mm/slub: Define struct slab fields for CONFIG_SLUB_CPU_PARTIAL only when enabled
[linux-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
48b4800a
MK
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
fd854463 23 * page->units: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
50d34394 36#include <linux/magic.h>
61989a80
NG
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
61989a80
NG
40#include <linux/string.h>
41#include <linux/slab.h>
ca5999fd 42#include <linux/pgtable.h>
65fddcfc 43#include <asm/tlbflush.h>
61989a80
NG
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
0cbb613f 46#include <linux/vmalloc.h>
759b26b2 47#include <linux/preempt.h>
0959c63f 48#include <linux/spinlock.h>
93144ca3 49#include <linux/shrinker.h>
0959c63f 50#include <linux/types.h>
0f050d99 51#include <linux/debugfs.h>
bcf1647d 52#include <linux/zsmalloc.h>
c795779d 53#include <linux/zpool.h>
48b4800a 54#include <linux/mount.h>
8e9231f8 55#include <linux/pseudo_fs.h>
dd4123f3 56#include <linux/migrate.h>
701d6785 57#include <linux/wait.h>
48b4800a 58#include <linux/pagemap.h>
cdc346b3 59#include <linux/fs.h>
48b4800a
MK
60
61#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
62
63/*
cb152a1a 64 * This must be power of 2 and greater than or equal to sizeof(link_free).
0959c63f
SJ
65 * These two conditions ensure that any 'struct link_free' itself doesn't
66 * span more than 1 page which avoids complex case of mapping 2 pages simply
67 * to restore link_free pointer values.
68 */
69#define ZS_ALIGN 8
70
71/*
72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74 */
75#define ZS_MAX_ZSPAGE_ORDER 2
76#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
2e40e163
MK
78#define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
0959c63f
SJ
80/*
81 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 82 * a single (unsigned long) handle value.
0959c63f 83 *
bfd093f5 84 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
85 *
86 * This is made more complicated by various memory models and PAE.
87 */
88
02390b87
KS
89#ifndef MAX_POSSIBLE_PHYSMEM_BITS
90#ifdef MAX_PHYSMEM_BITS
91#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92#else
0959c63f
SJ
93/*
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 * be PAGE_SHIFT
96 */
02390b87 97#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
98#endif
99#endif
02390b87
KS
100
101#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
102
103/*
104 * Memory for allocating for handle keeps object position by
105 * encoding <page, obj_idx> and the encoded value has a room
106 * in least bit(ie, look at obj_to_location).
107 * We use the bit to synchronize between object access by
108 * user and migration.
109 */
110#define HANDLE_PIN_BIT 0
111
112/*
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
118 */
119#define OBJ_ALLOCATED_TAG 1
120#define OBJ_TAG_BITS 1
121#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
122#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
cf8e0fed
JM
124#define FULLNESS_BITS 2
125#define CLASS_BITS 8
126#define ISOLATED_BITS 3
127#define MAGIC_VAL_BITS 8
128
0959c63f
SJ
129#define MAX(a, b) ((a) >= (b) ? (a) : (b))
130/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131#define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 133/* each chunk includes extra space to keep handle */
7b60a685 134#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
135
136/*
7eb52512 137 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
138 * trader-off here:
139 * - Large number of size classes is potentially wasteful as free page are
140 * spread across these classes
141 * - Small number of size classes causes large internal fragmentation
142 * - Probably its better to use specific size classes (empirically
143 * determined). NOTE: all those class sizes must be set as multiple of
144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145 *
146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 * (reason above)
148 */
3783689a 149#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
150#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 152
0959c63f 153enum fullness_group {
0959c63f 154 ZS_EMPTY,
48b4800a
MK
155 ZS_ALMOST_EMPTY,
156 ZS_ALMOST_FULL,
157 ZS_FULL,
158 NR_ZS_FULLNESS,
0959c63f
SJ
159};
160
0f050d99 161enum zs_stat_type {
48b4800a
MK
162 CLASS_EMPTY,
163 CLASS_ALMOST_EMPTY,
164 CLASS_ALMOST_FULL,
165 CLASS_FULL,
0f050d99
GM
166 OBJ_ALLOCATED,
167 OBJ_USED,
48b4800a 168 NR_ZS_STAT_TYPE,
0f050d99
GM
169};
170
0f050d99
GM
171struct zs_size_stat {
172 unsigned long objs[NR_ZS_STAT_TYPE];
173};
174
57244594
SS
175#ifdef CONFIG_ZSMALLOC_STAT
176static struct dentry *zs_stat_root;
0f050d99
GM
177#endif
178
48b4800a
MK
179#ifdef CONFIG_COMPACTION
180static struct vfsmount *zsmalloc_mnt;
181#endif
182
0959c63f
SJ
183/*
184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185 * n <= N / f, where
186 * n = number of allocated objects
187 * N = total number of objects zspage can store
6dd9737e 188 * f = fullness_threshold_frac
0959c63f
SJ
189 *
190 * Similarly, we assign zspage to:
191 * ZS_ALMOST_FULL when n > N / f
192 * ZS_EMPTY when n == 0
193 * ZS_FULL when n == N
194 *
195 * (see: fix_fullness_group())
196 */
197static const int fullness_threshold_frac = 4;
010b495e 198static size_t huge_class_size;
0959c63f
SJ
199
200struct size_class {
57244594 201 spinlock_t lock;
48b4800a 202 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
203 /*
204 * Size of objects stored in this class. Must be multiple
205 * of ZS_ALIGN.
206 */
207 int size;
1fc6e27d 208 int objs_per_zspage;
7dfa4612
WY
209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 int pages_per_zspage;
48b4800a
MK
211
212 unsigned int index;
213 struct zs_size_stat stats;
0959c63f
SJ
214};
215
48b4800a
MK
216/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217static void SetPageHugeObject(struct page *page)
218{
219 SetPageOwnerPriv1(page);
220}
221
222static void ClearPageHugeObject(struct page *page)
223{
224 ClearPageOwnerPriv1(page);
225}
226
227static int PageHugeObject(struct page *page)
228{
229 return PageOwnerPriv1(page);
230}
231
0959c63f
SJ
232/*
233 * Placed within free objects to form a singly linked list.
3783689a 234 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
235 *
236 * This must be power of 2 and less than or equal to ZS_ALIGN
237 */
238struct link_free {
2e40e163
MK
239 union {
240 /*
bfd093f5 241 * Free object index;
2e40e163
MK
242 * It's valid for non-allocated object
243 */
bfd093f5 244 unsigned long next;
2e40e163
MK
245 /*
246 * Handle of allocated object.
247 */
248 unsigned long handle;
249 };
0959c63f
SJ
250};
251
252struct zs_pool {
6f3526d6 253 const char *name;
0f050d99 254
cf8e0fed 255 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 256 struct kmem_cache *handle_cachep;
3783689a 257 struct kmem_cache *zspage_cachep;
0959c63f 258
13de8933 259 atomic_long_t pages_allocated;
0f050d99 260
7d3f3938 261 struct zs_pool_stats stats;
ab9d306d
SS
262
263 /* Compact classes */
264 struct shrinker shrinker;
93144ca3 265
0f050d99
GM
266#ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry *stat_dentry;
268#endif
48b4800a
MK
269#ifdef CONFIG_COMPACTION
270 struct inode *inode;
271 struct work_struct free_work;
701d6785
HB
272 /* A wait queue for when migration races with async_free_zspage() */
273 struct wait_queue_head migration_wait;
274 atomic_long_t isolated_pages;
275 bool destroying;
48b4800a 276#endif
0959c63f 277};
61989a80 278
3783689a
MK
279struct zspage {
280 struct {
281 unsigned int fullness:FULLNESS_BITS;
85d492f2 282 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
283 unsigned int isolated:ISOLATED_BITS;
284 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
285 };
286 unsigned int inuse;
bfd093f5 287 unsigned int freeobj;
3783689a
MK
288 struct page *first_page;
289 struct list_head list; /* fullness list */
48b4800a
MK
290#ifdef CONFIG_COMPACTION
291 rwlock_t lock;
292#endif
3783689a 293};
61989a80 294
f553646a 295struct mapping_area {
f553646a 296 char *vm_buf; /* copy buffer for objects that span pages */
f553646a
SJ
297 char *vm_addr; /* address of kmap_atomic()'ed pages */
298 enum zs_mapmode vm_mm; /* mapping mode */
299};
300
48b4800a
MK
301#ifdef CONFIG_COMPACTION
302static int zs_register_migration(struct zs_pool *pool);
303static void zs_unregister_migration(struct zs_pool *pool);
304static void migrate_lock_init(struct zspage *zspage);
305static void migrate_read_lock(struct zspage *zspage);
306static void migrate_read_unlock(struct zspage *zspage);
307static void kick_deferred_free(struct zs_pool *pool);
308static void init_deferred_free(struct zs_pool *pool);
309static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
310#else
311static int zsmalloc_mount(void) { return 0; }
312static void zsmalloc_unmount(void) {}
313static int zs_register_migration(struct zs_pool *pool) { return 0; }
314static void zs_unregister_migration(struct zs_pool *pool) {}
315static void migrate_lock_init(struct zspage *zspage) {}
316static void migrate_read_lock(struct zspage *zspage) {}
317static void migrate_read_unlock(struct zspage *zspage) {}
318static void kick_deferred_free(struct zs_pool *pool) {}
319static void init_deferred_free(struct zs_pool *pool) {}
320static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
321#endif
322
3783689a 323static int create_cache(struct zs_pool *pool)
2e40e163
MK
324{
325 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
326 0, 0, NULL);
3783689a
MK
327 if (!pool->handle_cachep)
328 return 1;
329
330 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
331 0, 0, NULL);
332 if (!pool->zspage_cachep) {
333 kmem_cache_destroy(pool->handle_cachep);
334 pool->handle_cachep = NULL;
335 return 1;
336 }
337
338 return 0;
2e40e163
MK
339}
340
3783689a 341static void destroy_cache(struct zs_pool *pool)
2e40e163 342{
cd10add0 343 kmem_cache_destroy(pool->handle_cachep);
3783689a 344 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
345}
346
3783689a 347static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
348{
349 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 350 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
351}
352
3783689a 353static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
354{
355 kmem_cache_free(pool->handle_cachep, (void *)handle);
356}
357
3783689a
MK
358static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
359{
f0231305 360 return kmem_cache_zalloc(pool->zspage_cachep,
48b4800a 361 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 362}
3783689a
MK
363
364static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
365{
366 kmem_cache_free(pool->zspage_cachep, zspage);
367}
368
2e40e163
MK
369static void record_obj(unsigned long handle, unsigned long obj)
370{
c102f07c
JL
371 /*
372 * lsb of @obj represents handle lock while other bits
373 * represent object value the handle is pointing so
374 * updating shouldn't do store tearing.
