_start_xmit(skb, dev, txq, false);
4342 HARD_TX_UNLOCK(dev, txq);
0ad6f6e7 4343 dev_xmit_recursion_dec();
865b03f2
MK
4344
4345 local_bh_enable();
865b03f2
MK
4346 return ret;
4347drop:
4348 atomic_long_inc(&dev->tx_dropped);
4349 kfree_skb_list(skb);
4350 return NET_XMIT_DROP;
4351}
36ccdf85 4352EXPORT_SYMBOL(__dev_direct_xmit);
1da177e4 4353
eb13da1a 4354/*************************************************************************
4355 * Receiver routines
4356 *************************************************************************/
1da177e4 4357
6b2bedc3 4358int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4359EXPORT_SYMBOL(netdev_max_backlog);
4360
3b098e2d 4361int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4362int netdev_budget __read_mostly = 300;
a4837980
KK
4363/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4364unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4365int weight_p __read_mostly = 64; /* old backlog weight */
4366int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4367int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4368int dev_rx_weight __read_mostly = 64;
4369int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4370/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4371int gro_normal_batch __read_mostly = 8;
1da177e4 4372
eecfd7c4
ED
4373/* Called with irq disabled */
4374static inline void ____napi_schedule(struct softnet_data *sd,
4375 struct napi_struct *napi)
4376{
29863d41
WW
4377 struct task_struct *thread;
4378
4379 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4380 /* Paired with smp_mb__before_atomic() in
5fdd2f0e
WW
4381 * napi_enable()/dev_set_threaded().
4382 * Use READ_ONCE() to guarantee a complete
4383 * read on napi->thread. Only call
29863d41
WW
4384 * wake_up_process() when it's not NULL.
4385 */
4386 thread = READ_ONCE(napi->thread);
4387 if (thread) {
cb038357
WW
4388 /* Avoid doing set_bit() if the thread is in
4389 * INTERRUPTIBLE state, cause napi_thread_wait()
4390 * makes sure to proceed with napi polling
4391 * if the thread is explicitly woken from here.
4392 */
2f064a59 4393 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
cb038357 4394 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
29863d41
WW
4395 wake_up_process(thread);
4396 return;
4397 }
4398 }
4399
eecfd7c4
ED
4400 list_add_tail(&napi->poll_list, &sd->poll_list);
4401 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4402}
4403
bfb564e7
KK
4404#ifdef CONFIG_RPS
4405
4406/* One global table that all flow-based protocols share. */
6e3f7faf 4407struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4408EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4409u32 rps_cpu_mask __read_mostly;
4410EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4411
dc05360f 4412struct static_key_false rps_needed __read_mostly;
3df97ba8 4413EXPORT_SYMBOL(rps_needed);
dc05360f 4414struct static_key_false rfs_needed __read_mostly;
13bfff25 4415EXPORT_SYMBOL(rfs_needed);
adc9300e 4416
c445477d
BH
4417static struct rps_dev_flow *
4418set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4419 struct rps_dev_flow *rflow, u16 next_cpu)
4420{
a31196b0 4421 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4422#ifdef CONFIG_RFS_ACCEL
4423 struct netdev_rx_queue *rxqueue;
4424 struct rps_dev_flow_table *flow_table;
4425 struct rps_dev_flow *old_rflow;
4426 u32 flow_id;
4427 u16 rxq_index;
4428 int rc;
4429
4430 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4431 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4432 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4433 goto out;
4434 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4435 if (rxq_index == skb_get_rx_queue(skb))
4436 goto out;
4437
4438 rxqueue = dev->_rx + rxq_index;
4439 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4440 if (!flow_table)
4441 goto out;
61b905da 4442 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4443 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4444 rxq_index, flow_id);
4445 if (rc < 0)
4446 goto out;
4447 old_rflow = rflow;
4448 rflow = &flow_table->flows[flow_id];
c445477d
BH
4449 rflow->filter = rc;
4450 if (old_rflow->filter == rflow->filter)
4451 old_rflow->filter = RPS_NO_FILTER;
4452 out:
4453#endif
4454 rflow->last_qtail =
09994d1b 4455 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4456 }
4457
09994d1b 4458 rflow->cpu = next_cpu;
c445477d
BH
4459 return rflow;
4460}
4461
bfb564e7
KK
4462/*
4463 * get_rps_cpu is called from netif_receive_skb and returns the target
4464 * CPU from the RPS map of the receiving queue for a given skb.
4465 * rcu_read_lock must be held on entry.
4466 */
4467static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4468 struct rps_dev_flow **rflowp)
4469{
567e4b79
ED
4470 const struct rps_sock_flow_table *sock_flow_table;
4471 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4472 struct rps_dev_flow_table *flow_table;
567e4b79 4473 struct rps_map *map;
bfb564e7 4474 int cpu = -1;
567e4b79 4475 u32 tcpu;
61b905da 4476 u32 hash;
bfb564e7
KK
4477
4478 if (skb_rx_queue_recorded(skb)) {
4479 u16 index = skb_get_rx_queue(skb);
567e4b79 4480
62fe0b40
BH
4481 if (unlikely(index >= dev->real_num_rx_queues)) {
4482 WARN_ONCE(dev->real_num_rx_queues > 1,
4483 "%s received packet on queue %u, but number "
4484 "of RX queues is %u\n",
4485 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4486 goto done;
4487 }
567e4b79
ED
4488 rxqueue += index;
4489 }
bfb564e7 4490
567e4b79
ED
4491 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4492
4493 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4494 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4495 if (!flow_table && !map)
bfb564e7
KK
4496 goto done;
4497
2d47b459 4498 skb_reset_network_header(skb);
61b905da
TH
4499 hash = skb_get_hash(skb);
4500 if (!hash)
bfb564e7
KK
4501 goto done;
4502
fec5e652
TH
4503 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4504 if (flow_table && sock_flow_table) {
fec5e652 4505 struct rps_dev_flow *rflow;
567e4b79
ED
4506 u32 next_cpu;
4507 u32 ident;
4508
4509 /* First check into global flow table if there is a match */
4510 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4511 if ((ident ^ hash) & ~rps_cpu_mask)
4512 goto try_rps;
fec5e652 4513
567e4b79
ED
4514 next_cpu = ident & rps_cpu_mask;
4515
4516 /* OK, now we know there is a match,
4517 * we can look at the local (per receive queue) flow table
4518 */
61b905da 4519 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4520 tcpu = rflow->cpu;
4521
fec5e652
TH
4522 /*
4523 * If the desired CPU (where last recvmsg was done) is
4524 * different from current CPU (one in the rx-queue flow
4525 * table entry), switch if one of the following holds:
a31196b0 4526 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4527 * - Current CPU is offline.
4528 * - The current CPU's queue tail has advanced beyond the
4529 * last packet that was enqueued using this table entry.
4530 * This guarantees that all previous packets for the flow
4531 * have been dequeued, thus preserving in order delivery.
4532 */
4533 if (unlikely(tcpu != next_cpu) &&
a31196b0 4534 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4535 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4536 rflow->last_qtail)) >= 0)) {
4537 tcpu = next_cpu;
c445477d 4538 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4539 }
c445477d 4540
a31196b0 4541 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4542 *rflowp = rflow;
4543 cpu = tcpu;
4544 goto done;
4545 }
4546 }
4547
567e4b79
ED
4548try_rps:
4549
0a9627f2 4550 if (map) {
8fc54f68 4551 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4552 if (cpu_online(tcpu)) {
4553 cpu = tcpu;
4554 goto done;
4555 }
4556 }
4557
4558done:
0a9627f2
TH
4559 return cpu;
4560}
4561
c445477d
BH
4562#ifdef CONFIG_RFS_ACCEL
4563
4564/**
4565 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4566 * @dev: Device on which the filter was set
4567 * @rxq_index: RX queue index
4568 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4569 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4570 *
4571 * Drivers that implement ndo_rx_flow_steer() should periodically call
4572 * this function for each installed filter and remove the filters for
4573 * which it returns %true.
4574 */
4575bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4576 u32 flow_id, u16 filter_id)
4577{
4578 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4579 struct rps_dev_flow_table *flow_table;
4580 struct rps_dev_flow *rflow;
4581 bool expire = true;
a31196b0 4582 unsigned int cpu;
c445477d
BH
4583
4584 rcu_read_lock();
4585 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4586 if (flow_table && flow_id <= flow_table->mask) {
4587 rflow = &flow_table->flows[flow_id];
6aa7de05 4588 cpu = READ_ONCE(rflow->cpu);
a31196b0 4589 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4590 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4591 rflow->last_qtail) <
4592 (int)(10 * flow_table->mask)))
4593 expire = false;
4594 }
4595 rcu_read_unlock();
4596 return expire;
4597}
4598EXPORT_SYMBOL(rps_may_expire_flow);
4599
4600#endif /* CONFIG_RFS_ACCEL */
4601
0a9627f2 4602/* Called from hardirq (IPI) context */
e36fa2f7 4603static void rps_trigger_softirq(void *data)
0a9627f2 4604{
e36fa2f7
ED
4605 struct softnet_data *sd = data;
4606
eecfd7c4 4607 ____napi_schedule(sd, &sd->backlog);
dee42870 4608 sd->received_rps++;
0a9627f2 4609}
e36fa2f7 4610
fec5e652 4611#endif /* CONFIG_RPS */
0a9627f2 4612
e36fa2f7
ED
4613/*
4614 * Check if this softnet_data structure is another cpu one
4615 * If yes, queue it to our IPI list and return 1
4616 * If no, return 0
4617 */
4618static int rps_ipi_queued(struct softnet_data *sd)
4619{
4620#ifdef CONFIG_RPS
903ceff7 4621 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4622
4623 if (sd != mysd) {
4624 sd->rps_ipi_next = mysd->rps_ipi_list;
4625 mysd->rps_ipi_list = sd;
4626
4627 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4628 return 1;
4629 }
4630#endif /* CONFIG_RPS */
4631 return 0;
4632}
4633
99bbc707
WB
4634#ifdef CONFIG_NET_FLOW_LIMIT
4635int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4636#endif
4637
4638static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4639{
4640#ifdef CONFIG_NET_FLOW_LIMIT
4641 struct sd_flow_limit *fl;
4642 struct softnet_data *sd;
4643 unsigned int old_flow, new_flow;
4644
4645 if (qlen < (netdev_max_backlog >> 1))
4646 return false;
4647
903ceff7 4648 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4649
4650 rcu_read_lock();
4651 fl = rcu_dereference(sd->flow_limit);
4652 if (fl) {
3958afa1 4653 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4654 old_flow = fl->history[fl->history_head];
4655 fl->history[fl->history_head] = new_flow;
4656
4657 fl->history_head++;
4658 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4659
4660 if (likely(fl->buckets[old_flow]))
4661 fl->buckets[old_flow]--;
4662
4663 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4664 fl->count++;
4665 rcu_read_unlock();
4666 return true;
4667 }
4668 }
4669 rcu_read_unlock();
4670#endif
4671 return false;
4672}
4673
0a9627f2
TH
4674/*
4675 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4676 * queue (may be a remote CPU queue).
4677 */
fec5e652
TH
4678static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4679 unsigned int *qtail)
0a9627f2 4680{
e36fa2f7 4681 struct softnet_data *sd;
0a9627f2 4682 unsigned long flags;
99bbc707 4683 unsigned int qlen;
0a9627f2 4684
e36fa2f7 4685 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4686
4687 local_irq_save(flags);
0a9627f2 4688
e36fa2f7 4689 rps_lock(sd);
e9e4dd32
JA
4690 if (!netif_running(skb->dev))
4691 goto drop;
99bbc707
WB
4692 qlen = skb_queue_len(&sd->input_pkt_queue);
4693 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4694 if (qlen) {
0a9627f2 4695enqueue:
e36fa2f7 4696 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4697 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4698 rps_unlock(sd);
152102c7 4699 local_irq_restore(flags);
0a9627f2
TH
4700 return NET_RX_SUCCESS;
4701 }
4702
ebda37c2
ED
4703 /* Schedule NAPI for backlog device
4704 * We can use non atomic operation since we own the queue lock
4705 */
4706 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4707 if (!rps_ipi_queued(sd))
eecfd7c4 4708 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4709 }
4710 goto enqueue;
4711 }
4712
e9e4dd32 4713drop:
dee42870 4714 sd->dropped++;
e36fa2f7 4715 rps_unlock(sd);
0a9627f2 4716
0a9627f2
TH
4717 local_irq_restore(flags);
4718
caf586e5 4719 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4720 kfree_skb(skb);
4721 return NET_RX_DROP;
4722}
1da177e4 4723
e817f856
JDB
4724static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4725{
4726 struct net_device *dev = skb->dev;
4727 struct netdev_rx_queue *rxqueue;
4728
4729 rxqueue = dev->_rx;
4730
4731 if (skb_rx_queue_recorded(skb)) {
4732 u16 index = skb_get_rx_queue(skb);
4733
4734 if (unlikely(index >= dev->real_num_rx_queues)) {
4735 WARN_ONCE(dev->real_num_rx_queues > 1,
4736 "%s received packet on queue %u, but number "
4737 "of RX queues is %u\n",
4738 dev->name, index, dev->real_num_rx_queues);
4739
4740 return rxqueue; /* Return first rxqueue */
4741 }
4742 rxqueue += index;
4743 }
4744 return rxqueue;
4745}
4746
d4455169 4747static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4748 struct xdp_buff *xdp,
d4455169
JF
4749 struct bpf_prog *xdp_prog)
4750{
be9df4af 4751 void *orig_data, *orig_data_end, *hard_start;
e817f856 4752 struct netdev_rx_queue *rxqueue;
de8f3a83 4753 u32 metalen, act = XDP_DROP;
22b60343 4754 bool orig_bcast, orig_host;
43b5169d 4755 u32 mac_len, frame_sz;
29724956
JDB
4756 __be16 orig_eth_type;
4757 struct ethhdr *eth;
be9df4af 4758 int off;
d4455169
JF
4759
4760 /* Reinjected packets coming from act_mirred or similar should
4761 * not get XDP generic processing.
4762 */
2c64605b 4763 if (skb_is_redirected(skb))
d4455169
JF
4764 return XDP_PASS;
4765
de8f3a83
DB
4766 /* XDP packets must be linear and must have sufficient headroom
4767 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4768 * native XDP provides, thus we need to do it here as well.
4769 */
ad1e03b2 4770 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
de8f3a83
DB
4771 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4772 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4773 int troom = skb->tail + skb->data_len - skb->end;
4774
4775 /* In case we have to go down the path and also linearize,
4776 * then lets do the pskb_expand_head() work just once here.
4777 */
4778 if (pskb_expand_head(skb,
4779 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4780 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4781 goto do_drop;
2d17d8d7 4782 if (skb_linearize(skb))
de8f3a83
DB
4783 goto do_drop;
4784 }
d4455169
JF
4785
4786 /* The XDP program wants to see the packet starting at the MAC
4787 * header.
4788 */
4789 mac_len = skb->data - skb_mac_header(skb);
be9df4af 4790 hard_start = skb->data - skb_headroom(skb);
a075767b
JDB
4791
4792 /* SKB "head" area always have tailroom for skb_shared_info */
be9df4af 4793 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
43b5169d 4794 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
a075767b 4795
be9df4af
LB
4796 rxqueue = netif_get_rxqueue(skb);
4797 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4798 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4799 skb_headlen(skb) + mac_len, true);
a075767b 4800
02671e23
BT
4801 orig_data_end = xdp->data_end;
4802 orig_data = xdp->data;
29724956 4803 eth = (struct ethhdr *)xdp->data;
22b60343 4804 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
29724956
JDB
4805 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4806 orig_eth_type = eth->h_proto;
d4455169 4807
02671e23 4808 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4809
065af355 4810 /* check if bpf_xdp_adjust_head was used */
02671e23 4811 off = xdp->data - orig_data;
065af355
JDB
4812 if (off) {
4813 if (off > 0)
4814 __skb_pull(skb, off);
4815 else if (off < 0)
4816 __skb_push(skb, -off);
4817
4818 skb->mac_header += off;
4819 skb_reset_network_header(skb);
4820 }
d4455169 4821
a075767b
JDB
4822 /* check if bpf_xdp_adjust_tail was used */
4823 off = xdp->data_end - orig_data_end;
f7613120 4824 if (off != 0) {
02671e23 4825 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
a075767b 4826 skb->len += off; /* positive on grow, negative on shrink */
f7613120 4827 }
198d83bb 4828
29724956
JDB
4829 /* check if XDP changed eth hdr such SKB needs update */
4830 eth = (struct ethhdr *)xdp->data;
4831 if ((orig_eth_type != eth->h_proto) ||
22b60343
MW
4832 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4833 skb->dev->dev_addr)) ||
29724956
JDB
4834 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4835 __skb_push(skb, ETH_HLEN);
22b60343 4836 skb->pkt_type = PACKET_HOST;
29724956
JDB
4837 skb->protocol = eth_type_trans(skb, skb->dev);
4838 }
4839
d4455169 4840 switch (act) {
6103aa96 4841 case XDP_REDIRECT:
d4455169
JF
4842 case XDP_TX:
4843 __skb_push(skb, mac_len);
de8f3a83 4844 break;
d4455169 4845 case XDP_PASS:
02671e23 4846 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4847 if (metalen)
4848 skb_metadata_set(skb, metalen);
d4455169 4849 break;
d4455169
JF
4850 default:
4851 bpf_warn_invalid_xdp_action(act);
df561f66 4852 fallthrough;
d4455169
JF
4853 case XDP_ABORTED:
4854 trace_xdp_exception(skb->dev, xdp_prog, act);
df561f66 4855 fallthrough;
d4455169
JF
4856 case XDP_DROP:
4857 do_drop:
4858 kfree_skb(skb);
4859 break;
4860 }
4861
4862 return act;
4863}
4864
4865/* When doing generic XDP we have to bypass the qdisc layer and the
4866 * network taps in order to match in-driver-XDP behavior.
4867 */
7c497478 4868void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4869{
4870 struct net_device *dev = skb->dev;
4871 struct netdev_queue *txq;
4872 bool free_skb = true;
4873 int cpu, rc;
4874
4bd97d51 4875 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4876 cpu = smp_processor_id();
4877 HARD_TX_LOCK(dev, txq, cpu);
4878 if (!netif_xmit_stopped(txq)) {
4879 rc = netdev_start_xmit(skb, dev, txq, 0);
4880 if (dev_xmit_complete(rc))
4881 free_skb = false;
4882 }
4883 HARD_TX_UNLOCK(dev, txq);
4884 if (free_skb) {
4885 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4886 kfree_skb(skb);
4887 }
4888}
4889
02786475 4890static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4891
7c497478 4892int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4893{
d4455169 4894 if (xdp_prog) {
02671e23
BT
4895 struct xdp_buff xdp;
4896 u32 act;
6103aa96 4897 int err;
d4455169 4898
02671e23 4899 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4900 if (act != XDP_PASS) {
6103aa96
JF
4901 switch (act) {
4902 case XDP_REDIRECT:
2facaad6 4903 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4904 &xdp, xdp_prog);
6103aa96
JF
4905 if (err)
4906 goto out_redir;
02671e23 4907 break;
6103aa96 4908 case XDP_TX:
d4455169 4909 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4910 break;
4911 }
d4455169
JF
4912 return XDP_DROP;
4913 }
4914 }
4915 return XDP_PASS;
6103aa96 4916out_redir:
6103aa96
JF
4917 kfree_skb(skb);
4918 return XDP_DROP;
d4455169 4919}
7c497478 4920EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4921
ae78dbfa 4922static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4923{
b0e28f1e 4924 int ret;
1da177e4 4925
588f0330 4926 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4927
cf66ba58 4928 trace_netif_rx(skb);
d4455169 4929
df334545 4930#ifdef CONFIG_RPS
dc05360f 4931 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4932 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4933 int cpu;
4934
cece1945 4935 preempt_disable();
b0e28f1e 4936 rcu_read_lock();
fec5e652
TH
4937
4938 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4939 if (cpu < 0)
4940 cpu = smp_processor_id();
fec5e652
TH
4941
4942 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4943
b0e28f1e 4944 rcu_read_unlock();
cece1945 4945 preempt_enable();
adc9300e
ED
4946 } else
4947#endif
fec5e652
TH
4948 {
4949 unsigned int qtail;
f4563a75 4950
fec5e652
TH
4951 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4952 put_cpu();
4953 }
b0e28f1e 4954 return ret;
1da177e4 4955}
ae78dbfa
BH
4956
4957/**
4958 * netif_rx - post buffer to the network code
4959 * @skb: buffer to post
4960 *
4961 * This function receives a packet from a device driver and queues it for
4962 * the upper (protocol) levels to process. It always succeeds. The buffer
4963 * may be dropped during processing for congestion control or by the
4964 * protocol layers.
4965 *
4966 * return values:
4967 * NET_RX_SUCCESS (no congestion)
4968 * NET_RX_DROP (packet was dropped)
4969 *
4970 */
4971
4972int netif_rx(struct sk_buff *skb)
4973{
b0e3f1bd
GB
4974 int ret;
4975
ae78dbfa
BH
4976 trace_netif_rx_entry(skb);
4977
b0e3f1bd
GB
4978 ret = netif_rx_internal(skb);
4979 trace_netif_rx_exit(ret);
4980
4981 return ret;
ae78dbfa 4982}
d1b19dff 4983EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4984
4985int netif_rx_ni(struct sk_buff *skb)
4986{
4987 int err;
4988
ae78dbfa
BH
4989 trace_netif_rx_ni_entry(skb);
4990
1da177e4 4991 preempt_disable();
ae78dbfa 4992 err = netif_rx_internal(skb);
1da177e4
LT
4993 if (local_softirq_pending())
4994 do_softirq();
4995 preempt_enable();
b0e3f1bd 4996 trace_netif_rx_ni_exit(err);
1da177e4
LT
4997
4998 return err;
4999}
1da177e4
LT
5000EXPORT_SYMBOL(netif_rx_ni);
5001
c11171a4
SAS
5002int netif_rx_any_context(struct sk_buff *skb)
5003{
5004 /*
5005 * If invoked from contexts which do not invoke bottom half
5006 * processing either at return from interrupt or when softrqs are
5007 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5008 * directly.
5009 */
5010 if (in_interrupt())
5011 return netif_rx(skb);
5012 else
5013 return netif_rx_ni(skb);
5014}
5015EXPORT_SYMBOL(netif_rx_any_context);
5016
0766f788 5017static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 5018{
903ceff7 5019 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
5020
5021 if (sd->completion_queue) {
5022 struct sk_buff *clist;
5023
5024 local_irq_disable();
5025 clist = sd->completion_queue;
5026 sd->completion_queue = NULL;
5027 local_irq_enable();
5028
5029 while (clist) {
5030 struct sk_buff *skb = clist;
f4563a75 5031
1da177e4
LT
5032 clist = clist->next;
5033
63354797 5034 WARN_ON(refcount_read(&skb->users));
e6247027
ED
5035 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5036 trace_consume_skb(skb);
5037 else
5038 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
5039
5040 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5041 __kfree_skb(skb);
5042 else
5043 __kfree_skb_defer(skb);
1da177e4
LT
5044 }
5045 }
5046
5047 if (sd->output_queue) {
37437bb2 5048 struct Qdisc *head;
1da177e4
LT
5049
5050 local_irq_disable();
5051 head = sd->output_queue;
5052 sd->output_queue = NULL;
a9cbd588 5053 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
5054 local_irq_enable();
5055
102b55ee
YL
5056 rcu_read_lock();
5057
1da177e4 5058 while (head) {
37437bb2 5059 struct Qdisc *q = head;
6b3ba914 5060 spinlock_t *root_lock = NULL;
37437bb2 5061
1da177e4
LT
5062 head = head->next_sched;
5063
3bcb846c
ED
5064 /* We need to make sure head->next_sched is read
5065 * before clearing __QDISC_STATE_SCHED
5066 */
5067 smp_mb__before_atomic();
102b55ee
YL
5068
5069 if (!(q->flags & TCQ_F_NOLOCK)) {
5070 root_lock = qdisc_lock(q);
5071 spin_lock(root_lock);
5072 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5073 &q->state))) {
5074 /* There is a synchronize_net() between
5075 * STATE_DEACTIVATED flag being set and
5076 * qdisc_reset()/some_qdisc_is_busy() in
5077 * dev_deactivate(), so we can safely bail out
5078 * early here to avoid data race between
5079 * qdisc_deactivate() and some_qdisc_is_busy()
5080 * for lockless qdisc.
5081 */
5082 clear_bit(__QDISC_STATE_SCHED, &q->state);
5083 continue;
5084 }
5085
3bcb846c
ED
5086 clear_bit(__QDISC_STATE_SCHED, &q->state);
5087 qdisc_run(q);
6b3ba914
JF
5088 if (root_lock)
5089 spin_unlock(root_lock);
1da177e4 5090 }
102b55ee
YL
5091
5092 rcu_read_unlock();
1da177e4 5093 }
f53c7239
SK
5094
5095 xfrm_dev_backlog(sd);
1da177e4
LT
5096}
5097
181402a5 5098#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
5099/* This hook is defined here for ATM LANE */
5100int (*br_fdb_test_addr_hook)(struct net_device *dev,
5101 unsigned char *addr) __read_mostly;
4fb019a0 5102EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 5103#endif
1da177e4 5104
1f211a1b
DB
5105static inline struct sk_buff *
5106sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
9aa1206e 5107 struct net_device *orig_dev, bool *another)
f697c3e8 5108{
e7582bab 5109#ifdef CONFIG_NET_CLS_ACT
46209401 5110 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 5111 struct tcf_result cl_res;
24824a09 5112
c9e99fd0
DB
5113 /* If there's at least one ingress present somewhere (so
5114 * we get here via enabled static key), remaining devices
5115 * that are not configured with an ingress qdisc will bail
d2788d34 5116 * out here.
c9e99fd0 5117 */
46209401 5118 if (!miniq)
4577139b 5119 return skb;
46209401 5120
f697c3e8
HX
5121 if (*pt_prev) {
5122 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5123 *pt_prev = NULL;
1da177e4
LT
5124 }
5125
3365495c 5126 qdisc_skb_cb(skb)->pkt_len = skb->len;
aadaca9e 5127 qdisc_skb_cb(skb)->mru = 0;
7baf2429 5128 qdisc_skb_cb(skb)->post_ct = false;
8dc07fdb 5129 skb->tc_at_ingress = 1;
46209401 5130 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 5131
7d17c544
PB
5132 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5133 &cl_res, false)) {
d2788d34
DB
5134 case TC_ACT_OK:
5135 case TC_ACT_RECLASSIFY:
5136 skb->tc_index = TC_H_MIN(cl_res.classid);
5137 break;
5138 case TC_ACT_SHOT:
46209401 5139 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
5140 kfree_skb(skb);
5141 return NULL;
d2788d34
DB
5142 case TC_ACT_STOLEN:
5143 case TC_ACT_QUEUED:
e25ea21f 5144 case TC_ACT_TRAP:
8a3a4c6e 5145 consume_skb(skb);
d2788d34 5146 return NULL;
27b29f63
AS
5147 case TC_ACT_REDIRECT:
5148 /* skb_mac_header check was done by cls/act_bpf, so
5149 * we can safely push the L2 header back before
5150 * redirecting to another netdev
5151 */
5152 __skb_push(skb, skb->mac_len);
9aa1206e
DB
5153 if (skb_do_redirect(skb) == -EAGAIN) {
5154 __skb_pull(skb, skb->mac_len);
5155 *another = true;
5156 break;
5157 }
27b29f63 5158 return NULL;
720f22fe 5159 case TC_ACT_CONSUMED:
cd11b164 5160 return NULL;
d2788d34
DB
5161 default:
5162 break;
f697c3e8 5163 }
e7582bab 5164#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
5165 return skb;
5166}
1da177e4 5167
24b27fc4
MB
5168/**
5169 * netdev_is_rx_handler_busy - check if receive handler is registered
5170 * @dev: device to check
5171 *
5172 * Check if a receive handler is already registered for a given device.
5173 * Return true if there one.
5174 *
5175 * The caller must hold the rtnl_mutex.
5176 */
5177bool netdev_is_rx_handler_busy(struct net_device *dev)
5178{
5179 ASSERT_RTNL();
5180 return dev && rtnl_dereference(dev->rx_handler);
5181}
5182EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5183
ab95bfe0
JP
5184/**
5185 * netdev_rx_handler_register - register receive handler
5186 * @dev: device to register a handler for
5187 * @rx_handler: receive handler to register
93e2c32b 5188 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 5189 *
e227867f 5190 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
5191 * called from __netif_receive_skb. A negative errno code is returned
5192 * on a failure.
5193 *
5194 * The caller must hold the rtnl_mutex.
8a4eb573
JP
5195 *
5196 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
5197 */
5198int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
5199 rx_handler_func_t *rx_handler,
5200 void *rx_handler_data)
ab95bfe0 5201{
1b7cd004 5202 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
5203 return -EBUSY;
5204
f5426250
PA
5205 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5206 return -EINVAL;
5207
00cfec37 5208 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 5209 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
5210 rcu_assign_pointer(dev->rx_handler, rx_handler);
5211
5212 return 0;
5213}
5214EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5215
5216/**
5217 * netdev_rx_handler_unregister - unregister receive handler
5218 * @dev: device to unregister a handler from
5219 *
166ec369 5220 * Unregister a receive handler from a device.
ab95bfe0
JP
5221 *
5222 * The caller must hold the rtnl_mutex.
5223 */
5224void netdev_rx_handler_unregister(struct net_device *dev)
5225{
5226
5227 ASSERT_RTNL();
a9b3cd7f 5228 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
5229 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5230 * section has a guarantee to see a non NULL rx_handler_data
5231 * as well.
5232 */
5233 synchronize_net();
a9b3cd7f 5234 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
5235}
5236EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5237
b4b9e355
MG
5238/*
5239 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5240 * the special handling of PFMEMALLOC skbs.
