zsmalloc: remove insert_zspage() ->inuse optimization
[linux-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
ffedd09f 20 * page->index: links together all component pages of a zspage
48b4800a
MK
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
ffedd09f 23 * page->page_type: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
b475d42d
MK
33/*
34 * lock ordering:
35 * page_lock
c0547d0b 36 * pool->lock
b475d42d
MK
37 * zspage->lock
38 */
39
61989a80
NG
40#include <linux/module.h>
41#include <linux/kernel.h>
312fcae2 42#include <linux/sched.h>
61989a80
NG
43#include <linux/bitops.h>
44#include <linux/errno.h>
45#include <linux/highmem.h>
61989a80
NG
46#include <linux/string.h>
47#include <linux/slab.h>
ca5999fd 48#include <linux/pgtable.h>
65fddcfc 49#include <asm/tlbflush.h>
61989a80
NG
50#include <linux/cpumask.h>
51#include <linux/cpu.h>
0cbb613f 52#include <linux/vmalloc.h>
759b26b2 53#include <linux/preempt.h>
0959c63f 54#include <linux/spinlock.h>
93144ca3 55#include <linux/shrinker.h>
0959c63f 56#include <linux/types.h>
0f050d99 57#include <linux/debugfs.h>
bcf1647d 58#include <linux/zsmalloc.h>
c795779d 59#include <linux/zpool.h>
dd4123f3 60#include <linux/migrate.h>
701d6785 61#include <linux/wait.h>
48b4800a 62#include <linux/pagemap.h>
cdc346b3 63#include <linux/fs.h>
a3726599 64#include <linux/local_lock.h>
48b4800a
MK
65
66#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
67
68/*
cb152a1a 69 * This must be power of 2 and greater than or equal to sizeof(link_free).
0959c63f
SJ
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
2e40e163
MK
76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
0959c63f
SJ
78/*
79 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 80 * a single (unsigned long) handle value.
0959c63f 81 *
bfd093f5 82 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
02390b87
KS
87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
88#ifdef MAX_PHYSMEM_BITS
89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90#else
0959c63f
SJ
91/*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
02390b87 95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
96#endif
97#endif
02390b87
KS
98
99#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2 100
312fcae2
MK
101/*
102 * Head in allocated object should have OBJ_ALLOCATED_TAG
103 * to identify the object was allocated or not.
104 * It's okay to add the status bit in the least bit because
105 * header keeps handle which is 4byte-aligned address so we
106 * have room for two bit at least.
107 */
108#define OBJ_ALLOCATED_TAG 1
85b32581
NP
109
110#ifdef CONFIG_ZPOOL
111/*
112 * The second least-significant bit in the object's header identifies if the
113 * value stored at the header is a deferred handle from the last reclaim
114 * attempt.
115 *
116 * As noted above, this is valid because we have room for two bits.
117 */
118#define OBJ_DEFERRED_HANDLE_TAG 2
119#define OBJ_TAG_BITS 2
120#define OBJ_TAG_MASK (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
121#else
122#define OBJ_TAG_BITS 1
123#define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
124#endif /* CONFIG_ZPOOL */
125
312fcae2 126#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
127#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
128
a41ec880 129#define HUGE_BITS 1
cf8e0fed
JM
130#define FULLNESS_BITS 2
131#define CLASS_BITS 8
4ff93b29 132#define ISOLATED_BITS 5
cf8e0fed
JM
133#define MAGIC_VAL_BITS 8
134
0959c63f 135#define MAX(a, b) ((a) >= (b) ? (a) : (b))
4ff93b29
SS
136
137#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
138
0959c63f
SJ
139/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140#define ZS_MIN_ALLOC_SIZE \
141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 142/* each chunk includes extra space to keep handle */
7b60a685 143#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
144
145/*
7eb52512 146 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
147 * trader-off here:
148 * - Large number of size classes is potentially wasteful as free page are
149 * spread across these classes
150 * - Small number of size classes causes large internal fragmentation
151 * - Probably its better to use specific size classes (empirically
152 * determined). NOTE: all those class sizes must be set as multiple of
153 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
154 *
155 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
156 * (reason above)
157 */
3783689a 158#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
159#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
160 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 161
0959c63f 162enum fullness_group {
0959c63f 163 ZS_EMPTY,
48b4800a
MK
164 ZS_ALMOST_EMPTY,
165 ZS_ALMOST_FULL,
166 ZS_FULL,
167 NR_ZS_FULLNESS,
0959c63f
SJ
168};
169
3828a764 170enum class_stat_type {
48b4800a
MK
171 CLASS_EMPTY,
172 CLASS_ALMOST_EMPTY,
173 CLASS_ALMOST_FULL,
174 CLASS_FULL,
0f050d99
GM
175 OBJ_ALLOCATED,
176 OBJ_USED,
48b4800a 177 NR_ZS_STAT_TYPE,
0f050d99
GM
178};
179
0f050d99
GM
180struct zs_size_stat {
181 unsigned long objs[NR_ZS_STAT_TYPE];
182};
183
57244594
SS
184#ifdef CONFIG_ZSMALLOC_STAT
185static struct dentry *zs_stat_root;
0f050d99
GM
186#endif
187
0959c63f
SJ
188/*
189 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
190 * n <= N / f, where
191 * n = number of allocated objects
192 * N = total number of objects zspage can store
6dd9737e 193 * f = fullness_threshold_frac
0959c63f
SJ
194 *
195 * Similarly, we assign zspage to:
196 * ZS_ALMOST_FULL when n > N / f
197 * ZS_EMPTY when n == 0
198 * ZS_FULL when n == N
199 *
200 * (see: fix_fullness_group())
201 */
202static const int fullness_threshold_frac = 4;
010b495e 203static size_t huge_class_size;
0959c63f
SJ
204
205struct size_class {
48b4800a 206 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
207 /*
208 * Size of objects stored in this class. Must be multiple
209 * of ZS_ALIGN.
210 */
211 int size;
1fc6e27d 212 int objs_per_zspage;
7dfa4612
WY
213 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
214 int pages_per_zspage;
48b4800a
MK
215
216 unsigned int index;
217 struct zs_size_stat stats;
0959c63f
SJ
218};
219
220/*
221 * Placed within free objects to form a singly linked list.
3783689a 222 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
223 *
224 * This must be power of 2 and less than or equal to ZS_ALIGN
225 */
226struct link_free {
2e40e163
MK
227 union {
228 /*
bfd093f5 229 * Free object index;
2e40e163
MK
230 * It's valid for non-allocated object
231 */
bfd093f5 232 unsigned long next;
2e40e163
MK
233 /*
234 * Handle of allocated object.
235 */
236 unsigned long handle;
85b32581
NP
237#ifdef CONFIG_ZPOOL
238 /*
239 * Deferred handle of a reclaimed object.
240 */
241 unsigned long deferred_handle;
242#endif
2e40e163 243 };
0959c63f
SJ
244};
245
246struct zs_pool {
6f3526d6 247 const char *name;
0f050d99 248
cf8e0fed 249 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 250 struct kmem_cache *handle_cachep;
3783689a 251 struct kmem_cache *zspage_cachep;
0959c63f 252
13de8933 253 atomic_long_t pages_allocated;
0f050d99 254
7d3f3938 255 struct zs_pool_stats stats;
ab9d306d
SS
256
257 /* Compact classes */
258 struct shrinker shrinker;
93144ca3 259
64f768c6
NP
260#ifdef CONFIG_ZPOOL
261 /* List tracking the zspages in LRU order by most recently added object */
262 struct list_head lru;
bd0fded2
NP
263 struct zpool *zpool;
264 const struct zpool_ops *zpool_ops;
64f768c6
NP
265#endif
266
0f050d99
GM
267#ifdef CONFIG_ZSMALLOC_STAT
268 struct dentry *stat_dentry;
269#endif
48b4800a 270#ifdef CONFIG_COMPACTION
48b4800a
MK
271 struct work_struct free_work;
272#endif
c0547d0b 273 spinlock_t lock;
0959c63f 274};
61989a80 275
3783689a
MK
276struct zspage {
277 struct {
a41ec880 278 unsigned int huge:HUGE_BITS;
3783689a 279 unsigned int fullness:FULLNESS_BITS;
85d492f2 280 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
281 unsigned int isolated:ISOLATED_BITS;
282 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
283 };
284 unsigned int inuse;
bfd093f5 285 unsigned int freeobj;
3783689a
MK
286 struct page *first_page;
287 struct list_head list; /* fullness list */
64f768c6
NP
288
289#ifdef CONFIG_ZPOOL
290 /* links the zspage to the lru list in the pool */
291 struct list_head lru;
9997bc01 292 bool under_reclaim;
64f768c6
NP
293#endif
294
68f2736a 295 struct zs_pool *pool;
48b4800a 296 rwlock_t lock;
3783689a 297};
61989a80 298
f553646a 299struct mapping_area {
a3726599 300 local_lock_t lock;
f553646a 301 char *vm_buf; /* copy buffer for objects that span pages */
f553646a
SJ
302 char *vm_addr; /* address of kmap_atomic()'ed pages */
303 enum zs_mapmode vm_mm; /* mapping mode */
304};
305
a41ec880
MK
306/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
307static void SetZsHugePage(struct zspage *zspage)
308{
309 zspage->huge = 1;
310}
311
312static bool ZsHugePage(struct zspage *zspage)
313{
314 return zspage->huge;
315}
316
48b4800a
MK
317static void migrate_lock_init(struct zspage *zspage);
318static void migrate_read_lock(struct zspage *zspage);
319static void migrate_read_unlock(struct zspage *zspage);
9997bc01
NP
320
321#ifdef CONFIG_COMPACTION
b475d42d
MK
322static void migrate_write_lock(struct zspage *zspage);
323static void migrate_write_lock_nested(struct zspage *zspage);
324static void migrate_write_unlock(struct zspage *zspage);
48b4800a
MK
325static void kick_deferred_free(struct zs_pool *pool);
326static void init_deferred_free(struct zs_pool *pool);
327static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
328#else
b475d42d
MK
329static void migrate_write_lock(struct zspage *zspage) {}
330static void migrate_write_lock_nested(struct zspage *zspage) {}
331static void migrate_write_unlock(struct zspage *zspage) {}
48b4800a
MK
332static void kick_deferred_free(struct zs_pool *pool) {}
333static void init_deferred_free(struct zs_pool *pool) {}
334static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
335#endif
336
3783689a 337static int create_cache(struct zs_pool *pool)
2e40e163
MK
338{
339 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
340 0, 0, NULL);
3783689a
MK
341 if (!pool->handle_cachep)
342 return 1;
343
344 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
345 0, 0, NULL);
346 if (!pool->zspage_cachep) {
347 kmem_cache_destroy(pool->handle_cachep);
348 pool->handle_cachep = NULL;
349 return 1;
350 }
351
352 return 0;
2e40e163
MK
353}
354
3783689a 355static void destroy_cache(struct zs_pool *pool)
2e40e163 356{
cd10add0 357 kmem_cache_destroy(pool->handle_cachep);
3783689a 358 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
359}
360
3783689a 361static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
362{
363 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 364 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
365}
366
3783689a 367static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
368{
369 kmem_cache_free(pool->handle_cachep, (void *)handle);
370}
371
3783689a
MK
372static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
373{
f0231305 374 return kmem_cache_zalloc(pool->zspage_cachep,
48b4800a 375 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 376}
3783689a
MK
377
378static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
379{
380 kmem_cache_free(pool->zspage_cachep, zspage);
381}
382
c0547d0b 383/* pool->lock(which owns the handle) synchronizes races */
2e40e163
MK
384static void record_obj(unsigned long handle, unsigned long obj)
385{
b475d42d 386 *(unsigned long *)handle = obj;
2e40e163
MK
387}
388
c795779d
DS
389/* zpool driver */
390
391#ifdef CONFIG_ZPOOL
392
6f3526d6 393static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 394 const struct zpool_ops *zpool_ops,
479305fd 395 struct zpool *zpool)
c795779d 396{
d0d8da2d
SS
397 /*
398 * Ignore global gfp flags: zs_malloc() may be invoked from
399 * different contexts and its caller must provide a valid
400 * gfp mask.
