zsmalloc: replace per zpage lock with pool->migrate_lock
[linux-2.6-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
ffedd09f 20 * page->index: links together all component pages of a zspage
48b4800a
MK
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
ffedd09f 23 * page->page_type: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
b475d42d
MK
33/*
34 * lock ordering:
35 * page_lock
36 * pool->migrate_lock
37 * class->lock
38 * zspage->lock
39 */
40
61989a80
NG
41#include <linux/module.h>
42#include <linux/kernel.h>
312fcae2 43#include <linux/sched.h>
50d34394 44#include <linux/magic.h>
61989a80
NG
45#include <linux/bitops.h>
46#include <linux/errno.h>
47#include <linux/highmem.h>
61989a80
NG
48#include <linux/string.h>
49#include <linux/slab.h>
ca5999fd 50#include <linux/pgtable.h>
65fddcfc 51#include <asm/tlbflush.h>
61989a80
NG
52#include <linux/cpumask.h>
53#include <linux/cpu.h>
0cbb613f 54#include <linux/vmalloc.h>
759b26b2 55#include <linux/preempt.h>
0959c63f 56#include <linux/spinlock.h>
93144ca3 57#include <linux/shrinker.h>
0959c63f 58#include <linux/types.h>
0f050d99 59#include <linux/debugfs.h>
bcf1647d 60#include <linux/zsmalloc.h>
c795779d 61#include <linux/zpool.h>
48b4800a 62#include <linux/mount.h>
8e9231f8 63#include <linux/pseudo_fs.h>
dd4123f3 64#include <linux/migrate.h>
701d6785 65#include <linux/wait.h>
48b4800a 66#include <linux/pagemap.h>
cdc346b3 67#include <linux/fs.h>
48b4800a
MK
68
69#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
70
71/*
cb152a1a 72 * This must be power of 2 and greater than or equal to sizeof(link_free).
0959c63f
SJ
73 * These two conditions ensure that any 'struct link_free' itself doesn't
74 * span more than 1 page which avoids complex case of mapping 2 pages simply
75 * to restore link_free pointer values.
76 */
77#define ZS_ALIGN 8
78
79/*
80 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
81 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
82 */
83#define ZS_MAX_ZSPAGE_ORDER 2
84#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
85
2e40e163
MK
86#define ZS_HANDLE_SIZE (sizeof(unsigned long))
87
0959c63f
SJ
88/*
89 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 90 * a single (unsigned long) handle value.
0959c63f 91 *
bfd093f5 92 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
93 *
94 * This is made more complicated by various memory models and PAE.
95 */
96
02390b87
KS
97#ifndef MAX_POSSIBLE_PHYSMEM_BITS
98#ifdef MAX_PHYSMEM_BITS
99#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
100#else
0959c63f
SJ
101/*
102 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
103 * be PAGE_SHIFT
104 */
02390b87 105#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
106#endif
107#endif
02390b87
KS
108
109#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2 110
312fcae2
MK
111/*
112 * Head in allocated object should have OBJ_ALLOCATED_TAG
113 * to identify the object was allocated or not.
114 * It's okay to add the status bit in the least bit because
115 * header keeps handle which is 4byte-aligned address so we
116 * have room for two bit at least.
117 */
118#define OBJ_ALLOCATED_TAG 1
119#define OBJ_TAG_BITS 1
120#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
121#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
122
a41ec880 123#define HUGE_BITS 1
cf8e0fed
JM
124#define FULLNESS_BITS 2
125#define CLASS_BITS 8
126#define ISOLATED_BITS 3
127#define MAGIC_VAL_BITS 8
128
0959c63f
SJ
129#define MAX(a, b) ((a) >= (b) ? (a) : (b))
130/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131#define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 133/* each chunk includes extra space to keep handle */
7b60a685 134#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
135
136/*
7eb52512 137 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
138 * trader-off here:
139 * - Large number of size classes is potentially wasteful as free page are
140 * spread across these classes
141 * - Small number of size classes causes large internal fragmentation
142 * - Probably its better to use specific size classes (empirically
143 * determined). NOTE: all those class sizes must be set as multiple of
144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145 *
146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 * (reason above)
148 */
3783689a 149#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
150#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 152
0959c63f 153enum fullness_group {
0959c63f 154 ZS_EMPTY,
48b4800a
MK
155 ZS_ALMOST_EMPTY,
156 ZS_ALMOST_FULL,
157 ZS_FULL,
158 NR_ZS_FULLNESS,
0959c63f
SJ
159};
160
3828a764 161enum class_stat_type {
48b4800a
MK
162 CLASS_EMPTY,
163 CLASS_ALMOST_EMPTY,
164 CLASS_ALMOST_FULL,
165 CLASS_FULL,
0f050d99
GM
166 OBJ_ALLOCATED,
167 OBJ_USED,
48b4800a 168 NR_ZS_STAT_TYPE,
0f050d99
GM
169};
170
0f050d99
GM
171struct zs_size_stat {
172 unsigned long objs[NR_ZS_STAT_TYPE];
173};
174
57244594
SS
175#ifdef CONFIG_ZSMALLOC_STAT
176static struct dentry *zs_stat_root;
0f050d99
GM
177#endif
178
48b4800a
MK
179#ifdef CONFIG_COMPACTION
180static struct vfsmount *zsmalloc_mnt;
181#endif
182
0959c63f
SJ
183/*
184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185 * n <= N / f, where
186 * n = number of allocated objects
187 * N = total number of objects zspage can store
6dd9737e 188 * f = fullness_threshold_frac
0959c63f
SJ
189 *
190 * Similarly, we assign zspage to:
191 * ZS_ALMOST_FULL when n > N / f
192 * ZS_EMPTY when n == 0
193 * ZS_FULL when n == N
194 *
195 * (see: fix_fullness_group())
196 */
197static const int fullness_threshold_frac = 4;
010b495e 198static size_t huge_class_size;
0959c63f
SJ
199
200struct size_class {
57244594 201 spinlock_t lock;
48b4800a 202 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
203 /*
204 * Size of objects stored in this class. Must be multiple
205 * of ZS_ALIGN.
206 */
207 int size;
1fc6e27d 208 int objs_per_zspage;
7dfa4612
WY
209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 int pages_per_zspage;
48b4800a
MK
211
212 unsigned int index;
213 struct zs_size_stat stats;
0959c63f
SJ
214};
215
216/*
217 * Placed within free objects to form a singly linked list.
3783689a 218 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
219 *
220 * This must be power of 2 and less than or equal to ZS_ALIGN
221 */
222struct link_free {
2e40e163
MK
223 union {
224 /*
bfd093f5 225 * Free object index;
2e40e163
MK
226 * It's valid for non-allocated object
227 */
bfd093f5 228 unsigned long next;
2e40e163
MK
229 /*
230 * Handle of allocated object.
231 */
232 unsigned long handle;
233 };
0959c63f
SJ
234};
235
236struct zs_pool {
6f3526d6 237 const char *name;
0f050d99 238
cf8e0fed 239 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 240 struct kmem_cache *handle_cachep;
3783689a 241 struct kmem_cache *zspage_cachep;
0959c63f 242
13de8933 243 atomic_long_t pages_allocated;
0f050d99 244
7d3f3938 245 struct zs_pool_stats stats;
ab9d306d
SS
246
247 /* Compact classes */
248 struct shrinker shrinker;
93144ca3 249
0f050d99
GM
250#ifdef CONFIG_ZSMALLOC_STAT
251 struct dentry *stat_dentry;
252#endif
48b4800a
MK
253#ifdef CONFIG_COMPACTION
254 struct inode *inode;
255 struct work_struct free_work;
256#endif
b475d42d
MK
257 /* protect page/zspage migration */
258 rwlock_t migrate_lock;
0959c63f 259};
61989a80 260
3783689a
MK
261struct zspage {
262 struct {
a41ec880 263 unsigned int huge:HUGE_BITS;
3783689a 264 unsigned int fullness:FULLNESS_BITS;
85d492f2 265 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
266 unsigned int isolated:ISOLATED_BITS;
267 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
268 };
269 unsigned int inuse;
bfd093f5 270 unsigned int freeobj;
3783689a
MK
271 struct page *first_page;
272 struct list_head list; /* fullness list */
48b4800a
MK
273#ifdef CONFIG_COMPACTION
274 rwlock_t lock;
275#endif
3783689a 276};
61989a80 277
f553646a 278struct mapping_area {
f553646a 279 char *vm_buf; /* copy buffer for objects that span pages */
f553646a
SJ
280 char *vm_addr; /* address of kmap_atomic()'ed pages */
281 enum zs_mapmode vm_mm; /* mapping mode */
282};
283
a41ec880
MK
284/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
285static void SetZsHugePage(struct zspage *zspage)
286{
287 zspage->huge = 1;
288}
289
290static bool ZsHugePage(struct zspage *zspage)
291{
292 return zspage->huge;
293}
294
48b4800a
MK
295#ifdef CONFIG_COMPACTION
296static int zs_register_migration(struct zs_pool *pool);
297static void zs_unregister_migration(struct zs_pool *pool);
298static void migrate_lock_init(struct zspage *zspage);
299static void migrate_read_lock(struct zspage *zspage);
300static void migrate_read_unlock(struct zspage *zspage);
b475d42d
MK
301static void migrate_write_lock(struct zspage *zspage);
302static void migrate_write_lock_nested(struct zspage *zspage);
303static void migrate_write_unlock(struct zspage *zspage);
48b4800a
MK
304static void kick_deferred_free(struct zs_pool *pool);
305static void init_deferred_free(struct zs_pool *pool);
306static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
307#else
308static int zsmalloc_mount(void) { return 0; }
309static void zsmalloc_unmount(void) {}
310static int zs_register_migration(struct zs_pool *pool) { return 0; }
311static void zs_unregister_migration(struct zs_pool *pool) {}
312static void migrate_lock_init(struct zspage *zspage) {}
313static void migrate_read_lock(struct zspage *zspage) {}
314static void migrate_read_unlock(struct zspage *zspage) {}
b475d42d
MK
315static void migrate_write_lock(struct zspage *zspage) {}
316static void migrate_write_lock_nested(struct zspage *zspage) {}
317static void migrate_write_unlock(struct zspage *zspage) {}
48b4800a
MK
318static void kick_deferred_free(struct zs_pool *pool) {}
319static void init_deferred_free(struct zs_pool *pool) {}
320static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321#endif
322
3783689a 323static int create_cache(struct zs_pool *pool)
2e40e163
MK
324{
325 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326 0, 0, NULL);
3783689a
MK
327 if (!pool->handle_cachep)
328 return 1;
329
330 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331 0, 0, NULL);
332 if (!pool->zspage_cachep) {
333 kmem_cache_destroy(pool->handle_cachep);
334 pool->handle_cachep = NULL;
335 return 1;
336 }
337
338 return 0;
2e40e163
MK
339}
340
3783689a 341static void destroy_cache(struct zs_pool *pool)
2e40e163 342{
cd10add0 343 kmem_cache_destroy(pool->handle_cachep);
3783689a 344 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
345}
346
3783689a 347static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
348{
349 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 350 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
351}
352
3783689a 353static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
354{
355 kmem_cache_free(pool->handle_cachep, (void *)handle);
356}
357
3783689a
MK
358static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359{
f0231305 360 return kmem_cache_zalloc(pool->zspage_cachep,
48b4800a 361 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 362}
3783689a
MK
363
364static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365{
366 kmem_cache_free(pool->zspage_cachep, zspage);
367}
368
b475d42d 369/* class->lock(which owns the handle) synchronizes races */
2e40e163
MK
370static void record_obj(unsigned long handle, unsigned long obj)
371{
b475d42d 372 *(unsigned long *)handle = obj;
2e40e163
MK
373}
374
c795779d
DS
375/* zpool driver */
376
377#ifdef CONFIG_ZPOOL
378
6f3526d6 379static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 380 const struct zpool_ops *zpool_ops,
479305fd 381 struct zpool *zpool)
c795779d 382{
d0d8da2d
SS
383 /*
384 * Ignore global gfp flags: zs_malloc() may be invoked from
385 * different contexts and its caller must provide a valid
386 * gfp mask.
