net: remove napi_hash_del() from driver-facing API
[linux-2.6-block.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
11d6011c 82#include <linux/rwsem.h>
1da177e4
LT
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
0187bdfb 92#include <linux/ethtool.h>
1da177e4 93#include <linux/skbuff.h>
a7862b45 94#include <linux/bpf.h>
b5cdae32 95#include <linux/bpf_trace.h>
457c4cbc 96#include <net/net_namespace.h>
1da177e4 97#include <net/sock.h>
02d62e86 98#include <net/busy_poll.h>
1da177e4 99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4 101#include <net/dst.h>
fc4099f1 102#include <net/dst_metadata.h>
1da177e4 103#include <net/pkt_sched.h>
87d83093 104#include <net/pkt_cls.h>
1da177e4 105#include <net/checksum.h>
44540960 106#include <net/xfrm.h>
1da177e4
LT
107#include <linux/highmem.h>
108#include <linux/init.h>
1da177e4 109#include <linux/module.h>
1da177e4
LT
110#include <linux/netpoll.h>
111#include <linux/rcupdate.h>
112#include <linux/delay.h>
1da177e4 113#include <net/iw_handler.h>
1da177e4 114#include <asm/current.h>
5bdb9886 115#include <linux/audit.h>
db217334 116#include <linux/dmaengine.h>
f6a78bfc 117#include <linux/err.h>
c7fa9d18 118#include <linux/ctype.h>
723e98b7 119#include <linux/if_arp.h>
6de329e2 120#include <linux/if_vlan.h>
8f0f2223 121#include <linux/ip.h>
ad55dcaf 122#include <net/ip.h>
25cd9ba0 123#include <net/mpls.h>
8f0f2223
DM
124#include <linux/ipv6.h>
125#include <linux/in.h>
b6b2fed1
DM
126#include <linux/jhash.h>
127#include <linux/random.h>
9cbc1cb8 128#include <trace/events/napi.h>
cf66ba58 129#include <trace/events/net.h>
07dc22e7 130#include <trace/events/skb.h>
caeda9b9 131#include <linux/inetdevice.h>
c445477d 132#include <linux/cpu_rmap.h>
c5905afb 133#include <linux/static_key.h>
af12fa6e 134#include <linux/hashtable.h>
60877a32 135#include <linux/vmalloc.h>
529d0489 136#include <linux/if_macvlan.h>
e7fd2885 137#include <linux/errqueue.h>
3b47d303 138#include <linux/hrtimer.h>
357b6cc5 139#include <linux/netfilter_ingress.h>
40e4e713 140#include <linux/crash_dump.h>
b72b5bf6 141#include <linux/sctp.h>
ae847f40 142#include <net/udp_tunnel.h>
6621dd29 143#include <linux/net_namespace.h>
aaa5d90b 144#include <linux/indirect_call_wrapper.h>
af3836df 145#include <net/devlink.h>
bd869245 146#include <linux/pm_runtime.h>
1da177e4 147
342709ef
PE
148#include "net-sysfs.h"
149
d565b0a1
HX
150#define MAX_GRO_SKBS 8
151
5d38a079
HX
152/* This should be increased if a protocol with a bigger head is added. */
153#define GRO_MAX_HEAD (MAX_HEADER + 128)
154
1da177e4 155static DEFINE_SPINLOCK(ptype_lock);
62532da9 156static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
157struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158struct list_head ptype_all __read_mostly; /* Taps */
62532da9 159static struct list_head offload_base __read_mostly;
1da177e4 160
ae78dbfa 161static int netif_rx_internal(struct sk_buff *skb);
54951194 162static int call_netdevice_notifiers_info(unsigned long val,
54951194 163 struct netdev_notifier_info *info);
26372605
PM
164static int call_netdevice_notifiers_extack(unsigned long val,
165 struct net_device *dev,
166 struct netlink_ext_ack *extack);
90b602f8 167static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 168
1da177e4 169/*
7562f876 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
171 * semaphore.
172 *
c6d14c84 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
7562f876 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
1da177e4 188DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
189EXPORT_SYMBOL(dev_base_lock);
190
6c557001
FW
191static DEFINE_MUTEX(ifalias_mutex);
192
af12fa6e
ET
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
52bd2d62 196static unsigned int napi_gen_id = NR_CPUS;
6180d9de 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 198
11d6011c 199static DECLARE_RWSEM(devnet_rename_sem);
c91f6df2 200
4e985ada
TG
201static inline void dev_base_seq_inc(struct net *net)
202{
643aa9cb 203 while (++net->dev_base_seq == 0)
204 ;
4e985ada
TG
205}
206
881d966b 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 208{
8387ff25 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 210
08e9897d 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
212}
213
881d966b 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 215{
7c28bd0b 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
217}
218
e36fa2f7 219static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
220{
221#ifdef CONFIG_RPS
e36fa2f7 222 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
223#endif
224}
225
e36fa2f7 226static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
227{
228#ifdef CONFIG_RPS
e36fa2f7 229 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
230#endif
231}
232
ff927412
JP
233static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234 const char *name)
235{
236 struct netdev_name_node *name_node;
237
238 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239 if (!name_node)
240 return NULL;
241 INIT_HLIST_NODE(&name_node->hlist);
242 name_node->dev = dev;
243 name_node->name = name;
244 return name_node;
245}
246
247static struct netdev_name_node *
248netdev_name_node_head_alloc(struct net_device *dev)
249{
36fbf1e5
JP
250 struct netdev_name_node *name_node;
251
252 name_node = netdev_name_node_alloc(dev, dev->name);
253 if (!name_node)
254 return NULL;
255 INIT_LIST_HEAD(&name_node->list);
256 return name_node;
ff927412
JP
257}
258
259static void netdev_name_node_free(struct netdev_name_node *name_node)
260{
261 kfree(name_node);
262}
263
264static void netdev_name_node_add(struct net *net,
265 struct netdev_name_node *name_node)
266{
267 hlist_add_head_rcu(&name_node->hlist,
268 dev_name_hash(net, name_node->name));
269}
270
271static void netdev_name_node_del(struct netdev_name_node *name_node)
272{
273 hlist_del_rcu(&name_node->hlist);
274}
275
276static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277 const char *name)
278{
279 struct hlist_head *head = dev_name_hash(net, name);
280 struct netdev_name_node *name_node;
281
282 hlist_for_each_entry(name_node, head, hlist)
283 if (!strcmp(name_node->name, name))
284 return name_node;
285 return NULL;
286}
287
288static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289 const char *name)
290{
291 struct hlist_head *head = dev_name_hash(net, name);
292 struct netdev_name_node *name_node;
293
294 hlist_for_each_entry_rcu(name_node, head, hlist)
295 if (!strcmp(name_node->name, name))
296 return name_node;
297 return NULL;
298}
299
36fbf1e5
JP
300int netdev_name_node_alt_create(struct net_device *dev, const char *name)
301{
302 struct netdev_name_node *name_node;
303 struct net *net = dev_net(dev);
304
305 name_node = netdev_name_node_lookup(net, name);
306 if (name_node)
307 return -EEXIST;
308 name_node = netdev_name_node_alloc(dev, name);
309 if (!name_node)
310 return -ENOMEM;
311 netdev_name_node_add(net, name_node);
312 /* The node that holds dev->name acts as a head of per-device list. */
313 list_add_tail(&name_node->list, &dev->name_node->list);
314
315 return 0;
316}
317EXPORT_SYMBOL(netdev_name_node_alt_create);
318
319static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
320{
321 list_del(&name_node->list);
322 netdev_name_node_del(name_node);
323 kfree(name_node->name);
324 netdev_name_node_free(name_node);
325}
326
327int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (!name_node)
334 return -ENOENT;
e08ad805
ED
335 /* lookup might have found our primary name or a name belonging
336 * to another device.
337 */
338 if (name_node == dev->name_node || name_node->dev != dev)
339 return -EINVAL;
340
36fbf1e5
JP
341 __netdev_name_node_alt_destroy(name_node);
342
343 return 0;
344}
345EXPORT_SYMBOL(netdev_name_node_alt_destroy);
346
347static void netdev_name_node_alt_flush(struct net_device *dev)
348{
349 struct netdev_name_node *name_node, *tmp;
350
351 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
352 __netdev_name_node_alt_destroy(name_node);
353}
354
ce286d32 355/* Device list insertion */
53759be9 356static void list_netdevice(struct net_device *dev)
ce286d32 357{
c346dca1 358 struct net *net = dev_net(dev);
ce286d32
EB
359
360 ASSERT_RTNL();
361
362 write_lock_bh(&dev_base_lock);
c6d14c84 363 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 364 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
365 hlist_add_head_rcu(&dev->index_hlist,
366 dev_index_hash(net, dev->ifindex));
ce286d32 367 write_unlock_bh(&dev_base_lock);
4e985ada
TG
368
369 dev_base_seq_inc(net);
ce286d32
EB
370}
371
fb699dfd
ED
372/* Device list removal
373 * caller must respect a RCU grace period before freeing/reusing dev
374 */
ce286d32
EB
375static void unlist_netdevice(struct net_device *dev)
376{
377 ASSERT_RTNL();
378
379 /* Unlink dev from the device chain */
380 write_lock_bh(&dev_base_lock);
c6d14c84 381 list_del_rcu(&dev->dev_list);
ff927412 382 netdev_name_node_del(dev->name_node);
fb699dfd 383 hlist_del_rcu(&dev->index_hlist);
ce286d32 384 write_unlock_bh(&dev_base_lock);
4e985ada
TG
385
386 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
387}
388
1da177e4
LT
389/*
390 * Our notifier list
391 */
392
f07d5b94 393static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
394
395/*
396 * Device drivers call our routines to queue packets here. We empty the
397 * queue in the local softnet handler.
398 */
bea3348e 399
9958da05 400DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 401EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 402
1a33e10e
CW
403#ifdef CONFIG_LOCKDEP
404/*
405 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
406 * according to dev->type
407 */
408static const unsigned short netdev_lock_type[] = {
409 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
410 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
411 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
412 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
413 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
414 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
415 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
416 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
417 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
418 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
419 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
420 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
421 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
422 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
423 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
424
425static const char *const netdev_lock_name[] = {
426 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
427 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
428 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
429 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
430 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
431 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
432 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
433 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
434 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
435 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
436 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
437 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
438 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
439 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
440 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
441
442static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
845e0ebb 443static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
1a33e10e
CW
444
445static inline unsigned short netdev_lock_pos(unsigned short dev_type)
446{
447 int i;
448
449 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
450 if (netdev_lock_type[i] == dev_type)
451 return i;
452 /* the last key is used by default */
453 return ARRAY_SIZE(netdev_lock_type) - 1;
454}
455
456static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
457 unsigned short dev_type)
458{
459 int i;
460
461 i = netdev_lock_pos(dev_type);
462 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
463 netdev_lock_name[i]);
464}
845e0ebb
CW
465
466static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
467{
468 int i;
469
470 i = netdev_lock_pos(dev->type);
471 lockdep_set_class_and_name(&dev->addr_list_lock,
472 &netdev_addr_lock_key[i],
473 netdev_lock_name[i]);
474}
1a33e10e
CW
475#else
476static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
477 unsigned short dev_type)
478{
479}
845e0ebb
CW
480
481static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
482{
483}
1a33e10e
CW
484#endif
485
1da177e4 486/*******************************************************************************
eb13da1a 487 *
488 * Protocol management and registration routines
489 *
490 *******************************************************************************/
1da177e4 491
1da177e4 492
1da177e4
LT
493/*
494 * Add a protocol ID to the list. Now that the input handler is
495 * smarter we can dispense with all the messy stuff that used to be
496 * here.
497 *
498 * BEWARE!!! Protocol handlers, mangling input packets,
499 * MUST BE last in hash buckets and checking protocol handlers
500 * MUST start from promiscuous ptype_all chain in net_bh.
501 * It is true now, do not change it.
502 * Explanation follows: if protocol handler, mangling packet, will
503 * be the first on list, it is not able to sense, that packet
504 * is cloned and should be copied-on-write, so that it will
505 * change it and subsequent readers will get broken packet.
506 * --ANK (980803)
507 */
508
c07b68e8
ED
509static inline struct list_head *ptype_head(const struct packet_type *pt)
510{
511 if (pt->type == htons(ETH_P_ALL))
7866a621 512 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 513 else
7866a621
SN
514 return pt->dev ? &pt->dev->ptype_specific :
515 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
516}
517
1da177e4
LT
518/**
519 * dev_add_pack - add packet handler
520 * @pt: packet type declaration
521 *
522 * Add a protocol handler to the networking stack. The passed &packet_type
523 * is linked into kernel lists and may not be freed until it has been
524 * removed from the kernel lists.
525 *
4ec93edb 526 * This call does not sleep therefore it can not
1da177e4
LT
527 * guarantee all CPU's that are in middle of receiving packets
528 * will see the new packet type (until the next received packet).
529 */
530
531void dev_add_pack(struct packet_type *pt)
532{
c07b68e8 533 struct list_head *head = ptype_head(pt);
1da177e4 534
c07b68e8
ED
535 spin_lock(&ptype_lock);
536 list_add_rcu(&pt->list, head);
537 spin_unlock(&ptype_lock);
1da177e4 538}
d1b19dff 539EXPORT_SYMBOL(dev_add_pack);
1da177e4 540
1da177e4
LT
541/**
542 * __dev_remove_pack - remove packet handler
543 * @pt: packet type declaration
544 *
545 * Remove a protocol handler that was previously added to the kernel
546 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
547 * from the kernel lists and can be freed or reused once this function
4ec93edb 548 * returns.
1da177e4
LT
549 *
550 * The packet type might still be in use by receivers
551 * and must not be freed until after all the CPU's have gone
552 * through a quiescent state.
553 */
554void __dev_remove_pack(struct packet_type *pt)
555{
c07b68e8 556 struct list_head *head = ptype_head(pt);
1da177e4
LT
557 struct packet_type *pt1;
558
c07b68e8 559 spin_lock(&ptype_lock);
1da177e4
LT
560
561 list_for_each_entry(pt1, head, list) {
562 if (pt == pt1) {
563 list_del_rcu(&pt->list);
564 goto out;
565 }
566 }
567
7b6cd1ce 568 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 569out:
c07b68e8 570 spin_unlock(&ptype_lock);
1da177e4 571}
d1b19dff
ED
572EXPORT_SYMBOL(__dev_remove_pack);
573
1da177e4
LT
574/**
575 * dev_remove_pack - remove packet handler
576 * @pt: packet type declaration
577 *
578 * Remove a protocol handler that was previously added to the kernel
579 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
580 * from the kernel lists and can be freed or reused once this function
581 * returns.
582 *
583 * This call sleeps to guarantee that no CPU is looking at the packet
584 * type after return.
585 */
586void dev_remove_pack(struct packet_type *pt)
587{
588 __dev_remove_pack(pt);
4ec93edb 589
1da177e4
LT
590 synchronize_net();
591}
d1b19dff 592EXPORT_SYMBOL(dev_remove_pack);
1da177e4 593
62532da9
VY
594
595/**
596 * dev_add_offload - register offload handlers
597 * @po: protocol offload declaration
598 *
599 * Add protocol offload handlers to the networking stack. The passed
600 * &proto_offload is linked into kernel lists and may not be freed until
601 * it has been removed from the kernel lists.
602 *
603 * This call does not sleep therefore it can not
604 * guarantee all CPU's that are in middle of receiving packets
605 * will see the new offload handlers (until the next received packet).
606 */
607void dev_add_offload(struct packet_offload *po)
608{
bdef7de4 609 struct packet_offload *elem;
62532da9
VY
610
611 spin_lock(&offload_lock);
bdef7de4
DM
612 list_for_each_entry(elem, &offload_base, list) {
613 if (po->priority < elem->priority)
614 break;
615 }
616 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
617 spin_unlock(&offload_lock);
618}
619EXPORT_SYMBOL(dev_add_offload);
620
621/**
622 * __dev_remove_offload - remove offload handler
623 * @po: packet offload declaration
624 *
625 * Remove a protocol offload handler that was previously added to the
626 * kernel offload handlers by dev_add_offload(). The passed &offload_type
627 * is removed from the kernel lists and can be freed or reused once this
628 * function returns.
629 *
630 * The packet type might still be in use by receivers
631 * and must not be freed until after all the CPU's have gone
632 * through a quiescent state.
633 */
1d143d9f 634static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
635{
636 struct list_head *head = &offload_base;
637 struct packet_offload *po1;
638
c53aa505 639 spin_lock(&offload_lock);
62532da9
VY
640
641 list_for_each_entry(po1, head, list) {
642 if (po == po1) {
643 list_del_rcu(&po->list);
644 goto out;
645 }
646 }
647
648 pr_warn("dev_remove_offload: %p not found\n", po);
649out:
c53aa505 650 spin_unlock(&offload_lock);
62532da9 651}
62532da9
VY
652
653/**
654 * dev_remove_offload - remove packet offload handler
655 * @po: packet offload declaration
656 *
657 * Remove a packet offload handler that was previously added to the kernel
658 * offload handlers by dev_add_offload(). The passed &offload_type is
659 * removed from the kernel lists and can be freed or reused once this
660 * function returns.
661 *
662 * This call sleeps to guarantee that no CPU is looking at the packet
663 * type after return.
664 */
665void dev_remove_offload(struct packet_offload *po)
666{
667 __dev_remove_offload(po);
668
669 synchronize_net();
670}
671EXPORT_SYMBOL(dev_remove_offload);
672
1da177e4 673/******************************************************************************
eb13da1a 674 *
675 * Device Boot-time Settings Routines
676 *
677 ******************************************************************************/
1da177e4
LT
678
679/* Boot time configuration table */
680static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
681
682/**
683 * netdev_boot_setup_add - add new setup entry
684 * @name: name of the device
685 * @map: configured settings for the device
686 *
687 * Adds new setup entry to the dev_boot_setup list. The function
688 * returns 0 on error and 1 on success. This is a generic routine to
689 * all netdevices.
690 */
691static int netdev_boot_setup_add(char *name, struct ifmap *map)
692{
693 struct netdev_boot_setup *s;
694 int i;
695
696 s = dev_boot_setup;
697 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
698 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
699 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 700 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
701 memcpy(&s[i].map, map, sizeof(s[i].map));
702 break;
703 }
704 }
705
706 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
707}
708
709/**
722c9a0c 710 * netdev_boot_setup_check - check boot time settings
711 * @dev: the netdevice
1da177e4 712 *
722c9a0c 713 * Check boot time settings for the device.
714 * The found settings are set for the device to be used
715 * later in the device probing.
716 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
717 */
718int netdev_boot_setup_check(struct net_device *dev)
719{
720 struct netdev_boot_setup *s = dev_boot_setup;
721 int i;
722
723 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
724 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 725 !strcmp(dev->name, s[i].name)) {
722c9a0c 726 dev->irq = s[i].map.irq;
727 dev->base_addr = s[i].map.base_addr;
728 dev->mem_start = s[i].map.mem_start;
729 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
730 return 1;
731 }
732 }
733 return 0;
734}
d1b19dff 735EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
736
737
738/**
722c9a0c 739 * netdev_boot_base - get address from boot time settings
740 * @prefix: prefix for network device
741 * @unit: id for network device
742 *
743 * Check boot time settings for the base address of device.
744 * The found settings are set for the device to be used
745 * later in the device probing.
746 * Returns 0 if no settings found.
1da177e4
LT
747 */
748unsigned long netdev_boot_base(const char *prefix, int unit)
749{
750 const struct netdev_boot_setup *s = dev_boot_setup;
751 char name[IFNAMSIZ];
752 int i;
753
754 sprintf(name, "%s%d", prefix, unit);
755
756 /*
757 * If device already registered then return base of 1
758 * to indicate not to probe for this interface
759 */
881d966b 760 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
761 return 1;
762
763 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
764 if (!strcmp(name, s[i].name))
765 return s[i].map.base_addr;
766 return 0;
767}
768
769/*
770 * Saves at boot time configured settings for any netdevice.
771 */
772int __init netdev_boot_setup(char *str)
773{
774 int ints[5];
775 struct ifmap map;
776
777 str = get_options(str, ARRAY_SIZE(ints), ints);
778 if (!str || !*str)
779 return 0;
780
781 /* Save settings */
782 memset(&map, 0, sizeof(map));
783 if (ints[0] > 0)
784 map.irq = ints[1];
785 if (ints[0] > 1)
786 map.base_addr = ints[2];
787 if (ints[0] > 2)
788 map.mem_start = ints[3];
789 if (ints[0] > 3)
790 map.mem_end = ints[4];
791
792 /* Add new entry to the list */
793 return netdev_boot_setup_add(str, &map);
794}
795
796__setup("netdev=", netdev_boot_setup);
797
798/*******************************************************************************
eb13da1a 799 *
800 * Device Interface Subroutines
801 *
802 *******************************************************************************/
1da177e4 803
a54acb3a
ND
804/**
805 * dev_get_iflink - get 'iflink' value of a interface
806 * @dev: targeted interface
807 *
808 * Indicates the ifindex the interface is linked to.
809 * Physical interfaces have the same 'ifindex' and 'iflink' values.
810 */
811
812int dev_get_iflink(const struct net_device *dev)
813{
814 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
815 return dev->netdev_ops->ndo_get_iflink(dev);
816
7a66bbc9 817 return dev->ifindex;
a54acb3a
ND
818}
819EXPORT_SYMBOL(dev_get_iflink);
820
fc4099f1
PS
821/**
822 * dev_fill_metadata_dst - Retrieve tunnel egress information.
823 * @dev: targeted interface
824 * @skb: The packet.
825 *
826 * For better visibility of tunnel traffic OVS needs to retrieve
827 * egress tunnel information for a packet. Following API allows
828 * user to get this info.
829 */
830int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
831{
832 struct ip_tunnel_info *info;
833
834 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
835 return -EINVAL;
836
837 info = skb_tunnel_info_unclone(skb);
838 if (!info)
839 return -ENOMEM;
840 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
841 return -EINVAL;
842
843 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
844}
845EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
846
1da177e4
LT
847/**
848 * __dev_get_by_name - find a device by its name
c4ea43c5 849 * @net: the applicable net namespace
1da177e4
LT
850 * @name: name to find
851 *
852 * Find an interface by name. Must be called under RTNL semaphore
853 * or @dev_base_lock. If the name is found a pointer to the device
854 * is returned. If the name is not found then %NULL is returned. The
855 * reference counters are not incremented so the caller must be
856 * careful with locks.
857 */
858
881d966b 859struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 860{
ff927412 861 struct netdev_name_node *node_name;
1da177e4 862
ff927412
JP
863 node_name = netdev_name_node_lookup(net, name);
864 return node_name ? node_name->dev : NULL;
1da177e4 865}
d1b19dff 866EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 867
72c9528b 868/**
722c9a0c 869 * dev_get_by_name_rcu - find a device by its name
870 * @net: the applicable net namespace
871 * @name: name to find
872 *
873 * Find an interface by name.
874 * If the name is found a pointer to the device is returned.
875 * If the name is not found then %NULL is returned.
876 * The reference counters are not incremented so the caller must be
877 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
878 */
879
880struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
881{
ff927412 882 struct netdev_name_node *node_name;
72c9528b 883
ff927412
JP
884 node_name = netdev_name_node_lookup_rcu(net, name);
885 return node_name ? node_name->dev : NULL;
72c9528b
ED
886}
887EXPORT_SYMBOL(dev_get_by_name_rcu);
888
1da177e4
LT
889/**
890 * dev_get_by_name - find a device by its name
c4ea43c5 891 * @net: the applicable net namespace
1da177e4
LT
892 * @name: name to find
893 *
894 * Find an interface by name. This can be called from any
895 * context and does its own locking. The returned handle has
896 * the usage count incremented and the caller must use dev_put() to
897 * release it when it is no longer needed. %NULL is returned if no
898 * matching device is found.
899 */
900
881d966b 901struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
902{
903 struct net_device *dev;
904
72c9528b
ED
905 rcu_read_lock();
906 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
907 if (dev)
908 dev_hold(dev);
72c9528b 909 rcu_read_unlock();
1da177e4
LT
910 return dev;
911}
d1b19dff 912EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
913
914/**
915 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 916 * @net: the applicable net namespace
1da177e4
LT
917 * @ifindex: index of device
918 *
919 * Search for an interface by index. Returns %NULL if the device
920 * is not found or a pointer to the device. The device has not
921 * had its reference counter increased so the caller must be careful
922 * about locking. The caller must hold either the RTNL semaphore
923 * or @dev_base_lock.
924 */
925
881d966b 926struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 927{
0bd8d536
ED
928 struct net_device *dev;
929 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 930
b67bfe0d 931 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
932 if (dev->ifindex == ifindex)
933 return dev;
0bd8d536 934
1da177e4
LT
935 return NULL;
936}
d1b19dff 937EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 938
fb699dfd
ED
939/**
940 * dev_get_by_index_rcu - find a device by its ifindex
941 * @net: the applicable net namespace
942 * @ifindex: index of device
943 *
944 * Search for an interface by index. Returns %NULL if the device
945 * is not found or a pointer to the device. The device has not
946 * had its reference counter increased so the caller must be careful
947 * about locking. The caller must hold RCU lock.
948 */
949
950struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
951{
fb699dfd
ED
952 struct net_device *dev;
953 struct hlist_head *head = dev_index_hash(net, ifindex);
954
b67bfe0d 955 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
956 if (dev->ifindex == ifindex)
957 return dev;
958
959 return NULL;
960}
961EXPORT_SYMBOL(dev_get_by_index_rcu);
962
1da177e4
LT
963
964/**
965 * dev_get_by_index - find a device by its ifindex
c4ea43c5 966 * @net: the applicable net namespace
1da177e4
LT
967 * @ifindex: index of device
968 *
969 * Search for an interface by index. Returns NULL if the device
970 * is not found or a pointer to the device. The device returned has
971 * had a reference added and the pointer is safe until the user calls
972 * dev_put to indicate they have finished with it.
973 */
974
881d966b 975struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
976{
977 struct net_device *dev;
978
fb699dfd
ED
979 rcu_read_lock();
980 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
981 if (dev)
982 dev_hold(dev);
fb699dfd 983 rcu_read_unlock();
1da177e4
LT
984 return dev;
985}
d1b19dff 986EXPORT_SYMBOL(dev_get_by_index);
1da177e4 987
90b602f8
ML
988/**
989 * dev_get_by_napi_id - find a device by napi_id
990 * @napi_id: ID of the NAPI struct
991 *
992 * Search for an interface by NAPI ID. Returns %NULL if the device
993 * is not found or a pointer to the device. The device has not had
994 * its reference counter increased so the caller must be careful
995 * about locking. The caller must hold RCU lock.
996 */
997
998struct net_device *dev_get_by_napi_id(unsigned int napi_id)
999{
1000 struct napi_struct *napi;
1001
1002 WARN_ON_ONCE(!rcu_read_lock_held());
1003
1004 if (napi_id < MIN_NAPI_ID)
1005 return NULL;
1006
1007 napi = napi_by_id(napi_id);
1008
1009 return napi ? napi->dev : NULL;
1010}
1011EXPORT_SYMBOL(dev_get_by_napi_id);
1012
5dbe7c17
NS
1013/**
1014 * netdev_get_name - get a netdevice name, knowing its ifindex.
1015 * @net: network namespace
1016 * @name: a pointer to the buffer where the name will be stored.
1017 * @ifindex: the ifindex of the interface to get the name from.
5dbe7c17
NS
1018 */
1019int netdev_get_name(struct net *net, char *name, int ifindex)
1020{
1021 struct net_device *dev;
11d6011c 1022 int ret;
5dbe7c17 1023
11d6011c 1024 down_read(&devnet_rename_sem);
5dbe7c17 1025 rcu_read_lock();
11d6011c 1026
5dbe7c17
NS
1027 dev = dev_get_by_index_rcu(net, ifindex);
1028 if (!dev) {
11d6011c
AD
1029 ret = -ENODEV;
1030 goto out;
5dbe7c17
NS
1031 }
1032
1033 strcpy(name, dev->name);
5dbe7c17 1034
11d6011c
AD
1035 ret = 0;
1036out:
1037 rcu_read_unlock();
1038 up_read(&devnet_rename_sem);
1039 return ret;
5dbe7c17
NS
1040}
1041
1da177e4 1042/**
941666c2 1043 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 1044 * @net: the applicable net namespace
1da177e4
LT
1045 * @type: media type of device
1046 * @ha: hardware address
1047 *
1048 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
1049 * is not found or a pointer to the device.
1050 * The caller must hold RCU or RTNL.
941666c2 1051 * The returned device has not had its ref count increased
1da177e4
LT
1052 * and the caller must therefore be careful about locking
1053 *
1da177e4
LT
1054 */
1055
941666c2
ED
1056struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1057 const char *ha)
1da177e4
LT
1058{
1059 struct net_device *dev;
1060
941666c2 1061 for_each_netdev_rcu(net, dev)
1da177e4
LT
1062 if (dev->type == type &&
1063 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
1064 return dev;
1065
1066 return NULL;
1da177e4 1067}
941666c2 1068EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 1069
881d966b 1070struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
1071{
1072 struct net_device *dev;
1073
4e9cac2b 1074 ASSERT_RTNL();
881d966b 1075 for_each_netdev(net, dev)
4e9cac2b 1076 if (dev->type == type)
7562f876
PE
1077 return dev;
1078
1079 return NULL;
4e9cac2b 1080}
4e9cac2b
PM
1081EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1082
881d966b 1083struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 1084{
99fe3c39 1085 struct net_device *dev, *ret = NULL;
4e9cac2b 1086
99fe3c39
ED
1087 rcu_read_lock();
1088 for_each_netdev_rcu(net, dev)
1089 if (dev->type == type) {
1090 dev_hold(dev);
1091 ret = dev;
1092 break;
1093 }
1094 rcu_read_unlock();
1095 return ret;
1da177e4 1096}
1da177e4
LT
1097EXPORT_SYMBOL(dev_getfirstbyhwtype);
1098
1099/**
6c555490 1100 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1101 * @net: the applicable net namespace
1da177e4
LT
1102 * @if_flags: IFF_* values
1103 * @mask: bitmask of bits in if_flags to check
1104 *
1105 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1106 * is not found or a pointer to the device. Must be called inside
6c555490 1107 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1108 */
1109
6c555490
WC
1110struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1111 unsigned short mask)
1da177e4 1112{
7562f876 1113 struct net_device *dev, *ret;
1da177e4 1114
6c555490
WC
1115 ASSERT_RTNL();
1116
7562f876 1117 ret = NULL;
6c555490 1118 for_each_netdev(net, dev) {
1da177e4 1119 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1120 ret = dev;
1da177e4
LT
1121 break;
1122 }
1123 }
7562f876 1124 return ret;
1da177e4 1125}
6c555490 1126EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1127
1128/**
1129 * dev_valid_name - check if name is okay for network device
1130 * @name: name string
1131 *
1132 * Network device names need to be valid file names to
c7fa9d18
DM
1133 * to allow sysfs to work. We also disallow any kind of
1134 * whitespace.
1da177e4 1135 */
95f050bf 1136bool dev_valid_name(const char *name)
1da177e4 1137{
c7fa9d18 1138 if (*name == '\0')
95f050bf 1139 return false;
a9d48205 1140 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1141 return false;
c7fa9d18 1142 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1143 return false;
c7fa9d18
DM
1144
1145 while (*name) {
a4176a93 1146 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1147 return false;
c7fa9d18
DM
1148 name++;
1149 }
95f050bf 1150 return true;
1da177e4 1151}
d1b19dff 1152EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1153
1154/**
b267b179
EB
1155 * __dev_alloc_name - allocate a name for a device
1156 * @net: network namespace to allocate the device name in
1da177e4 1157 * @name: name format string
b267b179 1158 * @buf: scratch buffer and result name string
1da177e4
LT
1159 *
1160 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1161 * id. It scans list of devices to build up a free map, then chooses
1162 * the first empty slot. The caller must hold the dev_base or rtnl lock
1163 * while allocating the name and adding the device in order to avoid
1164 * duplicates.
1165 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1166 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1167 */
1168
b267b179 1169static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1170{
1171 int i = 0;
1da177e4
LT
1172 const char *p;
1173 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1174 unsigned long *inuse;
1da177e4
LT
1175 struct net_device *d;
1176
93809105
RV
1177 if (!dev_valid_name(name))
1178 return -EINVAL;
1179
51f299dd 1180 p = strchr(name, '%');
1da177e4
LT
1181 if (p) {
1182 /*
1183 * Verify the string as this thing may have come from
1184 * the user. There must be either one "%d" and no other "%"
1185 * characters.
1186 */
1187 if (p[1] != 'd' || strchr(p + 2, '%'))
1188 return -EINVAL;
1189
1190 /* Use one page as a bit array of possible slots */
cfcabdcc 1191 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1192 if (!inuse)
1193 return -ENOMEM;
1194
881d966b 1195 for_each_netdev(net, d) {
1da177e4
LT
1196 if (!sscanf(d->name, name, &i))
1197 continue;
1198 if (i < 0 || i >= max_netdevices)
1199 continue;
1200
1201 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1202 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1203 if (!strncmp(buf, d->name, IFNAMSIZ))
1204 set_bit(i, inuse);
1205 }
1206
1207 i = find_first_zero_bit(inuse, max_netdevices);
1208 free_page((unsigned long) inuse);
1209 }
1210
6224abda 1211 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1212 if (!__dev_get_by_name(net, buf))
1da177e4 1213 return i;
1da177e4
LT
1214
1215 /* It is possible to run out of possible slots
1216 * when the name is long and there isn't enough space left
1217 * for the digits, or if all bits are used.
1218 */
029b6d14 1219 return -ENFILE;
1da177e4
LT
1220}
1221
2c88b855
RV
1222static int dev_alloc_name_ns(struct net *net,
1223 struct net_device *dev,
1224 const char *name)
1225{
1226 char buf[IFNAMSIZ];
1227 int ret;
1228
c46d7642 1229 BUG_ON(!net);
2c88b855
RV
1230 ret = __dev_alloc_name(net, name, buf);
1231 if (ret >= 0)
1232 strlcpy(dev->name, buf, IFNAMSIZ);
1233 return ret;
1da177e4
LT
1234}
1235
b267b179
EB
1236/**
1237 * dev_alloc_name - allocate a name for a device
1238 * @dev: device
1239 * @name: name format string
1240 *
1241 * Passed a format string - eg "lt%d" it will try and find a suitable
1242 * id. It scans list of devices to build up a free map, then chooses
1243 * the first empty slot. The caller must hold the dev_base or rtnl lock
1244 * while allocating the name and adding the device in order to avoid
1245 * duplicates.
1246 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1247 * Returns the number of the unit assigned or a negative errno code.
1248 */
1249
1250int dev_alloc_name(struct net_device *dev, const char *name)
1251{
c46d7642 1252 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1253}
d1b19dff 1254EXPORT_SYMBOL(dev_alloc_name);
b267b179 1255
bacb7e18
ED
1256static int dev_get_valid_name(struct net *net, struct net_device *dev,
1257 const char *name)
828de4f6 1258{
55a5ec9b
DM
1259 BUG_ON(!net);
1260
1261 if (!dev_valid_name(name))
1262 return -EINVAL;
1263
1264 if (strchr(name, '%'))
1265 return dev_alloc_name_ns(net, dev, name);
1266 else if (__dev_get_by_name(net, name))
1267 return -EEXIST;
1268 else if (dev->name != name)
1269 strlcpy(dev->name, name, IFNAMSIZ);
1270
1271 return 0;
d9031024 1272}
1da177e4
LT
1273
1274/**
1275 * dev_change_name - change name of a device
1276 * @dev: device
1277 * @newname: name (or format string) must be at least IFNAMSIZ
1278 *
1279 * Change name of a device, can pass format strings "eth%d".
1280 * for wildcarding.
1281 */
cf04a4c7 1282int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1283{
238fa362 1284 unsigned char old_assign_type;
fcc5a03a 1285 char oldname[IFNAMSIZ];
1da177e4 1286 int err = 0;
fcc5a03a 1287 int ret;
881d966b 1288 struct net *net;
1da177e4
LT
1289
1290 ASSERT_RTNL();
c346dca1 1291 BUG_ON(!dev_net(dev));
1da177e4 1292
c346dca1 1293 net = dev_net(dev);
8065a779
SWL
1294
1295 /* Some auto-enslaved devices e.g. failover slaves are
1296 * special, as userspace might rename the device after
1297 * the interface had been brought up and running since
1298 * the point kernel initiated auto-enslavement. Allow
1299 * live name change even when these slave devices are
1300 * up and running.
1301 *
1302 * Typically, users of these auto-enslaving devices
1303 * don't actually care about slave name change, as
1304 * they are supposed to operate on master interface
1305 * directly.
1306 */
1307 if (dev->flags & IFF_UP &&
1308 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1309 return -EBUSY;
1310
11d6011c 1311 down_write(&devnet_rename_sem);
c91f6df2
BH
1312
1313 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
11d6011c 1314 up_write(&devnet_rename_sem);
c8d90dca 1315 return 0;
c91f6df2 1316 }
c8d90dca 1317
fcc5a03a
HX
1318 memcpy(oldname, dev->name, IFNAMSIZ);
1319
828de4f6 1320 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1321 if (err < 0) {
11d6011c 1322 up_write(&devnet_rename_sem);
d9031024 1323 return err;
c91f6df2 1324 }
1da177e4 1325
6fe82a39
VF
1326 if (oldname[0] && !strchr(oldname, '%'))
1327 netdev_info(dev, "renamed from %s\n", oldname);
1328
238fa362
TG
1329 old_assign_type = dev->name_assign_type;
1330 dev->name_assign_type = NET_NAME_RENAMED;
1331
fcc5a03a 1332rollback:
a1b3f594
EB
1333 ret = device_rename(&dev->dev, dev->name);
1334 if (ret) {
1335 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1336 dev->name_assign_type = old_assign_type;
11d6011c 1337 up_write(&devnet_rename_sem);
a1b3f594 1338 return ret;
dcc99773 1339 }
7f988eab 1340
11d6011c 1341 up_write(&devnet_rename_sem);
c91f6df2 1342
5bb025fa
VF
1343 netdev_adjacent_rename_links(dev, oldname);
1344
7f988eab 1345 write_lock_bh(&dev_base_lock);
ff927412 1346 netdev_name_node_del(dev->name_node);
72c9528b
ED
1347 write_unlock_bh(&dev_base_lock);
1348
1349 synchronize_rcu();
1350
1351 write_lock_bh(&dev_base_lock);
ff927412 1352 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1353 write_unlock_bh(&dev_base_lock);
1354
056925ab 1355 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1356 ret = notifier_to_errno(ret);
1357
1358 if (ret) {
91e9c07b
ED
1359 /* err >= 0 after dev_alloc_name() or stores the first errno */
1360 if (err >= 0) {
fcc5a03a 1361 err = ret;
11d6011c 1362 down_write(&devnet_rename_sem);
fcc5a03a 1363 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1364 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1365 dev->name_assign_type = old_assign_type;
1366 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1367 goto rollback;
91e9c07b 1368 } else {
7b6cd1ce 1369 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1370 dev->name, ret);
fcc5a03a
HX
1371 }
1372 }
1da177e4
LT
1373
1374 return err;
1375}
1376
0b815a1a
SH
1377/**
1378 * dev_set_alias - change ifalias of a device
1379 * @dev: device
1380 * @alias: name up to IFALIASZ
f0db275a 1381 * @len: limit of bytes to copy from info
0b815a1a
SH
1382 *
1383 * Set ifalias for a device,
1384 */
1385int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1386{
6c557001 1387 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1388
1389 if (len >= IFALIASZ)
1390 return -EINVAL;
1391
6c557001
FW
1392 if (len) {
1393 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1394 if (!new_alias)
1395 return -ENOMEM;
1396
1397 memcpy(new_alias->ifalias, alias, len);
1398 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1399 }
1400
6c557001 1401 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1402 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1403 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1404 mutex_unlock(&ifalias_mutex);
1405
1406 if (new_alias)
1407 kfree_rcu(new_alias, rcuhead);
0b815a1a 1408
0b815a1a
SH
1409 return len;
1410}
0fe554a4 1411EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1412
6c557001
FW
1413/**
1414 * dev_get_alias - get ifalias of a device
1415 * @dev: device
20e88320 1416 * @name: buffer to store name of ifalias
6c557001
FW
1417 * @len: size of buffer
1418 *
1419 * get ifalias for a device. Caller must make sure dev cannot go
1420 * away, e.g. rcu read lock or own a reference count to device.
1421 */
1422int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1423{
1424 const struct dev_ifalias *alias;
1425 int ret = 0;
1426
1427 rcu_read_lock();
1428 alias = rcu_dereference(dev->ifalias);
1429 if (alias)
1430 ret = snprintf(name, len, "%s", alias->ifalias);
1431 rcu_read_unlock();
1432
1433 return ret;
1434}
0b815a1a 1435
d8a33ac4 1436/**
3041a069 1437 * netdev_features_change - device changes features
d8a33ac4
SH
1438 * @dev: device to cause notification
1439 *
1440 * Called to indicate a device has changed features.
1441 */
1442void netdev_features_change(struct net_device *dev)
1443{
056925ab 1444 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1445}
1446EXPORT_SYMBOL(netdev_features_change);
1447
1da177e4
LT
1448/**
1449 * netdev_state_change - device changes state
1450 * @dev: device to cause notification
1451 *
1452 * Called to indicate a device has changed state. This function calls
1453 * the notifier chains for netdev_chain and sends a NEWLINK message
1454 * to the routing socket.
1455 */
1456void netdev_state_change(struct net_device *dev)
1457{
1458 if (dev->flags & IFF_UP) {
51d0c047
DA
1459 struct netdev_notifier_change_info change_info = {
1460 .info.dev = dev,
1461 };
54951194 1462
51d0c047 1463 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1464 &change_info.info);
7f294054 1465 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1466 }
1467}
d1b19dff 1468EXPORT_SYMBOL(netdev_state_change);
1da177e4 1469
ee89bab1 1470/**
722c9a0c 1471 * netdev_notify_peers - notify network peers about existence of @dev
1472 * @dev: network device
ee89bab1
AW
1473 *
1474 * Generate traffic such that interested network peers are aware of
1475 * @dev, such as by generating a gratuitous ARP. This may be used when
1476 * a device wants to inform the rest of the network about some sort of
1477 * reconfiguration such as a failover event or virtual machine
1478 * migration.
1479 */
1480void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1481{
ee89bab1
AW
1482 rtnl_lock();
1483 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1484 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1485 rtnl_unlock();
c1da4ac7 1486}
ee89bab1 1487EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1488
40c900aa 1489static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1490{
d314774c 1491 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1492 int ret;
1da177e4 1493
e46b66bc
BH
1494 ASSERT_RTNL();
1495
bd869245
HK
1496 if (!netif_device_present(dev)) {
1497 /* may be detached because parent is runtime-suspended */
1498 if (dev->dev.parent)
1499 pm_runtime_resume(dev->dev.parent);
1500 if (!netif_device_present(dev))
1501 return -ENODEV;
1502 }
1da177e4 1503
ca99ca14
NH
1504 /* Block netpoll from trying to do any rx path servicing.