5241 */
5242static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5243{
5244 switch (skb->protocol) {
2b8837ae
JP
5245 case htons(ETH_P_ARP):
5246 case htons(ETH_P_IP):
5247 case htons(ETH_P_IPV6):
5248 case htons(ETH_P_8021Q):
5249 case htons(ETH_P_8021AD):
b4b9e355
MG
5250 return true;
5251 default:
5252 return false;
5253 }
5254}
5255
e687ad60
PN
5256static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5257 int *ret, struct net_device *orig_dev)
5258{
5259 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
5260 int ingress_retval;
5261
e687ad60
PN
5262 if (*pt_prev) {
5263 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5264 *pt_prev = NULL;
5265 }
5266
2c1e2703
AC
5267 rcu_read_lock();
5268 ingress_retval = nf_hook_ingress(skb);
5269 rcu_read_unlock();
5270 return ingress_retval;
e687ad60
PN
5271 }
5272 return 0;
5273}
e687ad60 5274
c0bbbdc3 5275static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
88eb1944 5276 struct packet_type **ppt_prev)
1da177e4
LT
5277{
5278 struct packet_type *ptype, *pt_prev;
ab95bfe0 5279 rx_handler_func_t *rx_handler;
c0bbbdc3 5280 struct sk_buff *skb = *pskb;
f2ccd8fa 5281 struct net_device *orig_dev;
8a4eb573 5282 bool deliver_exact = false;
1da177e4 5283 int ret = NET_RX_DROP;
252e3346 5284 __be16 type;
1da177e4 5285
588f0330 5286 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5287
cf66ba58 5288 trace_netif_receive_skb(skb);
9b22ea56 5289
cc9bd5ce 5290 orig_dev = skb->dev;
8f903c70 5291
c1d2bbe1 5292 skb_reset_network_header(skb);
fda55eca
ED
5293 if (!skb_transport_header_was_set(skb))
5294 skb_reset_transport_header(skb);
0b5c9db1 5295 skb_reset_mac_len(skb);
1da177e4
LT
5296
5297 pt_prev = NULL;
5298
63d8ea7f 5299another_round:
b6858177 5300 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5301
5302 __this_cpu_inc(softnet_data.processed);
5303
458bf2f2
SH
5304 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5305 int ret2;
5306
2b4cd14f 5307 migrate_disable();
458bf2f2 5308 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
2b4cd14f 5309 migrate_enable();
458bf2f2 5310
c0bbbdc3
BS
5311 if (ret2 != XDP_PASS) {
5312 ret = NET_RX_DROP;
5313 goto out;
5314 }
458bf2f2
SH
5315 skb_reset_mac_len(skb);
5316 }
5317
324cefaf 5318 if (eth_type_vlan(skb->protocol)) {
0d5501c1 5319 skb = skb_vlan_untag(skb);
bcc6d479 5320 if (unlikely(!skb))
2c17d27c 5321 goto out;
bcc6d479
JP
5322 }
5323
e7246e12
WB
5324 if (skb_skip_tc_classify(skb))
5325 goto skip_classify;
1da177e4 5326
9754e293 5327 if (pfmemalloc)
b4b9e355
MG
5328 goto skip_taps;
5329
1da177e4 5330 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5331 if (pt_prev)
5332 ret = deliver_skb(skb, pt_prev, orig_dev);
5333 pt_prev = ptype;
5334 }
5335
5336 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5337 if (pt_prev)
5338 ret = deliver_skb(skb, pt_prev, orig_dev);
5339 pt_prev = ptype;
1da177e4
LT
5340 }
5341
b4b9e355 5342skip_taps:
1cf51900 5343#ifdef CONFIG_NET_INGRESS
aabf6772 5344 if (static_branch_unlikely(&ingress_needed_key)) {
9aa1206e
DB
5345 bool another = false;
5346
5347 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5348 &another);
5349 if (another)
5350 goto another_round;
4577139b 5351 if (!skb)
2c17d27c 5352 goto out;
e687ad60
PN
5353
5354 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5355 goto out;
4577139b 5356 }
1cf51900 5357#endif
2c64605b 5358 skb_reset_redirect(skb);
e7246e12 5359skip_classify:
9754e293 5360 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5361 goto drop;
5362
df8a39de 5363 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5364 if (pt_prev) {
5365 ret = deliver_skb(skb, pt_prev, orig_dev);
5366 pt_prev = NULL;
5367 }
48cc32d3 5368 if (vlan_do_receive(&skb))
2425717b
JF
5369 goto another_round;
5370 else if (unlikely(!skb))
2c17d27c 5371 goto out;
2425717b
JF
5372 }
5373
48cc32d3 5374 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5375 if (rx_handler) {
5376 if (pt_prev) {
5377 ret = deliver_skb(skb, pt_prev, orig_dev);
5378 pt_prev = NULL;
5379 }
8a4eb573
JP
5380 switch (rx_handler(&skb)) {
5381 case RX_HANDLER_CONSUMED:
3bc1b1ad 5382 ret = NET_RX_SUCCESS;
2c17d27c 5383 goto out;
8a4eb573 5384 case RX_HANDLER_ANOTHER:
63d8ea7f 5385 goto another_round;
8a4eb573
JP
5386 case RX_HANDLER_EXACT:
5387 deliver_exact = true;
b1866bff 5388 break;
8a4eb573
JP
5389 case RX_HANDLER_PASS:
5390 break;
5391 default:
5392 BUG();
5393 }
ab95bfe0 5394 }
1da177e4 5395
b14a9fc4 5396 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
36b2f61a
GV
5397check_vlan_id:
5398 if (skb_vlan_tag_get_id(skb)) {
5399 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5400 * find vlan device.
5401 */
d4b812de 5402 skb->pkt_type = PACKET_OTHERHOST;
324cefaf 5403 } else if (eth_type_vlan(skb->protocol)) {
36b2f61a
GV
5404 /* Outer header is 802.1P with vlan 0, inner header is
5405 * 802.1Q or 802.1AD and vlan_do_receive() above could
5406 * not find vlan dev for vlan id 0.
5407 */
5408 __vlan_hwaccel_clear_tag(skb);
5409 skb = skb_vlan_untag(skb);
5410 if (unlikely(!skb))
5411 goto out;
5412 if (vlan_do_receive(&skb))
5413 /* After stripping off 802.1P header with vlan 0
5414 * vlan dev is found for inner header.
5415 */
5416 goto another_round;
5417 else if (unlikely(!skb))
5418 goto out;
5419 else
5420 /* We have stripped outer 802.1P vlan 0 header.
5421 * But could not find vlan dev.
5422 * check again for vlan id to set OTHERHOST.
5423 */
5424 goto check_vlan_id;
5425 }
d4b812de
ED
5426 /* Note: we might in the future use prio bits
5427 * and set skb->priority like in vlan_do_receive()
5428 * For the time being, just ignore Priority Code Point
5429 */
b1817524 5430 __vlan_hwaccel_clear_tag(skb);
d4b812de 5431 }
48cc32d3 5432
7866a621
SN
5433 type = skb->protocol;
5434
63d8ea7f 5435 /* deliver only exact match when indicated */
7866a621
SN
5436 if (likely(!deliver_exact)) {
5437 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5438 &ptype_base[ntohs(type) &
5439 PTYPE_HASH_MASK]);
5440 }
1f3c8804 5441
7866a621
SN
5442 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443 &orig_dev->ptype_specific);
5444
5445 if (unlikely(skb->dev != orig_dev)) {
5446 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5447 &skb->dev->ptype_specific);
1da177e4
LT
5448 }
5449
5450 if (pt_prev) {
1f8b977a 5451 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5452 goto drop;
88eb1944 5453 *ppt_prev = pt_prev;
1da177e4 5454 } else {
b4b9e355 5455drop:
6e7333d3
JW
5456 if (!deliver_exact)
5457 atomic_long_inc(&skb->dev->rx_dropped);
5458 else
5459 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5460 kfree_skb(skb);
5461 /* Jamal, now you will not able to escape explaining
5462 * me how you were going to use this. :-)
5463 */
5464 ret = NET_RX_DROP;
5465 }
5466
2c17d27c 5467out:
c0bbbdc3
BS
5468 /* The invariant here is that if *ppt_prev is not NULL
5469 * then skb should also be non-NULL.
5470 *
5471 * Apparently *ppt_prev assignment above holds this invariant due to
5472 * skb dereferencing near it.
5473 */
5474 *pskb = skb;
9754e293
DM
5475 return ret;
5476}
5477
88eb1944
EC
5478static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5479{
5480 struct net_device *orig_dev = skb->dev;
5481 struct packet_type *pt_prev = NULL;
5482 int ret;
5483
c0bbbdc3 5484 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
88eb1944 5485 if (pt_prev)
f5737cba
PA
5486 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5487 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5488 return ret;
5489}
5490
1c601d82
JDB
5491/**
5492 * netif_receive_skb_core - special purpose version of netif_receive_skb
5493 * @skb: buffer to process
5494 *
5495 * More direct receive version of netif_receive_skb(). It should
5496 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5497 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5498 *
5499 * This function may only be called from softirq context and interrupts
5500 * should be enabled.
5501 *
5502 * Return values (usually ignored):
5503 * NET_RX_SUCCESS: no congestion
5504 * NET_RX_DROP: packet was dropped
5505 */
5506int netif_receive_skb_core(struct sk_buff *skb)
5507{
5508 int ret;
5509
5510 rcu_read_lock();
88eb1944 5511 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5512 rcu_read_unlock();
5513
5514 return ret;
5515}
5516EXPORT_SYMBOL(netif_receive_skb_core);
5517
88eb1944
EC
5518static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5519 struct packet_type *pt_prev,
5520 struct net_device *orig_dev)
4ce0017a
EC
5521{
5522 struct sk_buff *skb, *next;
5523
88eb1944
EC
5524 if (!pt_prev)
5525 return;
5526 if (list_empty(head))
5527 return;
17266ee9 5528 if (pt_prev->list_func != NULL)
fdf71426
PA
5529 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5530 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5531 else
9a5a90d1
AL
5532 list_for_each_entry_safe(skb, next, head, list) {
5533 skb_list_del_init(skb);
fdf71426 5534 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5535 }
88eb1944
EC
5536}
5537
5538static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5539{
5540 /* Fast-path assumptions:
5541 * - There is no RX handler.
5542 * - Only one packet_type matches.
5543 * If either of these fails, we will end up doing some per-packet
5544 * processing in-line, then handling the 'last ptype' for the whole
5545 * sublist. This can't cause out-of-order delivery to any single ptype,
5546 * because the 'last ptype' must be constant across the sublist, and all
5547 * other ptypes are handled per-packet.
5548 */
5549 /* Current (common) ptype of sublist */
5550 struct packet_type *pt_curr = NULL;
5551 /* Current (common) orig_dev of sublist */
5552 struct net_device *od_curr = NULL;
5553 struct list_head sublist;
5554 struct sk_buff *skb, *next;
5555
9af86f93 5556 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5557 list_for_each_entry_safe(skb, next, head, list) {
5558 struct net_device *orig_dev = skb->dev;
5559 struct packet_type *pt_prev = NULL;
5560
22f6bbb7 5561 skb_list_del_init(skb);
c0bbbdc3 5562 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
9af86f93
EC
5563 if (!pt_prev)
5564 continue;
88eb1944
EC
5565 if (pt_curr != pt_prev || od_curr != orig_dev) {
5566 /* dispatch old sublist */
88eb1944
EC
5567 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5568 /* start new sublist */
9af86f93 5569 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5570 pt_curr = pt_prev;
5571 od_curr = orig_dev;
5572 }
9af86f93 5573 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5574 }
5575
5576 /* dispatch final sublist */
9af86f93 5577 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5578}
5579
9754e293
DM
5580static int __netif_receive_skb(struct sk_buff *skb)
5581{
5582 int ret;
5583
5584 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5585 unsigned int noreclaim_flag;
9754e293
DM
5586
5587 /*
5588 * PFMEMALLOC skbs are special, they should
5589 * - be delivered to SOCK_MEMALLOC sockets only
5590 * - stay away from userspace
5591 * - have bounded memory usage
5592 *
5593 * Use PF_MEMALLOC as this saves us from propagating the allocation
5594 * context down to all allocation sites.
5595 */
f1083048 5596 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5597 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5598 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5599 } else
88eb1944 5600 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5601
1da177e4
LT
5602 return ret;
5603}
0a9627f2 5604
4ce0017a
EC
5605static void __netif_receive_skb_list(struct list_head *head)
5606{
5607 unsigned long noreclaim_flag = 0;
5608 struct sk_buff *skb, *next;
5609 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5610
5611 list_for_each_entry_safe(skb, next, head, list) {
5612 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5613 struct list_head sublist;
5614
5615 /* Handle the previous sublist */
5616 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5617 if (!list_empty(&sublist))
5618 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5619 pfmemalloc = !pfmemalloc;
5620 /* See comments in __netif_receive_skb */
5621 if (pfmemalloc)
5622 noreclaim_flag = memalloc_noreclaim_save();
5623 else
5624 memalloc_noreclaim_restore(noreclaim_flag);
5625 }
5626 }
5627 /* Handle the remaining sublist */
b9f463d6
EC
5628 if (!list_empty(head))
5629 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5630 /* Restore pflags */
5631 if (pfmemalloc)
5632 memalloc_noreclaim_restore(noreclaim_flag);
5633}
5634
f4e63525 5635static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5636{
58038695 5637 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5638 struct bpf_prog *new = xdp->prog;
5639 int ret = 0;
5640
fbee97fe
DA
5641 if (new) {
5642 u32 i;
5643
984fe94f
YZ
5644 mutex_lock(&new->aux->used_maps_mutex);
5645
fbee97fe
DA
5646 /* generic XDP does not work with DEVMAPs that can
5647 * have a bpf_prog installed on an entry
5648 */
5649 for (i = 0; i < new->aux->used_map_cnt; i++) {
984fe94f
YZ
5650 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5651 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5652 mutex_unlock(&new->aux->used_maps_mutex);
92164774 5653 return -EINVAL;
984fe94f 5654 }
fbee97fe 5655 }
984fe94f
YZ
5656
5657 mutex_unlock(&new->aux->used_maps_mutex);
fbee97fe
DA
5658 }
5659
b5cdae32 5660 switch (xdp->command) {
58038695 5661 case XDP_SETUP_PROG:
b5cdae32
DM
5662 rcu_assign_pointer(dev->xdp_prog, new);
5663 if (old)
5664 bpf_prog_put(old);
5665
5666 if (old && !new) {
02786475 5667 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5668 } else if (new && !old) {
02786475 5669 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5670 dev_disable_lro(dev);
56f5aa77 5671 dev_disable_gro_hw(dev);
b5cdae32
DM
5672 }
5673 break;
b5cdae32 5674
b5cdae32
DM
5675 default:
5676 ret = -EINVAL;
5677 break;
5678 }
5679
5680 return ret;
5681}
5682
ae78dbfa 5683static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5684{
2c17d27c
JA
5685 int ret;
5686
588f0330 5687 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5688
c1f19b51
RC
5689 if (skb_defer_rx_timestamp(skb))
5690 return NET_RX_SUCCESS;
5691
bbbe211c 5692 rcu_read_lock();
df334545 5693#ifdef CONFIG_RPS
dc05360f 5694 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5695 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5696 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5697
3b098e2d
ED
5698 if (cpu >= 0) {
5699 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5700 rcu_read_unlock();
adc9300e 5701 return ret;
3b098e2d 5702 }
fec5e652 5703 }
1e94d72f 5704#endif
2c17d27c
JA
5705 ret = __netif_receive_skb(skb);
5706 rcu_read_unlock();
5707 return ret;
0a9627f2 5708}
ae78dbfa 5709
7da517a3
EC
5710static void netif_receive_skb_list_internal(struct list_head *head)
5711{
7da517a3 5712 struct sk_buff *skb, *next;
8c057efa 5713 struct list_head sublist;
7da517a3 5714
8c057efa 5715 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5716 list_for_each_entry_safe(skb, next, head, list) {
5717 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5718 skb_list_del_init(skb);
8c057efa
EC
5719 if (!skb_defer_rx_timestamp(skb))
5720 list_add_tail(&skb->list, &sublist);
7da517a3 5721 }
8c057efa 5722 list_splice_init(&sublist, head);
7da517a3 5723
7da517a3
EC
5724 rcu_read_lock();
5725#ifdef CONFIG_RPS
dc05360f 5726 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5727 list_for_each_entry_safe(skb, next, head, list) {
5728 struct rps_dev_flow voidflow, *rflow = &voidflow;
5729 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5730
5731 if (cpu >= 0) {
8c057efa 5732 /* Will be handled, remove from list */
22f6bbb7 5733 skb_list_del_init(skb);
8c057efa 5734 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5735 }
5736 }
5737 }
5738#endif
5739 __netif_receive_skb_list(head);
5740 rcu_read_unlock();
5741}
5742
ae78dbfa
BH
5743/**
5744 * netif_receive_skb - process receive buffer from network
5745 * @skb: buffer to process
5746 *
5747 * netif_receive_skb() is the main receive data processing function.
5748 * It always succeeds. The buffer may be dropped during processing
5749 * for congestion control or by the protocol layers.
5750 *
5751 * This function may only be called from softirq context and interrupts
5752 * should be enabled.
5753 *
5754 * Return values (usually ignored):
5755 * NET_RX_SUCCESS: no congestion
5756 * NET_RX_DROP: packet was dropped
5757 */
04eb4489 5758int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5759{
b0e3f1bd
GB
5760 int ret;
5761
ae78dbfa
BH
5762 trace_netif_receive_skb_entry(skb);
5763
b0e3f1bd
GB
5764 ret = netif_receive_skb_internal(skb);
5765 trace_netif_receive_skb_exit(ret);
5766
5767 return ret;
ae78dbfa 5768}
04eb4489 5769EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5770
f6ad8c1b
EC
5771/**
5772 * netif_receive_skb_list - process many receive buffers from network
5773 * @head: list of skbs to process.
5774 *
7da517a3
EC
5775 * Since return value of netif_receive_skb() is normally ignored, and
5776 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5777 *
5778 * This function may only be called from softirq context and interrupts
5779 * should be enabled.
5780 */
5781void netif_receive_skb_list(struct list_head *head)
5782{
7da517a3 5783 struct sk_buff *skb;
f6ad8c1b 5784
b9f463d6
EC
5785 if (list_empty(head))
5786 return;
b0e3f1bd
GB
5787 if (trace_netif_receive_skb_list_entry_enabled()) {
5788 list_for_each_entry(skb, head, list)
5789 trace_netif_receive_skb_list_entry(skb);
5790 }
7da517a3 5791 netif_receive_skb_list_internal(head);
b0e3f1bd 5792 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5793}
5794EXPORT_SYMBOL(netif_receive_skb_list);
5795
ce1e2a77 5796static DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5797
5798/* Network device is going away, flush any packets still pending */
5799static void flush_backlog(struct work_struct *work)
6e583ce5 5800{
6e583ce5 5801 struct sk_buff *skb, *tmp;
145dd5f9
PA
5802 struct softnet_data *sd;
5803
5804 local_bh_disable();
5805 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5806
145dd5f9 5807 local_irq_disable();
e36fa2f7 5808 rps_lock(sd);
6e7676c1 5809 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5810 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5811 __skb_unlink(skb, &sd->input_pkt_queue);
7df5cb75 5812 dev_kfree_skb_irq(skb);
76cc8b13 5813 input_queue_head_incr(sd);
6e583ce5 5814 }
6e7676c1 5815 }
e36fa2f7 5816 rps_unlock(sd);
145dd5f9 5817 local_irq_enable();
6e7676c1
CG
5818
5819 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5820 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5821 __skb_unlink(skb, &sd->process_queue);
5822 kfree_skb(skb);
76cc8b13 5823 input_queue_head_incr(sd);
6e7676c1
CG
5824 }
5825 }
145dd5f9
PA
5826 local_bh_enable();
5827}
5828
2de79ee2
PA
5829static bool flush_required(int cpu)
5830{
5831#if IS_ENABLED(CONFIG_RPS)
5832 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5833 bool do_flush;
5834
5835 local_irq_disable();
5836 rps_lock(sd);
5837
5838 /* as insertion into process_queue happens with the rps lock held,
5839 * process_queue access may race only with dequeue
5840 */
5841 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5842 !skb_queue_empty_lockless(&sd->process_queue);
5843 rps_unlock(sd);
5844 local_irq_enable();
5845
5846 return do_flush;
5847#endif
5848 /* without RPS we can't safely check input_pkt_queue: during a
5849 * concurrent remote skb_queue_splice() we can detect as empty both
5850 * input_pkt_queue and process_queue even if the latter could end-up
5851 * containing a lot of packets.
5852 */
5853 return true;
5854}
5855
41852497 5856static void flush_all_backlogs(void)
145dd5f9 5857{
2de79ee2 5858 static cpumask_t flush_cpus;
145dd5f9
PA
5859 unsigned int cpu;
5860
2de79ee2
PA
5861 /* since we are under rtnl lock protection we can use static data
5862 * for the cpumask and avoid allocating on stack the possibly
5863 * large mask
5864 */
5865 ASSERT_RTNL();
5866
145dd5f9
PA
5867 get_online_cpus();
5868
2de79ee2
PA
5869 cpumask_clear(&flush_cpus);
5870 for_each_online_cpu(cpu) {
5871 if (flush_required(cpu)) {
5872 queue_work_on(cpu, system_highpri_wq,
5873 per_cpu_ptr(&flush_works, cpu));
5874 cpumask_set_cpu(cpu, &flush_cpus);
5875 }
5876 }
145dd5f9 5877
2de79ee2 5878 /* we can have in flight packet[s] on the cpus we are not flushing,
0cbe1e57 5879 * synchronize_net() in unregister_netdevice_many() will take care of
2de79ee2
PA
5880 * them
5881 */
5882 for_each_cpu(cpu, &flush_cpus)
41852497 5883 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5884
5885 put_online_cpus();
6e583ce5
SH
5886}
5887
c8079432
MM
5888/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5889static void gro_normal_list(struct napi_struct *napi)
5890{
5891 if (!napi->rx_count)
5892 return;
5893 netif_receive_skb_list_internal(&napi->rx_list);
5894 INIT_LIST_HEAD(&napi->rx_list);
5895 napi->rx_count = 0;
5896}
5897
5898/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5899 * pass the whole batch up to the stack.
5900 */
8dc1c444 5901static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
c8079432
MM
5902{
5903 list_add_tail(&skb->list, &napi->rx_list);
8dc1c444
ED
5904 napi->rx_count += segs;
5905 if (napi->rx_count >= gro_normal_batch)
c8079432
MM
5906 gro_normal_list(napi);
5907}
5908
c8079432 5909static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5910{
22061d80 5911 struct packet_offload *ptype;
d565b0a1 5912 __be16 type = skb->protocol;
22061d80 5913 struct list_head *head = &offload_base;
d565b0a1
HX
5914 int err = -ENOENT;
5915
c3c7c254
ED
5916 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5917
fc59f9a3
HX
5918 if (NAPI_GRO_CB(skb)->count == 1) {
5919 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5920 goto out;
fc59f9a3 5921 }
d565b0a1
HX
5922
5923 rcu_read_lock();
5924 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5925 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5926 continue;
5927
aaa5d90b
PA
5928 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5929 ipv6_gro_complete, inet_gro_complete,
5930 skb, 0);
d565b0a1
HX
5931 break;
5932 }
5933 rcu_read_unlock();
5934
5935 if (err) {
5936 WARN_ON(&ptype->list == head);
5937 kfree_skb(skb);
5938 return NET_RX_SUCCESS;
5939 }
5940
5941out:
8dc1c444 5942 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
c8079432 5943 return NET_RX_SUCCESS;
d565b0a1
HX
5944}
5945
6312fe77 5946static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5947 bool flush_old)
d565b0a1 5948{
6312fe77 5949 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5950 struct sk_buff *skb, *p;
2e71a6f8 5951
07d78363 5952 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5953 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5954 return;
992cba7e 5955 skb_list_del_init(skb);
c8079432 5956 napi_gro_complete(napi, skb);
6312fe77 5957 napi->gro_hash[index].count--;
d565b0a1 5958 }
d9f37d01
LR
5959
5960 if (!napi->gro_hash[index].count)
5961 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5962}
07d78363 5963
6312fe77 5964/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5965 * youngest packets at the head of it.
5966 * Complete skbs in reverse order to reduce latencies.
5967 */
5968void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5969{
42519ede
ED
5970 unsigned long bitmask = napi->gro_bitmask;
5971 unsigned int i, base = ~0U;
07d78363 5972
42519ede
ED
5973 while ((i = ffs(bitmask)) != 0) {
5974 bitmask >>= i;
5975 base += i;
5976 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5977 }
07d78363 5978}
86cac58b 5979EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5980
0ccf4d50
AL
5981static void gro_list_prepare(const struct list_head *head,
5982 const struct sk_buff *skb)
89c5fa33 5983{
89c5fa33 5984 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5985 u32 hash = skb_get_hash_raw(skb);
d4546c25 5986 struct sk_buff *p;
89c5fa33 5987
07d78363 5988 list_for_each_entry(p, head, list) {
89c5fa33
ED
5989 unsigned long diffs;
5990
0b4cec8c
TH
5991 NAPI_GRO_CB(p)->flush = 0;
5992
5993 if (hash != skb_get_hash_raw(p)) {
5994 NAPI_GRO_CB(p)->same_flow = 0;
5995 continue;
5996 }
5997
89c5fa33 5998 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5999 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
6000 if (skb_vlan_tag_present(p))
fc5141cb 6001 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
ce87fc6c 6002 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 6003 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
6004 if (maclen == ETH_HLEN)
6005 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 6006 skb_mac_header(skb));
89c5fa33
ED
6007 else if (!diffs)
6008 diffs = memcmp(skb_mac_header(p),
a50e233c 6009 skb_mac_header(skb),
89c5fa33 6010 maclen);
8550ff8d
PB
6011
6012 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
9615fe36 6013#if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
8550ff8d
PB
6014 if (!diffs) {
6015 struct tc_skb_ext *skb_ext = skb_ext_find(skb, TC_SKB_EXT);
6016 struct tc_skb_ext *p_ext = skb_ext_find(p, TC_SKB_EXT);
6017
6018 diffs |= (!!p_ext) ^ (!!skb_ext);
6019 if (!diffs && unlikely(skb_ext))
6020 diffs |= p_ext->chain ^ skb_ext->chain;
6021 }
9615fe36 6022#endif
8550ff8d 6023
89c5fa33 6024 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
6025 }
6026}
6027
7ad18ff6 6028static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
299603e8
JC
6029{
6030 const struct skb_shared_info *pinfo = skb_shinfo(skb);
6031 const skb_frag_t *frag0 = &pinfo->frags[0];
6032
6033 NAPI_GRO_CB(skb)->data_offset = 0;
6034 NAPI_GRO_CB(skb)->frag0 = NULL;
6035 NAPI_GRO_CB(skb)->frag0_len = 0;
6036
8aef998d 6037 if (!skb_headlen(skb) && pinfo->nr_frags &&
38ec4944 6038 !PageHighMem(skb_frag_page(frag0)) &&
7ad18ff6 6039 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
299603e8 6040 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
6041 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6042 skb_frag_size(frag0),
6043 skb->end - skb->tail);
89c5fa33
ED
6044 }
6045}
6046
a50e233c
ED
6047static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6048{
6049 struct skb_shared_info *pinfo = skb_shinfo(skb);
6050
6051 BUG_ON(skb->end - skb->tail < grow);
6052
6053 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6054
6055 skb->data_len -= grow;
6056 skb->tail += grow;
6057
b54c9d5b 6058 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
6059 skb_frag_size_sub(&pinfo->frags[0], grow);
6060
6061 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6062 skb_frag_unref(skb, 0);
6063 memmove(pinfo->frags, pinfo->frags + 1,
6064 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6065 }
6066}
6067
c8079432 6068static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 6069{
6312fe77 6070 struct sk_buff *oldest;
07d78363 6071
6312fe77 6072 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 6073
6312fe77 6074 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
6075 * impossible.
6076 */
6077 if (WARN_ON_ONCE(!oldest))
6078 return;
6079
d9f37d01
LR
6080 /* Do not adjust napi->gro_hash[].count, caller is adding a new
6081 * SKB to the chain.
