bpf, xdp: Implement LINK_UPDATE for BPF XDP link
[linux-2.6-block.git] / net / core / dev.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4 2/*
722c9a0c 3 * NET3 Protocol independent device support routines.
1da177e4 4 *
1da177e4 5 * Derived from the non IP parts of dev.c 1.0.19
722c9a0c 6 * Authors: Ross Biro
1da177e4
LT
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
722c9a0c 20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
1da177e4
LT
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
722c9a0c 35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
1da177e4
LT
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
722c9a0c 45 * Alan Cox : Fixed nasty side effect of device close
1da177e4
LT
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
722c9a0c 66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
1da177e4
LT
68 * - netif_rx() feedback
69 */
70
7c0f6ba6 71#include <linux/uaccess.h>
1da177e4 72#include <linux/bitops.h>
4fc268d2 73#include <linux/capability.h>
1da177e4
LT
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
08e9897d 77#include <linux/hash.h>
5a0e3ad6 78#include <linux/slab.h>
1da177e4 79#include <linux/sched.h>
f1083048 80#include <linux/sched/mm.h>
4a3e2f71 81#include <linux/mutex.h>
11d6011c 82#include <linux/rwsem.h>
1da177e4
LT
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
0187bdfb 92#include <linux/ethtool.h>
1da177e4 93#include <linux/skbuff.h>
a7862b45 94#include <linux/bpf.h>
b5cdae32 95#include <linux/bpf_trace.h>
457c4cbc 96#include <net/net_namespace.h>
1da177e4 97#include <net/sock.h>
02d62e86 98#include <net/busy_poll.h>
1da177e4 99#include <linux/rtnetlink.h>
1da177e4 100#include <linux/stat.h>
1da177e4 101#include <net/dst.h>
fc4099f1 102#include <net/dst_metadata.h>
1da177e4 103#include <net/pkt_sched.h>
87d83093 104#include <net/pkt_cls.h>
1da177e4 105#include <net/checksum.h>
44540960 106#include <net/xfrm.h>
1da177e4
LT
107#include <linux/highmem.h>
108#include <linux/init.h>
1da177e4 109#include <linux/module.h>
1da177e4
LT
110#include <linux/netpoll.h>
111#include <linux/rcupdate.h>
112#include <linux/delay.h>
1da177e4 113#include <net/iw_handler.h>
1da177e4 114#include <asm/current.h>
5bdb9886 115#include <linux/audit.h>
db217334 116#include <linux/dmaengine.h>
f6a78bfc 117#include <linux/err.h>
c7fa9d18 118#include <linux/ctype.h>
723e98b7 119#include <linux/if_arp.h>
6de329e2 120#include <linux/if_vlan.h>
8f0f2223 121#include <linux/ip.h>
ad55dcaf 122#include <net/ip.h>
25cd9ba0 123#include <net/mpls.h>
8f0f2223
DM
124#include <linux/ipv6.h>
125#include <linux/in.h>
b6b2fed1
DM
126#include <linux/jhash.h>
127#include <linux/random.h>
9cbc1cb8 128#include <trace/events/napi.h>
cf66ba58 129#include <trace/events/net.h>
07dc22e7 130#include <trace/events/skb.h>
caeda9b9 131#include <linux/inetdevice.h>
c445477d 132#include <linux/cpu_rmap.h>
c5905afb 133#include <linux/static_key.h>
af12fa6e 134#include <linux/hashtable.h>
60877a32 135#include <linux/vmalloc.h>
529d0489 136#include <linux/if_macvlan.h>
e7fd2885 137#include <linux/errqueue.h>
3b47d303 138#include <linux/hrtimer.h>
357b6cc5 139#include <linux/netfilter_ingress.h>
40e4e713 140#include <linux/crash_dump.h>
b72b5bf6 141#include <linux/sctp.h>
ae847f40 142#include <net/udp_tunnel.h>
6621dd29 143#include <linux/net_namespace.h>
aaa5d90b 144#include <linux/indirect_call_wrapper.h>
af3836df 145#include <net/devlink.h>
bd869245 146#include <linux/pm_runtime.h>
1da177e4 147
342709ef
PE
148#include "net-sysfs.h"
149
d565b0a1
HX
150#define MAX_GRO_SKBS 8
151
5d38a079
HX
152/* This should be increased if a protocol with a bigger head is added. */
153#define GRO_MAX_HEAD (MAX_HEADER + 128)
154
1da177e4 155static DEFINE_SPINLOCK(ptype_lock);
62532da9 156static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
157struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158struct list_head ptype_all __read_mostly; /* Taps */
62532da9 159static struct list_head offload_base __read_mostly;
1da177e4 160
ae78dbfa 161static int netif_rx_internal(struct sk_buff *skb);
54951194 162static int call_netdevice_notifiers_info(unsigned long val,
54951194 163 struct netdev_notifier_info *info);
26372605
PM
164static int call_netdevice_notifiers_extack(unsigned long val,
165 struct net_device *dev,
166 struct netlink_ext_ack *extack);
90b602f8 167static struct napi_struct *napi_by_id(unsigned int napi_id);
ae78dbfa 168
1da177e4 169/*
7562f876 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
171 * semaphore.
172 *
c6d14c84 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
7562f876 176 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
1da177e4 188DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
189EXPORT_SYMBOL(dev_base_lock);
190
6c557001
FW
191static DEFINE_MUTEX(ifalias_mutex);
192
af12fa6e
ET
193/* protects napi_hash addition/deletion and napi_gen_id */
194static DEFINE_SPINLOCK(napi_hash_lock);
195
52bd2d62 196static unsigned int napi_gen_id = NR_CPUS;
6180d9de 197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 198
11d6011c 199static DECLARE_RWSEM(devnet_rename_sem);
c91f6df2 200
4e985ada
TG
201static inline void dev_base_seq_inc(struct net *net)
202{
643aa9cb 203 while (++net->dev_base_seq == 0)
204 ;
4e985ada
TG
205}
206
881d966b 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 208{
8387ff25 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 210
08e9897d 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
212}
213
881d966b 214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 215{
7c28bd0b 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
217}
218
e36fa2f7 219static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
220{
221#ifdef CONFIG_RPS
e36fa2f7 222 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
223#endif
224}
225
e36fa2f7 226static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
227{
228#ifdef CONFIG_RPS
e36fa2f7 229 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
230#endif
231}
232
ff927412
JP
233static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234 const char *name)
235{
236 struct netdev_name_node *name_node;
237
238 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239 if (!name_node)
240 return NULL;
241 INIT_HLIST_NODE(&name_node->hlist);
242 name_node->dev = dev;
243 name_node->name = name;
244 return name_node;
245}
246
247static struct netdev_name_node *
248netdev_name_node_head_alloc(struct net_device *dev)
249{
36fbf1e5
JP
250 struct netdev_name_node *name_node;
251
252 name_node = netdev_name_node_alloc(dev, dev->name);
253 if (!name_node)
254 return NULL;
255 INIT_LIST_HEAD(&name_node->list);
256 return name_node;
ff927412
JP
257}
258
259static void netdev_name_node_free(struct netdev_name_node *name_node)
260{
261 kfree(name_node);
262}
263
264static void netdev_name_node_add(struct net *net,
265 struct netdev_name_node *name_node)
266{
267 hlist_add_head_rcu(&name_node->hlist,
268 dev_name_hash(net, name_node->name));
269}
270
271static void netdev_name_node_del(struct netdev_name_node *name_node)
272{
273 hlist_del_rcu(&name_node->hlist);
274}
275
276static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277 const char *name)
278{
279 struct hlist_head *head = dev_name_hash(net, name);
280 struct netdev_name_node *name_node;
281
282 hlist_for_each_entry(name_node, head, hlist)
283 if (!strcmp(name_node->name, name))
284 return name_node;
285 return NULL;
286}
287
288static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289 const char *name)
290{
291 struct hlist_head *head = dev_name_hash(net, name);
292 struct netdev_name_node *name_node;
293
294 hlist_for_each_entry_rcu(name_node, head, hlist)
295 if (!strcmp(name_node->name, name))
296 return name_node;
297 return NULL;
298}
299
36fbf1e5
JP
300int netdev_name_node_alt_create(struct net_device *dev, const char *name)
301{
302 struct netdev_name_node *name_node;
303 struct net *net = dev_net(dev);
304
305 name_node = netdev_name_node_lookup(net, name);
306 if (name_node)
307 return -EEXIST;
308 name_node = netdev_name_node_alloc(dev, name);
309 if (!name_node)
310 return -ENOMEM;
311 netdev_name_node_add(net, name_node);
312 /* The node that holds dev->name acts as a head of per-device list. */
313 list_add_tail(&name_node->list, &dev->name_node->list);
314
315 return 0;
316}
317EXPORT_SYMBOL(netdev_name_node_alt_create);
318
319static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
320{
321 list_del(&name_node->list);
322 netdev_name_node_del(name_node);
323 kfree(name_node->name);
324 netdev_name_node_free(name_node);
325}
326
327int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (!name_node)
334 return -ENOENT;
e08ad805
ED
335 /* lookup might have found our primary name or a name belonging
336 * to another device.
337 */
338 if (name_node == dev->name_node || name_node->dev != dev)
339 return -EINVAL;
340
36fbf1e5
JP
341 __netdev_name_node_alt_destroy(name_node);
342
343 return 0;
344}
345EXPORT_SYMBOL(netdev_name_node_alt_destroy);
346
347static void netdev_name_node_alt_flush(struct net_device *dev)
348{
349 struct netdev_name_node *name_node, *tmp;
350
351 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
352 __netdev_name_node_alt_destroy(name_node);
353}
354
ce286d32 355/* Device list insertion */
53759be9 356static void list_netdevice(struct net_device *dev)
ce286d32 357{
c346dca1 358 struct net *net = dev_net(dev);
ce286d32
EB
359
360 ASSERT_RTNL();
361
362 write_lock_bh(&dev_base_lock);
c6d14c84 363 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
ff927412 364 netdev_name_node_add(net, dev->name_node);
fb699dfd
ED
365 hlist_add_head_rcu(&dev->index_hlist,
366 dev_index_hash(net, dev->ifindex));
ce286d32 367 write_unlock_bh(&dev_base_lock);
4e985ada
TG
368
369 dev_base_seq_inc(net);
ce286d32
EB
370}
371
fb699dfd
ED
372/* Device list removal
373 * caller must respect a RCU grace period before freeing/reusing dev
374 */
ce286d32
EB
375static void unlist_netdevice(struct net_device *dev)
376{
377 ASSERT_RTNL();
378
379 /* Unlink dev from the device chain */
380 write_lock_bh(&dev_base_lock);
c6d14c84 381 list_del_rcu(&dev->dev_list);
ff927412 382 netdev_name_node_del(dev->name_node);
fb699dfd 383 hlist_del_rcu(&dev->index_hlist);
ce286d32 384 write_unlock_bh(&dev_base_lock);
4e985ada
TG
385
386 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
387}
388
1da177e4
LT
389/*
390 * Our notifier list
391 */
392
f07d5b94 393static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
394
395/*
396 * Device drivers call our routines to queue packets here. We empty the
397 * queue in the local softnet handler.
398 */
bea3348e 399
9958da05 400DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 401EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 402
1a33e10e
CW
403#ifdef CONFIG_LOCKDEP
404/*
405 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
406 * according to dev->type
407 */
408static const unsigned short netdev_lock_type[] = {
409 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
410 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
411 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
412 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
413 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
414 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
415 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
416 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
417 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
418 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
419 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
420 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
421 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
422 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
423 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
424
425static const char *const netdev_lock_name[] = {
426 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
427 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
428 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
429 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
430 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
431 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
432 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
433 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
434 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
435 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
436 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
437 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
438 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
439 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
440 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
441
442static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
845e0ebb 443static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
1a33e10e
CW
444
445static inline unsigned short netdev_lock_pos(unsigned short dev_type)
446{
447 int i;
448
449 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
450 if (netdev_lock_type[i] == dev_type)
451 return i;
452 /* the last key is used by default */
453 return ARRAY_SIZE(netdev_lock_type) - 1;
454}
455
456static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
457 unsigned short dev_type)
458{
459 int i;
460
461 i = netdev_lock_pos(dev_type);
462 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
463 netdev_lock_name[i]);
464}
845e0ebb
CW
465
466static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
467{
468 int i;
469
470 i = netdev_lock_pos(dev->type);
471 lockdep_set_class_and_name(&dev->addr_list_lock,
472 &netdev_addr_lock_key[i],
473 netdev_lock_name[i]);
474}
1a33e10e
CW
475#else
476static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
477 unsigned short dev_type)
478{
479}
845e0ebb
CW
480
481static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
482{
483}
1a33e10e
CW
484#endif
485
1da177e4 486/*******************************************************************************
eb13da1a 487 *
488 * Protocol management and registration routines
489 *
490 *******************************************************************************/
1da177e4 491
1da177e4 492
1da177e4
LT
493/*
494 * Add a protocol ID to the list. Now that the input handler is
495 * smarter we can dispense with all the messy stuff that used to be
496 * here.
497 *
498 * BEWARE!!! Protocol handlers, mangling input packets,
499 * MUST BE last in hash buckets and checking protocol handlers
500 * MUST start from promiscuous ptype_all chain in net_bh.
501 * It is true now, do not change it.
502 * Explanation follows: if protocol handler, mangling packet, will
503 * be the first on list, it is not able to sense, that packet
504 * is cloned and should be copied-on-write, so that it will
505 * change it and subsequent readers will get broken packet.
506 * --ANK (980803)
507 */
508
c07b68e8
ED
509static inline struct list_head *ptype_head(const struct packet_type *pt)
510{
511 if (pt->type == htons(ETH_P_ALL))
7866a621 512 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 513 else
7866a621
SN
514 return pt->dev ? &pt->dev->ptype_specific :
515 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
516}
517
1da177e4
LT
518/**
519 * dev_add_pack - add packet handler
520 * @pt: packet type declaration
521 *
522 * Add a protocol handler to the networking stack. The passed &packet_type
523 * is linked into kernel lists and may not be freed until it has been
524 * removed from the kernel lists.
525 *
4ec93edb 526 * This call does not sleep therefore it can not
1da177e4
LT
527 * guarantee all CPU's that are in middle of receiving packets
528 * will see the new packet type (until the next received packet).
529 */
530
531void dev_add_pack(struct packet_type *pt)
532{
c07b68e8 533 struct list_head *head = ptype_head(pt);
1da177e4 534
c07b68e8
ED
535 spin_lock(&ptype_lock);
536 list_add_rcu(&pt->list, head);
537 spin_unlock(&ptype_lock);
1da177e4 538}
d1b19dff 539EXPORT_SYMBOL(dev_add_pack);
1da177e4 540
1da177e4
LT
541/**
542 * __dev_remove_pack - remove packet handler
543 * @pt: packet type declaration
544 *
545 * Remove a protocol handler that was previously added to the kernel
546 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
547 * from the kernel lists and can be freed or reused once this function
4ec93edb 548 * returns.
1da177e4
LT
549 *
550 * The packet type might still be in use by receivers
551 * and must not be freed until after all the CPU's have gone
552 * through a quiescent state.
553 */
554void __dev_remove_pack(struct packet_type *pt)
555{
c07b68e8 556 struct list_head *head = ptype_head(pt);
1da177e4
LT
557 struct packet_type *pt1;
558
c07b68e8 559 spin_lock(&ptype_lock);
1da177e4
LT
560
561 list_for_each_entry(pt1, head, list) {
562 if (pt == pt1) {
563 list_del_rcu(&pt->list);
564 goto out;
565 }
566 }
567
7b6cd1ce 568 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 569out:
c07b68e8 570 spin_unlock(&ptype_lock);
1da177e4 571}
d1b19dff
ED
572EXPORT_SYMBOL(__dev_remove_pack);
573
1da177e4
LT
574/**
575 * dev_remove_pack - remove packet handler
576 * @pt: packet type declaration
577 *
578 * Remove a protocol handler that was previously added to the kernel
579 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
580 * from the kernel lists and can be freed or reused once this function
581 * returns.
582 *
583 * This call sleeps to guarantee that no CPU is looking at the packet
584 * type after return.
585 */
586void dev_remove_pack(struct packet_type *pt)
587{
588 __dev_remove_pack(pt);
4ec93edb 589
1da177e4
LT
590 synchronize_net();
591}
d1b19dff 592EXPORT_SYMBOL(dev_remove_pack);
1da177e4 593
62532da9
VY
594
595/**
596 * dev_add_offload - register offload handlers
597 * @po: protocol offload declaration
598 *
599 * Add protocol offload handlers to the networking stack. The passed
600 * &proto_offload is linked into kernel lists and may not be freed until
601 * it has been removed from the kernel lists.
602 *
603 * This call does not sleep therefore it can not
604 * guarantee all CPU's that are in middle of receiving packets
605 * will see the new offload handlers (until the next received packet).
606 */
607void dev_add_offload(struct packet_offload *po)
608{
bdef7de4 609 struct packet_offload *elem;
62532da9
VY
610
611 spin_lock(&offload_lock);
bdef7de4
DM
612 list_for_each_entry(elem, &offload_base, list) {
613 if (po->priority < elem->priority)
614 break;
615 }
616 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
617 spin_unlock(&offload_lock);
618}
619EXPORT_SYMBOL(dev_add_offload);
620
621/**
622 * __dev_remove_offload - remove offload handler
623 * @po: packet offload declaration
624 *
625 * Remove a protocol offload handler that was previously added to the
626 * kernel offload handlers by dev_add_offload(). The passed &offload_type
627 * is removed from the kernel lists and can be freed or reused once this
628 * function returns.
629 *
630 * The packet type might still be in use by receivers
631 * and must not be freed until after all the CPU's have gone
632 * through a quiescent state.
633 */
1d143d9f 634static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
635{
636 struct list_head *head = &offload_base;
637 struct packet_offload *po1;
638
c53aa505 639 spin_lock(&offload_lock);
62532da9
VY
640
641 list_for_each_entry(po1, head, list) {
642 if (po == po1) {
643 list_del_rcu(&po->list);
644 goto out;
645 }
646 }
647
648 pr_warn("dev_remove_offload: %p not found\n", po);
649out:
c53aa505 650 spin_unlock(&offload_lock);
62532da9 651}
62532da9
VY
652
653/**
654 * dev_remove_offload - remove packet offload handler
655 * @po: packet offload declaration
656 *
657 * Remove a packet offload handler that was previously added to the kernel
658 * offload handlers by dev_add_offload(). The passed &offload_type is
659 * removed from the kernel lists and can be freed or reused once this
660 * function returns.
661 *
662 * This call sleeps to guarantee that no CPU is looking at the packet
663 * type after return.
664 */
665void dev_remove_offload(struct packet_offload *po)
666{
667 __dev_remove_offload(po);
668
669 synchronize_net();
670}
671EXPORT_SYMBOL(dev_remove_offload);
672
1da177e4 673/******************************************************************************
eb13da1a 674 *
675 * Device Boot-time Settings Routines
676 *
677 ******************************************************************************/
1da177e4
LT
678
679/* Boot time configuration table */
680static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
681
682/**
683 * netdev_boot_setup_add - add new setup entry
684 * @name: name of the device
685 * @map: configured settings for the device
686 *
687 * Adds new setup entry to the dev_boot_setup list. The function
688 * returns 0 on error and 1 on success. This is a generic routine to
689 * all netdevices.
690 */
691static int netdev_boot_setup_add(char *name, struct ifmap *map)
692{
693 struct netdev_boot_setup *s;
694 int i;
695
696 s = dev_boot_setup;
697 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
698 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
699 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 700 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
701 memcpy(&s[i].map, map, sizeof(s[i].map));
702 break;
703 }
704 }
705
706 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
707}
708
709/**
722c9a0c 710 * netdev_boot_setup_check - check boot time settings
711 * @dev: the netdevice
1da177e4 712 *
722c9a0c 713 * Check boot time settings for the device.
714 * The found settings are set for the device to be used
715 * later in the device probing.
716 * Returns 0 if no settings found, 1 if they are.
1da177e4
LT
717 */
718int netdev_boot_setup_check(struct net_device *dev)
719{
720 struct netdev_boot_setup *s = dev_boot_setup;
721 int i;
722
723 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
724 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 725 !strcmp(dev->name, s[i].name)) {
722c9a0c 726 dev->irq = s[i].map.irq;
727 dev->base_addr = s[i].map.base_addr;
728 dev->mem_start = s[i].map.mem_start;
729 dev->mem_end = s[i].map.mem_end;
1da177e4
LT
730 return 1;
731 }
732 }
733 return 0;
734}
d1b19dff 735EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
736
737
738/**
722c9a0c 739 * netdev_boot_base - get address from boot time settings
740 * @prefix: prefix for network device
741 * @unit: id for network device
742 *
743 * Check boot time settings for the base address of device.
744 * The found settings are set for the device to be used
745 * later in the device probing.
746 * Returns 0 if no settings found.
1da177e4
LT
747 */
748unsigned long netdev_boot_base(const char *prefix, int unit)
749{
750 const struct netdev_boot_setup *s = dev_boot_setup;
751 char name[IFNAMSIZ];
752 int i;
753
754 sprintf(name, "%s%d", prefix, unit);
755
756 /*
757 * If device already registered then return base of 1
758 * to indicate not to probe for this interface
759 */
881d966b 760 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
761 return 1;
762
763 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
764 if (!strcmp(name, s[i].name))
765 return s[i].map.base_addr;
766 return 0;
767}
768
769/*
770 * Saves at boot time configured settings for any netdevice.
771 */
772int __init netdev_boot_setup(char *str)
773{
774 int ints[5];
775 struct ifmap map;
776
777 str = get_options(str, ARRAY_SIZE(ints), ints);
778 if (!str || !*str)
779 return 0;
780
781 /* Save settings */
782 memset(&map, 0, sizeof(map));
783 if (ints[0] > 0)
784 map.irq = ints[1];
785 if (ints[0] > 1)
786 map.base_addr = ints[2];
787 if (ints[0] > 2)
788 map.mem_start = ints[3];
789 if (ints[0] > 3)
790 map.mem_end = ints[4];
791
792 /* Add new entry to the list */
793 return netdev_boot_setup_add(str, &map);
794}
795
796__setup("netdev=", netdev_boot_setup);
797
798/*******************************************************************************
eb13da1a 799 *
800 * Device Interface Subroutines
801 *
802 *******************************************************************************/
1da177e4 803
a54acb3a
ND
804/**
805 * dev_get_iflink - get 'iflink' value of a interface
806 * @dev: targeted interface
807 *
808 * Indicates the ifindex the interface is linked to.
809 * Physical interfaces have the same 'ifindex' and 'iflink' values.
810 */
811
812int dev_get_iflink(const struct net_device *dev)
813{
814 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
815 return dev->netdev_ops->ndo_get_iflink(dev);
816
7a66bbc9 817 return dev->ifindex;
a54acb3a
ND
818}
819EXPORT_SYMBOL(dev_get_iflink);
820
fc4099f1
PS
821/**
822 * dev_fill_metadata_dst - Retrieve tunnel egress information.
823 * @dev: targeted interface
824 * @skb: The packet.
825 *
826 * For better visibility of tunnel traffic OVS needs to retrieve
827 * egress tunnel information for a packet. Following API allows
828 * user to get this info.
829 */
830int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
831{
832 struct ip_tunnel_info *info;
833
834 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
835 return -EINVAL;
836
837 info = skb_tunnel_info_unclone(skb);
838 if (!info)
839 return -ENOMEM;
840 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
841 return -EINVAL;
842
843 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
844}
845EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
846
1da177e4
LT
847/**
848 * __dev_get_by_name - find a device by its name
c4ea43c5 849 * @net: the applicable net namespace
1da177e4
LT
850 * @name: name to find
851 *
852 * Find an interface by name. Must be called under RTNL semaphore
853 * or @dev_base_lock. If the name is found a pointer to the device
854 * is returned. If the name is not found then %NULL is returned. The
855 * reference counters are not incremented so the caller must be
856 * careful with locks.
857 */
858
881d966b 859struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 860{
ff927412 861 struct netdev_name_node *node_name;
1da177e4 862
ff927412
JP
863 node_name = netdev_name_node_lookup(net, name);
864 return node_name ? node_name->dev : NULL;
1da177e4 865}
d1b19dff 866EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 867
72c9528b 868/**
722c9a0c 869 * dev_get_by_name_rcu - find a device by its name
870 * @net: the applicable net namespace
871 * @name: name to find
872 *
873 * Find an interface by name.
874 * If the name is found a pointer to the device is returned.
875 * If the name is not found then %NULL is returned.
876 * The reference counters are not incremented so the caller must be
877 * careful with locks. The caller must hold RCU lock.
72c9528b
ED
878 */
879
880struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
881{
ff927412 882 struct netdev_name_node *node_name;
72c9528b 883
ff927412
JP
884 node_name = netdev_name_node_lookup_rcu(net, name);
885 return node_name ? node_name->dev : NULL;
72c9528b
ED
886}
887EXPORT_SYMBOL(dev_get_by_name_rcu);
888
1da177e4
LT
889/**
890 * dev_get_by_name - find a device by its name
c4ea43c5 891 * @net: the applicable net namespace
1da177e4
LT
892 * @name: name to find
893 *
894 * Find an interface by name. This can be called from any
895 * context and does its own locking. The returned handle has
896 * the usage count incremented and the caller must use dev_put() to
897 * release it when it is no longer needed. %NULL is returned if no
898 * matching device is found.
899 */
900
881d966b 901struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
902{
903 struct net_device *dev;
904
72c9528b
ED
905 rcu_read_lock();
906 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
907 if (dev)
908 dev_hold(dev);
72c9528b 909 rcu_read_unlock();
1da177e4
LT
910 return dev;
911}
d1b19dff 912EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
913
914/**
915 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 916 * @net: the applicable net namespace
1da177e4
LT
917 * @ifindex: index of device
918 *
919 * Search for an interface by index. Returns %NULL if the device
920 * is not found or a pointer to the device. The device has not
921 * had its reference counter increased so the caller must be careful
922 * about locking. The caller must hold either the RTNL semaphore
923 * or @dev_base_lock.
924 */
925
881d966b 926struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 927{
0bd8d536
ED
928 struct net_device *dev;
929 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 930
b67bfe0d 931 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
932 if (dev->ifindex == ifindex)
933 return dev;
0bd8d536 934
1da177e4
LT
935 return NULL;
936}
d1b19dff 937EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 938
fb699dfd
ED
939/**
940 * dev_get_by_index_rcu - find a device by its ifindex
941 * @net: the applicable net namespace
942 * @ifindex: index of device
943 *
944 * Search for an interface by index. Returns %NULL if the device
945 * is not found or a pointer to the device. The device has not
946 * had its reference counter increased so the caller must be careful
947 * about locking. The caller must hold RCU lock.
948 */
949
950struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
951{
fb699dfd
ED
952 struct net_device *dev;
953 struct hlist_head *head = dev_index_hash(net, ifindex);
954
b67bfe0d 955 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
956 if (dev->ifindex == ifindex)
957 return dev;
958
959 return NULL;
960}
961EXPORT_SYMBOL(dev_get_by_index_rcu);
962
1da177e4
LT
963
964/**
965 * dev_get_by_index - find a device by its ifindex
c4ea43c5 966 * @net: the applicable net namespace
1da177e4
LT
967 * @ifindex: index of device
968 *
969 * Search for an interface by index. Returns NULL if the device
970 * is not found or a pointer to the device. The device returned has
971 * had a reference added and the pointer is safe until the user calls
972 * dev_put to indicate they have finished with it.
973 */
974
881d966b 975struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
976{
977 struct net_device *dev;
978
fb699dfd
ED
979 rcu_read_lock();
980 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
981 if (dev)
982 dev_hold(dev);
fb699dfd 983 rcu_read_unlock();
1da177e4
LT
984 return dev;
985}
d1b19dff 986EXPORT_SYMBOL(dev_get_by_index);
1da177e4 987
90b602f8
ML
988/**
989 * dev_get_by_napi_id - find a device by napi_id
990 * @napi_id: ID of the NAPI struct
991 *
992 * Search for an interface by NAPI ID. Returns %NULL if the device
993 * is not found or a pointer to the device. The device has not had
994 * its reference counter increased so the caller must be careful
995 * about locking. The caller must hold RCU lock.
996 */
997
998struct net_device *dev_get_by_napi_id(unsigned int napi_id)
999{
1000 struct napi_struct *napi;
1001
1002 WARN_ON_ONCE(!rcu_read_lock_held());
1003
1004 if (napi_id < MIN_NAPI_ID)
1005 return NULL;
1006
1007 napi = napi_by_id(napi_id);
1008
1009 return napi ? napi->dev : NULL;
1010}
1011EXPORT_SYMBOL(dev_get_by_napi_id);
1012
5dbe7c17
NS
1013/**
1014 * netdev_get_name - get a netdevice name, knowing its ifindex.
1015 * @net: network namespace
1016 * @name: a pointer to the buffer where the name will be stored.
1017 * @ifindex: the ifindex of the interface to get the name from.
5dbe7c17
NS
1018 */
1019int netdev_get_name(struct net *net, char *name, int ifindex)
1020{
1021 struct net_device *dev;
11d6011c 1022 int ret;
5dbe7c17 1023
11d6011c 1024 down_read(&devnet_rename_sem);
5dbe7c17 1025 rcu_read_lock();
11d6011c 1026
5dbe7c17
NS
1027 dev = dev_get_by_index_rcu(net, ifindex);
1028 if (!dev) {
11d6011c
AD
1029 ret = -ENODEV;
1030 goto out;
5dbe7c17
NS
1031 }
1032
1033 strcpy(name, dev->name);
5dbe7c17 1034
11d6011c
AD
1035 ret = 0;
1036out:
1037 rcu_read_unlock();
1038 up_read(&devnet_rename_sem);
1039 return ret;
5dbe7c17
NS
1040}
1041
1da177e4 1042/**
941666c2 1043 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 1044 * @net: the applicable net namespace
1da177e4
LT
1045 * @type: media type of device
1046 * @ha: hardware address
1047 *
1048 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
1049 * is not found or a pointer to the device.
1050 * The caller must hold RCU or RTNL.
941666c2 1051 * The returned device has not had its ref count increased
1da177e4
LT
1052 * and the caller must therefore be careful about locking
1053 *
1da177e4
LT
1054 */
1055
941666c2
ED
1056struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1057 const char *ha)
1da177e4
LT
1058{
1059 struct net_device *dev;
1060
941666c2 1061 for_each_netdev_rcu(net, dev)
1da177e4
LT
1062 if (dev->type == type &&
1063 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
1064 return dev;
1065
1066 return NULL;
1da177e4 1067}
941666c2 1068EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 1069
881d966b 1070struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
1071{
1072 struct net_device *dev;
1073
4e9cac2b 1074 ASSERT_RTNL();
881d966b 1075 for_each_netdev(net, dev)
4e9cac2b 1076 if (dev->type == type)
7562f876
PE
1077 return dev;
1078
1079 return NULL;
4e9cac2b 1080}
4e9cac2b
PM
1081EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1082
881d966b 1083struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 1084{
99fe3c39 1085 struct net_device *dev, *ret = NULL;
4e9cac2b 1086
99fe3c39
ED
1087 rcu_read_lock();
1088 for_each_netdev_rcu(net, dev)
1089 if (dev->type == type) {
1090 dev_hold(dev);
1091 ret = dev;
1092 break;
1093 }
1094 rcu_read_unlock();
1095 return ret;
1da177e4 1096}
1da177e4
LT
1097EXPORT_SYMBOL(dev_getfirstbyhwtype);
1098
1099/**
6c555490 1100 * __dev_get_by_flags - find any device with given flags
c4ea43c5 1101 * @net: the applicable net namespace
1da177e4
LT
1102 * @if_flags: IFF_* values
1103 * @mask: bitmask of bits in if_flags to check
1104 *
1105 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 1106 * is not found or a pointer to the device. Must be called inside
6c555490 1107 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
1108 */
1109
6c555490
WC
1110struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1111 unsigned short mask)
1da177e4 1112{
7562f876 1113 struct net_device *dev, *ret;
1da177e4 1114
6c555490
WC
1115 ASSERT_RTNL();
1116
7562f876 1117 ret = NULL;
6c555490 1118 for_each_netdev(net, dev) {
1da177e4 1119 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 1120 ret = dev;
1da177e4
LT
1121 break;
1122 }
1123 }
7562f876 1124 return ret;
1da177e4 1125}
6c555490 1126EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
1127
1128/**
1129 * dev_valid_name - check if name is okay for network device
1130 * @name: name string
1131 *
1132 * Network device names need to be valid file names to
c7fa9d18
DM
1133 * to allow sysfs to work. We also disallow any kind of
1134 * whitespace.
1da177e4 1135 */
95f050bf 1136bool dev_valid_name(const char *name)
1da177e4 1137{
c7fa9d18 1138 if (*name == '\0')
95f050bf 1139 return false;
a9d48205 1140 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
95f050bf 1141 return false;
c7fa9d18 1142 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 1143 return false;
c7fa9d18
DM
1144
1145 while (*name) {
a4176a93 1146 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1147 return false;
c7fa9d18
DM
1148 name++;
1149 }
95f050bf 1150 return true;
1da177e4 1151}
d1b19dff 1152EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1153
1154/**
b267b179
EB
1155 * __dev_alloc_name - allocate a name for a device
1156 * @net: network namespace to allocate the device name in
1da177e4 1157 * @name: name format string
b267b179 1158 * @buf: scratch buffer and result name string
1da177e4
LT
1159 *
1160 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1161 * id. It scans list of devices to build up a free map, then chooses
1162 * the first empty slot. The caller must hold the dev_base or rtnl lock
1163 * while allocating the name and adding the device in order to avoid
1164 * duplicates.
1165 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1166 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1167 */
1168
b267b179 1169static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1170{
1171 int i = 0;
1da177e4
LT
1172 const char *p;
1173 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1174 unsigned long *inuse;
1da177e4
LT
1175 struct net_device *d;
1176
93809105
RV
1177 if (!dev_valid_name(name))
1178 return -EINVAL;
1179
51f299dd 1180 p = strchr(name, '%');
1da177e4
LT
1181 if (p) {
1182 /*
1183 * Verify the string as this thing may have come from
1184 * the user. There must be either one "%d" and no other "%"
1185 * characters.
1186 */
1187 if (p[1] != 'd' || strchr(p + 2, '%'))
1188 return -EINVAL;
1189
1190 /* Use one page as a bit array of possible slots */
cfcabdcc 1191 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1192 if (!inuse)
1193 return -ENOMEM;
1194
881d966b 1195 for_each_netdev(net, d) {
1da177e4
LT
1196 if (!sscanf(d->name, name, &i))
1197 continue;
1198 if (i < 0 || i >= max_netdevices)
1199 continue;
1200
1201 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1202 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1203 if (!strncmp(buf, d->name, IFNAMSIZ))
1204 set_bit(i, inuse);
1205 }
1206
1207 i = find_first_zero_bit(inuse, max_netdevices);
1208 free_page((unsigned long) inuse);
1209 }
1210
6224abda 1211 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1212 if (!__dev_get_by_name(net, buf))
1da177e4 1213 return i;
1da177e4
LT
1214
1215 /* It is possible to run out of possible slots
1216 * when the name is long and there isn't enough space left
1217 * for the digits, or if all bits are used.
1218 */
029b6d14 1219 return -ENFILE;
1da177e4
LT
1220}
1221
2c88b855
RV
1222static int dev_alloc_name_ns(struct net *net,
1223 struct net_device *dev,
1224 const char *name)
1225{
1226 char buf[IFNAMSIZ];
1227 int ret;
1228
c46d7642 1229 BUG_ON(!net);
2c88b855
RV
1230 ret = __dev_alloc_name(net, name, buf);
1231 if (ret >= 0)
1232 strlcpy(dev->name, buf, IFNAMSIZ);
1233 return ret;
1da177e4
LT
1234}
1235
b267b179
EB
1236/**
1237 * dev_alloc_name - allocate a name for a device
1238 * @dev: device
1239 * @name: name format string
1240 *
1241 * Passed a format string - eg "lt%d" it will try and find a suitable
1242 * id. It scans list of devices to build up a free map, then chooses
1243 * the first empty slot. The caller must hold the dev_base or rtnl lock
1244 * while allocating the name and adding the device in order to avoid
1245 * duplicates.
1246 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1247 * Returns the number of the unit assigned or a negative errno code.
1248 */
1249
1250int dev_alloc_name(struct net_device *dev, const char *name)
1251{
c46d7642 1252 return dev_alloc_name_ns(dev_net(dev), dev, name);
b267b179 1253}
d1b19dff 1254EXPORT_SYMBOL(dev_alloc_name);
b267b179 1255
bacb7e18
ED
1256static int dev_get_valid_name(struct net *net, struct net_device *dev,
1257 const char *name)
828de4f6 1258{
55a5ec9b
DM
1259 BUG_ON(!net);
1260
1261 if (!dev_valid_name(name))
1262 return -EINVAL;
1263
1264 if (strchr(name, '%'))
1265 return dev_alloc_name_ns(net, dev, name);
1266 else if (__dev_get_by_name(net, name))
1267 return -EEXIST;
1268 else if (dev->name != name)
1269 strlcpy(dev->name, name, IFNAMSIZ);
1270
1271 return 0;
d9031024 1272}
1da177e4
LT
1273
1274/**
1275 * dev_change_name - change name of a device
1276 * @dev: device
1277 * @newname: name (or format string) must be at least IFNAMSIZ
1278 *
1279 * Change name of a device, can pass format strings "eth%d".
1280 * for wildcarding.
1281 */
cf04a4c7 1282int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1283{
238fa362 1284 unsigned char old_assign_type;
fcc5a03a 1285 char oldname[IFNAMSIZ];
1da177e4 1286 int err = 0;
fcc5a03a 1287 int ret;
881d966b 1288 struct net *net;
1da177e4
LT
1289
1290 ASSERT_RTNL();
c346dca1 1291 BUG_ON(!dev_net(dev));
1da177e4 1292
c346dca1 1293 net = dev_net(dev);
8065a779
SWL
1294
1295 /* Some auto-enslaved devices e.g. failover slaves are
1296 * special, as userspace might rename the device after
1297 * the interface had been brought up and running since
1298 * the point kernel initiated auto-enslavement. Allow
1299 * live name change even when these slave devices are
1300 * up and running.
1301 *
1302 * Typically, users of these auto-enslaving devices
1303 * don't actually care about slave name change, as
1304 * they are supposed to operate on master interface
1305 * directly.
1306 */
1307 if (dev->flags & IFF_UP &&
1308 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1da177e4
LT
1309 return -EBUSY;
1310
11d6011c 1311 down_write(&devnet_rename_sem);
c91f6df2
BH
1312
1313 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
11d6011c 1314 up_write(&devnet_rename_sem);
c8d90dca 1315 return 0;
c91f6df2 1316 }
c8d90dca 1317
fcc5a03a
HX
1318 memcpy(oldname, dev->name, IFNAMSIZ);
1319
828de4f6 1320 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1321 if (err < 0) {
11d6011c 1322 up_write(&devnet_rename_sem);
d9031024 1323 return err;
c91f6df2 1324 }
1da177e4 1325
6fe82a39
VF
1326 if (oldname[0] && !strchr(oldname, '%'))
1327 netdev_info(dev, "renamed from %s\n", oldname);
1328
238fa362
TG
1329 old_assign_type = dev->name_assign_type;
1330 dev->name_assign_type = NET_NAME_RENAMED;
1331
fcc5a03a 1332rollback:
a1b3f594
EB
1333 ret = device_rename(&dev->dev, dev->name);
1334 if (ret) {
1335 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1336 dev->name_assign_type = old_assign_type;
11d6011c 1337 up_write(&devnet_rename_sem);
a1b3f594 1338 return ret;
dcc99773 1339 }
7f988eab 1340
11d6011c 1341 up_write(&devnet_rename_sem);
c91f6df2 1342
5bb025fa
VF
1343 netdev_adjacent_rename_links(dev, oldname);
1344
7f988eab 1345 write_lock_bh(&dev_base_lock);
ff927412 1346 netdev_name_node_del(dev->name_node);
72c9528b
ED
1347 write_unlock_bh(&dev_base_lock);
1348
1349 synchronize_rcu();
1350
1351 write_lock_bh(&dev_base_lock);
ff927412 1352 netdev_name_node_add(net, dev->name_node);
7f988eab
HX
1353 write_unlock_bh(&dev_base_lock);
1354
056925ab 1355 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1356 ret = notifier_to_errno(ret);
1357
1358 if (ret) {
91e9c07b
ED
1359 /* err >= 0 after dev_alloc_name() or stores the first errno */
1360 if (err >= 0) {
fcc5a03a 1361 err = ret;
11d6011c 1362 down_write(&devnet_rename_sem);
fcc5a03a 1363 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1364 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1365 dev->name_assign_type = old_assign_type;
1366 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1367 goto rollback;
91e9c07b 1368 } else {
7b6cd1ce 1369 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1370 dev->name, ret);
fcc5a03a
HX
1371 }
1372 }
1da177e4
LT
1373
1374 return err;
1375}
1376
0b815a1a
SH
1377/**
1378 * dev_set_alias - change ifalias of a device
1379 * @dev: device
1380 * @alias: name up to IFALIASZ
f0db275a 1381 * @len: limit of bytes to copy from info
0b815a1a
SH
1382 *
1383 * Set ifalias for a device,
1384 */
1385int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1386{
6c557001 1387 struct dev_ifalias *new_alias = NULL;
0b815a1a
SH
1388
1389 if (len >= IFALIASZ)
1390 return -EINVAL;
1391
6c557001
FW
1392 if (len) {
1393 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1394 if (!new_alias)
1395 return -ENOMEM;
1396
1397 memcpy(new_alias->ifalias, alias, len);
1398 new_alias->ifalias[len] = 0;
96ca4a2c
OH
1399 }
1400
6c557001 1401 mutex_lock(&ifalias_mutex);
e3f0d761
PM
1402 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1403 mutex_is_locked(&ifalias_mutex));
6c557001
FW
1404 mutex_unlock(&ifalias_mutex);
1405
1406 if (new_alias)
1407 kfree_rcu(new_alias, rcuhead);
0b815a1a 1408
0b815a1a
SH
1409 return len;
1410}
0fe554a4 1411EXPORT_SYMBOL(dev_set_alias);
0b815a1a 1412
6c557001
FW
1413/**
1414 * dev_get_alias - get ifalias of a device
1415 * @dev: device
20e88320 1416 * @name: buffer to store name of ifalias
6c557001
FW
1417 * @len: size of buffer
1418 *
1419 * get ifalias for a device. Caller must make sure dev cannot go
1420 * away, e.g. rcu read lock or own a reference count to device.
1421 */
1422int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1423{
1424 const struct dev_ifalias *alias;
1425 int ret = 0;
1426
1427 rcu_read_lock();
1428 alias = rcu_dereference(dev->ifalias);
1429 if (alias)
1430 ret = snprintf(name, len, "%s", alias->ifalias);
1431 rcu_read_unlock();
1432
1433 return ret;
1434}
0b815a1a 1435
d8a33ac4 1436/**
3041a069 1437 * netdev_features_change - device changes features
d8a33ac4
SH
1438 * @dev: device to cause notification
1439 *
1440 * Called to indicate a device has changed features.
1441 */
1442void netdev_features_change(struct net_device *dev)
1443{
056925ab 1444 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1445}
1446EXPORT_SYMBOL(netdev_features_change);
1447
1da177e4
LT
1448/**
1449 * netdev_state_change - device changes state
1450 * @dev: device to cause notification
1451 *
1452 * Called to indicate a device has changed state. This function calls
1453 * the notifier chains for netdev_chain and sends a NEWLINK message
1454 * to the routing socket.
1455 */
1456void netdev_state_change(struct net_device *dev)
1457{
1458 if (dev->flags & IFF_UP) {
51d0c047
DA
1459 struct netdev_notifier_change_info change_info = {
1460 .info.dev = dev,
1461 };
54951194 1462
51d0c047 1463 call_netdevice_notifiers_info(NETDEV_CHANGE,
54951194 1464 &change_info.info);
7f294054 1465 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1466 }
1467}
d1b19dff 1468EXPORT_SYMBOL(netdev_state_change);
1da177e4 1469
ee89bab1 1470/**
722c9a0c 1471 * netdev_notify_peers - notify network peers about existence of @dev
1472 * @dev: network device
ee89bab1
AW
1473 *
1474 * Generate traffic such that interested network peers are aware of
1475 * @dev, such as by generating a gratuitous ARP. This may be used when
1476 * a device wants to inform the rest of the network about some sort of
1477 * reconfiguration such as a failover event or virtual machine
1478 * migration.
1479 */
1480void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1481{
ee89bab1
AW
1482 rtnl_lock();
1483 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
37c343b4 1484 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
ee89bab1 1485 rtnl_unlock();
c1da4ac7 1486}
ee89bab1 1487EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1488
40c900aa 1489static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1da177e4 1490{
d314774c 1491 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1492 int ret;
1da177e4 1493
e46b66bc
BH
1494 ASSERT_RTNL();
1495
bd869245
HK
1496 if (!netif_device_present(dev)) {
1497 /* may be detached because parent is runtime-suspended */
1498 if (dev->dev.parent)
1499 pm_runtime_resume(dev->dev.parent);
1500 if (!netif_device_present(dev))
1501 return -ENODEV;
1502 }
1da177e4 1503
ca99ca14
NH
1504 /* Block netpoll from trying to do any rx path servicing.
