net: implement threaded-able napi poll loop support
[linux-2.6-block.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
11d6011c 82#include <linux/rwsem.h>
1da177e4
LT
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
0187bdfb 92#include <linux/ethtool.h>
1da177e4 93#include <linux/skbuff.h>
29863d41 94#include <linux/kthread.h>
a7862b45 95#include <linux/bpf.h>
b5cdae32 96#include <linux/bpf_trace.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4 98#include <net/sock.h>
02d62e86 99#include <net/busy_poll.h>
1da177e4 100#include <linux/rtnetlink.h>
1da177e4 101#include <linux/stat.h>
b14a9fc4 102#include <net/dsa.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
04f00ab2 105#include <net/gro.h>
1da177e4 106#include <net/pkt_sched.h>
87d83093 107#include <net/pkt_cls.h>
1da177e4 108#include <net/checksum.h>
44540960 109#include <net/xfrm.h>
1da177e4
LT
110#include <linux/highmem.h>
111#include <linux/init.h>
1da177e4 112#include <linux/module.h>
1da177e4
LT
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
1da177e4 116#include <net/iw_handler.h>
1da177e4 117#include <asm/current.h>
5bdb9886 118#include <linux/audit.h>
db217334 119#include <linux/dmaengine.h>
f6a78bfc 120#include <linux/err.h>
c7fa9d18 121#include <linux/ctype.h>
723e98b7 122#include <linux/if_arp.h>
6de329e2 123#include <linux/if_vlan.h>
8f0f2223 124#include <linux/ip.h>
ad55dcaf 125#include <net/ip.h>
25cd9ba0 126#include <net/mpls.h>
8f0f2223
DM
127#include <linux/ipv6.h>
128#include <linux/in.h>
b6b2fed1
DM
129#include <linux/jhash.h>
130#include <linux/random.h>
9cbc1cb8 131#include <trace/events/napi.h>
cf66ba58 132#include <trace/events/net.h>
07dc22e7 133#include <trace/events/skb.h>
caeda9b9 134#include <linux/inetdevice.h>
c445477d 135#include <linux/cpu_rmap.h>
c5905afb 136#include <linux/static_key.h>
af12fa6e 137#include <linux/hashtable.h>
60877a32 138#include <linux/vmalloc.h>
529d0489 139#include <linux/if_macvlan.h>
e7fd2885 140#include <linux/errqueue.h>
3b47d303 141#include <linux/hrtimer.h>
357b6cc5 142#include <linux/netfilter_ingress.h>
40e4e713 143#include <linux/crash_dump.h>
b72b5bf6 144#include <linux/sctp.h>
ae847f40 145#include <net/udp_tunnel.h>
6621dd29 146#include <linux/net_namespace.h>
aaa5d90b 147#include <linux/indirect_call_wrapper.h>
af3836df 148#include <net/devlink.h>
bd869245 149#include <linux/pm_runtime.h>
3744741a 150#include <linux/prandom.h>
1da177e4 151
342709ef
PE
152#include "net-sysfs.h"
153
d565b0a1
HX
154#define MAX_GRO_SKBS 8
155
5d38a079
HX
156/* This should be increased if a protocol with a bigger head is added. */
157#define GRO_MAX_HEAD (MAX_HEADER + 128)
158
1da177e4 159static DEFINE_SPINLOCK(ptype_lock);
62532da9 160static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
161struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162struct list_head ptype_all __read_mostly; /* Taps */
62532da9 163static struct list_head offload_base __read_mostly;
1da177e4 164
ae78dbfa 165static int netif_rx_internal(struct sk_buff *skb);
54951194 166static int call_netdevice_notifiers_info(unsigned long val,
54951194 167 struct netdev_notifier_info *info);
26372605
PM
168static int call_netdevice_notifiers_extack(unsigned long val,
169 struct net_device *dev,
170 struct netlink_ext_ack *extack);
90b602f8 171static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 172
1da177e4 173/*
7562f876 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
175 * semaphore.
176 *
c6d14c84 177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
7562f876 180 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
1da177e4 192DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
193EXPORT_SYMBOL(dev_base_lock);
194
6c557001
FW
195static DEFINE_MUTEX(ifalias_mutex);
196
af12fa6e
ET
197/* protects napi_hash addition/deletion and napi_gen_id */
198static DEFINE_SPINLOCK(napi_hash_lock);
199
52bd2d62 200static unsigned int napi_gen_id = NR_CPUS;
6180d9de 201static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 202
11d6011c 203static DECLARE_RWSEM(devnet_rename_sem);
c91f6df2 204
4e985ada
TG
205static inline void dev_base_seq_inc(struct net *net)
206{
643aa9cb 207 while (++net->dev_base_seq == 0)
208 ;
4e985ada
TG
209}
210
881d966b 211static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 212{
8387ff25 213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 214
08e9897d 215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
216}
217
881d966b 218static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 219{
7c28bd0b 220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
221}
222
e36fa2f7 223static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
224{
225#ifdef CONFIG_RPS
e36fa2f7 226 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
227#endif
228}
229
e36fa2f7 230static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
231{
232#ifdef CONFIG_RPS
e36fa2f7 233 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
234#endif
235}
236
ff927412
JP
237static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 const char *name)
239{
240 struct netdev_name_node *name_node;
241
242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 if (!name_node)
244 return NULL;
245 INIT_HLIST_NODE(&name_node->hlist);
246 name_node->dev = dev;
247 name_node->name = name;
248 return name_node;
249}
250
251static struct netdev_name_node *
252netdev_name_node_head_alloc(struct net_device *dev)
253{
36fbf1e5
JP
254 struct netdev_name_node *name_node;
255
256 name_node = netdev_name_node_alloc(dev, dev->name);
257 if (!name_node)
258 return NULL;
259 INIT_LIST_HEAD(&name_node->list);
260 return name_node;
ff927412
JP
261}
262
263static void netdev_name_node_free(struct netdev_name_node *name_node)
264{
265 kfree(name_node);
266}
267
268static void netdev_name_node_add(struct net *net,
269 struct netdev_name_node *name_node)
270{
271 hlist_add_head_rcu(&name_node->hlist,
272 dev_name_hash(net, name_node->name));
273}
274
275static void netdev_name_node_del(struct netdev_name_node *name_node)
276{
277 hlist_del_rcu(&name_node->hlist);
278}
279
280static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 const char *name)
282{
283 struct hlist_head *head = dev_name_hash(net, name);
284 struct netdev_name_node *name_node;
285
286 hlist_for_each_entry(name_node, head, hlist)
287 if (!strcmp(name_node->name, name))
288 return name_node;
289 return NULL;
290}
291
292static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 const char *name)
294{
295 struct hlist_head *head = dev_name_hash(net, name);
296 struct netdev_name_node *name_node;
297
298 hlist_for_each_entry_rcu(name_node, head, hlist)
299 if (!strcmp(name_node->name, name))
300 return name_node;
301 return NULL;
302}
303
36fbf1e5
JP
304int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305{
306 struct netdev_name_node *name_node;
307 struct net *net = dev_net(dev);
308
309 name_node = netdev_name_node_lookup(net, name);
310 if (name_node)
311 return -EEXIST;
312 name_node = netdev_name_node_alloc(dev, name);
313 if (!name_node)
314 return -ENOMEM;
315 netdev_name_node_add(net, name_node);
316 /* The node that holds dev->name acts as a head of per-device list. */
317 list_add_tail(&name_node->list, &dev->name_node->list);
318
319 return 0;
320}
321EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324{
325 list_del(&name_node->list);
326 netdev_name_node_del(name_node);
327 kfree(name_node->name);
328 netdev_name_node_free(name_node);
329}
330
331int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332{
333 struct netdev_name_node *name_node;
334 struct net *net = dev_net(dev);
335
336 name_node = netdev_name_node_lookup(net, name);
337 if (!name_node)
338 return -ENOENT;
e08ad805
ED
339 /* lookup might have found our primary name or a name belonging
340 * to another device.
341 */
342 if (name_node == dev->name_node || name_node->dev != dev)
343 return -EINVAL;
344
36fbf1e5
JP
345 __netdev_name_node_alt_destroy(name_node);
346
347 return 0;
348}
349EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351static void netdev_name_node_alt_flush(struct net_device *dev)
352{
353 struct netdev_name_node *name_node, *tmp;
354
355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 __netdev_name_node_alt_destroy(name_node);
357}
358
ce286d32 359/* Device list insertion */
53759be9 360static void list_netdevice(struct net_device *dev)
ce286d32 361{
c346dca1 362 struct net *net = dev_net(dev);
ce286d32
EB
363
364 ASSERT_RTNL();
365
366 write_lock_bh(&dev_base_lock);
c6d14c84 367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 368 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
369 hlist_add_head_rcu(&dev->index_hlist,
370 dev_index_hash(net, dev->ifindex));
ce286d32 371 write_unlock_bh(&dev_base_lock);
4e985ada
TG
372
373 dev_base_seq_inc(net);
ce286d32
EB
374}
375
fb699dfd
ED
376/* Device list removal
377 * caller must respect a RCU grace period before freeing/reusing dev
378 */
ce286d32
EB
379static void unlist_netdevice(struct net_device *dev)
380{
381 ASSERT_RTNL();
382
383 /* Unlink dev from the device chain */
384 write_lock_bh(&dev_base_lock);
c6d14c84 385 list_del_rcu(&dev->dev_list);
ff927412 386 netdev_name_node_del(dev->name_node);
fb699dfd 387 hlist_del_rcu(&dev->index_hlist);
ce286d32 388 write_unlock_bh(&dev_base_lock);
4e985ada
TG
389
390 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
391}
392
1da177e4
LT
393/*
394 * Our notifier list
395 */
396
f07d5b94 397static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
398
399/*
400 * Device drivers call our routines to queue packets here. We empty the
401 * queue in the local softnet handler.
402 */
bea3348e 403
9958da05 404DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 405EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 406
1a33e10e
CW
407#ifdef CONFIG_LOCKDEP
408/*
409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410 * according to dev->type
411 */
412static const unsigned short netdev_lock_type[] = {
413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429static const char *const netdev_lock_name[] = {
430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
845e0ebb 447static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
1a33e10e
CW
448
449static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450{
451 int i;
452
453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 if (netdev_lock_type[i] == dev_type)
455 return i;
456 /* the last key is used by default */
457 return ARRAY_SIZE(netdev_lock_type) - 1;
458}
459
460static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 unsigned short dev_type)
462{
463 int i;
464
465 i = netdev_lock_pos(dev_type);
466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 netdev_lock_name[i]);
468}
845e0ebb
CW
469
470static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471{
472 int i;
473
474 i = netdev_lock_pos(dev->type);
475 lockdep_set_class_and_name(&dev->addr_list_lock,
476 &netdev_addr_lock_key[i],
477 netdev_lock_name[i]);
478}
1a33e10e
CW
479#else
480static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 unsigned short dev_type)
482{
483}
845e0ebb
CW
484
485static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486{
487}
1a33e10e
CW
488#endif
489
1da177e4 490/*******************************************************************************
eb13da1a 491 *
492 * Protocol management and registration routines
493 *
494 *******************************************************************************/
1da177e4 495
1da177e4 496
1da177e4
LT
497/*
498 * Add a protocol ID to the list. Now that the input handler is
499 * smarter we can dispense with all the messy stuff that used to be
500 * here.
501 *
502 * BEWARE!!! Protocol handlers, mangling input packets,
503 * MUST BE last in hash buckets and checking protocol handlers
504 * MUST start from promiscuous ptype_all chain in net_bh.
505 * It is true now, do not change it.
506 * Explanation follows: if protocol handler, mangling packet, will
507 * be the first on list, it is not able to sense, that packet
508 * is cloned and should be copied-on-write, so that it will
509 * change it and subsequent readers will get broken packet.
510 * --ANK (980803)
511 */
512
c07b68e8
ED
513static inline struct list_head *ptype_head(const struct packet_type *pt)
514{
515 if (pt->type == htons(ETH_P_ALL))
7866a621 516 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 517 else
7866a621
SN
518 return pt->dev ? &pt->dev->ptype_specific :
519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
520}
521
1da177e4
LT
522/**
523 * dev_add_pack - add packet handler
524 * @pt: packet type declaration
525 *
526 * Add a protocol handler to the networking stack. The passed &packet_type
527 * is linked into kernel lists and may not be freed until it has been
528 * removed from the kernel lists.
529 *
4ec93edb 530 * This call does not sleep therefore it can not
1da177e4
LT
531 * guarantee all CPU's that are in middle of receiving packets
532 * will see the new packet type (until the next received packet).
533 */
534
535void dev_add_pack(struct packet_type *pt)
536{
c07b68e8 537 struct list_head *head = ptype_head(pt);
1da177e4 538
c07b68e8
ED
539 spin_lock(&ptype_lock);
540 list_add_rcu(&pt->list, head);
541 spin_unlock(&ptype_lock);
1da177e4 542}
d1b19dff 543EXPORT_SYMBOL(dev_add_pack);
1da177e4 544
1da177e4
LT
545/**
546 * __dev_remove_pack - remove packet handler
547 * @pt: packet type declaration
548 *
549 * Remove a protocol handler that was previously added to the kernel
550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
551 * from the kernel lists and can be freed or reused once this function
4ec93edb 552 * returns.
1da177e4
LT
553 *
554 * The packet type might still be in use by receivers
555 * and must not be freed until after all the CPU's have gone
556 * through a quiescent state.
557 */
558void __dev_remove_pack(struct packet_type *pt)
559{
c07b68e8 560 struct list_head *head = ptype_head(pt);
1da177e4
LT
561 struct packet_type *pt1;
562
c07b68e8 563 spin_lock(&ptype_lock);
1da177e4
LT
564
565 list_for_each_entry(pt1, head, list) {
566 if (pt == pt1) {
567 list_del_rcu(&pt->list);
568 goto out;
569 }
570 }
571
7b6cd1ce 572 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 573out:
c07b68e8 574 spin_unlock(&ptype_lock);
1da177e4 575}
d1b19dff
ED
576EXPORT_SYMBOL(__dev_remove_pack);
577
1da177e4
LT
578/**
579 * dev_remove_pack - remove packet handler
580 * @pt: packet type declaration
581 *
582 * Remove a protocol handler that was previously added to the kernel
583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
584 * from the kernel lists and can be freed or reused once this function
585 * returns.
586 *
587 * This call sleeps to guarantee that no CPU is looking at the packet
588 * type after return.
589 */
590void dev_remove_pack(struct packet_type *pt)
591{
592 __dev_remove_pack(pt);
4ec93edb 593
1da177e4
LT
594 synchronize_net();
595}
d1b19dff 596EXPORT_SYMBOL(dev_remove_pack);
1da177e4 597
62532da9
VY
598
599/**
600 * dev_add_offload - register offload handlers
601 * @po: protocol offload declaration
602 *
603 * Add protocol offload handlers to the networking stack. The passed
604 * &proto_offload is linked into kernel lists and may not be freed until
605 * it has been removed from the kernel lists.
606 *
607 * This call does not sleep therefore it can not
608 * guarantee all CPU's that are in middle of receiving packets
609 * will see the new offload handlers (until the next received packet).
610 */
611void dev_add_offload(struct packet_offload *po)
612{
bdef7de4 613 struct packet_offload *elem;
62532da9
VY
614
615 spin_lock(&offload_lock);
bdef7de4
DM
616 list_for_each_entry(elem, &offload_base, list) {
617 if (po->priority < elem->priority)
618 break;
619 }
620 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
621 spin_unlock(&offload_lock);
622}
623EXPORT_SYMBOL(dev_add_offload);
624
625/**
626 * __dev_remove_offload - remove offload handler
627 * @po: packet offload declaration
628 *
629 * Remove a protocol offload handler that was previously added to the
630 * kernel offload handlers by dev_add_offload(). The passed &offload_type
631 * is removed from the kernel lists and can be freed or reused once this
632 * function returns.
633 *
634 * The packet type might still be in use by receivers
635 * and must not be freed until after all the CPU's have gone
636 * through a quiescent state.
637 */
1d143d9f 638static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
639{
640 struct list_head *head = &offload_base;
641 struct packet_offload *po1;
642
c53aa505 643 spin_lock(&offload_lock);
62532da9
VY
644
645 list_for_each_entry(po1, head, list) {
646 if (po == po1) {
647 list_del_rcu(&po->list);
648 goto out;
649 }
650 }
651
652 pr_warn("dev_remove_offload: %p not found\n", po);
653out:
c53aa505 654 spin_unlock(&offload_lock);
62532da9 655}
62532da9
VY
656
657/**
658 * dev_remove_offload - remove packet offload handler
659 * @po: packet offload declaration
660 *
661 * Remove a packet offload handler that was previously added to the kernel
662 * offload handlers by dev_add_offload(). The passed &offload_type is
663 * removed from the kernel lists and can be freed or reused once this
664 * function returns.
665 *
666 * This call sleeps to guarantee that no CPU is looking at the packet
667 * type after return.
668 */
669void dev_remove_offload(struct packet_offload *po)
670{
671 __dev_remove_offload(po);
672
673 synchronize_net();
674}
675EXPORT_SYMBOL(dev_remove_offload);
676
1da177e4 677/******************************************************************************
eb13da1a 678 *
679 * Device Boot-time Settings Routines
680 *
681 ******************************************************************************/
1da177e4
LT
682
683/* Boot time configuration table */
684static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686/**
687 * netdev_boot_setup_add - add new setup entry
688 * @name: name of the device
689 * @map: configured settings for the device
690 *
691 * Adds new setup entry to the dev_boot_setup list. The function
692 * returns 0 on error and 1 on success. This is a generic routine to
693 * all netdevices.
694 */
695static int netdev_boot_setup_add(char *name, struct ifmap *map)
696{
697 struct netdev_boot_setup *s;
698 int i;
699
700 s = dev_boot_setup;
701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 704 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
705 memcpy(&s[i].map, map, sizeof(s[i].map));
706 break;
707 }
708 }
709
710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711}
712
713/**
722c9a0c 714 * netdev_boot_setup_check - check boot time settings
715 * @dev: the netdevice
1da177e4 716 *
722c9a0c 717 * Check boot time settings for the device.
718 * The found settings are set for the device to be used
719 * later in the device probing.
720 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
721 */
722int netdev_boot_setup_check(struct net_device *dev)
723{
724 struct netdev_boot_setup *s = dev_boot_setup;
725 int i;
726
727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 729 !strcmp(dev->name, s[i].name)) {
722c9a0c 730 dev->irq = s[i].map.irq;
731 dev->base_addr = s[i].map.base_addr;
732 dev->mem_start = s[i].map.mem_start;
733 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
734 return 1;
735 }
736 }
737 return 0;
738}
d1b19dff 739EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
740
741
742/**
722c9a0c 743 * netdev_boot_base - get address from boot time settings
744 * @prefix: prefix for network device
745 * @unit: id for network device
746 *
747 * Check boot time settings for the base address of device.
748 * The found settings are set for the device to be used
749 * later in the device probing.
750 * Returns 0 if no settings found.
1da177e4
LT
751 */
752unsigned long netdev_boot_base(const char *prefix, int unit)
753{
754 const struct netdev_boot_setup *s = dev_boot_setup;
755 char name[IFNAMSIZ];
756 int i;
757
758 sprintf(name, "%s%d", prefix, unit);
759
760 /*
761 * If device already registered then return base of 1
762 * to indicate not to probe for this interface
763 */
881d966b 764 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
765 return 1;
766
767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 if (!strcmp(name, s[i].name))
769 return s[i].map.base_addr;
770 return 0;
771}
772
773/*
774 * Saves at boot time configured settings for any netdevice.
775 */
776int __init netdev_boot_setup(char *str)
777{
778 int ints[5];
779 struct ifmap map;
780
781 str = get_options(str, ARRAY_SIZE(ints), ints);
782 if (!str || !*str)
783 return 0;
784
785 /* Save settings */
786 memset(&map, 0, sizeof(map));
787 if (ints[0] > 0)
788 map.irq = ints[1];
789 if (ints[0] > 1)
790 map.base_addr = ints[2];
791 if (ints[0] > 2)
792 map.mem_start = ints[3];
793 if (ints[0] > 3)
794 map.mem_end = ints[4];
795
796 /* Add new entry to the list */
797 return netdev_boot_setup_add(str, &map);
798}
799
800__setup("netdev=", netdev_boot_setup);
801
802/*******************************************************************************
eb13da1a 803 *
804 * Device Interface Subroutines
805 *
806 *******************************************************************************/
1da177e4 807
a54acb3a
ND
808/**
809 * dev_get_iflink - get 'iflink' value of a interface
810 * @dev: targeted interface
811 *
812 * Indicates the ifindex the interface is linked to.
813 * Physical interfaces have the same 'ifindex' and 'iflink' values.
814 */
815
816int dev_get_iflink(const struct net_device *dev)
817{
818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 return dev->netdev_ops->ndo_get_iflink(dev);
820
7a66bbc9 821 return dev->ifindex;
a54acb3a
ND
822}
823EXPORT_SYMBOL(dev_get_iflink);
824
fc4099f1
PS
825/**
826 * dev_fill_metadata_dst - Retrieve tunnel egress information.
827 * @dev: targeted interface
828 * @skb: The packet.
829 *
830 * For better visibility of tunnel traffic OVS needs to retrieve
831 * egress tunnel information for a packet. Following API allows
832 * user to get this info.
833 */
834int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835{
836 struct ip_tunnel_info *info;
837
838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
839 return -EINVAL;
840
841 info = skb_tunnel_info_unclone(skb);
842 if (!info)
843 return -ENOMEM;
844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 return -EINVAL;
846
847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848}
849EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
1da177e4
LT
851/**
852 * __dev_get_by_name - find a device by its name
c4ea43c5 853 * @net: the applicable net namespace
1da177e4
LT
854 * @name: name to find
855 *
856 * Find an interface by name. Must be called under RTNL semaphore
857 * or @dev_base_lock. If the name is found a pointer to the device
858 * is returned. If the name is not found then %NULL is returned. The
859 * reference counters are not incremented so the caller must be
860 * careful with locks.
861 */
862
881d966b 863struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 864{
ff927412 865 struct netdev_name_node *node_name;
1da177e4 866
ff927412
JP
867 node_name = netdev_name_node_lookup(net, name);
868 return node_name ? node_name->dev : NULL;
1da177e4 869}
d1b19dff 870EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 871
72c9528b 872/**
722c9a0c 873 * dev_get_by_name_rcu - find a device by its name
874 * @net: the applicable net namespace
875 * @name: name to find
876 *
877 * Find an interface by name.
878 * If the name is found a pointer to the device is returned.
879 * If the name is not found then %NULL is returned.
880 * The reference counters are not incremented so the caller must be
881 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
882 */
883
884struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
885{
ff927412 886 struct netdev_name_node *node_name;
72c9528b 887
ff927412
JP
888 node_name = netdev_name_node_lookup_rcu(net, name);
889 return node_name ? node_name->dev : NULL;
72c9528b
ED
890}
891EXPORT_SYMBOL(dev_get_by_name_rcu);
892
1da177e4
LT
893/**
894 * dev_get_by_name - find a device by its name
c4ea43c5 895 * @net: the applicable net namespace
1da177e4
LT
896 * @name: name to find
897 *
898 * Find an interface by name. This can be called from any
899 * context and does its own locking. The returned handle has
900 * the usage count incremented and the caller must use dev_put() to
901 * release it when it is no longer needed. %NULL is returned if no
902 * matching device is found.
903 */
904
881d966b 905struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
906{
907 struct net_device *dev;
908
72c9528b
ED
909 rcu_read_lock();
910 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
911 if (dev)
912 dev_hold(dev);
72c9528b 913 rcu_read_unlock();
1da177e4
LT
914 return dev;
915}
d1b19dff 916EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
917
918/**
919 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 920 * @net: the applicable net namespace
1da177e4
LT
921 * @ifindex: index of device
922 *
923 * Search for an interface by index. Returns %NULL if the device
924 * is not found or a pointer to the device. The device has not
925 * had its reference counter increased so the caller must be careful
926 * about locking. The caller must hold either the RTNL semaphore
927 * or @dev_base_lock.
928 */
929
881d966b 930struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 931{
0bd8d536
ED
932 struct net_device *dev;
933 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 934
b67bfe0d 935 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
936 if (dev->ifindex == ifindex)
937 return dev;
0bd8d536 938
1da177e4
LT
939 return NULL;
940}
d1b19dff 941EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 942
fb699dfd
ED
943/**
944 * dev_get_by_index_rcu - find a device by its ifindex
945 * @net: the applicable net namespace
946 * @ifindex: index of device
947 *
948 * Search for an interface by index. Returns %NULL if the device
949 * is not found or a pointer to the device. The device has not
950 * had its reference counter increased so the caller must be careful
951 * about locking. The caller must hold RCU lock.
952 */
953
954struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
955{
fb699dfd
ED
956 struct net_device *dev;
957 struct hlist_head *head = dev_index_hash(net, ifindex);
958
b67bfe0d 959 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
960 if (dev->ifindex == ifindex)
961 return dev;
962
963 return NULL;
964}
965EXPORT_SYMBOL(dev_get_by_index_rcu);
966
1da177e4
LT
967
968/**
969 * dev_get_by_index - find a device by its ifindex
c4ea43c5 970 * @net: the applicable net namespace
1da177e4
LT
971 * @ifindex: index of device
972 *
973 * Search for an interface by index. Returns NULL if the device
974 * is not found or a pointer to the device. The device returned has
975 * had a reference added and the pointer is safe until the user calls
976 * dev_put to indicate they have finished with it.
977 */
978
881d966b 979struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
980{
981 struct net_device *dev;
982
fb699dfd
ED
983 rcu_read_lock();
984 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
985 if (dev)
986 dev_hold(dev);
fb699dfd 987 rcu_read_unlock();
1da177e4
LT
988 return dev;
989}
d1b19dff 990EXPORT_SYMBOL(dev_get_by_index);
1da177e4 991
90b602f8
ML
992/**
993 * dev_get_by_napi_id - find a device by napi_id
994 * @napi_id: ID of the NAPI struct
995 *
996 * Search for an interface by NAPI ID. Returns %NULL if the device
997 * is not found or a pointer to the device. The device has not had
998 * its reference counter increased so the caller must be careful
999 * about locking. The caller must hold RCU lock.
1000 */
1001
1002struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1003{
1004 struct napi_struct *napi;
1005
1006 WARN_ON_ONCE(!rcu_read_lock_held());
1007
1008 if (napi_id < MIN_NAPI_ID)
1009 return NULL;
1010
1011 napi = napi_by_id(napi_id);
1012
1013 return napi ? napi->dev : NULL;
1014}
1015EXPORT_SYMBOL(dev_get_by_napi_id);
1016
5dbe7c17
NS
1017/**
1018 * netdev_get_name - get a netdevice name, knowing its ifindex.
1019 * @net: network namespace
1020 * @name: a pointer to the buffer where the name will be stored.
1021 * @ifindex: the ifindex of the interface to get the name from.
5dbe7c17
NS
1022 */
1023int netdev_get_name(struct net *net, char *name, int ifindex)
1024{
1025 struct net_device *dev;
11d6011c 1026 int ret;
5dbe7c17 1027
11d6011c 1028 down_read(&devnet_rename_sem);
5dbe7c17 1029 rcu_read_lock();
11d6011c 1030
5dbe7c17
NS
1031 dev = dev_get_by_index_rcu(net, ifindex);
1032 if (!dev) {
11d6011c
AD
1033 ret = -ENODEV;
1034 goto out;
5dbe7c17
NS
1035 }
1036
1037 strcpy(name, dev->name);
5dbe7c17 1038
11d6011c
AD
1039 ret = 0;
1040out:
1041 rcu_read_unlock();
1042 up_read(&devnet_rename_sem);
1043 return ret;
5dbe7c17
NS
1044}
1045
1da177e4 1046/**
941666c2 1047 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 1048 * @net: the applicable net namespace
1da177e4
LT
1049 * @type: media type of device
1050 * @ha: hardware address
1051 *
1052 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
1053 * is not found or a pointer to the device.
1054 * The caller must hold RCU or RTNL.
941666c2 1055 * The returned device has not had its ref count increased
1da177e4
LT
1056 * and the caller must therefore be careful about locking
1057 *
1da177e4
LT
1058 */
1059
941666c2
ED
1060struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1061 const char *ha)
1da177e4
LT
1062{
1063 struct net_device *dev;
1064
941666c2 1065 for_each_netdev_rcu(net, dev)
1da177e4
LT
1066 if (dev->type == type &&
1067 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
1068 return dev;
1069
1070 return NULL;
1da177e4 1071}
941666c2 1072EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 1073
881d966b 1074struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 1075{
99fe3c39 1076 struct net_device *dev, *ret = NULL;
4e9cac2b 1077
99fe3c39
ED
1078 rcu_read_lock();
1079 for_each_netdev_rcu(net, dev)
1080 if (dev->type == type) {
1081 dev_hold(dev);
1082 ret = dev;
1083 break;
1084 }
1085 rcu_read_unlock();
1086 return ret;
1da177e4 1087}
1da177e4
LT
1088EXPORT_SYMBOL(dev_getfirstbyhwtype);
1089
1090/**
6c555490 1091 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1092 * @net: the applicable net namespace
1da177e4
LT
1093 * @if_flags: IFF_* values
1094 * @mask: bitmask of bits in if_flags to check
1095 *
1096 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1097 * is not found or a pointer to the device. Must be called inside
6c555490 1098 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1099 */
1100
6c555490
WC
1101struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102 unsigned short mask)
1da177e4 1103{
7562f876 1104 struct net_device *dev, *ret;
1da177e4 1105
6c555490
WC
1106 ASSERT_RTNL();
1107
7562f876 1108 ret = NULL;
6c555490 1109 for_each_netdev(net, dev) {
1da177e4 1110 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1111 ret = dev;
1da177e4
LT
1112 break;
1113 }
1114 }
7562f876 1115 return ret;
1da177e4 1116}
6c555490 1117EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1118
1119/**
1120 * dev_valid_name - check if name is okay for network device
1121 * @name: name string
1122 *
1123 * Network device names need to be valid file names to
4250b75b 1124 * allow sysfs to work. We also disallow any kind of
c7fa9d18 1125 * whitespace.
1da177e4 1126 */
95f050bf 1127bool dev_valid_name(const char *name)
1da177e4 1128{
c7fa9d18 1129 if (*name == '\0')
95f050bf 1130 return false;
a9d48205 1131 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1132 return false;
c7fa9d18 1133 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1134 return false;
c7fa9d18
DM
1135
1136 while (*name) {
a4176a93 1137 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1138 return false;
c7fa9d18
DM
1139 name++;
1140 }
95f050bf 1141 return true;
1da177e4 1142}
d1b19dff 1143EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1144
1145/**
b267b179
EB
1146 * __dev_alloc_name - allocate a name for a device
1147 * @net: network namespace to allocate the device name in
1da177e4 1148 * @name: name format string
b267b179 1149 * @buf: scratch buffer and result name string
1da177e4
LT
1150 *
1151 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1152 * id. It scans list of devices to build up a free map, then chooses
1153 * the first empty slot. The caller must hold the dev_base or rtnl lock
1154 * while allocating the name and adding the device in order to avoid
1155 * duplicates.
1156 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1158 */
1159
b267b179 1160static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1161{
1162 int i = 0;
1da177e4
LT
1163 const char *p;
1164 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1165 unsigned long *inuse;
1da177e4
LT
1166 struct net_device *d;
1167
93809105
RV
1168 if (!dev_valid_name(name))
1169 return -EINVAL;
1170
51f299dd 1171 p = strchr(name, '%');
1da177e4
LT
1172 if (p) {
1173 /*
1174 * Verify the string as this thing may have come from
1175 * the user. There must be either one "%d" and no other "%"
1176 * characters.
1177 */
1178 if (p[1] != 'd' || strchr(p + 2, '%'))
1179 return -EINVAL;
1180
1181 /* Use one page as a bit array of possible slots */
cfcabdcc 1182 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1183 if (!inuse)
1184 return -ENOMEM;
1185
881d966b 1186 for_each_netdev(net, d) {
1da177e4
LT
1187 if (!sscanf(d->name, name, &i))
1188 continue;
1189 if (i < 0 || i >= max_netdevices)
1190 continue;
1191
1192 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1193 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1194 if (!strncmp(buf, d->name, IFNAMSIZ))
1195 set_bit(i, inuse);
1196 }
1197
1198 i = find_first_zero_bit(inuse, max_netdevices);
1199 free_page((unsigned long) inuse);
1200 }
1201
6224abda 1202 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1203 if (!__dev_get_by_name(net, buf))
1da177e4 1204 return i;
1da177e4
LT
1205
1206 /* It is possible to run out of possible slots
1207 * when the name is long and there isn't enough space left
1208 * for the digits, or if all bits are used.
1209 */
029b6d14 1210 return -ENFILE;
1da177e4
LT
1211}
1212
2c88b855
RV
1213static int dev_alloc_name_ns(struct net *net,
1214 struct net_device *dev,
1215 const char *name)
1216{
1217 char buf[IFNAMSIZ];
1218 int ret;
1219
c46d7642 1220 BUG_ON(!net);
2c88b855
RV
1221 ret = __dev_alloc_name(net, name, buf);
1222 if (ret >= 0)
1223 strlcpy(dev->name, buf, IFNAMSIZ);
1224 return ret;
1da177e4
LT
1225}
1226
b267b179
EB
1227/**
1228 * dev_alloc_name - allocate a name for a device
1229 * @dev: device
1230 * @name: name format string
1231 *
1232 * Passed a format string - eg "lt%d" it will try and find a suitable
1233 * id. It scans list of devices to build up a free map, then chooses
1234 * the first empty slot. The caller must hold the dev_base or rtnl lock
1235 * while allocating the name and adding the device in order to avoid
1236 * duplicates.
1237 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1238 * Returns the number of the unit assigned or a negative errno code.
1239 */
1240
1241int dev_alloc_name(struct net_device *dev, const char *name)
1242{
c46d7642 1243 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1244}
d1b19dff 1245EXPORT_SYMBOL(dev_alloc_name);
b267b179 1246
bacb7e18
ED
1247static int dev_get_valid_name(struct net *net, struct net_device *dev,
1248 const char *name)
828de4f6 1249{
55a5ec9b
DM
1250 BUG_ON(!net);
1251
1252 if (!dev_valid_name(name))
1253 return -EINVAL;
1254
1255 if (strchr(name, '%'))
1256 return dev_alloc_name_ns(net, dev, name);
1257 else if (__dev_get_by_name(net, name))
1258 return -EEXIST;
1259 else if (dev->name != name)
1260 strlcpy(dev->name, name, IFNAMSIZ);
1261
1262 return 0;
d9031024 1263}
1da177e4
LT
1264
1265/**
1266 * dev_change_name - change name of a device
1267 * @dev: device
1268 * @newname: name (or format string) must be at least IFNAMSIZ
1269 *
1270 * Change name of a device, can pass format strings "eth%d".
1271 * for wildcarding.
1272 */
cf04a4c7 1273int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1274{
238fa362 1275 unsigned char old_assign_type;
fcc5a03a 1276 char oldname[IFNAMSIZ];
1da177e4 1277 int err = 0;
fcc5a03a 1278 int ret;
881d966b 1279 struct net *net;
1da177e4
LT
1280
1281 ASSERT_RTNL();
c346dca1 1282 BUG_ON(!dev_net(dev));
1da177e4 1283
c346dca1 1284 net = dev_net(dev);
8065a779
SWL
1285
1286 /* Some auto-enslaved devices e.g. failover slaves are
1287 * special, as userspace might rename the device after
1288 * the interface had been brought up and running since
1289 * the point kernel initiated auto-enslavement. Allow
1290 * live name change even when these slave devices are
1291 * up and running.
1292 *
1293 * Typically, users of these auto-enslaving devices
1294 * don't actually care about slave name change, as
1295 * they are supposed to operate on master interface
1296 * directly.
1297 */
1298 if (dev->flags & IFF_UP &&
1299 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1300 return -EBUSY;
1301
11d6011c 1302 down_write(&devnet_rename_sem);
c91f6df2
BH
1303
1304 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
11d6011c 1305 up_write(&devnet_rename_sem);
c8d90dca 1306 return 0;
c91f6df2 1307 }
c8d90dca 1308
fcc5a03a
HX
1309 memcpy(oldname, dev->name, IFNAMSIZ);
1310
828de4f6 1311 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1312 if (err < 0) {
11d6011c 1313 up_write(&devnet_rename_sem);
d9031024 1314 return err;
c91f6df2 1315 }
1da177e4 1316
6fe82a39
VF
1317 if (oldname[0] && !strchr(oldname, '%'))
1318 netdev_info(dev, "renamed from %s\n", oldname);
1319
238fa362
TG
1320 old_assign_type = dev->name_assign_type;
1321 dev->name_assign_type = NET_NAME_RENAMED;
1322
fcc5a03a 1323rollback:
a1b3f594
EB
1324 ret = device_rename(&dev->dev, dev->name);
1325 if (ret) {
1326 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1327 dev->name_assign_type = old_assign_type;
11d6011c 1328 up_write(&devnet_rename_sem);
a1b3f594 1329 return ret;
dcc99773 1330 }
7f988eab 1331
11d6011c 1332 up_write(&devnet_rename_sem);
c91f6df2 1333
5bb025fa
VF
1334 netdev_adjacent_rename_links(dev, oldname);
1335
7f988eab 1336 write_lock_bh(&dev_base_lock);
ff927412 1337 netdev_name_node_del(dev->name_node);
72c9528b
ED
1338 write_unlock_bh(&dev_base_lock);
1339
1340 synchronize_rcu();
1341
1342 write_lock_bh(&dev_base_lock);
ff927412 1343 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1344 write_unlock_bh(&dev_base_lock);
1345
056925ab 1346 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1347 ret = notifier_to_errno(ret);
1348
1349 if (ret) {
91e9c07b
ED
1350 /* err >= 0 after dev_alloc_name() or stores the first errno */
1351 if (err >= 0) {
fcc5a03a 1352 err = ret;
11d6011c 1353 down_write(&devnet_rename_sem);
fcc5a03a 1354 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1355 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1356 dev->name_assign_type = old_assign_type;
1357 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1358 goto rollback;
91e9c07b 1359 } else {
7b6cd1ce 1360 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1361 dev->name, ret);
fcc5a03a
HX
1362 }
1363 }
1da177e4
LT
1364
1365 return err;
1366}
1367
0b815a1a
SH
1368/**
1369 * dev_set_alias - change ifalias of a device
1370 * @dev: device
1371 * @alias: name up to IFALIASZ
f0db275a 1372 * @len: limit of bytes to copy from info
0b815a1a
SH
1373 *
1374 * Set ifalias for a device,
1375 */
1376int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1377{
6c557001 1378 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1379
1380 if (len >= IFALIASZ)
1381 return -EINVAL;
1382
6c557001
FW
1383 if (len) {
1384 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1385 if (!new_alias)
1386 return -ENOMEM;
1387
1388 memcpy(new_alias->ifalias, alias, len);
1389 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1390 }
1391
6c557001 1392 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1393 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1394 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1395 mutex_unlock(&ifalias_mutex);
1396
1397 if (new_alias)
1398 kfree_rcu(new_alias, rcuhead);
0b815a1a 1399
0b815a1a
SH
1400 return len;
1401}
0fe554a4 1402EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1403
6c557001
FW
1404/**
1405 * dev_get_alias - get ifalias of a device
1406 * @dev: device
20e88320 1407 * @name: buffer to store name of ifalias
6c557001
FW
1408 * @len: size of buffer
1409 *
1410 * get ifalias for a device. Caller must make sure dev cannot go
1411 * away, e.g. rcu read lock or own a reference count to device.
1412 */
1413int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1414{
1415 const struct dev_ifalias *alias;
1416 int ret = 0;
1417
1418 rcu_read_lock();
1419 alias = rcu_dereference(dev->ifalias);
1420 if (alias)
1421 ret = snprintf(name, len, "%s", alias->ifalias);
1422 rcu_read_unlock();
1423
1424 return ret;
1425}
0b815a1a 1426
d8a33ac4 1427/**
3041a069 1428 * netdev_features_change - device changes features
d8a33ac4
SH
1429 * @dev: device to cause notification
1430 *
1431 * Called to indicate a device has changed features.
1432 */
1433void netdev_features_change(struct net_device *dev)
1434{
056925ab 1435 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1436}
1437EXPORT_SYMBOL(netdev_features_change);
1438
1da177e4
LT
1439/**
1440 * netdev_state_change - device changes state
1441 * @dev: device to cause notification
1442 *
1443 * Called to indicate a device has changed state. This function calls
1444 * the notifier chains for netdev_chain and sends a NEWLINK message
1445 * to the routing socket.
1446 */
1447void netdev_state_change(struct net_device *dev)
1448{
1449 if (dev->flags & IFF_UP) {
51d0c047
DA
1450 struct netdev_notifier_change_info change_info = {
1451 .info.dev = dev,
1452 };
54951194 1453
51d0c047 1454 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1455 &change_info.info);
7f294054 1456 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1457 }
1458}
d1b19dff 1459EXPORT_SYMBOL(netdev_state_change);
1da177e4 1460
7061eb8c
LP
1461/**
1462 * __netdev_notify_peers - notify network peers about existence of @dev,
1463 * to be called when rtnl lock is already held.
1464 * @dev: network device
1465 *
1466 * Generate traffic such that interested network peers are aware of
1467 * @dev, such as by generating a gratuitous ARP. This may be used when
1468 * a device wants to inform the rest of the network about some sort of
1469 * reconfiguration such as a failover event or virtual machine
1470 * migration.
1471 */
1472void __netdev_notify_peers(struct net_device *dev)
1473{
1474 ASSERT_RTNL();
1475 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1476 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1477}
1478EXPORT_SYMBOL(__netdev_notify_peers);
1479
ee89bab1 1480/**
722c9a0c 1481 * netdev_notify_peers - notify network peers about existence of @dev
1482 * @dev: network device
ee89bab1
AW
1483 *
1484 * Generate traffic such that interested network peers are aware of
1485 * @dev, such as by generating a gratuitous ARP. This may be used when
1486 * a device wants to inform the rest of the network about some sort of
1487 * reconfiguration such as a failover event or virtual machine
1488 * migration.
1489 */
1490void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1491{
ee89bab1 1492 rtnl_lock();
7061eb8c 1493 __netdev_notify_peers(dev);
ee89bab1 1494 rtnl_unlock();
c1da4ac7 1495}
ee89bab1 1496EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1497
29863d41
WW
1498static int napi_threaded_poll(void *data);
1499
1500static int napi_kthread_create(struct napi_struct *n)
1501{
1502 int err = 0;
1503
1504 /* Create and wake up the kthread once to put it in
1505 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1506 * warning and work with loadavg.
1507 */
1508 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1509 n->dev->name, n->napi_id);
1510 if (IS_ERR(n->thread)) {
1511 err = PTR_ERR(n->thread);
1512 pr_err("kthread_run failed with err %d\n", err);
1513 n->thread = NULL;
1514 }
1515
1516 return err;
1517}
1518
40c900aa 1519static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1520{
d314774c 1521 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1522 int ret;
1da177e4 1523
e46b66bc
BH
1524 ASSERT_RTNL();
1525
bd869245
HK
1526 if (!netif_device_present(dev)) {
1527 /* may be detached because parent is runtime-suspended */
1528 if (dev->dev.parent)
1529 pm_runtime_resume(dev->dev.parent);
1530 if (!netif_device_present(dev))
1531 return -ENODEV;
1532 }
1da177e4 1533
ca99ca14
NH
1534 /* Block netpoll from trying to do any rx path servicing.
1535 * If we don't do this there is a chance ndo_poll_controller
1536 * or ndo_poll may be running while we open the device
1537 */
66b5552f 1538 netpoll_poll_disable(dev);
ca99ca14 1539
40c900aa 1540 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1541 ret = notifier_to_errno(ret);
1542 if (ret)
1543 return ret;
1544
1da177e4 1545 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1546
d314774c
SH
1547 if (ops->ndo_validate_addr)
1548 ret = ops->ndo_validate_addr(dev);
bada339b 1549
d314774c
SH
1550 if (!ret && ops->ndo_open)
1551 ret = ops->ndo_open(dev);
1da177e4 1552
66b5552f 1553 netpoll_poll_enable(dev);
ca99ca14 1554
bada339b
JG
1555 if (ret)
1556 clear_bit(__LINK_STATE_START, &dev->state);
1557 else {
1da177e4 1558 dev->flags |= IFF_UP;
4417da66 1559 dev_set_rx_mode(dev);
1da177e4 1560 dev_activate(dev);
7bf23575 1561 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1562 }
bada339b 1563
1da177e4
LT
1564 return ret;
1565}
1566
1567/**
bd380811 1568 * dev_open - prepare an interface for use.
00f54e68
PM
1569 * @dev: device to open
1570 * @extack: netlink extended ack
1da177e4 1571 *
bd380811
PM
1572 * Takes a device from down to up state. The device's private open
1573 * function is invoked and then the multicast lists are loaded. Finally
1574 * the device is moved into the up state and a %NETDEV_UP message is
1575 * sent to the netdev notifier chain.