387 */
388 return zs_create_pool(name);
c795779d
DS
389}
390
391static void zs_zpool_destroy(void *pool)
392{
393 zs_destroy_pool(pool);
394}
395
396static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
397 unsigned long *handle)
398{
d0d8da2d 399 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
400 return *handle ? 0 : -1;
401}
402static void zs_zpool_free(void *pool, unsigned long handle)
403{
404 zs_free(pool, handle);
405}
406
c795779d
DS
407static void *zs_zpool_map(void *pool, unsigned long handle,
408 enum zpool_mapmode mm)
409{
410 enum zs_mapmode zs_mm;
411
412 switch (mm) {
413 case ZPOOL_MM_RO:
414 zs_mm = ZS_MM_RO;
415 break;
416 case ZPOOL_MM_WO:
417 zs_mm = ZS_MM_WO;
418 break;
e4a9bc58 419 case ZPOOL_MM_RW:
c795779d
DS
420 default:
421 zs_mm = ZS_MM_RW;
422 break;
423 }
424
425 return zs_map_object(pool, handle, zs_mm);
426}
427static void zs_zpool_unmap(void *pool, unsigned long handle)
428{
429 zs_unmap_object(pool, handle);
430}
431
432static u64 zs_zpool_total_size(void *pool)
433{
722cdc17 434 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
435}
436
437static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
438 .type = "zsmalloc",
439 .owner = THIS_MODULE,
440 .create = zs_zpool_create,
441 .destroy = zs_zpool_destroy,
442 .malloc_support_movable = true,
443 .malloc = zs_zpool_malloc,
444 .free = zs_zpool_free,
445 .map = zs_zpool_map,
446 .unmap = zs_zpool_unmap,
447 .total_size = zs_zpool_total_size,
c795779d
DS
448};
449
137f8cff 450MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
451#endif /* CONFIG_ZPOOL */
452
61989a80
NG
453/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
454static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
455
3457f414 456static __maybe_unused int is_first_page(struct page *page)
61989a80 457{
a27545bf 458 return PagePrivate(page);
61989a80
NG
459}
460
48b4800a 461/* Protected by class->lock */
3783689a 462static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 463{
3783689a 464 return zspage->inuse;
4f42047b
MK
465}
466
4f42047b 467
3783689a 468static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 469{
3783689a 470 zspage->inuse += val;
4f42047b
MK
471}
472
48b4800a 473static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 474{
48b4800a 475 struct page *first_page = zspage->first_page;
3783689a 476
48b4800a
MK
477 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
478 return first_page;
4f42047b
MK
479}
480
48b4800a 481static inline int get_first_obj_offset(struct page *page)
4f42047b 482{
ffedd09f 483 return page->page_type;
48b4800a 484}
3783689a 485
48b4800a
MK
486static inline void set_first_obj_offset(struct page *page, int offset)
487{
ffedd09f 488 page->page_type = offset;
4f42047b
MK
489}
490
bfd093f5 491static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 492{
bfd093f5 493 return zspage->freeobj;
4f42047b
MK
494}
495
bfd093f5 496static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 497{
bfd093f5 498 zspage->freeobj = obj;
4f42047b
MK
499}
500
3783689a 501static void get_zspage_mapping(struct zspage *zspage,
a4209467 502 unsigned int *class_idx,
61989a80
NG
503 enum fullness_group *fullness)
504{
48b4800a
MK
505 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
506
3783689a
MK
507 *fullness = zspage->fullness;
508 *class_idx = zspage->class;
61989a80
NG
509}
510
67f1c9cd
MK
511static struct size_class *zspage_class(struct zs_pool *pool,
512 struct zspage *zspage)
513{
514 return pool->size_class[zspage->class];
515}
516
3783689a 517static void set_zspage_mapping(struct zspage *zspage,
a4209467 518 unsigned int class_idx,
61989a80
NG
519 enum fullness_group fullness)
520{
3783689a
MK
521 zspage->class = class_idx;
522 zspage->fullness = fullness;
61989a80
NG
523}
524
c3e3e88a
NC
525/*
526 * zsmalloc divides the pool into various size classes where each
527 * class maintains a list of zspages where each zspage is divided
528 * into equal sized chunks. Each allocation falls into one of these
529 * classes depending on its size. This function returns index of the
cb152a1a 530 * size class which has chunk size big enough to hold the given size.
c3e3e88a 531 */
61989a80
NG
532static int get_size_class_index(int size)
533{
534 int idx = 0;
535
536 if (likely(size > ZS_MIN_ALLOC_SIZE))
537 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
538 ZS_SIZE_CLASS_DELTA);
539
cf8e0fed 540 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
541}
542
3828a764
MK
543/* type can be of enum type class_stat_type or fullness_group */
544static inline void class_stat_inc(struct size_class *class,
3eb95fea 545 int type, unsigned long cnt)
248ca1b0 546{
48b4800a 547 class->stats.objs[type] += cnt;
248ca1b0
MK
548}
549
3828a764
MK
550/* type can be of enum type class_stat_type or fullness_group */
551static inline void class_stat_dec(struct size_class *class,
3eb95fea 552 int type, unsigned long cnt)
248ca1b0 553{
48b4800a 554 class->stats.objs[type] -= cnt;
248ca1b0
MK
555}
556
3828a764 557/* type can be of enum type class_stat_type or fullness_group */
248ca1b0 558static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 559 int type)
248ca1b0 560{
48b4800a 561 return class->stats.objs[type];
248ca1b0
MK
562}
563
57244594
SS
564#ifdef CONFIG_ZSMALLOC_STAT
565
4abaac9b 566static void __init zs_stat_init(void)
248ca1b0 567{
4abaac9b
DS
568 if (!debugfs_initialized()) {
569 pr_warn("debugfs not available, stat dir not created\n");
570 return;
571 }
248ca1b0
MK
572
573 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
574}
575
576static void __exit zs_stat_exit(void)
577{
578 debugfs_remove_recursive(zs_stat_root);
579}
580
1120ed54
SS
581static unsigned long zs_can_compact(struct size_class *class);
582
248ca1b0
MK
583static int zs_stats_size_show(struct seq_file *s, void *v)
584{
585 int i;
586 struct zs_pool *pool = s->private;
587 struct size_class *class;
588 int objs_per_zspage;
589 unsigned long class_almost_full, class_almost_empty;
1120ed54 590 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
591 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
592 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 593 unsigned long total_freeable = 0;
248ca1b0 594
1120ed54 595 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
596 "class", "size", "almost_full", "almost_empty",
597 "obj_allocated", "obj_used", "pages_used",
1120ed54 598 "pages_per_zspage", "freeable");
248ca1b0 599
cf8e0fed 600 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
601 class = pool->size_class[i];
602
603 if (class->index != i)
604 continue;
605
606 spin_lock(&class->lock);
607 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
608 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
609 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
610 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 611 freeable = zs_can_compact(class);
248ca1b0
MK
612 spin_unlock(&class->lock);
613
b4fd07a0 614 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
615 pages_used = obj_allocated / objs_per_zspage *
616 class->pages_per_zspage;
617
1120ed54
SS
618 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
619 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
620 i, class->size, class_almost_full, class_almost_empty,
621 obj_allocated, obj_used, pages_used,
1120ed54 622 class->pages_per_zspage, freeable);
248ca1b0
MK
623
624 total_class_almost_full += class_almost_full;
625 total_class_almost_empty += class_almost_empty;
626 total_objs += obj_allocated;
627 total_used_objs += obj_used;
628 total_pages += pages_used;
1120ed54 629 total_freeable += freeable;
248ca1b0
MK
630 }
631
632 seq_puts(s, "\n");
1120ed54 633 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
634 "Total", "", total_class_almost_full,
635 total_class_almost_empty, total_objs,
1120ed54 636 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
637
638 return 0;
639}
5ad35093 640DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 641
d34f6157 642static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 643{
4abaac9b
DS
644 if (!zs_stat_root) {
645 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 646 return;
4abaac9b 647 }
248ca1b0 648
4268509a
GKH
649 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
650
651 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
652 &zs_stats_size_fops);
248ca1b0
MK
653}
654
655static void zs_pool_stat_destroy(struct zs_pool *pool)
656{
657 debugfs_remove_recursive(pool->stat_dentry);
658}
659
660#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 661static void __init zs_stat_init(void)
248ca1b0 662{
248ca1b0
MK
663}
664
665static void __exit zs_stat_exit(void)
666{
667}
668
d34f6157 669static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 670{
248ca1b0
MK
671}
672
673static inline void zs_pool_stat_destroy(struct zs_pool *pool)
674{
675}
248ca1b0
MK
676#endif
677
48b4800a 678
c3e3e88a
NC
679/*
680 * For each size class, zspages are divided into different groups
681 * depending on how "full" they are. This was done so that we could
682 * easily find empty or nearly empty zspages when we try to shrink
683 * the pool (not yet implemented). This function returns fullness
684 * status of the given page.
