Merge git://git.infradead.org/intel-iommu
[linux-2.6-block.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
1da177e4 76#include <linux/bitops.h>
4fc268d2 77#include <linux/capability.h>
1da177e4
LT
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
08e9897d 81#include <linux/hash.h>
5a0e3ad6 82#include <linux/slab.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
a7862b45 97#include <linux/bpf.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4 99#include <net/sock.h>
02d62e86 100#include <net/busy_poll.h>
1da177e4 101#include <linux/rtnetlink.h>
1da177e4 102#include <linux/stat.h>
1da177e4 103#include <net/dst.h>
fc4099f1 104#include <net/dst_metadata.h>
1da177e4
LT
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
44540960 107#include <net/xfrm.h>
1da177e4
LT
108#include <linux/highmem.h>
109#include <linux/init.h>
1da177e4 110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
1da177e4 114#include <net/iw_handler.h>
1da177e4 115#include <asm/current.h>
5bdb9886 116#include <linux/audit.h>
db217334 117#include <linux/dmaengine.h>
f6a78bfc 118#include <linux/err.h>
c7fa9d18 119#include <linux/ctype.h>
723e98b7 120#include <linux/if_arp.h>
6de329e2 121#include <linux/if_vlan.h>
8f0f2223 122#include <linux/ip.h>
ad55dcaf 123#include <net/ip.h>
25cd9ba0 124#include <net/mpls.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
9cbc1cb8 129#include <trace/events/napi.h>
cf66ba58 130#include <trace/events/net.h>
07dc22e7 131#include <trace/events/skb.h>
5acbbd42 132#include <linux/pci.h>
caeda9b9 133#include <linux/inetdevice.h>
c445477d 134#include <linux/cpu_rmap.h>
c5905afb 135#include <linux/static_key.h>
af12fa6e 136#include <linux/hashtable.h>
60877a32 137#include <linux/vmalloc.h>
529d0489 138#include <linux/if_macvlan.h>
e7fd2885 139#include <linux/errqueue.h>
3b47d303 140#include <linux/hrtimer.h>
e687ad60 141#include <linux/netfilter_ingress.h>
6ae23ad3 142#include <linux/sctp.h>
40e4e713 143#include <linux/crash_dump.h>
1da177e4 144
342709ef
PE
145#include "net-sysfs.h"
146
d565b0a1
HX
147/* Instead of increasing this, you should create a hash table. */
148#define MAX_GRO_SKBS 8
149
5d38a079
HX
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
1da177e4 153static DEFINE_SPINLOCK(ptype_lock);
62532da9 154static DEFINE_SPINLOCK(offload_lock);
900ff8c6
CW
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
62532da9 157static struct list_head offload_base __read_mostly;
1da177e4 158
ae78dbfa 159static int netif_rx_internal(struct sk_buff *skb);
54951194
LP
160static int call_netdevice_notifiers_info(unsigned long val,
161 struct net_device *dev,
162 struct netdev_notifier_info *info);
ae78dbfa 163
1da177e4 164/*
7562f876 165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
166 * semaphore.
167 *
c6d14c84 168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
169 *
170 * Writers must hold the rtnl semaphore while they loop through the
7562f876 171 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
172 * actual updates. This allows pure readers to access the list even
173 * while a writer is preparing to update it.
174 *
175 * To put it another way, dev_base_lock is held for writing only to
176 * protect against pure readers; the rtnl semaphore provides the
177 * protection against other writers.
178 *
179 * See, for example usages, register_netdevice() and
180 * unregister_netdevice(), which must be called with the rtnl
181 * semaphore held.
182 */
1da177e4 183DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
184EXPORT_SYMBOL(dev_base_lock);
185
af12fa6e
ET
186/* protects napi_hash addition/deletion and napi_gen_id */
187static DEFINE_SPINLOCK(napi_hash_lock);
188
52bd2d62 189static unsigned int napi_gen_id = NR_CPUS;
6180d9de 190static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
af12fa6e 191
18afa4b0 192static seqcount_t devnet_rename_seq;
c91f6df2 193
4e985ada
TG
194static inline void dev_base_seq_inc(struct net *net)
195{
196 while (++net->dev_base_seq == 0);
197}
198
881d966b 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4 200{
8387ff25 201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
95c96174 202
08e9897d 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
204}
205
881d966b 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 207{
7c28bd0b 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
209}
210
e36fa2f7 211static inline void rps_lock(struct softnet_data *sd)
152102c7
CG
212{
213#ifdef CONFIG_RPS
e36fa2f7 214 spin_lock(&sd->input_pkt_queue.lock);
152102c7
CG
215#endif
216}
217
e36fa2f7 218static inline void rps_unlock(struct softnet_data *sd)
152102c7
CG
219{
220#ifdef CONFIG_RPS
e36fa2f7 221 spin_unlock(&sd->input_pkt_queue.lock);
152102c7
CG
222#endif
223}
224
ce286d32 225/* Device list insertion */
53759be9 226static void list_netdevice(struct net_device *dev)
ce286d32 227{
c346dca1 228 struct net *net = dev_net(dev);
ce286d32
EB
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
c6d14c84 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
ce286d32 237 write_unlock_bh(&dev_base_lock);
4e985ada
TG
238
239 dev_base_seq_inc(net);
ce286d32
EB
240}
241
fb699dfd
ED
242/* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
ce286d32
EB
245static void unlist_netdevice(struct net_device *dev)
246{
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
c6d14c84 251 list_del_rcu(&dev->dev_list);
72c9528b 252 hlist_del_rcu(&dev->name_hlist);
fb699dfd 253 hlist_del_rcu(&dev->index_hlist);
ce286d32 254 write_unlock_bh(&dev_base_lock);
4e985ada
TG
255
256 dev_base_seq_inc(dev_net(dev));
ce286d32
EB
257}
258
1da177e4
LT
259/*
260 * Our notifier list
261 */
262
f07d5b94 263static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
264
265/*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
bea3348e 269
9958da05 270DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
d1b19dff 271EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 272
cf508b12 273#ifdef CONFIG_LOCKDEP
723e98b7 274/*
c773e847 275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
276 * according to dev->type
277 */
278static const unsigned short netdev_lock_type[] =
279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
211ed865
PG
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
723e98b7 294
36cbd3dc 295static const char *const netdev_lock_name[] =
723e98b7
JP
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
211ed865
PG
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
311
312static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 313static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
314
315static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316{
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324}
325
cf508b12
DM
326static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
723e98b7
JP
328{
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334}
cf508b12
DM
335
336static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337{
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344}
723e98b7 345#else
cf508b12
DM
346static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348{
349}
350static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
351{
352}
353#endif
1da177e4
LT
354
355/*******************************************************************************
356
357 Protocol management and registration routines
358
359*******************************************************************************/
360
1da177e4
LT
361/*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
c07b68e8
ED
377static inline struct list_head *ptype_head(const struct packet_type *pt)
378{
379 if (pt->type == htons(ETH_P_ALL))
7866a621 380 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
c07b68e8 381 else
7866a621
SN
382 return pt->dev ? &pt->dev->ptype_specific :
383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
c07b68e8
ED
384}
385
1da177e4
LT
386/**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
4ec93edb 394 * This call does not sleep therefore it can not
1da177e4
LT
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399void dev_add_pack(struct packet_type *pt)
400{
c07b68e8 401 struct list_head *head = ptype_head(pt);
1da177e4 402
c07b68e8
ED
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
1da177e4 406}
d1b19dff 407EXPORT_SYMBOL(dev_add_pack);
1da177e4 408
1da177e4
LT
409/**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
4ec93edb 416 * returns.
1da177e4
LT
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422void __dev_remove_pack(struct packet_type *pt)
423{
c07b68e8 424 struct list_head *head = ptype_head(pt);
1da177e4
LT
425 struct packet_type *pt1;
426
c07b68e8 427 spin_lock(&ptype_lock);
1da177e4
LT
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
7b6cd1ce 436 pr_warn("dev_remove_pack: %p not found\n", pt);
1da177e4 437out:
c07b68e8 438 spin_unlock(&ptype_lock);
1da177e4 439}
d1b19dff
ED
440EXPORT_SYMBOL(__dev_remove_pack);
441
1da177e4
LT
442/**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454void dev_remove_pack(struct packet_type *pt)
455{
456 __dev_remove_pack(pt);
4ec93edb 457
1da177e4
LT
458 synchronize_net();
459}
d1b19dff 460EXPORT_SYMBOL(dev_remove_pack);
1da177e4 461
62532da9
VY
462
463/**
464 * dev_add_offload - register offload handlers
465 * @po: protocol offload declaration
466 *
467 * Add protocol offload handlers to the networking stack. The passed
468 * &proto_offload is linked into kernel lists and may not be freed until
469 * it has been removed from the kernel lists.
470 *
471 * This call does not sleep therefore it can not
472 * guarantee all CPU's that are in middle of receiving packets
473 * will see the new offload handlers (until the next received packet).
474 */
475void dev_add_offload(struct packet_offload *po)
476{
bdef7de4 477 struct packet_offload *elem;
62532da9
VY
478
479 spin_lock(&offload_lock);
bdef7de4
DM
480 list_for_each_entry(elem, &offload_base, list) {
481 if (po->priority < elem->priority)
482 break;
483 }
484 list_add_rcu(&po->list, elem->list.prev);
62532da9
VY
485 spin_unlock(&offload_lock);
486}
487EXPORT_SYMBOL(dev_add_offload);
488
489/**
490 * __dev_remove_offload - remove offload handler
491 * @po: packet offload declaration
492 *
493 * Remove a protocol offload handler that was previously added to the
494 * kernel offload handlers by dev_add_offload(). The passed &offload_type
495 * is removed from the kernel lists and can be freed or reused once this
496 * function returns.
497 *
498 * The packet type might still be in use by receivers
499 * and must not be freed until after all the CPU's have gone
500 * through a quiescent state.
501 */
1d143d9f 502static void __dev_remove_offload(struct packet_offload *po)
62532da9
VY
503{
504 struct list_head *head = &offload_base;
505 struct packet_offload *po1;
506
c53aa505 507 spin_lock(&offload_lock);
62532da9
VY
508
509 list_for_each_entry(po1, head, list) {
510 if (po == po1) {
511 list_del_rcu(&po->list);
512 goto out;
513 }
514 }
515
516 pr_warn("dev_remove_offload: %p not found\n", po);
517out:
c53aa505 518 spin_unlock(&offload_lock);
62532da9 519}
62532da9
VY
520
521/**
522 * dev_remove_offload - remove packet offload handler
523 * @po: packet offload declaration
524 *
525 * Remove a packet offload handler that was previously added to the kernel
526 * offload handlers by dev_add_offload(). The passed &offload_type is
527 * removed from the kernel lists and can be freed or reused once this
528 * function returns.
529 *
530 * This call sleeps to guarantee that no CPU is looking at the packet
531 * type after return.
532 */
533void dev_remove_offload(struct packet_offload *po)
534{
535 __dev_remove_offload(po);
536
537 synchronize_net();
538}
539EXPORT_SYMBOL(dev_remove_offload);
540
1da177e4
LT
541/******************************************************************************
542
543 Device Boot-time Settings Routines
544
545*******************************************************************************/
546
547/* Boot time configuration table */
548static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550/**
551 * netdev_boot_setup_add - add new setup entry
552 * @name: name of the device
553 * @map: configured settings for the device
554 *
555 * Adds new setup entry to the dev_boot_setup list. The function
556 * returns 0 on error and 1 on success. This is a generic routine to
557 * all netdevices.
558 */
559static int netdev_boot_setup_add(char *name, struct ifmap *map)
560{
561 struct netdev_boot_setup *s;
562 int i;
563
564 s = dev_boot_setup;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 568 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
569 memcpy(&s[i].map, map, sizeof(s[i].map));
570 break;
571 }
572 }
573
574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575}
576
577/**
578 * netdev_boot_setup_check - check boot time settings
579 * @dev: the netdevice
580 *
581 * Check boot time settings for the device.
582 * The found settings are set for the device to be used
583 * later in the device probing.
584 * Returns 0 if no settings found, 1 if they are.
585 */
586int netdev_boot_setup_check(struct net_device *dev)
587{
588 struct netdev_boot_setup *s = dev_boot_setup;
589 int i;
590
591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 593 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
594 dev->irq = s[i].map.irq;
595 dev->base_addr = s[i].map.base_addr;
596 dev->mem_start = s[i].map.mem_start;
597 dev->mem_end = s[i].map.mem_end;
598 return 1;
599 }
600 }
601 return 0;
602}
d1b19dff 603EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
604
605
606/**
607 * netdev_boot_base - get address from boot time settings
608 * @prefix: prefix for network device
609 * @unit: id for network device
610 *
611 * Check boot time settings for the base address of device.
612 * The found settings are set for the device to be used
613 * later in the device probing.
614 * Returns 0 if no settings found.
615 */
616unsigned long netdev_boot_base(const char *prefix, int unit)
617{
618 const struct netdev_boot_setup *s = dev_boot_setup;
619 char name[IFNAMSIZ];
620 int i;
621
622 sprintf(name, "%s%d", prefix, unit);
623
624 /*
625 * If device already registered then return base of 1
626 * to indicate not to probe for this interface
627 */
881d966b 628 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
629 return 1;
630
631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 if (!strcmp(name, s[i].name))
633 return s[i].map.base_addr;
634 return 0;
635}
636
637/*
638 * Saves at boot time configured settings for any netdevice.
639 */
640int __init netdev_boot_setup(char *str)
641{
642 int ints[5];
643 struct ifmap map;
644
645 str = get_options(str, ARRAY_SIZE(ints), ints);
646 if (!str || !*str)
647 return 0;
648
649 /* Save settings */
650 memset(&map, 0, sizeof(map));
651 if (ints[0] > 0)
652 map.irq = ints[1];
653 if (ints[0] > 1)
654 map.base_addr = ints[2];
655 if (ints[0] > 2)
656 map.mem_start = ints[3];
657 if (ints[0] > 3)
658 map.mem_end = ints[4];
659
660 /* Add new entry to the list */
661 return netdev_boot_setup_add(str, &map);
662}
663
664__setup("netdev=", netdev_boot_setup);
665
666/*******************************************************************************
667
668 Device Interface Subroutines
669
670*******************************************************************************/
671
a54acb3a
ND
672/**
673 * dev_get_iflink - get 'iflink' value of a interface
674 * @dev: targeted interface
675 *
676 * Indicates the ifindex the interface is linked to.
677 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 */
679
680int dev_get_iflink(const struct net_device *dev)
681{
682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 return dev->netdev_ops->ndo_get_iflink(dev);
684
7a66bbc9 685 return dev->ifindex;
a54acb3a
ND
686}
687EXPORT_SYMBOL(dev_get_iflink);
688
fc4099f1
PS
689/**
690 * dev_fill_metadata_dst - Retrieve tunnel egress information.
691 * @dev: targeted interface
692 * @skb: The packet.
693 *
694 * For better visibility of tunnel traffic OVS needs to retrieve
695 * egress tunnel information for a packet. Following API allows
696 * user to get this info.
697 */
698int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699{
700 struct ip_tunnel_info *info;
701
702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
703 return -EINVAL;
704
705 info = skb_tunnel_info_unclone(skb);
706 if (!info)
707 return -ENOMEM;
708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 return -EINVAL;
710
711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712}
713EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
1da177e4
LT
715/**
716 * __dev_get_by_name - find a device by its name
c4ea43c5 717 * @net: the applicable net namespace
1da177e4
LT
718 * @name: name to find
719 *
720 * Find an interface by name. Must be called under RTNL semaphore
721 * or @dev_base_lock. If the name is found a pointer to the device
722 * is returned. If the name is not found then %NULL is returned. The
723 * reference counters are not incremented so the caller must be
724 * careful with locks.
725 */
726
881d966b 727struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4 728{
0bd8d536
ED
729 struct net_device *dev;
730 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 731
b67bfe0d 732 hlist_for_each_entry(dev, head, name_hlist)
1da177e4
LT
733 if (!strncmp(dev->name, name, IFNAMSIZ))
734 return dev;
0bd8d536 735
1da177e4
LT
736 return NULL;
737}
d1b19dff 738EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 739
72c9528b
ED
740/**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753{
72c9528b
ED
754 struct net_device *dev;
755 struct hlist_head *head = dev_name_hash(net, name);
756
b67bfe0d 757 hlist_for_each_entry_rcu(dev, head, name_hlist)
72c9528b
ED
758 if (!strncmp(dev->name, name, IFNAMSIZ))
759 return dev;
760
761 return NULL;
762}
763EXPORT_SYMBOL(dev_get_by_name_rcu);
764
1da177e4
LT
765/**
766 * dev_get_by_name - find a device by its name
c4ea43c5 767 * @net: the applicable net namespace
1da177e4
LT
768 * @name: name to find
769 *
770 * Find an interface by name. This can be called from any
771 * context and does its own locking. The returned handle has
772 * the usage count incremented and the caller must use dev_put() to
773 * release it when it is no longer needed. %NULL is returned if no
774 * matching device is found.
775 */
776
881d966b 777struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
778{
779 struct net_device *dev;
780
72c9528b
ED
781 rcu_read_lock();
782 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
783 if (dev)
784 dev_hold(dev);
72c9528b 785 rcu_read_unlock();
1da177e4
LT
786 return dev;
787}
d1b19dff 788EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
789
790/**
791 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 792 * @net: the applicable net namespace
1da177e4
LT
793 * @ifindex: index of device
794 *
795 * Search for an interface by index. Returns %NULL if the device
796 * is not found or a pointer to the device. The device has not
797 * had its reference counter increased so the caller must be careful
798 * about locking. The caller must hold either the RTNL semaphore
799 * or @dev_base_lock.
800 */
801
881d966b 802struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4 803{
0bd8d536
ED
804 struct net_device *dev;
805 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 806
b67bfe0d 807 hlist_for_each_entry(dev, head, index_hlist)
1da177e4
LT
808 if (dev->ifindex == ifindex)
809 return dev;
0bd8d536 810
1da177e4
LT
811 return NULL;
812}
d1b19dff 813EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 814
fb699dfd
ED
815/**
816 * dev_get_by_index_rcu - find a device by its ifindex
817 * @net: the applicable net namespace
818 * @ifindex: index of device
819 *
820 * Search for an interface by index. Returns %NULL if the device
821 * is not found or a pointer to the device. The device has not
822 * had its reference counter increased so the caller must be careful
823 * about locking. The caller must hold RCU lock.
824 */
825
826struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827{
fb699dfd
ED
828 struct net_device *dev;
829 struct hlist_head *head = dev_index_hash(net, ifindex);
830
b67bfe0d 831 hlist_for_each_entry_rcu(dev, head, index_hlist)
fb699dfd
ED
832 if (dev->ifindex == ifindex)
833 return dev;
834
835 return NULL;
836}
837EXPORT_SYMBOL(dev_get_by_index_rcu);
838
1da177e4
LT
839
840/**
841 * dev_get_by_index - find a device by its ifindex
c4ea43c5 842 * @net: the applicable net namespace
1da177e4
LT
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns NULL if the device
846 * is not found or a pointer to the device. The device returned has
847 * had a reference added and the pointer is safe until the user calls
848 * dev_put to indicate they have finished with it.
849 */
850
881d966b 851struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
852{
853 struct net_device *dev;
854
fb699dfd
ED
855 rcu_read_lock();
856 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
857 if (dev)
858 dev_hold(dev);
fb699dfd 859 rcu_read_unlock();
1da177e4
LT
860 return dev;
861}
d1b19dff 862EXPORT_SYMBOL(dev_get_by_index);
1da177e4 863
5dbe7c17
NS
864/**
865 * netdev_get_name - get a netdevice name, knowing its ifindex.
866 * @net: network namespace
867 * @name: a pointer to the buffer where the name will be stored.
868 * @ifindex: the ifindex of the interface to get the name from.
869 *
870 * The use of raw_seqcount_begin() and cond_resched() before
871 * retrying is required as we want to give the writers a chance
872 * to complete when CONFIG_PREEMPT is not set.
873 */
874int netdev_get_name(struct net *net, char *name, int ifindex)
875{
876 struct net_device *dev;
877 unsigned int seq;
878
879retry:
880 seq = raw_seqcount_begin(&devnet_rename_seq);
881 rcu_read_lock();
882 dev = dev_get_by_index_rcu(net, ifindex);
883 if (!dev) {
884 rcu_read_unlock();
885 return -ENODEV;
886 }
887
888 strcpy(name, dev->name);
889 rcu_read_unlock();
890 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 cond_resched();
892 goto retry;
893 }
894
895 return 0;
896}
897
1da177e4 898/**
941666c2 899 * dev_getbyhwaddr_rcu - find a device by its hardware address
c4ea43c5 900 * @net: the applicable net namespace
1da177e4
LT
901 * @type: media type of device
902 * @ha: hardware address
903 *
904 * Search for an interface by MAC address. Returns NULL if the device
c506653d
ED
905 * is not found or a pointer to the device.
906 * The caller must hold RCU or RTNL.
941666c2 907 * The returned device has not had its ref count increased
1da177e4
LT
908 * and the caller must therefore be careful about locking
909 *
1da177e4
LT
910 */
911
941666c2
ED
912struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 const char *ha)
1da177e4
LT
914{
915 struct net_device *dev;
916
941666c2 917 for_each_netdev_rcu(net, dev)
1da177e4
LT
918 if (dev->type == type &&
919 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
920 return dev;
921
922 return NULL;
1da177e4 923}
941666c2 924EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
cf309e3f 925
881d966b 926struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
927{
928 struct net_device *dev;
929
4e9cac2b 930 ASSERT_RTNL();
881d966b 931 for_each_netdev(net, dev)
4e9cac2b 932 if (dev->type == type)
7562f876
PE
933 return dev;
934
935 return NULL;
4e9cac2b 936}
4e9cac2b
PM
937EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
881d966b 939struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 940{
99fe3c39 941 struct net_device *dev, *ret = NULL;
4e9cac2b 942
99fe3c39
ED
943 rcu_read_lock();
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
946 dev_hold(dev);
947 ret = dev;
948 break;
949 }
950 rcu_read_unlock();
951 return ret;
1da177e4 952}
1da177e4
LT
953EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955/**
6c555490 956 * __dev_get_by_flags - find any device with given flags
c4ea43c5 957 * @net: the applicable net namespace
1da177e4
LT
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
960 *
961 * Search for any interface with the given flags. Returns NULL if a device
bb69ae04 962 * is not found or a pointer to the device. Must be called inside
6c555490 963 * rtnl_lock(), and result refcount is unchanged.
1da177e4
LT
964 */
965
6c555490
WC
966struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 unsigned short mask)
1da177e4 968{
7562f876 969 struct net_device *dev, *ret;
1da177e4 970
6c555490
WC
971 ASSERT_RTNL();
972
7562f876 973 ret = NULL;
6c555490 974 for_each_netdev(net, dev) {
1da177e4 975 if (((dev->flags ^ if_flags) & mask) == 0) {
7562f876 976 ret = dev;
1da177e4
LT
977 break;
978 }
979 }
7562f876 980 return ret;
1da177e4 981}
6c555490 982EXPORT_SYMBOL(__dev_get_by_flags);
1da177e4
LT
983
984/**
985 * dev_valid_name - check if name is okay for network device
986 * @name: name string
987 *
988 * Network device names need to be valid file names to
c7fa9d18
DM
989 * to allow sysfs to work. We also disallow any kind of
990 * whitespace.
1da177e4 991 */
95f050bf 992bool dev_valid_name(const char *name)
1da177e4 993{
c7fa9d18 994 if (*name == '\0')
95f050bf 995 return false;
b6fe17d6 996 if (strlen(name) >= IFNAMSIZ)
95f050bf 997 return false;
c7fa9d18 998 if (!strcmp(name, ".") || !strcmp(name, ".."))
95f050bf 999 return false;
c7fa9d18
DM
1000
1001 while (*name) {
a4176a93 1002 if (*name == '/' || *name == ':' || isspace(*name))
95f050bf 1003 return false;
c7fa9d18
DM
1004 name++;
1005 }
95f050bf 1006 return true;
1da177e4 1007}
d1b19dff 1008EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
1009
1010/**
b267b179
EB
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1da177e4 1013 * @name: name format string
b267b179 1014 * @buf: scratch buffer and result name string
1da177e4
LT
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
1023 */
1024
b267b179 1025static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
1026{
1027 int i = 0;
1da177e4
LT
1028 const char *p;
1029 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 1030 unsigned long *inuse;
1da177e4
LT
1031 struct net_device *d;
1032
1033 p = strnchr(name, IFNAMSIZ-1, '%');
1034 if (p) {
1035 /*
1036 * Verify the string as this thing may have come from
1037 * the user. There must be either one "%d" and no other "%"
1038 * characters.
1039 */
1040 if (p[1] != 'd' || strchr(p + 2, '%'))
1041 return -EINVAL;
1042
1043 /* Use one page as a bit array of possible slots */
cfcabdcc 1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
1045 if (!inuse)
1046 return -ENOMEM;
1047
881d966b 1048 for_each_netdev(net, d) {
1da177e4
LT
1049 if (!sscanf(d->name, name, &i))
1050 continue;
1051 if (i < 0 || i >= max_netdevices)
1052 continue;
1053
1054 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 1055 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
1056 if (!strncmp(buf, d->name, IFNAMSIZ))
1057 set_bit(i, inuse);
1058 }
1059
1060 i = find_first_zero_bit(inuse, max_netdevices);
1061 free_page((unsigned long) inuse);
1062 }
1063
d9031024
OP
1064 if (buf != name)
1065 snprintf(buf, IFNAMSIZ, name, i);
b267b179 1066 if (!__dev_get_by_name(net, buf))
1da177e4 1067 return i;
1da177e4
LT
1068
1069 /* It is possible to run out of possible slots
1070 * when the name is long and there isn't enough space left
1071 * for the digits, or if all bits are used.
1072 */
1073 return -ENFILE;
1074}
1075
b267b179
EB
1076/**
1077 * dev_alloc_name - allocate a name for a device
1078 * @dev: device
1079 * @name: name format string
1080 *
1081 * Passed a format string - eg "lt%d" it will try and find a suitable
1082 * id. It scans list of devices to build up a free map, then chooses
1083 * the first empty slot. The caller must hold the dev_base or rtnl lock
1084 * while allocating the name and adding the device in order to avoid
1085 * duplicates.
1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087 * Returns the number of the unit assigned or a negative errno code.
1088 */
1089
1090int dev_alloc_name(struct net_device *dev, const char *name)
1091{
1092 char buf[IFNAMSIZ];
1093 struct net *net;
1094 int ret;
1095
c346dca1
YH
1096 BUG_ON(!dev_net(dev));
1097 net = dev_net(dev);
b267b179
EB
1098 ret = __dev_alloc_name(net, name, buf);
1099 if (ret >= 0)
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1101 return ret;
1102}
d1b19dff 1103EXPORT_SYMBOL(dev_alloc_name);
b267b179 1104
828de4f6
G
1105static int dev_alloc_name_ns(struct net *net,
1106 struct net_device *dev,
1107 const char *name)
d9031024 1108{
828de4f6
G
1109 char buf[IFNAMSIZ];
1110 int ret;
8ce6cebc 1111
828de4f6
G
1112 ret = __dev_alloc_name(net, name, buf);
1113 if (ret >= 0)
1114 strlcpy(dev->name, buf, IFNAMSIZ);
1115 return ret;
1116}
1117
1118static int dev_get_valid_name(struct net *net,
1119 struct net_device *dev,
1120 const char *name)
1121{
1122 BUG_ON(!net);
8ce6cebc 1123
d9031024
OP
1124 if (!dev_valid_name(name))
1125 return -EINVAL;
1126
1c5cae81 1127 if (strchr(name, '%'))
828de4f6 1128 return dev_alloc_name_ns(net, dev, name);
d9031024
OP
1129 else if (__dev_get_by_name(net, name))
1130 return -EEXIST;
8ce6cebc
DL
1131 else if (dev->name != name)
1132 strlcpy(dev->name, name, IFNAMSIZ);
d9031024
OP
1133
1134 return 0;
1135}
1da177e4
LT
1136
1137/**
1138 * dev_change_name - change name of a device
1139 * @dev: device
1140 * @newname: name (or format string) must be at least IFNAMSIZ
1141 *
1142 * Change name of a device, can pass format strings "eth%d".
1143 * for wildcarding.
1144 */
cf04a4c7 1145int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 1146{
238fa362 1147 unsigned char old_assign_type;
fcc5a03a 1148 char oldname[IFNAMSIZ];
1da177e4 1149 int err = 0;
fcc5a03a 1150 int ret;
881d966b 1151 struct net *net;
1da177e4
LT
1152
1153 ASSERT_RTNL();
c346dca1 1154 BUG_ON(!dev_net(dev));
1da177e4 1155
c346dca1 1156 net = dev_net(dev);
1da177e4
LT
1157 if (dev->flags & IFF_UP)
1158 return -EBUSY;
1159
30e6c9fa 1160 write_seqcount_begin(&devnet_rename_seq);
c91f6df2
BH
1161
1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
30e6c9fa 1163 write_seqcount_end(&devnet_rename_seq);
c8d90dca 1164 return 0;
c91f6df2 1165 }
c8d90dca 1166
fcc5a03a
HX
1167 memcpy(oldname, dev->name, IFNAMSIZ);
1168
828de4f6 1169 err = dev_get_valid_name(net, dev, newname);
c91f6df2 1170 if (err < 0) {
30e6c9fa 1171 write_seqcount_end(&devnet_rename_seq);
d9031024 1172 return err;
c91f6df2 1173 }
1da177e4 1174
6fe82a39
VF
1175 if (oldname[0] && !strchr(oldname, '%'))
1176 netdev_info(dev, "renamed from %s\n", oldname);
1177
238fa362
TG
1178 old_assign_type = dev->name_assign_type;
1179 dev->name_assign_type = NET_NAME_RENAMED;
1180
fcc5a03a 1181rollback:
a1b3f594
EB
1182 ret = device_rename(&dev->dev, dev->name);
1183 if (ret) {
1184 memcpy(dev->name, oldname, IFNAMSIZ);
238fa362 1185 dev->name_assign_type = old_assign_type;
30e6c9fa 1186 write_seqcount_end(&devnet_rename_seq);
a1b3f594 1187 return ret;
dcc99773 1188 }
7f988eab 1189
30e6c9fa 1190 write_seqcount_end(&devnet_rename_seq);
c91f6df2 1191
5bb025fa
VF
1192 netdev_adjacent_rename_links(dev, oldname);
1193
7f988eab 1194 write_lock_bh(&dev_base_lock);
372b2312 1195 hlist_del_rcu(&dev->name_hlist);
72c9528b
ED
1196 write_unlock_bh(&dev_base_lock);
1197
1198 synchronize_rcu();
1199
1200 write_lock_bh(&dev_base_lock);
1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1202 write_unlock_bh(&dev_base_lock);
1203
056925ab 1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1205 ret = notifier_to_errno(ret);
1206
1207 if (ret) {
91e9c07b
ED
1208 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209 if (err >= 0) {
fcc5a03a 1210 err = ret;
30e6c9fa 1211 write_seqcount_begin(&devnet_rename_seq);
fcc5a03a 1212 memcpy(dev->name, oldname, IFNAMSIZ);
5bb025fa 1213 memcpy(oldname, newname, IFNAMSIZ);
238fa362
TG
1214 dev->name_assign_type = old_assign_type;
1215 old_assign_type = NET_NAME_RENAMED;
fcc5a03a 1216 goto rollback;
91e9c07b 1217 } else {
7b6cd1ce 1218 pr_err("%s: name change rollback failed: %d\n",
91e9c07b 1219 dev->name, ret);
fcc5a03a
HX
1220 }
1221 }
1da177e4
LT
1222
1223 return err;
1224}
1225
0b815a1a
SH
1226/**
1227 * dev_set_alias - change ifalias of a device
1228 * @dev: device
1229 * @alias: name up to IFALIASZ
f0db275a 1230 * @len: limit of bytes to copy from info
0b815a1a
SH
1231 *
1232 * Set ifalias for a device,
1233 */
1234int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235{
7364e445
AK
1236 char *new_ifalias;
1237
0b815a1a
SH
1238 ASSERT_RTNL();
1239
1240 if (len >= IFALIASZ)
1241 return -EINVAL;
1242
96ca4a2c 1243 if (!len) {
388dfc2d
SK
1244 kfree(dev->ifalias);
1245 dev->ifalias = NULL;
96ca4a2c
OH
1246 return 0;
1247 }
1248
7364e445
AK
1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 if (!new_ifalias)
0b815a1a 1251 return -ENOMEM;
7364e445 1252 dev->ifalias = new_ifalias;
0b815a1a
SH
1253
1254 strlcpy(dev->ifalias, alias, len+1);
1255 return len;
1256}
1257
1258
d8a33ac4 1259/**
3041a069 1260 * netdev_features_change - device changes features
d8a33ac4
SH
1261 * @dev: device to cause notification
1262 *
1263 * Called to indicate a device has changed features.
1264 */
1265void netdev_features_change(struct net_device *dev)
1266{
056925ab 1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1268}
1269EXPORT_SYMBOL(netdev_features_change);
1270
1da177e4
LT
1271/**
1272 * netdev_state_change - device changes state
1273 * @dev: device to cause notification
1274 *
1275 * Called to indicate a device has changed state. This function calls
1276 * the notifier chains for netdev_chain and sends a NEWLINK message
1277 * to the routing socket.
1278 */
1279void netdev_state_change(struct net_device *dev)
1280{
1281 if (dev->flags & IFF_UP) {
54951194
LP
1282 struct netdev_notifier_change_info change_info;
1283
1284 change_info.flags_changed = 0;
1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 &change_info.info);
7f294054 1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1da177e4
LT
1288 }
1289}
d1b19dff 1290EXPORT_SYMBOL(netdev_state_change);
1da177e4 1291
ee89bab1
AW
1292/**
1293 * netdev_notify_peers - notify network peers about existence of @dev
1294 * @dev: network device
1295 *
1296 * Generate traffic such that interested network peers are aware of
1297 * @dev, such as by generating a gratuitous ARP. This may be used when
1298 * a device wants to inform the rest of the network about some sort of
1299 * reconfiguration such as a failover event or virtual machine
1300 * migration.
1301 */
1302void netdev_notify_peers(struct net_device *dev)
c1da4ac7 1303{
ee89bab1
AW
1304 rtnl_lock();
1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 rtnl_unlock();
c1da4ac7 1307}
ee89bab1 1308EXPORT_SYMBOL(netdev_notify_peers);
c1da4ac7 1309
bd380811 1310static int __dev_open(struct net_device *dev)
1da177e4 1311{
d314774c 1312 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1313 int ret;
1da177e4 1314
e46b66bc
BH
1315 ASSERT_RTNL();
1316
1da177e4
LT
1317 if (!netif_device_present(dev))
1318 return -ENODEV;
1319
ca99ca14
NH
1320 /* Block netpoll from trying to do any rx path servicing.
1321 * If we don't do this there is a chance ndo_poll_controller
1322 * or ndo_poll may be running while we open the device
1323 */
66b5552f 1324 netpoll_poll_disable(dev);
ca99ca14 1325
3b8bcfd5
JB
1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 ret = notifier_to_errno(ret);
1328 if (ret)
1329 return ret;
1330
1da177e4 1331 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1332
d314774c
SH
1333 if (ops->ndo_validate_addr)
1334 ret = ops->ndo_validate_addr(dev);
bada339b 1335
d314774c
SH
1336 if (!ret && ops->ndo_open)
1337 ret = ops->ndo_open(dev);
1da177e4 1338
66b5552f 1339 netpoll_poll_enable(dev);
ca99ca14 1340
bada339b
JG
1341 if (ret)
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343 else {
1da177e4 1344 dev->flags |= IFF_UP;
4417da66 1345 dev_set_rx_mode(dev);
1da177e4 1346 dev_activate(dev);
7bf23575 1347 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 1348 }
bada339b 1349
1da177e4
LT
1350 return ret;
1351}
1352
1353/**
bd380811
PM
1354 * dev_open - prepare an interface for use.