1576 *
1577 * Calling this function on an active interface is a nop. On a failure
1578 * a negative errno code is returned.
1da177e4 1579 */
00f54e68 1580int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1581{
1582 int ret;
1583
bd380811
PM
1584 if (dev->flags & IFF_UP)
1585 return 0;
1586
40c900aa 1587 ret = __dev_open(dev, extack);
bd380811
PM
1588 if (ret < 0)
1589 return ret;
1590
7f294054 1591 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1592 call_netdevice_notifiers(NETDEV_UP, dev);
1593
1594 return ret;
1595}
1596EXPORT_SYMBOL(dev_open);
1597
7051b88a 1598static void __dev_close_many(struct list_head *head)
1da177e4 1599{
44345724 1600 struct net_device *dev;
e46b66bc 1601
bd380811 1602 ASSERT_RTNL();
9d5010db
DM
1603 might_sleep();
1604
5cde2829 1605 list_for_each_entry(dev, head, close_list) {
3f4df206 1606 /* Temporarily disable netpoll until the interface is down */
66b5552f 1607 netpoll_poll_disable(dev);
3f4df206 1608
44345724 1609 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1610
44345724 1611 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1612
44345724
OP
1613 /* Synchronize to scheduled poll. We cannot touch poll list, it
1614 * can be even on different cpu. So just clear netif_running().
1615 *
1616 * dev->stop() will invoke napi_disable() on all of it's
1617 * napi_struct instances on this device.
1618 */
4e857c58 1619 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1620 }
1da177e4 1621
44345724 1622 dev_deactivate_many(head);
d8b2a4d2 1623
5cde2829 1624 list_for_each_entry(dev, head, close_list) {
44345724 1625 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1626
44345724
OP
1627 /*
1628 * Call the device specific close. This cannot fail.
1629 * Only if device is UP
1630 *
1631 * We allow it to be called even after a DETACH hot-plug
1632 * event.
1633 */
1634 if (ops->ndo_stop)
1635 ops->ndo_stop(dev);
1636
44345724 1637 dev->flags &= ~IFF_UP;
66b5552f 1638 netpoll_poll_enable(dev);
44345724 1639 }
44345724
OP
1640}
1641
7051b88a 1642static void __dev_close(struct net_device *dev)
44345724
OP
1643{
1644 LIST_HEAD(single);
1645
5cde2829 1646 list_add(&dev->close_list, &single);
7051b88a 1647 __dev_close_many(&single);
f87e6f47 1648 list_del(&single);
44345724
OP
1649}
1650
7051b88a 1651void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1652{
1653 struct net_device *dev, *tmp;
1da177e4 1654
5cde2829
EB
1655 /* Remove the devices that don't need to be closed */
1656 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1657 if (!(dev->flags & IFF_UP))
5cde2829 1658 list_del_init(&dev->close_list);
44345724
OP
1659
1660 __dev_close_many(head);
1da177e4 1661
5cde2829 1662 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1663 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1664 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1665 if (unlink)
1666 list_del_init(&dev->close_list);
44345724 1667 }
bd380811 1668}
99c4a26a 1669EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1670
1671/**
1672 * dev_close - shutdown an interface.
1673 * @dev: device to shutdown
1674 *
1675 * This function moves an active device into down state. A
1676 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1677 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1678 * chain.
1679 */
7051b88a 1680void dev_close(struct net_device *dev)
bd380811 1681{
e14a5993
ED
1682 if (dev->flags & IFF_UP) {
1683 LIST_HEAD(single);
1da177e4 1684
5cde2829 1685 list_add(&dev->close_list, &single);
99c4a26a 1686 dev_close_many(&single, true);
e14a5993
ED
1687 list_del(&single);
1688 }
1da177e4 1689}
d1b19dff 1690EXPORT_SYMBOL(dev_close);
1da177e4
LT
1691
1692
0187bdfb
BH
1693/**
1694 * dev_disable_lro - disable Large Receive Offload on a device
1695 * @dev: device
1696 *
1697 * Disable Large Receive Offload (LRO) on a net device. Must be
1698 * called under RTNL. This is needed if received packets may be
1699 * forwarded to another interface.
1700 */
1701void dev_disable_lro(struct net_device *dev)
1702{
fbe168ba
MK
1703 struct net_device *lower_dev;
1704 struct list_head *iter;
529d0489 1705
bc5787c6
MM
1706 dev->wanted_features &= ~NETIF_F_LRO;
1707 netdev_update_features(dev);
27660515 1708
22d5969f
MM
1709 if (unlikely(dev->features & NETIF_F_LRO))
1710 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1711
1712 netdev_for_each_lower_dev(dev, lower_dev, iter)
1713 dev_disable_lro(lower_dev);
0187bdfb
BH
1714}
1715EXPORT_SYMBOL(dev_disable_lro);
1716
56f5aa77
MC
1717/**
1718 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1719 * @dev: device
1720 *
1721 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1722 * called under RTNL. This is needed if Generic XDP is installed on
1723 * the device.
1724 */
1725static void dev_disable_gro_hw(struct net_device *dev)
1726{
1727 dev->wanted_features &= ~NETIF_F_GRO_HW;
1728 netdev_update_features(dev);
1729
1730 if (unlikely(dev->features & NETIF_F_GRO_HW))
1731 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1732}
1733
ede2762d
KT
1734const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1735{
1736#define N(val) \
1737 case NETDEV_##val: \
1738 return "NETDEV_" __stringify(val);
1739 switch (cmd) {
1740 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1741 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1742 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1743 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1744 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1745 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1746 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1747 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1748 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1749 N(PRE_CHANGEADDR)
3f5ecd8a 1750 }
ede2762d
KT
1751#undef N
1752 return "UNKNOWN_NETDEV_EVENT";
1753}
1754EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1755
351638e7
JP
1756static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1757 struct net_device *dev)
1758{
51d0c047
DA
1759 struct netdev_notifier_info info = {
1760 .dev = dev,
1761 };
351638e7 1762
351638e7
JP
1763 return nb->notifier_call(nb, val, &info);
1764}
0187bdfb 1765
afa0df59
JP
1766static int call_netdevice_register_notifiers(struct notifier_block *nb,
1767 struct net_device *dev)
1768{
1769 int err;
1770
1771 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1772 err = notifier_to_errno(err);
1773 if (err)
1774 return err;
1775
1776 if (!(dev->flags & IFF_UP))
1777 return 0;
1778
1779 call_netdevice_notifier(nb, NETDEV_UP, dev);
1780 return 0;
1781}
1782
1783static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1784 struct net_device *dev)
1785{
1786 if (dev->flags & IFF_UP) {
1787 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1788 dev);
1789 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1790 }
1791 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1792}
1793
1794static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1795 struct net *net)
1796{
1797 struct net_device *dev;
1798 int err;
1799
1800 for_each_netdev(net, dev) {
1801 err = call_netdevice_register_notifiers(nb, dev);
1802 if (err)
1803 goto rollback;
1804 }
1805 return 0;
1806
1807rollback:
1808 for_each_netdev_continue_reverse(net, dev)
1809 call_netdevice_unregister_notifiers(nb, dev);
1810 return err;
1811}
1812
1813static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1814 struct net *net)
1815{
1816 struct net_device *dev;
1817
1818 for_each_netdev(net, dev)
1819 call_netdevice_unregister_notifiers(nb, dev);
1820}
1821
881d966b
EB
1822static int dev_boot_phase = 1;
1823
1da177e4 1824/**
722c9a0c 1825 * register_netdevice_notifier - register a network notifier block
1826 * @nb: notifier
1da177e4 1827 *
722c9a0c 1828 * Register a notifier to be called when network device events occur.
1829 * The notifier passed is linked into the kernel structures and must
1830 * not be reused until it has been unregistered. A negative errno code
1831 * is returned on a failure.
1da177e4 1832 *
722c9a0c 1833 * When registered all registration and up events are replayed
1834 * to the new notifier to allow device to have a race free
1835 * view of the network device list.
1da177e4
LT
1836 */
1837
1838int register_netdevice_notifier(struct notifier_block *nb)
1839{
881d966b 1840 struct net *net;
1da177e4
LT
1841 int err;
1842
328fbe74
KT
1843 /* Close race with setup_net() and cleanup_net() */
1844 down_write(&pernet_ops_rwsem);
1da177e4 1845 rtnl_lock();
f07d5b94 1846 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1847 if (err)
1848 goto unlock;
881d966b
EB
1849 if (dev_boot_phase)
1850 goto unlock;
1851 for_each_net(net) {
afa0df59
JP
1852 err = call_netdevice_register_net_notifiers(nb, net);
1853 if (err)
1854 goto rollback;
1da177e4 1855 }
fcc5a03a
HX
1856
1857unlock:
1da177e4 1858 rtnl_unlock();
328fbe74 1859 up_write(&pernet_ops_rwsem);
1da177e4 1860 return err;
fcc5a03a
HX
1861
1862rollback:
afa0df59
JP
1863 for_each_net_continue_reverse(net)
1864 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1865
1866 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1867 goto unlock;
1da177e4 1868}
d1b19dff 1869EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1870
1871/**
722c9a0c 1872 * unregister_netdevice_notifier - unregister a network notifier block
1873 * @nb: notifier
1da177e4 1874 *
722c9a0c 1875 * Unregister a notifier previously registered by
1876 * register_netdevice_notifier(). The notifier is unlinked into the
1877 * kernel structures and may then be reused. A negative errno code
1878 * is returned on a failure.
7d3d43da 1879 *
722c9a0c 1880 * After unregistering unregister and down device events are synthesized
1881 * for all devices on the device list to the removed notifier to remove
1882 * the need for special case cleanup code.
1da177e4
LT
1883 */
1884
1885int unregister_netdevice_notifier(struct notifier_block *nb)
1886{
7d3d43da 1887 struct net *net;
9f514950
HX
1888 int err;
1889
328fbe74
KT
1890 /* Close race with setup_net() and cleanup_net() */
1891 down_write(&pernet_ops_rwsem);
9f514950 1892 rtnl_lock();
f07d5b94 1893 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1894 if (err)
1895 goto unlock;
1896
48b3a137
JP
1897 for_each_net(net)
1898 call_netdevice_unregister_net_notifiers(nb, net);
1899
7d3d43da 1900unlock:
9f514950 1901 rtnl_unlock();
328fbe74 1902 up_write(&pernet_ops_rwsem);
9f514950 1903 return err;
1da177e4 1904}
d1b19dff 1905EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1906
1f637703
JP
1907static int __register_netdevice_notifier_net(struct net *net,
1908 struct notifier_block *nb,
1909 bool ignore_call_fail)
1910{
1911 int err;
1912
1913 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1914 if (err)
1915 return err;
1916 if (dev_boot_phase)
1917 return 0;
1918
1919 err = call_netdevice_register_net_notifiers(nb, net);
1920 if (err && !ignore_call_fail)
1921 goto chain_unregister;
1922
1923 return 0;
1924
1925chain_unregister:
1926 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1927 return err;
1928}
1929
1930static int __unregister_netdevice_notifier_net(struct net *net,
1931 struct notifier_block *nb)
1932{
1933 int err;
1934
1935 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1936 if (err)
1937 return err;
1938
1939 call_netdevice_unregister_net_notifiers(nb, net);
1940 return 0;
1941}
1942
a30c7b42
JP
1943/**
1944 * register_netdevice_notifier_net - register a per-netns network notifier block
1945 * @net: network namespace
1946 * @nb: notifier
1947 *
1948 * Register a notifier to be called when network device events occur.
1949 * The notifier passed is linked into the kernel structures and must
1950 * not be reused until it has been unregistered. A negative errno code
1951 * is returned on a failure.
1952 *
1953 * When registered all registration and up events are replayed
1954 * to the new notifier to allow device to have a race free
1955 * view of the network device list.
1956 */
1957
1958int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1959{
1960 int err;
1961
1962 rtnl_lock();
1f637703 1963 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1964 rtnl_unlock();
1965 return err;
a30c7b42
JP
1966}
1967EXPORT_SYMBOL(register_netdevice_notifier_net);
1968
1969/**
1970 * unregister_netdevice_notifier_net - unregister a per-netns
1971 * network notifier block
1972 * @net: network namespace
1973 * @nb: notifier
1974 *
1975 * Unregister a notifier previously registered by
1976 * register_netdevice_notifier(). The notifier is unlinked into the
1977 * kernel structures and may then be reused. A negative errno code
1978 * is returned on a failure.
1979 *
1980 * After unregistering unregister and down device events are synthesized
1981 * for all devices on the device list to the removed notifier to remove
1982 * the need for special case cleanup code.
1983 */
1984
1985int unregister_netdevice_notifier_net(struct net *net,
1986 struct notifier_block *nb)
1987{
1988 int err;
1989
1990 rtnl_lock();
1f637703 1991 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1992 rtnl_unlock();
1993 return err;
1994}
1995EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1996
93642e14
JP
1997int register_netdevice_notifier_dev_net(struct net_device *dev,
1998 struct notifier_block *nb,
1999 struct netdev_net_notifier *nn)
2000{
2001 int err;
a30c7b42 2002
93642e14
JP
2003 rtnl_lock();
2004 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2005 if (!err) {
2006 nn->nb = nb;
2007 list_add(&nn->list, &dev->net_notifier_list);
2008 }
a30c7b42
JP
2009 rtnl_unlock();
2010 return err;
2011}
93642e14
JP
2012EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2013
2014int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2015 struct notifier_block *nb,
2016 struct netdev_net_notifier *nn)
2017{
2018 int err;
2019
2020 rtnl_lock();
2021 list_del(&nn->list);
2022 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2023 rtnl_unlock();
2024 return err;
2025}
2026EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2027
2028static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2029 struct net *net)
2030{
2031 struct netdev_net_notifier *nn;
2032
2033 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2034 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2035 __register_netdevice_notifier_net(net, nn->nb, true);
2036 }
2037}
a30c7b42 2038
351638e7
JP
2039/**
2040 * call_netdevice_notifiers_info - call all network notifier blocks
2041 * @val: value passed unmodified to notifier function
351638e7
JP
2042 * @info: notifier information data
2043 *
2044 * Call all network notifier blocks. Parameters and return value
2045 * are as for raw_notifier_call_chain().
2046 */
2047
1d143d9f 2048static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 2049 struct netdev_notifier_info *info)
351638e7 2050{
a30c7b42
JP
2051 struct net *net = dev_net(info->dev);
2052 int ret;
2053
351638e7 2054 ASSERT_RTNL();
a30c7b42
JP
2055
2056 /* Run per-netns notifier block chain first, then run the global one.
2057 * Hopefully, one day, the global one is going to be removed after
2058 * all notifier block registrators get converted to be per-netns.
2059 */
2060 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2061 if (ret & NOTIFY_STOP_MASK)
2062 return ret;
351638e7
JP
2063 return raw_notifier_call_chain(&netdev_chain, val, info);
2064}
351638e7 2065
26372605
PM
2066static int call_netdevice_notifiers_extack(unsigned long val,
2067 struct net_device *dev,
2068 struct netlink_ext_ack *extack)
2069{
2070 struct netdev_notifier_info info = {
2071 .dev = dev,
2072 .extack = extack,
2073 };
2074
2075 return call_netdevice_notifiers_info(val, &info);
2076}
2077
1da177e4
LT
2078/**
2079 * call_netdevice_notifiers - call all network notifier blocks
2080 * @val: value passed unmodified to notifier function
c4ea43c5 2081 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
2082 *
2083 * Call all network notifier blocks. Parameters and return value
f07d5b94 2084 * are as for raw_notifier_call_chain().
1da177e4
LT
2085 */
2086
ad7379d4 2087int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 2088{
26372605 2089 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 2090}
edf947f1 2091EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 2092
af7d6cce
SD
2093/**
2094 * call_netdevice_notifiers_mtu - call all network notifier blocks
2095 * @val: value passed unmodified to notifier function
2096 * @dev: net_device pointer passed unmodified to notifier function
2097 * @arg: additional u32 argument passed to the notifier function
2098 *
2099 * Call all network notifier blocks. Parameters and return value
2100 * are as for raw_notifier_call_chain().
2101 */
2102static int call_netdevice_notifiers_mtu(unsigned long val,
2103 struct net_device *dev, u32 arg)
2104{
2105 struct netdev_notifier_info_ext info = {
2106 .info.dev = dev,
2107 .ext.mtu = arg,
2108 };
2109
2110 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2111
2112 return call_netdevice_notifiers_info(val, &info.info);
2113}
2114
1cf51900 2115#ifdef CONFIG_NET_INGRESS
aabf6772 2116static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2117
2118void net_inc_ingress_queue(void)
2119{
aabf6772 2120 static_branch_inc(&ingress_needed_key);
4577139b
DB
2121}
2122EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2123
2124void net_dec_ingress_queue(void)
2125{
aabf6772 2126 static_branch_dec(&ingress_needed_key);
4577139b
DB
2127}
2128EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2129#endif
2130
1f211a1b 2131#ifdef CONFIG_NET_EGRESS
aabf6772 2132static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2133
2134void net_inc_egress_queue(void)
2135{
aabf6772 2136 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2137}
2138EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2139
2140void net_dec_egress_queue(void)
2141{
aabf6772 2142 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2143}
2144EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2145#endif
2146
39e83922 2147static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2148#ifdef CONFIG_JUMP_LABEL
b90e5794 2149static atomic_t netstamp_needed_deferred;
13baa00a 2150static atomic_t netstamp_wanted;
5fa8bbda 2151static void netstamp_clear(struct work_struct *work)
1da177e4 2152{
b90e5794 2153 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2154 int wanted;
b90e5794 2155
13baa00a
ED
2156 wanted = atomic_add_return(deferred, &netstamp_wanted);
2157 if (wanted > 0)
39e83922 2158 static_branch_enable(&netstamp_needed_key);
13baa00a 2159 else
39e83922 2160 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2161}
2162static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2163#endif
5fa8bbda
ED
2164
2165void net_enable_timestamp(void)
2166{
e9666d10 2167#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2168 int wanted;
2169
2170 while (1) {
2171 wanted = atomic_read(&netstamp_wanted);
2172 if (wanted <= 0)
2173 break;
2174 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2175 return;
2176 }
2177 atomic_inc(&netstamp_needed_deferred);
2178 schedule_work(&netstamp_work);
2179#else
39e83922 2180 static_branch_inc(&netstamp_needed_key);
13baa00a 2181#endif
1da177e4 2182}
d1b19dff 2183EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2184
2185void net_disable_timestamp(void)
2186{
e9666d10 2187#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2188 int wanted;
2189
2190 while (1) {
2191 wanted = atomic_read(&netstamp_wanted);
2192 if (wanted <= 1)
2193 break;
2194 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2195 return;
2196 }
2197 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2198 schedule_work(&netstamp_work);
2199#else
39e83922 2200 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2201#endif
1da177e4 2202}
d1b19dff 2203EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2204
3b098e2d 2205static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2206{
2456e855 2207 skb->tstamp = 0;
39e83922 2208 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2209 __net_timestamp(skb);
1da177e4
LT
2210}
2211
39e83922
DB
2212#define net_timestamp_check(COND, SKB) \
2213 if (static_branch_unlikely(&netstamp_needed_key)) { \
2214 if ((COND) && !(SKB)->tstamp) \
2215 __net_timestamp(SKB); \
2216 } \
3b098e2d 2217
f4b05d27 2218bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
2219{
2220 unsigned int len;
2221
2222 if (!(dev->flags & IFF_UP))
2223 return false;
2224
2225 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2226 if (skb->len <= len)
2227 return true;
2228
2229 /* if TSO is enabled, we don't care about the length as the packet
2230 * could be forwarded without being segmented before
2231 */
2232 if (skb_is_gso(skb))
2233 return true;
2234
2235 return false;
2236}
1ee481fb 2237EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2238
a0265d28
HX
2239int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2240{
4e3264d2 2241 int ret = ____dev_forward_skb(dev, skb);
a0265d28 2242
4e3264d2
MKL
2243 if (likely(!ret)) {
2244 skb->protocol = eth_type_trans(skb, dev);
2245 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2246 }
a0265d28 2247
4e3264d2 2248 return ret;
a0265d28
HX
2249}
2250EXPORT_SYMBOL_GPL(__dev_forward_skb);
2251
44540960
AB
2252/**
2253 * dev_forward_skb - loopback an skb to another netif
2254 *
2255 * @dev: destination network device
2256 * @skb: buffer to forward
2257 *
2258 * return values:
2259 * NET_RX_SUCCESS (no congestion)
6ec82562 2260 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2261 *
2262 * dev_forward_skb can be used for injecting an skb from the
2263 * start_xmit function of one device into the receive queue
2264 * of another device.
2265 *
2266 * The receiving device may be in another namespace, so
2267 * we have to clear all information in the skb that could
2268 * impact namespace isolation.
2269 */
2270int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2271{
a0265d28 2272 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2273}
2274EXPORT_SYMBOL_GPL(dev_forward_skb);
2275
71d9dec2
CG
2276static inline int deliver_skb(struct sk_buff *skb,
2277 struct packet_type *pt_prev,
2278 struct net_device *orig_dev)
2279{
1f8b977a 2280 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2281 return -ENOMEM;
63354797 2282 refcount_inc(&skb->users);
71d9dec2
CG
2283 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2284}
2285
7866a621
SN
2286static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2287 struct packet_type **pt,
fbcb2170
JP
2288 struct net_device *orig_dev,
2289 __be16 type,
7866a621
SN
2290 struct list_head *ptype_list)
2291{
2292 struct packet_type *ptype, *pt_prev = *pt;
2293
2294 list_for_each_entry_rcu(ptype, ptype_list, list) {
2295 if (ptype->type != type)
2296 continue;
2297 if (pt_prev)
fbcb2170 2298 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2299 pt_prev = ptype;
2300 }
2301 *pt = pt_prev;
2302}
2303
c0de08d0
EL
2304static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2305{
a3d744e9 2306 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2307 return false;
2308
2309 if (ptype->id_match)
2310 return ptype->id_match(ptype, skb->sk);
2311 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2312 return true;
2313
2314 return false;
2315}
2316
9f9a742d
MR
2317/**
2318 * dev_nit_active - return true if any network interface taps are in use
2319 *
2320 * @dev: network device to check for the presence of taps
2321 */
2322bool dev_nit_active(struct net_device *dev)
2323{
2324 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2325}
2326EXPORT_SYMBOL_GPL(dev_nit_active);
2327
1da177e4
LT
2328/*
2329 * Support routine. Sends outgoing frames to any network
2330 * taps currently in use.
2331 */
2332
74b20582 2333void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2334{
2335 struct packet_type *ptype;
71d9dec2
CG
2336 struct sk_buff *skb2 = NULL;
2337 struct packet_type *pt_prev = NULL;
7866a621 2338 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2339
1da177e4 2340 rcu_read_lock();
7866a621
SN
2341again:
2342 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2343 if (ptype->ignore_outgoing)
2344 continue;
2345
1da177e4
LT
2346 /* Never send packets back to the socket
2347 * they originated from - MvS (miquels@drinkel.ow.org)
2348 */
7866a621
SN
2349 if (skb_loop_sk(ptype, skb))
2350 continue;
71d9dec2 2351
7866a621
SN
2352 if (pt_prev) {
2353 deliver_skb(skb2, pt_prev, skb->dev);
2354 pt_prev = ptype;
2355 continue;
2356 }
1da177e4 2357
7866a621
SN
2358 /* need to clone skb, done only once */
2359 skb2 = skb_clone(skb, GFP_ATOMIC);
2360 if (!skb2)
2361 goto out_unlock;
70978182 2362
7866a621 2363 net_timestamp_set(skb2);
1da177e4 2364
7866a621
SN
2365 /* skb->nh should be correctly
2366 * set by sender, so that the second statement is
2367 * just protection against buggy protocols.
2368 */
2369 skb_reset_mac_header(skb2);
2370
2371 if (skb_network_header(skb2) < skb2->data ||
2372 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2373 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2374 ntohs(skb2->protocol),
2375 dev->name);
2376 skb_reset_network_header(skb2);
1da177e4 2377 }
7866a621
SN
2378
2379 skb2->transport_header = skb2->network_header;
2380 skb2->pkt_type = PACKET_OUTGOING;
2381 pt_prev = ptype;
2382 }
2383
2384 if (ptype_list == &ptype_all) {
2385 ptype_list = &dev->ptype_all;
2386 goto again;
1da177e4 2387 }
7866a621 2388out_unlock:
581fe0ea
WB
2389 if (pt_prev) {
2390 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2391 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2392 else
2393 kfree_skb(skb2);
2394 }
1da177e4
LT
2395 rcu_read_unlock();
2396}
74b20582 2397EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2398
2c53040f
BH
2399/**
2400 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2401 * @dev: Network device
2402 * @txq: number of queues available
2403 *
2404 * If real_num_tx_queues is changed the tc mappings may no longer be
2405 * valid. To resolve this verify the tc mapping remains valid and if
2406 * not NULL the mapping. With no priorities mapping to this
2407 * offset/count pair it will no longer be used. In the worst case TC0
2408 * is invalid nothing can be done so disable priority mappings. If is
2409 * expected that drivers will fix this mapping if they can before
2410 * calling netif_set_real_num_tx_queues.
2411 */
bb134d22 2412static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2413{
2414 int i;
2415 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2416
2417 /* If TC0 is invalidated disable TC mapping */
2418 if (tc->offset + tc->count > txq) {
7b6cd1ce 2419 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2420 dev->num_tc = 0;
2421 return;
2422 }
2423
2424 /* Invalidated prio to tc mappings set to TC0 */
2425 for (i = 1; i < TC_BITMASK + 1; i++) {
2426 int q = netdev_get_prio_tc_map(dev, i);
2427
2428 tc = &dev->tc_to_txq[q];
2429 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2430 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2431 i, q);
4f57c087
JF
2432 netdev_set_prio_tc_map(dev, i, 0);
2433 }
2434 }
2435}
2436
8d059b0f
AD
2437int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2438{
2439 if (dev->num_tc) {
2440 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2441 int i;
2442
ffcfe25b 2443 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2444 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2445 if ((txq - tc->offset) < tc->count)
2446 return i;
2447 }
2448
ffcfe25b 2449 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2450 return -1;
2451 }
2452
2453 return 0;
2454}
8a5f2166 2455EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2456
537c00de 2457#ifdef CONFIG_XPS
04157469
AN
2458struct static_key xps_needed __read_mostly;
2459EXPORT_SYMBOL(xps_needed);
2460struct static_key xps_rxqs_needed __read_mostly;
2461EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2462static DEFINE_MUTEX(xps_map_mutex);
2463#define xmap_dereference(P) \
2464 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2465
6234f874
AD
2466static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2467 int tci, u16 index)
537c00de 2468{
10cdc3f3
AD
2469 struct xps_map *map = NULL;
2470 int pos;
537c00de 2471
10cdc3f3 2472 if (dev_maps)
80d19669 2473 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2474 if (!map)
2475 return false;
537c00de 2476
6234f874
AD
2477 for (pos = map->len; pos--;) {
2478 if (map->queues[pos] != index)
2479 continue;
2480
2481 if (map->len > 1) {
2482 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2483 break;
537c00de 2484 }
6234f874 2485
80d19669 2486 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2487 kfree_rcu(map, rcu);
2488 return false;
537c00de
AD
2489 }
2490
6234f874 2491 return true;
10cdc3f3
AD
2492}
2493
6234f874
AD
2494static bool remove_xps_queue_cpu(struct net_device *dev,
2495 struct xps_dev_maps *dev_maps,
2496 int cpu, u16 offset, u16 count)
2497{
184c449f
AD
2498 int num_tc = dev->num_tc ? : 1;
2499 bool active = false;
2500 int tci;
6234f874 2501
184c449f
AD
2502 for (tci = cpu * num_tc; num_tc--; tci++) {
2503 int i, j;
2504
2505 for (i = count, j = offset; i--; j++) {
6358d49a 2506 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2507 break;
2508 }
2509
2510 active |= i < 0;
6234f874
AD
2511 }
2512
184c449f 2513 return active;
6234f874
AD
2514}
2515
867d0ad4
SD
2516static void reset_xps_maps(struct net_device *dev,
2517 struct xps_dev_maps *dev_maps,
2518 bool is_rxqs_map)
2519{
2520 if (is_rxqs_map) {
2521 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2522 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2523 } else {
2524 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2525 }
2526 static_key_slow_dec_cpuslocked(&xps_needed);
2527 kfree_rcu(dev_maps, rcu);
2528}
2529
80d19669
AN
2530static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2531 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2532 u16 offset, u16 count, bool is_rxqs_map)
2533{
2534 bool active = false;
2535 int i, j;
2536
2537 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2538 j < nr_ids;)
2539 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2540 count);
867d0ad4
SD
2541 if (!active)
2542 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2543
f28c020f
SD
2544 if (!is_rxqs_map) {
2545 for (i = offset + (count - 1); count--; i--) {
2546 netdev_queue_numa_node_write(
2547 netdev_get_tx_queue(dev, i),
2548 NUMA_NO_NODE);
80d19669 2549 }
80d19669
AN
2550 }
2551}
2552
6234f874
AD
2553static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2554 u16 count)
10cdc3f3 2555{
80d19669 2556 const unsigned long *possible_mask = NULL;
10cdc3f3 2557 struct xps_dev_maps *dev_maps;
80d19669 2558 unsigned int nr_ids;
10cdc3f3 2559
04157469
AN
2560 if (!static_key_false(&xps_needed))
2561 return;
10cdc3f3 2562
4d99f660 2563 cpus_read_lock();
04157469 2564 mutex_lock(&xps_map_mutex);
10cdc3f3 2565
04157469
AN
2566 if (static_key_false(&xps_rxqs_needed)) {
2567 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2568 if (dev_maps) {
2569 nr_ids = dev->num_rx_queues;
2570 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2571 offset, count, true);
2572 }
537c00de
AD
2573 }
2574
80d19669
AN
2575 dev_maps = xmap_dereference(dev->xps_cpus_map);
2576 if (!dev_maps)
2577 goto out_no_maps;
2578
2579 if (num_possible_cpus() > 1)
2580 possible_mask = cpumask_bits(cpu_possible_mask);
2581 nr_ids = nr_cpu_ids;
2582 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2583 false);
024e9679 2584
537c00de
AD
2585out_no_maps:
2586 mutex_unlock(&xps_map_mutex);
4d99f660 2587 cpus_read_unlock();
537c00de
AD
2588}
2589
6234f874
AD
2590static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2591{
2592 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2593}
2594
80d19669
AN
2595static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2596 u16 index, bool is_rxqs_map)
01c5f864
AD
2597{
2598 struct xps_map *new_map;
2599 int alloc_len = XPS_MIN_MAP_ALLOC;
2600 int i, pos;
2601
2602 for (pos = 0; map && pos < map->len; pos++) {
2603 if (map->queues[pos] != index)
2604 continue;
2605 return map;
2606 }
2607
80d19669 2608 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2609 if (map) {
2610 if (pos < map->alloc_len)
2611 return map;
2612
2613 alloc_len = map->alloc_len * 2;
2614 }
2615
80d19669
AN
2616 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2617 * map
2618 */
2619 if (is_rxqs_map)
2620 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2621 else
2622 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2623 cpu_to_node(attr_index));
01c5f864
AD
2624 if (!new_map)
2625 return NULL;
2626
2627 for (i = 0; i < pos; i++)
2628 new_map->queues[i] = map->queues[i];
2629 new_map->alloc_len = alloc_len;
2630 new_map->len = pos;
2631
2632 return new_map;
2633}
2634
4d99f660 2635/* Must be called under cpus_read_lock */
80d19669
AN
2636int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2637 u16 index, bool is_rxqs_map)
537c00de 2638{
80d19669 2639 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2640 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2641 int i, j, tci, numa_node_id = -2;
184c449f 2642 int maps_sz, num_tc = 1, tc = 0;
537c00de 2643 struct xps_map *map, *new_map;
01c5f864 2644 bool active = false;
80d19669 2645 unsigned int nr_ids;
537c00de 2646
184c449f 2647 if (dev->num_tc) {
ffcfe25b 2648 /* Do not allow XPS on subordinate device directly */
184c449f 2649 num_tc = dev->num_tc;
ffcfe25b
AD
2650 if (num_tc < 0)
2651 return -EINVAL;
2652
2653 /* If queue belongs to subordinate dev use its map */
2654 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2655
184c449f
AD
2656 tc = netdev_txq_to_tc(dev, index);
2657 if (tc < 0)
2658 return -EINVAL;
2659 }
2660
537c00de 2661 mutex_lock(&xps_map_mutex);
80d19669
AN
2662 if (is_rxqs_map) {
2663 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2664 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2665 nr_ids = dev->num_rx_queues;
2666 } else {
2667 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2668 if (num_possible_cpus() > 1) {
2669 online_mask = cpumask_bits(cpu_online_mask);
2670 possible_mask = cpumask_bits(cpu_possible_mask);
2671 }
2672 dev_maps = xmap_dereference(dev->xps_cpus_map);
2673 nr_ids = nr_cpu_ids;
2674 }
537c00de 2675
80d19669
AN
2676 if (maps_sz < L1_CACHE_BYTES)
2677 maps_sz = L1_CACHE_BYTES;
537c00de 2678
01c5f864 2679 /* allocate memory for queue storage */
80d19669
AN
2680 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2681 j < nr_ids;) {
01c5f864
AD
2682 if (!new_dev_maps)
2683 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2684 if (!new_dev_maps) {
2685 mutex_unlock(&xps_map_mutex);
01c5f864 2686 return -ENOMEM;
2bb60cb9 2687 }
01c5f864 2688
80d19669
AN
2689 tci = j * num_tc + tc;
2690 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2691 NULL;
2692
80d19669 2693 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2694 if (!map)
2695 goto error;
2696
80d19669 2697 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2698 }
2699
2700 if (!new_dev_maps)
2701 goto out_no_new_maps;
2702
867d0ad4
SD
2703 if (!dev_maps) {
2704 /* Increment static keys at most once per type */
2705 static_key_slow_inc_cpuslocked(&xps_needed);
2706 if (is_rxqs_map)
2707 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2708 }
04157469 2709
80d19669
AN
2710 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2711 j < nr_ids;) {
184c449f 2712 /* copy maps belonging to foreign traffic classes */
80d19669 2713 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2714 /* fill in the new device map from the old device map */
80d19669
AN
2715 map = xmap_dereference(dev_maps->attr_map[tci]);
2716 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2717 }
2718
2719 /* We need to explicitly update tci as prevous loop
2720 * could break out early if dev_maps is NULL.
2721 */
80d19669 2722 tci = j * num_tc + tc;
184c449f 2723
80d19669
AN
2724 if (netif_attr_test_mask(j, mask, nr_ids) &&
2725 netif_attr_test_online(j, online_mask, nr_ids)) {
2726 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2727 int pos = 0;
2728
80d19669 2729 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2730 while ((pos < map->len) && (map->queues[pos] != index))
2731 pos++;
2732
2733 if (pos == map->len)
2734 map->queues[map->len++] = index;
537c00de 2735#ifdef CONFIG_NUMA
80d19669
AN
2736 if (!is_rxqs_map) {
2737 if (numa_node_id == -2)
2738 numa_node_id = cpu_to_node(j);
2739 else if (numa_node_id != cpu_to_node(j))
2740 numa_node_id = -1;
2741 }
537c00de 2742#endif
01c5f864
AD
2743 } else if (dev_maps) {
2744 /* fill in the new device map from the old device map */
80d19669
AN
2745 map = xmap_dereference(dev_maps->attr_map[tci]);
2746 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2747 }
01c5f864 2748
184c449f
AD
2749 /* copy maps belonging to foreign traffic classes */
2750 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2751 /* fill in the new device map from the old device map */
80d19669
AN
2752 map = xmap_dereference(dev_maps->attr_map[tci]);
2753 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2754 }
537c00de
AD
2755 }
2756
80d19669
AN
2757 if (is_rxqs_map)
2758 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2759 else
2760 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2761
537c00de 2762 /* Cleanup old maps */
184c449f
AD
2763 if (!dev_maps)
2764 goto out_no_old_maps;
2765
80d19669
AN
2766 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2767 j < nr_ids;) {
2768 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2769 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2770 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2771 if (map && map != new_map)
2772 kfree_rcu(map, rcu);
2773 }
537c00de
AD
2774 }
2775
184c449f
AD
2776 kfree_rcu(dev_maps, rcu);
2777
2778out_no_old_maps:
01c5f864
AD
2779 dev_maps = new_dev_maps;
2780 active = true;
537c00de 2781
01c5f864 2782out_no_new_maps:
80d19669
AN
2783 if (!is_rxqs_map) {
2784 /* update Tx queue numa node */
2785 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2786 (numa_node_id >= 0) ?
2787 numa_node_id : NUMA_NO_NODE);
2788 }
537c00de 2789
01c5f864
AD
2790 if (!dev_maps)
2791 goto out_no_maps;
2792
80d19669
AN
2793 /* removes tx-queue from unused CPUs/rx-queues */
2794 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2795 j < nr_ids;) {
2796 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2797 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2798 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2799 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2800 active |= remove_xps_queue(dev_maps, tci, index);
2801 for (i = num_tc - tc, tci++; --i; tci++)
2802 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2803 }
2804
2805 /* free map if not active */
867d0ad4
SD
2806 if (!active)
2807 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2808
2809out_no_maps:
537c00de
AD
2810 mutex_unlock(&xps_map_mutex);
2811
2812 return 0;
2813error:
01c5f864 2814 /* remove any maps that we added */
80d19669
AN
2815 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2816 j < nr_ids;) {
2817 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2818 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2819 map = dev_maps ?
80d19669 2820 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2821 NULL;
2822 if (new_map && new_map != map)
2823 kfree(new_map);
2824 }
01c5f864
AD
2825 }
2826
537c00de
AD
2827 mutex_unlock(&xps_map_mutex);
2828
537c00de
AD
2829 kfree(new_dev_maps);
2830 return -ENOMEM;
2831}
4d99f660 2832EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2833
2834int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2835 u16 index)
2836{
4d99f660
AV
2837 int ret;
2838
2839 cpus_read_lock();
2840 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2841 cpus_read_unlock();
2842
2843 return ret;
80d19669 2844}
537c00de
AD
2845EXPORT_SYMBOL(netif_set_xps_queue);
2846
2847#endif
ffcfe25b
AD
2848static void netdev_unbind_all_sb_channels(struct net_device *dev)
2849{
2850 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2851
2852 /* Unbind any subordinate channels */
2853 while (txq-- != &dev->_tx[0]) {
2854 if (txq->sb_dev)
2855 netdev_unbind_sb_channel(dev, txq->sb_dev);
2856 }
2857}
2858
9cf1f6a8
AD
2859void netdev_reset_tc(struct net_device *dev)
2860{
6234f874
AD
2861#ifdef CONFIG_XPS
2862 netif_reset_xps_queues_gt(dev, 0);
2863#endif
ffcfe25b
AD
2864 netdev_unbind_all_sb_channels(dev);
2865
2866 /* Reset TC configuration of device */
9cf1f6a8
AD
2867 dev->num_tc = 0;
2868 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2869 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2870}
2871EXPORT_SYMBOL(netdev_reset_tc);
2872
2873int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2874{
2875 if (tc >= dev->num_tc)
2876 return -EINVAL;
2877
6234f874
AD
2878#ifdef CONFIG_XPS
2879 netif_reset_xps_queues(dev, offset, count);
2880#endif
9cf1f6a8
AD
2881 dev->tc_to_txq[tc].count = count;
2882 dev->tc_to_txq[tc].offset = offset;
2883 return 0;
2884}
2885EXPORT_SYMBOL(netdev_set_tc_queue);
2886
2887int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2888{
2889 if (num_tc > TC_MAX_QUEUE)
2890 return -EINVAL;
2891
6234f874
AD
2892#ifdef CONFIG_XPS
2893 netif_reset_xps_queues_gt(dev, 0);
2894#endif
ffcfe25b
AD
2895 netdev_unbind_all_sb_channels(dev);
2896
9cf1f6a8
AD
2897 dev->num_tc = num_tc;
2898 return 0;
2899}
2900EXPORT_SYMBOL(netdev_set_num_tc);
2901
ffcfe25b
AD
2902void netdev_unbind_sb_channel(struct net_device *dev,
2903 struct net_device *sb_dev)
2904{
2905 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2906
2907#ifdef CONFIG_XPS
2908 netif_reset_xps_queues_gt(sb_dev, 0);
2909#endif
2910 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2911 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2912
2913 while (txq-- != &dev->_tx[0]) {
2914 if (txq->sb_dev == sb_dev)
2915 txq->sb_dev = NULL;
2916 }
2917}
2918EXPORT_SYMBOL(netdev_unbind_sb_channel);
2919
2920int netdev_bind_sb_channel_queue(struct net_device *dev,
2921 struct net_device *sb_dev,
2922 u8 tc, u16 count, u16 offset)
2923{
2924 /* Make certain the sb_dev and dev are already configured */
2925 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2926 return -EINVAL;
2927
2928 /* We cannot hand out queues we don't have */
2929 if ((offset + count) > dev->real_num_tx_queues)
2930 return -EINVAL;
2931
2932 /* Record the mapping */
2933 sb_dev->tc_to_txq[tc].count = count;
2934 sb_dev->tc_to_txq[tc].offset = offset;
2935
2936 /* Provide a way for Tx queue to find the tc_to_txq map or
2937 * XPS map for itself.
2938 */
2939 while (count--)
2940 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2941
2942 return 0;
2943}
2944EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2945
2946int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2947{
2948 /* Do not use a multiqueue device to represent a subordinate channel */
2949 if (netif_is_multiqueue(dev))
2950 return -ENODEV;
2951
2952 /* We allow channels 1 - 32767 to be used for subordinate channels.
2953 * Channel 0 is meant to be "native" mode and used only to represent
2954 * the main root device. We allow writing 0 to reset the device back
2955 * to normal mode after being used as a subordinate channel.
2956 */
2957 if (channel > S16_MAX)
2958 return -EINVAL;
2959
2960 dev->num_tc = -channel;
2961
2962 return 0;
2963}
2964EXPORT_SYMBOL(netdev_set_sb_channel);
2965
f0796d5c
JF
2966/*
2967 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2968 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2969 */
e6484930 2970int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2971{
ac5b7019 2972 bool disabling;
1d24eb48
TH
2973 int rc;
2974
ac5b7019
JK
2975 disabling = txq < dev->real_num_tx_queues;
2976
e6484930
TH
2977 if (txq < 1 || txq > dev->num_tx_queues)
2978 return -EINVAL;
f0796d5c 2979
5c56580b
BH
2980 if (dev->reg_state == NETREG_REGISTERED ||
2981 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2982 ASSERT_RTNL();
2983
1d24eb48
TH
2984 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2985 txq);
bf264145
TH
2986 if (rc)
2987 return rc;
2988
4f57c087
JF
2989 if (dev->num_tc)
2990 netif_setup_tc(dev, txq);
2991
ac5b7019
JK
2992 dev->real_num_tx_queues = txq;
2993
2994 if (disabling) {
2995 synchronize_net();
e6484930 2996 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2997#ifdef CONFIG_XPS
2998 netif_reset_xps_queues_gt(dev, txq);
2999#endif
3000 }
ac5b7019
JK
3001 } else {
3002 dev->real_num_tx_queues = txq;
f0796d5c 3003 }
e6484930 3004
e6484930 3005 return 0;
f0796d5c
JF
3006}
3007EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 3008
a953be53 3009#ifdef CONFIG_SYSFS
62fe0b40
BH
3010/**
3011 * netif_set_real_num_rx_queues - set actual number of RX queues used
3012 * @dev: Network device
3013 * @rxq: Actual number of RX queues
3014 *
3015 * This must be called either with the rtnl_lock held or before
3016 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
3017 * negative error code. If called before registration, it always
3018 * succeeds.
62fe0b40
BH
3019 */
3020int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3021{
3022 int rc;
3023
bd25fa7b
TH
3024 if (rxq < 1 || rxq > dev->num_rx_queues)
3025 return -EINVAL;
3026
62fe0b40
BH
3027 if (dev->reg_state == NETREG_REGISTERED) {
3028 ASSERT_RTNL();
3029
62fe0b40
BH
3030 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3031 rxq);
3032 if (rc)
3033 return rc;
62fe0b40
BH
3034 }
3035
3036 dev->real_num_rx_queues = rxq;
3037 return 0;
3038}
3039EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3040#endif
3041
2c53040f
BH
3042/**
3043 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
3044 *
3045 * This routine should set an upper limit on the number of RSS queues
3046 * used by default by multiqueue devices.
3047 */
a55b138b 3048int netif_get_num_default_rss_queues(void)
16917b87 3049{
40e4e713
HS
3050 return is_kdump_kernel() ?