07d78363 6082 */
ece23711 6083 skb_list_del_init(oldest);
c8079432 6084 napi_gro_complete(napi, oldest);
07d78363
DM
6085}
6086
bb728820 6087static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 6088{
d0eed5c3
AL
6089 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6090 struct gro_list *gro_list = &napi->gro_hash[bucket];
d4546c25 6091 struct list_head *head = &offload_base;
22061d80 6092 struct packet_offload *ptype;
d565b0a1 6093 __be16 type = skb->protocol;
d4546c25 6094 struct sk_buff *pp = NULL;
5b252f0c 6095 enum gro_result ret;
d4546c25 6096 int same_flow;
a50e233c 6097 int grow;
d565b0a1 6098
b5cdae32 6099 if (netif_elide_gro(skb->dev))
d565b0a1
HX
6100 goto normal;
6101
9dc2c313 6102 gro_list_prepare(&gro_list->list, skb);
89c5fa33 6103
d565b0a1
HX
6104 rcu_read_lock();
6105 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 6106 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
6107 continue;
6108
86911732 6109 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 6110 skb_reset_mac_len(skb);
d565b0a1 6111 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 6112 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 6113 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 6114 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 6115 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 6116 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 6117 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 6118 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 6119
662880f4
TH
6120 /* Setup for GRO checksum validation */
6121 switch (skb->ip_summed) {
6122 case CHECKSUM_COMPLETE:
6123 NAPI_GRO_CB(skb)->csum = skb->csum;
6124 NAPI_GRO_CB(skb)->csum_valid = 1;
6125 NAPI_GRO_CB(skb)->csum_cnt = 0;
6126 break;
6127 case CHECKSUM_UNNECESSARY:
6128 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6129 NAPI_GRO_CB(skb)->csum_valid = 0;
6130 break;
6131 default:
6132 NAPI_GRO_CB(skb)->csum_cnt = 0;
6133 NAPI_GRO_CB(skb)->csum_valid = 0;
6134 }
d565b0a1 6135
aaa5d90b
PA
6136 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6137 ipv6_gro_receive, inet_gro_receive,
9dc2c313 6138 &gro_list->list, skb);
d565b0a1
HX
6139 break;
6140 }
6141 rcu_read_unlock();
6142
6143 if (&ptype->list == head)
6144 goto normal;
6145
45586c70 6146 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
6147 ret = GRO_CONSUMED;
6148 goto ok;
6149 }
6150
0da2afd5 6151 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 6152 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 6153
d565b0a1 6154 if (pp) {
992cba7e 6155 skb_list_del_init(pp);
c8079432 6156 napi_gro_complete(napi, pp);
9dc2c313 6157 gro_list->count--;
d565b0a1
HX
6158 }
6159
0da2afd5 6160 if (same_flow)
d565b0a1
HX
6161 goto ok;
6162
600adc18 6163 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 6164 goto normal;
d565b0a1 6165
9dc2c313
AL
6166 if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6167 gro_flush_oldest(napi, &gro_list->list);
6168 else
6169 gro_list->count++;
6170
d565b0a1 6171 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 6172 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 6173 NAPI_GRO_CB(skb)->last = skb;
86911732 6174 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
9dc2c313 6175 list_add(&skb->list, &gro_list->list);
5d0d9be8 6176 ret = GRO_HELD;
d565b0a1 6177
ad0f9904 6178pull:
a50e233c
ED
6179 grow = skb_gro_offset(skb) - skb_headlen(skb);
6180 if (grow > 0)
6181 gro_pull_from_frag0(skb, grow);
d565b0a1 6182ok:
9dc2c313 6183 if (gro_list->count) {
d0eed5c3
AL
6184 if (!test_bit(bucket, &napi->gro_bitmask))
6185 __set_bit(bucket, &napi->gro_bitmask);
6186 } else if (test_bit(bucket, &napi->gro_bitmask)) {
6187 __clear_bit(bucket, &napi->gro_bitmask);
d9f37d01
LR
6188 }
6189
5d0d9be8 6190 return ret;
d565b0a1
HX
6191
6192normal:
ad0f9904
HX
6193 ret = GRO_NORMAL;
6194 goto pull;
5d38a079 6195}
96e93eab 6196
bf5a755f
JC
6197struct packet_offload *gro_find_receive_by_type(__be16 type)
6198{
6199 struct list_head *offload_head = &offload_base;
6200 struct packet_offload *ptype;
6201
6202 list_for_each_entry_rcu(ptype, offload_head, list) {
6203 if (ptype->type != type || !ptype->callbacks.gro_receive)
6204 continue;
6205 return ptype;
6206 }
6207 return NULL;
6208}
e27a2f83 6209EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
6210
6211struct packet_offload *gro_find_complete_by_type(__be16 type)
6212{
6213 struct list_head *offload_head = &offload_base;
6214 struct packet_offload *ptype;
6215
6216 list_for_each_entry_rcu(ptype, offload_head, list) {
6217 if (ptype->type != type || !ptype->callbacks.gro_complete)
6218 continue;
6219 return ptype;
6220 }
6221 return NULL;
6222}
e27a2f83 6223EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 6224
6570bc79
AL
6225static gro_result_t napi_skb_finish(struct napi_struct *napi,
6226 struct sk_buff *skb,
6227 gro_result_t ret)
5d38a079 6228{
5d0d9be8
HX
6229 switch (ret) {
6230 case GRO_NORMAL:
8dc1c444 6231 gro_normal_one(napi, skb, 1);
c7c4b3b6 6232 break;
5d38a079 6233
daa86548 6234 case GRO_MERGED_FREE:
e44699d2
MK
6235 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6236 napi_skb_free_stolen_head(skb);
28b34f01
AT
6237 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6238 __kfree_skb(skb);
e44699d2 6239 else
9243adfc 6240 __kfree_skb_defer(skb);
daa86548
ED
6241 break;
6242
5b252f0c
BH
6243 case GRO_HELD:
6244 case GRO_MERGED:
25393d3f 6245 case GRO_CONSUMED:
5b252f0c 6246 break;
5d38a079
HX
6247 }
6248
c7c4b3b6 6249 return ret;
5d0d9be8 6250}
5d0d9be8 6251
c7c4b3b6 6252gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 6253{
b0e3f1bd
GB
6254 gro_result_t ret;
6255
93f93a44 6256 skb_mark_napi_id(skb, napi);
ae78dbfa 6257 trace_napi_gro_receive_entry(skb);
86911732 6258
7ad18ff6 6259 skb_gro_reset_offset(skb, 0);
a50e233c 6260
6570bc79 6261 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
6262 trace_napi_gro_receive_exit(ret);
6263
6264 return ret;
d565b0a1
HX
6265}
6266EXPORT_SYMBOL(napi_gro_receive);
6267
d0c2b0d2 6268static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 6269{
93a35f59
ED
6270 if (unlikely(skb->pfmemalloc)) {
6271 consume_skb(skb);
6272 return;
6273 }
96e93eab 6274 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
6275 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6276 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 6277 __vlan_hwaccel_clear_tag(skb);
66c46d74 6278 skb->dev = napi->dev;
6d152e23 6279 skb->skb_iif = 0;
33d9a2c7
ED
6280
6281 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6282 skb->pkt_type = PACKET_HOST;
6283
c3caf119
JC
6284 skb->encapsulation = 0;
6285 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 6286 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 6287 skb_ext_reset(skb);
8550ff8d 6288 nf_reset_ct(skb);
96e93eab
HX
6289
6290 napi->skb = skb;
6291}
96e93eab 6292
76620aaf 6293struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 6294{
5d38a079 6295 struct sk_buff *skb = napi->skb;
5d38a079
HX
6296
6297 if (!skb) {
fd11a83d 6298 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
6299 if (skb) {
6300 napi->skb = skb;
6301 skb_mark_napi_id(skb, napi);
6302 }
80595d59 6303 }
96e93eab
HX
6304 return skb;
6305}
76620aaf 6306EXPORT_SYMBOL(napi_get_frags);
96e93eab 6307
a50e233c
ED
6308static gro_result_t napi_frags_finish(struct napi_struct *napi,
6309 struct sk_buff *skb,
6310 gro_result_t ret)
96e93eab 6311{
5d0d9be8
HX
6312 switch (ret) {
6313 case GRO_NORMAL:
a50e233c
ED
6314 case GRO_HELD:
6315 __skb_push(skb, ETH_HLEN);
6316 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61 6317 if (ret == GRO_NORMAL)
8dc1c444 6318 gro_normal_one(napi, skb, 1);
86911732 6319 break;
5d38a079 6320
e44699d2
MK
6321 case GRO_MERGED_FREE:
6322 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6323 napi_skb_free_stolen_head(skb);
6324 else
6325 napi_reuse_skb(napi, skb);
6326 break;
6327
5b252f0c 6328 case GRO_MERGED:
25393d3f 6329 case GRO_CONSUMED:
5b252f0c 6330 break;
5d0d9be8 6331 }
5d38a079 6332
c7c4b3b6 6333 return ret;
5d38a079 6334}
5d0d9be8 6335
a50e233c
ED
6336/* Upper GRO stack assumes network header starts at gro_offset=0
6337 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6338 * We copy ethernet header into skb->data to have a common layout.
6339 */
4adb9c4a 6340static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
6341{
6342 struct sk_buff *skb = napi->skb;
a50e233c
ED
6343 const struct ethhdr *eth;
6344 unsigned int hlen = sizeof(*eth);
76620aaf
HX
6345
6346 napi->skb = NULL;
6347
a50e233c 6348 skb_reset_mac_header(skb);
7ad18ff6 6349 skb_gro_reset_offset(skb, hlen);
a50e233c 6350
a50e233c
ED
6351 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6352 eth = skb_gro_header_slow(skb, hlen, 0);
6353 if (unlikely(!eth)) {
4da46ceb
AC
6354 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6355 __func__, napi->dev->name);
a50e233c
ED
6356 napi_reuse_skb(napi, skb);
6357 return NULL;
6358 }
6359 } else {
a4270d67 6360 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6361 gro_pull_from_frag0(skb, hlen);
6362 NAPI_GRO_CB(skb)->frag0 += hlen;
6363 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6364 }
a50e233c
ED
6365 __skb_pull(skb, hlen);
6366
6367 /*
6368 * This works because the only protocols we care about don't require
6369 * special handling.
6370 * We'll fix it up properly in napi_frags_finish()
6371 */
6372 skb->protocol = eth->h_proto;
76620aaf 6373
76620aaf
HX
6374 return skb;
6375}
76620aaf 6376
c7c4b3b6 6377gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6378{
b0e3f1bd 6379 gro_result_t ret;
76620aaf 6380 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8 6381
ae78dbfa
BH
6382 trace_napi_gro_frags_entry(skb);
6383
b0e3f1bd
GB
6384 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6385 trace_napi_gro_frags_exit(ret);
6386
6387 return ret;
5d0d9be8 6388}
5d38a079
HX
6389EXPORT_SYMBOL(napi_gro_frags);
6390
573e8fca
TH
6391/* Compute the checksum from gro_offset and return the folded value
6392 * after adding in any pseudo checksum.
6393 */
6394__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6395{
6396 __wsum wsum;
6397 __sum16 sum;
6398
6399 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6400
6401 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6402 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6403 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6404 if (likely(!sum)) {
6405 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6406 !skb->csum_complete_sw)
7fe50ac8 6407 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6408 }
6409
6410 NAPI_GRO_CB(skb)->csum = wsum;
6411 NAPI_GRO_CB(skb)->csum_valid = 1;
6412
6413 return sum;
6414}
6415EXPORT_SYMBOL(__skb_gro_checksum_complete);
6416
773fc8f6 6417static void net_rps_send_ipi(struct softnet_data *remsd)
6418{
6419#ifdef CONFIG_RPS
6420 while (remsd) {
6421 struct softnet_data *next = remsd->rps_ipi_next;
6422
6423 if (cpu_online(remsd->cpu))
6424 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6425 remsd = next;
6426 }
6427#endif
6428}
6429
e326bed2 6430/*
855abcf0 6431 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6432 * Note: called with local irq disabled, but exits with local irq enabled.
6433 */
6434static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6435{
6436#ifdef CONFIG_RPS
6437 struct softnet_data *remsd = sd->rps_ipi_list;
6438
6439 if (remsd) {
6440 sd->rps_ipi_list = NULL;
6441
6442 local_irq_enable();
6443
6444 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6445 net_rps_send_ipi(remsd);
e326bed2
ED
6446 } else
6447#endif
6448 local_irq_enable();
6449}
6450
d75b1ade
ED
6451static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6452{
6453#ifdef CONFIG_RPS
6454 return sd->rps_ipi_list != NULL;
6455#else
6456 return false;
6457#endif
6458}
6459
bea3348e 6460static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6461{
eecfd7c4 6462 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6463 bool again = true;
6464 int work = 0;
1da177e4 6465
e326bed2
ED
6466 /* Check if we have pending ipi, its better to send them now,
6467 * not waiting net_rx_action() end.
6468 */
d75b1ade 6469 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6470 local_irq_disable();
6471 net_rps_action_and_irq_enable(sd);
6472 }
d75b1ade 6473
3d48b53f 6474 napi->weight = dev_rx_weight;
145dd5f9 6475 while (again) {
1da177e4 6476 struct sk_buff *skb;
6e7676c1
CG
6477
6478 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6479 rcu_read_lock();
6e7676c1 6480 __netif_receive_skb(skb);
2c17d27c 6481 rcu_read_unlock();
76cc8b13 6482 input_queue_head_incr(sd);
145dd5f9 6483 if (++work >= quota)
76cc8b13 6484 return work;
145dd5f9 6485
6e7676c1 6486 }
1da177e4 6487
145dd5f9 6488 local_irq_disable();
e36fa2f7 6489 rps_lock(sd);
11ef7a89 6490 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6491 /*
6492 * Inline a custom version of __napi_complete().
6493 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6494 * and NAPI_STATE_SCHED is the only possible flag set
6495 * on backlog.
6496 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6497 * and we dont need an smp_mb() memory barrier.
6498 */
eecfd7c4 6499 napi->state = 0;
145dd5f9
PA
6500 again = false;
6501 } else {
6502 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6503 &sd->process_queue);
bea3348e 6504 }
e36fa2f7 6505 rps_unlock(sd);
145dd5f9 6506 local_irq_enable();
6e7676c1 6507 }
1da177e4 6508
bea3348e
SH
6509 return work;
6510}
1da177e4 6511
bea3348e
SH
6512/**
6513 * __napi_schedule - schedule for receive
c4ea43c5 6514 * @n: entry to schedule
bea3348e 6515 *
bc9ad166
ED
6516 * The entry's receive function will be scheduled to run.
6517 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6518 */
b5606c2d 6519void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6520{
6521 unsigned long flags;
1da177e4 6522
bea3348e 6523 local_irq_save(flags);
903ceff7 6524 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6525 local_irq_restore(flags);
1da177e4 6526}
bea3348e
SH
6527EXPORT_SYMBOL(__napi_schedule);
6528
39e6c820
ED
6529/**
6530 * napi_schedule_prep - check if napi can be scheduled
6531 * @n: napi context
6532 *
6533 * Test if NAPI routine is already running, and if not mark
ee1a4c84 6534 * it as running. This is used as a condition variable to
39e6c820
ED
6535 * insure only one NAPI poll instance runs. We also make
6536 * sure there is no pending NAPI disable.
6537 */
6538bool napi_schedule_prep(struct napi_struct *n)
6539{
6540 unsigned long val, new;
6541
6542 do {
6543 val = READ_ONCE(n->state);
6544 if (unlikely(val & NAPIF_STATE_DISABLE))
6545 return false;
6546 new = val | NAPIF_STATE_SCHED;
6547
6548 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6549 * This was suggested by Alexander Duyck, as compiler
6550 * emits better code than :
6551 * if (val & NAPIF_STATE_SCHED)
6552 * new |= NAPIF_STATE_MISSED;
6553 */
6554 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6555 NAPIF_STATE_MISSED;
6556 } while (cmpxchg(&n->state, val, new) != val);
6557
6558 return !(val & NAPIF_STATE_SCHED);
6559}
6560EXPORT_SYMBOL(napi_schedule_prep);
6561
bc9ad166
ED
6562/**
6563 * __napi_schedule_irqoff - schedule for receive
6564 * @n: entry to schedule
6565 *
8380c81d
SAS
6566 * Variant of __napi_schedule() assuming hard irqs are masked.
6567 *
6568 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6569 * because the interrupt disabled assumption might not be true
6570 * due to force-threaded interrupts and spinlock substitution.
bc9ad166
ED
6571 */
6572void __napi_schedule_irqoff(struct napi_struct *n)
6573{
8380c81d
SAS
6574 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6575 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6576 else
6577 __napi_schedule(n);
bc9ad166
ED
6578}
6579EXPORT_SYMBOL(__napi_schedule_irqoff);
6580
364b6055 6581bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6582{
6f8b12d6
ED
6583 unsigned long flags, val, new, timeout = 0;
6584 bool ret = true;
d565b0a1
HX
6585
6586 /*
217f6974
ED
6587 * 1) Don't let napi dequeue from the cpu poll list
6588 * just in case its running on a different cpu.
6589 * 2) If we are busy polling, do nothing here, we have
6590 * the guarantee we will be called later.
d565b0a1 6591 */
217f6974
ED
6592 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6593 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6594 return false;
d565b0a1 6595
6f8b12d6
ED
6596 if (work_done) {
6597 if (n->gro_bitmask)
7e417a66
ED
6598 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6599 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
6600 }
6601 if (n->defer_hard_irqs_count > 0) {
6602 n->defer_hard_irqs_count--;
7e417a66 6603 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
6604 if (timeout)
6605 ret = false;
6606 }
6607 if (n->gro_bitmask) {
605108ac
PA
6608 /* When the NAPI instance uses a timeout and keeps postponing
6609 * it, we need to bound somehow the time packets are kept in
6610 * the GRO layer
6611 */
6612 napi_gro_flush(n, !!timeout);
3b47d303 6613 }
c8079432
MM
6614
6615 gro_normal_list(n);
6616
02c1602e 6617 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6618 /* If n->poll_list is not empty, we need to mask irqs */
6619 local_irq_save(flags);
02c1602e 6620 list_del_init(&n->poll_list);
d75b1ade
ED
6621 local_irq_restore(flags);
6622 }
39e6c820
ED
6623
6624 do {
6625 val = READ_ONCE(n->state);
6626
6627 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6628
7fd3253a 6629 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
cb038357 6630 NAPIF_STATE_SCHED_THREADED |
7fd3253a 6631 NAPIF_STATE_PREFER_BUSY_POLL);
39e6c820
ED
6632
6633 /* If STATE_MISSED was set, leave STATE_SCHED set,
6634 * because we will call napi->poll() one more time.
6635 * This C code was suggested by Alexander Duyck to help gcc.
6636 */
6637 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6638 NAPIF_STATE_SCHED;
6639 } while (cmpxchg(&n->state, val, new) != val);
6640
6641 if (unlikely(val & NAPIF_STATE_MISSED)) {
6642 __napi_schedule(n);
6643 return false;
6644 }
6645
6f8b12d6
ED
6646 if (timeout)
6647 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6648 HRTIMER_MODE_REL_PINNED);
6649 return ret;
d565b0a1 6650}
3b47d303 6651EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6652
af12fa6e 6653/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6654static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6655{
6656 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6657 struct napi_struct *napi;
6658
6659 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6660 if (napi->napi_id == napi_id)
6661 return napi;
6662
6663 return NULL;
6664}
02d62e86
ED
6665
6666#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6667
7fd3253a 6668static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
217f6974 6669{
7fd3253a
BT
6670 if (!skip_schedule) {
6671 gro_normal_list(napi);
6672 __napi_schedule(napi);
6673 return;
6674 }
217f6974 6675
7fd3253a
BT
6676 if (napi->gro_bitmask) {
6677 /* flush too old packets
6678 * If HZ < 1000, flush all packets.
6679 */
6680 napi_gro_flush(napi, HZ >= 1000);
6681 }
217f6974 6682
7fd3253a
BT
6683 gro_normal_list(napi);
6684 clear_bit(NAPI_STATE_SCHED, &napi->state);
6685}
6686
7c951caf
BT
6687static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6688 u16 budget)
217f6974 6689{
7fd3253a
BT
6690 bool skip_schedule = false;
6691 unsigned long timeout;
217f6974
ED
6692 int rc;
6693
39e6c820
ED
6694 /* Busy polling means there is a high chance device driver hard irq
6695 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6696 * set in napi_schedule_prep().
6697 * Since we are about to call napi->poll() once more, we can safely
6698 * clear NAPI_STATE_MISSED.
6699 *
6700 * Note: x86 could use a single "lock and ..." instruction
6701 * to perform these two clear_bit()
6702 */
6703 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6704 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6705
6706 local_bh_disable();
6707
7fd3253a
BT
6708 if (prefer_busy_poll) {
6709 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6710 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6711 if (napi->defer_hard_irqs_count && timeout) {
6712 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6713 skip_schedule = true;
6714 }
6715 }
6716
217f6974
ED
6717 /* All we really want here is to re-enable device interrupts.
6718 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6719 */
7c951caf 6720 rc = napi->poll(napi, budget);
323ebb61
EC
6721 /* We can't gro_normal_list() here, because napi->poll() might have
6722 * rearmed the napi (napi_complete_done()) in which case it could
6723 * already be running on another CPU.
6724 */
7c951caf 6725 trace_napi_poll(napi, rc, budget);
217f6974 6726 netpoll_poll_unlock(have_poll_lock);
7c951caf 6727 if (rc == budget)
7fd3253a 6728 __busy_poll_stop(napi, skip_schedule);
217f6974 6729 local_bh_enable();
217f6974
ED
6730}
6731
7db6b048
SS
6732void napi_busy_loop(unsigned int napi_id,
6733 bool (*loop_end)(void *, unsigned long),
7c951caf 6734 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
02d62e86 6735{
7db6b048 6736 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6737 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6738 void *have_poll_lock = NULL;
02d62e86 6739 struct napi_struct *napi;
217f6974
ED
6740
6741restart:
217f6974 6742 napi_poll = NULL;
02d62e86 6743
2a028ecb 6744 rcu_read_lock();
02d62e86 6745
545cd5e5 6746 napi = napi_by_id(napi_id);
02d62e86
ED
6747 if (!napi)
6748 goto out;
6749
217f6974
ED
6750 preempt_disable();
6751 for (;;) {
2b5cd0df
AD
6752 int work = 0;
6753
2a028ecb 6754 local_bh_disable();
217f6974
ED
6755 if (!napi_poll) {
6756 unsigned long val = READ_ONCE(napi->state);
6757
6758 /* If multiple threads are competing for this napi,
6759 * we avoid dirtying napi->state as much as we can.
6760 */
6761 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
7fd3253a
BT
6762 NAPIF_STATE_IN_BUSY_POLL)) {
6763 if (prefer_busy_poll)
6764 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6765 goto count;
7fd3253a 6766 }
217f6974
ED
6767 if (cmpxchg(&napi->state, val,
6768 val | NAPIF_STATE_IN_BUSY_POLL |
7fd3253a
BT
6769 NAPIF_STATE_SCHED) != val) {
6770 if (prefer_busy_poll)
6771 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6772 goto count;
7fd3253a 6773 }
217f6974
ED
6774 have_poll_lock = netpoll_poll_lock(napi);
6775 napi_poll = napi->poll;
6776 }
7c951caf
BT
6777 work = napi_poll(napi, budget);
6778 trace_napi_poll(napi, work, budget);
323ebb61 6779 gro_normal_list(napi);
217f6974 6780count:
2b5cd0df 6781 if (work > 0)
7db6b048 6782 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6783 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6784 local_bh_enable();
02d62e86 6785
7db6b048 6786 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6787 break;
02d62e86 6788
217f6974
ED
6789 if (unlikely(need_resched())) {
6790 if (napi_poll)
7c951caf 6791 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974
ED
6792 preempt_enable();
6793 rcu_read_unlock();
6794 cond_resched();
7db6b048 6795 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6796 return;
217f6974
ED
6797 goto restart;
6798 }
6cdf89b1 6799 cpu_relax();
217f6974
ED
6800 }
6801 if (napi_poll)
7c951caf 6802 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974 6803 preempt_enable();
02d62e86 6804out:
2a028ecb 6805 rcu_read_unlock();
02d62e86 6806}
7db6b048 6807EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6808
6809#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6810
149d6ad8 6811static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6812{
4d092dd2 6813 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
52bd2d62 6814 return;
af12fa6e 6815
52bd2d62 6816 spin_lock(&napi_hash_lock);
af12fa6e 6817
545cd5e5 6818 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6819 do {
545cd5e5
AD
6820 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6821 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6822 } while (napi_by_id(napi_gen_id));
6823 napi->napi_id = napi_gen_id;
af12fa6e 6824
52bd2d62
ED
6825 hlist_add_head_rcu(&napi->napi_hash_node,
6826 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6827
52bd2d62 6828 spin_unlock(&napi_hash_lock);
af12fa6e 6829}
af12fa6e
ET
6830
6831/* Warning : caller is responsible to make sure rcu grace period
6832 * is respected before freeing memory containing @napi
6833 */
5198d545 6834static void napi_hash_del(struct napi_struct *napi)
af12fa6e
ET
6835{
6836 spin_lock(&napi_hash_lock);
6837
4d092dd2 6838 hlist_del_init_rcu(&napi->napi_hash_node);
5198d545 6839
af12fa6e
ET
6840 spin_unlock(&napi_hash_lock);
6841}
af12fa6e 6842
3b47d303
ED
6843static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6844{
6845 struct napi_struct *napi;
6846
6847 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6848
6849 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6850 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6851 */
6f8b12d6 6852 if (!napi_disable_pending(napi) &&
7fd3253a
BT
6853 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6854 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
39e6c820 6855 __napi_schedule_irqoff(napi);
7fd3253a 6856 }
3b47d303
ED
6857
6858 return HRTIMER_NORESTART;
6859}
6860
7c4ec749 6861static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6862{
07d78363
DM
6863 int i;
6864
6312fe77
LR
6865 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6866 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6867 napi->gro_hash[i].count = 0;
6868 }
7c4ec749
DM
6869 napi->gro_bitmask = 0;
6870}
6871
5fdd2f0e
WW
6872int dev_set_threaded(struct net_device *dev, bool threaded)
6873{
6874 struct napi_struct *napi;
6875 int err = 0;
6876
6877 if (dev->threaded == threaded)
6878 return 0;
6879
6880 if (threaded) {
6881 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6882 if (!napi->thread) {
6883 err = napi_kthread_create(napi);
6884 if (err) {
6885 threaded = false;
6886 break;
6887 }
6888 }
6889 }
6890 }
6891
6892 dev->threaded = threaded;
6893
6894 /* Make sure kthread is created before THREADED bit
6895 * is set.
6896 */
6897 smp_mb__before_atomic();
6898
6899 /* Setting/unsetting threaded mode on a napi might not immediately
6900 * take effect, if the current napi instance is actively being
6901 * polled. In this case, the switch between threaded mode and
6902 * softirq mode will happen in the next round of napi_schedule().
6903 * This should not cause hiccups/stalls to the live traffic.
6904 */
6905 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6906 if (threaded)
6907 set_bit(NAPI_STATE_THREADED, &napi->state);
6908 else
6909 clear_bit(NAPI_STATE_THREADED, &napi->state);
6910 }
6911
6912 return err;
6913}
8f64860f 6914EXPORT_SYMBOL(dev_set_threaded);
5fdd2f0e 6915
7c4ec749
DM
6916void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6917 int (*poll)(struct napi_struct *, int), int weight)
6918{
4d092dd2
JK
6919 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6920 return;
6921
7c4ec749 6922 INIT_LIST_HEAD(&napi->poll_list);
4d092dd2 6923 INIT_HLIST_NODE(&napi->napi_hash_node);
7c4ec749
DM
6924 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6925 napi->timer.function = napi_watchdog;
6926 init_gro_hash(napi);
5d38a079 6927 napi->skb = NULL;
323ebb61
EC
6928 INIT_LIST_HEAD(&napi->rx_list);
6929 napi->rx_count = 0;
d565b0a1 6930 napi->poll = poll;
82dc3c63 6931 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6932 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6933 weight);
d565b0a1 6934 napi->weight = weight;
d565b0a1 6935 napi->dev = dev;
5d38a079 6936#ifdef CONFIG_NETPOLL
d565b0a1
HX
6937 napi->poll_owner = -1;
6938#endif
6939 set_bit(NAPI_STATE_SCHED, &napi->state);
96e97bc0
JK
6940 set_bit(NAPI_STATE_NPSVC, &napi->state);
6941 list_add_rcu(&napi->dev_list, &dev->napi_list);
93d05d4a 6942 napi_hash_add(napi);
29863d41
WW
6943 /* Create kthread for this napi if dev->threaded is set.
6944 * Clear dev->threaded if kthread creation failed so that
6945 * threaded mode will not be enabled in napi_enable().
6946 */
6947 if (dev->threaded && napi_kthread_create(napi))
6948 dev->threaded = 0;
d565b0a1
HX
6949}
6950EXPORT_SYMBOL(netif_napi_add);
6951
3b47d303
ED
6952void napi_disable(struct napi_struct *n)
6953{
6954 might_sleep();
6955 set_bit(NAPI_STATE_DISABLE, &n->state);
6956
6957 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6958 msleep(1);
2d8bff12
NH
6959 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6960 msleep(1);
3b47d303
ED
6961
6962 hrtimer_cancel(&n->timer);
6963
7fd3253a 6964 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
3b47d303 6965 clear_bit(NAPI_STATE_DISABLE, &n->state);
29863d41 6966 clear_bit(NAPI_STATE_THREADED, &n->state);
3b47d303
ED
6967}
6968EXPORT_SYMBOL(napi_disable);
6969
29863d41
WW
6970/**
6971 * napi_enable - enable NAPI scheduling
6972 * @n: NAPI context
6973 *
6974 * Resume NAPI from being scheduled on this context.
6975 * Must be paired with napi_disable.
6976 */
6977void napi_enable(struct napi_struct *n)
6978{
6979 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6980 smp_mb__before_atomic();
6981 clear_bit(NAPI_STATE_SCHED, &n->state);
6982 clear_bit(NAPI_STATE_NPSVC, &n->state);
6983 if (n->dev->threaded && n->thread)
6984 set_bit(NAPI_STATE_THREADED, &n->state);
6985}
6986EXPORT_SYMBOL(napi_enable);
6987
07d78363 6988static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6989{
07d78363 6990 int i;
d4546c25 6991
07d78363
DM
6992 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6993 struct sk_buff *skb, *n;
6994
6312fe77 6995 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6996 kfree_skb(skb);
6312fe77 6997 napi->gro_hash[i].count = 0;
07d78363 6998 }
d4546c25
DM
6999}
7000
93d05d4a 7001/* Must be called in process context */
5198d545 7002void __netif_napi_del(struct napi_struct *napi)
d565b0a1 7003{
4d092dd2
JK
7004 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7005 return;
7006
5198d545 7007 napi_hash_del(napi);
5251ef82 7008 list_del_rcu(&napi->dev_list);
76620aaf 7009 napi_free_frags(napi);
d565b0a1 7010
07d78363 7011 flush_gro_hash(napi);
d9f37d01 7012 napi->gro_bitmask = 0;
29863d41
WW
7013
7014 if (napi->thread) {
7015 kthread_stop(napi->thread);
7016 napi->thread = NULL;
7017 }
d565b0a1 7018}
5198d545 7019EXPORT_SYMBOL(__netif_napi_del);
d565b0a1 7020
898f8015 7021static int __napi_poll(struct napi_struct *n, bool *repoll)
726ce70e 7022{
726ce70e
HX
7023 int work, weight;
7024
726ce70e
HX
7025 weight = n->weight;
7026
7027 /* This NAPI_STATE_SCHED test is for avoiding a race
7028 * with netpoll's poll_napi(). Only the entity which
7029 * obtains the lock and sees NAPI_STATE_SCHED set will
7030 * actually make the ->poll() call. Therefore we avoid
7031 * accidentally calling ->poll() when NAPI is not scheduled.