1505 * If we don't do this there is a chance ndo_poll_controller
1506 * or ndo_poll may be running while we open the device
1507 */
66b5552f 1508 netpoll_poll_disable(dev);
ca99ca14 1509
40c900aa 1510 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1511 ret = notifier_to_errno(ret);
1512 if (ret)
1513 return ret;
1514
1da177e4 1515 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1516
d314774c
SH
1517 if (ops->ndo_validate_addr)
1518 ret = ops->ndo_validate_addr(dev);
bada339b 1519
d314774c
SH
1520 if (!ret && ops->ndo_open)
1521 ret = ops->ndo_open(dev);
1da177e4 1522
66b5552f 1523 netpoll_poll_enable(dev);
ca99ca14 1524
bada339b
JG
1525 if (ret)
1526 clear_bit(__LINK_STATE_START, &dev->state);
1527 else {
1da177e4 1528 dev->flags |= IFF_UP;
4417da66 1529 dev_set_rx_mode(dev);
1da177e4 1530 dev_activate(dev);
7bf23575 1531 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1532 }
bada339b 1533
1da177e4
LT
1534 return ret;
1535}
1536
1537/**
bd380811 1538 * dev_open - prepare an interface for use.
00f54e68
PM
1539 * @dev: device to open
1540 * @extack: netlink extended ack
1da177e4 1541 *
bd380811
PM
1542 * Takes a device from down to up state. The device's private open
1543 * function is invoked and then the multicast lists are loaded. Finally
1544 * the device is moved into the up state and a %NETDEV_UP message is
1545 * sent to the netdev notifier chain.
1546 *
1547 * Calling this function on an active interface is a nop. On a failure
1548 * a negative errno code is returned.
1da177e4 1549 */
00f54e68 1550int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1551{
1552 int ret;
1553
bd380811
PM
1554 if (dev->flags & IFF_UP)
1555 return 0;
1556
40c900aa 1557 ret = __dev_open(dev, extack);
bd380811
PM
1558 if (ret < 0)
1559 return ret;
1560
7f294054 1561 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1562 call_netdevice_notifiers(NETDEV_UP, dev);
1563
1564 return ret;
1565}
1566EXPORT_SYMBOL(dev_open);
1567
7051b88a 1568static void __dev_close_many(struct list_head *head)
1da177e4 1569{
44345724 1570 struct net_device *dev;
e46b66bc 1571
bd380811 1572 ASSERT_RTNL();
9d5010db
DM
1573 might_sleep();
1574
5cde2829 1575 list_for_each_entry(dev, head, close_list) {
3f4df206 1576 /* Temporarily disable netpoll until the interface is down */
66b5552f 1577 netpoll_poll_disable(dev);
3f4df206 1578
44345724 1579 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1580
44345724 1581 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1582
44345724
OP
1583 /* Synchronize to scheduled poll. We cannot touch poll list, it
1584 * can be even on different cpu. So just clear netif_running().
1585 *
1586 * dev->stop() will invoke napi_disable() on all of it's
1587 * napi_struct instances on this device.
1588 */
4e857c58 1589 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1590 }
1da177e4 1591
44345724 1592 dev_deactivate_many(head);
d8b2a4d2 1593
5cde2829 1594 list_for_each_entry(dev, head, close_list) {
44345724 1595 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1596
44345724
OP
1597 /*
1598 * Call the device specific close. This cannot fail.
1599 * Only if device is UP
1600 *
1601 * We allow it to be called even after a DETACH hot-plug
1602 * event.
1603 */
1604 if (ops->ndo_stop)
1605 ops->ndo_stop(dev);
1606
44345724 1607 dev->flags &= ~IFF_UP;
66b5552f 1608 netpoll_poll_enable(dev);
44345724 1609 }
44345724
OP
1610}
1611
7051b88a 1612static void __dev_close(struct net_device *dev)
44345724
OP
1613{
1614 LIST_HEAD(single);
1615
5cde2829 1616 list_add(&dev->close_list, &single);
7051b88a 1617 __dev_close_many(&single);
f87e6f47 1618 list_del(&single);
44345724
OP
1619}
1620
7051b88a 1621void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1622{
1623 struct net_device *dev, *tmp;
1da177e4 1624
5cde2829
EB
1625 /* Remove the devices that don't need to be closed */
1626 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1627 if (!(dev->flags & IFF_UP))
5cde2829 1628 list_del_init(&dev->close_list);
44345724
OP
1629
1630 __dev_close_many(head);
1da177e4 1631
5cde2829 1632 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1633 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1634 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1635 if (unlink)
1636 list_del_init(&dev->close_list);
44345724 1637 }
bd380811 1638}
99c4a26a 1639EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1640
1641/**
1642 * dev_close - shutdown an interface.
1643 * @dev: device to shutdown
1644 *
1645 * This function moves an active device into down state. A
1646 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1647 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1648 * chain.
1649 */
7051b88a 1650void dev_close(struct net_device *dev)
bd380811 1651{
e14a5993
ED
1652 if (dev->flags & IFF_UP) {
1653 LIST_HEAD(single);
1da177e4 1654
5cde2829 1655 list_add(&dev->close_list, &single);
99c4a26a 1656 dev_close_many(&single, true);
e14a5993
ED
1657 list_del(&single);
1658 }
1da177e4 1659}
d1b19dff 1660EXPORT_SYMBOL(dev_close);
1da177e4
LT
1661
1662
0187bdfb
BH
1663/**
1664 * dev_disable_lro - disable Large Receive Offload on a device
1665 * @dev: device
1666 *
1667 * Disable Large Receive Offload (LRO) on a net device. Must be
1668 * called under RTNL. This is needed if received packets may be
1669 * forwarded to another interface.
1670 */
1671void dev_disable_lro(struct net_device *dev)
1672{
fbe168ba
MK
1673 struct net_device *lower_dev;
1674 struct list_head *iter;
529d0489 1675
bc5787c6
MM
1676 dev->wanted_features &= ~NETIF_F_LRO;
1677 netdev_update_features(dev);
27660515 1678
22d5969f
MM
1679 if (unlikely(dev->features & NETIF_F_LRO))
1680 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1681
1682 netdev_for_each_lower_dev(dev, lower_dev, iter)
1683 dev_disable_lro(lower_dev);
0187bdfb
BH
1684}
1685EXPORT_SYMBOL(dev_disable_lro);
1686
56f5aa77
MC
1687/**
1688 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1689 * @dev: device
1690 *
1691 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1692 * called under RTNL. This is needed if Generic XDP is installed on
1693 * the device.
1694 */
1695static void dev_disable_gro_hw(struct net_device *dev)
1696{
1697 dev->wanted_features &= ~NETIF_F_GRO_HW;
1698 netdev_update_features(dev);
1699
1700 if (unlikely(dev->features & NETIF_F_GRO_HW))
1701 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1702}
1703
ede2762d
KT
1704const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1705{
1706#define N(val) \
1707 case NETDEV_##val: \
1708 return "NETDEV_" __stringify(val);
1709 switch (cmd) {
1710 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1711 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1712 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1713 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1714 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1715 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1716 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1717 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1718 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1719 N(PRE_CHANGEADDR)
3f5ecd8a 1720 }
ede2762d
KT
1721#undef N
1722 return "UNKNOWN_NETDEV_EVENT";
1723}
1724EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1725
351638e7
JP
1726static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1727 struct net_device *dev)
1728{
51d0c047
DA
1729 struct netdev_notifier_info info = {
1730 .dev = dev,
1731 };
351638e7 1732
351638e7
JP
1733 return nb->notifier_call(nb, val, &info);
1734}
0187bdfb 1735
afa0df59
JP
1736static int call_netdevice_register_notifiers(struct notifier_block *nb,
1737 struct net_device *dev)
1738{
1739 int err;
1740
1741 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1742 err = notifier_to_errno(err);
1743 if (err)
1744 return err;
1745
1746 if (!(dev->flags & IFF_UP))
1747 return 0;
1748
1749 call_netdevice_notifier(nb, NETDEV_UP, dev);
1750 return 0;
1751}
1752
1753static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1754 struct net_device *dev)
1755{
1756 if (dev->flags & IFF_UP) {
1757 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1758 dev);
1759 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1760 }
1761 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1762}
1763
1764static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1765 struct net *net)
1766{
1767 struct net_device *dev;
1768 int err;
1769
1770 for_each_netdev(net, dev) {
1771 err = call_netdevice_register_notifiers(nb, dev);
1772 if (err)
1773 goto rollback;
1774 }
1775 return 0;
1776
1777rollback:
1778 for_each_netdev_continue_reverse(net, dev)
1779 call_netdevice_unregister_notifiers(nb, dev);
1780 return err;
1781}
1782
1783static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1784 struct net *net)
1785{
1786 struct net_device *dev;
1787
1788 for_each_netdev(net, dev)
1789 call_netdevice_unregister_notifiers(nb, dev);
1790}
1791
881d966b
EB
1792static int dev_boot_phase = 1;
1793
1da177e4 1794/**
722c9a0c 1795 * register_netdevice_notifier - register a network notifier block
1796 * @nb: notifier
1da177e4 1797 *
722c9a0c 1798 * Register a notifier to be called when network device events occur.
1799 * The notifier passed is linked into the kernel structures and must
1800 * not be reused until it has been unregistered. A negative errno code
1801 * is returned on a failure.
1da177e4 1802 *
722c9a0c 1803 * When registered all registration and up events are replayed
1804 * to the new notifier to allow device to have a race free
1805 * view of the network device list.
1da177e4
LT
1806 */
1807
1808int register_netdevice_notifier(struct notifier_block *nb)
1809{
881d966b 1810 struct net *net;
1da177e4
LT
1811 int err;
1812
328fbe74
KT
1813 /* Close race with setup_net() and cleanup_net() */
1814 down_write(&pernet_ops_rwsem);
1da177e4 1815 rtnl_lock();
f07d5b94 1816 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1817 if (err)
1818 goto unlock;
881d966b
EB
1819 if (dev_boot_phase)
1820 goto unlock;
1821 for_each_net(net) {
afa0df59
JP
1822 err = call_netdevice_register_net_notifiers(nb, net);
1823 if (err)
1824 goto rollback;
1da177e4 1825 }
fcc5a03a
HX
1826
1827unlock:
1da177e4 1828 rtnl_unlock();
328fbe74 1829 up_write(&pernet_ops_rwsem);
1da177e4 1830 return err;
fcc5a03a
HX
1831
1832rollback:
afa0df59
JP
1833 for_each_net_continue_reverse(net)
1834 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1835
1836 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1837 goto unlock;
1da177e4 1838}
d1b19dff 1839EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1840
1841/**
722c9a0c 1842 * unregister_netdevice_notifier - unregister a network notifier block
1843 * @nb: notifier
1da177e4 1844 *
722c9a0c 1845 * Unregister a notifier previously registered by
1846 * register_netdevice_notifier(). The notifier is unlinked into the
1847 * kernel structures and may then be reused. A negative errno code
1848 * is returned on a failure.
7d3d43da 1849 *
722c9a0c 1850 * After unregistering unregister and down device events are synthesized
1851 * for all devices on the device list to the removed notifier to remove
1852 * the need for special case cleanup code.
1da177e4
LT
1853 */
1854
1855int unregister_netdevice_notifier(struct notifier_block *nb)
1856{
7d3d43da 1857 struct net *net;
9f514950
HX
1858 int err;
1859
328fbe74
KT
1860 /* Close race with setup_net() and cleanup_net() */
1861 down_write(&pernet_ops_rwsem);
9f514950 1862 rtnl_lock();
f07d5b94 1863 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1864 if (err)
1865 goto unlock;
1866
48b3a137
JP
1867 for_each_net(net)
1868 call_netdevice_unregister_net_notifiers(nb, net);
1869
7d3d43da 1870unlock:
9f514950 1871 rtnl_unlock();
328fbe74 1872 up_write(&pernet_ops_rwsem);
9f514950 1873 return err;
1da177e4 1874}
d1b19dff 1875EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1876
1f637703
JP
1877static int __register_netdevice_notifier_net(struct net *net,
1878 struct notifier_block *nb,
1879 bool ignore_call_fail)
1880{
1881 int err;
1882
1883 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1884 if (err)
1885 return err;
1886 if (dev_boot_phase)
1887 return 0;
1888
1889 err = call_netdevice_register_net_notifiers(nb, net);
1890 if (err && !ignore_call_fail)
1891 goto chain_unregister;
1892
1893 return 0;
1894
1895chain_unregister:
1896 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1897 return err;
1898}
1899
1900static int __unregister_netdevice_notifier_net(struct net *net,
1901 struct notifier_block *nb)
1902{
1903 int err;
1904
1905 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1906 if (err)
1907 return err;
1908
1909 call_netdevice_unregister_net_notifiers(nb, net);
1910 return 0;
1911}
1912
a30c7b42
JP
1913/**
1914 * register_netdevice_notifier_net - register a per-netns network notifier block
1915 * @net: network namespace
1916 * @nb: notifier
1917 *
1918 * Register a notifier to be called when network device events occur.
1919 * The notifier passed is linked into the kernel structures and must
1920 * not be reused until it has been unregistered. A negative errno code
1921 * is returned on a failure.
1922 *
1923 * When registered all registration and up events are replayed
1924 * to the new notifier to allow device to have a race free
1925 * view of the network device list.
1926 */
1927
1928int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1929{
1930 int err;
1931
1932 rtnl_lock();
1f637703 1933 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1934 rtnl_unlock();
1935 return err;
a30c7b42
JP
1936}
1937EXPORT_SYMBOL(register_netdevice_notifier_net);
1938
1939/**
1940 * unregister_netdevice_notifier_net - unregister a per-netns
1941 * network notifier block
1942 * @net: network namespace
1943 * @nb: notifier
1944 *
1945 * Unregister a notifier previously registered by
1946 * register_netdevice_notifier(). The notifier is unlinked into the
1947 * kernel structures and may then be reused. A negative errno code
1948 * is returned on a failure.
1949 *
1950 * After unregistering unregister and down device events are synthesized
1951 * for all devices on the device list to the removed notifier to remove
1952 * the need for special case cleanup code.
1953 */
1954
1955int unregister_netdevice_notifier_net(struct net *net,
1956 struct notifier_block *nb)
1957{
1958 int err;
1959
1960 rtnl_lock();
1f637703 1961 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1962 rtnl_unlock();
1963 return err;
1964}
1965EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1966
93642e14
JP
1967int register_netdevice_notifier_dev_net(struct net_device *dev,
1968 struct notifier_block *nb,
1969 struct netdev_net_notifier *nn)
1970{
1971 int err;
a30c7b42 1972
93642e14
JP
1973 rtnl_lock();
1974 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1975 if (!err) {
1976 nn->nb = nb;
1977 list_add(&nn->list, &dev->net_notifier_list);
1978 }
a30c7b42
JP
1979 rtnl_unlock();
1980 return err;
1981}
93642e14
JP
1982EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1983
1984int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1985 struct notifier_block *nb,
1986 struct netdev_net_notifier *nn)
1987{
1988 int err;
1989
1990 rtnl_lock();
1991 list_del(&nn->list);
1992 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1993 rtnl_unlock();
1994 return err;
1995}
1996EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1997
1998static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1999 struct net *net)
2000{
2001 struct netdev_net_notifier *nn;
2002
2003 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2004 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2005 __register_netdevice_notifier_net(net, nn->nb, true);
2006 }
2007}
a30c7b42 2008
351638e7
JP
2009/**
2010 * call_netdevice_notifiers_info - call all network notifier blocks
2011 * @val: value passed unmodified to notifier function
351638e7
JP
2012 * @info: notifier information data
2013 *
2014 * Call all network notifier blocks. Parameters and return value
2015 * are as for raw_notifier_call_chain().
2016 */
2017
1d143d9f 2018static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 2019 struct netdev_notifier_info *info)
351638e7 2020{
a30c7b42
JP
2021 struct net *net = dev_net(info->dev);
2022 int ret;
2023
351638e7 2024 ASSERT_RTNL();
a30c7b42
JP
2025
2026 /* Run per-netns notifier block chain first, then run the global one.
2027 * Hopefully, one day, the global one is going to be removed after
2028 * all notifier block registrators get converted to be per-netns.
2029 */
2030 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2031 if (ret & NOTIFY_STOP_MASK)
2032 return ret;
351638e7
JP
2033 return raw_notifier_call_chain(&netdev_chain, val, info);
2034}
351638e7 2035
26372605
PM
2036static int call_netdevice_notifiers_extack(unsigned long val,
2037 struct net_device *dev,
2038 struct netlink_ext_ack *extack)
2039{
2040 struct netdev_notifier_info info = {
2041 .dev = dev,
2042 .extack = extack,
2043 };
2044
2045 return call_netdevice_notifiers_info(val, &info);
2046}
2047
1da177e4
LT
2048/**
2049 * call_netdevice_notifiers - call all network notifier blocks
2050 * @val: value passed unmodified to notifier function
c4ea43c5 2051 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
2052 *
2053 * Call all network notifier blocks. Parameters and return value
f07d5b94 2054 * are as for raw_notifier_call_chain().
1da177e4
LT
2055 */
2056
ad7379d4 2057int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 2058{
26372605 2059 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 2060}
edf947f1 2061EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 2062
af7d6cce
SD
2063/**
2064 * call_netdevice_notifiers_mtu - call all network notifier blocks
2065 * @val: value passed unmodified to notifier function
2066 * @dev: net_device pointer passed unmodified to notifier function
2067 * @arg: additional u32 argument passed to the notifier function
2068 *
2069 * Call all network notifier blocks. Parameters and return value
2070 * are as for raw_notifier_call_chain().
2071 */
2072static int call_netdevice_notifiers_mtu(unsigned long val,
2073 struct net_device *dev, u32 arg)
2074{
2075 struct netdev_notifier_info_ext info = {
2076 .info.dev = dev,
2077 .ext.mtu = arg,
2078 };
2079
2080 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2081
2082 return call_netdevice_notifiers_info(val, &info.info);
2083}
2084
1cf51900 2085#ifdef CONFIG_NET_INGRESS
aabf6772 2086static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2087
2088void net_inc_ingress_queue(void)
2089{
aabf6772 2090 static_branch_inc(&ingress_needed_key);
4577139b
DB
2091}
2092EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2093
2094void net_dec_ingress_queue(void)
2095{
aabf6772 2096 static_branch_dec(&ingress_needed_key);
4577139b
DB
2097}
2098EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2099#endif
2100
1f211a1b 2101#ifdef CONFIG_NET_EGRESS
aabf6772 2102static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2103
2104void net_inc_egress_queue(void)
2105{
aabf6772 2106 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2107}
2108EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2109
2110void net_dec_egress_queue(void)
2111{
aabf6772 2112 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2113}
2114EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2115#endif
2116
39e83922 2117static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2118#ifdef CONFIG_JUMP_LABEL
b90e5794 2119static atomic_t netstamp_needed_deferred;
13baa00a 2120static atomic_t netstamp_wanted;
5fa8bbda 2121static void netstamp_clear(struct work_struct *work)
1da177e4 2122{
b90e5794 2123 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2124 int wanted;
b90e5794 2125
13baa00a
ED
2126 wanted = atomic_add_return(deferred, &netstamp_wanted);
2127 if (wanted > 0)
39e83922 2128 static_branch_enable(&netstamp_needed_key);
13baa00a 2129 else
39e83922 2130 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2131}
2132static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2133#endif
5fa8bbda
ED
2134
2135void net_enable_timestamp(void)
2136{
e9666d10 2137#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2138 int wanted;
2139
2140 while (1) {
2141 wanted = atomic_read(&netstamp_wanted);
2142 if (wanted <= 0)
2143 break;
2144 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2145 return;
2146 }
2147 atomic_inc(&netstamp_needed_deferred);
2148 schedule_work(&netstamp_work);
2149#else
39e83922 2150 static_branch_inc(&netstamp_needed_key);
13baa00a 2151#endif
1da177e4 2152}
d1b19dff 2153EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2154
2155void net_disable_timestamp(void)
2156{
e9666d10 2157#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2158 int wanted;
2159
2160 while (1) {
2161 wanted = atomic_read(&netstamp_wanted);
2162 if (wanted <= 1)
2163 break;
2164 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2165 return;
2166 }
2167 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2168 schedule_work(&netstamp_work);
2169#else
39e83922 2170 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2171#endif
1da177e4 2172}
d1b19dff 2173EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2174
3b098e2d 2175static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2176{
2456e855 2177 skb->tstamp = 0;
39e83922 2178 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2179 __net_timestamp(skb);
1da177e4
LT
2180}
2181
39e83922
DB
2182#define net_timestamp_check(COND, SKB) \
2183 if (static_branch_unlikely(&netstamp_needed_key)) { \
2184 if ((COND) && !(SKB)->tstamp) \
2185 __net_timestamp(SKB); \
2186 } \
3b098e2d 2187
f4b05d27 2188bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
2189{
2190 unsigned int len;
2191
2192 if (!(dev->flags & IFF_UP))
2193 return false;
2194
2195 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2196 if (skb->len <= len)
2197 return true;
2198
2199 /* if TSO is enabled, we don't care about the length as the packet
2200 * could be forwarded without being segmented before
2201 */
2202 if (skb_is_gso(skb))
2203 return true;
2204
2205 return false;
2206}
1ee481fb 2207EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2208
a0265d28
HX
2209int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2210{
4e3264d2 2211 int ret = ____dev_forward_skb(dev, skb);
a0265d28 2212
4e3264d2
MKL
2213 if (likely(!ret)) {
2214 skb->protocol = eth_type_trans(skb, dev);
2215 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2216 }
a0265d28 2217
4e3264d2 2218 return ret;
a0265d28
HX
2219}
2220EXPORT_SYMBOL_GPL(__dev_forward_skb);
2221
44540960
AB
2222/**
2223 * dev_forward_skb - loopback an skb to another netif
2224 *
2225 * @dev: destination network device
2226 * @skb: buffer to forward
2227 *
2228 * return values:
2229 * NET_RX_SUCCESS (no congestion)
6ec82562 2230 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2231 *
2232 * dev_forward_skb can be used for injecting an skb from the
2233 * start_xmit function of one device into the receive queue
2234 * of another device.
2235 *
2236 * The receiving device may be in another namespace, so
2237 * we have to clear all information in the skb that could
2238 * impact namespace isolation.
2239 */
2240int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2241{
a0265d28 2242 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2243}
2244EXPORT_SYMBOL_GPL(dev_forward_skb);
2245
71d9dec2
CG
2246static inline int deliver_skb(struct sk_buff *skb,
2247 struct packet_type *pt_prev,
2248 struct net_device *orig_dev)
2249{
1f8b977a 2250 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2251 return -ENOMEM;
63354797 2252 refcount_inc(&skb->users);
71d9dec2
CG
2253 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2254}
2255
7866a621
SN
2256static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2257 struct packet_type **pt,
fbcb2170
JP
2258 struct net_device *orig_dev,
2259 __be16 type,
7866a621
SN
2260 struct list_head *ptype_list)
2261{
2262 struct packet_type *ptype, *pt_prev = *pt;
2263
2264 list_for_each_entry_rcu(ptype, ptype_list, list) {
2265 if (ptype->type != type)
2266 continue;
2267 if (pt_prev)
fbcb2170 2268 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2269 pt_prev = ptype;
2270 }
2271 *pt = pt_prev;
2272}
2273
c0de08d0
EL
2274static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2275{
a3d744e9 2276 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2277 return false;
2278
2279 if (ptype->id_match)
2280 return ptype->id_match(ptype, skb->sk);
2281 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2282 return true;
2283
2284 return false;
2285}
2286
9f9a742d
MR
2287/**
2288 * dev_nit_active - return true if any network interface taps are in use
2289 *
2290 * @dev: network device to check for the presence of taps
2291 */
2292bool dev_nit_active(struct net_device *dev)
2293{
2294 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2295}
2296EXPORT_SYMBOL_GPL(dev_nit_active);
2297
1da177e4
LT
2298/*
2299 * Support routine. Sends outgoing frames to any network
2300 * taps currently in use.
2301 */
2302
74b20582 2303void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2304{
2305 struct packet_type *ptype;
71d9dec2
CG
2306 struct sk_buff *skb2 = NULL;
2307 struct packet_type *pt_prev = NULL;
7866a621 2308 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2309
1da177e4 2310 rcu_read_lock();
7866a621
SN
2311again:
2312 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2313 if (ptype->ignore_outgoing)
2314 continue;
2315
1da177e4
LT
2316 /* Never send packets back to the socket
2317 * they originated from - MvS (miquels@drinkel.ow.org)
2318 */
7866a621
SN
2319 if (skb_loop_sk(ptype, skb))
2320 continue;
71d9dec2 2321
7866a621
SN
2322 if (pt_prev) {
2323 deliver_skb(skb2, pt_prev, skb->dev);
2324 pt_prev = ptype;
2325 continue;
2326 }
1da177e4 2327
7866a621
SN
2328 /* need to clone skb, done only once */
2329 skb2 = skb_clone(skb, GFP_ATOMIC);
2330 if (!skb2)
2331 goto out_unlock;
70978182 2332
7866a621 2333 net_timestamp_set(skb2);
1da177e4 2334
7866a621
SN
2335 /* skb->nh should be correctly
2336 * set by sender, so that the second statement is
2337 * just protection against buggy protocols.
2338 */
2339 skb_reset_mac_header(skb2);
2340
2341 if (skb_network_header(skb2) < skb2->data ||
2342 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2343 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2344 ntohs(skb2->protocol),
2345 dev->name);
2346 skb_reset_network_header(skb2);
1da177e4 2347 }
7866a621
SN
2348
2349 skb2->transport_header = skb2->network_header;
2350 skb2->pkt_type = PACKET_OUTGOING;
2351 pt_prev = ptype;
2352 }
2353
2354 if (ptype_list == &ptype_all) {
2355 ptype_list = &dev->ptype_all;
2356 goto again;
1da177e4 2357 }
7866a621 2358out_unlock:
581fe0ea
WB
2359 if (pt_prev) {
2360 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2361 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2362 else
2363 kfree_skb(skb2);
2364 }
1da177e4
LT
2365 rcu_read_unlock();
2366}
74b20582 2367EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2368
2c53040f
BH
2369/**
2370 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2371 * @dev: Network device
2372 * @txq: number of queues available
2373 *
2374 * If real_num_tx_queues is changed the tc mappings may no longer be
2375 * valid. To resolve this verify the tc mapping remains valid and if
2376 * not NULL the mapping. With no priorities mapping to this
2377 * offset/count pair it will no longer be used. In the worst case TC0
2378 * is invalid nothing can be done so disable priority mappings. If is
2379 * expected that drivers will fix this mapping if they can before
2380 * calling netif_set_real_num_tx_queues.
2381 */
bb134d22 2382static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2383{
2384 int i;
2385 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2386
2387 /* If TC0 is invalidated disable TC mapping */
2388 if (tc->offset + tc->count > txq) {
7b6cd1ce 2389 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2390 dev->num_tc = 0;
2391 return;
2392 }
2393
2394 /* Invalidated prio to tc mappings set to TC0 */
2395 for (i = 1; i < TC_BITMASK + 1; i++) {
2396 int q = netdev_get_prio_tc_map(dev, i);
2397
2398 tc = &dev->tc_to_txq[q];
2399 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2400 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2401 i, q);
4f57c087
JF
2402 netdev_set_prio_tc_map(dev, i, 0);
2403 }
2404 }
2405}
2406
8d059b0f
AD
2407int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2408{
2409 if (dev->num_tc) {
2410 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2411 int i;
2412
ffcfe25b 2413 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2414 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2415 if ((txq - tc->offset) < tc->count)
2416 return i;
2417 }
2418
ffcfe25b 2419 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2420 return -1;
2421 }
2422
2423 return 0;
2424}
8a5f2166 2425EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2426
537c00de 2427#ifdef CONFIG_XPS
04157469
AN
2428struct static_key xps_needed __read_mostly;
2429EXPORT_SYMBOL(xps_needed);
2430struct static_key xps_rxqs_needed __read_mostly;
2431EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2432static DEFINE_MUTEX(xps_map_mutex);
2433#define xmap_dereference(P) \
2434 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2435
6234f874
AD
2436static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2437 int tci, u16 index)
537c00de 2438{
10cdc3f3
AD
2439 struct xps_map *map = NULL;
2440 int pos;
537c00de 2441
10cdc3f3 2442 if (dev_maps)
80d19669 2443 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2444 if (!map)
2445 return false;
537c00de 2446
6234f874
AD
2447 for (pos = map->len; pos--;) {
2448 if (map->queues[pos] != index)
2449 continue;
2450
2451 if (map->len > 1) {
2452 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2453 break;
537c00de 2454 }
6234f874 2455
80d19669 2456 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2457 kfree_rcu(map, rcu);
2458 return false;
537c00de
AD
2459 }
2460
6234f874 2461 return true;
10cdc3f3
AD
2462}
2463
6234f874
AD
2464static bool remove_xps_queue_cpu(struct net_device *dev,
2465 struct xps_dev_maps *dev_maps,
2466 int cpu, u16 offset, u16 count)
2467{
184c449f
AD
2468 int num_tc = dev->num_tc ? : 1;
2469 bool active = false;
2470 int tci;
6234f874 2471
184c449f
AD
2472 for (tci = cpu * num_tc; num_tc--; tci++) {
2473 int i, j;
2474
2475 for (i = count, j = offset; i--; j++) {
6358d49a 2476 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2477 break;
2478 }
2479
2480 active |= i < 0;
6234f874
AD
2481 }
2482
184c449f 2483 return active;
6234f874
AD
2484}
2485
867d0ad4
SD
2486static void reset_xps_maps(struct net_device *dev,
2487 struct xps_dev_maps *dev_maps,
2488 bool is_rxqs_map)
2489{
2490 if (is_rxqs_map) {
2491 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2492 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2493 } else {
2494 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2495 }
2496 static_key_slow_dec_cpuslocked(&xps_needed);
2497 kfree_rcu(dev_maps, rcu);
2498}
2499
80d19669
AN
2500static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2501 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2502 u16 offset, u16 count, bool is_rxqs_map)
2503{
2504 bool active = false;
2505 int i, j;
2506
2507 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2508 j < nr_ids;)
2509 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2510 count);
867d0ad4
SD
2511 if (!active)
2512 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2513
f28c020f
SD
2514 if (!is_rxqs_map) {
2515 for (i = offset + (count - 1); count--; i--) {
2516 netdev_queue_numa_node_write(
2517 netdev_get_tx_queue(dev, i),
2518 NUMA_NO_NODE);
80d19669 2519 }
80d19669
AN
2520 }
2521}
2522
6234f874
AD
2523static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2524 u16 count)
10cdc3f3 2525{
80d19669 2526 const unsigned long *possible_mask = NULL;
10cdc3f3 2527 struct xps_dev_maps *dev_maps;
80d19669 2528 unsigned int nr_ids;
10cdc3f3 2529
04157469
AN
2530 if (!static_key_false(&xps_needed))
2531 return;
10cdc3f3 2532
4d99f660 2533 cpus_read_lock();
04157469 2534 mutex_lock(&xps_map_mutex);
10cdc3f3 2535
04157469
AN
2536 if (static_key_false(&xps_rxqs_needed)) {
2537 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2538 if (dev_maps) {
2539 nr_ids = dev->num_rx_queues;
2540 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2541 offset, count, true);
2542 }
537c00de
AD
2543 }
2544
80d19669
AN
2545 dev_maps = xmap_dereference(dev->xps_cpus_map);
2546 if (!dev_maps)
2547 goto out_no_maps;
2548
2549 if (num_possible_cpus() > 1)
2550 possible_mask = cpumask_bits(cpu_possible_mask);
2551 nr_ids = nr_cpu_ids;
2552 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2553 false);
024e9679 2554
537c00de
AD
2555out_no_maps:
2556 mutex_unlock(&xps_map_mutex);
4d99f660 2557 cpus_read_unlock();
537c00de
AD
2558}
2559
6234f874
AD
2560static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2561{
2562 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2563}
2564
80d19669
AN
2565static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2566 u16 index, bool is_rxqs_map)
01c5f864
AD
2567{
2568 struct xps_map *new_map;
2569 int alloc_len = XPS_MIN_MAP_ALLOC;
2570 int i, pos;
2571
2572 for (pos = 0; map && pos < map->len; pos++) {
2573 if (map->queues[pos] != index)
2574 continue;
2575 return map;
2576 }
2577
80d19669 2578 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2579 if (map) {
2580 if (pos < map->alloc_len)
2581 return map;
2582
2583 alloc_len = map->alloc_len * 2;
2584 }
2585
80d19669
AN
2586 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2587 * map
2588 */
2589 if (is_rxqs_map)
2590 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2591 else
2592 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2593 cpu_to_node(attr_index));
01c5f864
AD
2594 if (!new_map)
2595 return NULL;
2596
2597 for (i = 0; i < pos; i++)
2598 new_map->queues[i] = map->queues[i];
2599 new_map->alloc_len = alloc_len;
2600 new_map->len = pos;
2601
2602 return new_map;
2603}
2604
4d99f660 2605/* Must be called under cpus_read_lock */
80d19669
AN
2606int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2607 u16 index, bool is_rxqs_map)
537c00de 2608{
80d19669 2609 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2610 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2611 int i, j, tci, numa_node_id = -2;
184c449f 2612 int maps_sz, num_tc = 1, tc = 0;
537c00de 2613 struct xps_map *map, *new_map;
01c5f864 2614 bool active = false;
80d19669 2615 unsigned int nr_ids;
537c00de 2616
184c449f 2617 if (dev->num_tc) {
ffcfe25b 2618 /* Do not allow XPS on subordinate device directly */
184c449f 2619 num_tc = dev->num_tc;
ffcfe25b
AD
2620 if (num_tc < 0)
2621 return -EINVAL;
2622
2623 /* If queue belongs to subordinate dev use its map */
2624 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2625
184c449f
AD
2626 tc = netdev_txq_to_tc(dev, index);
2627 if (tc < 0)
2628 return -EINVAL;
2629 }
2630
537c00de 2631 mutex_lock(&xps_map_mutex);
80d19669
AN
2632 if (is_rxqs_map) {
2633 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2634 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2635 nr_ids = dev->num_rx_queues;
2636 } else {
2637 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2638 if (num_possible_cpus() > 1) {
2639 online_mask = cpumask_bits(cpu_online_mask);
2640 possible_mask = cpumask_bits(cpu_possible_mask);
2641 }
2642 dev_maps = xmap_dereference(dev->xps_cpus_map);
2643 nr_ids = nr_cpu_ids;
2644 }
537c00de 2645
80d19669
AN
2646 if (maps_sz < L1_CACHE_BYTES)
2647 maps_sz = L1_CACHE_BYTES;
537c00de 2648
01c5f864 2649 /* allocate memory for queue storage */
80d19669
AN
2650 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2651 j < nr_ids;) {
01c5f864
AD
2652 if (!new_dev_maps)
2653 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2654 if (!new_dev_maps) {
2655 mutex_unlock(&xps_map_mutex);
01c5f864 2656 return -ENOMEM;
2bb60cb9 2657 }
01c5f864 2658
80d19669
AN
2659 tci = j * num_tc + tc;
2660 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2661 NULL;
2662
80d19669 2663 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2664 if (!map)
2665 goto error;
2666
80d19669 2667 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2668 }
2669
2670 if (!new_dev_maps)
2671 goto out_no_new_maps;
2672
867d0ad4
SD
2673 if (!dev_maps) {
2674 /* Increment static keys at most once per type */
2675 static_key_slow_inc_cpuslocked(&xps_needed);
2676 if (is_rxqs_map)
2677 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2678 }
04157469 2679
80d19669
AN
2680 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2681 j < nr_ids;) {
184c449f 2682 /* copy maps belonging to foreign traffic classes */
80d19669 2683 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2684 /* fill in the new device map from the old device map */
80d19669
AN
2685 map = xmap_dereference(dev_maps->attr_map[tci]);
2686 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2687 }
2688
2689 /* We need to explicitly update tci as prevous loop
2690 * could break out early if dev_maps is NULL.
2691 */
80d19669 2692 tci = j * num_tc + tc;
184c449f 2693
80d19669
AN
2694 if (netif_attr_test_mask(j, mask, nr_ids) &&
2695 netif_attr_test_online(j, online_mask, nr_ids)) {
2696 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2697 int pos = 0;
2698
80d19669 2699 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2700 while ((pos < map->len) && (map->queues[pos] != index))
2701 pos++;
2702
2703 if (pos == map->len)
2704 map->queues[map->len++] = index;
537c00de 2705#ifdef CONFIG_NUMA
80d19669
AN
2706 if (!is_rxqs_map) {
2707 if (numa_node_id == -2)
2708 numa_node_id = cpu_to_node(j);
2709 else if (numa_node_id != cpu_to_node(j))
2710 numa_node_id = -1;
2711 }
537c00de 2712#endif
01c5f864
AD
2713 } else if (dev_maps) {
2714 /* fill in the new device map from the old device map */
80d19669
AN
2715 map = xmap_dereference(dev_maps->attr_map[tci]);
2716 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2717 }
01c5f864 2718
184c449f
AD
2719 /* copy maps belonging to foreign traffic classes */
2720 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2721 /* fill in the new device map from the old device map */
80d19669
AN
2722 map = xmap_dereference(dev_maps->attr_map[tci]);
2723 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2724 }
537c00de
AD
2725 }
2726
80d19669
AN
2727 if (is_rxqs_map)
2728 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2729 else
2730 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2731
537c00de 2732 /* Cleanup old maps */
184c449f
AD
2733 if (!dev_maps)
2734 goto out_no_old_maps;
2735
80d19669
AN
2736 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2737 j < nr_ids;) {
2738 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2739 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2740 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2741 if (map && map != new_map)
2742 kfree_rcu(map, rcu);
2743 }
537c00de
AD
2744 }
2745
184c449f
AD
2746 kfree_rcu(dev_maps, rcu);
2747
2748out_no_old_maps:
01c5f864
AD
2749 dev_maps = new_dev_maps;
2750 active = true;
537c00de 2751
01c5f864 2752out_no_new_maps:
80d19669
AN
2753 if (!is_rxqs_map) {
2754 /* update Tx queue numa node */
2755 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2756 (numa_node_id >= 0) ?
2757 numa_node_id : NUMA_NO_NODE);
2758 }
537c00de 2759
01c5f864
AD
2760 if (!dev_maps)
2761 goto out_no_maps;
2762
80d19669
AN
2763 /* removes tx-queue from unused CPUs/rx-queues */
2764 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2765 j < nr_ids;) {
2766 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2767 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2768 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2769 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2770 active |= remove_xps_queue(dev_maps, tci, index);
2771 for (i = num_tc - tc, tci++; --i; tci++)
2772 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2773 }
2774
2775 /* free map if not active */
867d0ad4
SD
2776 if (!active)
2777 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2778
2779out_no_maps:
537c00de
AD
2780 mutex_unlock(&xps_map_mutex);
2781
2782 return 0;
2783error:
01c5f864 2784 /* remove any maps that we added */
80d19669
AN
2785 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2786 j < nr_ids;) {
2787 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2788 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2789 map = dev_maps ?
80d19669 2790 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2791 NULL;
2792 if (new_map && new_map != map)
2793 kfree(new_map);
2794 }
01c5f864
AD
2795 }
2796
537c00de
AD
2797 mutex_unlock(&xps_map_mutex);
2798
537c00de
AD
2799 kfree(new_dev_maps);
2800 return -ENOMEM;
2801}
4d99f660 2802EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2803
2804int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2805 u16 index)
2806{
4d99f660
AV
2807 int ret;
2808
2809 cpus_read_lock();
2810 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2811 cpus_read_unlock();
2812
2813 return ret;
80d19669 2814}
537c00de
AD
2815EXPORT_SYMBOL(netif_set_xps_queue);
2816
2817#endif
ffcfe25b
AD
2818static void netdev_unbind_all_sb_channels(struct net_device *dev)
2819{
2820 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2821
2822 /* Unbind any subordinate channels */
2823 while (txq-- != &dev->_tx[0]) {
2824 if (txq->sb_dev)
2825 netdev_unbind_sb_channel(dev, txq->sb_dev);
2826 }
2827}
2828
9cf1f6a8
AD
2829void netdev_reset_tc(struct net_device *dev)
2830{
6234f874
AD
2831#ifdef CONFIG_XPS
2832 netif_reset_xps_queues_gt(dev, 0);
2833#endif
ffcfe25b
AD
2834 netdev_unbind_all_sb_channels(dev);
2835
2836 /* Reset TC configuration of device */
9cf1f6a8
AD
2837 dev->num_tc = 0;
2838 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2839 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2840}
2841EXPORT_SYMBOL(netdev_reset_tc);
2842
2843int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2844{
2845 if (tc >= dev->num_tc)
2846 return -EINVAL;
2847
6234f874
AD
2848#ifdef CONFIG_XPS
2849 netif_reset_xps_queues(dev, offset, count);
2850#endif
9cf1f6a8
AD
2851 dev->tc_to_txq[tc].count = count;
2852 dev->tc_to_txq[tc].offset = offset;
2853 return 0;
2854}
2855EXPORT_SYMBOL(netdev_set_tc_queue);
2856
2857int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2858{
2859 if (num_tc > TC_MAX_QUEUE)
2860 return -EINVAL;
2861
6234f874
AD
2862#ifdef CONFIG_XPS
2863 netif_reset_xps_queues_gt(dev, 0);
2864#endif
ffcfe25b
AD
2865 netdev_unbind_all_sb_channels(dev);
2866
9cf1f6a8
AD
2867 dev->num_tc = num_tc;
2868 return 0;
2869}
2870EXPORT_SYMBOL(netdev_set_num_tc);
2871
ffcfe25b
AD
2872void netdev_unbind_sb_channel(struct net_device *dev,
2873 struct net_device *sb_dev)
2874{
2875 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2876
2877#ifdef CONFIG_XPS
2878 netif_reset_xps_queues_gt(sb_dev, 0);
2879#endif
2880 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2881 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2882
2883 while (txq-- != &dev->_tx[0]) {
2884 if (txq->sb_dev == sb_dev)
2885 txq->sb_dev = NULL;
2886 }
2887}
2888EXPORT_SYMBOL(netdev_unbind_sb_channel);
2889
2890int netdev_bind_sb_channel_queue(struct net_device *dev,
2891 struct net_device *sb_dev,
2892 u8 tc, u16 count, u16 offset)
2893{
2894 /* Make certain the sb_dev and dev are already configured */
2895 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2896 return -EINVAL;
2897
2898 /* We cannot hand out queues we don't have */
2899 if ((offset + count) > dev->real_num_tx_queues)
2900 return -EINVAL;
2901
2902 /* Record the mapping */
2903 sb_dev->tc_to_txq[tc].count = count;
2904 sb_dev->tc_to_txq[tc].offset = offset;
2905
2906 /* Provide a way for Tx queue to find the tc_to_txq map or
2907 * XPS map for itself.