401 */
bd0fded2
NP
402 struct zs_pool *pool = zs_create_pool(name);
403
404 if (pool) {
405 pool->zpool = zpool;
406 pool->zpool_ops = zpool_ops;
407 }
408
409 return pool;
c795779d
DS
410}
411
412static void zs_zpool_destroy(void *pool)
413{
414 zs_destroy_pool(pool);
415}
416
417static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
418 unsigned long *handle)
419{
d0d8da2d 420 *handle = zs_malloc(pool, size, gfp);
c7e6f17b 421
65917b53 422 if (IS_ERR_VALUE(*handle))
c7e6f17b
HZ
423 return PTR_ERR((void *)*handle);
424 return 0;
c795779d
DS
425}
426static void zs_zpool_free(void *pool, unsigned long handle)
427{
428 zs_free(pool, handle);
429}
430
9997bc01
NP
431static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
432
433static int zs_zpool_shrink(void *pool, unsigned int pages,
434 unsigned int *reclaimed)
435{
436 unsigned int total = 0;
437 int ret = -EINVAL;
438
439 while (total < pages) {
440 ret = zs_reclaim_page(pool, 8);
441 if (ret < 0)
442 break;
443 total++;
444 }
445
446 if (reclaimed)
447 *reclaimed = total;
448
449 return ret;
450}
451
c795779d
DS
452static void *zs_zpool_map(void *pool, unsigned long handle,
453 enum zpool_mapmode mm)
454{
455 enum zs_mapmode zs_mm;
456
457 switch (mm) {
458 case ZPOOL_MM_RO:
459 zs_mm = ZS_MM_RO;
460 break;
461 case ZPOOL_MM_WO:
462 zs_mm = ZS_MM_WO;
463 break;
e4a9bc58 464 case ZPOOL_MM_RW:
c795779d
DS
465 default:
466 zs_mm = ZS_MM_RW;
467 break;
468 }
469
470 return zs_map_object(pool, handle, zs_mm);
471}
472static void zs_zpool_unmap(void *pool, unsigned long handle)
473{
474 zs_unmap_object(pool, handle);
475}
476
477static u64 zs_zpool_total_size(void *pool)
478{
722cdc17 479 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
480}
481
482static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
483 .type = "zsmalloc",
484 .owner = THIS_MODULE,
485 .create = zs_zpool_create,
486 .destroy = zs_zpool_destroy,
487 .malloc_support_movable = true,
488 .malloc = zs_zpool_malloc,
489 .free = zs_zpool_free,
9997bc01 490 .shrink = zs_zpool_shrink,
c165f25d
HZ
491 .map = zs_zpool_map,
492 .unmap = zs_zpool_unmap,
493 .total_size = zs_zpool_total_size,
c795779d
DS
494};
495
137f8cff 496MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
497#endif /* CONFIG_ZPOOL */
498
61989a80 499/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
a3726599
MG
500static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
501 .lock = INIT_LOCAL_LOCK(lock),
502};
61989a80 503
3457f414 504static __maybe_unused int is_first_page(struct page *page)
61989a80 505{
a27545bf 506 return PagePrivate(page);
61989a80
NG
507}
508
c0547d0b 509/* Protected by pool->lock */
3783689a 510static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 511{
3783689a 512 return zspage->inuse;
4f42047b
MK
513}
514
4f42047b 515
3783689a 516static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 517{
3783689a 518 zspage->inuse += val;
4f42047b
MK
519}
520
48b4800a 521static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 522{
48b4800a 523 struct page *first_page = zspage->first_page;
3783689a 524
48b4800a
MK
525 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
526 return first_page;
4f42047b
MK
527}
528
671f2fa8 529static inline unsigned int get_first_obj_offset(struct page *page)
4f42047b 530{
ffedd09f 531 return page->page_type;
48b4800a 532}
3783689a 533
671f2fa8 534static inline void set_first_obj_offset(struct page *page, unsigned int offset)
48b4800a 535{
ffedd09f 536 page->page_type = offset;
4f42047b
MK
537}
538
bfd093f5 539static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 540{
bfd093f5 541 return zspage->freeobj;
4f42047b
MK
542}
543
bfd093f5 544static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 545{
bfd093f5 546 zspage->freeobj = obj;
4f42047b
MK
547}
548
3783689a 549static void get_zspage_mapping(struct zspage *zspage,
a4209467 550 unsigned int *class_idx,
61989a80
NG
551 enum fullness_group *fullness)
552{
48b4800a
MK
553 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
554
3783689a
MK
555 *fullness = zspage->fullness;
556 *class_idx = zspage->class;
61989a80
NG
557}
558
67f1c9cd
MK
559static struct size_class *zspage_class(struct zs_pool *pool,
560 struct zspage *zspage)
561{
562 return pool->size_class[zspage->class];
563}
564
3783689a 565static void set_zspage_mapping(struct zspage *zspage,
a4209467 566 unsigned int class_idx,
61989a80
NG
567 enum fullness_group fullness)
568{
3783689a
MK
569 zspage->class = class_idx;
570 zspage->fullness = fullness;
61989a80
NG
571}
572
c3e3e88a
NC
573/*
574 * zsmalloc divides the pool into various size classes where each
575 * class maintains a list of zspages where each zspage is divided
576 * into equal sized chunks. Each allocation falls into one of these
577 * classes depending on its size. This function returns index of the
cb152a1a 578 * size class which has chunk size big enough to hold the given size.
c3e3e88a 579 */
61989a80
NG
580static int get_size_class_index(int size)
581{
582 int idx = 0;
583
584 if (likely(size > ZS_MIN_ALLOC_SIZE))
585 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
586 ZS_SIZE_CLASS_DELTA);
587
cf8e0fed 588 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
589}
590
3828a764
MK
591/* type can be of enum type class_stat_type or fullness_group */
592static inline void class_stat_inc(struct size_class *class,
3eb95fea 593 int type, unsigned long cnt)
248ca1b0 594{
48b4800a 595 class->stats.objs[type] += cnt;
248ca1b0
MK
596}
597
3828a764
MK
598/* type can be of enum type class_stat_type or fullness_group */
599static inline void class_stat_dec(struct size_class *class,
3eb95fea 600 int type, unsigned long cnt)
248ca1b0 601{
48b4800a 602 class->stats.objs[type] -= cnt;
248ca1b0
MK
603}
604
3828a764 605/* type can be of enum type class_stat_type or fullness_group */
248ca1b0 606static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 607 int type)
248ca1b0 608{
48b4800a 609 return class->stats.objs[type];
248ca1b0
MK
610}
611
57244594
SS
612#ifdef CONFIG_ZSMALLOC_STAT
613
4abaac9b 614static void __init zs_stat_init(void)
248ca1b0 615{
4abaac9b
DS
616 if (!debugfs_initialized()) {
617 pr_warn("debugfs not available, stat dir not created\n");
618 return;
619 }
248ca1b0
MK
620
621 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
622}
623
624static void __exit zs_stat_exit(void)
625{
626 debugfs_remove_recursive(zs_stat_root);
627}
628
1120ed54
SS
629static unsigned long zs_can_compact(struct size_class *class);
630
248ca1b0
MK
631static int zs_stats_size_show(struct seq_file *s, void *v)
632{
633 int i;
634 struct zs_pool *pool = s->private;
635 struct size_class *class;
636 int objs_per_zspage;
637 unsigned long class_almost_full, class_almost_empty;
1120ed54 638 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
639 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
640 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 641 unsigned long total_freeable = 0;
248ca1b0 642
1120ed54 643 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
644 "class", "size", "almost_full", "almost_empty",
645 "obj_allocated", "obj_used", "pages_used",
1120ed54 646 "pages_per_zspage", "freeable");
248ca1b0 647
cf8e0fed 648 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
649 class = pool->size_class[i];
650
651 if (class->index != i)
652 continue;
653
c0547d0b 654 spin_lock(&pool->lock);
248ca1b0
MK
655 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
656 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
657 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
658 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 659 freeable = zs_can_compact(class);
c0547d0b 660 spin_unlock(&pool->lock);
248ca1b0 661
b4fd07a0 662 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
663 pages_used = obj_allocated / objs_per_zspage *
664 class->pages_per_zspage;
665
1120ed54
SS
666 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
667 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
668 i, class->size, class_almost_full, class_almost_empty,
669 obj_allocated, obj_used, pages_used,
1120ed54 670 class->pages_per_zspage, freeable);
248ca1b0
MK
671
672 total_class_almost_full += class_almost_full;
673 total_class_almost_empty += class_almost_empty;
674 total_objs += obj_allocated;
675 total_used_objs += obj_used;
676 total_pages += pages_used;
1120ed54 677 total_freeable += freeable;
248ca1b0
MK
678 }
679
680 seq_puts(s, "\n");
1120ed54 681 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
682 "Total", "", total_class_almost_full,
683 total_class_almost_empty, total_objs,
1120ed54 684 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
685
686 return 0;
687}
5ad35093 688DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 689
d34f6157 690static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 691{
4abaac9b
DS
692 if (!zs_stat_root) {
693 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 694 return;
4abaac9b 695 }
248ca1b0 696
4268509a
GKH
697 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
698
699 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
700 &zs_stats_size_fops);
248ca1b0
MK
701}
702
703static void zs_pool_stat_destroy(struct zs_pool *pool)
704{
705 debugfs_remove_recursive(pool->stat_dentry);
706}
707
708#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 709static void __init zs_stat_init(void)
248ca1b0 710{
248ca1b0
MK
711}
712
713static void __exit zs_stat_exit(void)
714{
715}
716
d34f6157 717static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 718{
248ca1b0
MK
719}
720
721static inline void zs_pool_stat_destroy(struct zs_pool *pool)
722{
723}
248ca1b0
MK
724#endif
725
48b4800a 726
c3e3e88a
NC
727/*
728 * For each size class, zspages are divided into different groups
729 * depending on how "full" they are. This was done so that we could
730 * easily find empty or nearly empty zspages when we try to shrink
731 * the pool (not yet implemented). This function returns fullness
732 * status of the given page.
733 */
1fc6e27d 734static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 735 struct zspage *zspage)
61989a80 736{
1fc6e27d 737 int inuse, objs_per_zspage;
61989a80 738 enum fullness_group fg;
830e4bc5 739
3783689a 740 inuse = get_zspage_inuse(zspage);
1fc6e27d 741 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
742
743 if (inuse == 0)
744 fg = ZS_EMPTY;
1fc6e27d 745 else if (inuse == objs_per_zspage)
61989a80 746 fg = ZS_FULL;
1fc6e27d 747 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
748 fg = ZS_ALMOST_EMPTY;
749 else
750 fg = ZS_ALMOST_FULL;
751
752 return fg;
753}
754
c3e3e88a
NC
755/*
756 * Each size class maintains various freelists and zspages are assigned
757 * to one of these freelists based on the number of live objects they
758 * have. This functions inserts the given zspage into the freelist
759 * identified by <class, fullness_group>.
760 */
251cbb95 761static void insert_zspage(struct size_class *class,
3783689a
MK
762 struct zspage *zspage,
763 enum fullness_group fullness)
61989a80 764{
3828a764 765 class_stat_inc(class, fullness, 1);
a40a71e8 766 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
767}
768
c3e3e88a
NC
769/*
770 * This function removes the given zspage from the freelist identified
771 * by <class, fullness_group>.