1505 * If we don't do this there is a chance ndo_poll_controller
1506 * or ndo_poll may be running while we open the device
1507 */
66b5552f 1508 netpoll_poll_disable(dev);
ca99ca14 1509
40c900aa 1510 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
3b8bcfd5
JB
1511 ret = notifier_to_errno(ret);
1512 if (ret)
1513 return ret;
1514
1da177e4 1515 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1516
d314774c
SH
1517 if (ops->ndo_validate_addr)
1518 ret = ops->ndo_validate_addr(dev);
bada339b 1519
d314774c
SH
1520 if (!ret && ops->ndo_open)
1521 ret = ops->ndo_open(dev);
1da177e4 1522
66b5552f 1523 netpoll_poll_enable(dev);
ca99ca14 1524
bada339b
JG
1525 if (ret)
1526 clear_bit(__LINK_STATE_START, &dev->state);
1527 else {
1da177e4 1528 dev->flags |= IFF_UP;
4417da66 1529 dev_set_rx_mode(dev);
1da177e4 1530 dev_activate(dev);
7bf23575 1531 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1532 }
bada339b 1533
1da177e4
LT
1534 return ret;
1535}
1536
1537/**
bd380811 1538 * dev_open - prepare an interface for use.
00f54e68
PM
1539 * @dev: device to open
1540 * @extack: netlink extended ack
1da177e4 1541 *
bd380811
PM
1542 * Takes a device from down to up state. The device's private open
1543 * function is invoked and then the multicast lists are loaded. Finally
1544 * the device is moved into the up state and a %NETDEV_UP message is
1545 * sent to the netdev notifier chain.
1546 *
1547 * Calling this function on an active interface is a nop. On a failure
1548 * a negative errno code is returned.
1da177e4 1549 */
00f54e68 1550int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
bd380811
PM
1551{
1552 int ret;
1553
bd380811
PM
1554 if (dev->flags & IFF_UP)
1555 return 0;
1556
40c900aa 1557 ret = __dev_open(dev, extack);
bd380811
PM
1558 if (ret < 0)
1559 return ret;
1560
7f294054 1561 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1562 call_netdevice_notifiers(NETDEV_UP, dev);
1563
1564 return ret;
1565}
1566EXPORT_SYMBOL(dev_open);
1567
7051b88a 1568static void __dev_close_many(struct list_head *head)
1da177e4 1569{
44345724 1570 struct net_device *dev;
e46b66bc 1571
bd380811 1572 ASSERT_RTNL();
9d5010db
DM
1573 might_sleep();
1574
5cde2829 1575 list_for_each_entry(dev, head, close_list) {
3f4df206 1576 /* Temporarily disable netpoll until the interface is down */
66b5552f 1577 netpoll_poll_disable(dev);
3f4df206 1578
44345724 1579 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1580
44345724 1581 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1582
44345724
OP
1583 /* Synchronize to scheduled poll. We cannot touch poll list, it
1584 * can be even on different cpu. So just clear netif_running().
1585 *
1586 * dev->stop() will invoke napi_disable() on all of it's
1587 * napi_struct instances on this device.
1588 */
4e857c58 1589 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1590 }
1da177e4 1591
44345724 1592 dev_deactivate_many(head);
d8b2a4d2 1593
5cde2829 1594 list_for_each_entry(dev, head, close_list) {
44345724 1595 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1596
44345724
OP
1597 /*
1598 * Call the device specific close. This cannot fail.
1599 * Only if device is UP
1600 *
1601 * We allow it to be called even after a DETACH hot-plug
1602 * event.
1603 */
1604 if (ops->ndo_stop)
1605 ops->ndo_stop(dev);
1606
44345724 1607 dev->flags &= ~IFF_UP;
66b5552f 1608 netpoll_poll_enable(dev);
44345724 1609 }
44345724
OP
1610}
1611
7051b88a 1612static void __dev_close(struct net_device *dev)
44345724
OP
1613{
1614 LIST_HEAD(single);
1615
5cde2829 1616 list_add(&dev->close_list, &single);
7051b88a 1617 __dev_close_many(&single);
f87e6f47 1618 list_del(&single);
44345724
OP
1619}
1620
7051b88a 1621void dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1622{
1623 struct net_device *dev, *tmp;
1da177e4 1624
5cde2829
EB
1625 /* Remove the devices that don't need to be closed */
1626 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1627 if (!(dev->flags & IFF_UP))
5cde2829 1628 list_del_init(&dev->close_list);
44345724
OP
1629
1630 __dev_close_many(head);
1da177e4 1631
5cde2829 1632 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1633 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1634 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1635 if (unlink)
1636 list_del_init(&dev->close_list);
44345724 1637 }
bd380811 1638}
99c4a26a 1639EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1640
1641/**
1642 * dev_close - shutdown an interface.
1643 * @dev: device to shutdown
1644 *
1645 * This function moves an active device into down state. A
1646 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1647 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1648 * chain.
1649 */
7051b88a 1650void dev_close(struct net_device *dev)
bd380811 1651{
e14a5993
ED
1652 if (dev->flags & IFF_UP) {
1653 LIST_HEAD(single);
1da177e4 1654
5cde2829 1655 list_add(&dev->close_list, &single);
99c4a26a 1656 dev_close_many(&single, true);
e14a5993
ED
1657 list_del(&single);
1658 }
1da177e4 1659}
d1b19dff 1660EXPORT_SYMBOL(dev_close);
1da177e4
LT
1661
1662
0187bdfb
BH
1663/**
1664 * dev_disable_lro - disable Large Receive Offload on a device
1665 * @dev: device
1666 *
1667 * Disable Large Receive Offload (LRO) on a net device. Must be
1668 * called under RTNL. This is needed if received packets may be
1669 * forwarded to another interface.
1670 */
1671void dev_disable_lro(struct net_device *dev)
1672{
fbe168ba
MK
1673 struct net_device *lower_dev;
1674 struct list_head *iter;
529d0489 1675
bc5787c6
MM
1676 dev->wanted_features &= ~NETIF_F_LRO;
1677 netdev_update_features(dev);
27660515 1678
22d5969f
MM
1679 if (unlikely(dev->features & NETIF_F_LRO))
1680 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1681
1682 netdev_for_each_lower_dev(dev, lower_dev, iter)
1683 dev_disable_lro(lower_dev);
0187bdfb
BH
1684}
1685EXPORT_SYMBOL(dev_disable_lro);
1686
56f5aa77
MC
1687/**
1688 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1689 * @dev: device
1690 *
1691 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1692 * called under RTNL. This is needed if Generic XDP is installed on
1693 * the device.
1694 */
1695static void dev_disable_gro_hw(struct net_device *dev)
1696{
1697 dev->wanted_features &= ~NETIF_F_GRO_HW;
1698 netdev_update_features(dev);
1699
1700 if (unlikely(dev->features & NETIF_F_GRO_HW))
1701 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1702}
1703
ede2762d
KT
1704const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1705{
1706#define N(val) \
1707 case NETDEV_##val: \
1708 return "NETDEV_" __stringify(val);
1709 switch (cmd) {
1710 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1711 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1712 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1713 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1714 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1715 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1716 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
9daae9bd
GP
1717 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1718 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1570415f 1719 N(PRE_CHANGEADDR)
3f5ecd8a 1720 }
ede2762d
KT
1721#undef N
1722 return "UNKNOWN_NETDEV_EVENT";
1723}
1724EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1725
351638e7
JP
1726static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1727 struct net_device *dev)
1728{
51d0c047
DA
1729 struct netdev_notifier_info info = {
1730 .dev = dev,
1731 };
351638e7 1732
351638e7
JP
1733 return nb->notifier_call(nb, val, &info);
1734}
0187bdfb 1735
afa0df59
JP
1736static int call_netdevice_register_notifiers(struct notifier_block *nb,
1737 struct net_device *dev)
1738{
1739 int err;
1740
1741 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1742 err = notifier_to_errno(err);
1743 if (err)
1744 return err;
1745
1746 if (!(dev->flags & IFF_UP))
1747 return 0;
1748
1749 call_netdevice_notifier(nb, NETDEV_UP, dev);
1750 return 0;
1751}
1752
1753static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1754 struct net_device *dev)
1755{
1756 if (dev->flags & IFF_UP) {
1757 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1758 dev);
1759 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1760 }
1761 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1762}
1763
1764static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1765 struct net *net)
1766{
1767 struct net_device *dev;
1768 int err;
1769
1770 for_each_netdev(net, dev) {
1771 err = call_netdevice_register_notifiers(nb, dev);
1772 if (err)
1773 goto rollback;
1774 }
1775 return 0;
1776
1777rollback:
1778 for_each_netdev_continue_reverse(net, dev)
1779 call_netdevice_unregister_notifiers(nb, dev);
1780 return err;
1781}
1782
1783static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1784 struct net *net)
1785{
1786 struct net_device *dev;
1787
1788 for_each_netdev(net, dev)
1789 call_netdevice_unregister_notifiers(nb, dev);
1790}
1791
881d966b
EB
1792static int dev_boot_phase = 1;
1793
1da177e4 1794/**
722c9a0c 1795 * register_netdevice_notifier - register a network notifier block
1796 * @nb: notifier
1da177e4 1797 *
722c9a0c 1798 * Register a notifier to be called when network device events occur.
1799 * The notifier passed is linked into the kernel structures and must
1800 * not be reused until it has been unregistered. A negative errno code
1801 * is returned on a failure.
1da177e4 1802 *
722c9a0c 1803 * When registered all registration and up events are replayed
1804 * to the new notifier to allow device to have a race free
1805 * view of the network device list.
1da177e4
LT
1806 */
1807
1808int register_netdevice_notifier(struct notifier_block *nb)
1809{
881d966b 1810 struct net *net;
1da177e4
LT
1811 int err;
1812
328fbe74
KT
1813 /* Close race with setup_net() and cleanup_net() */
1814 down_write(&pernet_ops_rwsem);
1da177e4 1815 rtnl_lock();
f07d5b94 1816 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1817 if (err)
1818 goto unlock;
881d966b
EB
1819 if (dev_boot_phase)
1820 goto unlock;
1821 for_each_net(net) {
afa0df59
JP
1822 err = call_netdevice_register_net_notifiers(nb, net);
1823 if (err)
1824 goto rollback;
1da177e4 1825 }
fcc5a03a
HX
1826
1827unlock:
1da177e4 1828 rtnl_unlock();
328fbe74 1829 up_write(&pernet_ops_rwsem);
1da177e4 1830 return err;
fcc5a03a
HX
1831
1832rollback:
afa0df59
JP
1833 for_each_net_continue_reverse(net)
1834 call_netdevice_unregister_net_notifiers(nb, net);
c67625a1
PE
1835
1836 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1837 goto unlock;
1da177e4 1838}
d1b19dff 1839EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1840
1841/**
722c9a0c 1842 * unregister_netdevice_notifier - unregister a network notifier block
1843 * @nb: notifier
1da177e4 1844 *
722c9a0c 1845 * Unregister a notifier previously registered by
1846 * register_netdevice_notifier(). The notifier is unlinked into the
1847 * kernel structures and may then be reused. A negative errno code
1848 * is returned on a failure.
7d3d43da 1849 *
722c9a0c 1850 * After unregistering unregister and down device events are synthesized
1851 * for all devices on the device list to the removed notifier to remove
1852 * the need for special case cleanup code.
1da177e4
LT
1853 */
1854
1855int unregister_netdevice_notifier(struct notifier_block *nb)
1856{
7d3d43da 1857 struct net *net;
9f514950
HX
1858 int err;
1859
328fbe74
KT
1860 /* Close race with setup_net() and cleanup_net() */
1861 down_write(&pernet_ops_rwsem);
9f514950 1862 rtnl_lock();
f07d5b94 1863 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1864 if (err)
1865 goto unlock;
1866
48b3a137
JP
1867 for_each_net(net)
1868 call_netdevice_unregister_net_notifiers(nb, net);
1869
7d3d43da 1870unlock:
9f514950 1871 rtnl_unlock();
328fbe74 1872 up_write(&pernet_ops_rwsem);
9f514950 1873 return err;
1da177e4 1874}
d1b19dff 1875EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1876
1f637703
JP
1877static int __register_netdevice_notifier_net(struct net *net,
1878 struct notifier_block *nb,
1879 bool ignore_call_fail)
1880{
1881 int err;
1882
1883 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1884 if (err)
1885 return err;
1886 if (dev_boot_phase)
1887 return 0;
1888
1889 err = call_netdevice_register_net_notifiers(nb, net);
1890 if (err && !ignore_call_fail)
1891 goto chain_unregister;
1892
1893 return 0;
1894
1895chain_unregister:
1896 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1897 return err;
1898}
1899
1900static int __unregister_netdevice_notifier_net(struct net *net,
1901 struct notifier_block *nb)
1902{
1903 int err;
1904
1905 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1906 if (err)
1907 return err;
1908
1909 call_netdevice_unregister_net_notifiers(nb, net);
1910 return 0;
1911}
1912
a30c7b42
JP
1913/**
1914 * register_netdevice_notifier_net - register a per-netns network notifier block
1915 * @net: network namespace
1916 * @nb: notifier
1917 *
1918 * Register a notifier to be called when network device events occur.
1919 * The notifier passed is linked into the kernel structures and must
1920 * not be reused until it has been unregistered. A negative errno code
1921 * is returned on a failure.
1922 *
1923 * When registered all registration and up events are replayed
1924 * to the new notifier to allow device to have a race free
1925 * view of the network device list.
1926 */
1927
1928int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1929{
1930 int err;
1931
1932 rtnl_lock();
1f637703 1933 err = __register_netdevice_notifier_net(net, nb, false);
a30c7b42
JP
1934 rtnl_unlock();
1935 return err;
a30c7b42
JP
1936}
1937EXPORT_SYMBOL(register_netdevice_notifier_net);
1938
1939/**
1940 * unregister_netdevice_notifier_net - unregister a per-netns
1941 * network notifier block
1942 * @net: network namespace
1943 * @nb: notifier
1944 *
1945 * Unregister a notifier previously registered by
1946 * register_netdevice_notifier(). The notifier is unlinked into the
1947 * kernel structures and may then be reused. A negative errno code
1948 * is returned on a failure.
1949 *
1950 * After unregistering unregister and down device events are synthesized
1951 * for all devices on the device list to the removed notifier to remove
1952 * the need for special case cleanup code.
1953 */
1954
1955int unregister_netdevice_notifier_net(struct net *net,
1956 struct notifier_block *nb)
1957{
1958 int err;
1959
1960 rtnl_lock();
1f637703 1961 err = __unregister_netdevice_notifier_net(net, nb);
a30c7b42
JP
1962 rtnl_unlock();
1963 return err;
1964}
1965EXPORT_SYMBOL(unregister_netdevice_notifier_net);
a30c7b42 1966
93642e14
JP
1967int register_netdevice_notifier_dev_net(struct net_device *dev,
1968 struct notifier_block *nb,
1969 struct netdev_net_notifier *nn)
1970{
1971 int err;
a30c7b42 1972
93642e14
JP
1973 rtnl_lock();
1974 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1975 if (!err) {
1976 nn->nb = nb;
1977 list_add(&nn->list, &dev->net_notifier_list);
1978 }
a30c7b42
JP
1979 rtnl_unlock();
1980 return err;
1981}
93642e14
JP
1982EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1983
1984int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1985 struct notifier_block *nb,
1986 struct netdev_net_notifier *nn)
1987{
1988 int err;
1989
1990 rtnl_lock();
1991 list_del(&nn->list);
1992 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1993 rtnl_unlock();
1994 return err;
1995}
1996EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1997
1998static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1999 struct net *net)
2000{
2001 struct netdev_net_notifier *nn;
2002
2003 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2004 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2005 __register_netdevice_notifier_net(net, nn->nb, true);
2006 }
2007}
a30c7b42 2008
351638e7
JP
2009/**
2010 * call_netdevice_notifiers_info - call all network notifier blocks
2011 * @val: value passed unmodified to notifier function
351638e7
JP
2012 * @info: notifier information data
2013 *
2014 * Call all network notifier blocks. Parameters and return value
2015 * are as for raw_notifier_call_chain().
2016 */
2017
1d143d9f 2018static int call_netdevice_notifiers_info(unsigned long val,
1d143d9f 2019 struct netdev_notifier_info *info)
351638e7 2020{
a30c7b42
JP
2021 struct net *net = dev_net(info->dev);
2022 int ret;
2023
351638e7 2024 ASSERT_RTNL();
a30c7b42
JP
2025
2026 /* Run per-netns notifier block chain first, then run the global one.
2027 * Hopefully, one day, the global one is going to be removed after
2028 * all notifier block registrators get converted to be per-netns.
2029 */
2030 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2031 if (ret & NOTIFY_STOP_MASK)
2032 return ret;
351638e7
JP
2033 return raw_notifier_call_chain(&netdev_chain, val, info);
2034}
351638e7 2035
26372605
PM
2036static int call_netdevice_notifiers_extack(unsigned long val,
2037 struct net_device *dev,
2038 struct netlink_ext_ack *extack)
2039{
2040 struct netdev_notifier_info info = {
2041 .dev = dev,
2042 .extack = extack,
2043 };
2044
2045 return call_netdevice_notifiers_info(val, &info);
2046}
2047
1da177e4
LT
2048/**
2049 * call_netdevice_notifiers - call all network notifier blocks
2050 * @val: value passed unmodified to notifier function
c4ea43c5 2051 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
2052 *
2053 * Call all network notifier blocks. Parameters and return value
f07d5b94 2054 * are as for raw_notifier_call_chain().
1da177e4
LT
2055 */
2056
ad7379d4 2057int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 2058{
26372605 2059 return call_netdevice_notifiers_extack(val, dev, NULL);
1da177e4 2060}
edf947f1 2061EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 2062
af7d6cce
SD
2063/**
2064 * call_netdevice_notifiers_mtu - call all network notifier blocks
2065 * @val: value passed unmodified to notifier function
2066 * @dev: net_device pointer passed unmodified to notifier function
2067 * @arg: additional u32 argument passed to the notifier function
2068 *
2069 * Call all network notifier blocks. Parameters and return value
2070 * are as for raw_notifier_call_chain().
2071 */
2072static int call_netdevice_notifiers_mtu(unsigned long val,
2073 struct net_device *dev, u32 arg)
2074{
2075 struct netdev_notifier_info_ext info = {
2076 .info.dev = dev,
2077 .ext.mtu = arg,
2078 };
2079
2080 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2081
2082 return call_netdevice_notifiers_info(val, &info.info);
2083}
2084
1cf51900 2085#ifdef CONFIG_NET_INGRESS
aabf6772 2086static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
4577139b
DB
2087
2088void net_inc_ingress_queue(void)
2089{
aabf6772 2090 static_branch_inc(&ingress_needed_key);
4577139b
DB
2091}
2092EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2093
2094void net_dec_ingress_queue(void)
2095{
aabf6772 2096 static_branch_dec(&ingress_needed_key);
4577139b
DB
2097}
2098EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2099#endif
2100
1f211a1b 2101#ifdef CONFIG_NET_EGRESS
aabf6772 2102static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1f211a1b
DB
2103
2104void net_inc_egress_queue(void)
2105{
aabf6772 2106 static_branch_inc(&egress_needed_key);
1f211a1b
DB
2107}
2108EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2109
2110void net_dec_egress_queue(void)
2111{
aabf6772 2112 static_branch_dec(&egress_needed_key);
1f211a1b
DB
2113}
2114EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2115#endif
2116
39e83922 2117static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
e9666d10 2118#ifdef CONFIG_JUMP_LABEL
b90e5794 2119static atomic_t netstamp_needed_deferred;
13baa00a 2120static atomic_t netstamp_wanted;
5fa8bbda 2121static void netstamp_clear(struct work_struct *work)
1da177e4 2122{
b90e5794 2123 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
13baa00a 2124 int wanted;
b90e5794 2125
13baa00a
ED
2126 wanted = atomic_add_return(deferred, &netstamp_wanted);
2127 if (wanted > 0)
39e83922 2128 static_branch_enable(&netstamp_needed_key);
13baa00a 2129 else
39e83922 2130 static_branch_disable(&netstamp_needed_key);
5fa8bbda
ED
2131}
2132static DECLARE_WORK(netstamp_work, netstamp_clear);
b90e5794 2133#endif
5fa8bbda
ED
2134
2135void net_enable_timestamp(void)
2136{
e9666d10 2137#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2138 int wanted;
2139
2140 while (1) {
2141 wanted = atomic_read(&netstamp_wanted);
2142 if (wanted <= 0)
2143 break;
2144 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2145 return;
2146 }
2147 atomic_inc(&netstamp_needed_deferred);
2148 schedule_work(&netstamp_work);
2149#else
39e83922 2150 static_branch_inc(&netstamp_needed_key);
13baa00a 2151#endif
1da177e4 2152}
d1b19dff 2153EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
2154
2155void net_disable_timestamp(void)
2156{
e9666d10 2157#ifdef CONFIG_JUMP_LABEL
13baa00a
ED
2158 int wanted;
2159
2160 while (1) {
2161 wanted = atomic_read(&netstamp_wanted);
2162 if (wanted <= 1)
2163 break;
2164 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2165 return;
2166 }
2167 atomic_dec(&netstamp_needed_deferred);
5fa8bbda
ED
2168 schedule_work(&netstamp_work);
2169#else
39e83922 2170 static_branch_dec(&netstamp_needed_key);
5fa8bbda 2171#endif
1da177e4 2172}
d1b19dff 2173EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 2174
3b098e2d 2175static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 2176{
2456e855 2177 skb->tstamp = 0;
39e83922 2178 if (static_branch_unlikely(&netstamp_needed_key))
a61bbcf2 2179 __net_timestamp(skb);
1da177e4
LT
2180}
2181
39e83922
DB
2182#define net_timestamp_check(COND, SKB) \
2183 if (static_branch_unlikely(&netstamp_needed_key)) { \
2184 if ((COND) && !(SKB)->tstamp) \
2185 __net_timestamp(SKB); \
2186 } \
3b098e2d 2187
f4b05d27 2188bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
2189{
2190 unsigned int len;
2191
2192 if (!(dev->flags & IFF_UP))
2193 return false;
2194
2195 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2196 if (skb->len <= len)
2197 return true;
2198
2199 /* if TSO is enabled, we don't care about the length as the packet
2200 * could be forwarded without being segmented before
2201 */
2202 if (skb_is_gso(skb))
2203 return true;
2204
2205 return false;
2206}
1ee481fb 2207EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 2208
a0265d28
HX
2209int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2210{
4e3264d2 2211 int ret = ____dev_forward_skb(dev, skb);
a0265d28 2212
4e3264d2
MKL
2213 if (likely(!ret)) {
2214 skb->protocol = eth_type_trans(skb, dev);
2215 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2216 }
a0265d28 2217
4e3264d2 2218 return ret;
a0265d28
HX
2219}
2220EXPORT_SYMBOL_GPL(__dev_forward_skb);
2221
44540960
AB
2222/**
2223 * dev_forward_skb - loopback an skb to another netif
2224 *
2225 * @dev: destination network device
2226 * @skb: buffer to forward
2227 *
2228 * return values:
2229 * NET_RX_SUCCESS (no congestion)
6ec82562 2230 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
2231 *
2232 * dev_forward_skb can be used for injecting an skb from the
2233 * start_xmit function of one device into the receive queue
2234 * of another device.
2235 *
2236 * The receiving device may be in another namespace, so
2237 * we have to clear all information in the skb that could
2238 * impact namespace isolation.
2239 */
2240int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2241{
a0265d28 2242 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
2243}
2244EXPORT_SYMBOL_GPL(dev_forward_skb);
2245
71d9dec2
CG
2246static inline int deliver_skb(struct sk_buff *skb,
2247 struct packet_type *pt_prev,
2248 struct net_device *orig_dev)
2249{
1f8b977a 2250 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1080e512 2251 return -ENOMEM;
63354797 2252 refcount_inc(&skb->users);
71d9dec2
CG
2253 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2254}
2255
7866a621
SN
2256static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2257 struct packet_type **pt,
fbcb2170
JP
2258 struct net_device *orig_dev,
2259 __be16 type,
7866a621
SN
2260 struct list_head *ptype_list)
2261{
2262 struct packet_type *ptype, *pt_prev = *pt;
2263
2264 list_for_each_entry_rcu(ptype, ptype_list, list) {
2265 if (ptype->type != type)
2266 continue;
2267 if (pt_prev)
fbcb2170 2268 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
2269 pt_prev = ptype;
2270 }
2271 *pt = pt_prev;
2272}
2273
c0de08d0
EL
2274static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2275{
a3d744e9 2276 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
2277 return false;
2278
2279 if (ptype->id_match)
2280 return ptype->id_match(ptype, skb->sk);
2281 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2282 return true;
2283
2284 return false;
2285}
2286
9f9a742d
MR
2287/**
2288 * dev_nit_active - return true if any network interface taps are in use
2289 *
2290 * @dev: network device to check for the presence of taps
2291 */
2292bool dev_nit_active(struct net_device *dev)
2293{
2294 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2295}
2296EXPORT_SYMBOL_GPL(dev_nit_active);
2297
1da177e4
LT
2298/*
2299 * Support routine. Sends outgoing frames to any network
2300 * taps currently in use.
2301 */
2302
74b20582 2303void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
2304{
2305 struct packet_type *ptype;
71d9dec2
CG
2306 struct sk_buff *skb2 = NULL;
2307 struct packet_type *pt_prev = NULL;
7866a621 2308 struct list_head *ptype_list = &ptype_all;
a61bbcf2 2309
1da177e4 2310 rcu_read_lock();
7866a621
SN
2311again:
2312 list_for_each_entry_rcu(ptype, ptype_list, list) {
fa788d98
VW
2313 if (ptype->ignore_outgoing)
2314 continue;
2315
1da177e4
LT
2316 /* Never send packets back to the socket
2317 * they originated from - MvS (miquels@drinkel.ow.org)
2318 */
7866a621
SN
2319 if (skb_loop_sk(ptype, skb))
2320 continue;
71d9dec2 2321
7866a621
SN
2322 if (pt_prev) {
2323 deliver_skb(skb2, pt_prev, skb->dev);
2324 pt_prev = ptype;
2325 continue;
2326 }
1da177e4 2327
7866a621
SN
2328 /* need to clone skb, done only once */
2329 skb2 = skb_clone(skb, GFP_ATOMIC);
2330 if (!skb2)
2331 goto out_unlock;
70978182 2332
7866a621 2333 net_timestamp_set(skb2);
1da177e4 2334
7866a621
SN
2335 /* skb->nh should be correctly
2336 * set by sender, so that the second statement is
2337 * just protection against buggy protocols.
2338 */
2339 skb_reset_mac_header(skb2);
2340
2341 if (skb_network_header(skb2) < skb2->data ||
2342 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2343 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2344 ntohs(skb2->protocol),
2345 dev->name);
2346 skb_reset_network_header(skb2);
1da177e4 2347 }
7866a621
SN
2348
2349 skb2->transport_header = skb2->network_header;
2350 skb2->pkt_type = PACKET_OUTGOING;
2351 pt_prev = ptype;
2352 }
2353
2354 if (ptype_list == &ptype_all) {
2355 ptype_list = &dev->ptype_all;
2356 goto again;
1da177e4 2357 }
7866a621 2358out_unlock:
581fe0ea
WB
2359 if (pt_prev) {
2360 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2361 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2362 else
2363 kfree_skb(skb2);
2364 }
1da177e4
LT
2365 rcu_read_unlock();
2366}
74b20582 2367EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 2368
2c53040f
BH
2369/**
2370 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
2371 * @dev: Network device
2372 * @txq: number of queues available
2373 *
2374 * If real_num_tx_queues is changed the tc mappings may no longer be
2375 * valid. To resolve this verify the tc mapping remains valid and if
2376 * not NULL the mapping. With no priorities mapping to this
2377 * offset/count pair it will no longer be used. In the worst case TC0
2378 * is invalid nothing can be done so disable priority mappings. If is
2379 * expected that drivers will fix this mapping if they can before
2380 * calling netif_set_real_num_tx_queues.
2381 */
bb134d22 2382static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
2383{
2384 int i;
2385 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2386
2387 /* If TC0 is invalidated disable TC mapping */
2388 if (tc->offset + tc->count > txq) {
7b6cd1ce 2389 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
2390 dev->num_tc = 0;
2391 return;
2392 }
2393
2394 /* Invalidated prio to tc mappings set to TC0 */
2395 for (i = 1; i < TC_BITMASK + 1; i++) {
2396 int q = netdev_get_prio_tc_map(dev, i);
2397
2398 tc = &dev->tc_to_txq[q];
2399 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
2400 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2401 i, q);
4f57c087
JF
2402 netdev_set_prio_tc_map(dev, i, 0);
2403 }
2404 }
2405}
2406
8d059b0f
AD
2407int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2408{
2409 if (dev->num_tc) {
2410 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2411 int i;
2412
ffcfe25b 2413 /* walk through the TCs and see if it falls into any of them */
8d059b0f
AD
2414 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2415 if ((txq - tc->offset) < tc->count)
2416 return i;
2417 }
2418
ffcfe25b 2419 /* didn't find it, just return -1 to indicate no match */
8d059b0f
AD
2420 return -1;
2421 }
2422
2423 return 0;
2424}
8a5f2166 2425EXPORT_SYMBOL(netdev_txq_to_tc);
8d059b0f 2426
537c00de 2427#ifdef CONFIG_XPS
04157469
AN
2428struct static_key xps_needed __read_mostly;
2429EXPORT_SYMBOL(xps_needed);
2430struct static_key xps_rxqs_needed __read_mostly;
2431EXPORT_SYMBOL(xps_rxqs_needed);
537c00de
AD
2432static DEFINE_MUTEX(xps_map_mutex);
2433#define xmap_dereference(P) \
2434 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2435
6234f874
AD
2436static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2437 int tci, u16 index)
537c00de 2438{
10cdc3f3
AD
2439 struct xps_map *map = NULL;
2440 int pos;
537c00de 2441
10cdc3f3 2442 if (dev_maps)
80d19669 2443 map = xmap_dereference(dev_maps->attr_map[tci]);
6234f874
AD
2444 if (!map)
2445 return false;
537c00de 2446
6234f874
AD
2447 for (pos = map->len; pos--;) {
2448 if (map->queues[pos] != index)
2449 continue;
2450
2451 if (map->len > 1) {
2452 map->queues[pos] = map->queues[--map->len];
10cdc3f3 2453 break;
537c00de 2454 }
6234f874 2455
80d19669 2456 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
6234f874
AD
2457 kfree_rcu(map, rcu);
2458 return false;
537c00de
AD
2459 }
2460
6234f874 2461 return true;
10cdc3f3
AD
2462}
2463
6234f874
AD
2464static bool remove_xps_queue_cpu(struct net_device *dev,
2465 struct xps_dev_maps *dev_maps,
2466 int cpu, u16 offset, u16 count)
2467{
184c449f
AD
2468 int num_tc = dev->num_tc ? : 1;
2469 bool active = false;
2470 int tci;
6234f874 2471
184c449f
AD
2472 for (tci = cpu * num_tc; num_tc--; tci++) {
2473 int i, j;
2474
2475 for (i = count, j = offset; i--; j++) {
6358d49a 2476 if (!remove_xps_queue(dev_maps, tci, j))
184c449f
AD
2477 break;
2478 }
2479
2480 active |= i < 0;
6234f874
AD
2481 }
2482
184c449f 2483 return active;
6234f874
AD
2484}
2485
867d0ad4
SD
2486static void reset_xps_maps(struct net_device *dev,
2487 struct xps_dev_maps *dev_maps,
2488 bool is_rxqs_map)
2489{
2490 if (is_rxqs_map) {
2491 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2492 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2493 } else {
2494 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2495 }
2496 static_key_slow_dec_cpuslocked(&xps_needed);
2497 kfree_rcu(dev_maps, rcu);
2498}
2499
80d19669
AN
2500static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2501 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2502 u16 offset, u16 count, bool is_rxqs_map)
2503{
2504 bool active = false;
2505 int i, j;
2506
2507 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2508 j < nr_ids;)
2509 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2510 count);
867d0ad4
SD
2511 if (!active)
2512 reset_xps_maps(dev, dev_maps, is_rxqs_map);
80d19669 2513
f28c020f
SD
2514 if (!is_rxqs_map) {
2515 for (i = offset + (count - 1); count--; i--) {
2516 netdev_queue_numa_node_write(
2517 netdev_get_tx_queue(dev, i),
2518 NUMA_NO_NODE);
80d19669 2519 }
80d19669
AN
2520 }
2521}
2522
6234f874
AD
2523static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2524 u16 count)
10cdc3f3 2525{
80d19669 2526 const unsigned long *possible_mask = NULL;
10cdc3f3 2527 struct xps_dev_maps *dev_maps;
80d19669 2528 unsigned int nr_ids;
10cdc3f3 2529
04157469
AN
2530 if (!static_key_false(&xps_needed))
2531 return;
10cdc3f3 2532
4d99f660 2533 cpus_read_lock();
04157469 2534 mutex_lock(&xps_map_mutex);
10cdc3f3 2535
04157469
AN
2536 if (static_key_false(&xps_rxqs_needed)) {
2537 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2538 if (dev_maps) {
2539 nr_ids = dev->num_rx_queues;
2540 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2541 offset, count, true);
2542 }
537c00de
AD
2543 }
2544
80d19669
AN
2545 dev_maps = xmap_dereference(dev->xps_cpus_map);
2546 if (!dev_maps)
2547 goto out_no_maps;
2548
2549 if (num_possible_cpus() > 1)
2550 possible_mask = cpumask_bits(cpu_possible_mask);
2551 nr_ids = nr_cpu_ids;
2552 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2553 false);
024e9679 2554
537c00de
AD
2555out_no_maps:
2556 mutex_unlock(&xps_map_mutex);
4d99f660 2557 cpus_read_unlock();
537c00de
AD
2558}
2559
6234f874
AD
2560static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2561{
2562 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2563}
2564
80d19669
AN
2565static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2566 u16 index, bool is_rxqs_map)
01c5f864
AD
2567{
2568 struct xps_map *new_map;
2569 int alloc_len = XPS_MIN_MAP_ALLOC;
2570 int i, pos;
2571
2572 for (pos = 0; map && pos < map->len; pos++) {
2573 if (map->queues[pos] != index)
2574 continue;
2575 return map;
2576 }
2577
80d19669 2578 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
01c5f864
AD
2579 if (map) {
2580 if (pos < map->alloc_len)
2581 return map;
2582
2583 alloc_len = map->alloc_len * 2;
2584 }
2585
80d19669
AN
2586 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2587 * map
2588 */
2589 if (is_rxqs_map)
2590 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2591 else
2592 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2593 cpu_to_node(attr_index));
01c5f864
AD
2594 if (!new_map)
2595 return NULL;
2596
2597 for (i = 0; i < pos; i++)
2598 new_map->queues[i] = map->queues[i];
2599 new_map->alloc_len = alloc_len;
2600 new_map->len = pos;
2601
2602 return new_map;
2603}
2604
4d99f660 2605/* Must be called under cpus_read_lock */
80d19669
AN
2606int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2607 u16 index, bool is_rxqs_map)
537c00de 2608{
80d19669 2609 const unsigned long *online_mask = NULL, *possible_mask = NULL;
01c5f864 2610 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
80d19669 2611 int i, j, tci, numa_node_id = -2;
184c449f 2612 int maps_sz, num_tc = 1, tc = 0;
537c00de 2613 struct xps_map *map, *new_map;
01c5f864 2614 bool active = false;
80d19669 2615 unsigned int nr_ids;
537c00de 2616
184c449f 2617 if (dev->num_tc) {
ffcfe25b 2618 /* Do not allow XPS on subordinate device directly */
184c449f 2619 num_tc = dev->num_tc;
ffcfe25b
AD
2620 if (num_tc < 0)
2621 return -EINVAL;
2622
2623 /* If queue belongs to subordinate dev use its map */
2624 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2625
184c449f
AD
2626 tc = netdev_txq_to_tc(dev, index);
2627 if (tc < 0)
2628 return -EINVAL;
2629 }
2630
537c00de 2631 mutex_lock(&xps_map_mutex);
80d19669
AN
2632 if (is_rxqs_map) {
2633 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2634 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2635 nr_ids = dev->num_rx_queues;
2636 } else {
2637 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2638 if (num_possible_cpus() > 1) {
2639 online_mask = cpumask_bits(cpu_online_mask);
2640 possible_mask = cpumask_bits(cpu_possible_mask);
2641 }
2642 dev_maps = xmap_dereference(dev->xps_cpus_map);
2643 nr_ids = nr_cpu_ids;
2644 }
537c00de 2645
80d19669
AN
2646 if (maps_sz < L1_CACHE_BYTES)
2647 maps_sz = L1_CACHE_BYTES;
537c00de 2648
01c5f864 2649 /* allocate memory for queue storage */
80d19669
AN
2650 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2651 j < nr_ids;) {
01c5f864
AD
2652 if (!new_dev_maps)
2653 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2654 if (!new_dev_maps) {
2655 mutex_unlock(&xps_map_mutex);
01c5f864 2656 return -ENOMEM;
2bb60cb9 2657 }
01c5f864 2658
80d19669
AN
2659 tci = j * num_tc + tc;
2660 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
01c5f864
AD
2661 NULL;
2662
80d19669 2663 map = expand_xps_map(map, j, index, is_rxqs_map);
01c5f864
AD
2664 if (!map)
2665 goto error;
2666
80d19669 2667 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
01c5f864
AD
2668 }
2669
2670 if (!new_dev_maps)
2671 goto out_no_new_maps;
2672
867d0ad4
SD
2673 if (!dev_maps) {
2674 /* Increment static keys at most once per type */
2675 static_key_slow_inc_cpuslocked(&xps_needed);
2676 if (is_rxqs_map)
2677 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2678 }
04157469 2679
80d19669
AN
2680 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2681 j < nr_ids;) {
184c449f 2682 /* copy maps belonging to foreign traffic classes */
80d19669 2683 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
184c449f 2684 /* fill in the new device map from the old device map */
80d19669
AN
2685 map = xmap_dereference(dev_maps->attr_map[tci]);
2686 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f
AD
2687 }
2688
2689 /* We need to explicitly update tci as prevous loop
2690 * could break out early if dev_maps is NULL.
2691 */
80d19669 2692 tci = j * num_tc + tc;
184c449f 2693
80d19669
AN
2694 if (netif_attr_test_mask(j, mask, nr_ids) &&
2695 netif_attr_test_online(j, online_mask, nr_ids)) {
2696 /* add tx-queue to CPU/rx-queue maps */
01c5f864
AD
2697 int pos = 0;
2698
80d19669 2699 map = xmap_dereference(new_dev_maps->attr_map[tci]);
01c5f864
AD
2700 while ((pos < map->len) && (map->queues[pos] != index))
2701 pos++;
2702
2703 if (pos == map->len)
2704 map->queues[map->len++] = index;
537c00de 2705#ifdef CONFIG_NUMA
80d19669
AN
2706 if (!is_rxqs_map) {
2707 if (numa_node_id == -2)
2708 numa_node_id = cpu_to_node(j);
2709 else if (numa_node_id != cpu_to_node(j))
2710 numa_node_id = -1;
2711 }
537c00de 2712#endif
01c5f864
AD
2713 } else if (dev_maps) {
2714 /* fill in the new device map from the old device map */
80d19669
AN
2715 map = xmap_dereference(dev_maps->attr_map[tci]);
2716 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
537c00de 2717 }
01c5f864 2718
184c449f
AD
2719 /* copy maps belonging to foreign traffic classes */
2720 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2721 /* fill in the new device map from the old device map */
80d19669
AN
2722 map = xmap_dereference(dev_maps->attr_map[tci]);
2723 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
184c449f 2724 }
537c00de
AD
2725 }
2726
80d19669
AN
2727 if (is_rxqs_map)
2728 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2729 else
2730 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
01c5f864 2731
537c00de 2732 /* Cleanup old maps */
184c449f
AD
2733 if (!dev_maps)
2734 goto out_no_old_maps;
2735
80d19669
AN
2736 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2737 j < nr_ids;) {
2738 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2739 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2740 map = xmap_dereference(dev_maps->attr_map[tci]);
01c5f864
AD
2741 if (map && map != new_map)
2742 kfree_rcu(map, rcu);
2743 }
537c00de
AD
2744 }
2745
184c449f
AD
2746 kfree_rcu(dev_maps, rcu);
2747
2748out_no_old_maps:
01c5f864
AD
2749 dev_maps = new_dev_maps;
2750 active = true;
537c00de 2751
01c5f864 2752out_no_new_maps:
80d19669
AN
2753 if (!is_rxqs_map) {
2754 /* update Tx queue numa node */
2755 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2756 (numa_node_id >= 0) ?
2757 numa_node_id : NUMA_NO_NODE);
2758 }
537c00de 2759
01c5f864
AD
2760 if (!dev_maps)
2761 goto out_no_maps;
2762
80d19669
AN
2763 /* removes tx-queue from unused CPUs/rx-queues */
2764 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2765 j < nr_ids;) {
2766 for (i = tc, tci = j * num_tc; i--; tci++)
184c449f 2767 active |= remove_xps_queue(dev_maps, tci, index);
80d19669
AN
2768 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2769 !netif_attr_test_online(j, online_mask, nr_ids))
184c449f
AD
2770 active |= remove_xps_queue(dev_maps, tci, index);
2771 for (i = num_tc - tc, tci++; --i; tci++)
2772 active |= remove_xps_queue(dev_maps, tci, index);
01c5f864
AD
2773 }
2774
2775 /* free map if not active */
867d0ad4
SD
2776 if (!active)
2777 reset_xps_maps(dev, dev_maps, is_rxqs_map);
01c5f864
AD
2778
2779out_no_maps:
537c00de
AD
2780 mutex_unlock(&xps_map_mutex);
2781
2782 return 0;
2783error:
01c5f864 2784 /* remove any maps that we added */
80d19669
AN
2785 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2786 j < nr_ids;) {
2787 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2788 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
184c449f 2789 map = dev_maps ?
80d19669 2790 xmap_dereference(dev_maps->attr_map[tci]) :
184c449f
AD
2791 NULL;
2792 if (new_map && new_map != map)
2793 kfree(new_map);
2794 }
01c5f864
AD
2795 }
2796
537c00de
AD
2797 mutex_unlock(&xps_map_mutex);
2798
537c00de
AD
2799 kfree(new_dev_maps);
2800 return -ENOMEM;
2801}
4d99f660 2802EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
80d19669
AN
2803
2804int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2805 u16 index)
2806{
4d99f660
AV
2807 int ret;
2808
2809 cpus_read_lock();
2810 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2811 cpus_read_unlock();
2812
2813 return ret;
80d19669 2814}
537c00de
AD
2815EXPORT_SYMBOL(netif_set_xps_queue);
2816
2817#endif
ffcfe25b
AD
2818static void netdev_unbind_all_sb_channels(struct net_device *dev)
2819{
2820 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2821
2822 /* Unbind any subordinate channels */
2823 while (txq-- != &dev->_tx[0]) {
2824 if (txq->sb_dev)
2825 netdev_unbind_sb_channel(dev, txq->sb_dev);
2826 }
2827}
2828
9cf1f6a8
AD
2829void netdev_reset_tc(struct net_device *dev)
2830{
6234f874
AD
2831#ifdef CONFIG_XPS
2832 netif_reset_xps_queues_gt(dev, 0);
2833#endif
ffcfe25b
AD
2834 netdev_unbind_all_sb_channels(dev);
2835
2836 /* Reset TC configuration of device */
9cf1f6a8
AD
2837 dev->num_tc = 0;
2838 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2839 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2840}
2841EXPORT_SYMBOL(netdev_reset_tc);
2842
2843int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2844{
2845 if (tc >= dev->num_tc)
2846 return -EINVAL;
2847
6234f874
AD
2848#ifdef CONFIG_XPS
2849 netif_reset_xps_queues(dev, offset, count);
2850#endif
9cf1f6a8
AD
2851 dev->tc_to_txq[tc].count = count;
2852 dev->tc_to_txq[tc].offset = offset;
2853 return 0;
2854}
2855EXPORT_SYMBOL(netdev_set_tc_queue);
2856
2857int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2858{
2859 if (num_tc > TC_MAX_QUEUE)
2860 return -EINVAL;
2861
6234f874
AD
2862#ifdef CONFIG_XPS
2863 netif_reset_xps_queues_gt(dev, 0);
2864#endif
ffcfe25b
AD
2865 netdev_unbind_all_sb_channels(dev);
2866
9cf1f6a8
AD
2867 dev->num_tc = num_tc;
2868 return 0;
2869}
2870EXPORT_SYMBOL(netdev_set_num_tc);
2871
ffcfe25b
AD
2872void netdev_unbind_sb_channel(struct net_device *dev,
2873 struct net_device *sb_dev)
2874{
2875 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2876
2877#ifdef CONFIG_XPS
2878 netif_reset_xps_queues_gt(sb_dev, 0);
2879#endif
2880 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2881 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2882
2883 while (txq-- != &dev->_tx[0]) {
2884 if (txq->sb_dev == sb_dev)
2885 txq->sb_dev = NULL;
2886 }
2887}
2888EXPORT_SYMBOL(netdev_unbind_sb_channel);
2889
2890int netdev_bind_sb_channel_queue(struct net_device *dev,
2891 struct net_device *sb_dev,
2892 u8 tc, u16 count, u16 offset)
2893{
2894 /* Make certain the sb_dev and dev are already configured */
2895 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2896 return -EINVAL;
2897
2898 /* We cannot hand out queues we don't have */
2899 if ((offset + count) > dev->real_num_tx_queues)
2900 return -EINVAL;
2901
2902 /* Record the mapping */
2903 sb_dev->tc_to_txq[tc].count = count;
2904 sb_dev->tc_to_txq[tc].offset = offset;
2905
2906 /* Provide a way for Tx queue to find the tc_to_txq map or
2907 * XPS map for itself.