375 */
376 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
377}
378
c795779d
DS
379/* zpool driver */
380
381#ifdef CONFIG_ZPOOL
382
6f3526d6 383static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 384 const struct zpool_ops *zpool_ops,
479305fd 385 struct zpool *zpool)
c795779d 386{
d0d8da2d
SS
387 /*
388 * Ignore global gfp flags: zs_malloc() may be invoked from
389 * different contexts and its caller must provide a valid
390 * gfp mask.
391 */
392 return zs_create_pool(name);
c795779d
DS
393}
394
395static void zs_zpool_destroy(void *pool)
396{
397 zs_destroy_pool(pool);
398}
399
400static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
401 unsigned long *handle)
402{
d0d8da2d 403 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
404 return *handle ? 0 : -1;
405}
406static void zs_zpool_free(void *pool, unsigned long handle)
407{
408 zs_free(pool, handle);
409}
410
c795779d
DS
411static void *zs_zpool_map(void *pool, unsigned long handle,
412 enum zpool_mapmode mm)
413{
414 enum zs_mapmode zs_mm;
415
416 switch (mm) {
417 case ZPOOL_MM_RO:
418 zs_mm = ZS_MM_RO;
419 break;
420 case ZPOOL_MM_WO:
421 zs_mm = ZS_MM_WO;
422 break;
e4a9bc58 423 case ZPOOL_MM_RW:
c795779d
DS
424 default:
425 zs_mm = ZS_MM_RW;
426 break;
427 }
428
429 return zs_map_object(pool, handle, zs_mm);
430}
431static void zs_zpool_unmap(void *pool, unsigned long handle)
432{
433 zs_unmap_object(pool, handle);
434}
435
436static u64 zs_zpool_total_size(void *pool)
437{
722cdc17 438 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
439}
440
441static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
442 .type = "zsmalloc",
443 .owner = THIS_MODULE,
444 .create = zs_zpool_create,
445 .destroy = zs_zpool_destroy,
446 .malloc_support_movable = true,
447 .malloc = zs_zpool_malloc,
448 .free = zs_zpool_free,
449 .map = zs_zpool_map,
450 .unmap = zs_zpool_unmap,
451 .total_size = zs_zpool_total_size,
c795779d
DS
452};
453
137f8cff 454MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
455#endif /* CONFIG_ZPOOL */
456
61989a80
NG
457/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
458static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
459
48b4800a
MK
460static bool is_zspage_isolated(struct zspage *zspage)
461{
462 return zspage->isolated;
463}
464
3457f414 465static __maybe_unused int is_first_page(struct page *page)
61989a80 466{
a27545bf 467 return PagePrivate(page);
61989a80
NG
468}
469
48b4800a 470/* Protected by class->lock */
3783689a 471static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 472{
3783689a 473 return zspage->inuse;
4f42047b
MK
474}
475
4f42047b 476
3783689a 477static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 478{
3783689a 479 zspage->inuse += val;
4f42047b
MK
480}
481
48b4800a 482static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 483{
48b4800a 484 struct page *first_page = zspage->first_page;
3783689a 485
48b4800a
MK
486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487 return first_page;
4f42047b
MK
488}
489
48b4800a 490static inline int get_first_obj_offset(struct page *page)
4f42047b 491{
48b4800a
MK
492 return page->units;
493}
3783689a 494
48b4800a
MK
495static inline void set_first_obj_offset(struct page *page, int offset)
496{
497 page->units = offset;
4f42047b
MK
498}
499
bfd093f5 500static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 501{
bfd093f5 502 return zspage->freeobj;
4f42047b
MK
503}
504
bfd093f5 505static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 506{
bfd093f5 507 zspage->freeobj = obj;
4f42047b
MK
508}
509
3783689a 510static void get_zspage_mapping(struct zspage *zspage,
a4209467 511 unsigned int *class_idx,
61989a80
NG
512 enum fullness_group *fullness)
513{
48b4800a
MK
514 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
3783689a
MK
516 *fullness = zspage->fullness;
517 *class_idx = zspage->class;
61989a80
NG
518}
519
3783689a 520static void set_zspage_mapping(struct zspage *zspage,
a4209467 521 unsigned int class_idx,
61989a80
NG
522 enum fullness_group fullness)
523{
3783689a
MK
524 zspage->class = class_idx;
525 zspage->fullness = fullness;
61989a80
NG
526}
527
c3e3e88a
NC
528/*
529 * zsmalloc divides the pool into various size classes where each
530 * class maintains a list of zspages where each zspage is divided
531 * into equal sized chunks. Each allocation falls into one of these
532 * classes depending on its size. This function returns index of the
cb152a1a 533 * size class which has chunk size big enough to hold the given size.
c3e3e88a 534 */
61989a80
NG
535static int get_size_class_index(int size)
536{
537 int idx = 0;
538
539 if (likely(size > ZS_MIN_ALLOC_SIZE))
540 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541 ZS_SIZE_CLASS_DELTA);
542
cf8e0fed 543 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
544}
545
3eb95fea 546/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 547static inline void zs_stat_inc(struct size_class *class,
3eb95fea 548 int type, unsigned long cnt)
248ca1b0 549{
48b4800a 550 class->stats.objs[type] += cnt;
248ca1b0
MK
551}
552
3eb95fea 553/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 554static inline void zs_stat_dec(struct size_class *class,
3eb95fea 555 int type, unsigned long cnt)
248ca1b0 556{
48b4800a 557 class->stats.objs[type] -= cnt;
248ca1b0
MK
558}
559
3eb95fea 560/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 561static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 562 int type)
248ca1b0 563{
48b4800a 564 return class->stats.objs[type];
248ca1b0
MK
565}
566
57244594
SS
567#ifdef CONFIG_ZSMALLOC_STAT
568
4abaac9b 569static void __init zs_stat_init(void)
248ca1b0 570{
4abaac9b
DS
571 if (!debugfs_initialized()) {
572 pr_warn("debugfs not available, stat dir not created\n");
573 return;
574 }
248ca1b0
MK
575
576 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
577}
578
579static void __exit zs_stat_exit(void)
580{
581 debugfs_remove_recursive(zs_stat_root);
582}
583
1120ed54
SS
584static unsigned long zs_can_compact(struct size_class *class);
585
248ca1b0
MK
586static int zs_stats_size_show(struct seq_file *s, void *v)
587{
588 int i;
589 struct zs_pool *pool = s->private;
590 struct size_class *class;
591 int objs_per_zspage;
592 unsigned long class_almost_full, class_almost_empty;
1120ed54 593 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
594 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
595 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 596 unsigned long total_freeable = 0;
248ca1b0 597
1120ed54 598 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
599 "class", "size", "almost_full", "almost_empty",
600 "obj_allocated", "obj_used", "pages_used",
1120ed54 601 "pages_per_zspage", "freeable");
248ca1b0 602
cf8e0fed 603 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
604 class = pool->size_class[i];
605
606 if (class->index != i)
607 continue;
608
609 spin_lock(&class->lock);
610 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
611 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
612 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
613 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 614 freeable = zs_can_compact(class);
248ca1b0
MK
615 spin_unlock(&class->lock);
616
b4fd07a0 617 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
618 pages_used = obj_allocated / objs_per_zspage *
619 class->pages_per_zspage;
620
1120ed54
SS
621 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
622 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
623 i, class->size, class_almost_full, class_almost_empty,
624 obj_allocated, obj_used, pages_used,
1120ed54 625 class->pages_per_zspage, freeable);
248ca1b0
MK
626
627 total_class_almost_full += class_almost_full;
628 total_class_almost_empty += class_almost_empty;
629 total_objs += obj_allocated;
630 total_used_objs += obj_used;
631 total_pages += pages_used;
1120ed54 632 total_freeable += freeable;
248ca1b0
MK
633 }
634
635 seq_puts(s, "\n");
1120ed54 636 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
637 "Total", "", total_class_almost_full,
638 total_class_almost_empty, total_objs,
1120ed54 639 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
640
641 return 0;
642}
5ad35093 643DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 644
d34f6157 645static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 646{
4abaac9b
DS
647 if (!zs_stat_root) {
648 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 649 return;
4abaac9b 650 }
248ca1b0 651
4268509a
GKH
652 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
653
654 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
655 &zs_stats_size_fops);
248ca1b0
MK
656}
657
658static void zs_pool_stat_destroy(struct zs_pool *pool)
659{
660 debugfs_remove_recursive(pool->stat_dentry);
661}
662
663#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 664static void __init zs_stat_init(void)
248ca1b0 665{
248ca1b0
MK
666}
667
668static void __exit zs_stat_exit(void)
669{
670}
671
d34f6157 672static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 673{
248ca1b0
MK
674}
675
676static inline void zs_pool_stat_destroy(struct zs_pool *pool)
677{
678}
248ca1b0
MK
679#endif
680
48b4800a 681
c3e3e88a
NC
682/*
683 * For each size class, zspages are divided into different groups
684 * depending on how "full" they are. This was done so that we could
685 * easily find empty or nearly empty zspages when we try to shrink
686 * the pool (not yet implemented). This function returns fullness
687 * status of the given page.
688 */
1fc6e27d 689static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 690 struct zspage *zspage)
61989a80 691{
1fc6e27d 692 int inuse, objs_per_zspage;
61989a80 693 enum fullness_group fg;
830e4bc5 694
3783689a 695 inuse = get_zspage_inuse(zspage);
1fc6e27d 696 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
697
698 if (inuse == 0)
699 fg = ZS_EMPTY;
1fc6e27d 700 else if (inuse == objs_per_zspage)
61989a80 701 fg = ZS_FULL;
1fc6e27d 702 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
703 fg = ZS_ALMOST_EMPTY;
704 else
705 fg = ZS_ALMOST_FULL;
706
707 return fg;
708}
709
c3e3e88a
NC
710/*
711 * Each size class maintains various freelists and zspages are assigned
712 * to one of these freelists based on the number of live objects they
713 * have. This functions inserts the given zspage into the freelist
714 * identified by <class, fullness_group>.
