mm, page_alloc: move mirrored_kernelcore to __meminitdata
[linux-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
48b4800a
MK
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
fd854463 23 * page->units: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
50d34394 36#include <linux/magic.h>
61989a80
NG
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
61989a80
NG
40#include <linux/string.h>
41#include <linux/slab.h>
42#include <asm/tlbflush.h>
43#include <asm/pgtable.h>
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
0cbb613f 46#include <linux/vmalloc.h>
759b26b2 47#include <linux/preempt.h>
0959c63f 48#include <linux/spinlock.h>
93144ca3 49#include <linux/shrinker.h>
0959c63f 50#include <linux/types.h>
0f050d99 51#include <linux/debugfs.h>
bcf1647d 52#include <linux/zsmalloc.h>
c795779d 53#include <linux/zpool.h>
48b4800a 54#include <linux/mount.h>
dd4123f3 55#include <linux/migrate.h>
48b4800a 56#include <linux/pagemap.h>
cdc346b3 57#include <linux/fs.h>
48b4800a
MK
58
59#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
60
61/*
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
66 */
67#define ZS_ALIGN 8
68
69/*
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72 */
73#define ZS_MAX_ZSPAGE_ORDER 2
74#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75
2e40e163
MK
76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
0959c63f
SJ
78/*
79 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 80 * as single (unsigned long) handle value.
0959c63f 81 *
bfd093f5 82 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
02390b87
KS
87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
88#ifdef MAX_PHYSMEM_BITS
89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90#else
0959c63f
SJ
91/*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
02390b87 95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
96#endif
97#endif
02390b87
KS
98
99#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
100
101/*
102 * Memory for allocating for handle keeps object position by
103 * encoding <page, obj_idx> and the encoded value has a room
104 * in least bit(ie, look at obj_to_location).
105 * We use the bit to synchronize between object access by
106 * user and migration.
107 */
108#define HANDLE_PIN_BIT 0
109
110/*
111 * Head in allocated object should have OBJ_ALLOCATED_TAG
112 * to identify the object was allocated or not.
113 * It's okay to add the status bit in the least bit because
114 * header keeps handle which is 4byte-aligned address so we
115 * have room for two bit at least.
116 */
117#define OBJ_ALLOCATED_TAG 1
118#define OBJ_TAG_BITS 1
119#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
120#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121
cf8e0fed
JM
122#define FULLNESS_BITS 2
123#define CLASS_BITS 8
124#define ISOLATED_BITS 3
125#define MAGIC_VAL_BITS 8
126
0959c63f
SJ
127#define MAX(a, b) ((a) >= (b) ? (a) : (b))
128/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129#define ZS_MIN_ALLOC_SIZE \
130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 131/* each chunk includes extra space to keep handle */
7b60a685 132#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
133
134/*
7eb52512 135 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
136 * trader-off here:
137 * - Large number of size classes is potentially wasteful as free page are
138 * spread across these classes
139 * - Small number of size classes causes large internal fragmentation
140 * - Probably its better to use specific size classes (empirically
141 * determined). NOTE: all those class sizes must be set as multiple of
142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143 *
144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145 * (reason above)
146 */
3783689a 147#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
148#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 150
0959c63f 151enum fullness_group {
0959c63f 152 ZS_EMPTY,
48b4800a
MK
153 ZS_ALMOST_EMPTY,
154 ZS_ALMOST_FULL,
155 ZS_FULL,
156 NR_ZS_FULLNESS,
0959c63f
SJ
157};
158
0f050d99 159enum zs_stat_type {
48b4800a
MK
160 CLASS_EMPTY,
161 CLASS_ALMOST_EMPTY,
162 CLASS_ALMOST_FULL,
163 CLASS_FULL,
0f050d99
GM
164 OBJ_ALLOCATED,
165 OBJ_USED,
48b4800a 166 NR_ZS_STAT_TYPE,
0f050d99
GM
167};
168
0f050d99
GM
169struct zs_size_stat {
170 unsigned long objs[NR_ZS_STAT_TYPE];
171};
172
57244594
SS
173#ifdef CONFIG_ZSMALLOC_STAT
174static struct dentry *zs_stat_root;
0f050d99
GM
175#endif
176
48b4800a
MK
177#ifdef CONFIG_COMPACTION
178static struct vfsmount *zsmalloc_mnt;
179#endif
180
0959c63f
SJ
181/*
182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183 * n <= N / f, where
184 * n = number of allocated objects
185 * N = total number of objects zspage can store
6dd9737e 186 * f = fullness_threshold_frac
0959c63f
SJ
187 *
188 * Similarly, we assign zspage to:
189 * ZS_ALMOST_FULL when n > N / f
190 * ZS_EMPTY when n == 0
191 * ZS_FULL when n == N
192 *
193 * (see: fix_fullness_group())
194 */
195static const int fullness_threshold_frac = 4;
196
197struct size_class {
57244594 198 spinlock_t lock;
48b4800a 199 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
200 /*
201 * Size of objects stored in this class. Must be multiple
202 * of ZS_ALIGN.
203 */
204 int size;
1fc6e27d 205 int objs_per_zspage;
7dfa4612
WY
206 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
207 int pages_per_zspage;
48b4800a
MK
208
209 unsigned int index;
210 struct zs_size_stat stats;
0959c63f
SJ
211};
212
48b4800a
MK
213/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
214static void SetPageHugeObject(struct page *page)
215{
216 SetPageOwnerPriv1(page);
217}
218
219static void ClearPageHugeObject(struct page *page)
220{
221 ClearPageOwnerPriv1(page);
222}
223
224static int PageHugeObject(struct page *page)
225{
226 return PageOwnerPriv1(page);
227}
228
0959c63f
SJ
229/*
230 * Placed within free objects to form a singly linked list.
3783689a 231 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
232 *
233 * This must be power of 2 and less than or equal to ZS_ALIGN
234 */
235struct link_free {
2e40e163
MK
236 union {
237 /*
bfd093f5 238 * Free object index;
2e40e163
MK
239 * It's valid for non-allocated object
240 */
bfd093f5 241 unsigned long next;
2e40e163
MK
242 /*
243 * Handle of allocated object.
244 */
245 unsigned long handle;
246 };
0959c63f
SJ
247};
248
249struct zs_pool {
6f3526d6 250 const char *name;
0f050d99 251
cf8e0fed 252 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 253 struct kmem_cache *handle_cachep;
3783689a 254 struct kmem_cache *zspage_cachep;
0959c63f 255
13de8933 256 atomic_long_t pages_allocated;
0f050d99 257
7d3f3938 258 struct zs_pool_stats stats;
ab9d306d
SS
259
260 /* Compact classes */
261 struct shrinker shrinker;
93144ca3 262
0f050d99
GM
263#ifdef CONFIG_ZSMALLOC_STAT
264 struct dentry *stat_dentry;
265#endif
48b4800a
MK
266#ifdef CONFIG_COMPACTION
267 struct inode *inode;
268 struct work_struct free_work;
269#endif
0959c63f 270};
61989a80 271
3783689a
MK
272struct zspage {
273 struct {
274 unsigned int fullness:FULLNESS_BITS;
85d492f2 275 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
276 unsigned int isolated:ISOLATED_BITS;
277 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
278 };
279 unsigned int inuse;
bfd093f5 280 unsigned int freeobj;
3783689a
MK
281 struct page *first_page;
282 struct list_head list; /* fullness list */
48b4800a
MK
283#ifdef CONFIG_COMPACTION
284 rwlock_t lock;
285#endif
3783689a 286};
61989a80 287
f553646a 288struct mapping_area {
1b945aee 289#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
290 struct vm_struct *vm; /* vm area for mapping object that span pages */
291#else
292 char *vm_buf; /* copy buffer for objects that span pages */
293#endif
294 char *vm_addr; /* address of kmap_atomic()'ed pages */
295 enum zs_mapmode vm_mm; /* mapping mode */
296};
297
48b4800a
MK
298#ifdef CONFIG_COMPACTION
299static int zs_register_migration(struct zs_pool *pool);
300static void zs_unregister_migration(struct zs_pool *pool);
301static void migrate_lock_init(struct zspage *zspage);
302static void migrate_read_lock(struct zspage *zspage);
303static void migrate_read_unlock(struct zspage *zspage);
304static void kick_deferred_free(struct zs_pool *pool);
305static void init_deferred_free(struct zs_pool *pool);
306static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
307#else
308static int zsmalloc_mount(void) { return 0; }
309static void zsmalloc_unmount(void) {}
310static int zs_register_migration(struct zs_pool *pool) { return 0; }
311static void zs_unregister_migration(struct zs_pool *pool) {}
312static void migrate_lock_init(struct zspage *zspage) {}
313static void migrate_read_lock(struct zspage *zspage) {}
314static void migrate_read_unlock(struct zspage *zspage) {}
315static void kick_deferred_free(struct zs_pool *pool) {}
316static void init_deferred_free(struct zs_pool *pool) {}
317static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
318#endif
319
3783689a 320static int create_cache(struct zs_pool *pool)
2e40e163
MK
321{
322 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
323 0, 0, NULL);
3783689a
MK
324 if (!pool->handle_cachep)
325 return 1;
326
327 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
328 0, 0, NULL);
329 if (!pool->zspage_cachep) {
330 kmem_cache_destroy(pool->handle_cachep);
331 pool->handle_cachep = NULL;
332 return 1;
333 }
334
335 return 0;
2e40e163
MK
336}
337
3783689a 338static void destroy_cache(struct zs_pool *pool)
2e40e163 339{
cd10add0 340 kmem_cache_destroy(pool->handle_cachep);
3783689a 341 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
342}
343
3783689a 344static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
345{
346 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 347 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
348}
349
3783689a 350static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
351{
352 kmem_cache_free(pool->handle_cachep, (void *)handle);
353}
354
3783689a
MK
355static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
356{
48b4800a
MK
357 return kmem_cache_alloc(pool->zspage_cachep,
358 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 359}
3783689a
MK
360
361static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
362{
363 kmem_cache_free(pool->zspage_cachep, zspage);
364}
365
2e40e163
MK
366static void record_obj(unsigned long handle, unsigned long obj)
367{
c102f07c
JL
368 /*
369 * lsb of @obj represents handle lock while other bits
370 * represent object value the handle is pointing so
371 * updating shouldn't do store tearing.