772 */
251cbb95 773static void remove_zspage(struct size_class *class,
3783689a
MK
774 struct zspage *zspage,
775 enum fullness_group fullness)
61989a80 776{
3783689a 777 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
61989a80 778
3783689a 779 list_del_init(&zspage->list);
3828a764 780 class_stat_dec(class, fullness, 1);
61989a80
NG
781}
782
c3e3e88a
NC
783/*
784 * Each size class maintains zspages in different fullness groups depending
785 * on the number of live objects they contain. When allocating or freeing
786 * objects, the fullness status of the page can change, say, from ALMOST_FULL
787 * to ALMOST_EMPTY when freeing an object. This function checks if such
788 * a status change has occurred for the given page and accordingly moves the
789 * page from the freelist of the old fullness group to that of the new
790 * fullness group.
791 */
c7806261 792static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 793 struct zspage *zspage)
61989a80
NG
794{
795 int class_idx;
61989a80
NG
796 enum fullness_group currfg, newfg;
797
3783689a
MK
798 get_zspage_mapping(zspage, &class_idx, &currfg);
799 newfg = get_fullness_group(class, zspage);
61989a80
NG
800 if (newfg == currfg)
801 goto out;
802
c4549b87
MK
803 remove_zspage(class, zspage, currfg);
804 insert_zspage(class, zspage, newfg);
3783689a 805 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
806out:
807 return newfg;
808}
809
3783689a 810static struct zspage *get_zspage(struct page *page)
61989a80 811{
a6c5e0f7 812 struct zspage *zspage = (struct zspage *)page_private(page);
48b4800a
MK
813
814 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
815 return zspage;
61989a80
NG
816}
817
818static struct page *get_next_page(struct page *page)
819{
a41ec880
MK
820 struct zspage *zspage = get_zspage(page);
821
822 if (unlikely(ZsHugePage(zspage)))
48b4800a
MK
823 return NULL;
824
ffedd09f 825 return (struct page *)page->index;
61989a80
NG
826}
827
bfd093f5
MK
828/**
829 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 830 * @obj: the encoded object value
bfd093f5
MK
831 * @page: page object resides in zspage
832 * @obj_idx: object index
67296874 833 */
bfd093f5
MK
834static void obj_to_location(unsigned long obj, struct page **page,
835 unsigned int *obj_idx)
61989a80 836{
bfd093f5
MK
837 obj >>= OBJ_TAG_BITS;
838 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
839 *obj_idx = (obj & OBJ_INDEX_MASK);
840}
61989a80 841
67f1c9cd
MK
842static void obj_to_page(unsigned long obj, struct page **page)
843{
844 obj >>= OBJ_TAG_BITS;
845 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
846}
847
bfd093f5
MK
848/**
849 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
850 * @page: page object resides in zspage
851 * @obj_idx: object index
852 */
853static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
854{
855 unsigned long obj;
61989a80 856
312fcae2 857 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 858 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 859 obj <<= OBJ_TAG_BITS;
61989a80 860
bfd093f5 861 return obj;
61989a80
NG
862}
863
2e40e163
MK
864static unsigned long handle_to_obj(unsigned long handle)
865{
866 return *(unsigned long *)handle;
867}
868
85b32581
NP
869static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
870 int tag)
312fcae2 871{
3ae92ac2 872 unsigned long handle;
a41ec880 873 struct zspage *zspage = get_zspage(page);
3ae92ac2 874
a41ec880 875 if (unlikely(ZsHugePage(zspage))) {
830e4bc5 876 VM_BUG_ON_PAGE(!is_first_page(page), page);
3ae92ac2 877 handle = page->index;
7b60a685 878 } else
3ae92ac2
MK
879 handle = *(unsigned long *)obj;
880
85b32581 881 if (!(handle & tag))
3ae92ac2
MK
882 return false;
883
85b32581
NP
884 /* Clear all tags before returning the handle */
885 *phandle = handle & ~OBJ_TAG_MASK;
3ae92ac2 886 return true;
312fcae2
MK
887}
888
85b32581
NP
889static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
890{
891 return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
892}
893
894#ifdef CONFIG_ZPOOL
895static bool obj_stores_deferred_handle(struct page *page, void *obj,
896 unsigned long *phandle)
897{
898 return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
899}
900#endif
901
f4477e90
NG
902static void reset_page(struct page *page)
903{
48b4800a 904 __ClearPageMovable(page);
18fd06bf 905 ClearPagePrivate(page);
f4477e90 906 set_page_private(page, 0);
48b4800a 907 page_mapcount_reset(page);
ffedd09f 908 page->index = 0;
48b4800a
MK
909}
910
4d0a5402 911static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
912{
913 struct page *cursor, *fail;
914
915 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
916 get_next_page(cursor)) {
917 if (!trylock_page(cursor)) {
918 fail = cursor;
919 goto unlock;
920 }
921 }
922
923 return 1;
924unlock:
925 for (cursor = get_first_page(zspage); cursor != fail; cursor =
926 get_next_page(cursor))
927 unlock_page(cursor);
928
929 return 0;
f4477e90
NG
930}
931
9997bc01 932#ifdef CONFIG_ZPOOL
85b32581
NP
933static unsigned long find_deferred_handle_obj(struct size_class *class,
934 struct page *page, int *obj_idx);
935
9997bc01
NP
936/*
937 * Free all the deferred handles whose objects are freed in zs_free.
938 */
85b32581
NP
939static void free_handles(struct zs_pool *pool, struct size_class *class,
940 struct zspage *zspage)
9997bc01 941{
85b32581
NP
942 int obj_idx = 0;
943 struct page *page = get_first_page(zspage);
944 unsigned long handle;
9997bc01 945
85b32581
NP
946 while (1) {
947 handle = find_deferred_handle_obj(class, page, &obj_idx);
948 if (!handle) {
949 page = get_next_page(page);
950 if (!page)
951 break;
952 obj_idx = 0;
953 continue;
954 }
9997bc01
NP
955
956 cache_free_handle(pool, handle);
85b32581 957 obj_idx++;
9997bc01
NP
958 }
959}
960#else
85b32581
NP
961static inline void free_handles(struct zs_pool *pool, struct size_class *class,
962 struct zspage *zspage) {}
9997bc01
NP
963#endif
964
48b4800a
MK
965static void __free_zspage(struct zs_pool *pool, struct size_class *class,
966 struct zspage *zspage)
61989a80 967{
3783689a 968 struct page *page, *next;
48b4800a
MK
969 enum fullness_group fg;
970 unsigned int class_idx;
971
972 get_zspage_mapping(zspage, &class_idx, &fg);
973
c0547d0b 974 assert_spin_locked(&pool->lock);
61989a80 975
3783689a 976 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 977 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 978
9997bc01 979 /* Free all deferred handles from zs_free */
85b32581 980 free_handles(pool, class, zspage);
9997bc01 981
48b4800a 982 next = page = get_first_page(zspage);
3783689a 983 do {
48b4800a
MK
984 VM_BUG_ON_PAGE(!PageLocked(page), page);
985 next = get_next_page(page);
3783689a 986 reset_page(page);
48b4800a 987 unlock_page(page);
91537fee 988 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
989 put_page(page);
990 page = next;
991 } while (page != NULL);
61989a80 992
3783689a 993 cache_free_zspage(pool, zspage);
48b4800a 994
3828a764 995 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
996 atomic_long_sub(class->pages_per_zspage,
997 &pool->pages_allocated);
998}
999
1000static void free_zspage(struct zs_pool *pool, struct size_class *class,
1001 struct zspage *zspage)
1002{
1003 VM_BUG_ON(get_zspage_inuse(zspage));
1004 VM_BUG_ON(list_empty(&zspage->list));
1005
b475d42d
MK
1006 /*
1007 * Since zs_free couldn't be sleepable, this function cannot call
1008 * lock_page. The page locks trylock_zspage got will be released
1009 * by __free_zspage.
1010 */
48b4800a
MK
1011 if (!trylock_zspage(zspage)) {
1012 kick_deferred_free(pool);
1013 return;
1014 }
1015
1016 remove_zspage(class, zspage, ZS_EMPTY);
64f768c6
NP
1017#ifdef CONFIG_ZPOOL
1018 list_del(&zspage->lru);
1019#endif
48b4800a 1020 __free_zspage(pool, class, zspage);
61989a80
NG
1021}
1022
1023/* Initialize a newly allocated zspage */
3783689a 1024static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 1025{
bfd093f5 1026 unsigned int freeobj = 1;
61989a80 1027 unsigned long off = 0;
48b4800a 1028 struct page *page = get_first_page(zspage);
830e4bc5 1029
61989a80
NG
1030 while (page) {
1031 struct page *next_page;
1032 struct link_free *link;
af4ee5e9 1033 void *vaddr;
61989a80 1034
3783689a 1035 set_first_obj_offset(page, off);
61989a80 1036
af4ee5e9
MK
1037 vaddr = kmap_atomic(page);
1038 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1039
1040 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1041 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1042 link += class->size / sizeof(*link);
61989a80
NG
1043 }
1044
1045 /*
1046 * We now come to the last (full or partial) object on this
1047 * page, which must point to the first object on the next
1048 * page (if present)
1049 */
1050 next_page = get_next_page(page);
bfd093f5 1051 if (next_page) {
3b1d9ca6 1052 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1053 } else {
1054 /*
3b1d9ca6 1055 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1056 * whether it's allocated object or not.
1057 */
01a6ad9a 1058 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1059 }
af4ee5e9 1060 kunmap_atomic(vaddr);
61989a80 1061 page = next_page;
5538c562 1062 off %= PAGE_SIZE;
61989a80 1063 }
bdb0af7c 1064
64f768c6
NP
1065#ifdef CONFIG_ZPOOL
1066 INIT_LIST_HEAD(&zspage->lru);
9997bc01 1067 zspage->under_reclaim = false;
64f768c6
NP
1068#endif
1069
bfd093f5 1070 set_freeobj(zspage, 0);
61989a80
NG
1071}
1072
48b4800a
MK
1073static void create_page_chain(struct size_class *class, struct zspage *zspage,
1074 struct page *pages[])
61989a80 1075{
bdb0af7c
MK
1076 int i;
1077 struct page *page;
1078 struct page *prev_page = NULL;
48b4800a 1079 int nr_pages = class->pages_per_zspage;
61989a80
NG
1080
1081 /*
1082 * Allocate individual pages and link them together as:
ffedd09f 1083 * 1. all pages are linked together using page->index
3783689a 1084 * 2. each sub-page point to zspage using page->private
61989a80 1085 *
3783689a 1086 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1087 * has this flag set).