1355 * @dev: device to open
1da177e4 1356 *
bd380811
PM
1357 * Takes a device from down to up state. The device's private open
1358 * function is invoked and then the multicast lists are loaded. Finally
1359 * the device is moved into the up state and a %NETDEV_UP message is
1360 * sent to the netdev notifier chain.
1361 *
1362 * Calling this function on an active interface is a nop. On a failure
1363 * a negative errno code is returned.
1da177e4 1364 */
bd380811
PM
1365int dev_open(struct net_device *dev)
1366{
1367 int ret;
1368
bd380811
PM
1369 if (dev->flags & IFF_UP)
1370 return 0;
1371
bd380811
PM
1372 ret = __dev_open(dev);
1373 if (ret < 0)
1374 return ret;
1375
7f294054 1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
bd380811
PM
1377 call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379 return ret;
1380}
1381EXPORT_SYMBOL(dev_open);
1382
44345724 1383static int __dev_close_many(struct list_head *head)
1da177e4 1384{
44345724 1385 struct net_device *dev;
e46b66bc 1386
bd380811 1387 ASSERT_RTNL();
9d5010db
DM
1388 might_sleep();
1389
5cde2829 1390 list_for_each_entry(dev, head, close_list) {
3f4df206 1391 /* Temporarily disable netpoll until the interface is down */
66b5552f 1392 netpoll_poll_disable(dev);
3f4df206 1393
44345724 1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1395
44345724 1396 clear_bit(__LINK_STATE_START, &dev->state);
1da177e4 1397
44345724
OP
1398 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399 * can be even on different cpu. So just clear netif_running().
1400 *
1401 * dev->stop() will invoke napi_disable() on all of it's
1402 * napi_struct instances on this device.
1403 */
4e857c58 1404 smp_mb__after_atomic(); /* Commit netif_running(). */
44345724 1405 }
1da177e4 1406
44345724 1407 dev_deactivate_many(head);
d8b2a4d2 1408
5cde2829 1409 list_for_each_entry(dev, head, close_list) {
44345724 1410 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4 1411
44345724
OP
1412 /*
1413 * Call the device specific close. This cannot fail.
1414 * Only if device is UP
1415 *
1416 * We allow it to be called even after a DETACH hot-plug
1417 * event.
1418 */
1419 if (ops->ndo_stop)
1420 ops->ndo_stop(dev);
1421
44345724 1422 dev->flags &= ~IFF_UP;
66b5552f 1423 netpoll_poll_enable(dev);
44345724
OP
1424 }
1425
1426 return 0;
1427}
1428
1429static int __dev_close(struct net_device *dev)
1430{
f87e6f47 1431 int retval;
44345724
OP
1432 LIST_HEAD(single);
1433
5cde2829 1434 list_add(&dev->close_list, &single);
f87e6f47
LT
1435 retval = __dev_close_many(&single);
1436 list_del(&single);
ca99ca14 1437
f87e6f47 1438 return retval;
44345724
OP
1439}
1440
99c4a26a 1441int dev_close_many(struct list_head *head, bool unlink)
44345724
OP
1442{
1443 struct net_device *dev, *tmp;
1da177e4 1444
5cde2829
EB
1445 /* Remove the devices that don't need to be closed */
1446 list_for_each_entry_safe(dev, tmp, head, close_list)
44345724 1447 if (!(dev->flags & IFF_UP))
5cde2829 1448 list_del_init(&dev->close_list);
44345724
OP
1449
1450 __dev_close_many(head);
1da177e4 1451
5cde2829 1452 list_for_each_entry_safe(dev, tmp, head, close_list) {
7f294054 1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
44345724 1454 call_netdevice_notifiers(NETDEV_DOWN, dev);
99c4a26a
DM
1455 if (unlink)
1456 list_del_init(&dev->close_list);
44345724 1457 }
bd380811
PM
1458
1459 return 0;
1460}
99c4a26a 1461EXPORT_SYMBOL(dev_close_many);
bd380811
PM
1462
1463/**
1464 * dev_close - shutdown an interface.
1465 * @dev: device to shutdown
1466 *
1467 * This function moves an active device into down state. A
1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470 * chain.
1471 */
1472int dev_close(struct net_device *dev)
1473{
e14a5993
ED
1474 if (dev->flags & IFF_UP) {
1475 LIST_HEAD(single);
1da177e4 1476
5cde2829 1477 list_add(&dev->close_list, &single);
99c4a26a 1478 dev_close_many(&single, true);
e14a5993
ED
1479 list_del(&single);
1480 }
da6e378b 1481 return 0;
1da177e4 1482}
d1b19dff 1483EXPORT_SYMBOL(dev_close);
1da177e4
LT
1484
1485
0187bdfb
BH
1486/**
1487 * dev_disable_lro - disable Large Receive Offload on a device
1488 * @dev: device
1489 *
1490 * Disable Large Receive Offload (LRO) on a net device. Must be
1491 * called under RTNL. This is needed if received packets may be
1492 * forwarded to another interface.
1493 */
1494void dev_disable_lro(struct net_device *dev)
1495{
fbe168ba
MK
1496 struct net_device *lower_dev;
1497 struct list_head *iter;
529d0489 1498
bc5787c6
MM
1499 dev->wanted_features &= ~NETIF_F_LRO;
1500 netdev_update_features(dev);
27660515 1501
22d5969f
MM
1502 if (unlikely(dev->features & NETIF_F_LRO))
1503 netdev_WARN(dev, "failed to disable LRO!\n");
fbe168ba
MK
1504
1505 netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 dev_disable_lro(lower_dev);
0187bdfb
BH
1507}
1508EXPORT_SYMBOL(dev_disable_lro);
1509
351638e7
JP
1510static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 struct net_device *dev)
1512{
1513 struct netdev_notifier_info info;
1514
1515 netdev_notifier_info_init(&info, dev);
1516 return nb->notifier_call(nb, val, &info);
1517}
0187bdfb 1518
881d966b
EB
1519static int dev_boot_phase = 1;
1520
1da177e4
LT
1521/**
1522 * register_netdevice_notifier - register a network notifier block
1523 * @nb: notifier
1524 *
1525 * Register a notifier to be called when network device events occur.
1526 * The notifier passed is linked into the kernel structures and must
1527 * not be reused until it has been unregistered. A negative errno code
1528 * is returned on a failure.
1529 *
1530 * When registered all registration and up events are replayed
4ec93edb 1531 * to the new notifier to allow device to have a race free
1da177e4
LT
1532 * view of the network device list.
1533 */
1534
1535int register_netdevice_notifier(struct notifier_block *nb)
1536{
1537 struct net_device *dev;
fcc5a03a 1538 struct net_device *last;
881d966b 1539 struct net *net;
1da177e4
LT
1540 int err;
1541
1542 rtnl_lock();
f07d5b94 1543 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1544 if (err)
1545 goto unlock;
881d966b
EB
1546 if (dev_boot_phase)
1547 goto unlock;
1548 for_each_net(net) {
1549 for_each_netdev(net, dev) {
351638e7 1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
881d966b
EB
1551 err = notifier_to_errno(err);
1552 if (err)
1553 goto rollback;
1554
1555 if (!(dev->flags & IFF_UP))
1556 continue;
1da177e4 1557
351638e7 1558 call_netdevice_notifier(nb, NETDEV_UP, dev);
881d966b 1559 }
1da177e4 1560 }
fcc5a03a
HX
1561
1562unlock:
1da177e4
LT
1563 rtnl_unlock();
1564 return err;
fcc5a03a
HX
1565
1566rollback:
1567 last = dev;
881d966b
EB
1568 for_each_net(net) {
1569 for_each_netdev(net, dev) {
1570 if (dev == last)
8f891489 1571 goto outroll;
fcc5a03a 1572
881d966b 1573 if (dev->flags & IFF_UP) {
351638e7
JP
1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 dev);
1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
881d966b 1577 }
351638e7 1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1579 }
fcc5a03a 1580 }
c67625a1 1581
8f891489 1582outroll:
c67625a1 1583 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1584 goto unlock;
1da177e4 1585}
d1b19dff 1586EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1587
1588/**
1589 * unregister_netdevice_notifier - unregister a network notifier block
1590 * @nb: notifier
1591 *
1592 * Unregister a notifier previously registered by
1593 * register_netdevice_notifier(). The notifier is unlinked into the
1594 * kernel structures and may then be reused. A negative errno code
1595 * is returned on a failure.
7d3d43da
EB
1596 *
1597 * After unregistering unregister and down device events are synthesized
1598 * for all devices on the device list to the removed notifier to remove
1599 * the need for special case cleanup code.
1da177e4
LT
1600 */
1601
1602int unregister_netdevice_notifier(struct notifier_block *nb)
1603{
7d3d43da
EB
1604 struct net_device *dev;
1605 struct net *net;
9f514950
HX
1606 int err;
1607
1608 rtnl_lock();
f07d5b94 1609 err = raw_notifier_chain_unregister(&netdev_chain, nb);
7d3d43da
EB
1610 if (err)
1611 goto unlock;
1612
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 if (dev->flags & IFF_UP) {
351638e7
JP
1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 dev);
1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
7d3d43da 1619 }
351638e7 1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
7d3d43da
EB
1621 }
1622 }
1623unlock:
9f514950
HX
1624 rtnl_unlock();
1625 return err;
1da177e4 1626}
d1b19dff 1627EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4 1628
351638e7
JP
1629/**
1630 * call_netdevice_notifiers_info - call all network notifier blocks
1631 * @val: value passed unmodified to notifier function
1632 * @dev: net_device pointer passed unmodified to notifier function
1633 * @info: notifier information data
1634 *
1635 * Call all network notifier blocks. Parameters and return value
1636 * are as for raw_notifier_call_chain().
1637 */
1638
1d143d9f 1639static int call_netdevice_notifiers_info(unsigned long val,
1640 struct net_device *dev,
1641 struct netdev_notifier_info *info)
351638e7
JP
1642{
1643 ASSERT_RTNL();
1644 netdev_notifier_info_init(info, dev);
1645 return raw_notifier_call_chain(&netdev_chain, val, info);
1646}
351638e7 1647
1da177e4
LT
1648/**
1649 * call_netdevice_notifiers - call all network notifier blocks
1650 * @val: value passed unmodified to notifier function
c4ea43c5 1651 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1652 *
1653 * Call all network notifier blocks. Parameters and return value
f07d5b94 1654 * are as for raw_notifier_call_chain().
1da177e4
LT
1655 */
1656
ad7379d4 1657int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1658{
351638e7
JP
1659 struct netdev_notifier_info info;
1660
1661 return call_netdevice_notifiers_info(val, dev, &info);
1da177e4 1662}
edf947f1 1663EXPORT_SYMBOL(call_netdevice_notifiers);
1da177e4 1664
1cf51900 1665#ifdef CONFIG_NET_INGRESS
4577139b
DB
1666static struct static_key ingress_needed __read_mostly;
1667
1668void net_inc_ingress_queue(void)
1669{
1670 static_key_slow_inc(&ingress_needed);
1671}
1672EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674void net_dec_ingress_queue(void)
1675{
1676 static_key_slow_dec(&ingress_needed);
1677}
1678EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679#endif
1680
1f211a1b
DB
1681#ifdef CONFIG_NET_EGRESS
1682static struct static_key egress_needed __read_mostly;
1683
1684void net_inc_egress_queue(void)
1685{
1686 static_key_slow_inc(&egress_needed);
1687}
1688EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690void net_dec_egress_queue(void)
1691{
1692 static_key_slow_dec(&egress_needed);
1693}
1694EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695#endif
1696
c5905afb 1697static struct static_key netstamp_needed __read_mostly;
b90e5794 1698#ifdef HAVE_JUMP_LABEL
c5905afb 1699/* We are not allowed to call static_key_slow_dec() from irq context
b90e5794 1700 * If net_disable_timestamp() is called from irq context, defer the
c5905afb 1701 * static_key_slow_dec() calls.
b90e5794
ED
1702 */
1703static atomic_t netstamp_needed_deferred;
1704#endif
1da177e4
LT
1705
1706void net_enable_timestamp(void)
1707{
b90e5794
ED
1708#ifdef HAVE_JUMP_LABEL
1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711 if (deferred) {
1712 while (--deferred)
c5905afb 1713 static_key_slow_dec(&netstamp_needed);
b90e5794
ED
1714 return;
1715 }
1716#endif
c5905afb 1717 static_key_slow_inc(&netstamp_needed);
1da177e4 1718}
d1b19dff 1719EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1720
1721void net_disable_timestamp(void)
1722{
b90e5794
ED
1723#ifdef HAVE_JUMP_LABEL
1724 if (in_interrupt()) {
1725 atomic_inc(&netstamp_needed_deferred);
1726 return;
1727 }
1728#endif
c5905afb 1729 static_key_slow_dec(&netstamp_needed);
1da177e4 1730}
d1b19dff 1731EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1732
3b098e2d 1733static inline void net_timestamp_set(struct sk_buff *skb)
1da177e4 1734{
588f0330 1735 skb->tstamp.tv64 = 0;
c5905afb 1736 if (static_key_false(&netstamp_needed))
a61bbcf2 1737 __net_timestamp(skb);
1da177e4
LT
1738}
1739
588f0330 1740#define net_timestamp_check(COND, SKB) \
c5905afb 1741 if (static_key_false(&netstamp_needed)) { \
588f0330
ED
1742 if ((COND) && !(SKB)->tstamp.tv64) \
1743 __net_timestamp(SKB); \
1744 } \
3b098e2d 1745
f4b05d27 1746bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
79b569f0
DL
1747{
1748 unsigned int len;
1749
1750 if (!(dev->flags & IFF_UP))
1751 return false;
1752
1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 if (skb->len <= len)
1755 return true;
1756
1757 /* if TSO is enabled, we don't care about the length as the packet
1758 * could be forwarded without being segmented before
1759 */
1760 if (skb_is_gso(skb))
1761 return true;
1762
1763 return false;
1764}
1ee481fb 1765EXPORT_SYMBOL_GPL(is_skb_forwardable);
79b569f0 1766
a0265d28
HX
1767int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768{
4e3264d2 1769 int ret = ____dev_forward_skb(dev, skb);
a0265d28 1770
4e3264d2
MKL
1771 if (likely(!ret)) {
1772 skb->protocol = eth_type_trans(skb, dev);
1773 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1774 }
a0265d28 1775
4e3264d2 1776 return ret;
a0265d28
HX
1777}
1778EXPORT_SYMBOL_GPL(__dev_forward_skb);
1779
44540960
AB
1780/**
1781 * dev_forward_skb - loopback an skb to another netif
1782 *
1783 * @dev: destination network device
1784 * @skb: buffer to forward
1785 *
1786 * return values:
1787 * NET_RX_SUCCESS (no congestion)
6ec82562 1788 * NET_RX_DROP (packet was dropped, but freed)
44540960
AB
1789 *
1790 * dev_forward_skb can be used for injecting an skb from the
1791 * start_xmit function of one device into the receive queue
1792 * of another device.
1793 *
1794 * The receiving device may be in another namespace, so
1795 * we have to clear all information in the skb that could
1796 * impact namespace isolation.
1797 */
1798int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1799{
a0265d28 1800 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
44540960
AB
1801}
1802EXPORT_SYMBOL_GPL(dev_forward_skb);
1803
71d9dec2
CG
1804static inline int deliver_skb(struct sk_buff *skb,
1805 struct packet_type *pt_prev,
1806 struct net_device *orig_dev)
1807{
1080e512
MT
1808 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1809 return -ENOMEM;
71d9dec2
CG
1810 atomic_inc(&skb->users);
1811 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1812}
1813
7866a621
SN
1814static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1815 struct packet_type **pt,
fbcb2170
JP
1816 struct net_device *orig_dev,
1817 __be16 type,
7866a621
SN
1818 struct list_head *ptype_list)
1819{
1820 struct packet_type *ptype, *pt_prev = *pt;
1821
1822 list_for_each_entry_rcu(ptype, ptype_list, list) {
1823 if (ptype->type != type)
1824 continue;
1825 if (pt_prev)
fbcb2170 1826 deliver_skb(skb, pt_prev, orig_dev);
7866a621
SN
1827 pt_prev = ptype;
1828 }
1829 *pt = pt_prev;
1830}
1831
c0de08d0
EL
1832static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1833{
a3d744e9 1834 if (!ptype->af_packet_priv || !skb->sk)
c0de08d0
EL
1835 return false;
1836
1837 if (ptype->id_match)
1838 return ptype->id_match(ptype, skb->sk);
1839 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1840 return true;
1841
1842 return false;
1843}
1844
1da177e4
LT
1845/*
1846 * Support routine. Sends outgoing frames to any network
1847 * taps currently in use.
1848 */
1849
74b20582 1850void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1851{
1852 struct packet_type *ptype;
71d9dec2
CG
1853 struct sk_buff *skb2 = NULL;
1854 struct packet_type *pt_prev = NULL;
7866a621 1855 struct list_head *ptype_list = &ptype_all;
a61bbcf2 1856
1da177e4 1857 rcu_read_lock();
7866a621
SN
1858again:
1859 list_for_each_entry_rcu(ptype, ptype_list, list) {
1da177e4
LT
1860 /* Never send packets back to the socket
1861 * they originated from - MvS (miquels@drinkel.ow.org)
1862 */
7866a621
SN
1863 if (skb_loop_sk(ptype, skb))
1864 continue;
71d9dec2 1865
7866a621
SN
1866 if (pt_prev) {
1867 deliver_skb(skb2, pt_prev, skb->dev);
1868 pt_prev = ptype;
1869 continue;
1870 }
1da177e4 1871
7866a621
SN
1872 /* need to clone skb, done only once */
1873 skb2 = skb_clone(skb, GFP_ATOMIC);
1874 if (!skb2)
1875 goto out_unlock;
70978182 1876
7866a621 1877 net_timestamp_set(skb2);
1da177e4 1878
7866a621
SN
1879 /* skb->nh should be correctly
1880 * set by sender, so that the second statement is
1881 * just protection against buggy protocols.
1882 */
1883 skb_reset_mac_header(skb2);
1884
1885 if (skb_network_header(skb2) < skb2->data ||
1886 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1887 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1888 ntohs(skb2->protocol),
1889 dev->name);
1890 skb_reset_network_header(skb2);
1da177e4 1891 }
7866a621
SN
1892
1893 skb2->transport_header = skb2->network_header;
1894 skb2->pkt_type = PACKET_OUTGOING;
1895 pt_prev = ptype;
1896 }
1897
1898 if (ptype_list == &ptype_all) {
1899 ptype_list = &dev->ptype_all;
1900 goto again;
1da177e4 1901 }
7866a621 1902out_unlock:
71d9dec2
CG
1903 if (pt_prev)
1904 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1da177e4
LT
1905 rcu_read_unlock();
1906}
74b20582 1907EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1da177e4 1908
2c53040f
BH
1909/**
1910 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
4f57c087
JF
1911 * @dev: Network device
1912 * @txq: number of queues available
1913 *
1914 * If real_num_tx_queues is changed the tc mappings may no longer be
1915 * valid. To resolve this verify the tc mapping remains valid and if
1916 * not NULL the mapping. With no priorities mapping to this
1917 * offset/count pair it will no longer be used. In the worst case TC0
1918 * is invalid nothing can be done so disable priority mappings. If is
1919 * expected that drivers will fix this mapping if they can before
1920 * calling netif_set_real_num_tx_queues.
1921 */
bb134d22 1922static void netif_setup_tc(struct net_device *dev, unsigned int txq)
4f57c087
JF
1923{
1924 int i;
1925 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1926
1927 /* If TC0 is invalidated disable TC mapping */
1928 if (tc->offset + tc->count > txq) {
7b6cd1ce 1929 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
4f57c087
JF
1930 dev->num_tc = 0;
1931 return;
1932 }
1933
1934 /* Invalidated prio to tc mappings set to TC0 */
1935 for (i = 1; i < TC_BITMASK + 1; i++) {
1936 int q = netdev_get_prio_tc_map(dev, i);
1937
1938 tc = &dev->tc_to_txq[q];
1939 if (tc->offset + tc->count > txq) {
7b6cd1ce
JP
1940 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1941 i, q);
4f57c087
JF
1942 netdev_set_prio_tc_map(dev, i, 0);
1943 }
1944 }
1945}
1946
537c00de
AD
1947#ifdef CONFIG_XPS
1948static DEFINE_MUTEX(xps_map_mutex);
1949#define xmap_dereference(P) \
1950 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1951
10cdc3f3
AD
1952static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1953 int cpu, u16 index)
537c00de 1954{
10cdc3f3
AD
1955 struct xps_map *map = NULL;
1956 int pos;
537c00de 1957
10cdc3f3
AD
1958 if (dev_maps)
1959 map = xmap_dereference(dev_maps->cpu_map[cpu]);
537c00de 1960
10cdc3f3
AD
1961 for (pos = 0; map && pos < map->len; pos++) {
1962 if (map->queues[pos] == index) {
537c00de
AD
1963 if (map->len > 1) {
1964 map->queues[pos] = map->queues[--map->len];
1965 } else {
10cdc3f3 1966 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
537c00de
AD
1967 kfree_rcu(map, rcu);
1968 map = NULL;
1969 }
10cdc3f3 1970 break;
537c00de 1971 }
537c00de
AD
1972 }
1973
10cdc3f3
AD
1974 return map;
1975}
1976
024e9679 1977static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
10cdc3f3
AD
1978{
1979 struct xps_dev_maps *dev_maps;
024e9679 1980 int cpu, i;
10cdc3f3
AD
1981 bool active = false;
1982
1983 mutex_lock(&xps_map_mutex);
1984 dev_maps = xmap_dereference(dev->xps_maps);
1985
1986 if (!dev_maps)
1987 goto out_no_maps;
1988
1989 for_each_possible_cpu(cpu) {
024e9679
AD
1990 for (i = index; i < dev->num_tx_queues; i++) {
1991 if (!remove_xps_queue(dev_maps, cpu, i))
1992 break;
1993 }
1994 if (i == dev->num_tx_queues)
10cdc3f3
AD
1995 active = true;
1996 }
1997
1998 if (!active) {
537c00de
AD
1999 RCU_INIT_POINTER(dev->xps_maps, NULL);
2000 kfree_rcu(dev_maps, rcu);
2001 }
2002
024e9679
AD
2003 for (i = index; i < dev->num_tx_queues; i++)
2004 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2005 NUMA_NO_NODE);
2006
537c00de
AD
2007out_no_maps:
2008 mutex_unlock(&xps_map_mutex);
2009}
2010
01c5f864
AD
2011static struct xps_map *expand_xps_map(struct xps_map *map,
2012 int cpu, u16 index)
2013{
2014 struct xps_map *new_map;
2015 int alloc_len = XPS_MIN_MAP_ALLOC;
2016 int i, pos;
2017
2018 for (pos = 0; map && pos < map->len; pos++) {
2019 if (map->queues[pos] != index)
2020 continue;
2021 return map;
2022 }
2023
2024 /* Need to add queue to this CPU's existing map */
2025 if (map) {
2026 if (pos < map->alloc_len)
2027 return map;
2028
2029 alloc_len = map->alloc_len * 2;
2030 }
2031
2032 /* Need to allocate new map to store queue on this CPU's map */
2033 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2034 cpu_to_node(cpu));
2035 if (!new_map)
2036 return NULL;
2037
2038 for (i = 0; i < pos; i++)
2039 new_map->queues[i] = map->queues[i];
2040 new_map->alloc_len = alloc_len;
2041 new_map->len = pos;
2042
2043 return new_map;
2044}
2045
3573540c
MT
2046int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2047 u16 index)
537c00de 2048{
01c5f864 2049 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
537c00de 2050 struct xps_map *map, *new_map;
537c00de 2051 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
01c5f864
AD
2052 int cpu, numa_node_id = -2;
2053 bool active = false;
537c00de
AD
2054
2055 mutex_lock(&xps_map_mutex);
2056
2057 dev_maps = xmap_dereference(dev->xps_maps);
2058
01c5f864
AD
2059 /* allocate memory for queue storage */
2060 for_each_online_cpu(cpu) {
2061 if (!cpumask_test_cpu(cpu, mask))
2062 continue;
2063
2064 if (!new_dev_maps)
2065 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2bb60cb9
AD
2066 if (!new_dev_maps) {
2067 mutex_unlock(&xps_map_mutex);
01c5f864 2068 return -ENOMEM;
2bb60cb9 2069 }
01c5f864
AD
2070
2071 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2072 NULL;
2073
2074 map = expand_xps_map(map, cpu, index);
2075 if (!map)
2076 goto error;
2077
2078 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2079 }
2080
2081 if (!new_dev_maps)
2082 goto out_no_new_maps;
2083
537c00de 2084 for_each_possible_cpu(cpu) {
01c5f864
AD
2085 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2086 /* add queue to CPU maps */
2087 int pos = 0;
2088
2089 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2090 while ((pos < map->len) && (map->queues[pos] != index))
2091 pos++;
2092
2093 if (pos == map->len)
2094 map->queues[map->len++] = index;
537c00de 2095#ifdef CONFIG_NUMA
537c00de
AD
2096 if (numa_node_id == -2)
2097 numa_node_id = cpu_to_node(cpu);
2098 else if (numa_node_id != cpu_to_node(cpu))
2099 numa_node_id = -1;
537c00de 2100#endif
01c5f864
AD
2101 } else if (dev_maps) {
2102 /* fill in the new device map from the old device map */
2103 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2104 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
537c00de 2105 }
01c5f864 2106
537c00de
AD
2107 }
2108
01c5f864
AD
2109 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2110
537c00de 2111 /* Cleanup old maps */
01c5f864
AD
2112 if (dev_maps) {
2113 for_each_possible_cpu(cpu) {
2114 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2116 if (map && map != new_map)
2117 kfree_rcu(map, rcu);
2118 }
537c00de 2119
01c5f864 2120 kfree_rcu(dev_maps, rcu);
537c00de
AD
2121 }
2122
01c5f864
AD
2123 dev_maps = new_dev_maps;
2124 active = true;
537c00de 2125
01c5f864
AD
2126out_no_new_maps:
2127 /* update Tx queue numa node */
537c00de
AD
2128 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2129 (numa_node_id >= 0) ? numa_node_id :
2130 NUMA_NO_NODE);
2131
01c5f864
AD
2132 if (!dev_maps)
2133 goto out_no_maps;
2134
2135 /* removes queue from unused CPUs */
2136 for_each_possible_cpu(cpu) {
2137 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2138 continue;
2139
2140 if (remove_xps_queue(dev_maps, cpu, index))
2141 active = true;
2142 }
2143
2144 /* free map if not active */
2145 if (!active) {
2146 RCU_INIT_POINTER(dev->xps_maps, NULL);
2147 kfree_rcu(dev_maps, rcu);
2148 }
2149
2150out_no_maps:
537c00de
AD
2151 mutex_unlock(&xps_map_mutex);
2152
2153 return 0;
2154error:
01c5f864
AD
2155 /* remove any maps that we added */
2156 for_each_possible_cpu(cpu) {
2157 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2158 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2159 NULL;
2160 if (new_map && new_map != map)
2161 kfree(new_map);
2162 }
2163
537c00de
AD
2164 mutex_unlock(&xps_map_mutex);
2165
537c00de
AD
2166 kfree(new_dev_maps);
2167 return -ENOMEM;
2168}
2169EXPORT_SYMBOL(netif_set_xps_queue);
2170
2171#endif
f0796d5c
JF
2172/*
2173 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2174 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2175 */
e6484930 2176int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
f0796d5c 2177{
1d24eb48
TH
2178 int rc;
2179
e6484930
TH
2180 if (txq < 1 || txq > dev->num_tx_queues)
2181 return -EINVAL;
f0796d5c 2182
5c56580b
BH
2183 if (dev->reg_state == NETREG_REGISTERED ||
2184 dev->reg_state == NETREG_UNREGISTERING) {
e6484930
TH
2185 ASSERT_RTNL();
2186
1d24eb48
TH
2187 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2188 txq);
bf264145
TH
2189 if (rc)
2190 return rc;
2191
4f57c087
JF
2192 if (dev->num_tc)
2193 netif_setup_tc(dev, txq);
2194
024e9679 2195 if (txq < dev->real_num_tx_queues) {
e6484930 2196 qdisc_reset_all_tx_gt(dev, txq);
024e9679
AD
2197#ifdef CONFIG_XPS
2198 netif_reset_xps_queues_gt(dev, txq);
2199#endif
2200 }
f0796d5c 2201 }
e6484930
TH
2202
2203 dev->real_num_tx_queues = txq;
2204 return 0;
f0796d5c
JF
2205}
2206EXPORT_SYMBOL(netif_set_real_num_tx_queues);
56079431 2207
a953be53 2208#ifdef CONFIG_SYSFS
62fe0b40
BH
2209/**
2210 * netif_set_real_num_rx_queues - set actual number of RX queues used
2211 * @dev: Network device
2212 * @rxq: Actual number of RX queues
2213 *
2214 * This must be called either with the rtnl_lock held or before
2215 * registration of the net device. Returns 0 on success, or a
4e7f7951
BH
2216 * negative error code. If called before registration, it always
2217 * succeeds.
62fe0b40
BH
2218 */
2219int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2220{
2221 int rc;
2222
bd25fa7b
TH
2223 if (rxq < 1 || rxq > dev->num_rx_queues)
2224 return -EINVAL;
2225
62fe0b40
BH
2226 if (dev->reg_state == NETREG_REGISTERED) {
2227 ASSERT_RTNL();
2228
62fe0b40
BH
2229 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2230 rxq);
2231 if (rc)
2232 return rc;
62fe0b40
BH
2233 }
2234
2235 dev->real_num_rx_queues = rxq;
2236 return 0;
2237}
2238EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2239#endif
2240
2c53040f
BH
2241/**
2242 * netif_get_num_default_rss_queues - default number of RSS queues
16917b87
YM
2243 *
2244 * This routine should set an upper limit on the number of RSS queues
2245 * used by default by multiqueue devices.
2246 */
a55b138b 2247int netif_get_num_default_rss_queues(void)
16917b87 2248{
40e4e713
HS
2249 return is_kdump_kernel() ?
2250 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
16917b87
YM
2251}
2252EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2253
3bcb846c 2254static void __netif_reschedule(struct Qdisc *q)
56079431 2255{
def82a1d
JP
2256 struct softnet_data *sd;
2257 unsigned long flags;
56079431 2258
def82a1d 2259 local_irq_save(flags);
903ceff7 2260 sd = this_cpu_ptr(&softnet_data);
a9cbd588
CG
2261 q->next_sched = NULL;
2262 *sd->output_queue_tailp = q;
2263 sd->output_queue_tailp = &q->next_sched;
def82a1d
JP
2264 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2265 local_irq_restore(flags);
2266}
2267
2268void __netif_schedule(struct Qdisc *q)
2269{
2270 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2271 __netif_reschedule(q);
56079431
DV
2272}
2273EXPORT_SYMBOL(__netif_schedule);
2274
e6247027
ED
2275struct dev_kfree_skb_cb {
2276 enum skb_free_reason reason;
2277};
2278
2279static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
56079431 2280{
e6247027
ED
2281 return (struct dev_kfree_skb_cb *)skb->cb;
2282}
2283
46e5da40
JF
2284void netif_schedule_queue(struct netdev_queue *txq)
2285{
2286 rcu_read_lock();
2287 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2288 struct Qdisc *q = rcu_dereference(txq->qdisc);
2289
2290 __netif_schedule(q);
2291 }
2292 rcu_read_unlock();
2293}
2294EXPORT_SYMBOL(netif_schedule_queue);
2295
2296/**
2297 * netif_wake_subqueue - allow sending packets on subqueue
2298 * @dev: network device
2299 * @queue_index: sub queue index
2300 *
2301 * Resume individual transmit queue of a device with multiple transmit queues.
2302 */
2303void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2304{
2305 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2306
2307 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2308 struct Qdisc *q;
2309
2310 rcu_read_lock();
2311 q = rcu_dereference(txq->qdisc);
2312 __netif_schedule(q);
2313 rcu_read_unlock();
2314 }
2315}
2316EXPORT_SYMBOL(netif_wake_subqueue);
2317
2318void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2319{
2320 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2321 struct Qdisc *q;
2322
2323 rcu_read_lock();
2324 q = rcu_dereference(dev_queue->qdisc);
2325 __netif_schedule(q);
2326 rcu_read_unlock();
2327 }
2328}
2329EXPORT_SYMBOL(netif_tx_wake_queue);
2330
e6247027 2331void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
56079431 2332{
e6247027 2333 unsigned long flags;
56079431 2334
e6247027
ED
2335 if (likely(atomic_read(&skb->users) == 1)) {
2336 smp_rmb();
2337 atomic_set(&skb->users, 0);
2338 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2339 return;
bea3348e 2340 }
e6247027
ED
2341 get_kfree_skb_cb(skb)->reason = reason;
2342 local_irq_save(flags);
2343 skb->next = __this_cpu_read(softnet_data.completion_queue);
2344 __this_cpu_write(softnet_data.completion_queue, skb);
2345 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2346 local_irq_restore(flags);
56079431 2347}
e6247027 2348EXPORT_SYMBOL(__dev_kfree_skb_irq);
56079431 2349
e6247027 2350void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
56079431
DV
2351{
2352 if (in_irq() || irqs_disabled())
e6247027 2353 __dev_kfree_skb_irq(skb, reason);
56079431
DV
2354 else
2355 dev_kfree_skb(skb);
2356}
e6247027 2357EXPORT_SYMBOL(__dev_kfree_skb_any);
56079431
DV
2358
2359
bea3348e
SH
2360/**
2361 * netif_device_detach - mark device as removed
2362 * @dev: network device
2363 *
2364 * Mark device as removed from system and therefore no longer available.
2365 */
56079431
DV
2366void netif_device_detach(struct net_device *dev)
2367{
2368 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2369 netif_running(dev)) {
d543103a 2370 netif_tx_stop_all_queues(dev);
56079431
DV
2371 }
2372}
2373EXPORT_SYMBOL(netif_device_detach);
2374
bea3348e
SH
2375/**
2376 * netif_device_attach - mark device as attached
2377 * @dev: network device
2378 *
2379 * Mark device as attached from system and restart if needed.
2380 */
56079431
DV
2381void netif_device_attach(struct net_device *dev)
2382{
2383 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2384 netif_running(dev)) {
d543103a 2385 netif_tx_wake_all_queues(dev);
4ec93edb 2386 __netdev_watchdog_up(dev);
56079431
DV
2387 }
2388}
2389EXPORT_SYMBOL(netif_device_attach);
2390
5605c762
JP
2391/*
2392 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2393 * to be used as a distribution range.