372 */
373 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
374}
375
c795779d
DS
376/* zpool driver */
377
378#ifdef CONFIG_ZPOOL
379
6f3526d6 380static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 381 const struct zpool_ops *zpool_ops,
479305fd 382 struct zpool *zpool)
c795779d 383{
d0d8da2d
SS
384 /*
385 * Ignore global gfp flags: zs_malloc() may be invoked from
386 * different contexts and its caller must provide a valid
387 * gfp mask.
388 */
389 return zs_create_pool(name);
c795779d
DS
390}
391
392static void zs_zpool_destroy(void *pool)
393{
394 zs_destroy_pool(pool);
395}
396
397static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
398 unsigned long *handle)
399{
d0d8da2d 400 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
401 return *handle ? 0 : -1;
402}
403static void zs_zpool_free(void *pool, unsigned long handle)
404{
405 zs_free(pool, handle);
406}
407
c795779d
DS
408static void *zs_zpool_map(void *pool, unsigned long handle,
409 enum zpool_mapmode mm)
410{
411 enum zs_mapmode zs_mm;
412
413 switch (mm) {
414 case ZPOOL_MM_RO:
415 zs_mm = ZS_MM_RO;
416 break;
417 case ZPOOL_MM_WO:
418 zs_mm = ZS_MM_WO;
419 break;
420 case ZPOOL_MM_RW: /* fallthru */
421 default:
422 zs_mm = ZS_MM_RW;
423 break;
424 }
425
426 return zs_map_object(pool, handle, zs_mm);
427}
428static void zs_zpool_unmap(void *pool, unsigned long handle)
429{
430 zs_unmap_object(pool, handle);
431}
432
433static u64 zs_zpool_total_size(void *pool)
434{
722cdc17 435 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
436}
437
438static struct zpool_driver zs_zpool_driver = {
439 .type = "zsmalloc",
440 .owner = THIS_MODULE,
441 .create = zs_zpool_create,
442 .destroy = zs_zpool_destroy,
443 .malloc = zs_zpool_malloc,
444 .free = zs_zpool_free,
c795779d
DS
445 .map = zs_zpool_map,
446 .unmap = zs_zpool_unmap,
447 .total_size = zs_zpool_total_size,
448};
449
137f8cff 450MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
451#endif /* CONFIG_ZPOOL */
452
61989a80
NG
453/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
454static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
455
48b4800a
MK
456static bool is_zspage_isolated(struct zspage *zspage)
457{
458 return zspage->isolated;
459}
460
3457f414 461static __maybe_unused int is_first_page(struct page *page)
61989a80 462{
a27545bf 463 return PagePrivate(page);
61989a80
NG
464}
465
48b4800a 466/* Protected by class->lock */
3783689a 467static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 468{
3783689a 469 return zspage->inuse;
4f42047b
MK
470}
471
3783689a 472static inline void set_zspage_inuse(struct zspage *zspage, int val)
4f42047b 473{
3783689a 474 zspage->inuse = val;
4f42047b
MK
475}
476
3783689a 477static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 478{
3783689a 479 zspage->inuse += val;
4f42047b
MK
480}
481
48b4800a 482static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 483{
48b4800a 484 struct page *first_page = zspage->first_page;
3783689a 485
48b4800a
MK
486 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
487 return first_page;
4f42047b
MK
488}
489
48b4800a 490static inline int get_first_obj_offset(struct page *page)
4f42047b 491{
48b4800a
MK
492 return page->units;
493}
3783689a 494
48b4800a
MK
495static inline void set_first_obj_offset(struct page *page, int offset)
496{
497 page->units = offset;
4f42047b
MK
498}
499
bfd093f5 500static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 501{
bfd093f5 502 return zspage->freeobj;
4f42047b
MK
503}
504
bfd093f5 505static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 506{
bfd093f5 507 zspage->freeobj = obj;
4f42047b
MK
508}
509
3783689a 510static void get_zspage_mapping(struct zspage *zspage,
a4209467 511 unsigned int *class_idx,
61989a80
NG
512 enum fullness_group *fullness)
513{
48b4800a
MK
514 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
515
3783689a
MK
516 *fullness = zspage->fullness;
517 *class_idx = zspage->class;
61989a80
NG
518}
519
3783689a 520static void set_zspage_mapping(struct zspage *zspage,
a4209467 521 unsigned int class_idx,
61989a80
NG
522 enum fullness_group fullness)
523{
3783689a
MK
524 zspage->class = class_idx;
525 zspage->fullness = fullness;
61989a80
NG
526}
527
c3e3e88a
NC
528/*
529 * zsmalloc divides the pool into various size classes where each
530 * class maintains a list of zspages where each zspage is divided
531 * into equal sized chunks. Each allocation falls into one of these
532 * classes depending on its size. This function returns index of the
533 * size class which has chunk size big enough to hold the give size.
534 */
61989a80
NG
535static int get_size_class_index(int size)
536{
537 int idx = 0;
538
539 if (likely(size > ZS_MIN_ALLOC_SIZE))
540 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
541 ZS_SIZE_CLASS_DELTA);
542
cf8e0fed 543 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
544}
545
3eb95fea 546/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 547static inline void zs_stat_inc(struct size_class *class,
3eb95fea 548 int type, unsigned long cnt)
248ca1b0 549{
48b4800a 550 class->stats.objs[type] += cnt;
248ca1b0
MK
551}
552
3eb95fea 553/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 554static inline void zs_stat_dec(struct size_class *class,
3eb95fea 555 int type, unsigned long cnt)
248ca1b0 556{
48b4800a 557 class->stats.objs[type] -= cnt;
248ca1b0
MK
558}
559
3eb95fea 560/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 561static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 562 int type)
248ca1b0 563{
48b4800a 564 return class->stats.objs[type];
248ca1b0
MK
565}
566
57244594
SS
567#ifdef CONFIG_ZSMALLOC_STAT
568
4abaac9b 569static void __init zs_stat_init(void)
248ca1b0 570{
4abaac9b
DS
571 if (!debugfs_initialized()) {
572 pr_warn("debugfs not available, stat dir not created\n");
573 return;
574 }
248ca1b0
MK
575
576 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
577 if (!zs_stat_root)
4abaac9b 578 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
248ca1b0
MK
579}
580
581static void __exit zs_stat_exit(void)
582{
583 debugfs_remove_recursive(zs_stat_root);
584}
585
1120ed54
SS
586static unsigned long zs_can_compact(struct size_class *class);
587
248ca1b0
MK
588static int zs_stats_size_show(struct seq_file *s, void *v)
589{
590 int i;
591 struct zs_pool *pool = s->private;
592 struct size_class *class;
593 int objs_per_zspage;
594 unsigned long class_almost_full, class_almost_empty;
1120ed54 595 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
596 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
597 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 598 unsigned long total_freeable = 0;
248ca1b0 599
1120ed54 600 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
601 "class", "size", "almost_full", "almost_empty",
602 "obj_allocated", "obj_used", "pages_used",
1120ed54 603 "pages_per_zspage", "freeable");
248ca1b0 604
cf8e0fed 605 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
606 class = pool->size_class[i];
607
608 if (class->index != i)
609 continue;
610
611 spin_lock(&class->lock);
612 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
613 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
614 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
615 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 616 freeable = zs_can_compact(class);
248ca1b0
MK
617 spin_unlock(&class->lock);
618
b4fd07a0 619 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
620 pages_used = obj_allocated / objs_per_zspage *
621 class->pages_per_zspage;
622
1120ed54
SS
623 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
624 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
625 i, class->size, class_almost_full, class_almost_empty,
626 obj_allocated, obj_used, pages_used,
1120ed54 627 class->pages_per_zspage, freeable);
248ca1b0
MK
628
629 total_class_almost_full += class_almost_full;
630 total_class_almost_empty += class_almost_empty;
631 total_objs += obj_allocated;
632 total_used_objs += obj_used;
633 total_pages += pages_used;
1120ed54 634 total_freeable += freeable;
248ca1b0
MK
635 }
636
637 seq_puts(s, "\n");
1120ed54 638 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
639 "Total", "", total_class_almost_full,
640 total_class_almost_empty, total_objs,
1120ed54 641 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
642
643 return 0;
644}
645
646static int zs_stats_size_open(struct inode *inode, struct file *file)
647{
648 return single_open(file, zs_stats_size_show, inode->i_private);
649}
650
651static const struct file_operations zs_stat_size_ops = {
652 .open = zs_stats_size_open,
653 .read = seq_read,
654 .llseek = seq_lseek,
655 .release = single_release,
656};
657
d34f6157 658static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0
MK
659{
660 struct dentry *entry;
661
4abaac9b
DS
662 if (!zs_stat_root) {
663 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 664 return;
4abaac9b 665 }
248ca1b0
MK
666
667 entry = debugfs_create_dir(name, zs_stat_root);
668 if (!entry) {
669 pr_warn("debugfs dir <%s> creation failed\n", name);
d34f6157 670 return;
248ca1b0
MK
671 }
672 pool->stat_dentry = entry;
673
674 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
675 pool->stat_dentry, pool, &zs_stat_size_ops);
676 if (!entry) {
677 pr_warn("%s: debugfs file entry <%s> creation failed\n",
678 name, "classes");
4abaac9b
DS
679 debugfs_remove_recursive(pool->stat_dentry);
680 pool->stat_dentry = NULL;
248ca1b0 681 }
248ca1b0
MK
682}
683
684static void zs_pool_stat_destroy(struct zs_pool *pool)
685{
686 debugfs_remove_recursive(pool->stat_dentry);
687}
688
689#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 690static void __init zs_stat_init(void)
248ca1b0 691{
248ca1b0
MK
692}
693
694static void __exit zs_stat_exit(void)
695{
696}
697
d34f6157 698static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 699{
248ca1b0
MK
700}
701
702static inline void zs_pool_stat_destroy(struct zs_pool *pool)
703{
704}
248ca1b0
MK
705#endif
706
48b4800a 707
c3e3e88a
NC
708/*
709 * For each size class, zspages are divided into different groups
710 * depending on how "full" they are. This was done so that we could
711 * easily find empty or nearly empty zspages when we try to shrink
712 * the pool (not yet implemented). This function returns fullness
713 * status of the given page.