3051 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
3052}
3053EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3054
3bcb846c 3055static void __netif_reschedule(struct Qdisc *q)
56079431 3056{
def82a1d
JP
3057 struct softnet_data *sd;
3058 unsigned long flags;
56079431 3059
def82a1d 3060 local_irq_save(flags);
903ceff7 3061 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
3062 q->next_sched = NULL;
3063 *sd->output_queue_tailp = q;
3064 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
3065 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3066 local_irq_restore(flags);
3067}
3068
3069void __netif_schedule(struct Qdisc *q)
3070{
3071 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3072 __netif_reschedule(q);
56079431
DV
3073}
3074EXPORT_SYMBOL(__netif_schedule);
3075
e6247027
ED
3076struct dev_kfree_skb_cb {
3077 enum skb_free_reason reason;
3078};
3079
3080static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 3081{
e6247027
ED
3082 return (struct dev_kfree_skb_cb *)skb->cb;
3083}
3084
46e5da40
JF
3085void netif_schedule_queue(struct netdev_queue *txq)
3086{
3087 rcu_read_lock();
5be5515a 3088 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
3089 struct Qdisc *q = rcu_dereference(txq->qdisc);
3090
3091 __netif_schedule(q);
3092 }
3093 rcu_read_unlock();
3094}
3095EXPORT_SYMBOL(netif_schedule_queue);
3096
46e5da40
JF
3097void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3098{
3099 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3100 struct Qdisc *q;
3101
3102 rcu_read_lock();
3103 q = rcu_dereference(dev_queue->qdisc);
3104 __netif_schedule(q);
3105 rcu_read_unlock();
3106 }
3107}
3108EXPORT_SYMBOL(netif_tx_wake_queue);
3109
e6247027 3110void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3111{
e6247027 3112 unsigned long flags;
56079431 3113
9899886d
MJ
3114 if (unlikely(!skb))
3115 return;
3116
63354797 3117 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3118 smp_rmb();
63354797
RE
3119 refcount_set(&skb->users, 0);
3120 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3121 return;
bea3348e 3122 }
e6247027
ED
3123 get_kfree_skb_cb(skb)->reason = reason;
3124 local_irq_save(flags);
3125 skb->next = __this_cpu_read(softnet_data.completion_queue);
3126 __this_cpu_write(softnet_data.completion_queue, skb);
3127 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3128 local_irq_restore(flags);
56079431 3129}
e6247027 3130EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3131
e6247027 3132void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3133{
3134 if (in_irq() || irqs_disabled())
e6247027 3135 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3136 else
3137 dev_kfree_skb(skb);
3138}
e6247027 3139EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3140
3141
bea3348e
SH
3142/**
3143 * netif_device_detach - mark device as removed
3144 * @dev: network device
3145 *
3146 * Mark device as removed from system and therefore no longer available.
3147 */
56079431
DV
3148void netif_device_detach(struct net_device *dev)
3149{
3150 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3151 netif_running(dev)) {
d543103a 3152 netif_tx_stop_all_queues(dev);
56079431
DV
3153 }
3154}
3155EXPORT_SYMBOL(netif_device_detach);
3156
bea3348e
SH
3157/**
3158 * netif_device_attach - mark device as attached
3159 * @dev: network device
3160 *
3161 * Mark device as attached from system and restart if needed.
3162 */
56079431
DV
3163void netif_device_attach(struct net_device *dev)
3164{
3165 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3166 netif_running(dev)) {
d543103a 3167 netif_tx_wake_all_queues(dev);
4ec93edb 3168 __netdev_watchdog_up(dev);
56079431
DV
3169 }
3170}
3171EXPORT_SYMBOL(netif_device_attach);
3172
5605c762
JP
3173/*
3174 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3175 * to be used as a distribution range.
3176 */
eadec877
AD
3177static u16 skb_tx_hash(const struct net_device *dev,
3178 const struct net_device *sb_dev,
3179 struct sk_buff *skb)
5605c762
JP
3180{
3181 u32 hash;
3182 u16 qoffset = 0;
1b837d48 3183 u16 qcount = dev->real_num_tx_queues;
5605c762 3184
eadec877
AD
3185 if (dev->num_tc) {
3186 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3187
3188 qoffset = sb_dev->tc_to_txq[tc].offset;
3189 qcount = sb_dev->tc_to_txq[tc].count;
3190 }
3191
5605c762
JP
3192 if (skb_rx_queue_recorded(skb)) {
3193 hash = skb_get_rx_queue(skb);
6e11d157
AN
3194 if (hash >= qoffset)
3195 hash -= qoffset;
1b837d48
AD
3196 while (unlikely(hash >= qcount))
3197 hash -= qcount;
eadec877 3198 return hash + qoffset;
5605c762
JP
3199 }
3200
3201 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3202}
5605c762 3203
36c92474
BH
3204static void skb_warn_bad_offload(const struct sk_buff *skb)
3205{
84d15ae5 3206 static const netdev_features_t null_features;
36c92474 3207 struct net_device *dev = skb->dev;
88ad4175 3208 const char *name = "";
36c92474 3209
c846ad9b
BG
3210 if (!net_ratelimit())
3211 return;
3212
88ad4175
BM
3213 if (dev) {
3214 if (dev->dev.parent)
3215 name = dev_driver_string(dev->dev.parent);
3216 else
3217 name = netdev_name(dev);
3218 }
6413139d
WB
3219 skb_dump(KERN_WARNING, skb, false);
3220 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3221 name, dev ? &dev->features : &null_features,
6413139d 3222 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3223}
3224
1da177e4
LT
3225/*
3226 * Invalidate hardware checksum when packet is to be mangled, and
3227 * complete checksum manually on outgoing path.
3228 */
84fa7933 3229int skb_checksum_help(struct sk_buff *skb)
1da177e4 3230{
d3bc23e7 3231 __wsum csum;
663ead3b 3232 int ret = 0, offset;
1da177e4 3233
84fa7933 3234 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3235 goto out_set_summed;
3236
3aefd7d6 3237 if (unlikely(skb_is_gso(skb))) {
36c92474
BH
3238 skb_warn_bad_offload(skb);
3239 return -EINVAL;
1da177e4
LT
3240 }
3241
cef401de
ED
3242 /* Before computing a checksum, we should make sure no frag could
3243 * be modified by an external entity : checksum could be wrong.
3244 */
3245 if (skb_has_shared_frag(skb)) {
3246 ret = __skb_linearize(skb);
3247 if (ret)
3248 goto out;
3249 }
3250
55508d60 3251 offset = skb_checksum_start_offset(skb);
a030847e
HX
3252 BUG_ON(offset >= skb_headlen(skb));
3253 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3254
3255 offset += skb->csum_offset;
3256 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3257
8211fbfa
HK
3258 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3259 if (ret)
3260 goto out;
1da177e4 3261
4f2e4ad5 3262 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3263out_set_summed:
1da177e4 3264 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3265out:
1da177e4
LT
3266 return ret;
3267}
d1b19dff 3268EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3269
b72b5bf6
DC
3270int skb_crc32c_csum_help(struct sk_buff *skb)
3271{
3272 __le32 crc32c_csum;
3273 int ret = 0, offset, start;
3274
3275 if (skb->ip_summed != CHECKSUM_PARTIAL)
3276 goto out;
3277
3278 if (unlikely(skb_is_gso(skb)))
3279 goto out;
3280
3281 /* Before computing a checksum, we should make sure no frag could
3282 * be modified by an external entity : checksum could be wrong.
3283 */
3284 if (unlikely(skb_has_shared_frag(skb))) {
3285 ret = __skb_linearize(skb);
3286 if (ret)
3287 goto out;
3288 }
3289 start = skb_checksum_start_offset(skb);
3290 offset = start + offsetof(struct sctphdr, checksum);
3291 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3292 ret = -EINVAL;
3293 goto out;
3294 }
8211fbfa
HK
3295
3296 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3297 if (ret)
3298 goto out;
3299
b72b5bf6
DC
3300 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3301 skb->len - start, ~(__u32)0,
3302 crc32c_csum_stub));
3303 *(__le32 *)(skb->data + offset) = crc32c_csum;
3304 skb->ip_summed = CHECKSUM_NONE;
dba00306 3305 skb->csum_not_inet = 0;
b72b5bf6
DC
3306out:
3307 return ret;
3308}
3309
53d6471c 3310__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3311{
252e3346 3312 __be16 type = skb->protocol;
f6a78bfc 3313
19acc327
PS
3314 /* Tunnel gso handlers can set protocol to ethernet. */
3315 if (type == htons(ETH_P_TEB)) {
3316 struct ethhdr *eth;
3317
3318 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3319 return 0;
3320
1dfe82eb 3321 eth = (struct ethhdr *)skb->data;
19acc327
PS
3322 type = eth->h_proto;
3323 }
3324
d4bcef3f 3325 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3326}
3327
3328/**
3329 * skb_mac_gso_segment - mac layer segmentation handler.
3330 * @skb: buffer to segment
3331 * @features: features for the output path (see dev->features)
3332 */
3333struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3334 netdev_features_t features)
3335{
3336 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3337 struct packet_offload *ptype;
53d6471c
VY
3338 int vlan_depth = skb->mac_len;
3339 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3340
3341 if (unlikely(!type))
3342 return ERR_PTR(-EINVAL);
3343
53d6471c 3344 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3345
3346 rcu_read_lock();
22061d80 3347 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3348 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3349 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3350 break;
3351 }
3352 }
3353 rcu_read_unlock();
3354
98e399f8 3355 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3356
f6a78bfc
HX
3357 return segs;
3358}
05e8ef4a
PS
3359EXPORT_SYMBOL(skb_mac_gso_segment);
3360
3361
3362/* openvswitch calls this on rx path, so we need a different check.
3363 */
3364static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3365{
3366 if (tx_path)
0c19f846
WB
3367 return skb->ip_summed != CHECKSUM_PARTIAL &&
3368 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3369
3370 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3371}
3372
3373/**
3374 * __skb_gso_segment - Perform segmentation on skb.
3375 * @skb: buffer to segment
3376 * @features: features for the output path (see dev->features)
3377 * @tx_path: whether it is called in TX path
3378 *
3379 * This function segments the given skb and returns a list of segments.
3380 *
3381 * It may return NULL if the skb requires no segmentation. This is
3382 * only possible when GSO is used for verifying header integrity.
9207f9d4 3383 *
a08e7fd9 3384 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3385 */
3386struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3387 netdev_features_t features, bool tx_path)
3388{
b2504a5d
ED
3389 struct sk_buff *segs;
3390
05e8ef4a
PS
3391 if (unlikely(skb_needs_check(skb, tx_path))) {
3392 int err;
3393
b2504a5d 3394 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3395 err = skb_cow_head(skb, 0);
3396 if (err < 0)
05e8ef4a
PS
3397 return ERR_PTR(err);
3398 }
3399
802ab55a
AD
3400 /* Only report GSO partial support if it will enable us to
3401 * support segmentation on this frame without needing additional
3402 * work.
3403 */
3404 if (features & NETIF_F_GSO_PARTIAL) {
3405 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3406 struct net_device *dev = skb->dev;
3407
3408 partial_features |= dev->features & dev->gso_partial_features;
3409 if (!skb_gso_ok(skb, features | partial_features))
3410 features &= ~NETIF_F_GSO_PARTIAL;
3411 }
3412
a08e7fd9 3413 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3414 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3415
68c33163 3416 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3417 SKB_GSO_CB(skb)->encap_level = 0;
3418
05e8ef4a
PS
3419 skb_reset_mac_header(skb);
3420 skb_reset_mac_len(skb);
3421
b2504a5d
ED
3422 segs = skb_mac_gso_segment(skb, features);
3423
3a1296a3 3424 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3425 skb_warn_bad_offload(skb);
3426
3427 return segs;
05e8ef4a 3428}
12b0004d 3429EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3430
fb286bb2
HX
3431/* Take action when hardware reception checksum errors are detected. */
3432#ifdef CONFIG_BUG
7fe50ac8 3433void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3434{
3435 if (net_ratelimit()) {
7b6cd1ce 3436 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3437 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3438 dump_stack();
3439 }
3440}
3441EXPORT_SYMBOL(netdev_rx_csum_fault);
3442#endif
3443
ab74cfeb 3444/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3445static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3446{
3d3a8533 3447#ifdef CONFIG_HIGHMEM
1da177e4 3448 int i;
f4563a75 3449
5acbbd42 3450 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3451 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3452 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3453
ea2ab693 3454 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3455 return 1;
ea2ab693 3456 }
5acbbd42 3457 }
3d3a8533 3458#endif
1da177e4
LT
3459 return 0;
3460}
1da177e4 3461
3b392ddb
SH
3462/* If MPLS offload request, verify we are testing hardware MPLS features
3463 * instead of standard features for the netdev.
3464 */
d0edc7bf 3465#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3466static netdev_features_t net_mpls_features(struct sk_buff *skb,
3467 netdev_features_t features,
3468 __be16 type)
3469{
25cd9ba0 3470 if (eth_p_mpls(type))
3b392ddb
SH
3471 features &= skb->dev->mpls_features;
3472
3473 return features;
3474}
3475#else
3476static netdev_features_t net_mpls_features(struct sk_buff *skb,
3477 netdev_features_t features,
3478 __be16 type)
3479{
3480 return features;
3481}
3482#endif
3483
c8f44aff 3484static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3485 netdev_features_t features)
f01a5236 3486{
3b392ddb
SH
3487 __be16 type;
3488
9fc95f50 3489 type = skb_network_protocol(skb, NULL);
3b392ddb 3490 features = net_mpls_features(skb, features, type);
53d6471c 3491
c0d680e5 3492 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3493 !can_checksum_protocol(features, type)) {
996e8021 3494 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3495 }
7be2c82c
ED
3496 if (illegal_highdma(skb->dev, skb))
3497 features &= ~NETIF_F_SG;
f01a5236
JG
3498
3499 return features;
3500}
3501
e38f3025
TM
3502netdev_features_t passthru_features_check(struct sk_buff *skb,
3503 struct net_device *dev,
3504 netdev_features_t features)
3505{
3506 return features;
3507}
3508EXPORT_SYMBOL(passthru_features_check);
3509
7ce23672 3510static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3511 struct net_device *dev,
3512 netdev_features_t features)
3513{
3514 return vlan_features_check(skb, features);
3515}
3516
cbc53e08
AD
3517static netdev_features_t gso_features_check(const struct sk_buff *skb,
3518 struct net_device *dev,
3519 netdev_features_t features)
3520{
3521 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3522
3523 if (gso_segs > dev->gso_max_segs)
3524 return features & ~NETIF_F_GSO_MASK;
3525
1d155dfd
HK
3526 if (!skb_shinfo(skb)->gso_type) {
3527 skb_warn_bad_offload(skb);
3528 return features & ~NETIF_F_GSO_MASK;
3529 }
3530
802ab55a
AD
3531 /* Support for GSO partial features requires software
3532 * intervention before we can actually process the packets
3533 * so we need to strip support for any partial features now
3534 * and we can pull them back in after we have partially
3535 * segmented the frame.
3536 */
3537 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3538 features &= ~dev->gso_partial_features;
3539
3540 /* Make sure to clear the IPv4 ID mangling feature if the
3541 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3542 */
3543 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3544 struct iphdr *iph = skb->encapsulation ?
3545 inner_ip_hdr(skb) : ip_hdr(skb);
3546
3547 if (!(iph->frag_off & htons(IP_DF)))
3548 features &= ~NETIF_F_TSO_MANGLEID;
3549 }
3550
3551 return features;
3552}
3553
c1e756bf 3554netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3555{
5f35227e 3556 struct net_device *dev = skb->dev;
fcbeb976 3557 netdev_features_t features = dev->features;
58e998c6 3558
cbc53e08
AD
3559 if (skb_is_gso(skb))
3560 features = gso_features_check(skb, dev, features);
30b678d8 3561
5f35227e
JG
3562 /* If encapsulation offload request, verify we are testing
3563 * hardware encapsulation features instead of standard
3564 * features for the netdev
3565 */
3566 if (skb->encapsulation)
3567 features &= dev->hw_enc_features;
3568
f5a7fb88
TM
3569 if (skb_vlan_tagged(skb))
3570 features = netdev_intersect_features(features,
3571 dev->vlan_features |
3572 NETIF_F_HW_VLAN_CTAG_TX |
3573 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3574
5f35227e
JG
3575 if (dev->netdev_ops->ndo_features_check)
3576 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3577 features);
8cb65d00
TM
3578 else
3579 features &= dflt_features_check(skb, dev, features);
5f35227e 3580
c1e756bf 3581 return harmonize_features(skb, features);
58e998c6 3582}
c1e756bf 3583EXPORT_SYMBOL(netif_skb_features);
58e998c6 3584
2ea25513 3585static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3586 struct netdev_queue *txq, bool more)
f6a78bfc 3587{
2ea25513
DM
3588 unsigned int len;
3589 int rc;
00829823 3590
9f9a742d 3591 if (dev_nit_active(dev))
2ea25513 3592 dev_queue_xmit_nit(skb, dev);
fc741216 3593
2ea25513 3594 len = skb->len;
3744741a 3595 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
2ea25513 3596 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3597 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3598 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3599
2ea25513
DM
3600 return rc;
3601}
7b9c6090 3602
8dcda22a
DM
3603struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3604 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3605{
3606 struct sk_buff *skb = first;
3607 int rc = NETDEV_TX_OK;
7b9c6090 3608
7f2e870f
DM
3609 while (skb) {
3610 struct sk_buff *next = skb->next;
fc70fb64 3611
a8305bff 3612 skb_mark_not_on_list(skb);
95f6b3dd 3613 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3614 if (unlikely(!dev_xmit_complete(rc))) {
3615 skb->next = next;
3616 goto out;
3617 }
6afff0ca 3618
7f2e870f 3619 skb = next;
fe60faa5 3620 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3621 rc = NETDEV_TX_BUSY;
3622 break;
9ccb8975 3623 }
7f2e870f 3624 }
9ccb8975 3625
7f2e870f
DM
3626out:
3627 *ret = rc;
3628 return skb;
3629}
b40863c6 3630
1ff0dc94
ED
3631static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3632 netdev_features_t features)
f6a78bfc 3633{
df8a39de 3634 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3635 !vlan_hw_offload_capable(features, skb->vlan_proto))
3636 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3637 return skb;
3638}
f6a78bfc 3639
43c26a1a
DC
3640int skb_csum_hwoffload_help(struct sk_buff *skb,
3641 const netdev_features_t features)
3642{
fa821170 3643 if (unlikely(skb_csum_is_sctp(skb)))
43c26a1a
DC
3644 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3645 skb_crc32c_csum_help(skb);
3646
62fafcd6
XL
3647 if (features & NETIF_F_HW_CSUM)
3648 return 0;
3649
3650 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3651 switch (skb->csum_offset) {
3652 case offsetof(struct tcphdr, check):
3653 case offsetof(struct udphdr, check):
3654 return 0;
3655 }
3656 }
3657
3658 return skb_checksum_help(skb);
43c26a1a
DC
3659}
3660EXPORT_SYMBOL(skb_csum_hwoffload_help);
3661
f53c7239 3662static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3663{
3664 netdev_features_t features;
f6a78bfc 3665
eae3f88e
DM
3666 features = netif_skb_features(skb);
3667 skb = validate_xmit_vlan(skb, features);
3668 if (unlikely(!skb))
3669 goto out_null;
7b9c6090 3670
ebf4e808
IL
3671 skb = sk_validate_xmit_skb(skb, dev);
3672 if (unlikely(!skb))
3673 goto out_null;
3674
8b86a61d 3675 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3676 struct sk_buff *segs;
3677
3678 segs = skb_gso_segment(skb, features);
cecda693 3679 if (IS_ERR(segs)) {
af6dabc9 3680 goto out_kfree_skb;
cecda693
JW
3681 } else if (segs) {
3682 consume_skb(skb);
3683 skb = segs;
f6a78bfc 3684 }
eae3f88e
DM
3685 } else {
3686 if (skb_needs_linearize(skb, features) &&
3687 __skb_linearize(skb))
3688 goto out_kfree_skb;
4ec93edb 3689
eae3f88e
DM
3690 /* If packet is not checksummed and device does not
3691 * support checksumming for this protocol, complete
3692 * checksumming here.
3693 */
3694 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3695 if (skb->encapsulation)
3696 skb_set_inner_transport_header(skb,
3697 skb_checksum_start_offset(skb));
3698 else
3699 skb_set_transport_header(skb,
3700 skb_checksum_start_offset(skb));
43c26a1a 3701 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3702 goto out_kfree_skb;
7b9c6090 3703 }
0c772159 3704 }
7b9c6090 3705
f53c7239 3706 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3707
eae3f88e 3708 return skb;
fc70fb64 3709
f6a78bfc
HX
3710out_kfree_skb:
3711 kfree_skb(skb);
eae3f88e 3712out_null:
d21fd63e 3713 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3714 return NULL;
3715}
6afff0ca 3716
f53c7239 3717struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3718{
3719 struct sk_buff *next, *head = NULL, *tail;
3720
bec3cfdc 3721 for (; skb != NULL; skb = next) {
55a93b3e 3722 next = skb->next;
a8305bff 3723 skb_mark_not_on_list(skb);
bec3cfdc
ED
3724
3725 /* in case skb wont be segmented, point to itself */
3726 skb->prev = skb;
3727
f53c7239 3728 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3729 if (!skb)
3730 continue;
55a93b3e 3731
bec3cfdc
ED
3732 if (!head)
3733 head = skb;
3734 else
3735 tail->next = skb;
3736 /* If skb was segmented, skb->prev points to
3737 * the last segment. If not, it still contains skb.
3738 */
3739 tail = skb->prev;
55a93b3e
ED
3740 }
3741 return head;
f6a78bfc 3742}
104ba78c 3743EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3744
1def9238
ED
3745static void qdisc_pkt_len_init(struct sk_buff *skb)
3746{
3747 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3748
3749 qdisc_skb_cb(skb)->pkt_len = skb->len;
3750
3751 /* To get more precise estimation of bytes sent on wire,
3752 * we add to pkt_len the headers size of all segments
3753 */
a0dce875 3754 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3755 unsigned int hdr_len;
15e5a030 3756 u16 gso_segs = shinfo->gso_segs;
1def9238 3757
757b8b1d
ED
3758 /* mac layer + network layer */
3759 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3760
3761 /* + transport layer */
7c68d1a6
ED
3762 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3763 const struct tcphdr *th;
3764 struct tcphdr _tcphdr;
3765
3766 th = skb_header_pointer(skb, skb_transport_offset(skb),
3767 sizeof(_tcphdr), &_tcphdr);
3768 if (likely(th))
3769 hdr_len += __tcp_hdrlen(th);
3770 } else {
3771 struct udphdr _udphdr;
3772
3773 if (skb_header_pointer(skb, skb_transport_offset(skb),
3774 sizeof(_udphdr), &_udphdr))
3775 hdr_len += sizeof(struct udphdr);
3776 }
15e5a030
JW
3777
3778 if (shinfo->gso_type & SKB_GSO_DODGY)
3779 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3780 shinfo->gso_size);
3781
3782 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3783 }
3784}
3785
bbd8a0d3
KK
3786static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3787 struct net_device *dev,
3788 struct netdev_queue *txq)
3789{
3790 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3791 struct sk_buff *to_free = NULL;
a2da570d 3792 bool contended;
bbd8a0d3
KK
3793 int rc;
3794
a2da570d 3795 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3796
3797 if (q->flags & TCQ_F_NOLOCK) {
ac5c66f2 3798 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
379349e9 3799 qdisc_run(q);
6b3ba914
JF
3800
3801 if (unlikely(to_free))
3802 kfree_skb_list(to_free);
3803 return rc;
3804 }
3805
79640a4c
ED
3806 /*
3807 * Heuristic to force contended enqueues to serialize on a
3808 * separate lock before trying to get qdisc main lock.
f9eb8aea 3809 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3810 * often and dequeue packets faster.
79640a4c 3811 */
a2da570d 3812 contended = qdisc_is_running(q);
79640a4c
ED
3813 if (unlikely(contended))
3814 spin_lock(&q->busylock);
3815
bbd8a0d3
KK
3816 spin_lock(root_lock);
3817 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3818 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3819 rc = NET_XMIT_DROP;
3820 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3821 qdisc_run_begin(q)) {
bbd8a0d3
KK
3822 /*
3823 * This is a work-conserving queue; there are no old skbs
3824 * waiting to be sent out; and the qdisc is not running -
3825 * xmit the skb directly.
3826 */
bfe0d029 3827
bfe0d029
ED
3828 qdisc_bstats_update(q, skb);
3829
55a93b3e 3830 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3831 if (unlikely(contended)) {
3832 spin_unlock(&q->busylock);
3833 contended = false;
3834 }
bbd8a0d3 3835 __qdisc_run(q);
6c148184 3836 }
bbd8a0d3 3837
6c148184 3838 qdisc_run_end(q);
bbd8a0d3
KK
3839 rc = NET_XMIT_SUCCESS;
3840 } else {
ac5c66f2 3841 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3842 if (qdisc_run_begin(q)) {
3843 if (unlikely(contended)) {
3844 spin_unlock(&q->busylock);
3845 contended = false;
3846 }
3847 __qdisc_run(q);
6c148184 3848 qdisc_run_end(q);
79640a4c 3849 }
bbd8a0d3
KK
3850 }
3851 spin_unlock(root_lock);
520ac30f
ED
3852 if (unlikely(to_free))
3853 kfree_skb_list(to_free);
79640a4c
ED
3854 if (unlikely(contended))
3855 spin_unlock(&q->busylock);
bbd8a0d3
KK
3856 return rc;
3857}
3858
86f8515f 3859#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3860static void skb_update_prio(struct sk_buff *skb)
3861{
4dcb31d4
ED
3862 const struct netprio_map *map;
3863 const struct sock *sk;
3864 unsigned int prioidx;
5bc1421e 3865
4dcb31d4
ED
3866 if (skb->priority)
3867 return;
3868 map = rcu_dereference_bh(skb->dev->priomap);
3869 if (!map)
3870 return;
3871 sk = skb_to_full_sk(skb);
3872 if (!sk)
3873 return;
91c68ce2 3874
4dcb31d4
ED
3875 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3876
3877 if (prioidx < map->priomap_len)
3878 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3879}
3880#else
3881#define skb_update_prio(skb)
3882#endif
3883
95603e22
MM
3884/**
3885 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3886 * @net: network namespace this loopback is happening in
3887 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3888 * @skb: buffer to transmit
3889 */
0c4b51f0 3890int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3891{
3892 skb_reset_mac_header(skb);
3893 __skb_pull(skb, skb_network_offset(skb));
3894 skb->pkt_type = PACKET_LOOPBACK;
3895 skb->ip_summed = CHECKSUM_UNNECESSARY;
3896 WARN_ON(!skb_dst(skb));
3897 skb_dst_force(skb);
3898 netif_rx_ni(skb);
3899 return 0;
3900}
3901EXPORT_SYMBOL(dev_loopback_xmit);
3902
1f211a1b
DB
3903#ifdef CONFIG_NET_EGRESS
3904static struct sk_buff *
3905sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3906{
46209401 3907 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3908 struct tcf_result cl_res;
3909
46209401 3910 if (!miniq)
1f211a1b
DB
3911 return skb;
3912
8dc07fdb 3913 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
aadaca9e 3914 qdisc_skb_cb(skb)->mru = 0;
7baf2429 3915 qdisc_skb_cb(skb)->post_ct = false;
46209401 3916 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3917
46209401 3918 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3919 case TC_ACT_OK:
3920 case TC_ACT_RECLASSIFY:
3921 skb->tc_index = TC_H_MIN(cl_res.classid);
3922 break;
3923 case TC_ACT_SHOT:
46209401 3924 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3925 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3926 kfree_skb(skb);
3927 return NULL;
1f211a1b
DB
3928 case TC_ACT_STOLEN:
3929 case TC_ACT_QUEUED:
e25ea21f 3930 case TC_ACT_TRAP:
1f211a1b 3931 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3932 consume_skb(skb);
1f211a1b
DB
3933 return NULL;
3934 case TC_ACT_REDIRECT:
3935 /* No need to push/pop skb's mac_header here on egress! */
3936 skb_do_redirect(skb);
3937 *ret = NET_XMIT_SUCCESS;
3938 return NULL;
3939 default:
3940 break;
3941 }
357b6cc5 3942
1f211a1b
DB
3943 return skb;
3944}
3945#endif /* CONFIG_NET_EGRESS */
3946
fc9bab24
AN
3947#ifdef CONFIG_XPS
3948static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3949 struct xps_dev_maps *dev_maps, unsigned int tci)
3950{
3951 struct xps_map *map;
3952 int queue_index = -1;
3953
3954 if (dev->num_tc) {
3955 tci *= dev->num_tc;
3956 tci += netdev_get_prio_tc_map(dev, skb->priority);
3957 }
3958
3959 map = rcu_dereference(dev_maps->attr_map[tci]);
3960 if (map) {
3961 if (map->len == 1)
3962 queue_index = map->queues[0];
3963 else
3964 queue_index = map->queues[reciprocal_scale(
3965 skb_get_hash(skb), map->len)];
3966 if (unlikely(queue_index >= dev->real_num_tx_queues))
3967 queue_index = -1;
3968 }
3969 return queue_index;
3970}
3971#endif
3972
eadec877
AD
3973static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3974 struct sk_buff *skb)
638b2a69
JP
3975{
3976#ifdef CONFIG_XPS
3977 struct xps_dev_maps *dev_maps;
fc9bab24 3978 struct sock *sk = skb->sk;
638b2a69
JP
3979 int queue_index = -1;
3980
04157469
AN
3981 if (!static_key_false(&xps_needed))
3982 return -1;
3983
638b2a69 3984 rcu_read_lock();
fc9bab24
AN
3985 if (!static_key_false(&xps_rxqs_needed))
3986 goto get_cpus_map;
3987
eadec877 3988 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3989 if (dev_maps) {
fc9bab24 3990 int tci = sk_rx_queue_get(sk);
184c449f 3991
fc9bab24
AN
3992 if (tci >= 0 && tci < dev->num_rx_queues)
3993 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3994 tci);
3995 }
184c449f 3996
fc9bab24
AN
3997get_cpus_map:
3998 if (queue_index < 0) {
eadec877 3999 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
4000 if (dev_maps) {
4001 unsigned int tci = skb->sender_cpu - 1;
4002
4003 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4004 tci);
638b2a69
JP
4005 }
4006 }
4007 rcu_read_unlock();
4008
4009 return queue_index;
4010#else
4011 return -1;
4012#endif
4013}
4014
a4ea8a3d 4015u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 4016 struct net_device *sb_dev)
a4ea8a3d
AD
4017{
4018 return 0;
4019}
4020EXPORT_SYMBOL(dev_pick_tx_zero);
4021
4022u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 4023 struct net_device *sb_dev)
a4ea8a3d
AD
4024{
4025 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4026}
4027EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4028
b71b5837
PA
4029u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4030 struct net_device *sb_dev)
638b2a69
JP
4031{
4032 struct sock *sk = skb->sk;
4033 int queue_index = sk_tx_queue_get(sk);
4034
eadec877
AD
4035 sb_dev = sb_dev ? : dev;
4036
638b2a69
JP
4037 if (queue_index < 0 || skb->ooo_okay ||
4038 queue_index >= dev->real_num_tx_queues) {
eadec877 4039 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 4040
638b2a69 4041 if (new_index < 0)
eadec877 4042 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
4043
4044 if (queue_index != new_index && sk &&
004a5d01 4045 sk_fullsock(sk) &&
638b2a69
JP
4046 rcu_access_pointer(sk->sk_dst_cache))
4047 sk_tx_queue_set(sk, new_index);
4048
4049 queue_index = new_index;
4050 }
4051
4052 return queue_index;
4053}
b71b5837 4054EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 4055
4bd97d51
PA
4056struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4057 struct sk_buff *skb,
4058 struct net_device *sb_dev)
638b2a69
JP
4059{
4060 int queue_index = 0;
4061
4062#ifdef CONFIG_XPS
52bd2d62
ED
4063 u32 sender_cpu = skb->sender_cpu - 1;
4064
4065 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
4066 skb->sender_cpu = raw_smp_processor_id() + 1;
4067#endif
4068
4069 if (dev->real_num_tx_queues != 1) {
4070 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 4071
638b2a69 4072 if (ops->ndo_select_queue)
a350ecce 4073 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 4074 else
4bd97d51 4075 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 4076
d584527c 4077 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
4078 }
4079
4080 skb_set_queue_mapping(skb, queue_index);
4081 return netdev_get_tx_queue(dev, queue_index);
4082}
4083
d29f749e 4084/**
9d08dd3d 4085 * __dev_queue_xmit - transmit a buffer
d29f749e 4086 * @skb: buffer to transmit
eadec877 4087 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
4088 *
4089 * Queue a buffer for transmission to a network device. The caller must
4090 * have set the device and priority and built the buffer before calling
4091 * this function. The function can be called from an interrupt.
4092 *
4093 * A negative errno code is returned on a failure. A success does not
4094 * guarantee the frame will be transmitted as it may be dropped due
4095 * to congestion or traffic shaping.
4096 *
4097 * -----------------------------------------------------------------------------------
4098 * I notice this method can also return errors from the queue disciplines,
4099 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4100 * be positive.
4101 *
4102 * Regardless of the return value, the skb is consumed, so it is currently
4103 * difficult to retry a send to this method. (You can bump the ref count
4104 * before sending to hold a reference for retry if you are careful.)
4105 *
4106 * When calling this method, interrupts MUST be enabled. This is because
4107 * the BH enable code must have IRQs enabled so that it will not deadlock.
4108 * --BLG
4109 */
eadec877 4110static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
4111{
4112 struct net_device *dev = skb->dev;
dc2b4847 4113 struct netdev_queue *txq;
1da177e4
LT
4114 struct Qdisc *q;
4115 int rc = -ENOMEM;
f53c7239 4116 bool again = false;
1da177e4 4117
6d1ccff6
ED
4118 skb_reset_mac_header(skb);
4119
e7fd2885 4120 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
e7ed11ee 4121 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
e7fd2885 4122
4ec93edb
YH
4123 /* Disable soft irqs for various locks below. Also
4124 * stops preemption for RCU.
1da177e4 4125 */
4ec93edb 4126 rcu_read_lock_bh();
1da177e4 4127
5bc1421e
NH
4128 skb_update_prio(skb);
4129
1f211a1b
DB
4130 qdisc_pkt_len_init(skb);
4131#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4132 skb->tc_at_ingress = 0;
357b6cc5 4133# ifdef CONFIG_NET_EGRESS
aabf6772 4134 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4135 skb = sch_handle_egress(skb, &rc, dev);
4136 if (!skb)
4137 goto out;
4138 }
357b6cc5 4139# endif
1f211a1b 4140#endif
02875878
ED
4141 /* If device/qdisc don't need skb->dst, release it right now while
4142 * its hot in this cpu cache.
4143 */
4144 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4145 skb_dst_drop(skb);
4146 else
4147 skb_dst_force(skb);
4148
4bd97d51 4149 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4150 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4151
cf66ba58 4152 trace_net_dev_queue(skb);
1da177e4 4153 if (q->enqueue) {
bbd8a0d3 4154 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4155 goto out;
1da177e4
LT
4156 }
4157
4158 /* The device has no queue. Common case for software devices:
eb13da1a 4159 * loopback, all the sorts of tunnels...
1da177e4 4160
eb13da1a 4161 * Really, it is unlikely that netif_tx_lock protection is necessary
4162 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4163 * counters.)
4164 * However, it is possible, that they rely on protection
4165 * made by us here.
1da177e4 4166
eb13da1a 4167 * Check this and shot the lock. It is not prone from deadlocks.
4168 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4169 */
4170 if (dev->flags & IFF_UP) {
4171 int cpu = smp_processor_id(); /* ok because BHs are off */
4172
c773e847 4173 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4174 if (dev_xmit_recursion())
745e20f1
ED
4175 goto recursion_alert;
4176
f53c7239 4177 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4178 if (!skb)
d21fd63e 4179 goto out;
1f59533f 4180
3744741a 4181 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
c773e847 4182 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4183
73466498 4184 if (!netif_xmit_stopped(txq)) {
97cdcf37 4185 dev_xmit_recursion_inc();
ce93718f 4186 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4187 dev_xmit_recursion_dec();
572a9d7b 4188 if (dev_xmit_complete(rc)) {
c773e847 4189 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4190 goto out;
4191 }
4192 }
c773e847 4193 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4194 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4195 dev->name);
1da177e4
LT
4196 } else {
4197 /* Recursion is detected! It is possible,
745e20f1
ED
4198 * unfortunately
4199 */
4200recursion_alert:
e87cc472
JP
4201 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4202 dev->name);
1da177e4
LT
4203 }
4204 }
4205
4206 rc = -ENETDOWN;
d4828d85 4207 rcu_read_unlock_bh();
1da177e4 4208
015f0688 4209 atomic_long_inc(&dev->tx_dropped);
1f59533f 4210 kfree_skb_list(skb);
1da177e4
LT
4211 return rc;
4212out:
d4828d85 4213 rcu_read_unlock_bh();
1da177e4
LT
4214 return rc;
4215}
f663dd9a 4216
2b4aa3ce 4217int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4218{
4219 return __dev_queue_xmit(skb, NULL);
4220}
2b4aa3ce 4221EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4222
eadec877 4223int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4224{
eadec877 4225 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4226}
4227EXPORT_SYMBOL(dev_queue_xmit_accel);
4228
36ccdf85 4229int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
865b03f2
MK
4230{
4231 struct net_device *dev = skb->dev;
4232 struct sk_buff *orig_skb = skb;
4233 struct netdev_queue *txq;
4234 int ret = NETDEV_TX_BUSY;
4235 bool again = false;
4236
4237 if (unlikely(!netif_running(dev) ||
4238 !netif_carrier_ok(dev)))
4239 goto drop;
4240
4241 skb = validate_xmit_skb_list(skb, dev, &again);
4242 if (skb != orig_skb)
4243 goto drop;
4244
4245 skb_set_queue_mapping(skb, queue_id);
4246 txq = skb_get_tx_queue(dev, skb);
3744741a 4247 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
865b03f2
MK
4248
4249 local_bh_disable();
4250
0ad6f6e7 4251 dev_xmit_recursion_inc();
865b03f2
MK
4252 HARD_TX_LOCK(dev, txq, smp_processor_id());
4253 if (!netif_xmit_frozen_or_drv_stopped(txq))
4254 ret = netdev_start_xmit(skb, dev, txq, false);
4255 HARD_TX_UNLOCK(dev, txq);
0ad6f6e7 4256 dev_xmit_recursion_dec();
865b03f2
MK
4257
4258 local_bh_enable();
865b03f2
MK
4259 return ret;
4260drop:
4261 atomic_long_inc(&dev->tx_dropped);
4262 kfree_skb_list(skb);
4263 return NET_XMIT_DROP;
4264}
36ccdf85 4265EXPORT_SYMBOL(__dev_direct_xmit);
1da177e4 4266
eb13da1a 4267/*************************************************************************
4268 * Receiver routines
4269 *************************************************************************/
1da177e4 4270
6b2bedc3 4271int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4272EXPORT_SYMBOL(netdev_max_backlog);
4273
3b098e2d 4274int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4275int netdev_budget __read_mostly = 300;
a4837980
KK
4276/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4277unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4278int weight_p __read_mostly = 64; /* old backlog weight */
4279int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4280int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4281int dev_rx_weight __read_mostly = 64;
4282int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4283/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4284int gro_normal_batch __read_mostly = 8;
1da177e4 4285
eecfd7c4
ED
4286/* Called with irq disabled */
4287static inline void ____napi_schedule(struct softnet_data *sd,
4288 struct napi_struct *napi)
4289{
29863d41
WW
4290 struct task_struct *thread;
4291
4292 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4293 /* Paired with smp_mb__before_atomic() in
4294 * napi_enable(). Use READ_ONCE() to guarantee
4295 * a complete read on napi->thread. Only call
4296 * wake_up_process() when it's not NULL.
4297 */
4298 thread = READ_ONCE(napi->thread);
4299 if (thread) {
4300 wake_up_process(thread);
4301 return;
4302 }
4303 }
4304
eecfd7c4
ED
4305 list_add_tail(&napi->poll_list, &sd->poll_list);
4306 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4307}
4308
bfb564e7
KK
4309#ifdef CONFIG_RPS
4310
4311/* One global table that all flow-based protocols share. */
6e3f7faf 4312struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4313EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4314u32 rps_cpu_mask __read_mostly;
4315EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4316
dc05360f 4317struct static_key_false rps_needed __read_mostly;
3df97ba8 4318EXPORT_SYMBOL(rps_needed);
dc05360f 4319struct static_key_false rfs_needed __read_mostly;
13bfff25 4320EXPORT_SYMBOL(rfs_needed);
adc9300e 4321
c445477d
BH
4322static struct rps_dev_flow *
4323set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4324 struct rps_dev_flow *rflow, u16 next_cpu)
4325{
a31196b0 4326 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4327#ifdef CONFIG_RFS_ACCEL
4328 struct netdev_rx_queue *rxqueue;
4329 struct rps_dev_flow_table *flow_table;
4330 struct rps_dev_flow *old_rflow;
4331 u32 flow_id;
4332 u16 rxq_index;
4333 int rc;
4334
4335 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4336 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4337 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4338 goto out;
4339 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4340 if (rxq_index == skb_get_rx_queue(skb))
4341 goto out;
4342
4343 rxqueue = dev->_rx + rxq_index;
4344 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4345 if (!flow_table)
4346 goto out;
61b905da 4347 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4348 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4349 rxq_index, flow_id);
4350 if (rc < 0)
4351 goto out;
4352 old_rflow = rflow;
4353 rflow = &flow_table->flows[flow_id];
c445477d
BH
4354 rflow->filter = rc;
4355 if (old_rflow->filter == rflow->filter)
4356 old_rflow->filter = RPS_NO_FILTER;
4357 out:
4358#endif
4359 rflow->last_qtail =
09994d1b 4360 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4361 }
4362
09994d1b 4363 rflow->cpu = next_cpu;
c445477d
BH
4364 return rflow;
4365}
4366
bfb564e7
KK
4367/*
4368 * get_rps_cpu is called from netif_receive_skb and returns the target
4369 * CPU from the RPS map of the receiving queue for a given skb.
4370 * rcu_read_lock must be held on entry.
4371 */
4372static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4373 struct rps_dev_flow **rflowp)
4374{
567e4b79
ED
4375 const struct rps_sock_flow_table *sock_flow_table;
4376 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4377 struct rps_dev_flow_table *flow_table;
567e4b79 4378 struct rps_map *map;
bfb564e7 4379 int cpu = -1;
567e4b79 4380 u32 tcpu;
61b905da 4381 u32 hash;
bfb564e7
KK
4382
4383 if (skb_rx_queue_recorded(skb)) {
4384 u16 index = skb_get_rx_queue(skb);
567e4b79 4385
62fe0b40
BH
4386 if (unlikely(index >= dev->real_num_rx_queues)) {
4387 WARN_ONCE(dev->real_num_rx_queues > 1,
4388 "%s received packet on queue %u, but number "
4389 "of RX queues is %u\n",
4390 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4391 goto done;
4392 }
567e4b79
ED
4393 rxqueue += index;
4394 }
bfb564e7 4395
567e4b79
ED
4396 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4397
4398 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4399 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4400 if (!flow_table && !map)
bfb564e7
KK
4401 goto done;
4402
2d47b459 4403 skb_reset_network_header(skb);
61b905da
TH
4404 hash = skb_get_hash(skb);
4405 if (!hash)
bfb564e7
KK
4406 goto done;
4407
fec5e652
TH
4408 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4409 if (flow_table && sock_flow_table) {
fec5e652 4410 struct rps_dev_flow *rflow;
567e4b79
ED
4411 u32 next_cpu;
4412 u32 ident;
4413
4414 /* First check into global flow table if there is a match */
4415 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4416 if ((ident ^ hash) & ~rps_cpu_mask)
4417 goto try_rps;
fec5e652 4418
567e4b79
ED
4419 next_cpu = ident & rps_cpu_mask;
4420
4421 /* OK, now we know there is a match,
4422 * we can look at the local (per receive queue) flow table
4423 */
61b905da 4424 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4425 tcpu = rflow->cpu;
4426
fec5e652
TH
4427 /*
4428 * If the desired CPU (where last recvmsg was done) is
4429 * different from current CPU (one in the rx-queue flow
4430 * table entry), switch if one of the following holds:
a31196b0 4431 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4432 * - Current CPU is offline.
4433 * - The current CPU's queue tail has advanced beyond the
4434 * last packet that was enqueued using this table entry.
4435 * This guarantees that all previous packets for the flow
4436 * have been dequeued, thus preserving in order delivery.
4437 */
4438 if (unlikely(tcpu != next_cpu) &&
a31196b0 4439 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4440 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4441 rflow->last_qtail)) >= 0)) {
4442 tcpu = next_cpu;
c445477d 4443 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4444 }
c445477d 4445
a31196b0 4446 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4447 *rflowp = rflow;
4448 cpu = tcpu;
4449 goto done;
4450 }
4451 }
4452
567e4b79
ED
4453try_rps:
4454
0a9627f2 4455 if (map) {
8fc54f68 4456 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4457 if (cpu_online(tcpu)) {
4458 cpu = tcpu;
4459 goto done;
4460 }
4461 }
4462
4463done:
0a9627f2
TH
4464 return cpu;
4465}
4466
c445477d
BH
4467#ifdef CONFIG_RFS_ACCEL
4468
4469/**
4470 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4471 * @dev: Device on which the filter was set
4472 * @rxq_index: RX queue index
4473 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4474 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4475 *
4476 * Drivers that implement ndo_rx_flow_steer() should periodically call
4477 * this function for each installed filter and remove the filters for
4478 * which it returns %true.