685 */
1fc6e27d 686static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 687 struct zspage *zspage)
61989a80 688{
1fc6e27d 689 int inuse, objs_per_zspage;
61989a80 690 enum fullness_group fg;
830e4bc5 691
3783689a 692 inuse = get_zspage_inuse(zspage);
1fc6e27d 693 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
694
695 if (inuse == 0)
696 fg = ZS_EMPTY;
1fc6e27d 697 else if (inuse == objs_per_zspage)
61989a80 698 fg = ZS_FULL;
1fc6e27d 699 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
700 fg = ZS_ALMOST_EMPTY;
701 else
702 fg = ZS_ALMOST_FULL;
703
704 return fg;
705}
706
c3e3e88a
NC
707/*
708 * Each size class maintains various freelists and zspages are assigned
709 * to one of these freelists based on the number of live objects they
710 * have. This functions inserts the given zspage into the freelist
711 * identified by <class, fullness_group>.
712 */
251cbb95 713static void insert_zspage(struct size_class *class,
3783689a
MK
714 struct zspage *zspage,
715 enum fullness_group fullness)
61989a80 716{
3783689a 717 struct zspage *head;
61989a80 718
3828a764 719 class_stat_inc(class, fullness, 1);
3783689a
MK
720 head = list_first_entry_or_null(&class->fullness_list[fullness],
721 struct zspage, list);
58f17117 722 /*
3783689a
MK
723 * We want to see more ZS_FULL pages and less almost empty/full.
724 * Put pages with higher ->inuse first.
58f17117 725 */
110ceb82
ML
726 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
727 list_add(&zspage->list, &head->list);
728 else
729 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
730}
731
c3e3e88a
NC
732/*
733 * This function removes the given zspage from the freelist identified
734 * by <class, fullness_group>.
735 */
251cbb95 736static void remove_zspage(struct size_class *class,
3783689a
MK
737 struct zspage *zspage,
738 enum fullness_group fullness)
61989a80 739{
3783689a 740 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
61989a80 741
3783689a 742 list_del_init(&zspage->list);
3828a764 743 class_stat_dec(class, fullness, 1);
61989a80
NG
744}
745
c3e3e88a
NC
746/*
747 * Each size class maintains zspages in different fullness groups depending
748 * on the number of live objects they contain. When allocating or freeing
749 * objects, the fullness status of the page can change, say, from ALMOST_FULL
750 * to ALMOST_EMPTY when freeing an object. This function checks if such
751 * a status change has occurred for the given page and accordingly moves the
752 * page from the freelist of the old fullness group to that of the new
753 * fullness group.
754 */
c7806261 755static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 756 struct zspage *zspage)
61989a80
NG
757{
758 int class_idx;
61989a80
NG
759 enum fullness_group currfg, newfg;
760
3783689a
MK
761 get_zspage_mapping(zspage, &class_idx, &currfg);
762 newfg = get_fullness_group(class, zspage);
61989a80
NG
763 if (newfg == currfg)
764 goto out;
765
c4549b87
MK
766 remove_zspage(class, zspage, currfg);
767 insert_zspage(class, zspage, newfg);
3783689a 768 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
769out:
770 return newfg;
771}
772
773/*
774 * We have to decide on how many pages to link together
775 * to form a zspage for each size class. This is important
776 * to reduce wastage due to unusable space left at end of
777 * each zspage which is given as:
888fa374
YX
778 * wastage = Zp % class_size
779 * usage = Zp - wastage
61989a80
NG
780 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
781 *
782 * For example, for size class of 3/8 * PAGE_SIZE, we should
783 * link together 3 PAGE_SIZE sized pages to form a zspage
784 * since then we can perfectly fit in 8 such objects.
785 */
2e3b6154 786static int get_pages_per_zspage(int class_size)
61989a80
NG
787{
788 int i, max_usedpc = 0;
789 /* zspage order which gives maximum used size per KB */
790 int max_usedpc_order = 1;
791
84d4faab 792 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
793 int zspage_size;
794 int waste, usedpc;
795
796 zspage_size = i * PAGE_SIZE;
797 waste = zspage_size % class_size;
798 usedpc = (zspage_size - waste) * 100 / zspage_size;
799
800 if (usedpc > max_usedpc) {
801 max_usedpc = usedpc;
802 max_usedpc_order = i;
803 }
804 }
805
806 return max_usedpc_order;
807}
808
3783689a 809static struct zspage *get_zspage(struct page *page)
61989a80 810{
a6c5e0f7 811 struct zspage *zspage = (struct zspage *)page_private(page);
48b4800a
MK
812
813 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
814 return zspage;
61989a80
NG
815}
816
817static struct page *get_next_page(struct page *page)
818{
a41ec880
MK
819 struct zspage *zspage = get_zspage(page);
820
821 if (unlikely(ZsHugePage(zspage)))
48b4800a
MK
822 return NULL;
823
ffedd09f 824 return (struct page *)page->index;
61989a80
NG
825}
826
bfd093f5
MK
827/**
828 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 829 * @obj: the encoded object value
bfd093f5
MK
830 * @page: page object resides in zspage
831 * @obj_idx: object index
67296874 832 */
bfd093f5
MK
833static void obj_to_location(unsigned long obj, struct page **page,
834 unsigned int *obj_idx)
61989a80 835{
bfd093f5
MK
836 obj >>= OBJ_TAG_BITS;
837 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
838 *obj_idx = (obj & OBJ_INDEX_MASK);
839}
61989a80 840
67f1c9cd
MK
841static void obj_to_page(unsigned long obj, struct page **page)
842{
843 obj >>= OBJ_TAG_BITS;
844 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
845}
846
bfd093f5
MK
847/**
848 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
849 * @page: page object resides in zspage
850 * @obj_idx: object index
851 */
852static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
853{
854 unsigned long obj;
61989a80 855
312fcae2 856 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 857 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 858 obj <<= OBJ_TAG_BITS;
61989a80 859
bfd093f5 860 return obj;
61989a80
NG
861}
862
2e40e163
MK
863static unsigned long handle_to_obj(unsigned long handle)
864{
865 return *(unsigned long *)handle;
866}
867
3ae92ac2 868static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
312fcae2 869{
3ae92ac2 870 unsigned long handle;
a41ec880 871 struct zspage *zspage = get_zspage(page);
3ae92ac2 872
a41ec880 873 if (unlikely(ZsHugePage(zspage))) {
830e4bc5 874 VM_BUG_ON_PAGE(!is_first_page(page), page);
3ae92ac2 875 handle = page->index;
7b60a685 876 } else
3ae92ac2
MK
877 handle = *(unsigned long *)obj;
878
879 if (!(handle & OBJ_ALLOCATED_TAG))
880 return false;
881
882 *phandle = handle & ~OBJ_ALLOCATED_TAG;
883 return true;
312fcae2
MK
884}
885
f4477e90
NG
886static void reset_page(struct page *page)
887{
48b4800a 888 __ClearPageMovable(page);
18fd06bf 889 ClearPagePrivate(page);
f4477e90 890 set_page_private(page, 0);
48b4800a 891 page_mapcount_reset(page);
ffedd09f 892 page->index = 0;
48b4800a
MK
893}
894
4d0a5402 895static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
896{
897 struct page *cursor, *fail;
898
899 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
900 get_next_page(cursor)) {
901 if (!trylock_page(cursor)) {
902 fail = cursor;
903 goto unlock;
904 }
905 }
906
907 return 1;
908unlock:
909 for (cursor = get_first_page(zspage); cursor != fail; cursor =
910 get_next_page(cursor))
911 unlock_page(cursor);
912
913 return 0;
f4477e90
NG
914}
915
48b4800a
MK
916static void __free_zspage(struct zs_pool *pool, struct size_class *class,
917 struct zspage *zspage)
61989a80 918{
3783689a 919 struct page *page, *next;
48b4800a
MK
920 enum fullness_group fg;
921 unsigned int class_idx;
922
923 get_zspage_mapping(zspage, &class_idx, &fg);
924
925 assert_spin_locked(&class->lock);
61989a80 926
3783689a 927 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 928 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 929
48b4800a 930 next = page = get_first_page(zspage);
3783689a 931 do {
48b4800a
MK
932 VM_BUG_ON_PAGE(!PageLocked(page), page);
933 next = get_next_page(page);
3783689a 934 reset_page(page);
48b4800a 935 unlock_page(page);
91537fee 936 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
937 put_page(page);
938 page = next;
939 } while (page != NULL);
61989a80 940
3783689a 941 cache_free_zspage(pool, zspage);
48b4800a 942
3828a764 943 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
944 atomic_long_sub(class->pages_per_zspage,
945 &pool->pages_allocated);
946}
947
948static void free_zspage(struct zs_pool *pool, struct size_class *class,
949 struct zspage *zspage)
950{
951 VM_BUG_ON(get_zspage_inuse(zspage));
952 VM_BUG_ON(list_empty(&zspage->list));
953
b475d42d
MK
954 /*
955 * Since zs_free couldn't be sleepable, this function cannot call
956 * lock_page. The page locks trylock_zspage got will be released
957 * by __free_zspage.