714 */
1fc6e27d 715static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 716 struct zspage *zspage)
61989a80 717{
1fc6e27d 718 int inuse, objs_per_zspage;
61989a80 719 enum fullness_group fg;
830e4bc5 720
3783689a 721 inuse = get_zspage_inuse(zspage);
1fc6e27d 722 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
723
724 if (inuse == 0)
725 fg = ZS_EMPTY;
1fc6e27d 726 else if (inuse == objs_per_zspage)
61989a80 727 fg = ZS_FULL;
1fc6e27d 728 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
729 fg = ZS_ALMOST_EMPTY;
730 else
731 fg = ZS_ALMOST_FULL;
732
733 return fg;
734}
735
c3e3e88a
NC
736/*
737 * Each size class maintains various freelists and zspages are assigned
738 * to one of these freelists based on the number of live objects they
739 * have. This functions inserts the given zspage into the freelist
740 * identified by <class, fullness_group>.
741 */
251cbb95 742static void insert_zspage(struct size_class *class,
3783689a
MK
743 struct zspage *zspage,
744 enum fullness_group fullness)
61989a80 745{
3783689a 746 struct zspage *head;
61989a80 747
48b4800a 748 zs_stat_inc(class, fullness, 1);
3783689a
MK
749 head = list_first_entry_or_null(&class->fullness_list[fullness],
750 struct zspage, list);
58f17117 751 /*
3783689a
MK
752 * We want to see more ZS_FULL pages and less almost empty/full.
753 * Put pages with higher ->inuse first.
58f17117 754 */
3783689a
MK
755 if (head) {
756 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
757 list_add(&zspage->list, &head->list);
758 return;
759 }
760 }
761 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
762}
763
c3e3e88a
NC
764/*
765 * This function removes the given zspage from the freelist identified
766 * by <class, fullness_group>.
767 */
251cbb95 768static void remove_zspage(struct size_class *class,
3783689a
MK
769 struct zspage *zspage,
770 enum fullness_group fullness)
61989a80 771{
3783689a 772 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
48b4800a 773 VM_BUG_ON(is_zspage_isolated(zspage));
61989a80 774
3783689a 775 list_del_init(&zspage->list);
48b4800a 776 zs_stat_dec(class, fullness, 1);
61989a80
NG
777}
778
c3e3e88a
NC
779/*
780 * Each size class maintains zspages in different fullness groups depending
781 * on the number of live objects they contain. When allocating or freeing
782 * objects, the fullness status of the page can change, say, from ALMOST_FULL
783 * to ALMOST_EMPTY when freeing an object. This function checks if such
784 * a status change has occurred for the given page and accordingly moves the
785 * page from the freelist of the old fullness group to that of the new
786 * fullness group.
787 */
c7806261 788static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 789 struct zspage *zspage)
61989a80
NG
790{
791 int class_idx;
61989a80
NG
792 enum fullness_group currfg, newfg;
793
3783689a
MK
794 get_zspage_mapping(zspage, &class_idx, &currfg);
795 newfg = get_fullness_group(class, zspage);
61989a80
NG
796 if (newfg == currfg)
797 goto out;
798
48b4800a
MK
799 if (!is_zspage_isolated(zspage)) {
800 remove_zspage(class, zspage, currfg);
801 insert_zspage(class, zspage, newfg);
802 }
803
3783689a 804 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
805
806out:
807 return newfg;
808}
809
810/*
811 * We have to decide on how many pages to link together
812 * to form a zspage for each size class. This is important
813 * to reduce wastage due to unusable space left at end of
814 * each zspage which is given as:
888fa374
YX
815 * wastage = Zp % class_size
816 * usage = Zp - wastage
61989a80
NG
817 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
818 *
819 * For example, for size class of 3/8 * PAGE_SIZE, we should
820 * link together 3 PAGE_SIZE sized pages to form a zspage
821 * since then we can perfectly fit in 8 such objects.
822 */
2e3b6154 823static int get_pages_per_zspage(int class_size)
61989a80
NG
824{
825 int i, max_usedpc = 0;
826 /* zspage order which gives maximum used size per KB */
827 int max_usedpc_order = 1;
828
84d4faab 829 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
830 int zspage_size;
831 int waste, usedpc;
832
833 zspage_size = i * PAGE_SIZE;
834 waste = zspage_size % class_size;
835 usedpc = (zspage_size - waste) * 100 / zspage_size;
836
837 if (usedpc > max_usedpc) {
838 max_usedpc = usedpc;
839 max_usedpc_order = i;
840 }
841 }
842
843 return max_usedpc_order;
844}
845
3783689a 846static struct zspage *get_zspage(struct page *page)
61989a80 847{
48b4800a
MK
848 struct zspage *zspage = (struct zspage *)page->private;
849
850 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
851 return zspage;
61989a80
NG
852}
853
854static struct page *get_next_page(struct page *page)
855{
48b4800a
MK
856 if (unlikely(PageHugeObject(page)))
857 return NULL;
858
859 return page->freelist;
61989a80
NG
860}
861
bfd093f5
MK
862/**
863 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
864 * @page: page object resides in zspage
865 * @obj_idx: object index
67296874 866 */
bfd093f5
MK
867static void obj_to_location(unsigned long obj, struct page **page,
868 unsigned int *obj_idx)
61989a80 869{
bfd093f5
MK
870 obj >>= OBJ_TAG_BITS;
871 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
872 *obj_idx = (obj & OBJ_INDEX_MASK);
873}
61989a80 874
bfd093f5
MK
875/**
876 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
877 * @page: page object resides in zspage
878 * @obj_idx: object index
879 */
880static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
881{
882 unsigned long obj;
61989a80 883
312fcae2 884 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 885 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 886 obj <<= OBJ_TAG_BITS;
61989a80 887
bfd093f5 888 return obj;
61989a80
NG
889}
890
2e40e163
MK
891static unsigned long handle_to_obj(unsigned long handle)
892{
893 return *(unsigned long *)handle;
894}
895
48b4800a 896static unsigned long obj_to_head(struct page *page, void *obj)
312fcae2 897{
48b4800a 898 if (unlikely(PageHugeObject(page))) {
830e4bc5 899 VM_BUG_ON_PAGE(!is_first_page(page), page);
3783689a 900 return page->index;
7b60a685
MK
901 } else
902 return *(unsigned long *)obj;
312fcae2
MK
903}
904
48b4800a
MK
905static inline int testpin_tag(unsigned long handle)
906{
907 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
908}
909
312fcae2
MK
910static inline int trypin_tag(unsigned long handle)
911{
1b8320b6 912 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
913}
914
915static void pin_tag(unsigned long handle)
916{
1b8320b6 917 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
918}
919
920static void unpin_tag(unsigned long handle)
921{
1b8320b6 922 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
923}
924
f4477e90
NG
925static void reset_page(struct page *page)
926{
48b4800a 927 __ClearPageMovable(page);
18fd06bf 928 ClearPagePrivate(page);
f4477e90 929 set_page_private(page, 0);
48b4800a
MK
930 page_mapcount_reset(page);
931 ClearPageHugeObject(page);
932 page->freelist = NULL;
933}
934
935/*
936 * To prevent zspage destroy during migration, zspage freeing should
937 * hold locks of all pages in the zspage.
938 */
939void lock_zspage(struct zspage *zspage)
940{
941 struct page *page = get_first_page(zspage);
942
943 do {
944 lock_page(page);
945 } while ((page = get_next_page(page)) != NULL);
946}
947
948int trylock_zspage(struct zspage *zspage)
949{
950 struct page *cursor, *fail;
951
952 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
953 get_next_page(cursor)) {
954 if (!trylock_page(cursor)) {
955 fail = cursor;
956 goto unlock;
957 }
958 }
959
960 return 1;
961unlock:
962 for (cursor = get_first_page(zspage); cursor != fail; cursor =
963 get_next_page(cursor))
964 unlock_page(cursor);
965
966 return 0;
f4477e90
NG
967}
968
48b4800a
MK
969static void __free_zspage(struct zs_pool *pool, struct size_class *class,
970 struct zspage *zspage)
61989a80 971{
3783689a 972 struct page *page, *next;
48b4800a
MK
973 enum fullness_group fg;
974 unsigned int class_idx;
975
976 get_zspage_mapping(zspage, &class_idx, &fg);
977
978 assert_spin_locked(&class->lock);
61989a80 979
3783689a 980 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 981 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 982
48b4800a 983 next = page = get_first_page(zspage);
3783689a 984 do {
48b4800a
MK
985 VM_BUG_ON_PAGE(!PageLocked(page), page);
986 next = get_next_page(page);
3783689a 987 reset_page(page);
48b4800a 988 unlock_page(page);
91537fee 989 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
990 put_page(page);
991 page = next;
992 } while (page != NULL);
61989a80 993
3783689a 994 cache_free_zspage(pool, zspage);
48b4800a 995
b4fd07a0 996 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
997 atomic_long_sub(class->pages_per_zspage,
998 &pool->pages_allocated);
999}
1000
1001static void free_zspage(struct zs_pool *pool, struct size_class *class,
1002 struct zspage *zspage)
1003{
1004 VM_BUG_ON(get_zspage_inuse(zspage));
1005 VM_BUG_ON(list_empty(&zspage->list));
1006
1007 if (!trylock_zspage(zspage)) {
1008 kick_deferred_free(pool);
1009 return;
1010 }
1011
1012 remove_zspage(class, zspage, ZS_EMPTY);
1013 __free_zspage(pool, class, zspage);
61989a80
NG
1014}
1015
1016/* Initialize a newly allocated zspage */
3783689a 1017static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 1018{
bfd093f5 1019 unsigned int freeobj = 1;
61989a80 1020 unsigned long off = 0;
48b4800a 1021 struct page *page = get_first_page(zspage);
830e4bc5 1022
61989a80
NG
1023 while (page) {
1024 struct page *next_page;
1025 struct link_free *link;
af4ee5e9 1026 void *vaddr;
61989a80 1027
3783689a 1028 set_first_obj_offset(page, off);
61989a80 1029
af4ee5e9
MK
1030 vaddr = kmap_atomic(page);
1031 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1032
1033 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1034 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1035 link += class->size / sizeof(*link);
61989a80
NG
1036 }
1037
1038 /*
1039 * We now come to the last (full or partial) object on this
1040 * page, which must point to the first object on the next
1041 * page (if present)
1042 */
1043 next_page = get_next_page(page);
bfd093f5 1044 if (next_page) {
3b1d9ca6 1045 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1046 } else {
1047 /*
3b1d9ca6 1048 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1049 * whether it's allocated object or not.
