xfrm: Separate ESP handling from segmentation for GRO packets.
[linux-block.git] / net / core / dev.c
CommitLineData
1da177e4 1/*
722c9a0c 2 * NET3 Protocol independent device support routines.
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
1da177e4
LT
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
722c9a0c 49 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
72 * - netif_rx() feedback
73 */
74
7c0f6ba6 75#include <linux/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
f1083048 84#include <linux/sched/mm.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4
LT
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
a7862b45 98#include <linux/bpf.h>
b5cdae32 99#include <linux/bpf_trace.h>
457c4cbc 100#include <net/net_namespace.h>
1da177e4 101#include <net/sock.h>
02d62e86 102#include <net/busy_poll.h>
1da177e4 103#include <linux/rtnetlink.h>
1da177e4 104#include <linux/stat.h>
1da177e4 105#include <net/dst.h>
fc4099f1 106#include <net/dst_metadata.h>
1da177e4 107#include <net/pkt_sched.h>
87d83093 108#include <net/pkt_cls.h>
1da177e4 109#include <net/checksum.h>
44540960 110#include <net/xfrm.h>
1da177e4
LT
111#include <linux/highmem.h>
112#include <linux/init.h>
1da177e4 113#include <linux/module.h>
1da177e4
LT
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
25cd9ba0 127#include <net/mpls.h>
8f0f2223
DM
128#include <linux/ipv6.h>
129#include <linux/in.h>
b6b2fed1
DM
130#include <linux/jhash.h>
131#include <linux/random.h>
9cbc1cb8 132#include <trace/events/napi.h>
cf66ba58 133#include <trace/events/net.h>
07dc22e7 134#include <trace/events/skb.h>
5acbbd42 135#include <linux/pci.h>
caeda9b9 136#include <linux/inetdevice.h>
c445477d 137#include <linux/cpu_rmap.h>
c5905afb 138#include <linux/static_key.h>
af12fa6e 139#include <linux/hashtable.h>
60877a32 140#include <linux/vmalloc.h>
529d0489 141#include <linux/if_macvlan.h>
e7fd2885 142#include <linux/errqueue.h>
3b47d303 143#include <linux/hrtimer.h>
e687ad60 144#include <linux/netfilter_ingress.h>
40e4e713 145#include <linux/crash_dump.h>
b72b5bf6 146#include <linux/sctp.h>
ae847f40 147#include <net/udp_tunnel.h>
6621dd29 148#include <linux/net_namespace.h>
1da177e4 149
342709ef
PE
150#include "net-sysfs.h"
151
d565b0a1
HX
152/* Instead of increasing this, you should create a hash table. */
153#define MAX_GRO_SKBS 8
154
5d38a079
HX
155/* This should be increased if a protocol with a bigger head is added. */
156#define GRO_MAX_HEAD (MAX_HEADER + 128)
157
1da177e4 158static DEFINE_SPINLOCK(ptype_lock);
62532da9 159static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
160struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161struct list_head ptype_all __read_mostly; /* Taps */
62532da9 162static struct list_head offload_base __read_mostly;
1da177e4 163
ae78dbfa 164static int netif_rx_internal(struct sk_buff *skb);
54951194 165static int call_netdevice_notifiers_info(unsigned long val,
54951194 166 struct netdev_notifier_info *info);
90b602f8 167static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 168
1da177e4 169/*
7562f876 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
171 * semaphore.
172 *
c6d14c84 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
7562f876 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
1da177e4 188DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
189EXPORT_SYMBOL(dev_base_lock);
190
6c557001
FW
191static DEFINE_MUTEX(ifalias_mutex);
192
af12fa6e
ET
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
52bd2d62 196static unsigned int napi_gen_id = NR_CPUS;
6180d9de 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 198
18afa4b0 199static seqcount_t devnet_rename_seq;
c91f6df2 200
4e985ada
TG
201static inline void dev_base_seq_inc(struct net *net)
202{
643aa9cb 203 while (++net->dev_base_seq == 0)
204 ;
4e985ada
TG
205}
206
881d966b 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 208{
8387ff25 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 210
08e9897d 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
212}
213
881d966b 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 215{
7c28bd0b 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
217}
218
e36fa2f7 219static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
220{
221#ifdef CONFIG_RPS
e36fa2f7 222 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
223#endif
224}
225
e36fa2f7 226static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
227{
228#ifdef CONFIG_RPS
e36fa2f7 229 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
230#endif
231}
232
ce286d32 233/* Device list insertion */
53759be9 234static void list_netdevice(struct net_device *dev)
ce286d32 235{
c346dca1 236 struct net *net = dev_net(dev);
ce286d32
EB
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
c6d14c84 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
ce286d32 245 write_unlock_bh(&dev_base_lock);
4e985ada
TG
246
247 dev_base_seq_inc(net);
ce286d32
EB
248}
249
fb699dfd
ED
250/* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
ce286d32
EB
253static void unlist_netdevice(struct net_device *dev)
254{
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
c6d14c84 259 list_del_rcu(&dev->dev_list);
72c9528b 260 hlist_del_rcu(&dev->name_hlist);
fb699dfd 261 hlist_del_rcu(&dev->index_hlist);
ce286d32 262 write_unlock_bh(&dev_base_lock);
4e985ada
TG
263
264 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
265}
266
1da177e4
LT
267/*
268 * Our notifier list
269 */
270
f07d5b94 271static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
272
273/*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
bea3348e 277
9958da05 278DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 279EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 280
cf508b12 281#ifdef CONFIG_LOCKDEP
723e98b7 282/*
c773e847 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
284 * according to dev->type
285 */
643aa9cb 286static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
723e98b7
JP
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 302
643aa9cb 303static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
319
320static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 321static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
322
323static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324{
325 int i;
326
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
332}
333
cf508b12
DM
334static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
723e98b7
JP
336{
337 int i;
338
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
342}
cf508b12
DM
343
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346 int i;
347
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
352}
723e98b7 353#else
cf508b12
DM
354static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
356{
357}
358static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
359{
360}
361#endif
1da177e4
LT
362
363/*******************************************************************************
eb13da1a 364 *
365 * Protocol management and registration routines
366 *
367 *******************************************************************************/
1da177e4 368
1da177e4 369
1da177e4
LT
370/*
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
374 *
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
384 */
385
c07b68e8
ED
386static inline struct list_head *ptype_head(const struct packet_type *pt)
387{
388 if (pt->type == htons(ETH_P_ALL))
7866a621 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 390 else
7866a621
SN
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
393}
394
1da177e4
LT
395/**
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
398 *
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
402 *
4ec93edb 403 * This call does not sleep therefore it can not
1da177e4
LT
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
406 */
407
408void dev_add_pack(struct packet_type *pt)
409{
c07b68e8 410 struct list_head *head = ptype_head(pt);
1da177e4 411
c07b68e8
ED
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
1da177e4 415}
d1b19dff 416EXPORT_SYMBOL(dev_add_pack);
1da177e4 417
1da177e4
LT
418/**
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
421 *
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
4ec93edb 425 * returns.
1da177e4
LT
426 *
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
430 */
431void __dev_remove_pack(struct packet_type *pt)
432{
c07b68e8 433 struct list_head *head = ptype_head(pt);
1da177e4
LT
434 struct packet_type *pt1;
435
c07b68e8 436 spin_lock(&ptype_lock);
1da177e4
LT
437
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
442 }
443 }
444
7b6cd1ce 445 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 446out:
c07b68e8 447 spin_unlock(&ptype_lock);
1da177e4 448}
d1b19dff
ED
449EXPORT_SYMBOL(__dev_remove_pack);
450
1da177e4
LT
451/**
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
454 *
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
459 *
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
462 */
463void dev_remove_pack(struct packet_type *pt)
464{
465 __dev_remove_pack(pt);
4ec93edb 466
1da177e4
LT
467 synchronize_net();
468}
d1b19dff 469EXPORT_SYMBOL(dev_remove_pack);
1da177e4 470
62532da9
VY
471
472/**
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
475 *
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
479 *
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
483 */
484void dev_add_offload(struct packet_offload *po)
485{
bdef7de4 486 struct packet_offload *elem;
62532da9
VY
487
488 spin_lock(&offload_lock);
bdef7de4
DM
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
492 }
493 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
494 spin_unlock(&offload_lock);
495}
496EXPORT_SYMBOL(dev_add_offload);
497
498/**
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
501 *
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
506 *
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
510 */
1d143d9f 511static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
512{
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
515
c53aa505 516 spin_lock(&offload_lock);
62532da9
VY
517
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
522 }
523 }
524
525 pr_warn("dev_remove_offload: %p not found\n", po);
526out:
c53aa505 527 spin_unlock(&offload_lock);
62532da9 528}
62532da9
VY
529
530/**
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
533 *
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
538 *
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
541 */
542void dev_remove_offload(struct packet_offload *po)
543{
544 __dev_remove_offload(po);
545
546 synchronize_net();
547}
548EXPORT_SYMBOL(dev_remove_offload);
549
1da177e4 550/******************************************************************************
eb13da1a 551 *
552 * Device Boot-time Settings Routines
553 *
554 ******************************************************************************/
1da177e4
LT
555
556/* Boot time configuration table */
557static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559/**
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
563 *
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
567 */
568static int netdev_boot_setup_add(char *name, struct ifmap *map)
569{
570 struct netdev_boot_setup *s;
571 int i;
572
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 577 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
580 }
581 }
582
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584}
585
586/**
722c9a0c 587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
1da177e4 589 *
722c9a0c 590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
594 */
595int netdev_boot_setup_check(struct net_device *dev)
596{
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
599
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 602 !strcmp(dev->name, s[i].name)) {
722c9a0c 603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
607 return 1;
608 }
609 }
610 return 0;
611}
d1b19dff 612EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
613
614
615/**
722c9a0c 616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
619 *
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
1da177e4
LT
624 */
625unsigned long netdev_boot_base(const char *prefix, int unit)
626{
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
630
631 sprintf(name, "%s%d", prefix, unit);
632
633 /*
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
636 */
881d966b 637 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
638 return 1;
639
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
644}
645
646/*
647 * Saves at boot time configured settings for any netdevice.
648 */
649int __init netdev_boot_setup(char *str)
650{
651 int ints[5];
652 struct ifmap map;
653
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
657
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
668
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
671}
672
673__setup("netdev=", netdev_boot_setup);
674
675/*******************************************************************************
eb13da1a 676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
1da177e4 680
a54acb3a
ND
681/**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
689int dev_get_iflink(const struct net_device *dev)
690{
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
7a66bbc9 694 return dev->ifindex;
a54acb3a
ND
695}
696EXPORT_SYMBOL(dev_get_iflink);
697
fc4099f1
PS
698/**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
707int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708{
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721}
722EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
1da177e4
LT
724/**
725 * __dev_get_by_name - find a device by its name
c4ea43c5 726 * @net: the applicable net namespace
1da177e4
LT
727 * @name: name to find
728 *
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
734 */
735
881d966b 736struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 737{
0bd8d536
ED
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 740
b67bfe0d 741 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
0bd8d536 744
1da177e4
LT
745 return NULL;
746}
d1b19dff 747EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 748
72c9528b 749/**
722c9a0c 750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
753 *
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
759 */
760
761struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762{
72c9528b
ED
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
765
b67bfe0d 766 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_get_by_name_rcu);
773
1da177e4
LT
774/**
775 * dev_get_by_name - find a device by its name
c4ea43c5 776 * @net: the applicable net namespace
1da177e4
LT
777 * @name: name to find
778 *
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
784 */
785
881d966b 786struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
787{
788 struct net_device *dev;
789
72c9528b
ED
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
792 if (dev)
793 dev_hold(dev);
72c9528b 794 rcu_read_unlock();
1da177e4
LT
795 return dev;
796}
d1b19dff 797EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
798
799/**
800 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 801 * @net: the applicable net namespace
1da177e4
LT
802 * @ifindex: index of device
803 *
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
809 */
810
881d966b 811struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 812{
0bd8d536
ED
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 815
b67bfe0d 816 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
817 if (dev->ifindex == ifindex)
818 return dev;
0bd8d536 819
1da177e4
LT
820 return NULL;
821}
d1b19dff 822EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 823
fb699dfd
ED
824/**
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
828 *
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
833 */
834
835struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836{
fb699dfd
ED
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
839
b67bfe0d 840 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
841 if (dev->ifindex == ifindex)
842 return dev;
843
844 return NULL;
845}
846EXPORT_SYMBOL(dev_get_by_index_rcu);
847
1da177e4
LT
848
849/**
850 * dev_get_by_index - find a device by its ifindex
c4ea43c5 851 * @net: the applicable net namespace
1da177e4
LT
852 * @ifindex: index of device
853 *
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
858 */
859
881d966b 860struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
861{
862 struct net_device *dev;
863
fb699dfd
ED
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
866 if (dev)
867 dev_hold(dev);
fb699dfd 868 rcu_read_unlock();
1da177e4
LT
869 return dev;
870}
d1b19dff 871EXPORT_SYMBOL(dev_get_by_index);
1da177e4 872
90b602f8
ML
873/**
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
876 *
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
881 */
882
883struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884{
885 struct napi_struct *napi;
886
887 WARN_ON_ONCE(!rcu_read_lock_held());
888
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
891
892 napi = napi_by_id(napi_id);
893
894 return napi ? napi->dev : NULL;
895}
896EXPORT_SYMBOL(dev_get_by_napi_id);
897
5dbe7c17
NS
898/**
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
903 *
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
907 */
908int netdev_get_name(struct net *net, char *name, int ifindex)
909{
910 struct net_device *dev;
911 unsigned int seq;
912
913retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
920 }
921
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
927 }
928
929 return 0;
930}
931
1da177e4 932/**
941666c2 933 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 934 * @net: the applicable net namespace
1da177e4
LT
935 * @type: media type of device
936 * @ha: hardware address
937 *
938 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941666c2 941 * The returned device has not had its ref count increased
1da177e4
LT
942 * and the caller must therefore be careful about locking
943 *
1da177e4
LT
944 */
945
941666c2
ED
946struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
1da177e4
LT
948{
949 struct net_device *dev;
950
941666c2 951 for_each_netdev_rcu(net, dev)
1da177e4
LT
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
954 return dev;
955
956 return NULL;
1da177e4 957}
941666c2 958EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 959
881d966b 960struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
961{
962 struct net_device *dev;
963
4e9cac2b 964 ASSERT_RTNL();
881d966b 965 for_each_netdev(net, dev)
4e9cac2b 966 if (dev->type == type)
7562f876
PE
967 return dev;
968
969 return NULL;
4e9cac2b 970}
4e9cac2b
PM
971EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
881d966b 973struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 974{
99fe3c39 975 struct net_device *dev, *ret = NULL;
4e9cac2b 976
99fe3c39
ED
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
983 }
984 rcu_read_unlock();
985 return ret;
1da177e4 986}
1da177e4
LT
987EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989/**
6c555490 990 * __dev_get_by_flags - find any device with given flags
c4ea43c5 991 * @net: the applicable net namespace
1da177e4
LT
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
994 *
995 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 996 * is not found or a pointer to the device. Must be called inside
6c555490 997 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
998 */
999
6c555490
WC
1000struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1da177e4 1002{
7562f876 1003 struct net_device *dev, *ret;
1da177e4 1004
6c555490
WC
1005 ASSERT_RTNL();
1006
7562f876 1007 ret = NULL;
6c555490 1008 for_each_netdev(net, dev) {
1da177e4 1009 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1010 ret = dev;
1da177e4
LT
1011 break;
1012 }
1013 }
7562f876 1014 return ret;
1da177e4 1015}
6c555490 1016EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1017
1018/**
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1021 *
1022 * Network device names need to be valid file names to
c7fa9d18
DM
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1da177e4 1025 */
95f050bf 1026bool dev_valid_name(const char *name)
1da177e4 1027{
c7fa9d18 1028 if (*name == '\0')
95f050bf 1029 return false;
b6fe17d6 1030 if (strlen(name) >= IFNAMSIZ)
95f050bf 1031 return false;
c7fa9d18 1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1033 return false;
c7fa9d18
DM
1034
1035 while (*name) {
a4176a93 1036 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1037 return false;
c7fa9d18
DM
1038 name++;
1039 }
95f050bf 1040 return true;
1da177e4 1041}
d1b19dff 1042EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1043
1044/**
b267b179
EB
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1da177e4 1047 * @name: name format string
b267b179 1048 * @buf: scratch buffer and result name string
1da177e4
LT
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1057 */
1058
b267b179 1059static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1060{
1061 int i = 0;
1da177e4
LT
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1064 unsigned long *inuse;
1da177e4
LT
1065 struct net_device *d;
1066
93809105
RV
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1069
51f299dd 1070 p = strchr(name, '%');
1da177e4
LT
1071 if (p) {
1072 /*
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1076 */
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1079
1080 /* Use one page as a bit array of possible slots */
cfcabdcc 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1082 if (!inuse)
1083 return -ENOMEM;
1084
881d966b 1085 for_each_netdev(net, d) {
1da177e4
LT
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1090
1091 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1092 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1095 }
1096
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1099 }
1100
6224abda 1101 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1102 if (!__dev_get_by_name(net, buf))
1da177e4 1103 return i;
1da177e4
LT
1104
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1108 */
029b6d14 1109 return -ENFILE;
1da177e4
LT
1110}
1111
2c88b855
RV
1112static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1115{
1116 char buf[IFNAMSIZ];
1117 int ret;
1118
c46d7642 1119 BUG_ON(!net);
2c88b855
RV
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1da177e4
LT
1124}
1125
b267b179
EB
1126/**
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1130 *
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1138 */
1139
1140int dev_alloc_name(struct net_device *dev, const char *name)
1141{
c46d7642 1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1143}
d1b19dff 1144EXPORT_SYMBOL(dev_alloc_name);
b267b179 1145
0ad646c8
CW
1146int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
828de4f6 1148{
87c320e5 1149 return dev_alloc_name_ns(net, dev, name);
d9031024 1150}
0ad646c8 1151EXPORT_SYMBOL(dev_get_valid_name);
1da177e4
LT
1152
1153/**
1154 * dev_change_name - change name of a device
1155 * @dev: device
1156 * @newname: name (or format string) must be at least IFNAMSIZ
1157 *
1158 * Change name of a device, can pass format strings "eth%d".
1159 * for wildcarding.
1160 */
cf04a4c7 1161int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1162{
238fa362 1163 unsigned char old_assign_type;
fcc5a03a 1164 char oldname[IFNAMSIZ];
1da177e4 1165 int err = 0;
fcc5a03a 1166 int ret;
881d966b 1167 struct net *net;
1da177e4
LT
1168
1169 ASSERT_RTNL();
c346dca1 1170 BUG_ON(!dev_net(dev));
1da177e4 1171
c346dca1 1172 net = dev_net(dev);
1da177e4
LT
1173 if (dev->flags & IFF_UP)
1174 return -EBUSY;
1175
30e6c9fa 1176 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1177
1178 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1179 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1180 return 0;
c91f6df2 1181 }
c8d90dca 1182
fcc5a03a
HX
1183 memcpy(oldname, dev->name, IFNAMSIZ);
1184
828de4f6 1185 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1186 if (err < 0) {
30e6c9fa 1187 write_seqcount_end(&devnet_rename_seq);
d9031024 1188 return err;
c91f6df2 1189 }
1da177e4 1190
6fe82a39
VF
1191 if (oldname[0] && !strchr(oldname, '%'))
1192 netdev_info(dev, "renamed from %s\n", oldname);
1193
238fa362
TG
1194 old_assign_type = dev->name_assign_type;
1195 dev->name_assign_type = NET_NAME_RENAMED;
1196
fcc5a03a 1197rollback:
a1b3f594
EB
1198 ret = device_rename(&dev->dev, dev->name);
1199 if (ret) {
1200 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1201 dev->name_assign_type = old_assign_type;
30e6c9fa 1202 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1203 return ret;
dcc99773 1204 }
7f988eab 1205
30e6c9fa 1206 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1207
5bb025fa
VF
1208 netdev_adjacent_rename_links(dev, oldname);
1209
7f988eab 1210 write_lock_bh(&dev_base_lock);
372b2312 1211 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1212 write_unlock_bh(&dev_base_lock);
1213
1214 synchronize_rcu();
1215
1216 write_lock_bh(&dev_base_lock);
1217 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1218 write_unlock_bh(&dev_base_lock);
1219
056925ab 1220 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1221 ret = notifier_to_errno(ret);
1222
1223 if (ret) {
91e9c07b
ED
1224 /* err >= 0 after dev_alloc_name() or stores the first errno */
1225 if (err >= 0) {
fcc5a03a 1226 err = ret;
30e6c9fa 1227 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1228 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1229 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1230 dev->name_assign_type = old_assign_type;
1231 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1232 goto rollback;
91e9c07b 1233 } else {
7b6cd1ce 1234 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1235 dev->name, ret);
fcc5a03a
HX
1236 }
1237 }
1da177e4
LT
1238
1239 return err;
1240}
1241
0b815a1a
SH
1242/**
1243 * dev_set_alias - change ifalias of a device
1244 * @dev: device
1245 * @alias: name up to IFALIASZ
f0db275a 1246 * @len: limit of bytes to copy from info
0b815a1a
SH
1247 *
1248 * Set ifalias for a device,
1249 */
1250int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1251{
6c557001 1252 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1253
1254 if (len >= IFALIASZ)
1255 return -EINVAL;
1256
6c557001
FW
1257 if (len) {
1258 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1259 if (!new_alias)
1260 return -ENOMEM;
1261
1262 memcpy(new_alias->ifalias, alias, len);
1263 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1264 }
1265
6c557001
FW
1266 mutex_lock(&ifalias_mutex);
1267 rcu_swap_protected(dev->ifalias, new_alias,
1268 mutex_is_locked(&ifalias_mutex));
1269 mutex_unlock(&ifalias_mutex);
1270
1271 if (new_alias)
1272 kfree_rcu(new_alias, rcuhead);
0b815a1a 1273
0b815a1a
SH
1274 return len;
1275}
1276
6c557001
FW
1277/**
1278 * dev_get_alias - get ifalias of a device
1279 * @dev: device
20e88320 1280 * @name: buffer to store name of ifalias
6c557001
FW
1281 * @len: size of buffer
1282 *
1283 * get ifalias for a device. Caller must make sure dev cannot go
1284 * away, e.g. rcu read lock or own a reference count to device.
1285 */
1286int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1287{
1288 const struct dev_ifalias *alias;
1289 int ret = 0;
1290
1291 rcu_read_lock();
1292 alias = rcu_dereference(dev->ifalias);
1293 if (alias)
1294 ret = snprintf(name, len, "%s", alias->ifalias);
1295 rcu_read_unlock();
1296
1297 return ret;
1298}
0b815a1a 1299
d8a33ac4 1300/**
3041a069 1301 * netdev_features_change - device changes features
d8a33ac4
SH
1302 * @dev: device to cause notification
1303 *
1304 * Called to indicate a device has changed features.
1305 */
1306void netdev_features_change(struct net_device *dev)
1307{
056925ab 1308 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1309}
1310EXPORT_SYMBOL(netdev_features_change);
1311
1da177e4
LT
1312/**
1313 * netdev_state_change - device changes state
1314 * @dev: device to cause notification
1315 *
1316 * Called to indicate a device has changed state. This function calls
1317 * the notifier chains for netdev_chain and sends a NEWLINK message
1318 * to the routing socket.
1319 */
1320void netdev_state_change(struct net_device *dev)
1321{
1322 if (dev->flags & IFF_UP) {
51d0c047
DA
1323 struct netdev_notifier_change_info change_info = {
1324 .info.dev = dev,
1325 };
54951194 1326
51d0c047 1327 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1328 &change_info.info);
7f294054 1329 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1330 }
1331}
d1b19dff 1332EXPORT_SYMBOL(netdev_state_change);
1da177e4 1333
ee89bab1 1334/**
722c9a0c 1335 * netdev_notify_peers - notify network peers about existence of @dev
1336 * @dev: network device
ee89bab1
AW
1337 *
1338 * Generate traffic such that interested network peers are aware of
1339 * @dev, such as by generating a gratuitous ARP. This may be used when
1340 * a device wants to inform the rest of the network about some sort of
1341 * reconfiguration such as a failover event or virtual machine
1342 * migration.
1343 */
1344void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1345{
ee89bab1
AW
1346 rtnl_lock();
1347 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1348 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1349 rtnl_unlock();
c1da4ac7 1350}
ee89bab1 1351EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1352
bd380811 1353static int __dev_open(struct net_device *dev)
1da177e4 1354{
d314774c 1355 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1356 int ret;
1da177e4 1357
e46b66bc
BH
1358 ASSERT_RTNL();
1359
1da177e4
LT
1360 if (!netif_device_present(dev))
1361 return -ENODEV;
1362
ca99ca14
NH
1363 /* Block netpoll from trying to do any rx path servicing.
1364 * If we don't do this there is a chance ndo_poll_controller
1365 * or ndo_poll may be running while we open the device
1366 */
66b5552f 1367 netpoll_poll_disable(dev);
ca99ca14 1368
3b8bcfd5
JB
1369 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1370 ret = notifier_to_errno(ret);
1371 if (ret)
1372 return ret;
1373
1da177e4 1374 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1375
d314774c
SH
1376 if (ops->ndo_validate_addr)
1377 ret = ops->ndo_validate_addr(dev);
bada339b 1378
d314774c
SH
1379 if (!ret && ops->ndo_open)
1380 ret = ops->ndo_open(dev);
1da177e4 1381
66b5552f 1382 netpoll_poll_enable(dev);
ca99ca14 1383
bada339b
JG
1384 if (ret)
1385 clear_bit(__LINK_STATE_START, &dev->state);
1386 else {
1da177e4 1387 dev->flags |= IFF_UP;
4417da66 1388 dev_set_rx_mode(dev);
1da177e4 1389 dev_activate(dev);
7bf23575 1390 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1391 }
bada339b 1392
1da177e4
LT
1393 return ret;
1394}
1395
1396/**
bd380811
PM
1397 * dev_open - prepare an interface for use.
1398 * @dev: device to open
1da177e4 1399 *
bd380811
PM
1400 * Takes a device from down to up state. The device's private open
1401 * function is invoked and then the multicast lists are loaded. Finally
1402 * the device is moved into the up state and a %NETDEV_UP message is
1403 * sent to the netdev notifier chain.
1404 *
1405 * Calling this function on an active interface is a nop. On a failure
1406 * a negative errno code is returned.
1da177e4 1407 */
bd380811
PM
1408int dev_open(struct net_device *dev)
1409{
1410 int ret;
1411
bd380811
PM
1412 if (dev->flags & IFF_UP)
1413 return 0;
1414
bd380811
PM
1415 ret = __dev_open(dev);
1416 if (ret < 0)
1417 return ret;
1418
7f294054 1419 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1420 call_netdevice_notifiers(NETDEV_UP, dev);
1421
1422 return ret;
1423}
1424EXPORT_SYMBOL(dev_open);
1425
7051b88a 1426static void __dev_close_many(struct list_head *head)
1da177e4 1427{
44345724 1428 struct net_device *dev;
e46b66bc 1429
bd380811 1430 ASSERT_RTNL();
9d5010db
DM
1431 might_sleep();
1432
5cde2829 1433 list_for_each_entry(dev, head, close_list) {
3f4df206 1434 /* Temporarily disable netpoll until the interface is down */
66b5552f 1435 netpoll_poll_disable(dev);
3f4df206 1436
44345724 1437 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1438
44345724 1439 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1440
44345724
OP
1441 /* Synchronize to scheduled poll. We cannot touch poll list, it
1442 * can be even on different cpu. So just clear netif_running().
1443 *
1444 * dev->stop() will invoke napi_disable() on all of it's
1445 * napi_struct instances on this device.
1446 */
4e857c58 1447 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1448 }
1da177e4 1449
44345724 1450 dev_deactivate_many(head);
d8b2a4d2 1451
5cde2829 1452 list_for_each_entry(dev, head, close_list) {
44345724 1453 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1454
44345724
OP
1455 /*
1456 * Call the device specific close. This cannot fail.
1457 * Only if device is UP
1458 *
1459 * We allow it to be called even after a DETACH hot-plug
1460 * event.
1461 */
1462 if (ops->ndo_stop)
1463 ops->ndo_stop(dev);
1464
44345724 1465 dev->flags &= ~IFF_UP;
66b5552f 1466 netpoll_poll_enable(dev);
44345724 1467 }
44345724
OP
1468}
1469
7051b88a 1470static void __dev_close(struct net_device *dev)
44345724
OP
1471{
1472 LIST_HEAD(single);
1473
5cde2829 1474 list_add(&dev->close_list, &single);
7051b88a 1475 __dev_close_many(&single);
f87e6f47 1476 list_del(&single);
44345724
OP
1477}
1478
7051b88a 1479void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1480{
1481 struct net_device *dev, *tmp;
1da177e4 1482
5cde2829
EB
1483 /* Remove the devices that don't need to be closed */
1484 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1485 if (!(dev->flags & IFF_UP))
5cde2829 1486 list_del_init(&dev->close_list);
44345724
OP
1487
1488 __dev_close_many(head);
1da177e4 1489
5cde2829 1490 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1491 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1492 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1493 if (unlink)
1494 list_del_init(&dev->close_list);
44345724 1495 }
bd380811 1496}
99c4a26a 1497EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1498
1499/**
1500 * dev_close - shutdown an interface.
1501 * @dev: device to shutdown
1502 *
1503 * This function moves an active device into down state. A
1504 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1505 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1506 * chain.
1507 */
7051b88a 1508void dev_close(struct net_device *dev)
bd380811 1509{
e14a5993
ED
1510 if (dev->flags & IFF_UP) {
1511 LIST_HEAD(single);
1da177e4 1512
5cde2829 1513 list_add(&dev->close_list, &single);
99c4a26a 1514 dev_close_many(&single, true);
e14a5993
ED
1515 list_del(&single);
1516 }
1da177e4 1517}
d1b19dff 1518EXPORT_SYMBOL(dev_close);
1da177e4
LT
1519
1520
0187bdfb
BH
1521/**
1522 * dev_disable_lro - disable Large Receive Offload on a device
1523 * @dev: device
1524 *
1525 * Disable Large Receive Offload (LRO) on a net device. Must be
1526 * called under RTNL. This is needed if received packets may be
1527 * forwarded to another interface.
1528 */
1529void dev_disable_lro(struct net_device *dev)
1530{
fbe168ba
MK
1531 struct net_device *lower_dev;
1532 struct list_head *iter;
529d0489 1533
bc5787c6
MM
1534 dev->wanted_features &= ~NETIF_F_LRO;
1535 netdev_update_features(dev);
27660515 1536
22d5969f
MM
1537 if (unlikely(dev->features & NETIF_F_LRO))
1538 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1539
1540 netdev_for_each_lower_dev(dev, lower_dev, iter)
1541 dev_disable_lro(lower_dev);
0187bdfb
BH
1542}
1543EXPORT_SYMBOL(dev_disable_lro);
1544
56f5aa77
MC
1545/**
1546 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1547 * @dev: device
1548 *
1549 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1550 * called under RTNL. This is needed if Generic XDP is installed on
1551 * the device.
1552 */
1553static void dev_disable_gro_hw(struct net_device *dev)
1554{
1555 dev->wanted_features &= ~NETIF_F_GRO_HW;
1556 netdev_update_features(dev);
1557
1558 if (unlikely(dev->features & NETIF_F_GRO_HW))
1559 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1560}
1561
351638e7
JP
1562static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1563 struct net_device *dev)
1564{
51d0c047
DA
1565 struct netdev_notifier_info info = {
1566 .dev = dev,
1567 };
351638e7 1568
351638e7
JP
1569 return nb->notifier_call(nb, val, &info);
1570}
0187bdfb 1571
881d966b
EB
1572static int dev_boot_phase = 1;
1573
1da177e4 1574/**
722c9a0c 1575 * register_netdevice_notifier - register a network notifier block
1576 * @nb: notifier
1da177e4 1577 *
722c9a0c 1578 * Register a notifier to be called when network device events occur.
1579 * The notifier passed is linked into the kernel structures and must
1580 * not be reused until it has been unregistered. A negative errno code
1581 * is returned on a failure.
1da177e4 1582 *
722c9a0c 1583 * When registered all registration and up events are replayed
1584 * to the new notifier to allow device to have a race free
1585 * view of the network device list.
1da177e4
LT
1586 */
1587
1588int register_netdevice_notifier(struct notifier_block *nb)
1589{
1590 struct net_device *dev;
fcc5a03a 1591 struct net_device *last;
881d966b 1592 struct net *net;
1da177e4
LT
1593 int err;
1594
1595 rtnl_lock();
f07d5b94 1596 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1597 if (err)
1598 goto unlock;
881d966b
EB
1599 if (dev_boot_phase)
1600 goto unlock;
1601 for_each_net(net) {
1602 for_each_netdev(net, dev) {
351638e7 1603 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1604 err = notifier_to_errno(err);
1605 if (err)
1606 goto rollback;
1607
1608 if (!(dev->flags & IFF_UP))
1609 continue;
1da177e4 1610
351638e7 1611 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1612 }
1da177e4 1613 }
fcc5a03a
HX
1614
1615unlock:
1da177e4
LT
1616 rtnl_unlock();
1617 return err;
fcc5a03a
HX
1618
1619rollback:
1620 last = dev;
881d966b
EB
1621 for_each_net(net) {
1622 for_each_netdev(net, dev) {
1623 if (dev == last)
8f891489 1624 goto outroll;
fcc5a03a 1625
881d966b 1626 if (dev->flags & IFF_UP) {
351638e7
JP
1627 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1628 dev);
1629 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1630 }
351638e7 1631 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1632 }
fcc5a03a 1633 }
c67625a1 1634
8f891489 1635outroll:
c67625a1 1636 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1637 goto unlock;
1da177e4 1638}
d1b19dff 1639EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1640
1641/**
722c9a0c 1642 * unregister_netdevice_notifier - unregister a network notifier block
1643 * @nb: notifier
1da177e4 1644 *
722c9a0c 1645 * Unregister a notifier previously registered by
1646 * register_netdevice_notifier(). The notifier is unlinked into the
1647 * kernel structures and may then be reused. A negative errno code
1648 * is returned on a failure.