2908 */
2909 while (count--)
2910 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2911
2912 return 0;
2913}
2914EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2915
2916int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2917{
2918 /* Do not use a multiqueue device to represent a subordinate channel */
2919 if (netif_is_multiqueue(dev))
2920 return -ENODEV;
2921
2922 /* We allow channels 1 - 32767 to be used for subordinate channels.
2923 * Channel 0 is meant to be "native" mode and used only to represent
2924 * the main root device. We allow writing 0 to reset the device back
2925 * to normal mode after being used as a subordinate channel.
2926 */
2927 if (channel > S16_MAX)
2928 return -EINVAL;
2929
2930 dev->num_tc = -channel;
2931
2932 return 0;
2933}
2934EXPORT_SYMBOL(netdev_set_sb_channel);
2935
f0796d5c
JF
2936/*
2937 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3a053b1a 2938 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
f0796d5c 2939 */
e6484930 2940int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2941{
ac5b7019 2942 bool disabling;
1d24eb48
TH
2943 int rc;
2944
ac5b7019
JK
2945 disabling = txq < dev->real_num_tx_queues;
2946
e6484930
TH
2947 if (txq < 1 || txq > dev->num_tx_queues)
2948 return -EINVAL;
f0796d5c 2949
5c56580b
BH
2950 if (dev->reg_state == NETREG_REGISTERED ||
2951 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2952 ASSERT_RTNL();
2953
1d24eb48
TH
2954 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2955 txq);
bf264145
TH
2956 if (rc)
2957 return rc;
2958
4f57c087
JF
2959 if (dev->num_tc)
2960 netif_setup_tc(dev, txq);
2961
ac5b7019
JK
2962 dev->real_num_tx_queues = txq;
2963
2964 if (disabling) {
2965 synchronize_net();
e6484930 2966 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2967#ifdef CONFIG_XPS
2968 netif_reset_xps_queues_gt(dev, txq);
2969#endif
2970 }
ac5b7019
JK
2971 } else {
2972 dev->real_num_tx_queues = txq;
f0796d5c 2973 }
e6484930 2974
e6484930 2975 return 0;
f0796d5c
JF
2976}
2977EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2978
a953be53 2979#ifdef CONFIG_SYSFS
62fe0b40
BH
2980/**
2981 * netif_set_real_num_rx_queues - set actual number of RX queues used
2982 * @dev: Network device
2983 * @rxq: Actual number of RX queues
2984 *
2985 * This must be called either with the rtnl_lock held or before
2986 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2987 * negative error code. If called before registration, it always
2988 * succeeds.
62fe0b40
BH
2989 */
2990int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2991{
2992 int rc;
2993
bd25fa7b
TH
2994 if (rxq < 1 || rxq > dev->num_rx_queues)
2995 return -EINVAL;
2996
62fe0b40
BH
2997 if (dev->reg_state == NETREG_REGISTERED) {
2998 ASSERT_RTNL();
2999
62fe0b40
BH
3000 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3001 rxq);
3002 if (rc)
3003 return rc;
62fe0b40
BH
3004 }
3005
3006 dev->real_num_rx_queues = rxq;
3007 return 0;
3008}
3009EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3010#endif
3011
2c53040f
BH
3012/**
3013 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
3014 *
3015 * This routine should set an upper limit on the number of RSS queues
3016 * used by default by multiqueue devices.
3017 */
a55b138b 3018int netif_get_num_default_rss_queues(void)
16917b87 3019{
40e4e713
HS
3020 return is_kdump_kernel() ?
3021 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
3022}
3023EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3024
3bcb846c 3025static void __netif_reschedule(struct Qdisc *q)
56079431 3026{
def82a1d
JP
3027 struct softnet_data *sd;
3028 unsigned long flags;
56079431 3029
def82a1d 3030 local_irq_save(flags);
903ceff7 3031 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
3032 q->next_sched = NULL;
3033 *sd->output_queue_tailp = q;
3034 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
3035 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3036 local_irq_restore(flags);
3037}
3038
3039void __netif_schedule(struct Qdisc *q)
3040{
3041 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3042 __netif_reschedule(q);
56079431
DV
3043}
3044EXPORT_SYMBOL(__netif_schedule);
3045
e6247027
ED
3046struct dev_kfree_skb_cb {
3047 enum skb_free_reason reason;
3048};
3049
3050static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 3051{
e6247027
ED
3052 return (struct dev_kfree_skb_cb *)skb->cb;
3053}
3054
46e5da40
JF
3055void netif_schedule_queue(struct netdev_queue *txq)
3056{
3057 rcu_read_lock();
5be5515a 3058 if (!netif_xmit_stopped(txq)) {
46e5da40
JF
3059 struct Qdisc *q = rcu_dereference(txq->qdisc);
3060
3061 __netif_schedule(q);
3062 }
3063 rcu_read_unlock();
3064}
3065EXPORT_SYMBOL(netif_schedule_queue);
3066
46e5da40
JF
3067void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3068{
3069 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3070 struct Qdisc *q;
3071
3072 rcu_read_lock();
3073 q = rcu_dereference(dev_queue->qdisc);
3074 __netif_schedule(q);
3075 rcu_read_unlock();
3076 }
3077}
3078EXPORT_SYMBOL(netif_tx_wake_queue);
3079
e6247027 3080void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 3081{
e6247027 3082 unsigned long flags;
56079431 3083
9899886d
MJ
3084 if (unlikely(!skb))
3085 return;
3086
63354797 3087 if (likely(refcount_read(&skb->users) == 1)) {
e6247027 3088 smp_rmb();
63354797
RE
3089 refcount_set(&skb->users, 0);
3090 } else if (likely(!refcount_dec_and_test(&skb->users))) {
e6247027 3091 return;
bea3348e 3092 }
e6247027
ED
3093 get_kfree_skb_cb(skb)->reason = reason;
3094 local_irq_save(flags);
3095 skb->next = __this_cpu_read(softnet_data.completion_queue);
3096 __this_cpu_write(softnet_data.completion_queue, skb);
3097 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3098 local_irq_restore(flags);
56079431 3099}
e6247027 3100EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 3101
e6247027 3102void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
3103{
3104 if (in_irq() || irqs_disabled())
e6247027 3105 __dev_kfree_skb_irq(skb, reason);
56079431
DV
3106 else
3107 dev_kfree_skb(skb);
3108}
e6247027 3109EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
3110
3111
bea3348e
SH
3112/**
3113 * netif_device_detach - mark device as removed
3114 * @dev: network device
3115 *
3116 * Mark device as removed from system and therefore no longer available.
3117 */
56079431
DV
3118void netif_device_detach(struct net_device *dev)
3119{
3120 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3121 netif_running(dev)) {
d543103a 3122 netif_tx_stop_all_queues(dev);
56079431
DV
3123 }
3124}
3125EXPORT_SYMBOL(netif_device_detach);
3126
bea3348e
SH
3127/**
3128 * netif_device_attach - mark device as attached
3129 * @dev: network device
3130 *
3131 * Mark device as attached from system and restart if needed.
3132 */
56079431
DV
3133void netif_device_attach(struct net_device *dev)
3134{
3135 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3136 netif_running(dev)) {
d543103a 3137 netif_tx_wake_all_queues(dev);
4ec93edb 3138 __netdev_watchdog_up(dev);
56079431
DV
3139 }
3140}
3141EXPORT_SYMBOL(netif_device_attach);
3142
5605c762
JP
3143/*
3144 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3145 * to be used as a distribution range.
3146 */
eadec877
AD
3147static u16 skb_tx_hash(const struct net_device *dev,
3148 const struct net_device *sb_dev,
3149 struct sk_buff *skb)
5605c762
JP
3150{
3151 u32 hash;
3152 u16 qoffset = 0;
1b837d48 3153 u16 qcount = dev->real_num_tx_queues;
5605c762 3154
eadec877
AD
3155 if (dev->num_tc) {
3156 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3157
3158 qoffset = sb_dev->tc_to_txq[tc].offset;
3159 qcount = sb_dev->tc_to_txq[tc].count;
3160 }
3161
5605c762
JP
3162 if (skb_rx_queue_recorded(skb)) {
3163 hash = skb_get_rx_queue(skb);
6e11d157
AN
3164 if (hash >= qoffset)
3165 hash -= qoffset;
1b837d48
AD
3166 while (unlikely(hash >= qcount))
3167 hash -= qcount;
eadec877 3168 return hash + qoffset;
5605c762
JP
3169 }
3170
3171 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3172}
5605c762 3173
36c92474
BH
3174static void skb_warn_bad_offload(const struct sk_buff *skb)
3175{
84d15ae5 3176 static const netdev_features_t null_features;
36c92474 3177 struct net_device *dev = skb->dev;
88ad4175 3178 const char *name = "";
36c92474 3179
c846ad9b
BG
3180 if (!net_ratelimit())
3181 return;
3182
88ad4175
BM
3183 if (dev) {
3184 if (dev->dev.parent)
3185 name = dev_driver_string(dev->dev.parent);
3186 else
3187 name = netdev_name(dev);
3188 }
6413139d
WB
3189 skb_dump(KERN_WARNING, skb, false);
3190 WARN(1, "%s: caps=(%pNF, %pNF)\n",
88ad4175 3191 name, dev ? &dev->features : &null_features,
6413139d 3192 skb->sk ? &skb->sk->sk_route_caps : &null_features);
36c92474
BH
3193}
3194
1da177e4
LT
3195/*
3196 * Invalidate hardware checksum when packet is to be mangled, and
3197 * complete checksum manually on outgoing path.
3198 */
84fa7933 3199int skb_checksum_help(struct sk_buff *skb)
1da177e4 3200{
d3bc23e7 3201 __wsum csum;
663ead3b 3202 int ret = 0, offset;
1da177e4 3203
84fa7933 3204 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
3205 goto out_set_summed;
3206
3207 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
3208 skb_warn_bad_offload(skb);
3209 return -EINVAL;
1da177e4
LT
3210 }
3211
cef401de
ED
3212 /* Before computing a checksum, we should make sure no frag could
3213 * be modified by an external entity : checksum could be wrong.
3214 */
3215 if (skb_has_shared_frag(skb)) {
3216 ret = __skb_linearize(skb);
3217 if (ret)
3218 goto out;
3219 }
3220
55508d60 3221 offset = skb_checksum_start_offset(skb);
a030847e
HX
3222 BUG_ON(offset >= skb_headlen(skb));
3223 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3224
3225 offset += skb->csum_offset;
3226 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3227
8211fbfa
HK
3228 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3229 if (ret)
3230 goto out;
1da177e4 3231
4f2e4ad5 3232 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 3233out_set_summed:
1da177e4 3234 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 3235out:
1da177e4
LT
3236 return ret;
3237}
d1b19dff 3238EXPORT_SYMBOL(skb_checksum_help);
1da177e4 3239
b72b5bf6
DC
3240int skb_crc32c_csum_help(struct sk_buff *skb)
3241{
3242 __le32 crc32c_csum;
3243 int ret = 0, offset, start;
3244
3245 if (skb->ip_summed != CHECKSUM_PARTIAL)
3246 goto out;
3247
3248 if (unlikely(skb_is_gso(skb)))
3249 goto out;
3250
3251 /* Before computing a checksum, we should make sure no frag could
3252 * be modified by an external entity : checksum could be wrong.
3253 */
3254 if (unlikely(skb_has_shared_frag(skb))) {
3255 ret = __skb_linearize(skb);
3256 if (ret)
3257 goto out;
3258 }
3259 start = skb_checksum_start_offset(skb);
3260 offset = start + offsetof(struct sctphdr, checksum);
3261 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262 ret = -EINVAL;
3263 goto out;
3264 }
8211fbfa
HK
3265
3266 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3267 if (ret)
3268 goto out;
3269
b72b5bf6
DC
3270 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3271 skb->len - start, ~(__u32)0,
3272 crc32c_csum_stub));
3273 *(__le32 *)(skb->data + offset) = crc32c_csum;
3274 skb->ip_summed = CHECKSUM_NONE;
dba00306 3275 skb->csum_not_inet = 0;
b72b5bf6
DC
3276out:
3277 return ret;
3278}
3279
53d6471c 3280__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 3281{
252e3346 3282 __be16 type = skb->protocol;
f6a78bfc 3283
19acc327
PS
3284 /* Tunnel gso handlers can set protocol to ethernet. */
3285 if (type == htons(ETH_P_TEB)) {
3286 struct ethhdr *eth;
3287
3288 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3289 return 0;
3290
1dfe82eb 3291 eth = (struct ethhdr *)skb->data;
19acc327
PS
3292 type = eth->h_proto;
3293 }
3294
d4bcef3f 3295 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
3296}
3297
3298/**
3299 * skb_mac_gso_segment - mac layer segmentation handler.
3300 * @skb: buffer to segment
3301 * @features: features for the output path (see dev->features)
3302 */
3303struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3304 netdev_features_t features)
3305{
3306 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3307 struct packet_offload *ptype;
53d6471c
VY
3308 int vlan_depth = skb->mac_len;
3309 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
3310
3311 if (unlikely(!type))
3312 return ERR_PTR(-EINVAL);
3313
53d6471c 3314 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
3315
3316 rcu_read_lock();
22061d80 3317 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 3318 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 3319 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
3320 break;
3321 }
3322 }
3323 rcu_read_unlock();
3324
98e399f8 3325 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 3326
f6a78bfc
HX
3327 return segs;
3328}
05e8ef4a
PS
3329EXPORT_SYMBOL(skb_mac_gso_segment);
3330
3331
3332/* openvswitch calls this on rx path, so we need a different check.
3333 */
3334static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3335{
3336 if (tx_path)
0c19f846
WB
3337 return skb->ip_summed != CHECKSUM_PARTIAL &&
3338 skb->ip_summed != CHECKSUM_UNNECESSARY;
6e7bc478
ED
3339
3340 return skb->ip_summed == CHECKSUM_NONE;
05e8ef4a
PS
3341}
3342
3343/**
3344 * __skb_gso_segment - Perform segmentation on skb.
3345 * @skb: buffer to segment
3346 * @features: features for the output path (see dev->features)
3347 * @tx_path: whether it is called in TX path
3348 *
3349 * This function segments the given skb and returns a list of segments.
3350 *
3351 * It may return NULL if the skb requires no segmentation. This is
3352 * only possible when GSO is used for verifying header integrity.
9207f9d4 3353 *
a08e7fd9 3354 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
3355 */
3356struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3357 netdev_features_t features, bool tx_path)
3358{
b2504a5d
ED
3359 struct sk_buff *segs;
3360
05e8ef4a
PS
3361 if (unlikely(skb_needs_check(skb, tx_path))) {
3362 int err;
3363
b2504a5d 3364 /* We're going to init ->check field in TCP or UDP header */
a40e0a66 3365 err = skb_cow_head(skb, 0);
3366 if (err < 0)
05e8ef4a
PS
3367 return ERR_PTR(err);
3368 }
3369
802ab55a
AD
3370 /* Only report GSO partial support if it will enable us to
3371 * support segmentation on this frame without needing additional
3372 * work.
3373 */
3374 if (features & NETIF_F_GSO_PARTIAL) {
3375 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3376 struct net_device *dev = skb->dev;
3377
3378 partial_features |= dev->features & dev->gso_partial_features;
3379 if (!skb_gso_ok(skb, features | partial_features))
3380 features &= ~NETIF_F_GSO_PARTIAL;
3381 }
3382
a08e7fd9 3383 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
9207f9d4
KK
3384 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3385
68c33163 3386 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
3387 SKB_GSO_CB(skb)->encap_level = 0;
3388
05e8ef4a
PS
3389 skb_reset_mac_header(skb);
3390 skb_reset_mac_len(skb);
3391
b2504a5d
ED
3392 segs = skb_mac_gso_segment(skb, features);
3393
3a1296a3 3394 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
b2504a5d
ED
3395 skb_warn_bad_offload(skb);
3396
3397 return segs;
05e8ef4a 3398}
12b0004d 3399EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 3400
fb286bb2
HX
3401/* Take action when hardware reception checksum errors are detected. */
3402#ifdef CONFIG_BUG
7fe50ac8 3403void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
fb286bb2
HX
3404{
3405 if (net_ratelimit()) {
7b6cd1ce 3406 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
6413139d 3407 skb_dump(KERN_ERR, skb, true);
fb286bb2
HX
3408 dump_stack();
3409 }
3410}
3411EXPORT_SYMBOL(netdev_rx_csum_fault);
3412#endif
3413
ab74cfeb 3414/* XXX: check that highmem exists at all on the given machine. */
c1e756bf 3415static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 3416{
3d3a8533 3417#ifdef CONFIG_HIGHMEM
1da177e4 3418 int i;
f4563a75 3419
5acbbd42 3420 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
3421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3422 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
f4563a75 3423
ea2ab693 3424 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 3425 return 1;
ea2ab693 3426 }
5acbbd42 3427 }
3d3a8533 3428#endif
1da177e4
LT
3429 return 0;
3430}
1da177e4 3431
3b392ddb
SH
3432/* If MPLS offload request, verify we are testing hardware MPLS features
3433 * instead of standard features for the netdev.
3434 */
d0edc7bf 3435#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
3436static netdev_features_t net_mpls_features(struct sk_buff *skb,
3437 netdev_features_t features,
3438 __be16 type)
3439{
25cd9ba0 3440 if (eth_p_mpls(type))
3b392ddb
SH
3441 features &= skb->dev->mpls_features;
3442
3443 return features;
3444}
3445#else
3446static netdev_features_t net_mpls_features(struct sk_buff *skb,
3447 netdev_features_t features,
3448 __be16 type)
3449{
3450 return features;
3451}
3452#endif
3453
c8f44aff 3454static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 3455 netdev_features_t features)
f01a5236 3456{
53d6471c 3457 int tmp;
3b392ddb
SH
3458 __be16 type;
3459
3460 type = skb_network_protocol(skb, &tmp);
3461 features = net_mpls_features(skb, features, type);
53d6471c 3462
c0d680e5 3463 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 3464 !can_checksum_protocol(features, type)) {
996e8021 3465 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
f01a5236 3466 }
7be2c82c
ED
3467 if (illegal_highdma(skb->dev, skb))
3468 features &= ~NETIF_F_SG;
f01a5236
JG
3469
3470 return features;
3471}
3472
e38f3025
TM
3473netdev_features_t passthru_features_check(struct sk_buff *skb,
3474 struct net_device *dev,
3475 netdev_features_t features)
3476{
3477 return features;
3478}
3479EXPORT_SYMBOL(passthru_features_check);
3480
7ce23672 3481static netdev_features_t dflt_features_check(struct sk_buff *skb,
8cb65d00
TM
3482 struct net_device *dev,
3483 netdev_features_t features)
3484{
3485 return vlan_features_check(skb, features);
3486}
3487
cbc53e08
AD
3488static netdev_features_t gso_features_check(const struct sk_buff *skb,
3489 struct net_device *dev,
3490 netdev_features_t features)
3491{
3492 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3493
3494 if (gso_segs > dev->gso_max_segs)
3495 return features & ~NETIF_F_GSO_MASK;
3496
802ab55a
AD
3497 /* Support for GSO partial features requires software
3498 * intervention before we can actually process the packets
3499 * so we need to strip support for any partial features now
3500 * and we can pull them back in after we have partially
3501 * segmented the frame.
3502 */
3503 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3504 features &= ~dev->gso_partial_features;
3505
3506 /* Make sure to clear the IPv4 ID mangling feature if the
3507 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
3508 */
3509 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3510 struct iphdr *iph = skb->encapsulation ?
3511 inner_ip_hdr(skb) : ip_hdr(skb);
3512
3513 if (!(iph->frag_off & htons(IP_DF)))
3514 features &= ~NETIF_F_TSO_MANGLEID;
3515 }
3516
3517 return features;
3518}
3519
c1e756bf 3520netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 3521{
5f35227e 3522 struct net_device *dev = skb->dev;
fcbeb976 3523 netdev_features_t features = dev->features;
58e998c6 3524
cbc53e08
AD
3525 if (skb_is_gso(skb))
3526 features = gso_features_check(skb, dev, features);
30b678d8 3527
5f35227e
JG
3528 /* If encapsulation offload request, verify we are testing
3529 * hardware encapsulation features instead of standard
3530 * features for the netdev
3531 */
3532 if (skb->encapsulation)
3533 features &= dev->hw_enc_features;
3534
f5a7fb88
TM
3535 if (skb_vlan_tagged(skb))
3536 features = netdev_intersect_features(features,
3537 dev->vlan_features |
3538 NETIF_F_HW_VLAN_CTAG_TX |
3539 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 3540
5f35227e
JG
3541 if (dev->netdev_ops->ndo_features_check)
3542 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3543 features);
8cb65d00
TM
3544 else
3545 features &= dflt_features_check(skb, dev, features);
5f35227e 3546
c1e756bf 3547 return harmonize_features(skb, features);
58e998c6 3548}
c1e756bf 3549EXPORT_SYMBOL(netif_skb_features);
58e998c6 3550
2ea25513 3551static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 3552 struct netdev_queue *txq, bool more)
f6a78bfc 3553{
2ea25513
DM
3554 unsigned int len;
3555 int rc;
00829823 3556
9f9a742d 3557 if (dev_nit_active(dev))
2ea25513 3558 dev_queue_xmit_nit(skb, dev);
fc741216 3559
2ea25513
DM
3560 len = skb->len;
3561 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 3562 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 3563 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 3564
2ea25513
DM
3565 return rc;
3566}
7b9c6090 3567
8dcda22a
DM
3568struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3569 struct netdev_queue *txq, int *ret)
7f2e870f
DM
3570{
3571 struct sk_buff *skb = first;
3572 int rc = NETDEV_TX_OK;
7b9c6090 3573
7f2e870f
DM
3574 while (skb) {
3575 struct sk_buff *next = skb->next;
fc70fb64 3576
a8305bff 3577 skb_mark_not_on_list(skb);
95f6b3dd 3578 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
3579 if (unlikely(!dev_xmit_complete(rc))) {
3580 skb->next = next;
3581 goto out;
3582 }
6afff0ca 3583
7f2e870f 3584 skb = next;
fe60faa5 3585 if (netif_tx_queue_stopped(txq) && skb) {
7f2e870f
DM
3586 rc = NETDEV_TX_BUSY;
3587 break;
9ccb8975 3588 }
7f2e870f 3589 }
9ccb8975 3590
7f2e870f
DM
3591out:
3592 *ret = rc;
3593 return skb;
3594}
b40863c6 3595
1ff0dc94
ED
3596static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3597 netdev_features_t features)
f6a78bfc 3598{
df8a39de 3599 if (skb_vlan_tag_present(skb) &&
5968250c
JP
3600 !vlan_hw_offload_capable(features, skb->vlan_proto))
3601 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
3602 return skb;
3603}
f6a78bfc 3604
43c26a1a
DC
3605int skb_csum_hwoffload_help(struct sk_buff *skb,
3606 const netdev_features_t features)
3607{
3608 if (unlikely(skb->csum_not_inet))
3609 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3610 skb_crc32c_csum_help(skb);
3611
3612 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3613}
3614EXPORT_SYMBOL(skb_csum_hwoffload_help);
3615
f53c7239 3616static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
eae3f88e
DM
3617{
3618 netdev_features_t features;
f6a78bfc 3619
eae3f88e
DM
3620 features = netif_skb_features(skb);
3621 skb = validate_xmit_vlan(skb, features);
3622 if (unlikely(!skb))
3623 goto out_null;
7b9c6090 3624
ebf4e808
IL
3625 skb = sk_validate_xmit_skb(skb, dev);
3626 if (unlikely(!skb))
3627 goto out_null;
3628
8b86a61d 3629 if (netif_needs_gso(skb, features)) {
ce93718f
DM
3630 struct sk_buff *segs;
3631
3632 segs = skb_gso_segment(skb, features);
cecda693 3633 if (IS_ERR(segs)) {
af6dabc9 3634 goto out_kfree_skb;
cecda693
JW
3635 } else if (segs) {
3636 consume_skb(skb);
3637 skb = segs;
f6a78bfc 3638 }
eae3f88e
DM
3639 } else {
3640 if (skb_needs_linearize(skb, features) &&
3641 __skb_linearize(skb))
3642 goto out_kfree_skb;
4ec93edb 3643
eae3f88e
DM
3644 /* If packet is not checksummed and device does not
3645 * support checksumming for this protocol, complete
3646 * checksumming here.
3647 */
3648 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3649 if (skb->encapsulation)
3650 skb_set_inner_transport_header(skb,
3651 skb_checksum_start_offset(skb));
3652 else
3653 skb_set_transport_header(skb,
3654 skb_checksum_start_offset(skb));
43c26a1a 3655 if (skb_csum_hwoffload_help(skb, features))
eae3f88e 3656 goto out_kfree_skb;
7b9c6090 3657 }
0c772159 3658 }
7b9c6090 3659
f53c7239 3660 skb = validate_xmit_xfrm(skb, features, again);
3dca3f38 3661
eae3f88e 3662 return skb;
fc70fb64 3663
f6a78bfc
HX
3664out_kfree_skb:
3665 kfree_skb(skb);
eae3f88e 3666out_null:
d21fd63e 3667 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3668 return NULL;
3669}
6afff0ca 3670
f53c7239 3671struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
55a93b3e
ED
3672{
3673 struct sk_buff *next, *head = NULL, *tail;
3674
bec3cfdc 3675 for (; skb != NULL; skb = next) {
55a93b3e 3676 next = skb->next;
a8305bff 3677 skb_mark_not_on_list(skb);
bec3cfdc
ED
3678
3679 /* in case skb wont be segmented, point to itself */
3680 skb->prev = skb;
3681
f53c7239 3682 skb = validate_xmit_skb(skb, dev, again);
bec3cfdc
ED
3683 if (!skb)
3684 continue;
55a93b3e 3685
bec3cfdc
ED
3686 if (!head)
3687 head = skb;
3688 else
3689 tail->next = skb;
3690 /* If skb was segmented, skb->prev points to
3691 * the last segment. If not, it still contains skb.
3692 */
3693 tail = skb->prev;
55a93b3e
ED
3694 }
3695 return head;
f6a78bfc 3696}
104ba78c 3697EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3698
1def9238
ED
3699static void qdisc_pkt_len_init(struct sk_buff *skb)
3700{
3701 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3702
3703 qdisc_skb_cb(skb)->pkt_len = skb->len;
3704
3705 /* To get more precise estimation of bytes sent on wire,
3706 * we add to pkt_len the headers size of all segments
3707 */
a0dce875 3708 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
757b8b1d 3709 unsigned int hdr_len;
15e5a030 3710 u16 gso_segs = shinfo->gso_segs;
1def9238 3711
757b8b1d
ED
3712 /* mac layer + network layer */
3713 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3714
3715 /* + transport layer */
7c68d1a6
ED
3716 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3717 const struct tcphdr *th;
3718 struct tcphdr _tcphdr;
3719
3720 th = skb_header_pointer(skb, skb_transport_offset(skb),
3721 sizeof(_tcphdr), &_tcphdr);
3722 if (likely(th))
3723 hdr_len += __tcp_hdrlen(th);
3724 } else {
3725 struct udphdr _udphdr;
3726
3727 if (skb_header_pointer(skb, skb_transport_offset(skb),
3728 sizeof(_udphdr), &_udphdr))
3729 hdr_len += sizeof(struct udphdr);
3730 }
15e5a030
JW
3731
3732 if (shinfo->gso_type & SKB_GSO_DODGY)
3733 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3734 shinfo->gso_size);
3735
3736 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3737 }
3738}
3739
bbd8a0d3
KK
3740static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3741 struct net_device *dev,
3742 struct netdev_queue *txq)
3743{
3744 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3745 struct sk_buff *to_free = NULL;
a2da570d 3746 bool contended;
bbd8a0d3
KK
3747 int rc;
3748
a2da570d 3749 qdisc_calculate_pkt_len(skb, q);
6b3ba914
JF
3750
3751 if (q->flags & TCQ_F_NOLOCK) {
ac5c66f2 3752 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
379349e9 3753 qdisc_run(q);
6b3ba914
JF
3754
3755 if (unlikely(to_free))
3756 kfree_skb_list(to_free);
3757 return rc;
3758 }
3759
79640a4c
ED
3760 /*
3761 * Heuristic to force contended enqueues to serialize on a
3762 * separate lock before trying to get qdisc main lock.
f9eb8aea 3763 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3764 * often and dequeue packets faster.
79640a4c 3765 */
a2da570d 3766 contended = qdisc_is_running(q);
79640a4c
ED
3767 if (unlikely(contended))
3768 spin_lock(&q->busylock);
3769
bbd8a0d3
KK
3770 spin_lock(root_lock);
3771 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3772 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3773 rc = NET_XMIT_DROP;
3774 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3775 qdisc_run_begin(q)) {
bbd8a0d3
KK
3776 /*
3777 * This is a work-conserving queue; there are no old skbs
3778 * waiting to be sent out; and the qdisc is not running -
3779 * xmit the skb directly.
3780 */
bfe0d029 3781
bfe0d029
ED
3782 qdisc_bstats_update(q, skb);
3783
55a93b3e 3784 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3785 if (unlikely(contended)) {
3786 spin_unlock(&q->busylock);
3787 contended = false;
3788 }
bbd8a0d3 3789 __qdisc_run(q);
6c148184 3790 }
bbd8a0d3 3791
6c148184 3792 qdisc_run_end(q);
bbd8a0d3
KK
3793 rc = NET_XMIT_SUCCESS;
3794 } else {
ac5c66f2 3795 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3796 if (qdisc_run_begin(q)) {
3797 if (unlikely(contended)) {
3798 spin_unlock(&q->busylock);
3799 contended = false;
3800 }
3801 __qdisc_run(q);
6c148184 3802 qdisc_run_end(q);
79640a4c 3803 }
bbd8a0d3
KK
3804 }
3805 spin_unlock(root_lock);
520ac30f
ED
3806 if (unlikely(to_free))
3807 kfree_skb_list(to_free);
79640a4c
ED
3808 if (unlikely(contended))
3809 spin_unlock(&q->busylock);
bbd8a0d3
KK
3810 return rc;
3811}
3812
86f8515f 3813#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3814static void skb_update_prio(struct sk_buff *skb)
3815{
4dcb31d4
ED
3816 const struct netprio_map *map;
3817 const struct sock *sk;
3818 unsigned int prioidx;
5bc1421e 3819
4dcb31d4
ED
3820 if (skb->priority)
3821 return;
3822 map = rcu_dereference_bh(skb->dev->priomap);
3823 if (!map)
3824 return;
3825 sk = skb_to_full_sk(skb);
3826 if (!sk)
3827 return;
91c68ce2 3828
4dcb31d4
ED
3829 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3830
3831 if (prioidx < map->priomap_len)
3832 skb->priority = map->priomap[prioidx];
5bc1421e
NH
3833}
3834#else
3835#define skb_update_prio(skb)
3836#endif
3837
95603e22
MM
3838/**
3839 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3840 * @net: network namespace this loopback is happening in
3841 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3842 * @skb: buffer to transmit
3843 */
0c4b51f0 3844int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3845{
3846 skb_reset_mac_header(skb);
3847 __skb_pull(skb, skb_network_offset(skb));
3848 skb->pkt_type = PACKET_LOOPBACK;
3849 skb->ip_summed = CHECKSUM_UNNECESSARY;
3850 WARN_ON(!skb_dst(skb));
3851 skb_dst_force(skb);
3852 netif_rx_ni(skb);
3853 return 0;
3854}
3855EXPORT_SYMBOL(dev_loopback_xmit);
3856
1f211a1b
DB
3857#ifdef CONFIG_NET_EGRESS
3858static struct sk_buff *
3859sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3860{
46209401 3861 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
1f211a1b
DB
3862 struct tcf_result cl_res;
3863
46209401 3864 if (!miniq)
1f211a1b
DB
3865 return skb;
3866
8dc07fdb 3867 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
46209401 3868 mini_qdisc_bstats_cpu_update(miniq, skb);
1f211a1b 3869
46209401 3870 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
1f211a1b
DB
3871 case TC_ACT_OK:
3872 case TC_ACT_RECLASSIFY:
3873 skb->tc_index = TC_H_MIN(cl_res.classid);
3874 break;
3875 case TC_ACT_SHOT:
46209401 3876 mini_qdisc_qstats_cpu_drop(miniq);
1f211a1b 3877 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3878 kfree_skb(skb);
3879 return NULL;
1f211a1b
DB
3880 case TC_ACT_STOLEN:
3881 case TC_ACT_QUEUED:
e25ea21f 3882 case TC_ACT_TRAP:
1f211a1b 3883 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3884 consume_skb(skb);
1f211a1b
DB
3885 return NULL;
3886 case TC_ACT_REDIRECT:
3887 /* No need to push/pop skb's mac_header here on egress! */
3888 skb_do_redirect(skb);
3889 *ret = NET_XMIT_SUCCESS;
3890 return NULL;
3891 default:
3892 break;
3893 }
357b6cc5 3894
1f211a1b
DB
3895 return skb;
3896}
3897#endif /* CONFIG_NET_EGRESS */
3898
fc9bab24
AN
3899#ifdef CONFIG_XPS
3900static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3901 struct xps_dev_maps *dev_maps, unsigned int tci)
3902{
3903 struct xps_map *map;
3904 int queue_index = -1;
3905
3906 if (dev->num_tc) {
3907 tci *= dev->num_tc;
3908 tci += netdev_get_prio_tc_map(dev, skb->priority);
3909 }
3910
3911 map = rcu_dereference(dev_maps->attr_map[tci]);
3912 if (map) {
3913 if (map->len == 1)
3914 queue_index = map->queues[0];
3915 else
3916 queue_index = map->queues[reciprocal_scale(
3917 skb_get_hash(skb), map->len)];
3918 if (unlikely(queue_index >= dev->real_num_tx_queues))
3919 queue_index = -1;
3920 }
3921 return queue_index;
3922}
3923#endif
3924
eadec877
AD
3925static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3926 struct sk_buff *skb)
638b2a69
JP
3927{
3928#ifdef CONFIG_XPS
3929 struct xps_dev_maps *dev_maps;
fc9bab24 3930 struct sock *sk = skb->sk;
638b2a69
JP
3931 int queue_index = -1;
3932
04157469
AN
3933 if (!static_key_false(&xps_needed))
3934 return -1;
3935
638b2a69 3936 rcu_read_lock();
fc9bab24
AN
3937 if (!static_key_false(&xps_rxqs_needed))
3938 goto get_cpus_map;
3939
eadec877 3940 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
638b2a69 3941 if (dev_maps) {
fc9bab24 3942 int tci = sk_rx_queue_get(sk);
184c449f 3943
fc9bab24
AN
3944 if (tci >= 0 && tci < dev->num_rx_queues)
3945 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3946 tci);
3947 }
184c449f 3948
fc9bab24
AN
3949get_cpus_map:
3950 if (queue_index < 0) {
eadec877 3951 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
fc9bab24
AN
3952 if (dev_maps) {
3953 unsigned int tci = skb->sender_cpu - 1;
3954
3955 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3956 tci);
638b2a69
JP
3957 }
3958 }
3959 rcu_read_unlock();
3960
3961 return queue_index;
3962#else
3963 return -1;
3964#endif
3965}
3966
a4ea8a3d 3967u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
a350ecce 3968 struct net_device *sb_dev)
a4ea8a3d
AD
3969{
3970 return 0;
3971}
3972EXPORT_SYMBOL(dev_pick_tx_zero);
3973
3974u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
a350ecce 3975 struct net_device *sb_dev)
a4ea8a3d
AD
3976{
3977 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3978}
3979EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3980
b71b5837
PA
3981u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3982 struct net_device *sb_dev)
638b2a69
JP
3983{
3984 struct sock *sk = skb->sk;
3985 int queue_index = sk_tx_queue_get(sk);
3986
eadec877
AD
3987 sb_dev = sb_dev ? : dev;
3988
638b2a69
JP
3989 if (queue_index < 0 || skb->ooo_okay ||
3990 queue_index >= dev->real_num_tx_queues) {
eadec877 3991 int new_index = get_xps_queue(dev, sb_dev, skb);
f4563a75 3992
638b2a69 3993 if (new_index < 0)
eadec877 3994 new_index = skb_tx_hash(dev, sb_dev, skb);
638b2a69
JP
3995
3996 if (queue_index != new_index && sk &&
004a5d01 3997 sk_fullsock(sk) &&
638b2a69
JP
3998 rcu_access_pointer(sk->sk_dst_cache))
3999 sk_tx_queue_set(sk, new_index);
4000
4001 queue_index = new_index;
4002 }
4003
4004 return queue_index;
4005}
b71b5837 4006EXPORT_SYMBOL(netdev_pick_tx);
638b2a69 4007
4bd97d51
PA
4008struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4009 struct sk_buff *skb,
4010 struct net_device *sb_dev)
638b2a69
JP
4011{
4012 int queue_index = 0;
4013
4014#ifdef CONFIG_XPS
52bd2d62
ED
4015 u32 sender_cpu = skb->sender_cpu - 1;
4016
4017 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
4018 skb->sender_cpu = raw_smp_processor_id() + 1;
4019#endif
4020
4021 if (dev->real_num_tx_queues != 1) {
4022 const struct net_device_ops *ops = dev->netdev_ops;
f4563a75 4023
638b2a69 4024 if (ops->ndo_select_queue)
a350ecce 4025 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
638b2a69 4026 else
4bd97d51 4027 queue_index = netdev_pick_tx(dev, skb, sb_dev);
638b2a69 4028
d584527c 4029 queue_index = netdev_cap_txqueue(dev, queue_index);
638b2a69
JP
4030 }
4031
4032 skb_set_queue_mapping(skb, queue_index);
4033 return netdev_get_tx_queue(dev, queue_index);
4034}
4035
d29f749e 4036/**
9d08dd3d 4037 * __dev_queue_xmit - transmit a buffer
d29f749e 4038 * @skb: buffer to transmit
eadec877 4039 * @sb_dev: suboordinate device used for L2 forwarding offload
d29f749e
DJ
4040 *
4041 * Queue a buffer for transmission to a network device. The caller must
4042 * have set the device and priority and built the buffer before calling
4043 * this function. The function can be called from an interrupt.
4044 *
4045 * A negative errno code is returned on a failure. A success does not
4046 * guarantee the frame will be transmitted as it may be dropped due
4047 * to congestion or traffic shaping.
4048 *
4049 * -----------------------------------------------------------------------------------
4050 * I notice this method can also return errors from the queue disciplines,
4051 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4052 * be positive.
4053 *
4054 * Regardless of the return value, the skb is consumed, so it is currently
4055 * difficult to retry a send to this method. (You can bump the ref count
4056 * before sending to hold a reference for retry if you are careful.)
4057 *
4058 * When calling this method, interrupts MUST be enabled. This is because
4059 * the BH enable code must have IRQs enabled so that it will not deadlock.
4060 * --BLG
4061 */
eadec877 4062static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
1da177e4
LT
4063{
4064 struct net_device *dev = skb->dev;
dc2b4847 4065 struct netdev_queue *txq;
1da177e4
LT
4066 struct Qdisc *q;
4067 int rc = -ENOMEM;
f53c7239 4068 bool again = false;
1da177e4 4069
6d1ccff6
ED
4070 skb_reset_mac_header(skb);
4071
e7fd2885
WB
4072 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4073 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4074
4ec93edb
YH
4075 /* Disable soft irqs for various locks below. Also
4076 * stops preemption for RCU.
1da177e4 4077 */
4ec93edb 4078 rcu_read_lock_bh();
1da177e4 4079
5bc1421e
NH
4080 skb_update_prio(skb);
4081
1f211a1b
DB
4082 qdisc_pkt_len_init(skb);
4083#ifdef CONFIG_NET_CLS_ACT
8dc07fdb 4084 skb->tc_at_ingress = 0;
357b6cc5 4085# ifdef CONFIG_NET_EGRESS
aabf6772 4086 if (static_branch_unlikely(&egress_needed_key)) {
1f211a1b
DB
4087 skb = sch_handle_egress(skb, &rc, dev);
4088 if (!skb)
4089 goto out;
4090 }
357b6cc5 4091# endif
1f211a1b 4092#endif
02875878
ED
4093 /* If device/qdisc don't need skb->dst, release it right now while
4094 * its hot in this cpu cache.
4095 */
4096 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4097 skb_dst_drop(skb);
4098 else
4099 skb_dst_force(skb);
4100
4bd97d51 4101 txq = netdev_core_pick_tx(dev, skb, sb_dev);
a898def2 4102 q = rcu_dereference_bh(txq->qdisc);
37437bb2 4103
cf66ba58 4104 trace_net_dev_queue(skb);
1da177e4 4105 if (q->enqueue) {
bbd8a0d3 4106 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 4107 goto out;
1da177e4
LT
4108 }
4109
4110 /* The device has no queue. Common case for software devices:
eb13da1a 4111 * loopback, all the sorts of tunnels...
1da177e4 4112
eb13da1a 4113 * Really, it is unlikely that netif_tx_lock protection is necessary
4114 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4115 * counters.)
4116 * However, it is possible, that they rely on protection
4117 * made by us here.
1da177e4 4118
eb13da1a 4119 * Check this and shot the lock. It is not prone from deadlocks.