958 */
48b4800a
MK
959 if (!trylock_zspage(zspage)) {
960 kick_deferred_free(pool);
961 return;
962 }
963
964 remove_zspage(class, zspage, ZS_EMPTY);
965 __free_zspage(pool, class, zspage);
61989a80
NG
966}
967
968/* Initialize a newly allocated zspage */
3783689a 969static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 970{
bfd093f5 971 unsigned int freeobj = 1;
61989a80 972 unsigned long off = 0;
48b4800a 973 struct page *page = get_first_page(zspage);
830e4bc5 974
61989a80
NG
975 while (page) {
976 struct page *next_page;
977 struct link_free *link;
af4ee5e9 978 void *vaddr;
61989a80 979
3783689a 980 set_first_obj_offset(page, off);
61989a80 981
af4ee5e9
MK
982 vaddr = kmap_atomic(page);
983 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
984
985 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 986 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 987 link += class->size / sizeof(*link);
61989a80
NG
988 }
989
990 /*
991 * We now come to the last (full or partial) object on this
992 * page, which must point to the first object on the next
993 * page (if present)
994 */
995 next_page = get_next_page(page);
bfd093f5 996 if (next_page) {
3b1d9ca6 997 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
998 } else {
999 /*
3b1d9ca6 1000 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1001 * whether it's allocated object or not.
1002 */
01a6ad9a 1003 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1004 }
af4ee5e9 1005 kunmap_atomic(vaddr);
61989a80 1006 page = next_page;
5538c562 1007 off %= PAGE_SIZE;
61989a80 1008 }
bdb0af7c 1009
bfd093f5 1010 set_freeobj(zspage, 0);
61989a80
NG
1011}
1012
48b4800a
MK
1013static void create_page_chain(struct size_class *class, struct zspage *zspage,
1014 struct page *pages[])
61989a80 1015{
bdb0af7c
MK
1016 int i;
1017 struct page *page;
1018 struct page *prev_page = NULL;
48b4800a 1019 int nr_pages = class->pages_per_zspage;
61989a80
NG
1020
1021 /*
1022 * Allocate individual pages and link them together as:
ffedd09f 1023 * 1. all pages are linked together using page->index
3783689a 1024 * 2. each sub-page point to zspage using page->private
61989a80 1025 *
3783689a 1026 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1027 * has this flag set).
61989a80 1028 */
bdb0af7c
MK
1029 for (i = 0; i < nr_pages; i++) {
1030 page = pages[i];
3783689a 1031 set_page_private(page, (unsigned long)zspage);
ffedd09f 1032 page->index = 0;
bdb0af7c 1033 if (i == 0) {
3783689a 1034 zspage->first_page = page;
a27545bf 1035 SetPagePrivate(page);
48b4800a
MK
1036 if (unlikely(class->objs_per_zspage == 1 &&
1037 class->pages_per_zspage == 1))
a41ec880 1038 SetZsHugePage(zspage);
3783689a 1039 } else {
ffedd09f 1040 prev_page->index = (unsigned long)page;
61989a80 1041 }
61989a80
NG
1042 prev_page = page;
1043 }
bdb0af7c 1044}
61989a80 1045
bdb0af7c
MK
1046/*
1047 * Allocate a zspage for the given size class
1048 */
3783689a
MK
1049static struct zspage *alloc_zspage(struct zs_pool *pool,
1050 struct size_class *class,
1051 gfp_t gfp)
bdb0af7c
MK
1052{
1053 int i;
bdb0af7c 1054 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1055 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1056
1057 if (!zspage)
1058 return NULL;
1059
48b4800a
MK
1060 zspage->magic = ZSPAGE_MAGIC;
1061 migrate_lock_init(zspage);
61989a80 1062
bdb0af7c
MK
1063 for (i = 0; i < class->pages_per_zspage; i++) {
1064 struct page *page;
61989a80 1065
3783689a 1066 page = alloc_page(gfp);
bdb0af7c 1067 if (!page) {
91537fee
MK
1068 while (--i >= 0) {
1069 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1070 __free_page(pages[i]);
91537fee 1071 }
3783689a 1072 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1073 return NULL;
1074 }
91537fee
MK
1075
1076 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1077 pages[i] = page;
61989a80
NG
1078 }
1079
48b4800a 1080 create_page_chain(class, zspage, pages);
3783689a 1081 init_zspage(class, zspage);
bdb0af7c 1082
3783689a 1083 return zspage;
61989a80
NG
1084}
1085
3783689a 1086static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1087{
1088 int i;
3783689a 1089 struct zspage *zspage;
61989a80 1090
48b4800a 1091 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1092 zspage = list_first_entry_or_null(&class->fullness_list[i],
1093 struct zspage, list);
1094 if (zspage)
61989a80
NG
1095 break;
1096 }
1097
3783689a 1098 return zspage;
61989a80
NG
1099}
1100
f553646a
SJ
1101static inline int __zs_cpu_up(struct mapping_area *area)
1102{
1103 /*
1104 * Make sure we don't leak memory if a cpu UP notification
1105 * and zs_init() race and both call zs_cpu_up() on the same cpu
1106 */
1107 if (area->vm_buf)
1108 return 0;
40f9fb8c 1109 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1110 if (!area->vm_buf)
1111 return -ENOMEM;
1112 return 0;
1113}
1114
1115static inline void __zs_cpu_down(struct mapping_area *area)
1116{
40f9fb8c 1117 kfree(area->vm_buf);
f553646a
SJ
1118 area->vm_buf = NULL;
1119}
1120
1121static void *__zs_map_object(struct mapping_area *area,
1122 struct page *pages[2], int off, int size)
5f601902 1123{
5f601902
SJ
1124 int sizes[2];
1125 void *addr;
f553646a 1126 char *buf = area->vm_buf;
5f601902 1127
f553646a
SJ
1128 /* disable page faults to match kmap_atomic() return conditions */
1129 pagefault_disable();
1130
1131 /* no read fastpath */
1132 if (area->vm_mm == ZS_MM_WO)
1133 goto out;
5f601902
SJ
1134
1135 sizes[0] = PAGE_SIZE - off;
1136 sizes[1] = size - sizes[0];
1137
5f601902
SJ
1138 /* copy object to per-cpu buffer */
1139 addr = kmap_atomic(pages[0]);
1140 memcpy(buf, addr + off, sizes[0]);
1141 kunmap_atomic(addr);
1142 addr = kmap_atomic(pages[1]);
1143 memcpy(buf + sizes[0], addr, sizes[1]);
1144 kunmap_atomic(addr);
f553646a
SJ
1145out:
1146 return area->vm_buf;
5f601902
SJ
1147}
1148
f553646a
SJ
1149static void __zs_unmap_object(struct mapping_area *area,
1150 struct page *pages[2], int off, int size)
5f601902 1151{
5f601902
SJ
1152 int sizes[2];
1153 void *addr;
2e40e163 1154 char *buf;
5f601902 1155
f553646a
SJ
1156 /* no write fastpath */
1157 if (area->vm_mm == ZS_MM_RO)
1158 goto out;
5f601902 1159
7b60a685 1160 buf = area->vm_buf;
a82cbf07
YX
1161 buf = buf + ZS_HANDLE_SIZE;
1162 size -= ZS_HANDLE_SIZE;
1163 off += ZS_HANDLE_SIZE;
2e40e163 1164
5f601902
SJ
1165 sizes[0] = PAGE_SIZE - off;
1166 sizes[1] = size - sizes[0];
1167
1168 /* copy per-cpu buffer to object */
1169 addr = kmap_atomic(pages[0]);
1170 memcpy(addr + off, buf, sizes[0]);
1171 kunmap_atomic(addr);
1172 addr = kmap_atomic(pages[1]);
1173 memcpy(addr, buf + sizes[0], sizes[1]);
1174 kunmap_atomic(addr);
f553646a
SJ
1175
1176out:
1177 /* enable page faults to match kunmap_atomic() return conditions */
1178 pagefault_enable();
5f601902 1179}
61989a80 1180
215c89d0 1181static int zs_cpu_prepare(unsigned int cpu)
61989a80 1182{
61989a80
NG
1183 struct mapping_area *area;
1184
215c89d0
SAS
1185 area = &per_cpu(zs_map_area, cpu);
1186 return __zs_cpu_up(area);
61989a80
NG
1187}
1188
215c89d0 1189static int zs_cpu_dead(unsigned int cpu)
61989a80 1190{
215c89d0 1191 struct mapping_area *area;
40f9fb8c 1192
215c89d0
SAS
1193 area = &per_cpu(zs_map_area, cpu);
1194 __zs_cpu_down(area);
1195 return 0;
b1b00a5b
SS
1196}
1197
64d90465
GM
1198static bool can_merge(struct size_class *prev, int pages_per_zspage,
1199 int objs_per_zspage)
9eec4cd5 1200{
64d90465
GM
1201 if (prev->pages_per_zspage == pages_per_zspage &&
1202 prev->objs_per_zspage == objs_per_zspage)
1203 return true;
9eec4cd5 1204
64d90465 1205 return false;
9eec4cd5
JK
1206}
1207
3783689a 1208static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1209{
3783689a 1210 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1211}
1212
66cdef66
GM
1213unsigned long zs_get_total_pages(struct zs_pool *pool)
1214{
1215 return atomic_long_read(&pool->pages_allocated);
1216}
1217EXPORT_SYMBOL_GPL(zs_get_total_pages);
1218
4bbc0bc0 1219/**
66cdef66
GM
1220 * zs_map_object - get address of allocated object from handle.
1221 * @pool: pool from which the object was allocated
1222 * @handle: handle returned from zs_malloc
f0953a1b 1223 * @mm: mapping mode to use
4bbc0bc0 1224 *
66cdef66
GM
1225 * Before using an object allocated from zs_malloc, it must be mapped using
1226 * this function. When done with the object, it must be unmapped using
1227 * zs_unmap_object.
4bbc0bc0 1228 *
66cdef66
GM
1229 * Only one object can be mapped per cpu at a time. There is no protection
1230 * against nested mappings.
1231 *
1232 * This function returns with preemption and page faults disabled.