715 */
251cbb95 716static void insert_zspage(struct size_class *class,
3783689a
MK
717 struct zspage *zspage,
718 enum fullness_group fullness)
61989a80 719{
3783689a 720 struct zspage *head;
61989a80 721
48b4800a 722 zs_stat_inc(class, fullness, 1);
3783689a
MK
723 head = list_first_entry_or_null(&class->fullness_list[fullness],
724 struct zspage, list);
58f17117 725 /*
3783689a
MK
726 * We want to see more ZS_FULL pages and less almost empty/full.
727 * Put pages with higher ->inuse first.
58f17117 728 */
110ceb82
ML
729 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
730 list_add(&zspage->list, &head->list);
731 else
732 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
733}
734
c3e3e88a
NC
735/*
736 * This function removes the given zspage from the freelist identified
737 * by <class, fullness_group>.
738 */
251cbb95 739static void remove_zspage(struct size_class *class,
3783689a
MK
740 struct zspage *zspage,
741 enum fullness_group fullness)
61989a80 742{
3783689a 743 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
48b4800a 744 VM_BUG_ON(is_zspage_isolated(zspage));
61989a80 745
3783689a 746 list_del_init(&zspage->list);
48b4800a 747 zs_stat_dec(class, fullness, 1);
61989a80
NG
748}
749
c3e3e88a
NC
750/*
751 * Each size class maintains zspages in different fullness groups depending
752 * on the number of live objects they contain. When allocating or freeing
753 * objects, the fullness status of the page can change, say, from ALMOST_FULL
754 * to ALMOST_EMPTY when freeing an object. This function checks if such
755 * a status change has occurred for the given page and accordingly moves the
756 * page from the freelist of the old fullness group to that of the new
757 * fullness group.
758 */
c7806261 759static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 760 struct zspage *zspage)
61989a80
NG
761{
762 int class_idx;
61989a80
NG
763 enum fullness_group currfg, newfg;
764
3783689a
MK
765 get_zspage_mapping(zspage, &class_idx, &currfg);
766 newfg = get_fullness_group(class, zspage);
61989a80
NG
767 if (newfg == currfg)
768 goto out;
769
48b4800a
MK
770 if (!is_zspage_isolated(zspage)) {
771 remove_zspage(class, zspage, currfg);
772 insert_zspage(class, zspage, newfg);
773 }
774
3783689a 775 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
776
777out:
778 return newfg;
779}
780
781/*
782 * We have to decide on how many pages to link together
783 * to form a zspage for each size class. This is important
784 * to reduce wastage due to unusable space left at end of
785 * each zspage which is given as:
888fa374
YX
786 * wastage = Zp % class_size
787 * usage = Zp - wastage
61989a80
NG
788 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
789 *
790 * For example, for size class of 3/8 * PAGE_SIZE, we should
791 * link together 3 PAGE_SIZE sized pages to form a zspage
792 * since then we can perfectly fit in 8 such objects.
793 */
2e3b6154 794static int get_pages_per_zspage(int class_size)
61989a80
NG
795{
796 int i, max_usedpc = 0;
797 /* zspage order which gives maximum used size per KB */
798 int max_usedpc_order = 1;
799
84d4faab 800 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
801 int zspage_size;
802 int waste, usedpc;
803
804 zspage_size = i * PAGE_SIZE;
805 waste = zspage_size % class_size;
806 usedpc = (zspage_size - waste) * 100 / zspage_size;
807
808 if (usedpc > max_usedpc) {
809 max_usedpc = usedpc;
810 max_usedpc_order = i;
811 }
812 }
813
814 return max_usedpc_order;
815}
816
3783689a 817static struct zspage *get_zspage(struct page *page)
61989a80 818{
a6c5e0f7 819 struct zspage *zspage = (struct zspage *)page_private(page);
48b4800a
MK
820
821 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
822 return zspage;
61989a80
NG
823}
824
825static struct page *get_next_page(struct page *page)
826{
48b4800a
MK
827 if (unlikely(PageHugeObject(page)))
828 return NULL;
829
830 return page->freelist;
61989a80
NG
831}
832
bfd093f5
MK
833/**
834 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 835 * @obj: the encoded object value
bfd093f5
MK
836 * @page: page object resides in zspage
837 * @obj_idx: object index
67296874 838 */
bfd093f5
MK
839static void obj_to_location(unsigned long obj, struct page **page,
840 unsigned int *obj_idx)
61989a80 841{
bfd093f5
MK
842 obj >>= OBJ_TAG_BITS;
843 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
844 *obj_idx = (obj & OBJ_INDEX_MASK);
845}
61989a80 846
bfd093f5
MK
847/**
848 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
849 * @page: page object resides in zspage
850 * @obj_idx: object index
851 */
852static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
853{
854 unsigned long obj;
61989a80 855
312fcae2 856 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 857 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 858 obj <<= OBJ_TAG_BITS;
61989a80 859
bfd093f5 860 return obj;
61989a80
NG
861}
862
2e40e163
MK
863static unsigned long handle_to_obj(unsigned long handle)
864{
865 return *(unsigned long *)handle;
866}
867
48b4800a 868static unsigned long obj_to_head(struct page *page, void *obj)
312fcae2 869{
48b4800a 870 if (unlikely(PageHugeObject(page))) {
830e4bc5 871 VM_BUG_ON_PAGE(!is_first_page(page), page);
3783689a 872 return page->index;
7b60a685
MK
873 } else
874 return *(unsigned long *)obj;
312fcae2
MK
875}
876
48b4800a
MK
877static inline int testpin_tag(unsigned long handle)
878{
879 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
880}
881
312fcae2
MK
882static inline int trypin_tag(unsigned long handle)
883{
1b8320b6 884 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
885}
886
70c7ec95 887static void pin_tag(unsigned long handle) __acquires(bitlock)
312fcae2 888{
1b8320b6 889 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
890}
891
bc22b18b 892static void unpin_tag(unsigned long handle) __releases(bitlock)
312fcae2 893{
1b8320b6 894 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
895}
896
f4477e90
NG
897static void reset_page(struct page *page)
898{
48b4800a 899 __ClearPageMovable(page);
18fd06bf 900 ClearPagePrivate(page);
f4477e90 901 set_page_private(page, 0);
48b4800a
MK
902 page_mapcount_reset(page);
903 ClearPageHugeObject(page);
904 page->freelist = NULL;
905}
906
4d0a5402 907static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
908{
909 struct page *cursor, *fail;
910
911 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
912 get_next_page(cursor)) {
913 if (!trylock_page(cursor)) {
914 fail = cursor;
915 goto unlock;
916 }
917 }
918
919 return 1;
920unlock:
921 for (cursor = get_first_page(zspage); cursor != fail; cursor =
922 get_next_page(cursor))
923 unlock_page(cursor);
924
925 return 0;
f4477e90
NG
926}
927
48b4800a
MK
928static void __free_zspage(struct zs_pool *pool, struct size_class *class,
929 struct zspage *zspage)
61989a80 930{
3783689a 931 struct page *page, *next;
48b4800a
MK
932 enum fullness_group fg;
933 unsigned int class_idx;
934
935 get_zspage_mapping(zspage, &class_idx, &fg);
936
937 assert_spin_locked(&class->lock);
61989a80 938
3783689a 939 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 940 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 941
48b4800a 942 next = page = get_first_page(zspage);
3783689a 943 do {
48b4800a
MK
944 VM_BUG_ON_PAGE(!PageLocked(page), page);
945 next = get_next_page(page);
3783689a 946 reset_page(page);
48b4800a 947 unlock_page(page);
91537fee 948 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
949 put_page(page);
950 page = next;
951 } while (page != NULL);
61989a80 952
3783689a 953 cache_free_zspage(pool, zspage);
48b4800a 954
b4fd07a0 955 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
956 atomic_long_sub(class->pages_per_zspage,
957 &pool->pages_allocated);
958}
959
960static void free_zspage(struct zs_pool *pool, struct size_class *class,
961 struct zspage *zspage)
962{
963 VM_BUG_ON(get_zspage_inuse(zspage));
964 VM_BUG_ON(list_empty(&zspage->list));
965
966 if (!trylock_zspage(zspage)) {
967 kick_deferred_free(pool);
968 return;
969 }
970
971 remove_zspage(class, zspage, ZS_EMPTY);
972 __free_zspage(pool, class, zspage);
61989a80
NG
973}
974
975/* Initialize a newly allocated zspage */
3783689a 976static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 977{
bfd093f5 978 unsigned int freeobj = 1;
61989a80 979 unsigned long off = 0;
48b4800a 980 struct page *page = get_first_page(zspage);
830e4bc5 981
61989a80
NG
982 while (page) {
983 struct page *next_page;
984 struct link_free *link;
af4ee5e9 985 void *vaddr;
61989a80 986
3783689a 987 set_first_obj_offset(page, off);
61989a80 988
af4ee5e9
MK
989 vaddr = kmap_atomic(page);
990 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
991
992 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 993 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 994 link += class->size / sizeof(*link);
61989a80
NG
995 }
996
997 /*
998 * We now come to the last (full or partial) object on this
999 * page, which must point to the first object on the next
1000 * page (if present)
1001 */
1002 next_page = get_next_page(page);
bfd093f5 1003 if (next_page) {
3b1d9ca6 1004 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1005 } else {
1006 /*
3b1d9ca6 1007 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1008 * whether it's allocated object or not.
1009 */
01a6ad9a 1010 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1011 }
af4ee5e9 1012 kunmap_atomic(vaddr);
61989a80 1013 page = next_page;
5538c562 1014 off %= PAGE_SIZE;
61989a80 1015 }
bdb0af7c 1016
bfd093f5 1017 set_freeobj(zspage, 0);
61989a80
NG
1018}
1019
48b4800a
MK
1020static void create_page_chain(struct size_class *class, struct zspage *zspage,
1021 struct page *pages[])
61989a80 1022{
bdb0af7c
MK
1023 int i;
1024 struct page *page;
1025 struct page *prev_page = NULL;
48b4800a 1026 int nr_pages = class->pages_per_zspage;
61989a80
NG
1027
1028 /*
1029 * Allocate individual pages and link them together as:
48b4800a 1030 * 1. all pages are linked together using page->freelist
3783689a 1031 * 2. each sub-page point to zspage using page->private
61989a80 1032 *
3783689a 1033 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1034 * has this flag set).