4120 *Either shot noqueue qdisc, it is even simpler 8)
1da177e4
LT
4121 */
4122 if (dev->flags & IFF_UP) {
4123 int cpu = smp_processor_id(); /* ok because BHs are off */
4124
c773e847 4125 if (txq->xmit_lock_owner != cpu) {
97cdcf37 4126 if (dev_xmit_recursion())
745e20f1
ED
4127 goto recursion_alert;
4128
f53c7239 4129 skb = validate_xmit_skb(skb, dev, &again);
1f59533f 4130 if (!skb)
d21fd63e 4131 goto out;
1f59533f 4132
c773e847 4133 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 4134
73466498 4135 if (!netif_xmit_stopped(txq)) {
97cdcf37 4136 dev_xmit_recursion_inc();
ce93718f 4137 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
97cdcf37 4138 dev_xmit_recursion_dec();
572a9d7b 4139 if (dev_xmit_complete(rc)) {
c773e847 4140 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
4141 goto out;
4142 }
4143 }
c773e847 4144 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
4145 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4146 dev->name);
1da177e4
LT
4147 } else {
4148 /* Recursion is detected! It is possible,
745e20f1
ED
4149 * unfortunately
4150 */
4151recursion_alert:
e87cc472
JP
4152 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4153 dev->name);
1da177e4
LT
4154 }
4155 }
4156
4157 rc = -ENETDOWN;
d4828d85 4158 rcu_read_unlock_bh();
1da177e4 4159
015f0688 4160 atomic_long_inc(&dev->tx_dropped);
1f59533f 4161 kfree_skb_list(skb);
1da177e4
LT
4162 return rc;
4163out:
d4828d85 4164 rcu_read_unlock_bh();
1da177e4
LT
4165 return rc;
4166}
f663dd9a 4167
2b4aa3ce 4168int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
4169{
4170 return __dev_queue_xmit(skb, NULL);
4171}
2b4aa3ce 4172EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 4173
eadec877 4174int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
f663dd9a 4175{
eadec877 4176 return __dev_queue_xmit(skb, sb_dev);
f663dd9a
JW
4177}
4178EXPORT_SYMBOL(dev_queue_xmit_accel);
4179
865b03f2
MK
4180int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4181{
4182 struct net_device *dev = skb->dev;
4183 struct sk_buff *orig_skb = skb;
4184 struct netdev_queue *txq;
4185 int ret = NETDEV_TX_BUSY;
4186 bool again = false;
4187
4188 if (unlikely(!netif_running(dev) ||
4189 !netif_carrier_ok(dev)))
4190 goto drop;
4191
4192 skb = validate_xmit_skb_list(skb, dev, &again);
4193 if (skb != orig_skb)
4194 goto drop;
4195
4196 skb_set_queue_mapping(skb, queue_id);
4197 txq = skb_get_tx_queue(dev, skb);
4198
4199 local_bh_disable();
4200
0ad6f6e7 4201 dev_xmit_recursion_inc();
865b03f2
MK
4202 HARD_TX_LOCK(dev, txq, smp_processor_id());
4203 if (!netif_xmit_frozen_or_drv_stopped(txq))
4204 ret = netdev_start_xmit(skb, dev, txq, false);
4205 HARD_TX_UNLOCK(dev, txq);
0ad6f6e7 4206 dev_xmit_recursion_dec();
865b03f2
MK
4207
4208 local_bh_enable();
4209
4210 if (!dev_xmit_complete(ret))
4211 kfree_skb(skb);
4212
4213 return ret;
4214drop:
4215 atomic_long_inc(&dev->tx_dropped);
4216 kfree_skb_list(skb);
4217 return NET_XMIT_DROP;
4218}
4219EXPORT_SYMBOL(dev_direct_xmit);
1da177e4 4220
eb13da1a 4221/*************************************************************************
4222 * Receiver routines
4223 *************************************************************************/
1da177e4 4224
6b2bedc3 4225int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
4226EXPORT_SYMBOL(netdev_max_backlog);
4227
3b098e2d 4228int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3 4229int netdev_budget __read_mostly = 300;
a4837980
KK
4230/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4231unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3d48b53f
MT
4232int weight_p __read_mostly = 64; /* old backlog weight */
4233int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4234int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4235int dev_rx_weight __read_mostly = 64;
4236int dev_tx_weight __read_mostly = 64;
323ebb61
EC
4237/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4238int gro_normal_batch __read_mostly = 8;
1da177e4 4239
eecfd7c4
ED
4240/* Called with irq disabled */
4241static inline void ____napi_schedule(struct softnet_data *sd,
4242 struct napi_struct *napi)
4243{
4244 list_add_tail(&napi->poll_list, &sd->poll_list);
4245 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4246}
4247
bfb564e7
KK
4248#ifdef CONFIG_RPS
4249
4250/* One global table that all flow-based protocols share. */
6e3f7faf 4251struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 4252EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
4253u32 rps_cpu_mask __read_mostly;
4254EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 4255
dc05360f 4256struct static_key_false rps_needed __read_mostly;
3df97ba8 4257EXPORT_SYMBOL(rps_needed);
dc05360f 4258struct static_key_false rfs_needed __read_mostly;
13bfff25 4259EXPORT_SYMBOL(rfs_needed);
adc9300e 4260
c445477d
BH
4261static struct rps_dev_flow *
4262set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4263 struct rps_dev_flow *rflow, u16 next_cpu)
4264{
a31196b0 4265 if (next_cpu < nr_cpu_ids) {
c445477d
BH
4266#ifdef CONFIG_RFS_ACCEL
4267 struct netdev_rx_queue *rxqueue;
4268 struct rps_dev_flow_table *flow_table;
4269 struct rps_dev_flow *old_rflow;
4270 u32 flow_id;
4271 u16 rxq_index;
4272 int rc;
4273
4274 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
4275 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4276 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
4277 goto out;
4278 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4279 if (rxq_index == skb_get_rx_queue(skb))
4280 goto out;
4281
4282 rxqueue = dev->_rx + rxq_index;
4283 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4284 if (!flow_table)
4285 goto out;
61b905da 4286 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
4287 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4288 rxq_index, flow_id);
4289 if (rc < 0)
4290 goto out;
4291 old_rflow = rflow;
4292 rflow = &flow_table->flows[flow_id];
c445477d
BH
4293 rflow->filter = rc;
4294 if (old_rflow->filter == rflow->filter)
4295 old_rflow->filter = RPS_NO_FILTER;
4296 out:
4297#endif
4298 rflow->last_qtail =
09994d1b 4299 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
4300 }
4301
09994d1b 4302 rflow->cpu = next_cpu;
c445477d
BH
4303 return rflow;
4304}
4305
bfb564e7
KK
4306/*
4307 * get_rps_cpu is called from netif_receive_skb and returns the target
4308 * CPU from the RPS map of the receiving queue for a given skb.
4309 * rcu_read_lock must be held on entry.
4310 */
4311static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4312 struct rps_dev_flow **rflowp)
4313{
567e4b79
ED
4314 const struct rps_sock_flow_table *sock_flow_table;
4315 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 4316 struct rps_dev_flow_table *flow_table;
567e4b79 4317 struct rps_map *map;
bfb564e7 4318 int cpu = -1;
567e4b79 4319 u32 tcpu;
61b905da 4320 u32 hash;
bfb564e7
KK
4321
4322 if (skb_rx_queue_recorded(skb)) {
4323 u16 index = skb_get_rx_queue(skb);
567e4b79 4324
62fe0b40
BH
4325 if (unlikely(index >= dev->real_num_rx_queues)) {
4326 WARN_ONCE(dev->real_num_rx_queues > 1,
4327 "%s received packet on queue %u, but number "
4328 "of RX queues is %u\n",
4329 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
4330 goto done;
4331 }
567e4b79
ED
4332 rxqueue += index;
4333 }
bfb564e7 4334
567e4b79
ED
4335 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4336
4337 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 4338 map = rcu_dereference(rxqueue->rps_map);
567e4b79 4339 if (!flow_table && !map)
bfb564e7
KK
4340 goto done;
4341
2d47b459 4342 skb_reset_network_header(skb);
61b905da
TH
4343 hash = skb_get_hash(skb);
4344 if (!hash)
bfb564e7
KK
4345 goto done;
4346
fec5e652
TH
4347 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4348 if (flow_table && sock_flow_table) {
fec5e652 4349 struct rps_dev_flow *rflow;
567e4b79
ED
4350 u32 next_cpu;
4351 u32 ident;
4352
4353 /* First check into global flow table if there is a match */
4354 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4355 if ((ident ^ hash) & ~rps_cpu_mask)
4356 goto try_rps;
fec5e652 4357
567e4b79
ED
4358 next_cpu = ident & rps_cpu_mask;
4359
4360 /* OK, now we know there is a match,
4361 * we can look at the local (per receive queue) flow table
4362 */
61b905da 4363 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
4364 tcpu = rflow->cpu;
4365
fec5e652
TH
4366 /*
4367 * If the desired CPU (where last recvmsg was done) is
4368 * different from current CPU (one in the rx-queue flow
4369 * table entry), switch if one of the following holds:
a31196b0 4370 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
4371 * - Current CPU is offline.
4372 * - The current CPU's queue tail has advanced beyond the
4373 * last packet that was enqueued using this table entry.
4374 * This guarantees that all previous packets for the flow
4375 * have been dequeued, thus preserving in order delivery.
4376 */
4377 if (unlikely(tcpu != next_cpu) &&
a31196b0 4378 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 4379 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
4380 rflow->last_qtail)) >= 0)) {
4381 tcpu = next_cpu;
c445477d 4382 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 4383 }
c445477d 4384
a31196b0 4385 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
4386 *rflowp = rflow;
4387 cpu = tcpu;
4388 goto done;
4389 }
4390 }
4391
567e4b79
ED
4392try_rps:
4393
0a9627f2 4394 if (map) {
8fc54f68 4395 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
4396 if (cpu_online(tcpu)) {
4397 cpu = tcpu;
4398 goto done;
4399 }
4400 }
4401
4402done:
0a9627f2
TH
4403 return cpu;
4404}
4405
c445477d
BH
4406#ifdef CONFIG_RFS_ACCEL
4407
4408/**
4409 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4410 * @dev: Device on which the filter was set
4411 * @rxq_index: RX queue index
4412 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4413 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4414 *
4415 * Drivers that implement ndo_rx_flow_steer() should periodically call
4416 * this function for each installed filter and remove the filters for
4417 * which it returns %true.
4418 */
4419bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4420 u32 flow_id, u16 filter_id)
4421{
4422 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4423 struct rps_dev_flow_table *flow_table;
4424 struct rps_dev_flow *rflow;
4425 bool expire = true;
a31196b0 4426 unsigned int cpu;
c445477d
BH
4427
4428 rcu_read_lock();
4429 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4430 if (flow_table && flow_id <= flow_table->mask) {
4431 rflow = &flow_table->flows[flow_id];
6aa7de05 4432 cpu = READ_ONCE(rflow->cpu);
a31196b0 4433 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
4434 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4435 rflow->last_qtail) <
4436 (int)(10 * flow_table->mask)))
4437 expire = false;
4438 }
4439 rcu_read_unlock();
4440 return expire;
4441}
4442EXPORT_SYMBOL(rps_may_expire_flow);
4443
4444#endif /* CONFIG_RFS_ACCEL */
4445
0a9627f2 4446/* Called from hardirq (IPI) context */
e36fa2f7 4447static void rps_trigger_softirq(void *data)
0a9627f2 4448{
e36fa2f7
ED
4449 struct softnet_data *sd = data;
4450
eecfd7c4 4451 ____napi_schedule(sd, &sd->backlog);
dee42870 4452 sd->received_rps++;
0a9627f2 4453}
e36fa2f7 4454
fec5e652 4455#endif /* CONFIG_RPS */
0a9627f2 4456
e36fa2f7
ED
4457/*
4458 * Check if this softnet_data structure is another cpu one
4459 * If yes, queue it to our IPI list and return 1
4460 * If no, return 0
4461 */
4462static int rps_ipi_queued(struct softnet_data *sd)
4463{
4464#ifdef CONFIG_RPS
903ceff7 4465 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
4466
4467 if (sd != mysd) {
4468 sd->rps_ipi_next = mysd->rps_ipi_list;
4469 mysd->rps_ipi_list = sd;
4470
4471 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472 return 1;
4473 }
4474#endif /* CONFIG_RPS */
4475 return 0;
4476}
4477
99bbc707
WB
4478#ifdef CONFIG_NET_FLOW_LIMIT
4479int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4480#endif
4481
4482static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4483{
4484#ifdef CONFIG_NET_FLOW_LIMIT
4485 struct sd_flow_limit *fl;
4486 struct softnet_data *sd;
4487 unsigned int old_flow, new_flow;
4488
4489 if (qlen < (netdev_max_backlog >> 1))
4490 return false;
4491
903ceff7 4492 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
4493
4494 rcu_read_lock();
4495 fl = rcu_dereference(sd->flow_limit);
4496 if (fl) {
3958afa1 4497 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
4498 old_flow = fl->history[fl->history_head];
4499 fl->history[fl->history_head] = new_flow;
4500
4501 fl->history_head++;
4502 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4503
4504 if (likely(fl->buckets[old_flow]))
4505 fl->buckets[old_flow]--;
4506
4507 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4508 fl->count++;
4509 rcu_read_unlock();
4510 return true;
4511 }
4512 }
4513 rcu_read_unlock();
4514#endif
4515 return false;
4516}
4517
0a9627f2
TH
4518/*
4519 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4520 * queue (may be a remote CPU queue).
4521 */
fec5e652
TH
4522static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4523 unsigned int *qtail)
0a9627f2 4524{
e36fa2f7 4525 struct softnet_data *sd;
0a9627f2 4526 unsigned long flags;
99bbc707 4527 unsigned int qlen;
0a9627f2 4528
e36fa2f7 4529 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
4530
4531 local_irq_save(flags);
0a9627f2 4532
e36fa2f7 4533 rps_lock(sd);
e9e4dd32
JA
4534 if (!netif_running(skb->dev))
4535 goto drop;
99bbc707
WB
4536 qlen = skb_queue_len(&sd->input_pkt_queue);
4537 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 4538 if (qlen) {
0a9627f2 4539enqueue:
e36fa2f7 4540 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 4541 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 4542 rps_unlock(sd);
152102c7 4543 local_irq_restore(flags);
0a9627f2
TH
4544 return NET_RX_SUCCESS;
4545 }
4546
ebda37c2
ED
4547 /* Schedule NAPI for backlog device
4548 * We can use non atomic operation since we own the queue lock
4549 */
4550 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 4551 if (!rps_ipi_queued(sd))
eecfd7c4 4552 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
4553 }
4554 goto enqueue;
4555 }
4556
e9e4dd32 4557drop:
dee42870 4558 sd->dropped++;
e36fa2f7 4559 rps_unlock(sd);
0a9627f2 4560
0a9627f2
TH
4561 local_irq_restore(flags);
4562
caf586e5 4563 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
4564 kfree_skb(skb);
4565 return NET_RX_DROP;
4566}
1da177e4 4567
e817f856
JDB
4568static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4569{
4570 struct net_device *dev = skb->dev;
4571 struct netdev_rx_queue *rxqueue;
4572
4573 rxqueue = dev->_rx;
4574
4575 if (skb_rx_queue_recorded(skb)) {
4576 u16 index = skb_get_rx_queue(skb);
4577
4578 if (unlikely(index >= dev->real_num_rx_queues)) {
4579 WARN_ONCE(dev->real_num_rx_queues > 1,
4580 "%s received packet on queue %u, but number "
4581 "of RX queues is %u\n",
4582 dev->name, index, dev->real_num_rx_queues);
4583
4584 return rxqueue; /* Return first rxqueue */
4585 }
4586 rxqueue += index;
4587 }
4588 return rxqueue;
4589}
4590
d4455169 4591static u32 netif_receive_generic_xdp(struct sk_buff *skb,
02671e23 4592 struct xdp_buff *xdp,
d4455169
JF
4593 struct bpf_prog *xdp_prog)
4594{
e817f856 4595 struct netdev_rx_queue *rxqueue;
198d83bb 4596 void *orig_data, *orig_data_end;
de8f3a83 4597 u32 metalen, act = XDP_DROP;
29724956
JDB
4598 __be16 orig_eth_type;
4599 struct ethhdr *eth;
4600 bool orig_bcast;
d4455169
JF
4601 int hlen, off;
4602 u32 mac_len;
4603
4604 /* Reinjected packets coming from act_mirred or similar should
4605 * not get XDP generic processing.
4606 */
2c64605b 4607 if (skb_is_redirected(skb))
d4455169
JF
4608 return XDP_PASS;
4609
de8f3a83
DB
4610 /* XDP packets must be linear and must have sufficient headroom
4611 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4612 * native XDP provides, thus we need to do it here as well.
4613 */
ad1e03b2 4614 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
de8f3a83
DB
4615 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4616 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4617 int troom = skb->tail + skb->data_len - skb->end;
4618
4619 /* In case we have to go down the path and also linearize,
4620 * then lets do the pskb_expand_head() work just once here.
4621 */
4622 if (pskb_expand_head(skb,
4623 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4624 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4625 goto do_drop;
2d17d8d7 4626 if (skb_linearize(skb))
de8f3a83
DB
4627 goto do_drop;
4628 }
d4455169
JF
4629
4630 /* The XDP program wants to see the packet starting at the MAC
4631 * header.
4632 */
4633 mac_len = skb->data - skb_mac_header(skb);
4634 hlen = skb_headlen(skb) + mac_len;
02671e23
BT
4635 xdp->data = skb->data - mac_len;
4636 xdp->data_meta = xdp->data;
4637 xdp->data_end = xdp->data + hlen;
4638 xdp->data_hard_start = skb->data - skb_headroom(skb);
a075767b
JDB
4639
4640 /* SKB "head" area always have tailroom for skb_shared_info */
4641 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4642 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4643
02671e23
BT
4644 orig_data_end = xdp->data_end;
4645 orig_data = xdp->data;
29724956
JDB
4646 eth = (struct ethhdr *)xdp->data;
4647 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4648 orig_eth_type = eth->h_proto;
d4455169 4649
e817f856 4650 rxqueue = netif_get_rxqueue(skb);
02671e23 4651 xdp->rxq = &rxqueue->xdp_rxq;
e817f856 4652
02671e23 4653 act = bpf_prog_run_xdp(xdp_prog, xdp);
d4455169 4654
065af355 4655 /* check if bpf_xdp_adjust_head was used */
02671e23 4656 off = xdp->data - orig_data;
065af355
JDB
4657 if (off) {
4658 if (off > 0)
4659 __skb_pull(skb, off);
4660 else if (off < 0)
4661 __skb_push(skb, -off);
4662
4663 skb->mac_header += off;
4664 skb_reset_network_header(skb);
4665 }
d4455169 4666
a075767b
JDB
4667 /* check if bpf_xdp_adjust_tail was used */
4668 off = xdp->data_end - orig_data_end;
f7613120 4669 if (off != 0) {
02671e23 4670 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
a075767b 4671 skb->len += off; /* positive on grow, negative on shrink */
f7613120 4672 }
198d83bb 4673
29724956
JDB
4674 /* check if XDP changed eth hdr such SKB needs update */
4675 eth = (struct ethhdr *)xdp->data;
4676 if ((orig_eth_type != eth->h_proto) ||
4677 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4678 __skb_push(skb, ETH_HLEN);
4679 skb->protocol = eth_type_trans(skb, skb->dev);
4680 }
4681
d4455169 4682 switch (act) {
6103aa96 4683 case XDP_REDIRECT:
d4455169
JF
4684 case XDP_TX:
4685 __skb_push(skb, mac_len);
de8f3a83 4686 break;
d4455169 4687 case XDP_PASS:
02671e23 4688 metalen = xdp->data - xdp->data_meta;
de8f3a83
DB
4689 if (metalen)
4690 skb_metadata_set(skb, metalen);
d4455169 4691 break;
d4455169
JF
4692 default:
4693 bpf_warn_invalid_xdp_action(act);
4694 /* fall through */
4695 case XDP_ABORTED:
4696 trace_xdp_exception(skb->dev, xdp_prog, act);
4697 /* fall through */
4698 case XDP_DROP:
4699 do_drop:
4700 kfree_skb(skb);
4701 break;
4702 }
4703
4704 return act;
4705}
4706
4707/* When doing generic XDP we have to bypass the qdisc layer and the
4708 * network taps in order to match in-driver-XDP behavior.
4709 */
7c497478 4710void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
d4455169
JF
4711{
4712 struct net_device *dev = skb->dev;
4713 struct netdev_queue *txq;
4714 bool free_skb = true;
4715 int cpu, rc;
4716
4bd97d51 4717 txq = netdev_core_pick_tx(dev, skb, NULL);
d4455169
JF
4718 cpu = smp_processor_id();
4719 HARD_TX_LOCK(dev, txq, cpu);
4720 if (!netif_xmit_stopped(txq)) {
4721 rc = netdev_start_xmit(skb, dev, txq, 0);
4722 if (dev_xmit_complete(rc))
4723 free_skb = false;
4724 }
4725 HARD_TX_UNLOCK(dev, txq);
4726 if (free_skb) {
4727 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4728 kfree_skb(skb);
4729 }
4730}
4731
02786475 4732static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
d4455169 4733
7c497478 4734int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
d4455169 4735{
d4455169 4736 if (xdp_prog) {
02671e23
BT
4737 struct xdp_buff xdp;
4738 u32 act;
6103aa96 4739 int err;
d4455169 4740
02671e23 4741 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
d4455169 4742 if (act != XDP_PASS) {
6103aa96
JF
4743 switch (act) {
4744 case XDP_REDIRECT:
2facaad6 4745 err = xdp_do_generic_redirect(skb->dev, skb,
02671e23 4746 &xdp, xdp_prog);
6103aa96
JF
4747 if (err)
4748 goto out_redir;
02671e23 4749 break;
6103aa96 4750 case XDP_TX:
d4455169 4751 generic_xdp_tx(skb, xdp_prog);
6103aa96
JF
4752 break;
4753 }
d4455169
JF
4754 return XDP_DROP;
4755 }
4756 }
4757 return XDP_PASS;
6103aa96 4758out_redir:
6103aa96
JF
4759 kfree_skb(skb);
4760 return XDP_DROP;
d4455169 4761}
7c497478 4762EXPORT_SYMBOL_GPL(do_xdp_generic);
d4455169 4763
ae78dbfa 4764static int netif_rx_internal(struct sk_buff *skb)
1da177e4 4765{
b0e28f1e 4766 int ret;
1da177e4 4767
588f0330 4768 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 4769
cf66ba58 4770 trace_netif_rx(skb);
d4455169 4771
df334545 4772#ifdef CONFIG_RPS
dc05360f 4773 if (static_branch_unlikely(&rps_needed)) {
fec5e652 4774 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
4775 int cpu;
4776
cece1945 4777 preempt_disable();
b0e28f1e 4778 rcu_read_lock();
fec5e652
TH
4779
4780 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
4781 if (cpu < 0)
4782 cpu = smp_processor_id();
fec5e652
TH
4783
4784 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4785
b0e28f1e 4786 rcu_read_unlock();
cece1945 4787 preempt_enable();
adc9300e
ED
4788 } else
4789#endif
fec5e652
TH
4790 {
4791 unsigned int qtail;
f4563a75 4792
fec5e652
TH
4793 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4794 put_cpu();
4795 }
b0e28f1e 4796 return ret;
1da177e4 4797}
ae78dbfa
BH
4798
4799/**
4800 * netif_rx - post buffer to the network code
4801 * @skb: buffer to post
4802 *
4803 * This function receives a packet from a device driver and queues it for
4804 * the upper (protocol) levels to process. It always succeeds. The buffer
4805 * may be dropped during processing for congestion control or by the
4806 * protocol layers.
4807 *
4808 * return values:
4809 * NET_RX_SUCCESS (no congestion)
4810 * NET_RX_DROP (packet was dropped)
4811 *
4812 */
4813
4814int netif_rx(struct sk_buff *skb)
4815{
b0e3f1bd
GB
4816 int ret;
4817
ae78dbfa
BH
4818 trace_netif_rx_entry(skb);
4819
b0e3f1bd
GB
4820 ret = netif_rx_internal(skb);
4821 trace_netif_rx_exit(ret);
4822
4823 return ret;
ae78dbfa 4824}
d1b19dff 4825EXPORT_SYMBOL(netif_rx);
1da177e4
LT
4826
4827int netif_rx_ni(struct sk_buff *skb)
4828{
4829 int err;
4830
ae78dbfa
BH
4831 trace_netif_rx_ni_entry(skb);
4832
1da177e4 4833 preempt_disable();
ae78dbfa 4834 err = netif_rx_internal(skb);
1da177e4
LT
4835 if (local_softirq_pending())
4836 do_softirq();
4837 preempt_enable();
b0e3f1bd 4838 trace_netif_rx_ni_exit(err);
1da177e4
LT
4839
4840 return err;
4841}
1da177e4
LT
4842EXPORT_SYMBOL(netif_rx_ni);
4843
0766f788 4844static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 4845{
903ceff7 4846 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
4847
4848 if (sd->completion_queue) {
4849 struct sk_buff *clist;
4850
4851 local_irq_disable();
4852 clist = sd->completion_queue;
4853 sd->completion_queue = NULL;
4854 local_irq_enable();
4855
4856 while (clist) {
4857 struct sk_buff *skb = clist;
f4563a75 4858
1da177e4
LT
4859 clist = clist->next;
4860
63354797 4861 WARN_ON(refcount_read(&skb->users));
e6247027
ED
4862 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4863 trace_consume_skb(skb);
4864 else
4865 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
4866
4867 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4868 __kfree_skb(skb);
4869 else
4870 __kfree_skb_defer(skb);
1da177e4 4871 }
15fad714
JDB
4872
4873 __kfree_skb_flush();
1da177e4
LT
4874 }
4875
4876 if (sd->output_queue) {
37437bb2 4877 struct Qdisc *head;
1da177e4
LT
4878
4879 local_irq_disable();
4880 head = sd->output_queue;
4881 sd->output_queue = NULL;
a9cbd588 4882 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
4883 local_irq_enable();
4884
4885 while (head) {
37437bb2 4886 struct Qdisc *q = head;
6b3ba914 4887 spinlock_t *root_lock = NULL;
37437bb2 4888
1da177e4
LT
4889 head = head->next_sched;
4890
6b3ba914
JF
4891 if (!(q->flags & TCQ_F_NOLOCK)) {
4892 root_lock = qdisc_lock(q);
4893 spin_lock(root_lock);
4894 }
3bcb846c
ED
4895 /* We need to make sure head->next_sched is read
4896 * before clearing __QDISC_STATE_SCHED
4897 */
4898 smp_mb__before_atomic();
4899 clear_bit(__QDISC_STATE_SCHED, &q->state);
4900 qdisc_run(q);
6b3ba914
JF
4901 if (root_lock)
4902 spin_unlock(root_lock);
1da177e4
LT
4903 }
4904 }
f53c7239
SK
4905
4906 xfrm_dev_backlog(sd);
1da177e4
LT
4907}
4908
181402a5 4909#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
4910/* This hook is defined here for ATM LANE */
4911int (*br_fdb_test_addr_hook)(struct net_device *dev,
4912 unsigned char *addr) __read_mostly;
4fb019a0 4913EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 4914#endif
1da177e4 4915
1f211a1b
DB
4916static inline struct sk_buff *
4917sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4918 struct net_device *orig_dev)
f697c3e8 4919{
e7582bab 4920#ifdef CONFIG_NET_CLS_ACT
46209401 4921 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
d2788d34 4922 struct tcf_result cl_res;
24824a09 4923
c9e99fd0
DB
4924 /* If there's at least one ingress present somewhere (so
4925 * we get here via enabled static key), remaining devices
4926 * that are not configured with an ingress qdisc will bail
d2788d34 4927 * out here.
c9e99fd0 4928 */
46209401 4929 if (!miniq)
4577139b 4930 return skb;
46209401 4931
f697c3e8
HX
4932 if (*pt_prev) {
4933 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4934 *pt_prev = NULL;
1da177e4
LT
4935 }
4936
3365495c 4937 qdisc_skb_cb(skb)->pkt_len = skb->len;
8dc07fdb 4938 skb->tc_at_ingress = 1;
46209401 4939 mini_qdisc_bstats_cpu_update(miniq, skb);
c9e99fd0 4940
7d17c544
PB
4941 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4942 &cl_res, false)) {
d2788d34
DB
4943 case TC_ACT_OK:
4944 case TC_ACT_RECLASSIFY:
4945 skb->tc_index = TC_H_MIN(cl_res.classid);
4946 break;
4947 case TC_ACT_SHOT:
46209401 4948 mini_qdisc_qstats_cpu_drop(miniq);
8a3a4c6e
ED
4949 kfree_skb(skb);
4950 return NULL;
d2788d34
DB
4951 case TC_ACT_STOLEN:
4952 case TC_ACT_QUEUED:
e25ea21f 4953 case TC_ACT_TRAP:
8a3a4c6e 4954 consume_skb(skb);
d2788d34 4955 return NULL;
27b29f63
AS
4956 case TC_ACT_REDIRECT:
4957 /* skb_mac_header check was done by cls/act_bpf, so
4958 * we can safely push the L2 header back before
4959 * redirecting to another netdev
4960 */
4961 __skb_push(skb, skb->mac_len);
4962 skb_do_redirect(skb);
4963 return NULL;
720f22fe 4964 case TC_ACT_CONSUMED:
cd11b164 4965 return NULL;
d2788d34
DB
4966 default:
4967 break;
f697c3e8 4968 }
e7582bab 4969#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
4970 return skb;
4971}
1da177e4 4972
24b27fc4
MB
4973/**
4974 * netdev_is_rx_handler_busy - check if receive handler is registered
4975 * @dev: device to check
4976 *
4977 * Check if a receive handler is already registered for a given device.
4978 * Return true if there one.
4979 *
4980 * The caller must hold the rtnl_mutex.
4981 */
4982bool netdev_is_rx_handler_busy(struct net_device *dev)
4983{
4984 ASSERT_RTNL();
4985 return dev && rtnl_dereference(dev->rx_handler);
4986}
4987EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4988
ab95bfe0
JP
4989/**
4990 * netdev_rx_handler_register - register receive handler
4991 * @dev: device to register a handler for
4992 * @rx_handler: receive handler to register
93e2c32b 4993 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 4994 *
e227867f 4995 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
4996 * called from __netif_receive_skb. A negative errno code is returned
4997 * on a failure.
4998 *
4999 * The caller must hold the rtnl_mutex.
8a4eb573
JP
5000 *
5001 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
5002 */
5003int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
5004 rx_handler_func_t *rx_handler,
5005 void *rx_handler_data)
ab95bfe0 5006{
1b7cd004 5007 if (netdev_is_rx_handler_busy(dev))
ab95bfe0
JP
5008 return -EBUSY;
5009
f5426250
PA
5010 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5011 return -EINVAL;
5012
00cfec37 5013 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 5014 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
5015 rcu_assign_pointer(dev->rx_handler, rx_handler);
5016
5017 return 0;
5018}
5019EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5020
5021/**
5022 * netdev_rx_handler_unregister - unregister receive handler
5023 * @dev: device to unregister a handler from
5024 *
166ec369 5025 * Unregister a receive handler from a device.
ab95bfe0
JP
5026 *
5027 * The caller must hold the rtnl_mutex.
5028 */
5029void netdev_rx_handler_unregister(struct net_device *dev)
5030{
5031
5032 ASSERT_RTNL();
a9b3cd7f 5033 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
5034 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5035 * section has a guarantee to see a non NULL rx_handler_data
5036 * as well.
5037 */
5038 synchronize_net();
a9b3cd7f 5039 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
5040}
5041EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5042
b4b9e355
MG
5043/*
5044 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5045 * the special handling of PFMEMALLOC skbs.
5046 */
5047static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5048{
5049 switch (skb->protocol) {
2b8837ae
JP
5050 case htons(ETH_P_ARP):
5051 case htons(ETH_P_IP):
5052 case htons(ETH_P_IPV6):
5053 case htons(ETH_P_8021Q):
5054 case htons(ETH_P_8021AD):
b4b9e355
MG
5055 return true;
5056 default:
5057 return false;
5058 }
5059}
5060
e687ad60
PN
5061static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5062 int *ret, struct net_device *orig_dev)
5063{
5064 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
5065 int ingress_retval;
5066
e687ad60
PN
5067 if (*pt_prev) {
5068 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5069 *pt_prev = NULL;
5070 }
5071
2c1e2703
AC
5072 rcu_read_lock();
5073 ingress_retval = nf_hook_ingress(skb);
5074 rcu_read_unlock();
5075 return ingress_retval;
e687ad60
PN
5076 }
5077 return 0;
5078}
e687ad60 5079
c0bbbdc3 5080static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
88eb1944 5081 struct packet_type **ppt_prev)
1da177e4
LT
5082{
5083 struct packet_type *ptype, *pt_prev;
ab95bfe0 5084 rx_handler_func_t *rx_handler;
c0bbbdc3 5085 struct sk_buff *skb = *pskb;
f2ccd8fa 5086 struct net_device *orig_dev;
8a4eb573 5087 bool deliver_exact = false;
1da177e4 5088 int ret = NET_RX_DROP;
252e3346 5089 __be16 type;
1da177e4 5090
588f0330 5091 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 5092
cf66ba58 5093 trace_netif_receive_skb(skb);
9b22ea56 5094
cc9bd5ce 5095 orig_dev = skb->dev;
8f903c70 5096
c1d2bbe1 5097 skb_reset_network_header(skb);
fda55eca
ED
5098 if (!skb_transport_header_was_set(skb))
5099 skb_reset_transport_header(skb);
0b5c9db1 5100 skb_reset_mac_len(skb);
1da177e4
LT
5101
5102 pt_prev = NULL;
5103
63d8ea7f 5104another_round:
b6858177 5105 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
5106
5107 __this_cpu_inc(softnet_data.processed);
5108
458bf2f2
SH
5109 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5110 int ret2;
5111
5112 preempt_disable();
5113 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5114 preempt_enable();
5115
c0bbbdc3
BS
5116 if (ret2 != XDP_PASS) {
5117 ret = NET_RX_DROP;
5118 goto out;
5119 }
458bf2f2
SH
5120 skb_reset_mac_len(skb);
5121 }
5122
8ad227ff
PM
5123 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5124 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 5125 skb = skb_vlan_untag(skb);
bcc6d479 5126 if (unlikely(!skb))
2c17d27c 5127 goto out;
bcc6d479
JP
5128 }
5129
e7246e12
WB
5130 if (skb_skip_tc_classify(skb))
5131 goto skip_classify;
1da177e4 5132
9754e293 5133 if (pfmemalloc)
b4b9e355
MG
5134 goto skip_taps;
5135
1da177e4 5136 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
5137 if (pt_prev)
5138 ret = deliver_skb(skb, pt_prev, orig_dev);
5139 pt_prev = ptype;
5140 }
5141
5142 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5143 if (pt_prev)
5144 ret = deliver_skb(skb, pt_prev, orig_dev);
5145 pt_prev = ptype;
1da177e4
LT
5146 }
5147
b4b9e355 5148skip_taps:
1cf51900 5149#ifdef CONFIG_NET_INGRESS
aabf6772 5150 if (static_branch_unlikely(&ingress_needed_key)) {
1f211a1b 5151 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 5152 if (!skb)
2c17d27c 5153 goto out;
e687ad60
PN
5154
5155 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 5156 goto out;
4577139b 5157 }
1cf51900 5158#endif
2c64605b 5159 skb_reset_redirect(skb);
e7246e12 5160skip_classify:
9754e293 5161 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
5162 goto drop;
5163
df8a39de 5164 if (skb_vlan_tag_present(skb)) {
2425717b
JF
5165 if (pt_prev) {
5166 ret = deliver_skb(skb, pt_prev, orig_dev);
5167 pt_prev = NULL;
5168 }
48cc32d3 5169 if (vlan_do_receive(&skb))
2425717b
JF
5170 goto another_round;
5171 else if (unlikely(!skb))
2c17d27c 5172 goto out;
2425717b
JF
5173 }
5174
48cc32d3 5175 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
5176 if (rx_handler) {
5177 if (pt_prev) {
5178 ret = deliver_skb(skb, pt_prev, orig_dev);
5179 pt_prev = NULL;
5180 }
8a4eb573
JP
5181 switch (rx_handler(&skb)) {
5182 case RX_HANDLER_CONSUMED:
3bc1b1ad 5183 ret = NET_RX_SUCCESS;
2c17d27c 5184 goto out;
8a4eb573 5185 case RX_HANDLER_ANOTHER:
63d8ea7f 5186 goto another_round;
8a4eb573
JP
5187 case RX_HANDLER_EXACT:
5188 deliver_exact = true;
5189 case RX_HANDLER_PASS:
5190 break;
5191 default:
5192 BUG();
5193 }
ab95bfe0 5194 }
1da177e4 5195
df8a39de 5196 if (unlikely(skb_vlan_tag_present(skb))) {
36b2f61a
GV
5197check_vlan_id:
5198 if (skb_vlan_tag_get_id(skb)) {
5199 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5200 * find vlan device.
5201 */
d4b812de 5202 skb->pkt_type = PACKET_OTHERHOST;
36b2f61a
GV
5203 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5204 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5205 /* Outer header is 802.1P with vlan 0, inner header is
5206 * 802.1Q or 802.1AD and vlan_do_receive() above could
5207 * not find vlan dev for vlan id 0.
5208 */
5209 __vlan_hwaccel_clear_tag(skb);
5210 skb = skb_vlan_untag(skb);
5211 if (unlikely(!skb))
5212 goto out;
5213 if (vlan_do_receive(&skb))
5214 /* After stripping off 802.1P header with vlan 0
5215 * vlan dev is found for inner header.
5216 */
5217 goto another_round;
5218 else if (unlikely(!skb))
5219 goto out;
5220 else
5221 /* We have stripped outer 802.1P vlan 0 header.
5222 * But could not find vlan dev.
5223 * check again for vlan id to set OTHERHOST.
5224 */
5225 goto check_vlan_id;
5226 }
d4b812de
ED
5227 /* Note: we might in the future use prio bits
5228 * and set skb->priority like in vlan_do_receive()
5229 * For the time being, just ignore Priority Code Point
5230 */
b1817524 5231 __vlan_hwaccel_clear_tag(skb);
d4b812de 5232 }
48cc32d3 5233
7866a621
SN
5234 type = skb->protocol;
5235
63d8ea7f 5236 /* deliver only exact match when indicated */
7866a621
SN
5237 if (likely(!deliver_exact)) {
5238 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5239 &ptype_base[ntohs(type) &
5240 PTYPE_HASH_MASK]);
5241 }
1f3c8804 5242
7866a621
SN
5243 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5244 &orig_dev->ptype_specific);
5245
5246 if (unlikely(skb->dev != orig_dev)) {
5247 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5248 &skb->dev->ptype_specific);
1da177e4
LT
5249 }
5250
5251 if (pt_prev) {
1f8b977a 5252 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
0e698bf6 5253 goto drop;
88eb1944 5254 *ppt_prev = pt_prev;
1da177e4 5255 } else {
b4b9e355 5256drop:
6e7333d3
JW
5257 if (!deliver_exact)
5258 atomic_long_inc(&skb->dev->rx_dropped);
5259 else
5260 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
5261 kfree_skb(skb);
5262 /* Jamal, now you will not able to escape explaining
5263 * me how you were going to use this. :-)
5264 */
5265 ret = NET_RX_DROP;
5266 }
5267
2c17d27c 5268out:
c0bbbdc3
BS
5269 /* The invariant here is that if *ppt_prev is not NULL
5270 * then skb should also be non-NULL.
5271 *
5272 * Apparently *ppt_prev assignment above holds this invariant due to
5273 * skb dereferencing near it.
5274 */
5275 *pskb = skb;
9754e293
DM
5276 return ret;
5277}
5278
88eb1944
EC
5279static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5280{
5281 struct net_device *orig_dev = skb->dev;
5282 struct packet_type *pt_prev = NULL;
5283 int ret;
5284
c0bbbdc3 5285 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
88eb1944 5286 if (pt_prev)
f5737cba
PA
5287 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5288 skb->dev, pt_prev, orig_dev);
88eb1944
EC
5289 return ret;
5290}
5291
1c601d82
JDB
5292/**
5293 * netif_receive_skb_core - special purpose version of netif_receive_skb
5294 * @skb: buffer to process
5295 *
5296 * More direct receive version of netif_receive_skb(). It should
5297 * only be used by callers that have a need to skip RPS and Generic XDP.
2de9780f 5298 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
1c601d82
JDB
5299 *
5300 * This function may only be called from softirq context and interrupts
5301 * should be enabled.
5302 *
5303 * Return values (usually ignored):
5304 * NET_RX_SUCCESS: no congestion
5305 * NET_RX_DROP: packet was dropped
5306 */
5307int netif_receive_skb_core(struct sk_buff *skb)
5308{
5309 int ret;
5310
5311 rcu_read_lock();
88eb1944 5312 ret = __netif_receive_skb_one_core(skb, false);
1c601d82
JDB
5313 rcu_read_unlock();
5314
5315 return ret;
5316}
5317EXPORT_SYMBOL(netif_receive_skb_core);
5318
88eb1944
EC
5319static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5320 struct packet_type *pt_prev,
5321 struct net_device *orig_dev)
4ce0017a
EC
5322{
5323 struct sk_buff *skb, *next;
5324
88eb1944
EC
5325 if (!pt_prev)
5326 return;
5327 if (list_empty(head))
5328 return;
17266ee9 5329 if (pt_prev->list_func != NULL)
fdf71426
PA
5330 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5331 ip_list_rcv, head, pt_prev, orig_dev);
17266ee9 5332 else
9a5a90d1
AL
5333 list_for_each_entry_safe(skb, next, head, list) {
5334 skb_list_del_init(skb);
fdf71426 5335 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
9a5a90d1 5336 }
88eb1944
EC
5337}
5338
5339static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5340{
5341 /* Fast-path assumptions:
5342 * - There is no RX handler.
5343 * - Only one packet_type matches.
5344 * If either of these fails, we will end up doing some per-packet
5345 * processing in-line, then handling the 'last ptype' for the whole
5346 * sublist. This can't cause out-of-order delivery to any single ptype,
5347 * because the 'last ptype' must be constant across the sublist, and all
5348 * other ptypes are handled per-packet.
5349 */
5350 /* Current (common) ptype of sublist */
5351 struct packet_type *pt_curr = NULL;
5352 /* Current (common) orig_dev of sublist */
5353 struct net_device *od_curr = NULL;
5354 struct list_head sublist;
5355 struct sk_buff *skb, *next;
5356
9af86f93 5357 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5358 list_for_each_entry_safe(skb, next, head, list) {
5359 struct net_device *orig_dev = skb->dev;
5360 struct packet_type *pt_prev = NULL;
5361
22f6bbb7 5362 skb_list_del_init(skb);
c0bbbdc3 5363 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
9af86f93
EC
5364 if (!pt_prev)
5365 continue;
88eb1944
EC
5366 if (pt_curr != pt_prev || od_curr != orig_dev) {
5367 /* dispatch old sublist */
88eb1944
EC
5368 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5369 /* start new sublist */
9af86f93 5370 INIT_LIST_HEAD(&sublist);
88eb1944
EC
5371 pt_curr = pt_prev;
5372 od_curr = orig_dev;
5373 }
9af86f93 5374 list_add_tail(&skb->list, &sublist);
88eb1944
EC
5375 }
5376
5377 /* dispatch final sublist */
9af86f93 5378 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4ce0017a
EC
5379}
5380
9754e293
DM
5381static int __netif_receive_skb(struct sk_buff *skb)
5382{
5383 int ret;
5384
5385 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
f1083048 5386 unsigned int noreclaim_flag;
9754e293
DM
5387
5388 /*
5389 * PFMEMALLOC skbs are special, they should
5390 * - be delivered to SOCK_MEMALLOC sockets only
5391 * - stay away from userspace
5392 * - have bounded memory usage
5393 *
5394 * Use PF_MEMALLOC as this saves us from propagating the allocation
5395 * context down to all allocation sites.
5396 */
f1083048 5397 noreclaim_flag = memalloc_noreclaim_save();
88eb1944 5398 ret = __netif_receive_skb_one_core(skb, true);
f1083048 5399 memalloc_noreclaim_restore(noreclaim_flag);
9754e293 5400 } else
88eb1944 5401 ret = __netif_receive_skb_one_core(skb, false);
9754e293 5402
1da177e4
LT
5403 return ret;
5404}
0a9627f2 5405
4ce0017a
EC
5406static void __netif_receive_skb_list(struct list_head *head)
5407{
5408 unsigned long noreclaim_flag = 0;
5409 struct sk_buff *skb, *next;
5410 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5411
5412 list_for_each_entry_safe(skb, next, head, list) {
5413 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5414 struct list_head sublist;
5415
5416 /* Handle the previous sublist */
5417 list_cut_before(&sublist, head, &skb->list);
b9f463d6
EC
5418 if (!list_empty(&sublist))
5419 __netif_receive_skb_list_core(&sublist, pfmemalloc);
4ce0017a
EC
5420 pfmemalloc = !pfmemalloc;
5421 /* See comments in __netif_receive_skb */
5422 if (pfmemalloc)
5423 noreclaim_flag = memalloc_noreclaim_save();
5424 else
5425 memalloc_noreclaim_restore(noreclaim_flag);
5426 }
5427 }
5428 /* Handle the remaining sublist */
b9f463d6
EC
5429 if (!list_empty(head))
5430 __netif_receive_skb_list_core(head, pfmemalloc);
4ce0017a
EC
5431 /* Restore pflags */
5432 if (pfmemalloc)
5433 memalloc_noreclaim_restore(noreclaim_flag);
5434}
5435
f4e63525 5436static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
b5cdae32 5437{
58038695 5438 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
b5cdae32
DM
5439 struct bpf_prog *new = xdp->prog;
5440 int ret = 0;
5441
fbee97fe
DA
5442 if (new) {
5443 u32 i;
5444
5445 /* generic XDP does not work with DEVMAPs that can
5446 * have a bpf_prog installed on an entry
5447 */
5448 for (i = 0; i < new->aux->used_map_cnt; i++) {
5449 if (dev_map_can_have_prog(new->aux->used_maps[i]))
5450 return -EINVAL;
92164774
LB
5451 if (cpu_map_prog_allowed(new->aux->used_maps[i]))
5452 return -EINVAL;
fbee97fe
DA
5453 }
5454 }
5455
b5cdae32 5456 switch (xdp->command) {
58038695 5457 case XDP_SETUP_PROG:
b5cdae32
DM
5458 rcu_assign_pointer(dev->xdp_prog, new);
5459 if (old)
5460 bpf_prog_put(old);
5461
5462 if (old && !new) {
02786475 5463 static_branch_dec(&generic_xdp_needed_key);
b5cdae32 5464 } else if (new && !old) {
02786475 5465 static_branch_inc(&generic_xdp_needed_key);
b5cdae32 5466 dev_disable_lro(dev);
56f5aa77 5467 dev_disable_gro_hw(dev);
b5cdae32
DM
5468 }
5469 break;
b5cdae32
DM
5470
5471 case XDP_QUERY_PROG:
58038695 5472 xdp->prog_id = old ? old->aux->id : 0;
b5cdae32
DM
5473 break;
5474
5475 default:
5476 ret = -EINVAL;
5477 break;
5478 }
5479
5480 return ret;
5481}
5482
ae78dbfa 5483static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 5484{
2c17d27c
JA
5485 int ret;
5486
588f0330 5487 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 5488
c1f19b51
RC
5489 if (skb_defer_rx_timestamp(skb))
5490 return NET_RX_SUCCESS;
5491
bbbe211c 5492 rcu_read_lock();
df334545 5493#ifdef CONFIG_RPS
dc05360f 5494 if (static_branch_unlikely(&rps_needed)) {
3b098e2d 5495 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 5496 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 5497
3b098e2d
ED
5498 if (cpu >= 0) {
5499 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5500 rcu_read_unlock();
adc9300e 5501 return ret;
3b098e2d 5502 }
fec5e652 5503 }
1e94d72f 5504#endif
2c17d27c
JA
5505 ret = __netif_receive_skb(skb);
5506 rcu_read_unlock();
5507 return ret;
0a9627f2 5508}
ae78dbfa 5509
7da517a3
EC
5510static void netif_receive_skb_list_internal(struct list_head *head)
5511{
7da517a3 5512 struct sk_buff *skb, *next;
8c057efa 5513 struct list_head sublist;
7da517a3 5514
8c057efa 5515 INIT_LIST_HEAD(&sublist);
7da517a3
EC
5516 list_for_each_entry_safe(skb, next, head, list) {
5517 net_timestamp_check(netdev_tstamp_prequeue, skb);
22f6bbb7 5518 skb_list_del_init(skb);
8c057efa
EC
5519 if (!skb_defer_rx_timestamp(skb))
5520 list_add_tail(&skb->list, &sublist);
7da517a3 5521 }
8c057efa 5522 list_splice_init(&sublist, head);
7da517a3 5523
7da517a3
EC
5524 rcu_read_lock();
5525#ifdef CONFIG_RPS
dc05360f 5526 if (static_branch_unlikely(&rps_needed)) {
7da517a3
EC
5527 list_for_each_entry_safe(skb, next, head, list) {
5528 struct rps_dev_flow voidflow, *rflow = &voidflow;
5529 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5530
5531 if (cpu >= 0) {
8c057efa 5532 /* Will be handled, remove from list */
22f6bbb7 5533 skb_list_del_init(skb);
8c057efa 5534 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
7da517a3
EC
5535 }
5536 }
5537 }
5538#endif
5539 __netif_receive_skb_list(head);
5540 rcu_read_unlock();
5541}
5542
ae78dbfa
BH
5543/**
5544 * netif_receive_skb - process receive buffer from network
5545 * @skb: buffer to process
5546 *
5547 * netif_receive_skb() is the main receive data processing function.