4bbc0bc0 1233 */
66cdef66
GM
1234void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1235 enum zs_mapmode mm)
61989a80 1236{
3783689a 1237 struct zspage *zspage;
66cdef66 1238 struct page *page;
bfd093f5
MK
1239 unsigned long obj, off;
1240 unsigned int obj_idx;
61989a80 1241
66cdef66
GM
1242 struct size_class *class;
1243 struct mapping_area *area;
1244 struct page *pages[2];
2e40e163 1245 void *ret;
61989a80 1246
9eec4cd5 1247 /*
66cdef66
GM
1248 * Because we use per-cpu mapping areas shared among the
1249 * pools/users, we can't allow mapping in interrupt context
1250 * because it can corrupt another users mappings.
9eec4cd5 1251 */
1aedcafb 1252 BUG_ON(in_interrupt());
61989a80 1253
b475d42d
MK
1254 /* It guarantees it can get zspage from handle safely */
1255 read_lock(&pool->migrate_lock);
2e40e163
MK
1256 obj = handle_to_obj(handle);
1257 obj_to_location(obj, &page, &obj_idx);
3783689a 1258 zspage = get_zspage(page);
48b4800a 1259
b475d42d
MK
1260 /*
1261 * migration cannot move any zpages in this zspage. Here, class->lock
1262 * is too heavy since callers would take some time until they calls
1263 * zs_unmap_object API so delegate the locking from class to zspage
1264 * which is smaller granularity.
1265 */
48b4800a 1266 migrate_read_lock(zspage);
b475d42d 1267 read_unlock(&pool->migrate_lock);
48b4800a 1268
67f1c9cd 1269 class = zspage_class(pool, zspage);
bfd093f5 1270 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1271
66cdef66
GM
1272 area = &get_cpu_var(zs_map_area);
1273 area->vm_mm = mm;
1274 if (off + class->size <= PAGE_SIZE) {
1275 /* this object is contained entirely within a page */
1276 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1277 ret = area->vm_addr + off;
1278 goto out;
61989a80
NG
1279 }
1280
66cdef66
GM
1281 /* this object spans two pages */
1282 pages[0] = page;
1283 pages[1] = get_next_page(page);
1284 BUG_ON(!pages[1]);
9eec4cd5 1285
2e40e163
MK
1286 ret = __zs_map_object(area, pages, off, class->size);
1287out:
a41ec880 1288 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1289 ret += ZS_HANDLE_SIZE;
1290
1291 return ret;
61989a80 1292}
66cdef66 1293EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1294
66cdef66 1295void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1296{
3783689a 1297 struct zspage *zspage;
66cdef66 1298 struct page *page;
bfd093f5
MK
1299 unsigned long obj, off;
1300 unsigned int obj_idx;
61989a80 1301
66cdef66
GM
1302 struct size_class *class;
1303 struct mapping_area *area;
9eec4cd5 1304
2e40e163
MK
1305 obj = handle_to_obj(handle);
1306 obj_to_location(obj, &page, &obj_idx);
3783689a 1307 zspage = get_zspage(page);
67f1c9cd 1308 class = zspage_class(pool, zspage);
bfd093f5 1309 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1310
66cdef66
GM
1311 area = this_cpu_ptr(&zs_map_area);
1312 if (off + class->size <= PAGE_SIZE)
1313 kunmap_atomic(area->vm_addr);
1314 else {
1315 struct page *pages[2];
40f9fb8c 1316
66cdef66
GM
1317 pages[0] = page;
1318 pages[1] = get_next_page(page);
1319 BUG_ON(!pages[1]);
1320
1321 __zs_unmap_object(area, pages, off, class->size);
1322 }
1323 put_cpu_var(zs_map_area);
48b4800a
MK
1324
1325 migrate_read_unlock(zspage);
61989a80 1326}
66cdef66 1327EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1328
010b495e
SS
1329/**
1330 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1331 * zsmalloc &size_class.
1332 * @pool: zsmalloc pool to use
1333 *
1334 * The function returns the size of the first huge class - any object of equal
1335 * or bigger size will be stored in zspage consisting of a single physical
1336 * page.
1337 *
1338 * Context: Any context.
1339 *
1340 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1341 */
1342size_t zs_huge_class_size(struct zs_pool *pool)
1343{
1344 return huge_class_size;
1345}
1346EXPORT_SYMBOL_GPL(zs_huge_class_size);
1347
0a5f079b 1348static unsigned long obj_malloc(struct zs_pool *pool,
3783689a 1349 struct zspage *zspage, unsigned long handle)
c7806261 1350{
bfd093f5 1351 int i, nr_page, offset;
c7806261
MK
1352 unsigned long obj;
1353 struct link_free *link;
0a5f079b 1354 struct size_class *class;
c7806261
MK
1355
1356 struct page *m_page;
bfd093f5 1357 unsigned long m_offset;
c7806261
MK
1358 void *vaddr;
1359
0a5f079b 1360 class = pool->size_class[zspage->class];
312fcae2 1361 handle |= OBJ_ALLOCATED_TAG;
3783689a 1362 obj = get_freeobj(zspage);
bfd093f5
MK
1363
1364 offset = obj * class->size;
1365 nr_page = offset >> PAGE_SHIFT;
1366 m_offset = offset & ~PAGE_MASK;
1367 m_page = get_first_page(zspage);
1368
1369 for (i = 0; i < nr_page; i++)
1370 m_page = get_next_page(m_page);
c7806261
MK
1371
1372 vaddr = kmap_atomic(m_page);
1373 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1374 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
a41ec880 1375 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1376 /* record handle in the header of allocated chunk */
1377 link->handle = handle;
1378 else
3783689a
MK
1379 /* record handle to page->index */
1380 zspage->first_page->index = handle;
1381
c7806261 1382 kunmap_atomic(vaddr);
3783689a 1383 mod_zspage_inuse(zspage, 1);
c7806261 1384
bfd093f5
MK
1385 obj = location_to_obj(m_page, obj);
1386
c7806261
MK
1387 return obj;
1388}
1389
1390
61989a80
NG
1391/**
1392 * zs_malloc - Allocate block of given size from pool.
1393 * @pool: pool to allocate from
1394 * @size: size of block to allocate
fd854463 1395 * @gfp: gfp flags when allocating object
61989a80 1396 *
00a61d86 1397 * On success, handle to the allocated object is returned,
c2344348 1398 * otherwise 0.
61989a80
NG
1399 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1400 */
d0d8da2d 1401unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1402{
2e40e163 1403 unsigned long handle, obj;
61989a80 1404 struct size_class *class;
48b4800a 1405 enum fullness_group newfg;
3783689a 1406 struct zspage *zspage;
61989a80 1407
7b60a685 1408 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1409 return 0;
1410
3783689a 1411 handle = cache_alloc_handle(pool, gfp);
2e40e163 1412 if (!handle)
c2344348 1413 return 0;
61989a80 1414
2e40e163
MK
1415 /* extra space in chunk to keep the handle */
1416 size += ZS_HANDLE_SIZE;
9eec4cd5 1417 class = pool->size_class[get_size_class_index(size)];
61989a80 1418
b475d42d 1419 /* class->lock effectively protects the zpage migration */
61989a80 1420 spin_lock(&class->lock);
3783689a 1421 zspage = find_get_zspage(class);
48b4800a 1422 if (likely(zspage)) {
0a5f079b 1423 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1424 /* Now move the zspage to another fullness group, if required */
1425 fix_fullness_group(class, zspage);
1426 record_obj(handle, obj);
0a5f079b 1427 class_stat_inc(class, OBJ_USED, 1);
61989a80 1428 spin_unlock(&class->lock);
61989a80 1429
48b4800a
MK
1430 return handle;
1431 }
0f050d99 1432
48b4800a
MK
1433 spin_unlock(&class->lock);
1434
1435 zspage = alloc_zspage(pool, class, gfp);
1436 if (!zspage) {
1437 cache_free_handle(pool, handle);
1438 return 0;
61989a80
NG
1439 }
1440
48b4800a 1441 spin_lock(&class->lock);
0a5f079b 1442 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1443 newfg = get_fullness_group(class, zspage);
1444 insert_zspage(class, zspage, newfg);
1445 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1446 record_obj(handle, obj);
48b4800a
MK
1447 atomic_long_add(class->pages_per_zspage,
1448 &pool->pages_allocated);
3828a764 1449 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
0a5f079b 1450 class_stat_inc(class, OBJ_USED, 1);
48b4800a
MK
1451
1452 /* We completely set up zspage so mark them as movable */
1453 SetZsPageMovable(pool, zspage);
61989a80
NG
1454 spin_unlock(&class->lock);
1455
2e40e163 1456 return handle;
61989a80
NG
1457}
1458EXPORT_SYMBOL_GPL(zs_malloc);
1459
0a5f079b 1460static void obj_free(int class_size, unsigned long obj)
61989a80
NG
1461{
1462 struct link_free *link;
3783689a
MK
1463 struct zspage *zspage;
1464 struct page *f_page;
bfd093f5
MK
1465 unsigned long f_offset;
1466 unsigned int f_objidx;
af4ee5e9 1467 void *vaddr;
61989a80 1468
2e40e163 1469 obj_to_location(obj, &f_page, &f_objidx);
0a5f079b 1470 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
3783689a 1471 zspage = get_zspage(f_page);
61989a80 1472
c7806261 1473 vaddr = kmap_atomic(f_page);
61989a80
NG
1474
1475 /* Insert this object in containing zspage's freelist */
af4ee5e9 1476 link = (struct link_free *)(vaddr + f_offset);
a41ec880
MK
1477 if (likely(!ZsHugePage(zspage)))
1478 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1479 else
1480 f_page->index = 0;
af4ee5e9 1481 kunmap_atomic(vaddr);
bfd093f5 1482 set_freeobj(zspage, f_objidx);
3783689a 1483 mod_zspage_inuse(zspage, -1);
c7806261
MK
1484}
1485
1486void zs_free(struct zs_pool *pool, unsigned long handle)
1487{
3783689a
MK
1488 struct zspage *zspage;
1489 struct page *f_page;
bfd093f5 1490 unsigned long obj;
c7806261
MK
1491 struct size_class *class;
1492 enum fullness_group fullness;
1493
1494 if (unlikely(!handle))
1495 return;
1496
b475d42d
MK
1497 /*
1498 * The pool->migrate_lock protects the race with zpage's migration
1499 * so it's safe to get the page from handle.