2394 */
2395u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2396 unsigned int num_tx_queues)
2397{
2398 u32 hash;
2399 u16 qoffset = 0;
2400 u16 qcount = num_tx_queues;
2401
2402 if (skb_rx_queue_recorded(skb)) {
2403 hash = skb_get_rx_queue(skb);
2404 while (unlikely(hash >= num_tx_queues))
2405 hash -= num_tx_queues;
2406 return hash;
2407 }
2408
2409 if (dev->num_tc) {
2410 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2411 qoffset = dev->tc_to_txq[tc].offset;
2412 qcount = dev->tc_to_txq[tc].count;
2413 }
2414
2415 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2416}
2417EXPORT_SYMBOL(__skb_tx_hash);
2418
36c92474
BH
2419static void skb_warn_bad_offload(const struct sk_buff *skb)
2420{
84d15ae5 2421 static const netdev_features_t null_features;
36c92474 2422 struct net_device *dev = skb->dev;
88ad4175 2423 const char *name = "";
36c92474 2424
c846ad9b
BG
2425 if (!net_ratelimit())
2426 return;
2427
88ad4175
BM
2428 if (dev) {
2429 if (dev->dev.parent)
2430 name = dev_driver_string(dev->dev.parent);
2431 else
2432 name = netdev_name(dev);
2433 }
36c92474
BH
2434 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2435 "gso_type=%d ip_summed=%d\n",
88ad4175 2436 name, dev ? &dev->features : &null_features,
65e9d2fa 2437 skb->sk ? &skb->sk->sk_route_caps : &null_features,
36c92474
BH
2438 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2439 skb_shinfo(skb)->gso_type, skb->ip_summed);
2440}
2441
1da177e4
LT
2442/*
2443 * Invalidate hardware checksum when packet is to be mangled, and
2444 * complete checksum manually on outgoing path.
2445 */
84fa7933 2446int skb_checksum_help(struct sk_buff *skb)
1da177e4 2447{
d3bc23e7 2448 __wsum csum;
663ead3b 2449 int ret = 0, offset;
1da177e4 2450
84fa7933 2451 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
2452 goto out_set_summed;
2453
2454 if (unlikely(skb_shinfo(skb)->gso_size)) {
36c92474
BH
2455 skb_warn_bad_offload(skb);
2456 return -EINVAL;
1da177e4
LT
2457 }
2458
cef401de
ED
2459 /* Before computing a checksum, we should make sure no frag could
2460 * be modified by an external entity : checksum could be wrong.
2461 */
2462 if (skb_has_shared_frag(skb)) {
2463 ret = __skb_linearize(skb);
2464 if (ret)
2465 goto out;
2466 }
2467
55508d60 2468 offset = skb_checksum_start_offset(skb);
a030847e
HX
2469 BUG_ON(offset >= skb_headlen(skb));
2470 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2471
2472 offset += skb->csum_offset;
2473 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2474
2475 if (skb_cloned(skb) &&
2476 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
2477 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2478 if (ret)
2479 goto out;
2480 }
2481
4f2e4ad5 2482 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
a430a43d 2483out_set_summed:
1da177e4 2484 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 2485out:
1da177e4
LT
2486 return ret;
2487}
d1b19dff 2488EXPORT_SYMBOL(skb_checksum_help);
1da177e4 2489
6ae23ad3
TH
2490/* skb_csum_offload_check - Driver helper function to determine if a device
2491 * with limited checksum offload capabilities is able to offload the checksum
2492 * for a given packet.
2493 *
2494 * Arguments:
2495 * skb - sk_buff for the packet in question
2496 * spec - contains the description of what device can offload
2497 * csum_encapped - returns true if the checksum being offloaded is
2498 * encpasulated. That is it is checksum for the transport header
2499 * in the inner headers.
2500 * checksum_help - when set indicates that helper function should
2501 * call skb_checksum_help if offload checks fail
2502 *
2503 * Returns:
2504 * true: Packet has passed the checksum checks and should be offloadable to
2505 * the device (a driver may still need to check for additional
2506 * restrictions of its device)
2507 * false: Checksum is not offloadable. If checksum_help was set then
2508 * skb_checksum_help was called to resolve checksum for non-GSO
2509 * packets and when IP protocol is not SCTP
2510 */
2511bool __skb_csum_offload_chk(struct sk_buff *skb,
2512 const struct skb_csum_offl_spec *spec,
2513 bool *csum_encapped,
2514 bool csum_help)
2515{
2516 struct iphdr *iph;
2517 struct ipv6hdr *ipv6;
2518 void *nhdr;
2519 int protocol;
2520 u8 ip_proto;
2521
2522 if (skb->protocol == htons(ETH_P_8021Q) ||
2523 skb->protocol == htons(ETH_P_8021AD)) {
2524 if (!spec->vlan_okay)
2525 goto need_help;
2526 }
2527
2528 /* We check whether the checksum refers to a transport layer checksum in
2529 * the outermost header or an encapsulated transport layer checksum that
2530 * corresponds to the inner headers of the skb. If the checksum is for
2531 * something else in the packet we need help.
2532 */
2533 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2534 /* Non-encapsulated checksum */
2535 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2536 nhdr = skb_network_header(skb);
2537 *csum_encapped = false;
2538 if (spec->no_not_encapped)
2539 goto need_help;
2540 } else if (skb->encapsulation && spec->encap_okay &&
2541 skb_checksum_start_offset(skb) ==
2542 skb_inner_transport_offset(skb)) {
2543 /* Encapsulated checksum */
2544 *csum_encapped = true;
2545 switch (skb->inner_protocol_type) {
2546 case ENCAP_TYPE_ETHER:
2547 protocol = eproto_to_ipproto(skb->inner_protocol);
2548 break;
2549 case ENCAP_TYPE_IPPROTO:
2550 protocol = skb->inner_protocol;
2551 break;
2552 }
2553 nhdr = skb_inner_network_header(skb);
2554 } else {
2555 goto need_help;
2556 }
2557
2558 switch (protocol) {
2559 case IPPROTO_IP:
2560 if (!spec->ipv4_okay)
2561 goto need_help;
2562 iph = nhdr;
2563 ip_proto = iph->protocol;
2564 if (iph->ihl != 5 && !spec->ip_options_okay)
2565 goto need_help;
2566 break;
2567 case IPPROTO_IPV6:
2568 if (!spec->ipv6_okay)
2569 goto need_help;
2570 if (spec->no_encapped_ipv6 && *csum_encapped)
2571 goto need_help;
2572 ipv6 = nhdr;
2573 nhdr += sizeof(*ipv6);
2574 ip_proto = ipv6->nexthdr;
2575 break;
2576 default:
2577 goto need_help;
2578 }
2579
2580ip_proto_again:
2581 switch (ip_proto) {
2582 case IPPROTO_TCP:
2583 if (!spec->tcp_okay ||
2584 skb->csum_offset != offsetof(struct tcphdr, check))
2585 goto need_help;
2586 break;
2587 case IPPROTO_UDP:
2588 if (!spec->udp_okay ||
2589 skb->csum_offset != offsetof(struct udphdr, check))
2590 goto need_help;
2591 break;
2592 case IPPROTO_SCTP:
2593 if (!spec->sctp_okay ||
2594 skb->csum_offset != offsetof(struct sctphdr, checksum))
2595 goto cant_help;
2596 break;
2597 case NEXTHDR_HOP:
2598 case NEXTHDR_ROUTING:
2599 case NEXTHDR_DEST: {
2600 u8 *opthdr = nhdr;
2601
2602 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2603 goto need_help;
2604
2605 ip_proto = opthdr[0];
2606 nhdr += (opthdr[1] + 1) << 3;
2607
2608 goto ip_proto_again;
2609 }
2610 default:
2611 goto need_help;
2612 }
2613
2614 /* Passed the tests for offloading checksum */
2615 return true;
2616
2617need_help:
2618 if (csum_help && !skb_shinfo(skb)->gso_size)
2619 skb_checksum_help(skb);
2620cant_help:
2621 return false;
2622}
2623EXPORT_SYMBOL(__skb_csum_offload_chk);
2624
53d6471c 2625__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
f6a78bfc 2626{
252e3346 2627 __be16 type = skb->protocol;
f6a78bfc 2628
19acc327
PS
2629 /* Tunnel gso handlers can set protocol to ethernet. */
2630 if (type == htons(ETH_P_TEB)) {
2631 struct ethhdr *eth;
2632
2633 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2634 return 0;
2635
2636 eth = (struct ethhdr *)skb_mac_header(skb);
2637 type = eth->h_proto;
2638 }
2639
d4bcef3f 2640 return __vlan_get_protocol(skb, type, depth);
ec5f0615
PS
2641}
2642
2643/**
2644 * skb_mac_gso_segment - mac layer segmentation handler.
2645 * @skb: buffer to segment
2646 * @features: features for the output path (see dev->features)
2647 */
2648struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2649 netdev_features_t features)
2650{
2651 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2652 struct packet_offload *ptype;
53d6471c
VY
2653 int vlan_depth = skb->mac_len;
2654 __be16 type = skb_network_protocol(skb, &vlan_depth);
ec5f0615
PS
2655
2656 if (unlikely(!type))
2657 return ERR_PTR(-EINVAL);
2658
53d6471c 2659 __skb_pull(skb, vlan_depth);
f6a78bfc
HX
2660
2661 rcu_read_lock();
22061d80 2662 list_for_each_entry_rcu(ptype, &offload_base, list) {
f191a1d1 2663 if (ptype->type == type && ptype->callbacks.gso_segment) {
f191a1d1 2664 segs = ptype->callbacks.gso_segment(skb, features);
f6a78bfc
HX
2665 break;
2666 }
2667 }
2668 rcu_read_unlock();
2669
98e399f8 2670 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 2671
f6a78bfc
HX
2672 return segs;
2673}
05e8ef4a
PS
2674EXPORT_SYMBOL(skb_mac_gso_segment);
2675
2676
2677/* openvswitch calls this on rx path, so we need a different check.
2678 */
2679static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2680{
2681 if (tx_path)
2682 return skb->ip_summed != CHECKSUM_PARTIAL;
2683 else
2684 return skb->ip_summed == CHECKSUM_NONE;
2685}
2686
2687/**
2688 * __skb_gso_segment - Perform segmentation on skb.
2689 * @skb: buffer to segment
2690 * @features: features for the output path (see dev->features)
2691 * @tx_path: whether it is called in TX path
2692 *
2693 * This function segments the given skb and returns a list of segments.
2694 *
2695 * It may return NULL if the skb requires no segmentation. This is
2696 * only possible when GSO is used for verifying header integrity.
9207f9d4
KK
2697 *
2698 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
05e8ef4a
PS
2699 */
2700struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2701 netdev_features_t features, bool tx_path)
2702{
2703 if (unlikely(skb_needs_check(skb, tx_path))) {
2704 int err;
2705
2706 skb_warn_bad_offload(skb);
2707
a40e0a66 2708 err = skb_cow_head(skb, 0);
2709 if (err < 0)
05e8ef4a
PS
2710 return ERR_PTR(err);
2711 }
2712
802ab55a
AD
2713 /* Only report GSO partial support if it will enable us to
2714 * support segmentation on this frame without needing additional
2715 * work.
2716 */
2717 if (features & NETIF_F_GSO_PARTIAL) {
2718 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2719 struct net_device *dev = skb->dev;
2720
2721 partial_features |= dev->features & dev->gso_partial_features;
2722 if (!skb_gso_ok(skb, features | partial_features))
2723 features &= ~NETIF_F_GSO_PARTIAL;
2724 }
2725
9207f9d4
KK
2726 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2727 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2728
68c33163 2729 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3347c960
ED
2730 SKB_GSO_CB(skb)->encap_level = 0;
2731
05e8ef4a
PS
2732 skb_reset_mac_header(skb);
2733 skb_reset_mac_len(skb);
2734
2735 return skb_mac_gso_segment(skb, features);
2736}
12b0004d 2737EXPORT_SYMBOL(__skb_gso_segment);
f6a78bfc 2738
fb286bb2
HX
2739/* Take action when hardware reception checksum errors are detected. */
2740#ifdef CONFIG_BUG
2741void netdev_rx_csum_fault(struct net_device *dev)
2742{
2743 if (net_ratelimit()) {
7b6cd1ce 2744 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
fb286bb2
HX
2745 dump_stack();
2746 }
2747}
2748EXPORT_SYMBOL(netdev_rx_csum_fault);
2749#endif
2750
1da177e4
LT
2751/* Actually, we should eliminate this check as soon as we know, that:
2752 * 1. IOMMU is present and allows to map all the memory.
2753 * 2. No high memory really exists on this machine.
2754 */
2755
c1e756bf 2756static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1da177e4 2757{
3d3a8533 2758#ifdef CONFIG_HIGHMEM
1da177e4 2759 int i;
5acbbd42 2760 if (!(dev->features & NETIF_F_HIGHDMA)) {
ea2ab693
IC
2761 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763 if (PageHighMem(skb_frag_page(frag)))
5acbbd42 2764 return 1;
ea2ab693 2765 }
5acbbd42 2766 }
1da177e4 2767
5acbbd42
FT
2768 if (PCI_DMA_BUS_IS_PHYS) {
2769 struct device *pdev = dev->dev.parent;
1da177e4 2770
9092c658
ED
2771 if (!pdev)
2772 return 0;
5acbbd42 2773 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
ea2ab693
IC
2774 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2775 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
5acbbd42
FT
2776 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2777 return 1;
2778 }
2779 }
3d3a8533 2780#endif
1da177e4
LT
2781 return 0;
2782}
1da177e4 2783
3b392ddb
SH
2784/* If MPLS offload request, verify we are testing hardware MPLS features
2785 * instead of standard features for the netdev.
2786 */
d0edc7bf 2787#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3b392ddb
SH
2788static netdev_features_t net_mpls_features(struct sk_buff *skb,
2789 netdev_features_t features,
2790 __be16 type)
2791{
25cd9ba0 2792 if (eth_p_mpls(type))
3b392ddb
SH
2793 features &= skb->dev->mpls_features;
2794
2795 return features;
2796}
2797#else
2798static netdev_features_t net_mpls_features(struct sk_buff *skb,
2799 netdev_features_t features,
2800 __be16 type)
2801{
2802 return features;
2803}
2804#endif
2805
c8f44aff 2806static netdev_features_t harmonize_features(struct sk_buff *skb,
c1e756bf 2807 netdev_features_t features)
f01a5236 2808{
53d6471c 2809 int tmp;
3b392ddb
SH
2810 __be16 type;
2811
2812 type = skb_network_protocol(skb, &tmp);
2813 features = net_mpls_features(skb, features, type);
53d6471c 2814
c0d680e5 2815 if (skb->ip_summed != CHECKSUM_NONE &&
3b392ddb 2816 !can_checksum_protocol(features, type)) {
996e8021 2817 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
c1e756bf 2818 } else if (illegal_highdma(skb->dev, skb)) {
f01a5236
JG
2819 features &= ~NETIF_F_SG;
2820 }
2821
2822 return features;
2823}
2824
e38f3025
TM
2825netdev_features_t passthru_features_check(struct sk_buff *skb,
2826 struct net_device *dev,
2827 netdev_features_t features)
2828{
2829 return features;
2830}
2831EXPORT_SYMBOL(passthru_features_check);
2832
8cb65d00
TM
2833static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2834 struct net_device *dev,
2835 netdev_features_t features)
2836{
2837 return vlan_features_check(skb, features);
2838}
2839
cbc53e08
AD
2840static netdev_features_t gso_features_check(const struct sk_buff *skb,
2841 struct net_device *dev,
2842 netdev_features_t features)
2843{
2844 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2845
2846 if (gso_segs > dev->gso_max_segs)
2847 return features & ~NETIF_F_GSO_MASK;
2848
802ab55a
AD
2849 /* Support for GSO partial features requires software
2850 * intervention before we can actually process the packets
2851 * so we need to strip support for any partial features now
2852 * and we can pull them back in after we have partially
2853 * segmented the frame.
2854 */
2855 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2856 features &= ~dev->gso_partial_features;
2857
2858 /* Make sure to clear the IPv4 ID mangling feature if the
2859 * IPv4 header has the potential to be fragmented.
cbc53e08
AD
2860 */
2861 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2862 struct iphdr *iph = skb->encapsulation ?
2863 inner_ip_hdr(skb) : ip_hdr(skb);
2864
2865 if (!(iph->frag_off & htons(IP_DF)))
2866 features &= ~NETIF_F_TSO_MANGLEID;
2867 }
2868
2869 return features;
2870}
2871
c1e756bf 2872netdev_features_t netif_skb_features(struct sk_buff *skb)
58e998c6 2873{
5f35227e 2874 struct net_device *dev = skb->dev;
fcbeb976 2875 netdev_features_t features = dev->features;
58e998c6 2876
cbc53e08
AD
2877 if (skb_is_gso(skb))
2878 features = gso_features_check(skb, dev, features);
30b678d8 2879
5f35227e
JG
2880 /* If encapsulation offload request, verify we are testing
2881 * hardware encapsulation features instead of standard
2882 * features for the netdev
2883 */
2884 if (skb->encapsulation)
2885 features &= dev->hw_enc_features;
2886
f5a7fb88
TM
2887 if (skb_vlan_tagged(skb))
2888 features = netdev_intersect_features(features,
2889 dev->vlan_features |
2890 NETIF_F_HW_VLAN_CTAG_TX |
2891 NETIF_F_HW_VLAN_STAG_TX);
f01a5236 2892
5f35227e
JG
2893 if (dev->netdev_ops->ndo_features_check)
2894 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2895 features);
8cb65d00
TM
2896 else
2897 features &= dflt_features_check(skb, dev, features);
5f35227e 2898
c1e756bf 2899 return harmonize_features(skb, features);
58e998c6 2900}
c1e756bf 2901EXPORT_SYMBOL(netif_skb_features);
58e998c6 2902
2ea25513 2903static int xmit_one(struct sk_buff *skb, struct net_device *dev,
95f6b3dd 2904 struct netdev_queue *txq, bool more)
f6a78bfc 2905{
2ea25513
DM
2906 unsigned int len;
2907 int rc;
00829823 2908
7866a621 2909 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2ea25513 2910 dev_queue_xmit_nit(skb, dev);
fc741216 2911
2ea25513
DM
2912 len = skb->len;
2913 trace_net_dev_start_xmit(skb, dev);
95f6b3dd 2914 rc = netdev_start_xmit(skb, dev, txq, more);
2ea25513 2915 trace_net_dev_xmit(skb, rc, dev, len);
adf30907 2916
2ea25513
DM
2917 return rc;
2918}
7b9c6090 2919
8dcda22a
DM
2920struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2921 struct netdev_queue *txq, int *ret)
7f2e870f
DM
2922{
2923 struct sk_buff *skb = first;
2924 int rc = NETDEV_TX_OK;
7b9c6090 2925
7f2e870f
DM
2926 while (skb) {
2927 struct sk_buff *next = skb->next;
fc70fb64 2928
7f2e870f 2929 skb->next = NULL;
95f6b3dd 2930 rc = xmit_one(skb, dev, txq, next != NULL);
7f2e870f
DM
2931 if (unlikely(!dev_xmit_complete(rc))) {
2932 skb->next = next;
2933 goto out;
2934 }
6afff0ca 2935
7f2e870f
DM
2936 skb = next;
2937 if (netif_xmit_stopped(txq) && skb) {
2938 rc = NETDEV_TX_BUSY;
2939 break;
9ccb8975 2940 }
7f2e870f 2941 }
9ccb8975 2942
7f2e870f
DM
2943out:
2944 *ret = rc;
2945 return skb;
2946}
b40863c6 2947
1ff0dc94
ED
2948static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2949 netdev_features_t features)
f6a78bfc 2950{
df8a39de 2951 if (skb_vlan_tag_present(skb) &&
5968250c
JP
2952 !vlan_hw_offload_capable(features, skb->vlan_proto))
2953 skb = __vlan_hwaccel_push_inside(skb);
eae3f88e
DM
2954 return skb;
2955}
f6a78bfc 2956
55a93b3e 2957static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
eae3f88e
DM
2958{
2959 netdev_features_t features;
f6a78bfc 2960
eae3f88e
DM
2961 features = netif_skb_features(skb);
2962 skb = validate_xmit_vlan(skb, features);
2963 if (unlikely(!skb))
2964 goto out_null;
7b9c6090 2965
8b86a61d 2966 if (netif_needs_gso(skb, features)) {
ce93718f
DM
2967 struct sk_buff *segs;
2968
2969 segs = skb_gso_segment(skb, features);
cecda693 2970 if (IS_ERR(segs)) {
af6dabc9 2971 goto out_kfree_skb;
cecda693
JW
2972 } else if (segs) {
2973 consume_skb(skb);
2974 skb = segs;
f6a78bfc 2975 }
eae3f88e
DM
2976 } else {
2977 if (skb_needs_linearize(skb, features) &&
2978 __skb_linearize(skb))
2979 goto out_kfree_skb;
4ec93edb 2980
eae3f88e
DM
2981 /* If packet is not checksummed and device does not
2982 * support checksumming for this protocol, complete
2983 * checksumming here.
2984 */
2985 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2986 if (skb->encapsulation)
2987 skb_set_inner_transport_header(skb,
2988 skb_checksum_start_offset(skb));
2989 else
2990 skb_set_transport_header(skb,
2991 skb_checksum_start_offset(skb));
a188222b 2992 if (!(features & NETIF_F_CSUM_MASK) &&
eae3f88e
DM
2993 skb_checksum_help(skb))
2994 goto out_kfree_skb;
7b9c6090 2995 }
0c772159 2996 }
7b9c6090 2997
eae3f88e 2998 return skb;
fc70fb64 2999
f6a78bfc
HX
3000out_kfree_skb:
3001 kfree_skb(skb);
eae3f88e 3002out_null:
d21fd63e 3003 atomic_long_inc(&dev->tx_dropped);
eae3f88e
DM
3004 return NULL;
3005}
6afff0ca 3006
55a93b3e
ED
3007struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3008{
3009 struct sk_buff *next, *head = NULL, *tail;
3010
bec3cfdc 3011 for (; skb != NULL; skb = next) {
55a93b3e
ED
3012 next = skb->next;
3013 skb->next = NULL;
bec3cfdc
ED
3014
3015 /* in case skb wont be segmented, point to itself */
3016 skb->prev = skb;
3017
55a93b3e 3018 skb = validate_xmit_skb(skb, dev);
bec3cfdc
ED
3019 if (!skb)
3020 continue;
55a93b3e 3021
bec3cfdc
ED
3022 if (!head)
3023 head = skb;
3024 else
3025 tail->next = skb;
3026 /* If skb was segmented, skb->prev points to
3027 * the last segment. If not, it still contains skb.
3028 */
3029 tail = skb->prev;
55a93b3e
ED
3030 }
3031 return head;
f6a78bfc 3032}
104ba78c 3033EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
f6a78bfc 3034
1def9238
ED
3035static void qdisc_pkt_len_init(struct sk_buff *skb)
3036{
3037 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3038
3039 qdisc_skb_cb(skb)->pkt_len = skb->len;
3040
3041 /* To get more precise estimation of bytes sent on wire,
3042 * we add to pkt_len the headers size of all segments
3043 */
3044 if (shinfo->gso_size) {
757b8b1d 3045 unsigned int hdr_len;
15e5a030 3046 u16 gso_segs = shinfo->gso_segs;
1def9238 3047
757b8b1d
ED
3048 /* mac layer + network layer */
3049 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3050
3051 /* + transport layer */
1def9238
ED
3052 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3053 hdr_len += tcp_hdrlen(skb);
3054 else
3055 hdr_len += sizeof(struct udphdr);
15e5a030
JW
3056
3057 if (shinfo->gso_type & SKB_GSO_DODGY)
3058 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3059 shinfo->gso_size);
3060
3061 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
1def9238
ED
3062 }
3063}
3064
bbd8a0d3
KK
3065static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3066 struct net_device *dev,
3067 struct netdev_queue *txq)
3068{
3069 spinlock_t *root_lock = qdisc_lock(q);
520ac30f 3070 struct sk_buff *to_free = NULL;
a2da570d 3071 bool contended;
bbd8a0d3
KK
3072 int rc;
3073
a2da570d 3074 qdisc_calculate_pkt_len(skb, q);
79640a4c
ED
3075 /*
3076 * Heuristic to force contended enqueues to serialize on a
3077 * separate lock before trying to get qdisc main lock.
f9eb8aea 3078 * This permits qdisc->running owner to get the lock more
9bf2b8c2 3079 * often and dequeue packets faster.
79640a4c 3080 */
a2da570d 3081 contended = qdisc_is_running(q);
79640a4c
ED
3082 if (unlikely(contended))
3083 spin_lock(&q->busylock);
3084
bbd8a0d3
KK
3085 spin_lock(root_lock);
3086 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
520ac30f 3087 __qdisc_drop(skb, &to_free);
bbd8a0d3
KK
3088 rc = NET_XMIT_DROP;
3089 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
bc135b23 3090 qdisc_run_begin(q)) {
bbd8a0d3
KK
3091 /*
3092 * This is a work-conserving queue; there are no old skbs
3093 * waiting to be sent out; and the qdisc is not running -
3094 * xmit the skb directly.
3095 */
bfe0d029 3096
bfe0d029
ED
3097 qdisc_bstats_update(q, skb);
3098
55a93b3e 3099 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
79640a4c
ED
3100 if (unlikely(contended)) {
3101 spin_unlock(&q->busylock);
3102 contended = false;
3103 }
bbd8a0d3 3104 __qdisc_run(q);
79640a4c 3105 } else
bc135b23 3106 qdisc_run_end(q);
bbd8a0d3
KK
3107
3108 rc = NET_XMIT_SUCCESS;
3109 } else {
520ac30f 3110 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
79640a4c
ED
3111 if (qdisc_run_begin(q)) {
3112 if (unlikely(contended)) {
3113 spin_unlock(&q->busylock);
3114 contended = false;
3115 }
3116 __qdisc_run(q);
3117 }
bbd8a0d3
KK
3118 }
3119 spin_unlock(root_lock);
520ac30f
ED
3120 if (unlikely(to_free))
3121 kfree_skb_list(to_free);
79640a4c
ED
3122 if (unlikely(contended))
3123 spin_unlock(&q->busylock);
bbd8a0d3
KK
3124 return rc;
3125}
3126
86f8515f 3127#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e
NH
3128static void skb_update_prio(struct sk_buff *skb)
3129{
6977a79d 3130 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
5bc1421e 3131
91c68ce2 3132 if (!skb->priority && skb->sk && map) {
2a56a1fe
TH
3133 unsigned int prioidx =
3134 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
91c68ce2
ED
3135
3136 if (prioidx < map->priomap_len)
3137 skb->priority = map->priomap[prioidx];
3138 }
5bc1421e
NH
3139}
3140#else
3141#define skb_update_prio(skb)
3142#endif
3143
f60e5990 3144DEFINE_PER_CPU(int, xmit_recursion);
3145EXPORT_SYMBOL(xmit_recursion);
3146
95603e22
MM
3147/**
3148 * dev_loopback_xmit - loop back @skb
0c4b51f0
EB
3149 * @net: network namespace this loopback is happening in
3150 * @sk: sk needed to be a netfilter okfn
95603e22
MM
3151 * @skb: buffer to transmit
3152 */
0c4b51f0 3153int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
95603e22
MM
3154{
3155 skb_reset_mac_header(skb);
3156 __skb_pull(skb, skb_network_offset(skb));
3157 skb->pkt_type = PACKET_LOOPBACK;
3158 skb->ip_summed = CHECKSUM_UNNECESSARY;
3159 WARN_ON(!skb_dst(skb));
3160 skb_dst_force(skb);
3161 netif_rx_ni(skb);
3162 return 0;
3163}
3164EXPORT_SYMBOL(dev_loopback_xmit);
3165
1f211a1b
DB
3166#ifdef CONFIG_NET_EGRESS
3167static struct sk_buff *
3168sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3169{
3170 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3171 struct tcf_result cl_res;
3172
3173 if (!cl)
3174 return skb;
3175
3176 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3177 * earlier by the caller.
3178 */
3179 qdisc_bstats_cpu_update(cl->q, skb);
3180
3181 switch (tc_classify(skb, cl, &cl_res, false)) {
3182 case TC_ACT_OK:
3183 case TC_ACT_RECLASSIFY:
3184 skb->tc_index = TC_H_MIN(cl_res.classid);
3185 break;
3186 case TC_ACT_SHOT:
3187 qdisc_qstats_cpu_drop(cl->q);
3188 *ret = NET_XMIT_DROP;
7e2c3aea
DB
3189 kfree_skb(skb);
3190 return NULL;
1f211a1b
DB
3191 case TC_ACT_STOLEN:
3192 case TC_ACT_QUEUED:
3193 *ret = NET_XMIT_SUCCESS;
7e2c3aea 3194 consume_skb(skb);
1f211a1b
DB
3195 return NULL;
3196 case TC_ACT_REDIRECT:
3197 /* No need to push/pop skb's mac_header here on egress! */
3198 skb_do_redirect(skb);
3199 *ret = NET_XMIT_SUCCESS;
3200 return NULL;
3201 default:
3202 break;
3203 }
3204
3205 return skb;
3206}
3207#endif /* CONFIG_NET_EGRESS */
3208
638b2a69
JP
3209static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3210{
3211#ifdef CONFIG_XPS
3212 struct xps_dev_maps *dev_maps;
3213 struct xps_map *map;
3214 int queue_index = -1;
3215
3216 rcu_read_lock();
3217 dev_maps = rcu_dereference(dev->xps_maps);
3218 if (dev_maps) {
3219 map = rcu_dereference(
3220 dev_maps->cpu_map[skb->sender_cpu - 1]);
3221 if (map) {
3222 if (map->len == 1)
3223 queue_index = map->queues[0];
3224 else
3225 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3226 map->len)];
3227 if (unlikely(queue_index >= dev->real_num_tx_queues))
3228 queue_index = -1;
3229 }
3230 }
3231 rcu_read_unlock();
3232
3233 return queue_index;
3234#else
3235 return -1;
3236#endif
3237}
3238
3239static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3240{
3241 struct sock *sk = skb->sk;
3242 int queue_index = sk_tx_queue_get(sk);
3243
3244 if (queue_index < 0 || skb->ooo_okay ||
3245 queue_index >= dev->real_num_tx_queues) {
3246 int new_index = get_xps_queue(dev, skb);
3247 if (new_index < 0)
3248 new_index = skb_tx_hash(dev, skb);
3249
3250 if (queue_index != new_index && sk &&
004a5d01 3251 sk_fullsock(sk) &&
638b2a69
JP
3252 rcu_access_pointer(sk->sk_dst_cache))
3253 sk_tx_queue_set(sk, new_index);
3254
3255 queue_index = new_index;
3256 }
3257
3258 return queue_index;
3259}
3260
3261struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3262 struct sk_buff *skb,
3263 void *accel_priv)
3264{
3265 int queue_index = 0;
3266
3267#ifdef CONFIG_XPS
52bd2d62
ED
3268 u32 sender_cpu = skb->sender_cpu - 1;
3269
3270 if (sender_cpu >= (u32)NR_CPUS)
638b2a69
JP
3271 skb->sender_cpu = raw_smp_processor_id() + 1;
3272#endif
3273
3274 if (dev->real_num_tx_queues != 1) {
3275 const struct net_device_ops *ops = dev->netdev_ops;
3276 if (ops->ndo_select_queue)
3277 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3278 __netdev_pick_tx);
3279 else
3280 queue_index = __netdev_pick_tx(dev, skb);
3281
3282 if (!accel_priv)
3283 queue_index = netdev_cap_txqueue(dev, queue_index);
3284 }
3285
3286 skb_set_queue_mapping(skb, queue_index);
3287 return netdev_get_tx_queue(dev, queue_index);
3288}
3289
d29f749e 3290/**
9d08dd3d 3291 * __dev_queue_xmit - transmit a buffer
d29f749e 3292 * @skb: buffer to transmit
9d08dd3d 3293 * @accel_priv: private data used for L2 forwarding offload
d29f749e
DJ
3294 *
3295 * Queue a buffer for transmission to a network device. The caller must
3296 * have set the device and priority and built the buffer before calling
3297 * this function. The function can be called from an interrupt.
3298 *
3299 * A negative errno code is returned on a failure. A success does not
3300 * guarantee the frame will be transmitted as it may be dropped due
3301 * to congestion or traffic shaping.
3302 *
3303 * -----------------------------------------------------------------------------------
3304 * I notice this method can also return errors from the queue disciplines,
3305 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3306 * be positive.
3307 *
3308 * Regardless of the return value, the skb is consumed, so it is currently
3309 * difficult to retry a send to this method. (You can bump the ref count
3310 * before sending to hold a reference for retry if you are careful.)
3311 *
3312 * When calling this method, interrupts MUST be enabled. This is because
3313 * the BH enable code must have IRQs enabled so that it will not deadlock.
3314 * --BLG
3315 */
0a59f3a9 3316static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
1da177e4
LT
3317{
3318 struct net_device *dev = skb->dev;
dc2b4847 3319 struct netdev_queue *txq;
1da177e4
LT
3320 struct Qdisc *q;
3321 int rc = -ENOMEM;
3322
6d1ccff6
ED
3323 skb_reset_mac_header(skb);
3324
e7fd2885
WB
3325 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3326 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3327
4ec93edb
YH
3328 /* Disable soft irqs for various locks below. Also
3329 * stops preemption for RCU.
1da177e4 3330 */
4ec93edb 3331 rcu_read_lock_bh();
1da177e4 3332
5bc1421e
NH
3333 skb_update_prio(skb);
3334
1f211a1b
DB
3335 qdisc_pkt_len_init(skb);
3336#ifdef CONFIG_NET_CLS_ACT
3337 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3338# ifdef CONFIG_NET_EGRESS
3339 if (static_key_false(&egress_needed)) {
3340 skb = sch_handle_egress(skb, &rc, dev);
3341 if (!skb)
3342 goto out;
3343 }
3344# endif
3345#endif
02875878
ED
3346 /* If device/qdisc don't need skb->dst, release it right now while
3347 * its hot in this cpu cache.
3348 */
3349 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3350 skb_dst_drop(skb);
3351 else
3352 skb_dst_force(skb);
3353
f663dd9a 3354 txq = netdev_pick_tx(dev, skb, accel_priv);
a898def2 3355 q = rcu_dereference_bh(txq->qdisc);
37437bb2 3356
cf66ba58 3357 trace_net_dev_queue(skb);
1da177e4 3358 if (q->enqueue) {
bbd8a0d3 3359 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 3360 goto out;
1da177e4
LT
3361 }
3362
3363 /* The device has no queue. Common case for software devices:
3364 loopback, all the sorts of tunnels...
3365
932ff279
HX
3366 Really, it is unlikely that netif_tx_lock protection is necessary
3367 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
3368 counters.)
3369 However, it is possible, that they rely on protection
3370 made by us here.