7032 */
7033 work = 0;
7034 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7035 work = n->poll(n, weight);
1db19db7 7036 trace_napi_poll(n, work, weight);
726ce70e
HX
7037 }
7038
427d5838
ED
7039 if (unlikely(work > weight))
7040 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7041 n->poll, work, weight);
726ce70e
HX
7042
7043 if (likely(work < weight))
898f8015 7044 return work;
726ce70e
HX
7045
7046 /* Drivers must not modify the NAPI state if they
7047 * consume the entire weight. In such cases this code
7048 * still "owns" the NAPI instance and therefore can
7049 * move the instance around on the list at-will.
7050 */
7051 if (unlikely(napi_disable_pending(n))) {
7052 napi_complete(n);
898f8015 7053 return work;
726ce70e
HX
7054 }
7055
7fd3253a
BT
7056 /* The NAPI context has more processing work, but busy-polling
7057 * is preferred. Exit early.
7058 */
7059 if (napi_prefer_busy_poll(n)) {
7060 if (napi_complete_done(n, work)) {
7061 /* If timeout is not set, we need to make sure
7062 * that the NAPI is re-scheduled.
7063 */
7064 napi_schedule(n);
7065 }
898f8015 7066 return work;
7fd3253a
BT
7067 }
7068
d9f37d01 7069 if (n->gro_bitmask) {
726ce70e
HX
7070 /* flush too old packets
7071 * If HZ < 1000, flush all packets.
7072 */
7073 napi_gro_flush(n, HZ >= 1000);
7074 }
7075
c8079432
MM
7076 gro_normal_list(n);
7077
001ce546
HX
7078 /* Some drivers may have called napi_schedule
7079 * prior to exhausting their budget.
7080 */
7081 if (unlikely(!list_empty(&n->poll_list))) {
7082 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7083 n->dev ? n->dev->name : "backlog");
898f8015 7084 return work;
001ce546
HX
7085 }
7086
898f8015
FF
7087 *repoll = true;
7088
7089 return work;
7090}
7091
7092static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7093{
7094 bool do_repoll = false;
7095 void *have;
7096 int work;
7097
7098 list_del_init(&n->poll_list);
7099
7100 have = netpoll_poll_lock(n);
7101
7102 work = __napi_poll(n, &do_repoll);
7103
7104 if (do_repoll)
7105 list_add_tail(&n->poll_list, repoll);
726ce70e 7106
726ce70e
HX
7107 netpoll_poll_unlock(have);
7108
7109 return work;
7110}
7111
29863d41
WW
7112static int napi_thread_wait(struct napi_struct *napi)
7113{
cb038357
WW
7114 bool woken = false;
7115
29863d41
WW
7116 set_current_state(TASK_INTERRUPTIBLE);
7117
27f0ad71 7118 while (!kthread_should_stop()) {
cb038357
WW
7119 /* Testing SCHED_THREADED bit here to make sure the current
7120 * kthread owns this napi and could poll on this napi.
7121 * Testing SCHED bit is not enough because SCHED bit might be
7122 * set by some other busy poll thread or by napi_disable().
7123 */
7124 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
29863d41
WW
7125 WARN_ON(!list_empty(&napi->poll_list));
7126 __set_current_state(TASK_RUNNING);
7127 return 0;
7128 }
7129
7130 schedule();
cb038357
WW
7131 /* woken being true indicates this thread owns this napi. */
7132 woken = true;
29863d41
WW
7133 set_current_state(TASK_INTERRUPTIBLE);
7134 }
7135 __set_current_state(TASK_RUNNING);
27f0ad71 7136
29863d41
WW
7137 return -1;
7138}
7139
7140static int napi_threaded_poll(void *data)
7141{
7142 struct napi_struct *napi = data;
7143 void *have;
7144
7145 while (!napi_thread_wait(napi)) {
7146 for (;;) {
7147 bool repoll = false;
7148
7149 local_bh_disable();
7150
7151 have = netpoll_poll_lock(napi);
7152 __napi_poll(napi, &repoll);
7153 netpoll_poll_unlock(have);
7154
29863d41
WW
7155 local_bh_enable();
7156
7157 if (!repoll)
7158 break;
7159
7160 cond_resched();
7161 }
7162 }
7163 return 0;
7164}
7165
0766f788 7166static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 7167{
903ceff7 7168 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
7169 unsigned long time_limit = jiffies +
7170 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 7171 int budget = netdev_budget;
d75b1ade
ED
7172 LIST_HEAD(list);
7173 LIST_HEAD(repoll);
53fb95d3 7174
1da177e4 7175 local_irq_disable();
d75b1ade
ED
7176 list_splice_init(&sd->poll_list, &list);
7177 local_irq_enable();
1da177e4 7178
ceb8d5bf 7179 for (;;) {
bea3348e 7180 struct napi_struct *n;
1da177e4 7181
ceb8d5bf
HX
7182 if (list_empty(&list)) {
7183 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
fec6e49b 7184 return;
ceb8d5bf
HX
7185 break;
7186 }
7187
6bd373eb
HX
7188 n = list_first_entry(&list, struct napi_struct, poll_list);
7189 budget -= napi_poll(n, &repoll);
7190
d75b1ade 7191 /* If softirq window is exhausted then punt.
24f8b238
SH
7192 * Allow this to run for 2 jiffies since which will allow
7193 * an average latency of 1.5/HZ.
bea3348e 7194 */
ceb8d5bf
HX
7195 if (unlikely(budget <= 0 ||
7196 time_after_eq(jiffies, time_limit))) {
7197 sd->time_squeeze++;
7198 break;
7199 }
1da177e4 7200 }
d75b1ade 7201
d75b1ade
ED
7202 local_irq_disable();
7203
7204 list_splice_tail_init(&sd->poll_list, &list);
7205 list_splice_tail(&repoll, &list);
7206 list_splice(&list, &sd->poll_list);
7207 if (!list_empty(&sd->poll_list))
7208 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7209
e326bed2 7210 net_rps_action_and_irq_enable(sd);
1da177e4
LT
7211}
7212
aa9d8560 7213struct netdev_adjacent {
9ff162a8 7214 struct net_device *dev;
5d261913
VF
7215
7216 /* upper master flag, there can only be one master device per list */
9ff162a8 7217 bool master;
5d261913 7218
32b6d34f
TY
7219 /* lookup ignore flag */
7220 bool ignore;
7221
5d261913
VF
7222 /* counter for the number of times this device was added to us */
7223 u16 ref_nr;
7224
402dae96
VF
7225 /* private field for the users */
7226 void *private;
7227
9ff162a8
JP
7228 struct list_head list;
7229 struct rcu_head rcu;
9ff162a8
JP
7230};
7231
6ea29da1 7232static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 7233 struct list_head *adj_list)
9ff162a8 7234{
5d261913 7235 struct netdev_adjacent *adj;
5d261913 7236
2f268f12 7237 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
7238 if (adj->dev == adj_dev)
7239 return adj;
9ff162a8
JP
7240 }
7241 return NULL;
7242}
7243
eff74233
TY
7244static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7245 struct netdev_nested_priv *priv)
f1170fd4 7246{
eff74233 7247 struct net_device *dev = (struct net_device *)priv->data;
f1170fd4
DA
7248
7249 return upper_dev == dev;
7250}
7251
9ff162a8
JP
7252/**
7253 * netdev_has_upper_dev - Check if device is linked to an upper device
7254 * @dev: device
7255 * @upper_dev: upper device to check
7256 *
7257 * Find out if a device is linked to specified upper device and return true
7258 * in case it is. Note that this checks only immediate upper device,
7259 * not through a complete stack of devices. The caller must hold the RTNL lock.
7260 */
7261bool netdev_has_upper_dev(struct net_device *dev,
7262 struct net_device *upper_dev)
7263{
eff74233
TY
7264 struct netdev_nested_priv priv = {
7265 .data = (void *)upper_dev,
7266 };
7267
9ff162a8
JP
7268 ASSERT_RTNL();
7269
32b6d34f 7270 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 7271 &priv);
9ff162a8
JP
7272}
7273EXPORT_SYMBOL(netdev_has_upper_dev);
7274
1a3f060c 7275/**
c1639be9 7276 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
1a3f060c
DA
7277 * @dev: device
7278 * @upper_dev: upper device to check
7279 *
7280 * Find out if a device is linked to specified upper device and return true
7281 * in case it is. Note that this checks the entire upper device chain.
7282 * The caller must hold rcu lock.
7283 */
7284
1a3f060c
DA
7285bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7286 struct net_device *upper_dev)
7287{
eff74233
TY
7288 struct netdev_nested_priv priv = {
7289 .data = (void *)upper_dev,
7290 };
7291
32b6d34f 7292 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 7293 &priv);
1a3f060c
DA
7294}
7295EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7296
9ff162a8
JP
7297/**
7298 * netdev_has_any_upper_dev - Check if device is linked to some device
7299 * @dev: device
7300 *
7301 * Find out if a device is linked to an upper device and return true in case
7302 * it is. The caller must hold the RTNL lock.
7303 */
25cc72a3 7304bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
7305{
7306 ASSERT_RTNL();
7307
f1170fd4 7308 return !list_empty(&dev->adj_list.upper);
9ff162a8 7309}
25cc72a3 7310EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
7311
7312/**
7313 * netdev_master_upper_dev_get - Get master upper device
7314 * @dev: device
7315 *
7316 * Find a master upper device and return pointer to it or NULL in case
7317 * it's not there. The caller must hold the RTNL lock.
7318 */
7319struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7320{
aa9d8560 7321 struct netdev_adjacent *upper;
9ff162a8
JP
7322
7323 ASSERT_RTNL();
7324
2f268f12 7325 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
7326 return NULL;
7327
2f268f12 7328 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 7329 struct netdev_adjacent, list);
9ff162a8
JP
7330 if (likely(upper->master))
7331 return upper->dev;
7332 return NULL;
7333}
7334EXPORT_SYMBOL(netdev_master_upper_dev_get);
7335
32b6d34f
TY
7336static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7337{
7338 struct netdev_adjacent *upper;
7339
7340 ASSERT_RTNL();
7341
7342 if (list_empty(&dev->adj_list.upper))
7343 return NULL;
7344
7345 upper = list_first_entry(&dev->adj_list.upper,
7346 struct netdev_adjacent, list);
7347 if (likely(upper->master) && !upper->ignore)
7348 return upper->dev;
7349 return NULL;
7350}
7351
0f524a80
DA
7352/**
7353 * netdev_has_any_lower_dev - Check if device is linked to some device
7354 * @dev: device
7355 *
7356 * Find out if a device is linked to a lower device and return true in case
7357 * it is. The caller must hold the RTNL lock.
7358 */
7359static bool netdev_has_any_lower_dev(struct net_device *dev)
7360{
7361 ASSERT_RTNL();
7362
7363 return !list_empty(&dev->adj_list.lower);
7364}
7365
b6ccba4c
VF
7366void *netdev_adjacent_get_private(struct list_head *adj_list)
7367{
7368 struct netdev_adjacent *adj;
7369
7370 adj = list_entry(adj_list, struct netdev_adjacent, list);
7371
7372 return adj->private;
7373}
7374EXPORT_SYMBOL(netdev_adjacent_get_private);
7375
44a40855
VY
7376/**
7377 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7378 * @dev: device
7379 * @iter: list_head ** of the current position
7380 *
7381 * Gets the next device from the dev's upper list, starting from iter
7382 * position. The caller must hold RCU read lock.
7383 */
7384struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7385 struct list_head **iter)
7386{
7387 struct netdev_adjacent *upper;
7388
7389 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7390
7391 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7392
7393 if (&upper->list == &dev->adj_list.upper)
7394 return NULL;
7395
7396 *iter = &upper->list;
7397
7398 return upper->dev;
7399}
7400EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7401
32b6d34f
TY
7402static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7403 struct list_head **iter,
7404 bool *ignore)
5343da4c
TY
7405{
7406 struct netdev_adjacent *upper;
7407
7408 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7409
7410 if (&upper->list == &dev->adj_list.upper)
7411 return NULL;
7412
7413 *iter = &upper->list;
32b6d34f 7414 *ignore = upper->ignore;
5343da4c
TY
7415
7416 return upper->dev;
7417}
7418
1a3f060c
DA
7419static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7420 struct list_head **iter)
7421{
7422 struct netdev_adjacent *upper;
7423
7424 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7425
7426 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7427
7428 if (&upper->list == &dev->adj_list.upper)
7429 return NULL;
7430
7431 *iter = &upper->list;
7432
7433 return upper->dev;
7434}
7435
32b6d34f
TY
7436static int __netdev_walk_all_upper_dev(struct net_device *dev,
7437 int (*fn)(struct net_device *dev,
eff74233
TY
7438 struct netdev_nested_priv *priv),
7439 struct netdev_nested_priv *priv)
5343da4c
TY
7440{
7441 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7442 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7443 int ret, cur = 0;
32b6d34f 7444 bool ignore;
5343da4c
TY
7445
7446 now = dev;
7447 iter = &dev->adj_list.upper;
7448
7449 while (1) {
7450 if (now != dev) {
eff74233 7451 ret = fn(now, priv);
5343da4c
TY
7452 if (ret)
7453 return ret;
7454 }
7455
7456 next = NULL;
7457 while (1) {
32b6d34f 7458 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
7459 if (!udev)
7460 break;
32b6d34f
TY
7461 if (ignore)
7462 continue;
5343da4c
TY
7463
7464 next = udev;
7465 niter = &udev->adj_list.upper;
7466 dev_stack[cur] = now;
7467 iter_stack[cur++] = iter;
7468 break;
7469 }
7470
7471 if (!next) {
7472 if (!cur)
7473 return 0;
7474 next = dev_stack[--cur];
7475 niter = iter_stack[cur];
7476 }
7477
7478 now = next;
7479 iter = niter;
7480 }
7481
7482 return 0;
7483}
7484
1a3f060c
DA
7485int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7486 int (*fn)(struct net_device *dev,
eff74233
TY
7487 struct netdev_nested_priv *priv),
7488 struct netdev_nested_priv *priv)
1a3f060c 7489{
5343da4c
TY
7490 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7491 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7492 int ret, cur = 0;
1a3f060c 7493
5343da4c
TY
7494 now = dev;
7495 iter = &dev->adj_list.upper;
1a3f060c 7496
5343da4c
TY
7497 while (1) {
7498 if (now != dev) {
eff74233 7499 ret = fn(now, priv);
5343da4c
TY
7500 if (ret)
7501 return ret;
7502 }
7503
7504 next = NULL;
7505 while (1) {
7506 udev = netdev_next_upper_dev_rcu(now, &iter);
7507 if (!udev)
7508 break;
7509
7510 next = udev;
7511 niter = &udev->adj_list.upper;
7512 dev_stack[cur] = now;
7513 iter_stack[cur++] = iter;
7514 break;
7515 }
7516
7517 if (!next) {
7518 if (!cur)
7519 return 0;
7520 next = dev_stack[--cur];
7521 niter = iter_stack[cur];
7522 }
7523
7524 now = next;
7525 iter = niter;
1a3f060c
DA
7526 }
7527
7528 return 0;
7529}
7530EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7531
32b6d34f
TY
7532static bool __netdev_has_upper_dev(struct net_device *dev,
7533 struct net_device *upper_dev)
7534{
eff74233 7535 struct netdev_nested_priv priv = {
1fc70edb 7536 .flags = 0,
eff74233
TY
7537 .data = (void *)upper_dev,
7538 };
7539
32b6d34f
TY
7540 ASSERT_RTNL();
7541
7542 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
eff74233 7543 &priv);
32b6d34f
TY
7544}
7545
31088a11
VF
7546/**
7547 * netdev_lower_get_next_private - Get the next ->private from the
7548 * lower neighbour list
7549 * @dev: device
7550 * @iter: list_head ** of the current position
7551 *
7552 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7553 * list, starting from iter position. The caller must hold either hold the
7554 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 7555 * list will remain unchanged.
31088a11
VF
7556 */
7557void *netdev_lower_get_next_private(struct net_device *dev,
7558 struct list_head **iter)
7559{
7560 struct netdev_adjacent *lower;
7561
7562 lower = list_entry(*iter, struct netdev_adjacent, list);
7563
7564 if (&lower->list == &dev->adj_list.lower)
7565 return NULL;
7566
6859e7df 7567 *iter = lower->list.next;
31088a11
VF
7568
7569 return lower->private;
7570}
7571EXPORT_SYMBOL(netdev_lower_get_next_private);
7572
7573/**
7574 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7575 * lower neighbour list, RCU
7576 * variant
7577 * @dev: device
7578 * @iter: list_head ** of the current position
7579 *
7580 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7581 * list, starting from iter position. The caller must hold RCU read lock.
7582 */
7583void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7584 struct list_head **iter)
7585{
7586 struct netdev_adjacent *lower;
7587
7588 WARN_ON_ONCE(!rcu_read_lock_held());
7589
7590 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7591
7592 if (&lower->list == &dev->adj_list.lower)
7593 return NULL;
7594
6859e7df 7595 *iter = &lower->list;
31088a11
VF
7596
7597 return lower->private;
7598}
7599EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7600
4085ebe8
VY
7601/**
7602 * netdev_lower_get_next - Get the next device from the lower neighbour
7603 * list
7604 * @dev: device
7605 * @iter: list_head ** of the current position
7606 *
7607 * Gets the next netdev_adjacent from the dev's lower neighbour
7608 * list, starting from iter position. The caller must hold RTNL lock or
7609 * its own locking that guarantees that the neighbour lower
b469139e 7610 * list will remain unchanged.
4085ebe8
VY
7611 */
7612void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7613{
7614 struct netdev_adjacent *lower;
7615
cfdd28be 7616 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7617
7618 if (&lower->list == &dev->adj_list.lower)
7619 return NULL;
7620
cfdd28be 7621 *iter = lower->list.next;
4085ebe8
VY
7622
7623 return lower->dev;
7624}
7625EXPORT_SYMBOL(netdev_lower_get_next);
7626
1a3f060c
DA
7627static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7628 struct list_head **iter)
7629{
7630 struct netdev_adjacent *lower;
7631
46b5ab1a 7632 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7633
7634 if (&lower->list == &dev->adj_list.lower)
7635 return NULL;
7636
46b5ab1a 7637 *iter = &lower->list;
1a3f060c
DA
7638
7639 return lower->dev;
7640}
7641
32b6d34f
TY
7642static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7643 struct list_head **iter,
7644 bool *ignore)
7645{
7646 struct netdev_adjacent *lower;
7647
7648 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7649
7650 if (&lower->list == &dev->adj_list.lower)
7651 return NULL;
7652
7653 *iter = &lower->list;
7654 *ignore = lower->ignore;
7655
7656 return lower->dev;
7657}
7658
1a3f060c
DA
7659int netdev_walk_all_lower_dev(struct net_device *dev,
7660 int (*fn)(struct net_device *dev,
eff74233
TY
7661 struct netdev_nested_priv *priv),
7662 struct netdev_nested_priv *priv)
1a3f060c 7663{
5343da4c
TY
7664 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7665 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7666 int ret, cur = 0;
1a3f060c 7667
5343da4c
TY
7668 now = dev;
7669 iter = &dev->adj_list.lower;
1a3f060c 7670
5343da4c
TY
7671 while (1) {
7672 if (now != dev) {
eff74233 7673 ret = fn(now, priv);
5343da4c
TY
7674 if (ret)
7675 return ret;
7676 }
7677
7678 next = NULL;
7679 while (1) {
7680 ldev = netdev_next_lower_dev(now, &iter);
7681 if (!ldev)
7682 break;
7683
7684 next = ldev;
7685 niter = &ldev->adj_list.lower;
7686 dev_stack[cur] = now;
7687 iter_stack[cur++] = iter;
7688 break;
7689 }
7690
7691 if (!next) {
7692 if (!cur)
7693 return 0;
7694 next = dev_stack[--cur];
7695 niter = iter_stack[cur];
7696 }
7697
7698 now = next;
7699 iter = niter;
1a3f060c
DA
7700 }
7701
7702 return 0;
7703}
7704EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7705
32b6d34f
TY
7706static int __netdev_walk_all_lower_dev(struct net_device *dev,
7707 int (*fn)(struct net_device *dev,
eff74233
TY
7708 struct netdev_nested_priv *priv),
7709 struct netdev_nested_priv *priv)
32b6d34f
TY
7710{
7711 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7712 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7713 int ret, cur = 0;
7714 bool ignore;
7715
7716 now = dev;
7717 iter = &dev->adj_list.lower;
7718
7719 while (1) {
7720 if (now != dev) {
eff74233 7721 ret = fn(now, priv);
32b6d34f
TY
7722 if (ret)
7723 return ret;
7724 }
7725
7726 next = NULL;
7727 while (1) {
7728 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7729 if (!ldev)
7730 break;
7731 if (ignore)
7732 continue;
7733
7734 next = ldev;
7735 niter = &ldev->adj_list.lower;
7736 dev_stack[cur] = now;
7737 iter_stack[cur++] = iter;
7738 break;
7739 }
7740
7741 if (!next) {
7742 if (!cur)
7743 return 0;
7744 next = dev_stack[--cur];
7745 niter = iter_stack[cur];
7746 }
7747
7748 now = next;
7749 iter = niter;
7750 }
7751
7752 return 0;
7753}
7754
7151affe
TY
7755struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7756 struct list_head **iter)
1a3f060c
DA
7757{
7758 struct netdev_adjacent *lower;
7759
7760 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7761 if (&lower->list == &dev->adj_list.lower)
7762 return NULL;
7763
7764 *iter = &lower->list;
7765
7766 return lower->dev;
7767}
7151affe 7768EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7769
5343da4c
TY
7770static u8 __netdev_upper_depth(struct net_device *dev)
7771{
7772 struct net_device *udev;
7773 struct list_head *iter;
7774 u8 max_depth = 0;
32b6d34f 7775 bool ignore;
5343da4c
TY
7776
7777 for (iter = &dev->adj_list.upper,
32b6d34f 7778 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7779 udev;
32b6d34f
TY
7780 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7781 if (ignore)
7782 continue;
5343da4c
TY
7783 if (max_depth < udev->upper_level)
7784 max_depth = udev->upper_level;
7785 }
7786
7787 return max_depth;
7788}
7789
7790static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7791{
7792 struct net_device *ldev;
7793 struct list_head *iter;
5343da4c 7794 u8 max_depth = 0;
32b6d34f 7795 bool ignore;
1a3f060c
DA
7796
7797 for (iter = &dev->adj_list.lower,
32b6d34f 7798 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7799 ldev;
32b6d34f
TY
7800 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7801 if (ignore)
7802 continue;
5343da4c
TY
7803 if (max_depth < ldev->lower_level)
7804 max_depth = ldev->lower_level;
7805 }
1a3f060c 7806
5343da4c
TY
7807 return max_depth;
7808}
7809
eff74233
TY
7810static int __netdev_update_upper_level(struct net_device *dev,
7811 struct netdev_nested_priv *__unused)
5343da4c
TY
7812{
7813 dev->upper_level = __netdev_upper_depth(dev) + 1;
7814 return 0;
7815}
7816
eff74233 7817static int __netdev_update_lower_level(struct net_device *dev,
1fc70edb 7818 struct netdev_nested_priv *priv)
5343da4c
TY
7819{
7820 dev->lower_level = __netdev_lower_depth(dev) + 1;
1fc70edb
TY
7821
7822#ifdef CONFIG_LOCKDEP
7823 if (!priv)
7824 return 0;
7825
7826 if (priv->flags & NESTED_SYNC_IMM)
7827 dev->nested_level = dev->lower_level - 1;
7828 if (priv->flags & NESTED_SYNC_TODO)
7829 net_unlink_todo(dev);
7830#endif
5343da4c
TY
7831 return 0;
7832}
7833
7834int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7835 int (*fn)(struct net_device *dev,
eff74233
TY
7836 struct netdev_nested_priv *priv),
7837 struct netdev_nested_priv *priv)
5343da4c
TY
7838{
7839 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7840 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7841 int ret, cur = 0;
7842
7843 now = dev;
7844 iter = &dev->adj_list.lower;
7845
7846 while (1) {
7847 if (now != dev) {
eff74233 7848 ret = fn(now, priv);
5343da4c
TY
7849 if (ret)
7850 return ret;
7851 }
7852
7853 next = NULL;
7854 while (1) {
7855 ldev = netdev_next_lower_dev_rcu(now, &iter);
7856 if (!ldev)
7857 break;
7858
7859 next = ldev;
7860 niter = &ldev->adj_list.lower;
7861 dev_stack[cur] = now;
7862 iter_stack[cur++] = iter;
7863 break;
7864 }
7865
7866 if (!next) {
7867 if (!cur)
7868 return 0;
7869 next = dev_stack[--cur];
7870 niter = iter_stack[cur];
7871 }
7872
7873 now = next;
7874 iter = niter;
1a3f060c
DA
7875 }
7876
7877 return 0;
7878}
7879EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7880
e001bfad 7881/**
7882 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7883 * lower neighbour list, RCU
7884 * variant
7885 * @dev: device
7886 *
7887 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7888 * list. The caller must hold RCU read lock.
7889 */
7890void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7891{
7892 struct netdev_adjacent *lower;
7893
7894 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7895 struct netdev_adjacent, list);
7896 if (lower)
7897 return lower->private;
7898 return NULL;
7899}
7900EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7901
9ff162a8
JP
7902/**
7903 * netdev_master_upper_dev_get_rcu - Get master upper device
7904 * @dev: device
7905 *
7906 * Find a master upper device and return pointer to it or NULL in case
7907 * it's not there. The caller must hold the RCU read lock.
7908 */
7909struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7910{
aa9d8560 7911 struct netdev_adjacent *upper;
9ff162a8 7912
2f268f12 7913 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7914 struct netdev_adjacent, list);
9ff162a8
JP
7915 if (upper && likely(upper->master))
7916 return upper->dev;
7917 return NULL;
7918}
7919EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7920
0a59f3a9 7921static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7922 struct net_device *adj_dev,
7923 struct list_head *dev_list)
7924{
7925 char linkname[IFNAMSIZ+7];
f4563a75 7926
3ee32707
VF
7927 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7928 "upper_%s" : "lower_%s", adj_dev->name);
7929 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7930 linkname);
7931}
0a59f3a9 7932static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7933 char *name,
7934 struct list_head *dev_list)
7935{
7936 char linkname[IFNAMSIZ+7];
f4563a75 7937
3ee32707
VF
7938 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7939 "upper_%s" : "lower_%s", name);
7940 sysfs_remove_link(&(dev->dev.kobj), linkname);
7941}
7942
7ce64c79
AF
7943static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7944 struct net_device *adj_dev,
7945 struct list_head *dev_list)
7946{
7947 return (dev_list == &dev->adj_list.upper ||
7948 dev_list == &dev->adj_list.lower) &&
7949 net_eq(dev_net(dev), dev_net(adj_dev));
7950}
3ee32707 7951
5d261913
VF
7952static int __netdev_adjacent_dev_insert(struct net_device *dev,
7953 struct net_device *adj_dev,
7863c054 7954 struct list_head *dev_list,
402dae96 7955 void *private, bool master)
5d261913
VF
7956{
7957 struct netdev_adjacent *adj;
842d67a7 7958 int ret;
5d261913 7959
6ea29da1 7960 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7961
7962 if (adj) {
790510d9 7963 adj->ref_nr += 1;
67b62f98
DA
7964 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7965 dev->name, adj_dev->name, adj->ref_nr);
7966
5d261913
VF
7967 return 0;
7968 }
7969
7970 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7971 if (!adj)
7972 return -ENOMEM;
7973
7974 adj->dev = adj_dev;
7975 adj->master = master;
790510d9 7976 adj->ref_nr = 1;
402dae96 7977 adj->private = private;
32b6d34f 7978 adj->ignore = false;
5d261913 7979 dev_hold(adj_dev);
2f268f12 7980
67b62f98
DA
7981 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7982 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7983
7ce64c79 7984 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7985 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7986 if (ret)
7987 goto free_adj;
7988 }
7989
7863c054 7990 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7991 if (master) {
7992 ret = sysfs_create_link(&(dev->dev.kobj),
7993 &(adj_dev->dev.kobj), "master");
7994 if (ret)
5831d66e 7995 goto remove_symlinks;
842d67a7 7996
7863c054 7997 list_add_rcu(&adj->list, dev_list);
842d67a7 7998 } else {
7863c054 7999 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 8000 }
5d261913
VF
8001
8002 return 0;
842d67a7 8003
5831d66e 8004remove_symlinks:
7ce64c79 8005 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 8006 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
8007free_adj:
8008 kfree(adj);
974daef7 8009 dev_put(adj_dev);
842d67a7
VF
8010
8011 return ret;
5d261913
VF
8012}
8013
1d143d9f 8014static void __netdev_adjacent_dev_remove(struct net_device *dev,
8015 struct net_device *adj_dev,
93409033 8016 u16 ref_nr,
1d143d9f 8017 struct list_head *dev_list)
5d261913
VF
8018{
8019 struct netdev_adjacent *adj;
8020
67b62f98
DA
8021 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8022 dev->name, adj_dev->name, ref_nr);
8023
6ea29da1 8024 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 8025
2f268f12 8026 if (!adj) {
67b62f98 8027 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 8028 dev->name, adj_dev->name);
67b62f98
DA
8029 WARN_ON(1);
8030 return;
2f268f12 8031 }
5d261913 8032
93409033 8033 if (adj->ref_nr > ref_nr) {
67b62f98
DA
8034 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8035 dev->name, adj_dev->name, ref_nr,
8036 adj->ref_nr - ref_nr);
93409033 8037 adj->ref_nr -= ref_nr;
5d261913
VF
8038 return;
8039 }
8040
842d67a7
VF
8041 if (adj->master)
8042 sysfs_remove_link(&(dev->dev.kobj), "master");
8043
7ce64c79 8044 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 8045 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 8046
5d261913 8047 list_del_rcu(&adj->list);
67b62f98 8048 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 8049 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
8050 dev_put(adj_dev);
8051 kfree_rcu(adj, rcu);
8052}
8053
1d143d9f 8054static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8055 struct net_device *upper_dev,
8056 struct list_head *up_list,
8057 struct list_head *down_list,
8058 void *private, bool master)
5d261913
VF
8059{
8060 int ret;
8061
790510d9 8062 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 8063 private, master);
5d261913
VF
8064 if (ret)
8065 return ret;
8066
790510d9 8067 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 8068 private, false);
5d261913 8069 if (ret) {
790510d9 8070 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
8071 return ret;
8072 }
8073
8074 return 0;
8075}
8076
1d143d9f 8077static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8078 struct net_device *upper_dev,
93409033 8079 u16 ref_nr,
1d143d9f 8080 struct list_head *up_list,
8081 struct list_head *down_list)
5d261913 8082{
93409033
AC
8083 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8084 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
8085}
8086
1d143d9f 8087static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8088 struct net_device *upper_dev,
8089 void *private, bool master)
2f268f12 8090{
f1170fd4
DA
8091 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8092 &dev->adj_list.upper,
8093 &upper_dev->adj_list.lower,
8094 private, master);
5d261913
VF
8095}
8096
1d143d9f 8097static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8098 struct net_device *upper_dev)
2f268f12 8099{
93409033 8100 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
8101 &dev->adj_list.upper,
8102 &upper_dev->adj_list.lower);
8103}
5d261913 8104
9ff162a8 8105static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 8106 struct net_device *upper_dev, bool master,
42ab19ee 8107 void *upper_priv, void *upper_info,
1fc70edb 8108 struct netdev_nested_priv *priv,
42ab19ee 8109 struct netlink_ext_ack *extack)
9ff162a8 8110{
51d0c047
DA
8111 struct netdev_notifier_changeupper_info changeupper_info = {
8112 .info = {
8113 .dev = dev,
42ab19ee 8114 .extack = extack,
51d0c047
DA
8115 },
8116 .upper_dev = upper_dev,
8117 .master = master,
8118 .linking = true,
8119 .upper_info = upper_info,
8120 };
50d629e7 8121 struct net_device *master_dev;
5d261913 8122 int ret = 0;
9ff162a8
JP
8123
8124 ASSERT_RTNL();
8125
8126 if (dev == upper_dev)
8127 return -EBUSY;
8128
8129 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 8130 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
8131 return -EBUSY;
8132
5343da4c
TY
8133 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8134 return -EMLINK;
8135
50d629e7 8136 if (!master) {
32b6d34f 8137 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
8138 return -EEXIST;
8139 } else {
32b6d34f 8140 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
8141 if (master_dev)
8142 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8143 }
9ff162a8 8144
51d0c047 8145 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
8146 &changeupper_info.info);
8147 ret = notifier_to_errno(ret);
8148 if (ret)
8149 return ret;
8150
6dffb044 8151 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 8152 master);
5d261913
VF
8153 if (ret)
8154 return ret;
9ff162a8 8155
51d0c047 8156 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
8157 &changeupper_info.info);
8158 ret = notifier_to_errno(ret);
8159 if (ret)
f1170fd4 8160 goto rollback;
b03804e7 8161
5343da4c 8162 __netdev_update_upper_level(dev, NULL);
32b6d34f 8163 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 8164
1fc70edb 8165 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 8166 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 8167 priv);
5343da4c 8168
9ff162a8 8169 return 0;
5d261913 8170
f1170fd4 8171rollback:
2f268f12 8172 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
8173
8174 return ret;
9ff162a8
JP
8175}
8176
8177/**
8178 * netdev_upper_dev_link - Add a link to the upper device
8179 * @dev: device
8180 * @upper_dev: new upper device
7a006d59 8181 * @extack: netlink extended ack
9ff162a8
JP
8182 *
8183 * Adds a link to device which is upper to this one. The caller must hold
8184 * the RTNL lock. On a failure a negative errno code is returned.