2908 */
2909 while (count--)
2910 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2911
2912 return 0;
2913}
2914EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2915
2916int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2917{
2918 /* Do not use a multiqueue device to represent a subordinate channel */
2919 if (netif_is_multiqueue(dev))
2920 return -ENODEV;
2921
2922 /* We allow channels 1 - 32767 to be used for subordinate channels.
2923 * Channel 0 is meant to be "native" mode and used only to represent
2924 * the main root device. We allow writing 0 to reset the device back
2925 * to normal mode after being used as a subordinate channel.
2926 */
2927 if (channel > S16_MAX)
2928 return -EINVAL;
2929
2930 dev->num_tc = -channel;
2931
2932 return 0;
2933}
2934EXPORT_SYMBOL(netdev_set_sb_channel);
2935
f0796d5c
JF
2936/*
2937 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2938 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2939 */
e6484930 2940int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2941{
ac5b7019 2942 bool disabling;
1d24eb48
TH
2943 int rc;
2944
ac5b7019
JK
2945 disabling = txq < dev->real_num_tx_queues;
2946
e6484930
TH
2947 if (txq < 1 || txq > dev->num_tx_queues)
2948 return -EINVAL;
f0796d5c 2949
5c56580b
BH
2950 if (dev->reg_state == NETREG_REGISTERED ||
2951 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2952 ASSERT_RTNL();
2953
1d24eb48
TH
2954 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2955 txq);
bf264145
TH
2956 if (rc)
2957 return rc;
2958
4f57c087
JF
2959 if (dev->num_tc)
2960 netif_setup_tc(dev, txq);
2961
ac5b7019
JK
2962 dev->real_num_tx_queues = txq;
2963
2964 if (disabling) {
2965 synchronize_net();
e6484930 2966 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2967#ifdef CONFIG_XPS
2968 netif_reset_xps_queues_gt(dev, txq);
2969#endif
2970 }
ac5b7019
JK
2971 } else {
2972 dev->real_num_tx_queues = txq;
f0796d5c 2973 }
e6484930 2974
e6484930 2975 return 0;
f0796d5c
JF
2976}
2977EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2978
a953be53 2979#ifdef CONFIG_SYSFS
62fe0b40
BH
2980/**
2981 * netif_set_real_num_rx_queues - set actual number of RX queues used
2982 * @dev: Network device
2983 * @rxq: Actual number of RX queues
2984 *
2985 * This must be called either with the rtnl_lock held or before
2986 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2987 * negative error code. If called before registration, it always
2988 * succeeds.
62fe0b40
BH
2989 */
2990int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2991{
2992 int rc;
2993
bd25fa7b
TH
2994 if (rxq < 1 || rxq > dev->num_rx_queues)
2995 return -EINVAL;
2996
62fe0b40
BH
2997 if (dev->reg_state == NETREG_REGISTERED) {
2998 ASSERT_RTNL();
2999
62fe0b40
BH
3000 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3001 rxq);
3002 if (rc)
3003 return rc;
62fe0b40
BH
3004 }
3005
3006 dev->real_num_rx_queues = rxq;
3007 return 0;
3008}
3009EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3010#endif
3011
2c53040f
BH
3012/**
3013 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
3014 *
3015 * This routine should set an upper limit on the number of RSS queues
3016 * used by default by multiqueue devices.
3017 */
a55b138b 3018int netif_get_num_default_rss_queues(void)
16917b87 3019{
40e4e713
HS
3020 return is_kdump_kernel() ?
3021 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
3022}
3023EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3024
3bcb846c 3025static void __netif_reschedule(struct Qdisc *q)
56079431 3026{
def82a1d
JP
3027 struct softnet_data *sd;
3028 unsigned long flags;
56079431 3029
def82a1d 3030 local_irq_save(flags);
903ceff7 3031 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
3032 q->next_sched = NULL;
3033 *sd->output_queue_tailp = q;
3034 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
3035 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3036 local_irq_restore(flags);
3037}
3038
3039void __netif_schedule(struct Qdisc *q)
3040{
3041 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3042 __netif_reschedule(q);
56079431
DV
3043}
3044EXPORT_SYMBOL(__netif_schedule);
3045
e6247027
ED
3046struct dev_kfree_skb_cb {
3047 enum skb_free_reason reason;
3048};
3049
3050static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 3051{
e6247027
ED
3052 return (struct dev_kfree_skb_cb *)skb->cb;
3053}
3054
46e5da40
JF
3055void netif_schedule_queue(struct netdev_queue *txq)
3056{
3057 rcu_read_lock();
5be5515a 3058 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
3059 struct Qdisc *q = rcu_dereference(txq->qdisc);
3060
3061 __netif_schedule(q);
3062 }
3063 rcu_read_unlock();
3064}
3065EXPORT_SYMBOL(netif_schedule_queue);
3066
46e5da40
JF
3067void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3068{
3069 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3070 struct Qdisc *q;
3071
3072 rcu_read_lock();
3073 q = rcu_dereference(dev_queue->qdisc);
3074 __netif_schedule(q);
3075 rcu_read_unlock();
3076 }
3077}
3078EXPORT_SYMBOL(netif_tx_wake_queue);
3079
e6247027 3080void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3081{
e6247027 3082 unsigned long flags;
56079431 3083
9899886d
MJ
3084 if (unlikely(!skb))
3085 return;
3086
63354797 3087 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3088 smp_rmb();
63354797
RE
3089 refcount_set(&skb->users, 0);
3090 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3091 return;
bea3348e 3092 }
e6247027
ED
3093 get_kfree_skb_cb(skb)->reason = reason;
3094 local_irq_save(flags);
3095 skb->next = __this_cpu_read(softnet_data.completion_queue);
3096 __this_cpu_write(softnet_data.completion_queue, skb);
3097 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098 local_irq_restore(flags);
56079431 3099}
e6247027 3100EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3101
e6247027 3102void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3103{
3104 if (in_irq() || irqs_disabled())
e6247027 3105 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3106 else
3107 dev_kfree_skb(skb);
3108}
e6247027 3109EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3110
3111
bea3348e
SH
3112/**
3113 * netif_device_detach - mark device as removed
3114 * @dev: network device
3115 *
3116 * Mark device as removed from system and therefore no longer available.
3117 */
56079431
DV
3118void netif_device_detach(struct net_device *dev)
3119{
3120 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3121 netif_running(dev)) {
d543103a 3122 netif_tx_stop_all_queues(dev);
56079431
DV
3123 }
3124}
3125EXPORT_SYMBOL(netif_device_detach);
3126
bea3348e
SH
3127/**
3128 * netif_device_attach - mark device as attached
3129 * @dev: network device
3130 *
3131 * Mark device as attached from system and restart if needed.
3132 */
56079431
DV
3133void netif_device_attach(struct net_device *dev)
3134{
3135 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3136 netif_running(dev)) {
d543103a 3137 netif_tx_wake_all_queues(dev);
4ec93edb 3138 __netdev_watchdog_up(dev);
56079431
DV
3139 }
3140}
3141EXPORT_SYMBOL(netif_device_attach);
3142
5605c762
JP
3143/*
3144 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3145 * to be used as a distribution range.
3146 */
eadec877
AD
3147static u16 skb_tx_hash(const struct net_device *dev,
3148 const struct net_device *sb_dev,
3149 struct sk_buff *skb)
5605c762
JP
3150{
3151 u32 hash;
3152 u16 qoffset = 0;
1b837d48 3153 u16 qcount = dev->real_num_tx_queues;
5605c762 3154
eadec877
AD
3155 if (dev->num_tc) {
3156 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3157
3158 qoffset = sb_dev->tc_to_txq[tc].offset;
3159 qcount = sb_dev->tc_to_txq[tc].count;
3160 }
3161
5605c762
JP
3162 if (skb_rx_queue_recorded(skb)) {
3163 hash = skb_get_rx_queue(skb);
6e11d157
AN
3164 if (hash >= qoffset)
3165 hash -= qoffset;
1b837d48
AD
3166 while (unlikely(hash >= qcount))
3167 hash -= qcount;
eadec877 3168 return hash + qoffset;
5605c762
JP
3169 }
3170
3171 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3172}
5605c762 3173
36c92474
BH
3174static void skb_warn_bad_offload(const struct sk_buff *skb)
3175{
84d15ae5 3176 static const netdev_features_t null_features;
36c92474 3177 struct net_device *dev = skb->dev;
88ad4175 3178 const char *name = "";
36c92474 3179
c846ad9b
BG
3180 if (!net_ratelimit())
3181 return;
3182
88ad4175
BM
3183 if (dev) {
3184 if (dev->dev.parent)
3185 name = dev_driver_string(dev->dev.parent);
3186 else
3187 name = netdev_name(dev);
3188 }
6413139d
WB
3189 skb_dump(KERN_WARNING, skb, false);
3190 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3191 name, dev ? &dev->features : &null_features,
6413139d 3192 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3193}
3194
1da177e4
LT
3195/*
3196 * Invalidate hardware checksum when packet is to be mangled, and
3197 * complete checksum manually on outgoing path.
3198 */
84fa7933 3199int skb_checksum_help(struct sk_buff *skb)
1da177e4 3200{
d3bc23e7 3201 __wsum csum;
663ead3b 3202 int ret = 0, offset;
1da177e4 3203
84fa7933 3204 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3205 goto out_set_summed;
3206
3207 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
3208 skb_warn_bad_offload(skb);
3209 return -EINVAL;
1da177e4
LT
3210 }
3211
cef401de
ED
3212 /* Before computing a checksum, we should make sure no frag could
3213 * be modified by an external entity : checksum could be wrong.
3214 */
3215 if (skb_has_shared_frag(skb)) {
3216 ret = __skb_linearize(skb);
3217 if (ret)
3218 goto out;
3219 }
3220
55508d60 3221 offset = skb_checksum_start_offset(skb);
a030847e
HX
3222 BUG_ON(offset >= skb_headlen(skb));
3223 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3224
3225 offset += skb->csum_offset;
3226 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3227
8211fbfa
HK
3228 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3229 if (ret)
3230 goto out;
1da177e4 3231
4f2e4ad5 3232 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3233out_set_summed:
1da177e4 3234 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3235out:
1da177e4
LT
3236 return ret;
3237}
d1b19dff 3238EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3239
b72b5bf6
DC
3240int skb_crc32c_csum_help(struct sk_buff *skb)
3241{
3242 __le32 crc32c_csum;
3243 int ret = 0, offset, start;
3244
3245 if (skb->ip_summed != CHECKSUM_PARTIAL)
3246 goto out;
3247
3248 if (unlikely(skb_is_gso(skb)))
3249 goto out;
3250
3251 /* Before computing a checksum, we should make sure no frag could
3252 * be modified by an external entity : checksum could be wrong.
3253 */
3254 if (unlikely(skb_has_shared_frag(skb))) {
3255 ret = __skb_linearize(skb);
3256 if (ret)
3257 goto out;
3258 }
3259 start = skb_checksum_start_offset(skb);
3260 offset = start + offsetof(struct sctphdr, checksum);
3261 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262 ret = -EINVAL;
3263 goto out;
3264 }
8211fbfa
HK
3265
3266 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3267 if (ret)
3268 goto out;
3269
b72b5bf6
DC
3270 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3271 skb->len - start, ~(__u32)0,
3272 crc32c_csum_stub));
3273 *(__le32 *)(skb->data + offset) = crc32c_csum;
3274 skb->ip_summed = CHECKSUM_NONE;
dba00306 3275 skb->csum_not_inet = 0;
b72b5bf6
DC
3276out:
3277 return ret;
3278}
3279
53d6471c 3280__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3281{
252e3346 3282 __be16 type = skb->protocol;
f6a78bfc 3283
19acc327
PS
3284 /* Tunnel gso handlers can set protocol to ethernet. */
3285 if (type == htons(ETH_P_TEB)) {
3286 struct ethhdr *eth;
3287
3288 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3289 return 0;
3290
1dfe82eb 3291 eth = (struct ethhdr *)skb->data;
19acc327
PS
3292 type = eth->h_proto;
3293 }
3294
d4bcef3f 3295 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3296}
3297
3298/**
3299 * skb_mac_gso_segment - mac layer segmentation handler.
3300 * @skb: buffer to segment
3301 * @features: features for the output path (see dev->features)
3302 */
3303struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3304 netdev_features_t features)
3305{
3306 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3307 struct packet_offload *ptype;
53d6471c
VY
3308 int vlan_depth = skb->mac_len;
3309 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3310
3311 if (unlikely(!type))
3312 return ERR_PTR(-EINVAL);
3313
53d6471c 3314 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3315
3316 rcu_read_lock();
22061d80 3317 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3318 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3319 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3320 break;
3321 }
3322 }
3323 rcu_read_unlock();
3324
98e399f8 3325 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3326
f6a78bfc
HX
3327 return segs;
3328}
05e8ef4a
PS
3329EXPORT_SYMBOL(skb_mac_gso_segment);
3330
3331
3332/* openvswitch calls this on rx path, so we need a different check.
3333 */
3334static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3335{
3336 if (tx_path)
0c19f846
WB
3337 return skb->ip_summed != CHECKSUM_PARTIAL &&
3338 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3339
3340 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3341}
3342
3343/**
3344 * __skb_gso_segment - Perform segmentation on skb.
3345 * @skb: buffer to segment
3346 * @features: features for the output path (see dev->features)
3347 * @tx_path: whether it is called in TX path
3348 *
3349 * This function segments the given skb and returns a list of segments.
3350 *
3351 * It may return NULL if the skb requires no segmentation. This is
3352 * only possible when GSO is used for verifying header integrity.
9207f9d4 3353 *
a08e7fd9 3354 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3355 */
3356struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3357 netdev_features_t features, bool tx_path)
3358{
b2504a5d
ED
3359 struct sk_buff *segs;
3360
05e8ef4a
PS
3361 if (unlikely(skb_needs_check(skb, tx_path))) {
3362 int err;
3363
b2504a5d 3364 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3365 err = skb_cow_head(skb, 0);
3366 if (err < 0)
05e8ef4a
PS
3367 return ERR_PTR(err);
3368 }
3369
802ab55a
AD
3370 /* Only report GSO partial support if it will enable us to
3371 * support segmentation on this frame without needing additional
3372 * work.
3373 */
3374 if (features & NETIF_F_GSO_PARTIAL) {
3375 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3376 struct net_device *dev = skb->dev;
3377
3378 partial_features |= dev->features & dev->gso_partial_features;
3379 if (!skb_gso_ok(skb, features | partial_features))
3380 features &= ~NETIF_F_GSO_PARTIAL;
3381 }
3382
a08e7fd9 3383 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3384 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3385
68c33163 3386 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3387 SKB_GSO_CB(skb)->encap_level = 0;
3388
05e8ef4a
PS
3389 skb_reset_mac_header(skb);
3390 skb_reset_mac_len(skb);
3391
b2504a5d
ED
3392 segs = skb_mac_gso_segment(skb, features);
3393
3a1296a3 3394 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3395 skb_warn_bad_offload(skb);
3396
3397 return segs;
05e8ef4a 3398}
12b0004d 3399EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3400
fb286bb2
HX
3401/* Take action when hardware reception checksum errors are detected. */
3402#ifdef CONFIG_BUG
7fe50ac8 3403void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3404{
3405 if (net_ratelimit()) {
7b6cd1ce 3406 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3407 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3408 dump_stack();
3409 }
3410}
3411EXPORT_SYMBOL(netdev_rx_csum_fault);
3412#endif
3413
ab74cfeb 3414/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3415static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3416{
3d3a8533 3417#ifdef CONFIG_HIGHMEM
1da177e4 3418 int i;
f4563a75 3419
5acbbd42 3420 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3422 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3423
ea2ab693 3424 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3425 return 1;
ea2ab693 3426 }
5acbbd42 3427 }
3d3a8533 3428#endif
1da177e4
LT
3429 return 0;
3430}
1da177e4 3431
3b392ddb
SH
3432/* If MPLS offload request, verify we are testing hardware MPLS features
3433 * instead of standard features for the netdev.
3434 */
d0edc7bf 3435#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3436static netdev_features_t net_mpls_features(struct sk_buff *skb,
3437 netdev_features_t features,
3438 __be16 type)
3439{
25cd9ba0 3440 if (eth_p_mpls(type))
3b392ddb
SH
3441 features &= skb->dev->mpls_features;
3442
3443 return features;
3444}
3445#else
3446static netdev_features_t net_mpls_features(struct sk_buff *skb,
3447 netdev_features_t features,
3448 __be16 type)
3449{
3450 return features;
3451}
3452#endif
3453
c8f44aff 3454static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3455 netdev_features_t features)
f01a5236 3456{
3b392ddb
SH
3457 __be16 type;
3458
9fc95f50 3459 type = skb_network_protocol(skb, NULL);
3b392ddb 3460 features = net_mpls_features(skb, features, type);
53d6471c 3461
c0d680e5 3462 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3463 !can_checksum_protocol(features, type)) {
996e8021 3464 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3465 }
7be2c82c
ED
3466 if (illegal_highdma(skb->dev, skb))
3467 features &= ~NETIF_F_SG;
f01a5236
JG
3468
3469 return features;
3470}
3471
e38f3025
TM
3472netdev_features_t passthru_features_check(struct sk_buff *skb,
3473 struct net_device *dev,
3474 netdev_features_t features)
3475{
3476 return features;
3477}
3478EXPORT_SYMBOL(passthru_features_check);
3479
7ce23672 3480static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3481 struct net_device *dev,
3482 netdev_features_t features)
3483{
3484 return vlan_features_check(skb, features);
3485}
3486
cbc53e08
AD
3487static netdev_features_t gso_features_check(const struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3490{
3491 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3492
3493 if (gso_segs > dev->gso_max_segs)
3494 return features & ~NETIF_F_GSO_MASK;
3495
802ab55a
AD
3496 /* Support for GSO partial features requires software
3497 * intervention before we can actually process the packets
3498 * so we need to strip support for any partial features now
3499 * and we can pull them back in after we have partially
3500 * segmented the frame.
3501 */
3502 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3503 features &= ~dev->gso_partial_features;
3504
3505 /* Make sure to clear the IPv4 ID mangling feature if the
3506 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3507 */
3508 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3509 struct iphdr *iph = skb->encapsulation ?
3510 inner_ip_hdr(skb) : ip_hdr(skb);
3511
3512 if (!(iph->frag_off & htons(IP_DF)))
3513 features &= ~NETIF_F_TSO_MANGLEID;
3514 }
3515
3516 return features;
3517}
3518
c1e756bf 3519netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3520{
5f35227e 3521 struct net_device *dev = skb->dev;
fcbeb976 3522 netdev_features_t features = dev->features;
58e998c6 3523
cbc53e08
AD
3524 if (skb_is_gso(skb))
3525 features = gso_features_check(skb, dev, features);
30b678d8 3526
5f35227e
JG
3527 /* If encapsulation offload request, verify we are testing
3528 * hardware encapsulation features instead of standard
3529 * features for the netdev
3530 */
3531 if (skb->encapsulation)
3532 features &= dev->hw_enc_features;
3533
f5a7fb88
TM
3534 if (skb_vlan_tagged(skb))
3535 features = netdev_intersect_features(features,
3536 dev->vlan_features |
3537 NETIF_F_HW_VLAN_CTAG_TX |
3538 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3539
5f35227e
JG
3540 if (dev->netdev_ops->ndo_features_check)
3541 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3542 features);
8cb65d00
TM
3543 else
3544 features &= dflt_features_check(skb, dev, features);
5f35227e 3545
c1e756bf 3546 return harmonize_features(skb, features);
58e998c6 3547}
c1e756bf 3548EXPORT_SYMBOL(netif_skb_features);
58e998c6 3549
2ea25513 3550static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3551 struct netdev_queue *txq, bool more)
f6a78bfc 3552{
2ea25513
DM
3553 unsigned int len;
3554 int rc;
00829823 3555
9f9a742d 3556 if (dev_nit_active(dev))
2ea25513 3557 dev_queue_xmit_nit(skb, dev);
fc741216 3558
2ea25513
DM
3559 len = skb->len;
3560 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3561 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3562 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3563
2ea25513
DM
3564 return rc;
3565}
7b9c6090 3566
8dcda22a
DM
3567struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3568 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3569{
3570 struct sk_buff *skb = first;
3571 int rc = NETDEV_TX_OK;
7b9c6090 3572
7f2e870f
DM
3573 while (skb) {
3574 struct sk_buff *next = skb->next;
fc70fb64 3575
a8305bff 3576 skb_mark_not_on_list(skb);
95f6b3dd 3577 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3578 if (unlikely(!dev_xmit_complete(rc))) {
3579 skb->next = next;
3580 goto out;
3581 }
6afff0ca 3582
7f2e870f 3583 skb = next;
fe60faa5 3584 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3585 rc = NETDEV_TX_BUSY;
3586 break;
9ccb8975 3587 }
7f2e870f 3588 }
9ccb8975 3589
7f2e870f
DM
3590out:
3591 *ret = rc;
3592 return skb;
3593}
b40863c6 3594
1ff0dc94
ED
3595static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3596 netdev_features_t features)
f6a78bfc 3597{
df8a39de 3598 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3599 !vlan_hw_offload_capable(features, skb->vlan_proto))
3600 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3601 return skb;
3602}
f6a78bfc 3603
43c26a1a
DC
3604int skb_csum_hwoffload_help(struct sk_buff *skb,
3605 const netdev_features_t features)
3606{
3607 if (unlikely(skb->csum_not_inet))
3608 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3609 skb_crc32c_csum_help(skb);
3610
3611 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3612}
3613EXPORT_SYMBOL(skb_csum_hwoffload_help);
3614
f53c7239 3615static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3616{
3617 netdev_features_t features;
f6a78bfc 3618
eae3f88e
DM
3619 features = netif_skb_features(skb);
3620 skb = validate_xmit_vlan(skb, features);
3621 if (unlikely(!skb))
3622 goto out_null;
7b9c6090 3623
ebf4e808
IL
3624 skb = sk_validate_xmit_skb(skb, dev);
3625 if (unlikely(!skb))
3626 goto out_null;
3627
8b86a61d 3628 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3629 struct sk_buff *segs;
3630
3631 segs = skb_gso_segment(skb, features);
cecda693 3632 if (IS_ERR(segs)) {
af6dabc9 3633 goto out_kfree_skb;
cecda693
JW
3634 } else if (segs) {
3635 consume_skb(skb);
3636 skb = segs;
f6a78bfc 3637 }
eae3f88e
DM
3638 } else {
3639 if (skb_needs_linearize(skb, features) &&
3640 __skb_linearize(skb))
3641 goto out_kfree_skb;
4ec93edb 3642
eae3f88e
DM
3643 /* If packet is not checksummed and device does not
3644 * support checksumming for this protocol, complete
3645 * checksumming here.
3646 */
3647 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3648 if (skb->encapsulation)
3649 skb_set_inner_transport_header(skb,
3650 skb_checksum_start_offset(skb));
3651 else
3652 skb_set_transport_header(skb,
3653 skb_checksum_start_offset(skb));
43c26a1a 3654 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3655 goto out_kfree_skb;
7b9c6090 3656 }
0c772159 3657 }
7b9c6090 3658
f53c7239 3659 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3660
eae3f88e 3661 return skb;
fc70fb64 3662
f6a78bfc
HX
3663out_kfree_skb:
3664 kfree_skb(skb);
eae3f88e 3665out_null:
d21fd63e 3666 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3667 return NULL;
3668}
6afff0ca 3669
f53c7239 3670struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3671{
3672 struct sk_buff *next, *head = NULL, *tail;
3673
bec3cfdc 3674 for (; skb != NULL; skb = next) {
55a93b3e 3675 next = skb->next;
a8305bff 3676 skb_mark_not_on_list(skb);
bec3cfdc
ED
3677
3678 /* in case skb wont be segmented, point to itself */
3679 skb->prev = skb;
3680
f53c7239 3681 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3682 if (!skb)
3683 continue;
55a93b3e 3684
bec3cfdc
ED
3685 if (!head)
3686 head = skb;
3687 else
3688 tail->next = skb;
3689 /* If skb was segmented, skb->prev points to
3690 * the last segment. If not, it still contains skb.
3691 */
3692 tail = skb->prev;
55a93b3e
ED
3693 }
3694 return head;
f6a78bfc 3695}
104ba78c 3696EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3697
1def9238
ED
3698static void qdisc_pkt_len_init(struct sk_buff *skb)
3699{
3700 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3701
3702 qdisc_skb_cb(skb)->pkt_len = skb->len;
3703
3704 /* To get more precise estimation of bytes sent on wire,
3705 * we add to pkt_len the headers size of all segments
3706 */
a0dce875 3707 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3708 unsigned int hdr_len;
15e5a030 3709 u16 gso_segs = shinfo->gso_segs;
1def9238 3710
757b8b1d
ED
3711 /* mac layer + network layer */
3712 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3713
3714 /* + transport layer */
7c68d1a6
ED
3715 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3716 const struct tcphdr *th;
3717 struct tcphdr _tcphdr;
3718
3719 th = skb_header_pointer(skb, skb_transport_offset(skb),
3720 sizeof(_tcphdr), &_tcphdr);
3721 if (likely(th))
3722 hdr_len += __tcp_hdrlen(th);
3723 } else {
3724 struct udphdr _udphdr;
3725
3726 if (skb_header_pointer(skb, skb_transport_offset(skb),
3727 sizeof(_udphdr), &_udphdr))
3728 hdr_len += sizeof(struct udphdr);
3729 }
15e5a030
JW
3730
3731 if (shinfo->gso_type & SKB_GSO_DODGY)
3732 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3733 shinfo->gso_size);
3734
3735 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3736 }
3737}
3738
bbd8a0d3
KK
3739static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3740 struct net_device *dev,
3741 struct netdev_queue *txq)
3742{
3743 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3744 struct sk_buff *to_free = NULL;
a2da570d 3745 bool contended;
bbd8a0d3
KK
3746 int rc;
3747
a2da570d 3748 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3749
3750 if (q->flags & TCQ_F_NOLOCK) {
ac5c66f2 3751 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
379349e9 3752 qdisc_run(q);
6b3ba914
JF
3753
3754 if (unlikely(to_free))
3755 kfree_skb_list(to_free);
3756 return rc;
3757 }
3758
79640a4c
ED
3759 /*
3760 * Heuristic to force contended enqueues to serialize on a
3761 * separate lock before trying to get qdisc main lock.
f9eb8aea 3762 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3763 * often and dequeue packets faster.
79640a4c 3764 */
a2da570d 3765 contended = qdisc_is_running(q);
79640a4c
ED
3766 if (unlikely(contended))
3767 spin_lock(&q->busylock);
3768
bbd8a0d3
KK
3769 spin_lock(root_lock);
3770 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3771 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3772 rc = NET_XMIT_DROP;
3773 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3774 qdisc_run_begin(q)) {
bbd8a0d3
KK
3775 /*
3776 * This is a work-conserving queue; there are no old skbs
3777 * waiting to be sent out; and the qdisc is not running -
3778 * xmit the skb directly.
3779 */
bfe0d029 3780
bfe0d029
ED
3781 qdisc_bstats_update(q, skb);
3782
55a93b3e 3783 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3784 if (unlikely(contended)) {
3785 spin_unlock(&q->busylock);
3786 contended = false;
3787 }
bbd8a0d3 3788 __qdisc_run(q);
6c148184 3789 }
bbd8a0d3 3790
6c148184 3791 qdisc_run_end(q);
bbd8a0d3
KK
3792 rc = NET_XMIT_SUCCESS;
3793 } else {
ac5c66f2 3794 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3795 if (qdisc_run_begin(q)) {
3796 if (unlikely(contended)) {
3797 spin_unlock(&q->busylock);
3798 contended = false;
3799 }
3800 __qdisc_run(q);
6c148184 3801 qdisc_run_end(q);
79640a4c 3802 }
bbd8a0d3
KK
3803 }
3804 spin_unlock(root_lock);
520ac30f
ED
3805 if (unlikely(to_free))
3806 kfree_skb_list(to_free);
79640a4c
ED
3807 if (unlikely(contended))
3808 spin_unlock(&q->busylock);
bbd8a0d3
KK
3809 return rc;
3810}
3811
86f8515f 3812#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3813static void skb_update_prio(struct sk_buff *skb)
3814{
4dcb31d4
ED
3815 const struct netprio_map *map;
3816 const struct sock *sk;
3817 unsigned int prioidx;
5bc1421e 3818
4dcb31d4
ED
3819 if (skb->priority)
3820 return;
3821 map = rcu_dereference_bh(skb->dev->priomap);
3822 if (!map)
3823 return;
3824 sk = skb_to_full_sk(skb);
3825 if (!sk)
3826 return;
91c68ce2 3827
4dcb31d4
ED
3828 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3829
3830 if (prioidx < map->priomap_len)
3831 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3832}
3833#else
3834#define skb_update_prio(skb)
3835#endif
3836
95603e22
MM
3837/**
3838 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3839 * @net: network namespace this loopback is happening in
3840 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3841 * @skb: buffer to transmit
3842 */
0c4b51f0 3843int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3844{
3845 skb_reset_mac_header(skb);
3846 __skb_pull(skb, skb_network_offset(skb));
3847 skb->pkt_type = PACKET_LOOPBACK;
3848 skb->ip_summed = CHECKSUM_UNNECESSARY;
3849 WARN_ON(!skb_dst(skb));
3850 skb_dst_force(skb);
3851 netif_rx_ni(skb);
3852 return 0;
3853}
3854EXPORT_SYMBOL(dev_loopback_xmit);
3855
1f211a1b
DB
3856#ifdef CONFIG_NET_EGRESS
3857static struct sk_buff *
3858sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3859{
46209401 3860 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3861 struct tcf_result cl_res;
3862
46209401 3863 if (!miniq)
1f211a1b
DB
3864 return skb;
3865
8dc07fdb 3866 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3867 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3868
46209401 3869 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3870 case TC_ACT_OK:
3871 case TC_ACT_RECLASSIFY:
3872 skb->tc_index = TC_H_MIN(cl_res.classid);
3873 break;
3874 case TC_ACT_SHOT:
46209401 3875 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3876 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3877 kfree_skb(skb);
3878 return NULL;
1f211a1b
DB
3879 case TC_ACT_STOLEN:
3880 case TC_ACT_QUEUED:
e25ea21f 3881 case TC_ACT_TRAP:
1f211a1b 3882 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3883 consume_skb(skb);
1f211a1b
DB
3884 return NULL;
3885 case TC_ACT_REDIRECT:
3886 /* No need to push/pop skb's mac_header here on egress! */
3887 skb_do_redirect(skb);
3888 *ret = NET_XMIT_SUCCESS;
3889 return NULL;
3890 default:
3891 break;
3892 }
357b6cc5 3893
1f211a1b
DB
3894 return skb;
3895}
3896#endif /* CONFIG_NET_EGRESS */
3897
fc9bab24
AN
3898#ifdef CONFIG_XPS
3899static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3900 struct xps_dev_maps *dev_maps, unsigned int tci)
3901{
3902 struct xps_map *map;
3903 int queue_index = -1;
3904
3905 if (dev->num_tc) {
3906 tci *= dev->num_tc;
3907 tci += netdev_get_prio_tc_map(dev, skb->priority);
3908 }
3909
3910 map = rcu_dereference(dev_maps->attr_map[tci]);
3911 if (map) {
3912 if (map->len == 1)
3913 queue_index = map->queues[0];
3914 else
3915 queue_index = map->queues[reciprocal_scale(
3916 skb_get_hash(skb), map->len)];
3917 if (unlikely(queue_index >= dev->real_num_tx_queues))
3918 queue_index = -1;
3919 }
3920 return queue_index;
3921}
3922#endif
3923
eadec877
AD
3924static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3925 struct sk_buff *skb)
638b2a69
JP
3926{
3927#ifdef CONFIG_XPS
3928 struct xps_dev_maps *dev_maps;
fc9bab24 3929 struct sock *sk = skb->sk;
638b2a69
JP
3930 int queue_index = -1;
3931
04157469
AN
3932 if (!static_key_false(&xps_needed))
3933 return -1;
3934
638b2a69 3935 rcu_read_lock();
fc9bab24
AN
3936 if (!static_key_false(&xps_rxqs_needed))
3937 goto get_cpus_map;
3938
eadec877 3939 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3940 if (dev_maps) {
fc9bab24 3941 int tci = sk_rx_queue_get(sk);
184c449f 3942
fc9bab24
AN
3943 if (tci >= 0 && tci < dev->num_rx_queues)
3944 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3945 tci);
3946 }
184c449f 3947
fc9bab24
AN
3948get_cpus_map:
3949 if (queue_index < 0) {
eadec877 3950 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3951 if (dev_maps) {
3952 unsigned int tci = skb->sender_cpu - 1;
3953
3954 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3955 tci);
638b2a69
JP
3956 }
3957 }
3958 rcu_read_unlock();
3959
3960 return queue_index;
3961#else
3962 return -1;
3963#endif
3964}
3965
a4ea8a3d 3966u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3967 struct net_device *sb_dev)
a4ea8a3d
AD
3968{
3969 return 0;
3970}
3971EXPORT_SYMBOL(dev_pick_tx_zero);
3972
3973u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3974 struct net_device *sb_dev)
a4ea8a3d
AD
3975{
3976 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3977}
3978EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3979
b71b5837
PA
3980u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3981 struct net_device *sb_dev)
638b2a69
JP
3982{
3983 struct sock *sk = skb->sk;
3984 int queue_index = sk_tx_queue_get(sk);
3985
eadec877
AD
3986 sb_dev = sb_dev ? : dev;
3987
638b2a69
JP
3988 if (queue_index < 0 || skb->ooo_okay ||
3989 queue_index >= dev->real_num_tx_queues) {
eadec877 3990 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3991
638b2a69 3992 if (new_index < 0)
eadec877 3993 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3994
3995 if (queue_index != new_index && sk &&
004a5d01 3996 sk_fullsock(sk) &&
638b2a69
JP
3997 rcu_access_pointer(sk->sk_dst_cache))
3998 sk_tx_queue_set(sk, new_index);
3999
4000 queue_index = new_index;
4001 }
4002
4003 return queue_index;
4004}
b71b5837 4005EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 4006
4bd97d51
PA
4007struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4008 struct sk_buff *skb,
4009 struct net_device *sb_dev)
638b2a69
JP
4010{
4011 int queue_index = 0;
4012
4013#ifdef CONFIG_XPS
52bd2d62
ED
4014 u32 sender_cpu = skb->sender_cpu - 1;
4015
4016 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
4017 skb->sender_cpu = raw_smp_processor_id() + 1;
4018#endif
4019
4020 if (dev->real_num_tx_queues != 1) {
4021 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 4022
638b2a69 4023 if (ops->ndo_select_queue)
a350ecce 4024 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 4025 else
4bd97d51 4026 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 4027
d584527c 4028 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
4029 }
4030
4031 skb_set_queue_mapping(skb, queue_index);
4032 return netdev_get_tx_queue(dev, queue_index);
4033}
4034
d29f749e 4035/**
9d08dd3d 4036 * __dev_queue_xmit - transmit a buffer
d29f749e 4037 * @skb: buffer to transmit
eadec877 4038 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
4039 *
4040 * Queue a buffer for transmission to a network device. The caller must
4041 * have set the device and priority and built the buffer before calling
4042 * this function. The function can be called from an interrupt.
4043 *
4044 * A negative errno code is returned on a failure. A success does not
4045 * guarantee the frame will be transmitted as it may be dropped due
4046 * to congestion or traffic shaping.
4047 *
4048 * -----------------------------------------------------------------------------------
4049 * I notice this method can also return errors from the queue disciplines,
4050 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4051 * be positive.
4052 *
4053 * Regardless of the return value, the skb is consumed, so it is currently
4054 * difficult to retry a send to this method. (You can bump the ref count
4055 * before sending to hold a reference for retry if you are careful.)
4056 *
4057 * When calling this method, interrupts MUST be enabled. This is because
4058 * the BH enable code must have IRQs enabled so that it will not deadlock.
4059 * --BLG
4060 */
eadec877 4061static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
4062{
4063 struct net_device *dev = skb->dev;
dc2b4847 4064 struct netdev_queue *txq;
1da177e4
LT
4065 struct Qdisc *q;
4066 int rc = -ENOMEM;
f53c7239 4067 bool again = false;
1da177e4 4068
6d1ccff6
ED
4069 skb_reset_mac_header(skb);
4070
e7fd2885
WB
4071 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4072 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4073
4ec93edb
YH
4074 /* Disable soft irqs for various locks below. Also
4075 * stops preemption for RCU.
1da177e4 4076 */
4ec93edb 4077 rcu_read_lock_bh();
1da177e4 4078
5bc1421e
NH
4079 skb_update_prio(skb);
4080
1f211a1b
DB
4081 qdisc_pkt_len_init(skb);
4082#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4083 skb->tc_at_ingress = 0;
357b6cc5 4084# ifdef CONFIG_NET_EGRESS
aabf6772 4085 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4086 skb = sch_handle_egress(skb, &rc, dev);
4087 if (!skb)
4088 goto out;
4089 }
357b6cc5 4090# endif
1f211a1b 4091#endif
02875878
ED
4092 /* If device/qdisc don't need skb->dst, release it right now while
4093 * its hot in this cpu cache.
4094 */
4095 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4096 skb_dst_drop(skb);
4097 else
4098 skb_dst_force(skb);
4099
4bd97d51 4100 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4101 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4102
cf66ba58 4103 trace_net_dev_queue(skb);
1da177e4 4104 if (q->enqueue) {
bbd8a0d3 4105 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4106 goto out;
1da177e4
LT
4107 }
4108
4109 /* The device has no queue. Common case for software devices:
eb13da1a 4110 * loopback, all the sorts of tunnels...
1da177e4 4111
eb13da1a 4112 * Really, it is unlikely that netif_tx_lock protection is necessary
4113 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4114 * counters.)
4115 * However, it is possible, that they rely on protection
4116 * made by us here.
1da177e4 4117
eb13da1a 4118 * Check this and shot the lock. It is not prone from deadlocks.
4119 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4120 */
4121 if (dev->flags & IFF_UP) {
4122 int cpu = smp_processor_id(); /* ok because BHs are off */
4123
c773e847 4124 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4125 if (dev_xmit_recursion())
745e20f1
ED
4126 goto recursion_alert;
4127
f53c7239 4128 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4129 if (!skb)
d21fd63e 4130 goto out;
1f59533f 4131
c773e847 4132 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4133
73466498 4134 if (!netif_xmit_stopped(txq)) {
97cdcf37 4135 dev_xmit_recursion_inc();
ce93718f 4136 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4137 dev_xmit_recursion_dec();
572a9d7b 4138 if (dev_xmit_complete(rc)) {
c773e847 4139 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4140 goto out;
4141 }
4142 }
c773e847 4143 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4144 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4145 dev->name);
1da177e4
LT
4146 } else {
4147 /* Recursion is detected! It is possible,
745e20f1
ED
4148 * unfortunately
4149 */
4150recursion_alert:
e87cc472
JP
4151 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4152 dev->name);
1da177e4
LT
4153 }
4154 }
4155
4156 rc = -ENETDOWN;
d4828d85 4157 rcu_read_unlock_bh();
1da177e4 4158
015f0688 4159 atomic_long_inc(&dev->tx_dropped);
1f59533f 4160 kfree_skb_list(skb);
1da177e4
LT
4161 return rc;
4162out:
d4828d85 4163 rcu_read_unlock_bh();
1da177e4
LT
4164 return rc;
4165}
f663dd9a 4166
2b4aa3ce 4167int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4168{
4169 return __dev_queue_xmit(skb, NULL);
4170}
2b4aa3ce 4171EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4172
eadec877 4173int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4174{
eadec877 4175 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4176}
4177EXPORT_SYMBOL(dev_queue_xmit_accel);
4178
865b03f2
MK
4179int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4180{
4181 struct net_device *dev = skb->dev;
4182 struct sk_buff *orig_skb = skb;
4183 struct netdev_queue *txq;
4184 int ret = NETDEV_TX_BUSY;
4185 bool again = false;
4186
4187 if (unlikely(!netif_running(dev) ||
4188 !netif_carrier_ok(dev)))
4189 goto drop;
4190
4191 skb = validate_xmit_skb_list(skb, dev, &again);
4192 if (skb != orig_skb)
4193 goto drop;
4194
4195 skb_set_queue_mapping(skb, queue_id);
4196 txq = skb_get_tx_queue(dev, skb);
4197
4198 local_bh_disable();
4199
0ad6f6e7 4200 dev_xmit_recursion_inc();
865b03f2
MK
4201 HARD_TX_LOCK(dev, txq, smp_processor_id());
4202 if (!netif_xmit_frozen_or_drv_stopped(txq))
4203 ret = netdev_start_xmit(skb, dev, txq, false);
4204 HARD_TX_UNLOCK(dev, txq);
0ad6f6e7 4205 dev_xmit_recursion_dec();
865b03f2
MK
4206
4207 local_bh_enable();
4208
4209 if (!dev_xmit_complete(ret))
4210 kfree_skb(skb);
4211
4212 return ret;
4213drop:
4214 atomic_long_inc(&dev->tx_dropped);
4215 kfree_skb_list(skb);
4216 return NET_XMIT_DROP;
4217}
4218EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 4219
eb13da1a 4220/*************************************************************************
4221 * Receiver routines
4222 *************************************************************************/
1da177e4 4223
6b2bedc3 4224int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4225EXPORT_SYMBOL(netdev_max_backlog);
4226
3b098e2d 4227int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4228int netdev_budget __read_mostly = 300;
a4837980
KK
4229/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4230unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4231int weight_p __read_mostly = 64; /* old backlog weight */
4232int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4233int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4234int dev_rx_weight __read_mostly = 64;
4235int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4236/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4237int gro_normal_batch __read_mostly = 8;
1da177e4 4238
eecfd7c4
ED
4239/* Called with irq disabled */
4240static inline void ____napi_schedule(struct softnet_data *sd,
4241 struct napi_struct *napi)
4242{
4243 list_add_tail(&napi->poll_list, &sd->poll_list);
4244 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4245}
4246
bfb564e7
KK
4247#ifdef CONFIG_RPS
4248
4249/* One global table that all flow-based protocols share. */
6e3f7faf 4250struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4251EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4252u32 rps_cpu_mask __read_mostly;
4253EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4254
dc05360f 4255struct static_key_false rps_needed __read_mostly;
3df97ba8 4256EXPORT_SYMBOL(rps_needed);
dc05360f 4257struct static_key_false rfs_needed __read_mostly;
13bfff25 4258EXPORT_SYMBOL(rfs_needed);
adc9300e 4259
c445477d
BH
4260static struct rps_dev_flow *
4261set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4262 struct rps_dev_flow *rflow, u16 next_cpu)
4263{
a31196b0 4264 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4265#ifdef CONFIG_RFS_ACCEL
4266 struct netdev_rx_queue *rxqueue;
4267 struct rps_dev_flow_table *flow_table;
4268 struct rps_dev_flow *old_rflow;
4269 u32 flow_id;
4270 u16 rxq_index;
4271 int rc;
4272
4273 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4274 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4275 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4276 goto out;
4277 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4278 if (rxq_index == skb_get_rx_queue(skb))
4279 goto out;
4280
4281 rxqueue = dev->_rx + rxq_index;
4282 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4283 if (!flow_table)
4284 goto out;
61b905da 4285 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4286 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4287 rxq_index, flow_id);
4288 if (rc < 0)
4289 goto out;
4290 old_rflow = rflow;
4291 rflow = &flow_table->flows[flow_id];
c445477d
BH
4292 rflow->filter = rc;
4293 if (old_rflow->filter == rflow->filter)
4294 old_rflow->filter = RPS_NO_FILTER;
4295 out:
4296#endif
4297 rflow->last_qtail =
09994d1b 4298 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4299 }
4300
09994d1b 4301 rflow->cpu = next_cpu;
c445477d
BH
4302 return rflow;
4303}
4304
bfb564e7
KK
4305/*
4306 * get_rps_cpu is called from netif_receive_skb and returns the target
4307 * CPU from the RPS map of the receiving queue for a given skb.