61989a80 1035 */
bdb0af7c
MK
1036 for (i = 0; i < nr_pages; i++) {
1037 page = pages[i];
3783689a 1038 set_page_private(page, (unsigned long)zspage);
48b4800a 1039 page->freelist = NULL;
bdb0af7c 1040 if (i == 0) {
3783689a 1041 zspage->first_page = page;
a27545bf 1042 SetPagePrivate(page);
48b4800a
MK
1043 if (unlikely(class->objs_per_zspage == 1 &&
1044 class->pages_per_zspage == 1))
1045 SetPageHugeObject(page);
3783689a 1046 } else {
48b4800a 1047 prev_page->freelist = page;
61989a80 1048 }
61989a80
NG
1049 prev_page = page;
1050 }
bdb0af7c 1051}
61989a80 1052
bdb0af7c
MK
1053/*
1054 * Allocate a zspage for the given size class
1055 */
3783689a
MK
1056static struct zspage *alloc_zspage(struct zs_pool *pool,
1057 struct size_class *class,
1058 gfp_t gfp)
bdb0af7c
MK
1059{
1060 int i;
bdb0af7c 1061 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1062 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1063
1064 if (!zspage)
1065 return NULL;
1066
48b4800a
MK
1067 zspage->magic = ZSPAGE_MAGIC;
1068 migrate_lock_init(zspage);
61989a80 1069
bdb0af7c
MK
1070 for (i = 0; i < class->pages_per_zspage; i++) {
1071 struct page *page;
61989a80 1072
3783689a 1073 page = alloc_page(gfp);
bdb0af7c 1074 if (!page) {
91537fee
MK
1075 while (--i >= 0) {
1076 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1077 __free_page(pages[i]);
91537fee 1078 }
3783689a 1079 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1080 return NULL;
1081 }
91537fee
MK
1082
1083 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1084 pages[i] = page;
61989a80
NG
1085 }
1086
48b4800a 1087 create_page_chain(class, zspage, pages);
3783689a 1088 init_zspage(class, zspage);
bdb0af7c 1089
3783689a 1090 return zspage;
61989a80
NG
1091}
1092
3783689a 1093static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1094{
1095 int i;
3783689a 1096 struct zspage *zspage;
61989a80 1097
48b4800a 1098 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1099 zspage = list_first_entry_or_null(&class->fullness_list[i],
1100 struct zspage, list);
1101 if (zspage)
61989a80
NG
1102 break;
1103 }
1104
3783689a 1105 return zspage;
61989a80
NG
1106}
1107
f553646a
SJ
1108static inline int __zs_cpu_up(struct mapping_area *area)
1109{
1110 /*
1111 * Make sure we don't leak memory if a cpu UP notification
1112 * and zs_init() race and both call zs_cpu_up() on the same cpu
1113 */
1114 if (area->vm_buf)
1115 return 0;
40f9fb8c 1116 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1117 if (!area->vm_buf)
1118 return -ENOMEM;
1119 return 0;
1120}
1121
1122static inline void __zs_cpu_down(struct mapping_area *area)
1123{
40f9fb8c 1124 kfree(area->vm_buf);
f553646a
SJ
1125 area->vm_buf = NULL;
1126}
1127
1128static void *__zs_map_object(struct mapping_area *area,
1129 struct page *pages[2], int off, int size)
5f601902 1130{
5f601902
SJ
1131 int sizes[2];
1132 void *addr;
f553646a 1133 char *buf = area->vm_buf;
5f601902 1134
f553646a
SJ
1135 /* disable page faults to match kmap_atomic() return conditions */
1136 pagefault_disable();
1137
1138 /* no read fastpath */
1139 if (area->vm_mm == ZS_MM_WO)
1140 goto out;
5f601902
SJ
1141
1142 sizes[0] = PAGE_SIZE - off;
1143 sizes[1] = size - sizes[0];
1144
5f601902
SJ
1145 /* copy object to per-cpu buffer */
1146 addr = kmap_atomic(pages[0]);
1147 memcpy(buf, addr + off, sizes[0]);
1148 kunmap_atomic(addr);
1149 addr = kmap_atomic(pages[1]);
1150 memcpy(buf + sizes[0], addr, sizes[1]);
1151 kunmap_atomic(addr);
f553646a
SJ
1152out:
1153 return area->vm_buf;
5f601902
SJ
1154}
1155
f553646a
SJ
1156static void __zs_unmap_object(struct mapping_area *area,
1157 struct page *pages[2], int off, int size)
5f601902 1158{
5f601902
SJ
1159 int sizes[2];
1160 void *addr;
2e40e163 1161 char *buf;
5f601902 1162
f553646a
SJ
1163 /* no write fastpath */
1164 if (area->vm_mm == ZS_MM_RO)
1165 goto out;
5f601902 1166
7b60a685 1167 buf = area->vm_buf;
a82cbf07
YX
1168 buf = buf + ZS_HANDLE_SIZE;
1169 size -= ZS_HANDLE_SIZE;
1170 off += ZS_HANDLE_SIZE;
2e40e163 1171
5f601902
SJ
1172 sizes[0] = PAGE_SIZE - off;
1173 sizes[1] = size - sizes[0];
1174
1175 /* copy per-cpu buffer to object */
1176 addr = kmap_atomic(pages[0]);
1177 memcpy(addr + off, buf, sizes[0]);
1178 kunmap_atomic(addr);
1179 addr = kmap_atomic(pages[1]);
1180 memcpy(addr, buf + sizes[0], sizes[1]);
1181 kunmap_atomic(addr);
f553646a
SJ
1182
1183out:
1184 /* enable page faults to match kunmap_atomic() return conditions */
1185 pagefault_enable();
5f601902 1186}
61989a80 1187
215c89d0 1188static int zs_cpu_prepare(unsigned int cpu)
61989a80 1189{
61989a80
NG
1190 struct mapping_area *area;
1191
215c89d0
SAS
1192 area = &per_cpu(zs_map_area, cpu);
1193 return __zs_cpu_up(area);
61989a80
NG
1194}
1195
215c89d0 1196static int zs_cpu_dead(unsigned int cpu)
61989a80 1197{
215c89d0 1198 struct mapping_area *area;
40f9fb8c 1199
215c89d0
SAS
1200 area = &per_cpu(zs_map_area, cpu);
1201 __zs_cpu_down(area);
1202 return 0;
b1b00a5b
SS
1203}
1204
64d90465
GM
1205static bool can_merge(struct size_class *prev, int pages_per_zspage,
1206 int objs_per_zspage)
9eec4cd5 1207{
64d90465
GM
1208 if (prev->pages_per_zspage == pages_per_zspage &&
1209 prev->objs_per_zspage == objs_per_zspage)
1210 return true;
9eec4cd5 1211
64d90465 1212 return false;
9eec4cd5
JK
1213}
1214
3783689a 1215static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1216{
3783689a 1217 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1218}
1219
66cdef66
GM
1220unsigned long zs_get_total_pages(struct zs_pool *pool)
1221{
1222 return atomic_long_read(&pool->pages_allocated);
1223}
1224EXPORT_SYMBOL_GPL(zs_get_total_pages);
1225
4bbc0bc0 1226/**
66cdef66
GM
1227 * zs_map_object - get address of allocated object from handle.
1228 * @pool: pool from which the object was allocated
1229 * @handle: handle returned from zs_malloc
f0953a1b 1230 * @mm: mapping mode to use
4bbc0bc0 1231 *
66cdef66
GM
1232 * Before using an object allocated from zs_malloc, it must be mapped using
1233 * this function. When done with the object, it must be unmapped using
1234 * zs_unmap_object.
4bbc0bc0 1235 *
66cdef66
GM
1236 * Only one object can be mapped per cpu at a time. There is no protection
1237 * against nested mappings.
1238 *
1239 * This function returns with preemption and page faults disabled.
4bbc0bc0 1240 */
66cdef66
GM
1241void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1242 enum zs_mapmode mm)
61989a80 1243{
3783689a 1244 struct zspage *zspage;
66cdef66 1245 struct page *page;
bfd093f5
MK
1246 unsigned long obj, off;
1247 unsigned int obj_idx;
61989a80 1248
66cdef66
GM
1249 unsigned int class_idx;
1250 enum fullness_group fg;
1251 struct size_class *class;
1252 struct mapping_area *area;
1253 struct page *pages[2];
2e40e163 1254 void *ret;
61989a80 1255
9eec4cd5 1256 /*
66cdef66
GM
1257 * Because we use per-cpu mapping areas shared among the
1258 * pools/users, we can't allow mapping in interrupt context
1259 * because it can corrupt another users mappings.
9eec4cd5 1260 */
1aedcafb 1261 BUG_ON(in_interrupt());
61989a80 1262
312fcae2
MK
1263 /* From now on, migration cannot move the object */
1264 pin_tag(handle);
1265
2e40e163
MK
1266 obj = handle_to_obj(handle);
1267 obj_to_location(obj, &page, &obj_idx);
3783689a 1268 zspage = get_zspage(page);
48b4800a
MK
1269
1270 /* migration cannot move any subpage in this zspage */
1271 migrate_read_lock(zspage);
1272
3783689a 1273 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1274 class = pool->size_class[class_idx];
bfd093f5 1275 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1276
66cdef66
GM
1277 area = &get_cpu_var(zs_map_area);
1278 area->vm_mm = mm;
1279 if (off + class->size <= PAGE_SIZE) {
1280 /* this object is contained entirely within a page */
1281 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1282 ret = area->vm_addr + off;
1283 goto out;
61989a80
NG
1284 }
1285
66cdef66
GM
1286 /* this object spans two pages */
1287 pages[0] = page;
1288 pages[1] = get_next_page(page);
1289 BUG_ON(!pages[1]);
9eec4cd5 1290
2e40e163
MK
1291 ret = __zs_map_object(area, pages, off, class->size);
1292out:
48b4800a 1293 if (likely(!PageHugeObject(page)))
7b60a685
MK
1294 ret += ZS_HANDLE_SIZE;
1295
1296 return ret;
61989a80 1297}
66cdef66 1298EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1299
66cdef66 1300void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1301{
3783689a 1302 struct zspage *zspage;
66cdef66 1303 struct page *page;
bfd093f5
MK
1304 unsigned long obj, off;
1305 unsigned int obj_idx;
61989a80 1306
66cdef66
GM
1307 unsigned int class_idx;
1308 enum fullness_group fg;
1309 struct size_class *class;
1310 struct mapping_area *area;
9eec4cd5 1311
2e40e163
MK
1312 obj = handle_to_obj(handle);
1313 obj_to_location(obj, &page, &obj_idx);
3783689a
MK
1314 zspage = get_zspage(page);
1315 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1316 class = pool->size_class[class_idx];
bfd093f5 1317 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1318
66cdef66
GM
1319 area = this_cpu_ptr(&zs_map_area);
1320 if (off + class->size <= PAGE_SIZE)
1321 kunmap_atomic(area->vm_addr);
1322 else {
1323 struct page *pages[2];
40f9fb8c 1324
66cdef66
GM
1325 pages[0] = page;
1326 pages[1] = get_next_page(page);
1327 BUG_ON(!pages[1]);
1328
1329 __zs_unmap_object(area, pages, off, class->size);
1330 }
1331 put_cpu_var(zs_map_area);
48b4800a
MK
1332
1333 migrate_read_unlock(zspage);
312fcae2 1334 unpin_tag(handle);
61989a80 1335}
66cdef66 1336EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1337
010b495e
SS
1338/**
1339 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1340 * zsmalloc &size_class.