5548 * It always succeeds. The buffer may be dropped during processing
5549 * for congestion control or by the protocol layers.
5550 *
5551 * This function may only be called from softirq context and interrupts
5552 * should be enabled.
5553 *
5554 * Return values (usually ignored):
5555 * NET_RX_SUCCESS: no congestion
5556 * NET_RX_DROP: packet was dropped
5557 */
04eb4489 5558int netif_receive_skb(struct sk_buff *skb)
ae78dbfa 5559{
b0e3f1bd
GB
5560 int ret;
5561
ae78dbfa
BH
5562 trace_netif_receive_skb_entry(skb);
5563
b0e3f1bd
GB
5564 ret = netif_receive_skb_internal(skb);
5565 trace_netif_receive_skb_exit(ret);
5566
5567 return ret;
ae78dbfa 5568}
04eb4489 5569EXPORT_SYMBOL(netif_receive_skb);
1da177e4 5570
f6ad8c1b
EC
5571/**
5572 * netif_receive_skb_list - process many receive buffers from network
5573 * @head: list of skbs to process.
5574 *
7da517a3
EC
5575 * Since return value of netif_receive_skb() is normally ignored, and
5576 * wouldn't be meaningful for a list, this function returns void.
f6ad8c1b
EC
5577 *
5578 * This function may only be called from softirq context and interrupts
5579 * should be enabled.
5580 */
5581void netif_receive_skb_list(struct list_head *head)
5582{
7da517a3 5583 struct sk_buff *skb;
f6ad8c1b 5584
b9f463d6
EC
5585 if (list_empty(head))
5586 return;
b0e3f1bd
GB
5587 if (trace_netif_receive_skb_list_entry_enabled()) {
5588 list_for_each_entry(skb, head, list)
5589 trace_netif_receive_skb_list_entry(skb);
5590 }
7da517a3 5591 netif_receive_skb_list_internal(head);
b0e3f1bd 5592 trace_netif_receive_skb_list_exit(0);
f6ad8c1b
EC
5593}
5594EXPORT_SYMBOL(netif_receive_skb_list);
5595
ce1e2a77 5596static DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
5597
5598/* Network device is going away, flush any packets still pending */
5599static void flush_backlog(struct work_struct *work)
6e583ce5 5600{
6e583ce5 5601 struct sk_buff *skb, *tmp;
145dd5f9
PA
5602 struct softnet_data *sd;
5603
5604 local_bh_disable();
5605 sd = this_cpu_ptr(&softnet_data);
6e583ce5 5606
145dd5f9 5607 local_irq_disable();
e36fa2f7 5608 rps_lock(sd);
6e7676c1 5609 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 5610 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 5611 __skb_unlink(skb, &sd->input_pkt_queue);
7df5cb75 5612 dev_kfree_skb_irq(skb);
76cc8b13 5613 input_queue_head_incr(sd);
6e583ce5 5614 }
6e7676c1 5615 }
e36fa2f7 5616 rps_unlock(sd);
145dd5f9 5617 local_irq_enable();
6e7676c1
CG
5618
5619 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 5620 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
5621 __skb_unlink(skb, &sd->process_queue);
5622 kfree_skb(skb);
76cc8b13 5623 input_queue_head_incr(sd);
6e7676c1
CG
5624 }
5625 }
145dd5f9
PA
5626 local_bh_enable();
5627}
5628
41852497 5629static void flush_all_backlogs(void)
145dd5f9
PA
5630{
5631 unsigned int cpu;
5632
5633 get_online_cpus();
5634
41852497
ED
5635 for_each_online_cpu(cpu)
5636 queue_work_on(cpu, system_highpri_wq,
5637 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5638
5639 for_each_online_cpu(cpu)
41852497 5640 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
5641
5642 put_online_cpus();
6e583ce5
SH
5643}
5644
c8079432
MM
5645/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5646static void gro_normal_list(struct napi_struct *napi)
5647{
5648 if (!napi->rx_count)
5649 return;
5650 netif_receive_skb_list_internal(&napi->rx_list);
5651 INIT_LIST_HEAD(&napi->rx_list);
5652 napi->rx_count = 0;
5653}
5654
5655/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5656 * pass the whole batch up to the stack.
5657 */
5658static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5659{
5660 list_add_tail(&skb->list, &napi->rx_list);
5661 if (++napi->rx_count >= gro_normal_batch)
5662 gro_normal_list(napi);
5663}
5664
aaa5d90b
PA
5665INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5666INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
c8079432 5667static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5668{
22061d80 5669 struct packet_offload *ptype;
d565b0a1 5670 __be16 type = skb->protocol;
22061d80 5671 struct list_head *head = &offload_base;
d565b0a1
HX
5672 int err = -ENOENT;
5673
c3c7c254
ED
5674 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5675
fc59f9a3
HX
5676 if (NAPI_GRO_CB(skb)->count == 1) {
5677 skb_shinfo(skb)->gso_size = 0;
d565b0a1 5678 goto out;
fc59f9a3 5679 }
d565b0a1
HX
5680
5681 rcu_read_lock();
5682 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5683 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
5684 continue;
5685
aaa5d90b
PA
5686 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5687 ipv6_gro_complete, inet_gro_complete,
5688 skb, 0);
d565b0a1
HX
5689 break;
5690 }
5691 rcu_read_unlock();
5692
5693 if (err) {
5694 WARN_ON(&ptype->list == head);
5695 kfree_skb(skb);
5696 return NET_RX_SUCCESS;
5697 }
5698
5699out:
c8079432
MM
5700 gro_normal_one(napi, skb);
5701 return NET_RX_SUCCESS;
d565b0a1
HX
5702}
5703
6312fe77 5704static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
07d78363 5705 bool flush_old)
d565b0a1 5706{
6312fe77 5707 struct list_head *head = &napi->gro_hash[index].list;
d4546c25 5708 struct sk_buff *skb, *p;
2e71a6f8 5709
07d78363 5710 list_for_each_entry_safe_reverse(skb, p, head, list) {
2e71a6f8
ED
5711 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5712 return;
992cba7e 5713 skb_list_del_init(skb);
c8079432 5714 napi_gro_complete(napi, skb);
6312fe77 5715 napi->gro_hash[index].count--;
d565b0a1 5716 }
d9f37d01
LR
5717
5718 if (!napi->gro_hash[index].count)
5719 __clear_bit(index, &napi->gro_bitmask);
d565b0a1 5720}
07d78363 5721
6312fe77 5722/* napi->gro_hash[].list contains packets ordered by age.
07d78363
DM
5723 * youngest packets at the head of it.
5724 * Complete skbs in reverse order to reduce latencies.
5725 */
5726void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5727{
42519ede
ED
5728 unsigned long bitmask = napi->gro_bitmask;
5729 unsigned int i, base = ~0U;
07d78363 5730
42519ede
ED
5731 while ((i = ffs(bitmask)) != 0) {
5732 bitmask >>= i;
5733 base += i;
5734 __napi_gro_flush_chain(napi, base, flush_old);
d9f37d01 5735 }
07d78363 5736}
86cac58b 5737EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 5738
07d78363
DM
5739static struct list_head *gro_list_prepare(struct napi_struct *napi,
5740 struct sk_buff *skb)
89c5fa33 5741{
89c5fa33 5742 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 5743 u32 hash = skb_get_hash_raw(skb);
07d78363 5744 struct list_head *head;
d4546c25 5745 struct sk_buff *p;
89c5fa33 5746
6312fe77 5747 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
07d78363 5748 list_for_each_entry(p, head, list) {
89c5fa33
ED
5749 unsigned long diffs;
5750
0b4cec8c
TH
5751 NAPI_GRO_CB(p)->flush = 0;
5752
5753 if (hash != skb_get_hash_raw(p)) {
5754 NAPI_GRO_CB(p)->same_flow = 0;
5755 continue;
5756 }
5757
89c5fa33 5758 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
b1817524
MM
5759 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5760 if (skb_vlan_tag_present(p))
fc5141cb 5761 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
ce87fc6c 5762 diffs |= skb_metadata_dst_cmp(p, skb);
de8f3a83 5763 diffs |= skb_metadata_differs(p, skb);
89c5fa33
ED
5764 if (maclen == ETH_HLEN)
5765 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 5766 skb_mac_header(skb));
89c5fa33
ED
5767 else if (!diffs)
5768 diffs = memcmp(skb_mac_header(p),
a50e233c 5769 skb_mac_header(skb),
89c5fa33
ED
5770 maclen);
5771 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33 5772 }
07d78363
DM
5773
5774 return head;
89c5fa33
ED
5775}
5776
299603e8
JC
5777static void skb_gro_reset_offset(struct sk_buff *skb)
5778{
5779 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5780 const skb_frag_t *frag0 = &pinfo->frags[0];
5781
5782 NAPI_GRO_CB(skb)->data_offset = 0;
5783 NAPI_GRO_CB(skb)->frag0 = NULL;
5784 NAPI_GRO_CB(skb)->frag0_len = 0;
5785
8aef998d 5786 if (!skb_headlen(skb) && pinfo->nr_frags &&
299603e8
JC
5787 !PageHighMem(skb_frag_page(frag0))) {
5788 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
7cfd5fd5
ED
5789 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5790 skb_frag_size(frag0),
5791 skb->end - skb->tail);
89c5fa33
ED
5792 }
5793}
5794
a50e233c
ED
5795static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5796{
5797 struct skb_shared_info *pinfo = skb_shinfo(skb);
5798
5799 BUG_ON(skb->end - skb->tail < grow);
5800
5801 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5802
5803 skb->data_len -= grow;
5804 skb->tail += grow;
5805
b54c9d5b 5806 skb_frag_off_add(&pinfo->frags[0], grow);
a50e233c
ED
5807 skb_frag_size_sub(&pinfo->frags[0], grow);
5808
5809 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5810 skb_frag_unref(skb, 0);
5811 memmove(pinfo->frags, pinfo->frags + 1,
5812 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5813 }
5814}
5815
c8079432 5816static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
07d78363 5817{
6312fe77 5818 struct sk_buff *oldest;
07d78363 5819
6312fe77 5820 oldest = list_last_entry(head, struct sk_buff, list);
07d78363 5821
6312fe77 5822 /* We are called with head length >= MAX_GRO_SKBS, so this is
07d78363
DM
5823 * impossible.
5824 */
5825 if (WARN_ON_ONCE(!oldest))
5826 return;
5827
d9f37d01
LR
5828 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5829 * SKB to the chain.
07d78363 5830 */
ece23711 5831 skb_list_del_init(oldest);
c8079432 5832 napi_gro_complete(napi, oldest);
07d78363
DM
5833}
5834
aaa5d90b
PA
5835INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5836 struct sk_buff *));
5837INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5838 struct sk_buff *));
bb728820 5839static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1 5840{
6312fe77 5841 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
d4546c25 5842 struct list_head *head = &offload_base;
22061d80 5843 struct packet_offload *ptype;
d565b0a1 5844 __be16 type = skb->protocol;
07d78363 5845 struct list_head *gro_head;
d4546c25 5846 struct sk_buff *pp = NULL;
5b252f0c 5847 enum gro_result ret;
d4546c25 5848 int same_flow;
a50e233c 5849 int grow;
d565b0a1 5850
b5cdae32 5851 if (netif_elide_gro(skb->dev))
d565b0a1
HX
5852 goto normal;
5853
07d78363 5854 gro_head = gro_list_prepare(napi, skb);
89c5fa33 5855
d565b0a1
HX
5856 rcu_read_lock();
5857 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 5858 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
5859 continue;
5860
86911732 5861 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 5862 skb_reset_mac_len(skb);
d565b0a1 5863 NAPI_GRO_CB(skb)->same_flow = 0;
d61d072e 5864 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5d38a079 5865 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 5866 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 5867 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 5868 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 5869 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 5870 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 5871
662880f4
TH
5872 /* Setup for GRO checksum validation */
5873 switch (skb->ip_summed) {
5874 case CHECKSUM_COMPLETE:
5875 NAPI_GRO_CB(skb)->csum = skb->csum;
5876 NAPI_GRO_CB(skb)->csum_valid = 1;
5877 NAPI_GRO_CB(skb)->csum_cnt = 0;
5878 break;
5879 case CHECKSUM_UNNECESSARY:
5880 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5881 NAPI_GRO_CB(skb)->csum_valid = 0;
5882 break;
5883 default:
5884 NAPI_GRO_CB(skb)->csum_cnt = 0;
5885 NAPI_GRO_CB(skb)->csum_valid = 0;
5886 }
d565b0a1 5887
aaa5d90b
PA
5888 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5889 ipv6_gro_receive, inet_gro_receive,
5890 gro_head, skb);
d565b0a1
HX
5891 break;
5892 }
5893 rcu_read_unlock();
5894
5895 if (&ptype->list == head)
5896 goto normal;
5897
45586c70 5898 if (PTR_ERR(pp) == -EINPROGRESS) {
25393d3f
SK
5899 ret = GRO_CONSUMED;
5900 goto ok;
5901 }
5902
0da2afd5 5903 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 5904 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 5905
d565b0a1 5906 if (pp) {
992cba7e 5907 skb_list_del_init(pp);
c8079432 5908 napi_gro_complete(napi, pp);
6312fe77 5909 napi->gro_hash[hash].count--;
d565b0a1
HX
5910 }
5911
0da2afd5 5912 if (same_flow)
d565b0a1
HX
5913 goto ok;
5914
600adc18 5915 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 5916 goto normal;
d565b0a1 5917
6312fe77 5918 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
c8079432 5919 gro_flush_oldest(napi, gro_head);
600adc18 5920 } else {
6312fe77 5921 napi->gro_hash[hash].count++;
600adc18 5922 }
d565b0a1 5923 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 5924 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 5925 NAPI_GRO_CB(skb)->last = skb;
86911732 5926 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
07d78363 5927 list_add(&skb->list, gro_head);
5d0d9be8 5928 ret = GRO_HELD;
d565b0a1 5929
ad0f9904 5930pull:
a50e233c
ED
5931 grow = skb_gro_offset(skb) - skb_headlen(skb);
5932 if (grow > 0)
5933 gro_pull_from_frag0(skb, grow);
d565b0a1 5934ok:
d9f37d01
LR
5935 if (napi->gro_hash[hash].count) {
5936 if (!test_bit(hash, &napi->gro_bitmask))
5937 __set_bit(hash, &napi->gro_bitmask);
5938 } else if (test_bit(hash, &napi->gro_bitmask)) {
5939 __clear_bit(hash, &napi->gro_bitmask);
5940 }
5941
5d0d9be8 5942 return ret;
d565b0a1
HX
5943
5944normal:
ad0f9904
HX
5945 ret = GRO_NORMAL;
5946 goto pull;
5d38a079 5947}
96e93eab 5948
bf5a755f
JC
5949struct packet_offload *gro_find_receive_by_type(__be16 type)
5950{
5951 struct list_head *offload_head = &offload_base;
5952 struct packet_offload *ptype;
5953
5954 list_for_each_entry_rcu(ptype, offload_head, list) {
5955 if (ptype->type != type || !ptype->callbacks.gro_receive)
5956 continue;
5957 return ptype;
5958 }
5959 return NULL;
5960}
e27a2f83 5961EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
5962
5963struct packet_offload *gro_find_complete_by_type(__be16 type)
5964{
5965 struct list_head *offload_head = &offload_base;
5966 struct packet_offload *ptype;
5967
5968 list_for_each_entry_rcu(ptype, offload_head, list) {
5969 if (ptype->type != type || !ptype->callbacks.gro_complete)
5970 continue;
5971 return ptype;
5972 }
5973 return NULL;
5974}
e27a2f83 5975EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 5976
e44699d2
MK
5977static void napi_skb_free_stolen_head(struct sk_buff *skb)
5978{
5979 skb_dst_drop(skb);
174e2381 5980 skb_ext_put(skb);
e44699d2
MK
5981 kmem_cache_free(skbuff_head_cache, skb);
5982}
5983
6570bc79
AL
5984static gro_result_t napi_skb_finish(struct napi_struct *napi,
5985 struct sk_buff *skb,
5986 gro_result_t ret)
5d38a079 5987{
5d0d9be8
HX
5988 switch (ret) {
5989 case GRO_NORMAL:
6570bc79 5990 gro_normal_one(napi, skb);
c7c4b3b6 5991 break;
5d38a079 5992
5d0d9be8 5993 case GRO_DROP:
5d38a079
HX
5994 kfree_skb(skb);
5995 break;
5b252f0c 5996
daa86548 5997 case GRO_MERGED_FREE:
e44699d2
MK
5998 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5999 napi_skb_free_stolen_head(skb);
6000 else
d7e8883c 6001 __kfree_skb(skb);
daa86548
ED
6002 break;
6003
5b252f0c
BH
6004 case GRO_HELD:
6005 case GRO_MERGED:
25393d3f 6006 case GRO_CONSUMED:
5b252f0c 6007 break;
5d38a079
HX
6008 }
6009
c7c4b3b6 6010 return ret;
5d0d9be8 6011}
5d0d9be8 6012
c7c4b3b6 6013gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 6014{
b0e3f1bd
GB
6015 gro_result_t ret;
6016
93f93a44 6017 skb_mark_napi_id(skb, napi);
ae78dbfa 6018 trace_napi_gro_receive_entry(skb);
86911732 6019
a50e233c
ED
6020 skb_gro_reset_offset(skb);
6021
6570bc79 6022 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
b0e3f1bd
GB
6023 trace_napi_gro_receive_exit(ret);
6024
6025 return ret;
d565b0a1
HX
6026}
6027EXPORT_SYMBOL(napi_gro_receive);
6028
d0c2b0d2 6029static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 6030{
93a35f59
ED
6031 if (unlikely(skb->pfmemalloc)) {
6032 consume_skb(skb);
6033 return;
6034 }
96e93eab 6035 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
6036 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6037 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
b1817524 6038 __vlan_hwaccel_clear_tag(skb);
66c46d74 6039 skb->dev = napi->dev;
6d152e23 6040 skb->skb_iif = 0;
33d9a2c7
ED
6041
6042 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6043 skb->pkt_type = PACKET_HOST;
6044
c3caf119
JC
6045 skb->encapsulation = 0;
6046 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 6047 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
174e2381 6048 skb_ext_reset(skb);
96e93eab
HX
6049
6050 napi->skb = skb;
6051}
96e93eab 6052
76620aaf 6053struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 6054{
5d38a079 6055 struct sk_buff *skb = napi->skb;
5d38a079
HX
6056
6057 if (!skb) {
fd11a83d 6058 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
6059 if (skb) {
6060 napi->skb = skb;
6061 skb_mark_napi_id(skb, napi);
6062 }
80595d59 6063 }
96e93eab
HX
6064 return skb;
6065}
76620aaf 6066EXPORT_SYMBOL(napi_get_frags);
96e93eab 6067
a50e233c
ED
6068static gro_result_t napi_frags_finish(struct napi_struct *napi,
6069 struct sk_buff *skb,
6070 gro_result_t ret)
96e93eab 6071{
5d0d9be8
HX
6072 switch (ret) {
6073 case GRO_NORMAL:
a50e233c
ED
6074 case GRO_HELD:
6075 __skb_push(skb, ETH_HLEN);
6076 skb->protocol = eth_type_trans(skb, skb->dev);
323ebb61
EC
6077 if (ret == GRO_NORMAL)
6078 gro_normal_one(napi, skb);
86911732 6079 break;
5d38a079 6080
5d0d9be8 6081 case GRO_DROP:
5d0d9be8
HX
6082 napi_reuse_skb(napi, skb);
6083 break;
5b252f0c 6084
e44699d2
MK
6085 case GRO_MERGED_FREE:
6086 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6087 napi_skb_free_stolen_head(skb);
6088 else
6089 napi_reuse_skb(napi, skb);
6090 break;
6091
5b252f0c 6092 case GRO_MERGED:
25393d3f 6093 case GRO_CONSUMED:
5b252f0c 6094 break;
5d0d9be8 6095 }
5d38a079 6096
c7c4b3b6 6097 return ret;
5d38a079 6098}
5d0d9be8 6099
a50e233c
ED
6100/* Upper GRO stack assumes network header starts at gro_offset=0
6101 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6102 * We copy ethernet header into skb->data to have a common layout.
6103 */
4adb9c4a 6104static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
6105{
6106 struct sk_buff *skb = napi->skb;
a50e233c
ED
6107 const struct ethhdr *eth;
6108 unsigned int hlen = sizeof(*eth);
76620aaf
HX
6109
6110 napi->skb = NULL;
6111
a50e233c
ED
6112 skb_reset_mac_header(skb);
6113 skb_gro_reset_offset(skb);
6114
a50e233c
ED
6115 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6116 eth = skb_gro_header_slow(skb, hlen, 0);
6117 if (unlikely(!eth)) {
4da46ceb
AC
6118 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6119 __func__, napi->dev->name);
a50e233c
ED
6120 napi_reuse_skb(napi, skb);
6121 return NULL;
6122 }
6123 } else {
a4270d67 6124 eth = (const struct ethhdr *)skb->data;
a50e233c
ED
6125 gro_pull_from_frag0(skb, hlen);
6126 NAPI_GRO_CB(skb)->frag0 += hlen;
6127 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 6128 }
a50e233c
ED
6129 __skb_pull(skb, hlen);
6130
6131 /*
6132 * This works because the only protocols we care about don't require
6133 * special handling.
6134 * We'll fix it up properly in napi_frags_finish()
6135 */
6136 skb->protocol = eth->h_proto;
76620aaf 6137
76620aaf
HX
6138 return skb;
6139}
76620aaf 6140
c7c4b3b6 6141gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 6142{
b0e3f1bd 6143 gro_result_t ret;
76620aaf 6144 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
6145
6146 if (!skb)
c7c4b3b6 6147 return GRO_DROP;
5d0d9be8 6148
ae78dbfa
BH
6149 trace_napi_gro_frags_entry(skb);
6150
b0e3f1bd
GB
6151 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6152 trace_napi_gro_frags_exit(ret);
6153
6154 return ret;
5d0d9be8 6155}
5d38a079
HX
6156EXPORT_SYMBOL(napi_gro_frags);
6157
573e8fca
TH
6158/* Compute the checksum from gro_offset and return the folded value
6159 * after adding in any pseudo checksum.
6160 */
6161__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6162{
6163 __wsum wsum;
6164 __sum16 sum;
6165
6166 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6167
6168 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6169 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
14641931 6170 /* See comments in __skb_checksum_complete(). */
573e8fca
TH
6171 if (likely(!sum)) {
6172 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6173 !skb->csum_complete_sw)
7fe50ac8 6174 netdev_rx_csum_fault(skb->dev, skb);
573e8fca
TH
6175 }
6176
6177 NAPI_GRO_CB(skb)->csum = wsum;
6178 NAPI_GRO_CB(skb)->csum_valid = 1;
6179
6180 return sum;
6181}
6182EXPORT_SYMBOL(__skb_gro_checksum_complete);
6183
773fc8f6 6184static void net_rps_send_ipi(struct softnet_data *remsd)
6185{
6186#ifdef CONFIG_RPS
6187 while (remsd) {
6188 struct softnet_data *next = remsd->rps_ipi_next;
6189
6190 if (cpu_online(remsd->cpu))
6191 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6192 remsd = next;
6193 }
6194#endif
6195}
6196
e326bed2 6197/*
855abcf0 6198 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
6199 * Note: called with local irq disabled, but exits with local irq enabled.
6200 */
6201static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6202{
6203#ifdef CONFIG_RPS
6204 struct softnet_data *remsd = sd->rps_ipi_list;
6205
6206 if (remsd) {
6207 sd->rps_ipi_list = NULL;
6208
6209 local_irq_enable();
6210
6211 /* Send pending IPI's to kick RPS processing on remote cpus. */
773fc8f6 6212 net_rps_send_ipi(remsd);
e326bed2
ED
6213 } else
6214#endif
6215 local_irq_enable();
6216}
6217
d75b1ade
ED
6218static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6219{
6220#ifdef CONFIG_RPS
6221 return sd->rps_ipi_list != NULL;
6222#else
6223 return false;
6224#endif
6225}
6226
bea3348e 6227static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 6228{
eecfd7c4 6229 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
6230 bool again = true;
6231 int work = 0;
1da177e4 6232
e326bed2
ED
6233 /* Check if we have pending ipi, its better to send them now,
6234 * not waiting net_rx_action() end.
6235 */
d75b1ade 6236 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
6237 local_irq_disable();
6238 net_rps_action_and_irq_enable(sd);
6239 }
d75b1ade 6240
3d48b53f 6241 napi->weight = dev_rx_weight;
145dd5f9 6242 while (again) {
1da177e4 6243 struct sk_buff *skb;
6e7676c1
CG
6244
6245 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 6246 rcu_read_lock();
6e7676c1 6247 __netif_receive_skb(skb);
2c17d27c 6248 rcu_read_unlock();
76cc8b13 6249 input_queue_head_incr(sd);
145dd5f9 6250 if (++work >= quota)
76cc8b13 6251 return work;
145dd5f9 6252
6e7676c1 6253 }
1da177e4 6254
145dd5f9 6255 local_irq_disable();
e36fa2f7 6256 rps_lock(sd);
11ef7a89 6257 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
6258 /*
6259 * Inline a custom version of __napi_complete().
6260 * only current cpu owns and manipulates this napi,
11ef7a89
TH
6261 * and NAPI_STATE_SCHED is the only possible flag set
6262 * on backlog.
6263 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
6264 * and we dont need an smp_mb() memory barrier.
6265 */
eecfd7c4 6266 napi->state = 0;
145dd5f9
PA
6267 again = false;
6268 } else {
6269 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6270 &sd->process_queue);
bea3348e 6271 }
e36fa2f7 6272 rps_unlock(sd);
145dd5f9 6273 local_irq_enable();
6e7676c1 6274 }
1da177e4 6275
bea3348e
SH
6276 return work;
6277}
1da177e4 6278
bea3348e
SH
6279/**
6280 * __napi_schedule - schedule for receive
c4ea43c5 6281 * @n: entry to schedule
bea3348e 6282 *
bc9ad166
ED
6283 * The entry's receive function will be scheduled to run.
6284 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 6285 */
b5606c2d 6286void __napi_schedule(struct napi_struct *n)
bea3348e
SH
6287{
6288 unsigned long flags;
1da177e4 6289
bea3348e 6290 local_irq_save(flags);
903ceff7 6291 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 6292 local_irq_restore(flags);
1da177e4 6293}
bea3348e
SH
6294EXPORT_SYMBOL(__napi_schedule);
6295
39e6c820
ED
6296/**
6297 * napi_schedule_prep - check if napi can be scheduled
6298 * @n: napi context
6299 *
6300 * Test if NAPI routine is already running, and if not mark
6301 * it as running. This is used as a condition variable
6302 * insure only one NAPI poll instance runs. We also make
6303 * sure there is no pending NAPI disable.
6304 */
6305bool napi_schedule_prep(struct napi_struct *n)
6306{
6307 unsigned long val, new;
6308
6309 do {
6310 val = READ_ONCE(n->state);
6311 if (unlikely(val & NAPIF_STATE_DISABLE))
6312 return false;
6313 new = val | NAPIF_STATE_SCHED;
6314
6315 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6316 * This was suggested by Alexander Duyck, as compiler
6317 * emits better code than :
6318 * if (val & NAPIF_STATE_SCHED)
6319 * new |= NAPIF_STATE_MISSED;
6320 */
6321 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6322 NAPIF_STATE_MISSED;
6323 } while (cmpxchg(&n->state, val, new) != val);
6324
6325 return !(val & NAPIF_STATE_SCHED);
6326}
6327EXPORT_SYMBOL(napi_schedule_prep);
6328
bc9ad166
ED
6329/**
6330 * __napi_schedule_irqoff - schedule for receive
6331 * @n: entry to schedule
6332 *
6333 * Variant of __napi_schedule() assuming hard irqs are masked
6334 */
6335void __napi_schedule_irqoff(struct napi_struct *n)
6336{
6337 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6338}
6339EXPORT_SYMBOL(__napi_schedule_irqoff);
6340
364b6055 6341bool napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1 6342{
6f8b12d6
ED
6343 unsigned long flags, val, new, timeout = 0;
6344 bool ret = true;
d565b0a1
HX
6345
6346 /*
217f6974
ED
6347 * 1) Don't let napi dequeue from the cpu poll list
6348 * just in case its running on a different cpu.
6349 * 2) If we are busy polling, do nothing here, we have
6350 * the guarantee we will be called later.
d565b0a1 6351 */
217f6974
ED
6352 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6353 NAPIF_STATE_IN_BUSY_POLL)))
364b6055 6354 return false;
d565b0a1 6355
6f8b12d6
ED
6356 if (work_done) {
6357 if (n->gro_bitmask)
7e417a66
ED
6358 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6359 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6f8b12d6
ED
6360 }
6361 if (n->defer_hard_irqs_count > 0) {
6362 n->defer_hard_irqs_count--;
7e417a66 6363 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6f8b12d6
ED
6364 if (timeout)
6365 ret = false;
6366 }
6367 if (n->gro_bitmask) {
605108ac
PA
6368 /* When the NAPI instance uses a timeout and keeps postponing
6369 * it, we need to bound somehow the time packets are kept in
6370 * the GRO layer
6371 */
6372 napi_gro_flush(n, !!timeout);
3b47d303 6373 }
c8079432
MM
6374
6375 gro_normal_list(n);
6376
02c1602e 6377 if (unlikely(!list_empty(&n->poll_list))) {
d75b1ade
ED
6378 /* If n->poll_list is not empty, we need to mask irqs */
6379 local_irq_save(flags);
02c1602e 6380 list_del_init(&n->poll_list);
d75b1ade
ED
6381 local_irq_restore(flags);
6382 }
39e6c820
ED
6383
6384 do {
6385 val = READ_ONCE(n->state);
6386
6387 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6388
6389 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6390
6391 /* If STATE_MISSED was set, leave STATE_SCHED set,
6392 * because we will call napi->poll() one more time.
6393 * This C code was suggested by Alexander Duyck to help gcc.
6394 */
6395 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6396 NAPIF_STATE_SCHED;
6397 } while (cmpxchg(&n->state, val, new) != val);
6398
6399 if (unlikely(val & NAPIF_STATE_MISSED)) {
6400 __napi_schedule(n);
6401 return false;
6402 }
6403
6f8b12d6
ED
6404 if (timeout)
6405 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6406 HRTIMER_MODE_REL_PINNED);
6407 return ret;
d565b0a1 6408}
3b47d303 6409EXPORT_SYMBOL(napi_complete_done);
d565b0a1 6410
af12fa6e 6411/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 6412static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
6413{
6414 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6415 struct napi_struct *napi;
6416
6417 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6418 if (napi->napi_id == napi_id)
6419 return napi;
6420
6421 return NULL;
6422}
02d62e86
ED
6423
6424#if defined(CONFIG_NET_RX_BUSY_POLL)
217f6974 6425
ce6aea93 6426#define BUSY_POLL_BUDGET 8
217f6974
ED
6427
6428static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6429{
6430 int rc;
6431
39e6c820
ED
6432 /* Busy polling means there is a high chance device driver hard irq
6433 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6434 * set in napi_schedule_prep().
6435 * Since we are about to call napi->poll() once more, we can safely
6436 * clear NAPI_STATE_MISSED.
6437 *
6438 * Note: x86 could use a single "lock and ..." instruction
6439 * to perform these two clear_bit()
6440 */
6441 clear_bit(NAPI_STATE_MISSED, &napi->state);
217f6974
ED
6442 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6443
6444 local_bh_disable();
6445
6446 /* All we really want here is to re-enable device interrupts.
6447 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6448 */
6449 rc = napi->poll(napi, BUSY_POLL_BUDGET);
323ebb61
EC
6450 /* We can't gro_normal_list() here, because napi->poll() might have
6451 * rearmed the napi (napi_complete_done()) in which case it could
6452 * already be running on another CPU.
6453 */
1e22391e 6454 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
217f6974 6455 netpoll_poll_unlock(have_poll_lock);
323ebb61
EC
6456 if (rc == BUSY_POLL_BUDGET) {
6457 /* As the whole budget was spent, we still own the napi so can
6458 * safely handle the rx_list.
6459 */
6460 gro_normal_list(napi);
217f6974 6461 __napi_schedule(napi);
323ebb61 6462 }
217f6974 6463 local_bh_enable();
217f6974
ED
6464}
6465
7db6b048
SS
6466void napi_busy_loop(unsigned int napi_id,
6467 bool (*loop_end)(void *, unsigned long),
6468 void *loop_end_arg)
02d62e86 6469{
7db6b048 6470 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
217f6974 6471 int (*napi_poll)(struct napi_struct *napi, int budget);
217f6974 6472 void *have_poll_lock = NULL;
02d62e86 6473 struct napi_struct *napi;
217f6974
ED
6474
6475restart:
217f6974 6476 napi_poll = NULL;
02d62e86 6477
2a028ecb 6478 rcu_read_lock();
02d62e86 6479
545cd5e5 6480 napi = napi_by_id(napi_id);
02d62e86
ED
6481 if (!napi)
6482 goto out;
6483
217f6974
ED
6484 preempt_disable();
6485 for (;;) {
2b5cd0df
AD
6486 int work = 0;
6487
2a028ecb 6488 local_bh_disable();
217f6974
ED
6489 if (!napi_poll) {
6490 unsigned long val = READ_ONCE(napi->state);
6491
6492 /* If multiple threads are competing for this napi,
6493 * we avoid dirtying napi->state as much as we can.
6494 */
6495 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6496 NAPIF_STATE_IN_BUSY_POLL))
6497 goto count;
6498 if (cmpxchg(&napi->state, val,
6499 val | NAPIF_STATE_IN_BUSY_POLL |
6500 NAPIF_STATE_SCHED) != val)
6501 goto count;
6502 have_poll_lock = netpoll_poll_lock(napi);
6503 napi_poll = napi->poll;
6504 }
2b5cd0df
AD
6505 work = napi_poll(napi, BUSY_POLL_BUDGET);
6506 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
323ebb61 6507 gro_normal_list(napi);
217f6974 6508count:
2b5cd0df 6509 if (work > 0)
7db6b048 6510 __NET_ADD_STATS(dev_net(napi->dev),
2b5cd0df 6511 LINUX_MIB_BUSYPOLLRXPACKETS, work);
2a028ecb 6512 local_bh_enable();
02d62e86 6513
7db6b048 6514 if (!loop_end || loop_end(loop_end_arg, start_time))
217f6974 6515 break;
02d62e86 6516
217f6974
ED
6517 if (unlikely(need_resched())) {
6518 if (napi_poll)
6519 busy_poll_stop(napi, have_poll_lock);
6520 preempt_enable();
6521 rcu_read_unlock();
6522 cond_resched();
7db6b048 6523 if (loop_end(loop_end_arg, start_time))
2b5cd0df 6524 return;
217f6974
ED
6525 goto restart;
6526 }
6cdf89b1 6527 cpu_relax();
217f6974
ED
6528 }
6529 if (napi_poll)
6530 busy_poll_stop(napi, have_poll_lock);
6531 preempt_enable();
02d62e86 6532out:
2a028ecb 6533 rcu_read_unlock();
02d62e86 6534}
7db6b048 6535EXPORT_SYMBOL(napi_busy_loop);
02d62e86
ED
6536
6537#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e 6538
149d6ad8 6539static void napi_hash_add(struct napi_struct *napi)
af12fa6e 6540{
d64b5e85
ED
6541 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6542 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 6543 return;
af12fa6e 6544
52bd2d62 6545 spin_lock(&napi_hash_lock);
af12fa6e 6546
545cd5e5 6547 /* 0..NR_CPUS range is reserved for sender_cpu use */
52bd2d62 6548 do {
545cd5e5
AD
6549 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6550 napi_gen_id = MIN_NAPI_ID;
52bd2d62
ED
6551 } while (napi_by_id(napi_gen_id));
6552 napi->napi_id = napi_gen_id;
af12fa6e 6553
52bd2d62
ED
6554 hlist_add_head_rcu(&napi->napi_hash_node,
6555 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 6556
52bd2d62 6557 spin_unlock(&napi_hash_lock);
af12fa6e 6558}
af12fa6e
ET
6559
6560/* Warning : caller is responsible to make sure rcu grace period
6561 * is respected before freeing memory containing @napi
6562 */
34cbe27e 6563bool napi_hash_del(struct napi_struct *napi)
af12fa6e 6564{
34cbe27e
ED
6565 bool rcu_sync_needed = false;
6566
af12fa6e
ET
6567 spin_lock(&napi_hash_lock);
6568
34cbe27e
ED
6569 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6570 rcu_sync_needed = true;
af12fa6e 6571 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 6572 }
af12fa6e 6573 spin_unlock(&napi_hash_lock);
34cbe27e 6574 return rcu_sync_needed;
af12fa6e
ET
6575}
6576EXPORT_SYMBOL_GPL(napi_hash_del);
6577
3b47d303
ED
6578static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6579{
6580 struct napi_struct *napi;
6581
6582 napi = container_of(timer, struct napi_struct, timer);
39e6c820
ED
6583
6584 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6585 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6586 */
6f8b12d6 6587 if (!napi_disable_pending(napi) &&
39e6c820
ED
6588 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6589 __napi_schedule_irqoff(napi);
3b47d303
ED
6590
6591 return HRTIMER_NORESTART;
6592}
6593
7c4ec749 6594static void init_gro_hash(struct napi_struct *napi)
d565b0a1 6595{
07d78363
DM
6596 int i;
6597
6312fe77
LR
6598 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6599 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6600 napi->gro_hash[i].count = 0;
6601 }
7c4ec749
DM
6602 napi->gro_bitmask = 0;
6603}
6604
6605void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6606 int (*poll)(struct napi_struct *, int), int weight)
6607{
6608 INIT_LIST_HEAD(&napi->poll_list);
6609 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6610 napi->timer.function = napi_watchdog;
6611 init_gro_hash(napi);
5d38a079 6612 napi->skb = NULL;
323ebb61
EC
6613 INIT_LIST_HEAD(&napi->rx_list);
6614 napi->rx_count = 0;
d565b0a1 6615 napi->poll = poll;
82dc3c63 6616 if (weight > NAPI_POLL_WEIGHT)
bf29e9e9
QC
6617 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6618 weight);
d565b0a1
HX
6619 napi->weight = weight;
6620 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 6621 napi->dev = dev;
5d38a079 6622#ifdef CONFIG_NETPOLL
d565b0a1
HX
6623 napi->poll_owner = -1;
6624#endif
6625 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 6626 napi_hash_add(napi);
d565b0a1
HX
6627}
6628EXPORT_SYMBOL(netif_napi_add);
6629
3b47d303
ED
6630void napi_disable(struct napi_struct *n)
6631{
6632 might_sleep();
6633 set_bit(NAPI_STATE_DISABLE, &n->state);
6634
6635 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6636 msleep(1);
2d8bff12
NH
6637 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6638 msleep(1);
3b47d303
ED
6639
6640 hrtimer_cancel(&n->timer);
6641
6642 clear_bit(NAPI_STATE_DISABLE, &n->state);
6643}
6644EXPORT_SYMBOL(napi_disable);
6645
07d78363 6646static void flush_gro_hash(struct napi_struct *napi)
d4546c25 6647{
07d78363 6648 int i;
d4546c25 6649
07d78363
DM
6650 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6651 struct sk_buff *skb, *n;
6652
6312fe77 6653 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
07d78363 6654 kfree_skb(skb);
6312fe77 6655 napi->gro_hash[i].count = 0;
07d78363 6656 }
d4546c25
DM
6657}
6658
93d05d4a 6659/* Must be called in process context */
d565b0a1
HX
6660void netif_napi_del(struct napi_struct *napi)
6661{
93d05d4a
ED
6662 might_sleep();
6663 if (napi_hash_del(napi))
6664 synchronize_net();
d7b06636 6665 list_del_init(&napi->dev_list);
76620aaf 6666 napi_free_frags(napi);
d565b0a1 6667
07d78363 6668 flush_gro_hash(napi);
d9f37d01 6669 napi->gro_bitmask = 0;
d565b0a1
HX
6670}
6671EXPORT_SYMBOL(netif_napi_del);
6672
726ce70e
HX
6673static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6674{
6675 void *have;
6676 int work, weight;
6677
6678 list_del_init(&n->poll_list);
6679
6680 have = netpoll_poll_lock(n);
6681
6682 weight = n->weight;
6683
6684 /* This NAPI_STATE_SCHED test is for avoiding a race
6685 * with netpoll's poll_napi(). Only the entity which
6686 * obtains the lock and sees NAPI_STATE_SCHED set will
6687 * actually make the ->poll() call. Therefore we avoid
6688 * accidentally calling ->poll() when NAPI is not scheduled.
6689 */
6690 work = 0;
6691 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6692 work = n->poll(n, weight);
1db19db7 6693 trace_napi_poll(n, work, weight);
726ce70e
HX
6694 }
6695
427d5838
ED
6696 if (unlikely(work > weight))
6697 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6698 n->poll, work, weight);
726ce70e
HX
6699
6700 if (likely(work < weight))
6701 goto out_unlock;
6702
6703 /* Drivers must not modify the NAPI state if they
6704 * consume the entire weight. In such cases this code
6705 * still "owns" the NAPI instance and therefore can
6706 * move the instance around on the list at-will.
6707 */
6708 if (unlikely(napi_disable_pending(n))) {
6709 napi_complete(n);
6710 goto out_unlock;
6711 }
6712
d9f37d01 6713 if (n->gro_bitmask) {
726ce70e
HX
6714 /* flush too old packets
6715 * If HZ < 1000, flush all packets.
6716 */
6717 napi_gro_flush(n, HZ >= 1000);
6718 }
6719
c8079432
MM
6720 gro_normal_list(n);
6721
001ce546
HX
6722 /* Some drivers may have called napi_schedule
6723 * prior to exhausting their budget.
6724 */
6725 if (unlikely(!list_empty(&n->poll_list))) {
6726 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6727 n->dev ? n->dev->name : "backlog");
6728 goto out_unlock;
6729 }
6730
726ce70e
HX
6731 list_add_tail(&n->poll_list, repoll);
6732
6733out_unlock:
6734 netpoll_poll_unlock(have);
6735
6736 return work;
6737}
6738
0766f788 6739static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 6740{
903ceff7 6741 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7acf8a1e
MW
6742 unsigned long time_limit = jiffies +
6743 usecs_to_jiffies(netdev_budget_usecs);
51b0bded 6744 int budget = netdev_budget;
d75b1ade
ED
6745 LIST_HEAD(list);
6746 LIST_HEAD(repoll);
53fb95d3 6747
1da177e4 6748 local_irq_disable();
d75b1ade
ED
6749 list_splice_init(&sd->poll_list, &list);
6750 local_irq_enable();
1da177e4 6751
ceb8d5bf 6752 for (;;) {
bea3348e 6753 struct napi_struct *n;
1da177e4 6754
ceb8d5bf
HX
6755 if (list_empty(&list)) {
6756 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
f52dffe0 6757 goto out;
ceb8d5bf
HX
6758 break;
6759 }
6760
6bd373eb
HX
6761 n = list_first_entry(&list, struct napi_struct, poll_list);
6762 budget -= napi_poll(n, &repoll);
6763
d75b1ade 6764 /* If softirq window is exhausted then punt.