3371
3372 Check this and shot the lock. It is not prone from deadlocks.
3373 Either shot noqueue qdisc, it is even simpler 8)
3374 */
3375 if (dev->flags & IFF_UP) {
3376 int cpu = smp_processor_id(); /* ok because BHs are off */
3377
c773e847 3378 if (txq->xmit_lock_owner != cpu) {
a70b506e
DB
3379 if (unlikely(__this_cpu_read(xmit_recursion) >
3380 XMIT_RECURSION_LIMIT))
745e20f1
ED
3381 goto recursion_alert;
3382
1f59533f
JDB
3383 skb = validate_xmit_skb(skb, dev);
3384 if (!skb)
d21fd63e 3385 goto out;
1f59533f 3386
c773e847 3387 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 3388
73466498 3389 if (!netif_xmit_stopped(txq)) {
745e20f1 3390 __this_cpu_inc(xmit_recursion);
ce93718f 3391 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
745e20f1 3392 __this_cpu_dec(xmit_recursion);
572a9d7b 3393 if (dev_xmit_complete(rc)) {
c773e847 3394 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
3395 goto out;
3396 }
3397 }
c773e847 3398 HARD_TX_UNLOCK(dev, txq);
e87cc472
JP
3399 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3400 dev->name);
1da177e4
LT
3401 } else {
3402 /* Recursion is detected! It is possible,
745e20f1
ED
3403 * unfortunately
3404 */
3405recursion_alert:
e87cc472
JP
3406 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3407 dev->name);
1da177e4
LT
3408 }
3409 }
3410
3411 rc = -ENETDOWN;
d4828d85 3412 rcu_read_unlock_bh();
1da177e4 3413
015f0688 3414 atomic_long_inc(&dev->tx_dropped);
1f59533f 3415 kfree_skb_list(skb);
1da177e4
LT
3416 return rc;
3417out:
d4828d85 3418 rcu_read_unlock_bh();
1da177e4
LT
3419 return rc;
3420}
f663dd9a 3421
2b4aa3ce 3422int dev_queue_xmit(struct sk_buff *skb)
f663dd9a
JW
3423{
3424 return __dev_queue_xmit(skb, NULL);
3425}
2b4aa3ce 3426EXPORT_SYMBOL(dev_queue_xmit);
1da177e4 3427
f663dd9a
JW
3428int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3429{
3430 return __dev_queue_xmit(skb, accel_priv);
3431}
3432EXPORT_SYMBOL(dev_queue_xmit_accel);
3433
1da177e4
LT
3434
3435/*=======================================================================
3436 Receiver routines
3437 =======================================================================*/
3438
6b2bedc3 3439int netdev_max_backlog __read_mostly = 1000;
c9e6bc64
ED
3440EXPORT_SYMBOL(netdev_max_backlog);
3441
3b098e2d 3442int netdev_tstamp_prequeue __read_mostly = 1;
6b2bedc3
SH
3443int netdev_budget __read_mostly = 300;
3444int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4 3445
eecfd7c4
ED
3446/* Called with irq disabled */
3447static inline void ____napi_schedule(struct softnet_data *sd,
3448 struct napi_struct *napi)
3449{
3450 list_add_tail(&napi->poll_list, &sd->poll_list);
3451 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3452}
3453
bfb564e7
KK
3454#ifdef CONFIG_RPS
3455
3456/* One global table that all flow-based protocols share. */
6e3f7faf 3457struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
bfb564e7 3458EXPORT_SYMBOL(rps_sock_flow_table);
567e4b79
ED
3459u32 rps_cpu_mask __read_mostly;
3460EXPORT_SYMBOL(rps_cpu_mask);
bfb564e7 3461
c5905afb 3462struct static_key rps_needed __read_mostly;
3df97ba8 3463EXPORT_SYMBOL(rps_needed);
adc9300e 3464
c445477d
BH
3465static struct rps_dev_flow *
3466set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3467 struct rps_dev_flow *rflow, u16 next_cpu)
3468{
a31196b0 3469 if (next_cpu < nr_cpu_ids) {
c445477d
BH
3470#ifdef CONFIG_RFS_ACCEL
3471 struct netdev_rx_queue *rxqueue;
3472 struct rps_dev_flow_table *flow_table;
3473 struct rps_dev_flow *old_rflow;
3474 u32 flow_id;
3475 u16 rxq_index;
3476 int rc;
3477
3478 /* Should we steer this flow to a different hardware queue? */
69a19ee6
BH
3479 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3480 !(dev->features & NETIF_F_NTUPLE))
c445477d
BH
3481 goto out;
3482 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3483 if (rxq_index == skb_get_rx_queue(skb))
3484 goto out;
3485
3486 rxqueue = dev->_rx + rxq_index;
3487 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3488 if (!flow_table)
3489 goto out;
61b905da 3490 flow_id = skb_get_hash(skb) & flow_table->mask;
c445477d
BH
3491 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3492 rxq_index, flow_id);
3493 if (rc < 0)
3494 goto out;
3495 old_rflow = rflow;
3496 rflow = &flow_table->flows[flow_id];
c445477d
BH
3497 rflow->filter = rc;
3498 if (old_rflow->filter == rflow->filter)
3499 old_rflow->filter = RPS_NO_FILTER;
3500 out:
3501#endif
3502 rflow->last_qtail =
09994d1b 3503 per_cpu(softnet_data, next_cpu).input_queue_head;
c445477d
BH
3504 }
3505
09994d1b 3506 rflow->cpu = next_cpu;
c445477d
BH
3507 return rflow;
3508}
3509
bfb564e7
KK
3510/*
3511 * get_rps_cpu is called from netif_receive_skb and returns the target
3512 * CPU from the RPS map of the receiving queue for a given skb.
3513 * rcu_read_lock must be held on entry.
3514 */
3515static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3516 struct rps_dev_flow **rflowp)
3517{
567e4b79
ED
3518 const struct rps_sock_flow_table *sock_flow_table;
3519 struct netdev_rx_queue *rxqueue = dev->_rx;
bfb564e7 3520 struct rps_dev_flow_table *flow_table;
567e4b79 3521 struct rps_map *map;
bfb564e7 3522 int cpu = -1;
567e4b79 3523 u32 tcpu;
61b905da 3524 u32 hash;
bfb564e7
KK
3525
3526 if (skb_rx_queue_recorded(skb)) {
3527 u16 index = skb_get_rx_queue(skb);
567e4b79 3528
62fe0b40
BH
3529 if (unlikely(index >= dev->real_num_rx_queues)) {
3530 WARN_ONCE(dev->real_num_rx_queues > 1,
3531 "%s received packet on queue %u, but number "
3532 "of RX queues is %u\n",
3533 dev->name, index, dev->real_num_rx_queues);
bfb564e7
KK
3534 goto done;
3535 }
567e4b79
ED
3536 rxqueue += index;
3537 }
bfb564e7 3538
567e4b79
ED
3539 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3540
3541 flow_table = rcu_dereference(rxqueue->rps_flow_table);
6e3f7faf 3542 map = rcu_dereference(rxqueue->rps_map);
567e4b79 3543 if (!flow_table && !map)
bfb564e7
KK
3544 goto done;
3545
2d47b459 3546 skb_reset_network_header(skb);
61b905da
TH
3547 hash = skb_get_hash(skb);
3548 if (!hash)
bfb564e7
KK
3549 goto done;
3550
fec5e652
TH
3551 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3552 if (flow_table && sock_flow_table) {
fec5e652 3553 struct rps_dev_flow *rflow;
567e4b79
ED
3554 u32 next_cpu;
3555 u32 ident;
3556
3557 /* First check into global flow table if there is a match */
3558 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3559 if ((ident ^ hash) & ~rps_cpu_mask)
3560 goto try_rps;
fec5e652 3561
567e4b79
ED
3562 next_cpu = ident & rps_cpu_mask;
3563
3564 /* OK, now we know there is a match,
3565 * we can look at the local (per receive queue) flow table
3566 */
61b905da 3567 rflow = &flow_table->flows[hash & flow_table->mask];
fec5e652
TH
3568 tcpu = rflow->cpu;
3569
fec5e652
TH
3570 /*
3571 * If the desired CPU (where last recvmsg was done) is
3572 * different from current CPU (one in the rx-queue flow
3573 * table entry), switch if one of the following holds:
a31196b0 3574 * - Current CPU is unset (>= nr_cpu_ids).
fec5e652
TH
3575 * - Current CPU is offline.
3576 * - The current CPU's queue tail has advanced beyond the
3577 * last packet that was enqueued using this table entry.
3578 * This guarantees that all previous packets for the flow
3579 * have been dequeued, thus preserving in order delivery.
3580 */
3581 if (unlikely(tcpu != next_cpu) &&
a31196b0 3582 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
fec5e652 3583 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
baefa31d
TH
3584 rflow->last_qtail)) >= 0)) {
3585 tcpu = next_cpu;
c445477d 3586 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
baefa31d 3587 }
c445477d 3588
a31196b0 3589 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
fec5e652
TH
3590 *rflowp = rflow;
3591 cpu = tcpu;
3592 goto done;
3593 }
3594 }
3595
567e4b79
ED
3596try_rps:
3597
0a9627f2 3598 if (map) {
8fc54f68 3599 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
0a9627f2
TH
3600 if (cpu_online(tcpu)) {
3601 cpu = tcpu;
3602 goto done;
3603 }
3604 }
3605
3606done:
0a9627f2
TH
3607 return cpu;
3608}
3609
c445477d
BH
3610#ifdef CONFIG_RFS_ACCEL
3611
3612/**
3613 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3614 * @dev: Device on which the filter was set
3615 * @rxq_index: RX queue index
3616 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3617 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3618 *
3619 * Drivers that implement ndo_rx_flow_steer() should periodically call
3620 * this function for each installed filter and remove the filters for
3621 * which it returns %true.
3622 */
3623bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3624 u32 flow_id, u16 filter_id)
3625{
3626 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3627 struct rps_dev_flow_table *flow_table;
3628 struct rps_dev_flow *rflow;
3629 bool expire = true;
a31196b0 3630 unsigned int cpu;
c445477d
BH
3631
3632 rcu_read_lock();
3633 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3634 if (flow_table && flow_id <= flow_table->mask) {
3635 rflow = &flow_table->flows[flow_id];
3636 cpu = ACCESS_ONCE(rflow->cpu);
a31196b0 3637 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
c445477d
BH
3638 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3639 rflow->last_qtail) <
3640 (int)(10 * flow_table->mask)))
3641 expire = false;
3642 }
3643 rcu_read_unlock();
3644 return expire;
3645}
3646EXPORT_SYMBOL(rps_may_expire_flow);
3647
3648#endif /* CONFIG_RFS_ACCEL */
3649
0a9627f2 3650/* Called from hardirq (IPI) context */
e36fa2f7 3651static void rps_trigger_softirq(void *data)
0a9627f2 3652{
e36fa2f7
ED
3653 struct softnet_data *sd = data;
3654
eecfd7c4 3655 ____napi_schedule(sd, &sd->backlog);
dee42870 3656 sd->received_rps++;
0a9627f2 3657}
e36fa2f7 3658
fec5e652 3659#endif /* CONFIG_RPS */
0a9627f2 3660
e36fa2f7
ED
3661/*
3662 * Check if this softnet_data structure is another cpu one
3663 * If yes, queue it to our IPI list and return 1
3664 * If no, return 0
3665 */
3666static int rps_ipi_queued(struct softnet_data *sd)
3667{
3668#ifdef CONFIG_RPS
903ceff7 3669 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
e36fa2f7
ED
3670
3671 if (sd != mysd) {
3672 sd->rps_ipi_next = mysd->rps_ipi_list;
3673 mysd->rps_ipi_list = sd;
3674
3675 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3676 return 1;
3677 }
3678#endif /* CONFIG_RPS */
3679 return 0;
3680}
3681
99bbc707
WB
3682#ifdef CONFIG_NET_FLOW_LIMIT
3683int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3684#endif
3685
3686static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3687{
3688#ifdef CONFIG_NET_FLOW_LIMIT
3689 struct sd_flow_limit *fl;
3690 struct softnet_data *sd;
3691 unsigned int old_flow, new_flow;
3692
3693 if (qlen < (netdev_max_backlog >> 1))
3694 return false;
3695
903ceff7 3696 sd = this_cpu_ptr(&softnet_data);
99bbc707
WB
3697
3698 rcu_read_lock();
3699 fl = rcu_dereference(sd->flow_limit);
3700 if (fl) {
3958afa1 3701 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
99bbc707
WB
3702 old_flow = fl->history[fl->history_head];
3703 fl->history[fl->history_head] = new_flow;
3704
3705 fl->history_head++;
3706 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3707
3708 if (likely(fl->buckets[old_flow]))
3709 fl->buckets[old_flow]--;
3710
3711 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3712 fl->count++;
3713 rcu_read_unlock();
3714 return true;
3715 }
3716 }
3717 rcu_read_unlock();
3718#endif
3719 return false;
3720}
3721
0a9627f2
TH
3722/*
3723 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3724 * queue (may be a remote CPU queue).
3725 */
fec5e652
TH
3726static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3727 unsigned int *qtail)
0a9627f2 3728{
e36fa2f7 3729 struct softnet_data *sd;
0a9627f2 3730 unsigned long flags;
99bbc707 3731 unsigned int qlen;
0a9627f2 3732
e36fa2f7 3733 sd = &per_cpu(softnet_data, cpu);
0a9627f2
TH
3734
3735 local_irq_save(flags);
0a9627f2 3736
e36fa2f7 3737 rps_lock(sd);
e9e4dd32
JA
3738 if (!netif_running(skb->dev))
3739 goto drop;
99bbc707
WB
3740 qlen = skb_queue_len(&sd->input_pkt_queue);
3741 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
e008f3f0 3742 if (qlen) {
0a9627f2 3743enqueue:
e36fa2f7 3744 __skb_queue_tail(&sd->input_pkt_queue, skb);
76cc8b13 3745 input_queue_tail_incr_save(sd, qtail);
e36fa2f7 3746 rps_unlock(sd);
152102c7 3747 local_irq_restore(flags);
0a9627f2
TH
3748 return NET_RX_SUCCESS;
3749 }
3750
ebda37c2
ED
3751 /* Schedule NAPI for backlog device
3752 * We can use non atomic operation since we own the queue lock
3753 */
3754 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
e36fa2f7 3755 if (!rps_ipi_queued(sd))
eecfd7c4 3756 ____napi_schedule(sd, &sd->backlog);
0a9627f2
TH
3757 }
3758 goto enqueue;
3759 }
3760
e9e4dd32 3761drop:
dee42870 3762 sd->dropped++;
e36fa2f7 3763 rps_unlock(sd);
0a9627f2 3764
0a9627f2
TH
3765 local_irq_restore(flags);
3766
caf586e5 3767 atomic_long_inc(&skb->dev->rx_dropped);
0a9627f2
TH
3768 kfree_skb(skb);
3769 return NET_RX_DROP;
3770}
1da177e4 3771
ae78dbfa 3772static int netif_rx_internal(struct sk_buff *skb)
1da177e4 3773{
b0e28f1e 3774 int ret;
1da177e4 3775
588f0330 3776 net_timestamp_check(netdev_tstamp_prequeue, skb);
1da177e4 3777
cf66ba58 3778 trace_netif_rx(skb);
df334545 3779#ifdef CONFIG_RPS
c5905afb 3780 if (static_key_false(&rps_needed)) {
fec5e652 3781 struct rps_dev_flow voidflow, *rflow = &voidflow;
b0e28f1e
ED
3782 int cpu;
3783
cece1945 3784 preempt_disable();
b0e28f1e 3785 rcu_read_lock();
fec5e652
TH
3786
3787 cpu = get_rps_cpu(skb->dev, skb, &rflow);
b0e28f1e
ED
3788 if (cpu < 0)
3789 cpu = smp_processor_id();
fec5e652
TH
3790
3791 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3792
b0e28f1e 3793 rcu_read_unlock();
cece1945 3794 preempt_enable();
adc9300e
ED
3795 } else
3796#endif
fec5e652
TH
3797 {
3798 unsigned int qtail;
3799 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3800 put_cpu();
3801 }
b0e28f1e 3802 return ret;
1da177e4 3803}
ae78dbfa
BH
3804
3805/**
3806 * netif_rx - post buffer to the network code
3807 * @skb: buffer to post
3808 *
3809 * This function receives a packet from a device driver and queues it for
3810 * the upper (protocol) levels to process. It always succeeds. The buffer
3811 * may be dropped during processing for congestion control or by the
3812 * protocol layers.
3813 *
3814 * return values:
3815 * NET_RX_SUCCESS (no congestion)
3816 * NET_RX_DROP (packet was dropped)
3817 *
3818 */
3819
3820int netif_rx(struct sk_buff *skb)
3821{
3822 trace_netif_rx_entry(skb);
3823
3824 return netif_rx_internal(skb);
3825}
d1b19dff 3826EXPORT_SYMBOL(netif_rx);
1da177e4
LT
3827
3828int netif_rx_ni(struct sk_buff *skb)
3829{
3830 int err;
3831
ae78dbfa
BH
3832 trace_netif_rx_ni_entry(skb);
3833
1da177e4 3834 preempt_disable();
ae78dbfa 3835 err = netif_rx_internal(skb);
1da177e4
LT
3836 if (local_softirq_pending())
3837 do_softirq();
3838 preempt_enable();
3839
3840 return err;
3841}
1da177e4
LT
3842EXPORT_SYMBOL(netif_rx_ni);
3843
0766f788 3844static __latent_entropy void net_tx_action(struct softirq_action *h)
1da177e4 3845{
903ceff7 3846 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
1da177e4
LT
3847
3848 if (sd->completion_queue) {
3849 struct sk_buff *clist;
3850
3851 local_irq_disable();
3852 clist = sd->completion_queue;
3853 sd->completion_queue = NULL;
3854 local_irq_enable();
3855
3856 while (clist) {
3857 struct sk_buff *skb = clist;
3858 clist = clist->next;
3859
547b792c 3860 WARN_ON(atomic_read(&skb->users));
e6247027
ED
3861 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3862 trace_consume_skb(skb);
3863 else
3864 trace_kfree_skb(skb, net_tx_action);
15fad714
JDB
3865
3866 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3867 __kfree_skb(skb);
3868 else
3869 __kfree_skb_defer(skb);
1da177e4 3870 }
15fad714
JDB
3871
3872 __kfree_skb_flush();
1da177e4
LT
3873 }
3874
3875 if (sd->output_queue) {
37437bb2 3876 struct Qdisc *head;
1da177e4
LT
3877
3878 local_irq_disable();
3879 head = sd->output_queue;
3880 sd->output_queue = NULL;
a9cbd588 3881 sd->output_queue_tailp = &sd->output_queue;
1da177e4
LT
3882 local_irq_enable();
3883
3884 while (head) {
37437bb2
DM
3885 struct Qdisc *q = head;
3886 spinlock_t *root_lock;
3887
1da177e4
LT
3888 head = head->next_sched;
3889
5fb66229 3890 root_lock = qdisc_lock(q);
3bcb846c
ED
3891 spin_lock(root_lock);
3892 /* We need to make sure head->next_sched is read
3893 * before clearing __QDISC_STATE_SCHED
3894 */
3895 smp_mb__before_atomic();
3896 clear_bit(__QDISC_STATE_SCHED, &q->state);
3897 qdisc_run(q);
3898 spin_unlock(root_lock);
1da177e4
LT
3899 }
3900 }
3901}
3902
181402a5 3903#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
da678292
MM
3904/* This hook is defined here for ATM LANE */
3905int (*br_fdb_test_addr_hook)(struct net_device *dev,
3906 unsigned char *addr) __read_mostly;
4fb019a0 3907EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 3908#endif
1da177e4 3909
1f211a1b
DB
3910static inline struct sk_buff *
3911sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3912 struct net_device *orig_dev)
f697c3e8 3913{
e7582bab 3914#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
3915 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3916 struct tcf_result cl_res;
24824a09 3917
c9e99fd0
DB
3918 /* If there's at least one ingress present somewhere (so
3919 * we get here via enabled static key), remaining devices
3920 * that are not configured with an ingress qdisc will bail
d2788d34 3921 * out here.
c9e99fd0 3922 */
d2788d34 3923 if (!cl)
4577139b 3924 return skb;
f697c3e8
HX
3925 if (*pt_prev) {
3926 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3927 *pt_prev = NULL;
1da177e4
LT
3928 }
3929
3365495c 3930 qdisc_skb_cb(skb)->pkt_len = skb->len;
c9e99fd0 3931 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
24ea591d 3932 qdisc_bstats_cpu_update(cl->q, skb);
c9e99fd0 3933
3b3ae880 3934 switch (tc_classify(skb, cl, &cl_res, false)) {
d2788d34
DB
3935 case TC_ACT_OK:
3936 case TC_ACT_RECLASSIFY:
3937 skb->tc_index = TC_H_MIN(cl_res.classid);
3938 break;
3939 case TC_ACT_SHOT:
24ea591d 3940 qdisc_qstats_cpu_drop(cl->q);
8a3a4c6e
ED
3941 kfree_skb(skb);
3942 return NULL;
d2788d34
DB
3943 case TC_ACT_STOLEN:
3944 case TC_ACT_QUEUED:
8a3a4c6e 3945 consume_skb(skb);
d2788d34 3946 return NULL;
27b29f63
AS
3947 case TC_ACT_REDIRECT:
3948 /* skb_mac_header check was done by cls/act_bpf, so
3949 * we can safely push the L2 header back before
3950 * redirecting to another netdev
3951 */
3952 __skb_push(skb, skb->mac_len);
3953 skb_do_redirect(skb);
3954 return NULL;
d2788d34
DB
3955 default:
3956 break;
f697c3e8 3957 }
e7582bab 3958#endif /* CONFIG_NET_CLS_ACT */
e687ad60
PN
3959 return skb;
3960}
1da177e4 3961
24b27fc4
MB
3962/**
3963 * netdev_is_rx_handler_busy - check if receive handler is registered
3964 * @dev: device to check
3965 *
3966 * Check if a receive handler is already registered for a given device.
3967 * Return true if there one.
3968 *
3969 * The caller must hold the rtnl_mutex.
3970 */
3971bool netdev_is_rx_handler_busy(struct net_device *dev)
3972{
3973 ASSERT_RTNL();
3974 return dev && rtnl_dereference(dev->rx_handler);
3975}
3976EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3977
ab95bfe0
JP
3978/**
3979 * netdev_rx_handler_register - register receive handler
3980 * @dev: device to register a handler for
3981 * @rx_handler: receive handler to register
93e2c32b 3982 * @rx_handler_data: data pointer that is used by rx handler
ab95bfe0 3983 *
e227867f 3984 * Register a receive handler for a device. This handler will then be
ab95bfe0
JP
3985 * called from __netif_receive_skb. A negative errno code is returned
3986 * on a failure.
3987 *
3988 * The caller must hold the rtnl_mutex.
8a4eb573
JP
3989 *
3990 * For a general description of rx_handler, see enum rx_handler_result.
ab95bfe0
JP
3991 */
3992int netdev_rx_handler_register(struct net_device *dev,
93e2c32b
JP
3993 rx_handler_func_t *rx_handler,
3994 void *rx_handler_data)
ab95bfe0
JP
3995{
3996 ASSERT_RTNL();
3997
3998 if (dev->rx_handler)
3999 return -EBUSY;
4000
00cfec37 4001 /* Note: rx_handler_data must be set before rx_handler */
93e2c32b 4002 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
ab95bfe0
JP
4003 rcu_assign_pointer(dev->rx_handler, rx_handler);
4004
4005 return 0;
4006}
4007EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4008
4009/**
4010 * netdev_rx_handler_unregister - unregister receive handler
4011 * @dev: device to unregister a handler from
4012 *
166ec369 4013 * Unregister a receive handler from a device.
ab95bfe0
JP
4014 *
4015 * The caller must hold the rtnl_mutex.
4016 */
4017void netdev_rx_handler_unregister(struct net_device *dev)
4018{
4019
4020 ASSERT_RTNL();
a9b3cd7f 4021 RCU_INIT_POINTER(dev->rx_handler, NULL);
00cfec37
ED
4022 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4023 * section has a guarantee to see a non NULL rx_handler_data
4024 * as well.
4025 */
4026 synchronize_net();
a9b3cd7f 4027 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
ab95bfe0
JP
4028}
4029EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4030
b4b9e355
MG
4031/*
4032 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4033 * the special handling of PFMEMALLOC skbs.
4034 */
4035static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4036{
4037 switch (skb->protocol) {
2b8837ae
JP
4038 case htons(ETH_P_ARP):
4039 case htons(ETH_P_IP):
4040 case htons(ETH_P_IPV6):
4041 case htons(ETH_P_8021Q):
4042 case htons(ETH_P_8021AD):
b4b9e355
MG
4043 return true;
4044 default:
4045 return false;
4046 }
4047}
4048
e687ad60
PN
4049static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4050 int *ret, struct net_device *orig_dev)
4051{
e7582bab 4052#ifdef CONFIG_NETFILTER_INGRESS
e687ad60 4053 if (nf_hook_ingress_active(skb)) {
2c1e2703
AC
4054 int ingress_retval;
4055
e687ad60
PN
4056 if (*pt_prev) {
4057 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4058 *pt_prev = NULL;
4059 }
4060
2c1e2703
AC
4061 rcu_read_lock();
4062 ingress_retval = nf_hook_ingress(skb);
4063 rcu_read_unlock();
4064 return ingress_retval;
e687ad60 4065 }
e7582bab 4066#endif /* CONFIG_NETFILTER_INGRESS */
e687ad60
PN
4067 return 0;
4068}
e687ad60 4069
9754e293 4070static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
1da177e4
LT
4071{
4072 struct packet_type *ptype, *pt_prev;
ab95bfe0 4073 rx_handler_func_t *rx_handler;
f2ccd8fa 4074 struct net_device *orig_dev;
8a4eb573 4075 bool deliver_exact = false;
1da177e4 4076 int ret = NET_RX_DROP;
252e3346 4077 __be16 type;
1da177e4 4078
588f0330 4079 net_timestamp_check(!netdev_tstamp_prequeue, skb);
81bbb3d4 4080
cf66ba58 4081 trace_netif_receive_skb(skb);
9b22ea56 4082
cc9bd5ce 4083 orig_dev = skb->dev;
8f903c70 4084
c1d2bbe1 4085 skb_reset_network_header(skb);
fda55eca
ED
4086 if (!skb_transport_header_was_set(skb))
4087 skb_reset_transport_header(skb);
0b5c9db1 4088 skb_reset_mac_len(skb);
1da177e4
LT
4089
4090 pt_prev = NULL;
4091
63d8ea7f 4092another_round:
b6858177 4093 skb->skb_iif = skb->dev->ifindex;
63d8ea7f
DM
4094
4095 __this_cpu_inc(softnet_data.processed);
4096
8ad227ff
PM
4097 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4098 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
0d5501c1 4099 skb = skb_vlan_untag(skb);
bcc6d479 4100 if (unlikely(!skb))
2c17d27c 4101 goto out;
bcc6d479
JP
4102 }
4103
1da177e4
LT
4104#ifdef CONFIG_NET_CLS_ACT
4105 if (skb->tc_verd & TC_NCLS) {
4106 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4107 goto ncls;
4108 }
4109#endif
4110
9754e293 4111 if (pfmemalloc)
b4b9e355
MG
4112 goto skip_taps;
4113
1da177e4 4114 list_for_each_entry_rcu(ptype, &ptype_all, list) {
7866a621
SN
4115 if (pt_prev)
4116 ret = deliver_skb(skb, pt_prev, orig_dev);
4117 pt_prev = ptype;
4118 }
4119
4120 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4121 if (pt_prev)
4122 ret = deliver_skb(skb, pt_prev, orig_dev);
4123 pt_prev = ptype;
1da177e4
LT
4124 }
4125
b4b9e355 4126skip_taps:
1cf51900 4127#ifdef CONFIG_NET_INGRESS
4577139b 4128 if (static_key_false(&ingress_needed)) {
1f211a1b 4129 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4577139b 4130 if (!skb)
2c17d27c 4131 goto out;
e687ad60
PN
4132
4133 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
2c17d27c 4134 goto out;
4577139b 4135 }
1cf51900
PN
4136#endif
4137#ifdef CONFIG_NET_CLS_ACT
4577139b 4138 skb->tc_verd = 0;
1da177e4
LT
4139ncls:
4140#endif
9754e293 4141 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
b4b9e355
MG
4142 goto drop;
4143
df8a39de 4144 if (skb_vlan_tag_present(skb)) {
2425717b
JF
4145 if (pt_prev) {
4146 ret = deliver_skb(skb, pt_prev, orig_dev);
4147 pt_prev = NULL;
4148 }
48cc32d3 4149 if (vlan_do_receive(&skb))
2425717b
JF
4150 goto another_round;
4151 else if (unlikely(!skb))
2c17d27c 4152 goto out;
2425717b
JF
4153 }
4154
48cc32d3 4155 rx_handler = rcu_dereference(skb->dev->rx_handler);
ab95bfe0
JP
4156 if (rx_handler) {
4157 if (pt_prev) {
4158 ret = deliver_skb(skb, pt_prev, orig_dev);
4159 pt_prev = NULL;
4160 }
8a4eb573
JP
4161 switch (rx_handler(&skb)) {
4162 case RX_HANDLER_CONSUMED:
3bc1b1ad 4163 ret = NET_RX_SUCCESS;
2c17d27c 4164 goto out;
8a4eb573 4165 case RX_HANDLER_ANOTHER:
63d8ea7f 4166 goto another_round;
8a4eb573
JP
4167 case RX_HANDLER_EXACT:
4168 deliver_exact = true;
4169 case RX_HANDLER_PASS:
4170 break;
4171 default:
4172 BUG();
4173 }
ab95bfe0 4174 }
1da177e4 4175
df8a39de
JP
4176 if (unlikely(skb_vlan_tag_present(skb))) {
4177 if (skb_vlan_tag_get_id(skb))
d4b812de
ED
4178 skb->pkt_type = PACKET_OTHERHOST;
4179 /* Note: we might in the future use prio bits
4180 * and set skb->priority like in vlan_do_receive()
4181 * For the time being, just ignore Priority Code Point
4182 */
4183 skb->vlan_tci = 0;
4184 }
48cc32d3 4185
7866a621
SN
4186 type = skb->protocol;
4187
63d8ea7f 4188 /* deliver only exact match when indicated */
7866a621
SN
4189 if (likely(!deliver_exact)) {
4190 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4191 &ptype_base[ntohs(type) &
4192 PTYPE_HASH_MASK]);
4193 }
1f3c8804 4194
7866a621
SN
4195 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4196 &orig_dev->ptype_specific);
4197
4198 if (unlikely(skb->dev != orig_dev)) {
4199 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200 &skb->dev->ptype_specific);
1da177e4
LT
4201 }
4202
4203 if (pt_prev) {
1080e512 4204 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
0e698bf6 4205 goto drop;
1080e512
MT
4206 else
4207 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4 4208 } else {
b4b9e355 4209drop:
6e7333d3
JW
4210 if (!deliver_exact)
4211 atomic_long_inc(&skb->dev->rx_dropped);
4212 else
4213 atomic_long_inc(&skb->dev->rx_nohandler);
1da177e4
LT
4214 kfree_skb(skb);
4215 /* Jamal, now you will not able to escape explaining
4216 * me how you were going to use this. :-)
4217 */
4218 ret = NET_RX_DROP;
4219 }
4220
2c17d27c 4221out:
9754e293
DM
4222 return ret;
4223}
4224
4225static int __netif_receive_skb(struct sk_buff *skb)
4226{
4227 int ret;
4228
4229 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4230 unsigned long pflags = current->flags;
4231
4232 /*
4233 * PFMEMALLOC skbs are special, they should
4234 * - be delivered to SOCK_MEMALLOC sockets only
4235 * - stay away from userspace
4236 * - have bounded memory usage
4237 *
4238 * Use PF_MEMALLOC as this saves us from propagating the allocation
4239 * context down to all allocation sites.
4240 */
4241 current->flags |= PF_MEMALLOC;
4242 ret = __netif_receive_skb_core(skb, true);
4243 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4244 } else
4245 ret = __netif_receive_skb_core(skb, false);
4246
1da177e4
LT
4247 return ret;
4248}
0a9627f2 4249
ae78dbfa 4250static int netif_receive_skb_internal(struct sk_buff *skb)
0a9627f2 4251{
2c17d27c
JA
4252 int ret;
4253
588f0330 4254 net_timestamp_check(netdev_tstamp_prequeue, skb);
3b098e2d 4255
c1f19b51
RC
4256 if (skb_defer_rx_timestamp(skb))
4257 return NET_RX_SUCCESS;
4258
2c17d27c
JA
4259 rcu_read_lock();
4260
df334545 4261#ifdef CONFIG_RPS
c5905afb 4262 if (static_key_false(&rps_needed)) {
3b098e2d 4263 struct rps_dev_flow voidflow, *rflow = &voidflow;
2c17d27c 4264 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
0a9627f2 4265
3b098e2d
ED
4266 if (cpu >= 0) {
4267 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4268 rcu_read_unlock();
adc9300e 4269 return ret;
3b098e2d 4270 }
fec5e652 4271 }
1e94d72f 4272#endif
2c17d27c
JA
4273 ret = __netif_receive_skb(skb);
4274 rcu_read_unlock();
4275 return ret;
0a9627f2 4276}
ae78dbfa
BH
4277
4278/**
4279 * netif_receive_skb - process receive buffer from network
4280 * @skb: buffer to process
4281 *
4282 * netif_receive_skb() is the main receive data processing function.
4283 * It always succeeds. The buffer may be dropped during processing
4284 * for congestion control or by the protocol layers.
4285 *
4286 * This function may only be called from softirq context and interrupts
4287 * should be enabled.
4288 *
4289 * Return values (usually ignored):
4290 * NET_RX_SUCCESS: no congestion
4291 * NET_RX_DROP: packet was dropped
4292 */
04eb4489 4293int netif_receive_skb(struct sk_buff *skb)
ae78dbfa
BH
4294{
4295 trace_netif_receive_skb_entry(skb);
4296
4297 return netif_receive_skb_internal(skb);
4298}
04eb4489 4299EXPORT_SYMBOL(netif_receive_skb);
1da177e4 4300
41852497 4301DEFINE_PER_CPU(struct work_struct, flush_works);
145dd5f9
PA
4302
4303/* Network device is going away, flush any packets still pending */
4304static void flush_backlog(struct work_struct *work)
6e583ce5 4305{
6e583ce5 4306 struct sk_buff *skb, *tmp;
145dd5f9
PA
4307 struct softnet_data *sd;
4308
4309 local_bh_disable();
4310 sd = this_cpu_ptr(&softnet_data);
6e583ce5 4311
145dd5f9 4312 local_irq_disable();
e36fa2f7 4313 rps_lock(sd);
6e7676c1 4314 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
41852497 4315 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
e36fa2f7 4316 __skb_unlink(skb, &sd->input_pkt_queue);
6e583ce5 4317 kfree_skb(skb);
76cc8b13 4318 input_queue_head_incr(sd);
6e583ce5 4319 }
6e7676c1 4320 }
e36fa2f7 4321 rps_unlock(sd);
145dd5f9 4322 local_irq_enable();
6e7676c1
CG
4323
4324 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
41852497 4325 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6e7676c1
CG
4326 __skb_unlink(skb, &sd->process_queue);
4327 kfree_skb(skb);
76cc8b13 4328 input_queue_head_incr(sd);
6e7676c1
CG
4329 }
4330 }
145dd5f9
PA
4331 local_bh_enable();
4332}
4333
41852497 4334static void flush_all_backlogs(void)
145dd5f9
PA
4335{
4336 unsigned int cpu;
4337
4338 get_online_cpus();
4339
41852497
ED
4340 for_each_online_cpu(cpu)
4341 queue_work_on(cpu, system_highpri_wq,
4342 per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4343
4344 for_each_online_cpu(cpu)
41852497 4345 flush_work(per_cpu_ptr(&flush_works, cpu));
145dd5f9
PA
4346
4347 put_online_cpus();
6e583ce5
SH
4348}
4349
d565b0a1
HX
4350static int napi_gro_complete(struct sk_buff *skb)
4351{
22061d80 4352 struct packet_offload *ptype;
d565b0a1 4353 __be16 type = skb->protocol;
22061d80 4354 struct list_head *head = &offload_base;
d565b0a1
HX
4355 int err = -ENOENT;
4356
c3c7c254
ED
4357 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4358
fc59f9a3
HX
4359 if (NAPI_GRO_CB(skb)->count == 1) {
4360 skb_shinfo(skb)->gso_size = 0;
d565b0a1 4361 goto out;
fc59f9a3 4362 }
d565b0a1
HX
4363
4364 rcu_read_lock();
4365 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4366 if (ptype->type != type || !ptype->callbacks.gro_complete)
d565b0a1
HX
4367 continue;
4368
299603e8 4369 err = ptype->callbacks.gro_complete(skb, 0);
d565b0a1
HX
4370 break;
4371 }
4372 rcu_read_unlock();
4373
4374 if (err) {
4375 WARN_ON(&ptype->list == head);
4376 kfree_skb(skb);
4377 return NET_RX_SUCCESS;
4378 }
4379
4380out:
ae78dbfa 4381 return netif_receive_skb_internal(skb);
d565b0a1
HX
4382}
4383
2e71a6f8
ED
4384/* napi->gro_list contains packets ordered by age.