1500 */
1501 read_lock(&pool->migrate_lock);
c7806261 1502 obj = handle_to_obj(handle);
67f1c9cd 1503 obj_to_page(obj, &f_page);
3783689a 1504 zspage = get_zspage(f_page);
67f1c9cd 1505 class = zspage_class(pool, zspage);
c7806261 1506 spin_lock(&class->lock);
b475d42d
MK
1507 read_unlock(&pool->migrate_lock);
1508
0a5f079b
MK
1509 obj_free(class->size, obj);
1510 class_stat_dec(class, OBJ_USED, 1);
3783689a 1511 fullness = fix_fullness_group(class, zspage);
b475d42d 1512 if (fullness != ZS_EMPTY)
48b4800a 1513 goto out;
48b4800a 1514
c4549b87 1515 free_zspage(pool, class, zspage);
48b4800a 1516out:
61989a80 1517 spin_unlock(&class->lock);
3783689a 1518 cache_free_handle(pool, handle);
312fcae2
MK
1519}
1520EXPORT_SYMBOL_GPL(zs_free);
1521
251cbb95
MK
1522static void zs_object_copy(struct size_class *class, unsigned long dst,
1523 unsigned long src)
312fcae2
MK
1524{
1525 struct page *s_page, *d_page;
bfd093f5 1526 unsigned int s_objidx, d_objidx;
312fcae2
MK
1527 unsigned long s_off, d_off;
1528 void *s_addr, *d_addr;
1529 int s_size, d_size, size;
1530 int written = 0;
1531
1532 s_size = d_size = class->size;
1533
1534 obj_to_location(src, &s_page, &s_objidx);
1535 obj_to_location(dst, &d_page, &d_objidx);
1536
bfd093f5
MK
1537 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1538 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1539
1540 if (s_off + class->size > PAGE_SIZE)
1541 s_size = PAGE_SIZE - s_off;
1542
1543 if (d_off + class->size > PAGE_SIZE)
1544 d_size = PAGE_SIZE - d_off;
1545
1546 s_addr = kmap_atomic(s_page);
1547 d_addr = kmap_atomic(d_page);
1548
1549 while (1) {
1550 size = min(s_size, d_size);
1551 memcpy(d_addr + d_off, s_addr + s_off, size);
1552 written += size;
1553
1554 if (written == class->size)
1555 break;
1556
495819ea
SS
1557 s_off += size;
1558 s_size -= size;
1559 d_off += size;
1560 d_size -= size;
1561
1562 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1563 kunmap_atomic(d_addr);
1564 kunmap_atomic(s_addr);
1565 s_page = get_next_page(s_page);
312fcae2
MK
1566 s_addr = kmap_atomic(s_page);
1567 d_addr = kmap_atomic(d_page);
1568 s_size = class->size - written;
1569 s_off = 0;
312fcae2
MK
1570 }
1571
495819ea 1572 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1573 kunmap_atomic(d_addr);
1574 d_page = get_next_page(d_page);
312fcae2
MK
1575 d_addr = kmap_atomic(d_page);
1576 d_size = class->size - written;
1577 d_off = 0;
312fcae2
MK
1578 }
1579 }
1580
1581 kunmap_atomic(d_addr);
1582 kunmap_atomic(s_addr);
1583}
1584
1585/*
1586 * Find alloced object in zspage from index object and
1587 * return handle.
1588 */
251cbb95 1589static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1590 struct page *page, int *obj_idx)
312fcae2 1591{
312fcae2 1592 int offset = 0;
cf675acb 1593 int index = *obj_idx;
312fcae2
MK
1594 unsigned long handle = 0;
1595 void *addr = kmap_atomic(page);
1596
3783689a 1597 offset = get_first_obj_offset(page);
312fcae2
MK
1598 offset += class->size * index;
1599
1600 while (offset < PAGE_SIZE) {
b475d42d
MK
1601 if (obj_allocated(page, addr + offset, &handle))
1602 break;
312fcae2
MK
1603
1604 offset += class->size;
1605 index++;
1606 }
1607
1608 kunmap_atomic(addr);
cf675acb
GM
1609
1610 *obj_idx = index;
1611
312fcae2
MK
1612 return handle;
1613}
1614
1615struct zs_compact_control {
3783689a 1616 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1617 struct page *s_page;
1618 /* Destination page for migration which should be a first page
1619 * of zspage. */
1620 struct page *d_page;
1621 /* Starting object index within @s_page which used for live object
1622 * in the subpage. */
41b88e14 1623 int obj_idx;
312fcae2
MK
1624};
1625
1626static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1627 struct zs_compact_control *cc)
1628{
1629 unsigned long used_obj, free_obj;
1630 unsigned long handle;
1631 struct page *s_page = cc->s_page;
1632 struct page *d_page = cc->d_page;
41b88e14 1633 int obj_idx = cc->obj_idx;
312fcae2
MK
1634 int ret = 0;
1635
1636 while (1) {
cf675acb 1637 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1638 if (!handle) {
1639 s_page = get_next_page(s_page);
1640 if (!s_page)
1641 break;
41b88e14 1642 obj_idx = 0;
312fcae2
MK
1643 continue;
1644 }
1645
1646 /* Stop if there is no more space */
3783689a 1647 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1648 ret = -ENOMEM;
1649 break;
1650 }
1651
1652 used_obj = handle_to_obj(handle);
0a5f079b 1653 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
251cbb95 1654 zs_object_copy(class, free_obj, used_obj);
41b88e14 1655 obj_idx++;
312fcae2 1656 record_obj(handle, free_obj);
0a5f079b 1657 obj_free(class->size, used_obj);
312fcae2
MK
1658 }
1659
1660 /* Remember last position in this iteration */
1661 cc->s_page = s_page;
41b88e14 1662 cc->obj_idx = obj_idx;
312fcae2
MK
1663
1664 return ret;
1665}
1666
3783689a 1667static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1668{
1669 int i;
3783689a
MK
1670 struct zspage *zspage;
1671 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1672
3783689a
MK
1673 if (!source) {
1674 fg[0] = ZS_ALMOST_FULL;
1675 fg[1] = ZS_ALMOST_EMPTY;
1676 }
1677
1678 for (i = 0; i < 2; i++) {
1679 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1680 struct zspage, list);
1681 if (zspage) {
1682 remove_zspage(class, zspage, fg[i]);
1683 return zspage;
312fcae2
MK
1684 }
1685 }
1686
3783689a 1687 return zspage;
312fcae2
MK
1688}
1689
860c707d 1690/*
3783689a 1691 * putback_zspage - add @zspage into right class's fullness list
860c707d 1692 * @class: destination class
3783689a 1693 * @zspage: target page
860c707d 1694 *
3783689a 1695 * Return @zspage's fullness_group
860c707d 1696 */
4aa409ca 1697static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1698 struct zspage *zspage)
312fcae2 1699{
312fcae2
MK
1700 enum fullness_group fullness;
1701
3783689a
MK
1702 fullness = get_fullness_group(class, zspage);
1703 insert_zspage(class, zspage, fullness);
1704 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1705
860c707d 1706 return fullness;
61989a80 1707}
312fcae2 1708
48b4800a 1709#ifdef CONFIG_COMPACTION
4d0a5402
CIK
1710/*
1711 * To prevent zspage destroy during migration, zspage freeing should
1712 * hold locks of all pages in the zspage.
1713 */
1714static void lock_zspage(struct zspage *zspage)
1715{
1716 struct page *page = get_first_page(zspage);
1717
1718 do {
1719 lock_page(page);
1720 } while ((page = get_next_page(page)) != NULL);
1721}
1722
8e9231f8 1723static int zs_init_fs_context(struct fs_context *fc)
48b4800a 1724{
8e9231f8 1725 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
48b4800a
MK
1726}
1727
1728static struct file_system_type zsmalloc_fs = {
1729 .name = "zsmalloc",
8e9231f8 1730 .init_fs_context = zs_init_fs_context,
48b4800a
MK
1731 .kill_sb = kill_anon_super,
1732};
1733
1734static int zsmalloc_mount(void)
1735{
1736 int ret = 0;
1737
1738 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1739 if (IS_ERR(zsmalloc_mnt))
1740 ret = PTR_ERR(zsmalloc_mnt);
1741
1742 return ret;
1743}
1744
1745static void zsmalloc_unmount(void)
1746{
1747 kern_unmount(zsmalloc_mnt);
1748}
1749
1750static void migrate_lock_init(struct zspage *zspage)
1751{
1752 rwlock_init(&zspage->lock);
1753}
1754
cfc451cf 1755static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1756{
1757 read_lock(&zspage->lock);
1758}
1759
8a374ccc 1760static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1761{
1762 read_unlock(&zspage->lock);
1763}
1764
1765static void migrate_write_lock(struct zspage *zspage)
1766{
1767 write_lock(&zspage->lock);
1768}
1769
b475d42d
MK
1770static void migrate_write_lock_nested(struct zspage *zspage)
1771{
1772 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1773}
1774
48b4800a
MK
1775static void migrate_write_unlock(struct zspage *zspage)
1776{
1777 write_unlock(&zspage->lock);
1778}
1779
1780/* Number of isolated subpage for *page migration* in this zspage */
1781static void inc_zspage_isolation(struct zspage *zspage)
1782{
1783 zspage->isolated++;
1784}
1785
1786static void dec_zspage_isolation(struct zspage *zspage)
1787{
c4549b87 1788 VM_BUG_ON(zspage->isolated == 0);
48b4800a
MK
1789 zspage->isolated--;
1790}
1791
1792static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1793 struct page *newpage, struct page *oldpage)
1794{
1795 struct page *page;
1796 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1797 int idx = 0;
1798
1799 page = get_first_page(zspage);
1800 do {
1801 if (page == oldpage)
1802 pages[idx] = newpage;
1803 else
1804 pages[idx] = page;
1805 idx++;
1806 } while ((page = get_next_page(page)) != NULL);
1807
1808 create_page_chain(class, zspage, pages);
1809 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
a41ec880 1810 if (unlikely(ZsHugePage(zspage)))
48b4800a
MK
1811 newpage->index = oldpage->index;
1812 __SetPageMovable(newpage, page_mapping(oldpage));
1813}
1814
4d0a5402 1815static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a 1816{
48b4800a 1817 struct zspage *zspage;
48b4800a
MK
1818
1819 /*
1820 * Page is locked so zspage couldn't be destroyed. For detail, look at
1821 * lock_zspage in free_zspage.