24f8b238
SH
6765 * Allow this to run for 2 jiffies since which will allow
6766 * an average latency of 1.5/HZ.
bea3348e 6767 */
ceb8d5bf
HX
6768 if (unlikely(budget <= 0 ||
6769 time_after_eq(jiffies, time_limit))) {
6770 sd->time_squeeze++;
6771 break;
6772 }
1da177e4 6773 }
d75b1ade 6774
d75b1ade
ED
6775 local_irq_disable();
6776
6777 list_splice_tail_init(&sd->poll_list, &list);
6778 list_splice_tail(&repoll, &list);
6779 list_splice(&list, &sd->poll_list);
6780 if (!list_empty(&sd->poll_list))
6781 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6782
e326bed2 6783 net_rps_action_and_irq_enable(sd);
f52dffe0
ED
6784out:
6785 __kfree_skb_flush();
1da177e4
LT
6786}
6787
aa9d8560 6788struct netdev_adjacent {
9ff162a8 6789 struct net_device *dev;
5d261913
VF
6790
6791 /* upper master flag, there can only be one master device per list */
9ff162a8 6792 bool master;
5d261913 6793
32b6d34f
TY
6794 /* lookup ignore flag */
6795 bool ignore;
6796
5d261913
VF
6797 /* counter for the number of times this device was added to us */
6798 u16 ref_nr;
6799
402dae96
VF
6800 /* private field for the users */
6801 void *private;
6802
9ff162a8
JP
6803 struct list_head list;
6804 struct rcu_head rcu;
9ff162a8
JP
6805};
6806
6ea29da1 6807static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 6808 struct list_head *adj_list)
9ff162a8 6809{
5d261913 6810 struct netdev_adjacent *adj;
5d261913 6811
2f268f12 6812 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
6813 if (adj->dev == adj_dev)
6814 return adj;
9ff162a8
JP
6815 }
6816 return NULL;
6817}
6818
32b6d34f 6819static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
f1170fd4
DA
6820{
6821 struct net_device *dev = data;
6822
6823 return upper_dev == dev;
6824}
6825
9ff162a8
JP
6826/**
6827 * netdev_has_upper_dev - Check if device is linked to an upper device
6828 * @dev: device
6829 * @upper_dev: upper device to check
6830 *
6831 * Find out if a device is linked to specified upper device and return true
6832 * in case it is. Note that this checks only immediate upper device,
6833 * not through a complete stack of devices. The caller must hold the RTNL lock.
6834 */
6835bool netdev_has_upper_dev(struct net_device *dev,
6836 struct net_device *upper_dev)
6837{
6838 ASSERT_RTNL();
6839
32b6d34f 6840 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
f1170fd4 6841 upper_dev);
9ff162a8
JP
6842}
6843EXPORT_SYMBOL(netdev_has_upper_dev);
6844
1a3f060c
DA
6845/**
6846 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6847 * @dev: device
6848 * @upper_dev: upper device to check
6849 *
6850 * Find out if a device is linked to specified upper device and return true
6851 * in case it is. Note that this checks the entire upper device chain.
6852 * The caller must hold rcu lock.
6853 */
6854
1a3f060c
DA
6855bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6856 struct net_device *upper_dev)
6857{
32b6d34f 6858 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
1a3f060c
DA
6859 upper_dev);
6860}
6861EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6862
9ff162a8
JP
6863/**
6864 * netdev_has_any_upper_dev - Check if device is linked to some device
6865 * @dev: device
6866 *
6867 * Find out if a device is linked to an upper device and return true in case
6868 * it is. The caller must hold the RTNL lock.
6869 */
25cc72a3 6870bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
6871{
6872 ASSERT_RTNL();
6873
f1170fd4 6874 return !list_empty(&dev->adj_list.upper);
9ff162a8 6875}
25cc72a3 6876EXPORT_SYMBOL(netdev_has_any_upper_dev);
9ff162a8
JP
6877
6878/**
6879 * netdev_master_upper_dev_get - Get master upper device
6880 * @dev: device
6881 *
6882 * Find a master upper device and return pointer to it or NULL in case
6883 * it's not there. The caller must hold the RTNL lock.
6884 */
6885struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6886{
aa9d8560 6887 struct netdev_adjacent *upper;
9ff162a8
JP
6888
6889 ASSERT_RTNL();
6890
2f268f12 6891 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
6892 return NULL;
6893
2f268f12 6894 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 6895 struct netdev_adjacent, list);
9ff162a8
JP
6896 if (likely(upper->master))
6897 return upper->dev;
6898 return NULL;
6899}
6900EXPORT_SYMBOL(netdev_master_upper_dev_get);
6901
32b6d34f
TY
6902static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6903{
6904 struct netdev_adjacent *upper;
6905
6906 ASSERT_RTNL();
6907
6908 if (list_empty(&dev->adj_list.upper))
6909 return NULL;
6910
6911 upper = list_first_entry(&dev->adj_list.upper,
6912 struct netdev_adjacent, list);
6913 if (likely(upper->master) && !upper->ignore)
6914 return upper->dev;
6915 return NULL;
6916}
6917
0f524a80
DA
6918/**
6919 * netdev_has_any_lower_dev - Check if device is linked to some device
6920 * @dev: device
6921 *
6922 * Find out if a device is linked to a lower device and return true in case
6923 * it is. The caller must hold the RTNL lock.
6924 */
6925static bool netdev_has_any_lower_dev(struct net_device *dev)
6926{
6927 ASSERT_RTNL();
6928
6929 return !list_empty(&dev->adj_list.lower);
6930}
6931
b6ccba4c
VF
6932void *netdev_adjacent_get_private(struct list_head *adj_list)
6933{
6934 struct netdev_adjacent *adj;
6935
6936 adj = list_entry(adj_list, struct netdev_adjacent, list);
6937
6938 return adj->private;
6939}
6940EXPORT_SYMBOL(netdev_adjacent_get_private);
6941
44a40855
VY
6942/**
6943 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6944 * @dev: device
6945 * @iter: list_head ** of the current position
6946 *
6947 * Gets the next device from the dev's upper list, starting from iter
6948 * position. The caller must hold RCU read lock.
6949 */
6950struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6951 struct list_head **iter)
6952{
6953 struct netdev_adjacent *upper;
6954
6955 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6956
6957 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6958
6959 if (&upper->list == &dev->adj_list.upper)
6960 return NULL;
6961
6962 *iter = &upper->list;
6963
6964 return upper->dev;
6965}
6966EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6967
32b6d34f
TY
6968static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6969 struct list_head **iter,
6970 bool *ignore)
5343da4c
TY
6971{
6972 struct netdev_adjacent *upper;
6973
6974 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6975
6976 if (&upper->list == &dev->adj_list.upper)
6977 return NULL;
6978
6979 *iter = &upper->list;
32b6d34f 6980 *ignore = upper->ignore;
5343da4c
TY
6981
6982 return upper->dev;
6983}
6984
1a3f060c
DA
6985static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6986 struct list_head **iter)
6987{
6988 struct netdev_adjacent *upper;
6989
6990 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6991
6992 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6993
6994 if (&upper->list == &dev->adj_list.upper)
6995 return NULL;
6996
6997 *iter = &upper->list;
6998
6999 return upper->dev;
7000}
7001
32b6d34f
TY
7002static int __netdev_walk_all_upper_dev(struct net_device *dev,
7003 int (*fn)(struct net_device *dev,
7004 void *data),
7005 void *data)
5343da4c
TY
7006{
7007 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7008 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7009 int ret, cur = 0;
32b6d34f 7010 bool ignore;
5343da4c
TY
7011
7012 now = dev;
7013 iter = &dev->adj_list.upper;
7014
7015 while (1) {
7016 if (now != dev) {
7017 ret = fn(now, data);
7018 if (ret)
7019 return ret;
7020 }
7021
7022 next = NULL;
7023 while (1) {
32b6d34f 7024 udev = __netdev_next_upper_dev(now, &iter, &ignore);
5343da4c
TY
7025 if (!udev)
7026 break;
32b6d34f
TY
7027 if (ignore)
7028 continue;
5343da4c
TY
7029
7030 next = udev;
7031 niter = &udev->adj_list.upper;
7032 dev_stack[cur] = now;
7033 iter_stack[cur++] = iter;
7034 break;
7035 }
7036
7037 if (!next) {
7038 if (!cur)
7039 return 0;
7040 next = dev_stack[--cur];
7041 niter = iter_stack[cur];
7042 }
7043
7044 now = next;
7045 iter = niter;
7046 }
7047
7048 return 0;
7049}
7050
1a3f060c
DA
7051int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7052 int (*fn)(struct net_device *dev,
7053 void *data),
7054 void *data)
7055{
5343da4c
TY
7056 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7057 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7058 int ret, cur = 0;
1a3f060c 7059
5343da4c
TY
7060 now = dev;
7061 iter = &dev->adj_list.upper;
1a3f060c 7062
5343da4c
TY
7063 while (1) {
7064 if (now != dev) {
7065 ret = fn(now, data);
7066 if (ret)
7067 return ret;
7068 }
7069
7070 next = NULL;
7071 while (1) {
7072 udev = netdev_next_upper_dev_rcu(now, &iter);
7073 if (!udev)
7074 break;
7075
7076 next = udev;
7077 niter = &udev->adj_list.upper;
7078 dev_stack[cur] = now;
7079 iter_stack[cur++] = iter;
7080 break;
7081 }
7082
7083 if (!next) {
7084 if (!cur)
7085 return 0;
7086 next = dev_stack[--cur];
7087 niter = iter_stack[cur];
7088 }
7089
7090 now = next;
7091 iter = niter;
1a3f060c
DA
7092 }
7093
7094 return 0;
7095}
7096EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7097
32b6d34f
TY
7098static bool __netdev_has_upper_dev(struct net_device *dev,
7099 struct net_device *upper_dev)
7100{
7101 ASSERT_RTNL();
7102
7103 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7104 upper_dev);
7105}
7106
31088a11
VF
7107/**
7108 * netdev_lower_get_next_private - Get the next ->private from the
7109 * lower neighbour list
7110 * @dev: device
7111 * @iter: list_head ** of the current position
7112 *
7113 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7114 * list, starting from iter position. The caller must hold either hold the
7115 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 7116 * list will remain unchanged.
31088a11
VF
7117 */
7118void *netdev_lower_get_next_private(struct net_device *dev,
7119 struct list_head **iter)
7120{
7121 struct netdev_adjacent *lower;
7122
7123 lower = list_entry(*iter, struct netdev_adjacent, list);
7124
7125 if (&lower->list == &dev->adj_list.lower)
7126 return NULL;
7127
6859e7df 7128 *iter = lower->list.next;
31088a11
VF
7129
7130 return lower->private;
7131}
7132EXPORT_SYMBOL(netdev_lower_get_next_private);
7133
7134/**
7135 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7136 * lower neighbour list, RCU
7137 * variant
7138 * @dev: device
7139 * @iter: list_head ** of the current position
7140 *
7141 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7142 * list, starting from iter position. The caller must hold RCU read lock.
7143 */
7144void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7145 struct list_head **iter)
7146{
7147 struct netdev_adjacent *lower;
7148
7149 WARN_ON_ONCE(!rcu_read_lock_held());
7150
7151 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7152
7153 if (&lower->list == &dev->adj_list.lower)
7154 return NULL;
7155
6859e7df 7156 *iter = &lower->list;
31088a11
VF
7157
7158 return lower->private;
7159}
7160EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7161
4085ebe8
VY
7162/**
7163 * netdev_lower_get_next - Get the next device from the lower neighbour
7164 * list
7165 * @dev: device
7166 * @iter: list_head ** of the current position
7167 *
7168 * Gets the next netdev_adjacent from the dev's lower neighbour
7169 * list, starting from iter position. The caller must hold RTNL lock or
7170 * its own locking that guarantees that the neighbour lower
b469139e 7171 * list will remain unchanged.
4085ebe8
VY
7172 */
7173void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7174{
7175 struct netdev_adjacent *lower;
7176
cfdd28be 7177 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
7178
7179 if (&lower->list == &dev->adj_list.lower)
7180 return NULL;
7181
cfdd28be 7182 *iter = lower->list.next;
4085ebe8
VY
7183
7184 return lower->dev;
7185}
7186EXPORT_SYMBOL(netdev_lower_get_next);
7187
1a3f060c
DA
7188static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7189 struct list_head **iter)
7190{
7191 struct netdev_adjacent *lower;
7192
46b5ab1a 7193 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
1a3f060c
DA
7194
7195 if (&lower->list == &dev->adj_list.lower)
7196 return NULL;
7197
46b5ab1a 7198 *iter = &lower->list;
1a3f060c
DA
7199
7200 return lower->dev;
7201}
7202
32b6d34f
TY
7203static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7204 struct list_head **iter,
7205 bool *ignore)
7206{
7207 struct netdev_adjacent *lower;
7208
7209 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7210
7211 if (&lower->list == &dev->adj_list.lower)
7212 return NULL;
7213
7214 *iter = &lower->list;
7215 *ignore = lower->ignore;
7216
7217 return lower->dev;
7218}
7219
1a3f060c
DA
7220int netdev_walk_all_lower_dev(struct net_device *dev,
7221 int (*fn)(struct net_device *dev,
7222 void *data),
7223 void *data)
7224{
5343da4c
TY
7225 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7226 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7227 int ret, cur = 0;
1a3f060c 7228
5343da4c
TY
7229 now = dev;
7230 iter = &dev->adj_list.lower;
1a3f060c 7231
5343da4c
TY
7232 while (1) {
7233 if (now != dev) {
7234 ret = fn(now, data);
7235 if (ret)
7236 return ret;
7237 }
7238
7239 next = NULL;
7240 while (1) {
7241 ldev = netdev_next_lower_dev(now, &iter);
7242 if (!ldev)
7243 break;
7244
7245 next = ldev;
7246 niter = &ldev->adj_list.lower;
7247 dev_stack[cur] = now;
7248 iter_stack[cur++] = iter;
7249 break;
7250 }
7251
7252 if (!next) {
7253 if (!cur)
7254 return 0;
7255 next = dev_stack[--cur];
7256 niter = iter_stack[cur];
7257 }
7258
7259 now = next;
7260 iter = niter;
1a3f060c
DA
7261 }
7262
7263 return 0;
7264}
7265EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7266
32b6d34f
TY
7267static int __netdev_walk_all_lower_dev(struct net_device *dev,
7268 int (*fn)(struct net_device *dev,
7269 void *data),
7270 void *data)
7271{
7272 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7273 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7274 int ret, cur = 0;
7275 bool ignore;
7276
7277 now = dev;
7278 iter = &dev->adj_list.lower;
7279
7280 while (1) {
7281 if (now != dev) {
7282 ret = fn(now, data);
7283 if (ret)
7284 return ret;
7285 }
7286
7287 next = NULL;
7288 while (1) {
7289 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7290 if (!ldev)
7291 break;
7292 if (ignore)
7293 continue;
7294
7295 next = ldev;
7296 niter = &ldev->adj_list.lower;
7297 dev_stack[cur] = now;
7298 iter_stack[cur++] = iter;
7299 break;
7300 }
7301
7302 if (!next) {
7303 if (!cur)
7304 return 0;
7305 next = dev_stack[--cur];
7306 niter = iter_stack[cur];
7307 }
7308
7309 now = next;
7310 iter = niter;
7311 }
7312
7313 return 0;
7314}
7315
7151affe
TY
7316struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7317 struct list_head **iter)
1a3f060c
DA
7318{
7319 struct netdev_adjacent *lower;
7320
7321 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7322 if (&lower->list == &dev->adj_list.lower)
7323 return NULL;
7324
7325 *iter = &lower->list;
7326
7327 return lower->dev;
7328}
7151affe 7329EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
1a3f060c 7330
5343da4c
TY
7331static u8 __netdev_upper_depth(struct net_device *dev)
7332{
7333 struct net_device *udev;
7334 struct list_head *iter;
7335 u8 max_depth = 0;
32b6d34f 7336 bool ignore;
5343da4c
TY
7337
7338 for (iter = &dev->adj_list.upper,
32b6d34f 7339 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
5343da4c 7340 udev;
32b6d34f
TY
7341 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7342 if (ignore)
7343 continue;
5343da4c
TY
7344 if (max_depth < udev->upper_level)
7345 max_depth = udev->upper_level;
7346 }
7347
7348 return max_depth;
7349}
7350
7351static u8 __netdev_lower_depth(struct net_device *dev)
1a3f060c
DA
7352{
7353 struct net_device *ldev;
7354 struct list_head *iter;
5343da4c 7355 u8 max_depth = 0;
32b6d34f 7356 bool ignore;
1a3f060c
DA
7357
7358 for (iter = &dev->adj_list.lower,
32b6d34f 7359 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
1a3f060c 7360 ldev;
32b6d34f
TY
7361 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7362 if (ignore)
7363 continue;
5343da4c
TY
7364 if (max_depth < ldev->lower_level)
7365 max_depth = ldev->lower_level;
7366 }
1a3f060c 7367
5343da4c
TY
7368 return max_depth;
7369}
7370
7371static int __netdev_update_upper_level(struct net_device *dev, void *data)
7372{
7373 dev->upper_level = __netdev_upper_depth(dev) + 1;
7374 return 0;
7375}
7376
7377static int __netdev_update_lower_level(struct net_device *dev, void *data)
7378{
7379 dev->lower_level = __netdev_lower_depth(dev) + 1;
7380 return 0;
7381}
7382
7383int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7384 int (*fn)(struct net_device *dev,
7385 void *data),
7386 void *data)
7387{
7388 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7389 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7390 int ret, cur = 0;
7391
7392 now = dev;
7393 iter = &dev->adj_list.lower;
7394
7395 while (1) {
7396 if (now != dev) {
7397 ret = fn(now, data);
7398 if (ret)
7399 return ret;
7400 }
7401
7402 next = NULL;
7403 while (1) {
7404 ldev = netdev_next_lower_dev_rcu(now, &iter);
7405 if (!ldev)
7406 break;
7407
7408 next = ldev;
7409 niter = &ldev->adj_list.lower;
7410 dev_stack[cur] = now;
7411 iter_stack[cur++] = iter;
7412 break;
7413 }
7414
7415 if (!next) {
7416 if (!cur)
7417 return 0;
7418 next = dev_stack[--cur];
7419 niter = iter_stack[cur];
7420 }
7421
7422 now = next;
7423 iter = niter;
1a3f060c
DA
7424 }
7425
7426 return 0;
7427}
7428EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7429
e001bfad 7430/**
7431 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7432 * lower neighbour list, RCU
7433 * variant
7434 * @dev: device
7435 *
7436 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7437 * list. The caller must hold RCU read lock.
7438 */
7439void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7440{
7441 struct netdev_adjacent *lower;
7442
7443 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7444 struct netdev_adjacent, list);
7445 if (lower)
7446 return lower->private;
7447 return NULL;
7448}
7449EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7450
9ff162a8
JP
7451/**
7452 * netdev_master_upper_dev_get_rcu - Get master upper device
7453 * @dev: device
7454 *
7455 * Find a master upper device and return pointer to it or NULL in case
7456 * it's not there. The caller must hold the RCU read lock.
7457 */
7458struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7459{
aa9d8560 7460 struct netdev_adjacent *upper;
9ff162a8 7461
2f268f12 7462 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 7463 struct netdev_adjacent, list);
9ff162a8
JP
7464 if (upper && likely(upper->master))
7465 return upper->dev;
7466 return NULL;
7467}
7468EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7469
0a59f3a9 7470static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
7471 struct net_device *adj_dev,
7472 struct list_head *dev_list)
7473{
7474 char linkname[IFNAMSIZ+7];
f4563a75 7475
3ee32707
VF
7476 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7477 "upper_%s" : "lower_%s", adj_dev->name);
7478 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7479 linkname);
7480}
0a59f3a9 7481static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
7482 char *name,
7483 struct list_head *dev_list)
7484{
7485 char linkname[IFNAMSIZ+7];
f4563a75 7486
3ee32707
VF
7487 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7488 "upper_%s" : "lower_%s", name);
7489 sysfs_remove_link(&(dev->dev.kobj), linkname);
7490}
7491
7ce64c79
AF
7492static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7493 struct net_device *adj_dev,
7494 struct list_head *dev_list)
7495{
7496 return (dev_list == &dev->adj_list.upper ||
7497 dev_list == &dev->adj_list.lower) &&
7498 net_eq(dev_net(dev), dev_net(adj_dev));
7499}
3ee32707 7500
5d261913
VF
7501static int __netdev_adjacent_dev_insert(struct net_device *dev,
7502 struct net_device *adj_dev,
7863c054 7503 struct list_head *dev_list,
402dae96 7504 void *private, bool master)
5d261913
VF
7505{
7506 struct netdev_adjacent *adj;
842d67a7 7507 int ret;
5d261913 7508
6ea29da1 7509 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
7510
7511 if (adj) {
790510d9 7512 adj->ref_nr += 1;
67b62f98
DA
7513 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7514 dev->name, adj_dev->name, adj->ref_nr);
7515
5d261913
VF
7516 return 0;
7517 }
7518
7519 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7520 if (!adj)
7521 return -ENOMEM;
7522
7523 adj->dev = adj_dev;
7524 adj->master = master;
790510d9 7525 adj->ref_nr = 1;
402dae96 7526 adj->private = private;
32b6d34f 7527 adj->ignore = false;
5d261913 7528 dev_hold(adj_dev);
2f268f12 7529
67b62f98
DA
7530 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7531 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5d261913 7532
7ce64c79 7533 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 7534 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
7535 if (ret)
7536 goto free_adj;
7537 }
7538
7863c054 7539 /* Ensure that master link is always the first item in list. */
842d67a7
VF
7540 if (master) {
7541 ret = sysfs_create_link(&(dev->dev.kobj),
7542 &(adj_dev->dev.kobj), "master");
7543 if (ret)
5831d66e 7544 goto remove_symlinks;
842d67a7 7545
7863c054 7546 list_add_rcu(&adj->list, dev_list);
842d67a7 7547 } else {
7863c054 7548 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 7549 }
5d261913
VF
7550
7551 return 0;
842d67a7 7552
5831d66e 7553remove_symlinks:
7ce64c79 7554 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7555 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
7556free_adj:
7557 kfree(adj);
974daef7 7558 dev_put(adj_dev);
842d67a7
VF
7559
7560 return ret;
5d261913
VF
7561}
7562
1d143d9f 7563static void __netdev_adjacent_dev_remove(struct net_device *dev,
7564 struct net_device *adj_dev,
93409033 7565 u16 ref_nr,
1d143d9f 7566 struct list_head *dev_list)
5d261913
VF
7567{
7568 struct netdev_adjacent *adj;
7569
67b62f98
DA
7570 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7571 dev->name, adj_dev->name, ref_nr);
7572
6ea29da1 7573 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 7574
2f268f12 7575 if (!adj) {
67b62f98 7576 pr_err("Adjacency does not exist for device %s from %s\n",
2f268f12 7577 dev->name, adj_dev->name);
67b62f98
DA
7578 WARN_ON(1);
7579 return;
2f268f12 7580 }
5d261913 7581
93409033 7582 if (adj->ref_nr > ref_nr) {
67b62f98
DA
7583 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7584 dev->name, adj_dev->name, ref_nr,
7585 adj->ref_nr - ref_nr);
93409033 7586 adj->ref_nr -= ref_nr;
5d261913
VF
7587 return;
7588 }
7589
842d67a7
VF
7590 if (adj->master)
7591 sysfs_remove_link(&(dev->dev.kobj), "master");
7592
7ce64c79 7593 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 7594 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 7595
5d261913 7596 list_del_rcu(&adj->list);
67b62f98 7597 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
2f268f12 7598 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
7599 dev_put(adj_dev);
7600 kfree_rcu(adj, rcu);
7601}
7602
1d143d9f 7603static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7604 struct net_device *upper_dev,
7605 struct list_head *up_list,
7606 struct list_head *down_list,
7607 void *private, bool master)
5d261913
VF
7608{
7609 int ret;
7610
790510d9 7611 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
93409033 7612 private, master);
5d261913
VF
7613 if (ret)
7614 return ret;
7615
790510d9 7616 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
93409033 7617 private, false);
5d261913 7618 if (ret) {
790510d9 7619 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5d261913
VF
7620 return ret;
7621 }
7622
7623 return 0;
7624}
7625
1d143d9f 7626static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7627 struct net_device *upper_dev,
93409033 7628 u16 ref_nr,
1d143d9f 7629 struct list_head *up_list,
7630 struct list_head *down_list)
5d261913 7631{
93409033
AC
7632 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7633 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
7634}
7635
1d143d9f 7636static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7637 struct net_device *upper_dev,
7638 void *private, bool master)
2f268f12 7639{
f1170fd4
DA
7640 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7641 &dev->adj_list.upper,
7642 &upper_dev->adj_list.lower,
7643 private, master);
5d261913
VF
7644}
7645
1d143d9f 7646static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7647 struct net_device *upper_dev)
2f268f12 7648{
93409033 7649 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
7650 &dev->adj_list.upper,
7651 &upper_dev->adj_list.lower);
7652}
5d261913 7653
9ff162a8 7654static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 7655 struct net_device *upper_dev, bool master,
42ab19ee
DA
7656 void *upper_priv, void *upper_info,
7657 struct netlink_ext_ack *extack)
9ff162a8 7658{
51d0c047
DA
7659 struct netdev_notifier_changeupper_info changeupper_info = {
7660 .info = {
7661 .dev = dev,
42ab19ee 7662 .extack = extack,
51d0c047
DA
7663 },
7664 .upper_dev = upper_dev,
7665 .master = master,
7666 .linking = true,
7667 .upper_info = upper_info,
7668 };
50d629e7 7669 struct net_device *master_dev;
5d261913 7670 int ret = 0;
9ff162a8
JP
7671
7672 ASSERT_RTNL();
7673
7674 if (dev == upper_dev)
7675 return -EBUSY;
7676
7677 /* To prevent loops, check if dev is not upper device to upper_dev. */
32b6d34f 7678 if (__netdev_has_upper_dev(upper_dev, dev))
9ff162a8
JP
7679 return -EBUSY;
7680
5343da4c
TY
7681 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7682 return -EMLINK;
7683
50d629e7 7684 if (!master) {
32b6d34f 7685 if (__netdev_has_upper_dev(dev, upper_dev))
50d629e7
MM
7686 return -EEXIST;
7687 } else {
32b6d34f 7688 master_dev = __netdev_master_upper_dev_get(dev);
50d629e7
MM
7689 if (master_dev)
7690 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7691 }
9ff162a8 7692
51d0c047 7693 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7694 &changeupper_info.info);
7695 ret = notifier_to_errno(ret);
7696 if (ret)
7697 return ret;
7698
6dffb044 7699 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 7700 master);
5d261913
VF
7701 if (ret)
7702 return ret;
9ff162a8 7703
51d0c047 7704 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
b03804e7
IS
7705 &changeupper_info.info);
7706 ret = notifier_to_errno(ret);
7707 if (ret)
f1170fd4 7708 goto rollback;
b03804e7 7709
5343da4c 7710 __netdev_update_upper_level(dev, NULL);
32b6d34f 7711 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7712
7713 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7714 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7715 NULL);
5343da4c 7716
9ff162a8 7717 return 0;
5d261913 7718
f1170fd4 7719rollback:
2f268f12 7720 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
7721
7722 return ret;
9ff162a8
JP
7723}
7724
7725/**
7726 * netdev_upper_dev_link - Add a link to the upper device
7727 * @dev: device
7728 * @upper_dev: new upper device
7a006d59 7729 * @extack: netlink extended ack
9ff162a8
JP
7730 *
7731 * Adds a link to device which is upper to this one. The caller must hold
7732 * the RTNL lock. On a failure a negative errno code is returned.
7733 * On success the reference counts are adjusted and the function
7734 * returns zero.
7735 */
7736int netdev_upper_dev_link(struct net_device *dev,
42ab19ee
DA
7737 struct net_device *upper_dev,
7738 struct netlink_ext_ack *extack)
9ff162a8 7739{
42ab19ee
DA
7740 return __netdev_upper_dev_link(dev, upper_dev, false,
7741 NULL, NULL, extack);
9ff162a8
JP
7742}
7743EXPORT_SYMBOL(netdev_upper_dev_link);
7744
7745/**
7746 * netdev_master_upper_dev_link - Add a master link to the upper device
7747 * @dev: device
7748 * @upper_dev: new upper device
6dffb044 7749 * @upper_priv: upper device private
29bf24af 7750 * @upper_info: upper info to be passed down via notifier
7a006d59 7751 * @extack: netlink extended ack
9ff162a8
JP
7752 *
7753 * Adds a link to device which is upper to this one. In this case, only
7754 * one master upper device can be linked, although other non-master devices
7755 * might be linked as well. The caller must hold the RTNL lock.
7756 * On a failure a negative errno code is returned. On success the reference
7757 * counts are adjusted and the function returns zero.
7758 */
7759int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 7760 struct net_device *upper_dev,
42ab19ee
DA
7761 void *upper_priv, void *upper_info,
7762 struct netlink_ext_ack *extack)
9ff162a8 7763{
29bf24af 7764 return __netdev_upper_dev_link(dev, upper_dev, true,
42ab19ee 7765 upper_priv, upper_info, extack);
9ff162a8
JP
7766}
7767EXPORT_SYMBOL(netdev_master_upper_dev_link);
7768
7769/**
7770 * netdev_upper_dev_unlink - Removes a link to upper device
7771 * @dev: device
7772 * @upper_dev: new upper device
7773 *
7774 * Removes a link to device which is upper to this one. The caller must hold
7775 * the RTNL lock.
7776 */
7777void netdev_upper_dev_unlink(struct net_device *dev,
7778 struct net_device *upper_dev)
7779{
51d0c047
DA
7780 struct netdev_notifier_changeupper_info changeupper_info = {
7781 .info = {
7782 .dev = dev,
7783 },
7784 .upper_dev = upper_dev,
7785 .linking = false,
7786 };
f4563a75 7787
9ff162a8
JP
7788 ASSERT_RTNL();
7789
0e4ead9d 7790 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
0e4ead9d 7791
51d0c047 7792 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
573c7ba0
JP
7793 &changeupper_info.info);
7794
2f268f12 7795 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913 7796
51d0c047 7797 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
0e4ead9d 7798 &changeupper_info.info);
5343da4c
TY
7799
7800 __netdev_update_upper_level(dev, NULL);
32b6d34f 7801 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
5343da4c
TY
7802
7803 __netdev_update_lower_level(upper_dev, NULL);
32b6d34f
TY
7804 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7805 NULL);
9ff162a8
JP
7806}
7807EXPORT_SYMBOL(netdev_upper_dev_unlink);
7808
32b6d34f
TY
7809static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7810 struct net_device *lower_dev,
7811 bool val)
7812{
7813 struct netdev_adjacent *adj;
7814
7815 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7816 if (adj)
7817 adj->ignore = val;
7818
7819 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7820 if (adj)
7821 adj->ignore = val;
7822}
7823
7824static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7825 struct net_device *lower_dev)
7826{
7827 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7828}
7829
7830static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7831 struct net_device *lower_dev)
7832{
7833 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7834}
7835
7836int netdev_adjacent_change_prepare(struct net_device *old_dev,
7837 struct net_device *new_dev,
7838 struct net_device *dev,
7839 struct netlink_ext_ack *extack)
7840{
7841 int err;
7842
7843 if (!new_dev)
7844 return 0;
7845
7846 if (old_dev && new_dev != old_dev)
7847 netdev_adjacent_dev_disable(dev, old_dev);
7848
7849 err = netdev_upper_dev_link(new_dev, dev, extack);
7850 if (err) {
7851 if (old_dev && new_dev != old_dev)
7852 netdev_adjacent_dev_enable(dev, old_dev);
7853 return err;
7854 }
7855
7856 return 0;
7857}
7858EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7859
7860void netdev_adjacent_change_commit(struct net_device *old_dev,
7861 struct net_device *new_dev,
7862 struct net_device *dev)
7863{
7864 if (!new_dev || !old_dev)
7865 return;
7866
7867 if (new_dev == old_dev)
7868 return;
7869
7870 netdev_adjacent_dev_enable(dev, old_dev);
7871 netdev_upper_dev_unlink(old_dev, dev);
7872}
7873EXPORT_SYMBOL(netdev_adjacent_change_commit);
7874
7875void netdev_adjacent_change_abort(struct net_device *old_dev,
7876 struct net_device *new_dev,
7877 struct net_device *dev)
7878{
7879 if (!new_dev)
7880 return;
7881
7882 if (old_dev && new_dev != old_dev)
7883 netdev_adjacent_dev_enable(dev, old_dev);
7884
7885 netdev_upper_dev_unlink(new_dev, dev);
7886}
7887EXPORT_SYMBOL(netdev_adjacent_change_abort);
7888
61bd3857
MS
7889/**
7890 * netdev_bonding_info_change - Dispatch event about slave change
7891 * @dev: device
4a26e453 7892 * @bonding_info: info to dispatch
61bd3857
MS
7893 *
7894 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7895 * The caller must hold the RTNL lock.
7896 */
7897void netdev_bonding_info_change(struct net_device *dev,
7898 struct netdev_bonding_info *bonding_info)
7899{
51d0c047
DA
7900 struct netdev_notifier_bonding_info info = {
7901 .info.dev = dev,
7902 };
61bd3857
MS
7903
7904 memcpy(&info.bonding_info, bonding_info,
7905 sizeof(struct netdev_bonding_info));
51d0c047 7906 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
61bd3857
MS
7907 &info.info);
7908}
7909EXPORT_SYMBOL(netdev_bonding_info_change);
7910
cff9f12b
MG
7911/**
7912 * netdev_get_xmit_slave - Get the xmit slave of master device
8842500d 7913 * @dev: device
cff9f12b
MG
7914 * @skb: The packet
7915 * @all_slaves: assume all the slaves are active
7916 *
7917 * The reference counters are not incremented so the caller must be
7918 * careful with locks. The caller must hold RCU lock.
7919 * %NULL is returned if no slave is found.
7920 */
7921
7922struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7923 struct sk_buff *skb,
7924 bool all_slaves)
7925{
7926 const struct net_device_ops *ops = dev->netdev_ops;
7927
7928 if (!ops->ndo_get_xmit_slave)
7929 return NULL;
7930 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7931}
7932EXPORT_SYMBOL(netdev_get_xmit_slave);
7933
2ce1ee17 7934static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
7935{
7936 struct netdev_adjacent *iter;
7937
7938 struct net *net = dev_net(dev);
7939
7940 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7941 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7942 continue;
7943 netdev_adjacent_sysfs_add(iter->dev, dev,
7944 &iter->dev->adj_list.lower);
7945 netdev_adjacent_sysfs_add(dev, iter->dev,
7946 &dev->adj_list.upper);
7947 }
7948
7949 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7950 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7951 continue;
7952 netdev_adjacent_sysfs_add(iter->dev, dev,
7953 &iter->dev->adj_list.upper);
7954 netdev_adjacent_sysfs_add(dev, iter->dev,
7955 &dev->adj_list.lower);
7956 }
7957}
7958
2ce1ee17 7959static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
7960{
7961 struct netdev_adjacent *iter;
7962
7963 struct net *net = dev_net(dev);
7964
7965 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7966 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7967 continue;
7968 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7969 &iter->dev->adj_list.lower);
7970 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7971 &dev->adj_list.upper);
7972 }
7973
7974 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 7975 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
7976 continue;
7977 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7978 &iter->dev->adj_list.upper);
7979 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7980 &dev->adj_list.lower);
7981 }
7982}
7983
5bb025fa 7984void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 7985{
5bb025fa 7986 struct netdev_adjacent *iter;
402dae96 7987
4c75431a
AF
7988 struct net *net = dev_net(dev);
7989
5bb025fa 7990 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 7991 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 7992 continue;
5bb025fa
VF
7993 netdev_adjacent_sysfs_del(iter->dev, oldname,
7994 &iter->dev->adj_list.lower);
7995 netdev_adjacent_sysfs_add(iter->dev, dev,
7996 &iter->dev->adj_list.lower);
7997 }
402dae96 7998
5bb025fa 7999 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 8000 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 8001 continue;
5bb025fa
VF
8002 netdev_adjacent_sysfs_del(iter->dev, oldname,
8003 &iter->dev->adj_list.upper);
8004 netdev_adjacent_sysfs_add(iter->dev, dev,
8005 &iter->dev->adj_list.upper);
8006 }
402dae96 8007}
402dae96
VF
8008
8009void *netdev_lower_dev_get_private(struct net_device *dev,
8010 struct net_device *lower_dev)
8011{
8012 struct netdev_adjacent *lower;
8013
8014 if (!lower_dev)
8015 return NULL;
6ea29da1 8016 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
8017 if (!lower)
8018 return NULL;
8019
8020 return lower->private;
8021}
8022EXPORT_SYMBOL(netdev_lower_dev_get_private);
8023
4085ebe8 8024
04d48266
JP
8025/**
8026 * netdev_lower_change - Dispatch event about lower device state change
8027 * @lower_dev: device
8028 * @lower_state_info: state to dispatch
8029 *
8030 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8031 * The caller must hold the RTNL lock.
8032 */
8033void netdev_lower_state_changed(struct net_device *lower_dev,
8034 void *lower_state_info)
8035{
51d0c047
DA
8036 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8037 .info.dev = lower_dev,
8038 };
04d48266
JP
8039
8040 ASSERT_RTNL();
8041 changelowerstate_info.lower_state_info = lower_state_info;
51d0c047 8042 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
04d48266
JP
8043 &changelowerstate_info.info);
8044}
8045EXPORT_SYMBOL(netdev_lower_state_changed);
8046
b6c40d68
PM
8047static void dev_change_rx_flags(struct net_device *dev, int flags)
8048{
d314774c
SH
8049 const struct net_device_ops *ops = dev->netdev_ops;
8050
d2615bf4 8051 if (ops->ndo_change_rx_flags)
d314774c 8052 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
8053}
8054
991fb3f7 8055static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 8056{
b536db93 8057 unsigned int old_flags = dev->flags;
d04a48b0
EB
8058 kuid_t uid;
8059 kgid_t gid;
1da177e4 8060
24023451
PM
8061 ASSERT_RTNL();
8062
dad9b335
WC
8063 dev->flags |= IFF_PROMISC;
8064 dev->promiscuity += inc;
8065 if (dev->promiscuity == 0) {
8066 /*
8067 * Avoid overflow.
8068 * If inc causes overflow, untouch promisc and return error.
8069 */
8070 if (inc < 0)
8071 dev->flags &= ~IFF_PROMISC;
8072 else {
8073 dev->promiscuity -= inc;
7b6cd1ce
JP
8074 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8075 dev->name);
dad9b335
WC
8076 return -EOVERFLOW;
8077 }
8078 }
52609c0b 8079 if (dev->flags != old_flags) {
7b6cd1ce
JP
8080 pr_info("device %s %s promiscuous mode\n",
8081 dev->name,
8082 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
8083 if (audit_enabled) {
8084 current_uid_gid(&uid, &gid);
cdfb6b34
RGB
8085 audit_log(audit_context(), GFP_ATOMIC,
8086 AUDIT_ANOM_PROMISCUOUS,
8087 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8088 dev->name, (dev->flags & IFF_PROMISC),
8089 (old_flags & IFF_PROMISC),
8090 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8091 from_kuid(&init_user_ns, uid),
8092 from_kgid(&init_user_ns, gid),
8093 audit_get_sessionid(current));
8192b0c4 8094 }
24023451 8095
b6c40d68 8096 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 8097 }
991fb3f7
ND
8098 if (notify)
8099 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 8100 return 0;
1da177e4
LT
8101}
8102
4417da66
PM
8103/**
8104 * dev_set_promiscuity - update promiscuity count on a device
8105 * @dev: device
8106 * @inc: modifier
8107 *
8108 * Add or remove promiscuity from a device. While the count in the device
8109 * remains above zero the interface remains promiscuous. Once it hits zero
8110 * the device reverts back to normal filtering operation. A negative inc
8111 * value is used to drop promiscuity on the device.
dad9b335 8112 * Return 0 if successful or a negative errno code on error.
4417da66 8113 */
dad9b335 8114int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 8115{
b536db93 8116 unsigned int old_flags = dev->flags;
dad9b335 8117 int err;
4417da66 8118
991fb3f7 8119 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 8120 if (err < 0)
dad9b335 8121 return err;
4417da66
PM
8122 if (dev->flags != old_flags)
8123 dev_set_rx_mode(dev);
dad9b335 8124 return err;
4417da66 8125}
d1b19dff 8126EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 8127
991fb3f7 8128static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 8129{
991fb3f7 8130 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 8131
24023451
PM
8132 ASSERT_RTNL();
8133
1da177e4 8134 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
8135 dev->allmulti += inc;
8136 if (dev->allmulti == 0) {
8137 /*
8138 * Avoid overflow.
8139 * If inc causes overflow, untouch allmulti and return error.
8140 */
8141 if (inc < 0)
8142 dev->flags &= ~IFF_ALLMULTI;
8143 else {
8144 dev->allmulti -= inc;
7b6cd1ce
JP
8145 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8146 dev->name);
dad9b335
WC
8147 return -EOVERFLOW;
8148 }
8149 }
24023451 8150 if (dev->flags ^ old_flags) {
b6c40d68 8151 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 8152 dev_set_rx_mode(dev);
991fb3f7
ND
8153 if (notify)
8154 __dev_notify_flags(dev, old_flags,
8155 dev->gflags ^ old_gflags);
24023451 8156 }
dad9b335 8157 return 0;
4417da66 8158}
991fb3f7
ND
8159
8160/**
8161 * dev_set_allmulti - update allmulti count on a device
8162 * @dev: device
8163 * @inc: modifier
8164 *
8165 * Add or remove reception of all multicast frames to a device. While the
8166 * count in the device remains above zero the interface remains listening
8167 * to all interfaces. Once it hits zero the device reverts back to normal
8168 * filtering operation. A negative @inc value is used to drop the counter
8169 * when releasing a resource needing all multicasts.
8170 * Return 0 if successful or a negative errno code on error.
8171 */
8172
8173int dev_set_allmulti(struct net_device *dev, int inc)
8174{
8175 return __dev_set_allmulti(dev, inc, true);
8176}
d1b19dff 8177EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
8178
8179/*
8180 * Upload unicast and multicast address lists to device and
8181 * configure RX filtering. When the device doesn't support unicast
53ccaae1 8182 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
8183 * are present.
8184 */
8185void __dev_set_rx_mode(struct net_device *dev)
8186{
d314774c
SH
8187 const struct net_device_ops *ops = dev->netdev_ops;
8188
4417da66
PM
8189 /* dev_open will call this function so the list will stay sane. */
8190 if (!(dev->flags&IFF_UP))
8191 return;
8192
8193 if (!netif_device_present(dev))
40b77c94 8194 return;
4417da66 8195
01789349 8196 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
8197 /* Unicast addresses changes may only happen under the rtnl,
8198 * therefore calling __dev_set_promiscuity here is safe.
8199 */
32e7bfc4 8200 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 8201 __dev_set_promiscuity(dev, 1, false);
2d348d1f 8202 dev->uc_promisc = true;
32e7bfc4 8203 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 8204 __dev_set_promiscuity(dev, -1, false);
2d348d1f 8205 dev->uc_promisc = false;
4417da66 8206 }
4417da66 8207 }
01789349
JP
8208
8209 if (ops->ndo_set_rx_mode)
8210 ops->ndo_set_rx_mode(dev);
4417da66
PM
8211}
8212
8213void dev_set_rx_mode(struct net_device *dev)
8214{
b9e40857 8215 netif_addr_lock_bh(dev);
4417da66 8216 __dev_set_rx_mode(dev);
b9e40857 8217 netif_addr_unlock_bh(dev);
1da177e4
LT
8218}
8219
f0db275a
SH
8220/**
8221 * dev_get_flags - get flags reported to userspace
8222 * @dev: device
8223 *
8224 * Get the combination of flag bits exported through APIs to userspace.
8225 */
95c96174 8226unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 8227{
95c96174 8228 unsigned int flags;
1da177e4
LT
8229
8230 flags = (dev->flags & ~(IFF_PROMISC |
8231 IFF_ALLMULTI |
b00055aa
SR
8232 IFF_RUNNING |
8233 IFF_LOWER_UP |
8234 IFF_DORMANT)) |
1da177e4
LT
8235 (dev->gflags & (IFF_PROMISC |
8236 IFF_ALLMULTI));
8237
b00055aa
SR
8238 if (netif_running(dev)) {
8239 if (netif_oper_up(dev))
8240 flags |= IFF_RUNNING;
8241 if (netif_carrier_ok(dev))
8242 flags |= IFF_LOWER_UP;
8243 if (netif_dormant(dev))
8244 flags |= IFF_DORMANT;
8245 }
1da177e4
LT
8246
8247 return flags;
8248}
d1b19dff 8249EXPORT_SYMBOL(dev_get_flags);
1da177e4 8250
6d040321
PM
8251int __dev_change_flags(struct net_device *dev, unsigned int flags,
8252 struct netlink_ext_ack *extack)
1da177e4 8253{
b536db93 8254 unsigned int old_flags = dev->flags;
bd380811 8255 int ret;
1da177e4 8256
24023451
PM
8257 ASSERT_RTNL();
8258
1da177e4
LT
8259 /*
8260 * Set the flags on our device.
8261 */
8262
8263 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8264 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8265 IFF_AUTOMEDIA)) |
8266 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8267 IFF_ALLMULTI));
8268
8269 /*
8270 * Load in the correct multicast list now the flags have changed.
8271 */
8272
b6c40d68
PM
8273 if ((old_flags ^ flags) & IFF_MULTICAST)
8274 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 8275
4417da66 8276 dev_set_rx_mode(dev);
1da177e4
LT
8277
8278 /*
8279 * Have we downed the interface. We handle IFF_UP ourselves
8280 * according to user attempts to set it, rather than blindly
8281 * setting it.