4479 */
4480bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4481 u32 flow_id, u16 filter_id)
4482{
4483 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4484 struct rps_dev_flow_table *flow_table;
4485 struct rps_dev_flow *rflow;
4486 bool expire = true;
a31196b0 4487 unsigned int cpu;
c445477d
BH
4488
4489 rcu_read_lock();
4490 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4491 if (flow_table && flow_id <= flow_table->mask) {
4492 rflow = &flow_table->flows[flow_id];
6aa7de05 4493 cpu = READ_ONCE(rflow->cpu);
a31196b0 4494 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4495 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4496 rflow->last_qtail) <
4497 (int)(10 * flow_table->mask)))
4498 expire = false;
4499 }
4500 rcu_read_unlock();
4501 return expire;
4502}
4503EXPORT_SYMBOL(rps_may_expire_flow);
4504
4505#endif /* CONFIG_RFS_ACCEL */
4506
0a9627f2 4507/* Called from hardirq (IPI) context */
e36fa2f7 4508static void rps_trigger_softirq(void *data)
0a9627f2 4509{
e36fa2f7
ED
4510 struct softnet_data *sd = data;
4511
eecfd7c4 4512 ____napi_schedule(sd, &sd->backlog);
dee42870 4513 sd->received_rps++;
0a9627f2 4514}
e36fa2f7 4515
fec5e652 4516#endif /* CONFIG_RPS */
0a9627f2 4517
e36fa2f7
ED
4518/*
4519 * Check if this softnet_data structure is another cpu one
4520 * If yes, queue it to our IPI list and return 1
4521 * If no, return 0
4522 */
4523static int rps_ipi_queued(struct softnet_data *sd)
4524{
4525#ifdef CONFIG_RPS
903ceff7 4526 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4527
4528 if (sd != mysd) {
4529 sd->rps_ipi_next = mysd->rps_ipi_list;
4530 mysd->rps_ipi_list = sd;
4531
4532 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4533 return 1;
4534 }
4535#endif /* CONFIG_RPS */
4536 return 0;
4537}
4538
99bbc707
WB
4539#ifdef CONFIG_NET_FLOW_LIMIT
4540int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4541#endif
4542
4543static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4544{
4545#ifdef CONFIG_NET_FLOW_LIMIT
4546 struct sd_flow_limit *fl;
4547 struct softnet_data *sd;
4548 unsigned int old_flow, new_flow;
4549
4550 if (qlen < (netdev_max_backlog >> 1))
4551 return false;
4552
903ceff7 4553 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4554
4555 rcu_read_lock();
4556 fl = rcu_dereference(sd->flow_limit);
4557 if (fl) {
3958afa1 4558 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4559 old_flow = fl->history[fl->history_head];
4560 fl->history[fl->history_head] = new_flow;
4561
4562 fl->history_head++;
4563 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4564
4565 if (likely(fl->buckets[old_flow]))
4566 fl->buckets[old_flow]--;
4567
4568 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4569 fl->count++;
4570 rcu_read_unlock();
4571 return true;
4572 }
4573 }
4574 rcu_read_unlock();
4575#endif
4576 return false;
4577}
4578
0a9627f2
TH
4579/*
4580 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4581 * queue (may be a remote CPU queue).
4582 */
fec5e652
TH
4583static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4584 unsigned int *qtail)
0a9627f2 4585{
e36fa2f7 4586 struct softnet_data *sd;
0a9627f2 4587 unsigned long flags;
99bbc707 4588 unsigned int qlen;
0a9627f2 4589
e36fa2f7 4590 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4591
4592 local_irq_save(flags);
0a9627f2 4593
e36fa2f7 4594 rps_lock(sd);
e9e4dd32
JA
4595 if (!netif_running(skb->dev))
4596 goto drop;
99bbc707
WB
4597 qlen = skb_queue_len(&sd->input_pkt_queue);
4598 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4599 if (qlen) {
0a9627f2 4600enqueue:
e36fa2f7 4601 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4602 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4603 rps_unlock(sd);
152102c7 4604 local_irq_restore(flags);
0a9627f2
TH
4605 return NET_RX_SUCCESS;
4606 }
4607
ebda37c2
ED
4608 /* Schedule NAPI for backlog device
4609 * We can use non atomic operation since we own the queue lock
4610 */
4611 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4612 if (!rps_ipi_queued(sd))
eecfd7c4 4613 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4614 }
4615 goto enqueue;
4616 }
4617
e9e4dd32 4618drop:
dee42870 4619 sd->dropped++;
e36fa2f7 4620 rps_unlock(sd);
0a9627f2 4621
0a9627f2
TH
4622 local_irq_restore(flags);
4623
caf586e5 4624 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4625 kfree_skb(skb);
4626 return NET_RX_DROP;
4627}
1da177e4 4628
e817f856
JDB
4629static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4630{
4631 struct net_device *dev = skb->dev;
4632 struct netdev_rx_queue *rxqueue;
4633
4634 rxqueue = dev->_rx;
4635
4636 if (skb_rx_queue_recorded(skb)) {
4637 u16 index = skb_get_rx_queue(skb);
4638
4639 if (unlikely(index >= dev->real_num_rx_queues)) {
4640 WARN_ONCE(dev->real_num_rx_queues > 1,
4641 "%s received packet on queue %u, but number "
4642 "of RX queues is %u\n",
4643 dev->name, index, dev->real_num_rx_queues);
4644
4645 return rxqueue; /* Return first rxqueue */
4646 }
4647 rxqueue += index;
4648 }
4649 return rxqueue;
4650}
4651
d4455169 4652static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4653 struct xdp_buff *xdp,
d4455169
JF
4654 struct bpf_prog *xdp_prog)
4655{
be9df4af 4656 void *orig_data, *orig_data_end, *hard_start;
e817f856 4657 struct netdev_rx_queue *rxqueue;
de8f3a83 4658 u32 metalen, act = XDP_DROP;
43b5169d 4659 u32 mac_len, frame_sz;
29724956
JDB
4660 __be16 orig_eth_type;
4661 struct ethhdr *eth;
4662 bool orig_bcast;
be9df4af 4663 int off;
d4455169
JF
4664
4665 /* Reinjected packets coming from act_mirred or similar should
4666 * not get XDP generic processing.
4667 */
2c64605b 4668 if (skb_is_redirected(skb))
d4455169
JF
4669 return XDP_PASS;
4670
de8f3a83
DB
4671 /* XDP packets must be linear and must have sufficient headroom
4672 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4673 * native XDP provides, thus we need to do it here as well.
4674 */
ad1e03b2 4675 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
de8f3a83
DB
4676 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4677 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4678 int troom = skb->tail + skb->data_len - skb->end;
4679
4680 /* In case we have to go down the path and also linearize,
4681 * then lets do the pskb_expand_head() work just once here.
4682 */
4683 if (pskb_expand_head(skb,
4684 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4685 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4686 goto do_drop;
2d17d8d7 4687 if (skb_linearize(skb))
de8f3a83
DB
4688 goto do_drop;
4689 }
d4455169
JF
4690
4691 /* The XDP program wants to see the packet starting at the MAC
4692 * header.
4693 */
4694 mac_len = skb->data - skb_mac_header(skb);
be9df4af 4695 hard_start = skb->data - skb_headroom(skb);
a075767b
JDB
4696
4697 /* SKB "head" area always have tailroom for skb_shared_info */
be9df4af 4698 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
43b5169d 4699 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
a075767b 4700
be9df4af
LB
4701 rxqueue = netif_get_rxqueue(skb);
4702 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4703 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4704 skb_headlen(skb) + mac_len, true);
a075767b 4705
02671e23
BT
4706 orig_data_end = xdp->data_end;
4707 orig_data = xdp->data;
29724956
JDB
4708 eth = (struct ethhdr *)xdp->data;
4709 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4710 orig_eth_type = eth->h_proto;
d4455169 4711
02671e23 4712 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4713
065af355 4714 /* check if bpf_xdp_adjust_head was used */
02671e23 4715 off = xdp->data - orig_data;
065af355
JDB
4716 if (off) {
4717 if (off > 0)
4718 __skb_pull(skb, off);
4719 else if (off < 0)
4720 __skb_push(skb, -off);
4721
4722 skb->mac_header += off;
4723 skb_reset_network_header(skb);
4724 }
d4455169 4725
a075767b
JDB
4726 /* check if bpf_xdp_adjust_tail was used */
4727 off = xdp->data_end - orig_data_end;
f7613120 4728 if (off != 0) {
02671e23 4729 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
a075767b 4730 skb->len += off; /* positive on grow, negative on shrink */
f7613120 4731 }
198d83bb 4732
29724956
JDB
4733 /* check if XDP changed eth hdr such SKB needs update */
4734 eth = (struct ethhdr *)xdp->data;
4735 if ((orig_eth_type != eth->h_proto) ||
4736 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4737 __skb_push(skb, ETH_HLEN);
4738 skb->protocol = eth_type_trans(skb, skb->dev);
4739 }
4740
d4455169 4741 switch (act) {
6103aa96 4742 case XDP_REDIRECT:
d4455169
JF
4743 case XDP_TX:
4744 __skb_push(skb, mac_len);
de8f3a83 4745 break;
d4455169 4746 case XDP_PASS:
02671e23 4747 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4748 if (metalen)
4749 skb_metadata_set(skb, metalen);
d4455169 4750 break;
d4455169
JF
4751 default:
4752 bpf_warn_invalid_xdp_action(act);
df561f66 4753 fallthrough;
d4455169
JF
4754 case XDP_ABORTED:
4755 trace_xdp_exception(skb->dev, xdp_prog, act);
df561f66 4756 fallthrough;
d4455169
JF
4757 case XDP_DROP:
4758 do_drop:
4759 kfree_skb(skb);
4760 break;
4761 }
4762
4763 return act;
4764}
4765
4766/* When doing generic XDP we have to bypass the qdisc layer and the
4767 * network taps in order to match in-driver-XDP behavior.
4768 */
7c497478 4769void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4770{
4771 struct net_device *dev = skb->dev;
4772 struct netdev_queue *txq;
4773 bool free_skb = true;
4774 int cpu, rc;
4775
4bd97d51 4776 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4777 cpu = smp_processor_id();
4778 HARD_TX_LOCK(dev, txq, cpu);
4779 if (!netif_xmit_stopped(txq)) {
4780 rc = netdev_start_xmit(skb, dev, txq, 0);
4781 if (dev_xmit_complete(rc))
4782 free_skb = false;
4783 }
4784 HARD_TX_UNLOCK(dev, txq);
4785 if (free_skb) {
4786 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4787 kfree_skb(skb);
4788 }
4789}
4790
02786475 4791static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4792
7c497478 4793int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4794{
d4455169 4795 if (xdp_prog) {
02671e23
BT
4796 struct xdp_buff xdp;
4797 u32 act;
6103aa96 4798 int err;
d4455169 4799
02671e23 4800 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4801 if (act != XDP_PASS) {
6103aa96
JF
4802 switch (act) {
4803 case XDP_REDIRECT:
2facaad6 4804 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4805 &xdp, xdp_prog);
6103aa96
JF
4806 if (err)
4807 goto out_redir;
02671e23 4808 break;
6103aa96 4809 case XDP_TX:
d4455169 4810 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4811 break;
4812 }
d4455169
JF
4813 return XDP_DROP;
4814 }
4815 }
4816 return XDP_PASS;
6103aa96 4817out_redir:
6103aa96
JF
4818 kfree_skb(skb);
4819 return XDP_DROP;
d4455169 4820}
7c497478 4821EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4822
ae78dbfa 4823static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4824{
b0e28f1e 4825 int ret;
1da177e4 4826
588f0330 4827 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4828
cf66ba58 4829 trace_netif_rx(skb);
d4455169 4830
df334545 4831#ifdef CONFIG_RPS
dc05360f 4832 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4833 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4834 int cpu;
4835
cece1945 4836 preempt_disable();
b0e28f1e 4837 rcu_read_lock();
fec5e652
TH
4838
4839 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4840 if (cpu < 0)
4841 cpu = smp_processor_id();
fec5e652
TH
4842
4843 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4844
b0e28f1e 4845 rcu_read_unlock();
cece1945 4846 preempt_enable();
adc9300e
ED
4847 } else
4848#endif
fec5e652
TH
4849 {
4850 unsigned int qtail;
f4563a75 4851
fec5e652
TH
4852 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4853 put_cpu();
4854 }
b0e28f1e 4855 return ret;
1da177e4 4856}
ae78dbfa
BH
4857
4858/**
4859 * netif_rx - post buffer to the network code
4860 * @skb: buffer to post
4861 *
4862 * This function receives a packet from a device driver and queues it for
4863 * the upper (protocol) levels to process. It always succeeds. The buffer
4864 * may be dropped during processing for congestion control or by the
4865 * protocol layers.
4866 *
4867 * return values:
4868 * NET_RX_SUCCESS (no congestion)
4869 * NET_RX_DROP (packet was dropped)
4870 *
4871 */
4872
4873int netif_rx(struct sk_buff *skb)
4874{
b0e3f1bd
GB
4875 int ret;
4876
ae78dbfa
BH
4877 trace_netif_rx_entry(skb);
4878
b0e3f1bd
GB
4879 ret = netif_rx_internal(skb);
4880 trace_netif_rx_exit(ret);
4881
4882 return ret;
ae78dbfa 4883}
d1b19dff 4884EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4885
4886int netif_rx_ni(struct sk_buff *skb)
4887{
4888 int err;
4889
ae78dbfa
BH
4890 trace_netif_rx_ni_entry(skb);
4891
1da177e4 4892 preempt_disable();
ae78dbfa 4893 err = netif_rx_internal(skb);
1da177e4
LT
4894 if (local_softirq_pending())
4895 do_softirq();
4896 preempt_enable();
b0e3f1bd 4897 trace_netif_rx_ni_exit(err);
1da177e4
LT
4898
4899 return err;
4900}
1da177e4
LT
4901EXPORT_SYMBOL(netif_rx_ni);
4902
c11171a4
SAS
4903int netif_rx_any_context(struct sk_buff *skb)
4904{
4905 /*
4906 * If invoked from contexts which do not invoke bottom half
4907 * processing either at return from interrupt or when softrqs are
4908 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4909 * directly.
4910 */
4911 if (in_interrupt())
4912 return netif_rx(skb);
4913 else
4914 return netif_rx_ni(skb);
4915}
4916EXPORT_SYMBOL(netif_rx_any_context);
4917
0766f788 4918static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4919{
903ceff7 4920 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4921
4922 if (sd->completion_queue) {
4923 struct sk_buff *clist;
4924
4925 local_irq_disable();
4926 clist = sd->completion_queue;
4927 sd->completion_queue = NULL;
4928 local_irq_enable();
4929
4930 while (clist) {
4931 struct sk_buff *skb = clist;
f4563a75 4932
1da177e4
LT
4933 clist = clist->next;
4934
63354797 4935 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4936 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4937 trace_consume_skb(skb);
4938 else
4939 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4940
4941 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4942 __kfree_skb(skb);
4943 else
4944 __kfree_skb_defer(skb);
1da177e4 4945 }
15fad714
JDB
4946
4947 __kfree_skb_flush();
1da177e4
LT
4948 }
4949
4950 if (sd->output_queue) {
37437bb2 4951 struct Qdisc *head;
1da177e4
LT
4952
4953 local_irq_disable();
4954 head = sd->output_queue;
4955 sd->output_queue = NULL;
a9cbd588 4956 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4957 local_irq_enable();
4958
4959 while (head) {
37437bb2 4960 struct Qdisc *q = head;
6b3ba914 4961 spinlock_t *root_lock = NULL;
37437bb2 4962
1da177e4
LT
4963 head = head->next_sched;
4964
6b3ba914
JF
4965 if (!(q->flags & TCQ_F_NOLOCK)) {
4966 root_lock = qdisc_lock(q);
4967 spin_lock(root_lock);
4968 }
3bcb846c
ED
4969 /* We need to make sure head->next_sched is read
4970 * before clearing __QDISC_STATE_SCHED
4971 */
4972 smp_mb__before_atomic();
4973 clear_bit(__QDISC_STATE_SCHED, &q->state);
4974 qdisc_run(q);
6b3ba914
JF
4975 if (root_lock)
4976 spin_unlock(root_lock);
1da177e4
LT
4977 }
4978 }
f53c7239
SK
4979
4980 xfrm_dev_backlog(sd);
1da177e4
LT
4981}
4982
181402a5 4983#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4984/* This hook is defined here for ATM LANE */
4985int (*br_fdb_test_addr_hook)(struct net_device *dev,
4986 unsigned char *addr) __read_mostly;
4fb019a0 4987EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4988#endif
1da177e4 4989
1f211a1b
DB
4990static inline struct sk_buff *
4991sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
9aa1206e 4992 struct net_device *orig_dev, bool *another)
f697c3e8 4993{
e7582bab 4994#ifdef CONFIG_NET_CLS_ACT
46209401 4995 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4996 struct tcf_result cl_res;
24824a09 4997
c9e99fd0
DB
4998 /* If there's at least one ingress present somewhere (so
4999 * we get here via enabled static key), remaining devices
5000 * that are not configured with an ingress qdisc will bail
d2788d34 5001 * out here.
c9e99fd0 5002 */
46209401 5003 if (!miniq)
4577139b 5004 return skb;
46209401 5005
f697c3e8
HX
5006 if (*pt_prev) {
5007 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5008 *pt_prev = NULL;
1da177e4
LT
5009 }
5010
3365495c 5011 qdisc_skb_cb(skb)->pkt_len = skb->len;
aadaca9e 5012 qdisc_skb_cb(skb)->mru = 0;
7baf2429 5013 qdisc_skb_cb(skb)->post_ct = false;
8dc07fdb 5014 skb->tc_at_ingress = 1;
46209401 5015 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 5016
7d17c544
PB
5017 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5018 &cl_res, false)) {
d2788d34
DB
5019 case TC_ACT_OK:
5020 case TC_ACT_RECLASSIFY:
5021 skb->tc_index = TC_H_MIN(cl_res.classid);
5022 break;
5023 case TC_ACT_SHOT:
46209401 5024 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
5025 kfree_skb(skb);
5026 return NULL;
d2788d34
DB
5027 case TC_ACT_STOLEN:
5028 case TC_ACT_QUEUED:
e25ea21f 5029 case TC_ACT_TRAP:
8a3a4c6e 5030 consume_skb(skb);
d2788d34 5031 return NULL;
27b29f63
AS
5032 case TC_ACT_REDIRECT:
5033 /* skb_mac_header check was done by cls/act_bpf, so
5034 * we can safely push the L2 header back before
5035 * redirecting to another netdev
5036 */
5037 __skb_push(skb, skb->mac_len);
9aa1206e
DB
5038 if (skb_do_redirect(skb) == -EAGAIN) {
5039 __skb_pull(skb, skb->mac_len);
5040 *another = true;
5041 break;
5042 }
27b29f63 5043 return NULL;
720f22fe 5044 case TC_ACT_CONSUMED:
cd11b164 5045 return NULL;
d2788d34
DB
5046 default:
5047 break;
f697c3e8 5048 }
e7582bab 5049#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
5050 return skb;
5051}
1da177e4 5052
24b27fc4
MB
5053/**
5054 * netdev_is_rx_handler_busy - check if receive handler is registered
5055 * @dev: device to check
5056 *
5057 * Check if a receive handler is already registered for a given device.
5058 * Return true if there one.
5059 *
5060 * The caller must hold the rtnl_mutex.
5061 */
5062bool netdev_is_rx_handler_busy(struct net_device *dev)
5063{
5064 ASSERT_RTNL();
5065 return dev && rtnl_dereference(dev->rx_handler);
5066}
5067EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5068
ab95bfe0
JP
5069/**
5070 * netdev_rx_handler_register - register receive handler
5071 * @dev: device to register a handler for
5072 * @rx_handler: receive handler to register
93e2c32b 5073 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 5074 *
e227867f 5075 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
5076 * called from __netif_receive_skb. A negative errno code is returned
5077 * on a failure.
5078 *
5079 * The caller must hold the rtnl_mutex.
8a4eb573
JP
5080 *
5081 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
5082 */
5083int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
5084 rx_handler_func_t *rx_handler,
5085 void *rx_handler_data)
ab95bfe0 5086{
1b7cd004 5087 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
5088 return -EBUSY;
5089
f5426250
PA
5090 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5091 return -EINVAL;
5092
00cfec37 5093 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 5094 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
5095 rcu_assign_pointer(dev->rx_handler, rx_handler);
5096
5097 return 0;
5098}
5099EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5100
5101/**
5102 * netdev_rx_handler_unregister - unregister receive handler
5103 * @dev: device to unregister a handler from
5104 *
166ec369 5105 * Unregister a receive handler from a device.
ab95bfe0
JP
5106 *
5107 * The caller must hold the rtnl_mutex.
5108 */
5109void netdev_rx_handler_unregister(struct net_device *dev)
5110{
5111
5112 ASSERT_RTNL();
a9b3cd7f 5113 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
5114 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5115 * section has a guarantee to see a non NULL rx_handler_data
5116 * as well.
5117 */
5118 synchronize_net();
a9b3cd7f 5119 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
5120}
5121EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5122
b4b9e355
MG
5123/*
5124 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5125 * the special handling of PFMEMALLOC skbs.
5126 */
5127static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5128{
5129 switch (skb->protocol) {
2b8837ae
JP
5130 case htons(ETH_P_ARP):
5131 case htons(ETH_P_IP):
5132 case htons(ETH_P_IPV6):
5133 case htons(ETH_P_8021Q):
5134 case htons(ETH_P_8021AD):
b4b9e355
MG
5135 return true;
5136 default:
5137 return false;
5138 }
5139}
5140
e687ad60
PN
5141static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5142 int *ret, struct net_device *orig_dev)
5143{
5144 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
5145 int ingress_retval;
5146
e687ad60
PN
5147 if (*pt_prev) {
5148 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5149 *pt_prev = NULL;
5150 }
5151
2c1e2703
AC
5152 rcu_read_lock();
5153 ingress_retval = nf_hook_ingress(skb);
5154 rcu_read_unlock();
5155 return ingress_retval;
e687ad60
PN
5156 }
5157 return 0;
5158}
e687ad60 5159
c0bbbdc3 5160static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
88eb1944 5161 struct packet_type **ppt_prev)
1da177e4
LT
5162{
5163 struct packet_type *ptype, *pt_prev;
ab95bfe0 5164 rx_handler_func_t *rx_handler;
c0bbbdc3 5165 struct sk_buff *skb = *pskb;
f2ccd8fa 5166 struct net_device *orig_dev;
8a4eb573 5167 bool deliver_exact = false;
1da177e4 5168 int ret = NET_RX_DROP;
252e3346 5169 __be16 type;
1da177e4 5170
588f0330 5171 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5172
cf66ba58 5173 trace_netif_receive_skb(skb);
9b22ea56 5174
cc9bd5ce 5175 orig_dev = skb->dev;
8f903c70 5176
c1d2bbe1 5177 skb_reset_network_header(skb);
fda55eca
ED
5178 if (!skb_transport_header_was_set(skb))
5179 skb_reset_transport_header(skb);
0b5c9db1 5180 skb_reset_mac_len(skb);
1da177e4
LT
5181
5182 pt_prev = NULL;
5183
63d8ea7f 5184another_round:
b6858177 5185 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5186
5187 __this_cpu_inc(softnet_data.processed);
5188
458bf2f2
SH
5189 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5190 int ret2;
5191
5192 preempt_disable();
5193 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5194 preempt_enable();
5195
c0bbbdc3
BS
5196 if (ret2 != XDP_PASS) {
5197 ret = NET_RX_DROP;
5198 goto out;
5199 }
458bf2f2
SH
5200 skb_reset_mac_len(skb);
5201 }
5202
324cefaf 5203 if (eth_type_vlan(skb->protocol)) {
0d5501c1 5204 skb = skb_vlan_untag(skb);
bcc6d479 5205 if (unlikely(!skb))
2c17d27c 5206 goto out;
bcc6d479
JP
5207 }
5208
e7246e12
WB
5209 if (skb_skip_tc_classify(skb))
5210 goto skip_classify;
1da177e4 5211
9754e293 5212 if (pfmemalloc)
b4b9e355
MG
5213 goto skip_taps;
5214
1da177e4 5215 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5216 if (pt_prev)
5217 ret = deliver_skb(skb, pt_prev, orig_dev);
5218 pt_prev = ptype;
5219 }
5220
5221 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5222 if (pt_prev)
5223 ret = deliver_skb(skb, pt_prev, orig_dev);
5224 pt_prev = ptype;
1da177e4
LT
5225 }
5226
b4b9e355 5227skip_taps:
1cf51900 5228#ifdef CONFIG_NET_INGRESS
aabf6772 5229 if (static_branch_unlikely(&ingress_needed_key)) {
9aa1206e
DB
5230 bool another = false;
5231
5232 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5233 &another);
5234 if (another)
5235 goto another_round;
4577139b 5236 if (!skb)
2c17d27c 5237 goto out;
e687ad60
PN
5238
5239 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5240 goto out;
4577139b 5241 }
1cf51900 5242#endif
2c64605b 5243 skb_reset_redirect(skb);
e7246e12 5244skip_classify:
9754e293 5245 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5246 goto drop;
5247
df8a39de 5248 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5249 if (pt_prev) {
5250 ret = deliver_skb(skb, pt_prev, orig_dev);
5251 pt_prev = NULL;
5252 }
48cc32d3 5253 if (vlan_do_receive(&skb))
2425717b
JF
5254 goto another_round;
5255 else if (unlikely(!skb))
2c17d27c 5256 goto out;
2425717b
JF
5257 }
5258
48cc32d3 5259 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5260 if (rx_handler) {
5261 if (pt_prev) {
5262 ret = deliver_skb(skb, pt_prev, orig_dev);
5263 pt_prev = NULL;
5264 }
8a4eb573
JP
5265 switch (rx_handler(&skb)) {
5266 case RX_HANDLER_CONSUMED:
3bc1b1ad 5267 ret = NET_RX_SUCCESS;
2c17d27c 5268 goto out;
8a4eb573 5269 case RX_HANDLER_ANOTHER:
63d8ea7f 5270 goto another_round;
8a4eb573
JP
5271 case RX_HANDLER_EXACT:
5272 deliver_exact = true;
5273 case RX_HANDLER_PASS:
5274 break;
5275 default:
5276 BUG();
5277 }
ab95bfe0 5278 }
1da177e4 5279
b14a9fc4 5280 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
36b2f61a
GV
5281check_vlan_id:
5282 if (skb_vlan_tag_get_id(skb)) {
5283 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5284 * find vlan device.
5285 */
d4b812de 5286 skb->pkt_type = PACKET_OTHERHOST;
324cefaf 5287 } else if (eth_type_vlan(skb->protocol)) {
36b2f61a
GV
5288 /* Outer header is 802.1P with vlan 0, inner header is
5289 * 802.1Q or 802.1AD and vlan_do_receive() above could
5290 * not find vlan dev for vlan id 0.
5291 */
5292 __vlan_hwaccel_clear_tag(skb);
5293 skb = skb_vlan_untag(skb);
5294 if (unlikely(!skb))
5295 goto out;
5296 if (vlan_do_receive(&skb))
5297 /* After stripping off 802.1P header with vlan 0
5298 * vlan dev is found for inner header.
5299 */
5300 goto another_round;
5301 else if (unlikely(!skb))
5302 goto out;
5303 else
5304 /* We have stripped outer 802.1P vlan 0 header.
5305 * But could not find vlan dev.
5306 * check again for vlan id to set OTHERHOST.
5307 */
5308 goto check_vlan_id;
5309 }
d4b812de
ED
5310 /* Note: we might in the future use prio bits
5311 * and set skb->priority like in vlan_do_receive()
5312 * For the time being, just ignore Priority Code Point
5313 */
b1817524 5314 __vlan_hwaccel_clear_tag(skb);
d4b812de 5315 }
48cc32d3 5316
7866a621
SN
5317 type = skb->protocol;
5318
63d8ea7f 5319 /* deliver only exact match when indicated */
7866a621
SN
5320 if (likely(!deliver_exact)) {
5321 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5322 &ptype_base[ntohs(type) &
5323 PTYPE_HASH_MASK]);
5324 }
1f3c8804 5325
7866a621
SN
5326 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5327 &orig_dev->ptype_specific);
5328
5329 if (unlikely(skb->dev != orig_dev)) {
5330 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5331 &skb->dev->ptype_specific);
1da177e4
LT
5332 }
5333
5334 if (pt_prev) {
1f8b977a 5335 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5336 goto drop;
88eb1944 5337 *ppt_prev = pt_prev;
1da177e4 5338 } else {
b4b9e355 5339drop:
6e7333d3
JW
5340 if (!deliver_exact)
5341 atomic_long_inc(&skb->dev->rx_dropped);
5342 else
5343 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5344 kfree_skb(skb);
5345 /* Jamal, now you will not able to escape explaining
5346 * me how you were going to use this. :-)
5347 */
5348 ret = NET_RX_DROP;
5349 }
5350
2c17d27c 5351out:
c0bbbdc3
BS
5352 /* The invariant here is that if *ppt_prev is not NULL
5353 * then skb should also be non-NULL.
5354 *
5355 * Apparently *ppt_prev assignment above holds this invariant due to
5356 * skb dereferencing near it.
5357 */
5358 *pskb = skb;
9754e293
DM
5359 return ret;
5360}
5361
88eb1944
EC
5362static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5363{
5364 struct net_device *orig_dev = skb->dev;
5365 struct packet_type *pt_prev = NULL;
5366 int ret;
5367
c0bbbdc3 5368 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
88eb1944 5369 if (pt_prev)
f5737cba
PA
5370 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5371 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5372 return ret;
5373}
5374
1c601d82
JDB
5375/**
5376 * netif_receive_skb_core - special purpose version of netif_receive_skb
5377 * @skb: buffer to process
5378 *
5379 * More direct receive version of netif_receive_skb(). It should
5380 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5381 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5382 *
5383 * This function may only be called from softirq context and interrupts
5384 * should be enabled.
5385 *
5386 * Return values (usually ignored):
5387 * NET_RX_SUCCESS: no congestion
5388 * NET_RX_DROP: packet was dropped
5389 */
5390int netif_receive_skb_core(struct sk_buff *skb)
5391{
5392 int ret;
5393
5394 rcu_read_lock();
88eb1944 5395 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5396 rcu_read_unlock();
5397
5398 return ret;
5399}
5400EXPORT_SYMBOL(netif_receive_skb_core);
5401
88eb1944
EC
5402static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5403 struct packet_type *pt_prev,
5404 struct net_device *orig_dev)
4ce0017a
EC
5405{
5406 struct sk_buff *skb, *next;
5407
88eb1944
EC
5408 if (!pt_prev)
5409 return;
5410 if (list_empty(head))
5411 return;
17266ee9 5412 if (pt_prev->list_func != NULL)
fdf71426
PA
5413 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5414 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5415 else
9a5a90d1
AL
5416 list_for_each_entry_safe(skb, next, head, list) {
5417 skb_list_del_init(skb);
fdf71426 5418 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5419 }
88eb1944
EC
5420}
5421
5422static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5423{
5424 /* Fast-path assumptions:
5425 * - There is no RX handler.
5426 * - Only one packet_type matches.
5427 * If either of these fails, we will end up doing some per-packet
5428 * processing in-line, then handling the 'last ptype' for the whole
5429 * sublist. This can't cause out-of-order delivery to any single ptype,
5430 * because the 'last ptype' must be constant across the sublist, and all
5431 * other ptypes are handled per-packet.
5432 */
5433 /* Current (common) ptype of sublist */
5434 struct packet_type *pt_curr = NULL;
5435 /* Current (common) orig_dev of sublist */
5436 struct net_device *od_curr = NULL;
5437 struct list_head sublist;
5438 struct sk_buff *skb, *next;
5439
9af86f93 5440 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5441 list_for_each_entry_safe(skb, next, head, list) {
5442 struct net_device *orig_dev = skb->dev;
5443 struct packet_type *pt_prev = NULL;
5444
22f6bbb7 5445 skb_list_del_init(skb);
c0bbbdc3 5446 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
9af86f93
EC
5447 if (!pt_prev)
5448 continue;
88eb1944
EC
5449 if (pt_curr != pt_prev || od_curr != orig_dev) {
5450 /* dispatch old sublist */
88eb1944
EC
5451 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5452 /* start new sublist */
9af86f93 5453 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5454 pt_curr = pt_prev;
5455 od_curr = orig_dev;
5456 }
9af86f93 5457 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5458 }
5459
5460 /* dispatch final sublist */
9af86f93 5461 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5462}
5463
9754e293
DM
5464static int __netif_receive_skb(struct sk_buff *skb)
5465{
5466 int ret;
5467
5468 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5469 unsigned int noreclaim_flag;
9754e293
DM
5470
5471 /*
5472 * PFMEMALLOC skbs are special, they should
5473 * - be delivered to SOCK_MEMALLOC sockets only
5474 * - stay away from userspace
5475 * - have bounded memory usage
5476 *
5477 * Use PF_MEMALLOC as this saves us from propagating the allocation
5478 * context down to all allocation sites.
5479 */
f1083048 5480 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5481 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5482 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5483 } else
88eb1944 5484 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5485
1da177e4
LT
5486 return ret;
5487}
0a9627f2 5488
4ce0017a
EC
5489static void __netif_receive_skb_list(struct list_head *head)
5490{
5491 unsigned long noreclaim_flag = 0;
5492 struct sk_buff *skb, *next;
5493 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5494
5495 list_for_each_entry_safe(skb, next, head, list) {
5496 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5497 struct list_head sublist;
5498
5499 /* Handle the previous sublist */
5500 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5501 if (!list_empty(&sublist))
5502 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5503 pfmemalloc = !pfmemalloc;
5504 /* See comments in __netif_receive_skb */
5505 if (pfmemalloc)
5506 noreclaim_flag = memalloc_noreclaim_save();
5507 else
5508 memalloc_noreclaim_restore(noreclaim_flag);
5509 }
5510 }
5511 /* Handle the remaining sublist */
b9f463d6
EC
5512 if (!list_empty(head))
5513 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5514 /* Restore pflags */
5515 if (pfmemalloc)
5516 memalloc_noreclaim_restore(noreclaim_flag);
5517}
5518
f4e63525 5519static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5520{
58038695 5521 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5522 struct bpf_prog *new = xdp->prog;
5523 int ret = 0;
5524
fbee97fe
DA
5525 if (new) {
5526 u32 i;
5527
984fe94f
YZ
5528 mutex_lock(&new->aux->used_maps_mutex);
5529
fbee97fe
DA
5530 /* generic XDP does not work with DEVMAPs that can
5531 * have a bpf_prog installed on an entry
5532 */
5533 for (i = 0; i < new->aux->used_map_cnt; i++) {
984fe94f
YZ
5534 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5535 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5536 mutex_unlock(&new->aux->used_maps_mutex);
92164774 5537 return -EINVAL;
984fe94f 5538 }
fbee97fe 5539 }
984fe94f
YZ
5540
5541 mutex_unlock(&new->aux->used_maps_mutex);
fbee97fe
DA
5542 }
5543
b5cdae32 5544 switch (xdp->command) {
58038695 5545 case XDP_SETUP_PROG:
b5cdae32
DM
5546 rcu_assign_pointer(dev->xdp_prog, new);
5547 if (old)
5548 bpf_prog_put(old);
5549
5550 if (old && !new) {
02786475 5551 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5552 } else if (new && !old) {
02786475 5553 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5554 dev_disable_lro(dev);
56f5aa77 5555 dev_disable_gro_hw(dev);
b5cdae32
DM
5556 }
5557 break;
b5cdae32 5558
b5cdae32
DM
5559 default:
5560 ret = -EINVAL;
5561 break;
5562 }
5563
5564 return ret;
5565}
5566
ae78dbfa 5567static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5568{
2c17d27c
JA
5569 int ret;
5570
588f0330 5571 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5572
c1f19b51
RC
5573 if (skb_defer_rx_timestamp(skb))
5574 return NET_RX_SUCCESS;
5575
bbbe211c 5576 rcu_read_lock();
df334545 5577#ifdef CONFIG_RPS
dc05360f 5578 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5579 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5580 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5581
3b098e2d
ED
5582 if (cpu >= 0) {
5583 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5584 rcu_read_unlock();
adc9300e 5585 return ret;
3b098e2d 5586 }
fec5e652 5587 }
1e94d72f 5588#endif
2c17d27c
JA
5589 ret = __netif_receive_skb(skb);
5590 rcu_read_unlock();
5591 return ret;
0a9627f2 5592}
ae78dbfa 5593
7da517a3
EC
5594static void netif_receive_skb_list_internal(struct list_head *head)
5595{
7da517a3 5596 struct sk_buff *skb, *next;
8c057efa 5597 struct list_head sublist;
7da517a3 5598
8c057efa 5599 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5600 list_for_each_entry_safe(skb, next, head, list) {
5601 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5602 skb_list_del_init(skb);
8c057efa
EC
5603 if (!skb_defer_rx_timestamp(skb))
5604 list_add_tail(&skb->list, &sublist);
7da517a3 5605 }
8c057efa 5606 list_splice_init(&sublist, head);
7da517a3 5607
7da517a3
EC
5608 rcu_read_lock();
5609#ifdef CONFIG_RPS
dc05360f 5610 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5611 list_for_each_entry_safe(skb, next, head, list) {
5612 struct rps_dev_flow voidflow, *rflow = &voidflow;
5613 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5614
5615 if (cpu >= 0) {
8c057efa 5616 /* Will be handled, remove from list */
22f6bbb7 5617 skb_list_del_init(skb);
8c057efa 5618 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5619 }
5620 }
5621 }
5622#endif
5623 __netif_receive_skb_list(head);
5624 rcu_read_unlock();
5625}
5626
ae78dbfa
BH
5627/**
5628 * netif_receive_skb - process receive buffer from network
5629 * @skb: buffer to process
5630 *
5631 * netif_receive_skb() is the main receive data processing function.
5632 * It always succeeds. The buffer may be dropped during processing
5633 * for congestion control or by the protocol layers.
5634 *
5635 * This function may only be called from softirq context and interrupts
5636 * should be enabled.
5637 *
5638 * Return values (usually ignored):
5639 * NET_RX_SUCCESS: no congestion
5640 * NET_RX_DROP: packet was dropped
5641 */
04eb4489 5642int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5643{
b0e3f1bd
GB
5644 int ret;
5645
ae78dbfa
BH
5646 trace_netif_receive_skb_entry(skb);
5647
b0e3f1bd
GB
5648 ret = netif_receive_skb_internal(skb);
5649 trace_netif_receive_skb_exit(ret);
5650
5651 return ret;
ae78dbfa 5652}
04eb4489 5653EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5654
f6ad8c1b
EC
5655/**
5656 * netif_receive_skb_list - process many receive buffers from network
5657 * @head: list of skbs to process.
5658 *
7da517a3
EC
5659 * Since return value of netif_receive_skb() is normally ignored, and
5660 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5661 *
5662 * This function may only be called from softirq context and interrupts
5663 * should be enabled.
5664 */
5665void netif_receive_skb_list(struct list_head *head)
5666{
7da517a3 5667 struct sk_buff *skb;
f6ad8c1b 5668
b9f463d6
EC
5669 if (list_empty(head))
5670 return;
b0e3f1bd
GB
5671 if (trace_netif_receive_skb_list_entry_enabled()) {
5672 list_for_each_entry(skb, head, list)
5673 trace_netif_receive_skb_list_entry(skb);
5674 }
7da517a3 5675 netif_receive_skb_list_internal(head);
b0e3f1bd 5676 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5677}
5678EXPORT_SYMBOL(netif_receive_skb_list);
5679
ce1e2a77 5680static DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5681
5682/* Network device is going away, flush any packets still pending */
5683static void flush_backlog(struct work_struct *work)
6e583ce5 5684{
6e583ce5 5685 struct sk_buff *skb, *tmp;
145dd5f9
PA
5686 struct softnet_data *sd;
5687
5688 local_bh_disable();
5689 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5690
145dd5f9 5691 local_irq_disable();
e36fa2f7 5692 rps_lock(sd);
6e7676c1 5693 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5694 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5695 __skb_unlink(skb, &sd->input_pkt_queue);
7df5cb75 5696 dev_kfree_skb_irq(skb);
76cc8b13 5697 input_queue_head_incr(sd);
6e583ce5 5698 }
6e7676c1 5699 }
e36fa2f7 5700 rps_unlock(sd);
145dd5f9 5701 local_irq_enable();
6e7676c1
CG
5702
5703 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5704 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5705 __skb_unlink(skb, &sd->process_queue);
5706 kfree_skb(skb);
76cc8b13 5707 input_queue_head_incr(sd);
6e7676c1
CG
5708 }
5709 }
145dd5f9
PA
5710 local_bh_enable();
5711}
5712
2de79ee2
PA
5713static bool flush_required(int cpu)
5714{
5715#if IS_ENABLED(CONFIG_RPS)
5716 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5717 bool do_flush;
5718
5719 local_irq_disable();
5720 rps_lock(sd);
5721
5722 /* as insertion into process_queue happens with the rps lock held,
5723 * process_queue access may race only with dequeue
5724 */
5725 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5726 !skb_queue_empty_lockless(&sd->process_queue);
5727 rps_unlock(sd);
5728 local_irq_enable();
5729
5730 return do_flush;
5731#endif
5732 /* without RPS we can't safely check input_pkt_queue: during a
5733 * concurrent remote skb_queue_splice() we can detect as empty both
5734 * input_pkt_queue and process_queue even if the latter could end-up
5735 * containing a lot of packets.
5736 */
5737 return true;
5738}
5739
41852497 5740static void flush_all_backlogs(void)
145dd5f9 5741{
2de79ee2 5742 static cpumask_t flush_cpus;
145dd5f9
PA
5743 unsigned int cpu;
5744
2de79ee2
PA
5745 /* since we are under rtnl lock protection we can use static data
5746 * for the cpumask and avoid allocating on stack the possibly
5747 * large mask
5748 */
5749 ASSERT_RTNL();
5750
145dd5f9
PA
5751 get_online_cpus();
5752
2de79ee2
PA
5753 cpumask_clear(&flush_cpus);
5754 for_each_online_cpu(cpu) {
5755 if (flush_required(cpu)) {
5756 queue_work_on(cpu, system_highpri_wq,
5757 per_cpu_ptr(&flush_works, cpu));
5758 cpumask_set_cpu(cpu, &flush_cpus);
5759 }
5760 }
145dd5f9 5761
2de79ee2 5762 /* we can have in flight packet[s] on the cpus we are not flushing,
0cbe1e57 5763 * synchronize_net() in unregister_netdevice_many() will take care of
2de79ee2
PA
5764 * them
5765 */
5766 for_each_cpu(cpu, &flush_cpus)
41852497 5767 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5768
5769 put_online_cpus();
6e583ce5
SH
5770}
5771
c8079432
MM
5772/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5773static void gro_normal_list(struct napi_struct *napi)
5774{
5775 if (!napi->rx_count)
5776 return;
5777 netif_receive_skb_list_internal(&napi->rx_list);
5778 INIT_LIST_HEAD(&napi->rx_list);
5779 napi->rx_count = 0;
5780}
5781
5782/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5783 * pass the whole batch up to the stack.
5784 */
5785static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5786{
5787 list_add_tail(&skb->list, &napi->rx_list);
5788 if (++napi->rx_count >= gro_normal_batch)
5789 gro_normal_list(napi);
5790}
5791
c8079432 5792static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5793{
22061d80 5794 struct packet_offload *ptype;
d565b0a1 5795 __be16 type = skb->protocol;
22061d80 5796 struct list_head *head = &offload_base;
d565b0a1
HX
5797 int err = -ENOENT;
5798
c3c7c254
ED
5799 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5800
fc59f9a3
HX
5801 if (NAPI_GRO_CB(skb)->count == 1) {
5802 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5803 goto out;
fc59f9a3 5804 }
d565b0a1
HX
5805
5806 rcu_read_lock();
5807 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5808 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5809 continue;
5810
aaa5d90b
PA
5811 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5812 ipv6_gro_complete, inet_gro_complete,
5813 skb, 0);
d565b0a1
HX
5814 break;
5815 }
5816 rcu_read_unlock();
5817
5818 if (err) {
5819 WARN_ON(&ptype->list == head);
5820 kfree_skb(skb);
5821 return NET_RX_SUCCESS;
5822 }
5823
5824out:
c8079432
MM
5825 gro_normal_one(napi, skb);
5826 return NET_RX_SUCCESS;
d565b0a1
HX
5827}
5828
6312fe77 5829static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5830 bool flush_old)
d565b0a1 5831{
6312fe77 5832 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5833 struct sk_buff *skb, *p;
2e71a6f8 5834
07d78363 5835 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5836 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5837 return;
992cba7e 5838 skb_list_del_init(skb);
c8079432 5839 napi_gro_complete(napi, skb);
6312fe77 5840 napi->gro_hash[index].count--;
d565b0a1 5841 }
d9f37d01
LR
5842
5843 if (!napi->gro_hash[index].count)
5844 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5845}
07d78363 5846
6312fe77 5847/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5848 * youngest packets at the head of it.