1050 */
01a6ad9a 1051 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1052 }
af4ee5e9 1053 kunmap_atomic(vaddr);
61989a80 1054 page = next_page;
5538c562 1055 off %= PAGE_SIZE;
61989a80 1056 }
bdb0af7c 1057
bfd093f5 1058 set_freeobj(zspage, 0);
61989a80
NG
1059}
1060
48b4800a
MK
1061static void create_page_chain(struct size_class *class, struct zspage *zspage,
1062 struct page *pages[])
61989a80 1063{
bdb0af7c
MK
1064 int i;
1065 struct page *page;
1066 struct page *prev_page = NULL;
48b4800a 1067 int nr_pages = class->pages_per_zspage;
61989a80
NG
1068
1069 /*
1070 * Allocate individual pages and link them together as:
48b4800a 1071 * 1. all pages are linked together using page->freelist
3783689a 1072 * 2. each sub-page point to zspage using page->private
61989a80 1073 *
3783689a 1074 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1075 * has this flag set).
61989a80 1076 */
bdb0af7c
MK
1077 for (i = 0; i < nr_pages; i++) {
1078 page = pages[i];
3783689a 1079 set_page_private(page, (unsigned long)zspage);
48b4800a 1080 page->freelist = NULL;
bdb0af7c 1081 if (i == 0) {
3783689a 1082 zspage->first_page = page;
a27545bf 1083 SetPagePrivate(page);
48b4800a
MK
1084 if (unlikely(class->objs_per_zspage == 1 &&
1085 class->pages_per_zspage == 1))
1086 SetPageHugeObject(page);
3783689a 1087 } else {
48b4800a 1088 prev_page->freelist = page;
61989a80 1089 }
61989a80
NG
1090 prev_page = page;
1091 }
bdb0af7c 1092}
61989a80 1093
bdb0af7c
MK
1094/*
1095 * Allocate a zspage for the given size class
1096 */
3783689a
MK
1097static struct zspage *alloc_zspage(struct zs_pool *pool,
1098 struct size_class *class,
1099 gfp_t gfp)
bdb0af7c
MK
1100{
1101 int i;
bdb0af7c 1102 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1103 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1104
1105 if (!zspage)
1106 return NULL;
1107
1108 memset(zspage, 0, sizeof(struct zspage));
48b4800a
MK
1109 zspage->magic = ZSPAGE_MAGIC;
1110 migrate_lock_init(zspage);
61989a80 1111
bdb0af7c
MK
1112 for (i = 0; i < class->pages_per_zspage; i++) {
1113 struct page *page;
61989a80 1114
3783689a 1115 page = alloc_page(gfp);
bdb0af7c 1116 if (!page) {
91537fee
MK
1117 while (--i >= 0) {
1118 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1119 __free_page(pages[i]);
91537fee 1120 }
3783689a 1121 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1122 return NULL;
1123 }
91537fee
MK
1124
1125 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1126 pages[i] = page;
61989a80
NG
1127 }
1128
48b4800a 1129 create_page_chain(class, zspage, pages);
3783689a 1130 init_zspage(class, zspage);
bdb0af7c 1131
3783689a 1132 return zspage;
61989a80
NG
1133}
1134
3783689a 1135static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1136{
1137 int i;
3783689a 1138 struct zspage *zspage;
61989a80 1139
48b4800a 1140 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1141 zspage = list_first_entry_or_null(&class->fullness_list[i],
1142 struct zspage, list);
1143 if (zspage)
61989a80
NG
1144 break;
1145 }
1146
3783689a 1147 return zspage;
61989a80
NG
1148}
1149
1b945aee 1150#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1151static inline int __zs_cpu_up(struct mapping_area *area)
1152{
1153 /*
1154 * Make sure we don't leak memory if a cpu UP notification
1155 * and zs_init() race and both call zs_cpu_up() on the same cpu
1156 */
1157 if (area->vm)
1158 return 0;
1159 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1160 if (!area->vm)
1161 return -ENOMEM;
1162 return 0;
1163}
1164
1165static inline void __zs_cpu_down(struct mapping_area *area)
1166{
1167 if (area->vm)
1168 free_vm_area(area->vm);
1169 area->vm = NULL;
1170}
1171
1172static inline void *__zs_map_object(struct mapping_area *area,
1173 struct page *pages[2], int off, int size)
1174{
f6f8ed47 1175 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1176 area->vm_addr = area->vm->addr;
1177 return area->vm_addr + off;
1178}
1179
1180static inline void __zs_unmap_object(struct mapping_area *area,
1181 struct page *pages[2], int off, int size)
1182{
1183 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1184
d95abbbb 1185 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1186}
1187
1b945aee 1188#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1189
1190static inline int __zs_cpu_up(struct mapping_area *area)
1191{
1192 /*
1193 * Make sure we don't leak memory if a cpu UP notification
1194 * and zs_init() race and both call zs_cpu_up() on the same cpu
1195 */
1196 if (area->vm_buf)
1197 return 0;
40f9fb8c 1198 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1199 if (!area->vm_buf)
1200 return -ENOMEM;
1201 return 0;
1202}
1203
1204static inline void __zs_cpu_down(struct mapping_area *area)
1205{
40f9fb8c 1206 kfree(area->vm_buf);
f553646a
SJ
1207 area->vm_buf = NULL;
1208}
1209
1210static void *__zs_map_object(struct mapping_area *area,
1211 struct page *pages[2], int off, int size)
5f601902 1212{
5f601902
SJ
1213 int sizes[2];
1214 void *addr;
f553646a 1215 char *buf = area->vm_buf;
5f601902 1216
f553646a
SJ
1217 /* disable page faults to match kmap_atomic() return conditions */
1218 pagefault_disable();
1219
1220 /* no read fastpath */
1221 if (area->vm_mm == ZS_MM_WO)
1222 goto out;
5f601902
SJ
1223
1224 sizes[0] = PAGE_SIZE - off;
1225 sizes[1] = size - sizes[0];
1226
5f601902
SJ
1227 /* copy object to per-cpu buffer */
1228 addr = kmap_atomic(pages[0]);
1229 memcpy(buf, addr + off, sizes[0]);
1230 kunmap_atomic(addr);
1231 addr = kmap_atomic(pages[1]);
1232 memcpy(buf + sizes[0], addr, sizes[1]);
1233 kunmap_atomic(addr);
f553646a
SJ
1234out:
1235 return area->vm_buf;
5f601902
SJ
1236}
1237
f553646a
SJ
1238static void __zs_unmap_object(struct mapping_area *area,
1239 struct page *pages[2], int off, int size)
5f601902 1240{
5f601902
SJ
1241 int sizes[2];
1242 void *addr;
2e40e163 1243 char *buf;
5f601902 1244
f553646a
SJ
1245 /* no write fastpath */
1246 if (area->vm_mm == ZS_MM_RO)
1247 goto out;
5f601902 1248
7b60a685 1249 buf = area->vm_buf;
a82cbf07
YX
1250 buf = buf + ZS_HANDLE_SIZE;
1251 size -= ZS_HANDLE_SIZE;
1252 off += ZS_HANDLE_SIZE;
2e40e163 1253
5f601902
SJ
1254 sizes[0] = PAGE_SIZE - off;
1255 sizes[1] = size - sizes[0];
1256
1257 /* copy per-cpu buffer to object */
1258 addr = kmap_atomic(pages[0]);
1259 memcpy(addr + off, buf, sizes[0]);
1260 kunmap_atomic(addr);
1261 addr = kmap_atomic(pages[1]);
1262 memcpy(addr, buf + sizes[0], sizes[1]);
1263 kunmap_atomic(addr);
f553646a
SJ
1264
1265out:
1266 /* enable page faults to match kunmap_atomic() return conditions */
1267 pagefault_enable();
5f601902 1268}
61989a80 1269
1b945aee 1270#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1271
215c89d0 1272static int zs_cpu_prepare(unsigned int cpu)
61989a80 1273{
61989a80
NG
1274 struct mapping_area *area;
1275
215c89d0
SAS
1276 area = &per_cpu(zs_map_area, cpu);
1277 return __zs_cpu_up(area);
61989a80
NG
1278}
1279
215c89d0 1280static int zs_cpu_dead(unsigned int cpu)
61989a80 1281{
215c89d0 1282 struct mapping_area *area;
40f9fb8c 1283
215c89d0
SAS
1284 area = &per_cpu(zs_map_area, cpu);
1285 __zs_cpu_down(area);
1286 return 0;
b1b00a5b
SS
1287}
1288
64d90465
GM
1289static bool can_merge(struct size_class *prev, int pages_per_zspage,
1290 int objs_per_zspage)
9eec4cd5 1291{
64d90465
GM
1292 if (prev->pages_per_zspage == pages_per_zspage &&
1293 prev->objs_per_zspage == objs_per_zspage)
1294 return true;
9eec4cd5 1295
64d90465 1296 return false;
9eec4cd5
JK
1297}
1298
3783689a 1299static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1300{
3783689a 1301 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1302}
1303
66cdef66
GM
1304unsigned long zs_get_total_pages(struct zs_pool *pool)
1305{
1306 return atomic_long_read(&pool->pages_allocated);
1307}
1308EXPORT_SYMBOL_GPL(zs_get_total_pages);
1309
4bbc0bc0 1310/**
66cdef66
GM
1311 * zs_map_object - get address of allocated object from handle.