8282 */
8283
8284 ret = 0;
7051b88a 8285 if ((old_flags ^ flags) & IFF_UP) {
8286 if (old_flags & IFF_UP)
8287 __dev_close(dev);
8288 else
40c900aa 8289 ret = __dev_open(dev, extack);
7051b88a 8290 }
1da177e4 8291
1da177e4 8292 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 8293 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 8294 unsigned int old_flags = dev->flags;
d1b19dff 8295
1da177e4 8296 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
8297
8298 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8299 if (dev->flags != old_flags)
8300 dev_set_rx_mode(dev);
1da177e4
LT
8301 }
8302
8303 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
eb13da1a 8304 * is important. Some (broken) drivers set IFF_PROMISC, when
8305 * IFF_ALLMULTI is requested not asking us and not reporting.
1da177e4
LT
8306 */
8307 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
8308 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8309
1da177e4 8310 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 8311 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
8312 }
8313
bd380811
PM
8314 return ret;
8315}
8316
a528c219
ND
8317void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8318 unsigned int gchanges)
bd380811
PM
8319{
8320 unsigned int changes = dev->flags ^ old_flags;
8321
a528c219 8322 if (gchanges)
7f294054 8323 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 8324
bd380811
PM
8325 if (changes & IFF_UP) {
8326 if (dev->flags & IFF_UP)
8327 call_netdevice_notifiers(NETDEV_UP, dev);
8328 else
8329 call_netdevice_notifiers(NETDEV_DOWN, dev);
8330 }
8331
8332 if (dev->flags & IFF_UP &&
be9efd36 8333 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
51d0c047
DA
8334 struct netdev_notifier_change_info change_info = {
8335 .info = {
8336 .dev = dev,
8337 },
8338 .flags_changed = changes,
8339 };
be9efd36 8340
51d0c047 8341 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
be9efd36 8342 }
bd380811
PM
8343}
8344
8345/**
8346 * dev_change_flags - change device settings
8347 * @dev: device
8348 * @flags: device state flags
567c5e13 8349 * @extack: netlink extended ack
bd380811
PM
8350 *
8351 * Change settings on device based state flags. The flags are
8352 * in the userspace exported format.
8353 */
567c5e13
PM
8354int dev_change_flags(struct net_device *dev, unsigned int flags,
8355 struct netlink_ext_ack *extack)
bd380811 8356{
b536db93 8357 int ret;
991fb3f7 8358 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811 8359
6d040321 8360 ret = __dev_change_flags(dev, flags, extack);
bd380811
PM
8361 if (ret < 0)
8362 return ret;
8363
991fb3f7 8364 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 8365 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
8366 return ret;
8367}
d1b19dff 8368EXPORT_SYMBOL(dev_change_flags);
1da177e4 8369
f51048c3 8370int __dev_set_mtu(struct net_device *dev, int new_mtu)
2315dc91
VF
8371{
8372 const struct net_device_ops *ops = dev->netdev_ops;
8373
8374 if (ops->ndo_change_mtu)
8375 return ops->ndo_change_mtu(dev, new_mtu);
8376
501a90c9
ED
8377 /* Pairs with all the lockless reads of dev->mtu in the stack */
8378 WRITE_ONCE(dev->mtu, new_mtu);
2315dc91
VF
8379 return 0;
8380}
f51048c3 8381EXPORT_SYMBOL(__dev_set_mtu);
2315dc91 8382
d836f5c6
ED
8383int dev_validate_mtu(struct net_device *dev, int new_mtu,
8384 struct netlink_ext_ack *extack)
8385{
8386 /* MTU must be positive, and in range */
8387 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8388 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8389 return -EINVAL;
8390 }
8391
8392 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8393 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8394 return -EINVAL;
8395 }
8396 return 0;
8397}
8398
f0db275a 8399/**
7a4c53be 8400 * dev_set_mtu_ext - Change maximum transfer unit
f0db275a
SH
8401 * @dev: device
8402 * @new_mtu: new transfer unit
7a4c53be 8403 * @extack: netlink extended ack
f0db275a
SH
8404 *
8405 * Change the maximum transfer size of the network device.
8406 */
7a4c53be
SH
8407int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8408 struct netlink_ext_ack *extack)
1da177e4 8409{
2315dc91 8410 int err, orig_mtu;
1da177e4
LT
8411
8412 if (new_mtu == dev->mtu)
8413 return 0;
8414
d836f5c6
ED
8415 err = dev_validate_mtu(dev, new_mtu, extack);
8416 if (err)
8417 return err;
1da177e4
LT
8418
8419 if (!netif_device_present(dev))
8420 return -ENODEV;
8421
1d486bfb
VF
8422 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8423 err = notifier_to_errno(err);
8424 if (err)
8425 return err;
d314774c 8426
2315dc91
VF
8427 orig_mtu = dev->mtu;
8428 err = __dev_set_mtu(dev, new_mtu);
d314774c 8429
2315dc91 8430 if (!err) {
af7d6cce
SD
8431 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8432 orig_mtu);
2315dc91
VF
8433 err = notifier_to_errno(err);
8434 if (err) {
8435 /* setting mtu back and notifying everyone again,
8436 * so that they have a chance to revert changes.
8437 */
8438 __dev_set_mtu(dev, orig_mtu);
af7d6cce
SD
8439 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8440 new_mtu);
2315dc91
VF
8441 }
8442 }
1da177e4
LT
8443 return err;
8444}
7a4c53be
SH
8445
8446int dev_set_mtu(struct net_device *dev, int new_mtu)
8447{
8448 struct netlink_ext_ack extack;
8449 int err;
8450
a6bcfc89 8451 memset(&extack, 0, sizeof(extack));
7a4c53be 8452 err = dev_set_mtu_ext(dev, new_mtu, &extack);
a6bcfc89 8453 if (err && extack._msg)
7a4c53be
SH
8454 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8455 return err;
8456}
d1b19dff 8457EXPORT_SYMBOL(dev_set_mtu);
1da177e4 8458
6a643ddb
CW
8459/**
8460 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8461 * @dev: device
8462 * @new_len: new tx queue length
8463 */
8464int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8465{
8466 unsigned int orig_len = dev->tx_queue_len;
8467 int res;
8468
8469 if (new_len != (unsigned int)new_len)
8470 return -ERANGE;
8471
8472 if (new_len != orig_len) {
8473 dev->tx_queue_len = new_len;
8474 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8475 res = notifier_to_errno(res);
7effaf06
TT
8476 if (res)
8477 goto err_rollback;
8478 res = dev_qdisc_change_tx_queue_len(dev);
8479 if (res)
8480 goto err_rollback;
6a643ddb
CW
8481 }
8482
8483 return 0;
7effaf06
TT
8484
8485err_rollback:
8486 netdev_err(dev, "refused to change device tx_queue_len\n");
8487 dev->tx_queue_len = orig_len;
8488 return res;
6a643ddb
CW
8489}
8490
cbda10fa
VD
8491/**
8492 * dev_set_group - Change group this device belongs to
8493 * @dev: device
8494 * @new_group: group this device should belong to
8495 */
8496void dev_set_group(struct net_device *dev, int new_group)
8497{
8498 dev->group = new_group;
8499}
8500EXPORT_SYMBOL(dev_set_group);
8501
d59cdf94
PM
8502/**
8503 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8504 * @dev: device
8505 * @addr: new address
8506 * @extack: netlink extended ack
8507 */
8508int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8509 struct netlink_ext_ack *extack)
8510{
8511 struct netdev_notifier_pre_changeaddr_info info = {
8512 .info.dev = dev,
8513 .info.extack = extack,
8514 .dev_addr = addr,
8515 };
8516 int rc;
8517
8518 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8519 return notifier_to_errno(rc);
8520}
8521EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8522
f0db275a
SH
8523/**
8524 * dev_set_mac_address - Change Media Access Control Address
8525 * @dev: device
8526 * @sa: new address
3a37a963 8527 * @extack: netlink extended ack
f0db275a
SH
8528 *
8529 * Change the hardware (MAC) address of the device
8530 */
3a37a963
PM
8531int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8532 struct netlink_ext_ack *extack)
1da177e4 8533{
d314774c 8534 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
8535 int err;
8536
d314774c 8537 if (!ops->ndo_set_mac_address)
1da177e4
LT
8538 return -EOPNOTSUPP;
8539 if (sa->sa_family != dev->type)
8540 return -EINVAL;
8541 if (!netif_device_present(dev))
8542 return -ENODEV;
d59cdf94
PM
8543 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8544 if (err)
8545 return err;
d314774c 8546 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
8547 if (err)
8548 return err;
fbdeca2d 8549 dev->addr_assign_type = NET_ADDR_SET;
f6521516 8550 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 8551 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 8552 return 0;
1da177e4 8553}
d1b19dff 8554EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 8555
4bf84c35
JP
8556/**
8557 * dev_change_carrier - Change device carrier
8558 * @dev: device
691b3b7e 8559 * @new_carrier: new value
4bf84c35
JP
8560 *
8561 * Change device carrier
8562 */
8563int dev_change_carrier(struct net_device *dev, bool new_carrier)
8564{
8565 const struct net_device_ops *ops = dev->netdev_ops;
8566
8567 if (!ops->ndo_change_carrier)
8568 return -EOPNOTSUPP;
8569 if (!netif_device_present(dev))
8570 return -ENODEV;
8571 return ops->ndo_change_carrier(dev, new_carrier);
8572}
8573EXPORT_SYMBOL(dev_change_carrier);
8574
66b52b0d
JP
8575/**
8576 * dev_get_phys_port_id - Get device physical port ID
8577 * @dev: device
8578 * @ppid: port ID
8579 *
8580 * Get device physical port ID
8581 */
8582int dev_get_phys_port_id(struct net_device *dev,
02637fce 8583 struct netdev_phys_item_id *ppid)
66b52b0d
JP
8584{
8585 const struct net_device_ops *ops = dev->netdev_ops;
8586
8587 if (!ops->ndo_get_phys_port_id)
8588 return -EOPNOTSUPP;
8589 return ops->ndo_get_phys_port_id(dev, ppid);
8590}
8591EXPORT_SYMBOL(dev_get_phys_port_id);
8592
db24a904
DA
8593/**
8594 * dev_get_phys_port_name - Get device physical port name
8595 * @dev: device
8596 * @name: port name
ed49e650 8597 * @len: limit of bytes to copy to name
db24a904
DA
8598 *
8599 * Get device physical port name
8600 */
8601int dev_get_phys_port_name(struct net_device *dev,
8602 char *name, size_t len)
8603{
8604 const struct net_device_ops *ops = dev->netdev_ops;
af3836df 8605 int err;
db24a904 8606
af3836df
JP
8607 if (ops->ndo_get_phys_port_name) {
8608 err = ops->ndo_get_phys_port_name(dev, name, len);
8609 if (err != -EOPNOTSUPP)
8610 return err;
8611 }
8612 return devlink_compat_phys_port_name_get(dev, name, len);
db24a904
DA
8613}
8614EXPORT_SYMBOL(dev_get_phys_port_name);
8615
d6abc596
FF
8616/**
8617 * dev_get_port_parent_id - Get the device's port parent identifier
8618 * @dev: network device
8619 * @ppid: pointer to a storage for the port's parent identifier
8620 * @recurse: allow/disallow recursion to lower devices
8621 *
8622 * Get the devices's port parent identifier
8623 */
8624int dev_get_port_parent_id(struct net_device *dev,
8625 struct netdev_phys_item_id *ppid,
8626 bool recurse)
8627{
8628 const struct net_device_ops *ops = dev->netdev_ops;
8629 struct netdev_phys_item_id first = { };
8630 struct net_device *lower_dev;
8631 struct list_head *iter;
7e1146e8
JP
8632 int err;
8633
8634 if (ops->ndo_get_port_parent_id) {
8635 err = ops->ndo_get_port_parent_id(dev, ppid);
8636 if (err != -EOPNOTSUPP)
8637 return err;
8638 }
d6abc596 8639
7e1146e8
JP
8640 err = devlink_compat_switch_id_get(dev, ppid);
8641 if (!err || err != -EOPNOTSUPP)
8642 return err;
d6abc596
FF
8643
8644 if (!recurse)
7e1146e8 8645 return -EOPNOTSUPP;
d6abc596
FF
8646
8647 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8648 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8649 if (err)
8650 break;
8651 if (!first.id_len)
8652 first = *ppid;
8653 else if (memcmp(&first, ppid, sizeof(*ppid)))
8654 return -ENODATA;
8655 }
8656
8657 return err;
8658}
8659EXPORT_SYMBOL(dev_get_port_parent_id);
8660
8661/**
8662 * netdev_port_same_parent_id - Indicate if two network devices have
8663 * the same port parent identifier
8664 * @a: first network device
8665 * @b: second network device
8666 */
8667bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8668{
8669 struct netdev_phys_item_id a_id = { };
8670 struct netdev_phys_item_id b_id = { };
8671
8672 if (dev_get_port_parent_id(a, &a_id, true) ||
8673 dev_get_port_parent_id(b, &b_id, true))
8674 return false;
8675
8676 return netdev_phys_item_id_same(&a_id, &b_id);
8677}
8678EXPORT_SYMBOL(netdev_port_same_parent_id);
8679
d746d707
AK
8680/**
8681 * dev_change_proto_down - update protocol port state information
8682 * @dev: device
8683 * @proto_down: new value
8684 *
8685 * This info can be used by switch drivers to set the phys state of the
8686 * port.
8687 */
8688int dev_change_proto_down(struct net_device *dev, bool proto_down)
8689{
8690 const struct net_device_ops *ops = dev->netdev_ops;
8691
8692 if (!ops->ndo_change_proto_down)
8693 return -EOPNOTSUPP;
8694 if (!netif_device_present(dev))
8695 return -ENODEV;
8696 return ops->ndo_change_proto_down(dev, proto_down);
8697}
8698EXPORT_SYMBOL(dev_change_proto_down);
8699
b5899679
AR
8700/**
8701 * dev_change_proto_down_generic - generic implementation for
8702 * ndo_change_proto_down that sets carrier according to
8703 * proto_down.
8704 *
8705 * @dev: device
8706 * @proto_down: new value
8707 */
8708int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8709{
8710 if (proto_down)
8711 netif_carrier_off(dev);
8712 else
8713 netif_carrier_on(dev);
8714 dev->proto_down = proto_down;
8715 return 0;
8716}
8717EXPORT_SYMBOL(dev_change_proto_down_generic);
8718
aa8d3a71
AN
8719struct bpf_xdp_link {
8720 struct bpf_link link;
8721 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8722 int flags;
8723};
8724
7f0a8382 8725static enum bpf_xdp_mode dev_xdp_mode(u32 flags)
d67b9cd2 8726{
7f0a8382
AN
8727 if (flags & XDP_FLAGS_HW_MODE)
8728 return XDP_MODE_HW;
8729 if (flags & XDP_FLAGS_DRV_MODE)
8730 return XDP_MODE_DRV;
8731 return XDP_MODE_SKB;
8732}
d67b9cd2 8733
7f0a8382
AN
8734static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8735{
8736 switch (mode) {
8737 case XDP_MODE_SKB:
8738 return generic_xdp_install;
8739 case XDP_MODE_DRV:
8740 case XDP_MODE_HW:
8741 return dev->netdev_ops->ndo_bpf;
8742 default:
8743 return NULL;
8744 };
8745}
118b4aa2 8746
aa8d3a71
AN
8747static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8748 enum bpf_xdp_mode mode)
8749{
8750 return dev->xdp_state[mode].link;
8751}
8752
7f0a8382
AN
8753static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8754 enum bpf_xdp_mode mode)
8755{
aa8d3a71
AN
8756 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8757
8758 if (link)
8759 return link->link.prog;
7f0a8382
AN
8760 return dev->xdp_state[mode].prog;
8761}
8762
8763u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8764{
8765 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
118b4aa2 8766
7f0a8382
AN
8767 return prog ? prog->aux->id : 0;
8768}
58038695 8769
aa8d3a71
AN
8770static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8771 struct bpf_xdp_link *link)
8772{
8773 dev->xdp_state[mode].link = link;
8774 dev->xdp_state[mode].prog = NULL;
8775}
8776
7f0a8382
AN
8777static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8778 struct bpf_prog *prog)
8779{
aa8d3a71 8780 dev->xdp_state[mode].link = NULL;
7f0a8382 8781 dev->xdp_state[mode].prog = prog;
d67b9cd2
DB
8782}
8783
7f0a8382
AN
8784static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8785 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8786 u32 flags, struct bpf_prog *prog)
d67b9cd2 8787{
f4e63525 8788 struct netdev_bpf xdp;
7e6897f9
BT
8789 int err;
8790
d67b9cd2 8791 memset(&xdp, 0, sizeof(xdp));
7f0a8382 8792 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
d67b9cd2 8793 xdp.extack = extack;
32d60277 8794 xdp.flags = flags;
d67b9cd2
DB
8795 xdp.prog = prog;
8796
7f0a8382
AN
8797 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
8798 * "moved" into driver), so they don't increment it on their own, but
8799 * they do decrement refcnt when program is detached or replaced.
8800 * Given net_device also owns link/prog, we need to bump refcnt here
8801 * to prevent drivers from underflowing it.
8802 */
8803 if (prog)
8804 bpf_prog_inc(prog);
7e6897f9 8805 err = bpf_op(dev, &xdp);
7f0a8382
AN
8806 if (err) {
8807 if (prog)
8808 bpf_prog_put(prog);
8809 return err;
8810 }
7e6897f9 8811
7f0a8382
AN
8812 if (mode != XDP_MODE_HW)
8813 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
7e6897f9 8814
7f0a8382 8815 return 0;
d67b9cd2
DB
8816}
8817
bd0b2e7f
JK
8818static void dev_xdp_uninstall(struct net_device *dev)
8819{
aa8d3a71 8820 struct bpf_xdp_link *link;
7f0a8382
AN
8821 struct bpf_prog *prog;
8822 enum bpf_xdp_mode mode;
8823 bpf_op_t bpf_op;
bd0b2e7f 8824
7f0a8382 8825 ASSERT_RTNL();
bd0b2e7f 8826
7f0a8382
AN
8827 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8828 prog = dev_xdp_prog(dev, mode);
8829 if (!prog)
8830 continue;
bd0b2e7f 8831
7f0a8382
AN
8832 bpf_op = dev_xdp_bpf_op(dev, mode);
8833 if (!bpf_op)
8834 continue;
bd0b2e7f 8835
7f0a8382
AN
8836 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8837
aa8d3a71
AN
8838 /* auto-detach link from net device */
8839 link = dev_xdp_link(dev, mode);
8840 if (link)
8841 link->dev = NULL;
8842 else
8843 bpf_prog_put(prog);
8844
8845 dev_xdp_set_link(dev, mode, NULL);
7f0a8382 8846 }
bd0b2e7f
JK
8847}
8848
d4baa936 8849static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
aa8d3a71
AN
8850 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8851 struct bpf_prog *old_prog, u32 flags)
a7862b45 8852{
d4baa936
AN
8853 struct bpf_prog *cur_prog;
8854 enum bpf_xdp_mode mode;
7f0a8382 8855 bpf_op_t bpf_op;
a7862b45
BB
8856 int err;
8857
85de8576
DB
8858 ASSERT_RTNL();
8859
aa8d3a71
AN
8860 /* either link or prog attachment, never both */
8861 if (link && (new_prog || old_prog))
8862 return -EINVAL;
8863 /* link supports only XDP mode flags */
8864 if (link && (flags & ~XDP_FLAGS_MODES)) {
8865 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8866 return -EINVAL;
8867 }
d4baa936
AN
8868 /* just one XDP mode bit should be set, zero defaults to SKB mode */
8869 if (hweight32(flags & XDP_FLAGS_MODES) > 1) {
8870 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8871 return -EINVAL;
8872 }
8873 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8874 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8875 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8876 return -EINVAL;
01dde20c 8877 }
b5cdae32 8878
d4baa936 8879 mode = dev_xdp_mode(flags);
aa8d3a71
AN
8880 /* can't replace attached link */
8881 if (dev_xdp_link(dev, mode)) {
8882 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8883 return -EBUSY;
8884 }
8885
d4baa936 8886 cur_prog = dev_xdp_prog(dev, mode);
aa8d3a71
AN
8887 /* can't replace attached prog with link */
8888 if (link && cur_prog) {
8889 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8890 return -EBUSY;
8891 }
d4baa936
AN
8892 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8893 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8894 return -EEXIST;
92234c8f 8895 }
d4baa936
AN
8896 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8897 NL_SET_ERR_MSG(extack, "XDP program already attached");
8898 return -EBUSY;
8899 }
8900
aa8d3a71
AN
8901 /* put effective new program into new_prog */
8902 if (link)
8903 new_prog = link->link.prog;
8904
d4baa936
AN
8905 if (new_prog) {
8906 bool offload = mode == XDP_MODE_HW;
7f0a8382
AN
8907 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8908 ? XDP_MODE_DRV : XDP_MODE_SKB;
8909
d4baa936 8910 if (!offload && dev_xdp_prog(dev, other_mode)) {
7f0a8382 8911 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
d67b9cd2 8912 return -EEXIST;
01dde20c 8913 }
d4baa936 8914 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
7f0a8382 8915 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
441a3303
JK
8916 return -EINVAL;
8917 }
d4baa936 8918 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
fbee97fe 8919 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
fbee97fe
DA
8920 return -EINVAL;
8921 }
d4baa936
AN
8922 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
8923 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
92164774
LB
8924 return -EINVAL;
8925 }
d4baa936 8926 }
92164774 8927
d4baa936
AN
8928 /* don't call drivers if the effective program didn't change */
8929 if (new_prog != cur_prog) {
8930 bpf_op = dev_xdp_bpf_op(dev, mode);
8931 if (!bpf_op) {
8932 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
8933 return -EOPNOTSUPP;
c14a9f63 8934 }
a7862b45 8935
d4baa936
AN
8936 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
8937 if (err)
8938 return err;
7f0a8382 8939 }
d4baa936 8940
aa8d3a71
AN
8941 if (link)
8942 dev_xdp_set_link(dev, mode, link);
8943 else
8944 dev_xdp_set_prog(dev, mode, new_prog);
d4baa936
AN
8945 if (cur_prog)
8946 bpf_prog_put(cur_prog);
a7862b45 8947
7f0a8382 8948 return 0;
a7862b45 8949}
a7862b45 8950
aa8d3a71
AN
8951static int dev_xdp_attach_link(struct net_device *dev,
8952 struct netlink_ext_ack *extack,
8953 struct bpf_xdp_link *link)
8954{
8955 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
8956}
8957
8958static int dev_xdp_detach_link(struct net_device *dev,
8959 struct netlink_ext_ack *extack,
8960 struct bpf_xdp_link *link)
8961{
8962 enum bpf_xdp_mode mode;
8963 bpf_op_t bpf_op;
8964
8965 ASSERT_RTNL();
8966
8967 mode = dev_xdp_mode(link->flags);
8968 if (dev_xdp_link(dev, mode) != link)
8969 return -EINVAL;
8970
8971 bpf_op = dev_xdp_bpf_op(dev, mode);
8972 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8973 dev_xdp_set_link(dev, mode, NULL);
8974 return 0;
8975}
8976
8977static void bpf_xdp_link_release(struct bpf_link *link)
8978{
8979 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8980
8981 rtnl_lock();
8982
8983 /* if racing with net_device's tear down, xdp_link->dev might be
8984 * already NULL, in which case link was already auto-detached
8985 */
8986 if (xdp_link->dev)
8987 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
8988
8989 rtnl_unlock();
8990}
8991
8992static void bpf_xdp_link_dealloc(struct bpf_link *link)
8993{
8994 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8995
8996 kfree(xdp_link);
8997}
8998
026a4c28
AN
8999static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9000 struct bpf_prog *old_prog)
9001{
9002 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9003 enum bpf_xdp_mode mode;
9004 bpf_op_t bpf_op;
9005 int err = 0;
9006
9007 rtnl_lock();
9008
9009 /* link might have been auto-released already, so fail */
9010 if (!xdp_link->dev) {
9011 err = -ENOLINK;
9012 goto out_unlock;
9013 }
9014
9015 if (old_prog && link->prog != old_prog) {
9016 err = -EPERM;
9017 goto out_unlock;
9018 }
9019 old_prog = link->prog;
9020 if (old_prog == new_prog) {
9021 /* no-op, don't disturb drivers */
9022 bpf_prog_put(new_prog);
9023 goto out_unlock;
9024 }
9025
9026 mode = dev_xdp_mode(xdp_link->flags);
9027 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9028 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9029 xdp_link->flags, new_prog);
9030 if (err)
9031 goto out_unlock;
9032
9033 old_prog = xchg(&link->prog, new_prog);
9034 bpf_prog_put(old_prog);
9035
9036out_unlock:
9037 rtnl_unlock();
9038 return err;
9039}
9040
aa8d3a71
AN
9041static const struct bpf_link_ops bpf_xdp_link_lops = {
9042 .release = bpf_xdp_link_release,
9043 .dealloc = bpf_xdp_link_dealloc,
026a4c28 9044 .update_prog = bpf_xdp_link_update,
aa8d3a71
AN
9045};
9046
9047int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9048{
9049 struct net *net = current->nsproxy->net_ns;
9050 struct bpf_link_primer link_primer;
9051 struct bpf_xdp_link *link;
9052 struct net_device *dev;
9053 int err, fd;
9054
9055 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9056 if (!dev)
9057 return -EINVAL;
9058
9059 link = kzalloc(sizeof(*link), GFP_USER);
9060 if (!link) {
9061 err = -ENOMEM;
9062 goto out_put_dev;
9063 }
9064
9065 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9066 link->dev = dev;
9067 link->flags = attr->link_create.flags;
9068
9069 err = bpf_link_prime(&link->link, &link_primer);
9070 if (err) {
9071 kfree(link);
9072 goto out_put_dev;
9073 }
9074
9075 rtnl_lock();
9076 err = dev_xdp_attach_link(dev, NULL, link);
9077 rtnl_unlock();
9078
9079 if (err) {
9080 bpf_link_cleanup(&link_primer);
9081 goto out_put_dev;
9082 }
9083
9084 fd = bpf_link_settle(&link_primer);
9085 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9086 dev_put(dev);
9087 return fd;
9088
9089out_put_dev:
9090 dev_put(dev);
9091 return err;
9092}
9093
d4baa936
AN
9094/**
9095 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9096 * @dev: device
9097 * @extack: netlink extended ack
9098 * @fd: new program fd or negative value to clear
9099 * @expected_fd: old program fd that userspace expects to replace or clear
9100 * @flags: xdp-related flags
9101 *
9102 * Set or clear a bpf program for a device
9103 */
9104int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9105 int fd, int expected_fd, u32 flags)
9106{
9107 enum bpf_xdp_mode mode = dev_xdp_mode(flags);
9108 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9109 int err;
9110
9111 ASSERT_RTNL();
9112
9113 if (fd >= 0) {
9114 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9115 mode != XDP_MODE_SKB);
9116 if (IS_ERR(new_prog))
9117 return PTR_ERR(new_prog);
9118 }
9119
9120 if (expected_fd >= 0) {
9121 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9122 mode != XDP_MODE_SKB);
9123 if (IS_ERR(old_prog)) {
9124 err = PTR_ERR(old_prog);
9125 old_prog = NULL;
9126 goto err_out;
9127 }
9128 }
9129
aa8d3a71 9130 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
d4baa936
AN
9131
9132err_out:
9133 if (err && new_prog)
9134 bpf_prog_put(new_prog);
9135 if (old_prog)
9136 bpf_prog_put(old_prog);
9137 return err;
9138}
9139
1da177e4
LT
9140/**
9141 * dev_new_index - allocate an ifindex
c4ea43c5 9142 * @net: the applicable net namespace
1da177e4
LT
9143 *
9144 * Returns a suitable unique value for a new device interface
9145 * number. The caller must hold the rtnl semaphore or the
9146 * dev_base_lock to be sure it remains unique.
9147 */
881d966b 9148static int dev_new_index(struct net *net)
1da177e4 9149{
aa79e66e 9150 int ifindex = net->ifindex;
f4563a75 9151
1da177e4
LT
9152 for (;;) {
9153 if (++ifindex <= 0)
9154 ifindex = 1;
881d966b 9155 if (!__dev_get_by_index(net, ifindex))
aa79e66e 9156 return net->ifindex = ifindex;
1da177e4
LT
9157 }
9158}
9159
1da177e4 9160/* Delayed registration/unregisteration */
3b5b34fd 9161static LIST_HEAD(net_todo_list);
200b916f 9162DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 9163
6f05f629 9164static void net_set_todo(struct net_device *dev)
1da177e4 9165{
1da177e4 9166 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 9167 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
9168}
9169
9b5e383c 9170static void rollback_registered_many(struct list_head *head)
93ee31f1 9171{
e93737b0 9172 struct net_device *dev, *tmp;
5cde2829 9173 LIST_HEAD(close_head);
9b5e383c 9174
93ee31f1
DL
9175 BUG_ON(dev_boot_phase);
9176 ASSERT_RTNL();
9177
e93737b0 9178 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 9179 /* Some devices call without registering
e93737b0
KK
9180 * for initialization unwind. Remove those
9181 * devices and proceed with the remaining.
9b5e383c
ED
9182 */
9183 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
9184 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
9185 dev->name, dev);
93ee31f1 9186
9b5e383c 9187 WARN_ON(1);
e93737b0
KK
9188 list_del(&dev->unreg_list);
9189 continue;
9b5e383c 9190 }
449f4544 9191 dev->dismantle = true;
9b5e383c 9192 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 9193 }
93ee31f1 9194
44345724 9195 /* If device is running, close it first. */
5cde2829
EB
9196 list_for_each_entry(dev, head, unreg_list)
9197 list_add_tail(&dev->close_list, &close_head);
99c4a26a 9198 dev_close_many(&close_head, true);
93ee31f1 9199
44345724 9200 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
9201 /* And unlink it from device chain. */
9202 unlist_netdevice(dev);
93ee31f1 9203
9b5e383c
ED
9204 dev->reg_state = NETREG_UNREGISTERING;
9205 }
41852497 9206 flush_all_backlogs();
93ee31f1
DL
9207
9208 synchronize_net();
9209
9b5e383c 9210 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
9211 struct sk_buff *skb = NULL;
9212
9b5e383c
ED
9213 /* Shutdown queueing discipline. */
9214 dev_shutdown(dev);
93ee31f1 9215
bd0b2e7f 9216 dev_xdp_uninstall(dev);
93ee31f1 9217
9b5e383c 9218 /* Notify protocols, that we are about to destroy
eb13da1a 9219 * this device. They should clean all the things.
9220 */
9b5e383c 9221 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 9222
395eea6c
MB
9223 if (!dev->rtnl_link_ops ||
9224 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
3d3ea5af 9225 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
38e01b30 9226 GFP_KERNEL, NULL, 0);
395eea6c 9227
9b5e383c
ED
9228 /*
9229 * Flush the unicast and multicast chains
9230 */
a748ee24 9231 dev_uc_flush(dev);
22bedad3 9232 dev_mc_flush(dev);
93ee31f1 9233
36fbf1e5 9234 netdev_name_node_alt_flush(dev);
ff927412
JP
9235 netdev_name_node_free(dev->name_node);
9236
9b5e383c
ED
9237 if (dev->netdev_ops->ndo_uninit)
9238 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 9239
395eea6c
MB
9240 if (skb)
9241 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 9242
9ff162a8
JP
9243 /* Notifier chain MUST detach us all upper devices. */
9244 WARN_ON(netdev_has_any_upper_dev(dev));
0f524a80 9245 WARN_ON(netdev_has_any_lower_dev(dev));
93ee31f1 9246
9b5e383c
ED
9247 /* Remove entries from kobject tree */
9248 netdev_unregister_kobject(dev);
024e9679
AD
9249#ifdef CONFIG_XPS
9250 /* Remove XPS queueing entries */
9251 netif_reset_xps_queues_gt(dev, 0);
9252#endif
9b5e383c 9253 }
93ee31f1 9254
850a545b 9255 synchronize_net();
395264d5 9256
a5ee1551 9257 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
9258 dev_put(dev);
9259}
9260
9261static void rollback_registered(struct net_device *dev)
9262{
9263 LIST_HEAD(single);
9264
9265 list_add(&dev->unreg_list, &single);
9266 rollback_registered_many(&single);
ceaaec98 9267 list_del(&single);
93ee31f1
DL
9268}
9269
fd867d51
JW
9270static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9271 struct net_device *upper, netdev_features_t features)
9272{
9273 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9274 netdev_features_t feature;
5ba3f7d6 9275 int feature_bit;
fd867d51 9276
3b89ea9c 9277 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9278 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9279 if (!(upper->wanted_features & feature)
9280 && (features & feature)) {
9281 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9282 &feature, upper->name);
9283 features &= ~feature;
9284 }
9285 }
9286
9287 return features;
9288}
9289
9290static void netdev_sync_lower_features(struct net_device *upper,
9291 struct net_device *lower, netdev_features_t features)
9292{
9293 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9294 netdev_features_t feature;
5ba3f7d6 9295 int feature_bit;
fd867d51 9296
3b89ea9c 9297 for_each_netdev_feature(upper_disables, feature_bit) {
5ba3f7d6 9298 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
9299 if (!(features & feature) && (lower->features & feature)) {
9300 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9301 &feature, lower->name);
9302 lower->wanted_features &= ~feature;
dd912306 9303 __netdev_update_features(lower);
fd867d51
JW
9304
9305 if (unlikely(lower->features & feature))
9306 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9307 &feature, lower->name);
dd912306
CW
9308 else
9309 netdev_features_change(lower);
fd867d51
JW
9310 }
9311 }
9312}
9313
c8f44aff
MM
9314static netdev_features_t netdev_fix_features(struct net_device *dev,
9315 netdev_features_t features)
b63365a2 9316{
57422dc5
MM
9317 /* Fix illegal checksum combinations */
9318 if ((features & NETIF_F_HW_CSUM) &&
9319 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 9320 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
9321 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9322 }
9323
b63365a2 9324 /* TSO requires that SG is present as well. */
ea2d3688 9325 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 9326 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 9327 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
9328 }
9329
ec5f0615
PS
9330 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9331 !(features & NETIF_F_IP_CSUM)) {
9332 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9333 features &= ~NETIF_F_TSO;
9334 features &= ~NETIF_F_TSO_ECN;
9335 }
9336
9337 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9338 !(features & NETIF_F_IPV6_CSUM)) {
9339 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9340 features &= ~NETIF_F_TSO6;
9341 }
9342
b1dc497b
AD
9343 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9344 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9345 features &= ~NETIF_F_TSO_MANGLEID;
9346
31d8b9e0
BH
9347 /* TSO ECN requires that TSO is present as well. */
9348 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9349 features &= ~NETIF_F_TSO_ECN;
9350
212b573f
MM
9351 /* Software GSO depends on SG. */
9352 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 9353 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
9354 features &= ~NETIF_F_GSO;
9355 }
9356
802ab55a
AD
9357 /* GSO partial features require GSO partial be set */
9358 if ((features & dev->gso_partial_features) &&
9359 !(features & NETIF_F_GSO_PARTIAL)) {
9360 netdev_dbg(dev,
9361 "Dropping partially supported GSO features since no GSO partial.\n");
9362 features &= ~dev->gso_partial_features;
9363 }
9364
fb1f5f79
MC
9365 if (!(features & NETIF_F_RXCSUM)) {
9366 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9367 * successfully merged by hardware must also have the
9368 * checksum verified by hardware. If the user does not
9369 * want to enable RXCSUM, logically, we should disable GRO_HW.
9370 */
9371 if (features & NETIF_F_GRO_HW) {
9372 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9373 features &= ~NETIF_F_GRO_HW;
9374 }
9375 }
9376
de8d5ab2
GP
9377 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9378 if (features & NETIF_F_RXFCS) {
9379 if (features & NETIF_F_LRO) {
9380 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9381 features &= ~NETIF_F_LRO;
9382 }
9383
9384 if (features & NETIF_F_GRO_HW) {
9385 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9386 features &= ~NETIF_F_GRO_HW;
9387 }
e6c6a929
GP
9388 }
9389
b63365a2
HX
9390 return features;
9391}
b63365a2 9392
6cb6a27c 9393int __netdev_update_features(struct net_device *dev)
5455c699 9394{
fd867d51 9395 struct net_device *upper, *lower;
c8f44aff 9396 netdev_features_t features;
fd867d51 9397 struct list_head *iter;
e7868a85 9398 int err = -1;
5455c699 9399
87267485
MM
9400 ASSERT_RTNL();
9401
5455c699
MM
9402 features = netdev_get_wanted_features(dev);
9403
9404 if (dev->netdev_ops->ndo_fix_features)
9405 features = dev->netdev_ops->ndo_fix_features(dev, features);
9406
9407 /* driver might be less strict about feature dependencies */
9408 features = netdev_fix_features(dev, features);
9409
fd867d51
JW
9410 /* some features can't be enabled if they're off an an upper device */
9411 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9412 features = netdev_sync_upper_features(dev, upper, features);
9413
5455c699 9414 if (dev->features == features)
e7868a85 9415 goto sync_lower;
5455c699 9416
c8f44aff
MM
9417 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9418 &dev->features, &features);
5455c699
MM
9419
9420 if (dev->netdev_ops->ndo_set_features)
9421 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
9422 else
9423 err = 0;
5455c699 9424
6cb6a27c 9425 if (unlikely(err < 0)) {
5455c699 9426 netdev_err(dev,
c8f44aff
MM
9427 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9428 err, &features, &dev->features);
17b85d29
NA
9429 /* return non-0 since some features might have changed and
9430 * it's better to fire a spurious notification than miss it
9431 */
9432 return -1;
6cb6a27c
MM
9433 }
9434
e7868a85 9435sync_lower:
fd867d51
JW
9436 /* some features must be disabled on lower devices when disabled
9437 * on an upper device (think: bonding master or bridge)
9438 */
9439 netdev_for_each_lower_dev(dev, lower, iter)
9440 netdev_sync_lower_features(dev, lower, features);
9441
ae847f40
SD
9442 if (!err) {
9443 netdev_features_t diff = features ^ dev->features;
9444
9445 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9446 /* udp_tunnel_{get,drop}_rx_info both need
9447 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9448 * device, or they won't do anything.
9449 * Thus we need to update dev->features
9450 * *before* calling udp_tunnel_get_rx_info,
9451 * but *after* calling udp_tunnel_drop_rx_info.
9452 */
9453 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9454 dev->features = features;
9455 udp_tunnel_get_rx_info(dev);
9456 } else {
9457 udp_tunnel_drop_rx_info(dev);
9458 }
9459 }
9460
9daae9bd
GP
9461 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9462 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9463 dev->features = features;
9464 err |= vlan_get_rx_ctag_filter_info(dev);
9465 } else {
9466 vlan_drop_rx_ctag_filter_info(dev);
9467 }
9468 }
9469
9470 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9471 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9472 dev->features = features;
9473 err |= vlan_get_rx_stag_filter_info(dev);
9474 } else {
9475 vlan_drop_rx_stag_filter_info(dev);
9476 }
9477 }
9478
6cb6a27c 9479 dev->features = features;
ae847f40 9480 }
6cb6a27c 9481
e7868a85 9482 return err < 0 ? 0 : 1;
6cb6a27c
MM
9483}
9484
afe12cc8
MM
9485/**
9486 * netdev_update_features - recalculate device features
9487 * @dev: the device to check
9488 *
9489 * Recalculate dev->features set and send notifications if it
9490 * has changed. Should be called after driver or hardware dependent
9491 * conditions might have changed that influence the features.
9492 */
6cb6a27c
MM
9493void netdev_update_features(struct net_device *dev)
9494{
9495 if (__netdev_update_features(dev))
9496 netdev_features_change(dev);
5455c699
MM
9497}
9498EXPORT_SYMBOL(netdev_update_features);
9499
afe12cc8
MM
9500/**
9501 * netdev_change_features - recalculate device features
9502 * @dev: the device to check
9503 *
9504 * Recalculate dev->features set and send notifications even
9505 * if they have not changed. Should be called instead of
9506 * netdev_update_features() if also dev->vlan_features might
9507 * have changed to allow the changes to be propagated to stacked
9508 * VLAN devices.
9509 */
9510void netdev_change_features(struct net_device *dev)
9511{
9512 __netdev_update_features(dev);
9513 netdev_features_change(dev);
9514}
9515EXPORT_SYMBOL(netdev_change_features);
9516
fc4a7489
PM
9517/**
9518 * netif_stacked_transfer_operstate - transfer operstate
9519 * @rootdev: the root or lower level device to transfer state from
9520 * @dev: the device to transfer operstate to
9521 *
9522 * Transfer operational state from root to device. This is normally
9523 * called when a stacking relationship exists between the root
9524 * device and the device(a leaf device).
9525 */
9526void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9527 struct net_device *dev)
9528{
9529 if (rootdev->operstate == IF_OPER_DORMANT)
9530 netif_dormant_on(dev);
9531 else
9532 netif_dormant_off(dev);
9533
eec517cd
AL
9534 if (rootdev->operstate == IF_OPER_TESTING)
9535 netif_testing_on(dev);
9536 else
9537 netif_testing_off(dev);
9538
0575c86b
ZS
9539 if (netif_carrier_ok(rootdev))
9540 netif_carrier_on(dev);
9541 else
9542 netif_carrier_off(dev);
fc4a7489
PM
9543}
9544EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9545
1b4bf461
ED
9546static int netif_alloc_rx_queues(struct net_device *dev)
9547{
1b4bf461 9548 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 9549 struct netdev_rx_queue *rx;
10595902 9550 size_t sz = count * sizeof(*rx);
e817f856 9551 int err = 0;
1b4bf461 9552
bd25fa7b 9553 BUG_ON(count < 1);
1b4bf461 9554
dcda9b04 9555 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9556 if (!rx)
9557 return -ENOMEM;
9558
bd25fa7b
TH
9559 dev->_rx = rx;
9560
e817f856 9561 for (i = 0; i < count; i++) {
fe822240 9562 rx[i].dev = dev;
e817f856
JDB
9563
9564 /* XDP RX-queue setup */
9565 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9566 if (err < 0)
9567 goto err_rxq_info;
9568 }
1b4bf461 9569 return 0;
e817f856
JDB
9570
9571err_rxq_info:
9572 /* Rollback successful reg's and free other resources */
9573 while (i--)
9574 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
141b52a9 9575 kvfree(dev->_rx);
e817f856
JDB
9576 dev->_rx = NULL;
9577 return err;
9578}
9579
9580static void netif_free_rx_queues(struct net_device *dev)
9581{
9582 unsigned int i, count = dev->num_rx_queues;
e817f856
JDB
9583
9584 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9585 if (!dev->_rx)
9586 return;
9587
e817f856 9588 for (i = 0; i < count; i++)
82aaff2f
JK
9589 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9590
9591 kvfree(dev->_rx);
1b4bf461
ED
9592}
9593
aa942104
CG
9594static void netdev_init_one_queue(struct net_device *dev,
9595 struct netdev_queue *queue, void *_unused)
9596{
9597 /* Initialize queue lock */
9598 spin_lock_init(&queue->_xmit_lock);
1a33e10e 9599 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
aa942104 9600 queue->xmit_lock_owner = -1;
b236da69 9601 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 9602 queue->dev = dev;
114cf580
TH
9603#ifdef CONFIG_BQL
9604 dql_init(&queue->dql, HZ);
9605#endif
aa942104
CG
9606}
9607
60877a32
ED
9608static void netif_free_tx_queues(struct net_device *dev)
9609{
4cb28970 9610 kvfree(dev->_tx);
60877a32
ED
9611}
9612
e6484930
TH
9613static int netif_alloc_netdev_queues(struct net_device *dev)
9614{
9615 unsigned int count = dev->num_tx_queues;
9616 struct netdev_queue *tx;
60877a32 9617 size_t sz = count * sizeof(*tx);
e6484930 9618
d339727c
ED
9619 if (count < 1 || count > 0xffff)
9620 return -EINVAL;
62b5942a 9621
dcda9b04 9622 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
da6bc57a
MH
9623 if (!tx)
9624 return -ENOMEM;
9625
e6484930 9626 dev->_tx = tx;
1d24eb48 9627
e6484930
TH
9628 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9629 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
9630
9631 return 0;
e6484930
TH
9632}
9633
a2029240
DV
9634void netif_tx_stop_all_queues(struct net_device *dev)
9635{
9636 unsigned int i;
9637
9638 for (i = 0; i < dev->num_tx_queues; i++) {
9639 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
f4563a75 9640
a2029240
DV
9641 netif_tx_stop_queue(txq);
9642 }
9643}
9644EXPORT_SYMBOL(netif_tx_stop_all_queues);
9645
1da177e4
LT
9646/**
9647 * register_netdevice - register a network device
9648 * @dev: device to register
9649 *
9650 * Take a completed network device structure and add it to the kernel
9651 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9652 * chain. 0 is returned on success. A negative errno code is returned
9653 * on a failure to set up the device, or if the name is a duplicate.
9654 *
9655 * Callers must hold the rtnl semaphore. You may want
9656 * register_netdev() instead of this.