61989a80 1088 */
bdb0af7c
MK
1089 for (i = 0; i < nr_pages; i++) {
1090 page = pages[i];
3783689a 1091 set_page_private(page, (unsigned long)zspage);
ffedd09f 1092 page->index = 0;
bdb0af7c 1093 if (i == 0) {
3783689a 1094 zspage->first_page = page;
a27545bf 1095 SetPagePrivate(page);
48b4800a
MK
1096 if (unlikely(class->objs_per_zspage == 1 &&
1097 class->pages_per_zspage == 1))
a41ec880 1098 SetZsHugePage(zspage);
3783689a 1099 } else {
ffedd09f 1100 prev_page->index = (unsigned long)page;
61989a80 1101 }
61989a80
NG
1102 prev_page = page;
1103 }
bdb0af7c 1104}
61989a80 1105
bdb0af7c
MK
1106/*
1107 * Allocate a zspage for the given size class
1108 */
3783689a
MK
1109static struct zspage *alloc_zspage(struct zs_pool *pool,
1110 struct size_class *class,
1111 gfp_t gfp)
bdb0af7c
MK
1112{
1113 int i;
bdb0af7c 1114 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1115 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1116
1117 if (!zspage)
1118 return NULL;
1119
48b4800a
MK
1120 zspage->magic = ZSPAGE_MAGIC;
1121 migrate_lock_init(zspage);
61989a80 1122
bdb0af7c
MK
1123 for (i = 0; i < class->pages_per_zspage; i++) {
1124 struct page *page;
61989a80 1125
3783689a 1126 page = alloc_page(gfp);
bdb0af7c 1127 if (!page) {
91537fee
MK
1128 while (--i >= 0) {
1129 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1130 __free_page(pages[i]);
91537fee 1131 }
3783689a 1132 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1133 return NULL;
1134 }
91537fee
MK
1135
1136 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1137 pages[i] = page;
61989a80
NG
1138 }
1139
48b4800a 1140 create_page_chain(class, zspage, pages);
3783689a 1141 init_zspage(class, zspage);
68f2736a 1142 zspage->pool = pool;
bdb0af7c 1143
3783689a 1144 return zspage;
61989a80
NG
1145}
1146
3783689a 1147static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1148{
1149 int i;
3783689a 1150 struct zspage *zspage;
61989a80 1151
48b4800a 1152 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1153 zspage = list_first_entry_or_null(&class->fullness_list[i],
1154 struct zspage, list);
1155 if (zspage)
61989a80
NG
1156 break;
1157 }
1158
3783689a 1159 return zspage;
61989a80
NG
1160}
1161
f553646a
SJ
1162static inline int __zs_cpu_up(struct mapping_area *area)
1163{
1164 /*
1165 * Make sure we don't leak memory if a cpu UP notification
1166 * and zs_init() race and both call zs_cpu_up() on the same cpu
1167 */
1168 if (area->vm_buf)
1169 return 0;
40f9fb8c 1170 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1171 if (!area->vm_buf)
1172 return -ENOMEM;
1173 return 0;
1174}
1175
1176static inline void __zs_cpu_down(struct mapping_area *area)
1177{
40f9fb8c 1178 kfree(area->vm_buf);
f553646a
SJ
1179 area->vm_buf = NULL;
1180}
1181
1182static void *__zs_map_object(struct mapping_area *area,
1183 struct page *pages[2], int off, int size)
5f601902 1184{
5f601902
SJ
1185 int sizes[2];
1186 void *addr;
f553646a 1187 char *buf = area->vm_buf;
5f601902 1188
f553646a
SJ
1189 /* disable page faults to match kmap_atomic() return conditions */
1190 pagefault_disable();
1191
1192 /* no read fastpath */
1193 if (area->vm_mm == ZS_MM_WO)
1194 goto out;
5f601902
SJ
1195
1196 sizes[0] = PAGE_SIZE - off;
1197 sizes[1] = size - sizes[0];
1198
5f601902
SJ
1199 /* copy object to per-cpu buffer */
1200 addr = kmap_atomic(pages[0]);
1201 memcpy(buf, addr + off, sizes[0]);
1202 kunmap_atomic(addr);
1203 addr = kmap_atomic(pages[1]);
1204 memcpy(buf + sizes[0], addr, sizes[1]);
1205 kunmap_atomic(addr);
f553646a
SJ
1206out:
1207 return area->vm_buf;
5f601902
SJ
1208}
1209
f553646a
SJ
1210static void __zs_unmap_object(struct mapping_area *area,
1211 struct page *pages[2], int off, int size)
5f601902 1212{
5f601902
SJ
1213 int sizes[2];
1214 void *addr;
2e40e163 1215 char *buf;
5f601902 1216
f553646a
SJ
1217 /* no write fastpath */
1218 if (area->vm_mm == ZS_MM_RO)
1219 goto out;
5f601902 1220
7b60a685 1221 buf = area->vm_buf;
a82cbf07
YX
1222 buf = buf + ZS_HANDLE_SIZE;
1223 size -= ZS_HANDLE_SIZE;
1224 off += ZS_HANDLE_SIZE;
2e40e163 1225
5f601902
SJ
1226 sizes[0] = PAGE_SIZE - off;
1227 sizes[1] = size - sizes[0];
1228
1229 /* copy per-cpu buffer to object */
1230 addr = kmap_atomic(pages[0]);
1231 memcpy(addr + off, buf, sizes[0]);
1232 kunmap_atomic(addr);
1233 addr = kmap_atomic(pages[1]);
1234 memcpy(addr, buf + sizes[0], sizes[1]);
1235 kunmap_atomic(addr);
f553646a
SJ
1236
1237out:
1238 /* enable page faults to match kunmap_atomic() return conditions */
1239 pagefault_enable();
5f601902 1240}
61989a80 1241
215c89d0 1242static int zs_cpu_prepare(unsigned int cpu)
61989a80 1243{
61989a80
NG
1244 struct mapping_area *area;
1245
215c89d0
SAS
1246 area = &per_cpu(zs_map_area, cpu);
1247 return __zs_cpu_up(area);
61989a80
NG
1248}
1249
215c89d0 1250static int zs_cpu_dead(unsigned int cpu)
61989a80 1251{
215c89d0 1252 struct mapping_area *area;
40f9fb8c 1253
215c89d0
SAS
1254 area = &per_cpu(zs_map_area, cpu);
1255 __zs_cpu_down(area);
1256 return 0;
b1b00a5b
SS
1257}
1258
64d90465
GM
1259static bool can_merge(struct size_class *prev, int pages_per_zspage,
1260 int objs_per_zspage)
9eec4cd5 1261{
64d90465
GM
1262 if (prev->pages_per_zspage == pages_per_zspage &&
1263 prev->objs_per_zspage == objs_per_zspage)
1264 return true;
9eec4cd5 1265
64d90465 1266 return false;
9eec4cd5
JK
1267}
1268
3783689a 1269static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1270{
3783689a 1271 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2 1272}
7c2af309
AR
1273
1274/**
1275 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1276 * that hold objects of the provided size.
1277 * @pool: zsmalloc pool to use
1278 * @size: object size
1279 *
1280 * Context: Any context.
1281 *
1282 * Return: the index of the zsmalloc &size_class that hold objects of the
1283 * provided size.
1284 */
1285unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1286{
1287 struct size_class *class;
1288
1289 class = pool->size_class[get_size_class_index(size)];
1290
1291 return class->index;
1292}
1293EXPORT_SYMBOL_GPL(zs_lookup_class_index);
312fcae2 1294
66cdef66
GM
1295unsigned long zs_get_total_pages(struct zs_pool *pool)
1296{
1297 return atomic_long_read(&pool->pages_allocated);
1298}
1299EXPORT_SYMBOL_GPL(zs_get_total_pages);
1300
4bbc0bc0 1301/**
66cdef66
GM
1302 * zs_map_object - get address of allocated object from handle.
1303 * @pool: pool from which the object was allocated
1304 * @handle: handle returned from zs_malloc
f0953a1b 1305 * @mm: mapping mode to use
4bbc0bc0 1306 *
66cdef66
GM
1307 * Before using an object allocated from zs_malloc, it must be mapped using
1308 * this function. When done with the object, it must be unmapped using
1309 * zs_unmap_object.
4bbc0bc0 1310 *
66cdef66
GM
1311 * Only one object can be mapped per cpu at a time. There is no protection
1312 * against nested mappings.
1313 *
1314 * This function returns with preemption and page faults disabled.
4bbc0bc0 1315 */
66cdef66
GM
1316void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1317 enum zs_mapmode mm)
61989a80 1318{
3783689a 1319 struct zspage *zspage;
66cdef66 1320 struct page *page;
bfd093f5
MK
1321 unsigned long obj, off;
1322 unsigned int obj_idx;
61989a80 1323
66cdef66
GM
1324 struct size_class *class;
1325 struct mapping_area *area;
1326 struct page *pages[2];
2e40e163 1327 void *ret;
61989a80 1328
9eec4cd5 1329 /*
66cdef66
GM
1330 * Because we use per-cpu mapping areas shared among the
1331 * pools/users, we can't allow mapping in interrupt context
1332 * because it can corrupt another users mappings.
9eec4cd5 1333 */
1aedcafb 1334 BUG_ON(in_interrupt());
61989a80 1335
b475d42d 1336 /* It guarantees it can get zspage from handle safely */
c0547d0b 1337 spin_lock(&pool->lock);
2e40e163
MK
1338 obj = handle_to_obj(handle);
1339 obj_to_location(obj, &page, &obj_idx);
3783689a 1340 zspage = get_zspage(page);
48b4800a 1341
64f768c6
NP
1342#ifdef CONFIG_ZPOOL
1343 /*
1344 * Move the zspage to front of pool's LRU.
1345 *
1346 * Note that this is swap-specific, so by definition there are no ongoing
1347 * accesses to the memory while the page is swapped out that would make
1348 * it "hot". A new entry is hot, then ages to the tail until it gets either
1349 * written back or swaps back in.
1350 *
1351 * Furthermore, map is also called during writeback. We must not put an
1352 * isolated page on the LRU mid-reclaim.
1353 *
1354 * As a result, only update the LRU when the page is mapped for write
1355 * when it's first instantiated.
1356 *
1357 * This is a deviation from the other backends, which perform this update
1358 * in the allocation function (zbud_alloc, z3fold_alloc).
1359 */
1360 if (mm == ZS_MM_WO) {
1361 if (!list_empty(&zspage->lru))
1362 list_del(&zspage->lru);
1363 list_add(&zspage->lru, &pool->lru);
1364 }
1365#endif
1366
b475d42d 1367 /*
c0547d0b 1368 * migration cannot move any zpages in this zspage. Here, pool->lock
b475d42d
MK
1369 * is too heavy since callers would take some time until they calls
1370 * zs_unmap_object API so delegate the locking from class to zspage
1371 * which is smaller granularity.
1372 */
48b4800a 1373 migrate_read_lock(zspage);
c0547d0b 1374 spin_unlock(&pool->lock);
48b4800a 1375
67f1c9cd 1376 class = zspage_class(pool, zspage);
bfd093f5 1377 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1378
a3726599
MG
1379 local_lock(&zs_map_area.lock);
1380 area = this_cpu_ptr(&zs_map_area);
66cdef66
GM
1381 area->vm_mm = mm;
1382 if (off + class->size <= PAGE_SIZE) {
1383 /* this object is contained entirely within a page */
1384 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1385 ret = area->vm_addr + off;
1386 goto out;
61989a80
NG
1387 }
1388
66cdef66
GM
1389 /* this object spans two pages */
1390 pages[0] = page;
1391 pages[1] = get_next_page(page);
1392 BUG_ON(!pages[1]);
9eec4cd5 1393
2e40e163
MK
1394 ret = __zs_map_object(area, pages, off, class->size);
1395out:
a41ec880 1396 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1397 ret += ZS_HANDLE_SIZE;
1398
1399 return ret;
61989a80 1400}
66cdef66 1401EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1402
66cdef66 1403void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1404{
3783689a 1405 struct zspage *zspage;
66cdef66 1406 struct page *page;
bfd093f5
MK
1407 unsigned long obj, off;
1408 unsigned int obj_idx;
61989a80 1409
66cdef66
GM
1410 struct size_class *class;
1411 struct mapping_area *area;
9eec4cd5 1412
2e40e163
MK
1413 obj = handle_to_obj(handle);
1414 obj_to_location(obj, &page, &obj_idx);
3783689a 1415 zspage = get_zspage(page);
67f1c9cd 1416 class = zspage_class(pool, zspage);
bfd093f5 1417 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1418
66cdef66
GM
1419 area = this_cpu_ptr(&zs_map_area);
1420 if (off + class->size <= PAGE_SIZE)
1421 kunmap_atomic(area->vm_addr);
1422 else {
1423 struct page *pages[2];
40f9fb8c 1424
66cdef66
GM
1425 pages[0] = page;
1426 pages[1] = get_next_page(page);
1427 BUG_ON(!pages[1]);
1428
1429 __zs_unmap_object(area, pages, off, class->size);
1430 }
a3726599 1431 local_unlock(&zs_map_area.lock);
48b4800a
MK
1432
1433 migrate_read_unlock(zspage);
61989a80 1434}
66cdef66 1435EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1436
010b495e
SS
1437/**
1438 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1439 * zsmalloc &size_class.