1341 * @pool: zsmalloc pool to use
1342 *
1343 * The function returns the size of the first huge class - any object of equal
1344 * or bigger size will be stored in zspage consisting of a single physical
1345 * page.
1346 *
1347 * Context: Any context.
1348 *
1349 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1350 */
1351size_t zs_huge_class_size(struct zs_pool *pool)
1352{
1353 return huge_class_size;
1354}
1355EXPORT_SYMBOL_GPL(zs_huge_class_size);
1356
251cbb95 1357static unsigned long obj_malloc(struct size_class *class,
3783689a 1358 struct zspage *zspage, unsigned long handle)
c7806261 1359{
bfd093f5 1360 int i, nr_page, offset;
c7806261
MK
1361 unsigned long obj;
1362 struct link_free *link;
1363
1364 struct page *m_page;
bfd093f5 1365 unsigned long m_offset;
c7806261
MK
1366 void *vaddr;
1367
312fcae2 1368 handle |= OBJ_ALLOCATED_TAG;
3783689a 1369 obj = get_freeobj(zspage);
bfd093f5
MK
1370
1371 offset = obj * class->size;
1372 nr_page = offset >> PAGE_SHIFT;
1373 m_offset = offset & ~PAGE_MASK;
1374 m_page = get_first_page(zspage);
1375
1376 for (i = 0; i < nr_page; i++)
1377 m_page = get_next_page(m_page);
c7806261
MK
1378
1379 vaddr = kmap_atomic(m_page);
1380 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1381 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
48b4800a 1382 if (likely(!PageHugeObject(m_page)))
7b60a685
MK
1383 /* record handle in the header of allocated chunk */
1384 link->handle = handle;
1385 else
3783689a
MK
1386 /* record handle to page->index */
1387 zspage->first_page->index = handle;
1388
c7806261 1389 kunmap_atomic(vaddr);
3783689a 1390 mod_zspage_inuse(zspage, 1);
c7806261
MK
1391 zs_stat_inc(class, OBJ_USED, 1);
1392
bfd093f5
MK
1393 obj = location_to_obj(m_page, obj);
1394
c7806261
MK
1395 return obj;
1396}
1397
1398
61989a80
NG
1399/**
1400 * zs_malloc - Allocate block of given size from pool.
1401 * @pool: pool to allocate from
1402 * @size: size of block to allocate
fd854463 1403 * @gfp: gfp flags when allocating object
61989a80 1404 *
00a61d86 1405 * On success, handle to the allocated object is returned,
c2344348 1406 * otherwise 0.
61989a80
NG
1407 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1408 */
d0d8da2d 1409unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1410{
2e40e163 1411 unsigned long handle, obj;
61989a80 1412 struct size_class *class;
48b4800a 1413 enum fullness_group newfg;
3783689a 1414 struct zspage *zspage;
61989a80 1415
7b60a685 1416 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1417 return 0;
1418
3783689a 1419 handle = cache_alloc_handle(pool, gfp);
2e40e163 1420 if (!handle)
c2344348 1421 return 0;
61989a80 1422
2e40e163
MK
1423 /* extra space in chunk to keep the handle */
1424 size += ZS_HANDLE_SIZE;
9eec4cd5 1425 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1426
1427 spin_lock(&class->lock);
3783689a 1428 zspage = find_get_zspage(class);
48b4800a
MK
1429 if (likely(zspage)) {
1430 obj = obj_malloc(class, zspage, handle);
1431 /* Now move the zspage to another fullness group, if required */
1432 fix_fullness_group(class, zspage);
1433 record_obj(handle, obj);
61989a80 1434 spin_unlock(&class->lock);
61989a80 1435
48b4800a
MK
1436 return handle;
1437 }
0f050d99 1438
48b4800a
MK
1439 spin_unlock(&class->lock);
1440
1441 zspage = alloc_zspage(pool, class, gfp);
1442 if (!zspage) {
1443 cache_free_handle(pool, handle);
1444 return 0;
61989a80
NG
1445 }
1446
48b4800a 1447 spin_lock(&class->lock);
3783689a 1448 obj = obj_malloc(class, zspage, handle);
48b4800a
MK
1449 newfg = get_fullness_group(class, zspage);
1450 insert_zspage(class, zspage, newfg);
1451 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1452 record_obj(handle, obj);
48b4800a
MK
1453 atomic_long_add(class->pages_per_zspage,
1454 &pool->pages_allocated);
b4fd07a0 1455 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1456
1457 /* We completely set up zspage so mark them as movable */
1458 SetZsPageMovable(pool, zspage);
61989a80
NG
1459 spin_unlock(&class->lock);
1460
2e40e163 1461 return handle;
61989a80
NG
1462}
1463EXPORT_SYMBOL_GPL(zs_malloc);
1464
1ee47165 1465static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1466{
1467 struct link_free *link;
3783689a
MK
1468 struct zspage *zspage;
1469 struct page *f_page;
bfd093f5
MK
1470 unsigned long f_offset;
1471 unsigned int f_objidx;
af4ee5e9 1472 void *vaddr;
61989a80 1473
2e40e163 1474 obj_to_location(obj, &f_page, &f_objidx);
bfd093f5 1475 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
3783689a 1476 zspage = get_zspage(f_page);
61989a80 1477
c7806261 1478 vaddr = kmap_atomic(f_page);
61989a80
NG
1479
1480 /* Insert this object in containing zspage's freelist */
af4ee5e9 1481 link = (struct link_free *)(vaddr + f_offset);
3b1d9ca6 1482 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
af4ee5e9 1483 kunmap_atomic(vaddr);
bfd093f5 1484 set_freeobj(zspage, f_objidx);
3783689a 1485 mod_zspage_inuse(zspage, -1);
0f050d99 1486 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1487}
1488
1489void zs_free(struct zs_pool *pool, unsigned long handle)
1490{
3783689a
MK
1491 struct zspage *zspage;
1492 struct page *f_page;
bfd093f5
MK
1493 unsigned long obj;
1494 unsigned int f_objidx;
c7806261
MK
1495 int class_idx;
1496 struct size_class *class;
1497 enum fullness_group fullness;
48b4800a 1498 bool isolated;
c7806261
MK
1499
1500 if (unlikely(!handle))
1501 return;
1502
312fcae2 1503 pin_tag(handle);
c7806261 1504 obj = handle_to_obj(handle);
c7806261 1505 obj_to_location(obj, &f_page, &f_objidx);
3783689a 1506 zspage = get_zspage(f_page);
c7806261 1507
48b4800a
MK
1508 migrate_read_lock(zspage);
1509
3783689a 1510 get_zspage_mapping(zspage, &class_idx, &fullness);
c7806261
MK
1511 class = pool->size_class[class_idx];
1512
1513 spin_lock(&class->lock);
1ee47165 1514 obj_free(class, obj);
3783689a 1515 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1516 if (fullness != ZS_EMPTY) {
1517 migrate_read_unlock(zspage);
1518 goto out;
312fcae2 1519 }
48b4800a
MK
1520
1521 isolated = is_zspage_isolated(zspage);
1522 migrate_read_unlock(zspage);
1523 /* If zspage is isolated, zs_page_putback will free the zspage */
1524 if (likely(!isolated))
1525 free_zspage(pool, class, zspage);
1526out:
1527
61989a80 1528 spin_unlock(&class->lock);
312fcae2 1529 unpin_tag(handle);
3783689a 1530 cache_free_handle(pool, handle);
312fcae2
MK
1531}
1532EXPORT_SYMBOL_GPL(zs_free);
1533
251cbb95
MK
1534static void zs_object_copy(struct size_class *class, unsigned long dst,
1535 unsigned long src)
312fcae2
MK
1536{
1537 struct page *s_page, *d_page;
bfd093f5 1538 unsigned int s_objidx, d_objidx;
312fcae2
MK
1539 unsigned long s_off, d_off;
1540 void *s_addr, *d_addr;
1541 int s_size, d_size, size;
1542 int written = 0;
1543
1544 s_size = d_size = class->size;
1545
1546 obj_to_location(src, &s_page, &s_objidx);
1547 obj_to_location(dst, &d_page, &d_objidx);
1548
bfd093f5
MK
1549 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1550 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1551
1552 if (s_off + class->size > PAGE_SIZE)
1553 s_size = PAGE_SIZE - s_off;
1554
1555 if (d_off + class->size > PAGE_SIZE)
1556 d_size = PAGE_SIZE - d_off;
1557
1558 s_addr = kmap_atomic(s_page);
1559 d_addr = kmap_atomic(d_page);
1560
1561 while (1) {
1562 size = min(s_size, d_size);
1563 memcpy(d_addr + d_off, s_addr + s_off, size);
1564 written += size;
1565
1566 if (written == class->size)
1567 break;
1568
495819ea
SS
1569 s_off += size;
1570 s_size -= size;
1571 d_off += size;
1572 d_size -= size;
1573
1574 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1575 kunmap_atomic(d_addr);
1576 kunmap_atomic(s_addr);
1577 s_page = get_next_page(s_page);
312fcae2
MK
1578 s_addr = kmap_atomic(s_page);
1579 d_addr = kmap_atomic(d_page);
1580 s_size = class->size - written;
1581 s_off = 0;
312fcae2
MK
1582 }
1583
495819ea 1584 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1585 kunmap_atomic(d_addr);
1586 d_page = get_next_page(d_page);
312fcae2
MK
1587 d_addr = kmap_atomic(d_page);
1588 d_size = class->size - written;
1589 d_off = 0;
312fcae2
MK
1590 }
1591 }
1592
1593 kunmap_atomic(d_addr);
1594 kunmap_atomic(s_addr);
1595}
1596
1597/*
1598 * Find alloced object in zspage from index object and
1599 * return handle.