4308 * rcu_read_lock must be held on entry.
4309 */
4310static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4311 struct rps_dev_flow **rflowp)
4312{
567e4b79
ED
4313 const struct rps_sock_flow_table *sock_flow_table;
4314 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4315 struct rps_dev_flow_table *flow_table;
567e4b79 4316 struct rps_map *map;
bfb564e7 4317 int cpu = -1;
567e4b79 4318 u32 tcpu;
61b905da 4319 u32 hash;
bfb564e7
KK
4320
4321 if (skb_rx_queue_recorded(skb)) {
4322 u16 index = skb_get_rx_queue(skb);
567e4b79 4323
62fe0b40
BH
4324 if (unlikely(index >= dev->real_num_rx_queues)) {
4325 WARN_ONCE(dev->real_num_rx_queues > 1,
4326 "%s received packet on queue %u, but number "
4327 "of RX queues is %u\n",
4328 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4329 goto done;
4330 }
567e4b79
ED
4331 rxqueue += index;
4332 }
bfb564e7 4333
567e4b79
ED
4334 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4335
4336 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4337 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4338 if (!flow_table && !map)
bfb564e7
KK
4339 goto done;
4340
2d47b459 4341 skb_reset_network_header(skb);
61b905da
TH
4342 hash = skb_get_hash(skb);
4343 if (!hash)
bfb564e7
KK
4344 goto done;
4345
fec5e652
TH
4346 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4347 if (flow_table && sock_flow_table) {
fec5e652 4348 struct rps_dev_flow *rflow;
567e4b79
ED
4349 u32 next_cpu;
4350 u32 ident;
4351
4352 /* First check into global flow table if there is a match */
4353 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4354 if ((ident ^ hash) & ~rps_cpu_mask)
4355 goto try_rps;
fec5e652 4356
567e4b79
ED
4357 next_cpu = ident & rps_cpu_mask;
4358
4359 /* OK, now we know there is a match,
4360 * we can look at the local (per receive queue) flow table
4361 */
61b905da 4362 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4363 tcpu = rflow->cpu;
4364
fec5e652
TH
4365 /*
4366 * If the desired CPU (where last recvmsg was done) is
4367 * different from current CPU (one in the rx-queue flow
4368 * table entry), switch if one of the following holds:
a31196b0 4369 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4370 * - Current CPU is offline.
4371 * - The current CPU's queue tail has advanced beyond the
4372 * last packet that was enqueued using this table entry.
4373 * This guarantees that all previous packets for the flow
4374 * have been dequeued, thus preserving in order delivery.
4375 */
4376 if (unlikely(tcpu != next_cpu) &&
a31196b0 4377 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4378 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4379 rflow->last_qtail)) >= 0)) {
4380 tcpu = next_cpu;
c445477d 4381 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4382 }
c445477d 4383
a31196b0 4384 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4385 *rflowp = rflow;
4386 cpu = tcpu;
4387 goto done;
4388 }
4389 }
4390
567e4b79
ED
4391try_rps:
4392
0a9627f2 4393 if (map) {
8fc54f68 4394 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4395 if (cpu_online(tcpu)) {
4396 cpu = tcpu;
4397 goto done;
4398 }
4399 }
4400
4401done:
0a9627f2
TH
4402 return cpu;
4403}
4404
c445477d
BH
4405#ifdef CONFIG_RFS_ACCEL
4406
4407/**
4408 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4409 * @dev: Device on which the filter was set
4410 * @rxq_index: RX queue index
4411 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4412 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4413 *
4414 * Drivers that implement ndo_rx_flow_steer() should periodically call
4415 * this function for each installed filter and remove the filters for
4416 * which it returns %true.
4417 */
4418bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4419 u32 flow_id, u16 filter_id)
4420{
4421 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4422 struct rps_dev_flow_table *flow_table;
4423 struct rps_dev_flow *rflow;
4424 bool expire = true;
a31196b0 4425 unsigned int cpu;
c445477d
BH
4426
4427 rcu_read_lock();
4428 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4429 if (flow_table && flow_id <= flow_table->mask) {
4430 rflow = &flow_table->flows[flow_id];
6aa7de05 4431 cpu = READ_ONCE(rflow->cpu);
a31196b0 4432 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4433 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4434 rflow->last_qtail) <
4435 (int)(10 * flow_table->mask)))
4436 expire = false;
4437 }
4438 rcu_read_unlock();
4439 return expire;
4440}
4441EXPORT_SYMBOL(rps_may_expire_flow);
4442
4443#endif /* CONFIG_RFS_ACCEL */
4444
0a9627f2 4445/* Called from hardirq (IPI) context */
e36fa2f7 4446static void rps_trigger_softirq(void *data)
0a9627f2 4447{
e36fa2f7
ED
4448 struct softnet_data *sd = data;
4449
eecfd7c4 4450 ____napi_schedule(sd, &sd->backlog);
dee42870 4451 sd->received_rps++;
0a9627f2 4452}
e36fa2f7 4453
fec5e652 4454#endif /* CONFIG_RPS */
0a9627f2 4455
e36fa2f7
ED
4456/*
4457 * Check if this softnet_data structure is another cpu one
4458 * If yes, queue it to our IPI list and return 1
4459 * If no, return 0
4460 */
4461static int rps_ipi_queued(struct softnet_data *sd)
4462{
4463#ifdef CONFIG_RPS
903ceff7 4464 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4465
4466 if (sd != mysd) {
4467 sd->rps_ipi_next = mysd->rps_ipi_list;
4468 mysd->rps_ipi_list = sd;
4469
4470 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4471 return 1;
4472 }
4473#endif /* CONFIG_RPS */
4474 return 0;
4475}
4476
99bbc707
WB
4477#ifdef CONFIG_NET_FLOW_LIMIT
4478int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4479#endif
4480
4481static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4482{
4483#ifdef CONFIG_NET_FLOW_LIMIT
4484 struct sd_flow_limit *fl;
4485 struct softnet_data *sd;
4486 unsigned int old_flow, new_flow;
4487
4488 if (qlen < (netdev_max_backlog >> 1))
4489 return false;
4490
903ceff7 4491 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4492
4493 rcu_read_lock();
4494 fl = rcu_dereference(sd->flow_limit);
4495 if (fl) {
3958afa1 4496 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4497 old_flow = fl->history[fl->history_head];
4498 fl->history[fl->history_head] = new_flow;
4499
4500 fl->history_head++;
4501 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4502
4503 if (likely(fl->buckets[old_flow]))
4504 fl->buckets[old_flow]--;
4505
4506 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4507 fl->count++;
4508 rcu_read_unlock();
4509 return true;
4510 }
4511 }
4512 rcu_read_unlock();
4513#endif
4514 return false;
4515}
4516
0a9627f2
TH
4517/*
4518 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4519 * queue (may be a remote CPU queue).
4520 */
fec5e652
TH
4521static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4522 unsigned int *qtail)
0a9627f2 4523{
e36fa2f7 4524 struct softnet_data *sd;
0a9627f2 4525 unsigned long flags;
99bbc707 4526 unsigned int qlen;
0a9627f2 4527
e36fa2f7 4528 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4529
4530 local_irq_save(flags);
0a9627f2 4531
e36fa2f7 4532 rps_lock(sd);
e9e4dd32
JA
4533 if (!netif_running(skb->dev))
4534 goto drop;
99bbc707
WB
4535 qlen = skb_queue_len(&sd->input_pkt_queue);
4536 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4537 if (qlen) {
0a9627f2 4538enqueue:
e36fa2f7 4539 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4540 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4541 rps_unlock(sd);
152102c7 4542 local_irq_restore(flags);
0a9627f2
TH
4543 return NET_RX_SUCCESS;
4544 }
4545
ebda37c2
ED
4546 /* Schedule NAPI for backlog device
4547 * We can use non atomic operation since we own the queue lock
4548 */
4549 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4550 if (!rps_ipi_queued(sd))
eecfd7c4 4551 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4552 }
4553 goto enqueue;
4554 }
4555
e9e4dd32 4556drop:
dee42870 4557 sd->dropped++;
e36fa2f7 4558 rps_unlock(sd);
0a9627f2 4559
0a9627f2
TH
4560 local_irq_restore(flags);
4561
caf586e5 4562 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4563 kfree_skb(skb);
4564 return NET_RX_DROP;
4565}
1da177e4 4566
e817f856
JDB
4567static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4568{
4569 struct net_device *dev = skb->dev;
4570 struct netdev_rx_queue *rxqueue;
4571
4572 rxqueue = dev->_rx;
4573
4574 if (skb_rx_queue_recorded(skb)) {
4575 u16 index = skb_get_rx_queue(skb);
4576
4577 if (unlikely(index >= dev->real_num_rx_queues)) {
4578 WARN_ONCE(dev->real_num_rx_queues > 1,
4579 "%s received packet on queue %u, but number "
4580 "of RX queues is %u\n",
4581 dev->name, index, dev->real_num_rx_queues);
4582
4583 return rxqueue; /* Return first rxqueue */
4584 }
4585 rxqueue += index;
4586 }
4587 return rxqueue;
4588}
4589
d4455169 4590static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4591 struct xdp_buff *xdp,
d4455169
JF
4592 struct bpf_prog *xdp_prog)
4593{
e817f856 4594 struct netdev_rx_queue *rxqueue;
198d83bb 4595 void *orig_data, *orig_data_end;
de8f3a83 4596 u32 metalen, act = XDP_DROP;
29724956
JDB
4597 __be16 orig_eth_type;
4598 struct ethhdr *eth;
4599 bool orig_bcast;
d4455169
JF
4600 int hlen, off;
4601 u32 mac_len;
4602
4603 /* Reinjected packets coming from act_mirred or similar should
4604 * not get XDP generic processing.
4605 */
2c64605b 4606 if (skb_is_redirected(skb))
d4455169
JF
4607 return XDP_PASS;
4608
de8f3a83
DB
4609 /* XDP packets must be linear and must have sufficient headroom
4610 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4611 * native XDP provides, thus we need to do it here as well.
4612 */
ad1e03b2 4613 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
de8f3a83
DB
4614 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4615 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4616 int troom = skb->tail + skb->data_len - skb->end;
4617
4618 /* In case we have to go down the path and also linearize,
4619 * then lets do the pskb_expand_head() work just once here.
4620 */
4621 if (pskb_expand_head(skb,
4622 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4623 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4624 goto do_drop;
2d17d8d7 4625 if (skb_linearize(skb))
de8f3a83
DB
4626 goto do_drop;
4627 }
d4455169
JF
4628
4629 /* The XDP program wants to see the packet starting at the MAC
4630 * header.
4631 */
4632 mac_len = skb->data - skb_mac_header(skb);
4633 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4634 xdp->data = skb->data - mac_len;
4635 xdp->data_meta = xdp->data;
4636 xdp->data_end = xdp->data + hlen;
4637 xdp->data_hard_start = skb->data - skb_headroom(skb);
a075767b
JDB
4638
4639 /* SKB "head" area always have tailroom for skb_shared_info */
4640 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4641 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4642
02671e23
BT
4643 orig_data_end = xdp->data_end;
4644 orig_data = xdp->data;
29724956
JDB
4645 eth = (struct ethhdr *)xdp->data;
4646 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4647 orig_eth_type = eth->h_proto;
d4455169 4648
e817f856 4649 rxqueue = netif_get_rxqueue(skb);
02671e23 4650 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4651
02671e23 4652 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4653
065af355 4654 /* check if bpf_xdp_adjust_head was used */
02671e23 4655 off = xdp->data - orig_data;
065af355
JDB
4656 if (off) {
4657 if (off > 0)
4658 __skb_pull(skb, off);
4659 else if (off < 0)
4660 __skb_push(skb, -off);
4661
4662 skb->mac_header += off;
4663 skb_reset_network_header(skb);
4664 }
d4455169 4665
a075767b
JDB
4666 /* check if bpf_xdp_adjust_tail was used */
4667 off = xdp->data_end - orig_data_end;
f7613120 4668 if (off != 0) {
02671e23 4669 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
a075767b 4670 skb->len += off; /* positive on grow, negative on shrink */
f7613120 4671 }
198d83bb 4672
29724956
JDB
4673 /* check if XDP changed eth hdr such SKB needs update */
4674 eth = (struct ethhdr *)xdp->data;
4675 if ((orig_eth_type != eth->h_proto) ||
4676 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4677 __skb_push(skb, ETH_HLEN);
4678 skb->protocol = eth_type_trans(skb, skb->dev);
4679 }
4680
d4455169 4681 switch (act) {
6103aa96 4682 case XDP_REDIRECT:
d4455169
JF
4683 case XDP_TX:
4684 __skb_push(skb, mac_len);
de8f3a83 4685 break;
d4455169 4686 case XDP_PASS:
02671e23 4687 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4688 if (metalen)
4689 skb_metadata_set(skb, metalen);
d4455169 4690 break;
d4455169
JF
4691 default:
4692 bpf_warn_invalid_xdp_action(act);
df561f66 4693 fallthrough;
d4455169
JF
4694 case XDP_ABORTED:
4695 trace_xdp_exception(skb->dev, xdp_prog, act);
df561f66 4696 fallthrough;
d4455169
JF
4697 case XDP_DROP:
4698 do_drop:
4699 kfree_skb(skb);
4700 break;
4701 }
4702
4703 return act;
4704}
4705
4706/* When doing generic XDP we have to bypass the qdisc layer and the
4707 * network taps in order to match in-driver-XDP behavior.
4708 */
7c497478 4709void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4710{
4711 struct net_device *dev = skb->dev;
4712 struct netdev_queue *txq;
4713 bool free_skb = true;
4714 int cpu, rc;
4715
4bd97d51 4716 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4717 cpu = smp_processor_id();
4718 HARD_TX_LOCK(dev, txq, cpu);
4719 if (!netif_xmit_stopped(txq)) {
4720 rc = netdev_start_xmit(skb, dev, txq, 0);
4721 if (dev_xmit_complete(rc))
4722 free_skb = false;
4723 }
4724 HARD_TX_UNLOCK(dev, txq);
4725 if (free_skb) {
4726 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4727 kfree_skb(skb);
4728 }
4729}
4730
02786475 4731static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4732
7c497478 4733int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4734{
d4455169 4735 if (xdp_prog) {
02671e23
BT
4736 struct xdp_buff xdp;
4737 u32 act;
6103aa96 4738 int err;
d4455169 4739
02671e23 4740 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4741 if (act != XDP_PASS) {
6103aa96
JF
4742 switch (act) {
4743 case XDP_REDIRECT:
2facaad6 4744 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4745 &xdp, xdp_prog);
6103aa96
JF
4746 if (err)
4747 goto out_redir;
02671e23 4748 break;
6103aa96 4749 case XDP_TX:
d4455169 4750 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4751 break;
4752 }
d4455169
JF
4753 return XDP_DROP;
4754 }
4755 }
4756 return XDP_PASS;
6103aa96 4757out_redir:
6103aa96
JF
4758 kfree_skb(skb);
4759 return XDP_DROP;
d4455169 4760}
7c497478 4761EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4762
ae78dbfa 4763static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4764{
b0e28f1e 4765 int ret;
1da177e4 4766
588f0330 4767 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4768
cf66ba58 4769 trace_netif_rx(skb);
d4455169 4770
df334545 4771#ifdef CONFIG_RPS
dc05360f 4772 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4773 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4774 int cpu;
4775
cece1945 4776 preempt_disable();
b0e28f1e 4777 rcu_read_lock();
fec5e652
TH
4778
4779 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4780 if (cpu < 0)
4781 cpu = smp_processor_id();
fec5e652
TH
4782
4783 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4784
b0e28f1e 4785 rcu_read_unlock();
cece1945 4786 preempt_enable();
adc9300e
ED
4787 } else
4788#endif
fec5e652
TH
4789 {
4790 unsigned int qtail;
f4563a75 4791
fec5e652
TH
4792 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4793 put_cpu();
4794 }
b0e28f1e 4795 return ret;
1da177e4 4796}
ae78dbfa
BH
4797
4798/**
4799 * netif_rx - post buffer to the network code
4800 * @skb: buffer to post
4801 *
4802 * This function receives a packet from a device driver and queues it for
4803 * the upper (protocol) levels to process. It always succeeds. The buffer
4804 * may be dropped during processing for congestion control or by the
4805 * protocol layers.
4806 *
4807 * return values:
4808 * NET_RX_SUCCESS (no congestion)
4809 * NET_RX_DROP (packet was dropped)
4810 *
4811 */
4812
4813int netif_rx(struct sk_buff *skb)
4814{
b0e3f1bd
GB
4815 int ret;
4816
ae78dbfa
BH
4817 trace_netif_rx_entry(skb);
4818
b0e3f1bd
GB
4819 ret = netif_rx_internal(skb);
4820 trace_netif_rx_exit(ret);
4821
4822 return ret;
ae78dbfa 4823}
d1b19dff 4824EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4825
4826int netif_rx_ni(struct sk_buff *skb)
4827{
4828 int err;
4829
ae78dbfa
BH
4830 trace_netif_rx_ni_entry(skb);
4831
1da177e4 4832 preempt_disable();
ae78dbfa 4833 err = netif_rx_internal(skb);
1da177e4
LT
4834 if (local_softirq_pending())
4835 do_softirq();
4836 preempt_enable();
b0e3f1bd 4837 trace_netif_rx_ni_exit(err);
1da177e4
LT
4838
4839 return err;
4840}
1da177e4
LT
4841EXPORT_SYMBOL(netif_rx_ni);
4842
0766f788 4843static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4844{
903ceff7 4845 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4846
4847 if (sd->completion_queue) {
4848 struct sk_buff *clist;
4849
4850 local_irq_disable();
4851 clist = sd->completion_queue;
4852 sd->completion_queue = NULL;
4853 local_irq_enable();
4854
4855 while (clist) {
4856 struct sk_buff *skb = clist;
f4563a75 4857
1da177e4
LT
4858 clist = clist->next;
4859
63354797 4860 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4861 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4862 trace_consume_skb(skb);
4863 else
4864 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4865
4866 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4867 __kfree_skb(skb);
4868 else
4869 __kfree_skb_defer(skb);
1da177e4 4870 }
15fad714
JDB
4871
4872 __kfree_skb_flush();
1da177e4
LT
4873 }
4874
4875 if (sd->output_queue) {
37437bb2 4876 struct Qdisc *head;
1da177e4
LT
4877
4878 local_irq_disable();
4879 head = sd->output_queue;
4880 sd->output_queue = NULL;
a9cbd588 4881 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4882 local_irq_enable();
4883
4884 while (head) {
37437bb2 4885 struct Qdisc *q = head;
6b3ba914 4886 spinlock_t *root_lock = NULL;
37437bb2 4887
1da177e4
LT
4888 head = head->next_sched;
4889
6b3ba914
JF
4890 if (!(q->flags & TCQ_F_NOLOCK)) {
4891 root_lock = qdisc_lock(q);
4892 spin_lock(root_lock);
4893 }
3bcb846c
ED
4894 /* We need to make sure head->next_sched is read
4895 * before clearing __QDISC_STATE_SCHED
4896 */
4897 smp_mb__before_atomic();
4898 clear_bit(__QDISC_STATE_SCHED, &q->state);
4899 qdisc_run(q);
6b3ba914
JF
4900 if (root_lock)
4901 spin_unlock(root_lock);
1da177e4
LT
4902 }
4903 }
f53c7239
SK
4904
4905 xfrm_dev_backlog(sd);
1da177e4
LT
4906}
4907
181402a5 4908#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4909/* This hook is defined here for ATM LANE */
4910int (*br_fdb_test_addr_hook)(struct net_device *dev,
4911 unsigned char *addr) __read_mostly;
4fb019a0 4912EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4913#endif
1da177e4 4914
1f211a1b
DB
4915static inline struct sk_buff *
4916sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4917 struct net_device *orig_dev)
f697c3e8 4918{
e7582bab 4919#ifdef CONFIG_NET_CLS_ACT
46209401 4920 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4921 struct tcf_result cl_res;
24824a09 4922
c9e99fd0
DB
4923 /* If there's at least one ingress present somewhere (so
4924 * we get here via enabled static key), remaining devices
4925 * that are not configured with an ingress qdisc will bail
d2788d34 4926 * out here.
c9e99fd0 4927 */
46209401 4928 if (!miniq)
4577139b 4929 return skb;
46209401 4930
f697c3e8
HX
4931 if (*pt_prev) {
4932 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4933 *pt_prev = NULL;
1da177e4
LT
4934 }
4935
3365495c 4936 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4937 skb->tc_at_ingress = 1;
46209401 4938 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4939
7d17c544
PB
4940 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4941 &cl_res, false)) {
d2788d34
DB
4942 case TC_ACT_OK:
4943 case TC_ACT_RECLASSIFY:
4944 skb->tc_index = TC_H_MIN(cl_res.classid);
4945 break;
4946 case TC_ACT_SHOT:
46209401 4947 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4948 kfree_skb(skb);
4949 return NULL;
d2788d34
DB
4950 case TC_ACT_STOLEN:
4951 case TC_ACT_QUEUED:
e25ea21f 4952 case TC_ACT_TRAP:
8a3a4c6e 4953 consume_skb(skb);
d2788d34 4954 return NULL;
27b29f63
AS
4955 case TC_ACT_REDIRECT:
4956 /* skb_mac_header check was done by cls/act_bpf, so
4957 * we can safely push the L2 header back before
4958 * redirecting to another netdev
4959 */
4960 __skb_push(skb, skb->mac_len);
4961 skb_do_redirect(skb);
4962 return NULL;
720f22fe 4963 case TC_ACT_CONSUMED:
cd11b164 4964 return NULL;
d2788d34
DB
4965 default:
4966 break;
f697c3e8 4967 }
e7582bab 4968#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4969 return skb;
4970}
1da177e4 4971
24b27fc4
MB
4972/**
4973 * netdev_is_rx_handler_busy - check if receive handler is registered
4974 * @dev: device to check
4975 *
4976 * Check if a receive handler is already registered for a given device.
4977 * Return true if there one.
4978 *
4979 * The caller must hold the rtnl_mutex.
4980 */
4981bool netdev_is_rx_handler_busy(struct net_device *dev)
4982{
4983 ASSERT_RTNL();
4984 return dev && rtnl_dereference(dev->rx_handler);
4985}
4986EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4987
ab95bfe0
JP
4988/**
4989 * netdev_rx_handler_register - register receive handler
4990 * @dev: device to register a handler for
4991 * @rx_handler: receive handler to register
93e2c32b 4992 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4993 *
e227867f 4994 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4995 * called from __netif_receive_skb. A negative errno code is returned
4996 * on a failure.
4997 *
4998 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4999 *
5000 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
5001 */
5002int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
5003 rx_handler_func_t *rx_handler,
5004 void *rx_handler_data)
ab95bfe0 5005{
1b7cd004 5006 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
5007 return -EBUSY;
5008
f5426250
PA
5009 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5010 return -EINVAL;
5011
00cfec37 5012 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 5013 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
5014 rcu_assign_pointer(dev->rx_handler, rx_handler);
5015
5016 return 0;
5017}
5018EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5019
5020/**
5021 * netdev_rx_handler_unregister - unregister receive handler
5022 * @dev: device to unregister a handler from
5023 *
166ec369 5024 * Unregister a receive handler from a device.
ab95bfe0
JP
5025 *
5026 * The caller must hold the rtnl_mutex.
5027 */
5028void netdev_rx_handler_unregister(struct net_device *dev)
5029{
5030
5031 ASSERT_RTNL();
a9b3cd7f 5032 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
5033 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5034 * section has a guarantee to see a non NULL rx_handler_data
5035 * as well.
5036 */
5037 synchronize_net();
a9b3cd7f 5038 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
5039}
5040EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5041
b4b9e355
MG
5042/*
5043 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5044 * the special handling of PFMEMALLOC skbs.
5045 */
5046static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5047{
5048 switch (skb->protocol) {
2b8837ae
JP
5049 case htons(ETH_P_ARP):
5050 case htons(ETH_P_IP):
5051 case htons(ETH_P_IPV6):
5052 case htons(ETH_P_8021Q):
5053 case htons(ETH_P_8021AD):
b4b9e355
MG
5054 return true;
5055 default:
5056 return false;
5057 }
5058}
5059
e687ad60
PN
5060static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5061 int *ret, struct net_device *orig_dev)
5062{
5063 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
5064 int ingress_retval;
5065
e687ad60
PN
5066 if (*pt_prev) {
5067 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5068 *pt_prev = NULL;
5069 }
5070
2c1e2703
AC
5071 rcu_read_lock();
5072 ingress_retval = nf_hook_ingress(skb);
5073 rcu_read_unlock();
5074 return ingress_retval;
e687ad60
PN
5075 }
5076 return 0;
5077}
e687ad60 5078
c0bbbdc3 5079static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
88eb1944 5080 struct packet_type **ppt_prev)
1da177e4
LT
5081{
5082 struct packet_type *ptype, *pt_prev;
ab95bfe0 5083 rx_handler_func_t *rx_handler;
c0bbbdc3 5084 struct sk_buff *skb = *pskb;
f2ccd8fa 5085 struct net_device *orig_dev;
8a4eb573 5086 bool deliver_exact = false;
1da177e4 5087 int ret = NET_RX_DROP;
252e3346 5088 __be16 type;
1da177e4 5089
588f0330 5090 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5091
cf66ba58 5092 trace_netif_receive_skb(skb);
9b22ea56 5093
cc9bd5ce 5094 orig_dev = skb->dev;
8f903c70 5095
c1d2bbe1 5096 skb_reset_network_header(skb);
fda55eca
ED
5097 if (!skb_transport_header_was_set(skb))
5098 skb_reset_transport_header(skb);
0b5c9db1 5099 skb_reset_mac_len(skb);
1da177e4
LT
5100
5101 pt_prev = NULL;
5102
63d8ea7f 5103another_round:
b6858177 5104 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5105
5106 __this_cpu_inc(softnet_data.processed);
5107
458bf2f2
SH
5108 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5109 int ret2;
5110
5111 preempt_disable();
5112 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5113 preempt_enable();
5114
c0bbbdc3
BS
5115 if (ret2 != XDP_PASS) {
5116 ret = NET_RX_DROP;
5117 goto out;
5118 }
458bf2f2
SH
5119 skb_reset_mac_len(skb);
5120 }
5121
8ad227ff
PM
5122 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5123 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 5124 skb = skb_vlan_untag(skb);
bcc6d479 5125 if (unlikely(!skb))
2c17d27c 5126 goto out;
bcc6d479
JP
5127 }
5128
e7246e12
WB
5129 if (skb_skip_tc_classify(skb))
5130 goto skip_classify;
1da177e4 5131
9754e293 5132 if (pfmemalloc)
b4b9e355
MG
5133 goto skip_taps;
5134
1da177e4 5135 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5136 if (pt_prev)
5137 ret = deliver_skb(skb, pt_prev, orig_dev);
5138 pt_prev = ptype;
5139 }
5140
5141 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5142 if (pt_prev)
5143 ret = deliver_skb(skb, pt_prev, orig_dev);
5144 pt_prev = ptype;
1da177e4
LT
5145 }
5146
b4b9e355 5147skip_taps:
1cf51900 5148#ifdef CONFIG_NET_INGRESS
aabf6772 5149 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 5150 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 5151 if (!skb)
2c17d27c 5152 goto out;
e687ad60
PN
5153
5154 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5155 goto out;
4577139b 5156 }
1cf51900 5157#endif
2c64605b 5158 skb_reset_redirect(skb);
e7246e12 5159skip_classify:
9754e293 5160 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5161 goto drop;
5162
df8a39de 5163 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5164 if (pt_prev) {
5165 ret = deliver_skb(skb, pt_prev, orig_dev);
5166 pt_prev = NULL;
5167 }
48cc32d3 5168 if (vlan_do_receive(&skb))
2425717b
JF
5169 goto another_round;
5170 else if (unlikely(!skb))
2c17d27c 5171 goto out;
2425717b
JF
5172 }
5173
48cc32d3 5174 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5175 if (rx_handler) {
5176 if (pt_prev) {
5177 ret = deliver_skb(skb, pt_prev, orig_dev);
5178 pt_prev = NULL;
5179 }
8a4eb573
JP
5180 switch (rx_handler(&skb)) {
5181 case RX_HANDLER_CONSUMED:
3bc1b1ad 5182 ret = NET_RX_SUCCESS;
2c17d27c 5183 goto out;
8a4eb573 5184 case RX_HANDLER_ANOTHER:
63d8ea7f 5185 goto another_round;
8a4eb573
JP
5186 case RX_HANDLER_EXACT:
5187 deliver_exact = true;
5188 case RX_HANDLER_PASS:
5189 break;
5190 default:
5191 BUG();
5192 }
ab95bfe0 5193 }
1da177e4 5194
df8a39de 5195 if (unlikely(skb_vlan_tag_present(skb))) {
36b2f61a
GV
5196check_vlan_id:
5197 if (skb_vlan_tag_get_id(skb)) {
5198 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5199 * find vlan device.
5200 */
d4b812de 5201 skb->pkt_type = PACKET_OTHERHOST;
36b2f61a
GV
5202 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5203 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5204 /* Outer header is 802.1P with vlan 0, inner header is
5205 * 802.1Q or 802.1AD and vlan_do_receive() above could
5206 * not find vlan dev for vlan id 0.
5207 */
5208 __vlan_hwaccel_clear_tag(skb);
5209 skb = skb_vlan_untag(skb);
5210 if (unlikely(!skb))
5211 goto out;
5212 if (vlan_do_receive(&skb))
5213 /* After stripping off 802.1P header with vlan 0
5214 * vlan dev is found for inner header.
5215 */
5216 goto another_round;
5217 else if (unlikely(!skb))
5218 goto out;
5219 else
5220 /* We have stripped outer 802.1P vlan 0 header.
5221 * But could not find vlan dev.
5222 * check again for vlan id to set OTHERHOST.
5223 */
5224 goto check_vlan_id;
5225 }
d4b812de
ED
5226 /* Note: we might in the future use prio bits
5227 * and set skb->priority like in vlan_do_receive()
5228 * For the time being, just ignore Priority Code Point
5229 */
b1817524 5230 __vlan_hwaccel_clear_tag(skb);
d4b812de 5231 }
48cc32d3 5232
7866a621
SN
5233 type = skb->protocol;
5234
63d8ea7f 5235 /* deliver only exact match when indicated */
7866a621
SN
5236 if (likely(!deliver_exact)) {
5237 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5238 &ptype_base[ntohs(type) &
5239 PTYPE_HASH_MASK]);
5240 }
1f3c8804 5241
7866a621
SN
5242 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5243 &orig_dev->ptype_specific);
5244
5245 if (unlikely(skb->dev != orig_dev)) {
5246 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5247 &skb->dev->ptype_specific);
1da177e4
LT
5248 }
5249
5250 if (pt_prev) {
1f8b977a 5251 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5252 goto drop;
88eb1944 5253 *ppt_prev = pt_prev;
1da177e4 5254 } else {
b4b9e355 5255drop:
6e7333d3
JW
5256 if (!deliver_exact)
5257 atomic_long_inc(&skb->dev->rx_dropped);
5258 else
5259 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5260 kfree_skb(skb);
5261 /* Jamal, now you will not able to escape explaining
5262 * me how you were going to use this. :-)
5263 */
5264 ret = NET_RX_DROP;
5265 }
5266
2c17d27c 5267out:
c0bbbdc3
BS
5268 /* The invariant here is that if *ppt_prev is not NULL
5269 * then skb should also be non-NULL.
5270 *
5271 * Apparently *ppt_prev assignment above holds this invariant due to
5272 * skb dereferencing near it.
5273 */
5274 *pskb = skb;
9754e293
DM
5275 return ret;
5276}
5277
88eb1944
EC
5278static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5279{
5280 struct net_device *orig_dev = skb->dev;
5281 struct packet_type *pt_prev = NULL;
5282 int ret;
5283
c0bbbdc3 5284 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
88eb1944 5285 if (pt_prev)
f5737cba
PA
5286 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5287 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5288 return ret;
5289}
5290
1c601d82
JDB
5291/**
5292 * netif_receive_skb_core - special purpose version of netif_receive_skb
5293 * @skb: buffer to process
5294 *
5295 * More direct receive version of netif_receive_skb(). It should
5296 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5297 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5298 *
5299 * This function may only be called from softirq context and interrupts
5300 * should be enabled.
5301 *
5302 * Return values (usually ignored):
5303 * NET_RX_SUCCESS: no congestion
5304 * NET_RX_DROP: packet was dropped
5305 */
5306int netif_receive_skb_core(struct sk_buff *skb)
5307{
5308 int ret;
5309
5310 rcu_read_lock();
88eb1944 5311 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5312 rcu_read_unlock();
5313
5314 return ret;
5315}
5316EXPORT_SYMBOL(netif_receive_skb_core);
5317
88eb1944
EC
5318static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5319 struct packet_type *pt_prev,
5320 struct net_device *orig_dev)
4ce0017a
EC
5321{
5322 struct sk_buff *skb, *next;
5323
88eb1944
EC
5324 if (!pt_prev)
5325 return;
5326 if (list_empty(head))
5327 return;
17266ee9 5328 if (pt_prev->list_func != NULL)
fdf71426
PA
5329 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5330 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5331 else
9a5a90d1
AL
5332 list_for_each_entry_safe(skb, next, head, list) {
5333 skb_list_del_init(skb);
fdf71426 5334 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5335 }
88eb1944
EC
5336}
5337
5338static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5339{
5340 /* Fast-path assumptions:
5341 * - There is no RX handler.
5342 * - Only one packet_type matches.
5343 * If either of these fails, we will end up doing some per-packet
5344 * processing in-line, then handling the 'last ptype' for the whole
5345 * sublist. This can't cause out-of-order delivery to any single ptype,
5346 * because the 'last ptype' must be constant across the sublist, and all
5347 * other ptypes are handled per-packet.
5348 */
5349 /* Current (common) ptype of sublist */
5350 struct packet_type *pt_curr = NULL;
5351 /* Current (common) orig_dev of sublist */
5352 struct net_device *od_curr = NULL;
5353 struct list_head sublist;
5354 struct sk_buff *skb, *next;
5355
9af86f93 5356 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5357 list_for_each_entry_safe(skb, next, head, list) {
5358 struct net_device *orig_dev = skb->dev;
5359 struct packet_type *pt_prev = NULL;
5360
22f6bbb7 5361 skb_list_del_init(skb);
c0bbbdc3 5362 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
9af86f93
EC
5363 if (!pt_prev)
5364 continue;
88eb1944
EC
5365 if (pt_curr != pt_prev || od_curr != orig_dev) {
5366 /* dispatch old sublist */
88eb1944
EC
5367 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5368 /* start new sublist */
9af86f93 5369 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5370 pt_curr = pt_prev;
5371 od_curr = orig_dev;
5372 }
9af86f93 5373 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5374 }
5375
5376 /* dispatch final sublist */
9af86f93 5377 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5378}
5379
9754e293
DM
5380static int __netif_receive_skb(struct sk_buff *skb)
5381{
5382 int ret;
5383
5384 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5385 unsigned int noreclaim_flag;
9754e293
DM
5386
5387 /*
5388 * PFMEMALLOC skbs are special, they should
5389 * - be delivered to SOCK_MEMALLOC sockets only
5390 * - stay away from userspace
5391 * - have bounded memory usage
5392 *
5393 * Use PF_MEMALLOC as this saves us from propagating the allocation
5394 * context down to all allocation sites.
5395 */
f1083048 5396 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5397 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5398 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5399 } else
88eb1944 5400 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5401
1da177e4
LT
5402 return ret;
5403}
0a9627f2 5404
4ce0017a
EC
5405static void __netif_receive_skb_list(struct list_head *head)
5406{
5407 unsigned long noreclaim_flag = 0;
5408 struct sk_buff *skb, *next;
5409 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5410
5411 list_for_each_entry_safe(skb, next, head, list) {
5412 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5413 struct list_head sublist;
5414
5415 /* Handle the previous sublist */
5416 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5417 if (!list_empty(&sublist))
5418 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5419 pfmemalloc = !pfmemalloc;
5420 /* See comments in __netif_receive_skb */
5421 if (pfmemalloc)
5422 noreclaim_flag = memalloc_noreclaim_save();
5423 else
5424 memalloc_noreclaim_restore(noreclaim_flag);
5425 }
5426 }
5427 /* Handle the remaining sublist */
b9f463d6
EC
5428 if (!list_empty(head))
5429 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5430 /* Restore pflags */
5431 if (pfmemalloc)
5432 memalloc_noreclaim_restore(noreclaim_flag);
5433}
5434
f4e63525 5435static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5436{
58038695 5437 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5438 struct bpf_prog *new = xdp->prog;
5439 int ret = 0;
5440
fbee97fe
DA
5441 if (new) {
5442 u32 i;
5443
5444 /* generic XDP does not work with DEVMAPs that can
5445 * have a bpf_prog installed on an entry
5446 */
5447 for (i = 0; i < new->aux->used_map_cnt; i++) {
5448 if (dev_map_can_have_prog(new->aux->used_maps[i]))
5449 return -EINVAL;
92164774
LB
5450 if (cpu_map_prog_allowed(new->aux->used_maps[i]))
5451 return -EINVAL;
fbee97fe
DA
5452 }
5453 }
5454
b5cdae32 5455 switch (xdp->command) {
58038695 5456 case XDP_SETUP_PROG:
b5cdae32
DM
5457 rcu_assign_pointer(dev->xdp_prog, new);
5458 if (old)
5459 bpf_prog_put(old);
5460
5461 if (old && !new) {
02786475 5462 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5463 } else if (new && !old) {
02786475 5464 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5465 dev_disable_lro(dev);
56f5aa77 5466 dev_disable_gro_hw(dev);
b5cdae32
DM
5467 }
5468 break;
b5cdae32 5469
b5cdae32
DM
5470 default:
5471 ret = -EINVAL;
5472 break;
5473 }
5474
5475 return ret;
5476}
5477
ae78dbfa 5478static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5479{
2c17d27c
JA
5480 int ret;
5481
588f0330 5482 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5483
c1f19b51
RC
5484 if (skb_defer_rx_timestamp(skb))
5485 return NET_RX_SUCCESS;
5486
bbbe211c 5487 rcu_read_lock();
df334545 5488#ifdef CONFIG_RPS
dc05360f 5489 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5490 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5491 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5492
3b098e2d
ED
5493 if (cpu >= 0) {
5494 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5495 rcu_read_unlock();
adc9300e 5496 return ret;
3b098e2d 5497 }
fec5e652 5498 }
1e94d72f 5499#endif
2c17d27c
JA
5500 ret = __netif_receive_skb(skb);
5501 rcu_read_unlock();
5502 return ret;
0a9627f2 5503}
ae78dbfa 5504
7da517a3
EC
5505static void netif_receive_skb_list_internal(struct list_head *head)
5506{
7da517a3 5507 struct sk_buff *skb, *next;
8c057efa 5508 struct list_head sublist;
7da517a3 5509
8c057efa 5510 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5511 list_for_each_entry_safe(skb, next, head, list) {
5512 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5513 skb_list_del_init(skb);
8c057efa
EC
5514 if (!skb_defer_rx_timestamp(skb))
5515 list_add_tail(&skb->list, &sublist);
7da517a3 5516 }
8c057efa 5517 list_splice_init(&sublist, head);
7da517a3 5518
7da517a3
EC
5519 rcu_read_lock();
5520#ifdef CONFIG_RPS
dc05360f 5521 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5522 list_for_each_entry_safe(skb, next, head, list) {
5523 struct rps_dev_flow voidflow, *rflow = &voidflow;
5524 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5525
5526 if (cpu >= 0) {
8c057efa 5527 /* Will be handled, remove from list */
22f6bbb7 5528 skb_list_del_init(skb);
8c057efa 5529 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5530 }
5531 }
5532 }
5533#endif
5534 __netif_receive_skb_list(head);
5535 rcu_read_unlock();
5536}
5537
ae78dbfa
BH
5538/**
5539 * netif_receive_skb - process receive buffer from network
5540 * @skb: buffer to process
5541 *
5542 * netif_receive_skb() is the main receive data processing function.
5543 * It always succeeds. The buffer may be dropped during processing
5544 * for congestion control or by the protocol layers.
5545 *
5546 * This function may only be called from softirq context and interrupts
5547 * should be enabled.
5548 *
5549 * Return values (usually ignored):
5550 * NET_RX_SUCCESS: no congestion
5551 * NET_RX_DROP: packet was dropped
5552 */
04eb4489 5553int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5554{
b0e3f1bd
GB
5555 int ret;
5556
ae78dbfa
BH
5557 trace_netif_receive_skb_entry(skb);
5558
b0e3f1bd
GB
5559 ret = netif_receive_skb_internal(skb);
5560 trace_netif_receive_skb_exit(ret);
5561
5562 return ret;
ae78dbfa 5563}
04eb4489 5564EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5565
f6ad8c1b
EC
5566/**
5567 * netif_receive_skb_list - process many receive buffers from network
5568 * @head: list of skbs to process.
5569 *
7da517a3
EC
5570 * Since return value of netif_receive_skb() is normally ignored, and
5571 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5572 *
5573 * This function may only be called from softirq context and interrupts
5574 * should be enabled.