8185 * On success the reference counts are adjusted and the function
8186 * returns zero.
8187 */
8188int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
8189 struct net_device *upper_dev,
8190 struct netlink_ext_ack *extack)
9ff162a8 8191{
1fc70edb
TY
8192 struct netdev_nested_priv priv = {
8193 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8194 .data = NULL,
8195 };
8196
42ab19ee 8197 return __netdev_upper_dev_link(dev, upper_dev, false,
1fc70edb 8198 NULL, NULL, &priv, extack);
9ff162a8
JP
8199}
8200EXPORT_SYMBOL(netdev_upper_dev_link);
8201
8202/**
8203 * netdev_master_upper_dev_link - Add a master link to the upper device
8204 * @dev: device
8205 * @upper_dev: new upper device
6dffb044 8206 * @upper_priv: upper device private
29bf24af 8207 * @upper_info: upper info to be passed down via notifier
7a006d59 8208 * @extack: netlink extended ack
9ff162a8
JP
8209 *
8210 * Adds a link to device which is upper to this one. In this case, only
8211 * one master upper device can be linked, although other non-master devices
8212 * might be linked as well. The caller must hold the RTNL lock.
8213 * On a failure a negative errno code is returned. On success the reference
8214 * counts are adjusted and the function returns zero.
8215 */
8216int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 8217 struct net_device *upper_dev,
42ab19ee
DA
8218 void *upper_priv, void *upper_info,
8219 struct netlink_ext_ack *extack)
9ff162a8 8220{
1fc70edb
TY
8221 struct netdev_nested_priv priv = {
8222 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8223 .data = NULL,
8224 };
8225
29bf24af 8226 return __netdev_upper_dev_link(dev, upper_dev, true,
1fc70edb 8227 upper_priv, upper_info, &priv, extack);
9ff162a8
JP
8228}
8229EXPORT_SYMBOL(netdev_master_upper_dev_link);
8230
fe8300fd 8231static void __netdev_upper_dev_unlink(struct net_device *dev,
1fc70edb
TY
8232 struct net_device *upper_dev,
8233 struct netdev_nested_priv *priv)
9ff162a8 8234{
51d0c047
DA
8235 struct netdev_notifier_changeupper_info changeupper_info = {
8236 .info = {
8237 .dev = dev,
8238 },
8239 .upper_dev = upper_dev,
8240 .linking = false,
8241 };
f4563a75 8242
9ff162a8
JP
8243 ASSERT_RTNL();
8244
0e4ead9d 8245 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 8246
51d0c047 8247 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
8248 &changeupper_info.info);
8249
2f268f12 8250 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 8251
51d0c047 8252 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 8253 &changeupper_info.info);
5343da4c
TY
8254
8255 __netdev_update_upper_level(dev, NULL);
32b6d34f 8256 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 8257
1fc70edb 8258 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 8259 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 8260 priv);
9ff162a8 8261}
fe8300fd
TY
8262
8263/**
8264 * netdev_upper_dev_unlink - Removes a link to upper device
8265 * @dev: device
8266 * @upper_dev: new upper device
8267 *
8268 * Removes a link to device which is upper to this one. The caller must hold
8269 * the RTNL lock.
8270 */
8271void netdev_upper_dev_unlink(struct net_device *dev,
8272 struct net_device *upper_dev)
8273{
1fc70edb
TY
8274 struct netdev_nested_priv priv = {
8275 .flags = NESTED_SYNC_TODO,
8276 .data = NULL,
8277 };
8278
8279 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
9ff162a8
JP
8280}
8281EXPORT_SYMBOL(netdev_upper_dev_unlink);
8282
32b6d34f
TY
8283static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8284 struct net_device *lower_dev,
8285 bool val)
8286{
8287 struct netdev_adjacent *adj;
8288
8289 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8290 if (adj)
8291 adj->ignore = val;
8292
8293 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8294 if (adj)
8295 adj->ignore = val;
8296}
8297
8298static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8299 struct net_device *lower_dev)
8300{
8301 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8302}
8303
8304static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8305 struct net_device *lower_dev)
8306{
8307 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8308}
8309
8310int netdev_adjacent_change_prepare(struct net_device *old_dev,
8311 struct net_device *new_dev,
8312 struct net_device *dev,
8313 struct netlink_ext_ack *extack)
8314{
1fc70edb
TY
8315 struct netdev_nested_priv priv = {
8316 .flags = 0,
8317 .data = NULL,
8318 };
32b6d34f
TY
8319 int err;
8320
8321 if (!new_dev)
8322 return 0;
8323
8324 if (old_dev && new_dev != old_dev)
8325 netdev_adjacent_dev_disable(dev, old_dev);
1fc70edb
TY
8326 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8327 extack);
32b6d34f
TY
8328 if (err) {
8329 if (old_dev && new_dev != old_dev)
8330 netdev_adjacent_dev_enable(dev, old_dev);
8331 return err;
8332 }
8333
8334 return 0;
8335}
8336EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8337
8338void netdev_adjacent_change_commit(struct net_device *old_dev,
8339 struct net_device *new_dev,
8340 struct net_device *dev)
8341{
1fc70edb
TY
8342 struct netdev_nested_priv priv = {
8343 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8344 .data = NULL,
8345 };
8346
32b6d34f
TY
8347 if (!new_dev || !old_dev)
8348 return;
8349
8350 if (new_dev == old_dev)
8351 return;
8352
8353 netdev_adjacent_dev_enable(dev, old_dev);
1fc70edb 8354 __netdev_upper_dev_unlink(old_dev, dev, &priv);
32b6d34f
TY
8355}
8356EXPORT_SYMBOL(netdev_adjacent_change_commit);
8357
8358void netdev_adjacent_change_abort(struct net_device *old_dev,
8359 struct net_device *new_dev,
8360 struct net_device *dev)
8361{
1fc70edb
TY
8362 struct netdev_nested_priv priv = {
8363 .flags = 0,
8364 .data = NULL,
8365 };
8366
32b6d34f
TY
8367 if (!new_dev)
8368 return;
8369
8370 if (old_dev && new_dev != old_dev)
8371 netdev_adjacent_dev_enable(dev, old_dev);
8372
1fc70edb 8373 __netdev_upper_dev_unlink(new_dev, dev, &priv);
32b6d34f
TY
8374}
8375EXPORT_SYMBOL(netdev_adjacent_change_abort);
8376
61bd3857
MS
8377/**
8378 * netdev_bonding_info_change - Dispatch event about slave change
8379 * @dev: device
4a26e453 8380 * @bonding_info: info to dispatch
61bd3857
MS
8381 *
8382 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8383 * The caller must hold the RTNL lock.
8384 */
8385void netdev_bonding_info_change(struct net_device *dev,
8386 struct netdev_bonding_info *bonding_info)
8387{
51d0c047
DA
8388 struct netdev_notifier_bonding_info info = {
8389 .info.dev = dev,
8390 };
61bd3857
MS
8391
8392 memcpy(&info.bonding_info, bonding_info,
8393 sizeof(struct netdev_bonding_info));
51d0c047 8394 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
8395 &info.info);
8396}
8397EXPORT_SYMBOL(netdev_bonding_info_change);
8398
cff9f12b
MG
8399/**
8400 * netdev_get_xmit_slave - Get the xmit slave of master device
8842500d 8401 * @dev: device
cff9f12b
MG
8402 * @skb: The packet
8403 * @all_slaves: assume all the slaves are active
8404 *
8405 * The reference counters are not incremented so the caller must be
8406 * careful with locks. The caller must hold RCU lock.
8407 * %NULL is returned if no slave is found.
8408 */
8409
8410struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8411 struct sk_buff *skb,
8412 bool all_slaves)
8413{
8414 const struct net_device_ops *ops = dev->netdev_ops;
8415
8416 if (!ops->ndo_get_xmit_slave)
8417 return NULL;
8418 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8419}
8420EXPORT_SYMBOL(netdev_get_xmit_slave);
8421
719a402c
TT
8422static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8423 struct sock *sk)
8424{
8425 const struct net_device_ops *ops = dev->netdev_ops;
8426
8427 if (!ops->ndo_sk_get_lower_dev)
8428 return NULL;
8429 return ops->ndo_sk_get_lower_dev(dev, sk);
8430}
8431
8432/**
8433 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8434 * @dev: device
8435 * @sk: the socket
8436 *
8437 * %NULL is returned if no lower device is found.
8438 */
8439
8440struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8441 struct sock *sk)
8442{
8443 struct net_device *lower;
8444
8445 lower = netdev_sk_get_lower_dev(dev, sk);
8446 while (lower) {
8447 dev = lower;
8448 lower = netdev_sk_get_lower_dev(dev, sk);
8449 }
8450
8451 return dev;
8452}
8453EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8454
2ce1ee17 8455static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
8456{
8457 struct netdev_adjacent *iter;
8458
8459 struct net *net = dev_net(dev);
8460
8461 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8462 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8463 continue;
8464 netdev_adjacent_sysfs_add(iter->dev, dev,
8465 &iter->dev->adj_list.lower);
8466 netdev_adjacent_sysfs_add(dev, iter->dev,
8467 &dev->adj_list.upper);
8468 }
8469
8470 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8471 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8472 continue;
8473 netdev_adjacent_sysfs_add(iter->dev, dev,
8474 &iter->dev->adj_list.upper);
8475 netdev_adjacent_sysfs_add(dev, iter->dev,
8476 &dev->adj_list.lower);
8477 }
8478}
8479
2ce1ee17 8480static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
8481{
8482 struct netdev_adjacent *iter;
8483
8484 struct net *net = dev_net(dev);
8485
8486 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8487 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8488 continue;
8489 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8490 &iter->dev->adj_list.lower);
8491 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8492 &dev->adj_list.upper);
8493 }
8494
8495 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8496 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8497 continue;
8498 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8499 &iter->dev->adj_list.upper);
8500 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8501 &dev->adj_list.lower);
8502 }
8503}
8504
5bb025fa 8505void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 8506{
5bb025fa 8507 struct netdev_adjacent *iter;
402dae96 8508
4c75431a
AF
8509 struct net *net = dev_net(dev);
8510
5bb025fa 8511 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8512 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8513 continue;
5bb025fa
VF
8514 netdev_adjacent_sysfs_del(iter->dev, oldname,
8515 &iter->dev->adj_list.lower);
8516 netdev_adjacent_sysfs_add(iter->dev, dev,
8517 &iter->dev->adj_list.lower);
8518 }
402dae96 8519
5bb025fa 8520 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8521 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8522 continue;
5bb025fa
VF
8523 netdev_adjacent_sysfs_del(iter->dev, oldname,
8524 &iter->dev->adj_list.upper);
8525 netdev_adjacent_sysfs_add(iter->dev, dev,
8526 &iter->dev->adj_list.upper);
8527 }
402dae96 8528}
402dae96
VF
8529
8530void *netdev_lower_dev_get_private(struct net_device *dev,
8531 struct net_device *lower_dev)
8532{
8533 struct netdev_adjacent *lower;
8534
8535 if (!lower_dev)
8536 return NULL;
6ea29da1 8537 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
8538 if (!lower)
8539 return NULL;
8540
8541 return lower->private;
8542}
8543EXPORT_SYMBOL(netdev_lower_dev_get_private);
8544
4085ebe8 8545
04d48266 8546/**
c1639be9 8547 * netdev_lower_state_changed - Dispatch event about lower device state change
04d48266
JP
8548 * @lower_dev: device
8549 * @lower_state_info: state to dispatch
8550 *
8551 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8552 * The caller must hold the RTNL lock.
8553 */
8554void netdev_lower_state_changed(struct net_device *lower_dev,
8555 void *lower_state_info)
8556{
51d0c047
DA
8557 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8558 .info.dev = lower_dev,
8559 };
04d48266
JP
8560
8561 ASSERT_RTNL();
8562 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 8563 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
8564 &changelowerstate_info.info);
8565}
8566EXPORT_SYMBOL(netdev_lower_state_changed);
8567
b6c40d68
PM
8568static void dev_change_rx_flags(struct net_device *dev, int flags)
8569{
d314774c
SH
8570 const struct net_device_ops *ops = dev->netdev_ops;
8571
d2615bf4 8572 if (ops->ndo_change_rx_flags)
d314774c 8573 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
8574}
8575
991fb3f7 8576static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 8577{
b536db93 8578 unsigned int old_flags = dev->flags;
d04a48b0
EB
8579 kuid_t uid;
8580 kgid_t gid;
1da177e4 8581
24023451
PM
8582 ASSERT_RTNL();
8583
dad9b335
WC
8584 dev->flags |= IFF_PROMISC;
8585 dev->promiscuity += inc;
8586 if (dev->promiscuity == 0) {
8587 /*
8588 * Avoid overflow.
8589 * If inc causes overflow, untouch promisc and return error.
8590 */
8591 if (inc < 0)
8592 dev->flags &= ~IFF_PROMISC;
8593 else {
8594 dev->promiscuity -= inc;
7b6cd1ce
JP
8595 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8596 dev->name);
dad9b335
WC
8597 return -EOVERFLOW;
8598 }
8599 }
52609c0b 8600 if (dev->flags != old_flags) {
7b6cd1ce
JP
8601 pr_info("device %s %s promiscuous mode\n",
8602 dev->name,
8603 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
8604 if (audit_enabled) {
8605 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
8606 audit_log(audit_context(), GFP_ATOMIC,
8607 AUDIT_ANOM_PROMISCUOUS,
8608 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8609 dev->name, (dev->flags & IFF_PROMISC),
8610 (old_flags & IFF_PROMISC),
8611 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8612 from_kuid(&init_user_ns, uid),
8613 from_kgid(&init_user_ns, gid),
8614 audit_get_sessionid(current));
8192b0c4 8615 }
24023451 8616
b6c40d68 8617 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 8618 }
991fb3f7
ND
8619 if (notify)
8620 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 8621 return 0;
1da177e4
LT
8622}
8623
4417da66
PM
8624/**
8625 * dev_set_promiscuity - update promiscuity count on a device
8626 * @dev: device
8627 * @inc: modifier
8628 *
8629 * Add or remove promiscuity from a device. While the count in the device
8630 * remains above zero the interface remains promiscuous. Once it hits zero
8631 * the device reverts back to normal filtering operation. A negative inc
8632 * value is used to drop promiscuity on the device.
dad9b335 8633 * Return 0 if successful or a negative errno code on error.
4417da66 8634 */
dad9b335 8635int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 8636{
b536db93 8637 unsigned int old_flags = dev->flags;
dad9b335 8638 int err;
4417da66 8639
991fb3f7 8640 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 8641 if (err < 0)
dad9b335 8642 return err;
4417da66
PM
8643 if (dev->flags != old_flags)
8644 dev_set_rx_mode(dev);
dad9b335 8645 return err;
4417da66 8646}
d1b19dff 8647EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 8648
991fb3f7 8649static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 8650{
991fb3f7 8651 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 8652
24023451
PM
8653 ASSERT_RTNL();
8654
1da177e4 8655 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8656 dev->allmulti += inc;
8657 if (dev->allmulti == 0) {
8658 /*
8659 * Avoid overflow.
8660 * If inc causes overflow, untouch allmulti and return error.
8661 */
8662 if (inc < 0)
8663 dev->flags &= ~IFF_ALLMULTI;
8664 else {
8665 dev->allmulti -= inc;
7b6cd1ce
JP
8666 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8667 dev->name);
dad9b335
WC
8668 return -EOVERFLOW;
8669 }
8670 }
24023451 8671 if (dev->flags ^ old_flags) {
b6c40d68 8672 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8673 dev_set_rx_mode(dev);
991fb3f7
ND
8674 if (notify)
8675 __dev_notify_flags(dev, old_flags,
8676 dev->gflags ^ old_gflags);
24023451 8677 }
dad9b335 8678 return 0;
4417da66 8679}
991fb3f7
ND
8680
8681/**
8682 * dev_set_allmulti - update allmulti count on a device
8683 * @dev: device
8684 * @inc: modifier
8685 *
8686 * Add or remove reception of all multicast frames to a device. While the
8687 * count in the device remains above zero the interface remains listening
8688 * to all interfaces. Once it hits zero the device reverts back to normal
8689 * filtering operation. A negative @inc value is used to drop the counter
8690 * when releasing a resource needing all multicasts.
8691 * Return 0 if successful or a negative errno code on error.
8692 */
8693
8694int dev_set_allmulti(struct net_device *dev, int inc)
8695{
8696 return __dev_set_allmulti(dev, inc, true);
8697}
d1b19dff 8698EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8699
8700/*
8701 * Upload unicast and multicast address lists to device and
8702 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8703 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8704 * are present.
8705 */
8706void __dev_set_rx_mode(struct net_device *dev)
8707{
d314774c
SH
8708 const struct net_device_ops *ops = dev->netdev_ops;
8709
4417da66
PM
8710 /* dev_open will call this function so the list will stay sane. */
8711 if (!(dev->flags&IFF_UP))
8712 return;
8713
8714 if (!netif_device_present(dev))
40b77c94 8715 return;
4417da66 8716
01789349 8717 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8718 /* Unicast addresses changes may only happen under the rtnl,
8719 * therefore calling __dev_set_promiscuity here is safe.
8720 */
32e7bfc4 8721 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8722 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8723 dev->uc_promisc = true;
32e7bfc4 8724 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8725 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8726 dev->uc_promisc = false;
4417da66 8727 }
4417da66 8728 }
01789349
JP
8729
8730 if (ops->ndo_set_rx_mode)
8731 ops->ndo_set_rx_mode(dev);
4417da66
PM
8732}
8733
8734void dev_set_rx_mode(struct net_device *dev)
8735{
b9e40857 8736 netif_addr_lock_bh(dev);
4417da66 8737 __dev_set_rx_mode(dev);
b9e40857 8738 netif_addr_unlock_bh(dev);
1da177e4
LT
8739}
8740
f0db275a
SH
8741/**
8742 * dev_get_flags - get flags reported to userspace
8743 * @dev: device
8744 *
8745 * Get the combination of flag bits exported through APIs to userspace.
8746 */
95c96174 8747unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8748{
95c96174 8749 unsigned int flags;
1da177e4
LT
8750
8751 flags = (dev->flags & ~(IFF_PROMISC |
8752 IFF_ALLMULTI |
b00055aa
SR
8753 IFF_RUNNING |
8754 IFF_LOWER_UP |
8755 IFF_DORMANT)) |
1da177e4
LT
8756 (dev->gflags & (IFF_PROMISC |
8757 IFF_ALLMULTI));
8758
b00055aa
SR
8759 if (netif_running(dev)) {
8760 if (netif_oper_up(dev))
8761 flags |= IFF_RUNNING;
8762 if (netif_carrier_ok(dev))
8763 flags |= IFF_LOWER_UP;
8764 if (netif_dormant(dev))
8765 flags |= IFF_DORMANT;
8766 }
1da177e4
LT
8767
8768 return flags;
8769}
d1b19dff 8770EXPORT_SYMBOL(dev_get_flags);
1da177e4 8771
6d040321
PM
8772int __dev_change_flags(struct net_device *dev, unsigned int flags,
8773 struct netlink_ext_ack *extack)
1da177e4 8774{
b536db93 8775 unsigned int old_flags = dev->flags;
bd380811 8776 int ret;
1da177e4 8777
24023451
PM
8778 ASSERT_RTNL();
8779
1da177e4
LT
8780 /*
8781 * Set the flags on our device.
8782 */
8783
8784 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8785 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8786 IFF_AUTOMEDIA)) |
8787 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8788 IFF_ALLMULTI));
8789
8790 /*
8791 * Load in the correct multicast list now the flags have changed.
8792 */
8793
b6c40d68
PM
8794 if ((old_flags ^ flags) & IFF_MULTICAST)
8795 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8796
4417da66 8797 dev_set_rx_mode(dev);
1da177e4
LT
8798
8799 /*
8800 * Have we downed the interface. We handle IFF_UP ourselves
8801 * according to user attempts to set it, rather than blindly
8802 * setting it.
8803 */
8804
8805 ret = 0;
7051b88a 8806 if ((old_flags ^ flags) & IFF_UP) {
8807 if (old_flags & IFF_UP)
8808 __dev_close(dev);
8809 else
40c900aa 8810 ret = __dev_open(dev, extack);
7051b88a 8811 }
1da177e4 8812
1da177e4 8813 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8814 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8815 unsigned int old_flags = dev->flags;
d1b19dff 8816
1da177e4 8817 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8818
8819 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8820 if (dev->flags != old_flags)
8821 dev_set_rx_mode(dev);
1da177e4
LT
8822 }
8823
8824 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8825 * is important. Some (broken) drivers set IFF_PROMISC, when
8826 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8827 */
8828 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8829 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8830
1da177e4 8831 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8832 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8833 }
8834
bd380811
PM
8835 return ret;
8836}
8837
a528c219
ND
8838void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8839 unsigned int gchanges)
bd380811
PM
8840{
8841 unsigned int changes = dev->flags ^ old_flags;
8842
a528c219 8843 if (gchanges)
7f294054 8844 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8845
bd380811
PM
8846 if (changes & IFF_UP) {
8847 if (dev->flags & IFF_UP)
8848 call_netdevice_notifiers(NETDEV_UP, dev);
8849 else
8850 call_netdevice_notifiers(NETDEV_DOWN, dev);
8851 }
8852
8853 if (dev->flags & IFF_UP &&
be9efd36 8854 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8855 struct netdev_notifier_change_info change_info = {
8856 .info = {
8857 .dev = dev,
8858 },
8859 .flags_changed = changes,
8860 };
be9efd36 8861
51d0c047 8862 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8863 }
bd380811
PM
8864}
8865
8866/**
8867 * dev_change_flags - change device settings
8868 * @dev: device
8869 * @flags: device state flags
567c5e13 8870 * @extack: netlink extended ack
bd380811
PM
8871 *
8872 * Change settings on device based state flags. The flags are
8873 * in the userspace exported format.
8874 */
567c5e13
PM
8875int dev_change_flags(struct net_device *dev, unsigned int flags,
8876 struct netlink_ext_ack *extack)
bd380811 8877{
b536db93 8878 int ret;
991fb3f7 8879 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8880
6d040321 8881 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8882 if (ret < 0)
8883 return ret;
8884
991fb3f7 8885 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8886 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8887 return ret;
8888}
d1b19dff 8889EXPORT_SYMBOL(dev_change_flags);
1da177e4 8890
f51048c3 8891int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8892{
8893 const struct net_device_ops *ops = dev->netdev_ops;
8894
8895 if (ops->ndo_change_mtu)
8896 return ops->ndo_change_mtu(dev, new_mtu);
8897
501a90c9
ED
8898 /* Pairs with all the lockless reads of dev->mtu in the stack */
8899 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8900 return 0;
8901}
f51048c3 8902EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8903
d836f5c6
ED
8904int dev_validate_mtu(struct net_device *dev, int new_mtu,
8905 struct netlink_ext_ack *extack)
8906{
8907 /* MTU must be positive, and in range */
8908 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8909 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8910 return -EINVAL;
8911 }
8912
8913 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8914 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8915 return -EINVAL;
8916 }
8917 return 0;
8918}
8919
f0db275a 8920/**
7a4c53be 8921 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8922 * @dev: device
8923 * @new_mtu: new transfer unit
7a4c53be 8924 * @extack: netlink extended ack
f0db275a
SH
8925 *
8926 * Change the maximum transfer size of the network device.
8927 */
7a4c53be
SH
8928int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8929 struct netlink_ext_ack *extack)
1da177e4 8930{
2315dc91 8931 int err, orig_mtu;
1da177e4
LT
8932
8933 if (new_mtu == dev->mtu)
8934 return 0;
8935
d836f5c6
ED
8936 err = dev_validate_mtu(dev, new_mtu, extack);
8937 if (err)
8938 return err;
1da177e4
LT
8939
8940 if (!netif_device_present(dev))
8941 return -ENODEV;
8942
1d486bfb
VF
8943 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8944 err = notifier_to_errno(err);
8945 if (err)
8946 return err;
d314774c 8947
2315dc91
VF
8948 orig_mtu = dev->mtu;
8949 err = __dev_set_mtu(dev, new_mtu);
d314774c 8950
2315dc91 8951 if (!err) {
af7d6cce
SD
8952 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8953 orig_mtu);
2315dc91
VF
8954 err = notifier_to_errno(err);
8955 if (err) {
8956 /* setting mtu back and notifying everyone again,
8957 * so that they have a chance to revert changes.