1312 * @pool: pool from which the object was allocated
1313 * @handle: handle returned from zs_malloc
4bbc0bc0 1314 *
66cdef66
GM
1315 * Before using an object allocated from zs_malloc, it must be mapped using
1316 * this function. When done with the object, it must be unmapped using
1317 * zs_unmap_object.
4bbc0bc0 1318 *
66cdef66
GM
1319 * Only one object can be mapped per cpu at a time. There is no protection
1320 * against nested mappings.
1321 *
1322 * This function returns with preemption and page faults disabled.
4bbc0bc0 1323 */
66cdef66
GM
1324void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1325 enum zs_mapmode mm)
61989a80 1326{
3783689a 1327 struct zspage *zspage;
66cdef66 1328 struct page *page;
bfd093f5
MK
1329 unsigned long obj, off;
1330 unsigned int obj_idx;
61989a80 1331
66cdef66
GM
1332 unsigned int class_idx;
1333 enum fullness_group fg;
1334 struct size_class *class;
1335 struct mapping_area *area;
1336 struct page *pages[2];
2e40e163 1337 void *ret;
61989a80 1338
9eec4cd5 1339 /*
66cdef66
GM
1340 * Because we use per-cpu mapping areas shared among the
1341 * pools/users, we can't allow mapping in interrupt context
1342 * because it can corrupt another users mappings.
9eec4cd5 1343 */
1aedcafb 1344 BUG_ON(in_interrupt());
61989a80 1345
312fcae2
MK
1346 /* From now on, migration cannot move the object */
1347 pin_tag(handle);
1348
2e40e163
MK
1349 obj = handle_to_obj(handle);
1350 obj_to_location(obj, &page, &obj_idx);
3783689a 1351 zspage = get_zspage(page);
48b4800a
MK
1352
1353 /* migration cannot move any subpage in this zspage */
1354 migrate_read_lock(zspage);
1355
3783689a 1356 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1357 class = pool->size_class[class_idx];
bfd093f5 1358 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1359
66cdef66
GM
1360 area = &get_cpu_var(zs_map_area);
1361 area->vm_mm = mm;
1362 if (off + class->size <= PAGE_SIZE) {
1363 /* this object is contained entirely within a page */
1364 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1365 ret = area->vm_addr + off;
1366 goto out;
61989a80
NG
1367 }
1368
66cdef66
GM
1369 /* this object spans two pages */
1370 pages[0] = page;
1371 pages[1] = get_next_page(page);
1372 BUG_ON(!pages[1]);
9eec4cd5 1373
2e40e163
MK
1374 ret = __zs_map_object(area, pages, off, class->size);
1375out:
48b4800a 1376 if (likely(!PageHugeObject(page)))
7b60a685
MK
1377 ret += ZS_HANDLE_SIZE;
1378
1379 return ret;
61989a80 1380}
66cdef66 1381EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1382
66cdef66 1383void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1384{
3783689a 1385 struct zspage *zspage;
66cdef66 1386 struct page *page;
bfd093f5
MK
1387 unsigned long obj, off;
1388 unsigned int obj_idx;
61989a80 1389
66cdef66
GM
1390 unsigned int class_idx;
1391 enum fullness_group fg;
1392 struct size_class *class;
1393 struct mapping_area *area;
9eec4cd5 1394
2e40e163
MK
1395 obj = handle_to_obj(handle);
1396 obj_to_location(obj, &page, &obj_idx);
3783689a
MK
1397 zspage = get_zspage(page);
1398 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1399 class = pool->size_class[class_idx];
bfd093f5 1400 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1401
66cdef66
GM
1402 area = this_cpu_ptr(&zs_map_area);
1403 if (off + class->size <= PAGE_SIZE)
1404 kunmap_atomic(area->vm_addr);
1405 else {
1406 struct page *pages[2];
40f9fb8c 1407
66cdef66
GM
1408 pages[0] = page;
1409 pages[1] = get_next_page(page);
1410 BUG_ON(!pages[1]);
1411
1412 __zs_unmap_object(area, pages, off, class->size);
1413 }
1414 put_cpu_var(zs_map_area);
48b4800a
MK
1415
1416 migrate_read_unlock(zspage);
312fcae2 1417 unpin_tag(handle);
61989a80 1418}
66cdef66 1419EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1420
251cbb95 1421static unsigned long obj_malloc(struct size_class *class,
3783689a 1422 struct zspage *zspage, unsigned long handle)
c7806261 1423{
bfd093f5 1424 int i, nr_page, offset;
c7806261
MK
1425 unsigned long obj;
1426 struct link_free *link;
1427
1428 struct page *m_page;
bfd093f5 1429 unsigned long m_offset;
c7806261
MK
1430 void *vaddr;
1431
312fcae2 1432 handle |= OBJ_ALLOCATED_TAG;
3783689a 1433 obj = get_freeobj(zspage);
bfd093f5
MK
1434
1435 offset = obj * class->size;
1436 nr_page = offset >> PAGE_SHIFT;
1437 m_offset = offset & ~PAGE_MASK;
1438 m_page = get_first_page(zspage);
1439
1440 for (i = 0; i < nr_page; i++)
1441 m_page = get_next_page(m_page);
c7806261
MK
1442
1443 vaddr = kmap_atomic(m_page);
1444 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1445 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
48b4800a 1446 if (likely(!PageHugeObject(m_page)))
7b60a685
MK
1447 /* record handle in the header of allocated chunk */
1448 link->handle = handle;
1449 else
3783689a
MK
1450 /* record handle to page->index */
1451 zspage->first_page->index = handle;
1452
c7806261 1453 kunmap_atomic(vaddr);
3783689a 1454 mod_zspage_inuse(zspage, 1);
c7806261
MK
1455 zs_stat_inc(class, OBJ_USED, 1);
1456
bfd093f5
MK
1457 obj = location_to_obj(m_page, obj);
1458
c7806261
MK
1459 return obj;
1460}
1461
1462
61989a80
NG
1463/**
1464 * zs_malloc - Allocate block of given size from pool.
1465 * @pool: pool to allocate from
1466 * @size: size of block to allocate
fd854463 1467 * @gfp: gfp flags when allocating object
61989a80 1468 *
00a61d86 1469 * On success, handle to the allocated object is returned,
c2344348 1470 * otherwise 0.
61989a80
NG
1471 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1472 */
d0d8da2d 1473unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1474{
2e40e163 1475 unsigned long handle, obj;
61989a80 1476 struct size_class *class;
48b4800a 1477 enum fullness_group newfg;
3783689a 1478 struct zspage *zspage;
61989a80 1479
7b60a685 1480 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1481 return 0;
1482
3783689a 1483 handle = cache_alloc_handle(pool, gfp);
2e40e163 1484 if (!handle)
c2344348 1485 return 0;
61989a80 1486
2e40e163
MK
1487 /* extra space in chunk to keep the handle */
1488 size += ZS_HANDLE_SIZE;
9eec4cd5 1489 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1490
1491 spin_lock(&class->lock);
3783689a 1492 zspage = find_get_zspage(class);
48b4800a
MK
1493 if (likely(zspage)) {
1494 obj = obj_malloc(class, zspage, handle);
1495 /* Now move the zspage to another fullness group, if required */
1496 fix_fullness_group(class, zspage);
1497 record_obj(handle, obj);
61989a80 1498 spin_unlock(&class->lock);
61989a80 1499
48b4800a
MK
1500 return handle;
1501 }
0f050d99 1502
48b4800a
MK
1503 spin_unlock(&class->lock);
1504
1505 zspage = alloc_zspage(pool, class, gfp);
1506 if (!zspage) {
1507 cache_free_handle(pool, handle);
1508 return 0;
61989a80
NG
1509 }
1510
48b4800a 1511 spin_lock(&class->lock);
3783689a 1512 obj = obj_malloc(class, zspage, handle);
48b4800a
MK
1513 newfg = get_fullness_group(class, zspage);
1514 insert_zspage(class, zspage, newfg);
1515 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1516 record_obj(handle, obj);
48b4800a
MK
1517 atomic_long_add(class->pages_per_zspage,
1518 &pool->pages_allocated);
b4fd07a0 1519 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1520
1521 /* We completely set up zspage so mark them as movable */
1522 SetZsPageMovable(pool, zspage);
61989a80
NG
1523 spin_unlock(&class->lock);
1524
2e40e163 1525 return handle;
61989a80
NG
1526}
1527EXPORT_SYMBOL_GPL(zs_malloc);
1528
1ee47165 1529static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1530{
1531 struct link_free *link;
3783689a
MK
1532 struct zspage *zspage;
1533 struct page *f_page;
bfd093f5
MK
1534 unsigned long f_offset;
1535 unsigned int f_objidx;
af4ee5e9 1536 void *vaddr;
61989a80 1537
312fcae2 1538 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1539 obj_to_location(obj, &f_page, &f_objidx);
bfd093f5 1540 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
3783689a 1541 zspage = get_zspage(f_page);
61989a80 1542
c7806261 1543 vaddr = kmap_atomic(f_page);
61989a80
NG
1544
1545 /* Insert this object in containing zspage's freelist */
af4ee5e9 1546 link = (struct link_free *)(vaddr + f_offset);
3b1d9ca6 1547 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
af4ee5e9 1548 kunmap_atomic(vaddr);
bfd093f5 1549 set_freeobj(zspage, f_objidx);
3783689a 1550 mod_zspage_inuse(zspage, -1);
0f050d99 1551 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1552}
1553
1554void zs_free(struct zs_pool *pool, unsigned long handle)
1555{
3783689a
MK
1556 struct zspage *zspage;
1557 struct page *f_page;
bfd093f5
MK
1558 unsigned long obj;
1559 unsigned int f_objidx;
c7806261
MK
1560 int class_idx;
1561 struct size_class *class;
1562 enum fullness_group fullness;
48b4800a 1563 bool isolated;
c7806261
MK
1564
1565 if (unlikely(!handle))
1566 return;
1567
312fcae2 1568 pin_tag(handle);
c7806261 1569 obj = handle_to_obj(handle);
c7806261 1570 obj_to_location(obj, &f_page, &f_objidx);
3783689a 1571 zspage = get_zspage(f_page);
c7806261 1572
48b4800a
MK
1573 migrate_read_lock(zspage);
1574
3783689a 1575 get_zspage_mapping(zspage, &class_idx, &fullness);
c7806261
MK
1576 class = pool->size_class[class_idx];
1577
1578 spin_lock(&class->lock);
1ee47165 1579 obj_free(class, obj);