1600 */
251cbb95 1601static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1602 struct page *page, int *obj_idx)
312fcae2
MK
1603{
1604 unsigned long head;
1605 int offset = 0;
cf675acb 1606 int index = *obj_idx;
312fcae2
MK
1607 unsigned long handle = 0;
1608 void *addr = kmap_atomic(page);
1609
3783689a 1610 offset = get_first_obj_offset(page);
312fcae2
MK
1611 offset += class->size * index;
1612
1613 while (offset < PAGE_SIZE) {
48b4800a 1614 head = obj_to_head(page, addr + offset);
312fcae2
MK
1615 if (head & OBJ_ALLOCATED_TAG) {
1616 handle = head & ~OBJ_ALLOCATED_TAG;
1617 if (trypin_tag(handle))
1618 break;
1619 handle = 0;
1620 }
1621
1622 offset += class->size;
1623 index++;
1624 }
1625
1626 kunmap_atomic(addr);
cf675acb
GM
1627
1628 *obj_idx = index;
1629
312fcae2
MK
1630 return handle;
1631}
1632
1633struct zs_compact_control {
3783689a 1634 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1635 struct page *s_page;
1636 /* Destination page for migration which should be a first page
1637 * of zspage. */
1638 struct page *d_page;
1639 /* Starting object index within @s_page which used for live object
1640 * in the subpage. */
41b88e14 1641 int obj_idx;
312fcae2
MK
1642};
1643
1644static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1645 struct zs_compact_control *cc)
1646{
1647 unsigned long used_obj, free_obj;
1648 unsigned long handle;
1649 struct page *s_page = cc->s_page;
1650 struct page *d_page = cc->d_page;
41b88e14 1651 int obj_idx = cc->obj_idx;
312fcae2
MK
1652 int ret = 0;
1653
1654 while (1) {
cf675acb 1655 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1656 if (!handle) {
1657 s_page = get_next_page(s_page);
1658 if (!s_page)
1659 break;
41b88e14 1660 obj_idx = 0;
312fcae2
MK
1661 continue;
1662 }
1663
1664 /* Stop if there is no more space */
3783689a 1665 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1666 unpin_tag(handle);
1667 ret = -ENOMEM;
1668 break;
1669 }
1670
1671 used_obj = handle_to_obj(handle);
3783689a 1672 free_obj = obj_malloc(class, get_zspage(d_page), handle);
251cbb95 1673 zs_object_copy(class, free_obj, used_obj);
41b88e14 1674 obj_idx++;
c102f07c
JL
1675 /*
1676 * record_obj updates handle's value to free_obj and it will
1677 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1678 * breaks synchronization using pin_tag(e,g, zs_free) so
1679 * let's keep the lock bit.
1680 */
1681 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1682 record_obj(handle, free_obj);
1683 unpin_tag(handle);
1ee47165 1684 obj_free(class, used_obj);
312fcae2
MK
1685 }
1686
1687 /* Remember last position in this iteration */
1688 cc->s_page = s_page;
41b88e14 1689 cc->obj_idx = obj_idx;
312fcae2
MK
1690
1691 return ret;
1692}
1693
3783689a 1694static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1695{
1696 int i;
3783689a
MK
1697 struct zspage *zspage;
1698 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1699
3783689a
MK
1700 if (!source) {
1701 fg[0] = ZS_ALMOST_FULL;
1702 fg[1] = ZS_ALMOST_EMPTY;
1703 }
1704
1705 for (i = 0; i < 2; i++) {
1706 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1707 struct zspage, list);
1708 if (zspage) {
48b4800a 1709 VM_BUG_ON(is_zspage_isolated(zspage));
3783689a
MK
1710 remove_zspage(class, zspage, fg[i]);
1711 return zspage;
312fcae2
MK
1712 }
1713 }
1714
3783689a 1715 return zspage;
312fcae2
MK
1716}
1717
860c707d 1718/*
3783689a 1719 * putback_zspage - add @zspage into right class's fullness list
860c707d 1720 * @class: destination class
3783689a 1721 * @zspage: target page
860c707d 1722 *
3783689a 1723 * Return @zspage's fullness_group
860c707d 1724 */
4aa409ca 1725static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1726 struct zspage *zspage)
312fcae2 1727{
312fcae2
MK
1728 enum fullness_group fullness;
1729
48b4800a
MK
1730 VM_BUG_ON(is_zspage_isolated(zspage));
1731
3783689a
MK
1732 fullness = get_fullness_group(class, zspage);
1733 insert_zspage(class, zspage, fullness);
1734 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1735
860c707d 1736 return fullness;
61989a80 1737}
312fcae2 1738
48b4800a 1739#ifdef CONFIG_COMPACTION
4d0a5402
CIK
1740/*
1741 * To prevent zspage destroy during migration, zspage freeing should
1742 * hold locks of all pages in the zspage.
1743 */
1744static void lock_zspage(struct zspage *zspage)
1745{
1746 struct page *page = get_first_page(zspage);
1747
1748 do {
1749 lock_page(page);
1750 } while ((page = get_next_page(page)) != NULL);
1751}
1752
8e9231f8 1753static int zs_init_fs_context(struct fs_context *fc)
48b4800a 1754{
8e9231f8 1755 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
48b4800a
MK
1756}
1757
1758static struct file_system_type zsmalloc_fs = {
1759 .name = "zsmalloc",
8e9231f8 1760 .init_fs_context = zs_init_fs_context,
48b4800a
MK
1761 .kill_sb = kill_anon_super,
1762};
1763
1764static int zsmalloc_mount(void)
1765{
1766 int ret = 0;
1767
1768 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1769 if (IS_ERR(zsmalloc_mnt))
1770 ret = PTR_ERR(zsmalloc_mnt);
1771
1772 return ret;
1773}
1774
1775static void zsmalloc_unmount(void)
1776{
1777 kern_unmount(zsmalloc_mnt);
1778}
1779
1780static void migrate_lock_init(struct zspage *zspage)
1781{
1782 rwlock_init(&zspage->lock);
1783}
1784
cfc451cf 1785static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1786{
1787 read_lock(&zspage->lock);
1788}
1789
8a374ccc 1790static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1791{
1792 read_unlock(&zspage->lock);
1793}
1794
1795static void migrate_write_lock(struct zspage *zspage)
1796{
1797 write_lock(&zspage->lock);
1798}
1799
1800static void migrate_write_unlock(struct zspage *zspage)
1801{
1802 write_unlock(&zspage->lock);
1803}
1804
1805/* Number of isolated subpage for *page migration* in this zspage */
1806static void inc_zspage_isolation(struct zspage *zspage)
1807{
1808 zspage->isolated++;
1809}
1810
1811static void dec_zspage_isolation(struct zspage *zspage)
1812{
1813 zspage->isolated--;
1814}
1815
1a87aa03
HB
1816static void putback_zspage_deferred(struct zs_pool *pool,
1817 struct size_class *class,
1818 struct zspage *zspage)
1819{
1820 enum fullness_group fg;
1821
1822 fg = putback_zspage(class, zspage);
1823 if (fg == ZS_EMPTY)
1824 schedule_work(&pool->free_work);
1825
1826}
1827
701d6785
HB
1828static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1829{
1830 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1831 atomic_long_dec(&pool->isolated_pages);
1832 /*
afe8605c
ML
1833 * Checking pool->destroying must happen after atomic_long_dec()
1834 * for pool->isolated_pages above. Paired with the smp_mb() in
1835 * zs_unregister_migration().
701d6785 1836 */
afe8605c 1837 smp_mb__after_atomic();
701d6785
HB
1838 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1839 wake_up_all(&pool->migration_wait);
1840}
1841
48b4800a
MK
1842static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1843 struct page *newpage, struct page *oldpage)
1844{
1845 struct page *page;
1846 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1847 int idx = 0;
1848
1849 page = get_first_page(zspage);
1850 do {
1851 if (page == oldpage)
1852 pages[idx] = newpage;
1853 else
1854 pages[idx] = page;
1855 idx++;
1856 } while ((page = get_next_page(page)) != NULL);
1857
1858 create_page_chain(class, zspage, pages);
1859 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1860 if (unlikely(PageHugeObject(oldpage)))
1861 newpage->index = oldpage->index;
1862 __SetPageMovable(newpage, page_mapping(oldpage));
1863}
1864
4d0a5402 1865static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a
MK
1866{
1867 struct zs_pool *pool;
1868 struct size_class *class;
1869 int class_idx;
1870 enum fullness_group fullness;
1871 struct zspage *zspage;
1872 struct address_space *mapping;
1873
1874 /*
1875 * Page is locked so zspage couldn't be destroyed. For detail, look at
1876 * lock_zspage in free_zspage.
1877 */
1878 VM_BUG_ON_PAGE(!PageMovable(page), page);
1879 VM_BUG_ON_PAGE(PageIsolated(page), page);
1880
1881 zspage = get_zspage(page);
1882
1883 /*
1884 * Without class lock, fullness could be stale while class_idx is okay
1885 * because class_idx is constant unless page is freed so we should get
1886 * fullness again under class lock.
1887 */
1888 get_zspage_mapping(zspage, &class_idx, &fullness);
1889 mapping = page_mapping(page);
1890 pool = mapping->private_data;
1891 class = pool->size_class[class_idx];
1892
1893 spin_lock(&class->lock);
1894 if (get_zspage_inuse(zspage) == 0) {
1895 spin_unlock(&class->lock);
1896 return false;
1897 }
1898
1899 /* zspage is isolated for object migration */
1900 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1901 spin_unlock(&class->lock);
1902 return false;
1903 }
1904
1905 /*
1906 * If this is first time isolation for the zspage, isolate zspage from
1907 * size_class to prevent further object allocation from the zspage.
1908 */
1909 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1910 get_zspage_mapping(zspage, &class_idx, &fullness);
701d6785 1911 atomic_long_inc(&pool->isolated_pages);
48b4800a
MK
1912 remove_zspage(class, zspage, fullness);
1913 }
1914
1915 inc_zspage_isolation(zspage);
1916 spin_unlock(&class->lock);
1917
1918 return true;
1919}
1920
4d0a5402 1921static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
48b4800a
MK
1922 struct page *page, enum migrate_mode mode)
1923{
1924 struct zs_pool *pool;
1925 struct size_class *class;
1926 int class_idx;
1927 enum fullness_group fullness;
1928 struct zspage *zspage;
1929 struct page *dummy;
1930 void *s_addr, *d_addr, *addr;
1931 int offset, pos;
1932 unsigned long handle, head;
1933 unsigned long old_obj, new_obj;
1934 unsigned int obj_idx;
1935 int ret = -EAGAIN;
1936
2916ecc0
JG
1937 /*
1938 * We cannot support the _NO_COPY case here, because copy needs to
1939 * happen under the zs lock, which does not work with
1940 * MIGRATE_SYNC_NO_COPY workflow.