8958 */
8959 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8960 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8961 new_mtu);
2315dc91
VF
8962 }
8963 }
1da177e4
LT
8964 return err;
8965}
7a4c53be
SH
8966
8967int dev_set_mtu(struct net_device *dev, int new_mtu)
8968{
8969 struct netlink_ext_ack extack;
8970 int err;
8971
a6bcfc89 8972 memset(&extack, 0, sizeof(extack));
7a4c53be 8973 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8974 if (err && extack._msg)
7a4c53be
SH
8975 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8976 return err;
8977}
d1b19dff 8978EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8979
6a643ddb
CW
8980/**
8981 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8982 * @dev: device
8983 * @new_len: new tx queue length
8984 */
8985int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8986{
8987 unsigned int orig_len = dev->tx_queue_len;
8988 int res;
8989
8990 if (new_len != (unsigned int)new_len)
8991 return -ERANGE;
8992
8993 if (new_len != orig_len) {
8994 dev->tx_queue_len = new_len;
8995 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8996 res = notifier_to_errno(res);
7effaf06
TT
8997 if (res)
8998 goto err_rollback;
8999 res = dev_qdisc_change_tx_queue_len(dev);
9000 if (res)
9001 goto err_rollback;
6a643ddb
CW
9002 }
9003
9004 return 0;
7effaf06
TT
9005
9006err_rollback:
9007 netdev_err(dev, "refused to change device tx_queue_len\n");
9008 dev->tx_queue_len = orig_len;
9009 return res;
6a643ddb
CW
9010}
9011
cbda10fa
VD
9012/**
9013 * dev_set_group - Change group this device belongs to
9014 * @dev: device
9015 * @new_group: group this device should belong to
9016 */
9017void dev_set_group(struct net_device *dev, int new_group)
9018{
9019 dev->group = new_group;
9020}
9021EXPORT_SYMBOL(dev_set_group);
9022
d59cdf94
PM
9023/**
9024 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9025 * @dev: device
9026 * @addr: new address
9027 * @extack: netlink extended ack
9028 */
9029int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9030 struct netlink_ext_ack *extack)
9031{
9032 struct netdev_notifier_pre_changeaddr_info info = {
9033 .info.dev = dev,
9034 .info.extack = extack,
9035 .dev_addr = addr,
9036 };
9037 int rc;
9038
9039 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9040 return notifier_to_errno(rc);
9041}
9042EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9043
f0db275a
SH
9044/**
9045 * dev_set_mac_address - Change Media Access Control Address
9046 * @dev: device
9047 * @sa: new address
3a37a963 9048 * @extack: netlink extended ack
f0db275a
SH
9049 *
9050 * Change the hardware (MAC) address of the device
9051 */
3a37a963
PM
9052int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9053 struct netlink_ext_ack *extack)
1da177e4 9054{
d314774c 9055 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
9056 int err;
9057
d314774c 9058 if (!ops->ndo_set_mac_address)
1da177e4
LT
9059 return -EOPNOTSUPP;
9060 if (sa->sa_family != dev->type)
9061 return -EINVAL;
9062 if (!netif_device_present(dev))
9063 return -ENODEV;
d59cdf94
PM
9064 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9065 if (err)
9066 return err;
d314774c 9067 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
9068 if (err)
9069 return err;
fbdeca2d 9070 dev->addr_assign_type = NET_ADDR_SET;
f6521516 9071 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 9072 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 9073 return 0;
1da177e4 9074}
d1b19dff 9075EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 9076
3b23a32a
CW
9077static DECLARE_RWSEM(dev_addr_sem);
9078
9079int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9080 struct netlink_ext_ack *extack)
9081{
9082 int ret;
9083
9084 down_write(&dev_addr_sem);
9085 ret = dev_set_mac_address(dev, sa, extack);
9086 up_write(&dev_addr_sem);
9087 return ret;
9088}
9089EXPORT_SYMBOL(dev_set_mac_address_user);
9090
9091int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9092{
9093 size_t size = sizeof(sa->sa_data);
9094 struct net_device *dev;
9095 int ret = 0;
9096
9097 down_read(&dev_addr_sem);
9098 rcu_read_lock();
9099
9100 dev = dev_get_by_name_rcu(net, dev_name);
9101 if (!dev) {
9102 ret = -ENODEV;
9103 goto unlock;
9104 }
9105 if (!dev->addr_len)
9106 memset(sa->sa_data, 0, size);
9107 else
9108 memcpy(sa->sa_data, dev->dev_addr,
9109 min_t(size_t, size, dev->addr_len));
9110 sa->sa_family = dev->type;
9111
9112unlock:
9113 rcu_read_unlock();
9114 up_read(&dev_addr_sem);
9115 return ret;
9116}
9117EXPORT_SYMBOL(dev_get_mac_address);
9118
4bf84c35
JP
9119/**
9120 * dev_change_carrier - Change device carrier
9121 * @dev: device
691b3b7e 9122 * @new_carrier: new value
4bf84c35
JP
9123 *
9124 * Change device carrier
9125 */
9126int dev_change_carrier(struct net_device *dev, bool new_carrier)
9127{
9128 const struct net_device_ops *ops = dev->netdev_ops;
9129
9130 if (!ops->ndo_change_carrier)
9131 return -EOPNOTSUPP;
9132 if (!netif_device_present(dev))
9133 return -ENODEV;
9134 return ops->ndo_change_carrier(dev, new_carrier);
9135}
9136EXPORT_SYMBOL(dev_change_carrier);
9137
66b52b0d
JP
9138/**
9139 * dev_get_phys_port_id - Get device physical port ID
9140 * @dev: device
9141 * @ppid: port ID
9142 *
9143 * Get device physical port ID
9144 */
9145int dev_get_phys_port_id(struct net_device *dev,
02637fce 9146 struct netdev_phys_item_id *ppid)
66b52b0d
JP
9147{
9148 const struct net_device_ops *ops = dev->netdev_ops;
9149
9150 if (!ops->ndo_get_phys_port_id)
9151 return -EOPNOTSUPP;
9152 return ops->ndo_get_phys_port_id(dev, ppid);
9153}
9154EXPORT_SYMBOL(dev_get_phys_port_id);
9155
db24a904
DA
9156/**
9157 * dev_get_phys_port_name - Get device physical port name
9158 * @dev: device
9159 * @name: port name
ed49e650 9160 * @len: limit of bytes to copy to name
db24a904
DA
9161 *
9162 * Get device physical port name
9163 */
9164int dev_get_phys_port_name(struct net_device *dev,
9165 char *name, size_t len)
9166{
9167 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 9168 int err;
db24a904 9169
af3836df
JP
9170 if (ops->ndo_get_phys_port_name) {
9171 err = ops->ndo_get_phys_port_name(dev, name, len);
9172 if (err != -EOPNOTSUPP)
9173 return err;
9174 }
9175 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
9176}
9177EXPORT_SYMBOL(dev_get_phys_port_name);
9178
d6abc596
FF
9179/**
9180 * dev_get_port_parent_id - Get the device's port parent identifier
9181 * @dev: network device
9182 * @ppid: pointer to a storage for the port's parent identifier
9183 * @recurse: allow/disallow recursion to lower devices
9184 *
9185 * Get the devices's port parent identifier
9186 */
9187int dev_get_port_parent_id(struct net_device *dev,
9188 struct netdev_phys_item_id *ppid,
9189 bool recurse)
9190{
9191 const struct net_device_ops *ops = dev->netdev_ops;
9192 struct netdev_phys_item_id first = { };
9193 struct net_device *lower_dev;
9194 struct list_head *iter;
7e1146e8
JP
9195 int err;
9196
9197 if (ops->ndo_get_port_parent_id) {
9198 err = ops->ndo_get_port_parent_id(dev, ppid);
9199 if (err != -EOPNOTSUPP)
9200 return err;
9201 }
d6abc596 9202
7e1146e8
JP
9203 err = devlink_compat_switch_id_get(dev, ppid);
9204 if (!err || err != -EOPNOTSUPP)
9205 return err;
d6abc596
FF
9206
9207 if (!recurse)
7e1146e8 9208 return -EOPNOTSUPP;
d6abc596
FF
9209
9210 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9211 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9212 if (err)
9213 break;
9214 if (!first.id_len)
9215 first = *ppid;
9216 else if (memcmp(&first, ppid, sizeof(*ppid)))
e1b9efe6 9217 return -EOPNOTSUPP;
d6abc596
FF
9218 }
9219
9220 return err;
9221}
9222EXPORT_SYMBOL(dev_get_port_parent_id);
9223
9224/**
9225 * netdev_port_same_parent_id - Indicate if two network devices have
9226 * the same port parent identifier
9227 * @a: first network device
9228 * @b: second network device
9229 */
9230bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9231{
9232 struct netdev_phys_item_id a_id = { };
9233 struct netdev_phys_item_id b_id = { };
9234
9235 if (dev_get_port_parent_id(a, &a_id, true) ||
9236 dev_get_port_parent_id(b, &b_id, true))
9237 return false;
9238
9239 return netdev_phys_item_id_same(&a_id, &b_id);
9240}
9241EXPORT_SYMBOL(netdev_port_same_parent_id);
9242
d746d707
AK
9243/**
9244 * dev_change_proto_down - update protocol port state information
9245 * @dev: device
9246 * @proto_down: new value
9247 *
9248 * This info can be used by switch drivers to set the phys state of the
9249 * port.
9250 */
9251int dev_change_proto_down(struct net_device *dev, bool proto_down)
9252{
9253 const struct net_device_ops *ops = dev->netdev_ops;
9254
9255 if (!ops->ndo_change_proto_down)
9256 return -EOPNOTSUPP;
9257 if (!netif_device_present(dev))
9258 return -ENODEV;
9259 return ops->ndo_change_proto_down(dev, proto_down);
9260}
9261EXPORT_SYMBOL(dev_change_proto_down);
9262
b5899679
AR
9263/**
9264 * dev_change_proto_down_generic - generic implementation for
9265 * ndo_change_proto_down that sets carrier according to
9266 * proto_down.
9267 *
9268 * @dev: device
9269 * @proto_down: new value
9270 */
9271int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9272{
9273 if (proto_down)
9274 netif_carrier_off(dev);
9275 else
9276 netif_carrier_on(dev);
9277 dev->proto_down = proto_down;
9278 return 0;
9279}
9280EXPORT_SYMBOL(dev_change_proto_down_generic);
9281
829eb208
RP
9282/**
9283 * dev_change_proto_down_reason - proto down reason
9284 *
9285 * @dev: device
9286 * @mask: proto down mask
9287 * @value: proto down value
9288 */
9289void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9290 u32 value)
9291{
9292 int b;
9293
9294 if (!mask) {
9295 dev->proto_down_reason = value;
9296 } else {
9297 for_each_set_bit(b, &mask, 32) {
9298 if (value & (1 << b))
9299 dev->proto_down_reason |= BIT(b);
9300 else
9301 dev->proto_down_reason &= ~BIT(b);
9302 }
9303 }
9304}
9305EXPORT_SYMBOL(dev_change_proto_down_reason);
9306
aa8d3a71
AN
9307struct bpf_xdp_link {
9308 struct bpf_link link;
9309 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9310 int flags;
9311};
9312
c8a36f19 9313static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
d67b9cd2 9314{
7f0a8382
AN
9315 if (flags & XDP_FLAGS_HW_MODE)
9316 return XDP_MODE_HW;
9317 if (flags & XDP_FLAGS_DRV_MODE)
9318 return XDP_MODE_DRV;
c8a36f19
AN
9319 if (flags & XDP_FLAGS_SKB_MODE)
9320 return XDP_MODE_SKB;
9321 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
7f0a8382 9322}
d67b9cd2 9323
7f0a8382
AN
9324static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9325{
9326 switch (mode) {
9327 case XDP_MODE_SKB:
9328 return generic_xdp_install;
9329 case XDP_MODE_DRV:
9330 case XDP_MODE_HW:
9331 return dev->netdev_ops->ndo_bpf;
9332 default:
9333 return NULL;
5d867245 9334 }
7f0a8382 9335}
118b4aa2 9336
aa8d3a71
AN
9337static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9338 enum bpf_xdp_mode mode)
9339{
9340 return dev->xdp_state[mode].link;
9341}
9342
7f0a8382
AN
9343static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9344 enum bpf_xdp_mode mode)
9345{
aa8d3a71
AN
9346 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9347
9348 if (link)
9349 return link->link.prog;
7f0a8382
AN
9350 return dev->xdp_state[mode].prog;
9351}
9352
998f1729
THJ
9353static u8 dev_xdp_prog_count(struct net_device *dev)
9354{
9355 u8 count = 0;
9356 int i;
9357
9358 for (i = 0; i < __MAX_XDP_MODE; i++)
9359 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9360 count++;
9361 return count;
9362}
9363
7f0a8382
AN
9364u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9365{
9366 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
118b4aa2 9367
7f0a8382
AN
9368 return prog ? prog->aux->id : 0;
9369}
58038695 9370
aa8d3a71
AN
9371static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9372 struct bpf_xdp_link *link)
9373{
9374 dev->xdp_state[mode].link = link;
9375 dev->xdp_state[mode].prog = NULL;
d67b9cd2
DB
9376}
9377
7f0a8382
AN
9378static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9379 struct bpf_prog *prog)
9380{
aa8d3a71 9381 dev->xdp_state[mode].link = NULL;
7f0a8382 9382 dev->xdp_state[mode].prog = prog;
d67b9cd2
DB
9383}
9384
7f0a8382
AN
9385static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9386 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9387 u32 flags, struct bpf_prog *prog)
d67b9cd2 9388{
f4e63525 9389 struct netdev_bpf xdp;
7e6897f9
BT
9390 int err;
9391
d67b9cd2 9392 memset(&xdp, 0, sizeof(xdp));
7f0a8382 9393 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
d67b9cd2 9394 xdp.extack = extack;
32d60277 9395 xdp.flags = flags;
d67b9cd2
DB
9396 xdp.prog = prog;
9397
7f0a8382
AN
9398 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9399 * "moved" into driver), so they don't increment it on their own, but
9400 * they do decrement refcnt when program is detached or replaced.
9401 * Given net_device also owns link/prog, we need to bump refcnt here
9402 * to prevent drivers from underflowing it.
9403 */
9404 if (prog)
9405 bpf_prog_inc(prog);
7e6897f9 9406 err = bpf_op(dev, &xdp);
7f0a8382
AN
9407 if (err) {
9408 if (prog)
9409 bpf_prog_put(prog);
9410 return err;
9411 }
7e6897f9 9412
7f0a8382
AN
9413 if (mode != XDP_MODE_HW)
9414 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
7e6897f9 9415
7f0a8382 9416 return 0;
d67b9cd2
DB
9417}
9418
bd0b2e7f
JK
9419static void dev_xdp_uninstall(struct net_device *dev)
9420{
aa8d3a71 9421 struct bpf_xdp_link *link;
7f0a8382
AN
9422 struct bpf_prog *prog;
9423 enum bpf_xdp_mode mode;
9424 bpf_op_t bpf_op;
bd0b2e7f 9425
7f0a8382 9426 ASSERT_RTNL();
bd0b2e7f 9427
7f0a8382
AN
9428 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9429 prog = dev_xdp_prog(dev, mode);
9430 if (!prog)
9431 continue;
bd0b2e7f 9432
7f0a8382
AN
9433 bpf_op = dev_xdp_bpf_op(dev, mode);
9434 if (!bpf_op)
9435 continue;
bd0b2e7f 9436
7f0a8382
AN
9437 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9438
aa8d3a71
AN
9439 /* auto-detach link from net device */
9440 link = dev_xdp_link(dev, mode);
9441 if (link)
9442 link->dev = NULL;
9443 else
9444 bpf_prog_put(prog);
9445
9446 dev_xdp_set_link(dev, mode, NULL);
7f0a8382 9447 }
bd0b2e7f
JK
9448}
9449
d4baa936 9450static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
aa8d3a71
AN
9451 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9452 struct bpf_prog *old_prog, u32 flags)
a7862b45 9453{
998f1729 9454 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
d4baa936
AN
9455 struct bpf_prog *cur_prog;
9456 enum bpf_xdp_mode mode;
7f0a8382 9457 bpf_op_t bpf_op;
a7862b45
BB
9458 int err;
9459
85de8576
DB
9460 ASSERT_RTNL();
9461
aa8d3a71
AN
9462 /* either link or prog attachment, never both */
9463 if (link && (new_prog || old_prog))
9464 return -EINVAL;
9465 /* link supports only XDP mode flags */
9466 if (link && (flags & ~XDP_FLAGS_MODES)) {
9467 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9468 return -EINVAL;
9469 }
998f1729
THJ
9470 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9471 if (num_modes > 1) {
d4baa936
AN
9472 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9473 return -EINVAL;
9474 }
998f1729
THJ
9475 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9476 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9477 NL_SET_ERR_MSG(extack,
9478 "More than one program loaded, unset mode is ambiguous");
9479 return -EINVAL;
9480 }
d4baa936
AN
9481 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9482 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9483 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9484 return -EINVAL;
01dde20c 9485 }
a25717d2 9486
c8a36f19 9487 mode = dev_xdp_mode(dev, flags);
aa8d3a71
AN
9488 /* can't replace attached link */
9489 if (dev_xdp_link(dev, mode)) {
9490 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9491 return -EBUSY;
01dde20c 9492 }
c14a9f63 9493
d4baa936 9494 cur_prog = dev_xdp_prog(dev, mode);
aa8d3a71
AN
9495 /* can't replace attached prog with link */
9496 if (link && cur_prog) {
9497 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9498 return -EBUSY;
9499 }
d4baa936
AN
9500 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9501 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9502 return -EEXIST;
92234c8f 9503 }
c14a9f63 9504
aa8d3a71
AN
9505 /* put effective new program into new_prog */
9506 if (link)
9507 new_prog = link->link.prog;
85de8576 9508
d4baa936
AN
9509 if (new_prog) {
9510 bool offload = mode == XDP_MODE_HW;
7f0a8382
AN
9511 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9512 ? XDP_MODE_DRV : XDP_MODE_SKB;
441a3303 9513
068d9d1e
AN
9514 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9515 NL_SET_ERR_MSG(extack, "XDP program already attached");
9516 return -EBUSY;
9517 }
d4baa936 9518 if (!offload && dev_xdp_prog(dev, other_mode)) {
7f0a8382 9519 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
d67b9cd2 9520 return -EEXIST;
01dde20c 9521 }
d4baa936 9522 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
7f0a8382 9523 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
441a3303
JK
9524 return -EINVAL;
9525 }
d4baa936 9526 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
fbee97fe 9527 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
fbee97fe
DA
9528 return -EINVAL;
9529 }
d4baa936
AN
9530 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9531 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
92164774
LB
9532 return -EINVAL;
9533 }
d4baa936 9534 }
92164774 9535
d4baa936
AN
9536 /* don't call drivers if the effective program didn't change */
9537 if (new_prog != cur_prog) {
9538 bpf_op = dev_xdp_bpf_op(dev, mode);
9539 if (!bpf_op) {
9540 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9541 return -EOPNOTSUPP;
c14a9f63 9542 }
a7862b45 9543
d4baa936
AN
9544 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9545 if (err)
9546 return err;
7f0a8382 9547 }
d4baa936 9548
aa8d3a71
AN
9549 if (link)
9550 dev_xdp_set_link(dev, mode, link);
9551 else
9552 dev_xdp_set_prog(dev, mode, new_prog);
d4baa936
AN
9553 if (cur_prog)
9554 bpf_prog_put(cur_prog);
a7862b45 9555
7f0a8382 9556 return 0;
a7862b45 9557}
a7862b45 9558
aa8d3a71
AN
9559static int dev_xdp_attach_link(struct net_device *dev,
9560 struct netlink_ext_ack *extack,
9561 struct bpf_xdp_link *link)
9562{
9563 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9564}
9565
9566static int dev_xdp_detach_link(struct net_device *dev,
9567 struct netlink_ext_ack *extack,
9568 struct bpf_xdp_link *link)
9569{
9570 enum bpf_xdp_mode mode;
9571 bpf_op_t bpf_op;
9572
9573 ASSERT_RTNL();
9574
c8a36f19 9575 mode = dev_xdp_mode(dev, link->flags);
aa8d3a71
AN
9576 if (dev_xdp_link(dev, mode) != link)
9577 return -EINVAL;
9578
9579 bpf_op = dev_xdp_bpf_op(dev, mode);
9580 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9581 dev_xdp_set_link(dev, mode, NULL);
9582 return 0;
9583}
9584
9585static void bpf_xdp_link_release(struct bpf_link *link)
9586{
9587 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9588
9589 rtnl_lock();
9590
9591 /* if racing with net_device's tear down, xdp_link->dev might be
9592 * already NULL, in which case link was already auto-detached
9593 */
73b11c2a 9594 if (xdp_link->dev) {
aa8d3a71 9595 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
73b11c2a
AN
9596 xdp_link->dev = NULL;
9597 }
aa8d3a71
AN
9598
9599 rtnl_unlock();
9600}
9601
73b11c2a
AN
9602static int bpf_xdp_link_detach(struct bpf_link *link)
9603{
9604 bpf_xdp_link_release(link);
9605 return 0;
9606}
9607
aa8d3a71
AN
9608static void bpf_xdp_link_dealloc(struct bpf_link *link)
9609{
9610 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9611
9612 kfree(xdp_link);
9613}
9614
c1931c97
AN
9615static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9616 struct seq_file *seq)
9617{
9618 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9619 u32 ifindex = 0;
9620
9621 rtnl_lock();
9622 if (xdp_link->dev)
9623 ifindex = xdp_link->dev->ifindex;
9624 rtnl_unlock();
9625
9626 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9627}
9628
9629static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9630 struct bpf_link_info *info)
9631{
9632 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9633 u32 ifindex = 0;
9634
9635 rtnl_lock();
9636 if (xdp_link->dev)
9637 ifindex = xdp_link->dev->ifindex;
9638 rtnl_unlock();
9639
9640 info->xdp.ifindex = ifindex;
9641 return 0;
9642}
9643
026a4c28
AN
9644static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9645 struct bpf_prog *old_prog)
9646{
9647 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9648 enum bpf_xdp_mode mode;
9649 bpf_op_t bpf_op;
9650 int err = 0;
9651
9652 rtnl_lock();
9653
9654 /* link might have been auto-released already, so fail */
9655 if (!xdp_link->dev) {
9656 err = -ENOLINK;
9657 goto out_unlock;
9658 }
9659
9660 if (old_prog && link->prog != old_prog) {
9661 err = -EPERM;
9662 goto out_unlock;
9663 }
9664 old_prog = link->prog;
9665 if (old_prog == new_prog) {
9666 /* no-op, don't disturb drivers */
9667 bpf_prog_put(new_prog);
9668 goto out_unlock;
9669 }
9670
c8a36f19 9671 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
026a4c28
AN
9672 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9673 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9674 xdp_link->flags, new_prog);
9675 if (err)
9676 goto out_unlock;
9677
9678 old_prog = xchg(&link->prog, new_prog);
9679 bpf_prog_put(old_prog);
9680
9681out_unlock:
9682 rtnl_unlock();
9683 return err;
9684}
9685
aa8d3a71
AN
9686static const struct bpf_link_ops bpf_xdp_link_lops = {
9687 .release = bpf_xdp_link_release,
9688 .dealloc = bpf_xdp_link_dealloc,
73b11c2a 9689 .detach = bpf_xdp_link_detach,
c1931c97
AN
9690 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9691 .fill_link_info = bpf_xdp_link_fill_link_info,
026a4c28 9692 .update_prog = bpf_xdp_link_update,
aa8d3a71
AN
9693};
9694
9695int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9696{
9697 struct net *net = current->nsproxy->net_ns;
9698 struct bpf_link_primer link_primer;
9699 struct bpf_xdp_link *link;
9700 struct net_device *dev;
9701 int err, fd;
9702
9703 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9704 if (!dev)
9705 return -EINVAL;
9706
9707 link = kzalloc(sizeof(*link), GFP_USER);
9708 if (!link) {
9709 err = -ENOMEM;
9710 goto out_put_dev;
9711 }
9712
9713 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9714 link->dev = dev;
9715 link->flags = attr->link_create.flags;
9716
9717 err = bpf_link_prime(&link->link, &link_primer);
9718 if (err) {
9719 kfree(link);
9720 goto out_put_dev;
9721 }
9722
9723 rtnl_lock();
9724 err = dev_xdp_attach_link(dev, NULL, link);
9725 rtnl_unlock();
9726
9727 if (err) {
9728 bpf_link_cleanup(&link_primer);
9729 goto out_put_dev;
9730 }
9731
9732 fd = bpf_link_settle(&link_primer);
9733 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9734 dev_put(dev);
9735 return fd;
9736
9737out_put_dev:
9738 dev_put(dev);
9739 return err;
9740}
9741
d4baa936
AN
9742/**
9743 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9744 * @dev: device
9745 * @extack: netlink extended ack
9746 * @fd: new program fd or negative value to clear
9747 * @expected_fd: old program fd that userspace expects to replace or clear
9748 * @flags: xdp-related flags
9749 *
9750 * Set or clear a bpf program for a device
9751 */
9752int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9753 int fd, int expected_fd, u32 flags)
9754{
c8a36f19 9755 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
d4baa936
AN
9756 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9757 int err;
9758
9759 ASSERT_RTNL();
9760
9761 if (fd >= 0) {
9762 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9763 mode != XDP_MODE_SKB);
9764 if (IS_ERR(new_prog))
9765 return PTR_ERR(new_prog);
9766 }
9767
9768 if (expected_fd >= 0) {
9769 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9770 mode != XDP_MODE_SKB);
9771 if (IS_ERR(old_prog)) {
9772 err = PTR_ERR(old_prog);
9773 old_prog = NULL;
9774 goto err_out;
c14a9f63 9775 }
a7862b45
BB
9776 }
9777
aa8d3a71 9778 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
a7862b45 9779
d4baa936
AN
9780err_out:
9781 if (err && new_prog)
9782 bpf_prog_put(new_prog);
9783 if (old_prog)
9784 bpf_prog_put(old_prog);
a7862b45
BB
9785 return err;
9786}
a7862b45 9787
1da177e4
LT
9788/**
9789 * dev_new_index - allocate an ifindex
c4ea43c5 9790 * @net: the applicable net namespace
1da177e4
LT
9791 *
9792 * Returns a suitable unique value for a new device interface
9793 * number. The caller must hold the rtnl semaphore or the
9794 * dev_base_lock to be sure it remains unique.
9795 */
881d966b 9796static int dev_new_index(struct net *net)
1da177e4 9797{
aa79e66e 9798 int ifindex = net->ifindex;
f4563a75 9799
1da177e4
LT
9800 for (;;) {
9801 if (++ifindex <= 0)
9802 ifindex = 1;
881d966b 9803 if (!__dev_get_by_index(net, ifindex))
aa79e66e 9804 return net->ifindex = ifindex;
1da177e4
LT
9805 }
9806}
9807
1da177e4 9808/* Delayed registration/unregisteration */
3b5b34fd 9809static LIST_HEAD(net_todo_list);
200b916f 9810DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 9811
6f05f629 9812static void net_set_todo(struct net_device *dev)
1da177e4 9813{
1da177e4 9814 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 9815 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
9816}
9817
fd867d51
JW
9818static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9819 struct net_device *upper, netdev_features_t features)
9820{
9821 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9822 netdev_features_t feature;
5ba3f7d6 9823 int feature_bit;
fd867d51 9824
3b89ea9c 9825 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9826 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9827 if (!(upper->wanted_features & feature)
9828 && (features & feature)) {
9829 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9830 &feature, upper->name);
9831 features &= ~feature;
9832 }
9833 }
9834
9835 return features;
9836}
9837
9838static void netdev_sync_lower_features(struct net_device *upper,
9839 struct net_device *lower, netdev_features_t features)
9840{
9841 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9842 netdev_features_t feature;
5ba3f7d6 9843 int feature_bit;
fd867d51 9844
3b89ea9c 9845 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9846 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9847 if (!(features & feature) && (lower->features & feature)) {
9848 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9849 &feature, lower->name);
9850 lower->wanted_features &= ~feature;
dd912306 9851 __netdev_update_features(lower);
fd867d51
JW
9852
9853 if (unlikely(lower->features & feature))
9854 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9855 &feature, lower->name);
dd912306
CW
9856 else
9857 netdev_features_change(lower);
fd867d51
JW
9858 }
9859 }
9860}
9861
c8f44aff
MM
9862static netdev_features_t netdev_fix_features(struct net_device *dev,
9863 netdev_features_t features)
b63365a2 9864{
57422dc5
MM
9865 /* Fix illegal checksum combinations */
9866 if ((features & NETIF_F_HW_CSUM) &&
9867 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 9868 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
9869 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9870 }
9871
b63365a2 9872 /* TSO requires that SG is present as well. */
ea2d3688 9873 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 9874 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 9875 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
9876 }
9877
ec5f0615
PS
9878 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9879 !(features & NETIF_F_IP_CSUM)) {
9880 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9881 features &= ~NETIF_F_TSO;
9882 features &= ~NETIF_F_TSO_ECN;
9883 }
9884
9885 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9886 !(features & NETIF_F_IPV6_CSUM)) {
9887 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9888 features &= ~NETIF_F_TSO6;
9889 }
9890
b1dc497b
AD
9891 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9892 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9893 features &= ~NETIF_F_TSO_MANGLEID;
9894
31d8b9e0
BH
9895 /* TSO ECN requires that TSO is present as well. */
9896 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9897 features &= ~NETIF_F_TSO_ECN;
9898
212b573f
MM
9899 /* Software GSO depends on SG. */
9900 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 9901 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
9902 features &= ~NETIF_F_GSO;
9903 }
9904
802ab55a
AD
9905 /* GSO partial features require GSO partial be set */
9906 if ((features & dev->gso_partial_features) &&
9907 !(features & NETIF_F_GSO_PARTIAL)) {
9908 netdev_dbg(dev,
9909 "Dropping partially supported GSO features since no GSO partial.\n");
9910 features &= ~dev->gso_partial_features;
9911 }
9912
fb1f5f79
MC
9913 if (!(features & NETIF_F_RXCSUM)) {
9914 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9915 * successfully merged by hardware must also have the
9916 * checksum verified by hardware. If the user does not
9917 * want to enable RXCSUM, logically, we should disable GRO_HW.