5575 */
5576void netif_receive_skb_list(struct list_head *head)
5577{
7da517a3 5578 struct sk_buff *skb;
f6ad8c1b 5579
b9f463d6
EC
5580 if (list_empty(head))
5581 return;
b0e3f1bd
GB
5582 if (trace_netif_receive_skb_list_entry_enabled()) {
5583 list_for_each_entry(skb, head, list)
5584 trace_netif_receive_skb_list_entry(skb);
5585 }
7da517a3 5586 netif_receive_skb_list_internal(head);
b0e3f1bd 5587 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5588}
5589EXPORT_SYMBOL(netif_receive_skb_list);
5590
ce1e2a77 5591static DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5592
5593/* Network device is going away, flush any packets still pending */
5594static void flush_backlog(struct work_struct *work)
6e583ce5 5595{
6e583ce5 5596 struct sk_buff *skb, *tmp;
145dd5f9
PA
5597 struct softnet_data *sd;
5598
5599 local_bh_disable();
5600 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5601
145dd5f9 5602 local_irq_disable();
e36fa2f7 5603 rps_lock(sd);
6e7676c1 5604 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5605 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5606 __skb_unlink(skb, &sd->input_pkt_queue);
7df5cb75 5607 dev_kfree_skb_irq(skb);
76cc8b13 5608 input_queue_head_incr(sd);
6e583ce5 5609 }
6e7676c1 5610 }
e36fa2f7 5611 rps_unlock(sd);
145dd5f9 5612 local_irq_enable();
6e7676c1
CG
5613
5614 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5615 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5616 __skb_unlink(skb, &sd->process_queue);
5617 kfree_skb(skb);
76cc8b13 5618 input_queue_head_incr(sd);
6e7676c1
CG
5619 }
5620 }
145dd5f9
PA
5621 local_bh_enable();
5622}
5623
41852497 5624static void flush_all_backlogs(void)
145dd5f9
PA
5625{
5626 unsigned int cpu;
5627
5628 get_online_cpus();
5629
41852497
ED
5630 for_each_online_cpu(cpu)
5631 queue_work_on(cpu, system_highpri_wq,
5632 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5633
5634 for_each_online_cpu(cpu)
41852497 5635 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5636
5637 put_online_cpus();
6e583ce5
SH
5638}
5639
c8079432
MM
5640/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5641static void gro_normal_list(struct napi_struct *napi)
5642{
5643 if (!napi->rx_count)
5644 return;
5645 netif_receive_skb_list_internal(&napi->rx_list);
5646 INIT_LIST_HEAD(&napi->rx_list);
5647 napi->rx_count = 0;
5648}
5649
5650/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5651 * pass the whole batch up to the stack.
5652 */
5653static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5654{
5655 list_add_tail(&skb->list, &napi->rx_list);
5656 if (++napi->rx_count >= gro_normal_batch)
5657 gro_normal_list(napi);
5658}
5659
aaa5d90b
PA
5660INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5661INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
c8079432 5662static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5663{
22061d80 5664 struct packet_offload *ptype;
d565b0a1 5665 __be16 type = skb->protocol;
22061d80 5666 struct list_head *head = &offload_base;
d565b0a1
HX
5667 int err = -ENOENT;
5668
c3c7c254
ED
5669 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5670
fc59f9a3
HX
5671 if (NAPI_GRO_CB(skb)->count == 1) {
5672 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5673 goto out;
fc59f9a3 5674 }
d565b0a1
HX
5675
5676 rcu_read_lock();
5677 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5678 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5679 continue;
5680
aaa5d90b
PA
5681 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5682 ipv6_gro_complete, inet_gro_complete,
5683 skb, 0);
d565b0a1
HX
5684 break;
5685 }
5686 rcu_read_unlock();
5687
5688 if (err) {
5689 WARN_ON(&ptype->list == head);
5690 kfree_skb(skb);
5691 return NET_RX_SUCCESS;
5692 }
5693
5694out:
c8079432
MM
5695 gro_normal_one(napi, skb);
5696 return NET_RX_SUCCESS;
d565b0a1
HX
5697}
5698
6312fe77 5699static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5700 bool flush_old)
d565b0a1 5701{
6312fe77 5702 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5703 struct sk_buff *skb, *p;
2e71a6f8 5704
07d78363 5705 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5706 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5707 return;
992cba7e 5708 skb_list_del_init(skb);
c8079432 5709 napi_gro_complete(napi, skb);
6312fe77 5710 napi->gro_hash[index].count--;
d565b0a1 5711 }
d9f37d01
LR
5712
5713 if (!napi->gro_hash[index].count)
5714 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5715}
07d78363 5716
6312fe77 5717/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5718 * youngest packets at the head of it.
5719 * Complete skbs in reverse order to reduce latencies.
5720 */
5721void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5722{
42519ede
ED
5723 unsigned long bitmask = napi->gro_bitmask;
5724 unsigned int i, base = ~0U;
07d78363 5725
42519ede
ED
5726 while ((i = ffs(bitmask)) != 0) {
5727 bitmask >>= i;
5728 base += i;
5729 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5730 }
07d78363 5731}
86cac58b 5732EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5733
07d78363
DM
5734static struct list_head *gro_list_prepare(struct napi_struct *napi,
5735 struct sk_buff *skb)
89c5fa33 5736{
89c5fa33 5737 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5738 u32 hash = skb_get_hash_raw(skb);
07d78363 5739 struct list_head *head;
d4546c25 5740 struct sk_buff *p;
89c5fa33 5741
6312fe77 5742 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5743 list_for_each_entry(p, head, list) {
89c5fa33
ED
5744 unsigned long diffs;
5745
0b4cec8c
TH
5746 NAPI_GRO_CB(p)->flush = 0;
5747
5748 if (hash != skb_get_hash_raw(p)) {
5749 NAPI_GRO_CB(p)->same_flow = 0;
5750 continue;
5751 }
5752
89c5fa33 5753 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5754 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5755 if (skb_vlan_tag_present(p))
fc5141cb 5756 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
ce87fc6c 5757 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5758 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5759 if (maclen == ETH_HLEN)
5760 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5761 skb_mac_header(skb));
89c5fa33
ED
5762 else if (!diffs)
5763 diffs = memcmp(skb_mac_header(p),
a50e233c 5764 skb_mac_header(skb),
89c5fa33
ED
5765 maclen);
5766 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5767 }
07d78363
DM
5768
5769 return head;
89c5fa33
ED
5770}
5771
299603e8
JC
5772static void skb_gro_reset_offset(struct sk_buff *skb)
5773{
5774 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5775 const skb_frag_t *frag0 = &pinfo->frags[0];
5776
5777 NAPI_GRO_CB(skb)->data_offset = 0;
5778 NAPI_GRO_CB(skb)->frag0 = NULL;
5779 NAPI_GRO_CB(skb)->frag0_len = 0;
5780
8aef998d 5781 if (!skb_headlen(skb) && pinfo->nr_frags &&
299603e8
JC
5782 !PageHighMem(skb_frag_page(frag0))) {
5783 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5784 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5785 skb_frag_size(frag0),
5786 skb->end - skb->tail);
89c5fa33
ED
5787 }
5788}
5789
a50e233c
ED
5790static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5791{
5792 struct skb_shared_info *pinfo = skb_shinfo(skb);
5793
5794 BUG_ON(skb->end - skb->tail < grow);
5795
5796 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5797
5798 skb->data_len -= grow;
5799 skb->tail += grow;
5800
b54c9d5b 5801 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5802 skb_frag_size_sub(&pinfo->frags[0], grow);
5803
5804 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5805 skb_frag_unref(skb, 0);
5806 memmove(pinfo->frags, pinfo->frags + 1,
5807 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5808 }
5809}
5810
c8079432 5811static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 5812{
6312fe77 5813 struct sk_buff *oldest;
07d78363 5814
6312fe77 5815 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5816
6312fe77 5817 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5818 * impossible.
5819 */
5820 if (WARN_ON_ONCE(!oldest))
5821 return;
5822
d9f37d01
LR
5823 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5824 * SKB to the chain.
07d78363 5825 */
ece23711 5826 skb_list_del_init(oldest);
c8079432 5827 napi_gro_complete(napi, oldest);
07d78363
DM
5828}
5829
aaa5d90b
PA
5830INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5831 struct sk_buff *));
5832INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5833 struct sk_buff *));
bb728820 5834static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5835{
6312fe77 5836 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5837 struct list_head *head = &offload_base;
22061d80 5838 struct packet_offload *ptype;
d565b0a1 5839 __be16 type = skb->protocol;
07d78363 5840 struct list_head *gro_head;
d4546c25 5841 struct sk_buff *pp = NULL;
5b252f0c 5842 enum gro_result ret;
d4546c25 5843 int same_flow;
a50e233c 5844 int grow;
d565b0a1 5845
b5cdae32 5846 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5847 goto normal;
5848
07d78363 5849 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5850
d565b0a1
HX
5851 rcu_read_lock();
5852 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5853 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5854 continue;
5855
86911732 5856 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5857 skb_reset_mac_len(skb);
d565b0a1 5858 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5859 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5860 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5861 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5862 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5863 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5864 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5865 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5866
662880f4
TH
5867 /* Setup for GRO checksum validation */
5868 switch (skb->ip_summed) {
5869 case CHECKSUM_COMPLETE:
5870 NAPI_GRO_CB(skb)->csum = skb->csum;
5871 NAPI_GRO_CB(skb)->csum_valid = 1;
5872 NAPI_GRO_CB(skb)->csum_cnt = 0;
5873 break;
5874 case CHECKSUM_UNNECESSARY:
5875 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5876 NAPI_GRO_CB(skb)->csum_valid = 0;
5877 break;
5878 default:
5879 NAPI_GRO_CB(skb)->csum_cnt = 0;
5880 NAPI_GRO_CB(skb)->csum_valid = 0;
5881 }
d565b0a1 5882
aaa5d90b
PA
5883 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5884 ipv6_gro_receive, inet_gro_receive,
5885 gro_head, skb);
d565b0a1
HX
5886 break;
5887 }
5888 rcu_read_unlock();
5889
5890 if (&ptype->list == head)
5891 goto normal;
5892
45586c70 5893 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
5894 ret = GRO_CONSUMED;
5895 goto ok;
5896 }
5897
0da2afd5 5898 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5899 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5900
d565b0a1 5901 if (pp) {
992cba7e 5902 skb_list_del_init(pp);
c8079432 5903 napi_gro_complete(napi, pp);
6312fe77 5904 napi->gro_hash[hash].count--;
d565b0a1
HX
5905 }
5906
0da2afd5 5907 if (same_flow)
d565b0a1
HX
5908 goto ok;
5909
600adc18 5910 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5911 goto normal;
d565b0a1 5912
6312fe77 5913 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
c8079432 5914 gro_flush_oldest(napi, gro_head);
600adc18 5915 } else {
6312fe77 5916 napi->gro_hash[hash].count++;
600adc18 5917 }
d565b0a1 5918 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5919 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5920 NAPI_GRO_CB(skb)->last = skb;
86911732 5921 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5922 list_add(&skb->list, gro_head);
5d0d9be8 5923 ret = GRO_HELD;
d565b0a1 5924
ad0f9904 5925pull:
a50e233c
ED
5926 grow = skb_gro_offset(skb) - skb_headlen(skb);
5927 if (grow > 0)
5928 gro_pull_from_frag0(skb, grow);
d565b0a1 5929ok:
d9f37d01
LR
5930 if (napi->gro_hash[hash].count) {
5931 if (!test_bit(hash, &napi->gro_bitmask))
5932 __set_bit(hash, &napi->gro_bitmask);
5933 } else if (test_bit(hash, &napi->gro_bitmask)) {
5934 __clear_bit(hash, &napi->gro_bitmask);
5935 }
5936
5d0d9be8 5937 return ret;
d565b0a1
HX
5938
5939normal:
ad0f9904
HX
5940 ret = GRO_NORMAL;
5941 goto pull;
5d38a079 5942}
96e93eab 5943
bf5a755f
JC
5944struct packet_offload *gro_find_receive_by_type(__be16 type)
5945{
5946 struct list_head *offload_head = &offload_base;
5947 struct packet_offload *ptype;
5948
5949 list_for_each_entry_rcu(ptype, offload_head, list) {
5950 if (ptype->type != type || !ptype->callbacks.gro_receive)
5951 continue;
5952 return ptype;
5953 }
5954 return NULL;
5955}
e27a2f83 5956EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
5957
5958struct packet_offload *gro_find_complete_by_type(__be16 type)
5959{
5960 struct list_head *offload_head = &offload_base;
5961 struct packet_offload *ptype;
5962
5963 list_for_each_entry_rcu(ptype, offload_head, list) {
5964 if (ptype->type != type || !ptype->callbacks.gro_complete)
5965 continue;
5966 return ptype;
5967 }
5968 return NULL;
5969}
e27a2f83 5970EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5971
e44699d2
MK
5972static void napi_skb_free_stolen_head(struct sk_buff *skb)
5973{
5974 skb_dst_drop(skb);
174e2381 5975 skb_ext_put(skb);
e44699d2
MK
5976 kmem_cache_free(skbuff_head_cache, skb);
5977}
5978
6570bc79
AL
5979static gro_result_t napi_skb_finish(struct napi_struct *napi,
5980 struct sk_buff *skb,
5981 gro_result_t ret)
5d38a079 5982{
5d0d9be8
HX
5983 switch (ret) {
5984 case GRO_NORMAL:
6570bc79 5985 gro_normal_one(napi, skb);
c7c4b3b6 5986 break;
5d38a079 5987
5d0d9be8 5988 case GRO_DROP:
5d38a079
HX
5989 kfree_skb(skb);
5990 break;
5b252f0c 5991
daa86548 5992 case GRO_MERGED_FREE:
e44699d2
MK
5993 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5994 napi_skb_free_stolen_head(skb);
5995 else
d7e8883c 5996 __kfree_skb(skb);
daa86548
ED
5997 break;
5998
5b252f0c
BH
5999 case GRO_HELD:
6000 case GRO_MERGED:
25393d3f 6001 case GRO_CONSUMED:
5b252f0c 6002 break;
5d38a079
HX
6003 }
6004
c7c4b3b6 6005 return ret;
5d0d9be8 6006}
5d0d9be8 6007
c7c4b3b6 6008gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 6009{
b0e3f1bd
GB
6010 gro_result_t ret;
6011
93f93a44 6012 skb_mark_napi_id(skb, napi);
ae78dbfa 6013 trace_napi_gro_receive_entry(skb);
86911732 6014
a50e233c
ED
6015 skb_gro_reset_offset(skb);
6016
6570bc79 6017 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
6018 trace_napi_gro_receive_exit(ret);
6019
6020 return ret;
d565b0a1
HX
6021}
6022EXPORT_SYMBOL(napi_gro_receive);
6023
d0c2b0d2 6024static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 6025{
93a35f59
ED
6026 if (unlikely(skb->pfmemalloc)) {
6027 consume_skb(skb);
6028 return;
6029 }
96e93eab 6030 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
6031 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6032 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 6033 __vlan_hwaccel_clear_tag(skb);
66c46d74 6034 skb->dev = napi->dev;
6d152e23 6035 skb->skb_iif = 0;
33d9a2c7
ED
6036
6037 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6038 skb->pkt_type = PACKET_HOST;
6039
c3caf119
JC
6040 skb->encapsulation = 0;
6041 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 6042 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 6043 skb_ext_reset(skb);
96e93eab
HX
6044
6045 napi->skb = skb;
6046}
96e93eab 6047
76620aaf 6048struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 6049{
5d38a079 6050 struct sk_buff *skb = napi->skb;
5d38a079
HX
6051
6052 if (!skb) {
fd11a83d 6053 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
6054 if (skb) {
6055 napi->skb = skb;
6056 skb_mark_napi_id(skb, napi);
6057 }
80595d59 6058 }
96e93eab
HX
6059 return skb;
6060}
76620aaf 6061EXPORT_SYMBOL(napi_get_frags);
96e93eab 6062
a50e233c
ED
6063static gro_result_t napi_frags_finish(struct napi_struct *napi,
6064 struct sk_buff *skb,
6065 gro_result_t ret)
96e93eab 6066{
5d0d9be8
HX
6067 switch (ret) {
6068 case GRO_NORMAL:
a50e233c
ED
6069 case GRO_HELD:
6070 __skb_push(skb, ETH_HLEN);
6071 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61
EC
6072 if (ret == GRO_NORMAL)
6073 gro_normal_one(napi, skb);
86911732 6074 break;
5d38a079 6075
5d0d9be8 6076 case GRO_DROP:
5d0d9be8
HX
6077 napi_reuse_skb(napi, skb);
6078 break;
5b252f0c 6079
e44699d2
MK
6080 case GRO_MERGED_FREE:
6081 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6082 napi_skb_free_stolen_head(skb);
6083 else
6084 napi_reuse_skb(napi, skb);
6085 break;
6086
5b252f0c 6087 case GRO_MERGED:
25393d3f 6088 case GRO_CONSUMED:
5b252f0c 6089 break;
5d0d9be8 6090 }
5d38a079 6091
c7c4b3b6 6092 return ret;
5d38a079 6093}
5d0d9be8 6094
a50e233c
ED
6095/* Upper GRO stack assumes network header starts at gro_offset=0
6096 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6097 * We copy ethernet header into skb->data to have a common layout.
6098 */
4adb9c4a 6099static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
6100{
6101 struct sk_buff *skb = napi->skb;
a50e233c
ED
6102 const struct ethhdr *eth;
6103 unsigned int hlen = sizeof(*eth);
76620aaf
HX
6104
6105 napi->skb = NULL;
6106
a50e233c
ED
6107 skb_reset_mac_header(skb);
6108 skb_gro_reset_offset(skb);
6109
a50e233c
ED
6110 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6111 eth = skb_gro_header_slow(skb, hlen, 0);
6112 if (unlikely(!eth)) {
4da46ceb
AC
6113 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6114 __func__, napi->dev->name);
a50e233c
ED
6115 napi_reuse_skb(napi, skb);
6116 return NULL;
6117 }
6118 } else {
a4270d67 6119 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6120 gro_pull_from_frag0(skb, hlen);
6121 NAPI_GRO_CB(skb)->frag0 += hlen;
6122 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6123 }
a50e233c
ED
6124 __skb_pull(skb, hlen);
6125
6126 /*
6127 * This works because the only protocols we care about don't require
6128 * special handling.
6129 * We'll fix it up properly in napi_frags_finish()
6130 */
6131 skb->protocol = eth->h_proto;
76620aaf 6132
76620aaf
HX
6133 return skb;
6134}
76620aaf 6135
c7c4b3b6 6136gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6137{
b0e3f1bd 6138 gro_result_t ret;
76620aaf 6139 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
6140
6141 if (!skb)
c7c4b3b6 6142 return GRO_DROP;
5d0d9be8 6143
ae78dbfa
BH
6144 trace_napi_gro_frags_entry(skb);
6145
b0e3f1bd
GB
6146 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6147 trace_napi_gro_frags_exit(ret);
6148
6149 return ret;
5d0d9be8 6150}
5d38a079
HX
6151EXPORT_SYMBOL(napi_gro_frags);
6152
573e8fca
TH
6153/* Compute the checksum from gro_offset and return the folded value
6154 * after adding in any pseudo checksum.
6155 */
6156__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6157{
6158 __wsum wsum;
6159 __sum16 sum;
6160
6161 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6162
6163 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6164 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6165 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6166 if (likely(!sum)) {
6167 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6168 !skb->csum_complete_sw)
7fe50ac8 6169 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6170 }
6171
6172 NAPI_GRO_CB(skb)->csum = wsum;
6173 NAPI_GRO_CB(skb)->csum_valid = 1;
6174
6175 return sum;
6176}
6177EXPORT_SYMBOL(__skb_gro_checksum_complete);
6178
773fc8f6 6179static void net_rps_send_ipi(struct softnet_data *remsd)
6180{
6181#ifdef CONFIG_RPS
6182 while (remsd) {
6183 struct softnet_data *next = remsd->rps_ipi_next;
6184
6185 if (cpu_online(remsd->cpu))
6186 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6187 remsd = next;
6188 }
6189#endif
6190}
6191
e326bed2 6192/*
855abcf0 6193 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6194 * Note: called with local irq disabled, but exits with local irq enabled.
6195 */
6196static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6197{
6198#ifdef CONFIG_RPS
6199 struct softnet_data *remsd = sd->rps_ipi_list;
6200
6201 if (remsd) {
6202 sd->rps_ipi_list = NULL;
6203
6204 local_irq_enable();
6205
6206 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6207 net_rps_send_ipi(remsd);
e326bed2
ED
6208 } else
6209#endif
6210 local_irq_enable();
6211}
6212
d75b1ade
ED
6213static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6214{
6215#ifdef CONFIG_RPS
6216 return sd->rps_ipi_list != NULL;
6217#else
6218 return false;
6219#endif
6220}
6221
bea3348e 6222static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6223{
eecfd7c4 6224 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6225 bool again = true;
6226 int work = 0;
1da177e4 6227
e326bed2
ED
6228 /* Check if we have pending ipi, its better to send them now,
6229 * not waiting net_rx_action() end.
6230 */
d75b1ade 6231 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6232 local_irq_disable();
6233 net_rps_action_and_irq_enable(sd);
6234 }
d75b1ade 6235
3d48b53f 6236 napi->weight = dev_rx_weight;
145dd5f9 6237 while (again) {
1da177e4 6238 struct sk_buff *skb;
6e7676c1
CG
6239
6240 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6241 rcu_read_lock();
6e7676c1 6242 __netif_receive_skb(skb);
2c17d27c 6243 rcu_read_unlock();
76cc8b13 6244 input_queue_head_incr(sd);
145dd5f9 6245 if (++work >= quota)
76cc8b13 6246 return work;
145dd5f9 6247
6e7676c1 6248 }
1da177e4 6249
145dd5f9 6250 local_irq_disable();
e36fa2f7 6251 rps_lock(sd);
11ef7a89 6252 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6253 /*
6254 * Inline a custom version of __napi_complete().
6255 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6256 * and NAPI_STATE_SCHED is the only possible flag set
6257 * on backlog.
6258 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6259 * and we dont need an smp_mb() memory barrier.
6260 */
eecfd7c4 6261 napi->state = 0;
145dd5f9
PA
6262 again = false;
6263 } else {
6264 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6265 &sd->process_queue);
bea3348e 6266 }
e36fa2f7 6267 rps_unlock(sd);
145dd5f9 6268 local_irq_enable();
6e7676c1 6269 }
1da177e4 6270
bea3348e
SH
6271 return work;
6272}
1da177e4 6273
bea3348e
SH
6274/**
6275 * __napi_schedule - schedule for receive
c4ea43c5 6276 * @n: entry to schedule
bea3348e 6277 *
bc9ad166
ED
6278 * The entry's receive function will be scheduled to run.
6279 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6280 */
b5606c2d 6281void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6282{
6283 unsigned long flags;
1da177e4 6284
bea3348e 6285 local_irq_save(flags);
903ceff7 6286 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6287 local_irq_restore(flags);
1da177e4 6288}
bea3348e
SH
6289EXPORT_SYMBOL(__napi_schedule);
6290
39e6c820
ED
6291/**
6292 * napi_schedule_prep - check if napi can be scheduled
6293 * @n: napi context
6294 *
6295 * Test if NAPI routine is already running, and if not mark
ee1a4c84 6296 * it as running. This is used as a condition variable to
39e6c820
ED
6297 * insure only one NAPI poll instance runs. We also make
6298 * sure there is no pending NAPI disable.
6299 */
6300bool napi_schedule_prep(struct napi_struct *n)
6301{
6302 unsigned long val, new;
6303
6304 do {
6305 val = READ_ONCE(n->state);
6306 if (unlikely(val & NAPIF_STATE_DISABLE))
6307 return false;
6308 new = val | NAPIF_STATE_SCHED;
6309
6310 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6311 * This was suggested by Alexander Duyck, as compiler
6312 * emits better code than :
6313 * if (val & NAPIF_STATE_SCHED)
6314 * new |= NAPIF_STATE_MISSED;
6315 */
6316 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6317 NAPIF_STATE_MISSED;
6318 } while (cmpxchg(&n->state, val, new) != val);
6319
6320 return !(val & NAPIF_STATE_SCHED);
6321}
6322EXPORT_SYMBOL(napi_schedule_prep);
6323
bc9ad166
ED
6324/**
6325 * __napi_schedule_irqoff - schedule for receive
6326 * @n: entry to schedule
6327 *
6328 * Variant of __napi_schedule() assuming hard irqs are masked
6329 */
6330void __napi_schedule_irqoff(struct napi_struct *n)
6331{
6332 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6333}
6334EXPORT_SYMBOL(__napi_schedule_irqoff);
6335
364b6055 6336bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6337{
6f8b12d6
ED
6338 unsigned long flags, val, new, timeout = 0;
6339 bool ret = true;
d565b0a1
HX
6340
6341 /*
217f6974
ED
6342 * 1) Don't let napi dequeue from the cpu poll list
6343 * just in case its running on a different cpu.
6344 * 2) If we are busy polling, do nothing here, we have
6345 * the guarantee we will be called later.
d565b0a1 6346 */
217f6974
ED
6347 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6348 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6349 return false;
d565b0a1 6350
6f8b12d6
ED
6351 if (work_done) {
6352 if (n->gro_bitmask)
7e417a66
ED
6353 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6354 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
6355 }
6356 if (n->defer_hard_irqs_count > 0) {
6357 n->defer_hard_irqs_count--;
7e417a66 6358 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
6359 if (timeout)
6360 ret = false;
6361 }
6362 if (n->gro_bitmask) {
605108ac
PA
6363 /* When the NAPI instance uses a timeout and keeps postponing
6364 * it, we need to bound somehow the time packets are kept in
6365 * the GRO layer
6366 */
6367 napi_gro_flush(n, !!timeout);
3b47d303 6368 }
c8079432
MM
6369
6370 gro_normal_list(n);
6371
02c1602e 6372 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6373 /* If n->poll_list is not empty, we need to mask irqs */
6374 local_irq_save(flags);
02c1602e 6375 list_del_init(&n->poll_list);
d75b1ade
ED
6376 local_irq_restore(flags);
6377 }
39e6c820
ED
6378
6379 do {
6380 val = READ_ONCE(n->state);
6381
6382 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6383
6384 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6385
6386 /* If STATE_MISSED was set, leave STATE_SCHED set,
6387 * because we will call napi->poll() one more time.
6388 * This C code was suggested by Alexander Duyck to help gcc.
6389 */
6390 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6391 NAPIF_STATE_SCHED;
6392 } while (cmpxchg(&n->state, val, new) != val);
6393
6394 if (unlikely(val & NAPIF_STATE_MISSED)) {
6395 __napi_schedule(n);
6396 return false;
6397 }
6398
6f8b12d6
ED
6399 if (timeout)
6400 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6401 HRTIMER_MODE_REL_PINNED);
6402 return ret;
d565b0a1 6403}
3b47d303 6404EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6405
af12fa6e 6406/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6407static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6408{
6409 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6410 struct napi_struct *napi;
6411
6412 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6413 if (napi->napi_id == napi_id)
6414 return napi;
6415
6416 return NULL;
6417}
02d62e86
ED
6418
6419#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6420
ce6aea93 6421#define BUSY_POLL_BUDGET 8
217f6974
ED
6422
6423static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6424{
6425 int rc;
6426
39e6c820
ED
6427 /* Busy polling means there is a high chance device driver hard irq
6428 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6429 * set in napi_schedule_prep().
6430 * Since we are about to call napi->poll() once more, we can safely
6431 * clear NAPI_STATE_MISSED.
6432 *
6433 * Note: x86 could use a single "lock and ..." instruction
6434 * to perform these two clear_bit()
6435 */
6436 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6437 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6438
6439 local_bh_disable();
6440
6441 /* All we really want here is to re-enable device interrupts.
6442 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6443 */
6444 rc = napi->poll(napi, BUSY_POLL_BUDGET);
323ebb61
EC
6445 /* We can't gro_normal_list() here, because napi->poll() might have
6446 * rearmed the napi (napi_complete_done()) in which case it could
6447 * already be running on another CPU.
6448 */
1e22391e 6449 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974 6450 netpoll_poll_unlock(have_poll_lock);
323ebb61
EC
6451 if (rc == BUSY_POLL_BUDGET) {
6452 /* As the whole budget was spent, we still own the napi so can
6453 * safely handle the rx_list.
6454 */
6455 gro_normal_list(napi);
217f6974 6456 __napi_schedule(napi);
323ebb61 6457 }
217f6974 6458 local_bh_enable();
217f6974
ED
6459}
6460
7db6b048
SS
6461void napi_busy_loop(unsigned int napi_id,
6462 bool (*loop_end)(void *, unsigned long),
6463 void *loop_end_arg)
02d62e86 6464{
7db6b048 6465 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6466 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6467 void *have_poll_lock = NULL;
02d62e86 6468 struct napi_struct *napi;
217f6974
ED
6469
6470restart:
217f6974 6471 napi_poll = NULL;
02d62e86 6472
2a028ecb 6473 rcu_read_lock();
02d62e86 6474
545cd5e5 6475 napi = napi_by_id(napi_id);
02d62e86
ED
6476 if (!napi)
6477 goto out;
6478
217f6974
ED
6479 preempt_disable();
6480 for (;;) {
2b5cd0df
AD
6481 int work = 0;
6482
2a028ecb 6483 local_bh_disable();
217f6974
ED
6484 if (!napi_poll) {
6485 unsigned long val = READ_ONCE(napi->state);
6486
6487 /* If multiple threads are competing for this napi,
6488 * we avoid dirtying napi->state as much as we can.
6489 */
6490 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6491 NAPIF_STATE_IN_BUSY_POLL))
6492 goto count;
6493 if (cmpxchg(&napi->state, val,
6494 val | NAPIF_STATE_IN_BUSY_POLL |
6495 NAPIF_STATE_SCHED) != val)
6496 goto count;
6497 have_poll_lock = netpoll_poll_lock(napi);
6498 napi_poll = napi->poll;
6499 }
2b5cd0df
AD
6500 work = napi_poll(napi, BUSY_POLL_BUDGET);
6501 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
323ebb61 6502 gro_normal_list(napi);
217f6974 6503count:
2b5cd0df 6504 if (work > 0)
7db6b048 6505 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6506 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6507 local_bh_enable();
02d62e86 6508
7db6b048 6509 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6510 break;
02d62e86 6511
217f6974
ED
6512 if (unlikely(need_resched())) {
6513 if (napi_poll)
6514 busy_poll_stop(napi, have_poll_lock);
6515 preempt_enable();
6516 rcu_read_unlock();
6517 cond_resched();
7db6b048 6518 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6519 return;
217f6974
ED
6520 goto restart;
6521 }
6cdf89b1 6522 cpu_relax();
217f6974
ED
6523 }
6524 if (napi_poll)
6525 busy_poll_stop(napi, have_poll_lock);
6526 preempt_enable();
02d62e86 6527out:
2a028ecb 6528 rcu_read_unlock();
02d62e86 6529}
7db6b048 6530EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6531
6532#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6533
149d6ad8 6534static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6535{
d64b5e85
ED
6536 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6537 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 6538 return;
af12fa6e 6539
52bd2d62 6540 spin_lock(&napi_hash_lock);
af12fa6e 6541
545cd5e5 6542 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6543 do {
545cd5e5
AD
6544 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6545 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6546 } while (napi_by_id(napi_gen_id));
6547 napi->napi_id = napi_gen_id;
af12fa6e 6548
52bd2d62
ED
6549 hlist_add_head_rcu(&napi->napi_hash_node,
6550 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6551
52bd2d62 6552 spin_unlock(&napi_hash_lock);
af12fa6e 6553}
af12fa6e
ET
6554
6555/* Warning : caller is responsible to make sure rcu grace period
6556 * is respected before freeing memory containing @napi
6557 */
5198d545 6558static void napi_hash_del(struct napi_struct *napi)
af12fa6e
ET
6559{
6560 spin_lock(&napi_hash_lock);
6561
5198d545 6562 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
af12fa6e 6563 hlist_del_rcu(&napi->napi_hash_node);
5198d545 6564
af12fa6e
ET
6565 spin_unlock(&napi_hash_lock);
6566}
af12fa6e 6567
3b47d303
ED
6568static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6569{
6570 struct napi_struct *napi;
6571
6572 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6573
6574 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6575 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6576 */
6f8b12d6 6577 if (!napi_disable_pending(napi) &&
39e6c820
ED
6578 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6579 __napi_schedule_irqoff(napi);
3b47d303
ED
6580
6581 return HRTIMER_NORESTART;
6582}
6583
7c4ec749 6584static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6585{
07d78363
DM
6586 int i;
6587
6312fe77
LR
6588 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6589 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6590 napi->gro_hash[i].count = 0;
6591 }
7c4ec749
DM
6592 napi->gro_bitmask = 0;
6593}
6594
6595void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6596 int (*poll)(struct napi_struct *, int), int weight)
6597{
6598 INIT_LIST_HEAD(&napi->poll_list);
6599 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6600 napi->timer.function = napi_watchdog;
6601 init_gro_hash(napi);
5d38a079 6602 napi->skb = NULL;
323ebb61
EC
6603 INIT_LIST_HEAD(&napi->rx_list);
6604 napi->rx_count = 0;
d565b0a1 6605 napi->poll = poll;
82dc3c63 6606 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6607 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6608 weight);
d565b0a1 6609 napi->weight = weight;
d565b0a1 6610 napi->dev = dev;
5d38a079 6611#ifdef CONFIG_NETPOLL
d565b0a1
HX
6612 napi->poll_owner = -1;
6613#endif
6614 set_bit(NAPI_STATE_SCHED, &napi->state);
96e97bc0
JK
6615 set_bit(NAPI_STATE_NPSVC, &napi->state);
6616 list_add_rcu(&napi->dev_list, &dev->napi_list);
93d05d4a 6617 napi_hash_add(napi);
d565b0a1
HX
6618}
6619EXPORT_SYMBOL(netif_napi_add);
6620
3b47d303
ED
6621void napi_disable(struct napi_struct *n)
6622{
6623 might_sleep();
6624 set_bit(NAPI_STATE_DISABLE, &n->state);
6625
6626 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6627 msleep(1);
2d8bff12
NH
6628 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6629 msleep(1);
3b47d303
ED
6630
6631 hrtimer_cancel(&n->timer);
6632
6633 clear_bit(NAPI_STATE_DISABLE, &n->state);
6634}
6635EXPORT_SYMBOL(napi_disable);
6636
07d78363 6637static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6638{
07d78363 6639 int i;
d4546c25 6640
07d78363
DM
6641 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6642 struct sk_buff *skb, *n;
6643
6312fe77 6644 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6645 kfree_skb(skb);
6312fe77 6646 napi->gro_hash[i].count = 0;
07d78363 6647 }
d4546c25
DM
6648}
6649
93d05d4a 6650/* Must be called in process context */
5198d545 6651void __netif_napi_del(struct napi_struct *napi)
d565b0a1 6652{
5198d545 6653 napi_hash_del(napi);
d7b06636 6654 list_del_init(&napi->dev_list);
76620aaf 6655 napi_free_frags(napi);
d565b0a1 6656
07d78363 6657 flush_gro_hash(napi);
d9f37d01 6658 napi->gro_bitmask = 0;
d565b0a1 6659}
5198d545 6660EXPORT_SYMBOL(__netif_napi_del);
d565b0a1 6661
726ce70e
HX
6662static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6663{
6664 void *have;
6665 int work, weight;
6666
6667 list_del_init(&n->poll_list);
6668
6669 have = netpoll_poll_lock(n);
6670
6671 weight = n->weight;
6672
6673 /* This NAPI_STATE_SCHED test is for avoiding a race
6674 * with netpoll's poll_napi(). Only the entity which
6675 * obtains the lock and sees NAPI_STATE_SCHED set will
6676 * actually make the ->poll() call. Therefore we avoid
6677 * accidentally calling ->poll() when NAPI is not scheduled.
6678 */
6679 work = 0;
6680 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6681 work = n->poll(n, weight);
1db19db7 6682 trace_napi_poll(n, work, weight);
726ce70e
HX
6683 }
6684
427d5838
ED
6685 if (unlikely(work > weight))
6686 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6687 n->poll, work, weight);
726ce70e
HX
6688
6689 if (likely(work < weight))
6690 goto out_unlock;
6691
6692 /* Drivers must not modify the NAPI state if they
6693 * consume the entire weight. In such cases this code
6694 * still "owns" the NAPI instance and therefore can
6695 * move the instance around on the list at-will.
6696 */
6697 if (unlikely(napi_disable_pending(n))) {
6698 napi_complete(n);
6699 goto out_unlock;
6700 }
6701
d9f37d01 6702 if (n->gro_bitmask) {
726ce70e
HX
6703 /* flush too old packets
6704 * If HZ < 1000, flush all packets.
6705 */
6706 napi_gro_flush(n, HZ >= 1000);
6707 }
6708
c8079432
MM
6709 gro_normal_list(n);
6710
001ce546
HX
6711 /* Some drivers may have called napi_schedule
6712 * prior to exhausting their budget.
6713 */
6714 if (unlikely(!list_empty(&n->poll_list))) {
6715 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6716 n->dev ? n->dev->name : "backlog");
6717 goto out_unlock;
6718 }
6719
726ce70e
HX
6720 list_add_tail(&n->poll_list, repoll);
6721
6722out_unlock:
6723 netpoll_poll_unlock(have);
6724
6725 return work;
6726}
6727
0766f788 6728static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6729{
903ceff7 6730 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6731 unsigned long time_limit = jiffies +
6732 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6733 int budget = netdev_budget;
d75b1ade
ED
6734 LIST_HEAD(list);
6735 LIST_HEAD(repoll);
53fb95d3 6736
1da177e4 6737 local_irq_disable();
d75b1ade
ED
6738 list_splice_init(&sd->poll_list, &list);
6739 local_irq_enable();
1da177e4 6740
ceb8d5bf 6741 for (;;) {
bea3348e 6742 struct napi_struct *n;
1da177e4 6743
ceb8d5bf
HX
6744 if (list_empty(&list)) {
6745 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6746 goto out;
ceb8d5bf
HX
6747 break;
6748 }
6749
6bd373eb
HX
6750 n = list_first_entry(&list, struct napi_struct, poll_list);
6751 budget -= napi_poll(n, &repoll);
6752
d75b1ade 6753 /* If softirq window is exhausted then punt.
24f8b238
SH
6754 * Allow this to run for 2 jiffies since which will allow
6755 * an average latency of 1.5/HZ.
bea3348e 6756 */
ceb8d5bf
HX
6757 if (unlikely(budget <= 0 ||
6758 time_after_eq(jiffies, time_limit))) {
6759 sd->time_squeeze++;
6760 break;
6761 }
1da177e4 6762 }
d75b1ade 6763
d75b1ade
ED
6764 local_irq_disable();
6765
6766 list_splice_tail_init(&sd->poll_list, &list);
6767 list_splice_tail(&repoll, &list);
6768 list_splice(&list, &sd->poll_list);
6769 if (!list_empty(&sd->poll_list))
6770 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6771
e326bed2 6772 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6773out:
6774 __kfree_skb_flush();
1da177e4
LT
6775}
6776
aa9d8560 6777struct netdev_adjacent {
9ff162a8 6778 struct net_device *dev;
5d261913
VF
6779
6780 /* upper master flag, there can only be one master device per list */
9ff162a8 6781 bool master;
5d261913 6782
32b6d34f
TY
6783 /* lookup ignore flag */
6784 bool ignore;
6785
5d261913
VF
6786 /* counter for the number of times this device was added to us */
6787 u16 ref_nr;
6788
402dae96
VF
6789 /* private field for the users */
6790 void *private;
6791
9ff162a8
JP
6792 struct list_head list;
6793 struct rcu_head rcu;
9ff162a8
JP
6794};
6795
6ea29da1 6796static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6797 struct list_head *adj_list)
9ff162a8 6798{
5d261913 6799 struct netdev_adjacent *adj;
5d261913 6800
2f268f12 6801 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6802 if (adj->dev == adj_dev)
6803 return adj;
9ff162a8
JP
6804 }
6805 return NULL;
6806}
6807
32b6d34f 6808static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
f1170fd4
DA
6809{
6810 struct net_device *dev = data;
6811
6812 return upper_dev == dev;
6813}
6814
9ff162a8
JP
6815/**
6816 * netdev_has_upper_dev - Check if device is linked to an upper device
6817 * @dev: device
6818 * @upper_dev: upper device to check
6819 *
6820 * Find out if a device is linked to specified upper device and return true
6821 * in case it is. Note that this checks only immediate upper device,
6822 * not through a complete stack of devices. The caller must hold the RTNL lock.
6823 */
6824bool netdev_has_upper_dev(struct net_device *dev,
6825 struct net_device *upper_dev)
6826{
6827 ASSERT_RTNL();
6828
32b6d34f 6829 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
f1170fd4 6830 upper_dev);
9ff162a8
JP
6831}
6832EXPORT_SYMBOL(netdev_has_upper_dev);
6833
1a3f060c
DA
6834/**
6835 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6836 * @dev: device
6837 * @upper_dev: upper device to check
6838 *
6839 * Find out if a device is linked to specified upper device and return true
6840 * in case it is. Note that this checks the entire upper device chain.
6841 * The caller must hold rcu lock.
6842 */
6843
1a3f060c
DA
6844bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6845 struct net_device *upper_dev)
6846{
32b6d34f 6847 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
1a3f060c
DA
6848 upper_dev);
6849}
6850EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6851
9ff162a8
JP
6852/**
6853 * netdev_has_any_upper_dev - Check if device is linked to some device
6854 * @dev: device
6855 *
6856 * Find out if a device is linked to an upper device and return true in case
6857 * it is. The caller must hold the RTNL lock.
6858 */
25cc72a3 6859bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6860{
6861 ASSERT_RTNL();
6862
f1170fd4 6863 return !list_empty(&dev->adj_list.upper);
9ff162a8 6864}
25cc72a3 6865EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6866
6867/**
6868 * netdev_master_upper_dev_get - Get master upper device
6869 * @dev: device
6870 *
6871 * Find a master upper device and return pointer to it or NULL in case
6872 * it's not there. The caller must hold the RTNL lock.
6873 */
6874struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6875{
aa9d8560 6876 struct netdev_adjacent *upper;
9ff162a8
JP
6877
6878 ASSERT_RTNL();
6879
2f268f12 6880 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6881 return NULL;
6882
2f268f12 6883 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6884 struct netdev_adjacent, list);
9ff162a8
JP
6885 if (likely(upper->master))
6886 return upper->dev;
6887 return NULL;
6888}
6889EXPORT_SYMBOL(netdev_master_upper_dev_get);
6890
32b6d34f
TY
6891static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6892{
6893 struct netdev_adjacent *upper;
6894
6895 ASSERT_RTNL();
6896
6897 if (list_empty(&dev->adj_list.upper))
6898 return NULL;
6899
6900 upper = list_first_entry(&dev->adj_list.upper,
6901 struct netdev_adjacent, list);
6902 if (likely(upper->master) && !upper->ignore)
6903 return upper->dev;
6904 return NULL;
6905}
6906
0f524a80
DA
6907/**
6908 * netdev_has_any_lower_dev - Check if device is linked to some device
6909 * @dev: device
6910 *
6911 * Find out if a device is linked to a lower device and return true in case
6912 * it is. The caller must hold the RTNL lock.