3783689a 1580 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1581 if (fullness != ZS_EMPTY) {
1582 migrate_read_unlock(zspage);
1583 goto out;
312fcae2 1584 }
48b4800a
MK
1585
1586 isolated = is_zspage_isolated(zspage);
1587 migrate_read_unlock(zspage);
1588 /* If zspage is isolated, zs_page_putback will free the zspage */
1589 if (likely(!isolated))
1590 free_zspage(pool, class, zspage);
1591out:
1592
61989a80 1593 spin_unlock(&class->lock);
312fcae2 1594 unpin_tag(handle);
3783689a 1595 cache_free_handle(pool, handle);
312fcae2
MK
1596}
1597EXPORT_SYMBOL_GPL(zs_free);
1598
251cbb95
MK
1599static void zs_object_copy(struct size_class *class, unsigned long dst,
1600 unsigned long src)
312fcae2
MK
1601{
1602 struct page *s_page, *d_page;
bfd093f5 1603 unsigned int s_objidx, d_objidx;
312fcae2
MK
1604 unsigned long s_off, d_off;
1605 void *s_addr, *d_addr;
1606 int s_size, d_size, size;
1607 int written = 0;
1608
1609 s_size = d_size = class->size;
1610
1611 obj_to_location(src, &s_page, &s_objidx);
1612 obj_to_location(dst, &d_page, &d_objidx);
1613
bfd093f5
MK
1614 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1615 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1616
1617 if (s_off + class->size > PAGE_SIZE)
1618 s_size = PAGE_SIZE - s_off;
1619
1620 if (d_off + class->size > PAGE_SIZE)
1621 d_size = PAGE_SIZE - d_off;
1622
1623 s_addr = kmap_atomic(s_page);
1624 d_addr = kmap_atomic(d_page);
1625
1626 while (1) {
1627 size = min(s_size, d_size);
1628 memcpy(d_addr + d_off, s_addr + s_off, size);
1629 written += size;
1630
1631 if (written == class->size)
1632 break;
1633
495819ea
SS
1634 s_off += size;
1635 s_size -= size;
1636 d_off += size;
1637 d_size -= size;
1638
1639 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1640 kunmap_atomic(d_addr);
1641 kunmap_atomic(s_addr);
1642 s_page = get_next_page(s_page);
312fcae2
MK
1643 s_addr = kmap_atomic(s_page);
1644 d_addr = kmap_atomic(d_page);
1645 s_size = class->size - written;
1646 s_off = 0;
312fcae2
MK
1647 }
1648
495819ea 1649 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1650 kunmap_atomic(d_addr);
1651 d_page = get_next_page(d_page);
312fcae2
MK
1652 d_addr = kmap_atomic(d_page);
1653 d_size = class->size - written;
1654 d_off = 0;
312fcae2
MK
1655 }
1656 }
1657
1658 kunmap_atomic(d_addr);
1659 kunmap_atomic(s_addr);
1660}
1661
1662/*
1663 * Find alloced object in zspage from index object and
1664 * return handle.
1665 */
251cbb95 1666static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1667 struct page *page, int *obj_idx)
312fcae2
MK
1668{
1669 unsigned long head;
1670 int offset = 0;
cf675acb 1671 int index = *obj_idx;
312fcae2
MK
1672 unsigned long handle = 0;
1673 void *addr = kmap_atomic(page);
1674
3783689a 1675 offset = get_first_obj_offset(page);
312fcae2
MK
1676 offset += class->size * index;
1677
1678 while (offset < PAGE_SIZE) {
48b4800a 1679 head = obj_to_head(page, addr + offset);
312fcae2
MK
1680 if (head & OBJ_ALLOCATED_TAG) {
1681 handle = head & ~OBJ_ALLOCATED_TAG;
1682 if (trypin_tag(handle))
1683 break;
1684 handle = 0;
1685 }
1686
1687 offset += class->size;
1688 index++;
1689 }
1690
1691 kunmap_atomic(addr);
cf675acb
GM
1692
1693 *obj_idx = index;
1694
312fcae2
MK
1695 return handle;
1696}
1697
1698struct zs_compact_control {
3783689a 1699 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1700 struct page *s_page;
1701 /* Destination page for migration which should be a first page
1702 * of zspage. */
1703 struct page *d_page;
1704 /* Starting object index within @s_page which used for live object
1705 * in the subpage. */
41b88e14 1706 int obj_idx;
312fcae2
MK
1707};
1708
1709static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1710 struct zs_compact_control *cc)
1711{
1712 unsigned long used_obj, free_obj;
1713 unsigned long handle;
1714 struct page *s_page = cc->s_page;
1715 struct page *d_page = cc->d_page;
41b88e14 1716 int obj_idx = cc->obj_idx;
312fcae2
MK
1717 int ret = 0;
1718
1719 while (1) {
cf675acb 1720 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1721 if (!handle) {
1722 s_page = get_next_page(s_page);
1723 if (!s_page)
1724 break;
41b88e14 1725 obj_idx = 0;
312fcae2
MK
1726 continue;
1727 }
1728
1729 /* Stop if there is no more space */
3783689a 1730 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1731 unpin_tag(handle);
1732 ret = -ENOMEM;
1733 break;
1734 }
1735
1736 used_obj = handle_to_obj(handle);
3783689a 1737 free_obj = obj_malloc(class, get_zspage(d_page), handle);
251cbb95 1738 zs_object_copy(class, free_obj, used_obj);
41b88e14 1739 obj_idx++;
c102f07c
JL
1740 /*
1741 * record_obj updates handle's value to free_obj and it will
1742 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1743 * breaks synchronization using pin_tag(e,g, zs_free) so
1744 * let's keep the lock bit.
1745 */
1746 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1747 record_obj(handle, free_obj);
1748 unpin_tag(handle);
1ee47165 1749 obj_free(class, used_obj);
312fcae2
MK
1750 }
1751
1752 /* Remember last position in this iteration */
1753 cc->s_page = s_page;
41b88e14 1754 cc->obj_idx = obj_idx;
312fcae2
MK
1755
1756 return ret;
1757}
1758
3783689a 1759static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1760{
1761 int i;
3783689a
MK
1762 struct zspage *zspage;
1763 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1764
3783689a
MK
1765 if (!source) {
1766 fg[0] = ZS_ALMOST_FULL;
1767 fg[1] = ZS_ALMOST_EMPTY;
1768 }
1769
1770 for (i = 0; i < 2; i++) {
1771 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1772 struct zspage, list);
1773 if (zspage) {
48b4800a 1774 VM_BUG_ON(is_zspage_isolated(zspage));
3783689a
MK
1775 remove_zspage(class, zspage, fg[i]);
1776 return zspage;
312fcae2
MK
1777 }
1778 }
1779
3783689a 1780 return zspage;
312fcae2
MK
1781}
1782
860c707d 1783/*
3783689a 1784 * putback_zspage - add @zspage into right class's fullness list
860c707d 1785 * @class: destination class
3783689a 1786 * @zspage: target page
860c707d 1787 *
3783689a 1788 * Return @zspage's fullness_group
860c707d 1789 */
4aa409ca 1790static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1791 struct zspage *zspage)
312fcae2 1792{
312fcae2
MK
1793 enum fullness_group fullness;
1794
48b4800a
MK
1795 VM_BUG_ON(is_zspage_isolated(zspage));
1796
3783689a
MK
1797 fullness = get_fullness_group(class, zspage);
1798 insert_zspage(class, zspage, fullness);
1799 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1800
860c707d 1801 return fullness;
61989a80 1802}
312fcae2 1803
48b4800a
MK
1804#ifdef CONFIG_COMPACTION
1805static struct dentry *zs_mount(struct file_system_type *fs_type,
1806 int flags, const char *dev_name, void *data)
1807{
1808 static const struct dentry_operations ops = {
1809 .d_dname = simple_dname,
1810 };
1811
1812 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1813}
1814
1815static struct file_system_type zsmalloc_fs = {
1816 .name = "zsmalloc",
1817 .mount = zs_mount,
1818 .kill_sb = kill_anon_super,
1819};
1820
1821static int zsmalloc_mount(void)
1822{
1823 int ret = 0;
1824
1825 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1826 if (IS_ERR(zsmalloc_mnt))
1827 ret = PTR_ERR(zsmalloc_mnt);
1828
1829 return ret;
1830}
1831
1832static void zsmalloc_unmount(void)
1833{
1834 kern_unmount(zsmalloc_mnt);
1835}
1836
1837static void migrate_lock_init(struct zspage *zspage)
1838{
1839 rwlock_init(&zspage->lock);
1840}
1841
1842static void migrate_read_lock(struct zspage *zspage)
1843{
1844 read_lock(&zspage->lock);
1845}
1846
1847static void migrate_read_unlock(struct zspage *zspage)
1848{
1849 read_unlock(&zspage->lock);
1850}
1851
1852static void migrate_write_lock(struct zspage *zspage)
1853{
1854 write_lock(&zspage->lock);
1855}
1856
1857static void migrate_write_unlock(struct zspage *zspage)
1858{
1859 write_unlock(&zspage->lock);
1860}
1861
1862/* Number of isolated subpage for *page migration* in this zspage */
1863static void inc_zspage_isolation(struct zspage *zspage)
1864{
1865 zspage->isolated++;
1866}
1867
1868static void dec_zspage_isolation(struct zspage *zspage)
1869{
1870 zspage->isolated--;
1871}
1872
1873static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1874 struct page *newpage, struct page *oldpage)
1875{
1876 struct page *page;
1877 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1878 int idx = 0;
1879
1880 page = get_first_page(zspage);
1881 do {
1882 if (page == oldpage)
1883 pages[idx] = newpage;
1884 else
1885 pages[idx] = page;
1886 idx++;
1887 } while ((page = get_next_page(page)) != NULL);
1888
1889 create_page_chain(class, zspage, pages);
1890 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1891 if (unlikely(PageHugeObject(oldpage)))
1892 newpage->index = oldpage->index;
1893 __SetPageMovable(newpage, page_mapping(oldpage));
1894}
1895
1896bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1897{
1898 struct zs_pool *pool;
1899 struct size_class *class;
1900 int class_idx;
1901 enum fullness_group fullness;
1902 struct zspage *zspage;
1903 struct address_space *mapping;
1904
1905 /*
1906 * Page is locked so zspage couldn't be destroyed. For detail, look at
1907 * lock_zspage in free_zspage.