9918 */
9919 if (features & NETIF_F_GRO_HW) {
9920 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9921 features &= ~NETIF_F_GRO_HW;
9922 }
9923 }
9924
de8d5ab2
GP
9925 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9926 if (features & NETIF_F_RXFCS) {
9927 if (features & NETIF_F_LRO) {
9928 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9929 features &= ~NETIF_F_LRO;
9930 }
9931
9932 if (features & NETIF_F_GRO_HW) {
9933 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9934 features &= ~NETIF_F_GRO_HW;
9935 }
e6c6a929
GP
9936 }
9937
25537d71
TT
9938 if (features & NETIF_F_HW_TLS_TX) {
9939 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9940 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9941 bool hw_csum = features & NETIF_F_HW_CSUM;
9942
9943 if (!ip_csum && !hw_csum) {
9944 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9945 features &= ~NETIF_F_HW_TLS_TX;
9946 }
ae0b04b2
TT
9947 }
9948
a3eb4e9d
TT
9949 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9950 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9951 features &= ~NETIF_F_HW_TLS_RX;
9952 }
9953
b63365a2
HX
9954 return features;
9955}
b63365a2 9956
6cb6a27c 9957int __netdev_update_features(struct net_device *dev)
5455c699 9958{
fd867d51 9959 struct net_device *upper, *lower;
c8f44aff 9960 netdev_features_t features;
fd867d51 9961 struct list_head *iter;
e7868a85 9962 int err = -1;
5455c699 9963
87267485
MM
9964 ASSERT_RTNL();
9965
5455c699
MM
9966 features = netdev_get_wanted_features(dev);
9967
9968 if (dev->netdev_ops->ndo_fix_features)
9969 features = dev->netdev_ops->ndo_fix_features(dev, features);
9970
9971 /* driver might be less strict about feature dependencies */
9972 features = netdev_fix_features(dev, features);
9973
4250b75b 9974 /* some features can't be enabled if they're off on an upper device */
fd867d51
JW
9975 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9976 features = netdev_sync_upper_features(dev, upper, features);
9977
5455c699 9978 if (dev->features == features)
e7868a85 9979 goto sync_lower;
5455c699 9980
c8f44aff
MM
9981 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9982 &dev->features, &features);
5455c699
MM
9983
9984 if (dev->netdev_ops->ndo_set_features)
9985 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9986 else
9987 err = 0;
5455c699 9988
6cb6a27c 9989 if (unlikely(err < 0)) {
5455c699 9990 netdev_err(dev,
c8f44aff
MM
9991 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9992 err, &features, &dev->features);
17b85d29
NA
9993 /* return non-0 since some features might have changed and
9994 * it's better to fire a spurious notification than miss it
9995 */
9996 return -1;
6cb6a27c
MM
9997 }
9998
e7868a85 9999sync_lower:
fd867d51
JW
10000 /* some features must be disabled on lower devices when disabled
10001 * on an upper device (think: bonding master or bridge)
10002 */
10003 netdev_for_each_lower_dev(dev, lower, iter)
10004 netdev_sync_lower_features(dev, lower, features);
10005
ae847f40
SD
10006 if (!err) {
10007 netdev_features_t diff = features ^ dev->features;
10008
10009 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10010 /* udp_tunnel_{get,drop}_rx_info both need
10011 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10012 * device, or they won't do anything.
10013 * Thus we need to update dev->features
10014 * *before* calling udp_tunnel_get_rx_info,
10015 * but *after* calling udp_tunnel_drop_rx_info.
10016 */
10017 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10018 dev->features = features;
10019 udp_tunnel_get_rx_info(dev);
10020 } else {
10021 udp_tunnel_drop_rx_info(dev);
10022 }
10023 }
10024
9daae9bd
GP
10025 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10026 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10027 dev->features = features;
10028 err |= vlan_get_rx_ctag_filter_info(dev);
10029 } else {
10030 vlan_drop_rx_ctag_filter_info(dev);
10031 }
10032 }
10033
10034 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10035 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10036 dev->features = features;
10037 err |= vlan_get_rx_stag_filter_info(dev);
10038 } else {
10039 vlan_drop_rx_stag_filter_info(dev);
10040 }
10041 }
10042
6cb6a27c 10043 dev->features = features;
ae847f40 10044 }
6cb6a27c 10045
e7868a85 10046 return err < 0 ? 0 : 1;
6cb6a27c
MM
10047}
10048
afe12cc8
MM
10049/**
10050 * netdev_update_features - recalculate device features
10051 * @dev: the device to check
10052 *
10053 * Recalculate dev->features set and send notifications if it
10054 * has changed. Should be called after driver or hardware dependent
10055 * conditions might have changed that influence the features.
10056 */
6cb6a27c
MM
10057void netdev_update_features(struct net_device *dev)
10058{
10059 if (__netdev_update_features(dev))
10060 netdev_features_change(dev);
5455c699
MM
10061}
10062EXPORT_SYMBOL(netdev_update_features);
10063
afe12cc8
MM
10064/**
10065 * netdev_change_features - recalculate device features
10066 * @dev: the device to check
10067 *
10068 * Recalculate dev->features set and send notifications even
10069 * if they have not changed. Should be called instead of
10070 * netdev_update_features() if also dev->vlan_features might
10071 * have changed to allow the changes to be propagated to stacked
10072 * VLAN devices.
10073 */
10074void netdev_change_features(struct net_device *dev)
10075{
10076 __netdev_update_features(dev);
10077 netdev_features_change(dev);
10078}
10079EXPORT_SYMBOL(netdev_change_features);
10080
fc4a7489
PM
10081/**
10082 * netif_stacked_transfer_operstate - transfer operstate
10083 * @rootdev: the root or lower level device to transfer state from
10084 * @dev: the device to transfer operstate to
10085 *
10086 * Transfer operational state from root to device. This is normally
10087 * called when a stacking relationship exists between the root
10088 * device and the device(a leaf device).
10089 */
10090void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10091 struct net_device *dev)
10092{
10093 if (rootdev->operstate == IF_OPER_DORMANT)
10094 netif_dormant_on(dev);
10095 else
10096 netif_dormant_off(dev);
10097
eec517cd
AL
10098 if (rootdev->operstate == IF_OPER_TESTING)
10099 netif_testing_on(dev);
10100 else
10101 netif_testing_off(dev);
10102
0575c86b
ZS
10103 if (netif_carrier_ok(rootdev))
10104 netif_carrier_on(dev);
10105 else
10106 netif_carrier_off(dev);
fc4a7489
PM
10107}
10108EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10109
1b4bf461
ED
10110static int netif_alloc_rx_queues(struct net_device *dev)
10111{
1b4bf461 10112 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 10113 struct netdev_rx_queue *rx;
10595902 10114 size_t sz = count * sizeof(*rx);
e817f856 10115 int err = 0;
1b4bf461 10116
bd25fa7b 10117 BUG_ON(count < 1);
1b4bf461 10118
dcda9b04 10119 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
10120 if (!rx)
10121 return -ENOMEM;
10122
bd25fa7b
TH
10123 dev->_rx = rx;
10124
e817f856 10125 for (i = 0; i < count; i++) {
fe822240 10126 rx[i].dev = dev;
e817f856
JDB
10127
10128 /* XDP RX-queue setup */
b02e5a0e 10129 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
e817f856
JDB
10130 if (err < 0)
10131 goto err_rxq_info;
10132 }
1b4bf461 10133 return 0;
e817f856
JDB
10134
10135err_rxq_info:
10136 /* Rollback successful reg's and free other resources */
10137 while (i--)
10138 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 10139 kvfree(dev->_rx);
e817f856
JDB
10140 dev->_rx = NULL;
10141 return err;
10142}
10143
10144static void netif_free_rx_queues(struct net_device *dev)
10145{
10146 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
10147
10148 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10149 if (!dev->_rx)
10150 return;
10151
e817f856 10152 for (i = 0; i < count; i++)
82aaff2f
JK
10153 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10154
10155 kvfree(dev->_rx);
1b4bf461
ED
10156}
10157
aa942104
CG
10158static void netdev_init_one_queue(struct net_device *dev,
10159 struct netdev_queue *queue, void *_unused)
10160{
10161 /* Initialize queue lock */
10162 spin_lock_init(&queue->_xmit_lock);
1a33e10e 10163 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
aa942104 10164 queue->xmit_lock_owner = -1;
b236da69 10165 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 10166 queue->dev = dev;
114cf580
TH
10167#ifdef CONFIG_BQL
10168 dql_init(&queue->dql, HZ);
10169#endif
aa942104
CG
10170}
10171
60877a32
ED
10172static void netif_free_tx_queues(struct net_device *dev)
10173{
4cb28970 10174 kvfree(dev->_tx);
60877a32
ED
10175}
10176
e6484930
TH
10177static int netif_alloc_netdev_queues(struct net_device *dev)
10178{
10179 unsigned int count = dev->num_tx_queues;
10180 struct netdev_queue *tx;
60877a32 10181 size_t sz = count * sizeof(*tx);
e6484930 10182
d339727c
ED
10183 if (count < 1 || count > 0xffff)
10184 return -EINVAL;
62b5942a 10185
dcda9b04 10186 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
10187 if (!tx)
10188 return -ENOMEM;
10189
e6484930 10190 dev->_tx = tx;
1d24eb48 10191
e6484930
TH
10192 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10193 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
10194
10195 return 0;
e6484930
TH
10196}
10197
a2029240
DV
10198void netif_tx_stop_all_queues(struct net_device *dev)
10199{
10200 unsigned int i;
10201
10202 for (i = 0; i < dev->num_tx_queues; i++) {
10203 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 10204
a2029240
DV
10205 netif_tx_stop_queue(txq);
10206 }
10207}
10208EXPORT_SYMBOL(netif_tx_stop_all_queues);
10209
1da177e4
LT
10210/**
10211 * register_netdevice - register a network device
10212 * @dev: device to register
10213 *
10214 * Take a completed network device structure and add it to the kernel
10215 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10216 * chain. 0 is returned on success. A negative errno code is returned
10217 * on a failure to set up the device, or if the name is a duplicate.
10218 *
10219 * Callers must hold the rtnl semaphore. You may want
10220 * register_netdev() instead of this.
10221 *
10222 * BUGS:
10223 * The locking appears insufficient to guarantee two parallel registers
10224 * will not get the same name.
10225 */
10226
10227int register_netdevice(struct net_device *dev)
10228{
1da177e4 10229 int ret;
d314774c 10230 struct net *net = dev_net(dev);
1da177e4 10231
e283de3a
FF
10232 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10233 NETDEV_FEATURE_COUNT);
1da177e4
LT
10234 BUG_ON(dev_boot_phase);
10235 ASSERT_RTNL();
10236
b17a7c17
SH
10237 might_sleep();
10238
1da177e4
LT
10239 /* When net_device's are persistent, this will be fatal. */
10240 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 10241 BUG_ON(!net);
1da177e4 10242
9000edb7
JK
10243 ret = ethtool_check_ops(dev->ethtool_ops);
10244 if (ret)
10245 return ret;
10246
f1f28aa3 10247 spin_lock_init(&dev->addr_list_lock);
845e0ebb 10248 netdev_set_addr_lockdep_class(dev);
1da177e4 10249
828de4f6 10250 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
10251 if (ret < 0)
10252 goto out;
10253
9077f052 10254 ret = -ENOMEM;
ff927412
JP
10255 dev->name_node = netdev_name_node_head_alloc(dev);
10256 if (!dev->name_node)
10257 goto out;
10258
1da177e4 10259 /* Init, if this function is available */
d314774c
SH
10260 if (dev->netdev_ops->ndo_init) {
10261 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
10262 if (ret) {
10263 if (ret > 0)
10264 ret = -EIO;
42c17fa6 10265 goto err_free_name;
1da177e4
LT
10266 }
10267 }
4ec93edb 10268
f646968f
PM
10269 if (((dev->hw_features | dev->features) &
10270 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
10271 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10272 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10273 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10274 ret = -EINVAL;
10275 goto err_uninit;
10276 }
10277
9c7dafbf
PE
10278 ret = -EBUSY;
10279 if (!dev->ifindex)
10280 dev->ifindex = dev_new_index(net);
10281 else if (__dev_get_by_index(net, dev->ifindex))
10282 goto err_uninit;
10283
5455c699
MM
10284 /* Transfer changeable features to wanted_features and enable
10285 * software offloads (GSO and GRO).
10286 */
1a3c998f 10287 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 10288 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122 10289
876c4384 10290 if (dev->udp_tunnel_nic_info) {
d764a122
SD
10291 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10292 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10293 }
10294
14d1232f 10295 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 10296
cbc53e08 10297 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 10298 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 10299
7f348a60
AD
10300 /* If IPv4 TCP segmentation offload is supported we should also
10301 * allow the device to enable segmenting the frame with the option
10302 * of ignoring a static IP ID value. This doesn't enable the
10303 * feature itself but allows the user to enable it later.
10304 */
cbc53e08
AD
10305 if (dev->hw_features & NETIF_F_TSO)
10306 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
10307 if (dev->vlan_features & NETIF_F_TSO)
10308 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10309 if (dev->mpls_features & NETIF_F_TSO)
10310 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10311 if (dev->hw_enc_features & NETIF_F_TSO)
10312 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 10313
1180e7d6 10314 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 10315 */
1180e7d6 10316 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 10317
ee579677
PS
10318 /* Make NETIF_F_SG inheritable to tunnel devices.
10319 */
802ab55a 10320 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 10321
0d89d203
SH
10322 /* Make NETIF_F_SG inheritable to MPLS.
10323 */
10324 dev->mpls_features |= NETIF_F_SG;
10325
7ffbe3fd
JB
10326 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10327 ret = notifier_to_errno(ret);
10328 if (ret)
10329 goto err_uninit;
10330
8b41d188 10331 ret = netdev_register_kobject(dev);
cb626bf5
JH
10332 if (ret) {
10333 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 10334 goto err_uninit;
cb626bf5 10335 }
b17a7c17
SH
10336 dev->reg_state = NETREG_REGISTERED;
10337
6cb6a27c 10338 __netdev_update_features(dev);
8e9b59b2 10339
1da177e4
LT
10340 /*
10341 * Default initial state at registry is that the
10342 * device is present.
10343 */
10344
10345 set_bit(__LINK_STATE_PRESENT, &dev->state);
10346
8f4cccbb
BH
10347 linkwatch_init_dev(dev);
10348
1da177e4 10349 dev_init_scheduler(dev);
1da177e4 10350 dev_hold(dev);
ce286d32 10351 list_netdevice(dev);
7bf23575 10352 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 10353
948b337e
JP
10354 /* If the device has permanent device address, driver should
10355 * set dev_addr and also addr_assign_type should be set to
10356 * NET_ADDR_PERM (default value).
10357 */
10358 if (dev->addr_assign_type == NET_ADDR_PERM)
10359 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10360
1da177e4 10361 /* Notify protocols, that a new device appeared. */
056925ab 10362 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 10363 ret = notifier_to_errno(ret);
93ee31f1 10364 if (ret) {
766b0515
JK
10365 /* Expect explicit free_netdev() on failure */
10366 dev->needs_free_netdev = false;
037e56bd 10367 unregister_netdevice_queue(dev, NULL);
766b0515 10368 goto out;
93ee31f1 10369 }
d90a909e
EB
10370 /*
10371 * Prevent userspace races by waiting until the network
10372 * device is fully setup before sending notifications.
10373 */
a2835763
PM
10374 if (!dev->rtnl_link_ops ||
10375 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 10376 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
10377
10378out:
10379 return ret;
7ce1b0ed
HX
10380
10381err_uninit:
d314774c
SH
10382 if (dev->netdev_ops->ndo_uninit)
10383 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
10384 if (dev->priv_destructor)
10385 dev->priv_destructor(dev);
42c17fa6
DC
10386err_free_name:
10387 netdev_name_node_free(dev->name_node);
7ce1b0ed 10388 goto out;
1da177e4 10389}
d1b19dff 10390EXPORT_SYMBOL(register_netdevice);
1da177e4 10391
937f1ba5
BH
10392/**
10393 * init_dummy_netdev - init a dummy network device for NAPI
10394 * @dev: device to init
10395 *
10396 * This takes a network device structure and initialize the minimum
10397 * amount of fields so it can be used to schedule NAPI polls without
10398 * registering a full blown interface. This is to be used by drivers
10399 * that need to tie several hardware interfaces to a single NAPI
10400 * poll scheduler due to HW limitations.
10401 */
10402int init_dummy_netdev(struct net_device *dev)
10403{
10404 /* Clear everything. Note we don't initialize spinlocks
10405 * are they aren't supposed to be taken by any of the
10406 * NAPI code and this dummy netdev is supposed to be
10407 * only ever used for NAPI polls
10408 */
10409 memset(dev, 0, sizeof(struct net_device));
10410
10411 /* make sure we BUG if trying to hit standard
10412 * register/unregister code path
10413 */
10414 dev->reg_state = NETREG_DUMMY;
10415
937f1ba5
BH
10416 /* NAPI wants this */
10417 INIT_LIST_HEAD(&dev->napi_list);
10418
10419 /* a dummy interface is started by default */
10420 set_bit(__LINK_STATE_PRESENT, &dev->state);
10421 set_bit(__LINK_STATE_START, &dev->state);
10422
35edfdc7
JE
10423 /* napi_busy_loop stats accounting wants this */
10424 dev_net_set(dev, &init_net);
10425
29b4433d
ED
10426 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10427 * because users of this 'device' dont need to change
10428 * its refcount.
10429 */
10430
937f1ba5
BH
10431 return 0;
10432}
10433EXPORT_SYMBOL_GPL(init_dummy_netdev);
10434
10435
1da177e4
LT
10436/**
10437 * register_netdev - register a network device
10438 * @dev: device to register
10439 *
10440 * Take a completed network device structure and add it to the kernel
10441 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10442 * chain. 0 is returned on success. A negative errno code is returned
10443 * on a failure to set up the device, or if the name is a duplicate.
10444 *
38b4da38 10445 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
10446 * and expands the device name if you passed a format string to
10447 * alloc_netdev.
10448 */
10449int register_netdev(struct net_device *dev)
10450{
10451 int err;
10452
b0f3debc
KT
10453 if (rtnl_lock_killable())
10454 return -EINTR;
1da177e4 10455 err = register_netdevice(dev);
1da177e4
LT
10456 rtnl_unlock();
10457 return err;
10458}
10459EXPORT_SYMBOL(register_netdev);
10460
29b4433d
ED
10461int netdev_refcnt_read(const struct net_device *dev)
10462{
919067cc 10463#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10464 int i, refcnt = 0;
10465
10466 for_each_possible_cpu(i)
10467 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10468 return refcnt;
919067cc
ED
10469#else
10470 return refcount_read(&dev->dev_refcnt);
10471#endif
29b4433d
ED
10472}
10473EXPORT_SYMBOL(netdev_refcnt_read);
10474
5aa3afe1
DV
10475int netdev_unregister_timeout_secs __read_mostly = 10;
10476
de2b541b
MCC
10477#define WAIT_REFS_MIN_MSECS 1
10478#define WAIT_REFS_MAX_MSECS 250
2c53040f 10479/**
1da177e4 10480 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 10481 * @dev: target net_device
1da177e4
LT
10482 *
10483 * This is called when unregistering network devices.
10484 *
10485 * Any protocol or device that holds a reference should register
10486 * for netdevice notification, and cleanup and put back the
10487 * reference if they receive an UNREGISTER event.
10488 * We can get stuck here if buggy protocols don't correctly
4ec93edb 10489 * call dev_put.
1da177e4
LT
10490 */
10491static void netdev_wait_allrefs(struct net_device *dev)
10492{
10493 unsigned long rebroadcast_time, warning_time;
0e4be9e5 10494 int wait = 0, refcnt;
1da177e4 10495
e014debe
ED
10496 linkwatch_forget_dev(dev);
10497
1da177e4 10498 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
10499 refcnt = netdev_refcnt_read(dev);
10500
add2d736 10501 while (refcnt != 1) {
1da177e4 10502 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 10503 rtnl_lock();
1da177e4
LT
10504
10505 /* Rebroadcast unregister notification */
056925ab 10506 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 10507
748e2d93 10508 __rtnl_unlock();
0115e8e3 10509 rcu_barrier();
748e2d93
ED
10510 rtnl_lock();
10511
1da177e4
LT
10512 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10513 &dev->state)) {
10514 /* We must not have linkwatch events
10515 * pending on unregister. If this
10516 * happens, we simply run the queue
10517 * unscheduled, resulting in a noop
10518 * for this device.
10519 */
10520 linkwatch_run_queue();
10521 }
10522
6756ae4b 10523 __rtnl_unlock();
1da177e4
LT
10524
10525 rebroadcast_time = jiffies;
10526 }
10527
0e4be9e5
FR
10528 if (!wait) {
10529 rcu_barrier();
10530 wait = WAIT_REFS_MIN_MSECS;
10531 } else {
10532 msleep(wait);
10533 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10534 }
1da177e4 10535
29b4433d
ED
10536 refcnt = netdev_refcnt_read(dev);
10537
6c996e19 10538 if (refcnt != 1 &&
5aa3afe1
DV
10539 time_after(jiffies, warning_time +
10540 netdev_unregister_timeout_secs * HZ)) {
7b6cd1ce
JP
10541 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10542 dev->name, refcnt);
1da177e4
LT
10543 warning_time = jiffies;
10544 }
10545 }
10546}
10547
10548/* The sequence is:
10549 *
10550 * rtnl_lock();
10551 * ...
10552 * register_netdevice(x1);
10553 * register_netdevice(x2);
10554 * ...
10555 * unregister_netdevice(y1);
10556 * unregister_netdevice(y2);
10557 * ...
10558 * rtnl_unlock();
10559 * free_netdev(y1);
10560 * free_netdev(y2);
10561 *
58ec3b4d 10562 * We are invoked by rtnl_unlock().
1da177e4 10563 * This allows us to deal with problems:
b17a7c17 10564 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
10565 * without deadlocking with linkwatch via keventd.
10566 * 2) Since we run with the RTNL semaphore not held, we can sleep
10567 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
10568 *
10569 * We must not return until all unregister events added during
10570 * the interval the lock was held have been completed.
1da177e4 10571 */
1da177e4
LT
10572void netdev_run_todo(void)
10573{
626ab0e6 10574 struct list_head list;
1fc70edb
TY
10575#ifdef CONFIG_LOCKDEP
10576 struct list_head unlink_list;
10577
10578 list_replace_init(&net_unlink_list, &unlink_list);
10579
10580 while (!list_empty(&unlink_list)) {
10581 struct net_device *dev = list_first_entry(&unlink_list,
10582 struct net_device,
10583 unlink_list);
0e8b8d6a 10584 list_del_init(&dev->unlink_list);
1fc70edb
TY
10585 dev->nested_level = dev->lower_level - 1;
10586 }
10587#endif
1da177e4 10588
1da177e4 10589 /* Snapshot list, allow later requests */
626ab0e6 10590 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
10591
10592 __rtnl_unlock();
626ab0e6 10593
0115e8e3
ED
10594
10595 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
10596 if (!list_empty(&list))
10597 rcu_barrier();
10598
1da177e4
LT
10599 while (!list_empty(&list)) {
10600 struct net_device *dev
e5e26d75 10601 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
10602 list_del(&dev->todo_list);
10603
b17a7c17 10604 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 10605 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
10606 dev->name, dev->reg_state);
10607 dump_stack();
10608 continue;
10609 }
1da177e4 10610
b17a7c17 10611 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 10612
b17a7c17 10613 netdev_wait_allrefs(dev);
1da177e4 10614
b17a7c17 10615 /* paranoia */
add2d736 10616 BUG_ON(netdev_refcnt_read(dev) != 1);
7866a621
SN
10617 BUG_ON(!list_empty(&dev->ptype_all));
10618 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
10619 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10620 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 10621#if IS_ENABLED(CONFIG_DECNET)
547b792c 10622 WARN_ON(dev->dn_ptr);
330c7272 10623#endif
cf124db5
DM
10624 if (dev->priv_destructor)
10625 dev->priv_destructor(dev);
10626 if (dev->needs_free_netdev)
10627 free_netdev(dev);
9093bbb2 10628
50624c93
EB
10629 /* Report a network device has been unregistered */
10630 rtnl_lock();
10631 dev_net(dev)->dev_unreg_count--;
10632 __rtnl_unlock();
10633 wake_up(&netdev_unregistering_wq);
10634
9093bbb2
SH
10635 /* Free network device */
10636 kobject_put(&dev->dev.kobj);
1da177e4 10637 }
1da177e4
LT
10638}
10639
9256645a
JW
10640/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10641 * all the same fields in the same order as net_device_stats, with only
10642 * the type differing, but rtnl_link_stats64 may have additional fields
10643 * at the end for newer counters.
3cfde79c 10644 */
77a1abf5
ED
10645void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10646 const struct net_device_stats *netdev_stats)
3cfde79c
BH
10647{
10648#if BITS_PER_LONG == 64
9256645a 10649 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 10650 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
10651 /* zero out counters that only exist in rtnl_link_stats64 */
10652 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10653 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 10654#else
9256645a 10655 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
10656 const unsigned long *src = (const unsigned long *)netdev_stats;
10657 u64 *dst = (u64 *)stats64;
10658
9256645a 10659 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
10660 for (i = 0; i < n; i++)
10661 dst[i] = src[i];
9256645a
JW
10662 /* zero out counters that only exist in rtnl_link_stats64 */
10663 memset((char *)stats64 + n * sizeof(u64), 0,
10664 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
10665#endif
10666}
77a1abf5 10667EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 10668
eeda3fd6
SH
10669/**
10670 * dev_get_stats - get network device statistics
10671 * @dev: device to get statistics from
28172739 10672 * @storage: place to store stats
eeda3fd6 10673 *
d7753516
BH
10674 * Get network statistics from device. Return @storage.
10675 * The device driver may provide its own method by setting
10676 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10677 * otherwise the internal statistics structure is used.
eeda3fd6 10678 */
d7753516
BH
10679struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10680 struct rtnl_link_stats64 *storage)
7004bf25 10681{
eeda3fd6
SH
10682 const struct net_device_ops *ops = dev->netdev_ops;
10683
28172739
ED
10684 if (ops->ndo_get_stats64) {
10685 memset(storage, 0, sizeof(*storage));
caf586e5
ED
10686 ops->ndo_get_stats64(dev, storage);
10687 } else if (ops->ndo_get_stats) {
3cfde79c 10688 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
10689 } else {
10690 netdev_stats_to_stats64(storage, &dev->stats);
28172739 10691 }
6f64ec74
ED
10692 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10693 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10694 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 10695 return storage;
c45d286e 10696}
eeda3fd6 10697EXPORT_SYMBOL(dev_get_stats);
c45d286e 10698
44fa32f0
HK
10699/**
10700 * dev_fetch_sw_netstats - get per-cpu network device statistics
10701 * @s: place to store stats
10702 * @netstats: per-cpu network stats to read from
10703 *
10704 * Read per-cpu network statistics and populate the related fields in @s.
10705 */
10706void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10707 const struct pcpu_sw_netstats __percpu *netstats)
10708{
10709 int cpu;
10710
10711 for_each_possible_cpu(cpu) {
10712 const struct pcpu_sw_netstats *stats;
10713 struct pcpu_sw_netstats tmp;
10714 unsigned int start;
10715
10716 stats = per_cpu_ptr(netstats, cpu);
10717 do {
10718 start = u64_stats_fetch_begin_irq(&stats->syncp);
10719 tmp.rx_packets = stats->rx_packets;
10720 tmp.rx_bytes = stats->rx_bytes;
10721 tmp.tx_packets = stats->tx_packets;
10722 tmp.tx_bytes = stats->tx_bytes;
10723 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10724
10725 s->rx_packets += tmp.rx_packets;
10726 s->rx_bytes += tmp.rx_bytes;
10727 s->tx_packets += tmp.tx_packets;
10728 s->tx_bytes += tmp.tx_bytes;
10729 }
10730}
10731EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10732
a1839426
HK
10733/**
10734 * dev_get_tstats64 - ndo_get_stats64 implementation
10735 * @dev: device to get statistics from
10736 * @s: place to store stats
10737 *
10738 * Populate @s from dev->stats and dev->tstats. Can be used as
10739 * ndo_get_stats64() callback.
10740 */
10741void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10742{
10743 netdev_stats_to_stats64(s, &dev->stats);
10744 dev_fetch_sw_netstats(s, dev->tstats);
10745}
10746EXPORT_SYMBOL_GPL(dev_get_tstats64);
10747
24824a09 10748struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 10749{
24824a09 10750 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 10751
24824a09
ED
10752#ifdef CONFIG_NET_CLS_ACT
10753 if (queue)
10754 return queue;
10755 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10756 if (!queue)
10757 return NULL;
10758 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 10759 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
10760 queue->qdisc_sleeping = &noop_qdisc;
10761 rcu_assign_pointer(dev->ingress_queue, queue);
10762#endif
10763 return queue;
bb949fbd
DM
10764}
10765
2c60db03
ED
10766static const struct ethtool_ops default_ethtool_ops;
10767
d07d7507
SG
10768void netdev_set_default_ethtool_ops(struct net_device *dev,
10769 const struct ethtool_ops *ops)
10770{
10771 if (dev->ethtool_ops == &default_ethtool_ops)
10772 dev->ethtool_ops = ops;
10773}
10774EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10775
74d332c1
ED
10776void netdev_freemem(struct net_device *dev)
10777{
10778 char *addr = (char *)dev - dev->padded;
10779
4cb28970 10780 kvfree(addr);
74d332c1
ED
10781}
10782
1da177e4 10783/**
722c9a0c 10784 * alloc_netdev_mqs - allocate network device
10785 * @sizeof_priv: size of private data to allocate space for
10786 * @name: device name format string
10787 * @name_assign_type: origin of device name
10788 * @setup: callback to initialize device
10789 * @txqs: the number of TX subqueues to allocate
10790 * @rxqs: the number of RX subqueues to allocate
10791 *
10792 * Allocates a struct net_device with private data area for driver use
10793 * and performs basic initialization. Also allocates subqueue structs
10794 * for each queue on the device.