6913 */
6914static bool netdev_has_any_lower_dev(struct net_device *dev)
6915{
6916 ASSERT_RTNL();
6917
6918 return !list_empty(&dev->adj_list.lower);
6919}
6920
b6ccba4c
VF
6921void *netdev_adjacent_get_private(struct list_head *adj_list)
6922{
6923 struct netdev_adjacent *adj;
6924
6925 adj = list_entry(adj_list, struct netdev_adjacent, list);
6926
6927 return adj->private;
6928}
6929EXPORT_SYMBOL(netdev_adjacent_get_private);
6930
44a40855
VY
6931/**
6932 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6933 * @dev: device
6934 * @iter: list_head ** of the current position
6935 *
6936 * Gets the next device from the dev's upper list, starting from iter
6937 * position. The caller must hold RCU read lock.
6938 */
6939struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6940 struct list_head **iter)
6941{
6942 struct netdev_adjacent *upper;
6943
6944 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6945
6946 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6947
6948 if (&upper->list == &dev->adj_list.upper)
6949 return NULL;
6950
6951 *iter = &upper->list;
6952
6953 return upper->dev;
6954}
6955EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6956
32b6d34f
TY
6957static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6958 struct list_head **iter,
6959 bool *ignore)
5343da4c
TY
6960{
6961 struct netdev_adjacent *upper;
6962
6963 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6964
6965 if (&upper->list == &dev->adj_list.upper)
6966 return NULL;
6967
6968 *iter = &upper->list;
32b6d34f 6969 *ignore = upper->ignore;
5343da4c
TY
6970
6971 return upper->dev;
6972}
6973
1a3f060c
DA
6974static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6975 struct list_head **iter)
6976{
6977 struct netdev_adjacent *upper;
6978
6979 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6980
6981 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6982
6983 if (&upper->list == &dev->adj_list.upper)
6984 return NULL;
6985
6986 *iter = &upper->list;
6987
6988 return upper->dev;
6989}
6990
32b6d34f
TY
6991static int __netdev_walk_all_upper_dev(struct net_device *dev,
6992 int (*fn)(struct net_device *dev,
6993 void *data),
6994 void *data)
5343da4c
TY
6995{
6996 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6997 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6998 int ret, cur = 0;
32b6d34f 6999 bool ignore;
5343da4c
TY
7000
7001 now = dev;
7002 iter = &dev->adj_list.upper;
7003
7004 while (1) {
7005 if (now != dev) {
7006 ret = fn(now, data);
7007 if (ret)
7008 return ret;
7009 }
7010
7011 next = NULL;
7012 while (1) {
32b6d34f 7013 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
7014 if (!udev)
7015 break;
32b6d34f
TY
7016 if (ignore)
7017 continue;
5343da4c
TY
7018
7019 next = udev;
7020 niter = &udev->adj_list.upper;
7021 dev_stack[cur] = now;
7022 iter_stack[cur++] = iter;
7023 break;
7024 }
7025
7026 if (!next) {
7027 if (!cur)
7028 return 0;
7029 next = dev_stack[--cur];
7030 niter = iter_stack[cur];
7031 }
7032
7033 now = next;
7034 iter = niter;
7035 }
7036
7037 return 0;
7038}
7039
1a3f060c
DA
7040int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7041 int (*fn)(struct net_device *dev,
7042 void *data),
7043 void *data)
7044{
5343da4c
TY
7045 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7046 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7047 int ret, cur = 0;
1a3f060c 7048
5343da4c
TY
7049 now = dev;
7050 iter = &dev->adj_list.upper;
1a3f060c 7051
5343da4c
TY
7052 while (1) {
7053 if (now != dev) {
7054 ret = fn(now, data);
7055 if (ret)
7056 return ret;
7057 }
7058
7059 next = NULL;
7060 while (1) {
7061 udev = netdev_next_upper_dev_rcu(now, &iter);
7062 if (!udev)
7063 break;
7064
7065 next = udev;
7066 niter = &udev->adj_list.upper;
7067 dev_stack[cur] = now;
7068 iter_stack[cur++] = iter;
7069 break;
7070 }
7071
7072 if (!next) {
7073 if (!cur)
7074 return 0;
7075 next = dev_stack[--cur];
7076 niter = iter_stack[cur];
7077 }
7078
7079 now = next;
7080 iter = niter;
1a3f060c
DA
7081 }
7082
7083 return 0;
7084}
7085EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7086
32b6d34f
TY
7087static bool __netdev_has_upper_dev(struct net_device *dev,
7088 struct net_device *upper_dev)
7089{
7090 ASSERT_RTNL();
7091
7092 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7093 upper_dev);
7094}
7095
31088a11
VF
7096/**
7097 * netdev_lower_get_next_private - Get the next ->private from the
7098 * lower neighbour list
7099 * @dev: device
7100 * @iter: list_head ** of the current position
7101 *
7102 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7103 * list, starting from iter position. The caller must hold either hold the
7104 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 7105 * list will remain unchanged.
31088a11
VF
7106 */
7107void *netdev_lower_get_next_private(struct net_device *dev,
7108 struct list_head **iter)
7109{
7110 struct netdev_adjacent *lower;
7111
7112 lower = list_entry(*iter, struct netdev_adjacent, list);
7113
7114 if (&lower->list == &dev->adj_list.lower)
7115 return NULL;
7116
6859e7df 7117 *iter = lower->list.next;
31088a11
VF
7118
7119 return lower->private;
7120}
7121EXPORT_SYMBOL(netdev_lower_get_next_private);
7122
7123/**
7124 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7125 * lower neighbour list, RCU
7126 * variant
7127 * @dev: device
7128 * @iter: list_head ** of the current position
7129 *
7130 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7131 * list, starting from iter position. The caller must hold RCU read lock.
7132 */
7133void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7134 struct list_head **iter)
7135{
7136 struct netdev_adjacent *lower;
7137
7138 WARN_ON_ONCE(!rcu_read_lock_held());
7139
7140 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7141
7142 if (&lower->list == &dev->adj_list.lower)
7143 return NULL;
7144
6859e7df 7145 *iter = &lower->list;
31088a11
VF
7146
7147 return lower->private;
7148}
7149EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7150
4085ebe8
VY
7151/**
7152 * netdev_lower_get_next - Get the next device from the lower neighbour
7153 * list
7154 * @dev: device
7155 * @iter: list_head ** of the current position
7156 *
7157 * Gets the next netdev_adjacent from the dev's lower neighbour
7158 * list, starting from iter position. The caller must hold RTNL lock or
7159 * its own locking that guarantees that the neighbour lower
b469139e 7160 * list will remain unchanged.
4085ebe8
VY
7161 */
7162void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7163{
7164 struct netdev_adjacent *lower;
7165
cfdd28be 7166 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7167
7168 if (&lower->list == &dev->adj_list.lower)
7169 return NULL;
7170
cfdd28be 7171 *iter = lower->list.next;
4085ebe8
VY
7172
7173 return lower->dev;
7174}
7175EXPORT_SYMBOL(netdev_lower_get_next);
7176
1a3f060c
DA
7177static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7178 struct list_head **iter)
7179{
7180 struct netdev_adjacent *lower;
7181
46b5ab1a 7182 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7183
7184 if (&lower->list == &dev->adj_list.lower)
7185 return NULL;
7186
46b5ab1a 7187 *iter = &lower->list;
1a3f060c
DA
7188
7189 return lower->dev;
7190}
7191
32b6d34f
TY
7192static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7193 struct list_head **iter,
7194 bool *ignore)
7195{
7196 struct netdev_adjacent *lower;
7197
7198 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7199
7200 if (&lower->list == &dev->adj_list.lower)
7201 return NULL;
7202
7203 *iter = &lower->list;
7204 *ignore = lower->ignore;
7205
7206 return lower->dev;
7207}
7208
1a3f060c
DA
7209int netdev_walk_all_lower_dev(struct net_device *dev,
7210 int (*fn)(struct net_device *dev,
7211 void *data),
7212 void *data)
7213{
5343da4c
TY
7214 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7215 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7216 int ret, cur = 0;
1a3f060c 7217
5343da4c
TY
7218 now = dev;
7219 iter = &dev->adj_list.lower;
1a3f060c 7220
5343da4c
TY
7221 while (1) {
7222 if (now != dev) {
7223 ret = fn(now, data);
7224 if (ret)
7225 return ret;
7226 }
7227
7228 next = NULL;
7229 while (1) {
7230 ldev = netdev_next_lower_dev(now, &iter);
7231 if (!ldev)
7232 break;
7233
7234 next = ldev;
7235 niter = &ldev->adj_list.lower;
7236 dev_stack[cur] = now;
7237 iter_stack[cur++] = iter;
7238 break;
7239 }
7240
7241 if (!next) {
7242 if (!cur)
7243 return 0;
7244 next = dev_stack[--cur];
7245 niter = iter_stack[cur];
7246 }
7247
7248 now = next;
7249 iter = niter;
1a3f060c
DA
7250 }
7251
7252 return 0;
7253}
7254EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7255
32b6d34f
TY
7256static int __netdev_walk_all_lower_dev(struct net_device *dev,
7257 int (*fn)(struct net_device *dev,
7258 void *data),
7259 void *data)
7260{
7261 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7262 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7263 int ret, cur = 0;
7264 bool ignore;
7265
7266 now = dev;
7267 iter = &dev->adj_list.lower;
7268
7269 while (1) {
7270 if (now != dev) {
7271 ret = fn(now, data);
7272 if (ret)
7273 return ret;
7274 }
7275
7276 next = NULL;
7277 while (1) {
7278 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7279 if (!ldev)
7280 break;
7281 if (ignore)
7282 continue;
7283
7284 next = ldev;
7285 niter = &ldev->adj_list.lower;
7286 dev_stack[cur] = now;
7287 iter_stack[cur++] = iter;
7288 break;
7289 }
7290
7291 if (!next) {
7292 if (!cur)
7293 return 0;
7294 next = dev_stack[--cur];
7295 niter = iter_stack[cur];
7296 }
7297
7298 now = next;
7299 iter = niter;
7300 }
7301
7302 return 0;
7303}
7304
7151affe
TY
7305struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7306 struct list_head **iter)
1a3f060c
DA
7307{
7308 struct netdev_adjacent *lower;
7309
7310 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7311 if (&lower->list == &dev->adj_list.lower)
7312 return NULL;
7313
7314 *iter = &lower->list;
7315
7316 return lower->dev;
7317}
7151affe 7318EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7319
5343da4c
TY
7320static u8 __netdev_upper_depth(struct net_device *dev)
7321{
7322 struct net_device *udev;
7323 struct list_head *iter;
7324 u8 max_depth = 0;
32b6d34f 7325 bool ignore;
5343da4c
TY
7326
7327 for (iter = &dev->adj_list.upper,
32b6d34f 7328 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7329 udev;
32b6d34f
TY
7330 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7331 if (ignore)
7332 continue;
5343da4c
TY
7333 if (max_depth < udev->upper_level)
7334 max_depth = udev->upper_level;
7335 }
7336
7337 return max_depth;
7338}
7339
7340static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7341{
7342 struct net_device *ldev;
7343 struct list_head *iter;
5343da4c 7344 u8 max_depth = 0;
32b6d34f 7345 bool ignore;
1a3f060c
DA
7346
7347 for (iter = &dev->adj_list.lower,
32b6d34f 7348 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7349 ldev;
32b6d34f
TY
7350 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7351 if (ignore)
7352 continue;
5343da4c
TY
7353 if (max_depth < ldev->lower_level)
7354 max_depth = ldev->lower_level;
7355 }
1a3f060c 7356
5343da4c
TY
7357 return max_depth;
7358}
7359
7360static int __netdev_update_upper_level(struct net_device *dev, void *data)
7361{
7362 dev->upper_level = __netdev_upper_depth(dev) + 1;
7363 return 0;
7364}
7365
7366static int __netdev_update_lower_level(struct net_device *dev, void *data)
7367{
7368 dev->lower_level = __netdev_lower_depth(dev) + 1;
7369 return 0;
7370}
7371
7372int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7373 int (*fn)(struct net_device *dev,
7374 void *data),
7375 void *data)
7376{
7377 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7378 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7379 int ret, cur = 0;
7380
7381 now = dev;
7382 iter = &dev->adj_list.lower;
7383
7384 while (1) {
7385 if (now != dev) {
7386 ret = fn(now, data);
7387 if (ret)
7388 return ret;
7389 }
7390
7391 next = NULL;
7392 while (1) {
7393 ldev = netdev_next_lower_dev_rcu(now, &iter);
7394 if (!ldev)
7395 break;
7396
7397 next = ldev;
7398 niter = &ldev->adj_list.lower;
7399 dev_stack[cur] = now;
7400 iter_stack[cur++] = iter;
7401 break;
7402 }
7403
7404 if (!next) {
7405 if (!cur)
7406 return 0;
7407 next = dev_stack[--cur];
7408 niter = iter_stack[cur];
7409 }
7410
7411 now = next;
7412 iter = niter;
1a3f060c
DA
7413 }
7414
7415 return 0;
7416}
7417EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7418
e001bfad 7419/**
7420 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7421 * lower neighbour list, RCU
7422 * variant
7423 * @dev: device
7424 *
7425 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7426 * list. The caller must hold RCU read lock.
7427 */
7428void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7429{
7430 struct netdev_adjacent *lower;
7431
7432 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7433 struct netdev_adjacent, list);
7434 if (lower)
7435 return lower->private;
7436 return NULL;
7437}
7438EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7439
9ff162a8
JP
7440/**
7441 * netdev_master_upper_dev_get_rcu - Get master upper device
7442 * @dev: device
7443 *
7444 * Find a master upper device and return pointer to it or NULL in case
7445 * it's not there. The caller must hold the RCU read lock.
7446 */
7447struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7448{
aa9d8560 7449 struct netdev_adjacent *upper;
9ff162a8 7450
2f268f12 7451 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7452 struct netdev_adjacent, list);
9ff162a8
JP
7453 if (upper && likely(upper->master))
7454 return upper->dev;
7455 return NULL;
7456}
7457EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7458
0a59f3a9 7459static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7460 struct net_device *adj_dev,
7461 struct list_head *dev_list)
7462{
7463 char linkname[IFNAMSIZ+7];
f4563a75 7464
3ee32707
VF
7465 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7466 "upper_%s" : "lower_%s", adj_dev->name);
7467 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7468 linkname);
7469}
0a59f3a9 7470static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7471 char *name,
7472 struct list_head *dev_list)
7473{
7474 char linkname[IFNAMSIZ+7];
f4563a75 7475
3ee32707
VF
7476 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7477 "upper_%s" : "lower_%s", name);
7478 sysfs_remove_link(&(dev->dev.kobj), linkname);
7479}
7480
7ce64c79
AF
7481static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7482 struct net_device *adj_dev,
7483 struct list_head *dev_list)
7484{
7485 return (dev_list == &dev->adj_list.upper ||
7486 dev_list == &dev->adj_list.lower) &&
7487 net_eq(dev_net(dev), dev_net(adj_dev));
7488}
3ee32707 7489
5d261913
VF
7490static int __netdev_adjacent_dev_insert(struct net_device *dev,
7491 struct net_device *adj_dev,
7863c054 7492 struct list_head *dev_list,
402dae96 7493 void *private, bool master)
5d261913
VF
7494{
7495 struct netdev_adjacent *adj;
842d67a7 7496 int ret;
5d261913 7497
6ea29da1 7498 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7499
7500 if (adj) {
790510d9 7501 adj->ref_nr += 1;
67b62f98
DA
7502 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7503 dev->name, adj_dev->name, adj->ref_nr);
7504
5d261913
VF
7505 return 0;
7506 }
7507
7508 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7509 if (!adj)
7510 return -ENOMEM;
7511
7512 adj->dev = adj_dev;
7513 adj->master = master;
790510d9 7514 adj->ref_nr = 1;
402dae96 7515 adj->private = private;
32b6d34f 7516 adj->ignore = false;
5d261913 7517 dev_hold(adj_dev);
2f268f12 7518
67b62f98
DA
7519 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7520 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7521
7ce64c79 7522 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7523 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7524 if (ret)
7525 goto free_adj;
7526 }
7527
7863c054 7528 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7529 if (master) {
7530 ret = sysfs_create_link(&(dev->dev.kobj),
7531 &(adj_dev->dev.kobj), "master");
7532 if (ret)
5831d66e 7533 goto remove_symlinks;
842d67a7 7534
7863c054 7535 list_add_rcu(&adj->list, dev_list);
842d67a7 7536 } else {
7863c054 7537 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7538 }
5d261913
VF
7539
7540 return 0;
842d67a7 7541
5831d66e 7542remove_symlinks:
7ce64c79 7543 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7544 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7545free_adj:
7546 kfree(adj);
974daef7 7547 dev_put(adj_dev);
842d67a7
VF
7548
7549 return ret;
5d261913
VF
7550}
7551
1d143d9f 7552static void __netdev_adjacent_dev_remove(struct net_device *dev,
7553 struct net_device *adj_dev,
93409033 7554 u16 ref_nr,
1d143d9f 7555 struct list_head *dev_list)
5d261913
VF
7556{
7557 struct netdev_adjacent *adj;
7558
67b62f98
DA
7559 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7560 dev->name, adj_dev->name, ref_nr);
7561
6ea29da1 7562 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7563
2f268f12 7564 if (!adj) {
67b62f98 7565 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7566 dev->name, adj_dev->name);
67b62f98
DA
7567 WARN_ON(1);
7568 return;
2f268f12 7569 }
5d261913 7570
93409033 7571 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7572 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7573 dev->name, adj_dev->name, ref_nr,
7574 adj->ref_nr - ref_nr);
93409033 7575 adj->ref_nr -= ref_nr;
5d261913
VF
7576 return;
7577 }
7578
842d67a7
VF
7579 if (adj->master)
7580 sysfs_remove_link(&(dev->dev.kobj), "master");
7581
7ce64c79 7582 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7583 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7584
5d261913 7585 list_del_rcu(&adj->list);
67b62f98 7586 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7587 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7588 dev_put(adj_dev);
7589 kfree_rcu(adj, rcu);
7590}
7591
1d143d9f 7592static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7593 struct net_device *upper_dev,
7594 struct list_head *up_list,
7595 struct list_head *down_list,
7596 void *private, bool master)
5d261913
VF
7597{
7598 int ret;
7599
790510d9 7600 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7601 private, master);
5d261913
VF
7602 if (ret)
7603 return ret;
7604
790510d9 7605 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7606 private, false);
5d261913 7607 if (ret) {
790510d9 7608 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7609 return ret;
7610 }
7611
7612 return 0;
7613}
7614
1d143d9f 7615static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7616 struct net_device *upper_dev,
93409033 7617 u16 ref_nr,
1d143d9f 7618 struct list_head *up_list,
7619 struct list_head *down_list)
5d261913 7620{
93409033
AC
7621 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7622 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7623}
7624
1d143d9f 7625static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7626 struct net_device *upper_dev,
7627 void *private, bool master)
2f268f12 7628{
f1170fd4
DA
7629 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7630 &dev->adj_list.upper,
7631 &upper_dev->adj_list.lower,
7632 private, master);
5d261913
VF
7633}
7634
1d143d9f 7635static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7636 struct net_device *upper_dev)
2f268f12 7637{
93409033 7638 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7639 &dev->adj_list.upper,
7640 &upper_dev->adj_list.lower);
7641}
5d261913 7642
9ff162a8 7643static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7644 struct net_device *upper_dev, bool master,
42ab19ee
DA
7645 void *upper_priv, void *upper_info,
7646 struct netlink_ext_ack *extack)
9ff162a8 7647{
51d0c047
DA
7648 struct netdev_notifier_changeupper_info changeupper_info = {
7649 .info = {
7650 .dev = dev,
42ab19ee 7651 .extack = extack,
51d0c047
DA
7652 },
7653 .upper_dev = upper_dev,
7654 .master = master,
7655 .linking = true,
7656 .upper_info = upper_info,
7657 };
50d629e7 7658 struct net_device *master_dev;
5d261913 7659 int ret = 0;
9ff162a8
JP
7660
7661 ASSERT_RTNL();
7662
7663 if (dev == upper_dev)
7664 return -EBUSY;
7665
7666 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7667 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7668 return -EBUSY;
7669
5343da4c
TY
7670 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7671 return -EMLINK;
7672
50d629e7 7673 if (!master) {
32b6d34f 7674 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7675 return -EEXIST;
7676 } else {
32b6d34f 7677 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7678 if (master_dev)
7679 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7680 }
9ff162a8 7681
51d0c047 7682 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7683 &changeupper_info.info);
7684 ret = notifier_to_errno(ret);
7685 if (ret)
7686 return ret;
7687
6dffb044 7688 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7689 master);
5d261913
VF
7690 if (ret)
7691 return ret;
9ff162a8 7692
51d0c047 7693 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7694 &changeupper_info.info);
7695 ret = notifier_to_errno(ret);
7696 if (ret)
f1170fd4 7697 goto rollback;
b03804e7 7698
5343da4c 7699 __netdev_update_upper_level(dev, NULL);
32b6d34f 7700 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7701
7702 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7703 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7704 NULL);
5343da4c 7705
9ff162a8 7706 return 0;
5d261913 7707
f1170fd4 7708rollback:
2f268f12 7709 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7710
7711 return ret;
9ff162a8
JP
7712}
7713
7714/**
7715 * netdev_upper_dev_link - Add a link to the upper device
7716 * @dev: device
7717 * @upper_dev: new upper device
7a006d59 7718 * @extack: netlink extended ack
9ff162a8
JP
7719 *
7720 * Adds a link to device which is upper to this one. The caller must hold
7721 * the RTNL lock. On a failure a negative errno code is returned.
7722 * On success the reference counts are adjusted and the function
7723 * returns zero.
7724 */
7725int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7726 struct net_device *upper_dev,
7727 struct netlink_ext_ack *extack)
9ff162a8 7728{
42ab19ee
DA
7729 return __netdev_upper_dev_link(dev, upper_dev, false,
7730 NULL, NULL, extack);
9ff162a8
JP
7731}
7732EXPORT_SYMBOL(netdev_upper_dev_link);
7733
7734/**
7735 * netdev_master_upper_dev_link - Add a master link to the upper device
7736 * @dev: device
7737 * @upper_dev: new upper device
6dffb044 7738 * @upper_priv: upper device private
29bf24af 7739 * @upper_info: upper info to be passed down via notifier
7a006d59 7740 * @extack: netlink extended ack
9ff162a8
JP
7741 *
7742 * Adds a link to device which is upper to this one. In this case, only
7743 * one master upper device can be linked, although other non-master devices
7744 * might be linked as well. The caller must hold the RTNL lock.
7745 * On a failure a negative errno code is returned. On success the reference
7746 * counts are adjusted and the function returns zero.
7747 */
7748int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7749 struct net_device *upper_dev,
42ab19ee
DA
7750 void *upper_priv, void *upper_info,
7751 struct netlink_ext_ack *extack)
9ff162a8 7752{
29bf24af 7753 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7754 upper_priv, upper_info, extack);
9ff162a8
JP
7755}
7756EXPORT_SYMBOL(netdev_master_upper_dev_link);
7757
7758/**
7759 * netdev_upper_dev_unlink - Removes a link to upper device
7760 * @dev: device
7761 * @upper_dev: new upper device
7762 *
7763 * Removes a link to device which is upper to this one. The caller must hold
7764 * the RTNL lock.
7765 */
7766void netdev_upper_dev_unlink(struct net_device *dev,
7767 struct net_device *upper_dev)
7768{
51d0c047
DA
7769 struct netdev_notifier_changeupper_info changeupper_info = {
7770 .info = {
7771 .dev = dev,
7772 },
7773 .upper_dev = upper_dev,
7774 .linking = false,
7775 };
f4563a75 7776
9ff162a8
JP
7777 ASSERT_RTNL();
7778
0e4ead9d 7779 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7780
51d0c047 7781 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7782 &changeupper_info.info);
7783
2f268f12 7784 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7785
51d0c047 7786 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7787 &changeupper_info.info);
5343da4c
TY
7788
7789 __netdev_update_upper_level(dev, NULL);
32b6d34f 7790 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7791
7792 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7793 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7794 NULL);
9ff162a8
JP
7795}
7796EXPORT_SYMBOL(netdev_upper_dev_unlink);
7797
32b6d34f
TY
7798static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7799 struct net_device *lower_dev,
7800 bool val)
7801{
7802 struct netdev_adjacent *adj;
7803
7804 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7805 if (adj)
7806 adj->ignore = val;
7807
7808 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7809 if (adj)
7810 adj->ignore = val;
7811}
7812
7813static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7814 struct net_device *lower_dev)
7815{
7816 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7817}
7818
7819static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7820 struct net_device *lower_dev)
7821{
7822 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7823}
7824
7825int netdev_adjacent_change_prepare(struct net_device *old_dev,
7826 struct net_device *new_dev,
7827 struct net_device *dev,
7828 struct netlink_ext_ack *extack)
7829{
7830 int err;
7831
7832 if (!new_dev)
7833 return 0;
7834
7835 if (old_dev && new_dev != old_dev)
7836 netdev_adjacent_dev_disable(dev, old_dev);
7837
7838 err = netdev_upper_dev_link(new_dev, dev, extack);
7839 if (err) {
7840 if (old_dev && new_dev != old_dev)
7841 netdev_adjacent_dev_enable(dev, old_dev);
7842 return err;
7843 }
7844
7845 return 0;
7846}
7847EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7848
7849void netdev_adjacent_change_commit(struct net_device *old_dev,
7850 struct net_device *new_dev,
7851 struct net_device *dev)
7852{
7853 if (!new_dev || !old_dev)
7854 return;
7855
7856 if (new_dev == old_dev)
7857 return;
7858
7859 netdev_adjacent_dev_enable(dev, old_dev);
7860 netdev_upper_dev_unlink(old_dev, dev);
7861}
7862EXPORT_SYMBOL(netdev_adjacent_change_commit);
7863
7864void netdev_adjacent_change_abort(struct net_device *old_dev,
7865 struct net_device *new_dev,
7866 struct net_device *dev)
7867{
7868 if (!new_dev)
7869 return;
7870
7871 if (old_dev && new_dev != old_dev)
7872 netdev_adjacent_dev_enable(dev, old_dev);
7873
7874 netdev_upper_dev_unlink(new_dev, dev);
7875}
7876EXPORT_SYMBOL(netdev_adjacent_change_abort);
7877
61bd3857
MS
7878/**
7879 * netdev_bonding_info_change - Dispatch event about slave change
7880 * @dev: device
4a26e453 7881 * @bonding_info: info to dispatch
61bd3857
MS
7882 *
7883 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7884 * The caller must hold the RTNL lock.
7885 */
7886void netdev_bonding_info_change(struct net_device *dev,
7887 struct netdev_bonding_info *bonding_info)
7888{
51d0c047
DA
7889 struct netdev_notifier_bonding_info info = {
7890 .info.dev = dev,
7891 };
61bd3857
MS
7892
7893 memcpy(&info.bonding_info, bonding_info,
7894 sizeof(struct netdev_bonding_info));
51d0c047 7895 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7896 &info.info);
7897}
7898EXPORT_SYMBOL(netdev_bonding_info_change);
7899
cff9f12b
MG
7900/**
7901 * netdev_get_xmit_slave - Get the xmit slave of master device
8842500d 7902 * @dev: device
cff9f12b
MG
7903 * @skb: The packet
7904 * @all_slaves: assume all the slaves are active
7905 *
7906 * The reference counters are not incremented so the caller must be
7907 * careful with locks. The caller must hold RCU lock.
7908 * %NULL is returned if no slave is found.
7909 */
7910
7911struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7912 struct sk_buff *skb,
7913 bool all_slaves)
7914{
7915 const struct net_device_ops *ops = dev->netdev_ops;
7916
7917 if (!ops->ndo_get_xmit_slave)
7918 return NULL;
7919 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7920}
7921EXPORT_SYMBOL(netdev_get_xmit_slave);
7922
2ce1ee17 7923static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7924{
7925 struct netdev_adjacent *iter;
7926
7927 struct net *net = dev_net(dev);
7928
7929 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7930 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7931 continue;
7932 netdev_adjacent_sysfs_add(iter->dev, dev,
7933 &iter->dev->adj_list.lower);
7934 netdev_adjacent_sysfs_add(dev, iter->dev,
7935 &dev->adj_list.upper);
7936 }
7937
7938 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7939 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7940 continue;
7941 netdev_adjacent_sysfs_add(iter->dev, dev,
7942 &iter->dev->adj_list.upper);
7943 netdev_adjacent_sysfs_add(dev, iter->dev,
7944 &dev->adj_list.lower);
7945 }
7946}
7947
2ce1ee17 7948static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
7949{
7950 struct netdev_adjacent *iter;
7951
7952 struct net *net = dev_net(dev);
7953
7954 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7955 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7956 continue;
7957 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7958 &iter->dev->adj_list.lower);
7959 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7960 &dev->adj_list.upper);
7961 }
7962
7963 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7964 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7965 continue;
7966 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7967 &iter->dev->adj_list.upper);
7968 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7969 &dev->adj_list.lower);
7970 }
7971}
7972
5bb025fa 7973void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 7974{
5bb025fa 7975 struct netdev_adjacent *iter;
402dae96 7976
4c75431a
AF
7977 struct net *net = dev_net(dev);
7978
5bb025fa 7979 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7980 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7981 continue;
5bb025fa
VF
7982 netdev_adjacent_sysfs_del(iter->dev, oldname,
7983 &iter->dev->adj_list.lower);
7984 netdev_adjacent_sysfs_add(iter->dev, dev,
7985 &iter->dev->adj_list.lower);
7986 }
402dae96 7987
5bb025fa 7988 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7989 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7990 continue;
5bb025fa
VF
7991 netdev_adjacent_sysfs_del(iter->dev, oldname,
7992 &iter->dev->adj_list.upper);
7993 netdev_adjacent_sysfs_add(iter->dev, dev,
7994 &iter->dev->adj_list.upper);
7995 }
402dae96 7996}
402dae96
VF
7997
7998void *netdev_lower_dev_get_private(struct net_device *dev,
7999 struct net_device *lower_dev)
8000{
8001 struct netdev_adjacent *lower;
8002
8003 if (!lower_dev)
8004 return NULL;
6ea29da1 8005 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
8006 if (!lower)
8007 return NULL;
8008
8009 return lower->private;
8010}
8011EXPORT_SYMBOL(netdev_lower_dev_get_private);
8012
4085ebe8 8013
04d48266
JP
8014/**
8015 * netdev_lower_change - Dispatch event about lower device state change
8016 * @lower_dev: device
8017 * @lower_state_info: state to dispatch
8018 *
8019 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8020 * The caller must hold the RTNL lock.
8021 */
8022void netdev_lower_state_changed(struct net_device *lower_dev,
8023 void *lower_state_info)
8024{
51d0c047
DA
8025 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8026 .info.dev = lower_dev,
8027 };
04d48266
JP
8028
8029 ASSERT_RTNL();
8030 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 8031 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
8032 &changelowerstate_info.info);
8033}
8034EXPORT_SYMBOL(netdev_lower_state_changed);
8035
b6c40d68
PM
8036static void dev_change_rx_flags(struct net_device *dev, int flags)
8037{
d314774c
SH
8038 const struct net_device_ops *ops = dev->netdev_ops;
8039
d2615bf4 8040 if (ops->ndo_change_rx_flags)
d314774c 8041 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
8042}
8043
991fb3f7 8044static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 8045{
b536db93 8046 unsigned int old_flags = dev->flags;
d04a48b0
EB
8047 kuid_t uid;
8048 kgid_t gid;
1da177e4 8049
24023451
PM
8050 ASSERT_RTNL();
8051
dad9b335
WC
8052 dev->flags |= IFF_PROMISC;
8053 dev->promiscuity += inc;
8054 if (dev->promiscuity == 0) {
8055 /*
8056 * Avoid overflow.
8057 * If inc causes overflow, untouch promisc and return error.
8058 */
8059 if (inc < 0)
8060 dev->flags &= ~IFF_PROMISC;
8061 else {
8062 dev->promiscuity -= inc;
7b6cd1ce
JP
8063 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8064 dev->name);
dad9b335
WC
8065 return -EOVERFLOW;
8066 }
8067 }
52609c0b 8068 if (dev->flags != old_flags) {
7b6cd1ce
JP
8069 pr_info("device %s %s promiscuous mode\n",
8070 dev->name,
8071 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
8072 if (audit_enabled) {
8073 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
8074 audit_log(audit_context(), GFP_ATOMIC,
8075 AUDIT_ANOM_PROMISCUOUS,
8076 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8077 dev->name, (dev->flags & IFF_PROMISC),
8078 (old_flags & IFF_PROMISC),
8079 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8080 from_kuid(&init_user_ns, uid),
8081 from_kgid(&init_user_ns, gid),
8082 audit_get_sessionid(current));
8192b0c4 8083 }
24023451 8084
b6c40d68 8085 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 8086 }
991fb3f7
ND
8087 if (notify)
8088 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 8089 return 0;
1da177e4
LT
8090}
8091
4417da66
PM
8092/**
8093 * dev_set_promiscuity - update promiscuity count on a device
8094 * @dev: device
8095 * @inc: modifier
8096 *
8097 * Add or remove promiscuity from a device. While the count in the device
8098 * remains above zero the interface remains promiscuous. Once it hits zero
8099 * the device reverts back to normal filtering operation. A negative inc
8100 * value is used to drop promiscuity on the device.
dad9b335 8101 * Return 0 if successful or a negative errno code on error.
4417da66 8102 */
dad9b335 8103int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 8104{
b536db93 8105 unsigned int old_flags = dev->flags;
dad9b335 8106 int err;
4417da66 8107
991fb3f7 8108 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 8109 if (err < 0)
dad9b335 8110 return err;
4417da66
PM
8111 if (dev->flags != old_flags)
8112 dev_set_rx_mode(dev);
dad9b335 8113 return err;
4417da66 8114}
d1b19dff 8115EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 8116
991fb3f7 8117static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 8118{
991fb3f7 8119 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 8120
24023451
PM
8121 ASSERT_RTNL();
8122
1da177e4 8123 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8124 dev->allmulti += inc;
8125 if (dev->allmulti == 0) {
8126 /*
8127 * Avoid overflow.
8128 * If inc causes overflow, untouch allmulti and return error.
8129 */
8130 if (inc < 0)
8131 dev->flags &= ~IFF_ALLMULTI;
8132 else {
8133 dev->allmulti -= inc;
7b6cd1ce
JP
8134 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8135 dev->name);
dad9b335
WC
8136 return -EOVERFLOW;
8137 }
8138 }
24023451 8139 if (dev->flags ^ old_flags) {
b6c40d68 8140 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8141 dev_set_rx_mode(dev);
991fb3f7
ND
8142 if (notify)
8143 __dev_notify_flags(dev, old_flags,
8144 dev->gflags ^ old_gflags);
24023451 8145 }
dad9b335 8146 return 0;
4417da66 8147}
991fb3f7
ND
8148
8149/**
8150 * dev_set_allmulti - update allmulti count on a device
8151 * @dev: device
8152 * @inc: modifier
8153 *
8154 * Add or remove reception of all multicast frames to a device. While the
8155 * count in the device remains above zero the interface remains listening
8156 * to all interfaces. Once it hits zero the device reverts back to normal
8157 * filtering operation. A negative @inc value is used to drop the counter
8158 * when releasing a resource needing all multicasts.
8159 * Return 0 if successful or a negative errno code on error.
8160 */
8161
8162int dev_set_allmulti(struct net_device *dev, int inc)
8163{
8164 return __dev_set_allmulti(dev, inc, true);
8165}
d1b19dff 8166EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8167
8168/*
8169 * Upload unicast and multicast address lists to device and
8170 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8171 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8172 * are present.
8173 */
8174void __dev_set_rx_mode(struct net_device *dev)
8175{
d314774c
SH
8176 const struct net_device_ops *ops = dev->netdev_ops;
8177
4417da66
PM
8178 /* dev_open will call this function so the list will stay sane. */
8179 if (!(dev->flags&IFF_UP))
8180 return;
8181
8182 if (!netif_device_present(dev))
40b77c94 8183 return;
4417da66 8184
01789349 8185 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8186 /* Unicast addresses changes may only happen under the rtnl,
8187 * therefore calling __dev_set_promiscuity here is safe.
8188 */
32e7bfc4 8189 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8190 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8191 dev->uc_promisc = true;
32e7bfc4 8192 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8193 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8194 dev->uc_promisc = false;
4417da66 8195 }
4417da66 8196 }
01789349
JP
8197
8198 if (ops->ndo_set_rx_mode)
8199 ops->ndo_set_rx_mode(dev);
4417da66
PM
8200}
8201
8202void dev_set_rx_mode(struct net_device *dev)
8203{
b9e40857 8204 netif_addr_lock_bh(dev);
4417da66 8205 __dev_set_rx_mode(dev);
b9e40857 8206 netif_addr_unlock_bh(dev);
1da177e4
LT
8207}
8208
f0db275a
SH
8209/**
8210 * dev_get_flags - get flags reported to userspace
8211 * @dev: device
8212 *
8213 * Get the combination of flag bits exported through APIs to userspace.
8214 */
95c96174 8215unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8216{
95c96174 8217 unsigned int flags;
1da177e4
LT
8218
8219 flags = (dev->flags & ~(IFF_PROMISC |
8220 IFF_ALLMULTI |
b00055aa
SR
8221 IFF_RUNNING |
8222 IFF_LOWER_UP |
8223 IFF_DORMANT)) |
1da177e4
LT
8224 (dev->gflags & (IFF_PROMISC |
8225 IFF_ALLMULTI));
8226
b00055aa
SR
8227 if (netif_running(dev)) {
8228 if (netif_oper_up(dev))
8229 flags |= IFF_RUNNING;
8230 if (netif_carrier_ok(dev))
8231 flags |= IFF_LOWER_UP;
8232 if (netif_dormant(dev))
8233 flags |= IFF_DORMANT;
8234 }
1da177e4
LT
8235
8236 return flags;
8237}
d1b19dff 8238EXPORT_SYMBOL(dev_get_flags);
1da177e4 8239
6d040321
PM
8240int __dev_change_flags(struct net_device *dev, unsigned int flags,
8241 struct netlink_ext_ack *extack)
1da177e4 8242{
b536db93 8243 unsigned int old_flags = dev->flags;
bd380811 8244 int ret;
1da177e4 8245
24023451
PM
8246 ASSERT_RTNL();
8247
1da177e4
LT
8248 /*
8249 * Set the flags on our device.
8250 */
8251
8252 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8253 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8254 IFF_AUTOMEDIA)) |
8255 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8256 IFF_ALLMULTI));
8257
8258 /*
8259 * Load in the correct multicast list now the flags have changed.
8260 */
8261
b6c40d68
PM
8262 if ((old_flags ^ flags) & IFF_MULTICAST)
8263 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8264
4417da66 8265 dev_set_rx_mode(dev);
1da177e4
LT
8266
8267 /*
8268 * Have we downed the interface. We handle IFF_UP ourselves
8269 * according to user attempts to set it, rather than blindly
8270 * setting it.
8271 */
8272
8273 ret = 0;
7051b88a 8274 if ((old_flags ^ flags) & IFF_UP) {
8275 if (old_flags & IFF_UP)
8276 __dev_close(dev);
8277 else
40c900aa 8278 ret = __dev_open(dev, extack);
7051b88a 8279 }
1da177e4 8280
1da177e4 8281 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8282 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8283 unsigned int old_flags = dev->flags;
d1b19dff 8284
1da177e4 8285 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8286
8287 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8288 if (dev->flags != old_flags)
8289 dev_set_rx_mode(dev);
1da177e4
LT
8290 }
8291
8292 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8293 * is important. Some (broken) drivers set IFF_PROMISC, when
8294 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8295 */
8296 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8297 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8298
1da177e4 8299 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8300 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8301 }
8302
bd380811
PM
8303 return ret;
8304}
8305
a528c219
ND
8306void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8307 unsigned int gchanges)
bd380811
PM
8308{
8309 unsigned int changes = dev->flags ^ old_flags;
8310
a528c219 8311 if (gchanges)
7f294054 8312 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8313
bd380811
PM
8314 if (changes & IFF_UP) {
8315 if (dev->flags & IFF_UP)
8316 call_netdevice_notifiers(NETDEV_UP, dev);
8317 else
8318 call_netdevice_notifiers(NETDEV_DOWN, dev);
8319 }
8320
8321 if (dev->flags & IFF_UP &&
be9efd36 8322 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8323 struct netdev_notifier_change_info change_info = {
8324 .info = {
8325 .dev = dev,
8326 },
8327 .flags_changed = changes,
8328 };
be9efd36 8329
51d0c047 8330 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8331 }
bd380811
PM
8332}
8333
8334/**
8335 * dev_change_flags - change device settings
8336 * @dev: device
8337 * @flags: device state flags
567c5e13 8338 * @extack: netlink extended ack
bd380811
PM
8339 *
8340 * Change settings on device based state flags. The flags are
8341 * in the userspace exported format.
8342 */
567c5e13
PM
8343int dev_change_flags(struct net_device *dev, unsigned int flags,
8344 struct netlink_ext_ack *extack)
bd380811 8345{
b536db93 8346 int ret;
991fb3f7 8347 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8348
6d040321 8349 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8350 if (ret < 0)
8351 return ret;
8352
991fb3f7 8353 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8354 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8355 return ret;
8356}
d1b19dff 8357EXPORT_SYMBOL(dev_change_flags);
1da177e4 8358
f51048c3 8359int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8360{
8361 const struct net_device_ops *ops = dev->netdev_ops;
8362
8363 if (ops->ndo_change_mtu)
8364 return ops->ndo_change_mtu(dev, new_mtu);
8365
501a90c9
ED
8366 /* Pairs with all the lockless reads of dev->mtu in the stack */
8367 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8368 return 0;
8369}
f51048c3 8370EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8371
d836f5c6
ED
8372int dev_validate_mtu(struct net_device *dev, int new_mtu,
8373 struct netlink_ext_ack *extack)
8374{
8375 /* MTU must be positive, and in range */
8376 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8377 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8378 return -EINVAL;
8379 }
8380
8381 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8382 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8383 return -EINVAL;
8384 }
8385 return 0;
8386}
8387
f0db275a 8388/**
7a4c53be 8389 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8390 * @dev: device
8391 * @new_mtu: new transfer unit
7a4c53be 8392 * @extack: netlink extended ack
f0db275a
SH
8393 *
8394 * Change the maximum transfer size of the network device.