7d3d43da 1649 *
722c9a0c 1650 * After unregistering unregister and down device events are synthesized
1651 * for all devices on the device list to the removed notifier to remove
1652 * the need for special case cleanup code.
1da177e4
LT
1653 */
1654
1655int unregister_netdevice_notifier(struct notifier_block *nb)
1656{
7d3d43da
EB
1657 struct net_device *dev;
1658 struct net *net;
9f514950
HX
1659 int err;
1660
1661 rtnl_lock();
f07d5b94 1662 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1663 if (err)
1664 goto unlock;
1665
1666 for_each_net(net) {
1667 for_each_netdev(net, dev) {
1668 if (dev->flags & IFF_UP) {
351638e7
JP
1669 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670 dev);
1671 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1672 }
351638e7 1673 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1674 }
1675 }
1676unlock:
9f514950
HX
1677 rtnl_unlock();
1678 return err;
1da177e4 1679}
d1b19dff 1680EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1681
351638e7
JP
1682/**
1683 * call_netdevice_notifiers_info - call all network notifier blocks
1684 * @val: value passed unmodified to notifier function
1685 * @dev: net_device pointer passed unmodified to notifier function
1686 * @info: notifier information data
1687 *
1688 * Call all network notifier blocks. Parameters and return value
1689 * are as for raw_notifier_call_chain().
1690 */
1691
1d143d9f 1692static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 1693 struct netdev_notifier_info *info)
351638e7
JP
1694{
1695 ASSERT_RTNL();
351638e7
JP
1696 return raw_notifier_call_chain(&netdev_chain, val, info);
1697}
351638e7 1698
1da177e4
LT
1699/**
1700 * call_netdevice_notifiers - call all network notifier blocks
1701 * @val: value passed unmodified to notifier function
c4ea43c5 1702 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1703 *
1704 * Call all network notifier blocks. Parameters and return value
f07d5b94 1705 * are as for raw_notifier_call_chain().
1da177e4
LT
1706 */
1707
ad7379d4 1708int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1709{
51d0c047
DA
1710 struct netdev_notifier_info info = {
1711 .dev = dev,
1712 };
351638e7 1713
51d0c047 1714 return call_netdevice_notifiers_info(val, &info);
1da177e4 1715}
edf947f1 1716EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1717
1cf51900 1718#ifdef CONFIG_NET_INGRESS
4577139b
DB
1719static struct static_key ingress_needed __read_mostly;
1720
1721void net_inc_ingress_queue(void)
1722{
1723 static_key_slow_inc(&ingress_needed);
1724}
1725EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1726
1727void net_dec_ingress_queue(void)
1728{
1729 static_key_slow_dec(&ingress_needed);
1730}
1731EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1732#endif
1733
1f211a1b
DB
1734#ifdef CONFIG_NET_EGRESS
1735static struct static_key egress_needed __read_mostly;
1736
1737void net_inc_egress_queue(void)
1738{
1739 static_key_slow_inc(&egress_needed);
1740}
1741EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1742
1743void net_dec_egress_queue(void)
1744{
1745 static_key_slow_dec(&egress_needed);
1746}
1747EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1748#endif
1749
c5905afb 1750static struct static_key netstamp_needed __read_mostly;
b90e5794 1751#ifdef HAVE_JUMP_LABEL
b90e5794 1752static atomic_t netstamp_needed_deferred;
13baa00a 1753static atomic_t netstamp_wanted;
5fa8bbda 1754static void netstamp_clear(struct work_struct *work)
1da177e4 1755{
b90e5794 1756 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 1757 int wanted;
b90e5794 1758
13baa00a
ED
1759 wanted = atomic_add_return(deferred, &netstamp_wanted);
1760 if (wanted > 0)
1761 static_key_enable(&netstamp_needed);
1762 else
1763 static_key_disable(&netstamp_needed);
5fa8bbda
ED
1764}
1765static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 1766#endif
5fa8bbda
ED
1767
1768void net_enable_timestamp(void)
1769{
13baa00a
ED
1770#ifdef HAVE_JUMP_LABEL
1771 int wanted;
1772
1773 while (1) {
1774 wanted = atomic_read(&netstamp_wanted);
1775 if (wanted <= 0)
1776 break;
1777 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1778 return;
1779 }
1780 atomic_inc(&netstamp_needed_deferred);
1781 schedule_work(&netstamp_work);
1782#else
c5905afb 1783 static_key_slow_inc(&netstamp_needed);
13baa00a 1784#endif
1da177e4 1785}
d1b19dff 1786EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1787
1788void net_disable_timestamp(void)
1789{
b90e5794 1790#ifdef HAVE_JUMP_LABEL
13baa00a
ED
1791 int wanted;
1792
1793 while (1) {
1794 wanted = atomic_read(&netstamp_wanted);
1795 if (wanted <= 1)
1796 break;
1797 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1798 return;
1799 }
1800 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
1801 schedule_work(&netstamp_work);
1802#else
c5905afb 1803 static_key_slow_dec(&netstamp_needed);
5fa8bbda 1804#endif
1da177e4 1805}
d1b19dff 1806EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1807
3b098e2d 1808static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1809{
2456e855 1810 skb->tstamp = 0;
c5905afb 1811 if (static_key_false(&netstamp_needed))
a61bbcf2 1812 __net_timestamp(skb);
1da177e4
LT
1813}
1814
588f0330 1815#define net_timestamp_check(COND, SKB) \
c5905afb 1816 if (static_key_false(&netstamp_needed)) { \
2456e855 1817 if ((COND) && !(SKB)->tstamp) \
588f0330
ED
1818 __net_timestamp(SKB); \
1819 } \
3b098e2d 1820
f4b05d27 1821bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1822{
1823 unsigned int len;
1824
1825 if (!(dev->flags & IFF_UP))
1826 return false;
1827
1828 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1829 if (skb->len <= len)
1830 return true;
1831
1832 /* if TSO is enabled, we don't care about the length as the packet
1833 * could be forwarded without being segmented before
1834 */
1835 if (skb_is_gso(skb))
1836 return true;
1837
1838 return false;
1839}
1ee481fb 1840EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1841
a0265d28
HX
1842int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1843{
4e3264d2 1844 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1845
4e3264d2
MKL
1846 if (likely(!ret)) {
1847 skb->protocol = eth_type_trans(skb, dev);
1848 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1849 }
a0265d28 1850
4e3264d2 1851 return ret;
a0265d28
HX
1852}
1853EXPORT_SYMBOL_GPL(__dev_forward_skb);
1854
44540960
AB
1855/**
1856 * dev_forward_skb - loopback an skb to another netif
1857 *
1858 * @dev: destination network device
1859 * @skb: buffer to forward
1860 *
1861 * return values:
1862 * NET_RX_SUCCESS (no congestion)
6ec82562 1863 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1864 *
1865 * dev_forward_skb can be used for injecting an skb from the
1866 * start_xmit function of one device into the receive queue
1867 * of another device.
1868 *
1869 * The receiving device may be in another namespace, so
1870 * we have to clear all information in the skb that could
1871 * impact namespace isolation.
1872 */
1873int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1874{
a0265d28 1875 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1876}
1877EXPORT_SYMBOL_GPL(dev_forward_skb);
1878
71d9dec2
CG
1879static inline int deliver_skb(struct sk_buff *skb,
1880 struct packet_type *pt_prev,
1881 struct net_device *orig_dev)
1882{
1f8b977a 1883 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 1884 return -ENOMEM;
63354797 1885 refcount_inc(&skb->users);
71d9dec2
CG
1886 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1887}
1888
7866a621
SN
1889static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1890 struct packet_type **pt,
fbcb2170
JP
1891 struct net_device *orig_dev,
1892 __be16 type,
7866a621
SN
1893 struct list_head *ptype_list)
1894{
1895 struct packet_type *ptype, *pt_prev = *pt;
1896
1897 list_for_each_entry_rcu(ptype, ptype_list, list) {
1898 if (ptype->type != type)
1899 continue;
1900 if (pt_prev)
fbcb2170 1901 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1902 pt_prev = ptype;
1903 }
1904 *pt = pt_prev;
1905}
1906
c0de08d0
EL
1907static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1908{
a3d744e9 1909 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1910 return false;
1911
1912 if (ptype->id_match)
1913 return ptype->id_match(ptype, skb->sk);
1914 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1915 return true;
1916
1917 return false;
1918}
1919
1da177e4
LT
1920/*
1921 * Support routine. Sends outgoing frames to any network
1922 * taps currently in use.
1923 */
1924
74b20582 1925void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1926{
1927 struct packet_type *ptype;
71d9dec2
CG
1928 struct sk_buff *skb2 = NULL;
1929 struct packet_type *pt_prev = NULL;
7866a621 1930 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1931
1da177e4 1932 rcu_read_lock();
7866a621
SN
1933again:
1934 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1935 /* Never send packets back to the socket
1936 * they originated from - MvS (miquels@drinkel.ow.org)
1937 */
7866a621
SN
1938 if (skb_loop_sk(ptype, skb))
1939 continue;
71d9dec2 1940
7866a621
SN
1941 if (pt_prev) {
1942 deliver_skb(skb2, pt_prev, skb->dev);
1943 pt_prev = ptype;
1944 continue;
1945 }
1da177e4 1946
7866a621
SN
1947 /* need to clone skb, done only once */
1948 skb2 = skb_clone(skb, GFP_ATOMIC);
1949 if (!skb2)
1950 goto out_unlock;
70978182 1951
7866a621 1952 net_timestamp_set(skb2);
1da177e4 1953
7866a621
SN
1954 /* skb->nh should be correctly
1955 * set by sender, so that the second statement is
1956 * just protection against buggy protocols.
1957 */
1958 skb_reset_mac_header(skb2);
1959
1960 if (skb_network_header(skb2) < skb2->data ||
1961 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1962 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1963 ntohs(skb2->protocol),
1964 dev->name);
1965 skb_reset_network_header(skb2);
1da177e4 1966 }
7866a621
SN
1967
1968 skb2->transport_header = skb2->network_header;
1969 skb2->pkt_type = PACKET_OUTGOING;
1970 pt_prev = ptype;
1971 }
1972
1973 if (ptype_list == &ptype_all) {
1974 ptype_list = &dev->ptype_all;
1975 goto again;
1da177e4 1976 }
7866a621 1977out_unlock:
581fe0ea
WB
1978 if (pt_prev) {
1979 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1980 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1981 else
1982 kfree_skb(skb2);
1983 }
1da177e4
LT
1984 rcu_read_unlock();
1985}
74b20582 1986EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1987
2c53040f
BH
1988/**
1989 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1990 * @dev: Network device
1991 * @txq: number of queues available
1992 *
1993 * If real_num_tx_queues is changed the tc mappings may no longer be
1994 * valid. To resolve this verify the tc mapping remains valid and if
1995 * not NULL the mapping. With no priorities mapping to this
1996 * offset/count pair it will no longer be used. In the worst case TC0
1997 * is invalid nothing can be done so disable priority mappings. If is
1998 * expected that drivers will fix this mapping if they can before
1999 * calling netif_set_real_num_tx_queues.
2000 */
bb134d22 2001static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2002{
2003 int i;
2004 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2005
2006 /* If TC0 is invalidated disable TC mapping */
2007 if (tc->offset + tc->count > txq) {
7b6cd1ce 2008 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2009 dev->num_tc = 0;
2010 return;
2011 }
2012
2013 /* Invalidated prio to tc mappings set to TC0 */
2014 for (i = 1; i < TC_BITMASK + 1; i++) {
2015 int q = netdev_get_prio_tc_map(dev, i);
2016
2017 tc = &dev->tc_to_txq[q];
2018 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2019 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2020 i, q);
4f57c087
JF
2021 netdev_set_prio_tc_map(dev, i, 0);
2022 }
2023 }
2024}
2025
8d059b0f
AD
2026int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2027{
2028 if (dev->num_tc) {
2029 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2030 int i;
2031
2032 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2033 if ((txq - tc->offset) < tc->count)
2034 return i;
2035 }
2036
2037 return -1;
2038 }
2039
2040 return 0;
2041}
8a5f2166 2042EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2043
537c00de
AD
2044#ifdef CONFIG_XPS
2045static DEFINE_MUTEX(xps_map_mutex);
2046#define xmap_dereference(P) \
2047 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2048
6234f874
AD
2049static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2050 int tci, u16 index)
537c00de 2051{
10cdc3f3
AD
2052 struct xps_map *map = NULL;
2053 int pos;
537c00de 2054
10cdc3f3 2055 if (dev_maps)
6234f874
AD
2056 map = xmap_dereference(dev_maps->cpu_map[tci]);
2057 if (!map)
2058 return false;
537c00de 2059
6234f874
AD
2060 for (pos = map->len; pos--;) {
2061 if (map->queues[pos] != index)
2062 continue;
2063
2064 if (map->len > 1) {
2065 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2066 break;
537c00de 2067 }
6234f874
AD
2068
2069 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2070 kfree_rcu(map, rcu);
2071 return false;
537c00de
AD
2072 }
2073
6234f874 2074 return true;
10cdc3f3
AD
2075}
2076
6234f874
AD
2077static bool remove_xps_queue_cpu(struct net_device *dev,
2078 struct xps_dev_maps *dev_maps,
2079 int cpu, u16 offset, u16 count)
2080{
184c449f
AD
2081 int num_tc = dev->num_tc ? : 1;
2082 bool active = false;
2083 int tci;
6234f874 2084
184c449f
AD
2085 for (tci = cpu * num_tc; num_tc--; tci++) {
2086 int i, j;
2087
2088 for (i = count, j = offset; i--; j++) {
2089 if (!remove_xps_queue(dev_maps, cpu, j))
2090 break;
2091 }
2092
2093 active |= i < 0;
6234f874
AD
2094 }
2095
184c449f 2096 return active;
6234f874
AD
2097}
2098
2099static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2100 u16 count)
10cdc3f3
AD
2101{
2102 struct xps_dev_maps *dev_maps;
024e9679 2103 int cpu, i;
10cdc3f3
AD
2104 bool active = false;
2105
2106 mutex_lock(&xps_map_mutex);
2107 dev_maps = xmap_dereference(dev->xps_maps);
2108
2109 if (!dev_maps)
2110 goto out_no_maps;
2111
6234f874
AD
2112 for_each_possible_cpu(cpu)
2113 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2114 offset, count);
10cdc3f3
AD
2115
2116 if (!active) {
537c00de
AD
2117 RCU_INIT_POINTER(dev->xps_maps, NULL);
2118 kfree_rcu(dev_maps, rcu);
2119 }
2120
6234f874 2121 for (i = offset + (count - 1); count--; i--)
024e9679
AD
2122 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2123 NUMA_NO_NODE);
2124
537c00de
AD
2125out_no_maps:
2126 mutex_unlock(&xps_map_mutex);
2127}
2128
6234f874
AD
2129static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2130{
2131 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2132}
2133
01c5f864
AD
2134static struct xps_map *expand_xps_map(struct xps_map *map,
2135 int cpu, u16 index)
2136{
2137 struct xps_map *new_map;
2138 int alloc_len = XPS_MIN_MAP_ALLOC;
2139 int i, pos;
2140
2141 for (pos = 0; map && pos < map->len; pos++) {
2142 if (map->queues[pos] != index)
2143 continue;
2144 return map;
2145 }
2146
2147 /* Need to add queue to this CPU's existing map */
2148 if (map) {
2149 if (pos < map->alloc_len)
2150 return map;
2151
2152 alloc_len = map->alloc_len * 2;
2153 }
2154
2155 /* Need to allocate new map to store queue on this CPU's map */
2156 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2157 cpu_to_node(cpu));
2158 if (!new_map)
2159 return NULL;
2160
2161 for (i = 0; i < pos; i++)
2162 new_map->queues[i] = map->queues[i];
2163 new_map->alloc_len = alloc_len;
2164 new_map->len = pos;
2165
2166 return new_map;
2167}
2168
3573540c
MT
2169int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2170 u16 index)
537c00de 2171{
01c5f864 2172 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
184c449f
AD
2173 int i, cpu, tci, numa_node_id = -2;
2174 int maps_sz, num_tc = 1, tc = 0;
537c00de 2175 struct xps_map *map, *new_map;
01c5f864 2176 bool active = false;
537c00de 2177
184c449f
AD
2178 if (dev->num_tc) {
2179 num_tc = dev->num_tc;
2180 tc = netdev_txq_to_tc(dev, index);
2181 if (tc < 0)
2182 return -EINVAL;
2183 }
2184
2185 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2186 if (maps_sz < L1_CACHE_BYTES)
2187 maps_sz = L1_CACHE_BYTES;
2188
537c00de
AD
2189 mutex_lock(&xps_map_mutex);
2190
2191 dev_maps = xmap_dereference(dev->xps_maps);
2192
01c5f864 2193 /* allocate memory for queue storage */
184c449f 2194 for_each_cpu_and(cpu, cpu_online_mask, mask) {
01c5f864
AD
2195 if (!new_dev_maps)
2196 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2197 if (!new_dev_maps) {
2198 mutex_unlock(&xps_map_mutex);
01c5f864 2199 return -ENOMEM;
2bb60cb9 2200 }
01c5f864 2201
184c449f
AD
2202 tci = cpu * num_tc + tc;
2203 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
01c5f864
AD
2204 NULL;
2205
2206 map = expand_xps_map(map, cpu, index);
2207 if (!map)
2208 goto error;
2209
184c449f 2210 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
01c5f864
AD
2211 }
2212
2213 if (!new_dev_maps)
2214 goto out_no_new_maps;
2215
537c00de 2216 for_each_possible_cpu(cpu) {
184c449f
AD
2217 /* copy maps belonging to foreign traffic classes */
2218 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2219 /* fill in the new device map from the old device map */
2220 map = xmap_dereference(dev_maps->cpu_map[tci]);
2221 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2222 }
2223
2224 /* We need to explicitly update tci as prevous loop
2225 * could break out early if dev_maps is NULL.
2226 */
2227 tci = cpu * num_tc + tc;
2228
01c5f864
AD
2229 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2230 /* add queue to CPU maps */
2231 int pos = 0;
2232
184c449f 2233 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
01c5f864
AD
2234 while ((pos < map->len) && (map->queues[pos] != index))
2235 pos++;
2236
2237 if (pos == map->len)
2238 map->queues[map->len++] = index;
537c00de 2239#ifdef CONFIG_NUMA
537c00de
AD
2240 if (numa_node_id == -2)
2241 numa_node_id = cpu_to_node(cpu);
2242 else if (numa_node_id != cpu_to_node(cpu))
2243 numa_node_id = -1;
537c00de 2244#endif
01c5f864
AD
2245 } else if (dev_maps) {
2246 /* fill in the new device map from the old device map */
184c449f
AD
2247 map = xmap_dereference(dev_maps->cpu_map[tci]);
2248 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
537c00de 2249 }
01c5f864 2250
184c449f
AD
2251 /* copy maps belonging to foreign traffic classes */
2252 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2253 /* fill in the new device map from the old device map */
2254 map = xmap_dereference(dev_maps->cpu_map[tci]);
2255 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2256 }
537c00de
AD
2257 }
2258
01c5f864
AD
2259 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2260
537c00de 2261 /* Cleanup old maps */
184c449f
AD
2262 if (!dev_maps)
2263 goto out_no_old_maps;
2264
2265 for_each_possible_cpu(cpu) {
2266 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2267 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2268 map = xmap_dereference(dev_maps->cpu_map[tci]);
01c5f864
AD
2269 if (map && map != new_map)
2270 kfree_rcu(map, rcu);
2271 }
537c00de
AD
2272 }
2273
184c449f
AD
2274 kfree_rcu(dev_maps, rcu);
2275
2276out_no_old_maps:
01c5f864
AD
2277 dev_maps = new_dev_maps;
2278 active = true;
537c00de 2279
01c5f864
AD
2280out_no_new_maps:
2281 /* update Tx queue numa node */
537c00de
AD
2282 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2283 (numa_node_id >= 0) ? numa_node_id :
2284 NUMA_NO_NODE);
2285
01c5f864
AD
2286 if (!dev_maps)
2287 goto out_no_maps;
2288
2289 /* removes queue from unused CPUs */
2290 for_each_possible_cpu(cpu) {
184c449f
AD
2291 for (i = tc, tci = cpu * num_tc; i--; tci++)
2292 active |= remove_xps_queue(dev_maps, tci, index);
2293 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2294 active |= remove_xps_queue(dev_maps, tci, index);
2295 for (i = num_tc - tc, tci++; --i; tci++)
2296 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2297 }
2298
2299 /* free map if not active */
2300 if (!active) {
2301 RCU_INIT_POINTER(dev->xps_maps, NULL);
2302 kfree_rcu(dev_maps, rcu);
2303 }
2304
2305out_no_maps:
537c00de
AD
2306 mutex_unlock(&xps_map_mutex);
2307
2308 return 0;
2309error:
01c5f864
AD
2310 /* remove any maps that we added */
2311 for_each_possible_cpu(cpu) {
184c449f
AD
2312 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2313 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2314 map = dev_maps ?
2315 xmap_dereference(dev_maps->cpu_map[tci]) :
2316 NULL;
2317 if (new_map && new_map != map)
2318 kfree(new_map);
2319 }
01c5f864
AD
2320 }
2321
537c00de
AD
2322 mutex_unlock(&xps_map_mutex);
2323
537c00de
AD
2324 kfree(new_dev_maps);
2325 return -ENOMEM;
2326}
2327EXPORT_SYMBOL(netif_set_xps_queue);
2328
2329#endif
9cf1f6a8
AD
2330void netdev_reset_tc(struct net_device *dev)
2331{
6234f874
AD
2332#ifdef CONFIG_XPS
2333 netif_reset_xps_queues_gt(dev, 0);
2334#endif
9cf1f6a8
AD
2335 dev->num_tc = 0;
2336 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2337 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2338}
2339EXPORT_SYMBOL(netdev_reset_tc);
2340
2341int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2342{
2343 if (tc >= dev->num_tc)
2344 return -EINVAL;
2345
6234f874
AD
2346#ifdef CONFIG_XPS
2347 netif_reset_xps_queues(dev, offset, count);
2348#endif
9cf1f6a8
AD
2349 dev->tc_to_txq[tc].count = count;
2350 dev->tc_to_txq[tc].offset = offset;
2351 return 0;
2352}
2353EXPORT_SYMBOL(netdev_set_tc_queue);
2354
2355int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2356{
2357 if (num_tc > TC_MAX_QUEUE)
2358 return -EINVAL;
2359
6234f874
AD
2360#ifdef CONFIG_XPS
2361 netif_reset_xps_queues_gt(dev, 0);
2362#endif
9cf1f6a8
AD
2363 dev->num_tc = num_tc;
2364 return 0;
2365}
2366EXPORT_SYMBOL(netdev_set_num_tc);
2367
f0796d5c
JF
2368/*
2369 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2370 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2371 */
e6484930 2372int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2373{
1d24eb48
TH
2374 int rc;
2375
e6484930
TH
2376 if (txq < 1 || txq > dev->num_tx_queues)
2377 return -EINVAL;
f0796d5c 2378
5c56580b
BH
2379 if (dev->reg_state == NETREG_REGISTERED ||
2380 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2381 ASSERT_RTNL();
2382
1d24eb48
TH
2383 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2384 txq);
bf264145
TH
2385 if (rc)
2386 return rc;
2387
4f57c087
JF
2388 if (dev->num_tc)
2389 netif_setup_tc(dev, txq);
2390
024e9679 2391 if (txq < dev->real_num_tx_queues) {
e6484930 2392 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2393#ifdef CONFIG_XPS
2394 netif_reset_xps_queues_gt(dev, txq);
2395#endif
2396 }
f0796d5c 2397 }
e6484930
TH
2398
2399 dev->real_num_tx_queues = txq;
2400 return 0;
f0796d5c
JF
2401}
2402EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2403
a953be53 2404#ifdef CONFIG_SYSFS
62fe0b40
BH
2405/**
2406 * netif_set_real_num_rx_queues - set actual number of RX queues used
2407 * @dev: Network device
2408 * @rxq: Actual number of RX queues
2409 *
2410 * This must be called either with the rtnl_lock held or before
2411 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2412 * negative error code. If called before registration, it always
2413 * succeeds.
62fe0b40
BH
2414 */
2415int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2416{
2417 int rc;
2418
bd25fa7b
TH
2419 if (rxq < 1 || rxq > dev->num_rx_queues)
2420 return -EINVAL;
2421
62fe0b40
BH
2422 if (dev->reg_state == NETREG_REGISTERED) {
2423 ASSERT_RTNL();
2424
62fe0b40
BH
2425 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2426 rxq);
2427 if (rc)
2428 return rc;
62fe0b40
BH
2429 }
2430
2431 dev->real_num_rx_queues = rxq;
2432 return 0;
2433}
2434EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2435#endif
2436
2c53040f
BH
2437/**
2438 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2439 *
2440 * This routine should set an upper limit on the number of RSS queues
2441 * used by default by multiqueue devices.
2442 */
a55b138b 2443int netif_get_num_default_rss_queues(void)
16917b87 2444{
40e4e713
HS
2445 return is_kdump_kernel() ?
2446 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2447}
2448EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2449
3bcb846c 2450static void __netif_reschedule(struct Qdisc *q)
56079431 2451{
def82a1d
JP
2452 struct softnet_data *sd;
2453 unsigned long flags;
56079431 2454
def82a1d 2455 local_irq_save(flags);
903ceff7 2456 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2457 q->next_sched = NULL;
2458 *sd->output_queue_tailp = q;
2459 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2460 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461 local_irq_restore(flags);
2462}
2463
2464void __netif_schedule(struct Qdisc *q)
2465{
2466 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2467 __netif_reschedule(q);
56079431
DV
2468}
2469EXPORT_SYMBOL(__netif_schedule);
2470
e6247027
ED
2471struct dev_kfree_skb_cb {
2472 enum skb_free_reason reason;
2473};
2474
2475static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2476{
e6247027
ED
2477 return (struct dev_kfree_skb_cb *)skb->cb;
2478}
2479
46e5da40
JF
2480void netif_schedule_queue(struct netdev_queue *txq)
2481{
2482 rcu_read_lock();
2483 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2484 struct Qdisc *q = rcu_dereference(txq->qdisc);
2485
2486 __netif_schedule(q);
2487 }
2488 rcu_read_unlock();
2489}
2490EXPORT_SYMBOL(netif_schedule_queue);
2491
46e5da40
JF
2492void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2493{
2494 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2495 struct Qdisc *q;
2496
2497 rcu_read_lock();
2498 q = rcu_dereference(dev_queue->qdisc);
2499 __netif_schedule(q);
2500 rcu_read_unlock();
2501 }
2502}
2503EXPORT_SYMBOL(netif_tx_wake_queue);
2504
e6247027 2505void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2506{
e6247027 2507 unsigned long flags;
56079431 2508
9899886d
MJ
2509 if (unlikely(!skb))
2510 return;
2511
63354797 2512 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 2513 smp_rmb();
63354797
RE
2514 refcount_set(&skb->users, 0);
2515 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 2516 return;
bea3348e 2517 }
e6247027
ED
2518 get_kfree_skb_cb(skb)->reason = reason;
2519 local_irq_save(flags);
2520 skb->next = __this_cpu_read(softnet_data.completion_queue);
2521 __this_cpu_write(softnet_data.completion_queue, skb);
2522 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2523 local_irq_restore(flags);
56079431 2524}
e6247027 2525EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2526
e6247027 2527void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2528{
2529 if (in_irq() || irqs_disabled())
e6247027 2530 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2531 else
2532 dev_kfree_skb(skb);
2533}
e6247027 2534EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2535
2536
bea3348e
SH
2537/**
2538 * netif_device_detach - mark device as removed
2539 * @dev: network device
2540 *
2541 * Mark device as removed from system and therefore no longer available.
2542 */
56079431
DV
2543void netif_device_detach(struct net_device *dev)
2544{
2545 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2546 netif_running(dev)) {
d543103a 2547 netif_tx_stop_all_queues(dev);
56079431
DV
2548 }
2549}
2550EXPORT_SYMBOL(netif_device_detach);
2551
bea3348e
SH
2552/**
2553 * netif_device_attach - mark device as attached
2554 * @dev: network device
2555 *
2556 * Mark device as attached from system and restart if needed.
2557 */
56079431
DV
2558void netif_device_attach(struct net_device *dev)
2559{
2560 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2561 netif_running(dev)) {
d543103a 2562 netif_tx_wake_all_queues(dev);
4ec93edb 2563 __netdev_watchdog_up(dev);
56079431
DV
2564 }
2565}
2566EXPORT_SYMBOL(netif_device_attach);
2567
5605c762
JP
2568/*
2569 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2570 * to be used as a distribution range.
2571 */
2572u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2573 unsigned int num_tx_queues)
2574{
2575 u32 hash;
2576 u16 qoffset = 0;
2577 u16 qcount = num_tx_queues;
2578
2579 if (skb_rx_queue_recorded(skb)) {
2580 hash = skb_get_rx_queue(skb);
2581 while (unlikely(hash >= num_tx_queues))
2582 hash -= num_tx_queues;
2583 return hash;
2584 }
2585
2586 if (dev->num_tc) {
2587 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
f4563a75 2588
5605c762
JP
2589 qoffset = dev->tc_to_txq[tc].offset;
2590 qcount = dev->tc_to_txq[tc].count;
2591 }
2592
2593 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2594}
2595EXPORT_SYMBOL(__skb_tx_hash);
2596
36c92474
BH
2597static void skb_warn_bad_offload(const struct sk_buff *skb)
2598{
84d15ae5 2599 static const netdev_features_t null_features;
36c92474 2600 struct net_device *dev = skb->dev;
88ad4175 2601 const char *name = "";
36c92474 2602
c846ad9b
BG
2603 if (!net_ratelimit())
2604 return;
2605
88ad4175
BM
2606 if (dev) {
2607 if (dev->dev.parent)
2608 name = dev_driver_string(dev->dev.parent);
2609 else
2610 name = netdev_name(dev);
2611 }
36c92474
BH
2612 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2613 "gso_type=%d ip_summed=%d\n",
88ad4175 2614 name, dev ? &dev->features : &null_features,
65e9d2fa 2615 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2616 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2617 skb_shinfo(skb)->gso_type, skb->ip_summed);
2618}
2619
1da177e4
LT
2620/*
2621 * Invalidate hardware checksum when packet is to be mangled, and
2622 * complete checksum manually on outgoing path.
2623 */
84fa7933 2624int skb_checksum_help(struct sk_buff *skb)
1da177e4 2625{
d3bc23e7 2626 __wsum csum;
663ead3b 2627 int ret = 0, offset;
1da177e4 2628
84fa7933 2629 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2630 goto out_set_summed;
2631
2632 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2633 skb_warn_bad_offload(skb);
2634 return -EINVAL;
1da177e4
LT
2635 }
2636
cef401de
ED
2637 /* Before computing a checksum, we should make sure no frag could
2638 * be modified by an external entity : checksum could be wrong.
2639 */
2640 if (skb_has_shared_frag(skb)) {
2641 ret = __skb_linearize(skb);
2642 if (ret)
2643 goto out;
2644 }
2645
55508d60 2646 offset = skb_checksum_start_offset(skb);
a030847e
HX
2647 BUG_ON(offset >= skb_headlen(skb));
2648 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2649
2650 offset += skb->csum_offset;
2651 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2652
2653 if (skb_cloned(skb) &&
2654 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2655 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2656 if (ret)
2657 goto out;
2658 }
2659
4f2e4ad5 2660 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2661out_set_summed:
1da177e4 2662 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2663out:
1da177e4
LT
2664 return ret;
2665}
d1b19dff 2666EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2667
b72b5bf6
DC
2668int skb_crc32c_csum_help(struct sk_buff *skb)
2669{
2670 __le32 crc32c_csum;
2671 int ret = 0, offset, start;
2672
2673 if (skb->ip_summed != CHECKSUM_PARTIAL)
2674 goto out;
2675
2676 if (unlikely(skb_is_gso(skb)))
2677 goto out;
2678
2679 /* Before computing a checksum, we should make sure no frag could
2680 * be modified by an external entity : checksum could be wrong.