4385 * youngest packets at the head of it.
4386 * Complete skbs in reverse order to reduce latencies.
4387 */
4388void napi_gro_flush(struct napi_struct *napi, bool flush_old)
d565b0a1 4389{
2e71a6f8 4390 struct sk_buff *skb, *prev = NULL;
d565b0a1 4391
2e71a6f8
ED
4392 /* scan list and build reverse chain */
4393 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4394 skb->prev = prev;
4395 prev = skb;
4396 }
4397
4398 for (skb = prev; skb; skb = prev) {
d565b0a1 4399 skb->next = NULL;
2e71a6f8
ED
4400
4401 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4402 return;
4403
4404 prev = skb->prev;
d565b0a1 4405 napi_gro_complete(skb);
2e71a6f8 4406 napi->gro_count--;
d565b0a1
HX
4407 }
4408
4409 napi->gro_list = NULL;
4410}
86cac58b 4411EXPORT_SYMBOL(napi_gro_flush);
d565b0a1 4412
89c5fa33
ED
4413static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4414{
4415 struct sk_buff *p;
4416 unsigned int maclen = skb->dev->hard_header_len;
0b4cec8c 4417 u32 hash = skb_get_hash_raw(skb);
89c5fa33
ED
4418
4419 for (p = napi->gro_list; p; p = p->next) {
4420 unsigned long diffs;
4421
0b4cec8c
TH
4422 NAPI_GRO_CB(p)->flush = 0;
4423
4424 if (hash != skb_get_hash_raw(p)) {
4425 NAPI_GRO_CB(p)->same_flow = 0;
4426 continue;
4427 }
4428
89c5fa33
ED
4429 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4430 diffs |= p->vlan_tci ^ skb->vlan_tci;
ce87fc6c 4431 diffs |= skb_metadata_dst_cmp(p, skb);
89c5fa33
ED
4432 if (maclen == ETH_HLEN)
4433 diffs |= compare_ether_header(skb_mac_header(p),
a50e233c 4434 skb_mac_header(skb));
89c5fa33
ED
4435 else if (!diffs)
4436 diffs = memcmp(skb_mac_header(p),
a50e233c 4437 skb_mac_header(skb),
89c5fa33
ED
4438 maclen);
4439 NAPI_GRO_CB(p)->same_flow = !diffs;
89c5fa33
ED
4440 }
4441}
4442
299603e8
JC
4443static void skb_gro_reset_offset(struct sk_buff *skb)
4444{
4445 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4446 const skb_frag_t *frag0 = &pinfo->frags[0];
4447
4448 NAPI_GRO_CB(skb)->data_offset = 0;
4449 NAPI_GRO_CB(skb)->frag0 = NULL;
4450 NAPI_GRO_CB(skb)->frag0_len = 0;
4451
4452 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4453 pinfo->nr_frags &&
4454 !PageHighMem(skb_frag_page(frag0))) {
4455 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4456 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
89c5fa33
ED
4457 }
4458}
4459
a50e233c
ED
4460static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4461{
4462 struct skb_shared_info *pinfo = skb_shinfo(skb);
4463
4464 BUG_ON(skb->end - skb->tail < grow);
4465
4466 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4467
4468 skb->data_len -= grow;
4469 skb->tail += grow;
4470
4471 pinfo->frags[0].page_offset += grow;
4472 skb_frag_size_sub(&pinfo->frags[0], grow);
4473
4474 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4475 skb_frag_unref(skb, 0);
4476 memmove(pinfo->frags, pinfo->frags + 1,
4477 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4478 }
4479}
4480
bb728820 4481static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
4482{
4483 struct sk_buff **pp = NULL;
22061d80 4484 struct packet_offload *ptype;
d565b0a1 4485 __be16 type = skb->protocol;
22061d80 4486 struct list_head *head = &offload_base;
0da2afd5 4487 int same_flow;
5b252f0c 4488 enum gro_result ret;
a50e233c 4489 int grow;
d565b0a1 4490
9c62a68d 4491 if (!(skb->dev->features & NETIF_F_GRO))
d565b0a1
HX
4492 goto normal;
4493
5a212329 4494 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
f17f5c91
HX
4495 goto normal;
4496
89c5fa33
ED
4497 gro_list_prepare(napi, skb);
4498
d565b0a1
HX
4499 rcu_read_lock();
4500 list_for_each_entry_rcu(ptype, head, list) {
f191a1d1 4501 if (ptype->type != type || !ptype->callbacks.gro_receive)
d565b0a1
HX
4502 continue;
4503
86911732 4504 skb_set_network_header(skb, skb_gro_offset(skb));
efd9450e 4505 skb_reset_mac_len(skb);
d565b0a1
HX
4506 NAPI_GRO_CB(skb)->same_flow = 0;
4507 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 4508 NAPI_GRO_CB(skb)->free = 0;
fac8e0f5 4509 NAPI_GRO_CB(skb)->encap_mark = 0;
fcd91dd4 4510 NAPI_GRO_CB(skb)->recursion_counter = 0;
a0ca153f 4511 NAPI_GRO_CB(skb)->is_fou = 0;
1530545e 4512 NAPI_GRO_CB(skb)->is_atomic = 1;
15e2396d 4513 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
d565b0a1 4514
662880f4
TH
4515 /* Setup for GRO checksum validation */
4516 switch (skb->ip_summed) {
4517 case CHECKSUM_COMPLETE:
4518 NAPI_GRO_CB(skb)->csum = skb->csum;
4519 NAPI_GRO_CB(skb)->csum_valid = 1;
4520 NAPI_GRO_CB(skb)->csum_cnt = 0;
4521 break;
4522 case CHECKSUM_UNNECESSARY:
4523 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4524 NAPI_GRO_CB(skb)->csum_valid = 0;
4525 break;
4526 default:
4527 NAPI_GRO_CB(skb)->csum_cnt = 0;
4528 NAPI_GRO_CB(skb)->csum_valid = 0;
4529 }
d565b0a1 4530
f191a1d1 4531 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
d565b0a1
HX
4532 break;
4533 }
4534 rcu_read_unlock();
4535
4536 if (&ptype->list == head)
4537 goto normal;
4538
0da2afd5 4539 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 4540 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 4541
d565b0a1
HX
4542 if (pp) {
4543 struct sk_buff *nskb = *pp;
4544
4545 *pp = nskb->next;
4546 nskb->next = NULL;
4547 napi_gro_complete(nskb);
4ae5544f 4548 napi->gro_count--;
d565b0a1
HX
4549 }
4550
0da2afd5 4551 if (same_flow)
d565b0a1
HX
4552 goto ok;
4553
600adc18 4554 if (NAPI_GRO_CB(skb)->flush)
d565b0a1 4555 goto normal;
d565b0a1 4556
600adc18
ED
4557 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4558 struct sk_buff *nskb = napi->gro_list;
4559
4560 /* locate the end of the list to select the 'oldest' flow */
4561 while (nskb->next) {
4562 pp = &nskb->next;
4563 nskb = *pp;
4564 }
4565 *pp = NULL;
4566 nskb->next = NULL;
4567 napi_gro_complete(nskb);
4568 } else {
4569 napi->gro_count++;
4570 }
d565b0a1 4571 NAPI_GRO_CB(skb)->count = 1;
2e71a6f8 4572 NAPI_GRO_CB(skb)->age = jiffies;
29e98242 4573 NAPI_GRO_CB(skb)->last = skb;
86911732 4574 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
4575 skb->next = napi->gro_list;
4576 napi->gro_list = skb;
5d0d9be8 4577 ret = GRO_HELD;
d565b0a1 4578
ad0f9904 4579pull:
a50e233c
ED
4580 grow = skb_gro_offset(skb) - skb_headlen(skb);
4581 if (grow > 0)
4582 gro_pull_from_frag0(skb, grow);
d565b0a1 4583ok:
5d0d9be8 4584 return ret;
d565b0a1
HX
4585
4586normal:
ad0f9904
HX
4587 ret = GRO_NORMAL;
4588 goto pull;
5d38a079 4589}
96e93eab 4590
bf5a755f
JC
4591struct packet_offload *gro_find_receive_by_type(__be16 type)
4592{
4593 struct list_head *offload_head = &offload_base;
4594 struct packet_offload *ptype;
4595
4596 list_for_each_entry_rcu(ptype, offload_head, list) {
4597 if (ptype->type != type || !ptype->callbacks.gro_receive)
4598 continue;
4599 return ptype;
4600 }
4601 return NULL;
4602}
e27a2f83 4603EXPORT_SYMBOL(gro_find_receive_by_type);
bf5a755f
JC
4604
4605struct packet_offload *gro_find_complete_by_type(__be16 type)
4606{
4607 struct list_head *offload_head = &offload_base;
4608 struct packet_offload *ptype;
4609
4610 list_for_each_entry_rcu(ptype, offload_head, list) {
4611 if (ptype->type != type || !ptype->callbacks.gro_complete)
4612 continue;
4613 return ptype;
4614 }
4615 return NULL;
4616}
e27a2f83 4617EXPORT_SYMBOL(gro_find_complete_by_type);
5d38a079 4618
bb728820 4619static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 4620{
5d0d9be8
HX
4621 switch (ret) {
4622 case GRO_NORMAL:
ae78dbfa 4623 if (netif_receive_skb_internal(skb))
c7c4b3b6
BH
4624 ret = GRO_DROP;
4625 break;
5d38a079 4626
5d0d9be8 4627 case GRO_DROP:
5d38a079
HX
4628 kfree_skb(skb);
4629 break;
5b252f0c 4630
daa86548 4631 case GRO_MERGED_FREE:
ce87fc6c
JG
4632 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4633 skb_dst_drop(skb);
d7e8883c 4634 kmem_cache_free(skbuff_head_cache, skb);
ce87fc6c 4635 } else {
d7e8883c 4636 __kfree_skb(skb);
ce87fc6c 4637 }
daa86548
ED
4638 break;
4639
5b252f0c
BH
4640 case GRO_HELD:
4641 case GRO_MERGED:
4642 break;
5d38a079
HX
4643 }
4644
c7c4b3b6 4645 return ret;
5d0d9be8 4646}
5d0d9be8 4647
c7c4b3b6 4648gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 4649{
93f93a44 4650 skb_mark_napi_id(skb, napi);
ae78dbfa 4651 trace_napi_gro_receive_entry(skb);
86911732 4652
a50e233c
ED
4653 skb_gro_reset_offset(skb);
4654
89c5fa33 4655 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
d565b0a1
HX
4656}
4657EXPORT_SYMBOL(napi_gro_receive);
4658
d0c2b0d2 4659static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
96e93eab 4660{
93a35f59
ED
4661 if (unlikely(skb->pfmemalloc)) {
4662 consume_skb(skb);
4663 return;
4664 }
96e93eab 4665 __skb_pull(skb, skb_headlen(skb));
2a2a459e
ED
4666 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4667 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3701e513 4668 skb->vlan_tci = 0;
66c46d74 4669 skb->dev = napi->dev;
6d152e23 4670 skb->skb_iif = 0;
c3caf119
JC
4671 skb->encapsulation = 0;
4672 skb_shinfo(skb)->gso_type = 0;
e33d0ba8 4673 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
96e93eab
HX
4674
4675 napi->skb = skb;
4676}
96e93eab 4677
76620aaf 4678struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 4679{
5d38a079 4680 struct sk_buff *skb = napi->skb;
5d38a079
HX
4681
4682 if (!skb) {
fd11a83d 4683 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
e2f9dc3b
ED
4684 if (skb) {
4685 napi->skb = skb;
4686 skb_mark_napi_id(skb, napi);
4687 }
80595d59 4688 }
96e93eab
HX
4689 return skb;
4690}
76620aaf 4691EXPORT_SYMBOL(napi_get_frags);
96e93eab 4692
a50e233c
ED
4693static gro_result_t napi_frags_finish(struct napi_struct *napi,
4694 struct sk_buff *skb,
4695 gro_result_t ret)
96e93eab 4696{
5d0d9be8
HX
4697 switch (ret) {
4698 case GRO_NORMAL:
a50e233c
ED
4699 case GRO_HELD:
4700 __skb_push(skb, ETH_HLEN);
4701 skb->protocol = eth_type_trans(skb, skb->dev);
4702 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
c7c4b3b6 4703 ret = GRO_DROP;
86911732 4704 break;
5d38a079 4705
5d0d9be8 4706 case GRO_DROP:
5d0d9be8
HX
4707 case GRO_MERGED_FREE:
4708 napi_reuse_skb(napi, skb);
4709 break;
5b252f0c
BH
4710
4711 case GRO_MERGED:
4712 break;
5d0d9be8 4713 }
5d38a079 4714
c7c4b3b6 4715 return ret;
5d38a079 4716}
5d0d9be8 4717
a50e233c
ED
4718/* Upper GRO stack assumes network header starts at gro_offset=0
4719 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4720 * We copy ethernet header into skb->data to have a common layout.
4721 */
4adb9c4a 4722static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
76620aaf
HX
4723{
4724 struct sk_buff *skb = napi->skb;
a50e233c
ED
4725 const struct ethhdr *eth;
4726 unsigned int hlen = sizeof(*eth);
76620aaf
HX
4727
4728 napi->skb = NULL;
4729
a50e233c
ED
4730 skb_reset_mac_header(skb);
4731 skb_gro_reset_offset(skb);
4732
4733 eth = skb_gro_header_fast(skb, 0);
4734 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4735 eth = skb_gro_header_slow(skb, hlen, 0);
4736 if (unlikely(!eth)) {
4da46ceb
AC
4737 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4738 __func__, napi->dev->name);
a50e233c
ED
4739 napi_reuse_skb(napi, skb);
4740 return NULL;
4741 }
4742 } else {
4743 gro_pull_from_frag0(skb, hlen);
4744 NAPI_GRO_CB(skb)->frag0 += hlen;
4745 NAPI_GRO_CB(skb)->frag0_len -= hlen;
76620aaf 4746 }
a50e233c
ED
4747 __skb_pull(skb, hlen);
4748
4749 /*
4750 * This works because the only protocols we care about don't require
4751 * special handling.
4752 * We'll fix it up properly in napi_frags_finish()
4753 */
4754 skb->protocol = eth->h_proto;
76620aaf 4755
76620aaf
HX
4756 return skb;
4757}
76620aaf 4758
c7c4b3b6 4759gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 4760{
76620aaf 4761 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
4762
4763 if (!skb)
c7c4b3b6 4764 return GRO_DROP;
5d0d9be8 4765
ae78dbfa
BH
4766 trace_napi_gro_frags_entry(skb);
4767
89c5fa33 4768 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5d0d9be8 4769}
5d38a079
HX
4770EXPORT_SYMBOL(napi_gro_frags);
4771
573e8fca
TH
4772/* Compute the checksum from gro_offset and return the folded value
4773 * after adding in any pseudo checksum.
4774 */
4775__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4776{
4777 __wsum wsum;
4778 __sum16 sum;
4779
4780 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4781
4782 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4783 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4784 if (likely(!sum)) {
4785 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4786 !skb->csum_complete_sw)
4787 netdev_rx_csum_fault(skb->dev);
4788 }
4789
4790 NAPI_GRO_CB(skb)->csum = wsum;
4791 NAPI_GRO_CB(skb)->csum_valid = 1;
4792
4793 return sum;
4794}
4795EXPORT_SYMBOL(__skb_gro_checksum_complete);
4796
e326bed2 4797/*
855abcf0 4798 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
e326bed2
ED
4799 * Note: called with local irq disabled, but exits with local irq enabled.
4800 */
4801static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4802{
4803#ifdef CONFIG_RPS
4804 struct softnet_data *remsd = sd->rps_ipi_list;
4805
4806 if (remsd) {
4807 sd->rps_ipi_list = NULL;
4808
4809 local_irq_enable();
4810
4811 /* Send pending IPI's to kick RPS processing on remote cpus. */
4812 while (remsd) {
4813 struct softnet_data *next = remsd->rps_ipi_next;
4814
4815 if (cpu_online(remsd->cpu))
c46fff2a 4816 smp_call_function_single_async(remsd->cpu,
fce8ad15 4817 &remsd->csd);
e326bed2
ED
4818 remsd = next;
4819 }
4820 } else
4821#endif
4822 local_irq_enable();
4823}
4824
d75b1ade
ED
4825static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4826{
4827#ifdef CONFIG_RPS
4828 return sd->rps_ipi_list != NULL;
4829#else
4830 return false;
4831#endif
4832}
4833
bea3348e 4834static int process_backlog(struct napi_struct *napi, int quota)
1da177e4 4835{
eecfd7c4 4836 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
145dd5f9
PA
4837 bool again = true;
4838 int work = 0;
1da177e4 4839
e326bed2
ED
4840 /* Check if we have pending ipi, its better to send them now,
4841 * not waiting net_rx_action() end.
4842 */
d75b1ade 4843 if (sd_has_rps_ipi_waiting(sd)) {
e326bed2
ED
4844 local_irq_disable();
4845 net_rps_action_and_irq_enable(sd);
4846 }
d75b1ade 4847
bea3348e 4848 napi->weight = weight_p;
145dd5f9 4849 while (again) {
1da177e4 4850 struct sk_buff *skb;
6e7676c1
CG
4851
4852 while ((skb = __skb_dequeue(&sd->process_queue))) {
2c17d27c 4853 rcu_read_lock();
6e7676c1 4854 __netif_receive_skb(skb);
2c17d27c 4855 rcu_read_unlock();
76cc8b13 4856 input_queue_head_incr(sd);
145dd5f9 4857 if (++work >= quota)
76cc8b13 4858 return work;
145dd5f9 4859
6e7676c1 4860 }
1da177e4 4861
145dd5f9 4862 local_irq_disable();
e36fa2f7 4863 rps_lock(sd);
11ef7a89 4864 if (skb_queue_empty(&sd->input_pkt_queue)) {
eecfd7c4
ED
4865 /*
4866 * Inline a custom version of __napi_complete().
4867 * only current cpu owns and manipulates this napi,
11ef7a89
TH
4868 * and NAPI_STATE_SCHED is the only possible flag set
4869 * on backlog.
4870 * We can use a plain write instead of clear_bit(),
eecfd7c4
ED
4871 * and we dont need an smp_mb() memory barrier.
4872 */
eecfd7c4 4873 napi->state = 0;
145dd5f9
PA
4874 again = false;
4875 } else {
4876 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4877 &sd->process_queue);
bea3348e 4878 }
e36fa2f7 4879 rps_unlock(sd);
145dd5f9 4880 local_irq_enable();
6e7676c1 4881 }
1da177e4 4882
bea3348e
SH
4883 return work;
4884}
1da177e4 4885
bea3348e
SH
4886/**
4887 * __napi_schedule - schedule for receive
c4ea43c5 4888 * @n: entry to schedule
bea3348e 4889 *
bc9ad166
ED
4890 * The entry's receive function will be scheduled to run.
4891 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
bea3348e 4892 */
b5606c2d 4893void __napi_schedule(struct napi_struct *n)
bea3348e
SH
4894{
4895 unsigned long flags;
1da177e4 4896
bea3348e 4897 local_irq_save(flags);
903ceff7 4898 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
bea3348e 4899 local_irq_restore(flags);
1da177e4 4900}
bea3348e
SH
4901EXPORT_SYMBOL(__napi_schedule);
4902
bc9ad166
ED
4903/**
4904 * __napi_schedule_irqoff - schedule for receive
4905 * @n: entry to schedule
4906 *
4907 * Variant of __napi_schedule() assuming hard irqs are masked
4908 */
4909void __napi_schedule_irqoff(struct napi_struct *n)
4910{
4911 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4912}
4913EXPORT_SYMBOL(__napi_schedule_irqoff);
4914
d565b0a1
HX
4915void __napi_complete(struct napi_struct *n)
4916{
4917 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
d565b0a1 4918
d75b1ade 4919 list_del_init(&n->poll_list);
4e857c58 4920 smp_mb__before_atomic();
d565b0a1
HX
4921 clear_bit(NAPI_STATE_SCHED, &n->state);
4922}
4923EXPORT_SYMBOL(__napi_complete);
4924
3b47d303 4925void napi_complete_done(struct napi_struct *n, int work_done)
d565b0a1
HX
4926{
4927 unsigned long flags;
4928
4929 /*
4930 * don't let napi dequeue from the cpu poll list
4931 * just in case its running on a different cpu
4932 */
4933 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4934 return;
4935
3b47d303
ED
4936 if (n->gro_list) {
4937 unsigned long timeout = 0;
d75b1ade 4938
3b47d303
ED
4939 if (work_done)
4940 timeout = n->dev->gro_flush_timeout;
4941
4942 if (timeout)
4943 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4944 HRTIMER_MODE_REL_PINNED);
4945 else
4946 napi_gro_flush(n, false);
4947 }
d75b1ade
ED
4948 if (likely(list_empty(&n->poll_list))) {
4949 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4950 } else {
4951 /* If n->poll_list is not empty, we need to mask irqs */
4952 local_irq_save(flags);
4953 __napi_complete(n);
4954 local_irq_restore(flags);
4955 }
d565b0a1 4956}
3b47d303 4957EXPORT_SYMBOL(napi_complete_done);
d565b0a1 4958
af12fa6e 4959/* must be called under rcu_read_lock(), as we dont take a reference */
02d62e86 4960static struct napi_struct *napi_by_id(unsigned int napi_id)
af12fa6e
ET
4961{
4962 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4963 struct napi_struct *napi;
4964
4965 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4966 if (napi->napi_id == napi_id)
4967 return napi;
4968
4969 return NULL;
4970}
02d62e86
ED
4971
4972#if defined(CONFIG_NET_RX_BUSY_POLL)
ce6aea93 4973#define BUSY_POLL_BUDGET 8
02d62e86
ED
4974bool sk_busy_loop(struct sock *sk, int nonblock)
4975{
4976 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
ce6aea93 4977 int (*busy_poll)(struct napi_struct *dev);
02d62e86
ED
4978 struct napi_struct *napi;
4979 int rc = false;
4980
2a028ecb 4981 rcu_read_lock();
02d62e86
ED
4982
4983 napi = napi_by_id(sk->sk_napi_id);
4984 if (!napi)
4985 goto out;
4986
ce6aea93
ED
4987 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4988 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
02d62e86
ED
4989
4990 do {
ce6aea93 4991 rc = 0;
2a028ecb 4992 local_bh_disable();
ce6aea93
ED
4993 if (busy_poll) {
4994 rc = busy_poll(napi);
4995 } else if (napi_schedule_prep(napi)) {
4996 void *have = netpoll_poll_lock(napi);
4997
4998 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4999 rc = napi->poll(napi, BUSY_POLL_BUDGET);
1db19db7 5000 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
ce6aea93
ED
5001 if (rc == BUSY_POLL_BUDGET) {
5002 napi_complete_done(napi, rc);
5003 napi_schedule(napi);
5004 }
5005 }
5006 netpoll_poll_unlock(have);
5007 }
2a028ecb 5008 if (rc > 0)
02a1d6e7
ED
5009 __NET_ADD_STATS(sock_net(sk),
5010 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
2a028ecb 5011 local_bh_enable();
02d62e86
ED
5012
5013 if (rc == LL_FLUSH_FAILED)
5014 break; /* permanent failure */
5015
02d62e86 5016 cpu_relax();
02d62e86
ED
5017 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
5018 !need_resched() && !busy_loop_timeout(end_time));
5019
5020 rc = !skb_queue_empty(&sk->sk_receive_queue);
5021out:
2a028ecb 5022 rcu_read_unlock();
02d62e86
ED
5023 return rc;
5024}
5025EXPORT_SYMBOL(sk_busy_loop);
5026
5027#endif /* CONFIG_NET_RX_BUSY_POLL */
af12fa6e
ET
5028
5029void napi_hash_add(struct napi_struct *napi)
5030{
d64b5e85
ED
5031 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5032 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
52bd2d62 5033 return;
af12fa6e 5034
52bd2d62 5035 spin_lock(&napi_hash_lock);
af12fa6e 5036
52bd2d62
ED
5037 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5038 do {
5039 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5040 napi_gen_id = NR_CPUS + 1;
5041 } while (napi_by_id(napi_gen_id));
5042 napi->napi_id = napi_gen_id;
af12fa6e 5043
52bd2d62
ED
5044 hlist_add_head_rcu(&napi->napi_hash_node,
5045 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
af12fa6e 5046
52bd2d62 5047 spin_unlock(&napi_hash_lock);
af12fa6e
ET
5048}
5049EXPORT_SYMBOL_GPL(napi_hash_add);
5050
5051/* Warning : caller is responsible to make sure rcu grace period
5052 * is respected before freeing memory containing @napi
5053 */
34cbe27e 5054bool napi_hash_del(struct napi_struct *napi)
af12fa6e 5055{
34cbe27e
ED
5056 bool rcu_sync_needed = false;
5057
af12fa6e
ET
5058 spin_lock(&napi_hash_lock);
5059
34cbe27e
ED
5060 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5061 rcu_sync_needed = true;
af12fa6e 5062 hlist_del_rcu(&napi->napi_hash_node);
34cbe27e 5063 }
af12fa6e 5064 spin_unlock(&napi_hash_lock);
34cbe27e 5065 return rcu_sync_needed;
af12fa6e
ET
5066}
5067EXPORT_SYMBOL_GPL(napi_hash_del);
5068
3b47d303
ED
5069static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5070{
5071 struct napi_struct *napi;
5072
5073 napi = container_of(timer, struct napi_struct, timer);
5074 if (napi->gro_list)
5075 napi_schedule(napi);
5076
5077 return HRTIMER_NORESTART;
5078}
5079
d565b0a1
HX
5080void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5081 int (*poll)(struct napi_struct *, int), int weight)
5082{
5083 INIT_LIST_HEAD(&napi->poll_list);
3b47d303
ED
5084 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5085 napi->timer.function = napi_watchdog;
4ae5544f 5086 napi->gro_count = 0;
d565b0a1 5087 napi->gro_list = NULL;
5d38a079 5088 napi->skb = NULL;
d565b0a1 5089 napi->poll = poll;
82dc3c63
ED
5090 if (weight > NAPI_POLL_WEIGHT)
5091 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5092 weight, dev->name);
d565b0a1
HX
5093 napi->weight = weight;
5094 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 5095 napi->dev = dev;
5d38a079 5096#ifdef CONFIG_NETPOLL
d565b0a1
HX
5097 spin_lock_init(&napi->poll_lock);
5098 napi->poll_owner = -1;
5099#endif
5100 set_bit(NAPI_STATE_SCHED, &napi->state);
93d05d4a 5101 napi_hash_add(napi);
d565b0a1
HX
5102}
5103EXPORT_SYMBOL(netif_napi_add);
5104
3b47d303
ED
5105void napi_disable(struct napi_struct *n)
5106{
5107 might_sleep();
5108 set_bit(NAPI_STATE_DISABLE, &n->state);
5109
5110 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5111 msleep(1);
2d8bff12
NH
5112 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5113 msleep(1);
3b47d303
ED
5114
5115 hrtimer_cancel(&n->timer);
5116
5117 clear_bit(NAPI_STATE_DISABLE, &n->state);
5118}
5119EXPORT_SYMBOL(napi_disable);
5120
93d05d4a 5121/* Must be called in process context */
d565b0a1
HX
5122void netif_napi_del(struct napi_struct *napi)
5123{
93d05d4a
ED
5124 might_sleep();
5125 if (napi_hash_del(napi))
5126 synchronize_net();
d7b06636 5127 list_del_init(&napi->dev_list);
76620aaf 5128 napi_free_frags(napi);
d565b0a1 5129
289dccbe 5130 kfree_skb_list(napi->gro_list);
d565b0a1 5131 napi->gro_list = NULL;
4ae5544f 5132 napi->gro_count = 0;
d565b0a1
HX
5133}
5134EXPORT_SYMBOL(netif_napi_del);
5135
726ce70e
HX
5136static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5137{
5138 void *have;
5139 int work, weight;
5140
5141 list_del_init(&n->poll_list);
5142
5143 have = netpoll_poll_lock(n);
5144
5145 weight = n->weight;
5146
5147 /* This NAPI_STATE_SCHED test is for avoiding a race
5148 * with netpoll's poll_napi(). Only the entity which
5149 * obtains the lock and sees NAPI_STATE_SCHED set will
5150 * actually make the ->poll() call. Therefore we avoid
5151 * accidentally calling ->poll() when NAPI is not scheduled.
5152 */
5153 work = 0;
5154 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5155 work = n->poll(n, weight);
1db19db7 5156 trace_napi_poll(n, work, weight);
726ce70e
HX
5157 }
5158
5159 WARN_ON_ONCE(work > weight);
5160
5161 if (likely(work < weight))
5162 goto out_unlock;
5163
5164 /* Drivers must not modify the NAPI state if they
5165 * consume the entire weight. In such cases this code
5166 * still "owns" the NAPI instance and therefore can
5167 * move the instance around on the list at-will.
5168 */
5169 if (unlikely(napi_disable_pending(n))) {
5170 napi_complete(n);
5171 goto out_unlock;
5172 }
5173
5174 if (n->gro_list) {
5175 /* flush too old packets
5176 * If HZ < 1000, flush all packets.
5177 */
5178 napi_gro_flush(n, HZ >= 1000);
5179 }
5180
001ce546
HX
5181 /* Some drivers may have called napi_schedule
5182 * prior to exhausting their budget.
5183 */
5184 if (unlikely(!list_empty(&n->poll_list))) {
5185 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5186 n->dev ? n->dev->name : "backlog");
5187 goto out_unlock;
5188 }
5189
726ce70e
HX
5190 list_add_tail(&n->poll_list, repoll);
5191
5192out_unlock:
5193 netpoll_poll_unlock(have);
5194
5195 return work;
5196}
5197
0766f788 5198static __latent_entropy void net_rx_action(struct softirq_action *h)
1da177e4 5199{
903ceff7 5200 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
24f8b238 5201 unsigned long time_limit = jiffies + 2;
51b0bded 5202 int budget = netdev_budget;
d75b1ade
ED
5203 LIST_HEAD(list);
5204 LIST_HEAD(repoll);
53fb95d3 5205
1da177e4 5206 local_irq_disable();
d75b1ade
ED
5207 list_splice_init(&sd->poll_list, &list);
5208 local_irq_enable();
1da177e4 5209
ceb8d5bf 5210 for (;;) {
bea3348e 5211 struct napi_struct *n;
1da177e4 5212
ceb8d5bf
HX
5213 if (list_empty(&list)) {
5214 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5215 return;
5216 break;
5217 }
5218
6bd373eb
HX
5219 n = list_first_entry(&list, struct napi_struct, poll_list);
5220 budget -= napi_poll(n, &repoll);
5221
d75b1ade 5222 /* If softirq window is exhausted then punt.
24f8b238
SH
5223 * Allow this to run for 2 jiffies since which will allow
5224 * an average latency of 1.5/HZ.
bea3348e 5225 */
ceb8d5bf
HX
5226 if (unlikely(budget <= 0 ||
5227 time_after_eq(jiffies, time_limit))) {
5228 sd->time_squeeze++;
5229 break;
5230 }
1da177e4 5231 }
d75b1ade 5232
795bb1c0 5233 __kfree_skb_flush();
d75b1ade
ED
5234 local_irq_disable();
5235
5236 list_splice_tail_init(&sd->poll_list, &list);
5237 list_splice_tail(&repoll, &list);
5238 list_splice(&list, &sd->poll_list);
5239 if (!list_empty(&sd->poll_list))
5240 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5241
e326bed2 5242 net_rps_action_and_irq_enable(sd);
1da177e4
LT
5243}
5244
aa9d8560 5245struct netdev_adjacent {
9ff162a8 5246 struct net_device *dev;
5d261913
VF
5247
5248 /* upper master flag, there can only be one master device per list */
9ff162a8 5249 bool master;
5d261913 5250
5d261913
VF
5251 /* counter for the number of times this device was added to us */
5252 u16 ref_nr;
5253
402dae96
VF
5254 /* private field for the users */
5255 void *private;
5256
9ff162a8
JP
5257 struct list_head list;
5258 struct rcu_head rcu;
9ff162a8
JP
5259};
5260
6ea29da1 5261static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
2f268f12 5262 struct list_head *adj_list)
9ff162a8 5263{
5d261913 5264 struct netdev_adjacent *adj;
5d261913 5265
2f268f12 5266 list_for_each_entry(adj, adj_list, list) {
5d261913
VF
5267 if (adj->dev == adj_dev)
5268 return adj;
9ff162a8
JP
5269 }
5270 return NULL;
5271}
5272
5273/**
5274 * netdev_has_upper_dev - Check if device is linked to an upper device
5275 * @dev: device
5276 * @upper_dev: upper device to check
5277 *
5278 * Find out if a device is linked to specified upper device and return true
5279 * in case it is. Note that this checks only immediate upper device,
5280 * not through a complete stack of devices. The caller must hold the RTNL lock.
5281 */
5282bool netdev_has_upper_dev(struct net_device *dev,
5283 struct net_device *upper_dev)
5284{
5285 ASSERT_RTNL();
5286
6ea29da1 5287 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
9ff162a8
JP
5288}
5289EXPORT_SYMBOL(netdev_has_upper_dev);
5290
5291/**
5292 * netdev_has_any_upper_dev - Check if device is linked to some device
5293 * @dev: device
5294 *
5295 * Find out if a device is linked to an upper device and return true in case
5296 * it is. The caller must hold the RTNL lock.
5297 */
1d143d9f 5298static bool netdev_has_any_upper_dev(struct net_device *dev)
9ff162a8
JP
5299{
5300 ASSERT_RTNL();
5301
2f268f12 5302 return !list_empty(&dev->all_adj_list.upper);
9ff162a8 5303}
9ff162a8
JP
5304
5305/**
5306 * netdev_master_upper_dev_get - Get master upper device
5307 * @dev: device
5308 *
5309 * Find a master upper device and return pointer to it or NULL in case
5310 * it's not there. The caller must hold the RTNL lock.
5311 */
5312struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5313{
aa9d8560 5314 struct netdev_adjacent *upper;
9ff162a8
JP
5315
5316 ASSERT_RTNL();
5317
2f268f12 5318 if (list_empty(&dev->adj_list.upper))
9ff162a8
JP
5319 return NULL;
5320
2f268f12 5321 upper = list_first_entry(&dev->adj_list.upper,
aa9d8560 5322 struct netdev_adjacent, list);
9ff162a8
JP
5323 if (likely(upper->master))
5324 return upper->dev;
5325 return NULL;
5326}
5327EXPORT_SYMBOL(netdev_master_upper_dev_get);
5328
b6ccba4c
VF
5329void *netdev_adjacent_get_private(struct list_head *adj_list)
5330{
5331 struct netdev_adjacent *adj;
5332
5333 adj = list_entry(adj_list, struct netdev_adjacent, list);
5334
5335 return adj->private;
5336}
5337EXPORT_SYMBOL(netdev_adjacent_get_private);
5338
44a40855
VY
5339/**
5340 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5341 * @dev: device
5342 * @iter: list_head ** of the current position
5343 *
5344 * Gets the next device from the dev's upper list, starting from iter
5345 * position. The caller must hold RCU read lock.