1440 * @pool: zsmalloc pool to use
1441 *
1442 * The function returns the size of the first huge class - any object of equal
1443 * or bigger size will be stored in zspage consisting of a single physical
1444 * page.
1445 *
1446 * Context: Any context.
1447 *
1448 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1449 */
1450size_t zs_huge_class_size(struct zs_pool *pool)
1451{
1452 return huge_class_size;
1453}
1454EXPORT_SYMBOL_GPL(zs_huge_class_size);
1455
0a5f079b 1456static unsigned long obj_malloc(struct zs_pool *pool,
3783689a 1457 struct zspage *zspage, unsigned long handle)
c7806261 1458{
bfd093f5 1459 int i, nr_page, offset;
c7806261
MK
1460 unsigned long obj;
1461 struct link_free *link;
0a5f079b 1462 struct size_class *class;
c7806261
MK
1463
1464 struct page *m_page;
bfd093f5 1465 unsigned long m_offset;
c7806261
MK
1466 void *vaddr;
1467
0a5f079b 1468 class = pool->size_class[zspage->class];
312fcae2 1469 handle |= OBJ_ALLOCATED_TAG;
3783689a 1470 obj = get_freeobj(zspage);
bfd093f5
MK
1471
1472 offset = obj * class->size;
1473 nr_page = offset >> PAGE_SHIFT;
1474 m_offset = offset & ~PAGE_MASK;
1475 m_page = get_first_page(zspage);
1476
1477 for (i = 0; i < nr_page; i++)
1478 m_page = get_next_page(m_page);
c7806261
MK
1479
1480 vaddr = kmap_atomic(m_page);
1481 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1482 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
a41ec880 1483 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1484 /* record handle in the header of allocated chunk */
1485 link->handle = handle;
1486 else
3783689a
MK
1487 /* record handle to page->index */
1488 zspage->first_page->index = handle;
1489
c7806261 1490 kunmap_atomic(vaddr);
3783689a 1491 mod_zspage_inuse(zspage, 1);
c7806261 1492
bfd093f5
MK
1493 obj = location_to_obj(m_page, obj);
1494
c7806261
MK
1495 return obj;
1496}
1497
1498
61989a80
NG
1499/**
1500 * zs_malloc - Allocate block of given size from pool.
1501 * @pool: pool to allocate from
1502 * @size: size of block to allocate
fd854463 1503 * @gfp: gfp flags when allocating object
61989a80 1504 *
00a61d86 1505 * On success, handle to the allocated object is returned,
c7e6f17b 1506 * otherwise an ERR_PTR().
61989a80
NG
1507 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1508 */
d0d8da2d 1509unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1510{
2e40e163 1511 unsigned long handle, obj;
61989a80 1512 struct size_class *class;
48b4800a 1513 enum fullness_group newfg;
3783689a 1514 struct zspage *zspage;
61989a80 1515
7b60a685 1516 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
c7e6f17b 1517 return (unsigned long)ERR_PTR(-EINVAL);
2e40e163 1518
3783689a 1519 handle = cache_alloc_handle(pool, gfp);
2e40e163 1520 if (!handle)
c7e6f17b 1521 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80 1522
2e40e163
MK
1523 /* extra space in chunk to keep the handle */
1524 size += ZS_HANDLE_SIZE;
9eec4cd5 1525 class = pool->size_class[get_size_class_index(size)];
61989a80 1526
c0547d0b
NP
1527 /* pool->lock effectively protects the zpage migration */
1528 spin_lock(&pool->lock);
3783689a 1529 zspage = find_get_zspage(class);
48b4800a 1530 if (likely(zspage)) {
0a5f079b 1531 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1532 /* Now move the zspage to another fullness group, if required */
1533 fix_fullness_group(class, zspage);
1534 record_obj(handle, obj);
0a5f079b 1535 class_stat_inc(class, OBJ_USED, 1);
c0547d0b 1536 spin_unlock(&pool->lock);
61989a80 1537
48b4800a
MK
1538 return handle;
1539 }
0f050d99 1540
c0547d0b 1541 spin_unlock(&pool->lock);
48b4800a
MK
1542
1543 zspage = alloc_zspage(pool, class, gfp);
1544 if (!zspage) {
1545 cache_free_handle(pool, handle);
c7e6f17b 1546 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80
NG
1547 }
1548
c0547d0b 1549 spin_lock(&pool->lock);
0a5f079b 1550 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1551 newfg = get_fullness_group(class, zspage);
1552 insert_zspage(class, zspage, newfg);
1553 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1554 record_obj(handle, obj);
48b4800a
MK
1555 atomic_long_add(class->pages_per_zspage,
1556 &pool->pages_allocated);
3828a764 1557 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
0a5f079b 1558 class_stat_inc(class, OBJ_USED, 1);
48b4800a
MK
1559
1560 /* We completely set up zspage so mark them as movable */
1561 SetZsPageMovable(pool, zspage);
c0547d0b 1562 spin_unlock(&pool->lock);
61989a80 1563
2e40e163 1564 return handle;
61989a80
NG
1565}
1566EXPORT_SYMBOL_GPL(zs_malloc);
1567
85b32581 1568static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
61989a80
NG
1569{
1570 struct link_free *link;
3783689a
MK
1571 struct zspage *zspage;
1572 struct page *f_page;
bfd093f5
MK
1573 unsigned long f_offset;
1574 unsigned int f_objidx;
af4ee5e9 1575 void *vaddr;
61989a80 1576
2e40e163 1577 obj_to_location(obj, &f_page, &f_objidx);
0a5f079b 1578 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
3783689a 1579 zspage = get_zspage(f_page);
61989a80 1580
c7806261 1581 vaddr = kmap_atomic(f_page);
af4ee5e9 1582 link = (struct link_free *)(vaddr + f_offset);
85b32581
NP
1583
1584 if (handle) {
1585#ifdef CONFIG_ZPOOL
1586 /* Stores the (deferred) handle in the object's header */
1587 *handle |= OBJ_DEFERRED_HANDLE_TAG;
1588 *handle &= ~OBJ_ALLOCATED_TAG;
1589
1590 if (likely(!ZsHugePage(zspage)))
1591 link->deferred_handle = *handle;
1592 else
1593 f_page->index = *handle;
1594#endif
1595 } else {
1596 /* Insert this object in containing zspage's freelist */
1597 if (likely(!ZsHugePage(zspage)))
1598 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1599 else
1600 f_page->index = 0;
1601 set_freeobj(zspage, f_objidx);
1602 }
1603
af4ee5e9 1604 kunmap_atomic(vaddr);
3783689a 1605 mod_zspage_inuse(zspage, -1);
c7806261
MK
1606}
1607
1608void zs_free(struct zs_pool *pool, unsigned long handle)
1609{
3783689a
MK
1610 struct zspage *zspage;
1611 struct page *f_page;
bfd093f5 1612 unsigned long obj;
c7806261
MK
1613 struct size_class *class;
1614 enum fullness_group fullness;
1615
a5d21721 1616 if (IS_ERR_OR_NULL((void *)handle))
c7806261
MK
1617 return;
1618
b475d42d 1619 /*
c0547d0b 1620 * The pool->lock protects the race with zpage's migration
b475d42d
MK
1621 * so it's safe to get the page from handle.
1622 */
c0547d0b 1623 spin_lock(&pool->lock);
c7806261 1624 obj = handle_to_obj(handle);
67f1c9cd 1625 obj_to_page(obj, &f_page);
3783689a 1626 zspage = get_zspage(f_page);
67f1c9cd 1627 class = zspage_class(pool, zspage);
b475d42d 1628
0a5f079b 1629 class_stat_dec(class, OBJ_USED, 1);
9997bc01
NP
1630
1631#ifdef CONFIG_ZPOOL
1632 if (zspage->under_reclaim) {
1633 /*
1634 * Reclaim needs the handles during writeback. It'll free
1635 * them along with the zspage when it's done with them.
1636 *
85b32581 1637 * Record current deferred handle in the object's header.
9997bc01 1638 */
85b32581 1639 obj_free(class->size, obj, &handle);
9997bc01
NP
1640 spin_unlock(&pool->lock);
1641 return;
1642 }
1643#endif
85b32581
NP
1644 obj_free(class->size, obj, NULL);
1645
3783689a 1646 fullness = fix_fullness_group(class, zspage);
9997bc01
NP
1647 if (fullness == ZS_EMPTY)
1648 free_zspage(pool, class, zspage);
48b4800a 1649
c0547d0b 1650 spin_unlock(&pool->lock);
3783689a 1651 cache_free_handle(pool, handle);
312fcae2
MK
1652}
1653EXPORT_SYMBOL_GPL(zs_free);
1654
251cbb95
MK
1655static void zs_object_copy(struct size_class *class, unsigned long dst,
1656 unsigned long src)
312fcae2
MK
1657{
1658 struct page *s_page, *d_page;
bfd093f5 1659 unsigned int s_objidx, d_objidx;
312fcae2
MK
1660 unsigned long s_off, d_off;
1661 void *s_addr, *d_addr;
1662 int s_size, d_size, size;
1663 int written = 0;
1664
1665 s_size = d_size = class->size;
1666
1667 obj_to_location(src, &s_page, &s_objidx);
1668 obj_to_location(dst, &d_page, &d_objidx);
1669
bfd093f5
MK
1670 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1671 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1672
1673 if (s_off + class->size > PAGE_SIZE)
1674 s_size = PAGE_SIZE - s_off;
1675
1676 if (d_off + class->size > PAGE_SIZE)
1677 d_size = PAGE_SIZE - d_off;
1678
1679 s_addr = kmap_atomic(s_page);
1680 d_addr = kmap_atomic(d_page);
1681
1682 while (1) {
1683 size = min(s_size, d_size);
1684 memcpy(d_addr + d_off, s_addr + s_off, size);
1685 written += size;
1686
1687 if (written == class->size)
1688 break;
1689
495819ea
SS
1690 s_off += size;
1691 s_size -= size;
1692 d_off += size;
1693 d_size -= size;
1694
050a388b
AR
1695 /*
1696 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1697 * calls must occurs in reverse order of calls to kmap_atomic().
1698 * So, to call kunmap_atomic(s_addr) we should first call
46e87152
AR
1699 * kunmap_atomic(d_addr). For more details see
1700 * Documentation/mm/highmem.rst.
050a388b 1701 */
495819ea 1702 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1703 kunmap_atomic(d_addr);
1704 kunmap_atomic(s_addr);
1705 s_page = get_next_page(s_page);
312fcae2
MK
1706 s_addr = kmap_atomic(s_page);
1707 d_addr = kmap_atomic(d_page);
1708 s_size = class->size - written;
1709 s_off = 0;
312fcae2
MK
1710 }
1711
495819ea 1712 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1713 kunmap_atomic(d_addr);
1714 d_page = get_next_page(d_page);
312fcae2
MK
1715 d_addr = kmap_atomic(d_page);
1716 d_size = class->size - written;
1717 d_off = 0;
312fcae2
MK
1718 }
1719 }
1720
1721 kunmap_atomic(d_addr);
1722 kunmap_atomic(s_addr);
1723}
1724
1725/*
85b32581 1726 * Find object with a certain tag in zspage from index object and
312fcae2
MK
1727 * return handle.