5849 * Complete skbs in reverse order to reduce latencies.
5850 */
5851void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5852{
42519ede
ED
5853 unsigned long bitmask = napi->gro_bitmask;
5854 unsigned int i, base = ~0U;
07d78363 5855
42519ede
ED
5856 while ((i = ffs(bitmask)) != 0) {
5857 bitmask >>= i;
5858 base += i;
5859 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5860 }
07d78363 5861}
86cac58b 5862EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5863
07d78363
DM
5864static struct list_head *gro_list_prepare(struct napi_struct *napi,
5865 struct sk_buff *skb)
89c5fa33 5866{
89c5fa33 5867 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5868 u32 hash = skb_get_hash_raw(skb);
07d78363 5869 struct list_head *head;
d4546c25 5870 struct sk_buff *p;
89c5fa33 5871
6312fe77 5872 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5873 list_for_each_entry(p, head, list) {
89c5fa33
ED
5874 unsigned long diffs;
5875
0b4cec8c
TH
5876 NAPI_GRO_CB(p)->flush = 0;
5877
5878 if (hash != skb_get_hash_raw(p)) {
5879 NAPI_GRO_CB(p)->same_flow = 0;
5880 continue;
5881 }
5882
89c5fa33 5883 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5884 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5885 if (skb_vlan_tag_present(p))
fc5141cb 5886 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
ce87fc6c 5887 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5888 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5889 if (maclen == ETH_HLEN)
5890 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5891 skb_mac_header(skb));
89c5fa33
ED
5892 else if (!diffs)
5893 diffs = memcmp(skb_mac_header(p),
a50e233c 5894 skb_mac_header(skb),
89c5fa33
ED
5895 maclen);
5896 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5897 }
07d78363
DM
5898
5899 return head;
89c5fa33
ED
5900}
5901
299603e8
JC
5902static void skb_gro_reset_offset(struct sk_buff *skb)
5903{
5904 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5905 const skb_frag_t *frag0 = &pinfo->frags[0];
5906
5907 NAPI_GRO_CB(skb)->data_offset = 0;
5908 NAPI_GRO_CB(skb)->frag0 = NULL;
5909 NAPI_GRO_CB(skb)->frag0_len = 0;
5910
8aef998d 5911 if (!skb_headlen(skb) && pinfo->nr_frags &&
299603e8
JC
5912 !PageHighMem(skb_frag_page(frag0))) {
5913 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5914 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5915 skb_frag_size(frag0),
5916 skb->end - skb->tail);
89c5fa33
ED
5917 }
5918}
5919
a50e233c
ED
5920static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5921{
5922 struct skb_shared_info *pinfo = skb_shinfo(skb);
5923
5924 BUG_ON(skb->end - skb->tail < grow);
5925
5926 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5927
5928 skb->data_len -= grow;
5929 skb->tail += grow;
5930
b54c9d5b 5931 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5932 skb_frag_size_sub(&pinfo->frags[0], grow);
5933
5934 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5935 skb_frag_unref(skb, 0);
5936 memmove(pinfo->frags, pinfo->frags + 1,
5937 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5938 }
5939}
5940
c8079432 5941static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 5942{
6312fe77 5943 struct sk_buff *oldest;
07d78363 5944
6312fe77 5945 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5946
6312fe77 5947 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5948 * impossible.
5949 */
5950 if (WARN_ON_ONCE(!oldest))
5951 return;
5952
d9f37d01
LR
5953 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5954 * SKB to the chain.
07d78363 5955 */
ece23711 5956 skb_list_del_init(oldest);
c8079432 5957 napi_gro_complete(napi, oldest);
07d78363
DM
5958}
5959
bb728820 5960static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5961{
6312fe77 5962 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5963 struct list_head *head = &offload_base;
22061d80 5964 struct packet_offload *ptype;
d565b0a1 5965 __be16 type = skb->protocol;
07d78363 5966 struct list_head *gro_head;
d4546c25 5967 struct sk_buff *pp = NULL;
5b252f0c 5968 enum gro_result ret;
d4546c25 5969 int same_flow;
a50e233c 5970 int grow;
d565b0a1 5971
b5cdae32 5972 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5973 goto normal;
5974
07d78363 5975 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5976
d565b0a1
HX
5977 rcu_read_lock();
5978 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5979 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5980 continue;
5981
86911732 5982 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5983 skb_reset_mac_len(skb);
d565b0a1 5984 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5985 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5986 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5987 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5988 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5989 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5990 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5991 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5992
662880f4
TH
5993 /* Setup for GRO checksum validation */
5994 switch (skb->ip_summed) {
5995 case CHECKSUM_COMPLETE:
5996 NAPI_GRO_CB(skb)->csum = skb->csum;
5997 NAPI_GRO_CB(skb)->csum_valid = 1;
5998 NAPI_GRO_CB(skb)->csum_cnt = 0;
5999 break;
6000 case CHECKSUM_UNNECESSARY:
6001 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6002 NAPI_GRO_CB(skb)->csum_valid = 0;
6003 break;
6004 default:
6005 NAPI_GRO_CB(skb)->csum_cnt = 0;
6006 NAPI_GRO_CB(skb)->csum_valid = 0;
6007 }
d565b0a1 6008
aaa5d90b
PA
6009 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6010 ipv6_gro_receive, inet_gro_receive,
6011 gro_head, skb);
d565b0a1
HX
6012 break;
6013 }
6014 rcu_read_unlock();
6015
6016 if (&ptype->list == head)
6017 goto normal;
6018
45586c70 6019 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
6020 ret = GRO_CONSUMED;
6021 goto ok;
6022 }
6023
0da2afd5 6024 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 6025 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 6026
d565b0a1 6027 if (pp) {
992cba7e 6028 skb_list_del_init(pp);
c8079432 6029 napi_gro_complete(napi, pp);
6312fe77 6030 napi->gro_hash[hash].count--;
d565b0a1
HX
6031 }
6032
0da2afd5 6033 if (same_flow)
d565b0a1
HX
6034 goto ok;
6035
600adc18 6036 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 6037 goto normal;
d565b0a1 6038
6312fe77 6039 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
c8079432 6040 gro_flush_oldest(napi, gro_head);
600adc18 6041 } else {
6312fe77 6042 napi->gro_hash[hash].count++;
600adc18 6043 }
d565b0a1 6044 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 6045 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 6046 NAPI_GRO_CB(skb)->last = skb;
86911732 6047 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 6048 list_add(&skb->list, gro_head);
5d0d9be8 6049 ret = GRO_HELD;
d565b0a1 6050
ad0f9904 6051pull:
a50e233c
ED
6052 grow = skb_gro_offset(skb) - skb_headlen(skb);
6053 if (grow > 0)
6054 gro_pull_from_frag0(skb, grow);
d565b0a1 6055ok:
d9f37d01
LR
6056 if (napi->gro_hash[hash].count) {
6057 if (!test_bit(hash, &napi->gro_bitmask))
6058 __set_bit(hash, &napi->gro_bitmask);
6059 } else if (test_bit(hash, &napi->gro_bitmask)) {
6060 __clear_bit(hash, &napi->gro_bitmask);
6061 }
6062
5d0d9be8 6063 return ret;
d565b0a1
HX
6064
6065normal:
ad0f9904
HX
6066 ret = GRO_NORMAL;
6067 goto pull;
5d38a079 6068}
96e93eab 6069
bf5a755f
JC
6070struct packet_offload *gro_find_receive_by_type(__be16 type)
6071{
6072 struct list_head *offload_head = &offload_base;
6073 struct packet_offload *ptype;
6074
6075 list_for_each_entry_rcu(ptype, offload_head, list) {
6076 if (ptype->type != type || !ptype->callbacks.gro_receive)
6077 continue;
6078 return ptype;
6079 }
6080 return NULL;
6081}
e27a2f83 6082EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
6083
6084struct packet_offload *gro_find_complete_by_type(__be16 type)
6085{
6086 struct list_head *offload_head = &offload_base;
6087 struct packet_offload *ptype;
6088
6089 list_for_each_entry_rcu(ptype, offload_head, list) {
6090 if (ptype->type != type || !ptype->callbacks.gro_complete)
6091 continue;
6092 return ptype;
6093 }
6094 return NULL;
6095}
e27a2f83 6096EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 6097
e44699d2
MK
6098static void napi_skb_free_stolen_head(struct sk_buff *skb)
6099{
6100 skb_dst_drop(skb);
174e2381 6101 skb_ext_put(skb);
e44699d2
MK
6102 kmem_cache_free(skbuff_head_cache, skb);
6103}
6104
6570bc79
AL
6105static gro_result_t napi_skb_finish(struct napi_struct *napi,
6106 struct sk_buff *skb,
6107 gro_result_t ret)
5d38a079 6108{
5d0d9be8
HX
6109 switch (ret) {
6110 case GRO_NORMAL:
6570bc79 6111 gro_normal_one(napi, skb);
c7c4b3b6 6112 break;
5d38a079 6113
daa86548 6114 case GRO_MERGED_FREE:
e44699d2
MK
6115 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6116 napi_skb_free_stolen_head(skb);
6117 else
d7e8883c 6118 __kfree_skb(skb);
daa86548
ED
6119 break;
6120
5b252f0c
BH
6121 case GRO_HELD:
6122 case GRO_MERGED:
25393d3f 6123 case GRO_CONSUMED:
5b252f0c 6124 break;
5d38a079
HX
6125 }
6126
c7c4b3b6 6127 return ret;
5d0d9be8 6128}
5d0d9be8 6129
c7c4b3b6 6130gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 6131{
b0e3f1bd
GB
6132 gro_result_t ret;
6133
93f93a44 6134 skb_mark_napi_id(skb, napi);
ae78dbfa 6135 trace_napi_gro_receive_entry(skb);
86911732 6136
a50e233c
ED
6137 skb_gro_reset_offset(skb);
6138
6570bc79 6139 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
6140 trace_napi_gro_receive_exit(ret);
6141
6142 return ret;
d565b0a1
HX
6143}
6144EXPORT_SYMBOL(napi_gro_receive);
6145
d0c2b0d2 6146static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 6147{
93a35f59
ED
6148 if (unlikely(skb->pfmemalloc)) {
6149 consume_skb(skb);
6150 return;
6151 }
96e93eab 6152 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
6153 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6154 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 6155 __vlan_hwaccel_clear_tag(skb);
66c46d74 6156 skb->dev = napi->dev;
6d152e23 6157 skb->skb_iif = 0;
33d9a2c7
ED
6158
6159 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6160 skb->pkt_type = PACKET_HOST;
6161
c3caf119
JC
6162 skb->encapsulation = 0;
6163 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 6164 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 6165 skb_ext_reset(skb);
96e93eab
HX
6166
6167 napi->skb = skb;
6168}
96e93eab 6169
76620aaf 6170struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 6171{
5d38a079 6172 struct sk_buff *skb = napi->skb;
5d38a079
HX
6173
6174 if (!skb) {
fd11a83d 6175 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
6176 if (skb) {
6177 napi->skb = skb;
6178 skb_mark_napi_id(skb, napi);
6179 }
80595d59 6180 }
96e93eab
HX
6181 return skb;
6182}
76620aaf 6183EXPORT_SYMBOL(napi_get_frags);
96e93eab 6184
a50e233c
ED
6185static gro_result_t napi_frags_finish(struct napi_struct *napi,
6186 struct sk_buff *skb,
6187 gro_result_t ret)
96e93eab 6188{
5d0d9be8
HX
6189 switch (ret) {
6190 case GRO_NORMAL:
a50e233c
ED
6191 case GRO_HELD:
6192 __skb_push(skb, ETH_HLEN);
6193 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61
EC
6194 if (ret == GRO_NORMAL)
6195 gro_normal_one(napi, skb);
86911732 6196 break;
5d38a079 6197
e44699d2
MK
6198 case GRO_MERGED_FREE:
6199 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6200 napi_skb_free_stolen_head(skb);
6201 else
6202 napi_reuse_skb(napi, skb);
6203 break;
6204
5b252f0c 6205 case GRO_MERGED:
25393d3f 6206 case GRO_CONSUMED:
5b252f0c 6207 break;
5d0d9be8 6208 }
5d38a079 6209
c7c4b3b6 6210 return ret;
5d38a079 6211}
5d0d9be8 6212
a50e233c
ED
6213/* Upper GRO stack assumes network header starts at gro_offset=0
6214 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6215 * We copy ethernet header into skb->data to have a common layout.
6216 */
4adb9c4a 6217static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
6218{
6219 struct sk_buff *skb = napi->skb;
a50e233c
ED
6220 const struct ethhdr *eth;
6221 unsigned int hlen = sizeof(*eth);
76620aaf
HX
6222
6223 napi->skb = NULL;
6224
a50e233c
ED
6225 skb_reset_mac_header(skb);
6226 skb_gro_reset_offset(skb);
6227
a50e233c
ED
6228 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6229 eth = skb_gro_header_slow(skb, hlen, 0);
6230 if (unlikely(!eth)) {
4da46ceb
AC
6231 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6232 __func__, napi->dev->name);
a50e233c
ED
6233 napi_reuse_skb(napi, skb);
6234 return NULL;
6235 }
6236 } else {
a4270d67 6237 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6238 gro_pull_from_frag0(skb, hlen);
6239 NAPI_GRO_CB(skb)->frag0 += hlen;
6240 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6241 }
a50e233c
ED
6242 __skb_pull(skb, hlen);
6243
6244 /*
6245 * This works because the only protocols we care about don't require
6246 * special handling.
6247 * We'll fix it up properly in napi_frags_finish()
6248 */
6249 skb->protocol = eth->h_proto;
76620aaf 6250
76620aaf
HX
6251 return skb;
6252}
76620aaf 6253
c7c4b3b6 6254gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6255{
b0e3f1bd 6256 gro_result_t ret;
76620aaf 6257 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8 6258
ae78dbfa
BH
6259 trace_napi_gro_frags_entry(skb);
6260
b0e3f1bd
GB
6261 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6262 trace_napi_gro_frags_exit(ret);
6263
6264 return ret;
5d0d9be8 6265}
5d38a079
HX
6266EXPORT_SYMBOL(napi_gro_frags);
6267
573e8fca
TH
6268/* Compute the checksum from gro_offset and return the folded value
6269 * after adding in any pseudo checksum.
6270 */
6271__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6272{
6273 __wsum wsum;
6274 __sum16 sum;
6275
6276 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6277
6278 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6279 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6280 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6281 if (likely(!sum)) {
6282 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6283 !skb->csum_complete_sw)
7fe50ac8 6284 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6285 }
6286
6287 NAPI_GRO_CB(skb)->csum = wsum;
6288 NAPI_GRO_CB(skb)->csum_valid = 1;
6289
6290 return sum;
6291}
6292EXPORT_SYMBOL(__skb_gro_checksum_complete);
6293
773fc8f6 6294static void net_rps_send_ipi(struct softnet_data *remsd)
6295{
6296#ifdef CONFIG_RPS
6297 while (remsd) {
6298 struct softnet_data *next = remsd->rps_ipi_next;
6299
6300 if (cpu_online(remsd->cpu))
6301 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6302 remsd = next;
6303 }
6304#endif
6305}
6306
e326bed2 6307/*
855abcf0 6308 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6309 * Note: called with local irq disabled, but exits with local irq enabled.
6310 */
6311static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6312{
6313#ifdef CONFIG_RPS
6314 struct softnet_data *remsd = sd->rps_ipi_list;
6315
6316 if (remsd) {
6317 sd->rps_ipi_list = NULL;
6318
6319 local_irq_enable();
6320
6321 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6322 net_rps_send_ipi(remsd);
e326bed2
ED
6323 } else
6324#endif
6325 local_irq_enable();
6326}
6327
d75b1ade
ED
6328static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6329{
6330#ifdef CONFIG_RPS
6331 return sd->rps_ipi_list != NULL;
6332#else
6333 return false;
6334#endif
6335}
6336
bea3348e 6337static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6338{
eecfd7c4 6339 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6340 bool again = true;
6341 int work = 0;
1da177e4 6342
e326bed2
ED
6343 /* Check if we have pending ipi, its better to send them now,
6344 * not waiting net_rx_action() end.
6345 */
d75b1ade 6346 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6347 local_irq_disable();
6348 net_rps_action_and_irq_enable(sd);
6349 }
d75b1ade 6350
3d48b53f 6351 napi->weight = dev_rx_weight;
145dd5f9 6352 while (again) {
1da177e4 6353 struct sk_buff *skb;
6e7676c1
CG
6354
6355 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6356 rcu_read_lock();
6e7676c1 6357 __netif_receive_skb(skb);
2c17d27c 6358 rcu_read_unlock();
76cc8b13 6359 input_queue_head_incr(sd);
145dd5f9 6360 if (++work >= quota)
76cc8b13 6361 return work;
145dd5f9 6362
6e7676c1 6363 }
1da177e4 6364
145dd5f9 6365 local_irq_disable();
e36fa2f7 6366 rps_lock(sd);
11ef7a89 6367 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6368 /*
6369 * Inline a custom version of __napi_complete().
6370 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6371 * and NAPI_STATE_SCHED is the only possible flag set
6372 * on backlog.
6373 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6374 * and we dont need an smp_mb() memory barrier.
6375 */
eecfd7c4 6376 napi->state = 0;
145dd5f9
PA
6377 again = false;
6378 } else {
6379 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6380 &sd->process_queue);
bea3348e 6381 }
e36fa2f7 6382 rps_unlock(sd);
145dd5f9 6383 local_irq_enable();
6e7676c1 6384 }
1da177e4 6385
bea3348e
SH
6386 return work;
6387}
1da177e4 6388
bea3348e
SH
6389/**
6390 * __napi_schedule - schedule for receive
c4ea43c5 6391 * @n: entry to schedule
bea3348e 6392 *
bc9ad166
ED
6393 * The entry's receive function will be scheduled to run.
6394 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6395 */
b5606c2d 6396void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6397{
6398 unsigned long flags;
1da177e4 6399
bea3348e 6400 local_irq_save(flags);
903ceff7 6401 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6402 local_irq_restore(flags);
1da177e4 6403}
bea3348e
SH
6404EXPORT_SYMBOL(__napi_schedule);
6405
39e6c820
ED
6406/**
6407 * napi_schedule_prep - check if napi can be scheduled
6408 * @n: napi context
6409 *
6410 * Test if NAPI routine is already running, and if not mark
ee1a4c84 6411 * it as running. This is used as a condition variable to
39e6c820
ED
6412 * insure only one NAPI poll instance runs. We also make
6413 * sure there is no pending NAPI disable.
6414 */
6415bool napi_schedule_prep(struct napi_struct *n)
6416{
6417 unsigned long val, new;
6418
6419 do {
6420 val = READ_ONCE(n->state);
6421 if (unlikely(val & NAPIF_STATE_DISABLE))
6422 return false;
6423 new = val | NAPIF_STATE_SCHED;
6424
6425 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6426 * This was suggested by Alexander Duyck, as compiler
6427 * emits better code than :
6428 * if (val & NAPIF_STATE_SCHED)
6429 * new |= NAPIF_STATE_MISSED;
6430 */
6431 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6432 NAPIF_STATE_MISSED;
6433 } while (cmpxchg(&n->state, val, new) != val);
6434
6435 return !(val & NAPIF_STATE_SCHED);
6436}
6437EXPORT_SYMBOL(napi_schedule_prep);
6438
bc9ad166
ED
6439/**
6440 * __napi_schedule_irqoff - schedule for receive
6441 * @n: entry to schedule
6442 *
6443 * Variant of __napi_schedule() assuming hard irqs are masked
6444 */
6445void __napi_schedule_irqoff(struct napi_struct *n)
6446{
6447 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6448}
6449EXPORT_SYMBOL(__napi_schedule_irqoff);
6450
364b6055 6451bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6452{
6f8b12d6
ED
6453 unsigned long flags, val, new, timeout = 0;
6454 bool ret = true;
d565b0a1
HX
6455
6456 /*
217f6974
ED
6457 * 1) Don't let napi dequeue from the cpu poll list
6458 * just in case its running on a different cpu.
6459 * 2) If we are busy polling, do nothing here, we have
6460 * the guarantee we will be called later.
d565b0a1 6461 */
217f6974
ED
6462 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6463 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6464 return false;
d565b0a1 6465
6f8b12d6
ED
6466 if (work_done) {
6467 if (n->gro_bitmask)
7e417a66
ED
6468 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6469 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
6470 }
6471 if (n->defer_hard_irqs_count > 0) {
6472 n->defer_hard_irqs_count--;
7e417a66 6473 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
6474 if (timeout)
6475 ret = false;
6476 }
6477 if (n->gro_bitmask) {
605108ac
PA
6478 /* When the NAPI instance uses a timeout and keeps postponing
6479 * it, we need to bound somehow the time packets are kept in
6480 * the GRO layer
6481 */
6482 napi_gro_flush(n, !!timeout);
3b47d303 6483 }
c8079432
MM
6484
6485 gro_normal_list(n);
6486
02c1602e 6487 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6488 /* If n->poll_list is not empty, we need to mask irqs */
6489 local_irq_save(flags);
02c1602e 6490 list_del_init(&n->poll_list);
d75b1ade
ED
6491 local_irq_restore(flags);
6492 }
39e6c820
ED
6493
6494 do {
6495 val = READ_ONCE(n->state);
6496
6497 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6498
7fd3253a
BT
6499 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6500 NAPIF_STATE_PREFER_BUSY_POLL);
39e6c820
ED
6501
6502 /* If STATE_MISSED was set, leave STATE_SCHED set,
6503 * because we will call napi->poll() one more time.
6504 * This C code was suggested by Alexander Duyck to help gcc.
6505 */
6506 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6507 NAPIF_STATE_SCHED;
6508 } while (cmpxchg(&n->state, val, new) != val);
6509
6510 if (unlikely(val & NAPIF_STATE_MISSED)) {
6511 __napi_schedule(n);
6512 return false;
6513 }
6514
6f8b12d6
ED
6515 if (timeout)
6516 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6517 HRTIMER_MODE_REL_PINNED);
6518 return ret;
d565b0a1 6519}
3b47d303 6520EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6521
af12fa6e 6522/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6523static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6524{
6525 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6526 struct napi_struct *napi;
6527
6528 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6529 if (napi->napi_id == napi_id)
6530 return napi;
6531
6532 return NULL;
6533}
02d62e86
ED
6534
6535#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6536
7fd3253a 6537static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
217f6974 6538{
7fd3253a
BT
6539 if (!skip_schedule) {
6540 gro_normal_list(napi);
6541 __napi_schedule(napi);
6542 return;
6543 }
217f6974 6544
7fd3253a
BT
6545 if (napi->gro_bitmask) {
6546 /* flush too old packets
6547 * If HZ < 1000, flush all packets.
6548 */
6549 napi_gro_flush(napi, HZ >= 1000);
6550 }
217f6974 6551
7fd3253a
BT
6552 gro_normal_list(napi);
6553 clear_bit(NAPI_STATE_SCHED, &napi->state);
6554}
6555
7c951caf
BT
6556static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6557 u16 budget)
217f6974 6558{
7fd3253a
BT
6559 bool skip_schedule = false;
6560 unsigned long timeout;
217f6974
ED
6561 int rc;
6562
39e6c820
ED
6563 /* Busy polling means there is a high chance device driver hard irq
6564 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6565 * set in napi_schedule_prep().
6566 * Since we are about to call napi->poll() once more, we can safely
6567 * clear NAPI_STATE_MISSED.
6568 *
6569 * Note: x86 could use a single "lock and ..." instruction
6570 * to perform these two clear_bit()
6571 */
6572 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6573 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6574
6575 local_bh_disable();
6576
7fd3253a
BT
6577 if (prefer_busy_poll) {
6578 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6579 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6580 if (napi->defer_hard_irqs_count && timeout) {
6581 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6582 skip_schedule = true;
6583 }
6584 }
6585
217f6974
ED
6586 /* All we really want here is to re-enable device interrupts.
6587 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6588 */
7c951caf 6589 rc = napi->poll(napi, budget);
323ebb61
EC
6590 /* We can't gro_normal_list() here, because napi->poll() might have
6591 * rearmed the napi (napi_complete_done()) in which case it could
6592 * already be running on another CPU.
6593 */
7c951caf 6594 trace_napi_poll(napi, rc, budget);
217f6974 6595 netpoll_poll_unlock(have_poll_lock);
7c951caf 6596 if (rc == budget)
7fd3253a 6597 __busy_poll_stop(napi, skip_schedule);
217f6974 6598 local_bh_enable();
217f6974
ED
6599}
6600
7db6b048
SS
6601void napi_busy_loop(unsigned int napi_id,
6602 bool (*loop_end)(void *, unsigned long),
7c951caf 6603 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
02d62e86 6604{
7db6b048 6605 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6606 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6607 void *have_poll_lock = NULL;
02d62e86 6608 struct napi_struct *napi;
217f6974
ED
6609
6610restart:
217f6974 6611 napi_poll = NULL;
02d62e86 6612
2a028ecb 6613 rcu_read_lock();
02d62e86 6614
545cd5e5 6615 napi = napi_by_id(napi_id);
02d62e86
ED
6616 if (!napi)
6617 goto out;
6618
217f6974
ED
6619 preempt_disable();
6620 for (;;) {
2b5cd0df
AD
6621 int work = 0;
6622
2a028ecb 6623 local_bh_disable();
217f6974
ED
6624 if (!napi_poll) {
6625 unsigned long val = READ_ONCE(napi->state);
6626
6627 /* If multiple threads are competing for this napi,
6628 * we avoid dirtying napi->state as much as we can.
6629 */
6630 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
7fd3253a
BT
6631 NAPIF_STATE_IN_BUSY_POLL)) {
6632 if (prefer_busy_poll)
6633 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6634 goto count;
7fd3253a 6635 }
217f6974
ED
6636 if (cmpxchg(&napi->state, val,
6637 val | NAPIF_STATE_IN_BUSY_POLL |
7fd3253a
BT
6638 NAPIF_STATE_SCHED) != val) {
6639 if (prefer_busy_poll)
6640 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
217f6974 6641 goto count;
7fd3253a 6642 }
217f6974
ED
6643 have_poll_lock = netpoll_poll_lock(napi);
6644 napi_poll = napi->poll;
6645 }
7c951caf
BT
6646 work = napi_poll(napi, budget);
6647 trace_napi_poll(napi, work, budget);
323ebb61 6648 gro_normal_list(napi);
217f6974 6649count:
2b5cd0df 6650 if (work > 0)
7db6b048 6651 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6652 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6653 local_bh_enable();
02d62e86 6654
7db6b048 6655 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6656 break;
02d62e86 6657
217f6974
ED
6658 if (unlikely(need_resched())) {
6659 if (napi_poll)
7c951caf 6660 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974
ED
6661 preempt_enable();
6662 rcu_read_unlock();
6663 cond_resched();
7db6b048 6664 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6665 return;
217f6974
ED
6666 goto restart;
6667 }
6cdf89b1 6668 cpu_relax();
217f6974
ED
6669 }
6670 if (napi_poll)
7c951caf 6671 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
217f6974 6672 preempt_enable();
02d62e86 6673out:
2a028ecb 6674 rcu_read_unlock();
02d62e86 6675}
7db6b048 6676EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6677
6678#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6679
149d6ad8 6680static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6681{
4d092dd2 6682 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
52bd2d62 6683 return;
af12fa6e 6684
52bd2d62 6685 spin_lock(&napi_hash_lock);
af12fa6e 6686
545cd5e5 6687 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6688 do {
545cd5e5
AD
6689 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6690 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6691 } while (napi_by_id(napi_gen_id));
6692 napi->napi_id = napi_gen_id;
af12fa6e 6693
52bd2d62
ED
6694 hlist_add_head_rcu(&napi->napi_hash_node,
6695 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6696
52bd2d62 6697 spin_unlock(&napi_hash_lock);
af12fa6e 6698}
af12fa6e
ET
6699
6700/* Warning : caller is responsible to make sure rcu grace period
6701 * is respected before freeing memory containing @napi
6702 */
5198d545 6703static void napi_hash_del(struct napi_struct *napi)
af12fa6e
ET
6704{
6705 spin_lock(&napi_hash_lock);
6706
4d092dd2 6707 hlist_del_init_rcu(&napi->napi_hash_node);
5198d545 6708
af12fa6e
ET
6709 spin_unlock(&napi_hash_lock);
6710}
af12fa6e 6711
3b47d303
ED
6712static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6713{
6714 struct napi_struct *napi;
6715
6716 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6717
6718 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6719 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6720 */
6f8b12d6 6721 if (!napi_disable_pending(napi) &&
7fd3253a
BT
6722 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6723 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
39e6c820 6724 __napi_schedule_irqoff(napi);
7fd3253a 6725 }
3b47d303
ED
6726
6727 return HRTIMER_NORESTART;
6728}
6729
7c4ec749 6730static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6731{
07d78363
DM
6732 int i;
6733
6312fe77
LR
6734 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6735 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6736 napi->gro_hash[i].count = 0;
6737 }
7c4ec749
DM
6738 napi->gro_bitmask = 0;
6739}
6740
6741void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6742 int (*poll)(struct napi_struct *, int), int weight)
6743{
4d092dd2
JK
6744 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6745 return;
6746
7c4ec749 6747 INIT_LIST_HEAD(&napi->poll_list);
4d092dd2 6748 INIT_HLIST_NODE(&napi->napi_hash_node);
7c4ec749
DM
6749 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6750 napi->timer.function = napi_watchdog;
6751 init_gro_hash(napi);
5d38a079 6752 napi->skb = NULL;
323ebb61
EC
6753 INIT_LIST_HEAD(&napi->rx_list);
6754 napi->rx_count = 0;
d565b0a1 6755 napi->poll = poll;
82dc3c63 6756 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6757 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6758 weight);
d565b0a1 6759 napi->weight = weight;
d565b0a1 6760 napi->dev = dev;
5d38a079 6761#ifdef CONFIG_NETPOLL
d565b0a1
HX
6762 napi->poll_owner = -1;
6763#endif
6764 set_bit(NAPI_STATE_SCHED, &napi->state);
96e97bc0
JK
6765 set_bit(NAPI_STATE_NPSVC, &napi->state);
6766 list_add_rcu(&napi->dev_list, &dev->napi_list);
93d05d4a 6767 napi_hash_add(napi);
29863d41
WW
6768 /* Create kthread for this napi if dev->threaded is set.
6769 * Clear dev->threaded if kthread creation failed so that
6770 * threaded mode will not be enabled in napi_enable().
6771 */
6772 if (dev->threaded && napi_kthread_create(napi))
6773 dev->threaded = 0;
d565b0a1
HX
6774}
6775EXPORT_SYMBOL(netif_napi_add);
6776
3b47d303
ED
6777void napi_disable(struct napi_struct *n)
6778{
6779 might_sleep();
6780 set_bit(NAPI_STATE_DISABLE, &n->state);
6781
6782 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6783 msleep(1);
2d8bff12
NH
6784 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6785 msleep(1);
3b47d303
ED
6786
6787 hrtimer_cancel(&n->timer);
6788
7fd3253a 6789 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
3b47d303 6790 clear_bit(NAPI_STATE_DISABLE, &n->state);
29863d41 6791 clear_bit(NAPI_STATE_THREADED, &n->state);
3b47d303
ED
6792}
6793EXPORT_SYMBOL(napi_disable);
6794
29863d41
WW
6795/**
6796 * napi_enable - enable NAPI scheduling
6797 * @n: NAPI context
6798 *
6799 * Resume NAPI from being scheduled on this context.
6800 * Must be paired with napi_disable.
6801 */
6802void napi_enable(struct napi_struct *n)
6803{
6804 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6805 smp_mb__before_atomic();
6806 clear_bit(NAPI_STATE_SCHED, &n->state);
6807 clear_bit(NAPI_STATE_NPSVC, &n->state);
6808 if (n->dev->threaded && n->thread)
6809 set_bit(NAPI_STATE_THREADED, &n->state);
6810}
6811EXPORT_SYMBOL(napi_enable);
6812
07d78363 6813static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6814{
07d78363 6815 int i;
d4546c25 6816
07d78363
DM
6817 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6818 struct sk_buff *skb, *n;
6819
6312fe77 6820 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6821 kfree_skb(skb);
6312fe77 6822 napi->gro_hash[i].count = 0;
07d78363 6823 }
d4546c25
DM
6824}
6825
93d05d4a 6826/* Must be called in process context */
5198d545 6827void __netif_napi_del(struct napi_struct *napi)
d565b0a1 6828{
4d092dd2
JK
6829 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6830 return;
6831
5198d545 6832 napi_hash_del(napi);
5251ef82 6833 list_del_rcu(&napi->dev_list);
76620aaf 6834 napi_free_frags(napi);
d565b0a1 6835
07d78363 6836 flush_gro_hash(napi);
d9f37d01 6837 napi->gro_bitmask = 0;
29863d41
WW
6838
6839 if (napi->thread) {
6840 kthread_stop(napi->thread);
6841 napi->thread = NULL;
6842 }
d565b0a1 6843}
5198d545 6844EXPORT_SYMBOL(__netif_napi_del);
d565b0a1 6845
898f8015 6846static int __napi_poll(struct napi_struct *n, bool *repoll)
726ce70e 6847{
726ce70e
HX
6848 int work, weight;
6849
726ce70e
HX
6850 weight = n->weight;
6851
6852 /* This NAPI_STATE_SCHED test is for avoiding a race
6853 * with netpoll's poll_napi(). Only the entity which
6854 * obtains the lock and sees NAPI_STATE_SCHED set will
6855 * actually make the ->poll() call. Therefore we avoid
6856 * accidentally calling ->poll() when NAPI is not scheduled.
6857 */
6858 work = 0;
6859 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6860 work = n->poll(n, weight);
1db19db7 6861 trace_napi_poll(n, work, weight);
726ce70e
HX
6862 }
6863
427d5838
ED
6864 if (unlikely(work > weight))
6865 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6866 n->poll, work, weight);
726ce70e
HX
6867
6868 if (likely(work < weight))
898f8015 6869 return work;
726ce70e
HX
6870
6871 /* Drivers must not modify the NAPI state if they
6872 * consume the entire weight. In such cases this code
6873 * still "owns" the NAPI instance and therefore can
6874 * move the instance around on the list at-will.
6875 */
6876 if (unlikely(napi_disable_pending(n))) {
6877 napi_complete(n);
898f8015 6878 return work;
726ce70e
HX
6879 }
6880
7fd3253a
BT
6881 /* The NAPI context has more processing work, but busy-polling
6882 * is preferred. Exit early.
6883 */
6884 if (napi_prefer_busy_poll(n)) {
6885 if (napi_complete_done(n, work)) {
6886 /* If timeout is not set, we need to make sure
6887 * that the NAPI is re-scheduled.
6888 */
6889 napi_schedule(n);
6890 }
898f8015 6891 return work;
7fd3253a
BT
6892 }
6893
d9f37d01 6894 if (n->gro_bitmask) {
726ce70e
HX
6895 /* flush too old packets
6896 * If HZ < 1000, flush all packets.
6897 */
6898 napi_gro_flush(n, HZ >= 1000);
6899 }
6900
c8079432
MM
6901 gro_normal_list(n);
6902
001ce546
HX
6903 /* Some drivers may have called napi_schedule
6904 * prior to exhausting their budget.
6905 */
6906 if (unlikely(!list_empty(&n->poll_list))) {
6907 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6908 n->dev ? n->dev->name : "backlog");
898f8015 6909 return work;
001ce546
HX
6910 }
6911
898f8015
FF
6912 *repoll = true;
6913
6914 return work;
6915}
6916
6917static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6918{
6919 bool do_repoll = false;
6920 void *have;
6921 int work;
6922
6923 list_del_init(&n->poll_list);
6924
6925 have = netpoll_poll_lock(n);
6926
6927 work = __napi_poll(n, &do_repoll);
6928
6929 if (do_repoll)
6930 list_add_tail(&n->poll_list, repoll);
726ce70e 6931
726ce70e
HX
6932 netpoll_poll_unlock(have);
6933
6934 return work;
6935}
6936
29863d41
WW
6937static int napi_thread_wait(struct napi_struct *napi)
6938{
6939 set_current_state(TASK_INTERRUPTIBLE);
6940
6941 while (!kthread_should_stop() && !napi_disable_pending(napi)) {
6942 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
6943 WARN_ON(!list_empty(&napi->poll_list));
6944 __set_current_state(TASK_RUNNING);
6945 return 0;
6946 }
6947
6948 schedule();
6949 set_current_state(TASK_INTERRUPTIBLE);
6950 }
6951 __set_current_state(TASK_RUNNING);
6952 return -1;
6953}
6954
6955static int napi_threaded_poll(void *data)
6956{
6957 struct napi_struct *napi = data;
6958 void *have;
6959
6960 while (!napi_thread_wait(napi)) {
6961 for (;;) {
6962 bool repoll = false;
6963
6964 local_bh_disable();
6965
6966 have = netpoll_poll_lock(napi);
6967 __napi_poll(napi, &repoll);
6968 netpoll_poll_unlock(have);
6969
6970 __kfree_skb_flush();
6971 local_bh_enable();
6972
6973 if (!repoll)
6974 break;
6975
6976 cond_resched();
6977 }
6978 }
6979 return 0;
6980}
6981
0766f788 6982static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6983{
903ceff7 6984 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6985 unsigned long time_limit = jiffies +
6986 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6987 int budget = netdev_budget;
d75b1ade
ED
6988 LIST_HEAD(list);
6989 LIST_HEAD(repoll);
53fb95d3 6990
1da177e4 6991 local_irq_disable();
d75b1ade
ED
6992 list_splice_init(&sd->poll_list, &list);
6993 local_irq_enable();
1da177e4 6994
ceb8d5bf 6995 for (;;) {
bea3348e 6996 struct napi_struct *n;
1da177e4 6997
ceb8d5bf
HX
6998 if (list_empty(&list)) {
6999 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 7000 goto out;
ceb8d5bf
HX
7001 break;
7002 }
7003
6bd373eb
HX
7004 n = list_first_entry(&list, struct napi_struct, poll_list);
7005 budget -= napi_poll(n, &repoll);
7006
d75b1ade 7007 /* If softirq window is exhausted then punt.
24f8b238
SH
7008 * Allow this to run for 2 jiffies since which will allow
7009 * an average latency of 1.5/HZ.
bea3348e 7010 */
ceb8d5bf
HX
7011 if (unlikely(budget <= 0 ||
7012 time_after_eq(jiffies, time_limit))) {
7013 sd->time_squeeze++;
7014 break;
7015 }
1da177e4 7016 }
d75b1ade 7017
d75b1ade
ED
7018 local_irq_disable();
7019
7020 list_splice_tail_init(&sd->poll_list, &list);
7021 list_splice_tail(&repoll, &list);
7022 list_splice(&list, &sd->poll_list);
7023 if (!list_empty(&sd->poll_list))
7024 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7025
e326bed2 7026 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
7027out:
7028 __kfree_skb_flush();
1da177e4
LT
7029}
7030
aa9d8560 7031struct netdev_adjacent {
9ff162a8 7032 struct net_device *dev;
5d261913
VF
7033
7034 /* upper master flag, there can only be one master device per list */
9ff162a8 7035 bool master;
5d261913 7036
32b6d34f
TY
7037 /* lookup ignore flag */
7038 bool ignore;
7039
5d261913
VF
7040 /* counter for the number of times this device was added to us */
7041 u16 ref_nr;
7042
402dae96
VF
7043 /* private field for the users */
7044 void *private;
7045
9ff162a8
JP
7046 struct list_head list;
7047 struct rcu_head rcu;
9ff162a8
JP
7048};
7049
6ea29da1 7050static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 7051 struct list_head *adj_list)
9ff162a8 7052{
5d261913 7053 struct netdev_adjacent *adj;
5d261913 7054
2f268f12 7055 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
7056 if (adj->dev == adj_dev)
7057 return adj;
9ff162a8
JP
7058 }
7059 return NULL;
7060}
7061
eff74233
TY
7062static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7063 struct netdev_nested_priv *priv)
f1170fd4 7064{
eff74233 7065 struct net_device *dev = (struct net_device *)priv->data;
f1170fd4
DA
7066
7067 return upper_dev == dev;
7068}
7069
9ff162a8
JP
7070/**
7071 * netdev_has_upper_dev - Check if device is linked to an upper device
7072 * @dev: device
7073 * @upper_dev: upper device to check
7074 *
7075 * Find out if a device is linked to specified upper device and return true
7076 * in case it is. Note that this checks only immediate upper device,
7077 * not through a complete stack of devices. The caller must hold the RTNL lock.
7078 */
7079bool netdev_has_upper_dev(struct net_device *dev,
7080 struct net_device *upper_dev)
7081{
eff74233
TY
7082 struct netdev_nested_priv priv = {
7083 .data = (void *)upper_dev,
7084 };
7085
9ff162a8
JP
7086 ASSERT_RTNL();
7087
32b6d34f 7088 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 7089 &priv);
9ff162a8
JP
7090}
7091EXPORT_SYMBOL(netdev_has_upper_dev);
7092
1a3f060c 7093/**
c1639be9 7094 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
1a3f060c
DA
7095 * @dev: device
7096 * @upper_dev: upper device to check
7097 *
7098 * Find out if a device is linked to specified upper device and return true
7099 * in case it is. Note that this checks the entire upper device chain.
7100 * The caller must hold rcu lock.
7101 */
7102
1a3f060c
DA
7103bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7104 struct net_device *upper_dev)
7105{
eff74233
TY
7106 struct netdev_nested_priv priv = {
7107 .data = (void *)upper_dev,
7108 };
7109
32b6d34f 7110 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
eff74233 7111 &priv);
1a3f060c
DA
7112}
7113EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7114
9ff162a8
JP
7115/**
7116 * netdev_has_any_upper_dev - Check if device is linked to some device
7117 * @dev: device
7118 *
7119 * Find out if a device is linked to an upper device and return true in case
7120 * it is. The caller must hold the RTNL lock.
7121 */
25cc72a3 7122bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
7123{
7124 ASSERT_RTNL();
7125
f1170fd4 7126 return !list_empty(&dev->adj_list.upper);
9ff162a8 7127}
25cc72a3 7128EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
7129
7130/**
7131 * netdev_master_upper_dev_get - Get master upper device
7132 * @dev: device
7133 *
7134 * Find a master upper device and return pointer to it or NULL in case
7135 * it's not there. The caller must hold the RTNL lock.
7136 */
7137struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7138{
aa9d8560 7139 struct netdev_adjacent *upper;
9ff162a8
JP
7140
7141 ASSERT_RTNL();
7142
2f268f12 7143 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
7144 return NULL;
7145
2f268f12 7146 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 7147 struct netdev_adjacent, list);
9ff162a8
JP
7148 if (likely(upper->master))
7149 return upper->dev;
7150 return NULL;
7151}
7152EXPORT_SYMBOL(netdev_master_upper_dev_get);
7153
32b6d34f
TY
7154static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7155{
7156 struct netdev_adjacent *upper;
7157
7158 ASSERT_RTNL();
7159
7160 if (list_empty(&dev->adj_list.upper))
7161 return NULL;
7162
7163 upper = list_first_entry(&dev->adj_list.upper,
7164 struct netdev_adjacent, list);
7165 if (likely(upper->master) && !upper->ignore)
7166 return upper->dev;
7167 return NULL;
7168}
7169
0f524a80
DA
7170/**
7171 * netdev_has_any_lower_dev - Check if device is linked to some device
7172 * @dev: device
7173 *
7174 * Find out if a device is linked to a lower device and return true in case
7175 * it is. The caller must hold the RTNL lock.
7176 */
7177static bool netdev_has_any_lower_dev(struct net_device *dev)
7178{
7179 ASSERT_RTNL();
7180
7181 return !list_empty(&dev->adj_list.lower);
7182}
7183
b6ccba4c
VF
7184void *netdev_adjacent_get_private(struct list_head *adj_list)
7185{
7186 struct netdev_adjacent *adj;
7187
7188 adj = list_entry(adj_list, struct netdev_adjacent, list);
7189
7190 return adj->private;
7191}
7192EXPORT_SYMBOL(netdev_adjacent_get_private);
7193
44a40855
VY
7194/**
7195 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7196 * @dev: device
7197 * @iter: list_head ** of the current position
7198 *
7199 * Gets the next device from the dev's upper list, starting from iter
7200 * position. The caller must hold RCU read lock.