1908 */
1909 VM_BUG_ON_PAGE(!PageMovable(page), page);
1910 VM_BUG_ON_PAGE(PageIsolated(page), page);
1911
1912 zspage = get_zspage(page);
1913
1914 /*
1915 * Without class lock, fullness could be stale while class_idx is okay
1916 * because class_idx is constant unless page is freed so we should get
1917 * fullness again under class lock.
1918 */
1919 get_zspage_mapping(zspage, &class_idx, &fullness);
1920 mapping = page_mapping(page);
1921 pool = mapping->private_data;
1922 class = pool->size_class[class_idx];
1923
1924 spin_lock(&class->lock);
1925 if (get_zspage_inuse(zspage) == 0) {
1926 spin_unlock(&class->lock);
1927 return false;
1928 }
1929
1930 /* zspage is isolated for object migration */
1931 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1932 spin_unlock(&class->lock);
1933 return false;
1934 }
1935
1936 /*
1937 * If this is first time isolation for the zspage, isolate zspage from
1938 * size_class to prevent further object allocation from the zspage.
1939 */
1940 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1941 get_zspage_mapping(zspage, &class_idx, &fullness);
1942 remove_zspage(class, zspage, fullness);
1943 }
1944
1945 inc_zspage_isolation(zspage);
1946 spin_unlock(&class->lock);
1947
1948 return true;
1949}
1950
1951int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1952 struct page *page, enum migrate_mode mode)
1953{
1954 struct zs_pool *pool;
1955 struct size_class *class;
1956 int class_idx;
1957 enum fullness_group fullness;
1958 struct zspage *zspage;
1959 struct page *dummy;
1960 void *s_addr, *d_addr, *addr;
1961 int offset, pos;
1962 unsigned long handle, head;
1963 unsigned long old_obj, new_obj;
1964 unsigned int obj_idx;
1965 int ret = -EAGAIN;
1966
2916ecc0
JG
1967 /*
1968 * We cannot support the _NO_COPY case here, because copy needs to
1969 * happen under the zs lock, which does not work with
1970 * MIGRATE_SYNC_NO_COPY workflow.
1971 */
1972 if (mode == MIGRATE_SYNC_NO_COPY)
1973 return -EINVAL;
1974
48b4800a
MK
1975 VM_BUG_ON_PAGE(!PageMovable(page), page);
1976 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1977
1978 zspage = get_zspage(page);
1979
1980 /* Concurrent compactor cannot migrate any subpage in zspage */
1981 migrate_write_lock(zspage);
1982 get_zspage_mapping(zspage, &class_idx, &fullness);
1983 pool = mapping->private_data;
1984 class = pool->size_class[class_idx];
1985 offset = get_first_obj_offset(page);
1986
1987 spin_lock(&class->lock);
1988 if (!get_zspage_inuse(zspage)) {
77ff4657
HZ
1989 /*
1990 * Set "offset" to end of the page so that every loops
1991 * skips unnecessary object scanning.
1992 */
1993 offset = PAGE_SIZE;
48b4800a
MK
1994 }
1995
1996 pos = offset;
1997 s_addr = kmap_atomic(page);
1998 while (pos < PAGE_SIZE) {
1999 head = obj_to_head(page, s_addr + pos);
2000 if (head & OBJ_ALLOCATED_TAG) {
2001 handle = head & ~OBJ_ALLOCATED_TAG;
2002 if (!trypin_tag(handle))
2003 goto unpin_objects;
2004 }
2005 pos += class->size;
2006 }
2007
2008 /*
2009 * Here, any user cannot access all objects in the zspage so let's move.
2010 */
2011 d_addr = kmap_atomic(newpage);
2012 memcpy(d_addr, s_addr, PAGE_SIZE);
2013 kunmap_atomic(d_addr);
2014
2015 for (addr = s_addr + offset; addr < s_addr + pos;
2016 addr += class->size) {
2017 head = obj_to_head(page, addr);
2018 if (head & OBJ_ALLOCATED_TAG) {
2019 handle = head & ~OBJ_ALLOCATED_TAG;
2020 if (!testpin_tag(handle))
2021 BUG();
2022
2023 old_obj = handle_to_obj(handle);
2024 obj_to_location(old_obj, &dummy, &obj_idx);
2025 new_obj = (unsigned long)location_to_obj(newpage,
2026 obj_idx);
2027 new_obj |= BIT(HANDLE_PIN_BIT);
2028 record_obj(handle, new_obj);
2029 }
2030 }
2031
2032 replace_sub_page(class, zspage, newpage, page);
2033 get_page(newpage);
2034
2035 dec_zspage_isolation(zspage);
2036
2037 /*
2038 * Page migration is done so let's putback isolated zspage to
2039 * the list if @page is final isolated subpage in the zspage.
2040 */
2041 if (!is_zspage_isolated(zspage))
2042 putback_zspage(class, zspage);
2043
2044 reset_page(page);
2045 put_page(page);
2046 page = newpage;
2047
dd4123f3 2048 ret = MIGRATEPAGE_SUCCESS;
48b4800a
MK
2049unpin_objects:
2050 for (addr = s_addr + offset; addr < s_addr + pos;
2051 addr += class->size) {
2052 head = obj_to_head(page, addr);
2053 if (head & OBJ_ALLOCATED_TAG) {
2054 handle = head & ~OBJ_ALLOCATED_TAG;
2055 if (!testpin_tag(handle))
2056 BUG();
2057 unpin_tag(handle);
2058 }
2059 }
2060 kunmap_atomic(s_addr);
48b4800a
MK
2061 spin_unlock(&class->lock);
2062 migrate_write_unlock(zspage);
2063
2064 return ret;
2065}
2066
2067void zs_page_putback(struct page *page)
2068{
2069 struct zs_pool *pool;
2070 struct size_class *class;
2071 int class_idx;
2072 enum fullness_group fg;
2073 struct address_space *mapping;
2074 struct zspage *zspage;
2075
2076 VM_BUG_ON_PAGE(!PageMovable(page), page);
2077 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2078
2079 zspage = get_zspage(page);
2080 get_zspage_mapping(zspage, &class_idx, &fg);
2081 mapping = page_mapping(page);
2082 pool = mapping->private_data;
2083 class = pool->size_class[class_idx];
2084
2085 spin_lock(&class->lock);
2086 dec_zspage_isolation(zspage);
2087 if (!is_zspage_isolated(zspage)) {
2088 fg = putback_zspage(class, zspage);
2089 /*
2090 * Due to page_lock, we cannot free zspage immediately
2091 * so let's defer.
2092 */
2093 if (fg == ZS_EMPTY)
2094 schedule_work(&pool->free_work);
2095 }
2096 spin_unlock(&class->lock);
2097}
2098
2099const struct address_space_operations zsmalloc_aops = {
2100 .isolate_page = zs_page_isolate,
2101 .migratepage = zs_page_migrate,
2102 .putback_page = zs_page_putback,
2103};
2104
2105static int zs_register_migration(struct zs_pool *pool)
2106{
2107 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2108 if (IS_ERR(pool->inode)) {
2109 pool->inode = NULL;
2110 return 1;
2111 }
2112
2113 pool->inode->i_mapping->private_data = pool;
2114 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2115 return 0;
2116}
2117
2118static void zs_unregister_migration(struct zs_pool *pool)
2119{
2120 flush_work(&pool->free_work);
c3491eca 2121 iput(pool->inode);
48b4800a
MK
2122}
2123
2124/*
2125 * Caller should hold page_lock of all pages in the zspage
2126 * In here, we cannot use zspage meta data.
2127 */
2128static void async_free_zspage(struct work_struct *work)
2129{
2130 int i;
2131 struct size_class *class;
2132 unsigned int class_idx;
2133 enum fullness_group fullness;
2134 struct zspage *zspage, *tmp;
2135 LIST_HEAD(free_pages);
2136 struct zs_pool *pool = container_of(work, struct zs_pool,
2137 free_work);
2138
cf8e0fed 2139 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2140 class = pool->size_class[i];
2141 if (class->index != i)
2142 continue;
2143
2144 spin_lock(&class->lock);
2145 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2146 spin_unlock(&class->lock);
2147 }
2148
2149
2150 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2151 list_del(&zspage->list);
2152 lock_zspage(zspage);
2153
2154 get_zspage_mapping(zspage, &class_idx, &fullness);
2155 VM_BUG_ON(fullness != ZS_EMPTY);
2156 class = pool->size_class[class_idx];
2157 spin_lock(&class->lock);
2158 __free_zspage(pool, pool->size_class[class_idx], zspage);
2159 spin_unlock(&class->lock);
2160 }
2161};
2162
2163static void kick_deferred_free(struct zs_pool *pool)
2164{
2165 schedule_work(&pool->free_work);
2166}
2167
2168static void init_deferred_free(struct zs_pool *pool)
2169{
2170 INIT_WORK(&pool->free_work, async_free_zspage);
2171}
2172
2173static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2174{
2175 struct page *page = get_first_page(zspage);
2176
2177 do {
2178 WARN_ON(!trylock_page(page));
2179 __SetPageMovable(page, pool->inode->i_mapping);
2180 unlock_page(page);
2181 } while ((page = get_next_page(page)) != NULL);
2182}
2183#endif
2184
04f05909
SS
2185/*
2186 *
2187 * Based on the number of unused allocated objects calculate
2188 * and return the number of pages that we can free.