9657 *
9658 * BUGS:
9659 * The locking appears insufficient to guarantee two parallel registers
9660 * will not get the same name.
9661 */
9662
9663int register_netdevice(struct net_device *dev)
9664{
1da177e4 9665 int ret;
d314774c 9666 struct net *net = dev_net(dev);
1da177e4 9667
e283de3a
FF
9668 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9669 NETDEV_FEATURE_COUNT);
1da177e4
LT
9670 BUG_ON(dev_boot_phase);
9671 ASSERT_RTNL();
9672
b17a7c17
SH
9673 might_sleep();
9674
1da177e4
LT
9675 /* When net_device's are persistent, this will be fatal. */
9676 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 9677 BUG_ON(!net);
1da177e4 9678
9000edb7
JK
9679 ret = ethtool_check_ops(dev->ethtool_ops);
9680 if (ret)
9681 return ret;
9682
f1f28aa3 9683 spin_lock_init(&dev->addr_list_lock);
845e0ebb 9684 netdev_set_addr_lockdep_class(dev);
1da177e4 9685
828de4f6 9686 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
9687 if (ret < 0)
9688 goto out;
9689
9077f052 9690 ret = -ENOMEM;
ff927412
JP
9691 dev->name_node = netdev_name_node_head_alloc(dev);
9692 if (!dev->name_node)
9693 goto out;
9694
1da177e4 9695 /* Init, if this function is available */
d314774c
SH
9696 if (dev->netdev_ops->ndo_init) {
9697 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
9698 if (ret) {
9699 if (ret > 0)
9700 ret = -EIO;
42c17fa6 9701 goto err_free_name;
1da177e4
LT
9702 }
9703 }
4ec93edb 9704
f646968f
PM
9705 if (((dev->hw_features | dev->features) &
9706 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
9707 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9708 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9709 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9710 ret = -EINVAL;
9711 goto err_uninit;
9712 }
9713
9c7dafbf
PE
9714 ret = -EBUSY;
9715 if (!dev->ifindex)
9716 dev->ifindex = dev_new_index(net);
9717 else if (__dev_get_by_index(net, dev->ifindex))
9718 goto err_uninit;
9719
5455c699
MM
9720 /* Transfer changeable features to wanted_features and enable
9721 * software offloads (GSO and GRO).
9722 */
1a3c998f 9723 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
14d1232f 9724 dev->features |= NETIF_F_SOFT_FEATURES;
d764a122
SD
9725
9726 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9727 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9728 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9729 }
9730
14d1232f 9731 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 9732
cbc53e08 9733 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 9734 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 9735
7f348a60
AD
9736 /* If IPv4 TCP segmentation offload is supported we should also
9737 * allow the device to enable segmenting the frame with the option
9738 * of ignoring a static IP ID value. This doesn't enable the
9739 * feature itself but allows the user to enable it later.
9740 */
cbc53e08
AD
9741 if (dev->hw_features & NETIF_F_TSO)
9742 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
9743 if (dev->vlan_features & NETIF_F_TSO)
9744 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9745 if (dev->mpls_features & NETIF_F_TSO)
9746 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9747 if (dev->hw_enc_features & NETIF_F_TSO)
9748 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 9749
1180e7d6 9750 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 9751 */
1180e7d6 9752 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 9753
ee579677
PS
9754 /* Make NETIF_F_SG inheritable to tunnel devices.
9755 */
802ab55a 9756 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 9757
0d89d203
SH
9758 /* Make NETIF_F_SG inheritable to MPLS.
9759 */
9760 dev->mpls_features |= NETIF_F_SG;
9761
7ffbe3fd
JB
9762 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9763 ret = notifier_to_errno(ret);
9764 if (ret)
9765 goto err_uninit;
9766
8b41d188 9767 ret = netdev_register_kobject(dev);
cb626bf5
JH
9768 if (ret) {
9769 dev->reg_state = NETREG_UNREGISTERED;
7ce1b0ed 9770 goto err_uninit;
cb626bf5 9771 }
b17a7c17
SH
9772 dev->reg_state = NETREG_REGISTERED;
9773
6cb6a27c 9774 __netdev_update_features(dev);
8e9b59b2 9775
1da177e4
LT
9776 /*
9777 * Default initial state at registry is that the
9778 * device is present.
9779 */
9780
9781 set_bit(__LINK_STATE_PRESENT, &dev->state);
9782
8f4cccbb
BH
9783 linkwatch_init_dev(dev);
9784
1da177e4 9785 dev_init_scheduler(dev);
1da177e4 9786 dev_hold(dev);
ce286d32 9787 list_netdevice(dev);
7bf23575 9788 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 9789
948b337e
JP
9790 /* If the device has permanent device address, driver should
9791 * set dev_addr and also addr_assign_type should be set to
9792 * NET_ADDR_PERM (default value).
9793 */
9794 if (dev->addr_assign_type == NET_ADDR_PERM)
9795 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9796
1da177e4 9797 /* Notify protocols, that a new device appeared. */
056925ab 9798 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 9799 ret = notifier_to_errno(ret);
93ee31f1
DL
9800 if (ret) {
9801 rollback_registered(dev);
10cc514f
SAK
9802 rcu_barrier();
9803
93ee31f1 9804 dev->reg_state = NETREG_UNREGISTERED;
814152a8
YY
9805 /* We should put the kobject that hold in
9806 * netdev_unregister_kobject(), otherwise
9807 * the net device cannot be freed when
9808 * driver calls free_netdev(), because the
9809 * kobject is being hold.
9810 */
9811 kobject_put(&dev->dev.kobj);
93ee31f1 9812 }
d90a909e
EB
9813 /*
9814 * Prevent userspace races by waiting until the network
9815 * device is fully setup before sending notifications.
9816 */
a2835763
PM
9817 if (!dev->rtnl_link_ops ||
9818 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 9819 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
9820
9821out:
9822 return ret;
7ce1b0ed
HX
9823
9824err_uninit:
d314774c
SH
9825 if (dev->netdev_ops->ndo_uninit)
9826 dev->netdev_ops->ndo_uninit(dev);
cf124db5
DM
9827 if (dev->priv_destructor)
9828 dev->priv_destructor(dev);
42c17fa6
DC
9829err_free_name:
9830 netdev_name_node_free(dev->name_node);
7ce1b0ed 9831 goto out;
1da177e4 9832}
d1b19dff 9833EXPORT_SYMBOL(register_netdevice);
1da177e4 9834
937f1ba5
BH
9835/**
9836 * init_dummy_netdev - init a dummy network device for NAPI
9837 * @dev: device to init
9838 *
9839 * This takes a network device structure and initialize the minimum
9840 * amount of fields so it can be used to schedule NAPI polls without
9841 * registering a full blown interface. This is to be used by drivers
9842 * that need to tie several hardware interfaces to a single NAPI
9843 * poll scheduler due to HW limitations.
9844 */
9845int init_dummy_netdev(struct net_device *dev)
9846{
9847 /* Clear everything. Note we don't initialize spinlocks
9848 * are they aren't supposed to be taken by any of the
9849 * NAPI code and this dummy netdev is supposed to be
9850 * only ever used for NAPI polls
9851 */
9852 memset(dev, 0, sizeof(struct net_device));
9853
9854 /* make sure we BUG if trying to hit standard
9855 * register/unregister code path
9856 */
9857 dev->reg_state = NETREG_DUMMY;
9858
937f1ba5
BH
9859 /* NAPI wants this */
9860 INIT_LIST_HEAD(&dev->napi_list);
9861
9862 /* a dummy interface is started by default */
9863 set_bit(__LINK_STATE_PRESENT, &dev->state);
9864 set_bit(__LINK_STATE_START, &dev->state);
9865
35edfdc7
JE
9866 /* napi_busy_loop stats accounting wants this */
9867 dev_net_set(dev, &init_net);
9868
29b4433d
ED
9869 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9870 * because users of this 'device' dont need to change
9871 * its refcount.
9872 */
9873
937f1ba5
BH
9874 return 0;
9875}
9876EXPORT_SYMBOL_GPL(init_dummy_netdev);
9877
9878
1da177e4
LT
9879/**
9880 * register_netdev - register a network device
9881 * @dev: device to register
9882 *
9883 * Take a completed network device structure and add it to the kernel
9884 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9885 * chain. 0 is returned on success. A negative errno code is returned
9886 * on a failure to set up the device, or if the name is a duplicate.
9887 *
38b4da38 9888 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
9889 * and expands the device name if you passed a format string to
9890 * alloc_netdev.
9891 */
9892int register_netdev(struct net_device *dev)
9893{
9894 int err;
9895
b0f3debc
KT
9896 if (rtnl_lock_killable())
9897 return -EINTR;
1da177e4 9898 err = register_netdevice(dev);
1da177e4
LT
9899 rtnl_unlock();
9900 return err;
9901}
9902EXPORT_SYMBOL(register_netdev);
9903
29b4433d
ED
9904int netdev_refcnt_read(const struct net_device *dev)
9905{
9906 int i, refcnt = 0;
9907
9908 for_each_possible_cpu(i)
9909 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9910 return refcnt;
9911}
9912EXPORT_SYMBOL(netdev_refcnt_read);
9913
2c53040f 9914/**
1da177e4 9915 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 9916 * @dev: target net_device
1da177e4
LT
9917 *
9918 * This is called when unregistering network devices.
9919 *
9920 * Any protocol or device that holds a reference should register
9921 * for netdevice notification, and cleanup and put back the
9922 * reference if they receive an UNREGISTER event.
9923 * We can get stuck here if buggy protocols don't correctly
4ec93edb 9924 * call dev_put.
1da177e4
LT
9925 */
9926static void netdev_wait_allrefs(struct net_device *dev)
9927{
9928 unsigned long rebroadcast_time, warning_time;
29b4433d 9929 int refcnt;
1da177e4 9930
e014debe
ED
9931 linkwatch_forget_dev(dev);
9932
1da177e4 9933 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
9934 refcnt = netdev_refcnt_read(dev);
9935
9936 while (refcnt != 0) {
1da177e4 9937 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 9938 rtnl_lock();
1da177e4
LT
9939
9940 /* Rebroadcast unregister notification */
056925ab 9941 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 9942
748e2d93 9943 __rtnl_unlock();
0115e8e3 9944 rcu_barrier();
748e2d93
ED
9945 rtnl_lock();
9946
1da177e4
LT
9947 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9948 &dev->state)) {
9949 /* We must not have linkwatch events
9950 * pending on unregister. If this
9951 * happens, we simply run the queue
9952 * unscheduled, resulting in a noop
9953 * for this device.
9954 */
9955 linkwatch_run_queue();
9956 }
9957
6756ae4b 9958 __rtnl_unlock();
1da177e4
LT
9959
9960 rebroadcast_time = jiffies;
9961 }
9962
9963 msleep(250);
9964
29b4433d
ED
9965 refcnt = netdev_refcnt_read(dev);
9966
d7c04b05 9967 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
9968 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9969 dev->name, refcnt);
1da177e4
LT
9970 warning_time = jiffies;
9971 }
9972 }
9973}
9974
9975/* The sequence is:
9976 *
9977 * rtnl_lock();
9978 * ...
9979 * register_netdevice(x1);
9980 * register_netdevice(x2);
9981 * ...
9982 * unregister_netdevice(y1);
9983 * unregister_netdevice(y2);
9984 * ...
9985 * rtnl_unlock();
9986 * free_netdev(y1);
9987 * free_netdev(y2);
9988 *
58ec3b4d 9989 * We are invoked by rtnl_unlock().
1da177e4 9990 * This allows us to deal with problems:
b17a7c17 9991 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
9992 * without deadlocking with linkwatch via keventd.
9993 * 2) Since we run with the RTNL semaphore not held, we can sleep
9994 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
9995 *
9996 * We must not return until all unregister events added during
9997 * the interval the lock was held have been completed.
1da177e4 9998 */
1da177e4
LT
9999void netdev_run_todo(void)
10000{
626ab0e6 10001 struct list_head list;
1da177e4 10002
1da177e4 10003 /* Snapshot list, allow later requests */
626ab0e6 10004 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
10005
10006 __rtnl_unlock();
626ab0e6 10007
0115e8e3
ED
10008
10009 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
10010 if (!list_empty(&list))
10011 rcu_barrier();
10012
1da177e4
LT
10013 while (!list_empty(&list)) {
10014 struct net_device *dev
e5e26d75 10015 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
10016 list_del(&dev->todo_list);
10017
b17a7c17 10018 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 10019 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
10020 dev->name, dev->reg_state);
10021 dump_stack();
10022 continue;
10023 }
1da177e4 10024
b17a7c17 10025 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 10026
b17a7c17 10027 netdev_wait_allrefs(dev);
1da177e4 10028
b17a7c17 10029 /* paranoia */
29b4433d 10030 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
10031 BUG_ON(!list_empty(&dev->ptype_all));
10032 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
10033 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10034 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
330c7272 10035#if IS_ENABLED(CONFIG_DECNET)
547b792c 10036 WARN_ON(dev->dn_ptr);
330c7272 10037#endif
cf124db5
DM
10038 if (dev->priv_destructor)
10039 dev->priv_destructor(dev);
10040 if (dev->needs_free_netdev)
10041 free_netdev(dev);
9093bbb2 10042
50624c93
EB
10043 /* Report a network device has been unregistered */
10044 rtnl_lock();
10045 dev_net(dev)->dev_unreg_count--;
10046 __rtnl_unlock();
10047 wake_up(&netdev_unregistering_wq);
10048
9093bbb2
SH
10049 /* Free network device */
10050 kobject_put(&dev->dev.kobj);
1da177e4 10051 }
1da177e4
LT
10052}
10053
9256645a
JW
10054/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10055 * all the same fields in the same order as net_device_stats, with only
10056 * the type differing, but rtnl_link_stats64 may have additional fields
10057 * at the end for newer counters.
3cfde79c 10058 */
77a1abf5
ED
10059void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10060 const struct net_device_stats *netdev_stats)
3cfde79c
BH
10061{
10062#if BITS_PER_LONG == 64
9256645a 10063 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9af9959e 10064 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9256645a
JW
10065 /* zero out counters that only exist in rtnl_link_stats64 */
10066 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10067 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 10068#else
9256645a 10069 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
10070 const unsigned long *src = (const unsigned long *)netdev_stats;
10071 u64 *dst = (u64 *)stats64;
10072
9256645a 10073 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
10074 for (i = 0; i < n; i++)
10075 dst[i] = src[i];
9256645a
JW
10076 /* zero out counters that only exist in rtnl_link_stats64 */
10077 memset((char *)stats64 + n * sizeof(u64), 0,
10078 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
10079#endif
10080}
77a1abf5 10081EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 10082
eeda3fd6
SH
10083/**
10084 * dev_get_stats - get network device statistics
10085 * @dev: device to get statistics from
28172739 10086 * @storage: place to store stats
eeda3fd6 10087 *
d7753516
BH
10088 * Get network statistics from device. Return @storage.
10089 * The device driver may provide its own method by setting
10090 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10091 * otherwise the internal statistics structure is used.
eeda3fd6 10092 */
d7753516
BH
10093struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10094 struct rtnl_link_stats64 *storage)
7004bf25 10095{
eeda3fd6
SH
10096 const struct net_device_ops *ops = dev->netdev_ops;
10097
28172739
ED
10098 if (ops->ndo_get_stats64) {
10099 memset(storage, 0, sizeof(*storage));
caf586e5
ED
10100 ops->ndo_get_stats64(dev, storage);
10101 } else if (ops->ndo_get_stats) {
3cfde79c 10102 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
10103 } else {
10104 netdev_stats_to_stats64(storage, &dev->stats);
28172739 10105 }
6f64ec74
ED
10106 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10107 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10108 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
28172739 10109 return storage;
c45d286e 10110}
eeda3fd6 10111EXPORT_SYMBOL(dev_get_stats);
c45d286e 10112
24824a09 10113struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 10114{
24824a09 10115 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 10116
24824a09
ED
10117#ifdef CONFIG_NET_CLS_ACT
10118 if (queue)
10119 return queue;
10120 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10121 if (!queue)
10122 return NULL;
10123 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 10124 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
10125 queue->qdisc_sleeping = &noop_qdisc;
10126 rcu_assign_pointer(dev->ingress_queue, queue);
10127#endif
10128 return queue;
bb949fbd
DM
10129}
10130
2c60db03
ED
10131static const struct ethtool_ops default_ethtool_ops;
10132
d07d7507
SG
10133void netdev_set_default_ethtool_ops(struct net_device *dev,
10134 const struct ethtool_ops *ops)
10135{
10136 if (dev->ethtool_ops == &default_ethtool_ops)
10137 dev->ethtool_ops = ops;
10138}
10139EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10140
74d332c1
ED
10141void netdev_freemem(struct net_device *dev)
10142{
10143 char *addr = (char *)dev - dev->padded;
10144
4cb28970 10145 kvfree(addr);
74d332c1
ED
10146}
10147
1da177e4 10148/**
722c9a0c 10149 * alloc_netdev_mqs - allocate network device
10150 * @sizeof_priv: size of private data to allocate space for
10151 * @name: device name format string
10152 * @name_assign_type: origin of device name
10153 * @setup: callback to initialize device
10154 * @txqs: the number of TX subqueues to allocate
10155 * @rxqs: the number of RX subqueues to allocate
10156 *
10157 * Allocates a struct net_device with private data area for driver use
10158 * and performs basic initialization. Also allocates subqueue structs
10159 * for each queue on the device.
1da177e4 10160 */
36909ea4 10161struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 10162 unsigned char name_assign_type,
36909ea4
TH
10163 void (*setup)(struct net_device *),
10164 unsigned int txqs, unsigned int rxqs)
1da177e4 10165{
1da177e4 10166 struct net_device *dev;
52a59bd5 10167 unsigned int alloc_size;
1ce8e7b5 10168 struct net_device *p;
1da177e4 10169
b6fe17d6
SH
10170 BUG_ON(strlen(name) >= sizeof(dev->name));
10171
36909ea4 10172 if (txqs < 1) {
7b6cd1ce 10173 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
10174 return NULL;
10175 }
10176
36909ea4 10177 if (rxqs < 1) {
7b6cd1ce 10178 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
10179 return NULL;
10180 }
36909ea4 10181
fd2ea0a7 10182 alloc_size = sizeof(struct net_device);
d1643d24
AD
10183 if (sizeof_priv) {
10184 /* ensure 32-byte alignment of private area */
1ce8e7b5 10185 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
10186 alloc_size += sizeof_priv;
10187 }
10188 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 10189 alloc_size += NETDEV_ALIGN - 1;
1da177e4 10190
dcda9b04 10191 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
62b5942a 10192 if (!p)
1da177e4 10193 return NULL;
1da177e4 10194
1ce8e7b5 10195 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 10196 dev->padded = (char *)dev - (char *)p;
ab9c73cc 10197
29b4433d
ED
10198 dev->pcpu_refcnt = alloc_percpu(int);
10199 if (!dev->pcpu_refcnt)
74d332c1 10200 goto free_dev;
ab9c73cc 10201
ab9c73cc 10202 if (dev_addr_init(dev))
29b4433d 10203 goto free_pcpu;
ab9c73cc 10204
22bedad3 10205 dev_mc_init(dev);
a748ee24 10206 dev_uc_init(dev);
ccffad25 10207
c346dca1 10208 dev_net_set(dev, &init_net);
1da177e4 10209
8d3bdbd5 10210 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 10211 dev->gso_max_segs = GSO_MAX_SEGS;
5343da4c
TY
10212 dev->upper_level = 1;
10213 dev->lower_level = 1;
8d3bdbd5 10214
8d3bdbd5
DM
10215 INIT_LIST_HEAD(&dev->napi_list);
10216 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 10217 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 10218 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
10219 INIT_LIST_HEAD(&dev->adj_list.upper);
10220 INIT_LIST_HEAD(&dev->adj_list.lower);
7866a621
SN
10221 INIT_LIST_HEAD(&dev->ptype_all);
10222 INIT_LIST_HEAD(&dev->ptype_specific);
93642e14 10223 INIT_LIST_HEAD(&dev->net_notifier_list);
59cc1f61
JK
10224#ifdef CONFIG_NET_SCHED
10225 hash_init(dev->qdisc_hash);
10226#endif
02875878 10227 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
10228 setup(dev);
10229
a813104d 10230 if (!dev->tx_queue_len) {
f84bb1ea 10231 dev->priv_flags |= IFF_NO_QUEUE;
11597084 10232 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
a813104d 10233 }
906470c1 10234
36909ea4
TH
10235 dev->num_tx_queues = txqs;
10236 dev->real_num_tx_queues = txqs;
ed9af2e8 10237 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 10238 goto free_all;
e8a0464c 10239
36909ea4
TH
10240 dev->num_rx_queues = rxqs;
10241 dev->real_num_rx_queues = rxqs;
fe822240 10242 if (netif_alloc_rx_queues(dev))
8d3bdbd5 10243 goto free_all;
0a9627f2 10244
1da177e4 10245 strcpy(dev->name, name);
c835a677 10246 dev->name_assign_type = name_assign_type;
cbda10fa 10247 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
10248 if (!dev->ethtool_ops)
10249 dev->ethtool_ops = &default_ethtool_ops;
e687ad60 10250
357b6cc5 10251 nf_hook_ingress_init(dev);
e687ad60 10252
1da177e4 10253 return dev;
ab9c73cc 10254
8d3bdbd5
DM
10255free_all:
10256 free_netdev(dev);
10257 return NULL;
10258
29b4433d
ED
10259free_pcpu:
10260 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
10261free_dev:
10262 netdev_freemem(dev);
ab9c73cc 10263 return NULL;
1da177e4 10264}
36909ea4 10265EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
10266
10267/**
722c9a0c 10268 * free_netdev - free network device
10269 * @dev: device
1da177e4 10270 *
722c9a0c 10271 * This function does the last stage of destroying an allocated device
10272 * interface. The reference to the device object is released. If this
10273 * is the last reference then it will be freed.Must be called in process
10274 * context.
1da177e4
LT
10275 */
10276void free_netdev(struct net_device *dev)
10277{
d565b0a1
HX
10278 struct napi_struct *p, *n;
10279
93d05d4a 10280 might_sleep();
60877a32 10281 netif_free_tx_queues(dev);
e817f856 10282 netif_free_rx_queues(dev);
e8a0464c 10283
33d480ce 10284 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 10285
f001fde5
JP
10286 /* Flush device addresses */
10287 dev_addr_flush(dev);
10288
d565b0a1
HX
10289 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10290 netif_napi_del(p);
10291
29b4433d
ED
10292 free_percpu(dev->pcpu_refcnt);
10293 dev->pcpu_refcnt = NULL;
75ccae62
THJ
10294 free_percpu(dev->xdp_bulkq);
10295 dev->xdp_bulkq = NULL;
29b4433d 10296
3041a069 10297 /* Compatibility with error handling in drivers */
1da177e4 10298 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 10299 netdev_freemem(dev);
1da177e4
LT
10300 return;
10301 }
10302
10303 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10304 dev->reg_state = NETREG_RELEASED;
10305
43cb76d9
GKH
10306 /* will free via device release */
10307 put_device(&dev->dev);
1da177e4 10308}
d1b19dff 10309EXPORT_SYMBOL(free_netdev);
4ec93edb 10310
f0db275a
SH
10311/**
10312 * synchronize_net - Synchronize with packet receive processing
10313 *
10314 * Wait for packets currently being received to be done.
10315 * Does not block later packets from starting.
10316 */
4ec93edb 10317void synchronize_net(void)
1da177e4
LT
10318{
10319 might_sleep();
be3fc413
ED
10320 if (rtnl_is_locked())
10321 synchronize_rcu_expedited();
10322 else
10323 synchronize_rcu();
1da177e4 10324}
d1b19dff 10325EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
10326
10327/**
44a0873d 10328 * unregister_netdevice_queue - remove device from the kernel
1da177e4 10329 * @dev: device
44a0873d 10330 * @head: list
6ebfbc06 10331 *
1da177e4 10332 * This function shuts down a device interface and removes it
d59b54b1 10333 * from the kernel tables.
44a0873d 10334 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
10335 *
10336 * Callers must hold the rtnl semaphore. You may want
10337 * unregister_netdev() instead of this.
10338 */
10339
44a0873d 10340void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 10341{
a6620712
HX
10342 ASSERT_RTNL();
10343
44a0873d 10344 if (head) {
9fdce099 10345 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
10346 } else {
10347 rollback_registered(dev);
10348 /* Finish processing unregister after unlock */
10349 net_set_todo(dev);
10350 }
1da177e4 10351}
44a0873d 10352EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 10353
9b5e383c
ED
10354/**
10355 * unregister_netdevice_many - unregister many devices
10356 * @head: list of devices
87757a91
ED
10357 *
10358 * Note: As most callers use a stack allocated list_head,
10359 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
10360 */
10361void unregister_netdevice_many(struct list_head *head)
10362{
10363 struct net_device *dev;
10364
10365 if (!list_empty(head)) {
10366 rollback_registered_many(head);
10367 list_for_each_entry(dev, head, unreg_list)
10368 net_set_todo(dev);
87757a91 10369 list_del(head);
9b5e383c
ED
10370 }
10371}
63c8099d 10372EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 10373
1da177e4
LT
10374/**
10375 * unregister_netdev - remove device from the kernel
10376 * @dev: device
10377 *
10378 * This function shuts down a device interface and removes it
d59b54b1 10379 * from the kernel tables.
1da177e4
LT
10380 *
10381 * This is just a wrapper for unregister_netdevice that takes
10382 * the rtnl semaphore. In general you want to use this and not
10383 * unregister_netdevice.
10384 */
10385void unregister_netdev(struct net_device *dev)
10386{
10387 rtnl_lock();
10388 unregister_netdevice(dev);
10389 rtnl_unlock();
10390}
1da177e4
LT
10391EXPORT_SYMBOL(unregister_netdev);
10392
ce286d32
EB
10393/**
10394 * dev_change_net_namespace - move device to different nethost namespace
10395 * @dev: device
10396 * @net: network namespace
10397 * @pat: If not NULL name pattern to try if the current device name
10398 * is already taken in the destination network namespace.
10399 *
10400 * This function shuts down a device interface and moves it
10401 * to a new network namespace. On success 0 is returned, on
10402 * a failure a netagive errno code is returned.
10403 *
10404 * Callers must hold the rtnl semaphore.
10405 */
10406
10407int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10408{
ef6a4c88 10409 struct net *net_old = dev_net(dev);
38e01b30 10410 int err, new_nsid, new_ifindex;
ce286d32
EB
10411
10412 ASSERT_RTNL();
10413
10414 /* Don't allow namespace local devices to be moved. */
10415 err = -EINVAL;
10416 if (dev->features & NETIF_F_NETNS_LOCAL)
10417 goto out;
10418
10419 /* Ensure the device has been registrered */
ce286d32
EB
10420 if (dev->reg_state != NETREG_REGISTERED)
10421 goto out;
10422
10423 /* Get out if there is nothing todo */
10424 err = 0;
ef6a4c88 10425 if (net_eq(net_old, net))
ce286d32
EB
10426 goto out;
10427
10428 /* Pick the destination device name, and ensure
10429 * we can use it in the destination network namespace.
10430 */
10431 err = -EEXIST;
d9031024 10432 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
10433 /* We get here if we can't use the current device name */
10434 if (!pat)
10435 goto out;
7892bd08
LR
10436 err = dev_get_valid_name(net, dev, pat);
10437 if (err < 0)
ce286d32
EB
10438 goto out;
10439 }
10440
10441 /*
10442 * And now a mini version of register_netdevice unregister_netdevice.
10443 */
10444
10445 /* If device is running close it first. */
9b772652 10446 dev_close(dev);
ce286d32
EB
10447
10448 /* And unlink it from device chain */
ce286d32
EB
10449 unlist_netdevice(dev);
10450
10451 synchronize_net();
10452
10453 /* Shutdown queueing discipline. */
10454 dev_shutdown(dev);
10455
10456 /* Notify protocols, that we are about to destroy
eb13da1a 10457 * this device. They should clean all the things.
10458 *
10459 * Note that dev->reg_state stays at NETREG_REGISTERED.
10460 * This is wanted because this way 8021q and macvlan know
10461 * the device is just moving and can keep their slaves up.
10462 */
ce286d32 10463 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43 10464 rcu_barrier();
38e01b30 10465
d4e4fdf9 10466 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
38e01b30
ND
10467 /* If there is an ifindex conflict assign a new one */
10468 if (__dev_get_by_index(net, dev->ifindex))
10469 new_ifindex = dev_new_index(net);
10470 else
10471 new_ifindex = dev->ifindex;
10472
10473 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10474 new_ifindex);
ce286d32
EB
10475
10476 /*
10477 * Flush the unicast and multicast chains
10478 */
a748ee24 10479 dev_uc_flush(dev);
22bedad3 10480 dev_mc_flush(dev);
ce286d32 10481
4e66ae2e
SH
10482 /* Send a netdev-removed uevent to the old namespace */
10483 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 10484 netdev_adjacent_del_links(dev);
4e66ae2e 10485
93642e14
JP
10486 /* Move per-net netdevice notifiers that are following the netdevice */
10487 move_netdevice_notifiers_dev_net(dev, net);
10488
ce286d32 10489 /* Actually switch the network namespace */
c346dca1 10490 dev_net_set(dev, net);
38e01b30 10491 dev->ifindex = new_ifindex;
ce286d32 10492
4e66ae2e
SH
10493 /* Send a netdev-add uevent to the new namespace */
10494 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 10495 netdev_adjacent_add_links(dev);
4e66ae2e 10496
8b41d188 10497 /* Fixup kobjects */
a1b3f594 10498 err = device_rename(&dev->dev, dev->name);
8b41d188 10499 WARN_ON(err);
ce286d32 10500
ef6a4c88
CB
10501 /* Adapt owner in case owning user namespace of target network
10502 * namespace is different from the original one.
10503 */
10504 err = netdev_change_owner(dev, net_old, net);
10505 WARN_ON(err);
10506
ce286d32
EB
10507 /* Add the device back in the hashes */
10508 list_netdevice(dev);
10509
10510 /* Notify protocols, that a new device appeared. */
10511 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10512
d90a909e
EB
10513 /*
10514 * Prevent userspace races by waiting until the network
10515 * device is fully setup before sending notifications.
10516 */
7f294054 10517 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 10518
ce286d32
EB
10519 synchronize_net();
10520 err = 0;
10521out:
10522 return err;
10523}
463d0183 10524EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 10525
f0bf90de 10526static int dev_cpu_dead(unsigned int oldcpu)
1da177e4
LT
10527{
10528 struct sk_buff **list_skb;
1da177e4 10529 struct sk_buff *skb;
f0bf90de 10530 unsigned int cpu;
97d8b6e3 10531 struct softnet_data *sd, *oldsd, *remsd = NULL;
1da177e4 10532
1da177e4
LT
10533 local_irq_disable();
10534 cpu = smp_processor_id();
10535 sd = &per_cpu(softnet_data, cpu);
10536 oldsd = &per_cpu(softnet_data, oldcpu);
10537
10538 /* Find end of our completion_queue. */
10539 list_skb = &sd->completion_queue;
10540 while (*list_skb)
10541 list_skb = &(*list_skb)->next;
10542 /* Append completion queue from offline CPU. */
10543 *list_skb = oldsd->completion_queue;
10544 oldsd->completion_queue = NULL;
10545
1da177e4 10546 /* Append output queue from offline CPU. */
a9cbd588
CG
10547 if (oldsd->output_queue) {
10548 *sd->output_queue_tailp = oldsd->output_queue;
10549 sd->output_queue_tailp = oldsd->output_queue_tailp;
10550 oldsd->output_queue = NULL;
10551 oldsd->output_queue_tailp = &oldsd->output_queue;
10552 }
ac64da0b
ED
10553 /* Append NAPI poll list from offline CPU, with one exception :
10554 * process_backlog() must be called by cpu owning percpu backlog.
10555 * We properly handle process_queue & input_pkt_queue later.
10556 */
10557 while (!list_empty(&oldsd->poll_list)) {
10558 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10559 struct napi_struct,
10560 poll_list);
10561
10562 list_del_init(&napi->poll_list);
10563 if (napi->poll == process_backlog)
10564 napi->state = 0;
10565 else
10566 ____napi_schedule(sd, napi);
264524d5 10567 }
1da177e4
LT
10568
10569 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10570 local_irq_enable();
10571
773fc8f6 10572#ifdef CONFIG_RPS
10573 remsd = oldsd->rps_ipi_list;
10574 oldsd->rps_ipi_list = NULL;
10575#endif
10576 /* send out pending IPI's on offline CPU */
10577 net_rps_send_ipi(remsd);
10578
1da177e4 10579 /* Process offline CPU's input_pkt_queue */
76cc8b13 10580 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 10581 netif_rx_ni(skb);
76cc8b13 10582 input_queue_head_incr(oldsd);
fec5e652 10583 }
ac64da0b 10584 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 10585 netif_rx_ni(skb);
76cc8b13
TH
10586 input_queue_head_incr(oldsd);
10587 }
1da177e4 10588
f0bf90de 10589 return 0;
1da177e4 10590}
1da177e4 10591
7f353bf2 10592/**
b63365a2
HX
10593 * netdev_increment_features - increment feature set by one
10594 * @all: current feature set
10595 * @one: new feature set
10596 * @mask: mask feature set
7f353bf2
HX
10597 *
10598 * Computes a new feature set after adding a device with feature set
b63365a2
HX
10599 * @one to the master device with current feature set @all. Will not
10600 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 10601 */
c8f44aff
MM
10602netdev_features_t netdev_increment_features(netdev_features_t all,
10603 netdev_features_t one, netdev_features_t mask)
b63365a2 10604{
c8cd0989 10605 if (mask & NETIF_F_HW_CSUM)
a188222b 10606 mask |= NETIF_F_CSUM_MASK;
1742f183 10607 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 10608
a188222b 10609 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 10610 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 10611
1742f183 10612 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
10613 if (all & NETIF_F_HW_CSUM)
10614 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
10615
10616 return all;
10617}
b63365a2 10618EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 10619
430f03cd 10620static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
10621{
10622 int i;
10623 struct hlist_head *hash;
10624
6da2ec56 10625 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
30d97d35
PE
10626 if (hash != NULL)
10627 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10628 INIT_HLIST_HEAD(&hash[i]);
10629
10630 return hash;
10631}
10632
881d966b 10633/* Initialize per network namespace state */
4665079c 10634static int __net_init netdev_init(struct net *net)
881d966b 10635{
d9f37d01 10636 BUILD_BUG_ON(GRO_HASH_BUCKETS >
c593642c 10637 8 * sizeof_field(struct napi_struct, gro_bitmask));
d9f37d01 10638
734b6541
RM
10639 if (net != &init_net)
10640 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 10641
30d97d35
PE
10642 net->dev_name_head = netdev_create_hash();
10643 if (net->dev_name_head == NULL)
10644 goto err_name;
881d966b 10645
30d97d35
PE
10646 net->dev_index_head = netdev_create_hash();
10647 if (net->dev_index_head == NULL)
10648 goto err_idx;
881d966b 10649
a30c7b42
JP
10650 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10651
881d966b 10652 return 0;
30d97d35
PE
10653
10654err_idx:
10655 kfree(net->dev_name_head);
10656err_name:
10657 return -ENOMEM;
881d966b
EB
10658}
10659
f0db275a
SH
10660/**
10661 * netdev_drivername - network driver for the device
10662 * @dev: network device
f0db275a
SH
10663 *
10664 * Determine network driver for device.
10665 */
3019de12 10666const char *netdev_drivername(const struct net_device *dev)
6579e57b 10667{
cf04a4c7
SH
10668 const struct device_driver *driver;
10669 const struct device *parent;
3019de12 10670 const char *empty = "";
6579e57b
AV
10671
10672 parent = dev->dev.parent;
6579e57b 10673 if (!parent)
3019de12 10674 return empty;
6579e57b
AV
10675
10676 driver = parent->driver;
10677 if (driver && driver->name)
3019de12
DM
10678 return driver->name;
10679 return empty;
6579e57b
AV
10680}
10681
6ea754eb
JP
10682static void __netdev_printk(const char *level, const struct net_device *dev,
10683 struct va_format *vaf)
256df2f3 10684{
b004ff49 10685 if (dev && dev->dev.parent) {
6ea754eb
JP
10686 dev_printk_emit(level[1] - '0',
10687 dev->dev.parent,
10688 "%s %s %s%s: %pV",
10689 dev_driver_string(dev->dev.parent),
10690 dev_name(dev->dev.parent),
10691 netdev_name(dev), netdev_reg_state(dev),
10692 vaf);
b004ff49 10693 } else if (dev) {
6ea754eb
JP
10694 printk("%s%s%s: %pV",
10695 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 10696 } else {
6ea754eb 10697 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 10698 }
256df2f3
JP
10699}
10700
6ea754eb
JP
10701void netdev_printk(const char *level, const struct net_device *dev,
10702 const char *format, ...)
256df2f3
JP
10703{
10704 struct va_format vaf;
10705 va_list args;
256df2f3
JP
10706
10707 va_start(args, format);
10708
10709 vaf.fmt = format;
10710 vaf.va = &args;
10711
6ea754eb 10712 __netdev_printk(level, dev, &vaf);
b004ff49 10713
256df2f3 10714 va_end(args);
256df2f3
JP
10715}
10716EXPORT_SYMBOL(netdev_printk);
10717
10718#define define_netdev_printk_level(func, level) \
6ea754eb 10719void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 10720{ \
256df2f3
JP
10721 struct va_format vaf; \
10722 va_list args; \
10723 \
10724 va_start(args, fmt); \
10725 \
10726 vaf.fmt = fmt; \
10727 vaf.va = &args; \
10728 \
6ea754eb 10729 __netdev_printk(level, dev, &vaf); \
b004ff49 10730 \
256df2f3 10731 va_end(args); \
256df2f3
JP
10732} \
10733EXPORT_SYMBOL(func);
10734
10735define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10736define_netdev_printk_level(netdev_alert, KERN_ALERT);
10737define_netdev_printk_level(netdev_crit, KERN_CRIT);
10738define_netdev_printk_level(netdev_err, KERN_ERR);
10739define_netdev_printk_level(netdev_warn, KERN_WARNING);
10740define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10741define_netdev_printk_level(netdev_info, KERN_INFO);
10742
4665079c 10743static void __net_exit netdev_exit(struct net *net)
881d966b
EB
10744{
10745 kfree(net->dev_name_head);
10746 kfree(net->dev_index_head);
ee21b18b
VA
10747 if (net != &init_net)
10748 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
881d966b
EB
10749}
10750
022cbae6 10751static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
10752 .init = netdev_init,
10753 .exit = netdev_exit,
10754};
10755
4665079c 10756static void __net_exit default_device_exit(struct net *net)
ce286d32 10757{
e008b5fc 10758 struct net_device *dev, *aux;
ce286d32 10759 /*
e008b5fc 10760 * Push all migratable network devices back to the
ce286d32
EB
10761 * initial network namespace
10762 */
10763 rtnl_lock();
e008b5fc 10764 for_each_netdev_safe(net, dev, aux) {
ce286d32 10765 int err;
aca51397 10766 char fb_name[IFNAMSIZ];
ce286d32
EB
10767
10768 /* Ignore unmoveable devices (i.e. loopback) */
10769 if (dev->features & NETIF_F_NETNS_LOCAL)
10770 continue;
10771
e008b5fc
EB
10772 /* Leave virtual devices for the generic cleanup */
10773 if (dev->rtnl_link_ops)
10774 continue;
d0c082ce 10775
25985edc 10776 /* Push remaining network devices to init_net */
aca51397 10777 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
55b40dbf
JP
10778 if (__dev_get_by_name(&init_net, fb_name))
10779 snprintf(fb_name, IFNAMSIZ, "dev%%d");
aca51397 10780 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 10781 if (err) {
7b6cd1ce
JP
10782 pr_emerg("%s: failed to move %s to init_net: %d\n",
10783 __func__, dev->name, err);
aca51397 10784 BUG();
ce286d32
EB
10785 }
10786 }
10787 rtnl_unlock();
10788}
10789
50624c93
EB
10790static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10791{
10792 /* Return with the rtnl_lock held when there are no network
10793 * devices unregistering in any network namespace in net_list.
10794 */
10795 struct net *net;
10796 bool unregistering;
ff960a73 10797 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 10798
ff960a73 10799 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 10800 for (;;) {
50624c93
EB
10801 unregistering = false;
10802 rtnl_lock();
10803 list_for_each_entry(net, net_list, exit_list) {
10804 if (net->dev_unreg_count > 0) {
10805 unregistering = true;
10806 break;
10807 }
10808 }
10809 if (!unregistering)
10810 break;
10811 __rtnl_unlock();
ff960a73
PZ
10812
10813 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 10814 }
ff960a73 10815 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
10816}
10817
04dc7f6b
EB
10818static void __net_exit default_device_exit_batch(struct list_head *net_list)
10819{
10820 /* At exit all network devices most be removed from a network
b595076a 10821 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
10822 * Do this across as many network namespaces as possible to
10823 * improve batching efficiency.
10824 */
10825 struct net_device *dev;
10826 struct net *net;
10827 LIST_HEAD(dev_kill_list);
10828
50624c93
EB
10829 /* To prevent network device cleanup code from dereferencing
10830 * loopback devices or network devices that have been freed
10831 * wait here for all pending unregistrations to complete,
10832 * before unregistring the loopback device and allowing the
10833 * network namespace be freed.
10834 *
10835 * The netdev todo list containing all network devices
10836 * unregistrations that happen in default_device_exit_batch
10837 * will run in the rtnl_unlock() at the end of
10838 * default_device_exit_batch.
10839 */
10840 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
10841 list_for_each_entry(net, net_list, exit_list) {
10842 for_each_netdev_reverse(net, dev) {
b0ab2fab 10843 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
10844 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10845 else
10846 unregister_netdevice_queue(dev, &dev_kill_list);
10847 }
10848 }
10849 unregister_netdevice_many(&dev_kill_list);
10850 rtnl_unlock();
10851}
10852
022cbae6 10853static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 10854 .exit = default_device_exit,
04dc7f6b 10855 .exit_batch = default_device_exit_batch,
ce286d32
EB
10856};
10857
1da177e4
LT
10858/*
10859 * Initialize the DEV module. At boot time this walks the device list and
10860 * unhooks any devices that fail to initialise (normally hardware not
10861 * present) and leaves us with a valid list of present and active devices.
10862 *
10863 */
10864
10865/*
10866 * This is called single threaded during boot, so no need
10867 * to take the rtnl semaphore.
10868 */
10869static int __init net_dev_init(void)
10870{
10871 int i, rc = -ENOMEM;
10872
10873 BUG_ON(!dev_boot_phase);
10874
1da177e4
LT
10875 if (dev_proc_init())
10876 goto out;
10877
8b41d188 10878 if (netdev_kobject_init())
1da177e4
LT
10879 goto out;
10880
10881 INIT_LIST_HEAD(&ptype_all);
82d8a867 10882 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
10883 INIT_LIST_HEAD(&ptype_base[i]);
10884
62532da9
VY
10885 INIT_LIST_HEAD(&offload_base);
10886
881d966b
EB
10887 if (register_pernet_subsys(&netdev_net_ops))
10888 goto out;
1da177e4
LT
10889
10890 /*
10891 * Initialise the packet receive queues.
10892 */
10893
6f912042 10894 for_each_possible_cpu(i) {
41852497 10895 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 10896 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 10897
41852497
ED
10898 INIT_WORK(flush, flush_backlog);
10899
e36fa2f7 10900 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 10901 skb_queue_head_init(&sd->process_queue);
f53c7239
SK
10902#ifdef CONFIG_XFRM_OFFLOAD
10903 skb_queue_head_init(&sd->xfrm_backlog);
10904#endif
e36fa2f7 10905 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 10906 sd->output_queue_tailp = &sd->output_queue;
df334545 10907#ifdef CONFIG_RPS
e36fa2f7
ED
10908 sd->csd.func = rps_trigger_softirq;
10909 sd->csd.info = sd;
e36fa2f7 10910 sd->cpu = i;
1e94d72f 10911#endif
0a9627f2 10912
7c4ec749 10913 init_gro_hash(&sd->backlog);
e36fa2f7
ED
10914 sd->backlog.poll = process_backlog;
10915 sd->backlog.weight = weight_p;
1da177e4
LT
10916 }
10917
1da177e4
LT
10918 dev_boot_phase = 0;
10919
505d4f73
EB
10920 /* The loopback device is special if any other network devices
10921 * is present in a network namespace the loopback device must
10922 * be present. Since we now dynamically allocate and free the
10923 * loopback device ensure this invariant is maintained by
10924 * keeping the loopback device as the first device on the
10925 * list of network devices. Ensuring the loopback devices
10926 * is the first device that appears and the last network device
10927 * that disappears.
10928 */
10929 if (register_pernet_device(&loopback_net_ops))
10930 goto out;
10931
10932 if (register_pernet_device(&default_device_ops))
10933 goto out;
10934
962cf36c
CM
10935 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10936 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4 10937
f0bf90de
SAS
10938 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10939 NULL, dev_cpu_dead);
10940 WARN_ON(rc < 0);
1da177e4
LT
10941 rc = 0;
10942out:
10943 return rc;
10944}
10945
10946subsys_initcall(net_dev_init);