1da177e4 10795 */
36909ea4 10796struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 10797 unsigned char name_assign_type,
36909ea4
TH
10798 void (*setup)(struct net_device *),
10799 unsigned int txqs, unsigned int rxqs)
1da177e4 10800{
1da177e4 10801 struct net_device *dev;
52a59bd5 10802 unsigned int alloc_size;
1ce8e7b5 10803 struct net_device *p;
1da177e4 10804
b6fe17d6
SH
10805 BUG_ON(strlen(name) >= sizeof(dev->name));
10806
36909ea4 10807 if (txqs < 1) {
7b6cd1ce 10808 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
10809 return NULL;
10810 }
10811
36909ea4 10812 if (rxqs < 1) {
7b6cd1ce 10813 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
10814 return NULL;
10815 }
36909ea4 10816
fd2ea0a7 10817 alloc_size = sizeof(struct net_device);
d1643d24
AD
10818 if (sizeof_priv) {
10819 /* ensure 32-byte alignment of private area */
1ce8e7b5 10820 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
10821 alloc_size += sizeof_priv;
10822 }
10823 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 10824 alloc_size += NETDEV_ALIGN - 1;
1da177e4 10825
dcda9b04 10826 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 10827 if (!p)
1da177e4 10828 return NULL;
1da177e4 10829
1ce8e7b5 10830 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 10831 dev->padded = (char *)dev - (char *)p;
ab9c73cc 10832
919067cc 10833#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10834 dev->pcpu_refcnt = alloc_percpu(int);
10835 if (!dev->pcpu_refcnt)
74d332c1 10836 goto free_dev;
add2d736
ED
10837 dev_hold(dev);
10838#else
10839 refcount_set(&dev->dev_refcnt, 1);
919067cc 10840#endif
ab9c73cc 10841
ab9c73cc 10842 if (dev_addr_init(dev))
29b4433d 10843 goto free_pcpu;
ab9c73cc 10844
22bedad3 10845 dev_mc_init(dev);
a748ee24 10846 dev_uc_init(dev);
ccffad25 10847
c346dca1 10848 dev_net_set(dev, &init_net);
1da177e4 10849
8d3bdbd5 10850 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 10851 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
10852 dev->upper_level = 1;
10853 dev->lower_level = 1;
1fc70edb
TY
10854#ifdef CONFIG_LOCKDEP
10855 dev->nested_level = 0;
10856 INIT_LIST_HEAD(&dev->unlink_list);
10857#endif
8d3bdbd5 10858
8d3bdbd5
DM
10859 INIT_LIST_HEAD(&dev->napi_list);
10860 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 10861 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 10862 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
10863 INIT_LIST_HEAD(&dev->adj_list.upper);
10864 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
10865 INIT_LIST_HEAD(&dev->ptype_all);
10866 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 10867 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
10868#ifdef CONFIG_NET_SCHED
10869 hash_init(dev->qdisc_hash);
10870#endif
02875878 10871 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
10872 setup(dev);
10873
a813104d 10874 if (!dev->tx_queue_len) {
f84bb1ea 10875 dev->priv_flags |= IFF_NO_QUEUE;
11597084 10876 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 10877 }
906470c1 10878
36909ea4
TH
10879 dev->num_tx_queues = txqs;
10880 dev->real_num_tx_queues = txqs;
ed9af2e8 10881 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 10882 goto free_all;
e8a0464c 10883
36909ea4
TH
10884 dev->num_rx_queues = rxqs;
10885 dev->real_num_rx_queues = rxqs;
fe822240 10886 if (netif_alloc_rx_queues(dev))
8d3bdbd5 10887 goto free_all;
0a9627f2 10888
1da177e4 10889 strcpy(dev->name, name);
c835a677 10890 dev->name_assign_type = name_assign_type;
cbda10fa 10891 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
10892 if (!dev->ethtool_ops)
10893 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 10894
357b6cc5 10895 nf_hook_ingress_init(dev);
e687ad60 10896
1da177e4 10897 return dev;
ab9c73cc 10898
8d3bdbd5
DM
10899free_all:
10900 free_netdev(dev);
10901 return NULL;
10902
29b4433d 10903free_pcpu:
919067cc 10904#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d 10905 free_percpu(dev->pcpu_refcnt);
74d332c1 10906free_dev:
919067cc 10907#endif
74d332c1 10908 netdev_freemem(dev);
ab9c73cc 10909 return NULL;
1da177e4 10910}
36909ea4 10911EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
10912
10913/**
722c9a0c 10914 * free_netdev - free network device
10915 * @dev: device
1da177e4 10916 *
722c9a0c 10917 * This function does the last stage of destroying an allocated device
10918 * interface. The reference to the device object is released. If this
10919 * is the last reference then it will be freed.Must be called in process
10920 * context.
1da177e4
LT
10921 */
10922void free_netdev(struct net_device *dev)
10923{
d565b0a1
HX
10924 struct napi_struct *p, *n;
10925
93d05d4a 10926 might_sleep();
c269a24c
JK
10927
10928 /* When called immediately after register_netdevice() failed the unwind
10929 * handling may still be dismantling the device. Handle that case by
10930 * deferring the free.
10931 */
10932 if (dev->reg_state == NETREG_UNREGISTERING) {
10933 ASSERT_RTNL();
10934 dev->needs_free_netdev = true;
10935 return;
10936 }
10937
60877a32 10938 netif_free_tx_queues(dev);
e817f856 10939 netif_free_rx_queues(dev);
e8a0464c 10940
33d480ce 10941 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 10942
f001fde5
JP
10943 /* Flush device addresses */
10944 dev_addr_flush(dev);
10945
d565b0a1
HX
10946 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10947 netif_napi_del(p);
10948
919067cc 10949#ifdef CONFIG_PCPU_DEV_REFCNT
29b4433d
ED
10950 free_percpu(dev->pcpu_refcnt);
10951 dev->pcpu_refcnt = NULL;
919067cc 10952#endif
75ccae62
THJ
10953 free_percpu(dev->xdp_bulkq);
10954 dev->xdp_bulkq = NULL;
29b4433d 10955
3041a069 10956 /* Compatibility with error handling in drivers */
1da177e4 10957 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 10958 netdev_freemem(dev);
1da177e4
LT
10959 return;
10960 }
10961
10962 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10963 dev->reg_state = NETREG_RELEASED;
10964
43cb76d9
GKH
10965 /* will free via device release */
10966 put_device(&dev->dev);
1da177e4 10967}
d1b19dff 10968EXPORT_SYMBOL(free_netdev);
4ec93edb 10969
f0db275a
SH
10970/**
10971 * synchronize_net - Synchronize with packet receive processing
10972 *
10973 * Wait for packets currently being received to be done.
10974 * Does not block later packets from starting.
10975 */
4ec93edb 10976void synchronize_net(void)
1da177e4
LT
10977{
10978 might_sleep();
be3fc413
ED
10979 if (rtnl_is_locked())
10980 synchronize_rcu_expedited();
10981 else
10982 synchronize_rcu();
1da177e4 10983}
d1b19dff 10984EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
10985
10986/**
44a0873d 10987 * unregister_netdevice_queue - remove device from the kernel
1da177e4 10988 * @dev: device
44a0873d 10989 * @head: list
6ebfbc06 10990 *
1da177e4 10991 * This function shuts down a device interface and removes it
d59b54b1 10992 * from the kernel tables.
44a0873d 10993 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
10994 *
10995 * Callers must hold the rtnl semaphore. You may want
10996 * unregister_netdev() instead of this.
10997 */
10998
44a0873d 10999void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 11000{
a6620712
HX
11001 ASSERT_RTNL();
11002
44a0873d 11003 if (head) {
9fdce099 11004 list_move_tail(&dev->unreg_list, head);
44a0873d 11005 } else {
037e56bd
JK
11006 LIST_HEAD(single);
11007
11008 list_add(&dev->unreg_list, &single);
0cbe1e57 11009 unregister_netdevice_many(&single);
44a0873d 11010 }
1da177e4 11011}
44a0873d 11012EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 11013
9b5e383c
ED
11014/**
11015 * unregister_netdevice_many - unregister many devices
11016 * @head: list of devices
87757a91
ED
11017 *
11018 * Note: As most callers use a stack allocated list_head,
11019 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
11020 */
11021void unregister_netdevice_many(struct list_head *head)
bcfe2f1a
JK
11022{
11023 struct net_device *dev, *tmp;
11024 LIST_HEAD(close_head);
11025
11026 BUG_ON(dev_boot_phase);
11027 ASSERT_RTNL();
11028
0cbe1e57
JK
11029 if (list_empty(head))
11030 return;
11031
bcfe2f1a
JK
11032 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11033 /* Some devices call without registering
11034 * for initialization unwind. Remove those
11035 * devices and proceed with the remaining.
11036 */
11037 if (dev->reg_state == NETREG_UNINITIALIZED) {
11038 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11039 dev->name, dev);
11040
11041 WARN_ON(1);
11042 list_del(&dev->unreg_list);
11043 continue;
11044 }
11045 dev->dismantle = true;
11046 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11047 }
11048
11049 /* If device is running, close it first. */
11050 list_for_each_entry(dev, head, unreg_list)
11051 list_add_tail(&dev->close_list, &close_head);
11052 dev_close_many(&close_head, true);
11053
11054 list_for_each_entry(dev, head, unreg_list) {
11055 /* And unlink it from device chain. */
11056 unlist_netdevice(dev);
11057
11058 dev->reg_state = NETREG_UNREGISTERING;
11059 }
11060 flush_all_backlogs();
11061
11062 synchronize_net();
11063
11064 list_for_each_entry(dev, head, unreg_list) {
11065 struct sk_buff *skb = NULL;
11066
11067 /* Shutdown queueing discipline. */
11068 dev_shutdown(dev);
11069
11070 dev_xdp_uninstall(dev);
11071
11072 /* Notify protocols, that we are about to destroy
11073 * this device. They should clean all the things.
11074 */
11075 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11076
11077 if (!dev->rtnl_link_ops ||
11078 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11079 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11080 GFP_KERNEL, NULL, 0);
11081
11082 /*
11083 * Flush the unicast and multicast chains
11084 */
11085 dev_uc_flush(dev);
11086 dev_mc_flush(dev);
11087
11088 netdev_name_node_alt_flush(dev);
11089 netdev_name_node_free(dev->name_node);
11090
11091 if (dev->netdev_ops->ndo_uninit)
11092 dev->netdev_ops->ndo_uninit(dev);
11093
11094 if (skb)
11095 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11096
11097 /* Notifier chain MUST detach us all upper devices. */
11098 WARN_ON(netdev_has_any_upper_dev(dev));
11099 WARN_ON(netdev_has_any_lower_dev(dev));
11100
11101 /* Remove entries from kobject tree */
11102 netdev_unregister_kobject(dev);
11103#ifdef CONFIG_XPS
11104 /* Remove XPS queueing entries */
11105 netif_reset_xps_queues_gt(dev, 0);
11106#endif
11107 }
11108
11109 synchronize_net();
11110
11111 list_for_each_entry(dev, head, unreg_list) {
11112 dev_put(dev);
11113 net_set_todo(dev);
11114 }
0cbe1e57
JK
11115
11116 list_del(head);
bcfe2f1a 11117}
0cbe1e57 11118EXPORT_SYMBOL(unregister_netdevice_many);
bcfe2f1a 11119
1da177e4
LT
11120/**
11121 * unregister_netdev - remove device from the kernel
11122 * @dev: device
11123 *
11124 * This function shuts down a device interface and removes it
d59b54b1 11125 * from the kernel tables.
1da177e4
LT
11126 *
11127 * This is just a wrapper for unregister_netdevice that takes
11128 * the rtnl semaphore. In general you want to use this and not
11129 * unregister_netdevice.
11130 */
11131void unregister_netdev(struct net_device *dev)
11132{
11133 rtnl_lock();
11134 unregister_netdevice(dev);
11135 rtnl_unlock();
11136}
1da177e4
LT
11137EXPORT_SYMBOL(unregister_netdev);
11138
ce286d32 11139/**
0854fa82 11140 * __dev_change_net_namespace - move device to different nethost namespace
ce286d32
EB
11141 * @dev: device
11142 * @net: network namespace
11143 * @pat: If not NULL name pattern to try if the current device name
11144 * is already taken in the destination network namespace.
eeb85a14
AV
11145 * @new_ifindex: If not zero, specifies device index in the target
11146 * namespace.
ce286d32
EB
11147 *
11148 * This function shuts down a device interface and moves it
11149 * to a new network namespace. On success 0 is returned, on
11150 * a failure a netagive errno code is returned.
11151 *
11152 * Callers must hold the rtnl semaphore.
11153 */
11154
0854fa82
AV
11155int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11156 const char *pat, int new_ifindex)
ce286d32 11157{
ef6a4c88 11158 struct net *net_old = dev_net(dev);
eeb85a14 11159 int err, new_nsid;
ce286d32
EB
11160
11161 ASSERT_RTNL();
11162
11163 /* Don't allow namespace local devices to be moved. */
11164 err = -EINVAL;
11165 if (dev->features & NETIF_F_NETNS_LOCAL)
11166 goto out;
11167
11168 /* Ensure the device has been registrered */
ce286d32
EB
11169 if (dev->reg_state != NETREG_REGISTERED)
11170 goto out;
11171
11172 /* Get out if there is nothing todo */
11173 err = 0;
ef6a4c88 11174 if (net_eq(net_old, net))
ce286d32
EB
11175 goto out;
11176
11177 /* Pick the destination device name, and ensure
11178 * we can use it in the destination network namespace.
11179 */
11180 err = -EEXIST;
d9031024 11181 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
11182 /* We get here if we can't use the current device name */
11183 if (!pat)
11184 goto out;
7892bd08
LR
11185 err = dev_get_valid_name(net, dev, pat);
11186 if (err < 0)
ce286d32
EB
11187 goto out;
11188 }
11189
eeb85a14
AV
11190 /* Check that new_ifindex isn't used yet. */
11191 err = -EBUSY;
11192 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11193 goto out;
11194
ce286d32
EB
11195 /*
11196 * And now a mini version of register_netdevice unregister_netdevice.
11197 */
11198
11199 /* If device is running close it first. */
9b772652 11200 dev_close(dev);
ce286d32
EB
11201
11202 /* And unlink it from device chain */
ce286d32
EB
11203 unlist_netdevice(dev);
11204
11205 synchronize_net();
11206
11207 /* Shutdown queueing discipline. */
11208 dev_shutdown(dev);
11209
11210 /* Notify protocols, that we are about to destroy
eb13da1a 11211 * this device. They should clean all the things.
11212 *
11213 * Note that dev->reg_state stays at NETREG_REGISTERED.
11214 * This is wanted because this way 8021q and macvlan know
11215 * the device is just moving and can keep their slaves up.
11216 */
ce286d32 11217 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 11218 rcu_barrier();
38e01b30 11219
d4e4fdf9 11220 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30 11221 /* If there is an ifindex conflict assign a new one */
eeb85a14
AV
11222 if (!new_ifindex) {
11223 if (__dev_get_by_index(net, dev->ifindex))
11224 new_ifindex = dev_new_index(net);
11225 else
11226 new_ifindex = dev->ifindex;
11227 }
38e01b30
ND
11228
11229 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11230 new_ifindex);
ce286d32
EB
11231
11232 /*
11233 * Flush the unicast and multicast chains
11234 */
a748ee24 11235 dev_uc_flush(dev);
22bedad3 11236 dev_mc_flush(dev);
ce286d32 11237
4e66ae2e
SH
11238 /* Send a netdev-removed uevent to the old namespace */
11239 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 11240 netdev_adjacent_del_links(dev);
4e66ae2e 11241
93642e14
JP
11242 /* Move per-net netdevice notifiers that are following the netdevice */
11243 move_netdevice_notifiers_dev_net(dev, net);
11244
ce286d32 11245 /* Actually switch the network namespace */
c346dca1 11246 dev_net_set(dev, net);
38e01b30 11247 dev->ifindex = new_ifindex;
ce286d32 11248
4e66ae2e
SH
11249 /* Send a netdev-add uevent to the new namespace */
11250 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 11251 netdev_adjacent_add_links(dev);
4e66ae2e 11252
8b41d188 11253 /* Fixup kobjects */
a1b3f594 11254 err = device_rename(&dev->dev, dev->name);
8b41d188 11255 WARN_ON(err);
ce286d32 11256
ef6a4c88
CB
11257 /* Adapt owner in case owning user namespace of target network
11258 * namespace is different from the original one.
11259 */
11260 err = netdev_change_owner(dev, net_old, net);
11261 WARN_ON(err);
11262
ce286d32
EB
11263 /* Add the device back in the hashes */
11264 list_netdevice(dev);
11265
11266 /* Notify protocols, that a new device appeared. */
11267 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11268
d90a909e
EB
11269 /*
11270 * Prevent userspace races by waiting until the network
11271 * device is fully setup before sending notifications.
11272 */
7f294054 11273 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 11274
ce286d32
EB
11275 synchronize_net();
11276 err = 0;
11277out:
11278 return err;
11279}
0854fa82 11280EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
ce286d32 11281
f0bf90de 11282static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
11283{
11284 struct sk_buff **list_skb;
1da177e4 11285 struct sk_buff *skb;
f0bf90de 11286 unsigned int cpu;
97d8b6e3 11287 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 11288
1da177e4
LT
11289 local_irq_disable();
11290 cpu = smp_processor_id();
11291 sd = &per_cpu(softnet_data, cpu);
11292 oldsd = &per_cpu(softnet_data, oldcpu);
11293
11294 /* Find end of our completion_queue. */
11295 list_skb = &sd->completion_queue;
11296 while (*list_skb)
11297 list_skb = &(*list_skb)->next;
11298 /* Append completion queue from offline CPU. */
11299 *list_skb = oldsd->completion_queue;
11300 oldsd->completion_queue = NULL;
11301
1da177e4 11302 /* Append output queue from offline CPU. */
a9cbd588
CG
11303 if (oldsd->output_queue) {
11304 *sd->output_queue_tailp = oldsd->output_queue;
11305 sd->output_queue_tailp = oldsd->output_queue_tailp;
11306 oldsd->output_queue = NULL;
11307 oldsd->output_queue_tailp = &oldsd->output_queue;
11308 }
ac64da0b
ED
11309 /* Append NAPI poll list from offline CPU, with one exception :
11310 * process_backlog() must be called by cpu owning percpu backlog.
11311 * We properly handle process_queue & input_pkt_queue later.
11312 */
11313 while (!list_empty(&oldsd->poll_list)) {
11314 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11315 struct napi_struct,
11316 poll_list);
11317
11318 list_del_init(&napi->poll_list);
11319 if (napi->poll == process_backlog)
11320 napi->state = 0;
11321 else
11322 ____napi_schedule(sd, napi);
264524d5 11323 }
1da177e4
LT
11324
11325 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11326 local_irq_enable();
11327
773fc8f6 11328#ifdef CONFIG_RPS
11329 remsd = oldsd->rps_ipi_list;
11330 oldsd->rps_ipi_list = NULL;
11331#endif
11332 /* send out pending IPI's on offline CPU */
11333 net_rps_send_ipi(remsd);
11334
1da177e4 11335 /* Process offline CPU's input_pkt_queue */
76cc8b13 11336 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 11337 netif_rx_ni(skb);
76cc8b13 11338 input_queue_head_incr(oldsd);
fec5e652 11339 }
ac64da0b 11340 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 11341 netif_rx_ni(skb);
76cc8b13
TH
11342 input_queue_head_incr(oldsd);
11343 }
1da177e4 11344
f0bf90de 11345 return 0;
1da177e4 11346}
1da177e4 11347
7f353bf2 11348/**
b63365a2
HX
11349 * netdev_increment_features - increment feature set by one
11350 * @all: current feature set
11351 * @one: new feature set
11352 * @mask: mask feature set
7f353bf2
HX
11353 *
11354 * Computes a new feature set after adding a device with feature set
b63365a2
HX
11355 * @one to the master device with current feature set @all. Will not
11356 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 11357 */
c8f44aff
MM
11358netdev_features_t netdev_increment_features(netdev_features_t all,
11359 netdev_features_t one, netdev_features_t mask)
b63365a2 11360{
c8cd0989 11361 if (mask & NETIF_F_HW_CSUM)
a188222b 11362 mask |= NETIF_F_CSUM_MASK;
1742f183 11363 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 11364
a188222b 11365 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 11366 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 11367
1742f183 11368 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
11369 if (all & NETIF_F_HW_CSUM)
11370 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
11371
11372 return all;
11373}
b63365a2 11374EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 11375
430f03cd 11376static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
11377{
11378 int i;
11379 struct hlist_head *hash;
11380
6da2ec56 11381 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
11382 if (hash != NULL)
11383 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11384 INIT_HLIST_HEAD(&hash[i]);
11385
11386 return hash;
11387}
11388
881d966b 11389/* Initialize per network namespace state */
4665079c 11390static int __net_init netdev_init(struct net *net)
881d966b 11391{
d9f37d01 11392 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 11393 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 11394
734b6541
RM
11395 if (net != &init_net)
11396 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 11397
30d97d35
PE
11398 net->dev_name_head = netdev_create_hash();
11399 if (net->dev_name_head == NULL)
11400 goto err_name;
881d966b 11401
30d97d35
PE
11402 net->dev_index_head = netdev_create_hash();
11403 if (net->dev_index_head == NULL)
11404 goto err_idx;
881d966b 11405
a30c7b42
JP
11406 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11407
881d966b 11408 return 0;
30d97d35
PE
11409
11410err_idx:
11411 kfree(net->dev_name_head);
11412err_name:
11413 return -ENOMEM;
881d966b
EB
11414}
11415
f0db275a
SH
11416/**
11417 * netdev_drivername - network driver for the device
11418 * @dev: network device
f0db275a
SH
11419 *
11420 * Determine network driver for device.
11421 */
3019de12 11422const char *netdev_drivername(const struct net_device *dev)
6579e57b 11423{
cf04a4c7
SH
11424 const struct device_driver *driver;
11425 const struct device *parent;
3019de12 11426 const char *empty = "";
6579e57b
AV
11427
11428 parent = dev->dev.parent;
6579e57b 11429 if (!parent)
3019de12 11430 return empty;
6579e57b
AV
11431
11432 driver = parent->driver;
11433 if (driver && driver->name)
3019de12
DM
11434 return driver->name;
11435 return empty;
6579e57b
AV
11436}
11437
6ea754eb
JP
11438static void __netdev_printk(const char *level, const struct net_device *dev,
11439 struct va_format *vaf)
256df2f3 11440{
b004ff49 11441 if (dev && dev->dev.parent) {
6ea754eb
JP
11442 dev_printk_emit(level[1] - '0',
11443 dev->dev.parent,
11444 "%s %s %s%s: %pV",
11445 dev_driver_string(dev->dev.parent),
11446 dev_name(dev->dev.parent),
11447 netdev_name(dev), netdev_reg_state(dev),
11448 vaf);
b004ff49 11449 } else if (dev) {
6ea754eb
JP
11450 printk("%s%s%s: %pV",
11451 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 11452 } else {
6ea754eb 11453 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 11454 }
256df2f3
JP
11455}
11456
6ea754eb
JP
11457void netdev_printk(const char *level, const struct net_device *dev,
11458 const char *format, ...)
256df2f3
JP
11459{
11460 struct va_format vaf;
11461 va_list args;
256df2f3
JP
11462
11463 va_start(args, format);
11464
11465 vaf.fmt = format;
11466 vaf.va = &args;
11467
6ea754eb 11468 __netdev_printk(level, dev, &vaf);
b004ff49 11469
256df2f3 11470 va_end(args);
256df2f3
JP
11471}
11472EXPORT_SYMBOL(netdev_printk);
11473
11474#define define_netdev_printk_level(func, level) \
6ea754eb 11475void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 11476{ \
256df2f3
JP
11477 struct va_format vaf; \
11478 va_list args; \
11479 \
11480 va_start(args, fmt); \
11481 \
11482 vaf.fmt = fmt; \
11483 vaf.va = &args; \
11484 \
6ea754eb 11485 __netdev_printk(level, dev, &vaf); \
b004ff49 11486 \
256df2f3 11487 va_end(args); \
256df2f3
JP
11488} \
11489EXPORT_SYMBOL(func);
11490
11491define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11492define_netdev_printk_level(netdev_alert, KERN_ALERT);
11493define_netdev_printk_level(netdev_crit, KERN_CRIT);
11494define_netdev_printk_level(netdev_err, KERN_ERR);
11495define_netdev_printk_level(netdev_warn, KERN_WARNING);
11496define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11497define_netdev_printk_level(netdev_info, KERN_INFO);
11498
4665079c 11499static void __net_exit netdev_exit(struct net *net)
881d966b
EB
11500{
11501 kfree(net->dev_name_head);
11502 kfree(net->dev_index_head);
ee21b18b
VA
11503 if (net != &init_net)
11504 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
11505}
11506
022cbae6 11507static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
11508 .init = netdev_init,
11509 .exit = netdev_exit,
11510};
11511
4665079c 11512static void __net_exit default_device_exit(struct net *net)
ce286d32 11513{
e008b5fc 11514 struct net_device *dev, *aux;
ce286d32 11515 /*
e008b5fc 11516 * Push all migratable network devices back to the
ce286d32
EB
11517 * initial network namespace
11518 */
11519 rtnl_lock();
e008b5fc 11520 for_each_netdev_safe(net, dev, aux) {
ce286d32 11521 int err;
aca51397 11522 char fb_name[IFNAMSIZ];
ce286d32
EB
11523
11524 /* Ignore unmoveable devices (i.e. loopback) */
11525 if (dev->features & NETIF_F_NETNS_LOCAL)
11526 continue;
11527
e008b5fc 11528 /* Leave virtual devices for the generic cleanup */
3a5ca857 11529 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
e008b5fc 11530 continue;
d0c082ce 11531
25985edc 11532 /* Push remaining network devices to init_net */
aca51397 11533 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
11534 if (__dev_get_by_name(&init_net, fb_name))
11535 snprintf(fb_name, IFNAMSIZ, "dev%%d");
0854fa82 11536 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 11537 if (err) {
7b6cd1ce
JP
11538 pr_emerg("%s: failed to move %s to init_net: %d\n",
11539 __func__, dev->name, err);
aca51397 11540 BUG();
ce286d32
EB
11541 }
11542 }
11543 rtnl_unlock();
11544}
11545
50624c93
EB
11546static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11547{
11548 /* Return with the rtnl_lock held when there are no network
11549 * devices unregistering in any network namespace in net_list.
11550 */
11551 struct net *net;
11552 bool unregistering;
ff960a73 11553 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 11554
ff960a73 11555 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 11556 for (;;) {
50624c93
EB
11557 unregistering = false;
11558 rtnl_lock();
11559 list_for_each_entry(net, net_list, exit_list) {
11560 if (net->dev_unreg_count > 0) {
11561 unregistering = true;
11562 break;
11563 }
11564 }
11565 if (!unregistering)
11566 break;
11567 __rtnl_unlock();
ff960a73
PZ
11568
11569 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 11570 }
ff960a73 11571 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
11572}
11573
04dc7f6b
EB
11574static void __net_exit default_device_exit_batch(struct list_head *net_list)
11575{
11576 /* At exit all network devices most be removed from a network
b595076a 11577 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
11578 * Do this across as many network namespaces as possible to
11579 * improve batching efficiency.
11580 */
11581 struct net_device *dev;
11582 struct net *net;
11583 LIST_HEAD(dev_kill_list);
11584
50624c93
EB
11585 /* To prevent network device cleanup code from dereferencing
11586 * loopback devices or network devices that have been freed
11587 * wait here for all pending unregistrations to complete,
11588 * before unregistring the loopback device and allowing the
11589 * network namespace be freed.
11590 *
11591 * The netdev todo list containing all network devices
11592 * unregistrations that happen in default_device_exit_batch
11593 * will run in the rtnl_unlock() at the end of
11594 * default_device_exit_batch.
11595 */
11596 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
11597 list_for_each_entry(net, net_list, exit_list) {
11598 for_each_netdev_reverse(net, dev) {
b0ab2fab 11599 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
11600 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11601 else
11602 unregister_netdevice_queue(dev, &dev_kill_list);
11603 }
11604 }
11605 unregister_netdevice_many(&dev_kill_list);
11606 rtnl_unlock();
11607}
11608
022cbae6 11609static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 11610 .exit = default_device_exit,
04dc7f6b 11611 .exit_batch = default_device_exit_batch,
ce286d32
EB
11612};
11613
1da177e4
LT
11614/*
11615 * Initialize the DEV module. At boot time this walks the device list and
11616 * unhooks any devices that fail to initialise (normally hardware not
11617 * present) and leaves us with a valid list of present and active devices.
11618 *
11619 */
11620
11621/*
11622 * This is called single threaded during boot, so no need
11623 * to take the rtnl semaphore.
11624 */
11625static int __init net_dev_init(void)
11626{
11627 int i, rc = -ENOMEM;
11628
11629 BUG_ON(!dev_boot_phase);
11630
1da177e4
LT
11631 if (dev_proc_init())
11632 goto out;
11633
8b41d188 11634 if (netdev_kobject_init())
1da177e4
LT
11635 goto out;
11636
11637 INIT_LIST_HEAD(&ptype_all);
82d8a867 11638 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
11639 INIT_LIST_HEAD(&ptype_base[i]);
11640
62532da9
VY
11641 INIT_LIST_HEAD(&offload_base);
11642
881d966b
EB
11643 if (register_pernet_subsys(&netdev_net_ops))
11644 goto out;
1da177e4
LT
11645
11646 /*
11647 * Initialise the packet receive queues.
11648 */
11649
6f912042 11650 for_each_possible_cpu(i) {
41852497 11651 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 11652 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 11653
41852497
ED
11654 INIT_WORK(flush, flush_backlog);
11655
e36fa2f7 11656 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 11657 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
11658#ifdef CONFIG_XFRM_OFFLOAD
11659 skb_queue_head_init(&sd->xfrm_backlog);
11660#endif
e36fa2f7 11661 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 11662 sd->output_queue_tailp = &sd->output_queue;
df334545 11663#ifdef CONFIG_RPS
545b8c8d 11664 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
e36fa2f7 11665 sd->cpu = i;
1e94d72f 11666#endif
0a9627f2 11667
7c4ec749 11668 init_gro_hash(&sd->backlog);
e36fa2f7
ED
11669 sd->backlog.poll = process_backlog;
11670 sd->backlog.weight = weight_p;
1da177e4
LT
11671 }
11672
1da177e4
LT
11673 dev_boot_phase = 0;
11674
505d4f73
EB
11675 /* The loopback device is special if any other network devices
11676 * is present in a network namespace the loopback device must
11677 * be present. Since we now dynamically allocate and free the
11678 * loopback device ensure this invariant is maintained by
11679 * keeping the loopback device as the first device on the
11680 * list of network devices. Ensuring the loopback devices
11681 * is the first device that appears and the last network device
11682 * that disappears.
11683 */
11684 if (register_pernet_device(&loopback_net_ops))
11685 goto out;
11686
11687 if (register_pernet_device(&default_device_ops))
11688 goto out;
11689
962cf36c
CM
11690 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11691 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 11692
f0bf90de
SAS
11693 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11694 NULL, dev_cpu_dead);
11695 WARN_ON(rc < 0);
1da177e4
LT
11696 rc = 0;
11697out:
11698 return rc;
11699}
11700
11701subsys_initcall(net_dev_init);