1941 */
1942 if (mode == MIGRATE_SYNC_NO_COPY)
1943 return -EINVAL;
1944
48b4800a
MK
1945 VM_BUG_ON_PAGE(!PageMovable(page), page);
1946 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1947
1948 zspage = get_zspage(page);
1949
1950 /* Concurrent compactor cannot migrate any subpage in zspage */
1951 migrate_write_lock(zspage);
1952 get_zspage_mapping(zspage, &class_idx, &fullness);
1953 pool = mapping->private_data;
1954 class = pool->size_class[class_idx];
1955 offset = get_first_obj_offset(page);
1956
1957 spin_lock(&class->lock);
1958 if (!get_zspage_inuse(zspage)) {
77ff4657
HZ
1959 /*
1960 * Set "offset" to end of the page so that every loops
1961 * skips unnecessary object scanning.
1962 */
1963 offset = PAGE_SIZE;
48b4800a
MK
1964 }
1965
1966 pos = offset;
1967 s_addr = kmap_atomic(page);
1968 while (pos < PAGE_SIZE) {
1969 head = obj_to_head(page, s_addr + pos);
1970 if (head & OBJ_ALLOCATED_TAG) {
1971 handle = head & ~OBJ_ALLOCATED_TAG;
1972 if (!trypin_tag(handle))
1973 goto unpin_objects;
1974 }
1975 pos += class->size;
1976 }
1977
1978 /*
1979 * Here, any user cannot access all objects in the zspage so let's move.
1980 */
1981 d_addr = kmap_atomic(newpage);
1982 memcpy(d_addr, s_addr, PAGE_SIZE);
1983 kunmap_atomic(d_addr);
1984
1985 for (addr = s_addr + offset; addr < s_addr + pos;
1986 addr += class->size) {
1987 head = obj_to_head(page, addr);
1988 if (head & OBJ_ALLOCATED_TAG) {
1989 handle = head & ~OBJ_ALLOCATED_TAG;
ecfc2bda 1990 BUG_ON(!testpin_tag(handle));
48b4800a
MK
1991
1992 old_obj = handle_to_obj(handle);
1993 obj_to_location(old_obj, &dummy, &obj_idx);
1994 new_obj = (unsigned long)location_to_obj(newpage,
1995 obj_idx);
1996 new_obj |= BIT(HANDLE_PIN_BIT);
1997 record_obj(handle, new_obj);
1998 }
1999 }
2000
2001 replace_sub_page(class, zspage, newpage, page);
2002 get_page(newpage);
2003
2004 dec_zspage_isolation(zspage);
2005
2006 /*
2007 * Page migration is done so let's putback isolated zspage to
2008 * the list if @page is final isolated subpage in the zspage.
2009 */
701d6785
HB
2010 if (!is_zspage_isolated(zspage)) {
2011 /*
2012 * We cannot race with zs_destroy_pool() here because we wait
2013 * for isolation to hit zero before we start destroying.
2014 * Also, we ensure that everyone can see pool->destroying before
2015 * we start waiting.
2016 */
1a87aa03 2017 putback_zspage_deferred(pool, class, zspage);
701d6785
HB
2018 zs_pool_dec_isolated(pool);
2019 }
48b4800a 2020
ac8f05da
CM
2021 if (page_zone(newpage) != page_zone(page)) {
2022 dec_zone_page_state(page, NR_ZSPAGES);
2023 inc_zone_page_state(newpage, NR_ZSPAGES);
2024 }
2025
48b4800a
MK
2026 reset_page(page);
2027 put_page(page);
2028 page = newpage;
2029
dd4123f3 2030 ret = MIGRATEPAGE_SUCCESS;
48b4800a
MK
2031unpin_objects:
2032 for (addr = s_addr + offset; addr < s_addr + pos;
2033 addr += class->size) {
2034 head = obj_to_head(page, addr);
2035 if (head & OBJ_ALLOCATED_TAG) {
2036 handle = head & ~OBJ_ALLOCATED_TAG;
ecfc2bda 2037 BUG_ON(!testpin_tag(handle));
48b4800a
MK
2038 unpin_tag(handle);
2039 }
2040 }
2041 kunmap_atomic(s_addr);
48b4800a
MK
2042 spin_unlock(&class->lock);
2043 migrate_write_unlock(zspage);
2044
2045 return ret;
2046}
2047
4d0a5402 2048static void zs_page_putback(struct page *page)
48b4800a
MK
2049{
2050 struct zs_pool *pool;
2051 struct size_class *class;
2052 int class_idx;
2053 enum fullness_group fg;
2054 struct address_space *mapping;
2055 struct zspage *zspage;
2056
2057 VM_BUG_ON_PAGE(!PageMovable(page), page);
2058 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2059
2060 zspage = get_zspage(page);
2061 get_zspage_mapping(zspage, &class_idx, &fg);
2062 mapping = page_mapping(page);
2063 pool = mapping->private_data;
2064 class = pool->size_class[class_idx];
2065
2066 spin_lock(&class->lock);
2067 dec_zspage_isolation(zspage);
2068 if (!is_zspage_isolated(zspage)) {
48b4800a
MK
2069 /*
2070 * Due to page_lock, we cannot free zspage immediately
2071 * so let's defer.
2072 */
1a87aa03 2073 putback_zspage_deferred(pool, class, zspage);
701d6785 2074 zs_pool_dec_isolated(pool);
48b4800a
MK
2075 }
2076 spin_unlock(&class->lock);
2077}
2078
4d0a5402 2079static const struct address_space_operations zsmalloc_aops = {
48b4800a
MK
2080 .isolate_page = zs_page_isolate,
2081 .migratepage = zs_page_migrate,
2082 .putback_page = zs_page_putback,
2083};
2084
2085static int zs_register_migration(struct zs_pool *pool)
2086{
2087 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2088 if (IS_ERR(pool->inode)) {
2089 pool->inode = NULL;
2090 return 1;
2091 }
2092
2093 pool->inode->i_mapping->private_data = pool;
2094 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2095 return 0;
2096}
2097
701d6785
HB
2098static bool pool_isolated_are_drained(struct zs_pool *pool)
2099{
2100 return atomic_long_read(&pool->isolated_pages) == 0;
2101}
2102
2103/* Function for resolving migration */
2104static void wait_for_isolated_drain(struct zs_pool *pool)
2105{
2106
2107 /*
2108 * We're in the process of destroying the pool, so there are no
2109 * active allocations. zs_page_isolate() fails for completely free
2110 * zspages, so we need only wait for the zs_pool's isolated
2111 * count to hit zero.
2112 */
2113 wait_event(pool->migration_wait,
2114 pool_isolated_are_drained(pool));
2115}
2116
48b4800a
MK
2117static void zs_unregister_migration(struct zs_pool *pool)
2118{
701d6785
HB
2119 pool->destroying = true;
2120 /*
2121 * We need a memory barrier here to ensure global visibility of
2122 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2123 * case we don't care, or it will be > 0 and pool->destroying will
2124 * ensure that we wake up once isolation hits 0.
2125 */
2126 smp_mb();
2127 wait_for_isolated_drain(pool); /* This can block */
48b4800a 2128 flush_work(&pool->free_work);
c3491eca 2129 iput(pool->inode);
48b4800a
MK
2130}
2131
2132/*
2133 * Caller should hold page_lock of all pages in the zspage
2134 * In here, we cannot use zspage meta data.
2135 */
2136static void async_free_zspage(struct work_struct *work)
2137{
2138 int i;
2139 struct size_class *class;
2140 unsigned int class_idx;
2141 enum fullness_group fullness;
2142 struct zspage *zspage, *tmp;
2143 LIST_HEAD(free_pages);
2144 struct zs_pool *pool = container_of(work, struct zs_pool,
2145 free_work);
2146
cf8e0fed 2147 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2148 class = pool->size_class[i];
2149 if (class->index != i)
2150 continue;
2151
2152 spin_lock(&class->lock);
2153 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2154 spin_unlock(&class->lock);
2155 }
2156
2157
2158 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2159 list_del(&zspage->list);
2160 lock_zspage(zspage);
2161
2162 get_zspage_mapping(zspage, &class_idx, &fullness);
2163 VM_BUG_ON(fullness != ZS_EMPTY);
2164 class = pool->size_class[class_idx];
2165 spin_lock(&class->lock);
33848337 2166 __free_zspage(pool, class, zspage);
48b4800a
MK
2167 spin_unlock(&class->lock);
2168 }
2169};
2170
2171static void kick_deferred_free(struct zs_pool *pool)
2172{
2173 schedule_work(&pool->free_work);
2174}
2175
2176static void init_deferred_free(struct zs_pool *pool)
2177{
2178 INIT_WORK(&pool->free_work, async_free_zspage);
2179}
2180
2181static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2182{
2183 struct page *page = get_first_page(zspage);
2184
2185 do {
2186 WARN_ON(!trylock_page(page));
2187 __SetPageMovable(page, pool->inode->i_mapping);
2188 unlock_page(page);
2189 } while ((page = get_next_page(page)) != NULL);
2190}
2191#endif
2192
04f05909
SS
2193/*
2194 *
2195 * Based on the number of unused allocated objects calculate
2196 * and return the number of pages that we can free.
04f05909
SS
2197 */
2198static unsigned long zs_can_compact(struct size_class *class)
2199{
2200 unsigned long obj_wasted;
44f43e99
SS
2201 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2202 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2203
44f43e99
SS
2204 if (obj_allocated <= obj_used)
2205 return 0;
04f05909 2206
44f43e99 2207 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2208 obj_wasted /= class->objs_per_zspage;
04f05909 2209
6cbf16b3 2210 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2211}
2212
23959281
RY
2213static unsigned long __zs_compact(struct zs_pool *pool,
2214 struct size_class *class)
312fcae2 2215{
312fcae2 2216 struct zs_compact_control cc;
3783689a
MK
2217 struct zspage *src_zspage;
2218 struct zspage *dst_zspage = NULL;
23959281 2219 unsigned long pages_freed = 0;
312fcae2 2220
312fcae2 2221 spin_lock(&class->lock);
3783689a 2222 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2223
04f05909
SS
2224 if (!zs_can_compact(class))
2225 break;
2226
41b88e14 2227 cc.obj_idx = 0;
48b4800a 2228 cc.s_page = get_first_page(src_zspage);
312fcae2 2229
3783689a 2230 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2231 cc.d_page = get_first_page(dst_zspage);
312fcae2 2232 /*
0dc63d48
SS
2233 * If there is no more space in dst_page, resched
2234 * and see if anyone had allocated another zspage.