5346 */
5347struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5348 struct list_head **iter)
5349{
5350 struct netdev_adjacent *upper;
5351
5352 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5353
5354 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5355
5356 if (&upper->list == &dev->adj_list.upper)
5357 return NULL;
5358
5359 *iter = &upper->list;
5360
5361 return upper->dev;
5362}
5363EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5364
31088a11
VF
5365/**
5366 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
48311f46
VF
5367 * @dev: device
5368 * @iter: list_head ** of the current position
5369 *
5370 * Gets the next device from the dev's upper list, starting from iter
5371 * position. The caller must hold RCU read lock.
5372 */
2f268f12
VF
5373struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5374 struct list_head **iter)
48311f46
VF
5375{
5376 struct netdev_adjacent *upper;
5377
85328240 5378 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
48311f46
VF
5379
5380 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5381
2f268f12 5382 if (&upper->list == &dev->all_adj_list.upper)
48311f46
VF
5383 return NULL;
5384
5385 *iter = &upper->list;
5386
5387 return upper->dev;
5388}
2f268f12 5389EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
48311f46 5390
31088a11
VF
5391/**
5392 * netdev_lower_get_next_private - Get the next ->private from the
5393 * lower neighbour list
5394 * @dev: device
5395 * @iter: list_head ** of the current position
5396 *
5397 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5398 * list, starting from iter position. The caller must hold either hold the
5399 * RTNL lock or its own locking that guarantees that the neighbour lower
b469139e 5400 * list will remain unchanged.
31088a11
VF
5401 */
5402void *netdev_lower_get_next_private(struct net_device *dev,
5403 struct list_head **iter)
5404{
5405 struct netdev_adjacent *lower;
5406
5407 lower = list_entry(*iter, struct netdev_adjacent, list);
5408
5409 if (&lower->list == &dev->adj_list.lower)
5410 return NULL;
5411
6859e7df 5412 *iter = lower->list.next;
31088a11
VF
5413
5414 return lower->private;
5415}
5416EXPORT_SYMBOL(netdev_lower_get_next_private);
5417
5418/**
5419 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5420 * lower neighbour list, RCU
5421 * variant
5422 * @dev: device
5423 * @iter: list_head ** of the current position
5424 *
5425 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5426 * list, starting from iter position. The caller must hold RCU read lock.
5427 */
5428void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5429 struct list_head **iter)
5430{
5431 struct netdev_adjacent *lower;
5432
5433 WARN_ON_ONCE(!rcu_read_lock_held());
5434
5435 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5436
5437 if (&lower->list == &dev->adj_list.lower)
5438 return NULL;
5439
6859e7df 5440 *iter = &lower->list;
31088a11
VF
5441
5442 return lower->private;
5443}
5444EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5445
4085ebe8
VY
5446/**
5447 * netdev_lower_get_next - Get the next device from the lower neighbour
5448 * list
5449 * @dev: device
5450 * @iter: list_head ** of the current position
5451 *
5452 * Gets the next netdev_adjacent from the dev's lower neighbour
5453 * list, starting from iter position. The caller must hold RTNL lock or
5454 * its own locking that guarantees that the neighbour lower
b469139e 5455 * list will remain unchanged.
4085ebe8
VY
5456 */
5457void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5458{
5459 struct netdev_adjacent *lower;
5460
cfdd28be 5461 lower = list_entry(*iter, struct netdev_adjacent, list);
4085ebe8
VY
5462
5463 if (&lower->list == &dev->adj_list.lower)
5464 return NULL;
5465
cfdd28be 5466 *iter = lower->list.next;
4085ebe8
VY
5467
5468 return lower->dev;
5469}
5470EXPORT_SYMBOL(netdev_lower_get_next);
5471
7ce856aa
JP
5472/**
5473 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5474 * @dev: device
5475 * @iter: list_head ** of the current position
5476 *
5477 * Gets the next netdev_adjacent from the dev's all lower neighbour
5478 * list, starting from iter position. The caller must hold RTNL lock or
5479 * its own locking that guarantees that the neighbour all lower
5480 * list will remain unchanged.
5481 */
5482struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5483{
5484 struct netdev_adjacent *lower;
5485
5486 lower = list_entry(*iter, struct netdev_adjacent, list);
5487
5488 if (&lower->list == &dev->all_adj_list.lower)
5489 return NULL;
5490
5491 *iter = lower->list.next;
5492
5493 return lower->dev;
5494}
5495EXPORT_SYMBOL(netdev_all_lower_get_next);
5496
5497/**
5498 * netdev_all_lower_get_next_rcu - Get the next device from all
5499 * lower neighbour list, RCU variant
5500 * @dev: device
5501 * @iter: list_head ** of the current position
5502 *
5503 * Gets the next netdev_adjacent from the dev's all lower neighbour
5504 * list, starting from iter position. The caller must hold RCU read lock.
5505 */
5506struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5507 struct list_head **iter)
5508{
5509 struct netdev_adjacent *lower;
5510
e4961b07
IS
5511 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5512
5513 if (&lower->list == &dev->all_adj_list.lower)
5514 return NULL;
7ce856aa 5515
e4961b07
IS
5516 *iter = &lower->list;
5517
5518 return lower->dev;
7ce856aa
JP
5519}
5520EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5521
e001bfad 5522/**
5523 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5524 * lower neighbour list, RCU
5525 * variant
5526 * @dev: device
5527 *
5528 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5529 * list. The caller must hold RCU read lock.
5530 */
5531void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5532{
5533 struct netdev_adjacent *lower;
5534
5535 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5536 struct netdev_adjacent, list);
5537 if (lower)
5538 return lower->private;
5539 return NULL;
5540}
5541EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5542
9ff162a8
JP
5543/**
5544 * netdev_master_upper_dev_get_rcu - Get master upper device
5545 * @dev: device
5546 *
5547 * Find a master upper device and return pointer to it or NULL in case
5548 * it's not there. The caller must hold the RCU read lock.
5549 */
5550struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5551{
aa9d8560 5552 struct netdev_adjacent *upper;
9ff162a8 5553
2f268f12 5554 upper = list_first_or_null_rcu(&dev->adj_list.upper,
aa9d8560 5555 struct netdev_adjacent, list);
9ff162a8
JP
5556 if (upper && likely(upper->master))
5557 return upper->dev;
5558 return NULL;
5559}
5560EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5561
0a59f3a9 5562static int netdev_adjacent_sysfs_add(struct net_device *dev,
3ee32707
VF
5563 struct net_device *adj_dev,
5564 struct list_head *dev_list)
5565{
5566 char linkname[IFNAMSIZ+7];
5567 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5568 "upper_%s" : "lower_%s", adj_dev->name);
5569 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5570 linkname);
5571}
0a59f3a9 5572static void netdev_adjacent_sysfs_del(struct net_device *dev,
3ee32707
VF
5573 char *name,
5574 struct list_head *dev_list)
5575{
5576 char linkname[IFNAMSIZ+7];
5577 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5578 "upper_%s" : "lower_%s", name);
5579 sysfs_remove_link(&(dev->dev.kobj), linkname);
5580}
5581
7ce64c79
AF
5582static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5583 struct net_device *adj_dev,
5584 struct list_head *dev_list)
5585{
5586 return (dev_list == &dev->adj_list.upper ||
5587 dev_list == &dev->adj_list.lower) &&
5588 net_eq(dev_net(dev), dev_net(adj_dev));
5589}
3ee32707 5590
5d261913
VF
5591static int __netdev_adjacent_dev_insert(struct net_device *dev,
5592 struct net_device *adj_dev,
93409033 5593 u16 ref_nr,
7863c054 5594 struct list_head *dev_list,
402dae96 5595 void *private, bool master)
5d261913
VF
5596{
5597 struct netdev_adjacent *adj;
842d67a7 5598 int ret;
5d261913 5599
6ea29da1 5600 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913
VF
5601
5602 if (adj) {
93409033 5603 adj->ref_nr += ref_nr;
5d261913
VF
5604 return 0;
5605 }
5606
5607 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5608 if (!adj)
5609 return -ENOMEM;
5610
5611 adj->dev = adj_dev;
5612 adj->master = master;
93409033 5613 adj->ref_nr = ref_nr;
402dae96 5614 adj->private = private;
5d261913 5615 dev_hold(adj_dev);
2f268f12
VF
5616
5617 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5618 adj_dev->name, dev->name, adj_dev->name);
5d261913 5619
7ce64c79 5620 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
3ee32707 5621 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5831d66e
VF
5622 if (ret)
5623 goto free_adj;
5624 }
5625
7863c054 5626 /* Ensure that master link is always the first item in list. */
842d67a7
VF
5627 if (master) {
5628 ret = sysfs_create_link(&(dev->dev.kobj),
5629 &(adj_dev->dev.kobj), "master");
5630 if (ret)
5831d66e 5631 goto remove_symlinks;
842d67a7 5632
7863c054 5633 list_add_rcu(&adj->list, dev_list);
842d67a7 5634 } else {
7863c054 5635 list_add_tail_rcu(&adj->list, dev_list);
842d67a7 5636 }
5d261913
VF
5637
5638 return 0;
842d67a7 5639
5831d66e 5640remove_symlinks:
7ce64c79 5641 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5642 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
842d67a7
VF
5643free_adj:
5644 kfree(adj);
974daef7 5645 dev_put(adj_dev);
842d67a7
VF
5646
5647 return ret;
5d261913
VF
5648}
5649
1d143d9f 5650static void __netdev_adjacent_dev_remove(struct net_device *dev,
5651 struct net_device *adj_dev,
93409033 5652 u16 ref_nr,
1d143d9f 5653 struct list_head *dev_list)
5d261913
VF
5654{
5655 struct netdev_adjacent *adj;
5656
6ea29da1 5657 adj = __netdev_find_adj(adj_dev, dev_list);
5d261913 5658
2f268f12
VF
5659 if (!adj) {
5660 pr_err("tried to remove device %s from %s\n",
5661 dev->name, adj_dev->name);
5d261913 5662 BUG();
2f268f12 5663 }
5d261913 5664
93409033
AC
5665 if (adj->ref_nr > ref_nr) {
5666 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name,
5667 ref_nr, adj->ref_nr-ref_nr);
5668 adj->ref_nr -= ref_nr;
5d261913
VF
5669 return;
5670 }
5671
842d67a7
VF
5672 if (adj->master)
5673 sysfs_remove_link(&(dev->dev.kobj), "master");
5674
7ce64c79 5675 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
3ee32707 5676 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5831d66e 5677
5d261913 5678 list_del_rcu(&adj->list);
2f268f12
VF
5679 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5680 adj_dev->name, dev->name, adj_dev->name);
5d261913
VF
5681 dev_put(adj_dev);
5682 kfree_rcu(adj, rcu);
5683}
5684
1d143d9f 5685static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5686 struct net_device *upper_dev,
93409033 5687 u16 ref_nr,
1d143d9f 5688 struct list_head *up_list,
5689 struct list_head *down_list,
5690 void *private, bool master)
5d261913
VF
5691{
5692 int ret;
5693
93409033
AC
5694 ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list,
5695 private, master);
5d261913
VF
5696 if (ret)
5697 return ret;
5698
93409033
AC
5699 ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list,
5700 private, false);
5d261913 5701 if (ret) {
93409033 5702 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5d261913
VF
5703 return ret;
5704 }
5705
5706 return 0;
5707}
5708
1d143d9f 5709static int __netdev_adjacent_dev_link(struct net_device *dev,
93409033
AC
5710 struct net_device *upper_dev,
5711 u16 ref_nr)
5d261913 5712{
93409033 5713 return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr,
2f268f12
VF
5714 &dev->all_adj_list.upper,
5715 &upper_dev->all_adj_list.lower,
402dae96 5716 NULL, false);
5d261913
VF
5717}
5718
1d143d9f 5719static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5720 struct net_device *upper_dev,
93409033 5721 u16 ref_nr,
1d143d9f 5722 struct list_head *up_list,
5723 struct list_head *down_list)
5d261913 5724{
93409033
AC
5725 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5726 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5d261913
VF
5727}
5728
1d143d9f 5729static void __netdev_adjacent_dev_unlink(struct net_device *dev,
93409033
AC
5730 struct net_device *upper_dev,
5731 u16 ref_nr)
5d261913 5732{
93409033 5733 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr,
2f268f12
VF
5734 &dev->all_adj_list.upper,
5735 &upper_dev->all_adj_list.lower);
5736}
5737
1d143d9f 5738static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5739 struct net_device *upper_dev,
5740 void *private, bool master)
2f268f12 5741{
93409033 5742 int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1);
2f268f12
VF
5743
5744 if (ret)
5745 return ret;
5746
93409033 5747 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1,
2f268f12
VF
5748 &dev->adj_list.upper,
5749 &upper_dev->adj_list.lower,
402dae96 5750 private, master);
2f268f12 5751 if (ret) {
93409033 5752 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
2f268f12
VF
5753 return ret;
5754 }
5755
5756 return 0;
5d261913
VF
5757}
5758
1d143d9f 5759static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5760 struct net_device *upper_dev)
2f268f12 5761{
93409033
AC
5762 __netdev_adjacent_dev_unlink(dev, upper_dev, 1);
5763 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
2f268f12
VF
5764 &dev->adj_list.upper,
5765 &upper_dev->adj_list.lower);
5766}
5d261913 5767
9ff162a8 5768static int __netdev_upper_dev_link(struct net_device *dev,
402dae96 5769 struct net_device *upper_dev, bool master,
29bf24af 5770 void *upper_priv, void *upper_info)
9ff162a8 5771{
0e4ead9d 5772 struct netdev_notifier_changeupper_info changeupper_info;
5d261913
VF
5773 struct netdev_adjacent *i, *j, *to_i, *to_j;
5774 int ret = 0;
9ff162a8
JP
5775
5776 ASSERT_RTNL();
5777
5778 if (dev == upper_dev)
5779 return -EBUSY;
5780
5781 /* To prevent loops, check if dev is not upper device to upper_dev. */
6ea29da1 5782 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
9ff162a8
JP
5783 return -EBUSY;
5784
6ea29da1 5785 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
9ff162a8
JP
5786 return -EEXIST;
5787
5788 if (master && netdev_master_upper_dev_get(dev))
5789 return -EBUSY;
5790
0e4ead9d
JP
5791 changeupper_info.upper_dev = upper_dev;
5792 changeupper_info.master = master;
5793 changeupper_info.linking = true;
29bf24af 5794 changeupper_info.upper_info = upper_info;
0e4ead9d 5795
573c7ba0
JP
5796 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5797 &changeupper_info.info);
5798 ret = notifier_to_errno(ret);
5799 if (ret)
5800 return ret;
5801
6dffb044 5802 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
402dae96 5803 master);
5d261913
VF
5804 if (ret)
5805 return ret;
9ff162a8 5806
5d261913 5807 /* Now that we linked these devs, make all the upper_dev's
2f268f12 5808 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5d261913
VF
5809 * versa, and don't forget the devices itself. All of these
5810 * links are non-neighbours.
5811 */
2f268f12
VF
5812 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5813 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5814 pr_debug("Interlinking %s with %s, non-neighbour\n",
5815 i->dev->name, j->dev->name);
93409033 5816 ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr);
5d261913
VF
5817 if (ret)
5818 goto rollback_mesh;
5819 }
5820 }
5821
5822 /* add dev to every upper_dev's upper device */
2f268f12
VF
5823 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5824 pr_debug("linking %s's upper device %s with %s\n",
5825 upper_dev->name, i->dev->name, dev->name);
93409033 5826 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr);
5d261913
VF
5827 if (ret)
5828 goto rollback_upper_mesh;
5829 }
5830
5831 /* add upper_dev to every dev's lower device */
2f268f12
VF
5832 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5833 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5834 i->dev->name, upper_dev->name);
93409033 5835 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr);
5d261913
VF
5836 if (ret)
5837 goto rollback_lower_mesh;
5838 }
9ff162a8 5839
b03804e7
IS
5840 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5841 &changeupper_info.info);
5842 ret = notifier_to_errno(ret);
5843 if (ret)
5844 goto rollback_lower_mesh;
5845
9ff162a8 5846 return 0;
5d261913
VF
5847
5848rollback_lower_mesh:
5849 to_i = i;
2f268f12 5850 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5d261913
VF
5851 if (i == to_i)
5852 break;
93409033 5853 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5d261913
VF
5854 }
5855
5856 i = NULL;
5857
5858rollback_upper_mesh:
5859 to_i = i;
2f268f12 5860 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5861 if (i == to_i)
5862 break;
93409033 5863 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5d261913
VF
5864 }
5865
5866 i = j = NULL;
5867
5868rollback_mesh:
5869 to_i = i;
5870 to_j = j;
2f268f12
VF
5871 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5872 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5d261913
VF
5873 if (i == to_i && j == to_j)
5874 break;
93409033 5875 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5d261913
VF
5876 }
5877 if (i == to_i)
5878 break;
5879 }
5880
2f268f12 5881 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5882
5883 return ret;
9ff162a8
JP
5884}
5885
5886/**
5887 * netdev_upper_dev_link - Add a link to the upper device
5888 * @dev: device
5889 * @upper_dev: new upper device
5890 *
5891 * Adds a link to device which is upper to this one. The caller must hold
5892 * the RTNL lock. On a failure a negative errno code is returned.
5893 * On success the reference counts are adjusted and the function
5894 * returns zero.
5895 */
5896int netdev_upper_dev_link(struct net_device *dev,
5897 struct net_device *upper_dev)
5898{
29bf24af 5899 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
9ff162a8
JP
5900}
5901EXPORT_SYMBOL(netdev_upper_dev_link);
5902
5903/**
5904 * netdev_master_upper_dev_link - Add a master link to the upper device
5905 * @dev: device
5906 * @upper_dev: new upper device
6dffb044 5907 * @upper_priv: upper device private
29bf24af 5908 * @upper_info: upper info to be passed down via notifier
9ff162a8
JP
5909 *
5910 * Adds a link to device which is upper to this one. In this case, only
5911 * one master upper device can be linked, although other non-master devices
5912 * might be linked as well. The caller must hold the RTNL lock.
5913 * On a failure a negative errno code is returned. On success the reference
5914 * counts are adjusted and the function returns zero.
5915 */
5916int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 5917 struct net_device *upper_dev,
29bf24af 5918 void *upper_priv, void *upper_info)
9ff162a8 5919{
29bf24af
JP
5920 return __netdev_upper_dev_link(dev, upper_dev, true,
5921 upper_priv, upper_info);
9ff162a8
JP
5922}
5923EXPORT_SYMBOL(netdev_master_upper_dev_link);
5924
5925/**
5926 * netdev_upper_dev_unlink - Removes a link to upper device
5927 * @dev: device
5928 * @upper_dev: new upper device
5929 *
5930 * Removes a link to device which is upper to this one. The caller must hold
5931 * the RTNL lock.
5932 */
5933void netdev_upper_dev_unlink(struct net_device *dev,
5934 struct net_device *upper_dev)
5935{
0e4ead9d 5936 struct netdev_notifier_changeupper_info changeupper_info;
5d261913 5937 struct netdev_adjacent *i, *j;
9ff162a8
JP
5938 ASSERT_RTNL();
5939
0e4ead9d
JP
5940 changeupper_info.upper_dev = upper_dev;
5941 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5942 changeupper_info.linking = false;
5943
573c7ba0
JP
5944 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5945 &changeupper_info.info);
5946
2f268f12 5947 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5d261913
VF
5948
5949 /* Here is the tricky part. We must remove all dev's lower
5950 * devices from all upper_dev's upper devices and vice
5951 * versa, to maintain the graph relationship.
5952 */
2f268f12
VF
5953 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5954 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
93409033 5955 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr);
5d261913
VF
5956
5957 /* remove also the devices itself from lower/upper device
5958 * list
5959 */
2f268f12 5960 list_for_each_entry(i, &dev->all_adj_list.lower, list)
93409033 5961 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr);
5d261913 5962
2f268f12 5963 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
93409033 5964 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr);
5d261913 5965
0e4ead9d
JP
5966 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5967 &changeupper_info.info);
9ff162a8
JP
5968}
5969EXPORT_SYMBOL(netdev_upper_dev_unlink);
5970
61bd3857
MS
5971/**
5972 * netdev_bonding_info_change - Dispatch event about slave change
5973 * @dev: device
4a26e453 5974 * @bonding_info: info to dispatch
61bd3857
MS
5975 *
5976 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5977 * The caller must hold the RTNL lock.
5978 */
5979void netdev_bonding_info_change(struct net_device *dev,
5980 struct netdev_bonding_info *bonding_info)
5981{
5982 struct netdev_notifier_bonding_info info;
5983
5984 memcpy(&info.bonding_info, bonding_info,
5985 sizeof(struct netdev_bonding_info));
5986 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5987 &info.info);
5988}
5989EXPORT_SYMBOL(netdev_bonding_info_change);
5990
2ce1ee17 5991static void netdev_adjacent_add_links(struct net_device *dev)
4c75431a
AF
5992{
5993 struct netdev_adjacent *iter;
5994
5995 struct net *net = dev_net(dev);
5996
5997 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 5998 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
5999 continue;
6000 netdev_adjacent_sysfs_add(iter->dev, dev,
6001 &iter->dev->adj_list.lower);
6002 netdev_adjacent_sysfs_add(dev, iter->dev,
6003 &dev->adj_list.upper);
6004 }
6005
6006 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6007 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6008 continue;
6009 netdev_adjacent_sysfs_add(iter->dev, dev,
6010 &iter->dev->adj_list.upper);
6011 netdev_adjacent_sysfs_add(dev, iter->dev,
6012 &dev->adj_list.lower);
6013 }
6014}
6015
2ce1ee17 6016static void netdev_adjacent_del_links(struct net_device *dev)
4c75431a
AF
6017{
6018 struct netdev_adjacent *iter;
6019
6020 struct net *net = dev_net(dev);
6021
6022 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6023 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6024 continue;
6025 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6026 &iter->dev->adj_list.lower);
6027 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6028 &dev->adj_list.upper);
6029 }
6030
6031 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6032 if (!net_eq(net, dev_net(iter->dev)))
4c75431a
AF
6033 continue;
6034 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6035 &iter->dev->adj_list.upper);
6036 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6037 &dev->adj_list.lower);
6038 }
6039}
6040
5bb025fa 6041void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
402dae96 6042{
5bb025fa 6043 struct netdev_adjacent *iter;
402dae96 6044
4c75431a
AF
6045 struct net *net = dev_net(dev);
6046
5bb025fa 6047 list_for_each_entry(iter, &dev->adj_list.upper, list) {
be4da0e3 6048 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6049 continue;
5bb025fa
VF
6050 netdev_adjacent_sysfs_del(iter->dev, oldname,
6051 &iter->dev->adj_list.lower);
6052 netdev_adjacent_sysfs_add(iter->dev, dev,
6053 &iter->dev->adj_list.lower);
6054 }
402dae96 6055
5bb025fa 6056 list_for_each_entry(iter, &dev->adj_list.lower, list) {
be4da0e3 6057 if (!net_eq(net, dev_net(iter->dev)))
4c75431a 6058 continue;
5bb025fa
VF
6059 netdev_adjacent_sysfs_del(iter->dev, oldname,
6060 &iter->dev->adj_list.upper);
6061 netdev_adjacent_sysfs_add(iter->dev, dev,
6062 &iter->dev->adj_list.upper);
6063 }
402dae96 6064}
402dae96
VF
6065
6066void *netdev_lower_dev_get_private(struct net_device *dev,
6067 struct net_device *lower_dev)
6068{
6069 struct netdev_adjacent *lower;
6070
6071 if (!lower_dev)
6072 return NULL;
6ea29da1 6073 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
402dae96
VF
6074 if (!lower)
6075 return NULL;
6076
6077 return lower->private;
6078}
6079EXPORT_SYMBOL(netdev_lower_dev_get_private);
6080
4085ebe8 6081
952fcfd0 6082int dev_get_nest_level(struct net_device *dev)
4085ebe8
VY
6083{
6084 struct net_device *lower = NULL;
6085 struct list_head *iter;
6086 int max_nest = -1;
6087 int nest;
6088
6089 ASSERT_RTNL();
6090
6091 netdev_for_each_lower_dev(dev, lower, iter) {
952fcfd0 6092 nest = dev_get_nest_level(lower);
4085ebe8
VY
6093 if (max_nest < nest)
6094 max_nest = nest;
6095 }
6096
952fcfd0 6097 return max_nest + 1;
4085ebe8
VY
6098}
6099EXPORT_SYMBOL(dev_get_nest_level);
6100
04d48266
JP
6101/**
6102 * netdev_lower_change - Dispatch event about lower device state change
6103 * @lower_dev: device
6104 * @lower_state_info: state to dispatch
6105 *
6106 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6107 * The caller must hold the RTNL lock.
6108 */
6109void netdev_lower_state_changed(struct net_device *lower_dev,
6110 void *lower_state_info)
6111{
6112 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6113
6114 ASSERT_RTNL();
6115 changelowerstate_info.lower_state_info = lower_state_info;
6116 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6117 &changelowerstate_info.info);
6118}
6119EXPORT_SYMBOL(netdev_lower_state_changed);
6120
18bfb924
JP
6121int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6122 struct neighbour *n)
6123{
6124 struct net_device *lower_dev, *stop_dev;
6125 struct list_head *iter;
6126 int err;
6127
6128 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6129 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6130 continue;
6131 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6132 if (err) {
6133 stop_dev = lower_dev;
6134 goto rollback;
6135 }
6136 }
6137 return 0;
6138
6139rollback:
6140 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6141 if (lower_dev == stop_dev)
6142 break;
6143 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6144 continue;
6145 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6146 }
6147 return err;
6148}
6149EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6150
6151void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6152 struct neighbour *n)
6153{
6154 struct net_device *lower_dev;
6155 struct list_head *iter;
6156
6157 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6158 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6159 continue;
6160 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6161 }
6162}
6163EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6164
b6c40d68
PM
6165static void dev_change_rx_flags(struct net_device *dev, int flags)
6166{
d314774c
SH
6167 const struct net_device_ops *ops = dev->netdev_ops;
6168
d2615bf4 6169 if (ops->ndo_change_rx_flags)
d314774c 6170 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
6171}
6172
991fb3f7 6173static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
1da177e4 6174{
b536db93 6175 unsigned int old_flags = dev->flags;
d04a48b0
EB
6176 kuid_t uid;
6177 kgid_t gid;
1da177e4 6178
24023451
PM
6179 ASSERT_RTNL();
6180
dad9b335
WC
6181 dev->flags |= IFF_PROMISC;
6182 dev->promiscuity += inc;
6183 if (dev->promiscuity == 0) {
6184 /*
6185 * Avoid overflow.
6186 * If inc causes overflow, untouch promisc and return error.
6187 */
6188 if (inc < 0)
6189 dev->flags &= ~IFF_PROMISC;
6190 else {
6191 dev->promiscuity -= inc;
7b6cd1ce
JP
6192 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6193 dev->name);
dad9b335
WC
6194 return -EOVERFLOW;
6195 }
6196 }
52609c0b 6197 if (dev->flags != old_flags) {
7b6cd1ce
JP
6198 pr_info("device %s %s promiscuous mode\n",
6199 dev->name,
6200 dev->flags & IFF_PROMISC ? "entered" : "left");
8192b0c4
DH
6201 if (audit_enabled) {
6202 current_uid_gid(&uid, &gid);
7759db82
KHK
6203 audit_log(current->audit_context, GFP_ATOMIC,
6204 AUDIT_ANOM_PROMISCUOUS,
6205 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6206 dev->name, (dev->flags & IFF_PROMISC),
6207 (old_flags & IFF_PROMISC),
e1760bd5 6208 from_kuid(&init_user_ns, audit_get_loginuid(current)),
d04a48b0
EB
6209 from_kuid(&init_user_ns, uid),
6210 from_kgid(&init_user_ns, gid),
7759db82 6211 audit_get_sessionid(current));
8192b0c4 6212 }
24023451 6213
b6c40d68 6214 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 6215 }
991fb3f7
ND
6216 if (notify)
6217 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
dad9b335 6218 return 0;
1da177e4
LT
6219}
6220
4417da66
PM
6221/**
6222 * dev_set_promiscuity - update promiscuity count on a device
6223 * @dev: device
6224 * @inc: modifier
6225 *
6226 * Add or remove promiscuity from a device. While the count in the device
6227 * remains above zero the interface remains promiscuous. Once it hits zero
6228 * the device reverts back to normal filtering operation. A negative inc
6229 * value is used to drop promiscuity on the device.
dad9b335 6230 * Return 0 if successful or a negative errno code on error.
4417da66 6231 */
dad9b335 6232int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66 6233{
b536db93 6234 unsigned int old_flags = dev->flags;
dad9b335 6235 int err;
4417da66 6236
991fb3f7 6237 err = __dev_set_promiscuity(dev, inc, true);
4b5a698e 6238 if (err < 0)
dad9b335 6239 return err;
4417da66
PM
6240 if (dev->flags != old_flags)
6241 dev_set_rx_mode(dev);
dad9b335 6242 return err;
4417da66 6243}
d1b19dff 6244EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 6245
991fb3f7 6246static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
1da177e4 6247{
991fb3f7 6248 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
1da177e4 6249
24023451
PM
6250 ASSERT_RTNL();
6251
1da177e4 6252 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
6253 dev->allmulti += inc;
6254 if (dev->allmulti == 0) {
6255 /*
6256 * Avoid overflow.
6257 * If inc causes overflow, untouch allmulti and return error.
6258 */
6259 if (inc < 0)
6260 dev->flags &= ~IFF_ALLMULTI;
6261 else {
6262 dev->allmulti -= inc;
7b6cd1ce
JP
6263 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6264 dev->name);
dad9b335
WC
6265 return -EOVERFLOW;
6266 }
6267 }
24023451 6268 if (dev->flags ^ old_flags) {
b6c40d68 6269 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 6270 dev_set_rx_mode(dev);
991fb3f7
ND
6271 if (notify)
6272 __dev_notify_flags(dev, old_flags,
6273 dev->gflags ^ old_gflags);
24023451 6274 }
dad9b335 6275 return 0;
4417da66 6276}
991fb3f7
ND
6277
6278/**
6279 * dev_set_allmulti - update allmulti count on a device
6280 * @dev: device
6281 * @inc: modifier
6282 *
6283 * Add or remove reception of all multicast frames to a device. While the
6284 * count in the device remains above zero the interface remains listening
6285 * to all interfaces. Once it hits zero the device reverts back to normal
6286 * filtering operation. A negative @inc value is used to drop the counter
6287 * when releasing a resource needing all multicasts.
6288 * Return 0 if successful or a negative errno code on error.
6289 */
6290
6291int dev_set_allmulti(struct net_device *dev, int inc)
6292{
6293 return __dev_set_allmulti(dev, inc, true);
6294}
d1b19dff 6295EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
6296
6297/*
6298 * Upload unicast and multicast address lists to device and
6299 * configure RX filtering. When the device doesn't support unicast
53ccaae1 6300 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
6301 * are present.
6302 */
6303void __dev_set_rx_mode(struct net_device *dev)
6304{
d314774c
SH
6305 const struct net_device_ops *ops = dev->netdev_ops;
6306
4417da66
PM
6307 /* dev_open will call this function so the list will stay sane. */
6308 if (!(dev->flags&IFF_UP))
6309 return;
6310
6311 if (!netif_device_present(dev))
40b77c94 6312 return;
4417da66 6313
01789349 6314 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4417da66
PM
6315 /* Unicast addresses changes may only happen under the rtnl,
6316 * therefore calling __dev_set_promiscuity here is safe.
6317 */
32e7bfc4 6318 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
991fb3f7 6319 __dev_set_promiscuity(dev, 1, false);
2d348d1f 6320 dev->uc_promisc = true;
32e7bfc4 6321 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
991fb3f7 6322 __dev_set_promiscuity(dev, -1, false);
2d348d1f 6323 dev->uc_promisc = false;
4417da66 6324 }
4417da66 6325 }
01789349
JP
6326
6327 if (ops->ndo_set_rx_mode)
6328 ops->ndo_set_rx_mode(dev);
4417da66
PM
6329}
6330
6331void dev_set_rx_mode(struct net_device *dev)
6332{
b9e40857 6333 netif_addr_lock_bh(dev);
4417da66 6334 __dev_set_rx_mode(dev);
b9e40857 6335 netif_addr_unlock_bh(dev);
1da177e4
LT
6336}
6337
f0db275a
SH
6338/**
6339 * dev_get_flags - get flags reported to userspace
6340 * @dev: device
6341 *
6342 * Get the combination of flag bits exported through APIs to userspace.
6343 */
95c96174 6344unsigned int dev_get_flags(const struct net_device *dev)
1da177e4 6345{
95c96174 6346 unsigned int flags;
1da177e4
LT
6347
6348 flags = (dev->flags & ~(IFF_PROMISC |
6349 IFF_ALLMULTI |
b00055aa
SR
6350 IFF_RUNNING |
6351 IFF_LOWER_UP |
6352 IFF_DORMANT)) |
1da177e4
LT
6353 (dev->gflags & (IFF_PROMISC |
6354 IFF_ALLMULTI));
6355
b00055aa
SR
6356 if (netif_running(dev)) {
6357 if (netif_oper_up(dev))
6358 flags |= IFF_RUNNING;
6359 if (netif_carrier_ok(dev))
6360 flags |= IFF_LOWER_UP;
6361 if (netif_dormant(dev))
6362 flags |= IFF_DORMANT;
6363 }
1da177e4
LT
6364
6365 return flags;
6366}
d1b19dff 6367EXPORT_SYMBOL(dev_get_flags);
1da177e4 6368
bd380811 6369int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 6370{
b536db93 6371 unsigned int old_flags = dev->flags;
bd380811 6372 int ret;
1da177e4 6373
24023451
PM
6374 ASSERT_RTNL();
6375
1da177e4
LT
6376 /*
6377 * Set the flags on our device.
6378 */
6379
6380 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6381 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6382 IFF_AUTOMEDIA)) |
6383 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6384 IFF_ALLMULTI));
6385
6386 /*
6387 * Load in the correct multicast list now the flags have changed.
6388 */
6389
b6c40d68
PM
6390 if ((old_flags ^ flags) & IFF_MULTICAST)
6391 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 6392
4417da66 6393 dev_set_rx_mode(dev);
1da177e4
LT
6394
6395 /*
6396 * Have we downed the interface. We handle IFF_UP ourselves
6397 * according to user attempts to set it, rather than blindly
6398 * setting it.