2681 */
2682 if (unlikely(skb_has_shared_frag(skb))) {
2683 ret = __skb_linearize(skb);
2684 if (ret)
2685 goto out;
2686 }
2687 start = skb_checksum_start_offset(skb);
2688 offset = start + offsetof(struct sctphdr, checksum);
2689 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2690 ret = -EINVAL;
2691 goto out;
2692 }
2693 if (skb_cloned(skb) &&
2694 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2695 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2696 if (ret)
2697 goto out;
2698 }
2699 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2700 skb->len - start, ~(__u32)0,
2701 crc32c_csum_stub));
2702 *(__le32 *)(skb->data + offset) = crc32c_csum;
2703 skb->ip_summed = CHECKSUM_NONE;
dba00306 2704 skb->csum_not_inet = 0;
b72b5bf6
DC
2705out:
2706 return ret;
2707}
2708
53d6471c 2709__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2710{
252e3346 2711 __be16 type = skb->protocol;
f6a78bfc 2712
19acc327
PS
2713 /* Tunnel gso handlers can set protocol to ethernet. */
2714 if (type == htons(ETH_P_TEB)) {
2715 struct ethhdr *eth;
2716
2717 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2718 return 0;
2719
2720 eth = (struct ethhdr *)skb_mac_header(skb);
2721 type = eth->h_proto;
2722 }
2723
d4bcef3f 2724 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2725}
2726
2727/**
2728 * skb_mac_gso_segment - mac layer segmentation handler.
2729 * @skb: buffer to segment
2730 * @features: features for the output path (see dev->features)
2731 */
2732struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2733 netdev_features_t features)
2734{
2735 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2736 struct packet_offload *ptype;
53d6471c
VY
2737 int vlan_depth = skb->mac_len;
2738 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2739
2740 if (unlikely(!type))
2741 return ERR_PTR(-EINVAL);
2742
53d6471c 2743 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2744
2745 rcu_read_lock();
22061d80 2746 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2747 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2748 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2749 break;
2750 }
2751 }
2752 rcu_read_unlock();
2753
98e399f8 2754 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2755
f6a78bfc
HX
2756 return segs;
2757}
05e8ef4a
PS
2758EXPORT_SYMBOL(skb_mac_gso_segment);
2759
2760
2761/* openvswitch calls this on rx path, so we need a different check.
2762 */
2763static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2764{
2765 if (tx_path)
0c19f846
WB
2766 return skb->ip_summed != CHECKSUM_PARTIAL &&
2767 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
2768
2769 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
2770}
2771
2772/**
2773 * __skb_gso_segment - Perform segmentation on skb.
2774 * @skb: buffer to segment
2775 * @features: features for the output path (see dev->features)
2776 * @tx_path: whether it is called in TX path
2777 *
2778 * This function segments the given skb and returns a list of segments.
2779 *
2780 * It may return NULL if the skb requires no segmentation. This is
2781 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2782 *
2783 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2784 */
2785struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2786 netdev_features_t features, bool tx_path)
2787{
b2504a5d
ED
2788 struct sk_buff *segs;
2789
05e8ef4a
PS
2790 if (unlikely(skb_needs_check(skb, tx_path))) {
2791 int err;
2792
b2504a5d 2793 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 2794 err = skb_cow_head(skb, 0);
2795 if (err < 0)
05e8ef4a
PS
2796 return ERR_PTR(err);
2797 }
2798
802ab55a
AD
2799 /* Only report GSO partial support if it will enable us to
2800 * support segmentation on this frame without needing additional
2801 * work.
2802 */
2803 if (features & NETIF_F_GSO_PARTIAL) {
2804 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2805 struct net_device *dev = skb->dev;
2806
2807 partial_features |= dev->features & dev->gso_partial_features;
2808 if (!skb_gso_ok(skb, features | partial_features))
2809 features &= ~NETIF_F_GSO_PARTIAL;
2810 }
2811
9207f9d4
KK
2812 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2813 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2814
68c33163 2815 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2816 SKB_GSO_CB(skb)->encap_level = 0;
2817
05e8ef4a
PS
2818 skb_reset_mac_header(skb);
2819 skb_reset_mac_len(skb);
2820
b2504a5d
ED
2821 segs = skb_mac_gso_segment(skb, features);
2822
8d74e9f8 2823 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
2824 skb_warn_bad_offload(skb);
2825
2826 return segs;
05e8ef4a 2827}
12b0004d 2828EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2829
fb286bb2
HX
2830/* Take action when hardware reception checksum errors are detected. */
2831#ifdef CONFIG_BUG
2832void netdev_rx_csum_fault(struct net_device *dev)
2833{
2834 if (net_ratelimit()) {
7b6cd1ce 2835 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2836 dump_stack();
2837 }
2838}
2839EXPORT_SYMBOL(netdev_rx_csum_fault);
2840#endif
2841
1da177e4
LT
2842/* Actually, we should eliminate this check as soon as we know, that:
2843 * 1. IOMMU is present and allows to map all the memory.
2844 * 2. No high memory really exists on this machine.
2845 */
2846
c1e756bf 2847static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2848{
3d3a8533 2849#ifdef CONFIG_HIGHMEM
1da177e4 2850 int i;
f4563a75 2851
5acbbd42 2852 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2853 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2854 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 2855
ea2ab693 2856 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2857 return 1;
ea2ab693 2858 }
5acbbd42 2859 }
1da177e4 2860
5acbbd42
FT
2861 if (PCI_DMA_BUS_IS_PHYS) {
2862 struct device *pdev = dev->dev.parent;
1da177e4 2863
9092c658
ED
2864 if (!pdev)
2865 return 0;
5acbbd42 2866 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2867 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2868 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
f4563a75 2869
5acbbd42
FT
2870 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2871 return 1;
2872 }
2873 }
3d3a8533 2874#endif
1da177e4
LT
2875 return 0;
2876}
1da177e4 2877
3b392ddb
SH
2878/* If MPLS offload request, verify we are testing hardware MPLS features
2879 * instead of standard features for the netdev.
2880 */
d0edc7bf 2881#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2882static netdev_features_t net_mpls_features(struct sk_buff *skb,
2883 netdev_features_t features,
2884 __be16 type)
2885{
25cd9ba0 2886 if (eth_p_mpls(type))
3b392ddb
SH
2887 features &= skb->dev->mpls_features;
2888
2889 return features;
2890}
2891#else
2892static netdev_features_t net_mpls_features(struct sk_buff *skb,
2893 netdev_features_t features,
2894 __be16 type)
2895{
2896 return features;
2897}
2898#endif
2899
c8f44aff 2900static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2901 netdev_features_t features)
f01a5236 2902{
53d6471c 2903 int tmp;
3b392ddb
SH
2904 __be16 type;
2905
2906 type = skb_network_protocol(skb, &tmp);
2907 features = net_mpls_features(skb, features, type);
53d6471c 2908
c0d680e5 2909 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2910 !can_checksum_protocol(features, type)) {
996e8021 2911 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 2912 }
7be2c82c
ED
2913 if (illegal_highdma(skb->dev, skb))
2914 features &= ~NETIF_F_SG;
f01a5236
JG
2915
2916 return features;
2917}
2918
e38f3025
TM
2919netdev_features_t passthru_features_check(struct sk_buff *skb,
2920 struct net_device *dev,
2921 netdev_features_t features)
2922{
2923 return features;
2924}
2925EXPORT_SYMBOL(passthru_features_check);
2926
8cb65d00
TM
2927static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2928 struct net_device *dev,
2929 netdev_features_t features)
2930{
2931 return vlan_features_check(skb, features);
2932}
2933
cbc53e08
AD
2934static netdev_features_t gso_features_check(const struct sk_buff *skb,
2935 struct net_device *dev,
2936 netdev_features_t features)
2937{
2938 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2939
2940 if (gso_segs > dev->gso_max_segs)
2941 return features & ~NETIF_F_GSO_MASK;
2942
802ab55a
AD
2943 /* Support for GSO partial features requires software
2944 * intervention before we can actually process the packets
2945 * so we need to strip support for any partial features now
2946 * and we can pull them back in after we have partially
2947 * segmented the frame.
2948 */
2949 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2950 features &= ~dev->gso_partial_features;
2951
2952 /* Make sure to clear the IPv4 ID mangling feature if the
2953 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2954 */
2955 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2956 struct iphdr *iph = skb->encapsulation ?
2957 inner_ip_hdr(skb) : ip_hdr(skb);
2958
2959 if (!(iph->frag_off & htons(IP_DF)))
2960 features &= ~NETIF_F_TSO_MANGLEID;
2961 }
2962
2963 return features;
2964}
2965
c1e756bf 2966netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2967{
5f35227e 2968 struct net_device *dev = skb->dev;
fcbeb976 2969 netdev_features_t features = dev->features;
58e998c6 2970
cbc53e08
AD
2971 if (skb_is_gso(skb))
2972 features = gso_features_check(skb, dev, features);
30b678d8 2973
5f35227e
JG
2974 /* If encapsulation offload request, verify we are testing
2975 * hardware encapsulation features instead of standard
2976 * features for the netdev
2977 */
2978 if (skb->encapsulation)
2979 features &= dev->hw_enc_features;
2980
f5a7fb88
TM
2981 if (skb_vlan_tagged(skb))
2982 features = netdev_intersect_features(features,
2983 dev->vlan_features |
2984 NETIF_F_HW_VLAN_CTAG_TX |
2985 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2986
5f35227e
JG
2987 if (dev->netdev_ops->ndo_features_check)
2988 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2989 features);
8cb65d00
TM
2990 else
2991 features &= dflt_features_check(skb, dev, features);
5f35227e 2992
c1e756bf 2993 return harmonize_features(skb, features);
58e998c6 2994}
c1e756bf 2995EXPORT_SYMBOL(netif_skb_features);
58e998c6 2996
2ea25513 2997static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2998 struct netdev_queue *txq, bool more)
f6a78bfc 2999{
2ea25513
DM
3000 unsigned int len;
3001 int rc;
00829823 3002
7866a621 3003 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 3004 dev_queue_xmit_nit(skb, dev);
fc741216 3005
2ea25513
DM
3006 len = skb->len;
3007 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3008 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3009 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3010
2ea25513
DM
3011 return rc;
3012}
7b9c6090 3013
8dcda22a
DM
3014struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3015 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3016{
3017 struct sk_buff *skb = first;
3018 int rc = NETDEV_TX_OK;
7b9c6090 3019
7f2e870f
DM
3020 while (skb) {
3021 struct sk_buff *next = skb->next;
fc70fb64 3022
7f2e870f 3023 skb->next = NULL;
95f6b3dd 3024 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3025 if (unlikely(!dev_xmit_complete(rc))) {
3026 skb->next = next;
3027 goto out;
3028 }
6afff0ca 3029
7f2e870f
DM
3030 skb = next;
3031 if (netif_xmit_stopped(txq) && skb) {
3032 rc = NETDEV_TX_BUSY;
3033 break;
9ccb8975 3034 }
7f2e870f 3035 }
9ccb8975 3036
7f2e870f
DM
3037out:
3038 *ret = rc;
3039 return skb;
3040}
b40863c6 3041
1ff0dc94
ED
3042static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3043 netdev_features_t features)
f6a78bfc 3044{
df8a39de 3045 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3046 !vlan_hw_offload_capable(features, skb->vlan_proto))
3047 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3048 return skb;
3049}
f6a78bfc 3050
43c26a1a
DC
3051int skb_csum_hwoffload_help(struct sk_buff *skb,
3052 const netdev_features_t features)
3053{
3054 if (unlikely(skb->csum_not_inet))
3055 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3056 skb_crc32c_csum_help(skb);
3057
3058 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3059}
3060EXPORT_SYMBOL(skb_csum_hwoffload_help);
3061
55a93b3e 3062static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
3063{
3064 netdev_features_t features;
f6a78bfc 3065
eae3f88e
DM
3066 features = netif_skb_features(skb);
3067 skb = validate_xmit_vlan(skb, features);
3068 if (unlikely(!skb))
3069 goto out_null;
7b9c6090 3070
8b86a61d 3071 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3072 struct sk_buff *segs;
3073
3074 segs = skb_gso_segment(skb, features);
cecda693 3075 if (IS_ERR(segs)) {
af6dabc9 3076 goto out_kfree_skb;
cecda693
JW
3077 } else if (segs) {
3078 consume_skb(skb);
3079 skb = segs;
f6a78bfc 3080 }
eae3f88e
DM
3081 } else {
3082 if (skb_needs_linearize(skb, features) &&
3083 __skb_linearize(skb))
3084 goto out_kfree_skb;
4ec93edb 3085
eae3f88e
DM
3086 /* If packet is not checksummed and device does not
3087 * support checksumming for this protocol, complete
3088 * checksumming here.
3089 */
3090 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3091 if (skb->encapsulation)
3092 skb_set_inner_transport_header(skb,
3093 skb_checksum_start_offset(skb));
3094 else
3095 skb_set_transport_header(skb,
3096 skb_checksum_start_offset(skb));
43c26a1a 3097 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3098 goto out_kfree_skb;
7b9c6090 3099 }
0c772159 3100 }
7b9c6090 3101
3dca3f38
SK
3102 skb = validate_xmit_xfrm(skb, features);
3103
eae3f88e 3104 return skb;
fc70fb64 3105
f6a78bfc
HX
3106out_kfree_skb:
3107 kfree_skb(skb);
eae3f88e 3108out_null:
d21fd63e 3109 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3110 return NULL;
3111}
6afff0ca 3112
55a93b3e
ED
3113struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3114{
3115 struct sk_buff *next, *head = NULL, *tail;
3116
bec3cfdc 3117 for (; skb != NULL; skb = next) {
55a93b3e
ED
3118 next = skb->next;
3119 skb->next = NULL;
bec3cfdc
ED
3120
3121 /* in case skb wont be segmented, point to itself */
3122 skb->prev = skb;
3123
55a93b3e 3124 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3125 if (!skb)
3126 continue;
55a93b3e 3127
bec3cfdc
ED
3128 if (!head)
3129 head = skb;
3130 else
3131 tail->next = skb;
3132 /* If skb was segmented, skb->prev points to
3133 * the last segment. If not, it still contains skb.
3134 */
3135 tail = skb->prev;
55a93b3e
ED
3136 }
3137 return head;
f6a78bfc 3138}
104ba78c 3139EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3140
1def9238
ED
3141static void qdisc_pkt_len_init(struct sk_buff *skb)
3142{
3143 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3144
3145 qdisc_skb_cb(skb)->pkt_len = skb->len;
3146
3147 /* To get more precise estimation of bytes sent on wire,
3148 * we add to pkt_len the headers size of all segments
3149 */
3150 if (shinfo->gso_size) {
757b8b1d 3151 unsigned int hdr_len;
15e5a030 3152 u16 gso_segs = shinfo->gso_segs;
1def9238 3153
757b8b1d
ED
3154 /* mac layer + network layer */
3155 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3156
3157 /* + transport layer */
1def9238
ED
3158 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3159 hdr_len += tcp_hdrlen(skb);
3160 else
3161 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3162
3163 if (shinfo->gso_type & SKB_GSO_DODGY)
3164 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3165 shinfo->gso_size);
3166
3167 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3168 }
3169}
3170
bbd8a0d3
KK
3171static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3172 struct net_device *dev,
3173 struct netdev_queue *txq)
3174{
3175 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3176 struct sk_buff *to_free = NULL;
a2da570d 3177 bool contended;
bbd8a0d3
KK
3178 int rc;
3179
a2da570d 3180 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3181
3182 if (q->flags & TCQ_F_NOLOCK) {
3183 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3184 __qdisc_drop(skb, &to_free);
3185 rc = NET_XMIT_DROP;
3186 } else {
3187 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3188 __qdisc_run(q);
3189 }
3190
3191 if (unlikely(to_free))
3192 kfree_skb_list(to_free);
3193 return rc;
3194 }
3195
79640a4c
ED
3196 /*
3197 * Heuristic to force contended enqueues to serialize on a
3198 * separate lock before trying to get qdisc main lock.
f9eb8aea 3199 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3200 * often and dequeue packets faster.
79640a4c 3201 */
a2da570d 3202 contended = qdisc_is_running(q);
79640a4c
ED
3203 if (unlikely(contended))
3204 spin_lock(&q->busylock);
3205
bbd8a0d3
KK
3206 spin_lock(root_lock);
3207 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3208 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3209 rc = NET_XMIT_DROP;
3210 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3211 qdisc_run_begin(q)) {
bbd8a0d3
KK
3212 /*
3213 * This is a work-conserving queue; there are no old skbs
3214 * waiting to be sent out; and the qdisc is not running -
3215 * xmit the skb directly.
3216 */
bfe0d029 3217
bfe0d029
ED
3218 qdisc_bstats_update(q, skb);
3219
55a93b3e 3220 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3221 if (unlikely(contended)) {
3222 spin_unlock(&q->busylock);
3223 contended = false;
3224 }
bbd8a0d3 3225 __qdisc_run(q);
6c148184 3226 }
bbd8a0d3 3227
6c148184 3228 qdisc_run_end(q);
bbd8a0d3
KK
3229 rc = NET_XMIT_SUCCESS;
3230 } else {
520ac30f 3231 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3232 if (qdisc_run_begin(q)) {
3233 if (unlikely(contended)) {
3234 spin_unlock(&q->busylock);
3235 contended = false;
3236 }
3237 __qdisc_run(q);
6c148184 3238 qdisc_run_end(q);
79640a4c 3239 }
bbd8a0d3
KK
3240 }
3241 spin_unlock(root_lock);
520ac30f
ED
3242 if (unlikely(to_free))
3243 kfree_skb_list(to_free);
79640a4c
ED
3244 if (unlikely(contended))
3245 spin_unlock(&q->busylock);
bbd8a0d3
KK
3246 return rc;
3247}
3248
86f8515f 3249#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3250static void skb_update_prio(struct sk_buff *skb)
3251{
6977a79d 3252 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3253
91c68ce2 3254 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3255 unsigned int prioidx =
3256 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3257
3258 if (prioidx < map->priomap_len)
3259 skb->priority = map->priomap[prioidx];
3260 }
5bc1421e
NH
3261}
3262#else
3263#define skb_update_prio(skb)
3264#endif
3265
f60e5990 3266DEFINE_PER_CPU(int, xmit_recursion);
3267EXPORT_SYMBOL(xmit_recursion);
3268
95603e22
MM
3269/**
3270 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3271 * @net: network namespace this loopback is happening in
3272 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3273 * @skb: buffer to transmit
3274 */
0c4b51f0 3275int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3276{
3277 skb_reset_mac_header(skb);
3278 __skb_pull(skb, skb_network_offset(skb));
3279 skb->pkt_type = PACKET_LOOPBACK;
3280 skb->ip_summed = CHECKSUM_UNNECESSARY;
3281 WARN_ON(!skb_dst(skb));
3282 skb_dst_force(skb);
3283 netif_rx_ni(skb);
3284 return 0;
3285}
3286EXPORT_SYMBOL(dev_loopback_xmit);
3287
1f211a1b
DB
3288#ifdef CONFIG_NET_EGRESS
3289static struct sk_buff *
3290sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3291{
46209401 3292 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3293 struct tcf_result cl_res;
3294
46209401 3295 if (!miniq)
1f211a1b
DB
3296 return skb;
3297
8dc07fdb 3298 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3299 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3300
46209401 3301 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3302 case TC_ACT_OK:
3303 case TC_ACT_RECLASSIFY:
3304 skb->tc_index = TC_H_MIN(cl_res.classid);
3305 break;
3306 case TC_ACT_SHOT:
46209401 3307 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3308 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3309 kfree_skb(skb);
3310 return NULL;
1f211a1b
DB
3311 case TC_ACT_STOLEN:
3312 case TC_ACT_QUEUED:
e25ea21f 3313 case TC_ACT_TRAP:
1f211a1b 3314 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3315 consume_skb(skb);
1f211a1b
DB
3316 return NULL;
3317 case TC_ACT_REDIRECT:
3318 /* No need to push/pop skb's mac_header here on egress! */
3319 skb_do_redirect(skb);
3320 *ret = NET_XMIT_SUCCESS;
3321 return NULL;
3322 default:
3323 break;
3324 }
3325
3326 return skb;
3327}
3328#endif /* CONFIG_NET_EGRESS */
3329
638b2a69
JP
3330static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3331{
3332#ifdef CONFIG_XPS
3333 struct xps_dev_maps *dev_maps;
3334 struct xps_map *map;
3335 int queue_index = -1;
3336
3337 rcu_read_lock();
3338 dev_maps = rcu_dereference(dev->xps_maps);
3339 if (dev_maps) {
184c449f
AD
3340 unsigned int tci = skb->sender_cpu - 1;
3341
3342 if (dev->num_tc) {
3343 tci *= dev->num_tc;
3344 tci += netdev_get_prio_tc_map(dev, skb->priority);
3345 }
3346
3347 map = rcu_dereference(dev_maps->cpu_map[tci]);
638b2a69
JP
3348 if (map) {
3349 if (map->len == 1)
3350 queue_index = map->queues[0];
3351 else
3352 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3353 map->len)];
3354 if (unlikely(queue_index >= dev->real_num_tx_queues))
3355 queue_index = -1;
3356 }
3357 }
3358 rcu_read_unlock();
3359
3360 return queue_index;
3361#else
3362 return -1;
3363#endif
3364}
3365
3366static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3367{
3368 struct sock *sk = skb->sk;
3369 int queue_index = sk_tx_queue_get(sk);
3370
3371 if (queue_index < 0 || skb->ooo_okay ||
3372 queue_index >= dev->real_num_tx_queues) {
3373 int new_index = get_xps_queue(dev, skb);
f4563a75 3374
638b2a69
JP
3375 if (new_index < 0)
3376 new_index = skb_tx_hash(dev, skb);
3377
3378 if (queue_index != new_index && sk &&
004a5d01 3379 sk_fullsock(sk) &&
638b2a69
JP
3380 rcu_access_pointer(sk->sk_dst_cache))
3381 sk_tx_queue_set(sk, new_index);
3382
3383 queue_index = new_index;
3384 }
3385
3386 return queue_index;
3387}
3388
3389struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3390 struct sk_buff *skb,
3391 void *accel_priv)
3392{
3393 int queue_index = 0;
3394
3395#ifdef CONFIG_XPS
52bd2d62
ED
3396 u32 sender_cpu = skb->sender_cpu - 1;
3397
3398 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3399 skb->sender_cpu = raw_smp_processor_id() + 1;
3400#endif
3401
3402 if (dev->real_num_tx_queues != 1) {
3403 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 3404
638b2a69
JP
3405 if (ops->ndo_select_queue)
3406 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3407 __netdev_pick_tx);
3408 else
3409 queue_index = __netdev_pick_tx(dev, skb);
3410
3411 if (!accel_priv)
3412 queue_index = netdev_cap_txqueue(dev, queue_index);
3413 }
3414
3415 skb_set_queue_mapping(skb, queue_index);
3416 return netdev_get_tx_queue(dev, queue_index);
3417}
3418
d29f749e 3419/**
9d08dd3d 3420 * __dev_queue_xmit - transmit a buffer
d29f749e 3421 * @skb: buffer to transmit
9d08dd3d 3422 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3423 *
3424 * Queue a buffer for transmission to a network device. The caller must
3425 * have set the device and priority and built the buffer before calling
3426 * this function. The function can be called from an interrupt.
3427 *
3428 * A negative errno code is returned on a failure. A success does not
3429 * guarantee the frame will be transmitted as it may be dropped due
3430 * to congestion or traffic shaping.
3431 *
3432 * -----------------------------------------------------------------------------------
3433 * I notice this method can also return errors from the queue disciplines,
3434 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3435 * be positive.
3436 *
3437 * Regardless of the return value, the skb is consumed, so it is currently
3438 * difficult to retry a send to this method. (You can bump the ref count
3439 * before sending to hold a reference for retry if you are careful.)
3440 *
3441 * When calling this method, interrupts MUST be enabled. This is because
3442 * the BH enable code must have IRQs enabled so that it will not deadlock.
3443 * --BLG
3444 */
0a59f3a9 3445static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3446{
3447 struct net_device *dev = skb->dev;
dc2b4847 3448 struct netdev_queue *txq;
1da177e4
LT
3449 struct Qdisc *q;
3450 int rc = -ENOMEM;
3451
6d1ccff6
ED
3452 skb_reset_mac_header(skb);
3453
e7fd2885
WB
3454 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3455 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3456
4ec93edb
YH
3457 /* Disable soft irqs for various locks below. Also
3458 * stops preemption for RCU.
1da177e4 3459 */
4ec93edb 3460 rcu_read_lock_bh();
1da177e4 3461
5bc1421e
NH
3462 skb_update_prio(skb);
3463
1f211a1b
DB
3464 qdisc_pkt_len_init(skb);
3465#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 3466 skb->tc_at_ingress = 0;
1f211a1b
DB
3467# ifdef CONFIG_NET_EGRESS
3468 if (static_key_false(&egress_needed)) {
3469 skb = sch_handle_egress(skb, &rc, dev);
3470 if (!skb)
3471 goto out;
3472 }
3473# endif
3474#endif
02875878
ED
3475 /* If device/qdisc don't need skb->dst, release it right now while
3476 * its hot in this cpu cache.
3477 */
3478 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3479 skb_dst_drop(skb);
3480 else
3481 skb_dst_force(skb);
3482
f663dd9a 3483 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3484 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3485
cf66ba58 3486 trace_net_dev_queue(skb);
1da177e4 3487 if (q->enqueue) {
bbd8a0d3 3488 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3489 goto out;
1da177e4
LT
3490 }
3491
3492 /* The device has no queue. Common case for software devices:
eb13da1a 3493 * loopback, all the sorts of tunnels...
1da177e4 3494
eb13da1a 3495 * Really, it is unlikely that netif_tx_lock protection is necessary
3496 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3497 * counters.)
3498 * However, it is possible, that they rely on protection
3499 * made by us here.
1da177e4 3500
eb13da1a 3501 * Check this and shot the lock. It is not prone from deadlocks.
3502 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
3503 */
3504 if (dev->flags & IFF_UP) {
3505 int cpu = smp_processor_id(); /* ok because BHs are off */
3506
c773e847 3507 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3508 if (unlikely(__this_cpu_read(xmit_recursion) >
3509 XMIT_RECURSION_LIMIT))
745e20f1
ED
3510 goto recursion_alert;
3511
1f59533f
JDB
3512 skb = validate_xmit_skb(skb, dev);
3513 if (!skb)
d21fd63e 3514 goto out;
1f59533f 3515
c773e847 3516 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3517
73466498 3518 if (!netif_xmit_stopped(txq)) {
745e20f1 3519 __this_cpu_inc(xmit_recursion);
ce93718f 3520 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3521 __this_cpu_dec(xmit_recursion);
572a9d7b 3522 if (dev_xmit_complete(rc)) {
c773e847 3523 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3524 goto out;
3525 }
3526 }
c773e847 3527 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3528 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3529 dev->name);
1da177e4
LT
3530 } else {
3531 /* Recursion is detected! It is possible,
745e20f1
ED
3532 * unfortunately
3533 */
3534recursion_alert:
e87cc472
JP
3535 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3536 dev->name);
1da177e4
LT
3537 }
3538 }
3539
3540 rc = -ENETDOWN;
d4828d85 3541 rcu_read_unlock_bh();
1da177e4 3542
015f0688 3543 atomic_long_inc(&dev->tx_dropped);
1f59533f 3544 kfree_skb_list(skb);
1da177e4
LT
3545 return rc;
3546out:
d4828d85 3547 rcu_read_unlock_bh();
1da177e4
LT
3548 return rc;
3549}
f663dd9a 3550
2b4aa3ce 3551int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3552{
3553 return __dev_queue_xmit(skb, NULL);
3554}
2b4aa3ce 3555EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3556
f663dd9a
JW
3557int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3558{
3559 return __dev_queue_xmit(skb, accel_priv);
3560}
3561EXPORT_SYMBOL(dev_queue_xmit_accel);
3562
1da177e4 3563
eb13da1a 3564/*************************************************************************
3565 * Receiver routines
3566 *************************************************************************/
1da177e4 3567
6b2bedc3 3568int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3569EXPORT_SYMBOL(netdev_max_backlog);
3570
3b098e2d 3571int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 3572int netdev_budget __read_mostly = 300;
7acf8a1e 3573unsigned int __read_mostly netdev_budget_usecs = 2000;
3d48b53f
MT
3574int weight_p __read_mostly = 64; /* old backlog weight */
3575int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3576int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3577int dev_rx_weight __read_mostly = 64;
3578int dev_tx_weight __read_mostly = 64;
1da177e4 3579
eecfd7c4
ED
3580/* Called with irq disabled */
3581static inline void ____napi_schedule(struct softnet_data *sd,
3582 struct napi_struct *napi)
3583{
3584 list_add_tail(&napi->poll_list, &sd->poll_list);
3585 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3586}
3587
bfb564e7
KK
3588#ifdef CONFIG_RPS
3589
3590/* One global table that all flow-based protocols share. */
6e3f7faf 3591struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3592EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3593u32 rps_cpu_mask __read_mostly;
3594EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3595
c5905afb 3596struct static_key rps_needed __read_mostly;
3df97ba8 3597EXPORT_SYMBOL(rps_needed);
13bfff25
ED
3598struct static_key rfs_needed __read_mostly;
3599EXPORT_SYMBOL(rfs_needed);
adc9300e 3600
c445477d
BH
3601static struct rps_dev_flow *
3602set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3603 struct rps_dev_flow *rflow, u16 next_cpu)
3604{
a31196b0 3605 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3606#ifdef CONFIG_RFS_ACCEL
3607 struct netdev_rx_queue *rxqueue;
3608 struct rps_dev_flow_table *flow_table;
3609 struct rps_dev_flow *old_rflow;
3610 u32 flow_id;
3611 u16 rxq_index;
3612 int rc;
3613
3614 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3615 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3616 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3617 goto out;
3618 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3619 if (rxq_index == skb_get_rx_queue(skb))
3620 goto out;
3621
3622 rxqueue = dev->_rx + rxq_index;
3623 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3624 if (!flow_table)
3625 goto out;
61b905da 3626 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3627 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3628 rxq_index, flow_id);
3629 if (rc < 0)
3630 goto out;
3631 old_rflow = rflow;
3632 rflow = &flow_table->flows[flow_id];
c445477d
BH
3633 rflow->filter = rc;
3634 if (old_rflow->filter == rflow->filter)
3635 old_rflow->filter = RPS_NO_FILTER;
3636 out:
3637#endif
3638 rflow->last_qtail =
09994d1b 3639 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3640 }
3641
09994d1b 3642 rflow->cpu = next_cpu;
c445477d
BH
3643 return rflow;
3644}
3645
bfb564e7
KK
3646/*
3647 * get_rps_cpu is called from netif_receive_skb and returns the target
3648 * CPU from the RPS map of the receiving queue for a given skb.
3649 * rcu_read_lock must be held on entry.
3650 */
3651static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3652 struct rps_dev_flow **rflowp)
3653{
567e4b79
ED
3654 const struct rps_sock_flow_table *sock_flow_table;
3655 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3656 struct rps_dev_flow_table *flow_table;
567e4b79 3657 struct rps_map *map;
bfb564e7 3658 int cpu = -1;
567e4b79 3659 u32 tcpu;
61b905da 3660 u32 hash;
bfb564e7
KK
3661
3662 if (skb_rx_queue_recorded(skb)) {
3663 u16 index = skb_get_rx_queue(skb);
567e4b79 3664
62fe0b40
BH
3665 if (unlikely(index >= dev->real_num_rx_queues)) {
3666 WARN_ONCE(dev->real_num_rx_queues > 1,
3667 "%s received packet on queue %u, but number "
3668 "of RX queues is %u\n",
3669 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3670 goto done;
3671 }
567e4b79
ED
3672 rxqueue += index;
3673 }
bfb564e7 3674
567e4b79
ED
3675 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3676
3677 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3678 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3679 if (!flow_table && !map)
bfb564e7
KK
3680 goto done;
3681
2d47b459 3682 skb_reset_network_header(skb);
61b905da
TH
3683 hash = skb_get_hash(skb);
3684 if (!hash)
bfb564e7
KK
3685 goto done;
3686
fec5e652
TH
3687 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3688 if (flow_table && sock_flow_table) {
fec5e652 3689 struct rps_dev_flow *rflow;
567e4b79
ED
3690 u32 next_cpu;
3691 u32 ident;
3692
3693 /* First check into global flow table if there is a match */
3694 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3695 if ((ident ^ hash) & ~rps_cpu_mask)
3696 goto try_rps;
fec5e652 3697
567e4b79
ED
3698 next_cpu = ident & rps_cpu_mask;
3699
3700 /* OK, now we know there is a match,
3701 * we can look at the local (per receive queue) flow table
3702 */
61b905da 3703 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3704 tcpu = rflow->cpu;
3705
fec5e652
TH
3706 /*
3707 * If the desired CPU (where last recvmsg was done) is
3708 * different from current CPU (one in the rx-queue flow
3709 * table entry), switch if one of the following holds:
a31196b0 3710 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3711 * - Current CPU is offline.
3712 * - The current CPU's queue tail has advanced beyond the
3713 * last packet that was enqueued using this table entry.
3714 * This guarantees that all previous packets for the flow
3715 * have been dequeued, thus preserving in order delivery.