7201 */
7202struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7203 struct list_head **iter)
7204{
7205 struct netdev_adjacent *upper;
7206
7207 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7208
7209 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7210
7211 if (&upper->list == &dev->adj_list.upper)
7212 return NULL;
7213
7214 *iter = &upper->list;
7215
7216 return upper->dev;
7217}
7218EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7219
32b6d34f
TY
7220static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7221 struct list_head **iter,
7222 bool *ignore)
5343da4c
TY
7223{
7224 struct netdev_adjacent *upper;
7225
7226 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7227
7228 if (&upper->list == &dev->adj_list.upper)
7229 return NULL;
7230
7231 *iter = &upper->list;
32b6d34f 7232 *ignore = upper->ignore;
5343da4c
TY
7233
7234 return upper->dev;
7235}
7236
1a3f060c
DA
7237static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7238 struct list_head **iter)
7239{
7240 struct netdev_adjacent *upper;
7241
7242 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7243
7244 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7245
7246 if (&upper->list == &dev->adj_list.upper)
7247 return NULL;
7248
7249 *iter = &upper->list;
7250
7251 return upper->dev;
7252}
7253
32b6d34f
TY
7254static int __netdev_walk_all_upper_dev(struct net_device *dev,
7255 int (*fn)(struct net_device *dev,
eff74233
TY
7256 struct netdev_nested_priv *priv),
7257 struct netdev_nested_priv *priv)
5343da4c
TY
7258{
7259 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7260 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7261 int ret, cur = 0;
32b6d34f 7262 bool ignore;
5343da4c
TY
7263
7264 now = dev;
7265 iter = &dev->adj_list.upper;
7266
7267 while (1) {
7268 if (now != dev) {
eff74233 7269 ret = fn(now, priv);
5343da4c
TY
7270 if (ret)
7271 return ret;
7272 }
7273
7274 next = NULL;
7275 while (1) {
32b6d34f 7276 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
7277 if (!udev)
7278 break;
32b6d34f
TY
7279 if (ignore)
7280 continue;
5343da4c
TY
7281
7282 next = udev;
7283 niter = &udev->adj_list.upper;
7284 dev_stack[cur] = now;
7285 iter_stack[cur++] = iter;
7286 break;
7287 }
7288
7289 if (!next) {
7290 if (!cur)
7291 return 0;
7292 next = dev_stack[--cur];
7293 niter = iter_stack[cur];
7294 }
7295
7296 now = next;
7297 iter = niter;
7298 }
7299
7300 return 0;
7301}
7302
1a3f060c
DA
7303int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7304 int (*fn)(struct net_device *dev,
eff74233
TY
7305 struct netdev_nested_priv *priv),
7306 struct netdev_nested_priv *priv)
1a3f060c 7307{
5343da4c
TY
7308 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7309 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7310 int ret, cur = 0;
1a3f060c 7311
5343da4c
TY
7312 now = dev;
7313 iter = &dev->adj_list.upper;
1a3f060c 7314
5343da4c
TY
7315 while (1) {
7316 if (now != dev) {
eff74233 7317 ret = fn(now, priv);
5343da4c
TY
7318 if (ret)
7319 return ret;
7320 }
7321
7322 next = NULL;
7323 while (1) {
7324 udev = netdev_next_upper_dev_rcu(now, &iter);
7325 if (!udev)
7326 break;
7327
7328 next = udev;
7329 niter = &udev->adj_list.upper;
7330 dev_stack[cur] = now;
7331 iter_stack[cur++] = iter;
7332 break;
7333 }
7334
7335 if (!next) {
7336 if (!cur)
7337 return 0;
7338 next = dev_stack[--cur];
7339 niter = iter_stack[cur];
7340 }
7341
7342 now = next;
7343 iter = niter;
1a3f060c
DA
7344 }
7345
7346 return 0;
7347}
7348EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7349
32b6d34f
TY
7350static bool __netdev_has_upper_dev(struct net_device *dev,
7351 struct net_device *upper_dev)
7352{
eff74233 7353 struct netdev_nested_priv priv = {
1fc70edb 7354 .flags = 0,
eff74233
TY
7355 .data = (void *)upper_dev,
7356 };
7357
32b6d34f
TY
7358 ASSERT_RTNL();
7359
7360 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
eff74233 7361 &priv);
32b6d34f
TY
7362}
7363
31088a11
VF
7364/**
7365 * netdev_lower_get_next_private - Get the next ->private from the
7366 * lower neighbour list
7367 * @dev: device
7368 * @iter: list_head ** of the current position
7369 *
7370 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7371 * list, starting from iter position. The caller must hold either hold the
7372 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 7373 * list will remain unchanged.
31088a11
VF
7374 */
7375void *netdev_lower_get_next_private(struct net_device *dev,
7376 struct list_head **iter)
7377{
7378 struct netdev_adjacent *lower;
7379
7380 lower = list_entry(*iter, struct netdev_adjacent, list);
7381
7382 if (&lower->list == &dev->adj_list.lower)
7383 return NULL;
7384
6859e7df 7385 *iter = lower->list.next;
31088a11
VF
7386
7387 return lower->private;
7388}
7389EXPORT_SYMBOL(netdev_lower_get_next_private);
7390
7391/**
7392 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7393 * lower neighbour list, RCU
7394 * variant
7395 * @dev: device
7396 * @iter: list_head ** of the current position
7397 *
7398 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7399 * list, starting from iter position. The caller must hold RCU read lock.
7400 */
7401void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7402 struct list_head **iter)
7403{
7404 struct netdev_adjacent *lower;
7405
7406 WARN_ON_ONCE(!rcu_read_lock_held());
7407
7408 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7409
7410 if (&lower->list == &dev->adj_list.lower)
7411 return NULL;
7412
6859e7df 7413 *iter = &lower->list;
31088a11
VF
7414
7415 return lower->private;
7416}
7417EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7418
4085ebe8
VY
7419/**
7420 * netdev_lower_get_next - Get the next device from the lower neighbour
7421 * list
7422 * @dev: device
7423 * @iter: list_head ** of the current position
7424 *
7425 * Gets the next netdev_adjacent from the dev's lower neighbour
7426 * list, starting from iter position. The caller must hold RTNL lock or
7427 * its own locking that guarantees that the neighbour lower
b469139e 7428 * list will remain unchanged.
4085ebe8
VY
7429 */
7430void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7431{
7432 struct netdev_adjacent *lower;
7433
cfdd28be 7434 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7435
7436 if (&lower->list == &dev->adj_list.lower)
7437 return NULL;
7438
cfdd28be 7439 *iter = lower->list.next;
4085ebe8
VY
7440
7441 return lower->dev;
7442}
7443EXPORT_SYMBOL(netdev_lower_get_next);
7444
1a3f060c
DA
7445static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7446 struct list_head **iter)
7447{
7448 struct netdev_adjacent *lower;
7449
46b5ab1a 7450 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7451
7452 if (&lower->list == &dev->adj_list.lower)
7453 return NULL;
7454
46b5ab1a 7455 *iter = &lower->list;
1a3f060c
DA
7456
7457 return lower->dev;
7458}
7459
32b6d34f
TY
7460static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7461 struct list_head **iter,
7462 bool *ignore)
7463{
7464 struct netdev_adjacent *lower;
7465
7466 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7467
7468 if (&lower->list == &dev->adj_list.lower)
7469 return NULL;
7470
7471 *iter = &lower->list;
7472 *ignore = lower->ignore;
7473
7474 return lower->dev;
7475}
7476
1a3f060c
DA
7477int netdev_walk_all_lower_dev(struct net_device *dev,
7478 int (*fn)(struct net_device *dev,
eff74233
TY
7479 struct netdev_nested_priv *priv),
7480 struct netdev_nested_priv *priv)
1a3f060c 7481{
5343da4c
TY
7482 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7483 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7484 int ret, cur = 0;
1a3f060c 7485
5343da4c
TY
7486 now = dev;
7487 iter = &dev->adj_list.lower;
1a3f060c 7488
5343da4c
TY
7489 while (1) {
7490 if (now != dev) {
eff74233 7491 ret = fn(now, priv);
5343da4c
TY
7492 if (ret)
7493 return ret;
7494 }
7495
7496 next = NULL;
7497 while (1) {
7498 ldev = netdev_next_lower_dev(now, &iter);
7499 if (!ldev)
7500 break;
7501
7502 next = ldev;
7503 niter = &ldev->adj_list.lower;
7504 dev_stack[cur] = now;
7505 iter_stack[cur++] = iter;
7506 break;
7507 }
7508
7509 if (!next) {
7510 if (!cur)
7511 return 0;
7512 next = dev_stack[--cur];
7513 niter = iter_stack[cur];
7514 }
7515
7516 now = next;
7517 iter = niter;
1a3f060c
DA
7518 }
7519
7520 return 0;
7521}
7522EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7523
32b6d34f
TY
7524static int __netdev_walk_all_lower_dev(struct net_device *dev,
7525 int (*fn)(struct net_device *dev,
eff74233
TY
7526 struct netdev_nested_priv *priv),
7527 struct netdev_nested_priv *priv)
32b6d34f
TY
7528{
7529 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7530 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7531 int ret, cur = 0;
7532 bool ignore;
7533
7534 now = dev;
7535 iter = &dev->adj_list.lower;
7536
7537 while (1) {
7538 if (now != dev) {
eff74233 7539 ret = fn(now, priv);
32b6d34f
TY
7540 if (ret)
7541 return ret;
7542 }
7543
7544 next = NULL;
7545 while (1) {
7546 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7547 if (!ldev)
7548 break;
7549 if (ignore)
7550 continue;
7551
7552 next = ldev;
7553 niter = &ldev->adj_list.lower;
7554 dev_stack[cur] = now;
7555 iter_stack[cur++] = iter;
7556 break;
7557 }
7558
7559 if (!next) {
7560 if (!cur)
7561 return 0;
7562 next = dev_stack[--cur];
7563 niter = iter_stack[cur];
7564 }
7565
7566 now = next;
7567 iter = niter;
7568 }
7569
7570 return 0;
7571}
7572
7151affe
TY
7573struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7574 struct list_head **iter)
1a3f060c
DA
7575{
7576 struct netdev_adjacent *lower;
7577
7578 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7579 if (&lower->list == &dev->adj_list.lower)
7580 return NULL;
7581
7582 *iter = &lower->list;
7583
7584 return lower->dev;
7585}
7151affe 7586EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7587
5343da4c
TY
7588static u8 __netdev_upper_depth(struct net_device *dev)
7589{
7590 struct net_device *udev;
7591 struct list_head *iter;
7592 u8 max_depth = 0;
32b6d34f 7593 bool ignore;
5343da4c
TY
7594
7595 for (iter = &dev->adj_list.upper,
32b6d34f 7596 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7597 udev;
32b6d34f
TY
7598 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7599 if (ignore)
7600 continue;
5343da4c
TY
7601 if (max_depth < udev->upper_level)
7602 max_depth = udev->upper_level;
7603 }
7604
7605 return max_depth;
7606}
7607
7608static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7609{
7610 struct net_device *ldev;
7611 struct list_head *iter;
5343da4c 7612 u8 max_depth = 0;
32b6d34f 7613 bool ignore;
1a3f060c
DA
7614
7615 for (iter = &dev->adj_list.lower,
32b6d34f 7616 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7617 ldev;
32b6d34f
TY
7618 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7619 if (ignore)
7620 continue;
5343da4c
TY
7621 if (max_depth < ldev->lower_level)
7622 max_depth = ldev->lower_level;
7623 }
1a3f060c 7624
5343da4c
TY
7625 return max_depth;
7626}
7627
eff74233
TY
7628static int __netdev_update_upper_level(struct net_device *dev,
7629 struct netdev_nested_priv *__unused)
5343da4c
TY
7630{
7631 dev->upper_level = __netdev_upper_depth(dev) + 1;
7632 return 0;
7633}
7634
eff74233 7635static int __netdev_update_lower_level(struct net_device *dev,
1fc70edb 7636 struct netdev_nested_priv *priv)
5343da4c
TY
7637{
7638 dev->lower_level = __netdev_lower_depth(dev) + 1;
1fc70edb
TY
7639
7640#ifdef CONFIG_LOCKDEP
7641 if (!priv)
7642 return 0;
7643
7644 if (priv->flags & NESTED_SYNC_IMM)
7645 dev->nested_level = dev->lower_level - 1;
7646 if (priv->flags & NESTED_SYNC_TODO)
7647 net_unlink_todo(dev);
7648#endif
5343da4c
TY
7649 return 0;
7650}
7651
7652int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7653 int (*fn)(struct net_device *dev,
eff74233
TY
7654 struct netdev_nested_priv *priv),
7655 struct netdev_nested_priv *priv)
5343da4c
TY
7656{
7657 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7658 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7659 int ret, cur = 0;
7660
7661 now = dev;
7662 iter = &dev->adj_list.lower;
7663
7664 while (1) {
7665 if (now != dev) {
eff74233 7666 ret = fn(now, priv);
5343da4c
TY
7667 if (ret)
7668 return ret;
7669 }
7670
7671 next = NULL;
7672 while (1) {
7673 ldev = netdev_next_lower_dev_rcu(now, &iter);
7674 if (!ldev)
7675 break;
7676
7677 next = ldev;
7678 niter = &ldev->adj_list.lower;
7679 dev_stack[cur] = now;
7680 iter_stack[cur++] = iter;
7681 break;
7682 }
7683
7684 if (!next) {
7685 if (!cur)
7686 return 0;
7687 next = dev_stack[--cur];
7688 niter = iter_stack[cur];
7689 }
7690
7691 now = next;
7692 iter = niter;
1a3f060c
DA
7693 }
7694
7695 return 0;
7696}
7697EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7698
e001bfad 7699/**
7700 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7701 * lower neighbour list, RCU
7702 * variant
7703 * @dev: device
7704 *
7705 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7706 * list. The caller must hold RCU read lock.
7707 */
7708void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7709{
7710 struct netdev_adjacent *lower;
7711
7712 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7713 struct netdev_adjacent, list);
7714 if (lower)
7715 return lower->private;
7716 return NULL;
7717}
7718EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7719
9ff162a8
JP
7720/**
7721 * netdev_master_upper_dev_get_rcu - Get master upper device
7722 * @dev: device
7723 *
7724 * Find a master upper device and return pointer to it or NULL in case
7725 * it's not there. The caller must hold the RCU read lock.
7726 */
7727struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7728{
aa9d8560 7729 struct netdev_adjacent *upper;
9ff162a8 7730
2f268f12 7731 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7732 struct netdev_adjacent, list);
9ff162a8
JP
7733 if (upper && likely(upper->master))
7734 return upper->dev;
7735 return NULL;
7736}
7737EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7738
0a59f3a9 7739static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7740 struct net_device *adj_dev,
7741 struct list_head *dev_list)
7742{
7743 char linkname[IFNAMSIZ+7];
f4563a75 7744
3ee32707
VF
7745 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7746 "upper_%s" : "lower_%s", adj_dev->name);
7747 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7748 linkname);
7749}
0a59f3a9 7750static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7751 char *name,
7752 struct list_head *dev_list)
7753{
7754 char linkname[IFNAMSIZ+7];
f4563a75 7755
3ee32707
VF
7756 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7757 "upper_%s" : "lower_%s", name);
7758 sysfs_remove_link(&(dev->dev.kobj), linkname);
7759}
7760
7ce64c79
AF
7761static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7762 struct net_device *adj_dev,
7763 struct list_head *dev_list)
7764{
7765 return (dev_list == &dev->adj_list.upper ||
7766 dev_list == &dev->adj_list.lower) &&
7767 net_eq(dev_net(dev), dev_net(adj_dev));
7768}
3ee32707 7769
5d261913
VF
7770static int __netdev_adjacent_dev_insert(struct net_device *dev,
7771 struct net_device *adj_dev,
7863c054 7772 struct list_head *dev_list,
402dae96 7773 void *private, bool master)
5d261913
VF
7774{
7775 struct netdev_adjacent *adj;
842d67a7 7776 int ret;
5d261913 7777
6ea29da1 7778 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7779
7780 if (adj) {
790510d9 7781 adj->ref_nr += 1;
67b62f98
DA
7782 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7783 dev->name, adj_dev->name, adj->ref_nr);
7784
5d261913
VF
7785 return 0;
7786 }
7787
7788 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7789 if (!adj)
7790 return -ENOMEM;
7791
7792 adj->dev = adj_dev;
7793 adj->master = master;
790510d9 7794 adj->ref_nr = 1;
402dae96 7795 adj->private = private;
32b6d34f 7796 adj->ignore = false;
5d261913 7797 dev_hold(adj_dev);
2f268f12 7798
67b62f98
DA
7799 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7800 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7801
7ce64c79 7802 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7803 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7804 if (ret)
7805 goto free_adj;
7806 }
7807
7863c054 7808 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7809 if (master) {
7810 ret = sysfs_create_link(&(dev->dev.kobj),
7811 &(adj_dev->dev.kobj), "master");
7812 if (ret)
5831d66e 7813 goto remove_symlinks;
842d67a7 7814
7863c054 7815 list_add_rcu(&adj->list, dev_list);
842d67a7 7816 } else {
7863c054 7817 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7818 }
5d261913
VF
7819
7820 return 0;
842d67a7 7821
5831d66e 7822remove_symlinks:
7ce64c79 7823 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7824 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7825free_adj:
7826 kfree(adj);
974daef7 7827 dev_put(adj_dev);
842d67a7
VF
7828
7829 return ret;
5d261913
VF
7830}
7831
1d143d9f 7832static void __netdev_adjacent_dev_remove(struct net_device *dev,
7833 struct net_device *adj_dev,
93409033 7834 u16 ref_nr,
1d143d9f 7835 struct list_head *dev_list)
5d261913
VF
7836{
7837 struct netdev_adjacent *adj;
7838
67b62f98
DA
7839 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7840 dev->name, adj_dev->name, ref_nr);
7841
6ea29da1 7842 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7843
2f268f12 7844 if (!adj) {
67b62f98 7845 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7846 dev->name, adj_dev->name);
67b62f98
DA
7847 WARN_ON(1);
7848 return;
2f268f12 7849 }
5d261913 7850
93409033 7851 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7852 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7853 dev->name, adj_dev->name, ref_nr,
7854 adj->ref_nr - ref_nr);
93409033 7855 adj->ref_nr -= ref_nr;
5d261913
VF
7856 return;
7857 }
7858
842d67a7
VF
7859 if (adj->master)
7860 sysfs_remove_link(&(dev->dev.kobj), "master");
7861
7ce64c79 7862 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7863 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7864
5d261913 7865 list_del_rcu(&adj->list);
67b62f98 7866 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7867 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7868 dev_put(adj_dev);
7869 kfree_rcu(adj, rcu);
7870}
7871
1d143d9f 7872static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7873 struct net_device *upper_dev,
7874 struct list_head *up_list,
7875 struct list_head *down_list,
7876 void *private, bool master)
5d261913
VF
7877{
7878 int ret;
7879
790510d9 7880 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7881 private, master);
5d261913
VF
7882 if (ret)
7883 return ret;
7884
790510d9 7885 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7886 private, false);
5d261913 7887 if (ret) {
790510d9 7888 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7889 return ret;
7890 }
7891
7892 return 0;
7893}
7894
1d143d9f 7895static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7896 struct net_device *upper_dev,
93409033 7897 u16 ref_nr,
1d143d9f 7898 struct list_head *up_list,
7899 struct list_head *down_list)
5d261913 7900{
93409033
AC
7901 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7902 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7903}
7904
1d143d9f 7905static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7906 struct net_device *upper_dev,
7907 void *private, bool master)
2f268f12 7908{
f1170fd4
DA
7909 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7910 &dev->adj_list.upper,
7911 &upper_dev->adj_list.lower,
7912 private, master);
5d261913
VF
7913}
7914
1d143d9f 7915static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7916 struct net_device *upper_dev)
2f268f12 7917{
93409033 7918 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7919 &dev->adj_list.upper,
7920 &upper_dev->adj_list.lower);
7921}
5d261913 7922
9ff162a8 7923static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7924 struct net_device *upper_dev, bool master,
42ab19ee 7925 void *upper_priv, void *upper_info,
1fc70edb 7926 struct netdev_nested_priv *priv,
42ab19ee 7927 struct netlink_ext_ack *extack)
9ff162a8 7928{
51d0c047
DA
7929 struct netdev_notifier_changeupper_info changeupper_info = {
7930 .info = {
7931 .dev = dev,
42ab19ee 7932 .extack = extack,
51d0c047
DA
7933 },
7934 .upper_dev = upper_dev,
7935 .master = master,
7936 .linking = true,
7937 .upper_info = upper_info,
7938 };
50d629e7 7939 struct net_device *master_dev;
5d261913 7940 int ret = 0;
9ff162a8
JP
7941
7942 ASSERT_RTNL();
7943
7944 if (dev == upper_dev)
7945 return -EBUSY;
7946
7947 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7948 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7949 return -EBUSY;
7950
5343da4c
TY
7951 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7952 return -EMLINK;
7953
50d629e7 7954 if (!master) {
32b6d34f 7955 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7956 return -EEXIST;
7957 } else {
32b6d34f 7958 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7959 if (master_dev)
7960 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7961 }
9ff162a8 7962
51d0c047 7963 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7964 &changeupper_info.info);
7965 ret = notifier_to_errno(ret);
7966 if (ret)
7967 return ret;
7968
6dffb044 7969 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7970 master);
5d261913
VF
7971 if (ret)
7972 return ret;
9ff162a8 7973
51d0c047 7974 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7975 &changeupper_info.info);
7976 ret = notifier_to_errno(ret);
7977 if (ret)
f1170fd4 7978 goto rollback;
b03804e7 7979
5343da4c 7980 __netdev_update_upper_level(dev, NULL);
32b6d34f 7981 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 7982
1fc70edb 7983 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 7984 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 7985 priv);
5343da4c 7986
9ff162a8 7987 return 0;
5d261913 7988
f1170fd4 7989rollback:
2f268f12 7990 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7991
7992 return ret;
9ff162a8
JP
7993}
7994
7995/**
7996 * netdev_upper_dev_link - Add a link to the upper device
7997 * @dev: device
7998 * @upper_dev: new upper device
7a006d59 7999 * @extack: netlink extended ack
9ff162a8
JP
8000 *
8001 * Adds a link to device which is upper to this one. The caller must hold
8002 * the RTNL lock. On a failure a negative errno code is returned.
8003 * On success the reference counts are adjusted and the function
8004 * returns zero.
8005 */
8006int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
8007 struct net_device *upper_dev,
8008 struct netlink_ext_ack *extack)
9ff162a8 8009{
1fc70edb
TY
8010 struct netdev_nested_priv priv = {
8011 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8012 .data = NULL,
8013 };
8014
42ab19ee 8015 return __netdev_upper_dev_link(dev, upper_dev, false,
1fc70edb 8016 NULL, NULL, &priv, extack);
9ff162a8
JP
8017}
8018EXPORT_SYMBOL(netdev_upper_dev_link);
8019
8020/**
8021 * netdev_master_upper_dev_link - Add a master link to the upper device
8022 * @dev: device
8023 * @upper_dev: new upper device
6dffb044 8024 * @upper_priv: upper device private
29bf24af 8025 * @upper_info: upper info to be passed down via notifier
7a006d59 8026 * @extack: netlink extended ack
9ff162a8
JP
8027 *
8028 * Adds a link to device which is upper to this one. In this case, only
8029 * one master upper device can be linked, although other non-master devices
8030 * might be linked as well. The caller must hold the RTNL lock.
8031 * On a failure a negative errno code is returned. On success the reference
8032 * counts are adjusted and the function returns zero.
8033 */
8034int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 8035 struct net_device *upper_dev,
42ab19ee
DA
8036 void *upper_priv, void *upper_info,
8037 struct netlink_ext_ack *extack)
9ff162a8 8038{
1fc70edb
TY
8039 struct netdev_nested_priv priv = {
8040 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8041 .data = NULL,
8042 };
8043
29bf24af 8044 return __netdev_upper_dev_link(dev, upper_dev, true,
1fc70edb 8045 upper_priv, upper_info, &priv, extack);
9ff162a8
JP
8046}
8047EXPORT_SYMBOL(netdev_master_upper_dev_link);
8048
fe8300fd 8049static void __netdev_upper_dev_unlink(struct net_device *dev,
1fc70edb
TY
8050 struct net_device *upper_dev,
8051 struct netdev_nested_priv *priv)
9ff162a8 8052{
51d0c047
DA
8053 struct netdev_notifier_changeupper_info changeupper_info = {
8054 .info = {
8055 .dev = dev,
8056 },
8057 .upper_dev = upper_dev,
8058 .linking = false,
8059 };
f4563a75 8060
9ff162a8
JP
8061 ASSERT_RTNL();
8062
0e4ead9d 8063 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 8064
51d0c047 8065 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
8066 &changeupper_info.info);
8067
2f268f12 8068 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 8069
51d0c047 8070 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 8071 &changeupper_info.info);
5343da4c
TY
8072
8073 __netdev_update_upper_level(dev, NULL);
32b6d34f 8074 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c 8075
1fc70edb 8076 __netdev_update_lower_level(upper_dev, priv);
32b6d34f 8077 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
1fc70edb 8078 priv);
9ff162a8 8079}
fe8300fd
TY
8080
8081/**
8082 * netdev_upper_dev_unlink - Removes a link to upper device
8083 * @dev: device
8084 * @upper_dev: new upper device
8085 *
8086 * Removes a link to device which is upper to this one. The caller must hold
8087 * the RTNL lock.
8088 */
8089void netdev_upper_dev_unlink(struct net_device *dev,
8090 struct net_device *upper_dev)
8091{
1fc70edb
TY
8092 struct netdev_nested_priv priv = {
8093 .flags = NESTED_SYNC_TODO,
8094 .data = NULL,
8095 };
8096
8097 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
9ff162a8
JP
8098}
8099EXPORT_SYMBOL(netdev_upper_dev_unlink);
8100
32b6d34f
TY
8101static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8102 struct net_device *lower_dev,
8103 bool val)
8104{
8105 struct netdev_adjacent *adj;
8106
8107 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8108 if (adj)
8109 adj->ignore = val;
8110
8111 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8112 if (adj)
8113 adj->ignore = val;
8114}
8115
8116static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8117 struct net_device *lower_dev)
8118{
8119 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8120}
8121
8122static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8123 struct net_device *lower_dev)
8124{
8125 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8126}
8127
8128int netdev_adjacent_change_prepare(struct net_device *old_dev,
8129 struct net_device *new_dev,
8130 struct net_device *dev,
8131 struct netlink_ext_ack *extack)
8132{
1fc70edb
TY
8133 struct netdev_nested_priv priv = {
8134 .flags = 0,
8135 .data = NULL,
8136 };
32b6d34f
TY
8137 int err;
8138
8139 if (!new_dev)
8140 return 0;
8141
8142 if (old_dev && new_dev != old_dev)
8143 netdev_adjacent_dev_disable(dev, old_dev);
1fc70edb
TY
8144 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8145 extack);
32b6d34f
TY
8146 if (err) {
8147 if (old_dev && new_dev != old_dev)
8148 netdev_adjacent_dev_enable(dev, old_dev);
8149 return err;
8150 }
8151
8152 return 0;
8153}
8154EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8155
8156void netdev_adjacent_change_commit(struct net_device *old_dev,
8157 struct net_device *new_dev,
8158 struct net_device *dev)
8159{
1fc70edb
TY
8160 struct netdev_nested_priv priv = {
8161 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8162 .data = NULL,
8163 };
8164
32b6d34f
TY
8165 if (!new_dev || !old_dev)
8166 return;
8167
8168 if (new_dev == old_dev)
8169 return;
8170
8171 netdev_adjacent_dev_enable(dev, old_dev);
1fc70edb 8172 __netdev_upper_dev_unlink(old_dev, dev, &priv);
32b6d34f
TY
8173}
8174EXPORT_SYMBOL(netdev_adjacent_change_commit);
8175
8176void netdev_adjacent_change_abort(struct net_device *old_dev,
8177 struct net_device *new_dev,
8178 struct net_device *dev)
8179{
1fc70edb
TY
8180 struct netdev_nested_priv priv = {
8181 .flags = 0,
8182 .data = NULL,
8183 };
8184
32b6d34f
TY
8185 if (!new_dev)
8186 return;
8187
8188 if (old_dev && new_dev != old_dev)
8189 netdev_adjacent_dev_enable(dev, old_dev);
8190
1fc70edb 8191 __netdev_upper_dev_unlink(new_dev, dev, &priv);
32b6d34f
TY
8192}
8193EXPORT_SYMBOL(netdev_adjacent_change_abort);
8194
61bd3857
MS
8195/**
8196 * netdev_bonding_info_change - Dispatch event about slave change
8197 * @dev: device
4a26e453 8198 * @bonding_info: info to dispatch
61bd3857
MS
8199 *
8200 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8201 * The caller must hold the RTNL lock.
8202 */
8203void netdev_bonding_info_change(struct net_device *dev,
8204 struct netdev_bonding_info *bonding_info)
8205{
51d0c047
DA
8206 struct netdev_notifier_bonding_info info = {
8207 .info.dev = dev,
8208 };
61bd3857
MS
8209
8210 memcpy(&info.bonding_info, bonding_info,
8211 sizeof(struct netdev_bonding_info));
51d0c047 8212 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
8213 &info.info);
8214}
8215EXPORT_SYMBOL(netdev_bonding_info_change);
8216
cff9f12b
MG
8217/**
8218 * netdev_get_xmit_slave - Get the xmit slave of master device
8842500d 8219 * @dev: device
cff9f12b
MG
8220 * @skb: The packet
8221 * @all_slaves: assume all the slaves are active
8222 *
8223 * The reference counters are not incremented so the caller must be
8224 * careful with locks. The caller must hold RCU lock.
8225 * %NULL is returned if no slave is found.
8226 */
8227
8228struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8229 struct sk_buff *skb,
8230 bool all_slaves)
8231{
8232 const struct net_device_ops *ops = dev->netdev_ops;
8233
8234 if (!ops->ndo_get_xmit_slave)
8235 return NULL;
8236 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8237}
8238EXPORT_SYMBOL(netdev_get_xmit_slave);
8239
719a402c
TT
8240static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8241 struct sock *sk)
8242{
8243 const struct net_device_ops *ops = dev->netdev_ops;
8244
8245 if (!ops->ndo_sk_get_lower_dev)
8246 return NULL;
8247 return ops->ndo_sk_get_lower_dev(dev, sk);
8248}
8249
8250/**
8251 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8252 * @dev: device
8253 * @sk: the socket
8254 *
8255 * %NULL is returned if no lower device is found.
8256 */
8257
8258struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8259 struct sock *sk)
8260{
8261 struct net_device *lower;
8262
8263 lower = netdev_sk_get_lower_dev(dev, sk);
8264 while (lower) {
8265 dev = lower;
8266 lower = netdev_sk_get_lower_dev(dev, sk);
8267 }
8268
8269 return dev;
8270}
8271EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8272
2ce1ee17 8273static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
8274{
8275 struct netdev_adjacent *iter;
8276
8277 struct net *net = dev_net(dev);
8278
8279 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8280 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8281 continue;
8282 netdev_adjacent_sysfs_add(iter->dev, dev,
8283 &iter->dev->adj_list.lower);
8284 netdev_adjacent_sysfs_add(dev, iter->dev,
8285 &dev->adj_list.upper);
8286 }
8287
8288 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8289 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8290 continue;
8291 netdev_adjacent_sysfs_add(iter->dev, dev,
8292 &iter->dev->adj_list.upper);
8293 netdev_adjacent_sysfs_add(dev, iter->dev,
8294 &dev->adj_list.lower);
8295 }
8296}
8297
2ce1ee17 8298static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
8299{
8300 struct netdev_adjacent *iter;
8301
8302 struct net *net = dev_net(dev);
8303
8304 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8305 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8306 continue;
8307 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8308 &iter->dev->adj_list.lower);
8309 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8310 &dev->adj_list.upper);
8311 }
8312
8313 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8314 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
8315 continue;
8316 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8317 &iter->dev->adj_list.upper);
8318 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8319 &dev->adj_list.lower);
8320 }
8321}
8322
5bb025fa 8323void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 8324{
5bb025fa 8325 struct netdev_adjacent *iter;
402dae96 8326
4c75431a
AF
8327 struct net *net = dev_net(dev);
8328
5bb025fa 8329 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 8330 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8331 continue;
5bb025fa
VF
8332 netdev_adjacent_sysfs_del(iter->dev, oldname,
8333 &iter->dev->adj_list.lower);
8334 netdev_adjacent_sysfs_add(iter->dev, dev,
8335 &iter->dev->adj_list.lower);
8336 }
402dae96 8337
5bb025fa 8338 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8339 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8340 continue;
5bb025fa
VF
8341 netdev_adjacent_sysfs_del(iter->dev, oldname,
8342 &iter->dev->adj_list.upper);
8343 netdev_adjacent_sysfs_add(iter->dev, dev,
8344 &iter->dev->adj_list.upper);
8345 }
402dae96 8346}
402dae96
VF
8347
8348void *netdev_lower_dev_get_private(struct net_device *dev,
8349 struct net_device *lower_dev)
8350{
8351 struct netdev_adjacent *lower;
8352
8353 if (!lower_dev)
8354 return NULL;
6ea29da1 8355 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
8356 if (!lower)
8357 return NULL;
8358
8359 return lower->private;
8360}
8361EXPORT_SYMBOL(netdev_lower_dev_get_private);
8362
4085ebe8 8363
04d48266 8364/**
c1639be9 8365 * netdev_lower_state_changed - Dispatch event about lower device state change
04d48266
JP
8366 * @lower_dev: device
8367 * @lower_state_info: state to dispatch
8368 *
8369 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8370 * The caller must hold the RTNL lock.
8371 */
8372void netdev_lower_state_changed(struct net_device *lower_dev,
8373 void *lower_state_info)
8374{
51d0c047
DA
8375 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8376 .info.dev = lower_dev,
8377 };
04d48266
JP
8378
8379 ASSERT_RTNL();
8380 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 8381 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
8382 &changelowerstate_info.info);
8383}
8384EXPORT_SYMBOL(netdev_lower_state_changed);
8385
b6c40d68
PM
8386static void dev_change_rx_flags(struct net_device *dev, int flags)
8387{
d314774c
SH
8388 const struct net_device_ops *ops = dev->netdev_ops;
8389
d2615bf4 8390 if (ops->ndo_change_rx_flags)
d314774c 8391 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
8392}
8393
991fb3f7 8394static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 8395{
b536db93 8396 unsigned int old_flags = dev->flags;
d04a48b0
EB
8397 kuid_t uid;
8398 kgid_t gid;
1da177e4 8399
24023451
PM
8400 ASSERT_RTNL();
8401
dad9b335
WC
8402 dev->flags |= IFF_PROMISC;
8403 dev->promiscuity += inc;
8404 if (dev->promiscuity == 0) {
8405 /*
8406 * Avoid overflow.
8407 * If inc causes overflow, untouch promisc and return error.
8408 */
8409 if (inc < 0)
8410 dev->flags &= ~IFF_PROMISC;
8411 else {
8412 dev->promiscuity -= inc;
7b6cd1ce
JP
8413 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8414 dev->name);
dad9b335
WC
8415 return -EOVERFLOW;
8416 }
8417 }
52609c0b 8418 if (dev->flags != old_flags) {
7b6cd1ce
JP
8419 pr_info("device %s %s promiscuous mode\n",
8420 dev->name,
8421 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
8422 if (audit_enabled) {
8423 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
8424 audit_log(audit_context(), GFP_ATOMIC,
8425 AUDIT_ANOM_PROMISCUOUS,
8426 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8427 dev->name, (dev->flags & IFF_PROMISC),
8428 (old_flags & IFF_PROMISC),
8429 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8430 from_kuid(&init_user_ns, uid),
8431 from_kgid(&init_user_ns, gid),
8432 audit_get_sessionid(current));
8192b0c4 8433 }
24023451 8434
b6c40d68 8435 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 8436 }
991fb3f7
ND
8437 if (notify)
8438 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 8439 return 0;
1da177e4
LT
8440}
8441
4417da66
PM
8442/**
8443 * dev_set_promiscuity - update promiscuity count on a device
8444 * @dev: device
8445 * @inc: modifier
8446 *
8447 * Add or remove promiscuity from a device. While the count in the device
8448 * remains above zero the interface remains promiscuous. Once it hits zero
8449 * the device reverts back to normal filtering operation. A negative inc
8450 * value is used to drop promiscuity on the device.
dad9b335 8451 * Return 0 if successful or a negative errno code on error.
4417da66 8452 */
dad9b335 8453int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 8454{
b536db93 8455 unsigned int old_flags = dev->flags;
dad9b335 8456 int err;
4417da66 8457
991fb3f7 8458 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 8459 if (err < 0)
dad9b335 8460 return err;
4417da66
PM
8461 if (dev->flags != old_flags)
8462 dev_set_rx_mode(dev);
dad9b335 8463 return err;
4417da66 8464}
d1b19dff 8465EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 8466
991fb3f7 8467static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 8468{
991fb3f7 8469 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 8470
24023451
PM
8471 ASSERT_RTNL();
8472
1da177e4 8473 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8474 dev->allmulti += inc;
8475 if (dev->allmulti == 0) {
8476 /*
8477 * Avoid overflow.
8478 * If inc causes overflow, untouch allmulti and return error.
8479 */
8480 if (inc < 0)
8481 dev->flags &= ~IFF_ALLMULTI;
8482 else {
8483 dev->allmulti -= inc;
7b6cd1ce
JP
8484 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8485 dev->name);
dad9b335
WC
8486 return -EOVERFLOW;
8487 }
8488 }
24023451 8489 if (dev->flags ^ old_flags) {
b6c40d68 8490 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8491 dev_set_rx_mode(dev);
991fb3f7
ND
8492 if (notify)
8493 __dev_notify_flags(dev, old_flags,
8494 dev->gflags ^ old_gflags);
24023451 8495 }
dad9b335 8496 return 0;
4417da66 8497}
991fb3f7
ND
8498
8499/**
8500 * dev_set_allmulti - update allmulti count on a device
8501 * @dev: device
8502 * @inc: modifier
8503 *
8504 * Add or remove reception of all multicast frames to a device. While the
8505 * count in the device remains above zero the interface remains listening
8506 * to all interfaces. Once it hits zero the device reverts back to normal
8507 * filtering operation. A negative @inc value is used to drop the counter
8508 * when releasing a resource needing all multicasts.
8509 * Return 0 if successful or a negative errno code on error.
8510 */
8511
8512int dev_set_allmulti(struct net_device *dev, int inc)
8513{
8514 return __dev_set_allmulti(dev, inc, true);
8515}
d1b19dff 8516EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8517
8518/*
8519 * Upload unicast and multicast address lists to device and
8520 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8521 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8522 * are present.
8523 */
8524void __dev_set_rx_mode(struct net_device *dev)
8525{
d314774c
SH
8526 const struct net_device_ops *ops = dev->netdev_ops;
8527
4417da66
PM
8528 /* dev_open will call this function so the list will stay sane. */
8529 if (!(dev->flags&IFF_UP))
8530 return;
8531
8532 if (!netif_device_present(dev))
40b77c94 8533 return;
4417da66 8534
01789349 8535 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8536 /* Unicast addresses changes may only happen under the rtnl,
8537 * therefore calling __dev_set_promiscuity here is safe.
8538 */
32e7bfc4 8539 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8540 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8541 dev->uc_promisc = true;
32e7bfc4 8542 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8543 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8544 dev->uc_promisc = false;
4417da66 8545 }
4417da66 8546 }
01789349
JP
8547
8548 if (ops->ndo_set_rx_mode)
8549 ops->ndo_set_rx_mode(dev);
4417da66
PM
8550}
8551
8552void dev_set_rx_mode(struct net_device *dev)
8553{
b9e40857 8554 netif_addr_lock_bh(dev);
4417da66 8555 __dev_set_rx_mode(dev);
b9e40857 8556 netif_addr_unlock_bh(dev);
1da177e4
LT
8557}
8558
f0db275a
SH
8559/**
8560 * dev_get_flags - get flags reported to userspace
8561 * @dev: device
8562 *
8563 * Get the combination of flag bits exported through APIs to userspace.
8564 */
95c96174 8565unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8566{
95c96174 8567 unsigned int flags;
1da177e4
LT
8568
8569 flags = (dev->flags & ~(IFF_PROMISC |
8570 IFF_ALLMULTI |
b00055aa
SR
8571 IFF_RUNNING |
8572 IFF_LOWER_UP |
8573 IFF_DORMANT)) |
1da177e4
LT
8574 (dev->gflags & (IFF_PROMISC |
8575 IFF_ALLMULTI));
8576
b00055aa
SR
8577 if (netif_running(dev)) {
8578 if (netif_oper_up(dev))
8579 flags |= IFF_RUNNING;
8580 if (netif_carrier_ok(dev))
8581 flags |= IFF_LOWER_UP;
8582 if (netif_dormant(dev))
8583 flags |= IFF_DORMANT;
8584 }
1da177e4
LT
8585
8586 return flags;
8587}
d1b19dff 8588EXPORT_SYMBOL(dev_get_flags);
1da177e4 8589
6d040321
PM
8590int __dev_change_flags(struct net_device *dev, unsigned int flags,
8591 struct netlink_ext_ack *extack)
1da177e4 8592{
b536db93 8593 unsigned int old_flags = dev->flags;
bd380811 8594 int ret;
1da177e4 8595
24023451
PM
8596 ASSERT_RTNL();
8597
1da177e4
LT
8598 /*
8599 * Set the flags on our device.
8600 */
8601
8602 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8603 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8604 IFF_AUTOMEDIA)) |
8605 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8606 IFF_ALLMULTI));
8607
8608 /*
8609 * Load in the correct multicast list now the flags have changed.
8610 */
8611
b6c40d68
PM
8612 if ((old_flags ^ flags) & IFF_MULTICAST)
8613 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8614
4417da66 8615 dev_set_rx_mode(dev);
1da177e4
LT
8616
8617 /*
8618 * Have we downed the interface. We handle IFF_UP ourselves
8619 * according to user attempts to set it, rather than blindly
8620 * setting it.
8621 */
8622
8623 ret = 0;
7051b88a 8624 if ((old_flags ^ flags) & IFF_UP) {
8625 if (old_flags & IFF_UP)
8626 __dev_close(dev);
8627 else
40c900aa 8628 ret = __dev_open(dev, extack);
7051b88a 8629 }
1da177e4 8630
1da177e4 8631 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8632 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8633 unsigned int old_flags = dev->flags;
d1b19dff 8634
1da177e4 8635 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8636
8637 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8638 if (dev->flags != old_flags)
8639 dev_set_rx_mode(dev);
1da177e4
LT
8640 }
8641
8642 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8643 * is important. Some (broken) drivers set IFF_PROMISC, when
8644 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8645 */
8646 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8647 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8648
1da177e4 8649 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8650 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8651 }
8652
bd380811
PM
8653 return ret;
8654}
8655
a528c219
ND
8656void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8657 unsigned int gchanges)
bd380811
PM
8658{
8659 unsigned int changes = dev->flags ^ old_flags;
8660
a528c219 8661 if (gchanges)
7f294054 8662 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8663
bd380811
PM
8664 if (changes & IFF_UP) {
8665 if (dev->flags & IFF_UP)
8666 call_netdevice_notifiers(NETDEV_UP, dev);
8667 else
8668 call_netdevice_notifiers(NETDEV_DOWN, dev);
8669 }
8670
8671 if (dev->flags & IFF_UP &&
be9efd36 8672 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8673 struct netdev_notifier_change_info change_info = {
8674 .info = {
8675 .dev = dev,
8676 },
8677 .flags_changed = changes,
8678 };
be9efd36 8679
51d0c047 8680 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8681 }
bd380811
PM
8682}
8683
8684/**
8685 * dev_change_flags - change device settings
8686 * @dev: device
8687 * @flags: device state flags
567c5e13 8688 * @extack: netlink extended ack
bd380811
PM
8689 *
8690 * Change settings on device based state flags. The flags are
8691 * in the userspace exported format.
8692 */
567c5e13
PM
8693int dev_change_flags(struct net_device *dev, unsigned int flags,
8694 struct netlink_ext_ack *extack)
bd380811 8695{
b536db93 8696 int ret;
991fb3f7 8697 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8698
6d040321 8699 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8700 if (ret < 0)
8701 return ret;
8702
991fb3f7 8703 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8704 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8705 return ret;
8706}
d1b19dff 8707EXPORT_SYMBOL(dev_change_flags);
1da177e4 8708
f51048c3 8709int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8710{
8711 const struct net_device_ops *ops = dev->netdev_ops;
8712
8713 if (ops->ndo_change_mtu)
8714 return ops->ndo_change_mtu(dev, new_mtu);
8715
501a90c9
ED
8716 /* Pairs with all the lockless reads of dev->mtu in the stack */
8717 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8718 return 0;
8719}
f51048c3 8720EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8721
d836f5c6
ED
8722int dev_validate_mtu(struct net_device *dev, int new_mtu,
8723 struct netlink_ext_ack *extack)
8724{
8725 /* MTU must be positive, and in range */
8726 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8727 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8728 return -EINVAL;
8729 }
8730
8731 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8732 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8733 return -EINVAL;
8734 }
8735 return 0;
8736}
8737
f0db275a 8738/**
7a4c53be 8739 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8740 * @dev: device
8741 * @new_mtu: new transfer unit
7a4c53be 8742 * @extack: netlink extended ack
f0db275a
SH
8743 *
8744 * Change the maximum transfer size of the network device.