8395 */
7a4c53be
SH
8396int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8397 struct netlink_ext_ack *extack)
1da177e4 8398{
2315dc91 8399 int err, orig_mtu;
1da177e4
LT
8400
8401 if (new_mtu == dev->mtu)
8402 return 0;
8403
d836f5c6
ED
8404 err = dev_validate_mtu(dev, new_mtu, extack);
8405 if (err)
8406 return err;
1da177e4
LT
8407
8408 if (!netif_device_present(dev))
8409 return -ENODEV;
8410
1d486bfb
VF
8411 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8412 err = notifier_to_errno(err);
8413 if (err)
8414 return err;
d314774c 8415
2315dc91
VF
8416 orig_mtu = dev->mtu;
8417 err = __dev_set_mtu(dev, new_mtu);
d314774c 8418
2315dc91 8419 if (!err) {
af7d6cce
SD
8420 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8421 orig_mtu);
2315dc91
VF
8422 err = notifier_to_errno(err);
8423 if (err) {
8424 /* setting mtu back and notifying everyone again,
8425 * so that they have a chance to revert changes.
8426 */
8427 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8428 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8429 new_mtu);
2315dc91
VF
8430 }
8431 }
1da177e4
LT
8432 return err;
8433}
7a4c53be
SH
8434
8435int dev_set_mtu(struct net_device *dev, int new_mtu)
8436{
8437 struct netlink_ext_ack extack;
8438 int err;
8439
a6bcfc89 8440 memset(&extack, 0, sizeof(extack));
7a4c53be 8441 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8442 if (err && extack._msg)
7a4c53be
SH
8443 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8444 return err;
8445}
d1b19dff 8446EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8447
6a643ddb
CW
8448/**
8449 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8450 * @dev: device
8451 * @new_len: new tx queue length
8452 */
8453int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8454{
8455 unsigned int orig_len = dev->tx_queue_len;
8456 int res;
8457
8458 if (new_len != (unsigned int)new_len)
8459 return -ERANGE;
8460
8461 if (new_len != orig_len) {
8462 dev->tx_queue_len = new_len;
8463 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8464 res = notifier_to_errno(res);
7effaf06
TT
8465 if (res)
8466 goto err_rollback;
8467 res = dev_qdisc_change_tx_queue_len(dev);
8468 if (res)
8469 goto err_rollback;
6a643ddb
CW
8470 }
8471
8472 return 0;
7effaf06
TT
8473
8474err_rollback:
8475 netdev_err(dev, "refused to change device tx_queue_len\n");
8476 dev->tx_queue_len = orig_len;
8477 return res;
6a643ddb
CW
8478}
8479
cbda10fa
VD
8480/**
8481 * dev_set_group - Change group this device belongs to
8482 * @dev: device
8483 * @new_group: group this device should belong to
8484 */
8485void dev_set_group(struct net_device *dev, int new_group)
8486{
8487 dev->group = new_group;
8488}
8489EXPORT_SYMBOL(dev_set_group);
8490
d59cdf94
PM
8491/**
8492 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8493 * @dev: device
8494 * @addr: new address
8495 * @extack: netlink extended ack
8496 */
8497int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8498 struct netlink_ext_ack *extack)
8499{
8500 struct netdev_notifier_pre_changeaddr_info info = {
8501 .info.dev = dev,
8502 .info.extack = extack,
8503 .dev_addr = addr,
8504 };
8505 int rc;
8506
8507 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8508 return notifier_to_errno(rc);
8509}
8510EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8511
f0db275a
SH
8512/**
8513 * dev_set_mac_address - Change Media Access Control Address
8514 * @dev: device
8515 * @sa: new address
3a37a963 8516 * @extack: netlink extended ack
f0db275a
SH
8517 *
8518 * Change the hardware (MAC) address of the device
8519 */
3a37a963
PM
8520int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8521 struct netlink_ext_ack *extack)
1da177e4 8522{
d314774c 8523 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8524 int err;
8525
d314774c 8526 if (!ops->ndo_set_mac_address)
1da177e4
LT
8527 return -EOPNOTSUPP;
8528 if (sa->sa_family != dev->type)
8529 return -EINVAL;
8530 if (!netif_device_present(dev))
8531 return -ENODEV;
d59cdf94
PM
8532 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8533 if (err)
8534 return err;
d314774c 8535 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8536 if (err)
8537 return err;
fbdeca2d 8538 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8539 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8540 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8541 return 0;
1da177e4 8542}
d1b19dff 8543EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8544
4bf84c35
JP
8545/**
8546 * dev_change_carrier - Change device carrier
8547 * @dev: device
691b3b7e 8548 * @new_carrier: new value
4bf84c35
JP
8549 *
8550 * Change device carrier
8551 */
8552int dev_change_carrier(struct net_device *dev, bool new_carrier)
8553{
8554 const struct net_device_ops *ops = dev->netdev_ops;
8555
8556 if (!ops->ndo_change_carrier)
8557 return -EOPNOTSUPP;
8558 if (!netif_device_present(dev))
8559 return -ENODEV;
8560 return ops->ndo_change_carrier(dev, new_carrier);
8561}
8562EXPORT_SYMBOL(dev_change_carrier);
8563
66b52b0d
JP
8564/**
8565 * dev_get_phys_port_id - Get device physical port ID
8566 * @dev: device
8567 * @ppid: port ID
8568 *
8569 * Get device physical port ID
8570 */
8571int dev_get_phys_port_id(struct net_device *dev,
02637fce 8572 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8573{
8574 const struct net_device_ops *ops = dev->netdev_ops;
8575
8576 if (!ops->ndo_get_phys_port_id)
8577 return -EOPNOTSUPP;
8578 return ops->ndo_get_phys_port_id(dev, ppid);
8579}
8580EXPORT_SYMBOL(dev_get_phys_port_id);
8581
db24a904
DA
8582/**
8583 * dev_get_phys_port_name - Get device physical port name
8584 * @dev: device
8585 * @name: port name
ed49e650 8586 * @len: limit of bytes to copy to name
db24a904
DA
8587 *
8588 * Get device physical port name
8589 */
8590int dev_get_phys_port_name(struct net_device *dev,
8591 char *name, size_t len)
8592{
8593 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8594 int err;
db24a904 8595
af3836df
JP
8596 if (ops->ndo_get_phys_port_name) {
8597 err = ops->ndo_get_phys_port_name(dev, name, len);
8598 if (err != -EOPNOTSUPP)
8599 return err;
8600 }
8601 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
8602}
8603EXPORT_SYMBOL(dev_get_phys_port_name);
8604
d6abc596
FF
8605/**
8606 * dev_get_port_parent_id - Get the device's port parent identifier
8607 * @dev: network device
8608 * @ppid: pointer to a storage for the port's parent identifier
8609 * @recurse: allow/disallow recursion to lower devices
8610 *
8611 * Get the devices's port parent identifier
8612 */
8613int dev_get_port_parent_id(struct net_device *dev,
8614 struct netdev_phys_item_id *ppid,
8615 bool recurse)
8616{
8617 const struct net_device_ops *ops = dev->netdev_ops;
8618 struct netdev_phys_item_id first = { };
8619 struct net_device *lower_dev;
8620 struct list_head *iter;
7e1146e8
JP
8621 int err;
8622
8623 if (ops->ndo_get_port_parent_id) {
8624 err = ops->ndo_get_port_parent_id(dev, ppid);
8625 if (err != -EOPNOTSUPP)
8626 return err;
8627 }
d6abc596 8628
7e1146e8
JP
8629 err = devlink_compat_switch_id_get(dev, ppid);
8630 if (!err || err != -EOPNOTSUPP)
8631 return err;
d6abc596
FF
8632
8633 if (!recurse)
7e1146e8 8634 return -EOPNOTSUPP;
d6abc596
FF
8635
8636 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8637 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8638 if (err)
8639 break;
8640 if (!first.id_len)
8641 first = *ppid;
8642 else if (memcmp(&first, ppid, sizeof(*ppid)))
8643 return -ENODATA;
8644 }
8645
8646 return err;
8647}
8648EXPORT_SYMBOL(dev_get_port_parent_id);
8649
8650/**
8651 * netdev_port_same_parent_id - Indicate if two network devices have
8652 * the same port parent identifier
8653 * @a: first network device
8654 * @b: second network device
8655 */
8656bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8657{
8658 struct netdev_phys_item_id a_id = { };
8659 struct netdev_phys_item_id b_id = { };
8660
8661 if (dev_get_port_parent_id(a, &a_id, true) ||
8662 dev_get_port_parent_id(b, &b_id, true))
8663 return false;
8664
8665 return netdev_phys_item_id_same(&a_id, &b_id);
8666}
8667EXPORT_SYMBOL(netdev_port_same_parent_id);
8668
d746d707
AK
8669/**
8670 * dev_change_proto_down - update protocol port state information
8671 * @dev: device
8672 * @proto_down: new value
8673 *
8674 * This info can be used by switch drivers to set the phys state of the
8675 * port.
8676 */
8677int dev_change_proto_down(struct net_device *dev, bool proto_down)
8678{
8679 const struct net_device_ops *ops = dev->netdev_ops;
8680
8681 if (!ops->ndo_change_proto_down)
8682 return -EOPNOTSUPP;
8683 if (!netif_device_present(dev))
8684 return -ENODEV;
8685 return ops->ndo_change_proto_down(dev, proto_down);
8686}
8687EXPORT_SYMBOL(dev_change_proto_down);
8688
b5899679
AR
8689/**
8690 * dev_change_proto_down_generic - generic implementation for
8691 * ndo_change_proto_down that sets carrier according to
8692 * proto_down.
8693 *
8694 * @dev: device
8695 * @proto_down: new value
8696 */
8697int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8698{
8699 if (proto_down)
8700 netif_carrier_off(dev);
8701 else
8702 netif_carrier_on(dev);
8703 dev->proto_down = proto_down;
8704 return 0;
8705}
8706EXPORT_SYMBOL(dev_change_proto_down_generic);
8707
829eb208
RP
8708/**
8709 * dev_change_proto_down_reason - proto down reason
8710 *
8711 * @dev: device
8712 * @mask: proto down mask
8713 * @value: proto down value
8714 */
8715void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8716 u32 value)
8717{
8718 int b;
8719
8720 if (!mask) {
8721 dev->proto_down_reason = value;
8722 } else {
8723 for_each_set_bit(b, &mask, 32) {
8724 if (value & (1 << b))
8725 dev->proto_down_reason |= BIT(b);
8726 else
8727 dev->proto_down_reason &= ~BIT(b);
8728 }
8729 }
8730}
8731EXPORT_SYMBOL(dev_change_proto_down_reason);
8732
aa8d3a71
AN
8733struct bpf_xdp_link {
8734 struct bpf_link link;
8735 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8736 int flags;
8737};
8738
c8a36f19 8739static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
d67b9cd2 8740{
7f0a8382
AN
8741 if (flags & XDP_FLAGS_HW_MODE)
8742 return XDP_MODE_HW;
8743 if (flags & XDP_FLAGS_DRV_MODE)
8744 return XDP_MODE_DRV;
c8a36f19
AN
8745 if (flags & XDP_FLAGS_SKB_MODE)
8746 return XDP_MODE_SKB;
8747 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
7f0a8382 8748}
d67b9cd2 8749
7f0a8382
AN
8750static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8751{
8752 switch (mode) {
8753 case XDP_MODE_SKB:
8754 return generic_xdp_install;
8755 case XDP_MODE_DRV:
8756 case XDP_MODE_HW:
8757 return dev->netdev_ops->ndo_bpf;
8758 default:
8759 return NULL;
8760 };
8761}
118b4aa2 8762
aa8d3a71
AN
8763static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8764 enum bpf_xdp_mode mode)
8765{
8766 return dev->xdp_state[mode].link;
8767}
8768
7f0a8382
AN
8769static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8770 enum bpf_xdp_mode mode)
8771{
aa8d3a71
AN
8772 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8773
8774 if (link)
8775 return link->link.prog;
7f0a8382
AN
8776 return dev->xdp_state[mode].prog;
8777}
8778
8779u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8780{
8781 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
118b4aa2 8782
7f0a8382
AN
8783 return prog ? prog->aux->id : 0;
8784}
58038695 8785
aa8d3a71
AN
8786static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8787 struct bpf_xdp_link *link)
8788{
8789 dev->xdp_state[mode].link = link;
8790 dev->xdp_state[mode].prog = NULL;
d67b9cd2
DB
8791}
8792
7f0a8382
AN
8793static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8794 struct bpf_prog *prog)
8795{
aa8d3a71 8796 dev->xdp_state[mode].link = NULL;
7f0a8382 8797 dev->xdp_state[mode].prog = prog;
d67b9cd2
DB
8798}
8799
7f0a8382
AN
8800static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8801 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8802 u32 flags, struct bpf_prog *prog)
d67b9cd2 8803{
f4e63525 8804 struct netdev_bpf xdp;
7e6897f9
BT
8805 int err;
8806
d67b9cd2 8807 memset(&xdp, 0, sizeof(xdp));
7f0a8382 8808 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
d67b9cd2 8809 xdp.extack = extack;
32d60277 8810 xdp.flags = flags;
d67b9cd2
DB
8811 xdp.prog = prog;
8812
7f0a8382
AN
8813 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8814 * "moved" into driver), so they don't increment it on their own, but
8815 * they do decrement refcnt when program is detached or replaced.
8816 * Given net_device also owns link/prog, we need to bump refcnt here
8817 * to prevent drivers from underflowing it.
8818 */
8819 if (prog)
8820 bpf_prog_inc(prog);
7e6897f9 8821 err = bpf_op(dev, &xdp);
7f0a8382
AN
8822 if (err) {
8823 if (prog)
8824 bpf_prog_put(prog);
8825 return err;
8826 }
7e6897f9 8827
7f0a8382
AN
8828 if (mode != XDP_MODE_HW)
8829 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
7e6897f9 8830
7f0a8382 8831 return 0;
d67b9cd2
DB
8832}
8833
bd0b2e7f
JK
8834static void dev_xdp_uninstall(struct net_device *dev)
8835{
aa8d3a71 8836 struct bpf_xdp_link *link;
7f0a8382
AN
8837 struct bpf_prog *prog;
8838 enum bpf_xdp_mode mode;
8839 bpf_op_t bpf_op;
bd0b2e7f 8840
7f0a8382 8841 ASSERT_RTNL();
bd0b2e7f 8842
7f0a8382
AN
8843 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8844 prog = dev_xdp_prog(dev, mode);
8845 if (!prog)
8846 continue;
bd0b2e7f 8847
7f0a8382
AN
8848 bpf_op = dev_xdp_bpf_op(dev, mode);
8849 if (!bpf_op)
8850 continue;
bd0b2e7f 8851
7f0a8382
AN
8852 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8853
aa8d3a71
AN
8854 /* auto-detach link from net device */
8855 link = dev_xdp_link(dev, mode);
8856 if (link)
8857 link->dev = NULL;
8858 else
8859 bpf_prog_put(prog);
8860
8861 dev_xdp_set_link(dev, mode, NULL);
7f0a8382 8862 }
bd0b2e7f
JK
8863}
8864
d4baa936 8865static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
aa8d3a71
AN
8866 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8867 struct bpf_prog *old_prog, u32 flags)
a7862b45 8868{
d4baa936
AN
8869 struct bpf_prog *cur_prog;
8870 enum bpf_xdp_mode mode;
7f0a8382 8871 bpf_op_t bpf_op;
a7862b45
BB
8872 int err;
8873
85de8576
DB
8874 ASSERT_RTNL();
8875
aa8d3a71
AN
8876 /* either link or prog attachment, never both */
8877 if (link && (new_prog || old_prog))
8878 return -EINVAL;
8879 /* link supports only XDP mode flags */
8880 if (link && (flags & ~XDP_FLAGS_MODES)) {
8881 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8882 return -EINVAL;
8883 }
d4baa936
AN
8884 /* just one XDP mode bit should be set, zero defaults to SKB mode */
8885 if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
8886 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8887 return -EINVAL;
8888 }
8889 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8890 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8891 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8892 return -EINVAL;
01dde20c 8893 }
a25717d2 8894
c8a36f19 8895 mode = dev_xdp_mode(dev, flags);
aa8d3a71
AN
8896 /* can't replace attached link */
8897 if (dev_xdp_link(dev, mode)) {
8898 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8899 return -EBUSY;
01dde20c 8900 }
c14a9f63 8901
d4baa936 8902 cur_prog = dev_xdp_prog(dev, mode);
aa8d3a71
AN
8903 /* can't replace attached prog with link */
8904 if (link && cur_prog) {
8905 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8906 return -EBUSY;
8907 }
d4baa936
AN
8908 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8909 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8910 return -EEXIST;
92234c8f 8911 }
c14a9f63 8912
aa8d3a71
AN
8913 /* put effective new program into new_prog */
8914 if (link)
8915 new_prog = link->link.prog;
85de8576 8916
d4baa936
AN
8917 if (new_prog) {
8918 bool offload = mode == XDP_MODE_HW;
7f0a8382
AN
8919 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8920 ? XDP_MODE_DRV : XDP_MODE_SKB;
441a3303 8921
068d9d1e
AN
8922 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8923 NL_SET_ERR_MSG(extack, "XDP program already attached");
8924 return -EBUSY;
8925 }
d4baa936 8926 if (!offload && dev_xdp_prog(dev, other_mode)) {
7f0a8382 8927 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
d67b9cd2 8928 return -EEXIST;
01dde20c 8929 }
d4baa936 8930 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
7f0a8382 8931 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
441a3303
JK
8932 return -EINVAL;
8933 }
d4baa936 8934 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
fbee97fe 8935 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
fbee97fe
DA
8936 return -EINVAL;
8937 }
d4baa936
AN
8938 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
8939 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
92164774
LB
8940 return -EINVAL;
8941 }
d4baa936 8942 }
92164774 8943
d4baa936
AN
8944 /* don't call drivers if the effective program didn't change */
8945 if (new_prog != cur_prog) {
8946 bpf_op = dev_xdp_bpf_op(dev, mode);
8947 if (!bpf_op) {
8948 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
8949 return -EOPNOTSUPP;
c14a9f63 8950 }
a7862b45 8951
d4baa936
AN
8952 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
8953 if (err)
8954 return err;
7f0a8382 8955 }
d4baa936 8956
aa8d3a71
AN
8957 if (link)
8958 dev_xdp_set_link(dev, mode, link);
8959 else
8960 dev_xdp_set_prog(dev, mode, new_prog);
d4baa936
AN
8961 if (cur_prog)
8962 bpf_prog_put(cur_prog);
a7862b45 8963
7f0a8382 8964 return 0;
a7862b45 8965}
a7862b45 8966
aa8d3a71
AN
8967static int dev_xdp_attach_link(struct net_device *dev,
8968 struct netlink_ext_ack *extack,
8969 struct bpf_xdp_link *link)
8970{
8971 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
8972}
8973
8974static int dev_xdp_detach_link(struct net_device *dev,
8975 struct netlink_ext_ack *extack,
8976 struct bpf_xdp_link *link)
8977{
8978 enum bpf_xdp_mode mode;
8979 bpf_op_t bpf_op;
8980
8981 ASSERT_RTNL();
8982
c8a36f19 8983 mode = dev_xdp_mode(dev, link->flags);
aa8d3a71
AN
8984 if (dev_xdp_link(dev, mode) != link)
8985 return -EINVAL;
8986
8987 bpf_op = dev_xdp_bpf_op(dev, mode);
8988 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8989 dev_xdp_set_link(dev, mode, NULL);
8990 return 0;
8991}
8992
8993static void bpf_xdp_link_release(struct bpf_link *link)
8994{
8995 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8996
8997 rtnl_lock();
8998
8999 /* if racing with net_device's tear down, xdp_link->dev might be
9000 * already NULL, in which case link was already auto-detached
9001 */
73b11c2a 9002 if (xdp_link->dev) {
aa8d3a71 9003 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
73b11c2a
AN
9004 xdp_link->dev = NULL;
9005 }
aa8d3a71
AN
9006
9007 rtnl_unlock();
9008}
9009
73b11c2a
AN
9010static int bpf_xdp_link_detach(struct bpf_link *link)
9011{
9012 bpf_xdp_link_release(link);
9013 return 0;
9014}
9015
aa8d3a71
AN
9016static void bpf_xdp_link_dealloc(struct bpf_link *link)
9017{
9018 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9019
9020 kfree(xdp_link);
9021}
9022
c1931c97
AN
9023static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9024 struct seq_file *seq)
9025{
9026 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9027 u32 ifindex = 0;
9028
9029 rtnl_lock();
9030 if (xdp_link->dev)
9031 ifindex = xdp_link->dev->ifindex;
9032 rtnl_unlock();
9033
9034 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9035}
9036
9037static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9038 struct bpf_link_info *info)
9039{
9040 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9041 u32 ifindex = 0;
9042
9043 rtnl_lock();
9044 if (xdp_link->dev)
9045 ifindex = xdp_link->dev->ifindex;
9046 rtnl_unlock();
9047
9048 info->xdp.ifindex = ifindex;
9049 return 0;
9050}
9051
026a4c28
AN
9052static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9053 struct bpf_prog *old_prog)
9054{
9055 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9056 enum bpf_xdp_mode mode;
9057 bpf_op_t bpf_op;
9058 int err = 0;
9059
9060 rtnl_lock();
9061
9062 /* link might have been auto-released already, so fail */
9063 if (!xdp_link->dev) {
9064 err = -ENOLINK;
9065 goto out_unlock;
9066 }
9067
9068 if (old_prog && link->prog != old_prog) {
9069 err = -EPERM;
9070 goto out_unlock;
9071 }
9072 old_prog = link->prog;
9073 if (old_prog == new_prog) {
9074 /* no-op, don't disturb drivers */
9075 bpf_prog_put(new_prog);
9076 goto out_unlock;
9077 }
9078
c8a36f19 9079 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
026a4c28
AN
9080 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9081 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9082 xdp_link->flags, new_prog);
9083 if (err)
9084 goto out_unlock;
9085
9086 old_prog = xchg(&link->prog, new_prog);
9087 bpf_prog_put(old_prog);
9088
9089out_unlock:
9090 rtnl_unlock();
9091 return err;
9092}
9093
aa8d3a71
AN
9094static const struct bpf_link_ops bpf_xdp_link_lops = {
9095 .release = bpf_xdp_link_release,
9096 .dealloc = bpf_xdp_link_dealloc,
73b11c2a 9097 .detach = bpf_xdp_link_detach,
c1931c97
AN
9098 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9099 .fill_link_info = bpf_xdp_link_fill_link_info,
026a4c28 9100 .update_prog = bpf_xdp_link_update,
aa8d3a71
AN
9101};
9102
9103int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9104{
9105 struct net *net = current->nsproxy->net_ns;
9106 struct bpf_link_primer link_primer;
9107 struct bpf_xdp_link *link;
9108 struct net_device *dev;
9109 int err, fd;
9110
9111 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9112 if (!dev)
9113 return -EINVAL;
9114
9115 link = kzalloc(sizeof(*link), GFP_USER);
9116 if (!link) {
9117 err = -ENOMEM;
9118 goto out_put_dev;
9119 }
9120
9121 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9122 link->dev = dev;
9123 link->flags = attr->link_create.flags;
9124
9125 err = bpf_link_prime(&link->link, &link_primer);
9126 if (err) {
9127 kfree(link);
9128 goto out_put_dev;
9129 }
9130
9131 rtnl_lock();
9132 err = dev_xdp_attach_link(dev, NULL, link);
9133 rtnl_unlock();
9134
9135 if (err) {
9136 bpf_link_cleanup(&link_primer);
9137 goto out_put_dev;
9138 }
9139
9140 fd = bpf_link_settle(&link_primer);
9141 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9142 dev_put(dev);
9143 return fd;
9144
9145out_put_dev:
9146 dev_put(dev);
9147 return err;
9148}
9149
d4baa936
AN
9150/**
9151 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9152 * @dev: device
9153 * @extack: netlink extended ack
9154 * @fd: new program fd or negative value to clear
9155 * @expected_fd: old program fd that userspace expects to replace or clear
9156 * @flags: xdp-related flags
9157 *
9158 * Set or clear a bpf program for a device
9159 */
9160int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9161 int fd, int expected_fd, u32 flags)
9162{
c8a36f19 9163 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
d4baa936
AN
9164 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9165 int err;
9166
9167 ASSERT_RTNL();
9168
9169 if (fd >= 0) {
9170 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9171 mode != XDP_MODE_SKB);
9172 if (IS_ERR(new_prog))
9173 return PTR_ERR(new_prog);
9174 }
9175
9176 if (expected_fd >= 0) {
9177 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9178 mode != XDP_MODE_SKB);
9179 if (IS_ERR(old_prog)) {
9180 err = PTR_ERR(old_prog);
9181 old_prog = NULL;
9182 goto err_out;
c14a9f63 9183 }
a7862b45
BB
9184 }
9185
aa8d3a71 9186 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
a7862b45 9187
d4baa936
AN
9188err_out:
9189 if (err && new_prog)
9190 bpf_prog_put(new_prog);
9191 if (old_prog)
9192 bpf_prog_put(old_prog);
a7862b45
BB
9193 return err;
9194}
a7862b45 9195
1da177e4
LT
9196/**
9197 * dev_new_index - allocate an ifindex
c4ea43c5 9198 * @net: the applicable net namespace
1da177e4
LT
9199 *
9200 * Returns a suitable unique value for a new device interface
9201 * number. The caller must hold the rtnl semaphore or the
9202 * dev_base_lock to be sure it remains unique.
9203 */
881d966b 9204static int dev_new_index(struct net *net)
1da177e4 9205{
aa79e66e 9206 int ifindex = net->ifindex;
f4563a75 9207
1da177e4
LT
9208 for (;;) {
9209 if (++ifindex <= 0)
9210 ifindex = 1;
881d966b 9211 if (!__dev_get_by_index(net, ifindex))
aa79e66e 9212 return net->ifindex = ifindex;
1da177e4
LT
9213 }
9214}
9215
1da177e4 9216/* Delayed registration/unregisteration */
3b5b34fd 9217static LIST_HEAD(net_todo_list);
200b916f 9218DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 9219
6f05f629 9220static void net_set_todo(struct net_device *dev)
1da177e4 9221{
1da177e4 9222 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 9223 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
9224}
9225
9b5e383c 9226static void rollback_registered_many(struct list_head *head)
93ee31f1 9227{
e93737b0 9228 struct net_device *dev, *tmp;
5cde2829 9229 LIST_HEAD(close_head);
9b5e383c 9230
93ee31f1
DL
9231 BUG_ON(dev_boot_phase);
9232 ASSERT_RTNL();
9233
e93737b0 9234 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 9235 /* Some devices call without registering
e93737b0
KK
9236 * for initialization unwind. Remove those
9237 * devices and proceed with the remaining.
9b5e383c
ED
9238 */
9239 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
9240 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9241 dev->name, dev);
93ee31f1 9242
9b5e383c 9243 WARN_ON(1);
e93737b0
KK
9244 list_del(&dev->unreg_list);
9245 continue;
9b5e383c 9246 }
449f4544 9247 dev->dismantle = true;
9b5e383c 9248 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 9249 }
93ee31f1 9250
44345724 9251 /* If device is running, close it first. */
5cde2829
EB
9252 list_for_each_entry(dev, head, unreg_list)
9253 list_add_tail(&dev->close_list, &close_head);
99c4a26a 9254 dev_close_many(&close_head, true);
93ee31f1 9255
44345724 9256 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
9257 /* And unlink it from device chain. */
9258 unlist_netdevice(dev);
93ee31f1 9259
9b5e383c
ED
9260 dev->reg_state = NETREG_UNREGISTERING;
9261 }
41852497 9262 flush_all_backlogs();
93ee31f1
DL
9263
9264 synchronize_net();
9265
9b5e383c 9266 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
9267 struct sk_buff *skb = NULL;
9268
9b5e383c
ED
9269 /* Shutdown queueing discipline. */
9270 dev_shutdown(dev);
93ee31f1 9271
bd0b2e7f 9272 dev_xdp_uninstall(dev);
93ee31f1 9273
9b5e383c 9274 /* Notify protocols, that we are about to destroy
eb13da1a 9275 * this device. They should clean all the things.
9276 */
9b5e383c 9277 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 9278
395eea6c
MB
9279 if (!dev->rtnl_link_ops ||
9280 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 9281 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 9282 GFP_KERNEL, NULL, 0);
395eea6c 9283
9b5e383c
ED
9284 /*
9285 * Flush the unicast and multicast chains
9286 */
a748ee24 9287 dev_uc_flush(dev);
22bedad3 9288 dev_mc_flush(dev);
93ee31f1 9289
36fbf1e5 9290 netdev_name_node_alt_flush(dev);
ff927412
JP
9291 netdev_name_node_free(dev->name_node);
9292
9b5e383c
ED
9293 if (dev->netdev_ops->ndo_uninit)
9294 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 9295
395eea6c
MB
9296 if (skb)
9297 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 9298
9ff162a8
JP
9299 /* Notifier chain MUST detach us all upper devices. */
9300 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 9301 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 9302
9b5e383c
ED
9303 /* Remove entries from kobject tree */
9304 netdev_unregister_kobject(dev);
024e9679
AD
9305#ifdef CONFIG_XPS
9306 /* Remove XPS queueing entries */
9307 netif_reset_xps_queues_gt(dev, 0);
9308#endif
9b5e383c 9309 }
93ee31f1 9310
850a545b 9311 synchronize_net();
395264d5 9312
a5ee1551 9313 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
9314 dev_put(dev);
9315}
9316
9317static void rollback_registered(struct net_device *dev)
9318{
9319 LIST_HEAD(single);
9320
9321 list_add(&dev->unreg_list, &single);
9322 rollback_registered_many(&single);
ceaaec98 9323 list_del(&single);
93ee31f1
DL
9324}
9325
fd867d51
JW
9326static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9327 struct net_device *upper, netdev_features_t features)
9328{
9329 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9330 netdev_features_t feature;
5ba3f7d6 9331 int feature_bit;
fd867d51 9332
3b89ea9c 9333 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9334 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9335 if (!(upper->wanted_features & feature)
9336 && (features & feature)) {
9337 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9338 &feature, upper->name);
9339 features &= ~feature;
9340 }
9341 }
9342
9343 return features;
9344}
9345
9346static void netdev_sync_lower_features(struct net_device *upper,
9347 struct net_device *lower, netdev_features_t features)
9348{
9349 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9350 netdev_features_t feature;
5ba3f7d6 9351 int feature_bit;
fd867d51 9352
3b89ea9c 9353 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9354 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9355 if (!(features & feature) && (lower->features & feature)) {
9356 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9357 &feature, lower->name);
9358 lower->wanted_features &= ~feature;
dd912306 9359 __netdev_update_features(lower);
fd867d51
JW
9360
9361 if (unlikely(lower->features & feature))
9362 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9363 &feature, lower->name);
dd912306
CW
9364 else
9365 netdev_features_change(lower);
fd867d51
JW
9366 }
9367 }
9368}
9369
c8f44aff
MM
9370static netdev_features_t netdev_fix_features(struct net_device *dev,
9371 netdev_features_t features)
b63365a2 9372{
57422dc5
MM
9373 /* Fix illegal checksum combinations */
9374 if ((features & NETIF_F_HW_CSUM) &&
9375 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 9376 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
9377 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9378 }
9379
b63365a2 9380 /* TSO requires that SG is present as well. */
ea2d3688 9381 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 9382 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 9383 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
9384 }
9385
ec5f0615
PS
9386 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9387 !(features & NETIF_F_IP_CSUM)) {
9388 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9389 features &= ~NETIF_F_TSO;
9390 features &= ~NETIF_F_TSO_ECN;
9391 }
9392
9393 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9394 !(features & NETIF_F_IPV6_CSUM)) {
9395 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9396 features &= ~NETIF_F_TSO6;
9397 }
9398
b1dc497b
AD
9399 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9400 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9401 features &= ~NETIF_F_TSO_MANGLEID;
9402
31d8b9e0
BH
9403 /* TSO ECN requires that TSO is present as well. */
9404 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9405 features &= ~NETIF_F_TSO_ECN;
9406
212b573f
MM
9407 /* Software GSO depends on SG. */
9408 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 9409 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
9410 features &= ~NETIF_F_GSO;
9411 }
9412
802ab55a
AD
9413 /* GSO partial features require GSO partial be set */
9414 if ((features & dev->gso_partial_features) &&
9415 !(features & NETIF_F_GSO_PARTIAL)) {
9416 netdev_dbg(dev,
9417 "Dropping partially supported GSO features since no GSO partial.\n");
9418 features &= ~dev->gso_partial_features;
9419 }
9420
fb1f5f79
MC
9421 if (!(features & NETIF_F_RXCSUM)) {
9422 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9423 * successfully merged by hardware must also have the
9424 * checksum verified by hardware. If the user does not
9425 * want to enable RXCSUM, logically, we should disable GRO_HW.
9426 */
9427 if (features & NETIF_F_GRO_HW) {
9428 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9429 features &= ~NETIF_F_GRO_HW;
9430 }
9431 }
9432
de8d5ab2
GP
9433 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9434 if (features & NETIF_F_RXFCS) {
9435 if (features & NETIF_F_LRO) {
9436 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9437 features &= ~NETIF_F_LRO;
9438 }
9439
9440 if (features & NETIF_F_GRO_HW) {
9441 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9442 features &= ~NETIF_F_GRO_HW;
9443 }
e6c6a929
GP
9444 }
9445
b63365a2
HX
9446 return features;
9447}
b63365a2 9448
6cb6a27c 9449int __netdev_update_features(struct net_device *dev)
5455c699 9450{
fd867d51 9451 struct net_device *upper, *lower;
c8f44aff 9452 netdev_features_t features;
fd867d51 9453 struct list_head *iter;
e7868a85 9454 int err = -1;
5455c699 9455
87267485
MM
9456 ASSERT_RTNL();
9457
5455c699
MM
9458 features = netdev_get_wanted_features(dev);
9459
9460 if (dev->netdev_ops->ndo_fix_features)
9461 features = dev->netdev_ops->ndo_fix_features(dev, features);
9462
9463 /* driver might be less strict about feature dependencies */
9464 features = netdev_fix_features(dev, features);
9465
fd867d51
JW
9466 /* some features can't be enabled if they're off an an upper device */
9467 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9468 features = netdev_sync_upper_features(dev, upper, features);
9469
5455c699 9470 if (dev->features == features)
e7868a85 9471 goto sync_lower;
5455c699 9472
c8f44aff
MM
9473 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9474 &dev->features, &features);
5455c699
MM
9475
9476 if (dev->netdev_ops->ndo_set_features)
9477 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9478 else
9479 err = 0;
5455c699 9480
6cb6a27c 9481 if (unlikely(err < 0)) {
5455c699 9482 netdev_err(dev,
c8f44aff
MM
9483 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9484 err, &features, &dev->features);
17b85d29
NA
9485 /* return non-0 since some features might have changed and
9486 * it's better to fire a spurious notification than miss it
9487 */
9488 return -1;
6cb6a27c
MM
9489 }
9490
e7868a85 9491sync_lower:
fd867d51
JW
9492 /* some features must be disabled on lower devices when disabled
9493 * on an upper device (think: bonding master or bridge)
9494 */
9495 netdev_for_each_lower_dev(dev, lower, iter)
9496 netdev_sync_lower_features(dev, lower, features);
9497
ae847f40
SD
9498 if (!err) {
9499 netdev_features_t diff = features ^ dev->features;
9500
9501 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9502 /* udp_tunnel_{get,drop}_rx_info both need
9503 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9504 * device, or they won't do anything.
9505 * Thus we need to update dev->features
9506 * *before* calling udp_tunnel_get_rx_info,
9507 * but *after* calling udp_tunnel_drop_rx_info.
9508 */
9509 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9510 dev->features = features;
9511 udp_tunnel_get_rx_info(dev);
9512 } else {
9513 udp_tunnel_drop_rx_info(dev);
9514 }
9515 }
9516
9daae9bd
GP
9517 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9518 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9519 dev->features = features;
9520 err |= vlan_get_rx_ctag_filter_info(dev);
9521 } else {
9522 vlan_drop_rx_ctag_filter_info(dev);
9523 }
9524 }
9525
9526 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9527 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9528 dev->features = features;
9529 err |= vlan_get_rx_stag_filter_info(dev);
9530 } else {
9531 vlan_drop_rx_stag_filter_info(dev);
9532 }
9533 }
9534
6cb6a27c 9535 dev->features = features;
ae847f40 9536 }
6cb6a27c 9537
e7868a85 9538 return err < 0 ? 0 : 1;
6cb6a27c
MM
9539}
9540
afe12cc8
MM
9541/**
9542 * netdev_update_features - recalculate device features
9543 * @dev: the device to check
9544 *
9545 * Recalculate dev->features set and send notifications if it
9546 * has changed. Should be called after driver or hardware dependent
9547 * conditions might have changed that influence the features.
9548 */
6cb6a27c
MM
9549void netdev_update_features(struct net_device *dev)
9550{
9551 if (__netdev_update_features(dev))
9552 netdev_features_change(dev);
5455c699
MM
9553}
9554EXPORT_SYMBOL(netdev_update_features);
9555
afe12cc8
MM
9556/**
9557 * netdev_change_features - recalculate device features
9558 * @dev: the device to check
9559 *
9560 * Recalculate dev->features set and send notifications even
9561 * if they have not changed. Should be called instead of
9562 * netdev_update_features() if also dev->vlan_features might
9563 * have changed to allow the changes to be propagated to stacked
9564 * VLAN devices.
9565 */
9566void netdev_change_features(struct net_device *dev)
9567{
9568 __netdev_update_features(dev);
9569 netdev_features_change(dev);
9570}
9571EXPORT_SYMBOL(netdev_change_features);
9572
fc4a7489
PM
9573/**
9574 * netif_stacked_transfer_operstate - transfer operstate
9575 * @rootdev: the root or lower level device to transfer state from
9576 * @dev: the device to transfer operstate to
9577 *
9578 * Transfer operational state from root to device. This is normally
9579 * called when a stacking relationship exists between the root
9580 * device and the device(a leaf device).
9581 */
9582void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9583 struct net_device *dev)
9584{
9585 if (rootdev->operstate == IF_OPER_DORMANT)
9586 netif_dormant_on(dev);
9587 else
9588 netif_dormant_off(dev);
9589
eec517cd
AL
9590 if (rootdev->operstate == IF_OPER_TESTING)
9591 netif_testing_on(dev);
9592 else
9593 netif_testing_off(dev);
9594
0575c86b
ZS
9595 if (netif_carrier_ok(rootdev))
9596 netif_carrier_on(dev);
9597 else
9598 netif_carrier_off(dev);
fc4a7489
PM
9599}
9600EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9601
1b4bf461
ED
9602static int netif_alloc_rx_queues(struct net_device *dev)
9603{
1b4bf461 9604 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 9605 struct netdev_rx_queue *rx;
10595902 9606 size_t sz = count * sizeof(*rx);
e817f856 9607 int err = 0;
1b4bf461 9608
bd25fa7b 9609 BUG_ON(count < 1);
1b4bf461 9610
dcda9b04 9611 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9612 if (!rx)
9613 return -ENOMEM;
9614
bd25fa7b
TH
9615 dev->_rx = rx;
9616
e817f856 9617 for (i = 0; i < count; i++) {
fe822240 9618 rx[i].dev = dev;
e817f856
JDB
9619
9620 /* XDP RX-queue setup */
9621 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9622 if (err < 0)
9623 goto err_rxq_info;
9624 }
1b4bf461 9625 return 0;
e817f856
JDB
9626
9627err_rxq_info:
9628 /* Rollback successful reg's and free other resources */
9629 while (i--)
9630 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 9631 kvfree(dev->_rx);
e817f856
JDB
9632 dev->_rx = NULL;
9633 return err;
9634}
9635
9636static void netif_free_rx_queues(struct net_device *dev)
9637{
9638 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
9639
9640 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9641 if (!dev->_rx)
9642 return;
9643
e817f856 9644 for (i = 0; i < count; i++)
82aaff2f
JK
9645 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9646
9647 kvfree(dev->_rx);
1b4bf461
ED
9648}
9649
aa942104
CG
9650static void netdev_init_one_queue(struct net_device *dev,
9651 struct netdev_queue *queue, void *_unused)
9652{
9653 /* Initialize queue lock */
9654 spin_lock_init(&queue->_xmit_lock);
1a33e10e 9655 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
aa942104 9656 queue->xmit_lock_owner = -1;
b236da69 9657 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 9658 queue->dev = dev;
114cf580
TH
9659#ifdef CONFIG_BQL
9660 dql_init(&queue->dql, HZ);
9661#endif
aa942104
CG
9662}
9663
60877a32
ED
9664static void netif_free_tx_queues(struct net_device *dev)
9665{
4cb28970 9666 kvfree(dev->_tx);
60877a32
ED
9667}
9668
e6484930
TH
9669static int netif_alloc_netdev_queues(struct net_device *dev)
9670{
9671 unsigned int count = dev->num_tx_queues;
9672 struct netdev_queue *tx;
60877a32 9673 size_t sz = count * sizeof(*tx);
e6484930 9674
d339727c
ED
9675 if (count < 1 || count > 0xffff)
9676 return -EINVAL;
62b5942a 9677
dcda9b04 9678 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9679 if (!tx)
9680 return -ENOMEM;
9681
e6484930 9682 dev->_tx = tx;
1d24eb48 9683
e6484930
TH
9684 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9685 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
9686
9687 return 0;
e6484930
TH
9688}
9689
a2029240
DV
9690void netif_tx_stop_all_queues(struct net_device *dev)
9691{
9692 unsigned int i;
9693
9694 for (i = 0; i < dev->num_tx_queues; i++) {
9695 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 9696
a2029240
DV
9697 netif_tx_stop_queue(txq);
9698 }
9699}
9700EXPORT_SYMBOL(netif_tx_stop_all_queues);
9701
1da177e4
LT
9702/**
9703 * register_netdevice - register a network device
9704 * @dev: device to register
9705 *
9706 * Take a completed network device structure and add it to the kernel
9707 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9708 * chain. 0 is returned on success. A negative errno code is returned
9709 * on a failure to set up the device, or if the name is a duplicate.
9710 *
9711 * Callers must hold the rtnl semaphore. You may want
9712 * register_netdev() instead of this.
9713 *
9714 * BUGS:
9715 * The locking appears insufficient to guarantee two parallel registers
9716 * will not get the same name.