3716 */
3717 if (unlikely(tcpu != next_cpu) &&
a31196b0 3718 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3719 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3720 rflow->last_qtail)) >= 0)) {
3721 tcpu = next_cpu;
c445477d 3722 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3723 }
c445477d 3724
a31196b0 3725 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3726 *rflowp = rflow;
3727 cpu = tcpu;
3728 goto done;
3729 }
3730 }
3731
567e4b79
ED
3732try_rps:
3733
0a9627f2 3734 if (map) {
8fc54f68 3735 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3736 if (cpu_online(tcpu)) {
3737 cpu = tcpu;
3738 goto done;
3739 }
3740 }
3741
3742done:
0a9627f2
TH
3743 return cpu;
3744}
3745
c445477d
BH
3746#ifdef CONFIG_RFS_ACCEL
3747
3748/**
3749 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3750 * @dev: Device on which the filter was set
3751 * @rxq_index: RX queue index
3752 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3753 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3754 *
3755 * Drivers that implement ndo_rx_flow_steer() should periodically call
3756 * this function for each installed filter and remove the filters for
3757 * which it returns %true.
3758 */
3759bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3760 u32 flow_id, u16 filter_id)
3761{
3762 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3763 struct rps_dev_flow_table *flow_table;
3764 struct rps_dev_flow *rflow;
3765 bool expire = true;
a31196b0 3766 unsigned int cpu;
c445477d
BH
3767
3768 rcu_read_lock();
3769 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3770 if (flow_table && flow_id <= flow_table->mask) {
3771 rflow = &flow_table->flows[flow_id];
6aa7de05 3772 cpu = READ_ONCE(rflow->cpu);
a31196b0 3773 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3774 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3775 rflow->last_qtail) <
3776 (int)(10 * flow_table->mask)))
3777 expire = false;
3778 }
3779 rcu_read_unlock();
3780 return expire;
3781}
3782EXPORT_SYMBOL(rps_may_expire_flow);
3783
3784#endif /* CONFIG_RFS_ACCEL */
3785
0a9627f2 3786/* Called from hardirq (IPI) context */
e36fa2f7 3787static void rps_trigger_softirq(void *data)
0a9627f2 3788{
e36fa2f7
ED
3789 struct softnet_data *sd = data;
3790
eecfd7c4 3791 ____napi_schedule(sd, &sd->backlog);
dee42870 3792 sd->received_rps++;
0a9627f2 3793}
e36fa2f7 3794
fec5e652 3795#endif /* CONFIG_RPS */
0a9627f2 3796
e36fa2f7
ED
3797/*
3798 * Check if this softnet_data structure is another cpu one
3799 * If yes, queue it to our IPI list and return 1
3800 * If no, return 0
3801 */
3802static int rps_ipi_queued(struct softnet_data *sd)
3803{
3804#ifdef CONFIG_RPS
903ceff7 3805 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3806
3807 if (sd != mysd) {
3808 sd->rps_ipi_next = mysd->rps_ipi_list;
3809 mysd->rps_ipi_list = sd;
3810
3811 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3812 return 1;
3813 }
3814#endif /* CONFIG_RPS */
3815 return 0;
3816}
3817
99bbc707
WB
3818#ifdef CONFIG_NET_FLOW_LIMIT
3819int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3820#endif
3821
3822static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3823{
3824#ifdef CONFIG_NET_FLOW_LIMIT
3825 struct sd_flow_limit *fl;
3826 struct softnet_data *sd;
3827 unsigned int old_flow, new_flow;
3828
3829 if (qlen < (netdev_max_backlog >> 1))
3830 return false;
3831
903ceff7 3832 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3833
3834 rcu_read_lock();
3835 fl = rcu_dereference(sd->flow_limit);
3836 if (fl) {
3958afa1 3837 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3838 old_flow = fl->history[fl->history_head];
3839 fl->history[fl->history_head] = new_flow;
3840
3841 fl->history_head++;
3842 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3843
3844 if (likely(fl->buckets[old_flow]))
3845 fl->buckets[old_flow]--;
3846
3847 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3848 fl->count++;
3849 rcu_read_unlock();
3850 return true;
3851 }
3852 }
3853 rcu_read_unlock();
3854#endif
3855 return false;
3856}
3857
0a9627f2
TH
3858/*
3859 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3860 * queue (may be a remote CPU queue).
3861 */
fec5e652
TH
3862static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3863 unsigned int *qtail)
0a9627f2 3864{
e36fa2f7 3865 struct softnet_data *sd;
0a9627f2 3866 unsigned long flags;
99bbc707 3867 unsigned int qlen;
0a9627f2 3868
e36fa2f7 3869 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3870
3871 local_irq_save(flags);
0a9627f2 3872
e36fa2f7 3873 rps_lock(sd);
e9e4dd32
JA
3874 if (!netif_running(skb->dev))
3875 goto drop;
99bbc707
WB
3876 qlen = skb_queue_len(&sd->input_pkt_queue);
3877 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3878 if (qlen) {
0a9627f2 3879enqueue:
e36fa2f7 3880 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3881 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3882 rps_unlock(sd);
152102c7 3883 local_irq_restore(flags);
0a9627f2
TH
3884 return NET_RX_SUCCESS;
3885 }
3886
ebda37c2
ED
3887 /* Schedule NAPI for backlog device
3888 * We can use non atomic operation since we own the queue lock
3889 */
3890 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3891 if (!rps_ipi_queued(sd))
eecfd7c4 3892 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3893 }
3894 goto enqueue;
3895 }
3896
e9e4dd32 3897drop:
dee42870 3898 sd->dropped++;
e36fa2f7 3899 rps_unlock(sd);
0a9627f2 3900
0a9627f2
TH
3901 local_irq_restore(flags);
3902
caf586e5 3903 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3904 kfree_skb(skb);
3905 return NET_RX_DROP;
3906}
1da177e4 3907
d4455169
JF
3908static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3909 struct bpf_prog *xdp_prog)
3910{
de8f3a83 3911 u32 metalen, act = XDP_DROP;
d4455169 3912 struct xdp_buff xdp;
d4455169
JF
3913 void *orig_data;
3914 int hlen, off;
3915 u32 mac_len;
3916
3917 /* Reinjected packets coming from act_mirred or similar should
3918 * not get XDP generic processing.
3919 */
3920 if (skb_cloned(skb))
3921 return XDP_PASS;
3922
de8f3a83
DB
3923 /* XDP packets must be linear and must have sufficient headroom
3924 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3925 * native XDP provides, thus we need to do it here as well.
3926 */
3927 if (skb_is_nonlinear(skb) ||
3928 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3929 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3930 int troom = skb->tail + skb->data_len - skb->end;
3931
3932 /* In case we have to go down the path and also linearize,
3933 * then lets do the pskb_expand_head() work just once here.
3934 */
3935 if (pskb_expand_head(skb,
3936 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3937 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3938 goto do_drop;
3939 if (troom > 0 && __skb_linearize(skb))
3940 goto do_drop;
3941 }
d4455169
JF
3942
3943 /* The XDP program wants to see the packet starting at the MAC
3944 * header.
3945 */
3946 mac_len = skb->data - skb_mac_header(skb);
3947 hlen = skb_headlen(skb) + mac_len;
3948 xdp.data = skb->data - mac_len;
de8f3a83 3949 xdp.data_meta = xdp.data;
d4455169
JF
3950 xdp.data_end = xdp.data + hlen;
3951 xdp.data_hard_start = skb->data - skb_headroom(skb);
3952 orig_data = xdp.data;
3953
3954 act = bpf_prog_run_xdp(xdp_prog, &xdp);
3955
3956 off = xdp.data - orig_data;
3957 if (off > 0)
3958 __skb_pull(skb, off);
3959 else if (off < 0)
3960 __skb_push(skb, -off);
92dd5452 3961 skb->mac_header += off;
d4455169
JF
3962
3963 switch (act) {
6103aa96 3964 case XDP_REDIRECT:
d4455169
JF
3965 case XDP_TX:
3966 __skb_push(skb, mac_len);
de8f3a83 3967 break;
d4455169 3968 case XDP_PASS:
de8f3a83
DB
3969 metalen = xdp.data - xdp.data_meta;
3970 if (metalen)
3971 skb_metadata_set(skb, metalen);
d4455169 3972 break;
d4455169
JF
3973 default:
3974 bpf_warn_invalid_xdp_action(act);
3975 /* fall through */
3976 case XDP_ABORTED:
3977 trace_xdp_exception(skb->dev, xdp_prog, act);
3978 /* fall through */
3979 case XDP_DROP:
3980 do_drop:
3981 kfree_skb(skb);
3982 break;
3983 }
3984
3985 return act;
3986}
3987
3988/* When doing generic XDP we have to bypass the qdisc layer and the
3989 * network taps in order to match in-driver-XDP behavior.
3990 */
7c497478 3991void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
3992{
3993 struct net_device *dev = skb->dev;
3994 struct netdev_queue *txq;
3995 bool free_skb = true;
3996 int cpu, rc;
3997
3998 txq = netdev_pick_tx(dev, skb, NULL);
3999 cpu = smp_processor_id();
4000 HARD_TX_LOCK(dev, txq, cpu);
4001 if (!netif_xmit_stopped(txq)) {
4002 rc = netdev_start_xmit(skb, dev, txq, 0);
4003 if (dev_xmit_complete(rc))
4004 free_skb = false;
4005 }
4006 HARD_TX_UNLOCK(dev, txq);
4007 if (free_skb) {
4008 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4009 kfree_skb(skb);
4010 }
4011}
7c497478 4012EXPORT_SYMBOL_GPL(generic_xdp_tx);
d4455169
JF
4013
4014static struct static_key generic_xdp_needed __read_mostly;
4015
7c497478 4016int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4017{
d4455169
JF
4018 if (xdp_prog) {
4019 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
6103aa96 4020 int err;
d4455169
JF
4021
4022 if (act != XDP_PASS) {
6103aa96
JF
4023 switch (act) {
4024 case XDP_REDIRECT:
2facaad6
JDB
4025 err = xdp_do_generic_redirect(skb->dev, skb,
4026 xdp_prog);
6103aa96
JF
4027 if (err)
4028 goto out_redir;
4029 /* fallthru to submit skb */
4030 case XDP_TX:
d4455169 4031 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4032 break;
4033 }
d4455169
JF
4034 return XDP_DROP;
4035 }
4036 }
4037 return XDP_PASS;
6103aa96 4038out_redir:
6103aa96
JF
4039 kfree_skb(skb);
4040 return XDP_DROP;
d4455169 4041}
7c497478 4042EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4043
ae78dbfa 4044static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4045{
b0e28f1e 4046 int ret;
1da177e4 4047
588f0330 4048 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4049
cf66ba58 4050 trace_netif_rx(skb);
d4455169
JF
4051
4052 if (static_key_false(&generic_xdp_needed)) {
bbbe211c
JF
4053 int ret;
4054
4055 preempt_disable();
4056 rcu_read_lock();
4057 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4058 rcu_read_unlock();
4059 preempt_enable();
d4455169 4060
6103aa96
JF
4061 /* Consider XDP consuming the packet a success from
4062 * the netdev point of view we do not want to count
4063 * this as an error.
4064 */
d4455169 4065 if (ret != XDP_PASS)
6103aa96 4066 return NET_RX_SUCCESS;
d4455169
JF
4067 }
4068
df334545 4069#ifdef CONFIG_RPS
c5905afb 4070 if (static_key_false(&rps_needed)) {
fec5e652 4071 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4072 int cpu;
4073
cece1945 4074 preempt_disable();
b0e28f1e 4075 rcu_read_lock();
fec5e652
TH
4076
4077 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4078 if (cpu < 0)
4079 cpu = smp_processor_id();
fec5e652
TH
4080
4081 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4082
b0e28f1e 4083 rcu_read_unlock();
cece1945 4084 preempt_enable();
adc9300e
ED
4085 } else
4086#endif
fec5e652
TH
4087 {
4088 unsigned int qtail;
f4563a75 4089
fec5e652
TH
4090 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4091 put_cpu();
4092 }
b0e28f1e 4093 return ret;
1da177e4 4094}
ae78dbfa
BH
4095
4096/**
4097 * netif_rx - post buffer to the network code
4098 * @skb: buffer to post
4099 *
4100 * This function receives a packet from a device driver and queues it for
4101 * the upper (protocol) levels to process. It always succeeds. The buffer
4102 * may be dropped during processing for congestion control or by the
4103 * protocol layers.
4104 *
4105 * return values:
4106 * NET_RX_SUCCESS (no congestion)
4107 * NET_RX_DROP (packet was dropped)
4108 *
4109 */
4110
4111int netif_rx(struct sk_buff *skb)
4112{
4113 trace_netif_rx_entry(skb);
4114
4115 return netif_rx_internal(skb);
4116}
d1b19dff 4117EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4118
4119int netif_rx_ni(struct sk_buff *skb)
4120{
4121 int err;
4122
ae78dbfa
BH
4123 trace_netif_rx_ni_entry(skb);
4124
1da177e4 4125 preempt_disable();
ae78dbfa 4126 err = netif_rx_internal(skb);
1da177e4
LT
4127 if (local_softirq_pending())
4128 do_softirq();
4129 preempt_enable();
4130
4131 return err;
4132}
1da177e4
LT
4133EXPORT_SYMBOL(netif_rx_ni);
4134
0766f788 4135static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4136{
903ceff7 4137 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4138
4139 if (sd->completion_queue) {
4140 struct sk_buff *clist;
4141
4142 local_irq_disable();
4143 clist = sd->completion_queue;
4144 sd->completion_queue = NULL;
4145 local_irq_enable();
4146
4147 while (clist) {
4148 struct sk_buff *skb = clist;
f4563a75 4149
1da177e4
LT
4150 clist = clist->next;
4151
63354797 4152 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4153 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4154 trace_consume_skb(skb);
4155 else
4156 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4157
4158 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4159 __kfree_skb(skb);
4160 else
4161 __kfree_skb_defer(skb);
1da177e4 4162 }
15fad714
JDB
4163
4164 __kfree_skb_flush();
1da177e4
LT
4165 }
4166
4167 if (sd->output_queue) {
37437bb2 4168 struct Qdisc *head;
1da177e4
LT
4169
4170 local_irq_disable();
4171 head = sd->output_queue;
4172 sd->output_queue = NULL;
a9cbd588 4173 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4174 local_irq_enable();
4175
4176 while (head) {
37437bb2 4177 struct Qdisc *q = head;
6b3ba914 4178 spinlock_t *root_lock = NULL;
37437bb2 4179
1da177e4
LT
4180 head = head->next_sched;
4181
6b3ba914
JF
4182 if (!(q->flags & TCQ_F_NOLOCK)) {
4183 root_lock = qdisc_lock(q);
4184 spin_lock(root_lock);
4185 }
3bcb846c
ED
4186 /* We need to make sure head->next_sched is read
4187 * before clearing __QDISC_STATE_SCHED
4188 */
4189 smp_mb__before_atomic();
4190 clear_bit(__QDISC_STATE_SCHED, &q->state);
4191 qdisc_run(q);
6b3ba914
JF
4192 if (root_lock)
4193 spin_unlock(root_lock);
1da177e4
LT
4194 }
4195 }
4196}
4197
181402a5 4198#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4199/* This hook is defined here for ATM LANE */
4200int (*br_fdb_test_addr_hook)(struct net_device *dev,
4201 unsigned char *addr) __read_mostly;
4fb019a0 4202EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4203#endif
1da177e4 4204
1f211a1b
DB
4205static inline struct sk_buff *
4206sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4207 struct net_device *orig_dev)
f697c3e8 4208{
e7582bab 4209#ifdef CONFIG_NET_CLS_ACT
46209401 4210 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4211 struct tcf_result cl_res;
24824a09 4212
c9e99fd0
DB
4213 /* If there's at least one ingress present somewhere (so
4214 * we get here via enabled static key), remaining devices
4215 * that are not configured with an ingress qdisc will bail
d2788d34 4216 * out here.
c9e99fd0 4217 */
46209401 4218 if (!miniq)
4577139b 4219 return skb;
46209401 4220
f697c3e8
HX
4221 if (*pt_prev) {
4222 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4223 *pt_prev = NULL;
1da177e4
LT
4224 }
4225
3365495c 4226 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4227 skb->tc_at_ingress = 1;
46209401 4228 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4229
46209401 4230 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
d2788d34
DB
4231 case TC_ACT_OK:
4232 case TC_ACT_RECLASSIFY:
4233 skb->tc_index = TC_H_MIN(cl_res.classid);
4234 break;
4235 case TC_ACT_SHOT:
46209401 4236 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4237 kfree_skb(skb);
4238 return NULL;
d2788d34
DB
4239 case TC_ACT_STOLEN:
4240 case TC_ACT_QUEUED:
e25ea21f 4241 case TC_ACT_TRAP:
8a3a4c6e 4242 consume_skb(skb);
d2788d34 4243 return NULL;
27b29f63
AS
4244 case TC_ACT_REDIRECT:
4245 /* skb_mac_header check was done by cls/act_bpf, so
4246 * we can safely push the L2 header back before
4247 * redirecting to another netdev
4248 */
4249 __skb_push(skb, skb->mac_len);
4250 skb_do_redirect(skb);
4251 return NULL;
d2788d34
DB
4252 default:
4253 break;
f697c3e8 4254 }
e7582bab 4255#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4256 return skb;
4257}
1da177e4 4258
24b27fc4
MB
4259/**
4260 * netdev_is_rx_handler_busy - check if receive handler is registered
4261 * @dev: device to check
4262 *
4263 * Check if a receive handler is already registered for a given device.
4264 * Return true if there one.
4265 *
4266 * The caller must hold the rtnl_mutex.
4267 */
4268bool netdev_is_rx_handler_busy(struct net_device *dev)
4269{
4270 ASSERT_RTNL();
4271 return dev && rtnl_dereference(dev->rx_handler);
4272}
4273EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4274
ab95bfe0
JP
4275/**
4276 * netdev_rx_handler_register - register receive handler
4277 * @dev: device to register a handler for
4278 * @rx_handler: receive handler to register
93e2c32b 4279 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4280 *
e227867f 4281 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4282 * called from __netif_receive_skb. A negative errno code is returned
4283 * on a failure.
4284 *
4285 * The caller must hold the rtnl_mutex.
8a4eb573
JP
4286 *
4287 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
4288 */
4289int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
4290 rx_handler_func_t *rx_handler,
4291 void *rx_handler_data)
ab95bfe0 4292{
1b7cd004 4293 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
4294 return -EBUSY;
4295
00cfec37 4296 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4297 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4298 rcu_assign_pointer(dev->rx_handler, rx_handler);
4299
4300 return 0;
4301}
4302EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4303
4304/**
4305 * netdev_rx_handler_unregister - unregister receive handler
4306 * @dev: device to unregister a handler from
4307 *
166ec369 4308 * Unregister a receive handler from a device.
ab95bfe0
JP
4309 *
4310 * The caller must hold the rtnl_mutex.
4311 */
4312void netdev_rx_handler_unregister(struct net_device *dev)
4313{
4314
4315 ASSERT_RTNL();
a9b3cd7f 4316 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4317 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4318 * section has a guarantee to see a non NULL rx_handler_data
4319 * as well.
4320 */
4321 synchronize_net();
a9b3cd7f 4322 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4323}
4324EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4325
b4b9e355
MG
4326/*
4327 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4328 * the special handling of PFMEMALLOC skbs.
4329 */
4330static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4331{
4332 switch (skb->protocol) {
2b8837ae
JP
4333 case htons(ETH_P_ARP):
4334 case htons(ETH_P_IP):
4335 case htons(ETH_P_IPV6):
4336 case htons(ETH_P_8021Q):
4337 case htons(ETH_P_8021AD):
b4b9e355
MG
4338 return true;
4339 default:
4340 return false;
4341 }
4342}
4343
e687ad60
PN
4344static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4345 int *ret, struct net_device *orig_dev)
4346{
e7582bab 4347#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4348 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4349 int ingress_retval;
4350
e687ad60
PN
4351 if (*pt_prev) {
4352 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4353 *pt_prev = NULL;
4354 }
4355
2c1e2703
AC
4356 rcu_read_lock();
4357 ingress_retval = nf_hook_ingress(skb);
4358 rcu_read_unlock();
4359 return ingress_retval;
e687ad60 4360 }
e7582bab 4361#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4362 return 0;
4363}
e687ad60 4364
9754e293 4365static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4366{
4367 struct packet_type *ptype, *pt_prev;
ab95bfe0 4368 rx_handler_func_t *rx_handler;
f2ccd8fa 4369 struct net_device *orig_dev;
8a4eb573 4370 bool deliver_exact = false;
1da177e4 4371 int ret = NET_RX_DROP;
252e3346 4372 __be16 type;
1da177e4 4373
588f0330 4374 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4375
cf66ba58 4376 trace_netif_receive_skb(skb);
9b22ea56 4377
cc9bd5ce 4378 orig_dev = skb->dev;
8f903c70 4379
c1d2bbe1 4380 skb_reset_network_header(skb);
fda55eca
ED
4381 if (!skb_transport_header_was_set(skb))
4382 skb_reset_transport_header(skb);
0b5c9db1 4383 skb_reset_mac_len(skb);
1da177e4
LT
4384
4385 pt_prev = NULL;
4386
63d8ea7f 4387another_round:
b6858177 4388 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4389
4390 __this_cpu_inc(softnet_data.processed);
4391
8ad227ff
PM
4392 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4393 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4394 skb = skb_vlan_untag(skb);
bcc6d479 4395 if (unlikely(!skb))
2c17d27c 4396 goto out;
bcc6d479
JP
4397 }
4398
e7246e12
WB
4399 if (skb_skip_tc_classify(skb))
4400 goto skip_classify;
1da177e4 4401
9754e293 4402 if (pfmemalloc)
b4b9e355
MG
4403 goto skip_taps;
4404
1da177e4 4405 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4406 if (pt_prev)
4407 ret = deliver_skb(skb, pt_prev, orig_dev);
4408 pt_prev = ptype;
4409 }
4410
4411 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4412 if (pt_prev)
4413 ret = deliver_skb(skb, pt_prev, orig_dev);
4414 pt_prev = ptype;
1da177e4
LT
4415 }
4416
b4b9e355 4417skip_taps:
1cf51900 4418#ifdef CONFIG_NET_INGRESS
4577139b 4419 if (static_key_false(&ingress_needed)) {
1f211a1b 4420 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4421 if (!skb)
2c17d27c 4422 goto out;
e687ad60
PN
4423
4424 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4425 goto out;
4577139b 4426 }
1cf51900 4427#endif
a5135bcf 4428 skb_reset_tc(skb);
e7246e12 4429skip_classify:
9754e293 4430 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4431 goto drop;
4432
df8a39de 4433 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4434 if (pt_prev) {
4435 ret = deliver_skb(skb, pt_prev, orig_dev);
4436 pt_prev = NULL;
4437 }
48cc32d3 4438 if (vlan_do_receive(&skb))
2425717b
JF
4439 goto another_round;
4440 else if (unlikely(!skb))
2c17d27c 4441 goto out;
2425717b
JF
4442 }
4443
48cc32d3 4444 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4445 if (rx_handler) {
4446 if (pt_prev) {
4447 ret = deliver_skb(skb, pt_prev, orig_dev);
4448 pt_prev = NULL;
4449 }
8a4eb573
JP
4450 switch (rx_handler(&skb)) {
4451 case RX_HANDLER_CONSUMED:
3bc1b1ad 4452 ret = NET_RX_SUCCESS;
2c17d27c 4453 goto out;
8a4eb573 4454 case RX_HANDLER_ANOTHER:
63d8ea7f 4455 goto another_round;
8a4eb573
JP
4456 case RX_HANDLER_EXACT:
4457 deliver_exact = true;
4458 case RX_HANDLER_PASS:
4459 break;
4460 default:
4461 BUG();
4462 }
ab95bfe0 4463 }
1da177e4 4464
df8a39de
JP
4465 if (unlikely(skb_vlan_tag_present(skb))) {
4466 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4467 skb->pkt_type = PACKET_OTHERHOST;
4468 /* Note: we might in the future use prio bits
4469 * and set skb->priority like in vlan_do_receive()
4470 * For the time being, just ignore Priority Code Point
4471 */
4472 skb->vlan_tci = 0;
4473 }
48cc32d3 4474
7866a621
SN
4475 type = skb->protocol;
4476
63d8ea7f 4477 /* deliver only exact match when indicated */
7866a621
SN
4478 if (likely(!deliver_exact)) {
4479 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4480 &ptype_base[ntohs(type) &
4481 PTYPE_HASH_MASK]);
4482 }
1f3c8804 4483
7866a621
SN
4484 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4485 &orig_dev->ptype_specific);
4486
4487 if (unlikely(skb->dev != orig_dev)) {
4488 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4489 &skb->dev->ptype_specific);
1da177e4
LT
4490 }
4491
4492 if (pt_prev) {
1f8b977a 4493 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 4494 goto drop;
1080e512
MT
4495 else
4496 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4497 } else {
b4b9e355 4498drop:
6e7333d3
JW
4499 if (!deliver_exact)
4500 atomic_long_inc(&skb->dev->rx_dropped);
4501 else
4502 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4503 kfree_skb(skb);
4504 /* Jamal, now you will not able to escape explaining
4505 * me how you were going to use this. :-)
4506 */
4507 ret = NET_RX_DROP;
4508 }
4509
2c17d27c 4510out:
9754e293
DM
4511 return ret;
4512}
4513
1c601d82
JDB
4514/**
4515 * netif_receive_skb_core - special purpose version of netif_receive_skb
4516 * @skb: buffer to process
4517 *
4518 * More direct receive version of netif_receive_skb(). It should
4519 * only be used by callers that have a need to skip RPS and Generic XDP.
4520 * Caller must also take care of handling if (page_is_)pfmemalloc.
4521 *
4522 * This function may only be called from softirq context and interrupts
4523 * should be enabled.
4524 *
4525 * Return values (usually ignored):
4526 * NET_RX_SUCCESS: no congestion
4527 * NET_RX_DROP: packet was dropped
4528 */
4529int netif_receive_skb_core(struct sk_buff *skb)
4530{
4531 int ret;
4532
4533 rcu_read_lock();
4534 ret = __netif_receive_skb_core(skb, false);
4535 rcu_read_unlock();
4536
4537 return ret;
4538}
4539EXPORT_SYMBOL(netif_receive_skb_core);
4540
9754e293
DM
4541static int __netif_receive_skb(struct sk_buff *skb)
4542{
4543 int ret;
4544
4545 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 4546 unsigned int noreclaim_flag;
9754e293
DM
4547
4548 /*
4549 * PFMEMALLOC skbs are special, they should
4550 * - be delivered to SOCK_MEMALLOC sockets only
4551 * - stay away from userspace
4552 * - have bounded memory usage
4553 *
4554 * Use PF_MEMALLOC as this saves us from propagating the allocation
4555 * context down to all allocation sites.
4556 */
f1083048 4557 noreclaim_flag = memalloc_noreclaim_save();
9754e293 4558 ret = __netif_receive_skb_core(skb, true);
f1083048 4559 memalloc_noreclaim_restore(noreclaim_flag);
9754e293
DM
4560 } else
4561 ret = __netif_receive_skb_core(skb, false);
4562
1da177e4
LT
4563 return ret;
4564}
0a9627f2 4565
f4e63525 4566static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 4567{
58038695 4568 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
4569 struct bpf_prog *new = xdp->prog;
4570 int ret = 0;
4571
4572 switch (xdp->command) {
58038695 4573 case XDP_SETUP_PROG:
b5cdae32
DM
4574 rcu_assign_pointer(dev->xdp_prog, new);
4575 if (old)
4576 bpf_prog_put(old);
4577
4578 if (old && !new) {
4579 static_key_slow_dec(&generic_xdp_needed);
4580 } else if (new && !old) {
4581 static_key_slow_inc(&generic_xdp_needed);
4582 dev_disable_lro(dev);
56f5aa77 4583 dev_disable_gro_hw(dev);
b5cdae32
DM
4584 }
4585 break;
b5cdae32
DM
4586
4587 case XDP_QUERY_PROG:
58038695
MKL
4588 xdp->prog_attached = !!old;
4589 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
4590 break;
4591
4592 default:
4593 ret = -EINVAL;
4594 break;
4595 }
4596
4597 return ret;
4598}
4599
ae78dbfa 4600static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4601{
2c17d27c
JA
4602 int ret;
4603
588f0330 4604 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4605
c1f19b51
RC
4606 if (skb_defer_rx_timestamp(skb))
4607 return NET_RX_SUCCESS;
4608
b5cdae32 4609 if (static_key_false(&generic_xdp_needed)) {
bbbe211c 4610 int ret;
b5cdae32 4611
bbbe211c
JF
4612 preempt_disable();
4613 rcu_read_lock();
4614 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4615 rcu_read_unlock();
4616 preempt_enable();
4617
4618 if (ret != XDP_PASS)
d4455169 4619 return NET_RX_DROP;
b5cdae32
DM
4620 }
4621
bbbe211c 4622 rcu_read_lock();
df334545 4623#ifdef CONFIG_RPS
c5905afb 4624 if (static_key_false(&rps_needed)) {
3b098e2d 4625 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4626 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4627
3b098e2d
ED
4628 if (cpu >= 0) {
4629 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4630 rcu_read_unlock();
adc9300e 4631 return ret;
3b098e2d 4632 }
fec5e652 4633 }
1e94d72f 4634#endif
2c17d27c
JA
4635 ret = __netif_receive_skb(skb);
4636 rcu_read_unlock();
4637 return ret;
0a9627f2 4638}
ae78dbfa
BH
4639
4640/**
4641 * netif_receive_skb - process receive buffer from network
4642 * @skb: buffer to process
4643 *
4644 * netif_receive_skb() is the main receive data processing function.
4645 * It always succeeds. The buffer may be dropped during processing
4646 * for congestion control or by the protocol layers.
4647 *
4648 * This function may only be called from softirq context and interrupts
4649 * should be enabled.
4650 *
4651 * Return values (usually ignored):
4652 * NET_RX_SUCCESS: no congestion
4653 * NET_RX_DROP: packet was dropped
4654 */
04eb4489 4655int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4656{
4657 trace_netif_receive_skb_entry(skb);
4658
4659 return netif_receive_skb_internal(skb);
4660}
04eb4489 4661EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4662
41852497 4663DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4664
4665/* Network device is going away, flush any packets still pending */
4666static void flush_backlog(struct work_struct *work)
6e583ce5 4667{
6e583ce5 4668 struct sk_buff *skb, *tmp;
145dd5f9
PA
4669 struct softnet_data *sd;
4670
4671 local_bh_disable();
4672 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4673
145dd5f9 4674 local_irq_disable();
e36fa2f7 4675 rps_lock(sd);
6e7676c1 4676 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4677 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4678 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4679 kfree_skb(skb);
76cc8b13 4680 input_queue_head_incr(sd);
6e583ce5 4681 }
6e7676c1 4682 }
e36fa2f7 4683 rps_unlock(sd);
145dd5f9 4684 local_irq_enable();
6e7676c1
CG
4685
4686 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4687 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4688 __skb_unlink(skb, &sd->process_queue);
4689 kfree_skb(skb);
76cc8b13 4690 input_queue_head_incr(sd);
6e7676c1
CG
4691 }
4692 }
145dd5f9
PA
4693 local_bh_enable();
4694}
4695
41852497 4696static void flush_all_backlogs(void)
145dd5f9
PA
4697{
4698 unsigned int cpu;
4699
4700 get_online_cpus();
4701
41852497
ED
4702 for_each_online_cpu(cpu)
4703 queue_work_on(cpu, system_highpri_wq,
4704 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4705
4706 for_each_online_cpu(cpu)
41852497 4707 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4708
4709 put_online_cpus();
6e583ce5
SH
4710}
4711
d565b0a1
HX
4712static int napi_gro_complete(struct sk_buff *skb)
4713{
22061d80 4714 struct packet_offload *ptype;
d565b0a1 4715 __be16 type = skb->protocol;
22061d80 4716 struct list_head *head = &offload_base;
d565b0a1
HX
4717 int err = -ENOENT;
4718
c3c7c254
ED
4719 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4720
fc59f9a3
HX
4721 if (NAPI_GRO_CB(skb)->count == 1) {
4722 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4723 goto out;
fc59f9a3 4724 }
d565b0a1
HX
4725
4726 rcu_read_lock();
4727 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4728 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4729 continue;
4730
299603e8 4731 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4732 break;
4733 }
4734 rcu_read_unlock();
4735
4736 if (err) {
4737 WARN_ON(&ptype->list == head);
4738 kfree_skb(skb);
4739 return NET_RX_SUCCESS;
4740 }
4741
4742out:
ae78dbfa 4743 return netif_receive_skb_internal(skb);
d565b0a1
HX
4744}
4745
2e71a6f8
ED
4746/* napi->gro_list contains packets ordered by age.
4747 * youngest packets at the head of it.
4748 * Complete skbs in reverse order to reduce latencies.