312fcae2
MK
2235 */
2236 if (!migrate_zspage(pool, class, &cc))
2237 break;
2238
4aa409ca 2239 putback_zspage(class, dst_zspage);
312fcae2
MK
2240 }
2241
2242 /* Stop if we couldn't find slot */
3783689a 2243 if (dst_zspage == NULL)
312fcae2
MK
2244 break;
2245
4aa409ca
MK
2246 putback_zspage(class, dst_zspage);
2247 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2248 free_zspage(pool, class, src_zspage);
23959281 2249 pages_freed += class->pages_per_zspage;
4aa409ca 2250 }
312fcae2 2251 spin_unlock(&class->lock);
312fcae2
MK
2252 cond_resched();
2253 spin_lock(&class->lock);
2254 }
2255
3783689a 2256 if (src_zspage)
4aa409ca 2257 putback_zspage(class, src_zspage);
312fcae2 2258
7d3f3938 2259 spin_unlock(&class->lock);
23959281
RY
2260
2261 return pages_freed;
312fcae2
MK
2262}
2263
2264unsigned long zs_compact(struct zs_pool *pool)
2265{
2266 int i;
312fcae2 2267 struct size_class *class;
23959281 2268 unsigned long pages_freed = 0;
312fcae2 2269
cf8e0fed 2270 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2271 class = pool->size_class[i];
2272 if (!class)
2273 continue;
2274 if (class->index != i)
2275 continue;
23959281 2276 pages_freed += __zs_compact(pool, class);
312fcae2 2277 }
23959281 2278 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
312fcae2 2279
23959281 2280 return pages_freed;
312fcae2
MK
2281}
2282EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2283
7d3f3938
SS
2284void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2285{
2286 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2287}
2288EXPORT_SYMBOL_GPL(zs_pool_stats);
2289
ab9d306d
SS
2290static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2291 struct shrink_control *sc)
2292{
2293 unsigned long pages_freed;
2294 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2295 shrinker);
2296
ab9d306d
SS
2297 /*
2298 * Compact classes and calculate compaction delta.
2299 * Can run concurrently with a manually triggered
2300 * (by user) compaction.
2301 */
23959281 2302 pages_freed = zs_compact(pool);
ab9d306d
SS
2303
2304 return pages_freed ? pages_freed : SHRINK_STOP;
2305}
2306
2307static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2308 struct shrink_control *sc)
2309{
2310 int i;
2311 struct size_class *class;
2312 unsigned long pages_to_free = 0;
2313 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2314 shrinker);
2315
cf8e0fed 2316 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2317 class = pool->size_class[i];
2318 if (!class)
2319 continue;
2320 if (class->index != i)
2321 continue;
2322
ab9d306d 2323 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2324 }
2325
2326 return pages_to_free;
2327}
2328
2329static void zs_unregister_shrinker(struct zs_pool *pool)
2330{
93144ca3 2331 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2332}
2333
2334static int zs_register_shrinker(struct zs_pool *pool)
2335{
2336 pool->shrinker.scan_objects = zs_shrinker_scan;
2337 pool->shrinker.count_objects = zs_shrinker_count;
2338 pool->shrinker.batch = 0;
2339 pool->shrinker.seeks = DEFAULT_SEEKS;
2340
2341 return register_shrinker(&pool->shrinker);
2342}
2343
00a61d86 2344/**
66cdef66 2345 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2346 * @name: pool name to be created
166cfda7 2347 *
66cdef66
GM
2348 * This function must be called before anything when using
2349 * the zsmalloc allocator.
166cfda7 2350 *
66cdef66
GM
2351 * On success, a pointer to the newly created pool is returned,
2352 * otherwise NULL.
396b7fd6 2353 */
d0d8da2d 2354struct zs_pool *zs_create_pool(const char *name)
61989a80 2355{
66cdef66
GM
2356 int i;
2357 struct zs_pool *pool;
2358 struct size_class *prev_class = NULL;
61989a80 2359
66cdef66
GM
2360 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2361 if (!pool)
2362 return NULL;
61989a80 2363
48b4800a 2364 init_deferred_free(pool);
61989a80 2365
2e40e163
MK
2366 pool->name = kstrdup(name, GFP_KERNEL);
2367 if (!pool->name)
2368 goto err;
2369
441e254c 2370#ifdef CONFIG_COMPACTION
701d6785 2371 init_waitqueue_head(&pool->migration_wait);
441e254c 2372#endif
701d6785 2373
3783689a 2374 if (create_cache(pool))
2e40e163
MK
2375 goto err;
2376
c60369f0 2377 /*
399d8eeb 2378 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2379 * for merging should be larger or equal to current size.
c60369f0 2380 */
cf8e0fed 2381 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2382 int size;
2383 int pages_per_zspage;
64d90465 2384 int objs_per_zspage;
66cdef66 2385 struct size_class *class;
3783689a 2386 int fullness = 0;
c60369f0 2387
66cdef66
GM
2388 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2389 if (size > ZS_MAX_ALLOC_SIZE)
2390 size = ZS_MAX_ALLOC_SIZE;
2391 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2392 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2393
010b495e
SS
2394 /*
2395 * We iterate from biggest down to smallest classes,
2396 * so huge_class_size holds the size of the first huge
2397 * class. Any object bigger than or equal to that will
2398 * endup in the huge class.
2399 */
2400 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2401 !huge_class_size) {
2402 huge_class_size = size;
2403 /*
2404 * The object uses ZS_HANDLE_SIZE bytes to store the
2405 * handle. We need to subtract it, because zs_malloc()
2406 * unconditionally adds handle size before it performs
2407 * size class search - so object may be smaller than
2408 * huge class size, yet it still can end up in the huge
2409 * class because it grows by ZS_HANDLE_SIZE extra bytes
2410 * right before class lookup.
2411 */
2412 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2413 }
2414
66cdef66
GM
2415 /*
2416 * size_class is used for normal zsmalloc operation such
2417 * as alloc/free for that size. Although it is natural that we
2418 * have one size_class for each size, there is a chance that we
2419 * can get more memory utilization if we use one size_class for
2420 * many different sizes whose size_class have same
2421 * characteristics. So, we makes size_class point to
2422 * previous size_class if possible.
2423 */
2424 if (prev_class) {
64d90465 2425 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2426 pool->size_class[i] = prev_class;
2427 continue;
2428 }
2429 }
2430
2431 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2432 if (!class)
2433 goto err;
2434
2435 class->size = size;
2436 class->index = i;
2437 class->pages_per_zspage = pages_per_zspage;
64d90465 2438 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2439 spin_lock_init(&class->lock);
2440 pool->size_class[i] = class;
48b4800a
MK
2441 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2442 fullness++)
3783689a 2443 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2444
2445 prev_class = class;
61989a80
NG
2446 }
2447
d34f6157
DS
2448 /* debug only, don't abort if it fails */
2449 zs_pool_stat_create(pool, name);
0f050d99 2450
48b4800a
MK
2451 if (zs_register_migration(pool))
2452 goto err;
2453
ab9d306d 2454 /*
93144ca3
AK
2455 * Not critical since shrinker is only used to trigger internal
2456 * defragmentation of the pool which is pretty optional thing. If
2457 * registration fails we still can use the pool normally and user can
2458 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2459 */
93144ca3
AK
2460 zs_register_shrinker(pool);
2461
66cdef66
GM
2462 return pool;
2463
2464err:
2465 zs_destroy_pool(pool);
2466 return NULL;
61989a80 2467}
66cdef66 2468EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2469
66cdef66 2470void zs_destroy_pool(struct zs_pool *pool)
61989a80 2471{
66cdef66 2472 int i;
61989a80 2473
ab9d306d 2474 zs_unregister_shrinker(pool);
48b4800a 2475 zs_unregister_migration(pool);
0f050d99
GM
2476 zs_pool_stat_destroy(pool);
2477
cf8e0fed 2478 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2479 int fg;
2480 struct size_class *class = pool->size_class[i];
61989a80 2481
66cdef66
GM
2482 if (!class)
2483 continue;
61989a80 2484
66cdef66
GM
2485 if (class->index != i)
2486 continue;
61989a80 2487
48b4800a 2488 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2489 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2490 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2491 class->size, fg);
2492 }
2493 }
2494 kfree(class);
2495 }
f553646a 2496
3783689a 2497 destroy_cache(pool);
0f050d99 2498 kfree(pool->name);
66cdef66
GM
2499 kfree(pool);
2500}
2501EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2502
66cdef66
GM
2503static int __init zs_init(void)
2504{
48b4800a
MK
2505 int ret;
2506
2507 ret = zsmalloc_mount();
2508 if (ret)
2509 goto out;
2510
215c89d0
SAS
2511 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2512 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2513 if (ret)
215c89d0 2514 goto hp_setup_fail;
66cdef66 2515
66cdef66
GM
2516#ifdef CONFIG_ZPOOL
2517 zpool_register_driver(&zs_zpool_driver);
2518#endif
0f050d99 2519
4abaac9b
DS
2520 zs_stat_init();
2521
66cdef66 2522 return 0;
0f050d99 2523
215c89d0 2524hp_setup_fail:
48b4800a
MK
2525 zsmalloc_unmount();
2526out:
0f050d99 2527 return ret;
61989a80 2528}
61989a80 2529
66cdef66 2530static void __exit zs_exit(void)
61989a80 2531{
66cdef66
GM
2532#ifdef CONFIG_ZPOOL
2533 zpool_unregister_driver(&zs_zpool_driver);
2534#endif
48b4800a 2535 zsmalloc_unmount();
215c89d0 2536 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2537
2538 zs_stat_exit();
61989a80 2539}
069f101f
BH
2540
2541module_init(zs_init);
2542module_exit(zs_exit);
2543
2544MODULE_LICENSE("Dual BSD/GPL");
2545MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");