1822 */
1823 VM_BUG_ON_PAGE(!PageMovable(page), page);
1824 VM_BUG_ON_PAGE(PageIsolated(page), page);
1825
1826 zspage = get_zspage(page);
c4549b87 1827 migrate_write_lock(zspage);
48b4800a 1828 inc_zspage_isolation(zspage);
c4549b87 1829 migrate_write_unlock(zspage);
48b4800a
MK
1830
1831 return true;
1832}
1833
4d0a5402 1834static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
48b4800a
MK
1835 struct page *page, enum migrate_mode mode)
1836{
1837 struct zs_pool *pool;
1838 struct size_class *class;
48b4800a
MK
1839 struct zspage *zspage;
1840 struct page *dummy;
1841 void *s_addr, *d_addr, *addr;
b475d42d 1842 int offset;
3ae92ac2 1843 unsigned long handle;
48b4800a
MK
1844 unsigned long old_obj, new_obj;
1845 unsigned int obj_idx;
48b4800a 1846
2916ecc0
JG
1847 /*
1848 * We cannot support the _NO_COPY case here, because copy needs to
1849 * happen under the zs lock, which does not work with
1850 * MIGRATE_SYNC_NO_COPY workflow.
1851 */
1852 if (mode == MIGRATE_SYNC_NO_COPY)
1853 return -EINVAL;
1854
48b4800a
MK
1855 VM_BUG_ON_PAGE(!PageMovable(page), page);
1856 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1857
48b4800a 1858 pool = mapping->private_data;
b475d42d
MK
1859
1860 /*
1861 * The pool migrate_lock protects the race between zpage migration
1862 * and zs_free.
1863 */
1864 write_lock(&pool->migrate_lock);
1865 zspage = get_zspage(page);
67f1c9cd 1866 class = zspage_class(pool, zspage);
48b4800a 1867
b475d42d
MK
1868 /*
1869 * the class lock protects zpage alloc/free in the zspage.
1870 */
48b4800a 1871 spin_lock(&class->lock);
b475d42d
MK
1872 /* the migrate_write_lock protects zpage access via zs_map_object */
1873 migrate_write_lock(zspage);
48b4800a 1874
b475d42d 1875 offset = get_first_obj_offset(page);
48b4800a 1876 s_addr = kmap_atomic(page);
48b4800a
MK
1877
1878 /*
1879 * Here, any user cannot access all objects in the zspage so let's move.
1880 */
1881 d_addr = kmap_atomic(newpage);
1882 memcpy(d_addr, s_addr, PAGE_SIZE);
1883 kunmap_atomic(d_addr);
1884
b475d42d 1885 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
48b4800a 1886 addr += class->size) {
3ae92ac2 1887 if (obj_allocated(page, addr, &handle)) {
48b4800a
MK
1888
1889 old_obj = handle_to_obj(handle);
1890 obj_to_location(old_obj, &dummy, &obj_idx);
1891 new_obj = (unsigned long)location_to_obj(newpage,
1892 obj_idx);
48b4800a
MK
1893 record_obj(handle, new_obj);
1894 }
1895 }
b475d42d 1896 kunmap_atomic(s_addr);
48b4800a
MK
1897
1898 replace_sub_page(class, zspage, newpage, page);
b475d42d
MK
1899 /*
1900 * Since we complete the data copy and set up new zspage structure,
1901 * it's okay to release migration_lock.
1902 */
1903 write_unlock(&pool->migrate_lock);
1904 spin_unlock(&class->lock);
48b4800a 1905 dec_zspage_isolation(zspage);
b475d42d 1906 migrate_write_unlock(zspage);
48b4800a 1907
b475d42d 1908 get_page(newpage);
ac8f05da
CM
1909 if (page_zone(newpage) != page_zone(page)) {
1910 dec_zone_page_state(page, NR_ZSPAGES);
1911 inc_zone_page_state(newpage, NR_ZSPAGES);
1912 }
1913
48b4800a
MK
1914 reset_page(page);
1915 put_page(page);
48b4800a 1916
b475d42d 1917 return MIGRATEPAGE_SUCCESS;
48b4800a
MK
1918}
1919
4d0a5402 1920static void zs_page_putback(struct page *page)
48b4800a 1921{
48b4800a
MK
1922 struct zspage *zspage;
1923
1924 VM_BUG_ON_PAGE(!PageMovable(page), page);
1925 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1926
1927 zspage = get_zspage(page);
c4549b87 1928 migrate_write_lock(zspage);
48b4800a 1929 dec_zspage_isolation(zspage);
c4549b87 1930 migrate_write_unlock(zspage);
48b4800a
MK
1931}
1932
4d0a5402 1933static const struct address_space_operations zsmalloc_aops = {
48b4800a
MK
1934 .isolate_page = zs_page_isolate,
1935 .migratepage = zs_page_migrate,
1936 .putback_page = zs_page_putback,
1937};
1938
1939static int zs_register_migration(struct zs_pool *pool)
1940{
1941 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
1942 if (IS_ERR(pool->inode)) {
1943 pool->inode = NULL;
1944 return 1;
1945 }
1946
1947 pool->inode->i_mapping->private_data = pool;
1948 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
1949 return 0;
1950}
1951
1952static void zs_unregister_migration(struct zs_pool *pool)
1953{
1954 flush_work(&pool->free_work);
c3491eca 1955 iput(pool->inode);
48b4800a
MK
1956}
1957
1958/*
1959 * Caller should hold page_lock of all pages in the zspage
1960 * In here, we cannot use zspage meta data.
1961 */
1962static void async_free_zspage(struct work_struct *work)
1963{
1964 int i;
1965 struct size_class *class;
1966 unsigned int class_idx;
1967 enum fullness_group fullness;
1968 struct zspage *zspage, *tmp;
1969 LIST_HEAD(free_pages);
1970 struct zs_pool *pool = container_of(work, struct zs_pool,
1971 free_work);
1972
cf8e0fed 1973 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
1974 class = pool->size_class[i];
1975 if (class->index != i)
1976 continue;
1977
1978 spin_lock(&class->lock);
1979 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
1980 spin_unlock(&class->lock);
1981 }
1982
48b4800a
MK
1983 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1984 list_del(&zspage->list);
1985 lock_zspage(zspage);
1986
1987 get_zspage_mapping(zspage, &class_idx, &fullness);
1988 VM_BUG_ON(fullness != ZS_EMPTY);
1989 class = pool->size_class[class_idx];
1990 spin_lock(&class->lock);
33848337 1991 __free_zspage(pool, class, zspage);
48b4800a
MK
1992 spin_unlock(&class->lock);
1993 }
1994};
1995
1996static void kick_deferred_free(struct zs_pool *pool)
1997{
1998 schedule_work(&pool->free_work);
1999}
2000
2001static void init_deferred_free(struct zs_pool *pool)
2002{
2003 INIT_WORK(&pool->free_work, async_free_zspage);
2004}
2005
2006static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2007{
2008 struct page *page = get_first_page(zspage);
2009
2010 do {
2011 WARN_ON(!trylock_page(page));
2012 __SetPageMovable(page, pool->inode->i_mapping);
2013 unlock_page(page);
2014 } while ((page = get_next_page(page)) != NULL);
2015}
2016#endif
2017
04f05909
SS
2018/*
2019 *
2020 * Based on the number of unused allocated objects calculate
2021 * and return the number of pages that we can free.
04f05909
SS
2022 */
2023static unsigned long zs_can_compact(struct size_class *class)
2024{
2025 unsigned long obj_wasted;
44f43e99
SS
2026 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2027 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2028
44f43e99
SS
2029 if (obj_allocated <= obj_used)
2030 return 0;
04f05909 2031
44f43e99 2032 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2033 obj_wasted /= class->objs_per_zspage;
04f05909 2034
6cbf16b3 2035 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2036}
2037
23959281
RY
2038static unsigned long __zs_compact(struct zs_pool *pool,
2039 struct size_class *class)
312fcae2 2040{
312fcae2 2041 struct zs_compact_control cc;
3783689a
MK
2042 struct zspage *src_zspage;
2043 struct zspage *dst_zspage = NULL;
23959281 2044 unsigned long pages_freed = 0;
312fcae2 2045
b475d42d
MK
2046 /* protect the race between zpage migration and zs_free */
2047 write_lock(&pool->migrate_lock);
2048 /* protect zpage allocation/free */
312fcae2 2049 spin_lock(&class->lock);
3783689a 2050 while ((src_zspage = isolate_zspage(class, true))) {
b475d42d
MK
2051 /* protect someone accessing the zspage(i.e., zs_map_object) */
2052 migrate_write_lock(src_zspage);
312fcae2 2053
04f05909
SS
2054 if (!zs_can_compact(class))
2055 break;
2056
41b88e14 2057 cc.obj_idx = 0;
48b4800a 2058 cc.s_page = get_first_page(src_zspage);
312fcae2 2059
3783689a 2060 while ((dst_zspage = isolate_zspage(class, false))) {
b475d42d
MK
2061 migrate_write_lock_nested(dst_zspage);
2062
48b4800a 2063 cc.d_page = get_first_page(dst_zspage);
312fcae2 2064 /*
0dc63d48
SS
2065 * If there is no more space in dst_page, resched
2066 * and see if anyone had allocated another zspage.