6399 */
6400
6401 ret = 0;
d215d10f 6402 if ((old_flags ^ flags) & IFF_UP)
bd380811 6403 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4 6404
1da177e4 6405 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff 6406 int inc = (flags & IFF_PROMISC) ? 1 : -1;
991fb3f7 6407 unsigned int old_flags = dev->flags;
d1b19dff 6408
1da177e4 6409 dev->gflags ^= IFF_PROMISC;
991fb3f7
ND
6410
6411 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6412 if (dev->flags != old_flags)
6413 dev_set_rx_mode(dev);
1da177e4
LT
6414 }
6415
6416 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6417 is important. Some (broken) drivers set IFF_PROMISC, when
6418 IFF_ALLMULTI is requested not asking us and not reporting.
6419 */
6420 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
6421 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6422
1da177e4 6423 dev->gflags ^= IFF_ALLMULTI;
991fb3f7 6424 __dev_set_allmulti(dev, inc, false);
1da177e4
LT
6425 }
6426
bd380811
PM
6427 return ret;
6428}
6429
a528c219
ND
6430void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6431 unsigned int gchanges)
bd380811
PM
6432{
6433 unsigned int changes = dev->flags ^ old_flags;
6434
a528c219 6435 if (gchanges)
7f294054 6436 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
a528c219 6437
bd380811
PM
6438 if (changes & IFF_UP) {
6439 if (dev->flags & IFF_UP)
6440 call_netdevice_notifiers(NETDEV_UP, dev);
6441 else
6442 call_netdevice_notifiers(NETDEV_DOWN, dev);
6443 }
6444
6445 if (dev->flags & IFF_UP &&
be9efd36
JP
6446 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6447 struct netdev_notifier_change_info change_info;
6448
6449 change_info.flags_changed = changes;
6450 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6451 &change_info.info);
6452 }
bd380811
PM
6453}
6454
6455/**
6456 * dev_change_flags - change device settings
6457 * @dev: device
6458 * @flags: device state flags
6459 *
6460 * Change settings on device based state flags. The flags are
6461 * in the userspace exported format.
6462 */
b536db93 6463int dev_change_flags(struct net_device *dev, unsigned int flags)
bd380811 6464{
b536db93 6465 int ret;
991fb3f7 6466 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
bd380811
PM
6467
6468 ret = __dev_change_flags(dev, flags);
6469 if (ret < 0)
6470 return ret;
6471
991fb3f7 6472 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
a528c219 6473 __dev_notify_flags(dev, old_flags, changes);
1da177e4
LT
6474 return ret;
6475}
d1b19dff 6476EXPORT_SYMBOL(dev_change_flags);
1da177e4 6477
2315dc91
VF
6478static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6479{
6480 const struct net_device_ops *ops = dev->netdev_ops;
6481
6482 if (ops->ndo_change_mtu)
6483 return ops->ndo_change_mtu(dev, new_mtu);
6484
6485 dev->mtu = new_mtu;
6486 return 0;
6487}
6488
f0db275a
SH
6489/**
6490 * dev_set_mtu - Change maximum transfer unit
6491 * @dev: device
6492 * @new_mtu: new transfer unit
6493 *
6494 * Change the maximum transfer size of the network device.
6495 */
1da177e4
LT
6496int dev_set_mtu(struct net_device *dev, int new_mtu)
6497{
2315dc91 6498 int err, orig_mtu;
1da177e4
LT
6499
6500 if (new_mtu == dev->mtu)
6501 return 0;
6502
6503 /* MTU must be positive. */
6504 if (new_mtu < 0)
6505 return -EINVAL;
6506
6507 if (!netif_device_present(dev))
6508 return -ENODEV;
6509
1d486bfb
VF
6510 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6511 err = notifier_to_errno(err);
6512 if (err)
6513 return err;
d314774c 6514
2315dc91
VF
6515 orig_mtu = dev->mtu;
6516 err = __dev_set_mtu(dev, new_mtu);
d314774c 6517
2315dc91
VF
6518 if (!err) {
6519 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6520 err = notifier_to_errno(err);
6521 if (err) {
6522 /* setting mtu back and notifying everyone again,
6523 * so that they have a chance to revert changes.
6524 */
6525 __dev_set_mtu(dev, orig_mtu);
6526 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6527 }
6528 }
1da177e4
LT
6529 return err;
6530}
d1b19dff 6531EXPORT_SYMBOL(dev_set_mtu);
1da177e4 6532
cbda10fa
VD
6533/**
6534 * dev_set_group - Change group this device belongs to
6535 * @dev: device
6536 * @new_group: group this device should belong to
6537 */
6538void dev_set_group(struct net_device *dev, int new_group)
6539{
6540 dev->group = new_group;
6541}
6542EXPORT_SYMBOL(dev_set_group);
6543
f0db275a
SH
6544/**
6545 * dev_set_mac_address - Change Media Access Control Address
6546 * @dev: device
6547 * @sa: new address
6548 *
6549 * Change the hardware (MAC) address of the device
6550 */
1da177e4
LT
6551int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6552{
d314774c 6553 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
6554 int err;
6555
d314774c 6556 if (!ops->ndo_set_mac_address)
1da177e4
LT
6557 return -EOPNOTSUPP;
6558 if (sa->sa_family != dev->type)
6559 return -EINVAL;
6560 if (!netif_device_present(dev))
6561 return -ENODEV;
d314774c 6562 err = ops->ndo_set_mac_address(dev, sa);
f6521516
JP
6563 if (err)
6564 return err;
fbdeca2d 6565 dev->addr_assign_type = NET_ADDR_SET;
f6521516 6566 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7bf23575 6567 add_device_randomness(dev->dev_addr, dev->addr_len);
f6521516 6568 return 0;
1da177e4 6569}
d1b19dff 6570EXPORT_SYMBOL(dev_set_mac_address);
1da177e4 6571
4bf84c35
JP
6572/**
6573 * dev_change_carrier - Change device carrier
6574 * @dev: device
691b3b7e 6575 * @new_carrier: new value
4bf84c35
JP
6576 *
6577 * Change device carrier
6578 */
6579int dev_change_carrier(struct net_device *dev, bool new_carrier)
6580{
6581 const struct net_device_ops *ops = dev->netdev_ops;
6582
6583 if (!ops->ndo_change_carrier)
6584 return -EOPNOTSUPP;
6585 if (!netif_device_present(dev))
6586 return -ENODEV;
6587 return ops->ndo_change_carrier(dev, new_carrier);
6588}
6589EXPORT_SYMBOL(dev_change_carrier);
6590
66b52b0d
JP
6591/**
6592 * dev_get_phys_port_id - Get device physical port ID
6593 * @dev: device
6594 * @ppid: port ID
6595 *
6596 * Get device physical port ID
6597 */
6598int dev_get_phys_port_id(struct net_device *dev,
02637fce 6599 struct netdev_phys_item_id *ppid)
66b52b0d
JP
6600{
6601 const struct net_device_ops *ops = dev->netdev_ops;
6602
6603 if (!ops->ndo_get_phys_port_id)
6604 return -EOPNOTSUPP;
6605 return ops->ndo_get_phys_port_id(dev, ppid);
6606}
6607EXPORT_SYMBOL(dev_get_phys_port_id);
6608
db24a904
DA
6609/**
6610 * dev_get_phys_port_name - Get device physical port name
6611 * @dev: device
6612 * @name: port name
ed49e650 6613 * @len: limit of bytes to copy to name
db24a904
DA
6614 *
6615 * Get device physical port name
6616 */
6617int dev_get_phys_port_name(struct net_device *dev,
6618 char *name, size_t len)
6619{
6620 const struct net_device_ops *ops = dev->netdev_ops;
6621
6622 if (!ops->ndo_get_phys_port_name)
6623 return -EOPNOTSUPP;
6624 return ops->ndo_get_phys_port_name(dev, name, len);
6625}
6626EXPORT_SYMBOL(dev_get_phys_port_name);
6627
d746d707
AK
6628/**
6629 * dev_change_proto_down - update protocol port state information
6630 * @dev: device
6631 * @proto_down: new value
6632 *
6633 * This info can be used by switch drivers to set the phys state of the
6634 * port.
6635 */
6636int dev_change_proto_down(struct net_device *dev, bool proto_down)
6637{
6638 const struct net_device_ops *ops = dev->netdev_ops;
6639
6640 if (!ops->ndo_change_proto_down)
6641 return -EOPNOTSUPP;
6642 if (!netif_device_present(dev))
6643 return -ENODEV;
6644 return ops->ndo_change_proto_down(dev, proto_down);
6645}
6646EXPORT_SYMBOL(dev_change_proto_down);
6647
a7862b45
BB
6648/**
6649 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6650 * @dev: device
6651 * @fd: new program fd or negative value to clear
6652 *
6653 * Set or clear a bpf program for a device
6654 */
6655int dev_change_xdp_fd(struct net_device *dev, int fd)
6656{
6657 const struct net_device_ops *ops = dev->netdev_ops;
6658 struct bpf_prog *prog = NULL;
6659 struct netdev_xdp xdp = {};
6660 int err;
6661
6662 if (!ops->ndo_xdp)
6663 return -EOPNOTSUPP;
6664 if (fd >= 0) {
6665 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6666 if (IS_ERR(prog))
6667 return PTR_ERR(prog);
6668 }
6669
6670 xdp.command = XDP_SETUP_PROG;
6671 xdp.prog = prog;
6672 err = ops->ndo_xdp(dev, &xdp);
6673 if (err < 0 && prog)
6674 bpf_prog_put(prog);
6675
6676 return err;
6677}
6678EXPORT_SYMBOL(dev_change_xdp_fd);
6679
1da177e4
LT
6680/**
6681 * dev_new_index - allocate an ifindex
c4ea43c5 6682 * @net: the applicable net namespace
1da177e4
LT
6683 *
6684 * Returns a suitable unique value for a new device interface
6685 * number. The caller must hold the rtnl semaphore or the
6686 * dev_base_lock to be sure it remains unique.
6687 */
881d966b 6688static int dev_new_index(struct net *net)
1da177e4 6689{
aa79e66e 6690 int ifindex = net->ifindex;
1da177e4
LT
6691 for (;;) {
6692 if (++ifindex <= 0)
6693 ifindex = 1;
881d966b 6694 if (!__dev_get_by_index(net, ifindex))
aa79e66e 6695 return net->ifindex = ifindex;
1da177e4
LT
6696 }
6697}
6698
1da177e4 6699/* Delayed registration/unregisteration */
3b5b34fd 6700static LIST_HEAD(net_todo_list);
200b916f 6701DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
1da177e4 6702
6f05f629 6703static void net_set_todo(struct net_device *dev)
1da177e4 6704{
1da177e4 6705 list_add_tail(&dev->todo_list, &net_todo_list);
50624c93 6706 dev_net(dev)->dev_unreg_count++;
1da177e4
LT
6707}
6708
9b5e383c 6709static void rollback_registered_many(struct list_head *head)
93ee31f1 6710{
e93737b0 6711 struct net_device *dev, *tmp;
5cde2829 6712 LIST_HEAD(close_head);
9b5e383c 6713
93ee31f1
DL
6714 BUG_ON(dev_boot_phase);
6715 ASSERT_RTNL();
6716
e93737b0 6717 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 6718 /* Some devices call without registering
e93737b0
KK
6719 * for initialization unwind. Remove those
6720 * devices and proceed with the remaining.
9b5e383c
ED
6721 */
6722 if (dev->reg_state == NETREG_UNINITIALIZED) {
7b6cd1ce
JP
6723 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6724 dev->name, dev);
93ee31f1 6725
9b5e383c 6726 WARN_ON(1);
e93737b0
KK
6727 list_del(&dev->unreg_list);
6728 continue;
9b5e383c 6729 }
449f4544 6730 dev->dismantle = true;
9b5e383c 6731 BUG_ON(dev->reg_state != NETREG_REGISTERED);
44345724 6732 }
93ee31f1 6733
44345724 6734 /* If device is running, close it first. */
5cde2829
EB
6735 list_for_each_entry(dev, head, unreg_list)
6736 list_add_tail(&dev->close_list, &close_head);
99c4a26a 6737 dev_close_many(&close_head, true);
93ee31f1 6738
44345724 6739 list_for_each_entry(dev, head, unreg_list) {
9b5e383c
ED
6740 /* And unlink it from device chain. */
6741 unlist_netdevice(dev);
93ee31f1 6742
9b5e383c
ED
6743 dev->reg_state = NETREG_UNREGISTERING;
6744 }
41852497 6745 flush_all_backlogs();
93ee31f1
DL
6746
6747 synchronize_net();
6748
9b5e383c 6749 list_for_each_entry(dev, head, unreg_list) {
395eea6c
MB
6750 struct sk_buff *skb = NULL;
6751
9b5e383c
ED
6752 /* Shutdown queueing discipline. */
6753 dev_shutdown(dev);
93ee31f1
DL
6754
6755
9b5e383c
ED
6756 /* Notify protocols, that we are about to destroy
6757 this device. They should clean all the things.
6758 */
6759 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 6760
395eea6c
MB
6761 if (!dev->rtnl_link_ops ||
6762 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6763 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6764 GFP_KERNEL);
6765
9b5e383c
ED
6766 /*
6767 * Flush the unicast and multicast chains
6768 */
a748ee24 6769 dev_uc_flush(dev);
22bedad3 6770 dev_mc_flush(dev);
93ee31f1 6771
9b5e383c
ED
6772 if (dev->netdev_ops->ndo_uninit)
6773 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 6774
395eea6c
MB
6775 if (skb)
6776 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
56bfa7ee 6777
9ff162a8
JP
6778 /* Notifier chain MUST detach us all upper devices. */
6779 WARN_ON(netdev_has_any_upper_dev(dev));
93ee31f1 6780
9b5e383c
ED
6781 /* Remove entries from kobject tree */
6782 netdev_unregister_kobject(dev);
024e9679
AD
6783#ifdef CONFIG_XPS
6784 /* Remove XPS queueing entries */
6785 netif_reset_xps_queues_gt(dev, 0);
6786#endif
9b5e383c 6787 }
93ee31f1 6788
850a545b 6789 synchronize_net();
395264d5 6790
a5ee1551 6791 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
6792 dev_put(dev);
6793}
6794
6795static void rollback_registered(struct net_device *dev)
6796{
6797 LIST_HEAD(single);
6798
6799 list_add(&dev->unreg_list, &single);
6800 rollback_registered_many(&single);
ceaaec98 6801 list_del(&single);
93ee31f1
DL
6802}
6803
fd867d51
JW
6804static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6805 struct net_device *upper, netdev_features_t features)
6806{
6807 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6808 netdev_features_t feature;
5ba3f7d6 6809 int feature_bit;
fd867d51 6810
5ba3f7d6
JW
6811 for_each_netdev_feature(&upper_disables, feature_bit) {
6812 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6813 if (!(upper->wanted_features & feature)
6814 && (features & feature)) {
6815 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6816 &feature, upper->name);
6817 features &= ~feature;
6818 }
6819 }
6820
6821 return features;
6822}
6823
6824static void netdev_sync_lower_features(struct net_device *upper,
6825 struct net_device *lower, netdev_features_t features)
6826{
6827 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6828 netdev_features_t feature;
5ba3f7d6 6829 int feature_bit;
fd867d51 6830
5ba3f7d6
JW
6831 for_each_netdev_feature(&upper_disables, feature_bit) {
6832 feature = __NETIF_F_BIT(feature_bit);
fd867d51
JW
6833 if (!(features & feature) && (lower->features & feature)) {
6834 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6835 &feature, lower->name);
6836 lower->wanted_features &= ~feature;
6837 netdev_update_features(lower);
6838
6839 if (unlikely(lower->features & feature))
6840 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6841 &feature, lower->name);
6842 }
6843 }
6844}
6845
c8f44aff
MM
6846static netdev_features_t netdev_fix_features(struct net_device *dev,
6847 netdev_features_t features)
b63365a2 6848{
57422dc5
MM
6849 /* Fix illegal checksum combinations */
6850 if ((features & NETIF_F_HW_CSUM) &&
6851 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6f404e44 6852 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
57422dc5
MM
6853 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6854 }
6855
b63365a2 6856 /* TSO requires that SG is present as well. */
ea2d3688 6857 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6f404e44 6858 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
ea2d3688 6859 features &= ~NETIF_F_ALL_TSO;
b63365a2
HX
6860 }
6861
ec5f0615
PS
6862 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6863 !(features & NETIF_F_IP_CSUM)) {
6864 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6865 features &= ~NETIF_F_TSO;
6866 features &= ~NETIF_F_TSO_ECN;
6867 }
6868
6869 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6870 !(features & NETIF_F_IPV6_CSUM)) {
6871 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6872 features &= ~NETIF_F_TSO6;
6873 }
6874
b1dc497b
AD
6875 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6876 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6877 features &= ~NETIF_F_TSO_MANGLEID;
6878
31d8b9e0
BH
6879 /* TSO ECN requires that TSO is present as well. */
6880 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6881 features &= ~NETIF_F_TSO_ECN;
6882
212b573f
MM
6883 /* Software GSO depends on SG. */
6884 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6f404e44 6885 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
212b573f
MM
6886 features &= ~NETIF_F_GSO;
6887 }
6888
acd1130e 6889 /* UFO needs SG and checksumming */
b63365a2 6890 if (features & NETIF_F_UFO) {
79032644 6891 /* maybe split UFO into V4 and V6? */
c8cd0989
TH
6892 if (!(features & NETIF_F_HW_CSUM) &&
6893 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6894 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6f404e44 6895 netdev_dbg(dev,
acd1130e 6896 "Dropping NETIF_F_UFO since no checksum offload features.\n");
b63365a2
HX
6897 features &= ~NETIF_F_UFO;
6898 }
6899
6900 if (!(features & NETIF_F_SG)) {
6f404e44 6901 netdev_dbg(dev,
acd1130e 6902 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
b63365a2
HX
6903 features &= ~NETIF_F_UFO;
6904 }
6905 }
6906
802ab55a
AD
6907 /* GSO partial features require GSO partial be set */
6908 if ((features & dev->gso_partial_features) &&
6909 !(features & NETIF_F_GSO_PARTIAL)) {
6910 netdev_dbg(dev,
6911 "Dropping partially supported GSO features since no GSO partial.\n");
6912 features &= ~dev->gso_partial_features;
6913 }
6914
d0290214
JP
6915#ifdef CONFIG_NET_RX_BUSY_POLL
6916 if (dev->netdev_ops->ndo_busy_poll)
6917 features |= NETIF_F_BUSY_POLL;
6918 else
6919#endif
6920 features &= ~NETIF_F_BUSY_POLL;
6921
b63365a2
HX
6922 return features;
6923}
b63365a2 6924
6cb6a27c 6925int __netdev_update_features(struct net_device *dev)
5455c699 6926{
fd867d51 6927 struct net_device *upper, *lower;
c8f44aff 6928 netdev_features_t features;
fd867d51 6929 struct list_head *iter;
e7868a85 6930 int err = -1;
5455c699 6931
87267485
MM
6932 ASSERT_RTNL();
6933
5455c699
MM
6934 features = netdev_get_wanted_features(dev);
6935
6936 if (dev->netdev_ops->ndo_fix_features)
6937 features = dev->netdev_ops->ndo_fix_features(dev, features);
6938
6939 /* driver might be less strict about feature dependencies */
6940 features = netdev_fix_features(dev, features);
6941
fd867d51
JW
6942 /* some features can't be enabled if they're off an an upper device */
6943 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6944 features = netdev_sync_upper_features(dev, upper, features);
6945
5455c699 6946 if (dev->features == features)
e7868a85 6947 goto sync_lower;
5455c699 6948
c8f44aff
MM
6949 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6950 &dev->features, &features);
5455c699
MM
6951
6952 if (dev->netdev_ops->ndo_set_features)
6953 err = dev->netdev_ops->ndo_set_features(dev, features);
5f8dc33e
NA
6954 else
6955 err = 0;
5455c699 6956
6cb6a27c 6957 if (unlikely(err < 0)) {
5455c699 6958 netdev_err(dev,
c8f44aff
MM
6959 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6960 err, &features, &dev->features);
17b85d29
NA
6961 /* return non-0 since some features might have changed and
6962 * it's better to fire a spurious notification than miss it
6963 */
6964 return -1;
6cb6a27c
MM
6965 }
6966
e7868a85 6967sync_lower:
fd867d51
JW
6968 /* some features must be disabled on lower devices when disabled
6969 * on an upper device (think: bonding master or bridge)
6970 */
6971 netdev_for_each_lower_dev(dev, lower, iter)
6972 netdev_sync_lower_features(dev, lower, features);
6973
6cb6a27c
MM
6974 if (!err)
6975 dev->features = features;
6976
e7868a85 6977 return err < 0 ? 0 : 1;
6cb6a27c
MM
6978}
6979
afe12cc8
MM
6980/**
6981 * netdev_update_features - recalculate device features
6982 * @dev: the device to check
6983 *
6984 * Recalculate dev->features set and send notifications if it
6985 * has changed. Should be called after driver or hardware dependent
6986 * conditions might have changed that influence the features.
6987 */
6cb6a27c
MM
6988void netdev_update_features(struct net_device *dev)
6989{
6990 if (__netdev_update_features(dev))
6991 netdev_features_change(dev);
5455c699
MM
6992}
6993EXPORT_SYMBOL(netdev_update_features);
6994
afe12cc8
MM
6995/**
6996 * netdev_change_features - recalculate device features
6997 * @dev: the device to check
6998 *
6999 * Recalculate dev->features set and send notifications even
7000 * if they have not changed. Should be called instead of
7001 * netdev_update_features() if also dev->vlan_features might
7002 * have changed to allow the changes to be propagated to stacked
7003 * VLAN devices.
7004 */
7005void netdev_change_features(struct net_device *dev)
7006{
7007 __netdev_update_features(dev);
7008 netdev_features_change(dev);
7009}
7010EXPORT_SYMBOL(netdev_change_features);
7011
fc4a7489
PM
7012/**
7013 * netif_stacked_transfer_operstate - transfer operstate
7014 * @rootdev: the root or lower level device to transfer state from
7015 * @dev: the device to transfer operstate to
7016 *
7017 * Transfer operational state from root to device. This is normally
7018 * called when a stacking relationship exists between the root
7019 * device and the device(a leaf device).
7020 */
7021void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7022 struct net_device *dev)
7023{
7024 if (rootdev->operstate == IF_OPER_DORMANT)
7025 netif_dormant_on(dev);
7026 else
7027 netif_dormant_off(dev);
7028
7029 if (netif_carrier_ok(rootdev)) {
7030 if (!netif_carrier_ok(dev))
7031 netif_carrier_on(dev);
7032 } else {
7033 if (netif_carrier_ok(dev))
7034 netif_carrier_off(dev);
7035 }
7036}
7037EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7038
a953be53 7039#ifdef CONFIG_SYSFS
1b4bf461
ED
7040static int netif_alloc_rx_queues(struct net_device *dev)
7041{
1b4bf461 7042 unsigned int i, count = dev->num_rx_queues;
bd25fa7b 7043 struct netdev_rx_queue *rx;
10595902 7044 size_t sz = count * sizeof(*rx);
1b4bf461 7045
bd25fa7b 7046 BUG_ON(count < 1);
1b4bf461 7047
10595902
PG
7048 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7049 if (!rx) {
7050 rx = vzalloc(sz);
7051 if (!rx)
7052 return -ENOMEM;
7053 }
bd25fa7b
TH
7054 dev->_rx = rx;
7055
bd25fa7b 7056 for (i = 0; i < count; i++)
fe822240 7057 rx[i].dev = dev;
1b4bf461
ED
7058 return 0;
7059}
bf264145 7060#endif
1b4bf461 7061
aa942104
CG
7062static void netdev_init_one_queue(struct net_device *dev,
7063 struct netdev_queue *queue, void *_unused)
7064{
7065 /* Initialize queue lock */
7066 spin_lock_init(&queue->_xmit_lock);
7067 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7068 queue->xmit_lock_owner = -1;
b236da69 7069 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
aa942104 7070 queue->dev = dev;
114cf580
TH
7071#ifdef CONFIG_BQL
7072 dql_init(&queue->dql, HZ);
7073#endif
aa942104
CG
7074}
7075
60877a32
ED
7076static void netif_free_tx_queues(struct net_device *dev)
7077{
4cb28970 7078 kvfree(dev->_tx);
60877a32
ED
7079}
7080
e6484930
TH
7081static int netif_alloc_netdev_queues(struct net_device *dev)
7082{
7083 unsigned int count = dev->num_tx_queues;
7084 struct netdev_queue *tx;
60877a32 7085 size_t sz = count * sizeof(*tx);
e6484930 7086
d339727c
ED
7087 if (count < 1 || count > 0xffff)
7088 return -EINVAL;
62b5942a 7089
60877a32
ED
7090 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7091 if (!tx) {
7092 tx = vzalloc(sz);
7093 if (!tx)
7094 return -ENOMEM;
7095 }
e6484930 7096 dev->_tx = tx;
1d24eb48 7097
e6484930
TH
7098 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7099 spin_lock_init(&dev->tx_global_lock);
aa942104
CG
7100
7101 return 0;
e6484930
TH
7102}
7103
a2029240
DV
7104void netif_tx_stop_all_queues(struct net_device *dev)
7105{
7106 unsigned int i;
7107
7108 for (i = 0; i < dev->num_tx_queues; i++) {
7109 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7110 netif_tx_stop_queue(txq);
7111 }
7112}
7113EXPORT_SYMBOL(netif_tx_stop_all_queues);
7114
1da177e4
LT
7115/**
7116 * register_netdevice - register a network device
7117 * @dev: device to register
7118 *
7119 * Take a completed network device structure and add it to the kernel
7120 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7121 * chain. 0 is returned on success. A negative errno code is returned
7122 * on a failure to set up the device, or if the name is a duplicate.
7123 *
7124 * Callers must hold the rtnl semaphore. You may want
7125 * register_netdev() instead of this.
7126 *
7127 * BUGS:
7128 * The locking appears insufficient to guarantee two parallel registers
7129 * will not get the same name.
7130 */
7131
7132int register_netdevice(struct net_device *dev)
7133{
1da177e4 7134 int ret;
d314774c 7135 struct net *net = dev_net(dev);
1da177e4
LT
7136
7137 BUG_ON(dev_boot_phase);
7138 ASSERT_RTNL();
7139
b17a7c17
SH
7140 might_sleep();
7141
1da177e4
LT
7142 /* When net_device's are persistent, this will be fatal. */
7143 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 7144 BUG_ON(!net);
1da177e4 7145
f1f28aa3 7146 spin_lock_init(&dev->addr_list_lock);
cf508b12 7147 netdev_set_addr_lockdep_class(dev);
1da177e4 7148
828de4f6 7149 ret = dev_get_valid_name(net, dev, dev->name);
0696c3a8
PP
7150 if (ret < 0)
7151 goto out;
7152
1da177e4 7153 /* Init, if this function is available */
d314774c
SH
7154 if (dev->netdev_ops->ndo_init) {
7155 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
7156 if (ret) {
7157 if (ret > 0)
7158 ret = -EIO;
90833aa4 7159 goto out;
1da177e4
LT
7160 }
7161 }
4ec93edb 7162
f646968f
PM
7163 if (((dev->hw_features | dev->features) &
7164 NETIF_F_HW_VLAN_CTAG_FILTER) &&
d2ed273d
MM
7165 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7166 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7167 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7168 ret = -EINVAL;
7169 goto err_uninit;
7170 }
7171
9c7dafbf
PE
7172 ret = -EBUSY;
7173 if (!dev->ifindex)
7174 dev->ifindex = dev_new_index(net);
7175 else if (__dev_get_by_index(net, dev->ifindex))
7176 goto err_uninit;
7177
5455c699
MM
7178 /* Transfer changeable features to wanted_features and enable
7179 * software offloads (GSO and GRO).
7180 */
7181 dev->hw_features |= NETIF_F_SOFT_FEATURES;
14d1232f
MM
7182 dev->features |= NETIF_F_SOFT_FEATURES;
7183 dev->wanted_features = dev->features & dev->hw_features;
1da177e4 7184
cbc53e08 7185 if (!(dev->flags & IFF_LOOPBACK))
34324dc2 7186 dev->hw_features |= NETIF_F_NOCACHE_COPY;
cbc53e08 7187
7f348a60
AD
7188 /* If IPv4 TCP segmentation offload is supported we should also
7189 * allow the device to enable segmenting the frame with the option
7190 * of ignoring a static IP ID value. This doesn't enable the
7191 * feature itself but allows the user to enable it later.
7192 */
cbc53e08
AD
7193 if (dev->hw_features & NETIF_F_TSO)
7194 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7f348a60
AD
7195 if (dev->vlan_features & NETIF_F_TSO)
7196 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7197 if (dev->mpls_features & NETIF_F_TSO)
7198 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7199 if (dev->hw_enc_features & NETIF_F_TSO)
7200 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
c6e1a0d1 7201
1180e7d6 7202 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
16c3ea78 7203 */
1180e7d6 7204 dev->vlan_features |= NETIF_F_HIGHDMA;
16c3ea78 7205
ee579677
PS
7206 /* Make NETIF_F_SG inheritable to tunnel devices.
7207 */
802ab55a 7208 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
ee579677 7209
0d89d203
SH
7210 /* Make NETIF_F_SG inheritable to MPLS.
7211 */
7212 dev->mpls_features |= NETIF_F_SG;
7213
7ffbe3fd
JB
7214 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7215 ret = notifier_to_errno(ret);
7216 if (ret)
7217 goto err_uninit;
7218
8b41d188 7219 ret = netdev_register_kobject(dev);
b17a7c17 7220 if (ret)
7ce1b0ed 7221 goto err_uninit;
b17a7c17
SH
7222 dev->reg_state = NETREG_REGISTERED;
7223
6cb6a27c 7224 __netdev_update_features(dev);
8e9b59b2 7225
1da177e4
LT
7226 /*
7227 * Default initial state at registry is that the
7228 * device is present.
7229 */
7230
7231 set_bit(__LINK_STATE_PRESENT, &dev->state);
7232
8f4cccbb
BH
7233 linkwatch_init_dev(dev);
7234
1da177e4 7235 dev_init_scheduler(dev);
1da177e4 7236 dev_hold(dev);
ce286d32 7237 list_netdevice(dev);
7bf23575 7238 add_device_randomness(dev->dev_addr, dev->addr_len);
1da177e4 7239
948b337e
JP
7240 /* If the device has permanent device address, driver should
7241 * set dev_addr and also addr_assign_type should be set to
7242 * NET_ADDR_PERM (default value).
7243 */
7244 if (dev->addr_assign_type == NET_ADDR_PERM)
7245 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7246
1da177e4 7247 /* Notify protocols, that a new device appeared. */
056925ab 7248 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 7249 ret = notifier_to_errno(ret);
93ee31f1
DL
7250 if (ret) {
7251 rollback_registered(dev);
7252 dev->reg_state = NETREG_UNREGISTERED;
7253 }
d90a909e
EB
7254 /*
7255 * Prevent userspace races by waiting until the network
7256 * device is fully setup before sending notifications.
7257 */
a2835763
PM
7258 if (!dev->rtnl_link_ops ||
7259 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7f294054 7260 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
1da177e4
LT
7261
7262out:
7263 return ret;
7ce1b0ed
HX
7264
7265err_uninit:
d314774c
SH
7266 if (dev->netdev_ops->ndo_uninit)
7267 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 7268 goto out;
1da177e4 7269}
d1b19dff 7270EXPORT_SYMBOL(register_netdevice);
1da177e4 7271
937f1ba5
BH
7272/**
7273 * init_dummy_netdev - init a dummy network device for NAPI
7274 * @dev: device to init
7275 *
7276 * This takes a network device structure and initialize the minimum
7277 * amount of fields so it can be used to schedule NAPI polls without
7278 * registering a full blown interface. This is to be used by drivers
7279 * that need to tie several hardware interfaces to a single NAPI
7280 * poll scheduler due to HW limitations.
7281 */
7282int init_dummy_netdev(struct net_device *dev)
7283{
7284 /* Clear everything. Note we don't initialize spinlocks
7285 * are they aren't supposed to be taken by any of the
7286 * NAPI code and this dummy netdev is supposed to be
7287 * only ever used for NAPI polls
7288 */
7289 memset(dev, 0, sizeof(struct net_device));
7290
7291 /* make sure we BUG if trying to hit standard
7292 * register/unregister code path
7293 */
7294 dev->reg_state = NETREG_DUMMY;
7295
937f1ba5
BH
7296 /* NAPI wants this */
7297 INIT_LIST_HEAD(&dev->napi_list);
7298
7299 /* a dummy interface is started by default */
7300 set_bit(__LINK_STATE_PRESENT, &dev->state);
7301 set_bit(__LINK_STATE_START, &dev->state);
7302
29b4433d
ED
7303 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7304 * because users of this 'device' dont need to change
7305 * its refcount.
7306 */
7307
937f1ba5
BH
7308 return 0;
7309}
7310EXPORT_SYMBOL_GPL(init_dummy_netdev);
7311
7312
1da177e4
LT
7313/**
7314 * register_netdev - register a network device
7315 * @dev: device to register
7316 *
7317 * Take a completed network device structure and add it to the kernel
7318 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7319 * chain. 0 is returned on success. A negative errno code is returned
7320 * on a failure to set up the device, or if the name is a duplicate.
7321 *
38b4da38 7322 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
7323 * and expands the device name if you passed a format string to
7324 * alloc_netdev.
7325 */
7326int register_netdev(struct net_device *dev)
7327{
7328 int err;
7329
7330 rtnl_lock();
1da177e4 7331 err = register_netdevice(dev);
1da177e4
LT
7332 rtnl_unlock();
7333 return err;
7334}
7335EXPORT_SYMBOL(register_netdev);
7336
29b4433d
ED
7337int netdev_refcnt_read(const struct net_device *dev)
7338{
7339 int i, refcnt = 0;
7340
7341 for_each_possible_cpu(i)
7342 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7343 return refcnt;
7344}
7345EXPORT_SYMBOL(netdev_refcnt_read);
7346
2c53040f 7347/**
1da177e4 7348 * netdev_wait_allrefs - wait until all references are gone.
3de7a37b 7349 * @dev: target net_device
1da177e4
LT
7350 *
7351 * This is called when unregistering network devices.
7352 *
7353 * Any protocol or device that holds a reference should register
7354 * for netdevice notification, and cleanup and put back the
7355 * reference if they receive an UNREGISTER event.
7356 * We can get stuck here if buggy protocols don't correctly
4ec93edb 7357 * call dev_put.
1da177e4
LT
7358 */
7359static void netdev_wait_allrefs(struct net_device *dev)
7360{
7361 unsigned long rebroadcast_time, warning_time;
29b4433d 7362 int refcnt;
1da177e4 7363
e014debe
ED
7364 linkwatch_forget_dev(dev);
7365
1da177e4 7366 rebroadcast_time = warning_time = jiffies;
29b4433d
ED
7367 refcnt = netdev_refcnt_read(dev);
7368
7369 while (refcnt != 0) {
1da177e4 7370 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 7371 rtnl_lock();
1da177e4
LT
7372
7373 /* Rebroadcast unregister notification */
056925ab 7374 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4 7375
748e2d93 7376 __rtnl_unlock();
0115e8e3 7377 rcu_barrier();
748e2d93
ED
7378 rtnl_lock();
7379
0115e8e3 7380 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
1da177e4
LT
7381 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7382 &dev->state)) {
7383 /* We must not have linkwatch events
7384 * pending on unregister. If this
7385 * happens, we simply run the queue
7386 * unscheduled, resulting in a noop
7387 * for this device.
7388 */
7389 linkwatch_run_queue();
7390 }
7391
6756ae4b 7392 __rtnl_unlock();
1da177e4
LT
7393
7394 rebroadcast_time = jiffies;
7395 }
7396
7397 msleep(250);
7398
29b4433d
ED
7399 refcnt = netdev_refcnt_read(dev);
7400
1da177e4 7401 if (time_after(jiffies, warning_time + 10 * HZ)) {
7b6cd1ce
JP
7402 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7403 dev->name, refcnt);
1da177e4
LT
7404 warning_time = jiffies;
7405 }
7406 }
7407}
7408
7409/* The sequence is:
7410 *
7411 * rtnl_lock();
7412 * ...