4749 */
4750void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4751{
2e71a6f8 4752 struct sk_buff *skb, *prev = NULL;
d565b0a1 4753
2e71a6f8
ED
4754 /* scan list and build reverse chain */
4755 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4756 skb->prev = prev;
4757 prev = skb;
4758 }
4759
4760 for (skb = prev; skb; skb = prev) {
d565b0a1 4761 skb->next = NULL;
2e71a6f8
ED
4762
4763 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4764 return;
4765
4766 prev = skb->prev;
d565b0a1 4767 napi_gro_complete(skb);
2e71a6f8 4768 napi->gro_count--;
d565b0a1
HX
4769 }
4770
4771 napi->gro_list = NULL;
4772}
86cac58b 4773EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4774
89c5fa33
ED
4775static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4776{
4777 struct sk_buff *p;
4778 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4779 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4780
4781 for (p = napi->gro_list; p; p = p->next) {
4782 unsigned long diffs;
4783
0b4cec8c
TH
4784 NAPI_GRO_CB(p)->flush = 0;
4785
4786 if (hash != skb_get_hash_raw(p)) {
4787 NAPI_GRO_CB(p)->same_flow = 0;
4788 continue;
4789 }
4790
89c5fa33
ED
4791 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4792 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4793 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 4794 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
4795 if (maclen == ETH_HLEN)
4796 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4797 skb_mac_header(skb));
89c5fa33
ED
4798 else if (!diffs)
4799 diffs = memcmp(skb_mac_header(p),
a50e233c 4800 skb_mac_header(skb),
89c5fa33
ED
4801 maclen);
4802 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4803 }
4804}
4805
299603e8
JC
4806static void skb_gro_reset_offset(struct sk_buff *skb)
4807{
4808 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4809 const skb_frag_t *frag0 = &pinfo->frags[0];
4810
4811 NAPI_GRO_CB(skb)->data_offset = 0;
4812 NAPI_GRO_CB(skb)->frag0 = NULL;
4813 NAPI_GRO_CB(skb)->frag0_len = 0;
4814
4815 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4816 pinfo->nr_frags &&
4817 !PageHighMem(skb_frag_page(frag0))) {
4818 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
4819 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4820 skb_frag_size(frag0),
4821 skb->end - skb->tail);
89c5fa33
ED
4822 }
4823}
4824
a50e233c
ED
4825static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4826{
4827 struct skb_shared_info *pinfo = skb_shinfo(skb);
4828
4829 BUG_ON(skb->end - skb->tail < grow);
4830
4831 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4832
4833 skb->data_len -= grow;
4834 skb->tail += grow;
4835
4836 pinfo->frags[0].page_offset += grow;
4837 skb_frag_size_sub(&pinfo->frags[0], grow);
4838
4839 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4840 skb_frag_unref(skb, 0);
4841 memmove(pinfo->frags, pinfo->frags + 1,
4842 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4843 }
4844}
4845
bb728820 4846static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4847{
4848 struct sk_buff **pp = NULL;
22061d80 4849 struct packet_offload *ptype;
d565b0a1 4850 __be16 type = skb->protocol;
22061d80 4851 struct list_head *head = &offload_base;
0da2afd5 4852 int same_flow;
5b252f0c 4853 enum gro_result ret;
a50e233c 4854 int grow;
d565b0a1 4855
b5cdae32 4856 if (netif_elide_gro(skb->dev))
d565b0a1
HX
4857 goto normal;
4858
89c5fa33
ED
4859 gro_list_prepare(napi, skb);
4860
d565b0a1
HX
4861 rcu_read_lock();
4862 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4863 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4864 continue;
4865
86911732 4866 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4867 skb_reset_mac_len(skb);
d565b0a1 4868 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 4869 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 4870 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4871 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4872 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4873 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4874 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4875 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4876
662880f4
TH
4877 /* Setup for GRO checksum validation */
4878 switch (skb->ip_summed) {
4879 case CHECKSUM_COMPLETE:
4880 NAPI_GRO_CB(skb)->csum = skb->csum;
4881 NAPI_GRO_CB(skb)->csum_valid = 1;
4882 NAPI_GRO_CB(skb)->csum_cnt = 0;
4883 break;
4884 case CHECKSUM_UNNECESSARY:
4885 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4886 NAPI_GRO_CB(skb)->csum_valid = 0;
4887 break;
4888 default:
4889 NAPI_GRO_CB(skb)->csum_cnt = 0;
4890 NAPI_GRO_CB(skb)->csum_valid = 0;
4891 }
d565b0a1 4892
f191a1d1 4893 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4894 break;
4895 }
4896 rcu_read_unlock();
4897
4898 if (&ptype->list == head)
4899 goto normal;
4900
25393d3f
SK
4901 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4902 ret = GRO_CONSUMED;
4903 goto ok;
4904 }
4905
0da2afd5 4906 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4907 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4908
d565b0a1
HX
4909 if (pp) {
4910 struct sk_buff *nskb = *pp;
4911
4912 *pp = nskb->next;
4913 nskb->next = NULL;
4914 napi_gro_complete(nskb);
4ae5544f 4915 napi->gro_count--;
d565b0a1
HX
4916 }
4917
0da2afd5 4918 if (same_flow)
d565b0a1
HX
4919 goto ok;
4920
600adc18 4921 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4922 goto normal;
d565b0a1 4923
600adc18
ED
4924 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4925 struct sk_buff *nskb = napi->gro_list;
4926
4927 /* locate the end of the list to select the 'oldest' flow */
4928 while (nskb->next) {
4929 pp = &nskb->next;
4930 nskb = *pp;
4931 }
4932 *pp = NULL;
4933 nskb->next = NULL;
4934 napi_gro_complete(nskb);
4935 } else {
4936 napi->gro_count++;
4937 }
d565b0a1 4938 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4939 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4940 NAPI_GRO_CB(skb)->last = skb;
86911732 4941 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4942 skb->next = napi->gro_list;
4943 napi->gro_list = skb;
5d0d9be8 4944 ret = GRO_HELD;
d565b0a1 4945
ad0f9904 4946pull:
a50e233c
ED
4947 grow = skb_gro_offset(skb) - skb_headlen(skb);
4948 if (grow > 0)
4949 gro_pull_from_frag0(skb, grow);
d565b0a1 4950ok:
5d0d9be8 4951 return ret;
d565b0a1
HX
4952
4953normal:
ad0f9904
HX
4954 ret = GRO_NORMAL;
4955 goto pull;
5d38a079 4956}
96e93eab 4957
bf5a755f
JC
4958struct packet_offload *gro_find_receive_by_type(__be16 type)
4959{
4960 struct list_head *offload_head = &offload_base;
4961 struct packet_offload *ptype;
4962
4963 list_for_each_entry_rcu(ptype, offload_head, list) {
4964 if (ptype->type != type || !ptype->callbacks.gro_receive)
4965 continue;
4966 return ptype;
4967 }
4968 return NULL;
4969}
e27a2f83 4970EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4971
4972struct packet_offload *gro_find_complete_by_type(__be16 type)
4973{
4974 struct list_head *offload_head = &offload_base;
4975 struct packet_offload *ptype;
4976
4977 list_for_each_entry_rcu(ptype, offload_head, list) {
4978 if (ptype->type != type || !ptype->callbacks.gro_complete)
4979 continue;
4980 return ptype;
4981 }
4982 return NULL;
4983}
e27a2f83 4984EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4985
e44699d2
MK
4986static void napi_skb_free_stolen_head(struct sk_buff *skb)
4987{
4988 skb_dst_drop(skb);
4989 secpath_reset(skb);
4990 kmem_cache_free(skbuff_head_cache, skb);
4991}
4992
bb728820 4993static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4994{
5d0d9be8
HX
4995 switch (ret) {
4996 case GRO_NORMAL:
ae78dbfa 4997 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4998 ret = GRO_DROP;
4999 break;
5d38a079 5000
5d0d9be8 5001 case GRO_DROP:
5d38a079
HX
5002 kfree_skb(skb);
5003 break;
5b252f0c 5004
daa86548 5005 case GRO_MERGED_FREE:
e44699d2
MK
5006 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5007 napi_skb_free_stolen_head(skb);
5008 else
d7e8883c 5009 __kfree_skb(skb);
daa86548
ED
5010 break;
5011
5b252f0c
BH
5012 case GRO_HELD:
5013 case GRO_MERGED:
25393d3f 5014 case GRO_CONSUMED:
5b252f0c 5015 break;
5d38a079
HX
5016 }
5017
c7c4b3b6 5018 return ret;
5d0d9be8 5019}
5d0d9be8 5020
c7c4b3b6 5021gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 5022{
93f93a44 5023 skb_mark_napi_id(skb, napi);
ae78dbfa 5024 trace_napi_gro_receive_entry(skb);
86911732 5025
a50e233c
ED
5026 skb_gro_reset_offset(skb);
5027
89c5fa33 5028 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
5029}
5030EXPORT_SYMBOL(napi_gro_receive);
5031
d0c2b0d2 5032static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 5033{
93a35f59
ED
5034 if (unlikely(skb->pfmemalloc)) {
5035 consume_skb(skb);
5036 return;
5037 }
96e93eab 5038 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
5039 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5040 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 5041 skb->vlan_tci = 0;
66c46d74 5042 skb->dev = napi->dev;
6d152e23 5043 skb->skb_iif = 0;
c3caf119
JC
5044 skb->encapsulation = 0;
5045 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 5046 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
f991bb9d 5047 secpath_reset(skb);
96e93eab
HX
5048
5049 napi->skb = skb;
5050}
96e93eab 5051
76620aaf 5052struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 5053{
5d38a079 5054 struct sk_buff *skb = napi->skb;
5d38a079
HX
5055
5056 if (!skb) {
fd11a83d 5057 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
5058 if (skb) {
5059 napi->skb = skb;
5060 skb_mark_napi_id(skb, napi);
5061 }
80595d59 5062 }
96e93eab
HX
5063 return skb;
5064}
76620aaf 5065EXPORT_SYMBOL(napi_get_frags);
96e93eab 5066
a50e233c
ED
5067static gro_result_t napi_frags_finish(struct napi_struct *napi,
5068 struct sk_buff *skb,
5069 gro_result_t ret)
96e93eab 5070{
5d0d9be8
HX
5071 switch (ret) {
5072 case GRO_NORMAL:
a50e233c
ED
5073 case GRO_HELD:
5074 __skb_push(skb, ETH_HLEN);
5075 skb->protocol = eth_type_trans(skb, skb->dev);
5076 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 5077 ret = GRO_DROP;
86911732 5078 break;
5d38a079 5079
5d0d9be8 5080 case GRO_DROP:
5d0d9be8
HX
5081 napi_reuse_skb(napi, skb);
5082 break;
5b252f0c 5083
e44699d2
MK
5084 case GRO_MERGED_FREE:
5085 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5086 napi_skb_free_stolen_head(skb);
5087 else
5088 napi_reuse_skb(napi, skb);
5089 break;
5090
5b252f0c 5091 case GRO_MERGED:
25393d3f 5092 case GRO_CONSUMED:
5b252f0c 5093 break;
5d0d9be8 5094 }
5d38a079 5095
c7c4b3b6 5096 return ret;
5d38a079 5097}
5d0d9be8 5098
a50e233c
ED
5099/* Upper GRO stack assumes network header starts at gro_offset=0
5100 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5101 * We copy ethernet header into skb->data to have a common layout.
5102 */
4adb9c4a 5103static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
5104{
5105 struct sk_buff *skb = napi->skb;
a50e233c
ED
5106 const struct ethhdr *eth;
5107 unsigned int hlen = sizeof(*eth);
76620aaf
HX
5108
5109 napi->skb = NULL;
5110
a50e233c
ED
5111 skb_reset_mac_header(skb);
5112 skb_gro_reset_offset(skb);
5113
5114 eth = skb_gro_header_fast(skb, 0);
5115 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5116 eth = skb_gro_header_slow(skb, hlen, 0);
5117 if (unlikely(!eth)) {
4da46ceb
AC
5118 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5119 __func__, napi->dev->name);
a50e233c
ED
5120 napi_reuse_skb(napi, skb);
5121 return NULL;
5122 }
5123 } else {
5124 gro_pull_from_frag0(skb, hlen);
5125 NAPI_GRO_CB(skb)->frag0 += hlen;
5126 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 5127 }
a50e233c
ED
5128 __skb_pull(skb, hlen);
5129
5130 /*
5131 * This works because the only protocols we care about don't require
5132 * special handling.
5133 * We'll fix it up properly in napi_frags_finish()
5134 */
5135 skb->protocol = eth->h_proto;
76620aaf 5136
76620aaf
HX
5137 return skb;
5138}
76620aaf 5139
c7c4b3b6 5140gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 5141{
76620aaf 5142 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
5143
5144 if (!skb)
c7c4b3b6 5145 return GRO_DROP;
5d0d9be8 5146
ae78dbfa
BH
5147 trace_napi_gro_frags_entry(skb);
5148
89c5fa33 5149 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 5150}
5d38a079
HX
5151EXPORT_SYMBOL(napi_gro_frags);
5152
573e8fca
TH
5153/* Compute the checksum from gro_offset and return the folded value
5154 * after adding in any pseudo checksum.
5155 */
5156__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5157{
5158 __wsum wsum;
5159 __sum16 sum;
5160
5161 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5162
5163 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5164 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5165 if (likely(!sum)) {
5166 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5167 !skb->csum_complete_sw)
5168 netdev_rx_csum_fault(skb->dev);
5169 }
5170
5171 NAPI_GRO_CB(skb)->csum = wsum;
5172 NAPI_GRO_CB(skb)->csum_valid = 1;
5173
5174 return sum;
5175}
5176EXPORT_SYMBOL(__skb_gro_checksum_complete);
5177
773fc8f6 5178static void net_rps_send_ipi(struct softnet_data *remsd)
5179{
5180#ifdef CONFIG_RPS
5181 while (remsd) {
5182 struct softnet_data *next = remsd->rps_ipi_next;
5183
5184 if (cpu_online(remsd->cpu))
5185 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5186 remsd = next;
5187 }
5188#endif
5189}
5190
e326bed2 5191/*
855abcf0 5192 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
5193 * Note: called with local irq disabled, but exits with local irq enabled.
5194 */
5195static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5196{
5197#ifdef CONFIG_RPS
5198 struct softnet_data *remsd = sd->rps_ipi_list;
5199
5200 if (remsd) {
5201 sd->rps_ipi_list = NULL;
5202
5203 local_irq_enable();
5204
5205 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 5206 net_rps_send_ipi(remsd);
e326bed2
ED
5207 } else
5208#endif
5209 local_irq_enable();
5210}
5211
d75b1ade
ED
5212static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5213{
5214#ifdef CONFIG_RPS
5215 return sd->rps_ipi_list != NULL;
5216#else
5217 return false;
5218#endif
5219}
5220
bea3348e 5221static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 5222{
eecfd7c4 5223 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
5224 bool again = true;
5225 int work = 0;
1da177e4 5226
e326bed2
ED
5227 /* Check if we have pending ipi, its better to send them now,
5228 * not waiting net_rx_action() end.
5229 */
d75b1ade 5230 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
5231 local_irq_disable();
5232 net_rps_action_and_irq_enable(sd);
5233 }
d75b1ade 5234
3d48b53f 5235 napi->weight = dev_rx_weight;
145dd5f9 5236 while (again) {
1da177e4 5237 struct sk_buff *skb;
6e7676c1
CG
5238
5239 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 5240 rcu_read_lock();
6e7676c1 5241 __netif_receive_skb(skb);
2c17d27c 5242 rcu_read_unlock();
76cc8b13 5243 input_queue_head_incr(sd);
145dd5f9 5244 if (++work >= quota)
76cc8b13 5245 return work;
145dd5f9 5246
6e7676c1 5247 }
1da177e4 5248
145dd5f9 5249 local_irq_disable();
e36fa2f7 5250 rps_lock(sd);
11ef7a89 5251 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
5252 /*
5253 * Inline a custom version of __napi_complete().
5254 * only current cpu owns and manipulates this napi,
11ef7a89
TH
5255 * and NAPI_STATE_SCHED is the only possible flag set
5256 * on backlog.
5257 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
5258 * and we dont need an smp_mb() memory barrier.
5259 */
eecfd7c4 5260 napi->state = 0;
145dd5f9
PA
5261 again = false;
5262 } else {
5263 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5264 &sd->process_queue);
bea3348e 5265 }
e36fa2f7 5266 rps_unlock(sd);
145dd5f9 5267 local_irq_enable();
6e7676c1 5268 }
1da177e4 5269
bea3348e
SH
5270 return work;
5271}
1da177e4 5272
bea3348e
SH
5273/**
5274 * __napi_schedule - schedule for receive
c4ea43c5 5275 * @n: entry to schedule
bea3348e 5276 *
bc9ad166
ED
5277 * The entry's receive function will be scheduled to run.
5278 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 5279 */
b5606c2d 5280void __napi_schedule(struct napi_struct *n)
bea3348e
SH
5281{
5282 unsigned long flags;
1da177e4 5283
bea3348e 5284 local_irq_save(flags);
903ceff7 5285 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 5286 local_irq_restore(flags);
1da177e4 5287}
bea3348e
SH
5288EXPORT_SYMBOL(__napi_schedule);
5289
39e6c820
ED
5290/**
5291 * napi_schedule_prep - check if napi can be scheduled
5292 * @n: napi context
5293 *
5294 * Test if NAPI routine is already running, and if not mark
5295 * it as running. This is used as a condition variable
5296 * insure only one NAPI poll instance runs. We also make
5297 * sure there is no pending NAPI disable.
5298 */
5299bool napi_schedule_prep(struct napi_struct *n)
5300{
5301 unsigned long val, new;
5302
5303 do {
5304 val = READ_ONCE(n->state);
5305 if (unlikely(val & NAPIF_STATE_DISABLE))
5306 return false;
5307 new = val | NAPIF_STATE_SCHED;
5308
5309 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5310 * This was suggested by Alexander Duyck, as compiler
5311 * emits better code than :
5312 * if (val & NAPIF_STATE_SCHED)
5313 * new |= NAPIF_STATE_MISSED;
5314 */
5315 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5316 NAPIF_STATE_MISSED;
5317 } while (cmpxchg(&n->state, val, new) != val);
5318
5319 return !(val & NAPIF_STATE_SCHED);
5320}
5321EXPORT_SYMBOL(napi_schedule_prep);
5322
bc9ad166
ED
5323/**
5324 * __napi_schedule_irqoff - schedule for receive
5325 * @n: entry to schedule
5326 *
5327 * Variant of __napi_schedule() assuming hard irqs are masked
5328 */
5329void __napi_schedule_irqoff(struct napi_struct *n)
5330{
5331 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5332}
5333EXPORT_SYMBOL(__napi_schedule_irqoff);
5334
364b6055 5335bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 5336{
39e6c820 5337 unsigned long flags, val, new;
d565b0a1
HX
5338
5339 /*
217f6974
ED
5340 * 1) Don't let napi dequeue from the cpu poll list
5341 * just in case its running on a different cpu.
5342 * 2) If we are busy polling, do nothing here, we have
5343 * the guarantee we will be called later.
d565b0a1 5344 */
217f6974
ED
5345 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5346 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 5347 return false;
d565b0a1 5348
3b47d303
ED
5349 if (n->gro_list) {
5350 unsigned long timeout = 0;
d75b1ade 5351
3b47d303
ED
5352 if (work_done)
5353 timeout = n->dev->gro_flush_timeout;
5354
5355 if (timeout)
5356 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5357 HRTIMER_MODE_REL_PINNED);
5358 else
5359 napi_gro_flush(n, false);
5360 }
02c1602e 5361 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
5362 /* If n->poll_list is not empty, we need to mask irqs */
5363 local_irq_save(flags);
02c1602e 5364 list_del_init(&n->poll_list);
d75b1ade
ED
5365 local_irq_restore(flags);
5366 }
39e6c820
ED
5367
5368 do {
5369 val = READ_ONCE(n->state);
5370
5371 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5372
5373 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5374
5375 /* If STATE_MISSED was set, leave STATE_SCHED set,
5376 * because we will call napi->poll() one more time.
5377 * This C code was suggested by Alexander Duyck to help gcc.
5378 */
5379 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5380 NAPIF_STATE_SCHED;
5381 } while (cmpxchg(&n->state, val, new) != val);
5382
5383 if (unlikely(val & NAPIF_STATE_MISSED)) {
5384 __napi_schedule(n);
5385 return false;
5386 }
5387
364b6055 5388 return true;
d565b0a1 5389}
3b47d303 5390EXPORT_SYMBOL(napi_complete_done);
d565b0a1 5391
af12fa6e 5392/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 5393static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
5394{
5395 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5396 struct napi_struct *napi;
5397
5398 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5399 if (napi->napi_id == napi_id)
5400 return napi;
5401
5402 return NULL;
5403}
02d62e86
ED
5404
5405#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 5406
ce6aea93 5407#define BUSY_POLL_BUDGET 8
217f6974
ED
5408
5409static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5410{
5411 int rc;
5412
39e6c820
ED
5413 /* Busy polling means there is a high chance device driver hard irq
5414 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5415 * set in napi_schedule_prep().
5416 * Since we are about to call napi->poll() once more, we can safely
5417 * clear NAPI_STATE_MISSED.
5418 *
5419 * Note: x86 could use a single "lock and ..." instruction
5420 * to perform these two clear_bit()
5421 */
5422 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
5423 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5424
5425 local_bh_disable();
5426
5427 /* All we really want here is to re-enable device interrupts.
5428 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5429 */
5430 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1e22391e 5431 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974
ED
5432 netpoll_poll_unlock(have_poll_lock);
5433 if (rc == BUSY_POLL_BUDGET)
5434 __napi_schedule(napi);
5435 local_bh_enable();
217f6974
ED
5436}
5437
7db6b048
SS
5438void napi_busy_loop(unsigned int napi_id,
5439 bool (*loop_end)(void *, unsigned long),
5440 void *loop_end_arg)
02d62e86 5441{
7db6b048 5442 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 5443 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 5444 void *have_poll_lock = NULL;
02d62e86 5445 struct napi_struct *napi;
217f6974
ED
5446
5447restart:
217f6974 5448 napi_poll = NULL;
02d62e86 5449
2a028ecb 5450 rcu_read_lock();
02d62e86 5451
545cd5e5 5452 napi = napi_by_id(napi_id);
02d62e86
ED
5453 if (!napi)
5454 goto out;
5455
217f6974
ED
5456 preempt_disable();
5457 for (;;) {
2b5cd0df
AD
5458 int work = 0;
5459
2a028ecb 5460 local_bh_disable();
217f6974
ED
5461 if (!napi_poll) {
5462 unsigned long val = READ_ONCE(napi->state);
5463
5464 /* If multiple threads are competing for this napi,
5465 * we avoid dirtying napi->state as much as we can.
5466 */
5467 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5468 NAPIF_STATE_IN_BUSY_POLL))
5469 goto count;
5470 if (cmpxchg(&napi->state, val,
5471 val | NAPIF_STATE_IN_BUSY_POLL |
5472 NAPIF_STATE_SCHED) != val)
5473 goto count;
5474 have_poll_lock = netpoll_poll_lock(napi);
5475 napi_poll = napi->poll;
5476 }
2b5cd0df
AD
5477 work = napi_poll(napi, BUSY_POLL_BUDGET);
5478 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
217f6974 5479count:
2b5cd0df 5480 if (work > 0)
7db6b048 5481 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 5482 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 5483 local_bh_enable();
02d62e86 5484
7db6b048 5485 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 5486 break;
02d62e86 5487
217f6974
ED
5488 if (unlikely(need_resched())) {
5489 if (napi_poll)
5490 busy_poll_stop(napi, have_poll_lock);
5491 preempt_enable();
5492 rcu_read_unlock();
5493 cond_resched();
7db6b048 5494 if (loop_end(loop_end_arg, start_time))
2b5cd0df 5495 return;
217f6974
ED
5496 goto restart;
5497 }
6cdf89b1 5498 cpu_relax();
217f6974
ED
5499 }
5500 if (napi_poll)
5501 busy_poll_stop(napi, have_poll_lock);
5502 preempt_enable();
02d62e86 5503out:
2a028ecb 5504 rcu_read_unlock();
02d62e86 5505}
7db6b048 5506EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
5507
5508#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 5509
149d6ad8 5510static void napi_hash_add(struct napi_struct *napi)
af12fa6e 5511{
d64b5e85
ED
5512 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5513 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5514 return;
af12fa6e 5515
52bd2d62 5516 spin_lock(&napi_hash_lock);
af12fa6e 5517
545cd5e5 5518 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 5519 do {
545cd5e5
AD
5520 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5521 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
5522 } while (napi_by_id(napi_gen_id));
5523 napi->napi_id = napi_gen_id;
af12fa6e 5524
52bd2d62
ED
5525 hlist_add_head_rcu(&napi->napi_hash_node,
5526 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5527
52bd2d62 5528 spin_unlock(&napi_hash_lock);
af12fa6e 5529}
af12fa6e
ET
5530
5531/* Warning : caller is responsible to make sure rcu grace period
5532 * is respected before freeing memory containing @napi
5533 */
34cbe27e 5534bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5535{
34cbe27e
ED
5536 bool rcu_sync_needed = false;
5537
af12fa6e
ET
5538 spin_lock(&napi_hash_lock);
5539
34cbe27e
ED
5540 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5541 rcu_sync_needed = true;
af12fa6e 5542 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5543 }
af12fa6e 5544 spin_unlock(&napi_hash_lock);
34cbe27e 5545 return rcu_sync_needed;
af12fa6e
ET
5546}
5547EXPORT_SYMBOL_GPL(napi_hash_del);
5548
3b47d303
ED
5549static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5550{
5551 struct napi_struct *napi;
5552
5553 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
5554
5555 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5556 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5557 */
5558 if (napi->gro_list && !napi_disable_pending(napi) &&
5559 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5560 __napi_schedule_irqoff(napi);
3b47d303
ED
5561
5562 return HRTIMER_NORESTART;
5563}
5564
d565b0a1
HX
5565void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5566 int (*poll)(struct napi_struct *, int), int weight)
5567{
5568 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5569 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5570 napi->timer.function = napi_watchdog;
4ae5544f 5571 napi->gro_count = 0;
d565b0a1 5572 napi->gro_list = NULL;
5d38a079 5573 napi->skb = NULL;
d565b0a1 5574 napi->poll = poll;
82dc3c63
ED
5575 if (weight > NAPI_POLL_WEIGHT)
5576 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5577 weight, dev->name);
d565b0a1
HX
5578 napi->weight = weight;
5579 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5580 napi->dev = dev;
5d38a079 5581#ifdef CONFIG_NETPOLL
d565b0a1
HX
5582 napi->poll_owner = -1;
5583#endif
5584 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5585 napi_hash_add(napi);
d565b0a1
HX
5586}
5587EXPORT_SYMBOL(netif_napi_add);
5588
3b47d303
ED
5589void napi_disable(struct napi_struct *n)
5590{
5591 might_sleep();
5592 set_bit(NAPI_STATE_DISABLE, &n->state);
5593
5594 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5595 msleep(1);
2d8bff12
NH
5596 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5597 msleep(1);
3b47d303
ED
5598
5599 hrtimer_cancel(&n->timer);
5600
5601 clear_bit(NAPI_STATE_DISABLE, &n->state);
5602}
5603EXPORT_SYMBOL(napi_disable);
5604
93d05d4a 5605/* Must be called in process context */
d565b0a1
HX
5606void netif_napi_del(struct napi_struct *napi)
5607{
93d05d4a
ED
5608 might_sleep();
5609 if (napi_hash_del(napi))
5610 synchronize_net();
d7b06636 5611 list_del_init(&napi->dev_list);
76620aaf 5612 napi_free_frags(napi);
d565b0a1 5613
289dccbe 5614 kfree_skb_list(napi->gro_list);
d565b0a1 5615 napi->gro_list = NULL;
4ae5544f 5616 napi->gro_count = 0;
d565b0a1
HX
5617}
5618EXPORT_SYMBOL(netif_napi_del);
5619
726ce70e
HX
5620static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5621{
5622 void *have;
5623 int work, weight;
5624
5625 list_del_init(&n->poll_list);
5626
5627 have = netpoll_poll_lock(n);
5628
5629 weight = n->weight;
5630
5631 /* This NAPI_STATE_SCHED test is for avoiding a race
5632 * with netpoll's poll_napi(). Only the entity which
5633 * obtains the lock and sees NAPI_STATE_SCHED set will
5634 * actually make the ->poll() call. Therefore we avoid
5635 * accidentally calling ->poll() when NAPI is not scheduled.
5636 */
5637 work = 0;
5638 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5639 work = n->poll(n, weight);
1db19db7 5640 trace_napi_poll(n, work, weight);
726ce70e
HX
5641 }
5642
5643 WARN_ON_ONCE(work > weight);
5644
5645 if (likely(work < weight))
5646 goto out_unlock;
5647
5648 /* Drivers must not modify the NAPI state if they
5649 * consume the entire weight. In such cases this code
5650 * still "owns" the NAPI instance and therefore can
5651 * move the instance around on the list at-will.
5652 */
5653 if (unlikely(napi_disable_pending(n))) {
5654 napi_complete(n);
5655 goto out_unlock;
5656 }
5657
5658 if (n->gro_list) {
5659 /* flush too old packets
5660 * If HZ < 1000, flush all packets.
5661 */
5662 napi_gro_flush(n, HZ >= 1000);
5663 }
5664
001ce546
HX
5665 /* Some drivers may have called napi_schedule
5666 * prior to exhausting their budget.
5667 */
5668 if (unlikely(!list_empty(&n->poll_list))) {
5669 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5670 n->dev ? n->dev->name : "backlog");
5671 goto out_unlock;
5672 }
5673
726ce70e
HX
5674 list_add_tail(&n->poll_list, repoll);
5675
5676out_unlock:
5677 netpoll_poll_unlock(have);
5678
5679 return work;
5680}
5681
0766f788 5682static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5683{
903ceff7 5684 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
5685 unsigned long time_limit = jiffies +
5686 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 5687 int budget = netdev_budget;
d75b1ade
ED
5688 LIST_HEAD(list);
5689 LIST_HEAD(repoll);
53fb95d3 5690
1da177e4 5691 local_irq_disable();
d75b1ade
ED
5692 list_splice_init(&sd->poll_list, &list);
5693 local_irq_enable();
1da177e4 5694
ceb8d5bf 5695 for (;;) {
bea3348e 5696 struct napi_struct *n;
1da177e4 5697
ceb8d5bf
HX
5698 if (list_empty(&list)) {
5699 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 5700 goto out;
ceb8d5bf
HX
5701 break;
5702 }
5703
6bd373eb
HX
5704 n = list_first_entry(&list, struct napi_struct, poll_list);
5705 budget -= napi_poll(n, &repoll);
5706
d75b1ade 5707 /* If softirq window is exhausted then punt.
24f8b238
SH
5708 * Allow this to run for 2 jiffies since which will allow
5709 * an average latency of 1.5/HZ.
bea3348e 5710 */
ceb8d5bf
HX
5711 if (unlikely(budget <= 0 ||
5712 time_after_eq(jiffies, time_limit))) {
5713 sd->time_squeeze++;
5714 break;
5715 }
1da177e4 5716 }
d75b1ade 5717
d75b1ade
ED
5718 local_irq_disable();
5719
5720 list_splice_tail_init(&sd->poll_list, &list);
5721 list_splice_tail(&repoll, &list);
5722 list_splice(&list, &sd->poll_list);
5723 if (!list_empty(&sd->poll_list))
5724 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5725
e326bed2 5726 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
5727out:
5728 __kfree_skb_flush();
1da177e4
LT
5729}
5730
aa9d8560 5731struct netdev_adjacent {
9ff162a8 5732 struct net_device *dev;
5d261913
VF
5733
5734 /* upper master flag, there can only be one master device per list */
9ff162a8 5735 bool master;
5d261913 5736
5d261913
VF
5737 /* counter for the number of times this device was added to us */
5738 u16 ref_nr;
5739
402dae96
VF
5740 /* private field for the users */
5741 void *private;
5742
9ff162a8
JP
5743 struct list_head list;
5744 struct rcu_head rcu;
9ff162a8
JP
5745};
5746
6ea29da1 5747static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5748 struct list_head *adj_list)
9ff162a8 5749{
5d261913 5750 struct netdev_adjacent *adj;
5d261913 5751
2f268f12 5752 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5753 if (adj->dev == adj_dev)
5754 return adj;
9ff162a8
JP
5755 }
5756 return NULL;
5757}
5758
f1170fd4
DA
5759static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5760{
5761 struct net_device *dev = data;
5762
5763 return upper_dev == dev;
5764}
5765
9ff162a8
JP
5766/**
5767 * netdev_has_upper_dev - Check if device is linked to an upper device
5768 * @dev: device
5769 * @upper_dev: upper device to check
5770 *
5771 * Find out if a device is linked to specified upper device and return true
5772 * in case it is. Note that this checks only immediate upper device,
5773 * not through a complete stack of devices. The caller must hold the RTNL lock.
5774 */
5775bool netdev_has_upper_dev(struct net_device *dev,
5776 struct net_device *upper_dev)
5777{
5778 ASSERT_RTNL();
5779
f1170fd4
DA
5780 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5781 upper_dev);
9ff162a8
JP
5782}
5783EXPORT_SYMBOL(netdev_has_upper_dev);
5784
1a3f060c
DA
5785/**
5786 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5787 * @dev: device
5788 * @upper_dev: upper device to check
5789 *
5790 * Find out if a device is linked to specified upper device and return true
5791 * in case it is. Note that this checks the entire upper device chain.
5792 * The caller must hold rcu lock.
5793 */
5794
1a3f060c
DA
5795bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5796 struct net_device *upper_dev)
5797{
5798 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5799 upper_dev);
5800}
5801EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5802
9ff162a8
JP
5803/**
5804 * netdev_has_any_upper_dev - Check if device is linked to some device
5805 * @dev: device
5806 *
5807 * Find out if a device is linked to an upper device and return true in case
5808 * it is. The caller must hold the RTNL lock.
5809 */
25cc72a3 5810bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5811{
5812 ASSERT_RTNL();
5813
f1170fd4 5814 return !list_empty(&dev->adj_list.upper);
9ff162a8 5815}
25cc72a3 5816EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
5817
5818/**
5819 * netdev_master_upper_dev_get - Get master upper device
5820 * @dev: device
5821 *
5822 * Find a master upper device and return pointer to it or NULL in case
5823 * it's not there. The caller must hold the RTNL lock.