1728 */
85b32581
NP
1729static unsigned long find_tagged_obj(struct size_class *class,
1730 struct page *page, int *obj_idx, int tag)
312fcae2 1731{
671f2fa8 1732 unsigned int offset;
cf675acb 1733 int index = *obj_idx;
312fcae2
MK
1734 unsigned long handle = 0;
1735 void *addr = kmap_atomic(page);
1736
3783689a 1737 offset = get_first_obj_offset(page);
312fcae2
MK
1738 offset += class->size * index;
1739
1740 while (offset < PAGE_SIZE) {
85b32581 1741 if (obj_tagged(page, addr + offset, &handle, tag))
b475d42d 1742 break;
312fcae2
MK
1743
1744 offset += class->size;
1745 index++;
1746 }
1747
1748 kunmap_atomic(addr);
cf675acb
GM
1749
1750 *obj_idx = index;
1751
312fcae2
MK
1752 return handle;
1753}
1754
85b32581
NP
1755/*
1756 * Find alloced object in zspage from index object and
1757 * return handle.
1758 */
1759static unsigned long find_alloced_obj(struct size_class *class,
1760 struct page *page, int *obj_idx)
1761{
1762 return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1763}
1764
1765#ifdef CONFIG_ZPOOL
1766/*
1767 * Find object storing a deferred handle in header in zspage from index object
1768 * and return handle.
1769 */
1770static unsigned long find_deferred_handle_obj(struct size_class *class,
1771 struct page *page, int *obj_idx)
1772{
1773 return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1774}
1775#endif
1776
312fcae2 1777struct zs_compact_control {
3783689a 1778 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1779 struct page *s_page;
1780 /* Destination page for migration which should be a first page
1781 * of zspage. */
1782 struct page *d_page;
1783 /* Starting object index within @s_page which used for live object
1784 * in the subpage. */
41b88e14 1785 int obj_idx;
312fcae2
MK
1786};
1787
1788static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1789 struct zs_compact_control *cc)
1790{
1791 unsigned long used_obj, free_obj;
1792 unsigned long handle;
1793 struct page *s_page = cc->s_page;
1794 struct page *d_page = cc->d_page;
41b88e14 1795 int obj_idx = cc->obj_idx;
312fcae2
MK
1796 int ret = 0;
1797
1798 while (1) {
cf675acb 1799 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1800 if (!handle) {
1801 s_page = get_next_page(s_page);
1802 if (!s_page)
1803 break;
41b88e14 1804 obj_idx = 0;
312fcae2
MK
1805 continue;
1806 }
1807
1808 /* Stop if there is no more space */
3783689a 1809 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1810 ret = -ENOMEM;
1811 break;
1812 }
1813
1814 used_obj = handle_to_obj(handle);
0a5f079b 1815 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
251cbb95 1816 zs_object_copy(class, free_obj, used_obj);
41b88e14 1817 obj_idx++;
312fcae2 1818 record_obj(handle, free_obj);
85b32581 1819 obj_free(class->size, used_obj, NULL);
312fcae2
MK
1820 }
1821
1822 /* Remember last position in this iteration */
1823 cc->s_page = s_page;
41b88e14 1824 cc->obj_idx = obj_idx;
312fcae2
MK
1825
1826 return ret;
1827}
1828
3783689a 1829static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1830{
1831 int i;
3783689a
MK
1832 struct zspage *zspage;
1833 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1834
3783689a
MK
1835 if (!source) {
1836 fg[0] = ZS_ALMOST_FULL;
1837 fg[1] = ZS_ALMOST_EMPTY;
1838 }
1839
1840 for (i = 0; i < 2; i++) {
1841 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1842 struct zspage, list);
1843 if (zspage) {
1844 remove_zspage(class, zspage, fg[i]);
1845 return zspage;
312fcae2
MK
1846 }
1847 }
1848
3783689a 1849 return zspage;
312fcae2
MK
1850}
1851
860c707d 1852/*
3783689a 1853 * putback_zspage - add @zspage into right class's fullness list
860c707d 1854 * @class: destination class
3783689a 1855 * @zspage: target page
860c707d 1856 *
3783689a 1857 * Return @zspage's fullness_group
860c707d 1858 */
4aa409ca 1859static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1860 struct zspage *zspage)
312fcae2 1861{
312fcae2
MK
1862 enum fullness_group fullness;
1863
3783689a
MK
1864 fullness = get_fullness_group(class, zspage);
1865 insert_zspage(class, zspage, fullness);
1866 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1867
860c707d 1868 return fullness;
61989a80 1869}
312fcae2 1870
9997bc01 1871#if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
4d0a5402
CIK
1872/*
1873 * To prevent zspage destroy during migration, zspage freeing should
1874 * hold locks of all pages in the zspage.
1875 */
1876static void lock_zspage(struct zspage *zspage)
1877{
2505a981 1878 struct page *curr_page, *page;
4d0a5402 1879
2505a981
SA
1880 /*
1881 * Pages we haven't locked yet can be migrated off the list while we're
1882 * trying to lock them, so we need to be careful and only attempt to
1883 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1884 * may no longer belong to the zspage. This means that we may wait for
1885 * the wrong page to unlock, so we must take a reference to the page
1886 * prior to waiting for it to unlock outside migrate_read_lock().
1887 */
1888 while (1) {
1889 migrate_read_lock(zspage);
1890 page = get_first_page(zspage);
1891 if (trylock_page(page))
1892 break;
1893 get_page(page);
1894 migrate_read_unlock(zspage);
1895 wait_on_page_locked(page);
1896 put_page(page);
1897 }
1898
1899 curr_page = page;
1900 while ((page = get_next_page(curr_page))) {
1901 if (trylock_page(page)) {
1902 curr_page = page;
1903 } else {
1904 get_page(page);
1905 migrate_read_unlock(zspage);
1906 wait_on_page_locked(page);
1907 put_page(page);
1908 migrate_read_lock(zspage);
1909 }
1910 }
1911 migrate_read_unlock(zspage);
4d0a5402 1912}
9997bc01
NP
1913#endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1914
1915#ifdef CONFIG_ZPOOL
1916/*
1917 * Unlocks all the pages of the zspage.
1918 *
1919 * pool->lock must be held before this function is called
1920 * to prevent the underlying pages from migrating.
1921 */
1922static void unlock_zspage(struct zspage *zspage)
1923{
1924 struct page *page = get_first_page(zspage);
1925
1926 do {
1927 unlock_page(page);
1928 } while ((page = get_next_page(page)) != NULL);
1929}
1930#endif /* CONFIG_ZPOOL */
4d0a5402 1931
48b4800a
MK
1932static void migrate_lock_init(struct zspage *zspage)
1933{
1934 rwlock_init(&zspage->lock);
1935}
1936
cfc451cf 1937static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1938{
1939 read_lock(&zspage->lock);
1940}
1941
8a374ccc 1942static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1943{
1944 read_unlock(&zspage->lock);
1945}
1946
9997bc01 1947#ifdef CONFIG_COMPACTION
48b4800a
MK
1948static void migrate_write_lock(struct zspage *zspage)
1949{
1950 write_lock(&zspage->lock);
1951}
1952
b475d42d
MK
1953static void migrate_write_lock_nested(struct zspage *zspage)
1954{
1955 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1956}
1957
48b4800a
MK
1958static void migrate_write_unlock(struct zspage *zspage)
1959{
1960 write_unlock(&zspage->lock);
1961}
1962
1963/* Number of isolated subpage for *page migration* in this zspage */
1964static void inc_zspage_isolation(struct zspage *zspage)
1965{
1966 zspage->isolated++;
1967}
1968
1969static void dec_zspage_isolation(struct zspage *zspage)
1970{
c4549b87 1971 VM_BUG_ON(zspage->isolated == 0);
48b4800a
MK
1972 zspage->isolated--;
1973}
1974
68f2736a
MWO
1975static const struct movable_operations zsmalloc_mops;
1976
48b4800a
MK
1977static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1978 struct page *newpage, struct page *oldpage)
1979{
1980 struct page *page;
1981 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1982 int idx = 0;
1983
1984 page = get_first_page(zspage);
1985 do {
1986 if (page == oldpage)
1987 pages[idx] = newpage;
1988 else
1989 pages[idx] = page;
1990 idx++;
1991 } while ((page = get_next_page(page)) != NULL);
1992
1993 create_page_chain(class, zspage, pages);
1994 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
a41ec880 1995 if (unlikely(ZsHugePage(zspage)))
48b4800a 1996 newpage->index = oldpage->index;
68f2736a 1997 __SetPageMovable(newpage, &zsmalloc_mops);
48b4800a
MK
1998}
1999
4d0a5402 2000static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a 2001{
48b4800a 2002 struct zspage *zspage;
48b4800a
MK
2003
2004 /*
2005 * Page is locked so zspage couldn't be destroyed. For detail, look at
2006 * lock_zspage in free_zspage.
2007 */
48b4800a
MK
2008 VM_BUG_ON_PAGE(PageIsolated(page), page);
2009
2010 zspage = get_zspage(page);
c4549b87 2011 migrate_write_lock(zspage);
48b4800a 2012 inc_zspage_isolation(zspage);
c4549b87 2013 migrate_write_unlock(zspage);
48b4800a
MK
2014
2015 return true;
2016}
2017
68f2736a
MWO
2018static int zs_page_migrate(struct page *newpage, struct page *page,
2019 enum migrate_mode mode)
48b4800a
MK
2020{
2021 struct zs_pool *pool;
2022 struct size_class *class;
48b4800a
MK
2023 struct zspage *zspage;
2024 struct page *dummy;
2025 void *s_addr, *d_addr, *addr;
671f2fa8 2026 unsigned int offset;
3ae92ac2 2027 unsigned long handle;
48b4800a
MK
2028 unsigned long old_obj, new_obj;
2029 unsigned int obj_idx;
48b4800a 2030
2916ecc0
JG
2031 /*
2032 * We cannot support the _NO_COPY case here, because copy needs to
2033 * happen under the zs lock, which does not work with
2034 * MIGRATE_SYNC_NO_COPY workflow.
2035 */
2036 if (mode == MIGRATE_SYNC_NO_COPY)
2037 return -EINVAL;
2038
48b4800a
MK
2039 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2040
68f2736a
MWO
2041 /* The page is locked, so this pointer must remain valid */
2042 zspage = get_zspage(page);
2043 pool = zspage->pool;
b475d42d
MK
2044
2045 /*
c0547d0b 2046 * The pool's lock protects the race between zpage migration
b475d42d
MK
2047 * and zs_free.
2048 */
c0547d0b 2049 spin_lock(&pool->lock);
67f1c9cd 2050 class = zspage_class(pool, zspage);
48b4800a 2051
b475d42d
MK
2052 /* the migrate_write_lock protects zpage access via zs_map_object */
2053 migrate_write_lock(zspage);
48b4800a 2054
b475d42d 2055 offset = get_first_obj_offset(page);
48b4800a 2056 s_addr = kmap_atomic(page);
48b4800a
MK
2057
2058 /*
2059 * Here, any user cannot access all objects in the zspage so let's move.