7413 * register_netdevice(x1);
7414 * register_netdevice(x2);
7415 * ...
7416 * unregister_netdevice(y1);
7417 * unregister_netdevice(y2);
7418 * ...
7419 * rtnl_unlock();
7420 * free_netdev(y1);
7421 * free_netdev(y2);
7422 *
58ec3b4d 7423 * We are invoked by rtnl_unlock().
1da177e4 7424 * This allows us to deal with problems:
b17a7c17 7425 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
7426 * without deadlocking with linkwatch via keventd.
7427 * 2) Since we run with the RTNL semaphore not held, we can sleep
7428 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
7429 *
7430 * We must not return until all unregister events added during
7431 * the interval the lock was held have been completed.
1da177e4 7432 */
1da177e4
LT
7433void netdev_run_todo(void)
7434{
626ab0e6 7435 struct list_head list;
1da177e4 7436
1da177e4 7437 /* Snapshot list, allow later requests */
626ab0e6 7438 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
7439
7440 __rtnl_unlock();
626ab0e6 7441
0115e8e3
ED
7442
7443 /* Wait for rcu callbacks to finish before next phase */
850a545b
EB
7444 if (!list_empty(&list))
7445 rcu_barrier();
7446
1da177e4
LT
7447 while (!list_empty(&list)) {
7448 struct net_device *dev
e5e26d75 7449 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
7450 list_del(&dev->todo_list);
7451
748e2d93 7452 rtnl_lock();
0115e8e3 7453 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
748e2d93 7454 __rtnl_unlock();
0115e8e3 7455
b17a7c17 7456 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7b6cd1ce 7457 pr_err("network todo '%s' but state %d\n",
b17a7c17
SH
7458 dev->name, dev->reg_state);
7459 dump_stack();
7460 continue;
7461 }
1da177e4 7462
b17a7c17 7463 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 7464
b17a7c17 7465 netdev_wait_allrefs(dev);
1da177e4 7466
b17a7c17 7467 /* paranoia */
29b4433d 7468 BUG_ON(netdev_refcnt_read(dev));
7866a621
SN
7469 BUG_ON(!list_empty(&dev->ptype_all));
7470 BUG_ON(!list_empty(&dev->ptype_specific));
33d480ce
ED
7471 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7472 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
547b792c 7473 WARN_ON(dev->dn_ptr);
1da177e4 7474
b17a7c17
SH
7475 if (dev->destructor)
7476 dev->destructor(dev);
9093bbb2 7477
50624c93
EB
7478 /* Report a network device has been unregistered */
7479 rtnl_lock();
7480 dev_net(dev)->dev_unreg_count--;
7481 __rtnl_unlock();
7482 wake_up(&netdev_unregistering_wq);
7483
9093bbb2
SH
7484 /* Free network device */
7485 kobject_put(&dev->dev.kobj);
1da177e4 7486 }
1da177e4
LT
7487}
7488
9256645a
JW
7489/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7490 * all the same fields in the same order as net_device_stats, with only
7491 * the type differing, but rtnl_link_stats64 may have additional fields
7492 * at the end for newer counters.
3cfde79c 7493 */
77a1abf5
ED
7494void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7495 const struct net_device_stats *netdev_stats)
3cfde79c
BH
7496{
7497#if BITS_PER_LONG == 64
9256645a 7498 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
77a1abf5 7499 memcpy(stats64, netdev_stats, sizeof(*stats64));
9256645a
JW
7500 /* zero out counters that only exist in rtnl_link_stats64 */
7501 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7502 sizeof(*stats64) - sizeof(*netdev_stats));
3cfde79c 7503#else
9256645a 7504 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
3cfde79c
BH
7505 const unsigned long *src = (const unsigned long *)netdev_stats;
7506 u64 *dst = (u64 *)stats64;
7507
9256645a 7508 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
3cfde79c
BH
7509 for (i = 0; i < n; i++)
7510 dst[i] = src[i];
9256645a
JW
7511 /* zero out counters that only exist in rtnl_link_stats64 */
7512 memset((char *)stats64 + n * sizeof(u64), 0,
7513 sizeof(*stats64) - n * sizeof(u64));
3cfde79c
BH
7514#endif
7515}
77a1abf5 7516EXPORT_SYMBOL(netdev_stats_to_stats64);
3cfde79c 7517
eeda3fd6
SH
7518/**
7519 * dev_get_stats - get network device statistics
7520 * @dev: device to get statistics from
28172739 7521 * @storage: place to store stats
eeda3fd6 7522 *
d7753516
BH
7523 * Get network statistics from device. Return @storage.
7524 * The device driver may provide its own method by setting
7525 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7526 * otherwise the internal statistics structure is used.
eeda3fd6 7527 */
d7753516
BH
7528struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7529 struct rtnl_link_stats64 *storage)
7004bf25 7530{
eeda3fd6
SH
7531 const struct net_device_ops *ops = dev->netdev_ops;
7532
28172739
ED
7533 if (ops->ndo_get_stats64) {
7534 memset(storage, 0, sizeof(*storage));
caf586e5
ED
7535 ops->ndo_get_stats64(dev, storage);
7536 } else if (ops->ndo_get_stats) {
3cfde79c 7537 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
caf586e5
ED
7538 } else {
7539 netdev_stats_to_stats64(storage, &dev->stats);
28172739 7540 }
caf586e5 7541 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
015f0688 7542 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6e7333d3 7543 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
28172739 7544 return storage;
c45d286e 7545}
eeda3fd6 7546EXPORT_SYMBOL(dev_get_stats);
c45d286e 7547
24824a09 7548struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
dc2b4847 7549{
24824a09 7550 struct netdev_queue *queue = dev_ingress_queue(dev);
dc2b4847 7551
24824a09
ED
7552#ifdef CONFIG_NET_CLS_ACT
7553 if (queue)
7554 return queue;
7555 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7556 if (!queue)
7557 return NULL;
7558 netdev_init_one_queue(dev, queue, NULL);
2ce1ee17 7559 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
24824a09
ED
7560 queue->qdisc_sleeping = &noop_qdisc;
7561 rcu_assign_pointer(dev->ingress_queue, queue);
7562#endif
7563 return queue;
bb949fbd
DM
7564}
7565
2c60db03
ED
7566static const struct ethtool_ops default_ethtool_ops;
7567
d07d7507
SG
7568void netdev_set_default_ethtool_ops(struct net_device *dev,
7569 const struct ethtool_ops *ops)
7570{
7571 if (dev->ethtool_ops == &default_ethtool_ops)
7572 dev->ethtool_ops = ops;
7573}
7574EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7575
74d332c1
ED
7576void netdev_freemem(struct net_device *dev)
7577{
7578 char *addr = (char *)dev - dev->padded;
7579
4cb28970 7580 kvfree(addr);
74d332c1
ED
7581}
7582
1da177e4 7583/**
36909ea4 7584 * alloc_netdev_mqs - allocate network device
c835a677
TG
7585 * @sizeof_priv: size of private data to allocate space for
7586 * @name: device name format string
7587 * @name_assign_type: origin of device name
7588 * @setup: callback to initialize device
7589 * @txqs: the number of TX subqueues to allocate
7590 * @rxqs: the number of RX subqueues to allocate
1da177e4
LT
7591 *
7592 * Allocates a struct net_device with private data area for driver use
90e51adf 7593 * and performs basic initialization. Also allocates subqueue structs
36909ea4 7594 * for each queue on the device.
1da177e4 7595 */
36909ea4 7596struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 7597 unsigned char name_assign_type,
36909ea4
TH
7598 void (*setup)(struct net_device *),
7599 unsigned int txqs, unsigned int rxqs)
1da177e4 7600{
1da177e4 7601 struct net_device *dev;
7943986c 7602 size_t alloc_size;
1ce8e7b5 7603 struct net_device *p;
1da177e4 7604
b6fe17d6
SH
7605 BUG_ON(strlen(name) >= sizeof(dev->name));
7606
36909ea4 7607 if (txqs < 1) {
7b6cd1ce 7608 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
55513fb4
TH
7609 return NULL;
7610 }
7611
a953be53 7612#ifdef CONFIG_SYSFS
36909ea4 7613 if (rxqs < 1) {
7b6cd1ce 7614 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
36909ea4
TH
7615 return NULL;
7616 }
7617#endif
7618
fd2ea0a7 7619 alloc_size = sizeof(struct net_device);
d1643d24
AD
7620 if (sizeof_priv) {
7621 /* ensure 32-byte alignment of private area */
1ce8e7b5 7622 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
7623 alloc_size += sizeof_priv;
7624 }
7625 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 7626 alloc_size += NETDEV_ALIGN - 1;
1da177e4 7627
74d332c1
ED
7628 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7629 if (!p)
7630 p = vzalloc(alloc_size);
62b5942a 7631 if (!p)
1da177e4 7632 return NULL;
1da177e4 7633
1ce8e7b5 7634 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 7635 dev->padded = (char *)dev - (char *)p;
ab9c73cc 7636
29b4433d
ED
7637 dev->pcpu_refcnt = alloc_percpu(int);
7638 if (!dev->pcpu_refcnt)
74d332c1 7639 goto free_dev;
ab9c73cc 7640
ab9c73cc 7641 if (dev_addr_init(dev))
29b4433d 7642 goto free_pcpu;
ab9c73cc 7643
22bedad3 7644 dev_mc_init(dev);
a748ee24 7645 dev_uc_init(dev);
ccffad25 7646
c346dca1 7647 dev_net_set(dev, &init_net);
1da177e4 7648
8d3bdbd5 7649 dev->gso_max_size = GSO_MAX_SIZE;
30b678d8 7650 dev->gso_max_segs = GSO_MAX_SEGS;
8d3bdbd5 7651
8d3bdbd5
DM
7652 INIT_LIST_HEAD(&dev->napi_list);
7653 INIT_LIST_HEAD(&dev->unreg_list);
5cde2829 7654 INIT_LIST_HEAD(&dev->close_list);
8d3bdbd5 7655 INIT_LIST_HEAD(&dev->link_watch_list);
2f268f12
VF
7656 INIT_LIST_HEAD(&dev->adj_list.upper);
7657 INIT_LIST_HEAD(&dev->adj_list.lower);
7658 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7659 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7866a621
SN
7660 INIT_LIST_HEAD(&dev->ptype_all);
7661 INIT_LIST_HEAD(&dev->ptype_specific);
59cc1f61
JK
7662#ifdef CONFIG_NET_SCHED
7663 hash_init(dev->qdisc_hash);
7664#endif
02875878 7665 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8d3bdbd5
DM
7666 setup(dev);
7667
a813104d 7668 if (!dev->tx_queue_len) {
f84bb1ea 7669 dev->priv_flags |= IFF_NO_QUEUE;
a813104d
PS
7670 dev->tx_queue_len = 1;
7671 }
906470c1 7672
36909ea4
TH
7673 dev->num_tx_queues = txqs;
7674 dev->real_num_tx_queues = txqs;
ed9af2e8 7675 if (netif_alloc_netdev_queues(dev))
8d3bdbd5 7676 goto free_all;
e8a0464c 7677
a953be53 7678#ifdef CONFIG_SYSFS
36909ea4
TH
7679 dev->num_rx_queues = rxqs;
7680 dev->real_num_rx_queues = rxqs;
fe822240 7681 if (netif_alloc_rx_queues(dev))
8d3bdbd5 7682 goto free_all;
df334545 7683#endif
0a9627f2 7684
1da177e4 7685 strcpy(dev->name, name);
c835a677 7686 dev->name_assign_type = name_assign_type;
cbda10fa 7687 dev->group = INIT_NETDEV_GROUP;
2c60db03
ED
7688 if (!dev->ethtool_ops)
7689 dev->ethtool_ops = &default_ethtool_ops;
e687ad60
PN
7690
7691 nf_hook_ingress_init(dev);
7692
1da177e4 7693 return dev;
ab9c73cc 7694
8d3bdbd5
DM
7695free_all:
7696 free_netdev(dev);
7697 return NULL;
7698
29b4433d
ED
7699free_pcpu:
7700 free_percpu(dev->pcpu_refcnt);
74d332c1
ED
7701free_dev:
7702 netdev_freemem(dev);
ab9c73cc 7703 return NULL;
1da177e4 7704}
36909ea4 7705EXPORT_SYMBOL(alloc_netdev_mqs);
1da177e4
LT
7706
7707/**
7708 * free_netdev - free network device
7709 * @dev: device
7710 *
4ec93edb
YH
7711 * This function does the last stage of destroying an allocated device
7712 * interface. The reference to the device object is released.
1da177e4 7713 * If this is the last reference then it will be freed.
93d05d4a 7714 * Must be called in process context.
1da177e4
LT
7715 */
7716void free_netdev(struct net_device *dev)
7717{
d565b0a1
HX
7718 struct napi_struct *p, *n;
7719
93d05d4a 7720 might_sleep();
60877a32 7721 netif_free_tx_queues(dev);
a953be53 7722#ifdef CONFIG_SYSFS
10595902 7723 kvfree(dev->_rx);
fe822240 7724#endif
e8a0464c 7725
33d480ce 7726 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
24824a09 7727
f001fde5
JP
7728 /* Flush device addresses */
7729 dev_addr_flush(dev);
7730
d565b0a1
HX
7731 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7732 netif_napi_del(p);
7733
29b4433d
ED
7734 free_percpu(dev->pcpu_refcnt);
7735 dev->pcpu_refcnt = NULL;
7736
3041a069 7737 /* Compatibility with error handling in drivers */
1da177e4 7738 if (dev->reg_state == NETREG_UNINITIALIZED) {
74d332c1 7739 netdev_freemem(dev);
1da177e4
LT
7740 return;
7741 }
7742
7743 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7744 dev->reg_state = NETREG_RELEASED;
7745
43cb76d9
GKH
7746 /* will free via device release */
7747 put_device(&dev->dev);
1da177e4 7748}
d1b19dff 7749EXPORT_SYMBOL(free_netdev);
4ec93edb 7750
f0db275a
SH
7751/**
7752 * synchronize_net - Synchronize with packet receive processing
7753 *
7754 * Wait for packets currently being received to be done.
7755 * Does not block later packets from starting.
7756 */
4ec93edb 7757void synchronize_net(void)
1da177e4
LT
7758{
7759 might_sleep();
be3fc413
ED
7760 if (rtnl_is_locked())
7761 synchronize_rcu_expedited();
7762 else
7763 synchronize_rcu();
1da177e4 7764}
d1b19dff 7765EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
7766
7767/**
44a0873d 7768 * unregister_netdevice_queue - remove device from the kernel
1da177e4 7769 * @dev: device
44a0873d 7770 * @head: list
6ebfbc06 7771 *
1da177e4 7772 * This function shuts down a device interface and removes it
d59b54b1 7773 * from the kernel tables.
44a0873d 7774 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
7775 *
7776 * Callers must hold the rtnl semaphore. You may want
7777 * unregister_netdev() instead of this.
7778 */
7779
44a0873d 7780void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 7781{
a6620712
HX
7782 ASSERT_RTNL();
7783
44a0873d 7784 if (head) {
9fdce099 7785 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
7786 } else {
7787 rollback_registered(dev);
7788 /* Finish processing unregister after unlock */
7789 net_set_todo(dev);
7790 }
1da177e4 7791}
44a0873d 7792EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 7793
9b5e383c
ED
7794/**
7795 * unregister_netdevice_many - unregister many devices
7796 * @head: list of devices
87757a91
ED
7797 *
7798 * Note: As most callers use a stack allocated list_head,
7799 * we force a list_del() to make sure stack wont be corrupted later.
9b5e383c
ED
7800 */
7801void unregister_netdevice_many(struct list_head *head)
7802{
7803 struct net_device *dev;
7804
7805 if (!list_empty(head)) {
7806 rollback_registered_many(head);
7807 list_for_each_entry(dev, head, unreg_list)
7808 net_set_todo(dev);
87757a91 7809 list_del(head);
9b5e383c
ED
7810 }
7811}
63c8099d 7812EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 7813
1da177e4
LT
7814/**
7815 * unregister_netdev - remove device from the kernel
7816 * @dev: device
7817 *
7818 * This function shuts down a device interface and removes it
d59b54b1 7819 * from the kernel tables.
1da177e4
LT
7820 *
7821 * This is just a wrapper for unregister_netdevice that takes
7822 * the rtnl semaphore. In general you want to use this and not
7823 * unregister_netdevice.
7824 */
7825void unregister_netdev(struct net_device *dev)
7826{
7827 rtnl_lock();
7828 unregister_netdevice(dev);
7829 rtnl_unlock();
7830}
1da177e4
LT
7831EXPORT_SYMBOL(unregister_netdev);
7832
ce286d32
EB
7833/**
7834 * dev_change_net_namespace - move device to different nethost namespace
7835 * @dev: device
7836 * @net: network namespace
7837 * @pat: If not NULL name pattern to try if the current device name
7838 * is already taken in the destination network namespace.
7839 *
7840 * This function shuts down a device interface and moves it
7841 * to a new network namespace. On success 0 is returned, on
7842 * a failure a netagive errno code is returned.
7843 *
7844 * Callers must hold the rtnl semaphore.
7845 */
7846
7847int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7848{
ce286d32
EB
7849 int err;
7850
7851 ASSERT_RTNL();
7852
7853 /* Don't allow namespace local devices to be moved. */
7854 err = -EINVAL;
7855 if (dev->features & NETIF_F_NETNS_LOCAL)
7856 goto out;
7857
7858 /* Ensure the device has been registrered */
ce286d32
EB
7859 if (dev->reg_state != NETREG_REGISTERED)
7860 goto out;
7861
7862 /* Get out if there is nothing todo */
7863 err = 0;
878628fb 7864 if (net_eq(dev_net(dev), net))
ce286d32
EB
7865 goto out;
7866
7867 /* Pick the destination device name, and ensure
7868 * we can use it in the destination network namespace.
7869 */
7870 err = -EEXIST;
d9031024 7871 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
7872 /* We get here if we can't use the current device name */
7873 if (!pat)
7874 goto out;
828de4f6 7875 if (dev_get_valid_name(net, dev, pat) < 0)
ce286d32
EB
7876 goto out;
7877 }
7878
7879 /*
7880 * And now a mini version of register_netdevice unregister_netdevice.
7881 */
7882
7883 /* If device is running close it first. */
9b772652 7884 dev_close(dev);
ce286d32
EB
7885
7886 /* And unlink it from device chain */
7887 err = -ENODEV;
7888 unlist_netdevice(dev);
7889
7890 synchronize_net();
7891
7892 /* Shutdown queueing discipline. */
7893 dev_shutdown(dev);
7894
7895 /* Notify protocols, that we are about to destroy
7896 this device. They should clean all the things.
3b27e105
DL
7897
7898 Note that dev->reg_state stays at NETREG_REGISTERED.
7899 This is wanted because this way 8021q and macvlan know
7900 the device is just moving and can keep their slaves up.
ce286d32
EB
7901 */
7902 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6549dd43
G
7903 rcu_barrier();
7904 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7f294054 7905 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
ce286d32
EB
7906
7907 /*
7908 * Flush the unicast and multicast chains
7909 */
a748ee24 7910 dev_uc_flush(dev);
22bedad3 7911 dev_mc_flush(dev);
ce286d32 7912
4e66ae2e
SH
7913 /* Send a netdev-removed uevent to the old namespace */
7914 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
4c75431a 7915 netdev_adjacent_del_links(dev);
4e66ae2e 7916
ce286d32 7917 /* Actually switch the network namespace */
c346dca1 7918 dev_net_set(dev, net);
ce286d32 7919
ce286d32 7920 /* If there is an ifindex conflict assign a new one */
7a66bbc9 7921 if (__dev_get_by_index(net, dev->ifindex))
ce286d32 7922 dev->ifindex = dev_new_index(net);
ce286d32 7923
4e66ae2e
SH
7924 /* Send a netdev-add uevent to the new namespace */
7925 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
4c75431a 7926 netdev_adjacent_add_links(dev);
4e66ae2e 7927
8b41d188 7928 /* Fixup kobjects */
a1b3f594 7929 err = device_rename(&dev->dev, dev->name);
8b41d188 7930 WARN_ON(err);
ce286d32
EB
7931
7932 /* Add the device back in the hashes */
7933 list_netdevice(dev);
7934
7935 /* Notify protocols, that a new device appeared. */
7936 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7937
d90a909e
EB
7938 /*
7939 * Prevent userspace races by waiting until the network
7940 * device is fully setup before sending notifications.
7941 */
7f294054 7942 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
d90a909e 7943
ce286d32
EB
7944 synchronize_net();
7945 err = 0;
7946out:
7947 return err;
7948}
463d0183 7949EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 7950
1da177e4
LT
7951static int dev_cpu_callback(struct notifier_block *nfb,
7952 unsigned long action,
7953 void *ocpu)
7954{
7955 struct sk_buff **list_skb;
1da177e4
LT
7956 struct sk_buff *skb;
7957 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7958 struct softnet_data *sd, *oldsd;
7959
8bb78442 7960 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
7961 return NOTIFY_OK;
7962
7963 local_irq_disable();
7964 cpu = smp_processor_id();
7965 sd = &per_cpu(softnet_data, cpu);
7966 oldsd = &per_cpu(softnet_data, oldcpu);
7967
7968 /* Find end of our completion_queue. */
7969 list_skb = &sd->completion_queue;
7970 while (*list_skb)
7971 list_skb = &(*list_skb)->next;
7972 /* Append completion queue from offline CPU. */
7973 *list_skb = oldsd->completion_queue;
7974 oldsd->completion_queue = NULL;
7975
1da177e4 7976 /* Append output queue from offline CPU. */
a9cbd588
CG
7977 if (oldsd->output_queue) {
7978 *sd->output_queue_tailp = oldsd->output_queue;
7979 sd->output_queue_tailp = oldsd->output_queue_tailp;
7980 oldsd->output_queue = NULL;
7981 oldsd->output_queue_tailp = &oldsd->output_queue;
7982 }
ac64da0b
ED
7983 /* Append NAPI poll list from offline CPU, with one exception :
7984 * process_backlog() must be called by cpu owning percpu backlog.
7985 * We properly handle process_queue & input_pkt_queue later.
7986 */
7987 while (!list_empty(&oldsd->poll_list)) {
7988 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7989 struct napi_struct,
7990 poll_list);
7991
7992 list_del_init(&napi->poll_list);
7993 if (napi->poll == process_backlog)
7994 napi->state = 0;
7995 else
7996 ____napi_schedule(sd, napi);
264524d5 7997 }
1da177e4
LT
7998
7999 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8000 local_irq_enable();
8001
8002 /* Process offline CPU's input_pkt_queue */
76cc8b13 8003 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
91e83133 8004 netif_rx_ni(skb);
76cc8b13 8005 input_queue_head_incr(oldsd);
fec5e652 8006 }
ac64da0b 8007 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
91e83133 8008 netif_rx_ni(skb);
76cc8b13
TH
8009 input_queue_head_incr(oldsd);
8010 }
1da177e4
LT
8011
8012 return NOTIFY_OK;
8013}
1da177e4
LT
8014
8015
7f353bf2 8016/**
b63365a2
HX
8017 * netdev_increment_features - increment feature set by one
8018 * @all: current feature set
8019 * @one: new feature set
8020 * @mask: mask feature set
7f353bf2
HX
8021 *
8022 * Computes a new feature set after adding a device with feature set
b63365a2
HX
8023 * @one to the master device with current feature set @all. Will not
8024 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 8025 */
c8f44aff
MM
8026netdev_features_t netdev_increment_features(netdev_features_t all,
8027 netdev_features_t one, netdev_features_t mask)
b63365a2 8028{
c8cd0989 8029 if (mask & NETIF_F_HW_CSUM)
a188222b 8030 mask |= NETIF_F_CSUM_MASK;
1742f183 8031 mask |= NETIF_F_VLAN_CHALLENGED;
7f353bf2 8032
a188222b 8033 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
1742f183 8034 all &= one | ~NETIF_F_ALL_FOR_ALL;
c6e1a0d1 8035
1742f183 8036 /* If one device supports hw checksumming, set for all. */
c8cd0989
TH
8037 if (all & NETIF_F_HW_CSUM)
8038 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7f353bf2
HX
8039
8040 return all;
8041}
b63365a2 8042EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 8043
430f03cd 8044static struct hlist_head * __net_init netdev_create_hash(void)
30d97d35
PE
8045{
8046 int i;
8047 struct hlist_head *hash;
8048
8049 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8050 if (hash != NULL)
8051 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8052 INIT_HLIST_HEAD(&hash[i]);
8053
8054 return hash;
8055}
8056
881d966b 8057/* Initialize per network namespace state */
4665079c 8058static int __net_init netdev_init(struct net *net)
881d966b 8059{
734b6541
RM
8060 if (net != &init_net)
8061 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 8062
30d97d35
PE
8063 net->dev_name_head = netdev_create_hash();
8064 if (net->dev_name_head == NULL)
8065 goto err_name;
881d966b 8066
30d97d35
PE
8067 net->dev_index_head = netdev_create_hash();
8068 if (net->dev_index_head == NULL)
8069 goto err_idx;
881d966b
EB
8070
8071 return 0;
30d97d35
PE
8072
8073err_idx:
8074 kfree(net->dev_name_head);
8075err_name:
8076 return -ENOMEM;
881d966b
EB
8077}
8078
f0db275a
SH
8079/**
8080 * netdev_drivername - network driver for the device
8081 * @dev: network device
f0db275a
SH
8082 *
8083 * Determine network driver for device.
8084 */
3019de12 8085const char *netdev_drivername(const struct net_device *dev)
6579e57b 8086{
cf04a4c7
SH
8087 const struct device_driver *driver;
8088 const struct device *parent;
3019de12 8089 const char *empty = "";
6579e57b
AV
8090
8091 parent = dev->dev.parent;
6579e57b 8092 if (!parent)
3019de12 8093 return empty;
6579e57b
AV
8094
8095 driver = parent->driver;
8096 if (driver && driver->name)
3019de12
DM
8097 return driver->name;
8098 return empty;
6579e57b
AV
8099}
8100
6ea754eb
JP
8101static void __netdev_printk(const char *level, const struct net_device *dev,
8102 struct va_format *vaf)
256df2f3 8103{
b004ff49 8104 if (dev && dev->dev.parent) {
6ea754eb
JP
8105 dev_printk_emit(level[1] - '0',
8106 dev->dev.parent,
8107 "%s %s %s%s: %pV",
8108 dev_driver_string(dev->dev.parent),
8109 dev_name(dev->dev.parent),
8110 netdev_name(dev), netdev_reg_state(dev),
8111 vaf);
b004ff49 8112 } else if (dev) {
6ea754eb
JP
8113 printk("%s%s%s: %pV",
8114 level, netdev_name(dev), netdev_reg_state(dev), vaf);
b004ff49 8115 } else {
6ea754eb 8116 printk("%s(NULL net_device): %pV", level, vaf);
b004ff49 8117 }
256df2f3
JP
8118}
8119
6ea754eb
JP
8120void netdev_printk(const char *level, const struct net_device *dev,
8121 const char *format, ...)
256df2f3
JP
8122{
8123 struct va_format vaf;
8124 va_list args;
256df2f3
JP
8125
8126 va_start(args, format);
8127
8128 vaf.fmt = format;
8129 vaf.va = &args;
8130
6ea754eb 8131 __netdev_printk(level, dev, &vaf);
b004ff49 8132
256df2f3 8133 va_end(args);
256df2f3
JP
8134}
8135EXPORT_SYMBOL(netdev_printk);
8136
8137#define define_netdev_printk_level(func, level) \
6ea754eb 8138void func(const struct net_device *dev, const char *fmt, ...) \
256df2f3 8139{ \
256df2f3
JP
8140 struct va_format vaf; \
8141 va_list args; \
8142 \
8143 va_start(args, fmt); \
8144 \
8145 vaf.fmt = fmt; \
8146 vaf.va = &args; \
8147 \
6ea754eb 8148 __netdev_printk(level, dev, &vaf); \
b004ff49 8149 \
256df2f3 8150 va_end(args); \
256df2f3
JP
8151} \
8152EXPORT_SYMBOL(func);
8153
8154define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8155define_netdev_printk_level(netdev_alert, KERN_ALERT);
8156define_netdev_printk_level(netdev_crit, KERN_CRIT);
8157define_netdev_printk_level(netdev_err, KERN_ERR);
8158define_netdev_printk_level(netdev_warn, KERN_WARNING);
8159define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8160define_netdev_printk_level(netdev_info, KERN_INFO);
8161
4665079c 8162static void __net_exit netdev_exit(struct net *net)
881d966b
EB
8163{
8164 kfree(net->dev_name_head);
8165 kfree(net->dev_index_head);
8166}
8167
022cbae6 8168static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
8169 .init = netdev_init,
8170 .exit = netdev_exit,
8171};
8172
4665079c 8173static void __net_exit default_device_exit(struct net *net)
ce286d32 8174{
e008b5fc 8175 struct net_device *dev, *aux;
ce286d32 8176 /*
e008b5fc 8177 * Push all migratable network devices back to the
ce286d32
EB
8178 * initial network namespace
8179 */
8180 rtnl_lock();
e008b5fc 8181 for_each_netdev_safe(net, dev, aux) {
ce286d32 8182 int err;
aca51397 8183 char fb_name[IFNAMSIZ];
ce286d32
EB
8184
8185 /* Ignore unmoveable devices (i.e. loopback) */
8186 if (dev->features & NETIF_F_NETNS_LOCAL)
8187 continue;
8188
e008b5fc
EB
8189 /* Leave virtual devices for the generic cleanup */
8190 if (dev->rtnl_link_ops)
8191 continue;
d0c082ce 8192
25985edc 8193 /* Push remaining network devices to init_net */
aca51397
PE
8194 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8195 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 8196 if (err) {
7b6cd1ce
JP
8197 pr_emerg("%s: failed to move %s to init_net: %d\n",
8198 __func__, dev->name, err);
aca51397 8199 BUG();
ce286d32
EB
8200 }
8201 }
8202 rtnl_unlock();
8203}
8204
50624c93
EB
8205static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8206{
8207 /* Return with the rtnl_lock held when there are no network
8208 * devices unregistering in any network namespace in net_list.
8209 */
8210 struct net *net;
8211 bool unregistering;
ff960a73 8212 DEFINE_WAIT_FUNC(wait, woken_wake_function);
50624c93 8213
ff960a73 8214 add_wait_queue(&netdev_unregistering_wq, &wait);
50624c93 8215 for (;;) {
50624c93
EB
8216 unregistering = false;
8217 rtnl_lock();
8218 list_for_each_entry(net, net_list, exit_list) {
8219 if (net->dev_unreg_count > 0) {
8220 unregistering = true;
8221 break;
8222 }
8223 }
8224 if (!unregistering)
8225 break;
8226 __rtnl_unlock();
ff960a73
PZ
8227
8228 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
50624c93 8229 }
ff960a73 8230 remove_wait_queue(&netdev_unregistering_wq, &wait);
50624c93
EB
8231}
8232
04dc7f6b
EB
8233static void __net_exit default_device_exit_batch(struct list_head *net_list)
8234{
8235 /* At exit all network devices most be removed from a network
b595076a 8236 * namespace. Do this in the reverse order of registration.
04dc7f6b
EB
8237 * Do this across as many network namespaces as possible to
8238 * improve batching efficiency.
8239 */
8240 struct net_device *dev;
8241 struct net *net;
8242 LIST_HEAD(dev_kill_list);
8243
50624c93
EB
8244 /* To prevent network device cleanup code from dereferencing
8245 * loopback devices or network devices that have been freed
8246 * wait here for all pending unregistrations to complete,
8247 * before unregistring the loopback device and allowing the
8248 * network namespace be freed.
8249 *
8250 * The netdev todo list containing all network devices
8251 * unregistrations that happen in default_device_exit_batch
8252 * will run in the rtnl_unlock() at the end of
8253 * default_device_exit_batch.
8254 */
8255 rtnl_lock_unregistering(net_list);
04dc7f6b
EB
8256 list_for_each_entry(net, net_list, exit_list) {
8257 for_each_netdev_reverse(net, dev) {
b0ab2fab 8258 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
04dc7f6b
EB
8259 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8260 else
8261 unregister_netdevice_queue(dev, &dev_kill_list);
8262 }
8263 }
8264 unregister_netdevice_many(&dev_kill_list);
8265 rtnl_unlock();
8266}
8267
022cbae6 8268static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 8269 .exit = default_device_exit,
04dc7f6b 8270 .exit_batch = default_device_exit_batch,
ce286d32
EB
8271};
8272
1da177e4
LT
8273/*
8274 * Initialize the DEV module. At boot time this walks the device list and
8275 * unhooks any devices that fail to initialise (normally hardware not
8276 * present) and leaves us with a valid list of present and active devices.
8277 *
8278 */
8279
8280/*
8281 * This is called single threaded during boot, so no need
8282 * to take the rtnl semaphore.
8283 */
8284static int __init net_dev_init(void)
8285{
8286 int i, rc = -ENOMEM;
8287
8288 BUG_ON(!dev_boot_phase);
8289
1da177e4
LT
8290 if (dev_proc_init())
8291 goto out;
8292
8b41d188 8293 if (netdev_kobject_init())
1da177e4
LT
8294 goto out;
8295
8296 INIT_LIST_HEAD(&ptype_all);
82d8a867 8297 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
8298 INIT_LIST_HEAD(&ptype_base[i]);
8299
62532da9
VY
8300 INIT_LIST_HEAD(&offload_base);
8301
881d966b
EB
8302 if (register_pernet_subsys(&netdev_net_ops))
8303 goto out;
1da177e4
LT
8304
8305 /*
8306 * Initialise the packet receive queues.
8307 */
8308
6f912042 8309 for_each_possible_cpu(i) {
41852497 8310 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
e36fa2f7 8311 struct softnet_data *sd = &per_cpu(softnet_data, i);
1da177e4 8312
41852497
ED
8313 INIT_WORK(flush, flush_backlog);
8314
e36fa2f7 8315 skb_queue_head_init(&sd->input_pkt_queue);
6e7676c1 8316 skb_queue_head_init(&sd->process_queue);
e36fa2f7 8317 INIT_LIST_HEAD(&sd->poll_list);
a9cbd588 8318 sd->output_queue_tailp = &sd->output_queue;
df334545 8319#ifdef CONFIG_RPS
e36fa2f7
ED
8320 sd->csd.func = rps_trigger_softirq;
8321 sd->csd.info = sd;
e36fa2f7 8322 sd->cpu = i;
1e94d72f 8323#endif
0a9627f2 8324
e36fa2f7
ED
8325 sd->backlog.poll = process_backlog;
8326 sd->backlog.weight = weight_p;
1da177e4
LT
8327 }
8328
1da177e4
LT
8329 dev_boot_phase = 0;
8330
505d4f73
EB
8331 /* The loopback device is special if any other network devices
8332 * is present in a network namespace the loopback device must
8333 * be present. Since we now dynamically allocate and free the
8334 * loopback device ensure this invariant is maintained by
8335 * keeping the loopback device as the first device on the
8336 * list of network devices. Ensuring the loopback devices
8337 * is the first device that appears and the last network device
8338 * that disappears.
8339 */
8340 if (register_pernet_device(&loopback_net_ops))
8341 goto out;
8342
8343 if (register_pernet_device(&default_device_ops))
8344 goto out;
8345
962cf36c
CM
8346 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8347 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
8348
8349 hotcpu_notifier(dev_cpu_callback, 0);
f38a9eb1 8350 dst_subsys_init();
1da177e4
LT
8351 rc = 0;
8352out:
8353 return rc;
8354}
8355
8356subsys_initcall(net_dev_init);