8745 */
7a4c53be
SH
8746int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8747 struct netlink_ext_ack *extack)
1da177e4 8748{
2315dc91 8749 int err, orig_mtu;
1da177e4
LT
8750
8751 if (new_mtu == dev->mtu)
8752 return 0;
8753
d836f5c6
ED
8754 err = dev_validate_mtu(dev, new_mtu, extack);
8755 if (err)
8756 return err;
1da177e4
LT
8757
8758 if (!netif_device_present(dev))
8759 return -ENODEV;
8760
1d486bfb
VF
8761 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8762 err = notifier_to_errno(err);
8763 if (err)
8764 return err;
d314774c 8765
2315dc91
VF
8766 orig_mtu = dev->mtu;
8767 err = __dev_set_mtu(dev, new_mtu);
d314774c 8768
2315dc91 8769 if (!err) {
af7d6cce
SD
8770 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8771 orig_mtu);
2315dc91
VF
8772 err = notifier_to_errno(err);
8773 if (err) {
8774 /* setting mtu back and notifying everyone again,
8775 * so that they have a chance to revert changes.
8776 */
8777 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8778 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8779 new_mtu);
2315dc91
VF
8780 }
8781 }
1da177e4
LT
8782 return err;
8783}
7a4c53be
SH
8784
8785int dev_set_mtu(struct net_device *dev, int new_mtu)
8786{
8787 struct netlink_ext_ack extack;
8788 int err;
8789
a6bcfc89 8790 memset(&extack, 0, sizeof(extack));
7a4c53be 8791 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8792 if (err && extack._msg)
7a4c53be
SH
8793 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8794 return err;
8795}
d1b19dff 8796EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8797
6a643ddb
CW
8798/**
8799 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8800 * @dev: device
8801 * @new_len: new tx queue length
8802 */
8803int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8804{
8805 unsigned int orig_len = dev->tx_queue_len;
8806 int res;
8807
8808 if (new_len != (unsigned int)new_len)
8809 return -ERANGE;
8810
8811 if (new_len != orig_len) {
8812 dev->tx_queue_len = new_len;
8813 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8814 res = notifier_to_errno(res);
7effaf06
TT
8815 if (res)
8816 goto err_rollback;
8817 res = dev_qdisc_change_tx_queue_len(dev);
8818 if (res)
8819 goto err_rollback;
6a643ddb
CW
8820 }
8821
8822 return 0;
7effaf06
TT
8823
8824err_rollback:
8825 netdev_err(dev, "refused to change device tx_queue_len\n");
8826 dev->tx_queue_len = orig_len;
8827 return res;
6a643ddb
CW
8828}
8829
cbda10fa
VD
8830/**
8831 * dev_set_group - Change group this device belongs to
8832 * @dev: device
8833 * @new_group: group this device should belong to
8834 */
8835void dev_set_group(struct net_device *dev, int new_group)
8836{
8837 dev->group = new_group;
8838}
8839EXPORT_SYMBOL(dev_set_group);
8840
d59cdf94
PM
8841/**
8842 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8843 * @dev: device
8844 * @addr: new address
8845 * @extack: netlink extended ack
8846 */
8847int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8848 struct netlink_ext_ack *extack)
8849{
8850 struct netdev_notifier_pre_changeaddr_info info = {
8851 .info.dev = dev,
8852 .info.extack = extack,
8853 .dev_addr = addr,
8854 };
8855 int rc;
8856
8857 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8858 return notifier_to_errno(rc);
8859}
8860EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8861
f0db275a
SH
8862/**
8863 * dev_set_mac_address - Change Media Access Control Address
8864 * @dev: device
8865 * @sa: new address
3a37a963 8866 * @extack: netlink extended ack
f0db275a
SH
8867 *
8868 * Change the hardware (MAC) address of the device
8869 */
3a37a963
PM
8870int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8871 struct netlink_ext_ack *extack)
1da177e4 8872{
d314774c 8873 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8874 int err;
8875
d314774c 8876 if (!ops->ndo_set_mac_address)
1da177e4
LT
8877 return -EOPNOTSUPP;
8878 if (sa->sa_family != dev->type)
8879 return -EINVAL;
8880 if (!netif_device_present(dev))
8881 return -ENODEV;
d59cdf94
PM
8882 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8883 if (err)
8884 return err;
d314774c 8885 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8886 if (err)
8887 return err;
fbdeca2d 8888 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8889 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8890 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8891 return 0;
1da177e4 8892}
d1b19dff 8893EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8894
4bf84c35
JP
8895/**
8896 * dev_change_carrier - Change device carrier
8897 * @dev: device
691b3b7e 8898 * @new_carrier: new value
4bf84c35
JP
8899 *
8900 * Change device carrier
8901 */
8902int dev_change_carrier(struct net_device *dev, bool new_carrier)
8903{
8904 const struct net_device_ops *ops = dev->netdev_ops;
8905
8906 if (!ops->ndo_change_carrier)
8907 return -EOPNOTSUPP;
8908 if (!netif_device_present(dev))
8909 return -ENODEV;
8910 return ops->ndo_change_carrier(dev, new_carrier);
8911}
8912EXPORT_SYMBOL(dev_change_carrier);
8913
66b52b0d
JP
8914/**
8915 * dev_get_phys_port_id - Get device physical port ID
8916 * @dev: device
8917 * @ppid: port ID
8918 *
8919 * Get device physical port ID
8920 */
8921int dev_get_phys_port_id(struct net_device *dev,
02637fce 8922 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8923{
8924 const struct net_device_ops *ops = dev->netdev_ops;
8925
8926 if (!ops->ndo_get_phys_port_id)
8927 return -EOPNOTSUPP;
8928 return ops->ndo_get_phys_port_id(dev, ppid);
8929}
8930EXPORT_SYMBOL(dev_get_phys_port_id);
8931
db24a904
DA
8932/**
8933 * dev_get_phys_port_name - Get device physical port name
8934 * @dev: device
8935 * @name: port name
ed49e650 8936 * @len: limit of bytes to copy to name
db24a904
DA
8937 *
8938 * Get device physical port name
8939 */
8940int dev_get_phys_port_name(struct net_device *dev,
8941 char *name, size_t len)
8942{
8943 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8944 int err;
db24a904 8945
af3836df
JP
8946 if (ops->ndo_get_phys_port_name) {
8947 err = ops->ndo_get_phys_port_name(dev, name, len);
8948 if (err != -EOPNOTSUPP)
8949 return err;
8950 }
8951 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
8952}
8953EXPORT_SYMBOL(dev_get_phys_port_name);
8954
d6abc596
FF
8955/**
8956 * dev_get_port_parent_id - Get the device's port parent identifier
8957 * @dev: network device
8958 * @ppid: pointer to a storage for the port's parent identifier
8959 * @recurse: allow/disallow recursion to lower devices
8960 *
8961 * Get the devices's port parent identifier
8962 */
8963int dev_get_port_parent_id(struct net_device *dev,
8964 struct netdev_phys_item_id *ppid,
8965 bool recurse)
8966{
8967 const struct net_device_ops *ops = dev->netdev_ops;
8968 struct netdev_phys_item_id first = { };
8969 struct net_device *lower_dev;
8970 struct list_head *iter;
7e1146e8
JP
8971 int err;
8972
8973 if (ops->ndo_get_port_parent_id) {
8974 err = ops->ndo_get_port_parent_id(dev, ppid);
8975 if (err != -EOPNOTSUPP)
8976 return err;
8977 }
d6abc596 8978
7e1146e8
JP
8979 err = devlink_compat_switch_id_get(dev, ppid);
8980 if (!err || err != -EOPNOTSUPP)
8981 return err;
d6abc596
FF
8982
8983 if (!recurse)
7e1146e8 8984 return -EOPNOTSUPP;
d6abc596
FF
8985
8986 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8987 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8988 if (err)
8989 break;
8990 if (!first.id_len)
8991 first = *ppid;
8992 else if (memcmp(&first, ppid, sizeof(*ppid)))
e1b9efe6 8993 return -EOPNOTSUPP;
d6abc596
FF
8994 }
8995
8996 return err;
8997}
8998EXPORT_SYMBOL(dev_get_port_parent_id);
8999
9000/**
9001 * netdev_port_same_parent_id - Indicate if two network devices have
9002 * the same port parent identifier
9003 * @a: first network device
9004 * @b: second network device
9005 */
9006bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9007{
9008 struct netdev_phys_item_id a_id = { };
9009 struct netdev_phys_item_id b_id = { };
9010
9011 if (dev_get_port_parent_id(a, &a_id, true) ||
9012 dev_get_port_parent_id(b, &b_id, true))
9013 return false;
9014
9015 return netdev_phys_item_id_same(&a_id, &b_id);
9016}
9017EXPORT_SYMBOL(netdev_port_same_parent_id);
9018
d746d707
AK
9019/**
9020 * dev_change_proto_down - update protocol port state information
9021 * @dev: device
9022 * @proto_down: new value
9023 *
9024 * This info can be used by switch drivers to set the phys state of the
9025 * port.
9026 */
9027int dev_change_proto_down(struct net_device *dev, bool proto_down)
9028{
9029 const struct net_device_ops *ops = dev->netdev_ops;
9030
9031 if (!ops->ndo_change_proto_down)
9032 return -EOPNOTSUPP;
9033 if (!netif_device_present(dev))
9034 return -ENODEV;
9035 return ops->ndo_change_proto_down(dev, proto_down);
9036}
9037EXPORT_SYMBOL(dev_change_proto_down);
9038
b5899679
AR
9039/**
9040 * dev_change_proto_down_generic - generic implementation for
9041 * ndo_change_proto_down that sets carrier according to
9042 * proto_down.
9043 *
9044 * @dev: device
9045 * @proto_down: new value
9046 */
9047int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9048{
9049 if (proto_down)
9050 netif_carrier_off(dev);
9051 else
9052 netif_carrier_on(dev);
9053 dev->proto_down = proto_down;
9054 return 0;
9055}
9056EXPORT_SYMBOL(dev_change_proto_down_generic);
9057
829eb208
RP
9058/**
9059 * dev_change_proto_down_reason - proto down reason
9060 *
9061 * @dev: device
9062 * @mask: proto down mask
9063 * @value: proto down value
9064 */
9065void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9066 u32 value)
9067{
9068 int b;
9069
9070 if (!mask) {
9071 dev->proto_down_reason = value;
9072 } else {
9073 for_each_set_bit(b, &mask, 32) {
9074 if (value & (1 << b))
9075 dev->proto_down_reason |= BIT(b);
9076 else
9077 dev->proto_down_reason &= ~BIT(b);
9078 }
9079 }
9080}
9081EXPORT_SYMBOL(dev_change_proto_down_reason);
9082
aa8d3a71
AN
9083struct bpf_xdp_link {
9084 struct bpf_link link;
9085 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9086 int flags;
9087};
9088
c8a36f19 9089static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
d67b9cd2 9090{
7f0a8382
AN
9091 if (flags & XDP_FLAGS_HW_MODE)
9092 return XDP_MODE_HW;
9093 if (flags & XDP_FLAGS_DRV_MODE)
9094 return XDP_MODE_DRV;
c8a36f19
AN
9095 if (flags & XDP_FLAGS_SKB_MODE)
9096 return XDP_MODE_SKB;
9097 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
7f0a8382 9098}
d67b9cd2 9099
7f0a8382
AN
9100static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9101{
9102 switch (mode) {
9103 case XDP_MODE_SKB:
9104 return generic_xdp_install;
9105 case XDP_MODE_DRV:
9106 case XDP_MODE_HW:
9107 return dev->netdev_ops->ndo_bpf;
9108 default:
9109 return NULL;
5d867245 9110 }
7f0a8382 9111}
118b4aa2 9112
aa8d3a71
AN
9113static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9114 enum bpf_xdp_mode mode)
9115{
9116 return dev->xdp_state[mode].link;
9117}
9118
7f0a8382
AN
9119static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9120 enum bpf_xdp_mode mode)
9121{
aa8d3a71
AN
9122 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9123
9124 if (link)
9125 return link->link.prog;
7f0a8382
AN
9126 return dev->xdp_state[mode].prog;
9127}
9128
998f1729
THJ
9129static u8 dev_xdp_prog_count(struct net_device *dev)
9130{
9131 u8 count = 0;
9132 int i;
9133
9134 for (i = 0; i < __MAX_XDP_MODE; i++)
9135 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9136 count++;
9137 return count;
9138}
9139
7f0a8382
AN
9140u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9141{
9142 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
118b4aa2 9143
7f0a8382
AN
9144 return prog ? prog->aux->id : 0;
9145}
58038695 9146
aa8d3a71
AN
9147static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9148 struct bpf_xdp_link *link)
9149{
9150 dev->xdp_state[mode].link = link;
9151 dev->xdp_state[mode].prog = NULL;
d67b9cd2
DB
9152}
9153
7f0a8382
AN
9154static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9155 struct bpf_prog *prog)
9156{
aa8d3a71 9157 dev->xdp_state[mode].link = NULL;
7f0a8382 9158 dev->xdp_state[mode].prog = prog;
d67b9cd2
DB
9159}
9160
7f0a8382
AN
9161static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9162 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9163 u32 flags, struct bpf_prog *prog)
d67b9cd2 9164{
f4e63525 9165 struct netdev_bpf xdp;
7e6897f9
BT
9166 int err;
9167
d67b9cd2 9168 memset(&xdp, 0, sizeof(xdp));
7f0a8382 9169 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
d67b9cd2 9170 xdp.extack = extack;
32d60277 9171 xdp.flags = flags;
d67b9cd2
DB
9172 xdp.prog = prog;
9173
7f0a8382
AN
9174 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9175 * "moved" into driver), so they don't increment it on their own, but
9176 * they do decrement refcnt when program is detached or replaced.
9177 * Given net_device also owns link/prog, we need to bump refcnt here
9178 * to prevent drivers from underflowing it.
9179 */
9180 if (prog)
9181 bpf_prog_inc(prog);
7e6897f9 9182 err = bpf_op(dev, &xdp);
7f0a8382
AN
9183 if (err) {
9184 if (prog)
9185 bpf_prog_put(prog);
9186 return err;
9187 }
7e6897f9 9188
7f0a8382
AN
9189 if (mode != XDP_MODE_HW)
9190 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
7e6897f9 9191
7f0a8382 9192 return 0;
d67b9cd2
DB
9193}
9194
bd0b2e7f
JK
9195static void dev_xdp_uninstall(struct net_device *dev)
9196{
aa8d3a71 9197 struct bpf_xdp_link *link;
7f0a8382
AN
9198 struct bpf_prog *prog;
9199 enum bpf_xdp_mode mode;
9200 bpf_op_t bpf_op;
bd0b2e7f 9201
7f0a8382 9202 ASSERT_RTNL();
bd0b2e7f 9203
7f0a8382
AN
9204 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9205 prog = dev_xdp_prog(dev, mode);
9206 if (!prog)
9207 continue;
bd0b2e7f 9208
7f0a8382
AN
9209 bpf_op = dev_xdp_bpf_op(dev, mode);
9210 if (!bpf_op)
9211 continue;
bd0b2e7f 9212
7f0a8382
AN
9213 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9214
aa8d3a71
AN
9215 /* auto-detach link from net device */
9216 link = dev_xdp_link(dev, mode);
9217 if (link)
9218 link->dev = NULL;
9219 else
9220 bpf_prog_put(prog);
9221
9222 dev_xdp_set_link(dev, mode, NULL);
7f0a8382 9223 }
bd0b2e7f
JK
9224}
9225
d4baa936 9226static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
aa8d3a71
AN
9227 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9228 struct bpf_prog *old_prog, u32 flags)
a7862b45 9229{
998f1729 9230 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
d4baa936
AN
9231 struct bpf_prog *cur_prog;
9232 enum bpf_xdp_mode mode;
7f0a8382 9233 bpf_op_t bpf_op;
a7862b45
BB
9234 int err;
9235
85de8576
DB
9236 ASSERT_RTNL();
9237
aa8d3a71
AN
9238 /* either link or prog attachment, never both */
9239 if (link && (new_prog || old_prog))
9240 return -EINVAL;
9241 /* link supports only XDP mode flags */
9242 if (link && (flags & ~XDP_FLAGS_MODES)) {
9243 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9244 return -EINVAL;
9245 }
998f1729
THJ
9246 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9247 if (num_modes > 1) {
d4baa936
AN
9248 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9249 return -EINVAL;
9250 }
998f1729
THJ
9251 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9252 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9253 NL_SET_ERR_MSG(extack,
9254 "More than one program loaded, unset mode is ambiguous");
9255 return -EINVAL;
9256 }
d4baa936
AN
9257 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9258 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9259 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9260 return -EINVAL;
01dde20c 9261 }
a25717d2 9262
c8a36f19 9263 mode = dev_xdp_mode(dev, flags);
aa8d3a71
AN
9264 /* can't replace attached link */
9265 if (dev_xdp_link(dev, mode)) {
9266 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9267 return -EBUSY;
01dde20c 9268 }
c14a9f63 9269
d4baa936 9270 cur_prog = dev_xdp_prog(dev, mode);
aa8d3a71
AN
9271 /* can't replace attached prog with link */
9272 if (link && cur_prog) {
9273 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9274 return -EBUSY;
9275 }
d4baa936
AN
9276 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9277 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9278 return -EEXIST;
92234c8f 9279 }
c14a9f63 9280
aa8d3a71
AN
9281 /* put effective new program into new_prog */
9282 if (link)
9283 new_prog = link->link.prog;
85de8576 9284
d4baa936
AN
9285 if (new_prog) {
9286 bool offload = mode == XDP_MODE_HW;
7f0a8382
AN
9287 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9288 ? XDP_MODE_DRV : XDP_MODE_SKB;
441a3303 9289
068d9d1e
AN
9290 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9291 NL_SET_ERR_MSG(extack, "XDP program already attached");
9292 return -EBUSY;
9293 }
d4baa936 9294 if (!offload && dev_xdp_prog(dev, other_mode)) {
7f0a8382 9295 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
d67b9cd2 9296 return -EEXIST;
01dde20c 9297 }
d4baa936 9298 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
7f0a8382 9299 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
441a3303
JK
9300 return -EINVAL;
9301 }
d4baa936 9302 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
fbee97fe 9303 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
fbee97fe
DA
9304 return -EINVAL;
9305 }
d4baa936
AN
9306 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9307 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
92164774
LB
9308 return -EINVAL;
9309 }
d4baa936 9310 }
92164774 9311
d4baa936
AN
9312 /* don't call drivers if the effective program didn't change */
9313 if (new_prog != cur_prog) {
9314 bpf_op = dev_xdp_bpf_op(dev, mode);
9315 if (!bpf_op) {
9316 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9317 return -EOPNOTSUPP;
c14a9f63 9318 }
a7862b45 9319
d4baa936
AN
9320 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9321 if (err)
9322 return err;
7f0a8382 9323 }
d4baa936 9324
aa8d3a71
AN
9325 if (link)
9326 dev_xdp_set_link(dev, mode, link);
9327 else
9328 dev_xdp_set_prog(dev, mode, new_prog);
d4baa936
AN
9329 if (cur_prog)
9330 bpf_prog_put(cur_prog);
a7862b45 9331
7f0a8382 9332 return 0;
a7862b45 9333}
a7862b45 9334
aa8d3a71
AN
9335static int dev_xdp_attach_link(struct net_device *dev,
9336 struct netlink_ext_ack *extack,
9337 struct bpf_xdp_link *link)
9338{
9339 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9340}
9341
9342static int dev_xdp_detach_link(struct net_device *dev,
9343 struct netlink_ext_ack *extack,
9344 struct bpf_xdp_link *link)
9345{
9346 enum bpf_xdp_mode mode;
9347 bpf_op_t bpf_op;
9348
9349 ASSERT_RTNL();
9350
c8a36f19 9351 mode = dev_xdp_mode(dev, link->flags);
aa8d3a71
AN
9352 if (dev_xdp_link(dev, mode) != link)
9353 return -EINVAL;
9354
9355 bpf_op = dev_xdp_bpf_op(dev, mode);
9356 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9357 dev_xdp_set_link(dev, mode, NULL);
9358 return 0;
9359}
9360
9361static void bpf_xdp_link_release(struct bpf_link *link)
9362{
9363 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9364
9365 rtnl_lock();
9366
9367 /* if racing with net_device's tear down, xdp_link->dev might be
9368 * already NULL, in which case link was already auto-detached
9369 */
73b11c2a 9370 if (xdp_link->dev) {
aa8d3a71 9371 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
73b11c2a
AN
9372 xdp_link->dev = NULL;
9373 }
aa8d3a71
AN
9374
9375 rtnl_unlock();
9376}
9377
73b11c2a
AN
9378static int bpf_xdp_link_detach(struct bpf_link *link)
9379{
9380 bpf_xdp_link_release(link);
9381 return 0;
9382}
9383
aa8d3a71
AN
9384static void bpf_xdp_link_dealloc(struct bpf_link *link)
9385{
9386 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9387
9388 kfree(xdp_link);
9389}
9390
c1931c97
AN
9391static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9392 struct seq_file *seq)
9393{
9394 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9395 u32 ifindex = 0;
9396
9397 rtnl_lock();
9398 if (xdp_link->dev)
9399 ifindex = xdp_link->dev->ifindex;
9400 rtnl_unlock();
9401
9402 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9403}
9404
9405static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9406 struct bpf_link_info *info)
9407{
9408 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9409 u32 ifindex = 0;
9410
9411 rtnl_lock();
9412 if (xdp_link->dev)
9413 ifindex = xdp_link->dev->ifindex;
9414 rtnl_unlock();
9415
9416 info->xdp.ifindex = ifindex;
9417 return 0;
9418}
9419
026a4c28
AN
9420static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9421 struct bpf_prog *old_prog)
9422{
9423 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9424 enum bpf_xdp_mode mode;
9425 bpf_op_t bpf_op;
9426 int err = 0;
9427
9428 rtnl_lock();
9429
9430 /* link might have been auto-released already, so fail */
9431 if (!xdp_link->dev) {
9432 err = -ENOLINK;
9433 goto out_unlock;
9434 }
9435
9436 if (old_prog && link->prog != old_prog) {
9437 err = -EPERM;
9438 goto out_unlock;
9439 }
9440 old_prog = link->prog;
9441 if (old_prog == new_prog) {
9442 /* no-op, don't disturb drivers */
9443 bpf_prog_put(new_prog);
9444 goto out_unlock;
9445 }
9446
c8a36f19 9447 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
026a4c28
AN
9448 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9449 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9450 xdp_link->flags, new_prog);
9451 if (err)
9452 goto out_unlock;
9453
9454 old_prog = xchg(&link->prog, new_prog);
9455 bpf_prog_put(old_prog);
9456
9457out_unlock:
9458 rtnl_unlock();
9459 return err;
9460}
9461
aa8d3a71
AN
9462static const struct bpf_link_ops bpf_xdp_link_lops = {
9463 .release = bpf_xdp_link_release,
9464 .dealloc = bpf_xdp_link_dealloc,
73b11c2a 9465 .detach = bpf_xdp_link_detach,
c1931c97
AN
9466 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9467 .fill_link_info = bpf_xdp_link_fill_link_info,
026a4c28 9468 .update_prog = bpf_xdp_link_update,
aa8d3a71
AN
9469};
9470
9471int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9472{
9473 struct net *net = current->nsproxy->net_ns;
9474 struct bpf_link_primer link_primer;
9475 struct bpf_xdp_link *link;
9476 struct net_device *dev;
9477 int err, fd;
9478
9479 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9480 if (!dev)
9481 return -EINVAL;
9482
9483 link = kzalloc(sizeof(*link), GFP_USER);
9484 if (!link) {
9485 err = -ENOMEM;
9486 goto out_put_dev;
9487 }
9488
9489 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9490 link->dev = dev;
9491 link->flags = attr->link_create.flags;
9492
9493 err = bpf_link_prime(&link->link, &link_primer);
9494 if (err) {
9495 kfree(link);
9496 goto out_put_dev;
9497 }
9498
9499 rtnl_lock();
9500 err = dev_xdp_attach_link(dev, NULL, link);
9501 rtnl_unlock();
9502
9503 if (err) {
9504 bpf_link_cleanup(&link_primer);
9505 goto out_put_dev;
9506 }
9507
9508 fd = bpf_link_settle(&link_primer);
9509 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9510 dev_put(dev);
9511 return fd;
9512
9513out_put_dev:
9514 dev_put(dev);
9515 return err;
9516}
9517
d4baa936
AN
9518/**
9519 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9520 * @dev: device
9521 * @extack: netlink extended ack
9522 * @fd: new program fd or negative value to clear
9523 * @expected_fd: old program fd that userspace expects to replace or clear
9524 * @flags: xdp-related flags
9525 *
9526 * Set or clear a bpf program for a device
9527 */
9528int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9529 int fd, int expected_fd, u32 flags)
9530{
c8a36f19 9531 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
d4baa936
AN
9532 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9533 int err;
9534
9535 ASSERT_RTNL();
9536
9537 if (fd >= 0) {
9538 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9539 mode != XDP_MODE_SKB);
9540 if (IS_ERR(new_prog))
9541 return PTR_ERR(new_prog);
9542 }
9543
9544 if (expected_fd >= 0) {
9545 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9546 mode != XDP_MODE_SKB);
9547 if (IS_ERR(old_prog)) {
9548 err = PTR_ERR(old_prog);
9549 old_prog = NULL;
9550 goto err_out;
c14a9f63 9551 }
a7862b45
BB
9552 }
9553
aa8d3a71 9554 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
a7862b45 9555
d4baa936
AN
9556err_out:
9557 if (err && new_prog)
9558 bpf_prog_put(new_prog);
9559 if (old_prog)
9560 bpf_prog_put(old_prog);
a7862b45
BB
9561 return err;
9562}
a7862b45 9563
1da177e4
LT
9564/**
9565 * dev_new_index - allocate an ifindex
c4ea43c5 9566 * @net: the applicable net namespace
1da177e4
LT
9567 *
9568 * Returns a suitable unique value for a new device interface
9569 * number. The caller must hold the rtnl semaphore or the
9570 * dev_base_lock to be sure it remains unique.
9571 */
881d966b 9572static int dev_new_index(struct net *net)
1da177e4 9573{
aa79e66e 9574 int ifindex = net->ifindex;
f4563a75 9575
1da177e4
LT
9576 for (;;) {
9577 if (++ifindex <= 0)
9578 ifindex = 1;
881d966b 9579 if (!__dev_get_by_index(net, ifindex))
aa79e66e 9580 return net->ifindex = ifindex;
1da177e4
LT
9581 }
9582}
9583
1da177e4 9584/* Delayed registration/unregisteration */
3b5b34fd 9585static LIST_HEAD(net_todo_list);
200b916f 9586DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 9587
6f05f629 9588static void net_set_todo(struct net_device *dev)
1da177e4 9589{
1da177e4 9590 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 9591 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
9592}
9593
fd867d51
JW
9594static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9595 struct net_device *upper, netdev_features_t features)
9596{
9597 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9598 netdev_features_t feature;
5ba3f7d6 9599 int feature_bit;
fd867d51 9600
3b89ea9c 9601 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9602 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9603 if (!(upper->wanted_features & feature)
9604 && (features & feature)) {
9605 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9606 &feature, upper->name);
9607 features &= ~feature;
9608 }
9609 }
9610
9611 return features;
9612}
9613
9614static void netdev_sync_lower_features(struct net_device *upper,
9615 struct net_device *lower, netdev_features_t features)
9616{
9617 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9618 netdev_features_t feature;
5ba3f7d6 9619 int feature_bit;
fd867d51 9620
3b89ea9c 9621 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9622 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9623 if (!(features & feature) && (lower->features & feature)) {
9624 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9625 &feature, lower->name);
9626 lower->wanted_features &= ~feature;
dd912306 9627 __netdev_update_features(lower);
fd867d51
JW
9628
9629 if (unlikely(lower->features & feature))
9630 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9631 &feature, lower->name);
dd912306
CW
9632 else
9633 netdev_features_change(lower);
fd867d51
JW
9634 }
9635 }
9636}
9637
c8f44aff
MM
9638static netdev_features_t netdev_fix_features(struct net_device *dev,
9639 netdev_features_t features)
b63365a2 9640{
57422dc5
MM
9641 /* Fix illegal checksum combinations */
9642 if ((features & NETIF_F_HW_CSUM) &&
9643 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 9644 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
9645 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9646 }
9647
b63365a2 9648 /* TSO requires that SG is present as well. */
ea2d3688 9649 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 9650 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 9651 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
9652 }
9653
ec5f0615
PS
9654 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9655 !(features & NETIF_F_IP_CSUM)) {
9656 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9657 features &= ~NETIF_F_TSO;
9658 features &= ~NETIF_F_TSO_ECN;
9659 }
9660
9661 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9662 !(features & NETIF_F_IPV6_CSUM)) {
9663 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9664 features &= ~NETIF_F_TSO6;
9665 }
9666
b1dc497b
AD
9667 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9668 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9669 features &= ~NETIF_F_TSO_MANGLEID;
9670
31d8b9e0
BH
9671 /* TSO ECN requires that TSO is present as well. */
9672 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9673 features &= ~NETIF_F_TSO_ECN;
9674
212b573f
MM
9675 /* Software GSO depends on SG. */
9676 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 9677 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
9678 features &= ~NETIF_F_GSO;
9679 }
9680
802ab55a
AD
9681 /* GSO partial features require GSO partial be set */
9682 if ((features & dev->gso_partial_features) &&
9683 !(features & NETIF_F_GSO_PARTIAL)) {
9684 netdev_dbg(dev,
9685 "Dropping partially supported GSO features since no GSO partial.\n");
9686 features &= ~dev->gso_partial_features;
9687 }
9688
fb1f5f79
MC
9689 if (!(features & NETIF_F_RXCSUM)) {
9690 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9691 * successfully merged by hardware must also have the
9692 * checksum verified by hardware. If the user does not
9693 * want to enable RXCSUM, logically, we should disable GRO_HW.
9694 */
9695 if (features & NETIF_F_GRO_HW) {
9696 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9697 features &= ~NETIF_F_GRO_HW;
9698 }
9699 }
9700
de8d5ab2
GP
9701 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9702 if (features & NETIF_F_RXFCS) {
9703 if (features & NETIF_F_LRO) {
9704 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9705 features &= ~NETIF_F_LRO;
9706 }
9707
9708 if (features & NETIF_F_GRO_HW) {
9709 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9710 features &= ~NETIF_F_GRO_HW;
9711 }
e6c6a929
GP
9712 }
9713
25537d71
TT
9714 if (features & NETIF_F_HW_TLS_TX) {
9715 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9716 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9717 bool hw_csum = features & NETIF_F_HW_CSUM;
9718
9719 if (!ip_csum && !hw_csum) {
9720 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9721 features &= ~NETIF_F_HW_TLS_TX;
9722 }
ae0b04b2
TT
9723 }
9724
a3eb4e9d
TT
9725 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9726 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9727 features &= ~NETIF_F_HW_TLS_RX;
9728 }
9729
b63365a2
HX
9730 return features;
9731}
b63365a2 9732
6cb6a27c 9733int __netdev_update_features(struct net_device *dev)
5455c699 9734{
fd867d51 9735 struct net_device *upper, *lower;
c8f44aff 9736 netdev_features_t features;
fd867d51 9737 struct list_head *iter;
e7868a85 9738 int err = -1;
5455c699 9739
87267485
MM
9740 ASSERT_RTNL();
9741
5455c699
MM
9742 features = netdev_get_wanted_features(dev);
9743
9744 if (dev->netdev_ops->ndo_fix_features)
9745 features = dev->netdev_ops->ndo_fix_features(dev, features);
9746
9747 /* driver might be less strict about feature dependencies */
9748 features = netdev_fix_features(dev, features);
9749
4250b75b 9750 /* some features can't be enabled if they're off on an upper device */
fd867d51
JW
9751 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9752 features = netdev_sync_upper_features(dev, upper, features);
9753
5455c699 9754 if (dev->features == features)
e7868a85 9755 goto sync_lower;
5455c699 9756
c8f44aff
MM
9757 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9758 &dev->features, &features);
5455c699
MM
9759
9760 if (dev->netdev_ops->ndo_set_features)
9761 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9762 else
9763 err = 0;
5455c699 9764
6cb6a27c 9765 if (unlikely(err < 0)) {
5455c699 9766 netdev_err(dev,
c8f44aff
MM
9767 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9768 err, &features, &dev->features);
17b85d29
NA
9769 /* return non-0 since some features might have changed and
9770 * it's better to fire a spurious notification than miss it
9771 */
9772 return -1;
6cb6a27c
MM
9773 }
9774
e7868a85 9775sync_lower:
fd867d51
JW
9776 /* some features must be disabled on lower devices when disabled
9777 * on an upper device (think: bonding master or bridge)
9778 */
9779 netdev_for_each_lower_dev(dev, lower, iter)
9780 netdev_sync_lower_features(dev, lower, features);
9781
ae847f40
SD
9782 if (!err) {
9783 netdev_features_t diff = features ^ dev->features;
9784
9785 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9786 /* udp_tunnel_{get,drop}_rx_info both need
9787 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9788 * device, or they won't do anything.
9789 * Thus we need to update dev->features
9790 * *before* calling udp_tunnel_get_rx_info,
9791 * but *after* calling udp_tunnel_drop_rx_info.
9792 */
9793 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9794 dev->features = features;
9795 udp_tunnel_get_rx_info(dev);
9796 } else {
9797 udp_tunnel_drop_rx_info(dev);
9798 }
9799 }
9800
9daae9bd
GP
9801 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9802 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9803 dev->features = features;
9804 err |= vlan_get_rx_ctag_filter_info(dev);
9805 } else {
9806 vlan_drop_rx_ctag_filter_info(dev);
9807 }
9808 }
9809
9810 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9811 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9812 dev->features = features;
9813 err |= vlan_get_rx_stag_filter_info(dev);
9814 } else {
9815 vlan_drop_rx_stag_filter_info(dev);
9816 }
9817 }
9818
6cb6a27c 9819 dev->features = features;
ae847f40 9820 }
6cb6a27c 9821
e7868a85 9822 return err < 0 ? 0 : 1;
6cb6a27c
MM
9823}
9824
afe12cc8
MM
9825/**
9826 * netdev_update_features - recalculate device features
9827 * @dev: the device to check
9828 *
9829 * Recalculate dev->features set and send notifications if it
9830 * has changed. Should be called after driver or hardware dependent
9831 * conditions might have changed that influence the features.
9832 */
6cb6a27c
MM
9833void netdev_update_features(struct net_device *dev)
9834{
9835 if (__netdev_update_features(dev))
9836 netdev_features_change(dev);
5455c699
MM
9837}
9838EXPORT_SYMBOL(netdev_update_features);
9839
afe12cc8
MM
9840/**
9841 * netdev_change_features - recalculate device features
9842 * @dev: the device to check
9843 *
9844 * Recalculate dev->features set and send notifications even
9845 * if they have not changed. Should be called instead of
9846 * netdev_update_features() if also dev->vlan_features might
9847 * have changed to allow the changes to be propagated to stacked
9848 * VLAN devices.
9849 */
9850void netdev_change_features(struct net_device *dev)
9851{
9852 __netdev_update_features(dev);
9853 netdev_features_change(dev);
9854}
9855EXPORT_SYMBOL(netdev_change_features);
9856
fc4a7489
PM
9857/**
9858 * netif_stacked_transfer_operstate - transfer operstate
9859 * @rootdev: the root or lower level device to transfer state from
9860 * @dev: the device to transfer operstate to
9861 *
9862 * Transfer operational state from root to device. This is normally
9863 * called when a stacking relationship exists between the root
9864 * device and the device(a leaf device).
9865 */
9866void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9867 struct net_device *dev)
9868{
9869 if (rootdev->operstate == IF_OPER_DORMANT)
9870 netif_dormant_on(dev);
9871 else
9872 netif_dormant_off(dev);
9873
eec517cd
AL
9874 if (rootdev->operstate == IF_OPER_TESTING)
9875 netif_testing_on(dev);
9876 else
9877 netif_testing_off(dev);
9878
0575c86b
ZS
9879 if (netif_carrier_ok(rootdev))
9880 netif_carrier_on(dev);
9881 else
9882 netif_carrier_off(dev);
fc4a7489
PM
9883}
9884EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9885
1b4bf461
ED
9886static int netif_alloc_rx_queues(struct net_device *dev)
9887{
1b4bf461 9888 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 9889 struct netdev_rx_queue *rx;
10595902 9890 size_t sz = count * sizeof(*rx);
e817f856 9891 int err = 0;
1b4bf461 9892
bd25fa7b 9893 BUG_ON(count < 1);
1b4bf461 9894
dcda9b04 9895 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9896 if (!rx)
9897 return -ENOMEM;
9898
bd25fa7b
TH
9899 dev->_rx = rx;
9900
e817f856 9901 for (i = 0; i < count; i++) {
fe822240 9902 rx[i].dev = dev;
e817f856
JDB
9903
9904 /* XDP RX-queue setup */
b02e5a0e 9905 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
e817f856
JDB
9906 if (err < 0)
9907 goto err_rxq_info;
9908 }
1b4bf461 9909 return 0;
e817f856
JDB
9910
9911err_rxq_info:
9912 /* Rollback successful reg's and free other resources */
9913 while (i--)
9914 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 9915 kvfree(dev->_rx);
e817f856
JDB
9916 dev->_rx = NULL;
9917 return err;
9918}
9919
9920static void netif_free_rx_queues(struct net_device *dev)
9921{
9922 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
9923
9924 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9925 if (!dev->_rx)
9926 return;
9927
e817f856 9928 for (i = 0; i < count; i++)
82aaff2f
JK
9929 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9930
9931 kvfree(dev->_rx);
1b4bf461
ED
9932}
9933
aa942104
CG
9934static void netdev_init_one_queue(struct net_device *dev,
9935 struct netdev_queue *queue, void *_unused)
9936{
9937 /* Initialize queue lock */
9938 spin_lock_init(&queue->_xmit_lock);
1a33e10e 9939 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
aa942104 9940 queue->xmit_lock_owner = -1;
b236da69 9941 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 9942 queue->dev = dev;
114cf580
TH
9943#ifdef CONFIG_BQL
9944 dql_init(&queue->dql, HZ);
9945#endif
aa942104
CG
9946}
9947
60877a32
ED
9948static void netif_free_tx_queues(struct net_device *dev)
9949{
4cb28970 9950 kvfree(dev->_tx);
60877a32
ED
9951}
9952
e6484930
TH
9953static int netif_alloc_netdev_queues(struct net_device *dev)
9954{
9955 unsigned int count = dev->num_tx_queues;
9956 struct netdev_queue *tx;
60877a32 9957 size_t sz = count * sizeof(*tx);
e6484930 9958
d339727c
ED
9959 if (count < 1 || count > 0xffff)
9960 return -EINVAL;
62b5942a 9961
dcda9b04 9962 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9963 if (!tx)
9964 return -ENOMEM;
9965
e6484930 9966 dev->_tx = tx;
1d24eb48 9967
e6484930
TH
9968 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9969 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
9970
9971 return 0;
e6484930
TH
9972}
9973
a2029240
DV
9974void netif_tx_stop_all_queues(struct net_device *dev)
9975{
9976 unsigned int i;
9977
9978 for (i = 0; i < dev->num_tx_queues; i++) {
9979 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 9980
a2029240
DV
9981 netif_tx_stop_queue(txq);
9982 }
9983}
9984EXPORT_SYMBOL(netif_tx_stop_all_queues);
9985
1da177e4
LT
9986/**
9987 * register_netdevice - register a network device
9988 * @dev: device to register
9989 *
9990 * Take a completed network device structure and add it to the kernel
9991 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9992 * chain. 0 is returned on success. A negative errno code is returned
9993 * on a failure to set up the device, or if the name is a duplicate.
9994 *
9995 * Callers must hold the rtnl semaphore. You may want
9996 * register_netdev() instead of this.
9997 *
9998 * BUGS:
9999 * The locking appears insufficient to guarantee two parallel registers
10000 * will not get the same name.
10001 */
10002
10003int register_netdevice(struct net_device *dev)
10004{
1da177e4 10005 int ret;
d314774c 10006 struct net *net = dev_net(dev);
1da177e4 10007
e283de3a
FF
10008 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10009 NETDEV_FEATURE_COUNT);
1da177e4
LT
10010 BUG_ON(dev_boot_phase);
10011 ASSERT_RTNL();
10012
b17a7c17
SH
10013 might_sleep();
10014
1da177e4
LT
10015 /* When net_device's are persistent, this will be fatal. */
10016 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 10017 BUG_ON(!net);
1da177e4 10018
9000edb7
JK
10019 ret = ethtool_check_ops(dev->ethtool_ops);
10020 if (ret)
10021 return ret;
10022
f1f28aa3 10023 spin_lock_init(&dev->addr_list_lock);
845e0ebb 10024 netdev_set_addr_lockdep_class(dev);
1da177e4 10025
828de4f6 10026 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
10027 if (ret < 0)
10028 goto out;
10029
9077f052 10030 ret = -ENOMEM;
ff927412
JP
10031 dev->name_node = netdev_name_node_head_alloc(dev);
10032 if (!dev->name_node)
10033 goto out;
10034
1da177e4 10035 /* Init, if this function is available */
d314774c
SH
10036 if (dev->netdev_ops->ndo_init) {
10037 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
10038 if (ret) {
10039 if (ret > 0)
10040 ret = -EIO;
42c17fa6 10041 goto err_free_name;
1da177e4
LT
10042 }
10043 }
4ec93edb 10044
f646968f
PM
10045 if (((dev->hw_features | dev->features) &
10046 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
10047 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10048 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10049 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10050 ret = -EINVAL;
10051 goto err_uninit;
10052 }
10053
9c7dafbf
PE
10054 ret = -EBUSY;
10055 if (!dev->ifindex)
10056 dev->ifindex = dev_new_index(net);
10057 else if (__dev_get_by_index(net, dev->ifindex))
10058 goto err_uninit;
10059
5455c699
MM
10060 /* Transfer changeable features to wanted_features and enable
10061 * software offloads (GSO and GRO).
10062 */
1a3c998f 10063 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 10064 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122 10065
876c4384 10066 if (dev->udp_tunnel_nic_info) {
d764a122
SD
10067 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10068 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10069 }
10070
14d1232f 10071 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 10072
cbc53e08 10073 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 10074 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 10075
7f348a60
AD
10076 /* If IPv4 TCP segmentation offload is supported we should also
10077 * allow the device to enable segmenting the frame with the option
10078 * of ignoring a static IP ID value. This doesn't enable the
10079 * feature itself but allows the user to enable it later.
10080 */
cbc53e08
AD
10081 if (dev->hw_features & NETIF_F_TSO)
10082 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
10083 if (dev->vlan_features & NETIF_F_TSO)
10084 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10085 if (dev->mpls_features & NETIF_F_TSO)
10086 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10087 if (dev->hw_enc_features & NETIF_F_TSO)
10088 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 10089
1180e7d6 10090 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 10091 */
1180e7d6 10092 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 10093
ee579677
PS
10094 /* Make NETIF_F_SG inheritable to tunnel devices.
10095 */
802ab55a 10096 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 10097
0d89d203
SH
10098 /* Make NETIF_F_SG inheritable to MPLS.
10099 */
10100 dev->mpls_features |= NETIF_F_SG;
10101
7ffbe3fd
JB
10102 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10103 ret = notifier_to_errno(ret);
10104 if (ret)
10105 goto err_uninit;
10106
8b41d188 10107 ret = netdev_register_kobject(dev);
cb626bf5
JH
10108 if (ret) {
10109 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 10110 goto err_uninit;
cb626bf5 10111 }
b17a7c17
SH
10112 dev->reg_state = NETREG_REGISTERED;
10113
6cb6a27c 10114 __netdev_update_features(dev);
8e9b59b2 10115
1da177e4
LT
10116 /*
10117 * Default initial state at registry is that the
10118 * device is present.
10119 */
10120
10121 set_bit(__LINK_STATE_PRESENT, &dev->state);
10122
8f4cccbb
BH
10123 linkwatch_init_dev(dev);
10124
1da177e4 10125 dev_init_scheduler(dev);
1da177e4 10126 dev_hold(dev);
ce286d32 10127 list_netdevice(dev);
7bf23575 10128 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 10129
948b337e
JP
10130 /* If the device has permanent device address, driver should
10131 * set dev_addr and also addr_assign_type should be set to
10132 * NET_ADDR_PERM (default value).