2060 */
2061 d_addr = kmap_atomic(newpage);
2062 memcpy(d_addr, s_addr, PAGE_SIZE);
2063 kunmap_atomic(d_addr);
2064
b475d42d 2065 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
48b4800a 2066 addr += class->size) {
3ae92ac2 2067 if (obj_allocated(page, addr, &handle)) {
48b4800a
MK
2068
2069 old_obj = handle_to_obj(handle);
2070 obj_to_location(old_obj, &dummy, &obj_idx);
2071 new_obj = (unsigned long)location_to_obj(newpage,
2072 obj_idx);
48b4800a
MK
2073 record_obj(handle, new_obj);
2074 }
2075 }
b475d42d 2076 kunmap_atomic(s_addr);
48b4800a
MK
2077
2078 replace_sub_page(class, zspage, newpage, page);
b475d42d
MK
2079 /*
2080 * Since we complete the data copy and set up new zspage structure,
c0547d0b 2081 * it's okay to release the pool's lock.
b475d42d 2082 */
c0547d0b 2083 spin_unlock(&pool->lock);
48b4800a 2084 dec_zspage_isolation(zspage);
b475d42d 2085 migrate_write_unlock(zspage);
48b4800a 2086
b475d42d 2087 get_page(newpage);
ac8f05da
CM
2088 if (page_zone(newpage) != page_zone(page)) {
2089 dec_zone_page_state(page, NR_ZSPAGES);
2090 inc_zone_page_state(newpage, NR_ZSPAGES);
2091 }
2092
48b4800a
MK
2093 reset_page(page);
2094 put_page(page);
48b4800a 2095
b475d42d 2096 return MIGRATEPAGE_SUCCESS;
48b4800a
MK
2097}
2098
4d0a5402 2099static void zs_page_putback(struct page *page)
48b4800a 2100{
48b4800a
MK
2101 struct zspage *zspage;
2102
48b4800a
MK
2103 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2104
2105 zspage = get_zspage(page);
c4549b87 2106 migrate_write_lock(zspage);
48b4800a 2107 dec_zspage_isolation(zspage);
c4549b87 2108 migrate_write_unlock(zspage);
48b4800a
MK
2109}
2110
68f2736a 2111static const struct movable_operations zsmalloc_mops = {
48b4800a 2112 .isolate_page = zs_page_isolate,
68f2736a 2113 .migrate_page = zs_page_migrate,
48b4800a
MK
2114 .putback_page = zs_page_putback,
2115};
2116
48b4800a
MK
2117/*
2118 * Caller should hold page_lock of all pages in the zspage
2119 * In here, we cannot use zspage meta data.
2120 */
2121static void async_free_zspage(struct work_struct *work)
2122{
2123 int i;
2124 struct size_class *class;
2125 unsigned int class_idx;
2126 enum fullness_group fullness;
2127 struct zspage *zspage, *tmp;
2128 LIST_HEAD(free_pages);
2129 struct zs_pool *pool = container_of(work, struct zs_pool,
2130 free_work);
2131
cf8e0fed 2132 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2133 class = pool->size_class[i];
2134 if (class->index != i)
2135 continue;
2136
c0547d0b 2137 spin_lock(&pool->lock);
48b4800a 2138 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
c0547d0b 2139 spin_unlock(&pool->lock);
48b4800a
MK
2140 }
2141
48b4800a
MK
2142 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2143 list_del(&zspage->list);
2144 lock_zspage(zspage);
2145
2146 get_zspage_mapping(zspage, &class_idx, &fullness);
2147 VM_BUG_ON(fullness != ZS_EMPTY);
2148 class = pool->size_class[class_idx];
c0547d0b 2149 spin_lock(&pool->lock);
64f768c6
NP
2150#ifdef CONFIG_ZPOOL
2151 list_del(&zspage->lru);
2152#endif
33848337 2153 __free_zspage(pool, class, zspage);
c0547d0b 2154 spin_unlock(&pool->lock);
48b4800a
MK
2155 }
2156};
2157
2158static void kick_deferred_free(struct zs_pool *pool)
2159{
2160 schedule_work(&pool->free_work);
2161}
2162
68f2736a
MWO
2163static void zs_flush_migration(struct zs_pool *pool)
2164{
2165 flush_work(&pool->free_work);
2166}
2167
48b4800a
MK
2168static void init_deferred_free(struct zs_pool *pool)
2169{
2170 INIT_WORK(&pool->free_work, async_free_zspage);
2171}
2172
2173static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2174{
2175 struct page *page = get_first_page(zspage);
2176
2177 do {
2178 WARN_ON(!trylock_page(page));
68f2736a 2179 __SetPageMovable(page, &zsmalloc_mops);
48b4800a
MK
2180 unlock_page(page);
2181 } while ((page = get_next_page(page)) != NULL);
2182}
68f2736a
MWO
2183#else
2184static inline void zs_flush_migration(struct zs_pool *pool) { }
48b4800a
MK
2185#endif
2186
04f05909
SS
2187/*
2188 *
2189 * Based on the number of unused allocated objects calculate
2190 * and return the number of pages that we can free.
04f05909
SS
2191 */
2192static unsigned long zs_can_compact(struct size_class *class)
2193{
2194 unsigned long obj_wasted;
44f43e99
SS
2195 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2196 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2197
44f43e99
SS
2198 if (obj_allocated <= obj_used)
2199 return 0;
04f05909 2200
44f43e99 2201 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2202 obj_wasted /= class->objs_per_zspage;
04f05909 2203
6cbf16b3 2204 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2205}
2206
23959281
RY
2207static unsigned long __zs_compact(struct zs_pool *pool,
2208 struct size_class *class)
312fcae2 2209{
312fcae2 2210 struct zs_compact_control cc;
3783689a
MK
2211 struct zspage *src_zspage;
2212 struct zspage *dst_zspage = NULL;
23959281 2213 unsigned long pages_freed = 0;
312fcae2 2214
c0547d0b
NP
2215 /*
2216 * protect the race between zpage migration and zs_free
2217 * as well as zpage allocation/free
2218 */
2219 spin_lock(&pool->lock);
3783689a 2220 while ((src_zspage = isolate_zspage(class, true))) {
b475d42d
MK
2221 /* protect someone accessing the zspage(i.e., zs_map_object) */
2222 migrate_write_lock(src_zspage);
312fcae2 2223
04f05909
SS
2224 if (!zs_can_compact(class))
2225 break;
2226
41b88e14 2227 cc.obj_idx = 0;
48b4800a 2228 cc.s_page = get_first_page(src_zspage);
312fcae2 2229
3783689a 2230 while ((dst_zspage = isolate_zspage(class, false))) {
b475d42d
MK
2231 migrate_write_lock_nested(dst_zspage);
2232
48b4800a 2233 cc.d_page = get_first_page(dst_zspage);
312fcae2 2234 /*
0dc63d48
SS
2235 * If there is no more space in dst_page, resched
2236 * and see if anyone had allocated another zspage.
312fcae2
MK
2237 */
2238 if (!migrate_zspage(pool, class, &cc))
2239 break;
2240
4aa409ca 2241 putback_zspage(class, dst_zspage);
b475d42d
MK
2242 migrate_write_unlock(dst_zspage);
2243 dst_zspage = NULL;
c0547d0b 2244 if (spin_is_contended(&pool->lock))
b475d42d 2245 break;
312fcae2
MK
2246 }
2247
2248 /* Stop if we couldn't find slot */
3783689a 2249 if (dst_zspage == NULL)
312fcae2
MK
2250 break;
2251
4aa409ca 2252 putback_zspage(class, dst_zspage);
b475d42d
MK
2253 migrate_write_unlock(dst_zspage);
2254
4aa409ca 2255 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
b475d42d 2256 migrate_write_unlock(src_zspage);
48b4800a 2257 free_zspage(pool, class, src_zspage);
23959281 2258 pages_freed += class->pages_per_zspage;
b475d42d
MK
2259 } else
2260 migrate_write_unlock(src_zspage);
c0547d0b 2261 spin_unlock(&pool->lock);
312fcae2 2262 cond_resched();
c0547d0b 2263 spin_lock(&pool->lock);
312fcae2
MK
2264 }
2265
b475d42d 2266 if (src_zspage) {
4aa409ca 2267 putback_zspage(class, src_zspage);
b475d42d
MK
2268 migrate_write_unlock(src_zspage);
2269 }
312fcae2 2270
c0547d0b 2271 spin_unlock(&pool->lock);
23959281
RY
2272
2273 return pages_freed;
312fcae2
MK
2274}
2275
2276unsigned long zs_compact(struct zs_pool *pool)
2277{
2278 int i;
312fcae2 2279 struct size_class *class;
23959281 2280 unsigned long pages_freed = 0;
312fcae2 2281
cf8e0fed 2282 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2 2283 class = pool->size_class[i];
312fcae2
MK
2284 if (class->index != i)
2285 continue;
23959281 2286 pages_freed += __zs_compact(pool, class);
312fcae2 2287 }
23959281 2288 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
312fcae2 2289
23959281 2290 return pages_freed;
312fcae2
MK
2291}
2292EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2293
7d3f3938
SS
2294void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2295{
2296 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2297}
2298EXPORT_SYMBOL_GPL(zs_pool_stats);
2299
ab9d306d
SS
2300static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2301 struct shrink_control *sc)
2302{
2303 unsigned long pages_freed;
2304 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2305 shrinker);
2306
ab9d306d
SS
2307 /*
2308 * Compact classes and calculate compaction delta.
2309 * Can run concurrently with a manually triggered
2310 * (by user) compaction.
2311 */
23959281 2312 pages_freed = zs_compact(pool);
ab9d306d
SS
2313
2314 return pages_freed ? pages_freed : SHRINK_STOP;
2315}
2316
2317static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2318 struct shrink_control *sc)
2319{
2320 int i;
2321 struct size_class *class;
2322 unsigned long pages_to_free = 0;
2323 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2324 shrinker);
2325
cf8e0fed 2326 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d 2327 class = pool->size_class[i];
ab9d306d
SS
2328 if (class->index != i)
2329 continue;
2330
ab9d306d 2331 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2332 }
2333
2334 return pages_to_free;
2335}
2336
2337static void zs_unregister_shrinker(struct zs_pool *pool)
2338{
93144ca3 2339 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2340}
2341
2342static int zs_register_shrinker(struct zs_pool *pool)
2343{
2344 pool->shrinker.scan_objects = zs_shrinker_scan;
2345 pool->shrinker.count_objects = zs_shrinker_count;
2346 pool->shrinker.batch = 0;
2347 pool->shrinker.seeks = DEFAULT_SEEKS;
2348
e33c267a
RG
2349 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2350 pool->name);
ab9d306d
SS
2351}
2352
6260ae35
SS
2353static int calculate_zspage_chain_size(int class_size)
2354{
2355 int i, min_waste = INT_MAX;
2356 int chain_size = 1;
2357
e1d1f354
SS
2358 if (is_power_of_2(class_size))
2359 return chain_size;
2360
6260ae35
SS
2361 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2362 int waste;
2363
2364 waste = (i * PAGE_SIZE) % class_size;
2365 if (waste < min_waste) {
2366 min_waste = waste;
2367 chain_size = i;
2368 }
2369 }
2370
2371 return chain_size;
2372}
2373
00a61d86 2374/**
66cdef66 2375 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2376 * @name: pool name to be created
166cfda7 2377 *
66cdef66
GM
2378 * This function must be called before anything when using
2379 * the zsmalloc allocator.
166cfda7 2380 *
66cdef66
GM
2381 * On success, a pointer to the newly created pool is returned,
2382 * otherwise NULL.