04f05909
SS
2189 */
2190static unsigned long zs_can_compact(struct size_class *class)
2191{
2192 unsigned long obj_wasted;
44f43e99
SS
2193 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2194 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2195
44f43e99
SS
2196 if (obj_allocated <= obj_used)
2197 return 0;
04f05909 2198
44f43e99 2199 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2200 obj_wasted /= class->objs_per_zspage;
04f05909 2201
6cbf16b3 2202 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2203}
2204
7d3f3938 2205static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 2206{
312fcae2 2207 struct zs_compact_control cc;
3783689a
MK
2208 struct zspage *src_zspage;
2209 struct zspage *dst_zspage = NULL;
312fcae2 2210
312fcae2 2211 spin_lock(&class->lock);
3783689a 2212 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2213
04f05909
SS
2214 if (!zs_can_compact(class))
2215 break;
2216
41b88e14 2217 cc.obj_idx = 0;
48b4800a 2218 cc.s_page = get_first_page(src_zspage);
312fcae2 2219
3783689a 2220 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2221 cc.d_page = get_first_page(dst_zspage);
312fcae2 2222 /*
0dc63d48
SS
2223 * If there is no more space in dst_page, resched
2224 * and see if anyone had allocated another zspage.
312fcae2
MK
2225 */
2226 if (!migrate_zspage(pool, class, &cc))
2227 break;
2228
4aa409ca 2229 putback_zspage(class, dst_zspage);
312fcae2
MK
2230 }
2231
2232 /* Stop if we couldn't find slot */
3783689a 2233 if (dst_zspage == NULL)
312fcae2
MK
2234 break;
2235
4aa409ca
MK
2236 putback_zspage(class, dst_zspage);
2237 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2238 free_zspage(pool, class, src_zspage);
6cbf16b3 2239 pool->stats.pages_compacted += class->pages_per_zspage;
4aa409ca 2240 }
312fcae2 2241 spin_unlock(&class->lock);
312fcae2
MK
2242 cond_resched();
2243 spin_lock(&class->lock);
2244 }
2245
3783689a 2246 if (src_zspage)
4aa409ca 2247 putback_zspage(class, src_zspage);
312fcae2 2248
7d3f3938 2249 spin_unlock(&class->lock);
312fcae2
MK
2250}
2251
2252unsigned long zs_compact(struct zs_pool *pool)
2253{
2254 int i;
312fcae2
MK
2255 struct size_class *class;
2256
cf8e0fed 2257 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2258 class = pool->size_class[i];
2259 if (!class)
2260 continue;
2261 if (class->index != i)
2262 continue;
7d3f3938 2263 __zs_compact(pool, class);
312fcae2
MK
2264 }
2265
860c707d 2266 return pool->stats.pages_compacted;
312fcae2
MK
2267}
2268EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2269
7d3f3938
SS
2270void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2271{
2272 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2273}
2274EXPORT_SYMBOL_GPL(zs_pool_stats);
2275
ab9d306d
SS
2276static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2277 struct shrink_control *sc)
2278{
2279 unsigned long pages_freed;
2280 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2281 shrinker);
2282
2283 pages_freed = pool->stats.pages_compacted;
2284 /*
2285 * Compact classes and calculate compaction delta.
2286 * Can run concurrently with a manually triggered
2287 * (by user) compaction.
2288 */
2289 pages_freed = zs_compact(pool) - pages_freed;
2290
2291 return pages_freed ? pages_freed : SHRINK_STOP;
2292}
2293
2294static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2295 struct shrink_control *sc)
2296{
2297 int i;
2298 struct size_class *class;
2299 unsigned long pages_to_free = 0;
2300 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2301 shrinker);
2302
cf8e0fed 2303 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2304 class = pool->size_class[i];
2305 if (!class)
2306 continue;
2307 if (class->index != i)
2308 continue;
2309
ab9d306d 2310 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2311 }
2312
2313 return pages_to_free;
2314}
2315
2316static void zs_unregister_shrinker(struct zs_pool *pool)
2317{
93144ca3 2318 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2319}
2320
2321static int zs_register_shrinker(struct zs_pool *pool)
2322{
2323 pool->shrinker.scan_objects = zs_shrinker_scan;
2324 pool->shrinker.count_objects = zs_shrinker_count;
2325 pool->shrinker.batch = 0;
2326 pool->shrinker.seeks = DEFAULT_SEEKS;
2327
2328 return register_shrinker(&pool->shrinker);
2329}
2330
00a61d86 2331/**
66cdef66 2332 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2333 * @name: pool name to be created
166cfda7 2334 *
66cdef66
GM
2335 * This function must be called before anything when using
2336 * the zsmalloc allocator.
166cfda7 2337 *
66cdef66
GM
2338 * On success, a pointer to the newly created pool is returned,
2339 * otherwise NULL.
396b7fd6 2340 */
d0d8da2d 2341struct zs_pool *zs_create_pool(const char *name)
61989a80 2342{
66cdef66
GM
2343 int i;
2344 struct zs_pool *pool;
2345 struct size_class *prev_class = NULL;
61989a80 2346
66cdef66
GM
2347 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2348 if (!pool)
2349 return NULL;
61989a80 2350
48b4800a 2351 init_deferred_free(pool);
61989a80 2352
2e40e163
MK
2353 pool->name = kstrdup(name, GFP_KERNEL);
2354 if (!pool->name)
2355 goto err;
2356
3783689a 2357 if (create_cache(pool))
2e40e163
MK
2358 goto err;
2359
c60369f0 2360 /*
399d8eeb 2361 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2362 * for merging should be larger or equal to current size.
c60369f0 2363 */
cf8e0fed 2364 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2365 int size;
2366 int pages_per_zspage;
64d90465 2367 int objs_per_zspage;
66cdef66 2368 struct size_class *class;
3783689a 2369 int fullness = 0;
c60369f0 2370
66cdef66
GM
2371 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2372 if (size > ZS_MAX_ALLOC_SIZE)
2373 size = ZS_MAX_ALLOC_SIZE;
2374 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2375 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2376
66cdef66
GM
2377 /*
2378 * size_class is used for normal zsmalloc operation such
2379 * as alloc/free for that size. Although it is natural that we
2380 * have one size_class for each size, there is a chance that we
2381 * can get more memory utilization if we use one size_class for
2382 * many different sizes whose size_class have same
2383 * characteristics. So, we makes size_class point to
2384 * previous size_class if possible.
2385 */
2386 if (prev_class) {
64d90465 2387 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2388 pool->size_class[i] = prev_class;
2389 continue;
2390 }
2391 }
2392
2393 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2394 if (!class)
2395 goto err;
2396
2397 class->size = size;
2398 class->index = i;
2399 class->pages_per_zspage = pages_per_zspage;
64d90465 2400 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2401 spin_lock_init(&class->lock);
2402 pool->size_class[i] = class;
48b4800a
MK
2403 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2404 fullness++)
3783689a 2405 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2406
2407 prev_class = class;
61989a80
NG
2408 }
2409
d34f6157
DS
2410 /* debug only, don't abort if it fails */
2411 zs_pool_stat_create(pool, name);
0f050d99 2412
48b4800a
MK
2413 if (zs_register_migration(pool))
2414 goto err;
2415
ab9d306d 2416 /*
93144ca3
AK
2417 * Not critical since shrinker is only used to trigger internal
2418 * defragmentation of the pool which is pretty optional thing. If
2419 * registration fails we still can use the pool normally and user can
2420 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2421 */
93144ca3
AK
2422 zs_register_shrinker(pool);
2423
66cdef66
GM
2424 return pool;
2425
2426err:
2427 zs_destroy_pool(pool);
2428 return NULL;
61989a80 2429}
66cdef66 2430EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2431
66cdef66 2432void zs_destroy_pool(struct zs_pool *pool)
61989a80 2433{
66cdef66 2434 int i;
61989a80 2435
ab9d306d 2436 zs_unregister_shrinker(pool);
48b4800a 2437 zs_unregister_migration(pool);
0f050d99
GM
2438 zs_pool_stat_destroy(pool);
2439
cf8e0fed 2440 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2441 int fg;
2442 struct size_class *class = pool->size_class[i];
61989a80 2443
66cdef66
GM
2444 if (!class)
2445 continue;
61989a80 2446
66cdef66
GM
2447 if (class->index != i)
2448 continue;
61989a80 2449
48b4800a 2450 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2451 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2452 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2453 class->size, fg);
2454 }
2455 }
2456 kfree(class);
2457 }
f553646a 2458
3783689a 2459 destroy_cache(pool);
0f050d99 2460 kfree(pool->name);
66cdef66
GM
2461 kfree(pool);
2462}
2463EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2464
66cdef66
GM
2465static int __init zs_init(void)
2466{
48b4800a
MK
2467 int ret;
2468
2469 ret = zsmalloc_mount();
2470 if (ret)
2471 goto out;
2472
215c89d0
SAS
2473 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2474 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2475 if (ret)
215c89d0 2476 goto hp_setup_fail;
66cdef66 2477
66cdef66
GM
2478#ifdef CONFIG_ZPOOL
2479 zpool_register_driver(&zs_zpool_driver);
2480#endif
0f050d99 2481
4abaac9b
DS
2482 zs_stat_init();
2483
66cdef66 2484 return 0;
0f050d99 2485
215c89d0 2486hp_setup_fail:
48b4800a
MK
2487 zsmalloc_unmount();
2488out:
0f050d99 2489 return ret;
61989a80 2490}
61989a80 2491
66cdef66 2492static void __exit zs_exit(void)
61989a80 2493{
66cdef66
GM
2494#ifdef CONFIG_ZPOOL
2495 zpool_unregister_driver(&zs_zpool_driver);
2496#endif
48b4800a 2497 zsmalloc_unmount();
215c89d0 2498 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2499
2500 zs_stat_exit();
61989a80 2501}
069f101f
BH
2502
2503module_init(zs_init);
2504module_exit(zs_exit);
2505
2506MODULE_LICENSE("Dual BSD/GPL");
2507MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");