5824 */
5825struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5826{
aa9d8560 5827 struct netdev_adjacent *upper;
9ff162a8
JP
5828
5829 ASSERT_RTNL();
5830
2f268f12 5831 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5832 return NULL;
5833
2f268f12 5834 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5835 struct netdev_adjacent, list);
9ff162a8
JP
5836 if (likely(upper->master))
5837 return upper->dev;
5838 return NULL;
5839}
5840EXPORT_SYMBOL(netdev_master_upper_dev_get);
5841
0f524a80
DA
5842/**
5843 * netdev_has_any_lower_dev - Check if device is linked to some device
5844 * @dev: device
5845 *
5846 * Find out if a device is linked to a lower device and return true in case
5847 * it is. The caller must hold the RTNL lock.
5848 */
5849static bool netdev_has_any_lower_dev(struct net_device *dev)
5850{
5851 ASSERT_RTNL();
5852
5853 return !list_empty(&dev->adj_list.lower);
5854}
5855
b6ccba4c
VF
5856void *netdev_adjacent_get_private(struct list_head *adj_list)
5857{
5858 struct netdev_adjacent *adj;
5859
5860 adj = list_entry(adj_list, struct netdev_adjacent, list);
5861
5862 return adj->private;
5863}
5864EXPORT_SYMBOL(netdev_adjacent_get_private);
5865
44a40855
VY
5866/**
5867 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5868 * @dev: device
5869 * @iter: list_head ** of the current position
5870 *
5871 * Gets the next device from the dev's upper list, starting from iter
5872 * position. The caller must hold RCU read lock.
5873 */
5874struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5875 struct list_head **iter)
5876{
5877 struct netdev_adjacent *upper;
5878
5879 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5880
5881 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5882
5883 if (&upper->list == &dev->adj_list.upper)
5884 return NULL;
5885
5886 *iter = &upper->list;
5887
5888 return upper->dev;
5889}
5890EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5891
1a3f060c
DA
5892static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5893 struct list_head **iter)
5894{
5895 struct netdev_adjacent *upper;
5896
5897 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5898
5899 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5900
5901 if (&upper->list == &dev->adj_list.upper)
5902 return NULL;
5903
5904 *iter = &upper->list;
5905
5906 return upper->dev;
5907}
5908
5909int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5910 int (*fn)(struct net_device *dev,
5911 void *data),
5912 void *data)
5913{
5914 struct net_device *udev;
5915 struct list_head *iter;
5916 int ret;
5917
5918 for (iter = &dev->adj_list.upper,
5919 udev = netdev_next_upper_dev_rcu(dev, &iter);
5920 udev;
5921 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5922 /* first is the upper device itself */
5923 ret = fn(udev, data);
5924 if (ret)
5925 return ret;
5926
5927 /* then look at all of its upper devices */
5928 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5929 if (ret)
5930 return ret;
5931 }
5932
5933 return 0;
5934}
5935EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5936
31088a11
VF
5937/**
5938 * netdev_lower_get_next_private - Get the next ->private from the
5939 * lower neighbour list
5940 * @dev: device
5941 * @iter: list_head ** of the current position
5942 *
5943 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5944 * list, starting from iter position. The caller must hold either hold the
5945 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5946 * list will remain unchanged.
31088a11
VF
5947 */
5948void *netdev_lower_get_next_private(struct net_device *dev,
5949 struct list_head **iter)
5950{
5951 struct netdev_adjacent *lower;
5952
5953 lower = list_entry(*iter, struct netdev_adjacent, list);
5954
5955 if (&lower->list == &dev->adj_list.lower)
5956 return NULL;
5957
6859e7df 5958 *iter = lower->list.next;
31088a11
VF
5959
5960 return lower->private;
5961}
5962EXPORT_SYMBOL(netdev_lower_get_next_private);
5963
5964/**
5965 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5966 * lower neighbour list, RCU
5967 * variant
5968 * @dev: device
5969 * @iter: list_head ** of the current position
5970 *
5971 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5972 * list, starting from iter position. The caller must hold RCU read lock.
5973 */
5974void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5975 struct list_head **iter)
5976{
5977 struct netdev_adjacent *lower;
5978
5979 WARN_ON_ONCE(!rcu_read_lock_held());
5980
5981 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5982
5983 if (&lower->list == &dev->adj_list.lower)
5984 return NULL;
5985
6859e7df 5986 *iter = &lower->list;
31088a11
VF
5987
5988 return lower->private;
5989}
5990EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5991
4085ebe8
VY
5992/**
5993 * netdev_lower_get_next - Get the next device from the lower neighbour
5994 * list
5995 * @dev: device
5996 * @iter: list_head ** of the current position
5997 *
5998 * Gets the next netdev_adjacent from the dev's lower neighbour
5999 * list, starting from iter position. The caller must hold RTNL lock or
6000 * its own locking that guarantees that the neighbour lower
b469139e 6001 * list will remain unchanged.
4085ebe8
VY
6002 */
6003void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6004{
6005 struct netdev_adjacent *lower;
6006
cfdd28be 6007 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
6008
6009 if (&lower->list == &dev->adj_list.lower)
6010 return NULL;
6011
cfdd28be 6012 *iter = lower->list.next;
4085ebe8
VY
6013
6014 return lower->dev;
6015}
6016EXPORT_SYMBOL(netdev_lower_get_next);
6017
1a3f060c
DA
6018static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6019 struct list_head **iter)
6020{
6021 struct netdev_adjacent *lower;
6022
46b5ab1a 6023 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
6024
6025 if (&lower->list == &dev->adj_list.lower)
6026 return NULL;
6027
46b5ab1a 6028 *iter = &lower->list;
1a3f060c
DA
6029
6030 return lower->dev;
6031}
6032
6033int netdev_walk_all_lower_dev(struct net_device *dev,
6034 int (*fn)(struct net_device *dev,
6035 void *data),
6036 void *data)
6037{
6038 struct net_device *ldev;
6039 struct list_head *iter;
6040 int ret;
6041
6042 for (iter = &dev->adj_list.lower,
6043 ldev = netdev_next_lower_dev(dev, &iter);
6044 ldev;
6045 ldev = netdev_next_lower_dev(dev, &iter)) {
6046 /* first is the lower device itself */
6047 ret = fn(ldev, data);
6048 if (ret)
6049 return ret;
6050
6051 /* then look at all of its lower devices */
6052 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6053 if (ret)
6054 return ret;
6055 }
6056
6057 return 0;
6058}
6059EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6060
1a3f060c
DA
6061static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6062 struct list_head **iter)
6063{
6064 struct netdev_adjacent *lower;
6065
6066 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6067 if (&lower->list == &dev->adj_list.lower)
6068 return NULL;
6069
6070 *iter = &lower->list;
6071
6072 return lower->dev;
6073}
6074
6075int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6076 int (*fn)(struct net_device *dev,
6077 void *data),
6078 void *data)
6079{
6080 struct net_device *ldev;
6081 struct list_head *iter;
6082 int ret;
6083
6084 for (iter = &dev->adj_list.lower,
6085 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6086 ldev;
6087 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6088 /* first is the lower device itself */
6089 ret = fn(ldev, data);
6090 if (ret)
6091 return ret;
6092
6093 /* then look at all of its lower devices */
6094 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6095 if (ret)
6096 return ret;
6097 }
6098
6099 return 0;
6100}
6101EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6102
e001bfad 6103/**
6104 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6105 * lower neighbour list, RCU
6106 * variant
6107 * @dev: device
6108 *
6109 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6110 * list. The caller must hold RCU read lock.
6111 */
6112void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6113{
6114 struct netdev_adjacent *lower;
6115
6116 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6117 struct netdev_adjacent, list);
6118 if (lower)
6119 return lower->private;
6120 return NULL;
6121}
6122EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6123
9ff162a8
JP
6124/**
6125 * netdev_master_upper_dev_get_rcu - Get master upper device
6126 * @dev: device
6127 *
6128 * Find a master upper device and return pointer to it or NULL in case
6129 * it's not there. The caller must hold the RCU read lock.
6130 */
6131struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6132{
aa9d8560 6133 struct netdev_adjacent *upper;
9ff162a8 6134
2f268f12 6135 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 6136 struct netdev_adjacent, list);
9ff162a8
JP
6137 if (upper && likely(upper->master))
6138 return upper->dev;
6139 return NULL;
6140}
6141EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6142
0a59f3a9 6143static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
6144 struct net_device *adj_dev,
6145 struct list_head *dev_list)
6146{
6147 char linkname[IFNAMSIZ+7];
f4563a75 6148
3ee32707
VF
6149 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6150 "upper_%s" : "lower_%s", adj_dev->name);
6151 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6152 linkname);
6153}
0a59f3a9 6154static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
6155 char *name,
6156 struct list_head *dev_list)
6157{
6158 char linkname[IFNAMSIZ+7];
f4563a75 6159
3ee32707
VF
6160 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6161 "upper_%s" : "lower_%s", name);
6162 sysfs_remove_link(&(dev->dev.kobj), linkname);
6163}
6164
7ce64c79
AF
6165static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6166 struct net_device *adj_dev,
6167 struct list_head *dev_list)
6168{
6169 return (dev_list == &dev->adj_list.upper ||
6170 dev_list == &dev->adj_list.lower) &&
6171 net_eq(dev_net(dev), dev_net(adj_dev));
6172}
3ee32707 6173
5d261913
VF
6174static int __netdev_adjacent_dev_insert(struct net_device *dev,
6175 struct net_device *adj_dev,
7863c054 6176 struct list_head *dev_list,
402dae96 6177 void *private, bool master)
5d261913
VF
6178{
6179 struct netdev_adjacent *adj;
842d67a7 6180 int ret;
5d261913 6181
6ea29da1 6182 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
6183
6184 if (adj) {
790510d9 6185 adj->ref_nr += 1;
67b62f98
DA
6186 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6187 dev->name, adj_dev->name, adj->ref_nr);
6188
5d261913
VF
6189 return 0;
6190 }
6191
6192 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6193 if (!adj)
6194 return -ENOMEM;
6195
6196 adj->dev = adj_dev;
6197 adj->master = master;
790510d9 6198 adj->ref_nr = 1;
402dae96 6199 adj->private = private;
5d261913 6200 dev_hold(adj_dev);
2f268f12 6201
67b62f98
DA
6202 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6203 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 6204
7ce64c79 6205 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 6206 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
6207 if (ret)
6208 goto free_adj;
6209 }
6210
7863c054 6211 /* Ensure that master link is always the first item in list. */
842d67a7
VF
6212 if (master) {
6213 ret = sysfs_create_link(&(dev->dev.kobj),
6214 &(adj_dev->dev.kobj), "master");
6215 if (ret)
5831d66e 6216 goto remove_symlinks;
842d67a7 6217
7863c054 6218 list_add_rcu(&adj->list, dev_list);
842d67a7 6219 } else {
7863c054 6220 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 6221 }
5d261913
VF
6222
6223 return 0;
842d67a7 6224
5831d66e 6225remove_symlinks:
7ce64c79 6226 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6227 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
6228free_adj:
6229 kfree(adj);
974daef7 6230 dev_put(adj_dev);
842d67a7
VF
6231
6232 return ret;
5d261913
VF
6233}
6234
1d143d9f 6235static void __netdev_adjacent_dev_remove(struct net_device *dev,
6236 struct net_device *adj_dev,
93409033 6237 u16 ref_nr,
1d143d9f 6238 struct list_head *dev_list)
5d261913
VF
6239{
6240 struct netdev_adjacent *adj;
6241
67b62f98
DA
6242 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6243 dev->name, adj_dev->name, ref_nr);
6244
6ea29da1 6245 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 6246
2f268f12 6247 if (!adj) {
67b62f98 6248 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 6249 dev->name, adj_dev->name);
67b62f98
DA
6250 WARN_ON(1);
6251 return;
2f268f12 6252 }
5d261913 6253
93409033 6254 if (adj->ref_nr > ref_nr) {
67b62f98
DA
6255 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6256 dev->name, adj_dev->name, ref_nr,
6257 adj->ref_nr - ref_nr);
93409033 6258 adj->ref_nr -= ref_nr;
5d261913
VF
6259 return;
6260 }
6261
842d67a7
VF
6262 if (adj->master)
6263 sysfs_remove_link(&(dev->dev.kobj), "master");
6264
7ce64c79 6265 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 6266 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 6267
5d261913 6268 list_del_rcu(&adj->list);
67b62f98 6269 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 6270 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
6271 dev_put(adj_dev);
6272 kfree_rcu(adj, rcu);
6273}
6274
1d143d9f 6275static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6276 struct net_device *upper_dev,
6277 struct list_head *up_list,
6278 struct list_head *down_list,
6279 void *private, bool master)
5d261913
VF
6280{
6281 int ret;
6282
790510d9 6283 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 6284 private, master);
5d261913
VF
6285 if (ret)
6286 return ret;
6287
790510d9 6288 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 6289 private, false);
5d261913 6290 if (ret) {
790510d9 6291 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
6292 return ret;
6293 }
6294
6295 return 0;
6296}
6297
1d143d9f 6298static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6299 struct net_device *upper_dev,
93409033 6300 u16 ref_nr,
1d143d9f 6301 struct list_head *up_list,
6302 struct list_head *down_list)
5d261913 6303{
93409033
AC
6304 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6305 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
6306}
6307
1d143d9f 6308static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6309 struct net_device *upper_dev,
6310 void *private, bool master)
2f268f12 6311{
f1170fd4
DA
6312 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6313 &dev->adj_list.upper,
6314 &upper_dev->adj_list.lower,
6315 private, master);
5d261913
VF
6316}
6317
1d143d9f 6318static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6319 struct net_device *upper_dev)
2f268f12 6320{
93409033 6321 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
6322 &dev->adj_list.upper,
6323 &upper_dev->adj_list.lower);
6324}
5d261913 6325
9ff162a8 6326static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 6327 struct net_device *upper_dev, bool master,
42ab19ee
DA
6328 void *upper_priv, void *upper_info,
6329 struct netlink_ext_ack *extack)
9ff162a8 6330{
51d0c047
DA
6331 struct netdev_notifier_changeupper_info changeupper_info = {
6332 .info = {
6333 .dev = dev,
42ab19ee 6334 .extack = extack,
51d0c047
DA
6335 },
6336 .upper_dev = upper_dev,
6337 .master = master,
6338 .linking = true,
6339 .upper_info = upper_info,
6340 };
5d261913 6341 int ret = 0;
9ff162a8
JP
6342
6343 ASSERT_RTNL();
6344
6345 if (dev == upper_dev)
6346 return -EBUSY;
6347
6348 /* To prevent loops, check if dev is not upper device to upper_dev. */
f1170fd4 6349 if (netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
6350 return -EBUSY;
6351
f1170fd4 6352 if (netdev_has_upper_dev(dev, upper_dev))
9ff162a8
JP
6353 return -EEXIST;
6354
6355 if (master && netdev_master_upper_dev_get(dev))
6356 return -EBUSY;
6357
51d0c047 6358 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
6359 &changeupper_info.info);
6360 ret = notifier_to_errno(ret);
6361 if (ret)
6362 return ret;
6363
6dffb044 6364 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 6365 master);
5d261913
VF
6366 if (ret)
6367 return ret;
9ff162a8 6368
51d0c047 6369 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
6370 &changeupper_info.info);
6371 ret = notifier_to_errno(ret);
6372 if (ret)
f1170fd4 6373 goto rollback;
b03804e7 6374
9ff162a8 6375 return 0;
5d261913 6376
f1170fd4 6377rollback:
2f268f12 6378 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
6379
6380 return ret;
9ff162a8
JP
6381}
6382
6383/**
6384 * netdev_upper_dev_link - Add a link to the upper device
6385 * @dev: device
6386 * @upper_dev: new upper device
6387 *
6388 * Adds a link to device which is upper to this one. The caller must hold
6389 * the RTNL lock. On a failure a negative errno code is returned.
6390 * On success the reference counts are adjusted and the function
6391 * returns zero.
6392 */
6393int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
6394 struct net_device *upper_dev,
6395 struct netlink_ext_ack *extack)
9ff162a8 6396{
42ab19ee
DA
6397 return __netdev_upper_dev_link(dev, upper_dev, false,
6398 NULL, NULL, extack);
9ff162a8
JP
6399}
6400EXPORT_SYMBOL(netdev_upper_dev_link);
6401
6402/**
6403 * netdev_master_upper_dev_link - Add a master link to the upper device
6404 * @dev: device
6405 * @upper_dev: new upper device
6dffb044 6406 * @upper_priv: upper device private
29bf24af 6407 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
6408 *
6409 * Adds a link to device which is upper to this one. In this case, only
6410 * one master upper device can be linked, although other non-master devices
6411 * might be linked as well. The caller must hold the RTNL lock.
6412 * On a failure a negative errno code is returned. On success the reference
6413 * counts are adjusted and the function returns zero.
6414 */
6415int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 6416 struct net_device *upper_dev,
42ab19ee
DA
6417 void *upper_priv, void *upper_info,
6418 struct netlink_ext_ack *extack)
9ff162a8 6419{
29bf24af 6420 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 6421 upper_priv, upper_info, extack);
9ff162a8
JP
6422}
6423EXPORT_SYMBOL(netdev_master_upper_dev_link);
6424
6425/**
6426 * netdev_upper_dev_unlink - Removes a link to upper device
6427 * @dev: device
6428 * @upper_dev: new upper device
6429 *
6430 * Removes a link to device which is upper to this one. The caller must hold
6431 * the RTNL lock.
6432 */
6433void netdev_upper_dev_unlink(struct net_device *dev,
6434 struct net_device *upper_dev)
6435{
51d0c047
DA
6436 struct netdev_notifier_changeupper_info changeupper_info = {
6437 .info = {
6438 .dev = dev,
6439 },
6440 .upper_dev = upper_dev,
6441 .linking = false,
6442 };
f4563a75 6443
9ff162a8
JP
6444 ASSERT_RTNL();
6445
0e4ead9d 6446 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 6447
51d0c047 6448 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
6449 &changeupper_info.info);
6450
2f268f12 6451 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 6452
51d0c047 6453 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 6454 &changeupper_info.info);
9ff162a8
JP
6455}
6456EXPORT_SYMBOL(netdev_upper_dev_unlink);
6457
61bd3857
MS
6458/**
6459 * netdev_bonding_info_change - Dispatch event about slave change
6460 * @dev: device
4a26e453 6461 * @bonding_info: info to dispatch
61bd3857
MS
6462 *
6463 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6464 * The caller must hold the RTNL lock.
6465 */
6466void netdev_bonding_info_change(struct net_device *dev,
6467 struct netdev_bonding_info *bonding_info)
6468{
51d0c047
DA
6469 struct netdev_notifier_bonding_info info = {
6470 .info.dev = dev,
6471 };
61bd3857
MS
6472
6473 memcpy(&info.bonding_info, bonding_info,
6474 sizeof(struct netdev_bonding_info));
51d0c047 6475 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
6476 &info.info);
6477}
6478EXPORT_SYMBOL(netdev_bonding_info_change);
6479
2ce1ee17 6480static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
6481{
6482 struct netdev_adjacent *iter;
6483
6484 struct net *net = dev_net(dev);
6485
6486 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6487 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6488 continue;
6489 netdev_adjacent_sysfs_add(iter->dev, dev,
6490 &iter->dev->adj_list.lower);
6491 netdev_adjacent_sysfs_add(dev, iter->dev,
6492 &dev->adj_list.upper);
6493 }
6494
6495 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6496 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6497 continue;
6498 netdev_adjacent_sysfs_add(iter->dev, dev,
6499 &iter->dev->adj_list.upper);
6500 netdev_adjacent_sysfs_add(dev, iter->dev,
6501 &dev->adj_list.lower);
6502 }
6503}
6504
2ce1ee17 6505static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6506{
6507 struct netdev_adjacent *iter;
6508
6509 struct net *net = dev_net(dev);
6510
6511 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6512 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6513 continue;
6514 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6515 &iter->dev->adj_list.lower);
6516 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6517 &dev->adj_list.upper);
6518 }
6519
6520 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6521 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6522 continue;
6523 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6524 &iter->dev->adj_list.upper);
6525 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6526 &dev->adj_list.lower);
6527 }
6528}
6529
5bb025fa 6530void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6531{
5bb025fa 6532 struct netdev_adjacent *iter;
402dae96 6533
4c75431a
AF
6534 struct net *net = dev_net(dev);
6535
5bb025fa 6536 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6537 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6538 continue;
5bb025fa
VF
6539 netdev_adjacent_sysfs_del(iter->dev, oldname,
6540 &iter->dev->adj_list.lower);
6541 netdev_adjacent_sysfs_add(iter->dev, dev,
6542 &iter->dev->adj_list.lower);
6543 }
402dae96 6544
5bb025fa 6545 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6546 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6547 continue;
5bb025fa
VF
6548 netdev_adjacent_sysfs_del(iter->dev, oldname,
6549 &iter->dev->adj_list.upper);
6550 netdev_adjacent_sysfs_add(iter->dev, dev,
6551 &iter->dev->adj_list.upper);
6552 }
402dae96 6553}
402dae96
VF
6554
6555void *netdev_lower_dev_get_private(struct net_device *dev,
6556 struct net_device *lower_dev)
6557{
6558 struct netdev_adjacent *lower;
6559
6560 if (!lower_dev)
6561 return NULL;
6ea29da1 6562 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6563 if (!lower)
6564 return NULL;
6565
6566 return lower->private;
6567}
6568EXPORT_SYMBOL(netdev_lower_dev_get_private);
6569
4085ebe8 6570
952fcfd0 6571int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6572{
6573 struct net_device *lower = NULL;
6574 struct list_head *iter;
6575 int max_nest = -1;
6576 int nest;
6577
6578 ASSERT_RTNL();
6579
6580 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6581 nest = dev_get_nest_level(lower);
4085ebe8
VY
6582 if (max_nest < nest)
6583 max_nest = nest;
6584 }
6585
952fcfd0 6586 return max_nest + 1;
4085ebe8
VY
6587}
6588EXPORT_SYMBOL(dev_get_nest_level);
6589
04d48266
JP
6590/**
6591 * netdev_lower_change - Dispatch event about lower device state change
6592 * @lower_dev: device
6593 * @lower_state_info: state to dispatch
6594 *
6595 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6596 * The caller must hold the RTNL lock.
6597 */
6598void netdev_lower_state_changed(struct net_device *lower_dev,
6599 void *lower_state_info)
6600{
51d0c047
DA
6601 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6602 .info.dev = lower_dev,
6603 };
04d48266
JP
6604
6605 ASSERT_RTNL();
6606 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 6607 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
6608 &changelowerstate_info.info);
6609}
6610EXPORT_SYMBOL(netdev_lower_state_changed);
6611
b6c40d68
PM
6612static void dev_change_rx_flags(struct net_device *dev, int flags)
6613{
d314774c
SH
6614 const struct net_device_ops *ops = dev->netdev_ops;
6615
d2615bf4 6616 if (ops->ndo_change_rx_flags)
d314774c 6617 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6618}
6619
991fb3f7 6620static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6621{
b536db93 6622 unsigned int old_flags = dev->flags;
d04a48b0
EB
6623 kuid_t uid;
6624 kgid_t gid;
1da177e4 6625
24023451
PM
6626 ASSERT_RTNL();
6627
dad9b335
WC
6628 dev->flags |= IFF_PROMISC;
6629 dev->promiscuity += inc;
6630 if (dev->promiscuity == 0) {
6631 /*
6632 * Avoid overflow.
6633 * If inc causes overflow, untouch promisc and return error.
6634 */
6635 if (inc < 0)
6636 dev->flags &= ~IFF_PROMISC;
6637 else {
6638 dev->promiscuity -= inc;
7b6cd1ce
JP
6639 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6640 dev->name);
dad9b335
WC
6641 return -EOVERFLOW;
6642 }
6643 }
52609c0b 6644 if (dev->flags != old_flags) {
7b6cd1ce
JP
6645 pr_info("device %s %s promiscuous mode\n",
6646 dev->name,
6647 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6648 if (audit_enabled) {
6649 current_uid_gid(&uid, &gid);
7759db82
KHK
6650 audit_log(current->audit_context, GFP_ATOMIC,
6651 AUDIT_ANOM_PROMISCUOUS,
6652 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6653 dev->name, (dev->flags & IFF_PROMISC),
6654 (old_flags & IFF_PROMISC),
e1760bd5 6655 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6656 from_kuid(&init_user_ns, uid),
6657 from_kgid(&init_user_ns, gid),
7759db82 6658 audit_get_sessionid(current));
8192b0c4 6659 }
24023451 6660
b6c40d68 6661 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6662 }
991fb3f7
ND
6663 if (notify)
6664 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6665 return 0;
1da177e4
LT
6666}
6667
4417da66
PM
6668/**
6669 * dev_set_promiscuity - update promiscuity count on a device
6670 * @dev: device
6671 * @inc: modifier
6672 *
6673 * Add or remove promiscuity from a device. While the count in the device
6674 * remains above zero the interface remains promiscuous. Once it hits zero
6675 * the device reverts back to normal filtering operation. A negative inc
6676 * value is used to drop promiscuity on the device.
dad9b335 6677 * Return 0 if successful or a negative errno code on error.
4417da66 6678 */
dad9b335 6679int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6680{
b536db93 6681 unsigned int old_flags = dev->flags;
dad9b335 6682 int err;
4417da66 6683
991fb3f7 6684 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6685 if (err < 0)
dad9b335 6686 return err;
4417da66
PM
6687 if (dev->flags != old_flags)
6688 dev_set_rx_mode(dev);
dad9b335 6689 return err;
4417da66 6690}
d1b19dff 6691EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6692
991fb3f7 6693static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6694{
991fb3f7 6695 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6696
24023451
PM
6697 ASSERT_RTNL();
6698
1da177e4 6699 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6700 dev->allmulti += inc;
6701 if (dev->allmulti == 0) {
6702 /*
6703 * Avoid overflow.
6704 * If inc causes overflow, untouch allmulti and return error.
6705 */
6706 if (inc < 0)
6707 dev->flags &= ~IFF_ALLMULTI;
6708 else {
6709 dev->allmulti -= inc;
7b6cd1ce
JP
6710 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6711 dev->name);
dad9b335
WC
6712 return -EOVERFLOW;
6713 }
6714 }
24023451 6715 if (dev->flags ^ old_flags) {
b6c40d68 6716 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6717 dev_set_rx_mode(dev);
991fb3f7
ND
6718 if (notify)
6719 __dev_notify_flags(dev, old_flags,
6720 dev->gflags ^ old_gflags);
24023451 6721 }
dad9b335 6722 return 0;
4417da66 6723}
991fb3f7
ND
6724
6725/**
6726 * dev_set_allmulti - update allmulti count on a device
6727 * @dev: device
6728 * @inc: modifier
6729 *
6730 * Add or remove reception of all multicast frames to a device. While the
6731 * count in the device remains above zero the interface remains listening
6732 * to all interfaces. Once it hits zero the device reverts back to normal
6733 * filtering operation. A negative @inc value is used to drop the counter
6734 * when releasing a resource needing all multicasts.
6735 * Return 0 if successful or a negative errno code on error.
6736 */
6737
6738int dev_set_allmulti(struct net_device *dev, int inc)
6739{
6740 return __dev_set_allmulti(dev, inc, true);
6741}
d1b19dff 6742EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6743
6744/*
6745 * Upload unicast and multicast address lists to device and
6746 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6747 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6748 * are present.
6749 */
6750void __dev_set_rx_mode(struct net_device *dev)
6751{
d314774c
SH
6752 const struct net_device_ops *ops = dev->netdev_ops;
6753
4417da66
PM
6754 /* dev_open will call this function so the list will stay sane. */
6755 if (!(dev->flags&IFF_UP))
6756 return;
6757
6758 if (!netif_device_present(dev))
40b77c94 6759 return;
4417da66 6760
01789349 6761 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6762 /* Unicast addresses changes may only happen under the rtnl,
6763 * therefore calling __dev_set_promiscuity here is safe.
6764 */
32e7bfc4 6765 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6766 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6767 dev->uc_promisc = true;
32e7bfc4 6768 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6769 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6770 dev->uc_promisc = false;
4417da66 6771 }
4417da66 6772 }
01789349
JP
6773
6774 if (ops->ndo_set_rx_mode)
6775 ops->ndo_set_rx_mode(dev);
4417da66
PM
6776}
6777
6778void dev_set_rx_mode(struct net_device *dev)
6779{
b9e40857 6780 netif_addr_lock_bh(dev);
4417da66 6781 __dev_set_rx_mode(dev);
b9e40857 6782 netif_addr_unlock_bh(dev);
1da177e4
LT
6783}
6784
f0db275a
SH
6785/**
6786 * dev_get_flags - get flags reported to userspace
6787 * @dev: device
6788 *
6789 * Get the combination of flag bits exported through APIs to userspace.
6790 */
95c96174 6791unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6792{
95c96174 6793 unsigned int flags;
1da177e4
LT
6794
6795 flags = (dev->flags & ~(IFF_PROMISC |
6796 IFF_ALLMULTI |
b00055aa
SR
6797 IFF_RUNNING |
6798 IFF_LOWER_UP |
6799 IFF_DORMANT)) |
1da177e4
LT
6800 (dev->gflags & (IFF_PROMISC |
6801 IFF_ALLMULTI));
6802
b00055aa
SR
6803 if (netif_running(dev)) {
6804 if (netif_oper_up(dev))
6805 flags |= IFF_RUNNING;
6806 if (netif_carrier_ok(dev))
6807 flags |= IFF_LOWER_UP;
6808 if (netif_dormant(dev))
6809 flags |= IFF_DORMANT;
6810 }
1da177e4
LT
6811
6812 return flags;
6813}
d1b19dff 6814EXPORT_SYMBOL(dev_get_flags);
1da177e4 6815
bd380811 6816int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6817{
b536db93 6818 unsigned int old_flags = dev->flags;
bd380811 6819 int ret;
1da177e4 6820
24023451
PM
6821 ASSERT_RTNL();
6822
1da177e4
LT
6823 /*
6824 * Set the flags on our device.
6825 */
6826
6827 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6828 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6829 IFF_AUTOMEDIA)) |
6830 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6831 IFF_ALLMULTI));
6832
6833 /*
6834 * Load in the correct multicast list now the flags have changed.
6835 */
6836
b6c40d68
PM
6837 if ((old_flags ^ flags) & IFF_MULTICAST)
6838 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6839
4417da66 6840 dev_set_rx_mode(dev);
1da177e4
LT
6841
6842 /*
6843 * Have we downed the interface. We handle IFF_UP ourselves
6844 * according to user attempts to set it, rather than blindly
6845 * setting it.
6846 */
6847
6848 ret = 0;
7051b88a 6849 if ((old_flags ^ flags) & IFF_UP) {
6850 if (old_flags & IFF_UP)
6851 __dev_close(dev);
6852 else
6853 ret = __dev_open(dev);
6854 }
1da177e4 6855
1da177e4 6856 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6857 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6858 unsigned int old_flags = dev->flags;
d1b19dff 6859
1da177e4 6860 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6861
6862 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6863 if (dev->flags != old_flags)
6864 dev_set_rx_mode(dev);
1da177e4
LT
6865 }
6866
6867 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 6868 * is important. Some (broken) drivers set IFF_PROMISC, when
6869 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
6870 */
6871 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6872 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6873
1da177e4 6874 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6875 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6876 }
6877
bd380811
PM
6878 return ret;
6879}
6880
a528c219
ND
6881void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6882 unsigned int gchanges)
bd380811
PM
6883{
6884 unsigned int changes = dev->flags ^ old_flags;
6885
a528c219 6886 if (gchanges)
7f294054 6887 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6888
bd380811
PM
6889 if (changes & IFF_UP) {
6890 if (dev->flags & IFF_UP)
6891 call_netdevice_notifiers(NETDEV_UP, dev);
6892 else
6893 call_netdevice_notifiers(NETDEV_DOWN, dev);
6894 }
6895
6896 if (dev->flags & IFF_UP &&
be9efd36 6897 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
6898 struct netdev_notifier_change_info change_info = {
6899 .info = {
6900 .dev = dev,
6901 },
6902 .flags_changed = changes,
6903 };
be9efd36 6904
51d0c047 6905 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 6906 }
bd380811
PM
6907}
6908
6909/**
6910 * dev_change_flags - change device settings
6911 * @dev: device
6912 * @flags: device state flags
6913 *
6914 * Change settings on device based state flags. The flags are
6915 * in the userspace exported format.
6916 */
b536db93 6917int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6918{
b536db93 6919 int ret;
991fb3f7 6920 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6921
6922 ret = __dev_change_flags(dev, flags);
6923 if (ret < 0)
6924 return ret;
6925
991fb3f7 6926 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6927 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6928 return ret;
6929}
d1b19dff 6930EXPORT_SYMBOL(dev_change_flags);
1da177e4 6931
f51048c3 6932int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
6933{
6934 const struct net_device_ops *ops = dev->netdev_ops;
6935
6936 if (ops->ndo_change_mtu)
6937 return ops->ndo_change_mtu(dev, new_mtu);
6938
6939 dev->mtu = new_mtu;
6940 return 0;
6941}
f51048c3 6942EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 6943
f0db275a
SH
6944/**
6945 * dev_set_mtu - Change maximum transfer unit
6946 * @dev: device
6947 * @new_mtu: new transfer unit
6948 *
6949 * Change the maximum transfer size of the network device.