396b7fd6 2383 */
d0d8da2d 2384struct zs_pool *zs_create_pool(const char *name)
61989a80 2385{
66cdef66
GM
2386 int i;
2387 struct zs_pool *pool;
2388 struct size_class *prev_class = NULL;
61989a80 2389
66cdef66
GM
2390 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2391 if (!pool)
2392 return NULL;
61989a80 2393
48b4800a 2394 init_deferred_free(pool);
c0547d0b 2395 spin_lock_init(&pool->lock);
61989a80 2396
2e40e163
MK
2397 pool->name = kstrdup(name, GFP_KERNEL);
2398 if (!pool->name)
2399 goto err;
2400
3783689a 2401 if (create_cache(pool))
2e40e163
MK
2402 goto err;
2403
c60369f0 2404 /*
399d8eeb 2405 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2406 * for merging should be larger or equal to current size.
c60369f0 2407 */
cf8e0fed 2408 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2409 int size;
2410 int pages_per_zspage;
64d90465 2411 int objs_per_zspage;
66cdef66 2412 struct size_class *class;
3783689a 2413 int fullness = 0;
c60369f0 2414
66cdef66
GM
2415 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2416 if (size > ZS_MAX_ALLOC_SIZE)
2417 size = ZS_MAX_ALLOC_SIZE;
6260ae35 2418 pages_per_zspage = calculate_zspage_chain_size(size);
64d90465 2419 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2420
010b495e
SS
2421 /*
2422 * We iterate from biggest down to smallest classes,
2423 * so huge_class_size holds the size of the first huge
2424 * class. Any object bigger than or equal to that will
2425 * endup in the huge class.
2426 */
2427 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2428 !huge_class_size) {
2429 huge_class_size = size;
2430 /*
2431 * The object uses ZS_HANDLE_SIZE bytes to store the
2432 * handle. We need to subtract it, because zs_malloc()
2433 * unconditionally adds handle size before it performs
2434 * size class search - so object may be smaller than
2435 * huge class size, yet it still can end up in the huge
2436 * class because it grows by ZS_HANDLE_SIZE extra bytes
2437 * right before class lookup.
2438 */
2439 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2440 }
2441
66cdef66
GM
2442 /*
2443 * size_class is used for normal zsmalloc operation such
2444 * as alloc/free for that size. Although it is natural that we
2445 * have one size_class for each size, there is a chance that we
2446 * can get more memory utilization if we use one size_class for
2447 * many different sizes whose size_class have same
2448 * characteristics. So, we makes size_class point to
2449 * previous size_class if possible.
2450 */
2451 if (prev_class) {
64d90465 2452 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2453 pool->size_class[i] = prev_class;
2454 continue;
2455 }
2456 }
2457
2458 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2459 if (!class)
2460 goto err;
2461
2462 class->size = size;
2463 class->index = i;
2464 class->pages_per_zspage = pages_per_zspage;
64d90465 2465 class->objs_per_zspage = objs_per_zspage;
66cdef66 2466 pool->size_class[i] = class;
48b4800a
MK
2467 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2468 fullness++)
3783689a 2469 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2470
2471 prev_class = class;
61989a80
NG
2472 }
2473
d34f6157
DS
2474 /* debug only, don't abort if it fails */
2475 zs_pool_stat_create(pool, name);
0f050d99 2476
ab9d306d 2477 /*
93144ca3
AK
2478 * Not critical since shrinker is only used to trigger internal
2479 * defragmentation of the pool which is pretty optional thing. If
2480 * registration fails we still can use the pool normally and user can
2481 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2482 */
93144ca3
AK
2483 zs_register_shrinker(pool);
2484
64f768c6
NP
2485#ifdef CONFIG_ZPOOL
2486 INIT_LIST_HEAD(&pool->lru);
2487#endif
2488
66cdef66
GM
2489 return pool;
2490
2491err:
2492 zs_destroy_pool(pool);
2493 return NULL;
61989a80 2494}
66cdef66 2495EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2496
66cdef66 2497void zs_destroy_pool(struct zs_pool *pool)
61989a80 2498{
66cdef66 2499 int i;
61989a80 2500
ab9d306d 2501 zs_unregister_shrinker(pool);
68f2736a 2502 zs_flush_migration(pool);
0f050d99
GM
2503 zs_pool_stat_destroy(pool);
2504
cf8e0fed 2505 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2506 int fg;
2507 struct size_class *class = pool->size_class[i];
61989a80 2508
4249a05f
AR
2509 if (!class)
2510 continue;
2511
66cdef66
GM
2512 if (class->index != i)
2513 continue;
61989a80 2514
48b4800a 2515 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2516 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2517 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2518 class->size, fg);
2519 }
2520 }
2521 kfree(class);
2522 }
f553646a 2523
3783689a 2524 destroy_cache(pool);
0f050d99 2525 kfree(pool->name);
66cdef66
GM
2526 kfree(pool);
2527}
2528EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2529
9997bc01 2530#ifdef CONFIG_ZPOOL
85b32581
NP
2531static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2532 struct zspage *zspage)
2533{
2534 unsigned int obj_idx = 0;
2535 unsigned long handle, off = 0; /* off is within-page offset */
2536 struct page *page = get_first_page(zspage);
2537 struct link_free *prev_free = NULL;
2538 void *prev_page_vaddr = NULL;
2539
2540 /* in case no free object found */
2541 set_freeobj(zspage, (unsigned int)(-1UL));
2542
2543 while (page) {
2544 void *vaddr = kmap_atomic(page);
2545 struct page *next_page;
2546
2547 while (off < PAGE_SIZE) {
2548 void *obj_addr = vaddr + off;
2549
2550 /* skip allocated object */
2551 if (obj_allocated(page, obj_addr, &handle)) {
2552 obj_idx++;
2553 off += class->size;
2554 continue;
2555 }
2556
2557 /* free deferred handle from reclaim attempt */
2558 if (obj_stores_deferred_handle(page, obj_addr, &handle))
2559 cache_free_handle(pool, handle);
2560
2561 if (prev_free)
2562 prev_free->next = obj_idx << OBJ_TAG_BITS;
2563 else /* first free object found */
2564 set_freeobj(zspage, obj_idx);
2565
2566 prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2567 /* if last free object in a previous page, need to unmap */
2568 if (prev_page_vaddr) {
2569 kunmap_atomic(prev_page_vaddr);
2570 prev_page_vaddr = NULL;
2571 }
2572
2573 obj_idx++;
2574 off += class->size;
2575 }
2576
2577 /*
2578 * Handle the last (full or partial) object on this page.
2579 */
2580 next_page = get_next_page(page);
2581 if (next_page) {
2582 if (!prev_free || prev_page_vaddr) {
2583 /*
2584 * There is no free object in this page, so we can safely
2585 * unmap it.
2586 */
2587 kunmap_atomic(vaddr);
2588 } else {
2589 /* update prev_page_vaddr since prev_free is on this page */
2590 prev_page_vaddr = vaddr;
2591 }
2592 } else { /* this is the last page */
2593 if (prev_free) {
2594 /*
2595 * Reset OBJ_TAG_BITS bit to last link to tell
2596 * whether it's allocated object or not.
2597 */
2598 prev_free->next = -1UL << OBJ_TAG_BITS;
2599 }
2600
2601 /* unmap previous page (if not done yet) */
2602 if (prev_page_vaddr) {
2603 kunmap_atomic(prev_page_vaddr);
2604 prev_page_vaddr = NULL;
2605 }
2606
2607 kunmap_atomic(vaddr);
2608 }
2609
2610 page = next_page;
2611 off %= PAGE_SIZE;
2612 }
2613}
2614
9997bc01
NP
2615static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2616{
2617 int i, obj_idx, ret = 0;
2618 unsigned long handle;
2619 struct zspage *zspage;
2620 struct page *page;
2621 enum fullness_group fullness;
2622
2623 /* Lock LRU and fullness list */
2624 spin_lock(&pool->lock);
2625 if (list_empty(&pool->lru)) {
2626 spin_unlock(&pool->lock);
2627 return -EINVAL;
2628 }
2629
2630 for (i = 0; i < retries; i++) {
2631 struct size_class *class;
2632
2633 zspage = list_last_entry(&pool->lru, struct zspage, lru);
2634 list_del(&zspage->lru);
2635
2636 /* zs_free may free objects, but not the zspage and handles */
2637 zspage->under_reclaim = true;
2638
2639 class = zspage_class(pool, zspage);
2640 fullness = get_fullness_group(class, zspage);
2641
2642 /* Lock out object allocations and object compaction */
2643 remove_zspage(class, zspage, fullness);
2644
2645 spin_unlock(&pool->lock);
2646 cond_resched();
2647
2648 /* Lock backing pages into place */
2649 lock_zspage(zspage);
2650
2651 obj_idx = 0;
2652 page = get_first_page(zspage);
2653 while (1) {
2654 handle = find_alloced_obj(class, page, &obj_idx);
2655 if (!handle) {
2656 page = get_next_page(page);
2657 if (!page)
2658 break;
2659 obj_idx = 0;
2660 continue;
2661 }
2662
2663 /*
2664 * This will write the object and call zs_free.
2665 *
2666 * zs_free will free the object, but the
2667 * under_reclaim flag prevents it from freeing
2668 * the zspage altogether. This is necessary so
2669 * that we can continue working with the
2670 * zspage potentially after the last object
2671 * has been freed.
2672 */
2673 ret = pool->zpool_ops->evict(pool->zpool, handle);
2674 if (ret)
2675 goto next;
2676
2677 obj_idx++;
2678 }
2679
2680next:
2681 /* For freeing the zspage, or putting it back in the pool and LRU list. */
2682 spin_lock(&pool->lock);
2683 zspage->under_reclaim = false;
2684
2685 if (!get_zspage_inuse(zspage)) {
2686 /*
2687 * Fullness went stale as zs_free() won't touch it
2688 * while the page is removed from the pool. Fix it
2689 * up for the check in __free_zspage().
2690 */
2691 zspage->fullness = ZS_EMPTY;
2692
2693 __free_zspage(pool, class, zspage);
2694 spin_unlock(&pool->lock);
2695 return 0;
2696 }
2697
85b32581
NP
2698 /*
2699 * Eviction fails on one of the handles, so we need to restore zspage.
2700 * We need to rebuild its freelist (and free stored deferred handles),
2701 * put it back to the correct size class, and add it to the LRU list.
2702 */
2703 restore_freelist(pool, class, zspage);
9997bc01
NP
2704 putback_zspage(class, zspage);
2705 list_add(&zspage->lru, &pool->lru);
2706 unlock_zspage(zspage);
2707 }
2708
2709 spin_unlock(&pool->lock);
2710 return -EAGAIN;
2711}
2712#endif /* CONFIG_ZPOOL */
2713
66cdef66
GM
2714static int __init zs_init(void)
2715{
48b4800a
MK
2716 int ret;
2717
215c89d0
SAS
2718 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2719 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2720 if (ret)
68f2736a 2721 goto out;
66cdef66 2722
66cdef66
GM
2723#ifdef CONFIG_ZPOOL
2724 zpool_register_driver(&zs_zpool_driver);
2725#endif
0f050d99 2726
4abaac9b
DS
2727 zs_stat_init();
2728
66cdef66 2729 return 0;
0f050d99 2730
48b4800a 2731out:
0f050d99 2732 return ret;
61989a80 2733}
61989a80 2734
66cdef66 2735static void __exit zs_exit(void)
61989a80 2736{
66cdef66
GM
2737#ifdef CONFIG_ZPOOL
2738 zpool_unregister_driver(&zs_zpool_driver);
2739#endif
215c89d0 2740 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2741
2742 zs_stat_exit();
61989a80 2743}
069f101f
BH
2744
2745module_init(zs_init);
2746module_exit(zs_exit);
2747
2748MODULE_LICENSE("Dual BSD/GPL");
2749MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");