10133 */
10134 if (dev->addr_assign_type == NET_ADDR_PERM)
10135 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10136
1da177e4 10137 /* Notify protocols, that a new device appeared. */
056925ab 10138 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 10139 ret = notifier_to_errno(ret);
93ee31f1 10140 if (ret) {
766b0515
JK
10141 /* Expect explicit free_netdev() on failure */
10142 dev->needs_free_netdev = false;
037e56bd 10143 unregister_netdevice_queue(dev, NULL);
766b0515 10144 goto out;
93ee31f1 10145 }
d90a909e
EB
10146 /*
10147 * Prevent userspace races by waiting until the network
10148 * device is fully setup before sending notifications.
10149 */
a2835763
PM
10150 if (!dev->rtnl_link_ops ||
10151 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 10152 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
10153
10154out:
10155 return ret;
7ce1b0ed
HX
10156
10157err_uninit:
d314774c
SH
10158 if (dev->netdev_ops->ndo_uninit)
10159 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
10160 if (dev->priv_destructor)
10161 dev->priv_destructor(dev);
42c17fa6
DC
10162err_free_name:
10163 netdev_name_node_free(dev->name_node);
7ce1b0ed 10164 goto out;
1da177e4 10165}
d1b19dff 10166EXPORT_SYMBOL(register_netdevice);
1da177e4 10167
937f1ba5
BH
10168/**
10169 * init_dummy_netdev - init a dummy network device for NAPI
10170 * @dev: device to init
10171 *
10172 * This takes a network device structure and initialize the minimum
10173 * amount of fields so it can be used to schedule NAPI polls without
10174 * registering a full blown interface. This is to be used by drivers
10175 * that need to tie several hardware interfaces to a single NAPI
10176 * poll scheduler due to HW limitations.
10177 */
10178int init_dummy_netdev(struct net_device *dev)
10179{
10180 /* Clear everything. Note we don't initialize spinlocks
10181 * are they aren't supposed to be taken by any of the
10182 * NAPI code and this dummy netdev is supposed to be
10183 * only ever used for NAPI polls
10184 */
10185 memset(dev, 0, sizeof(struct net_device));
10186
10187 /* make sure we BUG if trying to hit standard
10188 * register/unregister code path
10189 */
10190 dev->reg_state = NETREG_DUMMY;
10191
937f1ba5
BH
10192 /* NAPI wants this */
10193 INIT_LIST_HEAD(&dev->napi_list);
10194
10195 /* a dummy interface is started by default */
10196 set_bit(__LINK_STATE_PRESENT, &dev->state);
10197 set_bit(__LINK_STATE_START, &dev->state);
10198
35edfdc7
JE
10199 /* napi_busy_loop stats accounting wants this */
10200 dev_net_set(dev, &init_net);
10201
29b4433d
ED
10202 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10203 * because users of this 'device' dont need to change
10204 * its refcount.
10205 */
10206
937f1ba5
BH
10207 return 0;
10208}
10209EXPORT_SYMBOL_GPL(init_dummy_netdev);
10210
10211
1da177e4
LT
10212/**
10213 * register_netdev - register a network device
10214 * @dev: device to register
10215 *
10216 * Take a completed network device structure and add it to the kernel
10217 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10218 * chain. 0 is returned on success. A negative errno code is returned
10219 * on a failure to set up the device, or if the name is a duplicate.
10220 *
38b4da38 10221 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
10222 * and expands the device name if you passed a format string to
10223 * alloc_netdev.
10224 */
10225int register_netdev(struct net_device *dev)
10226{
10227 int err;
10228
b0f3debc
KT
10229 if (rtnl_lock_killable())
10230 return -EINTR;
1da177e4 10231 err = register_netdevice(dev);
1da177e4
LT
10232 rtnl_unlock();
10233 return err;
10234}
10235EXPORT_SYMBOL(register_netdev);
10236
29b4433d
ED
10237int netdev_refcnt_read(const struct net_device *dev)
10238{
10239 int i, refcnt = 0;
10240
10241 for_each_possible_cpu(i)
10242 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10243 return refcnt;
10244}
10245EXPORT_SYMBOL(netdev_refcnt_read);
10246
de2b541b
MCC
10247#define WAIT_REFS_MIN_MSECS 1
10248#define WAIT_REFS_MAX_MSECS 250
2c53040f 10249/**
1da177e4 10250 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 10251 * @dev: target net_device
1da177e4
LT
10252 *
10253 * This is called when unregistering network devices.
10254 *
10255 * Any protocol or device that holds a reference should register
10256 * for netdevice notification, and cleanup and put back the
10257 * reference if they receive an UNREGISTER event.
10258 * We can get stuck here if buggy protocols don't correctly
4ec93edb 10259 * call dev_put.
1da177e4
LT
10260 */
10261static void netdev_wait_allrefs(struct net_device *dev)
10262{
10263 unsigned long rebroadcast_time, warning_time;
0e4be9e5 10264 int wait = 0, refcnt;
1da177e4 10265
e014debe
ED
10266 linkwatch_forget_dev(dev);
10267
1da177e4 10268 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
10269 refcnt = netdev_refcnt_read(dev);
10270
10271 while (refcnt != 0) {
1da177e4 10272 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 10273 rtnl_lock();
1da177e4
LT
10274
10275 /* Rebroadcast unregister notification */
056925ab 10276 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 10277
748e2d93 10278 __rtnl_unlock();
0115e8e3 10279 rcu_barrier();
748e2d93
ED
10280 rtnl_lock();
10281
1da177e4
LT
10282 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10283 &dev->state)) {
10284 /* We must not have linkwatch events
10285 * pending on unregister. If this
10286 * happens, we simply run the queue
10287 * unscheduled, resulting in a noop
10288 * for this device.
10289 */
10290 linkwatch_run_queue();
10291 }
10292
6756ae4b 10293 __rtnl_unlock();
1da177e4
LT
10294
10295 rebroadcast_time = jiffies;
10296 }
10297
0e4be9e5
FR
10298 if (!wait) {
10299 rcu_barrier();
10300 wait = WAIT_REFS_MIN_MSECS;
10301 } else {
10302 msleep(wait);
10303 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10304 }
1da177e4 10305
29b4433d
ED
10306 refcnt = netdev_refcnt_read(dev);
10307
d7c04b05 10308 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
10309 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10310 dev->name, refcnt);
1da177e4
LT
10311 warning_time = jiffies;
10312 }
10313 }
10314}
10315
10316/* The sequence is:
10317 *
10318 * rtnl_lock();
10319 * ...
10320 * register_netdevice(x1);
10321 * register_netdevice(x2);
10322 * ...
10323 * unregister_netdevice(y1);
10324 * unregister_netdevice(y2);
10325 * ...
10326 * rtnl_unlock();
10327 * free_netdev(y1);
10328 * free_netdev(y2);
10329 *
58ec3b4d 10330 * We are invoked by rtnl_unlock().
1da177e4 10331 * This allows us to deal with problems:
b17a7c17 10332 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
10333 * without deadlocking with linkwatch via keventd.
10334 * 2) Since we run with the RTNL semaphore not held, we can sleep
10335 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
10336 *
10337 * We must not return until all unregister events added during
10338 * the interval the lock was held have been completed.
1da177e4 10339 */
1da177e4
LT
10340void netdev_run_todo(void)
10341{
626ab0e6 10342 struct list_head list;
1fc70edb
TY
10343#ifdef CONFIG_LOCKDEP
10344 struct list_head unlink_list;
10345
10346 list_replace_init(&net_unlink_list, &unlink_list);
10347
10348 while (!list_empty(&unlink_list)) {
10349 struct net_device *dev = list_first_entry(&unlink_list,
10350 struct net_device,
10351 unlink_list);
0e8b8d6a 10352 list_del_init(&dev->unlink_list);
1fc70edb
TY
10353 dev->nested_level = dev->lower_level - 1;
10354 }
10355#endif
1da177e4 10356
1da177e4 10357 /* Snapshot list, allow later requests */
626ab0e6 10358 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
10359
10360 __rtnl_unlock();
626ab0e6 10361
0115e8e3
ED
10362
10363 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
10364 if (!list_empty(&list))
10365 rcu_barrier();
10366
1da177e4
LT
10367 while (!list_empty(&list)) {
10368 struct net_device *dev
e5e26d75 10369 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
10370 list_del(&dev->todo_list);
10371
b17a7c17 10372 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 10373 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
10374 dev->name, dev->reg_state);
10375 dump_stack();
10376 continue;
10377 }
1da177e4 10378
b17a7c17 10379 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 10380
b17a7c17 10381 netdev_wait_allrefs(dev);
1da177e4 10382
b17a7c17 10383 /* paranoia */
29b4433d 10384 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
10385 BUG_ON(!list_empty(&dev->ptype_all));
10386 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
10387 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10388 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 10389#if IS_ENABLED(CONFIG_DECNET)
547b792c 10390 WARN_ON(dev->dn_ptr);
330c7272 10391#endif
cf124db5
DM
10392 if (dev->priv_destructor)
10393 dev->priv_destructor(dev);
10394 if (dev->needs_free_netdev)
10395 free_netdev(dev);
9093bbb2 10396
50624c93
EB
10397 /* Report a network device has been unregistered */
10398 rtnl_lock();
10399 dev_net(dev)->dev_unreg_count--;
10400 __rtnl_unlock();
10401 wake_up(&netdev_unregistering_wq);
10402
9093bbb2
SH
10403 /* Free network device */
10404 kobject_put(&dev->dev.kobj);
1da177e4 10405 }
1da177e4
LT
10406}
10407
9256645a
JW
10408/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10409 * all the same fields in the same order as net_device_stats, with only
10410 * the type differing, but rtnl_link_stats64 may have additional fields
10411 * at the end for newer counters.
3cfde79c 10412 */
77a1abf5
ED
10413void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10414 const struct net_device_stats *netdev_stats)
3cfde79c
BH
10415{
10416#if BITS_PER_LONG == 64
9256645a 10417 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 10418 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
10419 /* zero out counters that only exist in rtnl_link_stats64 */
10420 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10421 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 10422#else
9256645a 10423 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
10424 const unsigned long *src = (const unsigned long *)netdev_stats;
10425 u64 *dst = (u64 *)stats64;
10426
9256645a 10427 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
10428 for (i = 0; i < n; i++)
10429 dst[i] = src[i];
9256645a
JW
10430 /* zero out counters that only exist in rtnl_link_stats64 */
10431 memset((char *)stats64 + n * sizeof(u64), 0,
10432 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
10433#endif
10434}
77a1abf5 10435EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 10436
eeda3fd6
SH
10437/**
10438 * dev_get_stats - get network device statistics
10439 * @dev: device to get statistics from
28172739 10440 * @storage: place to store stats
eeda3fd6 10441 *
d7753516
BH
10442 * Get network statistics from device. Return @storage.
10443 * The device driver may provide its own method by setting
10444 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10445 * otherwise the internal statistics structure is used.
eeda3fd6 10446 */
d7753516
BH
10447struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10448 struct rtnl_link_stats64 *storage)
7004bf25 10449{
eeda3fd6
SH
10450 const struct net_device_ops *ops = dev->netdev_ops;
10451
28172739
ED
10452 if (ops->ndo_get_stats64) {
10453 memset(storage, 0, sizeof(*storage));
caf586e5
ED
10454 ops->ndo_get_stats64(dev, storage);
10455 } else if (ops->ndo_get_stats) {
3cfde79c 10456 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
10457 } else {
10458 netdev_stats_to_stats64(storage, &dev->stats);
28172739 10459 }
6f64ec74
ED
10460 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10461 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10462 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 10463 return storage;
c45d286e 10464}
eeda3fd6 10465EXPORT_SYMBOL(dev_get_stats);
c45d286e 10466
44fa32f0
HK
10467/**
10468 * dev_fetch_sw_netstats - get per-cpu network device statistics
10469 * @s: place to store stats
10470 * @netstats: per-cpu network stats to read from
10471 *
10472 * Read per-cpu network statistics and populate the related fields in @s.
10473 */
10474void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10475 const struct pcpu_sw_netstats __percpu *netstats)
10476{
10477 int cpu;
10478
10479 for_each_possible_cpu(cpu) {
10480 const struct pcpu_sw_netstats *stats;
10481 struct pcpu_sw_netstats tmp;
10482 unsigned int start;
10483
10484 stats = per_cpu_ptr(netstats, cpu);
10485 do {
10486 start = u64_stats_fetch_begin_irq(&stats->syncp);
10487 tmp.rx_packets = stats->rx_packets;
10488 tmp.rx_bytes = stats->rx_bytes;
10489 tmp.tx_packets = stats->tx_packets;
10490 tmp.tx_bytes = stats->tx_bytes;
10491 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10492
10493 s->rx_packets += tmp.rx_packets;
10494 s->rx_bytes += tmp.rx_bytes;
10495 s->tx_packets += tmp.tx_packets;
10496 s->tx_bytes += tmp.tx_bytes;
10497 }
10498}
10499EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10500
a1839426
HK
10501/**
10502 * dev_get_tstats64 - ndo_get_stats64 implementation
10503 * @dev: device to get statistics from
10504 * @s: place to store stats
10505 *
10506 * Populate @s from dev->stats and dev->tstats. Can be used as
10507 * ndo_get_stats64() callback.
10508 */
10509void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10510{
10511 netdev_stats_to_stats64(s, &dev->stats);
10512 dev_fetch_sw_netstats(s, dev->tstats);
10513}
10514EXPORT_SYMBOL_GPL(dev_get_tstats64);
10515
24824a09 10516struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 10517{
24824a09 10518 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 10519
24824a09
ED
10520#ifdef CONFIG_NET_CLS_ACT
10521 if (queue)
10522 return queue;
10523 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10524 if (!queue)
10525 return NULL;
10526 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 10527 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
10528 queue->qdisc_sleeping = &noop_qdisc;
10529 rcu_assign_pointer(dev->ingress_queue, queue);
10530#endif
10531 return queue;
bb949fbd
DM
10532}
10533
2c60db03
ED
10534static const struct ethtool_ops default_ethtool_ops;
10535
d07d7507
SG
10536void netdev_set_default_ethtool_ops(struct net_device *dev,
10537 const struct ethtool_ops *ops)
10538{
10539 if (dev->ethtool_ops == &default_ethtool_ops)
10540 dev->ethtool_ops = ops;
10541}
10542EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10543
74d332c1
ED
10544void netdev_freemem(struct net_device *dev)
10545{
10546 char *addr = (char *)dev - dev->padded;
10547
4cb28970 10548 kvfree(addr);
74d332c1
ED
10549}
10550
1da177e4 10551/**
722c9a0c 10552 * alloc_netdev_mqs - allocate network device
10553 * @sizeof_priv: size of private data to allocate space for
10554 * @name: device name format string
10555 * @name_assign_type: origin of device name
10556 * @setup: callback to initialize device
10557 * @txqs: the number of TX subqueues to allocate
10558 * @rxqs: the number of RX subqueues to allocate
10559 *
10560 * Allocates a struct net_device with private data area for driver use
10561 * and performs basic initialization. Also allocates subqueue structs
10562 * for each queue on the device.
1da177e4 10563 */
36909ea4 10564struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 10565 unsigned char name_assign_type,
36909ea4
TH
10566 void (*setup)(struct net_device *),
10567 unsigned int txqs, unsigned int rxqs)
1da177e4 10568{
1da177e4 10569 struct net_device *dev;
52a59bd5 10570 unsigned int alloc_size;
1ce8e7b5 10571 struct net_device *p;
1da177e4 10572
b6fe17d6
SH
10573 BUG_ON(strlen(name) >= sizeof(dev->name));
10574
36909ea4 10575 if (txqs < 1) {
7b6cd1ce 10576 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
10577 return NULL;
10578 }
10579
36909ea4 10580 if (rxqs < 1) {
7b6cd1ce 10581 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
10582 return NULL;
10583 }
36909ea4 10584
fd2ea0a7 10585 alloc_size = sizeof(struct net_device);
d1643d24
AD
10586 if (sizeof_priv) {
10587 /* ensure 32-byte alignment of private area */
1ce8e7b5 10588 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
10589 alloc_size += sizeof_priv;
10590 }
10591 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 10592 alloc_size += NETDEV_ALIGN - 1;
1da177e4 10593
dcda9b04 10594 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 10595 if (!p)
1da177e4 10596 return NULL;
1da177e4 10597
1ce8e7b5 10598 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 10599 dev->padded = (char *)dev - (char *)p;
ab9c73cc 10600
29b4433d
ED
10601 dev->pcpu_refcnt = alloc_percpu(int);
10602 if (!dev->pcpu_refcnt)
74d332c1 10603 goto free_dev;
ab9c73cc 10604
ab9c73cc 10605 if (dev_addr_init(dev))
29b4433d 10606 goto free_pcpu;
ab9c73cc 10607
22bedad3 10608 dev_mc_init(dev);
a748ee24 10609 dev_uc_init(dev);
ccffad25 10610
c346dca1 10611 dev_net_set(dev, &init_net);
1da177e4 10612
8d3bdbd5 10613 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 10614 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
10615 dev->upper_level = 1;
10616 dev->lower_level = 1;
1fc70edb
TY
10617#ifdef CONFIG_LOCKDEP
10618 dev->nested_level = 0;
10619 INIT_LIST_HEAD(&dev->unlink_list);
10620#endif
8d3bdbd5 10621
8d3bdbd5
DM
10622 INIT_LIST_HEAD(&dev->napi_list);
10623 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 10624 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 10625 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
10626 INIT_LIST_HEAD(&dev->adj_list.upper);
10627 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
10628 INIT_LIST_HEAD(&dev->ptype_all);
10629 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 10630 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
10631#ifdef CONFIG_NET_SCHED
10632 hash_init(dev->qdisc_hash);
10633#endif
02875878 10634 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
10635 setup(dev);
10636
a813104d 10637 if (!dev->tx_queue_len) {
f84bb1ea 10638 dev->priv_flags |= IFF_NO_QUEUE;
11597084 10639 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 10640 }
906470c1 10641
36909ea4
TH
10642 dev->num_tx_queues = txqs;
10643 dev->real_num_tx_queues = txqs;
ed9af2e8 10644 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 10645 goto free_all;
e8a0464c 10646
36909ea4
TH
10647 dev->num_rx_queues = rxqs;
10648 dev->real_num_rx_queues = rxqs;
fe822240 10649 if (netif_alloc_rx_queues(dev))
8d3bdbd5 10650 goto free_all;
0a9627f2 10651
1da177e4 10652 strcpy(dev->name, name);
c835a677 10653 dev->name_assign_type = name_assign_type;
cbda10fa 10654 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
10655 if (!dev->ethtool_ops)
10656 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 10657
357b6cc5 10658 nf_hook_ingress_init(dev);
e687ad60 10659
1da177e4 10660 return dev;
ab9c73cc 10661
8d3bdbd5
DM
10662free_all:
10663 free_netdev(dev);
10664 return NULL;
10665
29b4433d
ED
10666free_pcpu:
10667 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
10668free_dev:
10669 netdev_freemem(dev);
ab9c73cc 10670 return NULL;
1da177e4 10671}
36909ea4 10672EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
10673
10674/**
722c9a0c 10675 * free_netdev - free network device
10676 * @dev: device
1da177e4 10677 *
722c9a0c 10678 * This function does the last stage of destroying an allocated device
10679 * interface. The reference to the device object is released. If this
10680 * is the last reference then it will be freed.Must be called in process
10681 * context.
1da177e4
LT
10682 */
10683void free_netdev(struct net_device *dev)
10684{
d565b0a1
HX
10685 struct napi_struct *p, *n;
10686
93d05d4a 10687 might_sleep();
c269a24c
JK
10688
10689 /* When called immediately after register_netdevice() failed the unwind
10690 * handling may still be dismantling the device. Handle that case by
10691 * deferring the free.
10692 */
10693 if (dev->reg_state == NETREG_UNREGISTERING) {
10694 ASSERT_RTNL();
10695 dev->needs_free_netdev = true;
10696 return;
10697 }
10698
60877a32 10699 netif_free_tx_queues(dev);
e817f856 10700 netif_free_rx_queues(dev);
e8a0464c 10701
33d480ce 10702 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 10703
f001fde5
JP
10704 /* Flush device addresses */
10705 dev_addr_flush(dev);
10706
d565b0a1
HX
10707 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10708 netif_napi_del(p);
10709
29b4433d
ED
10710 free_percpu(dev->pcpu_refcnt);
10711 dev->pcpu_refcnt = NULL;
75ccae62
THJ
10712 free_percpu(dev->xdp_bulkq);
10713 dev->xdp_bulkq = NULL;
29b4433d 10714
3041a069 10715 /* Compatibility with error handling in drivers */
1da177e4 10716 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 10717 netdev_freemem(dev);
1da177e4
LT
10718 return;
10719 }
10720
10721 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10722 dev->reg_state = NETREG_RELEASED;
10723
43cb76d9
GKH
10724 /* will free via device release */
10725 put_device(&dev->dev);
1da177e4 10726}
d1b19dff 10727EXPORT_SYMBOL(free_netdev);
4ec93edb 10728
f0db275a
SH
10729/**
10730 * synchronize_net - Synchronize with packet receive processing
10731 *
10732 * Wait for packets currently being received to be done.
10733 * Does not block later packets from starting.
10734 */
4ec93edb 10735void synchronize_net(void)
1da177e4
LT
10736{
10737 might_sleep();
be3fc413
ED
10738 if (rtnl_is_locked())
10739 synchronize_rcu_expedited();
10740 else
10741 synchronize_rcu();
1da177e4 10742}
d1b19dff 10743EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
10744
10745/**
44a0873d 10746 * unregister_netdevice_queue - remove device from the kernel
1da177e4 10747 * @dev: device
44a0873d 10748 * @head: list
6ebfbc06 10749 *
1da177e4 10750 * This function shuts down a device interface and removes it
d59b54b1 10751 * from the kernel tables.
44a0873d 10752 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
10753 *
10754 * Callers must hold the rtnl semaphore. You may want
10755 * unregister_netdev() instead of this.
10756 */
10757
44a0873d 10758void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 10759{
a6620712
HX
10760 ASSERT_RTNL();
10761
44a0873d 10762 if (head) {
9fdce099 10763 list_move_tail(&dev->unreg_list, head);
44a0873d 10764 } else {
037e56bd
JK
10765 LIST_HEAD(single);
10766
10767 list_add(&dev->unreg_list, &single);
0cbe1e57 10768 unregister_netdevice_many(&single);
44a0873d 10769 }
1da177e4 10770}
44a0873d 10771EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 10772
9b5e383c
ED
10773/**
10774 * unregister_netdevice_many - unregister many devices
10775 * @head: list of devices
87757a91
ED
10776 *
10777 * Note: As most callers use a stack allocated list_head,
10778 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
10779 */
10780void unregister_netdevice_many(struct list_head *head)
bcfe2f1a
JK
10781{
10782 struct net_device *dev, *tmp;
10783 LIST_HEAD(close_head);
10784
10785 BUG_ON(dev_boot_phase);
10786 ASSERT_RTNL();
10787
0cbe1e57
JK
10788 if (list_empty(head))
10789 return;
10790
bcfe2f1a
JK
10791 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10792 /* Some devices call without registering
10793 * for initialization unwind. Remove those
10794 * devices and proceed with the remaining.
10795 */
10796 if (dev->reg_state == NETREG_UNINITIALIZED) {
10797 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10798 dev->name, dev);
10799
10800 WARN_ON(1);
10801 list_del(&dev->unreg_list);
10802 continue;
10803 }
10804 dev->dismantle = true;
10805 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10806 }
10807
10808 /* If device is running, close it first. */
10809 list_for_each_entry(dev, head, unreg_list)
10810 list_add_tail(&dev->close_list, &close_head);
10811 dev_close_many(&close_head, true);
10812
10813 list_for_each_entry(dev, head, unreg_list) {
10814 /* And unlink it from device chain. */
10815 unlist_netdevice(dev);
10816
10817 dev->reg_state = NETREG_UNREGISTERING;
10818 }
10819 flush_all_backlogs();
10820
10821 synchronize_net();
10822
10823 list_for_each_entry(dev, head, unreg_list) {
10824 struct sk_buff *skb = NULL;
10825
10826 /* Shutdown queueing discipline. */
10827 dev_shutdown(dev);
10828
10829 dev_xdp_uninstall(dev);
10830
10831 /* Notify protocols, that we are about to destroy
10832 * this device. They should clean all the things.
10833 */
10834 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10835
10836 if (!dev->rtnl_link_ops ||
10837 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10838 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10839 GFP_KERNEL, NULL, 0);
10840
10841 /*
10842 * Flush the unicast and multicast chains
10843 */
10844 dev_uc_flush(dev);
10845 dev_mc_flush(dev);
10846
10847 netdev_name_node_alt_flush(dev);
10848 netdev_name_node_free(dev->name_node);
10849
10850 if (dev->netdev_ops->ndo_uninit)
10851 dev->netdev_ops->ndo_uninit(dev);
10852
10853 if (skb)
10854 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10855
10856 /* Notifier chain MUST detach us all upper devices. */
10857 WARN_ON(netdev_has_any_upper_dev(dev));
10858 WARN_ON(netdev_has_any_lower_dev(dev));
10859
10860 /* Remove entries from kobject tree */
10861 netdev_unregister_kobject(dev);
10862#ifdef CONFIG_XPS
10863 /* Remove XPS queueing entries */
10864 netif_reset_xps_queues_gt(dev, 0);
10865#endif
10866 }
10867
10868 synchronize_net();
10869
10870 list_for_each_entry(dev, head, unreg_list) {
10871 dev_put(dev);
10872 net_set_todo(dev);
10873 }
0cbe1e57
JK
10874
10875 list_del(head);
bcfe2f1a 10876}
0cbe1e57 10877EXPORT_SYMBOL(unregister_netdevice_many);
bcfe2f1a 10878
1da177e4
LT
10879/**
10880 * unregister_netdev - remove device from the kernel
10881 * @dev: device
10882 *
10883 * This function shuts down a device interface and removes it
d59b54b1 10884 * from the kernel tables.
1da177e4
LT
10885 *
10886 * This is just a wrapper for unregister_netdevice that takes
10887 * the rtnl semaphore. In general you want to use this and not
10888 * unregister_netdevice.
10889 */
10890void unregister_netdev(struct net_device *dev)
10891{
10892 rtnl_lock();
10893 unregister_netdevice(dev);
10894 rtnl_unlock();
10895}
1da177e4
LT
10896EXPORT_SYMBOL(unregister_netdev);
10897
ce286d32
EB
10898/**
10899 * dev_change_net_namespace - move device to different nethost namespace
10900 * @dev: device
10901 * @net: network namespace
10902 * @pat: If not NULL name pattern to try if the current device name
10903 * is already taken in the destination network namespace.
10904 *
10905 * This function shuts down a device interface and moves it
10906 * to a new network namespace. On success 0 is returned, on
10907 * a failure a netagive errno code is returned.
10908 *
10909 * Callers must hold the rtnl semaphore.
10910 */
10911
10912int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10913{
ef6a4c88 10914 struct net *net_old = dev_net(dev);
38e01b30 10915 int err, new_nsid, new_ifindex;
ce286d32
EB
10916
10917 ASSERT_RTNL();
10918
10919 /* Don't allow namespace local devices to be moved. */
10920 err = -EINVAL;
10921 if (dev->features & NETIF_F_NETNS_LOCAL)
10922 goto out;
10923
10924 /* Ensure the device has been registrered */
ce286d32
EB
10925 if (dev->reg_state != NETREG_REGISTERED)
10926 goto out;
10927
10928 /* Get out if there is nothing todo */
10929 err = 0;
ef6a4c88 10930 if (net_eq(net_old, net))
ce286d32
EB
10931 goto out;
10932
10933 /* Pick the destination device name, and ensure
10934 * we can use it in the destination network namespace.
10935 */
10936 err = -EEXIST;
d9031024 10937 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
10938 /* We get here if we can't use the current device name */
10939 if (!pat)
10940 goto out;
7892bd08
LR
10941 err = dev_get_valid_name(net, dev, pat);
10942 if (err < 0)
ce286d32
EB
10943 goto out;
10944 }
10945
10946 /*
10947 * And now a mini version of register_netdevice unregister_netdevice.
10948 */
10949
10950 /* If device is running close it first. */
9b772652 10951 dev_close(dev);
ce286d32
EB
10952
10953 /* And unlink it from device chain */
ce286d32
EB
10954 unlist_netdevice(dev);
10955
10956 synchronize_net();
10957
10958 /* Shutdown queueing discipline. */
10959 dev_shutdown(dev);
10960
10961 /* Notify protocols, that we are about to destroy
eb13da1a 10962 * this device. They should clean all the things.
10963 *
10964 * Note that dev->reg_state stays at NETREG_REGISTERED.
10965 * This is wanted because this way 8021q and macvlan know
10966 * the device is just moving and can keep their slaves up.
10967 */
ce286d32 10968 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 10969 rcu_barrier();
38e01b30 10970
d4e4fdf9 10971 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30
ND
10972 /* If there is an ifindex conflict assign a new one */
10973 if (__dev_get_by_index(net, dev->ifindex))
10974 new_ifindex = dev_new_index(net);
10975 else
10976 new_ifindex = dev->ifindex;
10977
10978 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10979 new_ifindex);
ce286d32
EB
10980
10981 /*
10982 * Flush the unicast and multicast chains
10983 */
a748ee24 10984 dev_uc_flush(dev);
22bedad3 10985 dev_mc_flush(dev);
ce286d32 10986
4e66ae2e
SH
10987 /* Send a netdev-removed uevent to the old namespace */
10988 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 10989 netdev_adjacent_del_links(dev);
4e66ae2e 10990
93642e14
JP
10991 /* Move per-net netdevice notifiers that are following the netdevice */
10992 move_netdevice_notifiers_dev_net(dev, net);
10993
ce286d32 10994 /* Actually switch the network namespace */
c346dca1 10995 dev_net_set(dev, net);
38e01b30 10996 dev->ifindex = new_ifindex;
ce286d32 10997
4e66ae2e
SH
10998 /* Send a netdev-add uevent to the new namespace */
10999 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 11000 netdev_adjacent_add_links(dev);
4e66ae2e 11001
8b41d188 11002 /* Fixup kobjects */
a1b3f594 11003 err = device_rename(&dev->dev, dev->name);
8b41d188 11004 WARN_ON(err);
ce286d32 11005
ef6a4c88
CB
11006 /* Adapt owner in case owning user namespace of target network
11007 * namespace is different from the original one.
11008 */
11009 err = netdev_change_owner(dev, net_old, net);
11010 WARN_ON(err);
11011
ce286d32
EB
11012 /* Add the device back in the hashes */
11013 list_netdevice(dev);
11014
11015 /* Notify protocols, that a new device appeared. */
11016 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11017
d90a909e
EB
11018 /*
11019 * Prevent userspace races by waiting until the network
11020 * device is fully setup before sending notifications.
11021 */
7f294054 11022 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 11023
ce286d32
EB
11024 synchronize_net();
11025 err = 0;
11026out:
11027 return err;
11028}
463d0183 11029EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 11030
f0bf90de 11031static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
11032{
11033 struct sk_buff **list_skb;
1da177e4 11034 struct sk_buff *skb;
f0bf90de 11035 unsigned int cpu;
97d8b6e3 11036 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 11037
1da177e4
LT
11038 local_irq_disable();
11039 cpu = smp_processor_id();
11040 sd = &per_cpu(softnet_data, cpu);
11041 oldsd = &per_cpu(softnet_data, oldcpu);
11042
11043 /* Find end of our completion_queue. */
11044 list_skb = &sd->completion_queue;
11045 while (*list_skb)
11046 list_skb = &(*list_skb)->next;
11047 /* Append completion queue from offline CPU. */
11048 *list_skb = oldsd->completion_queue;
11049 oldsd->completion_queue = NULL;
11050
1da177e4 11051 /* Append output queue from offline CPU. */
a9cbd588
CG
11052 if (oldsd->output_queue) {
11053 *sd->output_queue_tailp = oldsd->output_queue;
11054 sd->output_queue_tailp = oldsd->output_queue_tailp;
11055 oldsd->output_queue = NULL;
11056 oldsd->output_queue_tailp = &oldsd->output_queue;
11057 }
ac64da0b
ED
11058 /* Append NAPI poll list from offline CPU, with one exception :
11059 * process_backlog() must be called by cpu owning percpu backlog.
11060 * We properly handle process_queue & input_pkt_queue later.
11061 */
11062 while (!list_empty(&oldsd->poll_list)) {
11063 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11064 struct napi_struct,
11065 poll_list);
11066
11067 list_del_init(&napi->poll_list);
11068 if (napi->poll == process_backlog)
11069 napi->state = 0;
11070 else
11071 ____napi_schedule(sd, napi);
264524d5 11072 }
1da177e4
LT
11073
11074 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11075 local_irq_enable();
11076
773fc8f6 11077#ifdef CONFIG_RPS
11078 remsd = oldsd->rps_ipi_list;
11079 oldsd->rps_ipi_list = NULL;
11080#endif
11081 /* send out pending IPI's on offline CPU */
11082 net_rps_send_ipi(remsd);
11083
1da177e4 11084 /* Process offline CPU's input_pkt_queue */
76cc8b13 11085 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 11086 netif_rx_ni(skb);
76cc8b13 11087 input_queue_head_incr(oldsd);
fec5e652 11088 }
ac64da0b 11089 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 11090 netif_rx_ni(skb);
76cc8b13
TH
11091 input_queue_head_incr(oldsd);
11092 }
1da177e4 11093
f0bf90de 11094 return 0;
1da177e4 11095}
1da177e4 11096
7f353bf2 11097/**
b63365a2
HX
11098 * netdev_increment_features - increment feature set by one
11099 * @all: current feature set
11100 * @one: new feature set
11101 * @mask: mask feature set
7f353bf2
HX
11102 *
11103 * Computes a new feature set after adding a device with feature set
b63365a2
HX
11104 * @one to the master device with current feature set @all. Will not
11105 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 11106 */
c8f44aff
MM
11107netdev_features_t netdev_increment_features(netdev_features_t all,
11108 netdev_features_t one, netdev_features_t mask)
b63365a2 11109{
c8cd0989 11110 if (mask & NETIF_F_HW_CSUM)
a188222b 11111 mask |= NETIF_F_CSUM_MASK;
1742f183 11112 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 11113
a188222b 11114 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 11115 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 11116
1742f183 11117 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
11118 if (all & NETIF_F_HW_CSUM)
11119 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
11120
11121 return all;
11122}
b63365a2 11123EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 11124
430f03cd 11125static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
11126{
11127 int i;
11128 struct hlist_head *hash;
11129
6da2ec56 11130 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
11131 if (hash != NULL)
11132 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11133 INIT_HLIST_HEAD(&hash[i]);
11134
11135 return hash;
11136}
11137
881d966b 11138/* Initialize per network namespace state */
4665079c 11139static int __net_init netdev_init(struct net *net)
881d966b 11140{
d9f37d01 11141 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 11142 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 11143
734b6541
RM
11144 if (net != &init_net)
11145 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 11146
30d97d35
PE
11147 net->dev_name_head = netdev_create_hash();
11148 if (net->dev_name_head == NULL)
11149 goto err_name;
881d966b 11150
30d97d35
PE
11151 net->dev_index_head = netdev_create_hash();
11152 if (net->dev_index_head == NULL)
11153 goto err_idx;
881d966b 11154
a30c7b42
JP
11155 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11156
881d966b 11157 return 0;
30d97d35
PE
11158
11159err_idx:
11160 kfree(net->dev_name_head);
11161err_name:
11162 return -ENOMEM;
881d966b
EB
11163}
11164
f0db275a
SH
11165/**
11166 * netdev_drivername - network driver for the device
11167 * @dev: network device
f0db275a
SH
11168 *
11169 * Determine network driver for device.
11170 */
3019de12 11171const char *netdev_drivername(const struct net_device *dev)
6579e57b 11172{
cf04a4c7
SH
11173 const struct device_driver *driver;
11174 const struct device *parent;
3019de12 11175 const char *empty = "";
6579e57b
AV
11176
11177 parent = dev->dev.parent;
6579e57b 11178 if (!parent)
3019de12 11179 return empty;
6579e57b
AV
11180
11181 driver = parent->driver;
11182 if (driver && driver->name)
3019de12
DM
11183 return driver->name;
11184 return empty;
6579e57b
AV
11185}
11186
6ea754eb
JP
11187static void __netdev_printk(const char *level, const struct net_device *dev,
11188 struct va_format *vaf)
256df2f3 11189{
b004ff49 11190 if (dev && dev->dev.parent) {
6ea754eb
JP
11191 dev_printk_emit(level[1] - '0',
11192 dev->dev.parent,
11193 "%s %s %s%s: %pV",
11194 dev_driver_string(dev->dev.parent),
11195 dev_name(dev->dev.parent),
11196 netdev_name(dev), netdev_reg_state(dev),
11197 vaf);
b004ff49 11198 } else if (dev) {
6ea754eb
JP
11199 printk("%s%s%s: %pV",
11200 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 11201 } else {
6ea754eb 11202 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 11203 }
256df2f3
JP
11204}
11205
6ea754eb
JP
11206void netdev_printk(const char *level, const struct net_device *dev,
11207 const char *format, ...)
256df2f3
JP
11208{
11209 struct va_format vaf;
11210 va_list args;
256df2f3
JP
11211
11212 va_start(args, format);
11213
11214 vaf.fmt = format;
11215 vaf.va = &args;
11216
6ea754eb 11217 __netdev_printk(level, dev, &vaf);
b004ff49 11218
256df2f3 11219 va_end(args);
256df2f3
JP
11220}
11221EXPORT_SYMBOL(netdev_printk);
11222
11223#define define_netdev_printk_level(func, level) \
6ea754eb 11224void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 11225{ \
256df2f3
JP
11226 struct va_format vaf; \
11227 va_list args; \
11228 \
11229 va_start(args, fmt); \
11230 \
11231 vaf.fmt = fmt; \
11232 vaf.va = &args; \
11233 \
6ea754eb 11234 __netdev_printk(level, dev, &vaf); \
b004ff49 11235 \
256df2f3 11236 va_end(args); \
256df2f3
JP
11237} \
11238EXPORT_SYMBOL(func);
11239
11240define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11241define_netdev_printk_level(netdev_alert, KERN_ALERT);
11242define_netdev_printk_level(netdev_crit, KERN_CRIT);
11243define_netdev_printk_level(netdev_err, KERN_ERR);
11244define_netdev_printk_level(netdev_warn, KERN_WARNING);
11245define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11246define_netdev_printk_level(netdev_info, KERN_INFO);
11247
4665079c 11248static void __net_exit netdev_exit(struct net *net)
881d966b
EB
11249{
11250 kfree(net->dev_name_head);
11251 kfree(net->dev_index_head);
ee21b18b
VA
11252 if (net != &init_net)
11253 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
11254}
11255
022cbae6 11256static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
11257 .init = netdev_init,
11258 .exit = netdev_exit,
11259};
11260
4665079c 11261static void __net_exit default_device_exit(struct net *net)
ce286d32 11262{
e008b5fc 11263 struct net_device *dev, *aux;
ce286d32 11264 /*
e008b5fc 11265 * Push all migratable network devices back to the
ce286d32
EB
11266 * initial network namespace
11267 */
11268 rtnl_lock();
e008b5fc 11269 for_each_netdev_safe(net, dev, aux) {
ce286d32 11270 int err;
aca51397 11271 char fb_name[IFNAMSIZ];
ce286d32
EB
11272
11273 /* Ignore unmoveable devices (i.e. loopback) */
11274 if (dev->features & NETIF_F_NETNS_LOCAL)
11275 continue;
11276
e008b5fc
EB
11277 /* Leave virtual devices for the generic cleanup */
11278 if (dev->rtnl_link_ops)
11279 continue;
d0c082ce 11280
25985edc 11281 /* Push remaining network devices to init_net */
aca51397 11282 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
11283 if (__dev_get_by_name(&init_net, fb_name))
11284 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 11285 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 11286 if (err) {
7b6cd1ce
JP
11287 pr_emerg("%s: failed to move %s to init_net: %d\n",
11288 __func__, dev->name, err);
aca51397 11289 BUG();
ce286d32
EB
11290 }
11291 }
11292 rtnl_unlock();
11293}
11294
50624c93
EB
11295static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11296{
11297 /* Return with the rtnl_lock held when there are no network
11298 * devices unregistering in any network namespace in net_list.
11299 */
11300 struct net *net;
11301 bool unregistering;
ff960a73 11302 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 11303
ff960a73 11304 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 11305 for (;;) {
50624c93
EB
11306 unregistering = false;
11307 rtnl_lock();
11308 list_for_each_entry(net, net_list, exit_list) {
11309 if (net->dev_unreg_count > 0) {
11310 unregistering = true;
11311 break;
11312 }
11313 }
11314 if (!unregistering)
11315 break;
11316 __rtnl_unlock();
ff960a73
PZ
11317
11318 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 11319 }
ff960a73 11320 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
11321}
11322
04dc7f6b
EB
11323static void __net_exit default_device_exit_batch(struct list_head *net_list)
11324{
11325 /* At exit all network devices most be removed from a network
b595076a 11326 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
11327 * Do this across as many network namespaces as possible to
11328 * improve batching efficiency.
11329 */
11330 struct net_device *dev;
11331 struct net *net;
11332 LIST_HEAD(dev_kill_list);
11333
50624c93
EB
11334 /* To prevent network device cleanup code from dereferencing
11335 * loopback devices or network devices that have been freed
11336 * wait here for all pending unregistrations to complete,
11337 * before unregistring the loopback device and allowing the
11338 * network namespace be freed.
11339 *
11340 * The netdev todo list containing all network devices
11341 * unregistrations that happen in default_device_exit_batch
11342 * will run in the rtnl_unlock() at the end of
11343 * default_device_exit_batch.
11344 */
11345 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
11346 list_for_each_entry(net, net_list, exit_list) {
11347 for_each_netdev_reverse(net, dev) {
b0ab2fab 11348 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
11349 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11350 else
11351 unregister_netdevice_queue(dev, &dev_kill_list);
11352 }
11353 }
11354 unregister_netdevice_many(&dev_kill_list);
11355 rtnl_unlock();
11356}
11357
022cbae6 11358static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 11359 .exit = default_device_exit,
04dc7f6b 11360 .exit_batch = default_device_exit_batch,
ce286d32
EB
11361};
11362
1da177e4
LT
11363/*
11364 * Initialize the DEV module. At boot time this walks the device list and
11365 * unhooks any devices that fail to initialise (normally hardware not
11366 * present) and leaves us with a valid list of present and active devices.
11367 *
11368 */
11369
11370/*
11371 * This is called single threaded during boot, so no need
11372 * to take the rtnl semaphore.
11373 */
11374static int __init net_dev_init(void)
11375{
11376 int i, rc = -ENOMEM;
11377
11378 BUG_ON(!dev_boot_phase);
11379
1da177e4
LT
11380 if (dev_proc_init())
11381 goto out;
11382
8b41d188 11383 if (netdev_kobject_init())
1da177e4
LT
11384 goto out;
11385
11386 INIT_LIST_HEAD(&ptype_all);
82d8a867 11387 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
11388 INIT_LIST_HEAD(&ptype_base[i]);
11389
62532da9
VY
11390 INIT_LIST_HEAD(&offload_base);
11391
881d966b
EB
11392 if (register_pernet_subsys(&netdev_net_ops))
11393 goto out;
1da177e4
LT
11394
11395 /*
11396 * Initialise the packet receive queues.
11397 */
11398
6f912042 11399 for_each_possible_cpu(i) {
41852497 11400 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 11401 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 11402
41852497
ED
11403 INIT_WORK(flush, flush_backlog);
11404
e36fa2f7 11405 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 11406 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
11407#ifdef CONFIG_XFRM_OFFLOAD
11408 skb_queue_head_init(&sd->xfrm_backlog);
11409#endif
e36fa2f7 11410 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 11411 sd->output_queue_tailp = &sd->output_queue;
df334545 11412#ifdef CONFIG_RPS
545b8c8d 11413 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
e36fa2f7 11414 sd->cpu = i;
1e94d72f 11415#endif
0a9627f2 11416
7c4ec749 11417 init_gro_hash(&sd->backlog);
e36fa2f7
ED
11418 sd->backlog.poll = process_backlog;
11419 sd->backlog.weight = weight_p;
1da177e4
LT
11420 }
11421
1da177e4
LT
11422 dev_boot_phase = 0;
11423
505d4f73
EB
11424 /* The loopback device is special if any other network devices
11425 * is present in a network namespace the loopback device must
11426 * be present. Since we now dynamically allocate and free the
11427 * loopback device ensure this invariant is maintained by
11428 * keeping the loopback device as the first device on the
11429 * list of network devices. Ensuring the loopback devices
11430 * is the first device that appears and the last network device
11431 * that disappears.
11432 */
11433 if (register_pernet_device(&loopback_net_ops))
11434 goto out;
11435
11436 if (register_pernet_device(&default_device_ops))
11437 goto out;
11438
962cf36c
CM
11439 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11440 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 11441
f0bf90de
SAS
11442 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11443 NULL, dev_cpu_dead);
11444 WARN_ON(rc < 0);
1da177e4
LT
11445 rc = 0;
11446out:
11447 return rc;
11448}
11449
11450subsys_initcall(net_dev_init);