9717 */
9718
9719int register_netdevice(struct net_device *dev)
9720{
1da177e4 9721 int ret;
d314774c 9722 struct net *net = dev_net(dev);
1da177e4 9723
e283de3a
FF
9724 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9725 NETDEV_FEATURE_COUNT);
1da177e4
LT
9726 BUG_ON(dev_boot_phase);
9727 ASSERT_RTNL();
9728
b17a7c17
SH
9729 might_sleep();
9730
1da177e4
LT
9731 /* When net_device's are persistent, this will be fatal. */
9732 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 9733 BUG_ON(!net);
1da177e4 9734
9000edb7
JK
9735 ret = ethtool_check_ops(dev->ethtool_ops);
9736 if (ret)
9737 return ret;
9738
f1f28aa3 9739 spin_lock_init(&dev->addr_list_lock);
845e0ebb 9740 netdev_set_addr_lockdep_class(dev);
1da177e4 9741
828de4f6 9742 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
9743 if (ret < 0)
9744 goto out;
9745
9077f052 9746 ret = -ENOMEM;
ff927412
JP
9747 dev->name_node = netdev_name_node_head_alloc(dev);
9748 if (!dev->name_node)
9749 goto out;
9750
1da177e4 9751 /* Init, if this function is available */
d314774c
SH
9752 if (dev->netdev_ops->ndo_init) {
9753 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
9754 if (ret) {
9755 if (ret > 0)
9756 ret = -EIO;
42c17fa6 9757 goto err_free_name;
1da177e4
LT
9758 }
9759 }
4ec93edb 9760
f646968f
PM
9761 if (((dev->hw_features | dev->features) &
9762 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
9763 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9764 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9765 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9766 ret = -EINVAL;
9767 goto err_uninit;
9768 }
9769
9c7dafbf
PE
9770 ret = -EBUSY;
9771 if (!dev->ifindex)
9772 dev->ifindex = dev_new_index(net);
9773 else if (__dev_get_by_index(net, dev->ifindex))
9774 goto err_uninit;
9775
5455c699
MM
9776 /* Transfer changeable features to wanted_features and enable
9777 * software offloads (GSO and GRO).
9778 */
1a3c998f 9779 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 9780 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
9781
9782 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9783 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9784 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9785 }
9786
14d1232f 9787 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 9788
cbc53e08 9789 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 9790 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 9791
7f348a60
AD
9792 /* If IPv4 TCP segmentation offload is supported we should also
9793 * allow the device to enable segmenting the frame with the option
9794 * of ignoring a static IP ID value. This doesn't enable the
9795 * feature itself but allows the user to enable it later.
9796 */
cbc53e08
AD
9797 if (dev->hw_features & NETIF_F_TSO)
9798 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
9799 if (dev->vlan_features & NETIF_F_TSO)
9800 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9801 if (dev->mpls_features & NETIF_F_TSO)
9802 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9803 if (dev->hw_enc_features & NETIF_F_TSO)
9804 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 9805
1180e7d6 9806 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 9807 */
1180e7d6 9808 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 9809
ee579677
PS
9810 /* Make NETIF_F_SG inheritable to tunnel devices.
9811 */
802ab55a 9812 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 9813
0d89d203
SH
9814 /* Make NETIF_F_SG inheritable to MPLS.
9815 */
9816 dev->mpls_features |= NETIF_F_SG;
9817
7ffbe3fd
JB
9818 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9819 ret = notifier_to_errno(ret);
9820 if (ret)
9821 goto err_uninit;
9822
8b41d188 9823 ret = netdev_register_kobject(dev);
cb626bf5
JH
9824 if (ret) {
9825 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 9826 goto err_uninit;
cb626bf5 9827 }
b17a7c17
SH
9828 dev->reg_state = NETREG_REGISTERED;
9829
6cb6a27c 9830 __netdev_update_features(dev);
8e9b59b2 9831
1da177e4
LT
9832 /*
9833 * Default initial state at registry is that the
9834 * device is present.
9835 */
9836
9837 set_bit(__LINK_STATE_PRESENT, &dev->state);
9838
8f4cccbb
BH
9839 linkwatch_init_dev(dev);
9840
1da177e4 9841 dev_init_scheduler(dev);
1da177e4 9842 dev_hold(dev);
ce286d32 9843 list_netdevice(dev);
7bf23575 9844 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 9845
948b337e
JP
9846 /* If the device has permanent device address, driver should
9847 * set dev_addr and also addr_assign_type should be set to
9848 * NET_ADDR_PERM (default value).
9849 */
9850 if (dev->addr_assign_type == NET_ADDR_PERM)
9851 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9852
1da177e4 9853 /* Notify protocols, that a new device appeared. */
056925ab 9854 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 9855 ret = notifier_to_errno(ret);
93ee31f1
DL
9856 if (ret) {
9857 rollback_registered(dev);
10cc514f
SAK
9858 rcu_barrier();
9859
93ee31f1 9860 dev->reg_state = NETREG_UNREGISTERED;
814152a8
YY
9861 /* We should put the kobject that hold in
9862 * netdev_unregister_kobject(), otherwise
9863 * the net device cannot be freed when
9864 * driver calls free_netdev(), because the
9865 * kobject is being hold.
9866 */
9867 kobject_put(&dev->dev.kobj);
93ee31f1 9868 }
d90a909e
EB
9869 /*
9870 * Prevent userspace races by waiting until the network
9871 * device is fully setup before sending notifications.
9872 */
a2835763
PM
9873 if (!dev->rtnl_link_ops ||
9874 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 9875 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
9876
9877out:
9878 return ret;
7ce1b0ed
HX
9879
9880err_uninit:
d314774c
SH
9881 if (dev->netdev_ops->ndo_uninit)
9882 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
9883 if (dev->priv_destructor)
9884 dev->priv_destructor(dev);
42c17fa6
DC
9885err_free_name:
9886 netdev_name_node_free(dev->name_node);
7ce1b0ed 9887 goto out;
1da177e4 9888}
d1b19dff 9889EXPORT_SYMBOL(register_netdevice);
1da177e4 9890
937f1ba5
BH
9891/**
9892 * init_dummy_netdev - init a dummy network device for NAPI
9893 * @dev: device to init
9894 *
9895 * This takes a network device structure and initialize the minimum
9896 * amount of fields so it can be used to schedule NAPI polls without
9897 * registering a full blown interface. This is to be used by drivers
9898 * that need to tie several hardware interfaces to a single NAPI
9899 * poll scheduler due to HW limitations.
9900 */
9901int init_dummy_netdev(struct net_device *dev)
9902{
9903 /* Clear everything. Note we don't initialize spinlocks
9904 * are they aren't supposed to be taken by any of the
9905 * NAPI code and this dummy netdev is supposed to be
9906 * only ever used for NAPI polls
9907 */
9908 memset(dev, 0, sizeof(struct net_device));
9909
9910 /* make sure we BUG if trying to hit standard
9911 * register/unregister code path
9912 */
9913 dev->reg_state = NETREG_DUMMY;
9914
937f1ba5
BH
9915 /* NAPI wants this */
9916 INIT_LIST_HEAD(&dev->napi_list);
9917
9918 /* a dummy interface is started by default */
9919 set_bit(__LINK_STATE_PRESENT, &dev->state);
9920 set_bit(__LINK_STATE_START, &dev->state);
9921
35edfdc7
JE
9922 /* napi_busy_loop stats accounting wants this */
9923 dev_net_set(dev, &init_net);
9924
29b4433d
ED
9925 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9926 * because users of this 'device' dont need to change
9927 * its refcount.
9928 */
9929
937f1ba5
BH
9930 return 0;
9931}
9932EXPORT_SYMBOL_GPL(init_dummy_netdev);
9933
9934
1da177e4
LT
9935/**
9936 * register_netdev - register a network device
9937 * @dev: device to register
9938 *
9939 * Take a completed network device structure and add it to the kernel
9940 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9941 * chain. 0 is returned on success. A negative errno code is returned
9942 * on a failure to set up the device, or if the name is a duplicate.
9943 *
38b4da38 9944 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
9945 * and expands the device name if you passed a format string to
9946 * alloc_netdev.
9947 */
9948int register_netdev(struct net_device *dev)
9949{
9950 int err;
9951
b0f3debc
KT
9952 if (rtnl_lock_killable())
9953 return -EINTR;
1da177e4 9954 err = register_netdevice(dev);
1da177e4
LT
9955 rtnl_unlock();
9956 return err;
9957}
9958EXPORT_SYMBOL(register_netdev);
9959
29b4433d
ED
9960int netdev_refcnt_read(const struct net_device *dev)
9961{
9962 int i, refcnt = 0;
9963
9964 for_each_possible_cpu(i)
9965 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9966 return refcnt;
9967}
9968EXPORT_SYMBOL(netdev_refcnt_read);
9969
2c53040f 9970/**
1da177e4 9971 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 9972 * @dev: target net_device
1da177e4
LT
9973 *
9974 * This is called when unregistering network devices.
9975 *
9976 * Any protocol or device that holds a reference should register
9977 * for netdevice notification, and cleanup and put back the
9978 * reference if they receive an UNREGISTER event.
9979 * We can get stuck here if buggy protocols don't correctly
4ec93edb 9980 * call dev_put.
1da177e4
LT
9981 */
9982static void netdev_wait_allrefs(struct net_device *dev)
9983{
9984 unsigned long rebroadcast_time, warning_time;
29b4433d 9985 int refcnt;
1da177e4 9986
e014debe
ED
9987 linkwatch_forget_dev(dev);
9988
1da177e4 9989 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
9990 refcnt = netdev_refcnt_read(dev);
9991
9992 while (refcnt != 0) {
1da177e4 9993 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 9994 rtnl_lock();
1da177e4
LT
9995
9996 /* Rebroadcast unregister notification */
056925ab 9997 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 9998
748e2d93 9999 __rtnl_unlock();
0115e8e3 10000 rcu_barrier();
748e2d93
ED
10001 rtnl_lock();
10002
1da177e4
LT
10003 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10004 &dev->state)) {
10005 /* We must not have linkwatch events
10006 * pending on unregister. If this
10007 * happens, we simply run the queue
10008 * unscheduled, resulting in a noop
10009 * for this device.
10010 */
10011 linkwatch_run_queue();
10012 }
10013
6756ae4b 10014 __rtnl_unlock();
1da177e4
LT
10015
10016 rebroadcast_time = jiffies;
10017 }
10018
10019 msleep(250);
10020
29b4433d
ED
10021 refcnt = netdev_refcnt_read(dev);
10022
d7c04b05 10023 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
10024 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10025 dev->name, refcnt);
1da177e4
LT
10026 warning_time = jiffies;
10027 }
10028 }
10029}
10030
10031/* The sequence is:
10032 *
10033 * rtnl_lock();
10034 * ...
10035 * register_netdevice(x1);
10036 * register_netdevice(x2);
10037 * ...
10038 * unregister_netdevice(y1);
10039 * unregister_netdevice(y2);
10040 * ...
10041 * rtnl_unlock();
10042 * free_netdev(y1);
10043 * free_netdev(y2);
10044 *
58ec3b4d 10045 * We are invoked by rtnl_unlock().
1da177e4 10046 * This allows us to deal with problems:
b17a7c17 10047 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
10048 * without deadlocking with linkwatch via keventd.
10049 * 2) Since we run with the RTNL semaphore not held, we can sleep
10050 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
10051 *
10052 * We must not return until all unregister events added during
10053 * the interval the lock was held have been completed.
1da177e4 10054 */
1da177e4
LT
10055void netdev_run_todo(void)
10056{
626ab0e6 10057 struct list_head list;
1da177e4 10058
1da177e4 10059 /* Snapshot list, allow later requests */
626ab0e6 10060 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
10061
10062 __rtnl_unlock();
626ab0e6 10063
0115e8e3
ED
10064
10065 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
10066 if (!list_empty(&list))
10067 rcu_barrier();
10068
1da177e4
LT
10069 while (!list_empty(&list)) {
10070 struct net_device *dev
e5e26d75 10071 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
10072 list_del(&dev->todo_list);
10073
b17a7c17 10074 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 10075 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
10076 dev->name, dev->reg_state);
10077 dump_stack();
10078 continue;
10079 }
1da177e4 10080
b17a7c17 10081 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 10082
b17a7c17 10083 netdev_wait_allrefs(dev);
1da177e4 10084
b17a7c17 10085 /* paranoia */
29b4433d 10086 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
10087 BUG_ON(!list_empty(&dev->ptype_all));
10088 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
10089 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10090 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 10091#if IS_ENABLED(CONFIG_DECNET)
547b792c 10092 WARN_ON(dev->dn_ptr);
330c7272 10093#endif
cf124db5
DM
10094 if (dev->priv_destructor)
10095 dev->priv_destructor(dev);
10096 if (dev->needs_free_netdev)
10097 free_netdev(dev);
9093bbb2 10098
50624c93
EB
10099 /* Report a network device has been unregistered */
10100 rtnl_lock();
10101 dev_net(dev)->dev_unreg_count--;
10102 __rtnl_unlock();
10103 wake_up(&netdev_unregistering_wq);
10104
9093bbb2
SH
10105 /* Free network device */
10106 kobject_put(&dev->dev.kobj);
1da177e4 10107 }
1da177e4
LT
10108}
10109
9256645a
JW
10110/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10111 * all the same fields in the same order as net_device_stats, with only
10112 * the type differing, but rtnl_link_stats64 may have additional fields
10113 * at the end for newer counters.
3cfde79c 10114 */
77a1abf5
ED
10115void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10116 const struct net_device_stats *netdev_stats)
3cfde79c
BH
10117{
10118#if BITS_PER_LONG == 64
9256645a 10119 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 10120 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
10121 /* zero out counters that only exist in rtnl_link_stats64 */
10122 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10123 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 10124#else
9256645a 10125 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
10126 const unsigned long *src = (const unsigned long *)netdev_stats;
10127 u64 *dst = (u64 *)stats64;
10128
9256645a 10129 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
10130 for (i = 0; i < n; i++)
10131 dst[i] = src[i];
9256645a
JW
10132 /* zero out counters that only exist in rtnl_link_stats64 */
10133 memset((char *)stats64 + n * sizeof(u64), 0,
10134 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
10135#endif
10136}
77a1abf5 10137EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 10138
eeda3fd6
SH
10139/**
10140 * dev_get_stats - get network device statistics
10141 * @dev: device to get statistics from
28172739 10142 * @storage: place to store stats
eeda3fd6 10143 *
d7753516
BH
10144 * Get network statistics from device. Return @storage.
10145 * The device driver may provide its own method by setting
10146 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10147 * otherwise the internal statistics structure is used.
eeda3fd6 10148 */
d7753516
BH
10149struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10150 struct rtnl_link_stats64 *storage)
7004bf25 10151{
eeda3fd6
SH
10152 const struct net_device_ops *ops = dev->netdev_ops;
10153
28172739
ED
10154 if (ops->ndo_get_stats64) {
10155 memset(storage, 0, sizeof(*storage));
caf586e5
ED
10156 ops->ndo_get_stats64(dev, storage);
10157 } else if (ops->ndo_get_stats) {
3cfde79c 10158 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
10159 } else {
10160 netdev_stats_to_stats64(storage, &dev->stats);
28172739 10161 }
6f64ec74
ED
10162 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10163 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10164 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 10165 return storage;
c45d286e 10166}
eeda3fd6 10167EXPORT_SYMBOL(dev_get_stats);
c45d286e 10168
24824a09 10169struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 10170{
24824a09 10171 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 10172
24824a09
ED
10173#ifdef CONFIG_NET_CLS_ACT
10174 if (queue)
10175 return queue;
10176 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10177 if (!queue)
10178 return NULL;
10179 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 10180 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
10181 queue->qdisc_sleeping = &noop_qdisc;
10182 rcu_assign_pointer(dev->ingress_queue, queue);
10183#endif
10184 return queue;
bb949fbd
DM
10185}
10186
2c60db03
ED
10187static const struct ethtool_ops default_ethtool_ops;
10188
d07d7507
SG
10189void netdev_set_default_ethtool_ops(struct net_device *dev,
10190 const struct ethtool_ops *ops)
10191{
10192 if (dev->ethtool_ops == &default_ethtool_ops)
10193 dev->ethtool_ops = ops;
10194}
10195EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10196
74d332c1
ED
10197void netdev_freemem(struct net_device *dev)
10198{
10199 char *addr = (char *)dev - dev->padded;
10200
4cb28970 10201 kvfree(addr);
74d332c1
ED
10202}
10203
1da177e4 10204/**
722c9a0c 10205 * alloc_netdev_mqs - allocate network device
10206 * @sizeof_priv: size of private data to allocate space for
10207 * @name: device name format string
10208 * @name_assign_type: origin of device name
10209 * @setup: callback to initialize device
10210 * @txqs: the number of TX subqueues to allocate
10211 * @rxqs: the number of RX subqueues to allocate
10212 *
10213 * Allocates a struct net_device with private data area for driver use
10214 * and performs basic initialization. Also allocates subqueue structs
10215 * for each queue on the device.
1da177e4 10216 */
36909ea4 10217struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 10218 unsigned char name_assign_type,
36909ea4
TH
10219 void (*setup)(struct net_device *),
10220 unsigned int txqs, unsigned int rxqs)
1da177e4 10221{
1da177e4 10222 struct net_device *dev;
52a59bd5 10223 unsigned int alloc_size;
1ce8e7b5 10224 struct net_device *p;
1da177e4 10225
b6fe17d6
SH
10226 BUG_ON(strlen(name) >= sizeof(dev->name));
10227
36909ea4 10228 if (txqs < 1) {
7b6cd1ce 10229 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
10230 return NULL;
10231 }
10232
36909ea4 10233 if (rxqs < 1) {
7b6cd1ce 10234 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
10235 return NULL;
10236 }
36909ea4 10237
fd2ea0a7 10238 alloc_size = sizeof(struct net_device);
d1643d24
AD
10239 if (sizeof_priv) {
10240 /* ensure 32-byte alignment of private area */
1ce8e7b5 10241 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
10242 alloc_size += sizeof_priv;
10243 }
10244 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 10245 alloc_size += NETDEV_ALIGN - 1;
1da177e4 10246
dcda9b04 10247 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 10248 if (!p)
1da177e4 10249 return NULL;
1da177e4 10250
1ce8e7b5 10251 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 10252 dev->padded = (char *)dev - (char *)p;
ab9c73cc 10253
29b4433d
ED
10254 dev->pcpu_refcnt = alloc_percpu(int);
10255 if (!dev->pcpu_refcnt)
74d332c1 10256 goto free_dev;
ab9c73cc 10257
ab9c73cc 10258 if (dev_addr_init(dev))
29b4433d 10259 goto free_pcpu;
ab9c73cc 10260
22bedad3 10261 dev_mc_init(dev);
a748ee24 10262 dev_uc_init(dev);
ccffad25 10263
c346dca1 10264 dev_net_set(dev, &init_net);
1da177e4 10265
8d3bdbd5 10266 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 10267 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
10268 dev->upper_level = 1;
10269 dev->lower_level = 1;
8d3bdbd5 10270
8d3bdbd5
DM
10271 INIT_LIST_HEAD(&dev->napi_list);
10272 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 10273 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 10274 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
10275 INIT_LIST_HEAD(&dev->adj_list.upper);
10276 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
10277 INIT_LIST_HEAD(&dev->ptype_all);
10278 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 10279 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
10280#ifdef CONFIG_NET_SCHED
10281 hash_init(dev->qdisc_hash);
10282#endif
02875878 10283 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
10284 setup(dev);
10285
a813104d 10286 if (!dev->tx_queue_len) {
f84bb1ea 10287 dev->priv_flags |= IFF_NO_QUEUE;
11597084 10288 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 10289 }
906470c1 10290
36909ea4
TH
10291 dev->num_tx_queues = txqs;
10292 dev->real_num_tx_queues = txqs;
ed9af2e8 10293 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 10294 goto free_all;
e8a0464c 10295
36909ea4
TH
10296 dev->num_rx_queues = rxqs;
10297 dev->real_num_rx_queues = rxqs;
fe822240 10298 if (netif_alloc_rx_queues(dev))
8d3bdbd5 10299 goto free_all;
0a9627f2 10300
1da177e4 10301 strcpy(dev->name, name);
c835a677 10302 dev->name_assign_type = name_assign_type;
cbda10fa 10303 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
10304 if (!dev->ethtool_ops)
10305 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 10306
357b6cc5 10307 nf_hook_ingress_init(dev);
e687ad60 10308
1da177e4 10309 return dev;
ab9c73cc 10310
8d3bdbd5
DM
10311free_all:
10312 free_netdev(dev);
10313 return NULL;
10314
29b4433d
ED
10315free_pcpu:
10316 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
10317free_dev:
10318 netdev_freemem(dev);
ab9c73cc 10319 return NULL;
1da177e4 10320}
36909ea4 10321EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
10322
10323/**
722c9a0c 10324 * free_netdev - free network device
10325 * @dev: device
1da177e4 10326 *
722c9a0c 10327 * This function does the last stage of destroying an allocated device
10328 * interface. The reference to the device object is released. If this
10329 * is the last reference then it will be freed.Must be called in process
10330 * context.
1da177e4
LT
10331 */
10332void free_netdev(struct net_device *dev)
10333{
d565b0a1
HX
10334 struct napi_struct *p, *n;
10335
93d05d4a 10336 might_sleep();
60877a32 10337 netif_free_tx_queues(dev);
e817f856 10338 netif_free_rx_queues(dev);
e8a0464c 10339
33d480ce 10340 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 10341
f001fde5
JP
10342 /* Flush device addresses */
10343 dev_addr_flush(dev);
10344
d565b0a1
HX
10345 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10346 netif_napi_del(p);
10347
29b4433d
ED
10348 free_percpu(dev->pcpu_refcnt);
10349 dev->pcpu_refcnt = NULL;
75ccae62
THJ
10350 free_percpu(dev->xdp_bulkq);
10351 dev->xdp_bulkq = NULL;
29b4433d 10352
3041a069 10353 /* Compatibility with error handling in drivers */
1da177e4 10354 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 10355 netdev_freemem(dev);
1da177e4
LT
10356 return;
10357 }
10358
10359 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10360 dev->reg_state = NETREG_RELEASED;
10361
43cb76d9
GKH
10362 /* will free via device release */
10363 put_device(&dev->dev);
1da177e4 10364}
d1b19dff 10365EXPORT_SYMBOL(free_netdev);
4ec93edb 10366
f0db275a
SH
10367/**
10368 * synchronize_net - Synchronize with packet receive processing
10369 *
10370 * Wait for packets currently being received to be done.
10371 * Does not block later packets from starting.
10372 */
4ec93edb 10373void synchronize_net(void)
1da177e4
LT
10374{
10375 might_sleep();
be3fc413
ED
10376 if (rtnl_is_locked())
10377 synchronize_rcu_expedited();
10378 else
10379 synchronize_rcu();
1da177e4 10380}
d1b19dff 10381EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
10382
10383/**
44a0873d 10384 * unregister_netdevice_queue - remove device from the kernel
1da177e4 10385 * @dev: device
44a0873d 10386 * @head: list
6ebfbc06 10387 *
1da177e4 10388 * This function shuts down a device interface and removes it
d59b54b1 10389 * from the kernel tables.
44a0873d 10390 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
10391 *
10392 * Callers must hold the rtnl semaphore. You may want
10393 * unregister_netdev() instead of this.
10394 */
10395
44a0873d 10396void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 10397{
a6620712
HX
10398 ASSERT_RTNL();
10399
44a0873d 10400 if (head) {
9fdce099 10401 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
10402 } else {
10403 rollback_registered(dev);
10404 /* Finish processing unregister after unlock */
10405 net_set_todo(dev);
10406 }
1da177e4 10407}
44a0873d 10408EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 10409
9b5e383c
ED
10410/**
10411 * unregister_netdevice_many - unregister many devices
10412 * @head: list of devices
87757a91
ED
10413 *
10414 * Note: As most callers use a stack allocated list_head,
10415 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
10416 */
10417void unregister_netdevice_many(struct list_head *head)
10418{
10419 struct net_device *dev;
10420
10421 if (!list_empty(head)) {
10422 rollback_registered_many(head);
10423 list_for_each_entry(dev, head, unreg_list)
10424 net_set_todo(dev);
87757a91 10425 list_del(head);
9b5e383c
ED
10426 }
10427}
63c8099d 10428EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 10429
1da177e4
LT
10430/**
10431 * unregister_netdev - remove device from the kernel
10432 * @dev: device
10433 *
10434 * This function shuts down a device interface and removes it
d59b54b1 10435 * from the kernel tables.
1da177e4
LT
10436 *
10437 * This is just a wrapper for unregister_netdevice that takes
10438 * the rtnl semaphore. In general you want to use this and not
10439 * unregister_netdevice.
10440 */
10441void unregister_netdev(struct net_device *dev)
10442{
10443 rtnl_lock();
10444 unregister_netdevice(dev);
10445 rtnl_unlock();
10446}
1da177e4
LT
10447EXPORT_SYMBOL(unregister_netdev);
10448
ce286d32
EB
10449/**
10450 * dev_change_net_namespace - move device to different nethost namespace
10451 * @dev: device
10452 * @net: network namespace
10453 * @pat: If not NULL name pattern to try if the current device name
10454 * is already taken in the destination network namespace.
10455 *
10456 * This function shuts down a device interface and moves it
10457 * to a new network namespace. On success 0 is returned, on
10458 * a failure a netagive errno code is returned.
10459 *
10460 * Callers must hold the rtnl semaphore.
10461 */
10462
10463int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10464{
ef6a4c88 10465 struct net *net_old = dev_net(dev);
38e01b30 10466 int err, new_nsid, new_ifindex;
ce286d32
EB
10467
10468 ASSERT_RTNL();
10469
10470 /* Don't allow namespace local devices to be moved. */
10471 err = -EINVAL;
10472 if (dev->features & NETIF_F_NETNS_LOCAL)
10473 goto out;
10474
10475 /* Ensure the device has been registrered */
ce286d32
EB
10476 if (dev->reg_state != NETREG_REGISTERED)
10477 goto out;
10478
10479 /* Get out if there is nothing todo */
10480 err = 0;
ef6a4c88 10481 if (net_eq(net_old, net))
ce286d32
EB
10482 goto out;
10483
10484 /* Pick the destination device name, and ensure
10485 * we can use it in the destination network namespace.
10486 */
10487 err = -EEXIST;
d9031024 10488 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
10489 /* We get here if we can't use the current device name */
10490 if (!pat)
10491 goto out;
7892bd08
LR
10492 err = dev_get_valid_name(net, dev, pat);
10493 if (err < 0)
ce286d32
EB
10494 goto out;
10495 }
10496
10497 /*
10498 * And now a mini version of register_netdevice unregister_netdevice.
10499 */
10500
10501 /* If device is running close it first. */
9b772652 10502 dev_close(dev);
ce286d32
EB
10503
10504 /* And unlink it from device chain */
ce286d32
EB
10505 unlist_netdevice(dev);
10506
10507 synchronize_net();
10508
10509 /* Shutdown queueing discipline. */
10510 dev_shutdown(dev);
10511
10512 /* Notify protocols, that we are about to destroy
eb13da1a 10513 * this device. They should clean all the things.
10514 *
10515 * Note that dev->reg_state stays at NETREG_REGISTERED.
10516 * This is wanted because this way 8021q and macvlan know
10517 * the device is just moving and can keep their slaves up.
10518 */
ce286d32 10519 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 10520 rcu_barrier();
38e01b30 10521
d4e4fdf9 10522 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30
ND
10523 /* If there is an ifindex conflict assign a new one */
10524 if (__dev_get_by_index(net, dev->ifindex))
10525 new_ifindex = dev_new_index(net);
10526 else
10527 new_ifindex = dev->ifindex;
10528
10529 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10530 new_ifindex);
ce286d32
EB
10531
10532 /*
10533 * Flush the unicast and multicast chains
10534 */
a748ee24 10535 dev_uc_flush(dev);
22bedad3 10536 dev_mc_flush(dev);
ce286d32 10537
4e66ae2e
SH
10538 /* Send a netdev-removed uevent to the old namespace */
10539 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 10540 netdev_adjacent_del_links(dev);
4e66ae2e 10541
93642e14
JP
10542 /* Move per-net netdevice notifiers that are following the netdevice */
10543 move_netdevice_notifiers_dev_net(dev, net);
10544
ce286d32 10545 /* Actually switch the network namespace */
c346dca1 10546 dev_net_set(dev, net);
38e01b30 10547 dev->ifindex = new_ifindex;
ce286d32 10548
4e66ae2e
SH
10549 /* Send a netdev-add uevent to the new namespace */
10550 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 10551 netdev_adjacent_add_links(dev);
4e66ae2e 10552
8b41d188 10553 /* Fixup kobjects */
a1b3f594 10554 err = device_rename(&dev->dev, dev->name);
8b41d188 10555 WARN_ON(err);
ce286d32 10556
ef6a4c88
CB
10557 /* Adapt owner in case owning user namespace of target network
10558 * namespace is different from the original one.
10559 */
10560 err = netdev_change_owner(dev, net_old, net);
10561 WARN_ON(err);
10562
ce286d32
EB
10563 /* Add the device back in the hashes */
10564 list_netdevice(dev);
10565
10566 /* Notify protocols, that a new device appeared. */
10567 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10568
d90a909e
EB
10569 /*
10570 * Prevent userspace races by waiting until the network
10571 * device is fully setup before sending notifications.
10572 */
7f294054 10573 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 10574
ce286d32
EB
10575 synchronize_net();
10576 err = 0;
10577out:
10578 return err;
10579}
463d0183 10580EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 10581
f0bf90de 10582static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
10583{
10584 struct sk_buff **list_skb;
1da177e4 10585 struct sk_buff *skb;
f0bf90de 10586 unsigned int cpu;
97d8b6e3 10587 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 10588
1da177e4
LT
10589 local_irq_disable();
10590 cpu = smp_processor_id();
10591 sd = &per_cpu(softnet_data, cpu);
10592 oldsd = &per_cpu(softnet_data, oldcpu);
10593
10594 /* Find end of our completion_queue. */
10595 list_skb = &sd->completion_queue;
10596 while (*list_skb)
10597 list_skb = &(*list_skb)->next;
10598 /* Append completion queue from offline CPU. */
10599 *list_skb = oldsd->completion_queue;
10600 oldsd->completion_queue = NULL;
10601
1da177e4 10602 /* Append output queue from offline CPU. */
a9cbd588
CG
10603 if (oldsd->output_queue) {
10604 *sd->output_queue_tailp = oldsd->output_queue;
10605 sd->output_queue_tailp = oldsd->output_queue_tailp;
10606 oldsd->output_queue = NULL;
10607 oldsd->output_queue_tailp = &oldsd->output_queue;
10608 }
ac64da0b
ED
10609 /* Append NAPI poll list from offline CPU, with one exception :
10610 * process_backlog() must be called by cpu owning percpu backlog.
10611 * We properly handle process_queue & input_pkt_queue later.
10612 */
10613 while (!list_empty(&oldsd->poll_list)) {
10614 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10615 struct napi_struct,
10616 poll_list);
10617
10618 list_del_init(&napi->poll_list);
10619 if (napi->poll == process_backlog)
10620 napi->state = 0;
10621 else
10622 ____napi_schedule(sd, napi);
264524d5 10623 }
1da177e4
LT
10624
10625 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10626 local_irq_enable();
10627
773fc8f6 10628#ifdef CONFIG_RPS
10629 remsd = oldsd->rps_ipi_list;
10630 oldsd->rps_ipi_list = NULL;
10631#endif
10632 /* send out pending IPI's on offline CPU */
10633 net_rps_send_ipi(remsd);
10634
1da177e4 10635 /* Process offline CPU's input_pkt_queue */
76cc8b13 10636 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 10637 netif_rx_ni(skb);
76cc8b13 10638 input_queue_head_incr(oldsd);
fec5e652 10639 }
ac64da0b 10640 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 10641 netif_rx_ni(skb);
76cc8b13
TH
10642 input_queue_head_incr(oldsd);
10643 }
1da177e4 10644
f0bf90de 10645 return 0;
1da177e4 10646}
1da177e4 10647
7f353bf2 10648/**
b63365a2
HX
10649 * netdev_increment_features - increment feature set by one
10650 * @all: current feature set
10651 * @one: new feature set
10652 * @mask: mask feature set
7f353bf2
HX
10653 *
10654 * Computes a new feature set after adding a device with feature set
b63365a2
HX
10655 * @one to the master device with current feature set @all. Will not
10656 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 10657 */
c8f44aff
MM
10658netdev_features_t netdev_increment_features(netdev_features_t all,
10659 netdev_features_t one, netdev_features_t mask)
b63365a2 10660{
c8cd0989 10661 if (mask & NETIF_F_HW_CSUM)
a188222b 10662 mask |= NETIF_F_CSUM_MASK;
1742f183 10663 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 10664
a188222b 10665 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 10666 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 10667
1742f183 10668 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
10669 if (all & NETIF_F_HW_CSUM)
10670 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
10671
10672 return all;
10673}
b63365a2 10674EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 10675
430f03cd 10676static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
10677{
10678 int i;
10679 struct hlist_head *hash;
10680
6da2ec56 10681 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
10682 if (hash != NULL)
10683 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10684 INIT_HLIST_HEAD(&hash[i]);
10685
10686 return hash;
10687}
10688
881d966b 10689/* Initialize per network namespace state */
4665079c 10690static int __net_init netdev_init(struct net *net)
881d966b 10691{
d9f37d01 10692 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 10693 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 10694
734b6541
RM
10695 if (net != &init_net)
10696 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 10697
30d97d35
PE
10698 net->dev_name_head = netdev_create_hash();
10699 if (net->dev_name_head == NULL)
10700 goto err_name;
881d966b 10701
30d97d35
PE
10702 net->dev_index_head = netdev_create_hash();
10703 if (net->dev_index_head == NULL)
10704 goto err_idx;
881d966b 10705
a30c7b42
JP
10706 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10707
881d966b 10708 return 0;
30d97d35
PE
10709
10710err_idx:
10711 kfree(net->dev_name_head);
10712err_name:
10713 return -ENOMEM;
881d966b
EB
10714}
10715
f0db275a
SH
10716/**
10717 * netdev_drivername - network driver for the device
10718 * @dev: network device
f0db275a
SH
10719 *
10720 * Determine network driver for device.
10721 */
3019de12 10722const char *netdev_drivername(const struct net_device *dev)
6579e57b 10723{
cf04a4c7
SH
10724 const struct device_driver *driver;
10725 const struct device *parent;
3019de12 10726 const char *empty = "";
6579e57b
AV
10727
10728 parent = dev->dev.parent;
6579e57b 10729 if (!parent)
3019de12 10730 return empty;
6579e57b
AV
10731
10732 driver = parent->driver;
10733 if (driver && driver->name)
3019de12
DM
10734 return driver->name;
10735 return empty;
6579e57b
AV
10736}
10737
6ea754eb
JP
10738static void __netdev_printk(const char *level, const struct net_device *dev,
10739 struct va_format *vaf)
256df2f3 10740{
b004ff49 10741 if (dev && dev->dev.parent) {
6ea754eb
JP
10742 dev_printk_emit(level[1] - '0',
10743 dev->dev.parent,
10744 "%s %s %s%s: %pV",
10745 dev_driver_string(dev->dev.parent),
10746 dev_name(dev->dev.parent),
10747 netdev_name(dev), netdev_reg_state(dev),
10748 vaf);
b004ff49 10749 } else if (dev) {
6ea754eb
JP
10750 printk("%s%s%s: %pV",
10751 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 10752 } else {
6ea754eb 10753 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 10754 }
256df2f3
JP
10755}
10756
6ea754eb
JP
10757void netdev_printk(const char *level, const struct net_device *dev,
10758 const char *format, ...)
256df2f3
JP
10759{
10760 struct va_format vaf;
10761 va_list args;
256df2f3
JP
10762
10763 va_start(args, format);
10764
10765 vaf.fmt = format;
10766 vaf.va = &args;
10767
6ea754eb 10768 __netdev_printk(level, dev, &vaf);
b004ff49 10769
256df2f3 10770 va_end(args);
256df2f3
JP
10771}
10772EXPORT_SYMBOL(netdev_printk);
10773
10774#define define_netdev_printk_level(func, level) \
6ea754eb 10775void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 10776{ \
256df2f3
JP
10777 struct va_format vaf; \
10778 va_list args; \
10779 \
10780 va_start(args, fmt); \
10781 \
10782 vaf.fmt = fmt; \
10783 vaf.va = &args; \
10784 \
6ea754eb 10785 __netdev_printk(level, dev, &vaf); \
b004ff49 10786 \
256df2f3 10787 va_end(args); \
256df2f3
JP
10788} \
10789EXPORT_SYMBOL(func);
10790
10791define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10792define_netdev_printk_level(netdev_alert, KERN_ALERT);
10793define_netdev_printk_level(netdev_crit, KERN_CRIT);
10794define_netdev_printk_level(netdev_err, KERN_ERR);
10795define_netdev_printk_level(netdev_warn, KERN_WARNING);
10796define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10797define_netdev_printk_level(netdev_info, KERN_INFO);
10798
4665079c 10799static void __net_exit netdev_exit(struct net *net)
881d966b
EB
10800{
10801 kfree(net->dev_name_head);
10802 kfree(net->dev_index_head);
ee21b18b
VA
10803 if (net != &init_net)
10804 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
10805}
10806
022cbae6 10807static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
10808 .init = netdev_init,
10809 .exit = netdev_exit,
10810};
10811
4665079c 10812static void __net_exit default_device_exit(struct net *net)
ce286d32 10813{
e008b5fc 10814 struct net_device *dev, *aux;
ce286d32 10815 /*
e008b5fc 10816 * Push all migratable network devices back to the
ce286d32
EB
10817 * initial network namespace
10818 */
10819 rtnl_lock();
e008b5fc 10820 for_each_netdev_safe(net, dev, aux) {
ce286d32 10821 int err;
aca51397 10822 char fb_name[IFNAMSIZ];
ce286d32
EB
10823
10824 /* Ignore unmoveable devices (i.e. loopback) */
10825 if (dev->features & NETIF_F_NETNS_LOCAL)
10826 continue;
10827
e008b5fc
EB
10828 /* Leave virtual devices for the generic cleanup */
10829 if (dev->rtnl_link_ops)
10830 continue;
d0c082ce 10831
25985edc 10832 /* Push remaining network devices to init_net */
aca51397 10833 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
10834 if (__dev_get_by_name(&init_net, fb_name))
10835 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 10836 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 10837 if (err) {
7b6cd1ce
JP
10838 pr_emerg("%s: failed to move %s to init_net: %d\n",
10839 __func__, dev->name, err);
aca51397 10840 BUG();
ce286d32
EB
10841 }
10842 }
10843 rtnl_unlock();
10844}
10845
50624c93
EB
10846static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10847{
10848 /* Return with the rtnl_lock held when there are no network
10849 * devices unregistering in any network namespace in net_list.
10850 */
10851 struct net *net;
10852 bool unregistering;
ff960a73 10853 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 10854
ff960a73 10855 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 10856 for (;;) {
50624c93
EB
10857 unregistering = false;
10858 rtnl_lock();
10859 list_for_each_entry(net, net_list, exit_list) {
10860 if (net->dev_unreg_count > 0) {
10861 unregistering = true;
10862 break;
10863 }
10864 }
10865 if (!unregistering)
10866 break;
10867 __rtnl_unlock();
ff960a73
PZ
10868
10869 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 10870 }
ff960a73 10871 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
10872}
10873
04dc7f6b
EB
10874static void __net_exit default_device_exit_batch(struct list_head *net_list)
10875{
10876 /* At exit all network devices most be removed from a network
b595076a 10877 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
10878 * Do this across as many network namespaces as possible to
10879 * improve batching efficiency.
10880 */
10881 struct net_device *dev;
10882 struct net *net;
10883 LIST_HEAD(dev_kill_list);
10884
50624c93
EB
10885 /* To prevent network device cleanup code from dereferencing
10886 * loopback devices or network devices that have been freed
10887 * wait here for all pending unregistrations to complete,
10888 * before unregistring the loopback device and allowing the
10889 * network namespace be freed.
10890 *
10891 * The netdev todo list containing all network devices
10892 * unregistrations that happen in default_device_exit_batch
10893 * will run in the rtnl_unlock() at the end of
10894 * default_device_exit_batch.
10895 */
10896 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
10897 list_for_each_entry(net, net_list, exit_list) {
10898 for_each_netdev_reverse(net, dev) {
b0ab2fab 10899 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
10900 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10901 else
10902 unregister_netdevice_queue(dev, &dev_kill_list);
10903 }
10904 }
10905 unregister_netdevice_many(&dev_kill_list);
10906 rtnl_unlock();
10907}
10908
022cbae6 10909static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 10910 .exit = default_device_exit,
04dc7f6b 10911 .exit_batch = default_device_exit_batch,
ce286d32
EB
10912};
10913
1da177e4
LT
10914/*
10915 * Initialize the DEV module. At boot time this walks the device list and
10916 * unhooks any devices that fail to initialise (normally hardware not
10917 * present) and leaves us with a valid list of present and active devices.
10918 *
10919 */
10920
10921/*
10922 * This is called single threaded during boot, so no need
10923 * to take the rtnl semaphore.
10924 */
10925static int __init net_dev_init(void)
10926{
10927 int i, rc = -ENOMEM;
10928
10929 BUG_ON(!dev_boot_phase);
10930
1da177e4
LT
10931 if (dev_proc_init())
10932 goto out;
10933
8b41d188 10934 if (netdev_kobject_init())
1da177e4
LT
10935 goto out;
10936
10937 INIT_LIST_HEAD(&ptype_all);
82d8a867 10938 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
10939 INIT_LIST_HEAD(&ptype_base[i]);
10940
62532da9
VY
10941 INIT_LIST_HEAD(&offload_base);
10942
881d966b
EB
10943 if (register_pernet_subsys(&netdev_net_ops))
10944 goto out;
1da177e4
LT
10945
10946 /*
10947 * Initialise the packet receive queues.
10948 */
10949
6f912042 10950 for_each_possible_cpu(i) {
41852497 10951 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 10952 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 10953
41852497
ED
10954 INIT_WORK(flush, flush_backlog);
10955
e36fa2f7 10956 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 10957 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
10958#ifdef CONFIG_XFRM_OFFLOAD
10959 skb_queue_head_init(&sd->xfrm_backlog);
10960#endif
e36fa2f7 10961 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 10962 sd->output_queue_tailp = &sd->output_queue;
df334545 10963#ifdef CONFIG_RPS
e36fa2f7
ED
10964 sd->csd.func = rps_trigger_softirq;
10965 sd->csd.info = sd;
e36fa2f7 10966 sd->cpu = i;
1e94d72f 10967#endif
0a9627f2 10968
7c4ec749 10969 init_gro_hash(&sd->backlog);
e36fa2f7
ED
10970 sd->backlog.poll = process_backlog;
10971 sd->backlog.weight = weight_p;
1da177e4
LT
10972 }
10973
1da177e4
LT
10974 dev_boot_phase = 0;
10975
505d4f73
EB
10976 /* The loopback device is special if any other network devices
10977 * is present in a network namespace the loopback device must
10978 * be present. Since we now dynamically allocate and free the
10979 * loopback device ensure this invariant is maintained by
10980 * keeping the loopback device as the first device on the
10981 * list of network devices. Ensuring the loopback devices
10982 * is the first device that appears and the last network device
10983 * that disappears.
10984 */
10985 if (register_pernet_device(&loopback_net_ops))
10986 goto out;
10987
10988 if (register_pernet_device(&default_device_ops))
10989 goto out;
10990
962cf36c
CM
10991 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10992 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 10993
f0bf90de
SAS
10994 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10995 NULL, dev_cpu_dead);
10996 WARN_ON(rc < 0);
1da177e4
LT
10997 rc = 0;
10998out:
10999 return rc;
11000}
11001
11002subsys_initcall(net_dev_init);