6950 */
1da177e4
LT
6951int dev_set_mtu(struct net_device *dev, int new_mtu)
6952{
2315dc91 6953 int err, orig_mtu;
1da177e4
LT
6954
6955 if (new_mtu == dev->mtu)
6956 return 0;
6957
61e84623
JW
6958 /* MTU must be positive, and in range */
6959 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6960 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6961 dev->name, new_mtu, dev->min_mtu);
1da177e4 6962 return -EINVAL;
61e84623
JW
6963 }
6964
6965 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6966 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
a0e65de7 6967 dev->name, new_mtu, dev->max_mtu);
61e84623
JW
6968 return -EINVAL;
6969 }
1da177e4
LT
6970
6971 if (!netif_device_present(dev))
6972 return -ENODEV;
6973
1d486bfb
VF
6974 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6975 err = notifier_to_errno(err);
6976 if (err)
6977 return err;
d314774c 6978
2315dc91
VF
6979 orig_mtu = dev->mtu;
6980 err = __dev_set_mtu(dev, new_mtu);
d314774c 6981
2315dc91
VF
6982 if (!err) {
6983 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6984 err = notifier_to_errno(err);
6985 if (err) {
6986 /* setting mtu back and notifying everyone again,
6987 * so that they have a chance to revert changes.
6988 */
6989 __dev_set_mtu(dev, orig_mtu);
6990 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6991 }
6992 }
1da177e4
LT
6993 return err;
6994}
d1b19dff 6995EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6996
cbda10fa
VD
6997/**
6998 * dev_set_group - Change group this device belongs to
6999 * @dev: device
7000 * @new_group: group this device should belong to
7001 */
7002void dev_set_group(struct net_device *dev, int new_group)
7003{
7004 dev->group = new_group;
7005}
7006EXPORT_SYMBOL(dev_set_group);
7007
f0db275a
SH
7008/**
7009 * dev_set_mac_address - Change Media Access Control Address
7010 * @dev: device
7011 * @sa: new address
7012 *
7013 * Change the hardware (MAC) address of the device
7014 */
1da177e4
LT
7015int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7016{
d314774c 7017 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
7018 int err;
7019
d314774c 7020 if (!ops->ndo_set_mac_address)
1da177e4
LT
7021 return -EOPNOTSUPP;
7022 if (sa->sa_family != dev->type)
7023 return -EINVAL;
7024 if (!netif_device_present(dev))
7025 return -ENODEV;
d314774c 7026 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
7027 if (err)
7028 return err;
fbdeca2d 7029 dev->addr_assign_type = NET_ADDR_SET;
f6521516 7030 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 7031 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 7032 return 0;
1da177e4 7033}
d1b19dff 7034EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 7035
4bf84c35
JP
7036/**
7037 * dev_change_carrier - Change device carrier
7038 * @dev: device
691b3b7e 7039 * @new_carrier: new value
4bf84c35
JP
7040 *
7041 * Change device carrier
7042 */
7043int dev_change_carrier(struct net_device *dev, bool new_carrier)
7044{
7045 const struct net_device_ops *ops = dev->netdev_ops;
7046
7047 if (!ops->ndo_change_carrier)
7048 return -EOPNOTSUPP;
7049 if (!netif_device_present(dev))
7050 return -ENODEV;
7051 return ops->ndo_change_carrier(dev, new_carrier);
7052}
7053EXPORT_SYMBOL(dev_change_carrier);
7054
66b52b0d
JP
7055/**
7056 * dev_get_phys_port_id - Get device physical port ID
7057 * @dev: device
7058 * @ppid: port ID
7059 *
7060 * Get device physical port ID
7061 */
7062int dev_get_phys_port_id(struct net_device *dev,
02637fce 7063 struct netdev_phys_item_id *ppid)
66b52b0d
JP
7064{
7065 const struct net_device_ops *ops = dev->netdev_ops;
7066
7067 if (!ops->ndo_get_phys_port_id)
7068 return -EOPNOTSUPP;
7069 return ops->ndo_get_phys_port_id(dev, ppid);
7070}
7071EXPORT_SYMBOL(dev_get_phys_port_id);
7072
db24a904
DA
7073/**
7074 * dev_get_phys_port_name - Get device physical port name
7075 * @dev: device
7076 * @name: port name
ed49e650 7077 * @len: limit of bytes to copy to name
db24a904
DA
7078 *
7079 * Get device physical port name
7080 */
7081int dev_get_phys_port_name(struct net_device *dev,
7082 char *name, size_t len)
7083{
7084 const struct net_device_ops *ops = dev->netdev_ops;
7085
7086 if (!ops->ndo_get_phys_port_name)
7087 return -EOPNOTSUPP;
7088 return ops->ndo_get_phys_port_name(dev, name, len);
7089}
7090EXPORT_SYMBOL(dev_get_phys_port_name);
7091
d746d707
AK
7092/**
7093 * dev_change_proto_down - update protocol port state information
7094 * @dev: device
7095 * @proto_down: new value
7096 *
7097 * This info can be used by switch drivers to set the phys state of the
7098 * port.
7099 */
7100int dev_change_proto_down(struct net_device *dev, bool proto_down)
7101{
7102 const struct net_device_ops *ops = dev->netdev_ops;
7103
7104 if (!ops->ndo_change_proto_down)
7105 return -EOPNOTSUPP;
7106 if (!netif_device_present(dev))
7107 return -ENODEV;
7108 return ops->ndo_change_proto_down(dev, proto_down);
7109}
7110EXPORT_SYMBOL(dev_change_proto_down);
7111
118b4aa2
JK
7112void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7113 struct netdev_bpf *xdp)
d67b9cd2 7114{
118b4aa2
JK
7115 memset(xdp, 0, sizeof(*xdp));
7116 xdp->command = XDP_QUERY_PROG;
d67b9cd2
DB
7117
7118 /* Query must always succeed. */
118b4aa2
JK
7119 WARN_ON(bpf_op(dev, xdp) < 0);
7120}
7121
7122static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7123{
7124 struct netdev_bpf xdp;
7125
7126 __dev_xdp_query(dev, bpf_op, &xdp);
58038695 7127
d67b9cd2
DB
7128 return xdp.prog_attached;
7129}
7130
f4e63525 7131static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
32d60277 7132 struct netlink_ext_ack *extack, u32 flags,
d67b9cd2
DB
7133 struct bpf_prog *prog)
7134{
f4e63525 7135 struct netdev_bpf xdp;
d67b9cd2
DB
7136
7137 memset(&xdp, 0, sizeof(xdp));
ee5d032f
JK
7138 if (flags & XDP_FLAGS_HW_MODE)
7139 xdp.command = XDP_SETUP_PROG_HW;
7140 else
7141 xdp.command = XDP_SETUP_PROG;
d67b9cd2 7142 xdp.extack = extack;
32d60277 7143 xdp.flags = flags;
d67b9cd2
DB
7144 xdp.prog = prog;
7145
f4e63525 7146 return bpf_op(dev, &xdp);
d67b9cd2
DB
7147}
7148
bd0b2e7f
JK
7149static void dev_xdp_uninstall(struct net_device *dev)
7150{
7151 struct netdev_bpf xdp;
7152 bpf_op_t ndo_bpf;
7153
7154 /* Remove generic XDP */
7155 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7156
7157 /* Remove from the driver */
7158 ndo_bpf = dev->netdev_ops->ndo_bpf;
7159 if (!ndo_bpf)
7160 return;
7161
7162 __dev_xdp_query(dev, ndo_bpf, &xdp);
7163 if (xdp.prog_attached == XDP_ATTACHED_NONE)
7164 return;
7165
7166 /* Program removal should always succeed */
7167 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7168}
7169
a7862b45
BB
7170/**
7171 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7172 * @dev: device
b5d60989 7173 * @extack: netlink extended ack
a7862b45 7174 * @fd: new program fd or negative value to clear
85de8576 7175 * @flags: xdp-related flags
a7862b45
BB
7176 *
7177 * Set or clear a bpf program for a device
7178 */
ddf9f970
JK
7179int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7180 int fd, u32 flags)
a7862b45
BB
7181{
7182 const struct net_device_ops *ops = dev->netdev_ops;
7183 struct bpf_prog *prog = NULL;
f4e63525 7184 bpf_op_t bpf_op, bpf_chk;
a7862b45
BB
7185 int err;
7186
85de8576
DB
7187 ASSERT_RTNL();
7188
f4e63525
JK
7189 bpf_op = bpf_chk = ops->ndo_bpf;
7190 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
0489df9a 7191 return -EOPNOTSUPP;
f4e63525
JK
7192 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7193 bpf_op = generic_xdp_install;
7194 if (bpf_op == bpf_chk)
7195 bpf_chk = generic_xdp_install;
b5cdae32 7196
a7862b45 7197 if (fd >= 0) {
118b4aa2 7198 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
d67b9cd2
DB
7199 return -EEXIST;
7200 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
118b4aa2 7201 __dev_xdp_attached(dev, bpf_op))
d67b9cd2 7202 return -EBUSY;
85de8576 7203
288b3de5
JK
7204 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7205 bpf_op == ops->ndo_bpf);
a7862b45
BB
7206 if (IS_ERR(prog))
7207 return PTR_ERR(prog);
441a3303
JK
7208
7209 if (!(flags & XDP_FLAGS_HW_MODE) &&
7210 bpf_prog_is_dev_bound(prog->aux)) {
7211 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7212 bpf_prog_put(prog);
7213 return -EINVAL;
7214 }
a7862b45
BB
7215 }
7216
f4e63525 7217 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
a7862b45
BB
7218 if (err < 0 && prog)
7219 bpf_prog_put(prog);
7220
7221 return err;
7222}
a7862b45 7223
1da177e4
LT
7224/**
7225 * dev_new_index - allocate an ifindex
c4ea43c5 7226 * @net: the applicable net namespace
1da177e4
LT
7227 *
7228 * Returns a suitable unique value for a new device interface
7229 * number. The caller must hold the rtnl semaphore or the
7230 * dev_base_lock to be sure it remains unique.
7231 */
881d966b 7232static int dev_new_index(struct net *net)
1da177e4 7233{
aa79e66e 7234 int ifindex = net->ifindex;
f4563a75 7235
1da177e4
LT
7236 for (;;) {
7237 if (++ifindex <= 0)
7238 ifindex = 1;
881d966b 7239 if (!__dev_get_by_index(net, ifindex))
aa79e66e 7240 return net->ifindex = ifindex;
1da177e4
LT
7241 }
7242}
7243
1da177e4 7244/* Delayed registration/unregisteration */
3b5b34fd 7245static LIST_HEAD(net_todo_list);
200b916f 7246DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 7247
6f05f629 7248static void net_set_todo(struct net_device *dev)
1da177e4 7249{
1da177e4 7250 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 7251 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
7252}
7253
9b5e383c 7254static void rollback_registered_many(struct list_head *head)
93ee31f1 7255{
e93737b0 7256 struct net_device *dev, *tmp;
5cde2829 7257 LIST_HEAD(close_head);
9b5e383c 7258
93ee31f1
DL
7259 BUG_ON(dev_boot_phase);
7260 ASSERT_RTNL();
7261
e93737b0 7262 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 7263 /* Some devices call without registering
e93737b0
KK
7264 * for initialization unwind. Remove those
7265 * devices and proceed with the remaining.
9b5e383c
ED
7266 */
7267 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
7268 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7269 dev->name, dev);
93ee31f1 7270
9b5e383c 7271 WARN_ON(1);
e93737b0
KK
7272 list_del(&dev->unreg_list);
7273 continue;
9b5e383c 7274 }
449f4544 7275 dev->dismantle = true;
9b5e383c 7276 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 7277 }
93ee31f1 7278
44345724 7279 /* If device is running, close it first. */
5cde2829
EB
7280 list_for_each_entry(dev, head, unreg_list)
7281 list_add_tail(&dev->close_list, &close_head);
99c4a26a 7282 dev_close_many(&close_head, true);
93ee31f1 7283
44345724 7284 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
7285 /* And unlink it from device chain. */
7286 unlist_netdevice(dev);
93ee31f1 7287
9b5e383c
ED
7288 dev->reg_state = NETREG_UNREGISTERING;
7289 }
41852497 7290 flush_all_backlogs();
93ee31f1
DL
7291
7292 synchronize_net();
7293
9b5e383c 7294 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
7295 struct sk_buff *skb = NULL;
7296
9b5e383c
ED
7297 /* Shutdown queueing discipline. */
7298 dev_shutdown(dev);
93ee31f1 7299
bd0b2e7f 7300 dev_xdp_uninstall(dev);
93ee31f1 7301
9b5e383c 7302 /* Notify protocols, that we are about to destroy
eb13da1a 7303 * this device. They should clean all the things.
7304 */
9b5e383c 7305 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 7306
395eea6c
MB
7307 if (!dev->rtnl_link_ops ||
7308 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 7309 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
6621dd29 7310 GFP_KERNEL, NULL);
395eea6c 7311
9b5e383c
ED
7312 /*
7313 * Flush the unicast and multicast chains
7314 */
a748ee24 7315 dev_uc_flush(dev);
22bedad3 7316 dev_mc_flush(dev);
93ee31f1 7317
9b5e383c
ED
7318 if (dev->netdev_ops->ndo_uninit)
7319 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 7320
395eea6c
MB
7321 if (skb)
7322 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 7323
9ff162a8
JP
7324 /* Notifier chain MUST detach us all upper devices. */
7325 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 7326 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 7327
9b5e383c
ED
7328 /* Remove entries from kobject tree */
7329 netdev_unregister_kobject(dev);
024e9679
AD
7330#ifdef CONFIG_XPS
7331 /* Remove XPS queueing entries */
7332 netif_reset_xps_queues_gt(dev, 0);
7333#endif
9b5e383c 7334 }
93ee31f1 7335
850a545b 7336 synchronize_net();
395264d5 7337
a5ee1551 7338 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
7339 dev_put(dev);
7340}
7341
7342static void rollback_registered(struct net_device *dev)
7343{
7344 LIST_HEAD(single);
7345
7346 list_add(&dev->unreg_list, &single);
7347 rollback_registered_many(&single);
ceaaec98 7348 list_del(&single);
93ee31f1
DL
7349}
7350
fd867d51
JW
7351static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7352 struct net_device *upper, netdev_features_t features)
7353{
7354 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7355 netdev_features_t feature;
5ba3f7d6 7356 int feature_bit;
fd867d51 7357
5ba3f7d6
JW
7358 for_each_netdev_feature(&upper_disables, feature_bit) {
7359 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7360 if (!(upper->wanted_features & feature)
7361 && (features & feature)) {
7362 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7363 &feature, upper->name);
7364 features &= ~feature;
7365 }
7366 }
7367
7368 return features;
7369}
7370
7371static void netdev_sync_lower_features(struct net_device *upper,
7372 struct net_device *lower, netdev_features_t features)
7373{
7374 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7375 netdev_features_t feature;
5ba3f7d6 7376 int feature_bit;
fd867d51 7377
5ba3f7d6
JW
7378 for_each_netdev_feature(&upper_disables, feature_bit) {
7379 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
7380 if (!(features & feature) && (lower->features & feature)) {
7381 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7382 &feature, lower->name);
7383 lower->wanted_features &= ~feature;
7384 netdev_update_features(lower);
7385
7386 if (unlikely(lower->features & feature))
7387 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7388 &feature, lower->name);
7389 }
7390 }
7391}
7392
c8f44aff
MM
7393static netdev_features_t netdev_fix_features(struct net_device *dev,
7394 netdev_features_t features)
b63365a2 7395{
57422dc5
MM
7396 /* Fix illegal checksum combinations */
7397 if ((features & NETIF_F_HW_CSUM) &&
7398 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 7399 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
7400 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7401 }
7402
b63365a2 7403 /* TSO requires that SG is present as well. */
ea2d3688 7404 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 7405 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 7406 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
7407 }
7408
ec5f0615
PS
7409 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7410 !(features & NETIF_F_IP_CSUM)) {
7411 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7412 features &= ~NETIF_F_TSO;
7413 features &= ~NETIF_F_TSO_ECN;
7414 }
7415
7416 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7417 !(features & NETIF_F_IPV6_CSUM)) {
7418 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7419 features &= ~NETIF_F_TSO6;
7420 }
7421
b1dc497b
AD
7422 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7423 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7424 features &= ~NETIF_F_TSO_MANGLEID;
7425
31d8b9e0
BH
7426 /* TSO ECN requires that TSO is present as well. */
7427 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7428 features &= ~NETIF_F_TSO_ECN;
7429
212b573f
MM
7430 /* Software GSO depends on SG. */
7431 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 7432 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
7433 features &= ~NETIF_F_GSO;
7434 }
7435
802ab55a
AD
7436 /* GSO partial features require GSO partial be set */
7437 if ((features & dev->gso_partial_features) &&
7438 !(features & NETIF_F_GSO_PARTIAL)) {
7439 netdev_dbg(dev,
7440 "Dropping partially supported GSO features since no GSO partial.\n");
7441 features &= ~dev->gso_partial_features;
7442 }
7443
fb1f5f79
MC
7444 if (!(features & NETIF_F_RXCSUM)) {
7445 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7446 * successfully merged by hardware must also have the
7447 * checksum verified by hardware. If the user does not
7448 * want to enable RXCSUM, logically, we should disable GRO_HW.
7449 */
7450 if (features & NETIF_F_GRO_HW) {
7451 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7452 features &= ~NETIF_F_GRO_HW;
7453 }
7454 }
7455
b63365a2
HX
7456 return features;
7457}
b63365a2 7458
6cb6a27c 7459int __netdev_update_features(struct net_device *dev)
5455c699 7460{
fd867d51 7461 struct net_device *upper, *lower;
c8f44aff 7462 netdev_features_t features;
fd867d51 7463 struct list_head *iter;
e7868a85 7464 int err = -1;
5455c699 7465
87267485
MM
7466 ASSERT_RTNL();
7467
5455c699
MM
7468 features = netdev_get_wanted_features(dev);
7469
7470 if (dev->netdev_ops->ndo_fix_features)
7471 features = dev->netdev_ops->ndo_fix_features(dev, features);
7472
7473 /* driver might be less strict about feature dependencies */
7474 features = netdev_fix_features(dev, features);
7475
fd867d51
JW
7476 /* some features can't be enabled if they're off an an upper device */
7477 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7478 features = netdev_sync_upper_features(dev, upper, features);
7479
5455c699 7480 if (dev->features == features)
e7868a85 7481 goto sync_lower;
5455c699 7482
c8f44aff
MM
7483 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7484 &dev->features, &features);
5455c699
MM
7485
7486 if (dev->netdev_ops->ndo_set_features)
7487 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
7488 else
7489 err = 0;
5455c699 7490
6cb6a27c 7491 if (unlikely(err < 0)) {
5455c699 7492 netdev_err(dev,
c8f44aff
MM
7493 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7494 err, &features, &dev->features);
17b85d29
NA
7495 /* return non-0 since some features might have changed and
7496 * it's better to fire a spurious notification than miss it
7497 */
7498 return -1;
6cb6a27c
MM
7499 }
7500
e7868a85 7501sync_lower:
fd867d51
JW
7502 /* some features must be disabled on lower devices when disabled
7503 * on an upper device (think: bonding master or bridge)
7504 */
7505 netdev_for_each_lower_dev(dev, lower, iter)
7506 netdev_sync_lower_features(dev, lower, features);
7507
ae847f40
SD
7508 if (!err) {
7509 netdev_features_t diff = features ^ dev->features;
7510
7511 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7512 /* udp_tunnel_{get,drop}_rx_info both need
7513 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7514 * device, or they won't do anything.
7515 * Thus we need to update dev->features
7516 * *before* calling udp_tunnel_get_rx_info,
7517 * but *after* calling udp_tunnel_drop_rx_info.
7518 */
7519 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7520 dev->features = features;
7521 udp_tunnel_get_rx_info(dev);
7522 } else {
7523 udp_tunnel_drop_rx_info(dev);
7524 }
7525 }
7526
6cb6a27c 7527 dev->features = features;
ae847f40 7528 }
6cb6a27c 7529
e7868a85 7530 return err < 0 ? 0 : 1;
6cb6a27c
MM
7531}
7532
afe12cc8
MM
7533/**
7534 * netdev_update_features - recalculate device features
7535 * @dev: the device to check
7536 *
7537 * Recalculate dev->features set and send notifications if it
7538 * has changed. Should be called after driver or hardware dependent
7539 * conditions might have changed that influence the features.
7540 */
6cb6a27c
MM
7541void netdev_update_features(struct net_device *dev)
7542{
7543 if (__netdev_update_features(dev))
7544 netdev_features_change(dev);
5455c699
MM
7545}
7546EXPORT_SYMBOL(netdev_update_features);
7547
afe12cc8
MM
7548/**
7549 * netdev_change_features - recalculate device features
7550 * @dev: the device to check
7551 *
7552 * Recalculate dev->features set and send notifications even
7553 * if they have not changed. Should be called instead of
7554 * netdev_update_features() if also dev->vlan_features might
7555 * have changed to allow the changes to be propagated to stacked
7556 * VLAN devices.
7557 */
7558void netdev_change_features(struct net_device *dev)
7559{
7560 __netdev_update_features(dev);
7561 netdev_features_change(dev);
7562}
7563EXPORT_SYMBOL(netdev_change_features);
7564
fc4a7489
PM
7565/**
7566 * netif_stacked_transfer_operstate - transfer operstate
7567 * @rootdev: the root or lower level device to transfer state from
7568 * @dev: the device to transfer operstate to
7569 *
7570 * Transfer operational state from root to device. This is normally
7571 * called when a stacking relationship exists between the root
7572 * device and the device(a leaf device).
7573 */
7574void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7575 struct net_device *dev)
7576{
7577 if (rootdev->operstate == IF_OPER_DORMANT)
7578 netif_dormant_on(dev);
7579 else
7580 netif_dormant_off(dev);
7581
0575c86b
ZS
7582 if (netif_carrier_ok(rootdev))
7583 netif_carrier_on(dev);
7584 else
7585 netif_carrier_off(dev);
fc4a7489
PM
7586}
7587EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7588
a953be53 7589#ifdef CONFIG_SYSFS
1b4bf461
ED
7590static int netif_alloc_rx_queues(struct net_device *dev)
7591{
1b4bf461 7592 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7593 struct netdev_rx_queue *rx;
10595902 7594 size_t sz = count * sizeof(*rx);
1b4bf461 7595
bd25fa7b 7596 BUG_ON(count < 1);
1b4bf461 7597
dcda9b04 7598 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7599 if (!rx)
7600 return -ENOMEM;
7601
bd25fa7b
TH
7602 dev->_rx = rx;
7603
bd25fa7b 7604 for (i = 0; i < count; i++)
fe822240 7605 rx[i].dev = dev;
1b4bf461
ED
7606 return 0;
7607}
bf264145 7608#endif
1b4bf461 7609
aa942104
CG
7610static void netdev_init_one_queue(struct net_device *dev,
7611 struct netdev_queue *queue, void *_unused)
7612{
7613 /* Initialize queue lock */
7614 spin_lock_init(&queue->_xmit_lock);
7615 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7616 queue->xmit_lock_owner = -1;
b236da69 7617 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7618 queue->dev = dev;
114cf580
TH
7619#ifdef CONFIG_BQL
7620 dql_init(&queue->dql, HZ);
7621#endif
aa942104
CG
7622}
7623
60877a32
ED
7624static void netif_free_tx_queues(struct net_device *dev)
7625{
4cb28970 7626 kvfree(dev->_tx);
60877a32
ED
7627}
7628
e6484930
TH
7629static int netif_alloc_netdev_queues(struct net_device *dev)
7630{
7631 unsigned int count = dev->num_tx_queues;
7632 struct netdev_queue *tx;
60877a32 7633 size_t sz = count * sizeof(*tx);
e6484930 7634
d339727c
ED
7635 if (count < 1 || count > 0xffff)
7636 return -EINVAL;
62b5942a 7637
dcda9b04 7638 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
7639 if (!tx)
7640 return -ENOMEM;
7641
e6484930 7642 dev->_tx = tx;
1d24eb48 7643
e6484930
TH
7644 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7645 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7646
7647 return 0;
e6484930
TH
7648}
7649
a2029240
DV
7650void netif_tx_stop_all_queues(struct net_device *dev)
7651{
7652 unsigned int i;
7653
7654 for (i = 0; i < dev->num_tx_queues; i++) {
7655 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 7656
a2029240
DV
7657 netif_tx_stop_queue(txq);
7658 }
7659}
7660EXPORT_SYMBOL(netif_tx_stop_all_queues);
7661
1da177e4
LT
7662/**
7663 * register_netdevice - register a network device
7664 * @dev: device to register
7665 *
7666 * Take a completed network device structure and add it to the kernel
7667 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7668 * chain. 0 is returned on success. A negative errno code is returned
7669 * on a failure to set up the device, or if the name is a duplicate.
7670 *
7671 * Callers must hold the rtnl semaphore. You may want
7672 * register_netdev() instead of this.
7673 *
7674 * BUGS:
7675 * The locking appears insufficient to guarantee two parallel registers
7676 * will not get the same name.
7677 */
7678
7679int register_netdevice(struct net_device *dev)
7680{
1da177e4 7681 int ret;
d314774c 7682 struct net *net = dev_net(dev);
1da177e4
LT
7683
7684 BUG_ON(dev_boot_phase);
7685 ASSERT_RTNL();
7686
b17a7c17
SH
7687 might_sleep();
7688
1da177e4
LT
7689 /* When net_device's are persistent, this will be fatal. */
7690 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7691 BUG_ON(!net);
1da177e4 7692
f1f28aa3 7693 spin_lock_init(&dev->addr_list_lock);
cf508b12 7694 netdev_set_addr_lockdep_class(dev);
1da177e4 7695
828de4f6 7696 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7697 if (ret < 0)
7698 goto out;
7699
1da177e4 7700 /* Init, if this function is available */
d314774c
SH
7701 if (dev->netdev_ops->ndo_init) {
7702 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7703 if (ret) {
7704 if (ret > 0)
7705 ret = -EIO;
90833aa4 7706 goto out;
1da177e4
LT
7707 }
7708 }
4ec93edb 7709
f646968f
PM
7710 if (((dev->hw_features | dev->features) &
7711 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7712 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7713 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7714 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7715 ret = -EINVAL;
7716 goto err_uninit;
7717 }
7718
9c7dafbf
PE
7719 ret = -EBUSY;
7720 if (!dev->ifindex)
7721 dev->ifindex = dev_new_index(net);
7722 else if (__dev_get_by_index(net, dev->ifindex))
7723 goto err_uninit;
7724
5455c699
MM
7725 /* Transfer changeable features to wanted_features and enable
7726 * software offloads (GSO and GRO).
7727 */
7728 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f 7729 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
7730
7731 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7732 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7733 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7734 }
7735
14d1232f 7736 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7737
cbc53e08 7738 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7739 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7740
7f348a60
AD
7741 /* If IPv4 TCP segmentation offload is supported we should also
7742 * allow the device to enable segmenting the frame with the option
7743 * of ignoring a static IP ID value. This doesn't enable the
7744 * feature itself but allows the user to enable it later.
7745 */
cbc53e08
AD
7746 if (dev->hw_features & NETIF_F_TSO)
7747 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7748 if (dev->vlan_features & NETIF_F_TSO)
7749 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7750 if (dev->mpls_features & NETIF_F_TSO)
7751 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7752 if (dev->hw_enc_features & NETIF_F_TSO)
7753 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7754
1180e7d6 7755 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7756 */
1180e7d6 7757 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7758
ee579677
PS
7759 /* Make NETIF_F_SG inheritable to tunnel devices.
7760 */
802ab55a 7761 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7762
0d89d203
SH
7763 /* Make NETIF_F_SG inheritable to MPLS.
7764 */
7765 dev->mpls_features |= NETIF_F_SG;
7766
7ffbe3fd
JB
7767 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7768 ret = notifier_to_errno(ret);
7769 if (ret)
7770 goto err_uninit;
7771
8b41d188 7772 ret = netdev_register_kobject(dev);
b17a7c17 7773 if (ret)
7ce1b0ed 7774 goto err_uninit;
b17a7c17
SH
7775 dev->reg_state = NETREG_REGISTERED;
7776
6cb6a27c 7777 __netdev_update_features(dev);
8e9b59b2 7778
1da177e4
LT
7779 /*
7780 * Default initial state at registry is that the
7781 * device is present.
7782 */
7783
7784 set_bit(__LINK_STATE_PRESENT, &dev->state);
7785
8f4cccbb
BH
7786 linkwatch_init_dev(dev);
7787
1da177e4 7788 dev_init_scheduler(dev);
1da177e4 7789 dev_hold(dev);
ce286d32 7790 list_netdevice(dev);
7bf23575 7791 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7792
948b337e
JP
7793 /* If the device has permanent device address, driver should
7794 * set dev_addr and also addr_assign_type should be set to
7795 * NET_ADDR_PERM (default value).
7796 */
7797 if (dev->addr_assign_type == NET_ADDR_PERM)
7798 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7799
1da177e4 7800 /* Notify protocols, that a new device appeared. */
056925ab 7801 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7802 ret = notifier_to_errno(ret);
93ee31f1
DL
7803 if (ret) {
7804 rollback_registered(dev);
7805 dev->reg_state = NETREG_UNREGISTERED;
7806 }
d90a909e
EB
7807 /*
7808 * Prevent userspace races by waiting until the network
7809 * device is fully setup before sending notifications.
7810 */
a2835763
PM
7811 if (!dev->rtnl_link_ops ||
7812 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7813 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7814
7815out:
7816 return ret;
7ce1b0ed
HX
7817
7818err_uninit:
d314774c
SH
7819 if (dev->netdev_ops->ndo_uninit)
7820 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
7821 if (dev->priv_destructor)
7822 dev->priv_destructor(dev);
7ce1b0ed 7823 goto out;
1da177e4 7824}
d1b19dff 7825EXPORT_SYMBOL(register_netdevice);
1da177e4 7826
937f1ba5
BH
7827/**
7828 * init_dummy_netdev - init a dummy network device for NAPI
7829 * @dev: device to init
7830 *
7831 * This takes a network device structure and initialize the minimum
7832 * amount of fields so it can be used to schedule NAPI polls without
7833 * registering a full blown interface. This is to be used by drivers
7834 * that need to tie several hardware interfaces to a single NAPI
7835 * poll scheduler due to HW limitations.
7836 */
7837int init_dummy_netdev(struct net_device *dev)
7838{
7839 /* Clear everything. Note we don't initialize spinlocks
7840 * are they aren't supposed to be taken by any of the
7841 * NAPI code and this dummy netdev is supposed to be
7842 * only ever used for NAPI polls
7843 */
7844 memset(dev, 0, sizeof(struct net_device));
7845
7846 /* make sure we BUG if trying to hit standard
7847 * register/unregister code path
7848 */
7849 dev->reg_state = NETREG_DUMMY;
7850
937f1ba5
BH
7851 /* NAPI wants this */
7852 INIT_LIST_HEAD(&dev->napi_list);
7853
7854 /* a dummy interface is started by default */
7855 set_bit(__LINK_STATE_PRESENT, &dev->state);
7856 set_bit(__LINK_STATE_START, &dev->state);
7857
29b4433d
ED
7858 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7859 * because users of this 'device' dont need to change
7860 * its refcount.
7861 */
7862
937f1ba5
BH
7863 return 0;
7864}
7865EXPORT_SYMBOL_GPL(init_dummy_netdev);
7866
7867
1da177e4
LT
7868/**
7869 * register_netdev - register a network device
7870 * @dev: device to register
7871 *
7872 * Take a completed network device structure and add it to the kernel
7873 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7874 * chain. 0 is returned on success. A negative errno code is returned
7875 * on a failure to set up the device, or if the name is a duplicate.
7876 *
38b4da38 7877 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7878 * and expands the device name if you passed a format string to
7879 * alloc_netdev.
7880 */
7881int register_netdev(struct net_device *dev)
7882{
7883 int err;
7884
7885 rtnl_lock();
1da177e4 7886 err = register_netdevice(dev);
1da177e4
LT
7887 rtnl_unlock();
7888 return err;
7889}
7890EXPORT_SYMBOL(register_netdev);
7891
29b4433d
ED
7892int netdev_refcnt_read(const struct net_device *dev)
7893{
7894 int i, refcnt = 0;
7895
7896 for_each_possible_cpu(i)
7897 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7898 return refcnt;
7899}
7900EXPORT_SYMBOL(netdev_refcnt_read);
7901
2c53040f 7902/**
1da177e4 7903 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7904 * @dev: target net_device
1da177e4
LT
7905 *
7906 * This is called when unregistering network devices.
7907 *
7908 * Any protocol or device that holds a reference should register
7909 * for netdevice notification, and cleanup and put back the
7910 * reference if they receive an UNREGISTER event.
7911 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7912 * call dev_put.