312fcae2
MK
2067 */
2068 if (!migrate_zspage(pool, class, &cc))
2069 break;
2070
4aa409ca 2071 putback_zspage(class, dst_zspage);
b475d42d
MK
2072 migrate_write_unlock(dst_zspage);
2073 dst_zspage = NULL;
2074 if (rwlock_is_contended(&pool->migrate_lock))
2075 break;
312fcae2
MK
2076 }
2077
2078 /* Stop if we couldn't find slot */
3783689a 2079 if (dst_zspage == NULL)
312fcae2
MK
2080 break;
2081
4aa409ca 2082 putback_zspage(class, dst_zspage);
b475d42d
MK
2083 migrate_write_unlock(dst_zspage);
2084
4aa409ca 2085 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
b475d42d 2086 migrate_write_unlock(src_zspage);
48b4800a 2087 free_zspage(pool, class, src_zspage);
23959281 2088 pages_freed += class->pages_per_zspage;
b475d42d
MK
2089 } else
2090 migrate_write_unlock(src_zspage);
312fcae2 2091 spin_unlock(&class->lock);
b475d42d 2092 write_unlock(&pool->migrate_lock);
312fcae2 2093 cond_resched();
b475d42d 2094 write_lock(&pool->migrate_lock);
312fcae2
MK
2095 spin_lock(&class->lock);
2096 }
2097
b475d42d 2098 if (src_zspage) {
4aa409ca 2099 putback_zspage(class, src_zspage);
b475d42d
MK
2100 migrate_write_unlock(src_zspage);
2101 }
312fcae2 2102
7d3f3938 2103 spin_unlock(&class->lock);
b475d42d 2104 write_unlock(&pool->migrate_lock);
23959281
RY
2105
2106 return pages_freed;
312fcae2
MK
2107}
2108
2109unsigned long zs_compact(struct zs_pool *pool)
2110{
2111 int i;
312fcae2 2112 struct size_class *class;
23959281 2113 unsigned long pages_freed = 0;
312fcae2 2114
cf8e0fed 2115 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2116 class = pool->size_class[i];
2117 if (!class)
2118 continue;
2119 if (class->index != i)
2120 continue;
23959281 2121 pages_freed += __zs_compact(pool, class);
312fcae2 2122 }
23959281 2123 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
312fcae2 2124
23959281 2125 return pages_freed;
312fcae2
MK
2126}
2127EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2128
7d3f3938
SS
2129void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2130{
2131 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2132}
2133EXPORT_SYMBOL_GPL(zs_pool_stats);
2134
ab9d306d
SS
2135static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2136 struct shrink_control *sc)
2137{
2138 unsigned long pages_freed;
2139 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2140 shrinker);
2141
ab9d306d
SS
2142 /*
2143 * Compact classes and calculate compaction delta.
2144 * Can run concurrently with a manually triggered
2145 * (by user) compaction.
2146 */
23959281 2147 pages_freed = zs_compact(pool);
ab9d306d
SS
2148
2149 return pages_freed ? pages_freed : SHRINK_STOP;
2150}
2151
2152static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2153 struct shrink_control *sc)
2154{
2155 int i;
2156 struct size_class *class;
2157 unsigned long pages_to_free = 0;
2158 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2159 shrinker);
2160
cf8e0fed 2161 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2162 class = pool->size_class[i];
2163 if (!class)
2164 continue;
2165 if (class->index != i)
2166 continue;
2167
ab9d306d 2168 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2169 }
2170
2171 return pages_to_free;
2172}
2173
2174static void zs_unregister_shrinker(struct zs_pool *pool)
2175{
93144ca3 2176 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2177}
2178
2179static int zs_register_shrinker(struct zs_pool *pool)
2180{
2181 pool->shrinker.scan_objects = zs_shrinker_scan;
2182 pool->shrinker.count_objects = zs_shrinker_count;
2183 pool->shrinker.batch = 0;
2184 pool->shrinker.seeks = DEFAULT_SEEKS;
2185
2186 return register_shrinker(&pool->shrinker);
2187}
2188
00a61d86 2189/**
66cdef66 2190 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2191 * @name: pool name to be created
166cfda7 2192 *
66cdef66
GM
2193 * This function must be called before anything when using
2194 * the zsmalloc allocator.
166cfda7 2195 *
66cdef66
GM
2196 * On success, a pointer to the newly created pool is returned,
2197 * otherwise NULL.
396b7fd6 2198 */
d0d8da2d 2199struct zs_pool *zs_create_pool(const char *name)
61989a80 2200{
66cdef66
GM
2201 int i;
2202 struct zs_pool *pool;
2203 struct size_class *prev_class = NULL;
61989a80 2204
66cdef66
GM
2205 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2206 if (!pool)
2207 return NULL;
61989a80 2208
48b4800a 2209 init_deferred_free(pool);
b475d42d 2210 rwlock_init(&pool->migrate_lock);
61989a80 2211
2e40e163
MK
2212 pool->name = kstrdup(name, GFP_KERNEL);
2213 if (!pool->name)
2214 goto err;
2215
3783689a 2216 if (create_cache(pool))
2e40e163
MK
2217 goto err;
2218
c60369f0 2219 /*
399d8eeb 2220 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2221 * for merging should be larger or equal to current size.
c60369f0 2222 */
cf8e0fed 2223 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2224 int size;
2225 int pages_per_zspage;
64d90465 2226 int objs_per_zspage;
66cdef66 2227 struct size_class *class;
3783689a 2228 int fullness = 0;
c60369f0 2229
66cdef66
GM
2230 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2231 if (size > ZS_MAX_ALLOC_SIZE)
2232 size = ZS_MAX_ALLOC_SIZE;
2233 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2234 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2235
010b495e
SS
2236 /*
2237 * We iterate from biggest down to smallest classes,
2238 * so huge_class_size holds the size of the first huge
2239 * class. Any object bigger than or equal to that will
2240 * endup in the huge class.
2241 */
2242 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2243 !huge_class_size) {
2244 huge_class_size = size;
2245 /*
2246 * The object uses ZS_HANDLE_SIZE bytes to store the
2247 * handle. We need to subtract it, because zs_malloc()
2248 * unconditionally adds handle size before it performs
2249 * size class search - so object may be smaller than
2250 * huge class size, yet it still can end up in the huge
2251 * class because it grows by ZS_HANDLE_SIZE extra bytes
2252 * right before class lookup.
2253 */
2254 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2255 }
2256
66cdef66
GM
2257 /*
2258 * size_class is used for normal zsmalloc operation such
2259 * as alloc/free for that size. Although it is natural that we
2260 * have one size_class for each size, there is a chance that we
2261 * can get more memory utilization if we use one size_class for
2262 * many different sizes whose size_class have same
2263 * characteristics. So, we makes size_class point to
2264 * previous size_class if possible.
2265 */
2266 if (prev_class) {
64d90465 2267 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2268 pool->size_class[i] = prev_class;
2269 continue;
2270 }
2271 }
2272
2273 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2274 if (!class)
2275 goto err;
2276
2277 class->size = size;
2278 class->index = i;
2279 class->pages_per_zspage = pages_per_zspage;
64d90465 2280 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2281 spin_lock_init(&class->lock);
2282 pool->size_class[i] = class;
48b4800a
MK
2283 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2284 fullness++)
3783689a 2285 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2286
2287 prev_class = class;
61989a80
NG
2288 }
2289
d34f6157
DS
2290 /* debug only, don't abort if it fails */
2291 zs_pool_stat_create(pool, name);
0f050d99 2292
48b4800a
MK
2293 if (zs_register_migration(pool))
2294 goto err;
2295
ab9d306d 2296 /*
93144ca3
AK
2297 * Not critical since shrinker is only used to trigger internal
2298 * defragmentation of the pool which is pretty optional thing. If
2299 * registration fails we still can use the pool normally and user can
2300 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2301 */
93144ca3
AK
2302 zs_register_shrinker(pool);
2303
66cdef66
GM
2304 return pool;
2305
2306err:
2307 zs_destroy_pool(pool);
2308 return NULL;
61989a80 2309}
66cdef66 2310EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2311
66cdef66 2312void zs_destroy_pool(struct zs_pool *pool)
61989a80 2313{
66cdef66 2314 int i;
61989a80 2315
ab9d306d 2316 zs_unregister_shrinker(pool);
48b4800a 2317 zs_unregister_migration(pool);
0f050d99
GM
2318 zs_pool_stat_destroy(pool);
2319
cf8e0fed 2320 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2321 int fg;
2322 struct size_class *class = pool->size_class[i];
61989a80 2323
66cdef66
GM
2324 if (!class)
2325 continue;
61989a80 2326
66cdef66
GM
2327 if (class->index != i)
2328 continue;
61989a80 2329
48b4800a 2330 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2331 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2332 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2333 class->size, fg);
2334 }
2335 }
2336 kfree(class);
2337 }
f553646a 2338
3783689a 2339 destroy_cache(pool);
0f050d99 2340 kfree(pool->name);
66cdef66
GM
2341 kfree(pool);
2342}
2343EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2344
66cdef66
GM
2345static int __init zs_init(void)
2346{
48b4800a
MK
2347 int ret;
2348
2349 ret = zsmalloc_mount();
2350 if (ret)
2351 goto out;
2352
215c89d0
SAS
2353 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2354 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2355 if (ret)
215c89d0 2356 goto hp_setup_fail;
66cdef66 2357
66cdef66
GM
2358#ifdef CONFIG_ZPOOL
2359 zpool_register_driver(&zs_zpool_driver);
2360#endif
0f050d99 2361
4abaac9b
DS
2362 zs_stat_init();
2363
66cdef66 2364 return 0;
0f050d99 2365
215c89d0 2366hp_setup_fail:
48b4800a
MK
2367 zsmalloc_unmount();
2368out:
0f050d99 2369 return ret;
61989a80 2370}
61989a80 2371
66cdef66 2372static void __exit zs_exit(void)
61989a80 2373{
66cdef66
GM
2374#ifdef CONFIG_ZPOOL
2375 zpool_unregister_driver(&zs_zpool_driver);
2376#endif
48b4800a 2377 zsmalloc_unmount();
215c89d0 2378 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2379
2380 zs_stat_exit();
61989a80 2381}
069f101f
BH
2382
2383module_init(zs_init);
2384module_exit(zs_exit);
2385
2386MODULE_LICENSE("Dual BSD/GPL");
2387MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");