1da177e4
LT
7913 */
7914static void netdev_wait_allrefs(struct net_device *dev)
7915{
7916 unsigned long rebroadcast_time, warning_time;
29b4433d 7917 int refcnt;
1da177e4 7918
e014debe
ED
7919 linkwatch_forget_dev(dev);
7920
1da177e4 7921 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7922 refcnt = netdev_refcnt_read(dev);
7923
7924 while (refcnt != 0) {
1da177e4 7925 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7926 rtnl_lock();
1da177e4
LT
7927
7928 /* Rebroadcast unregister notification */
056925ab 7929 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7930
748e2d93 7931 __rtnl_unlock();
0115e8e3 7932 rcu_barrier();
748e2d93
ED
7933 rtnl_lock();
7934
0115e8e3 7935 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7936 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7937 &dev->state)) {
7938 /* We must not have linkwatch events
7939 * pending on unregister. If this
7940 * happens, we simply run the queue
7941 * unscheduled, resulting in a noop
7942 * for this device.
7943 */
7944 linkwatch_run_queue();
7945 }
7946
6756ae4b 7947 __rtnl_unlock();
1da177e4
LT
7948
7949 rebroadcast_time = jiffies;
7950 }
7951
7952 msleep(250);
7953
29b4433d
ED
7954 refcnt = netdev_refcnt_read(dev);
7955
1da177e4 7956 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7957 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7958 dev->name, refcnt);
1da177e4
LT
7959 warning_time = jiffies;
7960 }
7961 }
7962}
7963
7964/* The sequence is:
7965 *
7966 * rtnl_lock();
7967 * ...
7968 * register_netdevice(x1);
7969 * register_netdevice(x2);
7970 * ...
7971 * unregister_netdevice(y1);
7972 * unregister_netdevice(y2);
7973 * ...
7974 * rtnl_unlock();
7975 * free_netdev(y1);
7976 * free_netdev(y2);
7977 *
58ec3b4d 7978 * We are invoked by rtnl_unlock().
1da177e4 7979 * This allows us to deal with problems:
b17a7c17 7980 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7981 * without deadlocking with linkwatch via keventd.
7982 * 2) Since we run with the RTNL semaphore not held, we can sleep
7983 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7984 *
7985 * We must not return until all unregister events added during
7986 * the interval the lock was held have been completed.
1da177e4 7987 */
1da177e4
LT
7988void netdev_run_todo(void)
7989{
626ab0e6 7990 struct list_head list;
1da177e4 7991
1da177e4 7992 /* Snapshot list, allow later requests */
626ab0e6 7993 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7994
7995 __rtnl_unlock();
626ab0e6 7996
0115e8e3
ED
7997
7998 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7999 if (!list_empty(&list))
8000 rcu_barrier();
8001
1da177e4
LT
8002 while (!list_empty(&list)) {
8003 struct net_device *dev
e5e26d75 8004 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
8005 list_del(&dev->todo_list);
8006
748e2d93 8007 rtnl_lock();
0115e8e3 8008 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 8009 __rtnl_unlock();
0115e8e3 8010
b17a7c17 8011 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 8012 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
8013 dev->name, dev->reg_state);
8014 dump_stack();
8015 continue;
8016 }
1da177e4 8017
b17a7c17 8018 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 8019
b17a7c17 8020 netdev_wait_allrefs(dev);
1da177e4 8021
b17a7c17 8022 /* paranoia */
29b4433d 8023 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
8024 BUG_ON(!list_empty(&dev->ptype_all));
8025 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
8026 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8027 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 8028 WARN_ON(dev->dn_ptr);
1da177e4 8029
cf124db5
DM
8030 if (dev->priv_destructor)
8031 dev->priv_destructor(dev);
8032 if (dev->needs_free_netdev)
8033 free_netdev(dev);
9093bbb2 8034
50624c93
EB
8035 /* Report a network device has been unregistered */
8036 rtnl_lock();
8037 dev_net(dev)->dev_unreg_count--;
8038 __rtnl_unlock();
8039 wake_up(&netdev_unregistering_wq);
8040
9093bbb2
SH
8041 /* Free network device */
8042 kobject_put(&dev->dev.kobj);
1da177e4 8043 }
1da177e4
LT
8044}
8045
9256645a
JW
8046/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8047 * all the same fields in the same order as net_device_stats, with only
8048 * the type differing, but rtnl_link_stats64 may have additional fields
8049 * at the end for newer counters.
3cfde79c 8050 */
77a1abf5
ED
8051void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8052 const struct net_device_stats *netdev_stats)
3cfde79c
BH
8053{
8054#if BITS_PER_LONG == 64
9256645a 8055 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 8056 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
8057 /* zero out counters that only exist in rtnl_link_stats64 */
8058 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8059 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 8060#else
9256645a 8061 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
8062 const unsigned long *src = (const unsigned long *)netdev_stats;
8063 u64 *dst = (u64 *)stats64;
8064
9256645a 8065 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
8066 for (i = 0; i < n; i++)
8067 dst[i] = src[i];
9256645a
JW
8068 /* zero out counters that only exist in rtnl_link_stats64 */
8069 memset((char *)stats64 + n * sizeof(u64), 0,
8070 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
8071#endif
8072}
77a1abf5 8073EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 8074
eeda3fd6
SH
8075/**
8076 * dev_get_stats - get network device statistics
8077 * @dev: device to get statistics from
28172739 8078 * @storage: place to store stats
eeda3fd6 8079 *
d7753516
BH
8080 * Get network statistics from device. Return @storage.
8081 * The device driver may provide its own method by setting
8082 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8083 * otherwise the internal statistics structure is used.
eeda3fd6 8084 */
d7753516
BH
8085struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8086 struct rtnl_link_stats64 *storage)
7004bf25 8087{
eeda3fd6
SH
8088 const struct net_device_ops *ops = dev->netdev_ops;
8089
28172739
ED
8090 if (ops->ndo_get_stats64) {
8091 memset(storage, 0, sizeof(*storage));
caf586e5
ED
8092 ops->ndo_get_stats64(dev, storage);
8093 } else if (ops->ndo_get_stats) {
3cfde79c 8094 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
8095 } else {
8096 netdev_stats_to_stats64(storage, &dev->stats);
28172739 8097 }
6f64ec74
ED
8098 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8099 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8100 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 8101 return storage;
c45d286e 8102}
eeda3fd6 8103EXPORT_SYMBOL(dev_get_stats);
c45d286e 8104
24824a09 8105struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 8106{
24824a09 8107 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 8108
24824a09
ED
8109#ifdef CONFIG_NET_CLS_ACT
8110 if (queue)
8111 return queue;
8112 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8113 if (!queue)
8114 return NULL;
8115 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 8116 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
8117 queue->qdisc_sleeping = &noop_qdisc;
8118 rcu_assign_pointer(dev->ingress_queue, queue);
8119#endif
8120 return queue;
bb949fbd
DM
8121}
8122
2c60db03
ED
8123static const struct ethtool_ops default_ethtool_ops;
8124
d07d7507
SG
8125void netdev_set_default_ethtool_ops(struct net_device *dev,
8126 const struct ethtool_ops *ops)
8127{
8128 if (dev->ethtool_ops == &default_ethtool_ops)
8129 dev->ethtool_ops = ops;
8130}
8131EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8132
74d332c1
ED
8133void netdev_freemem(struct net_device *dev)
8134{
8135 char *addr = (char *)dev - dev->padded;
8136
4cb28970 8137 kvfree(addr);
74d332c1
ED
8138}
8139
1da177e4 8140/**
722c9a0c 8141 * alloc_netdev_mqs - allocate network device
8142 * @sizeof_priv: size of private data to allocate space for
8143 * @name: device name format string
8144 * @name_assign_type: origin of device name
8145 * @setup: callback to initialize device
8146 * @txqs: the number of TX subqueues to allocate
8147 * @rxqs: the number of RX subqueues to allocate
8148 *
8149 * Allocates a struct net_device with private data area for driver use
8150 * and performs basic initialization. Also allocates subqueue structs
8151 * for each queue on the device.
1da177e4 8152 */
36909ea4 8153struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 8154 unsigned char name_assign_type,
36909ea4
TH
8155 void (*setup)(struct net_device *),
8156 unsigned int txqs, unsigned int rxqs)
1da177e4 8157{
1da177e4 8158 struct net_device *dev;
52a59bd5 8159 unsigned int alloc_size;
1ce8e7b5 8160 struct net_device *p;
1da177e4 8161
b6fe17d6
SH
8162 BUG_ON(strlen(name) >= sizeof(dev->name));
8163
36909ea4 8164 if (txqs < 1) {
7b6cd1ce 8165 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
8166 return NULL;
8167 }
8168
a953be53 8169#ifdef CONFIG_SYSFS
36909ea4 8170 if (rxqs < 1) {
7b6cd1ce 8171 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
8172 return NULL;
8173 }
8174#endif
8175
fd2ea0a7 8176 alloc_size = sizeof(struct net_device);
d1643d24
AD
8177 if (sizeof_priv) {
8178 /* ensure 32-byte alignment of private area */
1ce8e7b5 8179 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
8180 alloc_size += sizeof_priv;
8181 }
8182 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 8183 alloc_size += NETDEV_ALIGN - 1;
1da177e4 8184
dcda9b04 8185 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 8186 if (!p)
1da177e4 8187 return NULL;
1da177e4 8188
1ce8e7b5 8189 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 8190 dev->padded = (char *)dev - (char *)p;
ab9c73cc 8191
29b4433d
ED
8192 dev->pcpu_refcnt = alloc_percpu(int);
8193 if (!dev->pcpu_refcnt)
74d332c1 8194 goto free_dev;
ab9c73cc 8195
ab9c73cc 8196 if (dev_addr_init(dev))
29b4433d 8197 goto free_pcpu;
ab9c73cc 8198
22bedad3 8199 dev_mc_init(dev);
a748ee24 8200 dev_uc_init(dev);
ccffad25 8201
c346dca1 8202 dev_net_set(dev, &init_net);
1da177e4 8203
8d3bdbd5 8204 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 8205 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 8206
8d3bdbd5
DM
8207 INIT_LIST_HEAD(&dev->napi_list);
8208 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 8209 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 8210 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
8211 INIT_LIST_HEAD(&dev->adj_list.upper);
8212 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
8213 INIT_LIST_HEAD(&dev->ptype_all);
8214 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
8215#ifdef CONFIG_NET_SCHED
8216 hash_init(dev->qdisc_hash);
8217#endif
02875878 8218 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
8219 setup(dev);
8220
a813104d 8221 if (!dev->tx_queue_len) {
f84bb1ea 8222 dev->priv_flags |= IFF_NO_QUEUE;
11597084 8223 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 8224 }
906470c1 8225
36909ea4
TH
8226 dev->num_tx_queues = txqs;
8227 dev->real_num_tx_queues = txqs;
ed9af2e8 8228 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 8229 goto free_all;
e8a0464c 8230
a953be53 8231#ifdef CONFIG_SYSFS
36909ea4
TH
8232 dev->num_rx_queues = rxqs;
8233 dev->real_num_rx_queues = rxqs;
fe822240 8234 if (netif_alloc_rx_queues(dev))
8d3bdbd5 8235 goto free_all;
df334545 8236#endif
0a9627f2 8237
1da177e4 8238 strcpy(dev->name, name);
c835a677 8239 dev->name_assign_type = name_assign_type;
cbda10fa 8240 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
8241 if (!dev->ethtool_ops)
8242 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
8243
8244 nf_hook_ingress_init(dev);
8245
1da177e4 8246 return dev;
ab9c73cc 8247
8d3bdbd5
DM
8248free_all:
8249 free_netdev(dev);
8250 return NULL;
8251
29b4433d
ED
8252free_pcpu:
8253 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
8254free_dev:
8255 netdev_freemem(dev);
ab9c73cc 8256 return NULL;
1da177e4 8257}
36909ea4 8258EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
8259
8260/**
722c9a0c 8261 * free_netdev - free network device
8262 * @dev: device
1da177e4 8263 *
722c9a0c 8264 * This function does the last stage of destroying an allocated device
8265 * interface. The reference to the device object is released. If this
8266 * is the last reference then it will be freed.Must be called in process
8267 * context.
1da177e4
LT
8268 */
8269void free_netdev(struct net_device *dev)
8270{
d565b0a1
HX
8271 struct napi_struct *p, *n;
8272
93d05d4a 8273 might_sleep();
60877a32 8274 netif_free_tx_queues(dev);
a953be53 8275#ifdef CONFIG_SYSFS
10595902 8276 kvfree(dev->_rx);
fe822240 8277#endif
e8a0464c 8278
33d480ce 8279 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 8280
f001fde5
JP
8281 /* Flush device addresses */
8282 dev_addr_flush(dev);
8283
d565b0a1
HX
8284 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8285 netif_napi_del(p);
8286
29b4433d
ED
8287 free_percpu(dev->pcpu_refcnt);
8288 dev->pcpu_refcnt = NULL;
8289
3041a069 8290 /* Compatibility with error handling in drivers */
1da177e4 8291 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 8292 netdev_freemem(dev);
1da177e4
LT
8293 return;
8294 }
8295
8296 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8297 dev->reg_state = NETREG_RELEASED;
8298
43cb76d9
GKH
8299 /* will free via device release */
8300 put_device(&dev->dev);
1da177e4 8301}
d1b19dff 8302EXPORT_SYMBOL(free_netdev);
4ec93edb 8303
f0db275a
SH
8304/**
8305 * synchronize_net - Synchronize with packet receive processing
8306 *
8307 * Wait for packets currently being received to be done.
8308 * Does not block later packets from starting.
8309 */
4ec93edb 8310void synchronize_net(void)
1da177e4
LT
8311{
8312 might_sleep();
be3fc413
ED
8313 if (rtnl_is_locked())
8314 synchronize_rcu_expedited();
8315 else
8316 synchronize_rcu();
1da177e4 8317}
d1b19dff 8318EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
8319
8320/**
44a0873d 8321 * unregister_netdevice_queue - remove device from the kernel
1da177e4 8322 * @dev: device
44a0873d 8323 * @head: list
6ebfbc06 8324 *
1da177e4 8325 * This function shuts down a device interface and removes it
d59b54b1 8326 * from the kernel tables.
44a0873d 8327 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
8328 *
8329 * Callers must hold the rtnl semaphore. You may want
8330 * unregister_netdev() instead of this.
8331 */
8332
44a0873d 8333void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 8334{
a6620712
HX
8335 ASSERT_RTNL();
8336
44a0873d 8337 if (head) {
9fdce099 8338 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
8339 } else {
8340 rollback_registered(dev);
8341 /* Finish processing unregister after unlock */
8342 net_set_todo(dev);
8343 }
1da177e4 8344}
44a0873d 8345EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 8346
9b5e383c
ED
8347/**
8348 * unregister_netdevice_many - unregister many devices
8349 * @head: list of devices
87757a91
ED
8350 *
8351 * Note: As most callers use a stack allocated list_head,
8352 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
8353 */
8354void unregister_netdevice_many(struct list_head *head)
8355{
8356 struct net_device *dev;
8357
8358 if (!list_empty(head)) {
8359 rollback_registered_many(head);
8360 list_for_each_entry(dev, head, unreg_list)
8361 net_set_todo(dev);
87757a91 8362 list_del(head);
9b5e383c
ED
8363 }
8364}
63c8099d 8365EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 8366
1da177e4
LT
8367/**
8368 * unregister_netdev - remove device from the kernel
8369 * @dev: device
8370 *
8371 * This function shuts down a device interface and removes it
d59b54b1 8372 * from the kernel tables.
1da177e4
LT
8373 *
8374 * This is just a wrapper for unregister_netdevice that takes
8375 * the rtnl semaphore. In general you want to use this and not
8376 * unregister_netdevice.
8377 */
8378void unregister_netdev(struct net_device *dev)
8379{
8380 rtnl_lock();
8381 unregister_netdevice(dev);
8382 rtnl_unlock();
8383}
1da177e4
LT
8384EXPORT_SYMBOL(unregister_netdev);
8385
ce286d32
EB
8386/**
8387 * dev_change_net_namespace - move device to different nethost namespace
8388 * @dev: device
8389 * @net: network namespace
8390 * @pat: If not NULL name pattern to try if the current device name
8391 * is already taken in the destination network namespace.
8392 *
8393 * This function shuts down a device interface and moves it
8394 * to a new network namespace. On success 0 is returned, on
8395 * a failure a netagive errno code is returned.
8396 *
8397 * Callers must hold the rtnl semaphore.
8398 */
8399
8400int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8401{
6621dd29 8402 int err, new_nsid;
ce286d32
EB
8403
8404 ASSERT_RTNL();
8405
8406 /* Don't allow namespace local devices to be moved. */
8407 err = -EINVAL;
8408 if (dev->features & NETIF_F_NETNS_LOCAL)
8409 goto out;
8410
8411 /* Ensure the device has been registrered */
ce286d32
EB
8412 if (dev->reg_state != NETREG_REGISTERED)
8413 goto out;
8414
8415 /* Get out if there is nothing todo */
8416 err = 0;
878628fb 8417 if (net_eq(dev_net(dev), net))
ce286d32
EB
8418 goto out;
8419
8420 /* Pick the destination device name, and ensure
8421 * we can use it in the destination network namespace.
8422 */
8423 err = -EEXIST;
d9031024 8424 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
8425 /* We get here if we can't use the current device name */
8426 if (!pat)
8427 goto out;
828de4f6 8428 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
8429 goto out;
8430 }
8431
8432 /*
8433 * And now a mini version of register_netdevice unregister_netdevice.
8434 */
8435
8436 /* If device is running close it first. */
9b772652 8437 dev_close(dev);
ce286d32
EB
8438
8439 /* And unlink it from device chain */
8440 err = -ENODEV;
8441 unlist_netdevice(dev);
8442
8443 synchronize_net();
8444
8445 /* Shutdown queueing discipline. */
8446 dev_shutdown(dev);
8447
8448 /* Notify protocols, that we are about to destroy
eb13da1a 8449 * this device. They should clean all the things.
8450 *
8451 * Note that dev->reg_state stays at NETREG_REGISTERED.
8452 * This is wanted because this way 8021q and macvlan know
8453 * the device is just moving and can keep their slaves up.
8454 */
ce286d32 8455 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
8456 rcu_barrier();
8457 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6621dd29
ND
8458 if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8459 new_nsid = peernet2id_alloc(dev_net(dev), net);
8460 else
8461 new_nsid = peernet2id(dev_net(dev), net);
8462 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
ce286d32
EB
8463
8464 /*
8465 * Flush the unicast and multicast chains
8466 */
a748ee24 8467 dev_uc_flush(dev);
22bedad3 8468 dev_mc_flush(dev);
ce286d32 8469
4e66ae2e
SH
8470 /* Send a netdev-removed uevent to the old namespace */
8471 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 8472 netdev_adjacent_del_links(dev);
4e66ae2e 8473
ce286d32 8474 /* Actually switch the network namespace */
c346dca1 8475 dev_net_set(dev, net);
ce286d32 8476
ce286d32 8477 /* If there is an ifindex conflict assign a new one */
7a66bbc9 8478 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 8479 dev->ifindex = dev_new_index(net);
ce286d32 8480
4e66ae2e
SH
8481 /* Send a netdev-add uevent to the new namespace */
8482 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 8483 netdev_adjacent_add_links(dev);
4e66ae2e 8484
8b41d188 8485 /* Fixup kobjects */
a1b3f594 8486 err = device_rename(&dev->dev, dev->name);
8b41d188 8487 WARN_ON(err);
ce286d32
EB
8488
8489 /* Add the device back in the hashes */
8490 list_netdevice(dev);
8491
8492 /* Notify protocols, that a new device appeared. */
8493 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8494
d90a909e
EB
8495 /*
8496 * Prevent userspace races by waiting until the network
8497 * device is fully setup before sending notifications.
8498 */
7f294054 8499 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 8500
ce286d32
EB
8501 synchronize_net();
8502 err = 0;
8503out:
8504 return err;
8505}
463d0183 8506EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 8507
f0bf90de 8508static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
8509{
8510 struct sk_buff **list_skb;
1da177e4 8511 struct sk_buff *skb;
f0bf90de 8512 unsigned int cpu;
97d8b6e3 8513 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 8514
1da177e4
LT
8515 local_irq_disable();
8516 cpu = smp_processor_id();
8517 sd = &per_cpu(softnet_data, cpu);
8518 oldsd = &per_cpu(softnet_data, oldcpu);
8519
8520 /* Find end of our completion_queue. */
8521 list_skb = &sd->completion_queue;
8522 while (*list_skb)
8523 list_skb = &(*list_skb)->next;
8524 /* Append completion queue from offline CPU. */
8525 *list_skb = oldsd->completion_queue;
8526 oldsd->completion_queue = NULL;
8527
1da177e4 8528 /* Append output queue from offline CPU. */
a9cbd588
CG
8529 if (oldsd->output_queue) {
8530 *sd->output_queue_tailp = oldsd->output_queue;
8531 sd->output_queue_tailp = oldsd->output_queue_tailp;
8532 oldsd->output_queue = NULL;
8533 oldsd->output_queue_tailp = &oldsd->output_queue;
8534 }
ac64da0b
ED
8535 /* Append NAPI poll list from offline CPU, with one exception :
8536 * process_backlog() must be called by cpu owning percpu backlog.
8537 * We properly handle process_queue & input_pkt_queue later.
8538 */
8539 while (!list_empty(&oldsd->poll_list)) {
8540 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8541 struct napi_struct,
8542 poll_list);
8543
8544 list_del_init(&napi->poll_list);
8545 if (napi->poll == process_backlog)
8546 napi->state = 0;
8547 else
8548 ____napi_schedule(sd, napi);
264524d5 8549 }
1da177e4
LT
8550
8551 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8552 local_irq_enable();
8553
773fc8f6 8554#ifdef CONFIG_RPS
8555 remsd = oldsd->rps_ipi_list;
8556 oldsd->rps_ipi_list = NULL;
8557#endif
8558 /* send out pending IPI's on offline CPU */
8559 net_rps_send_ipi(remsd);
8560
1da177e4 8561 /* Process offline CPU's input_pkt_queue */
76cc8b13 8562 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8563 netif_rx_ni(skb);
76cc8b13 8564 input_queue_head_incr(oldsd);
fec5e652 8565 }
ac64da0b 8566 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8567 netif_rx_ni(skb);
76cc8b13
TH
8568 input_queue_head_incr(oldsd);
8569 }
1da177e4 8570
f0bf90de 8571 return 0;
1da177e4 8572}
1da177e4 8573
7f353bf2 8574/**
b63365a2
HX
8575 * netdev_increment_features - increment feature set by one
8576 * @all: current feature set
8577 * @one: new feature set
8578 * @mask: mask feature set
7f353bf2
HX
8579 *
8580 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8581 * @one to the master device with current feature set @all. Will not
8582 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8583 */
c8f44aff
MM
8584netdev_features_t netdev_increment_features(netdev_features_t all,
8585 netdev_features_t one, netdev_features_t mask)
b63365a2 8586{
c8cd0989 8587 if (mask & NETIF_F_HW_CSUM)
a188222b 8588 mask |= NETIF_F_CSUM_MASK;
1742f183 8589 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8590
a188222b 8591 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8592 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8593
1742f183 8594 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8595 if (all & NETIF_F_HW_CSUM)
8596 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8597
8598 return all;
8599}
b63365a2 8600EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8601
430f03cd 8602static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8603{
8604 int i;
8605 struct hlist_head *hash;
8606
8607 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8608 if (hash != NULL)
8609 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8610 INIT_HLIST_HEAD(&hash[i]);
8611
8612 return hash;
8613}
8614
881d966b 8615/* Initialize per network namespace state */
4665079c 8616static int __net_init netdev_init(struct net *net)
881d966b 8617{
734b6541
RM
8618 if (net != &init_net)
8619 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8620
30d97d35
PE
8621 net->dev_name_head = netdev_create_hash();
8622 if (net->dev_name_head == NULL)
8623 goto err_name;
881d966b 8624
30d97d35
PE
8625 net->dev_index_head = netdev_create_hash();
8626 if (net->dev_index_head == NULL)
8627 goto err_idx;
881d966b
EB
8628
8629 return 0;
30d97d35
PE
8630
8631err_idx:
8632 kfree(net->dev_name_head);
8633err_name:
8634 return -ENOMEM;
881d966b
EB
8635}
8636
f0db275a
SH
8637/**
8638 * netdev_drivername - network driver for the device
8639 * @dev: network device
f0db275a
SH
8640 *
8641 * Determine network driver for device.
8642 */
3019de12 8643const char *netdev_drivername(const struct net_device *dev)
6579e57b 8644{
cf04a4c7
SH
8645 const struct device_driver *driver;
8646 const struct device *parent;
3019de12 8647 const char *empty = "";
6579e57b
AV
8648
8649 parent = dev->dev.parent;
6579e57b 8650 if (!parent)
3019de12 8651 return empty;
6579e57b
AV
8652
8653 driver = parent->driver;
8654 if (driver && driver->name)
3019de12
DM
8655 return driver->name;
8656 return empty;
6579e57b
AV
8657}
8658
6ea754eb
JP
8659static void __netdev_printk(const char *level, const struct net_device *dev,
8660 struct va_format *vaf)
256df2f3 8661{
b004ff49 8662 if (dev && dev->dev.parent) {
6ea754eb
JP
8663 dev_printk_emit(level[1] - '0',
8664 dev->dev.parent,
8665 "%s %s %s%s: %pV",
8666 dev_driver_string(dev->dev.parent),
8667 dev_name(dev->dev.parent),
8668 netdev_name(dev), netdev_reg_state(dev),
8669 vaf);
b004ff49 8670 } else if (dev) {
6ea754eb
JP
8671 printk("%s%s%s: %pV",
8672 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8673 } else {
6ea754eb 8674 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8675 }
256df2f3
JP
8676}
8677
6ea754eb
JP
8678void netdev_printk(const char *level, const struct net_device *dev,
8679 const char *format, ...)
256df2f3
JP
8680{
8681 struct va_format vaf;
8682 va_list args;
256df2f3
JP
8683
8684 va_start(args, format);
8685
8686 vaf.fmt = format;
8687 vaf.va = &args;
8688
6ea754eb 8689 __netdev_printk(level, dev, &vaf);
b004ff49 8690
256df2f3 8691 va_end(args);
256df2f3
JP
8692}
8693EXPORT_SYMBOL(netdev_printk);
8694
8695#define define_netdev_printk_level(func, level) \
6ea754eb 8696void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8697{ \
256df2f3
JP
8698 struct va_format vaf; \
8699 va_list args; \
8700 \
8701 va_start(args, fmt); \
8702 \
8703 vaf.fmt = fmt; \
8704 vaf.va = &args; \
8705 \
6ea754eb 8706 __netdev_printk(level, dev, &vaf); \
b004ff49 8707 \
256df2f3 8708 va_end(args); \
256df2f3
JP
8709} \
8710EXPORT_SYMBOL(func);
8711
8712define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8713define_netdev_printk_level(netdev_alert, KERN_ALERT);
8714define_netdev_printk_level(netdev_crit, KERN_CRIT);
8715define_netdev_printk_level(netdev_err, KERN_ERR);
8716define_netdev_printk_level(netdev_warn, KERN_WARNING);
8717define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8718define_netdev_printk_level(netdev_info, KERN_INFO);
8719
4665079c 8720static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8721{
8722 kfree(net->dev_name_head);
8723 kfree(net->dev_index_head);
ee21b18b
VA
8724 if (net != &init_net)
8725 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
8726}
8727
022cbae6 8728static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8729 .init = netdev_init,
8730 .exit = netdev_exit,
8731};
8732
4665079c 8733static void __net_exit default_device_exit(struct net *net)
ce286d32 8734{
e008b5fc 8735 struct net_device *dev, *aux;
ce286d32 8736 /*
e008b5fc 8737 * Push all migratable network devices back to the
ce286d32
EB
8738 * initial network namespace
8739 */
8740 rtnl_lock();
e008b5fc 8741 for_each_netdev_safe(net, dev, aux) {
ce286d32 8742 int err;
aca51397 8743 char fb_name[IFNAMSIZ];
ce286d32
EB
8744
8745 /* Ignore unmoveable devices (i.e. loopback) */
8746 if (dev->features & NETIF_F_NETNS_LOCAL)
8747 continue;
8748
e008b5fc
EB
8749 /* Leave virtual devices for the generic cleanup */
8750 if (dev->rtnl_link_ops)
8751 continue;
d0c082ce 8752
25985edc 8753 /* Push remaining network devices to init_net */
aca51397
PE
8754 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8755 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8756 if (err) {
7b6cd1ce
JP
8757 pr_emerg("%s: failed to move %s to init_net: %d\n",
8758 __func__, dev->name, err);
aca51397 8759 BUG();
ce286d32
EB
8760 }
8761 }
8762 rtnl_unlock();
8763}
8764
50624c93
EB
8765static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8766{
8767 /* Return with the rtnl_lock held when there are no network
8768 * devices unregistering in any network namespace in net_list.
8769 */
8770 struct net *net;
8771 bool unregistering;
ff960a73 8772 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8773
ff960a73 8774 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8775 for (;;) {
50624c93
EB
8776 unregistering = false;
8777 rtnl_lock();
8778 list_for_each_entry(net, net_list, exit_list) {
8779 if (net->dev_unreg_count > 0) {
8780 unregistering = true;
8781 break;
8782 }
8783 }
8784 if (!unregistering)
8785 break;
8786 __rtnl_unlock();
ff960a73
PZ
8787
8788 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8789 }
ff960a73 8790 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8791}
8792
04dc7f6b
EB
8793static void __net_exit default_device_exit_batch(struct list_head *net_list)
8794{
8795 /* At exit all network devices most be removed from a network
b595076a 8796 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8797 * Do this across as many network namespaces as possible to
8798 * improve batching efficiency.
8799 */
8800 struct net_device *dev;
8801 struct net *net;
8802 LIST_HEAD(dev_kill_list);
8803
50624c93
EB
8804 /* To prevent network device cleanup code from dereferencing
8805 * loopback devices or network devices that have been freed
8806 * wait here for all pending unregistrations to complete,
8807 * before unregistring the loopback device and allowing the
8808 * network namespace be freed.
8809 *
8810 * The netdev todo list containing all network devices
8811 * unregistrations that happen in default_device_exit_batch
8812 * will run in the rtnl_unlock() at the end of
8813 * default_device_exit_batch.
8814 */
8815 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8816 list_for_each_entry(net, net_list, exit_list) {
8817 for_each_netdev_reverse(net, dev) {
b0ab2fab 8818 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8819 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8820 else
8821 unregister_netdevice_queue(dev, &dev_kill_list);
8822 }
8823 }
8824 unregister_netdevice_many(&dev_kill_list);
8825 rtnl_unlock();
8826}
8827
022cbae6 8828static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8829 .exit = default_device_exit,
04dc7f6b 8830 .exit_batch = default_device_exit_batch,
ce286d32
EB
8831};
8832
1da177e4
LT
8833/*
8834 * Initialize the DEV module. At boot time this walks the device list and
8835 * unhooks any devices that fail to initialise (normally hardware not
8836 * present) and leaves us with a valid list of present and active devices.
8837 *
8838 */
8839
8840/*
8841 * This is called single threaded during boot, so no need
8842 * to take the rtnl semaphore.
8843 */
8844static int __init net_dev_init(void)
8845{
8846 int i, rc = -ENOMEM;
8847
8848 BUG_ON(!dev_boot_phase);
8849
1da177e4
LT
8850 if (dev_proc_init())
8851 goto out;
8852
8b41d188 8853 if (netdev_kobject_init())
1da177e4
LT
8854 goto out;
8855
8856 INIT_LIST_HEAD(&ptype_all);
82d8a867 8857 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8858 INIT_LIST_HEAD(&ptype_base[i]);
8859
62532da9
VY
8860 INIT_LIST_HEAD(&offload_base);
8861
881d966b
EB
8862 if (register_pernet_subsys(&netdev_net_ops))
8863 goto out;
1da177e4
LT
8864
8865 /*
8866 * Initialise the packet receive queues.
8867 */
8868
6f912042 8869 for_each_possible_cpu(i) {
41852497 8870 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8871 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8872
41852497
ED
8873 INIT_WORK(flush, flush_backlog);
8874
e36fa2f7 8875 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8876 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8877 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8878 sd->output_queue_tailp = &sd->output_queue;
df334545 8879#ifdef CONFIG_RPS
e36fa2f7
ED
8880 sd->csd.func = rps_trigger_softirq;
8881 sd->csd.info = sd;
e36fa2f7 8882 sd->cpu = i;
1e94d72f 8883#endif
0a9627f2 8884
e36fa2f7
ED
8885 sd->backlog.poll = process_backlog;
8886 sd->backlog.weight = weight_p;
1da177e4
LT
8887 }
8888
1da177e4
LT
8889 dev_boot_phase = 0;
8890
505d4f73
EB
8891 /* The loopback device is special if any other network devices
8892 * is present in a network namespace the loopback device must
8893 * be present. Since we now dynamically allocate and free the
8894 * loopback device ensure this invariant is maintained by
8895 * keeping the loopback device as the first device on the
8896 * list of network devices. Ensuring the loopback devices
8897 * is the first device that appears and the last network device
8898 * that disappears.
8899 */
8900 if (register_pernet_device(&loopback_net_ops))
8901 goto out;
8902
8903 if (register_pernet_device(&default_device_ops))
8904 goto out;
8905
962cf36c
CM
8906 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8907 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 8908
f0bf90de
SAS
8909 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8910 NULL, dev_cpu_dead);
8911 WARN_ON(rc < 0);
1da177e4
LT
8912 rc = 0;
8913out:
8914 return rc;
8915}
8916
8917subsys_initcall(net_dev_init);