zsmalloc: add a LRU to zs_pool to keep track of zspages in LRU order
[linux-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
ffedd09f 20 * page->index: links together all component pages of a zspage
48b4800a
MK
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
ffedd09f 23 * page->page_type: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
b475d42d
MK
33/*
34 * lock ordering:
35 * page_lock
c0547d0b 36 * pool->lock
b475d42d
MK
37 * zspage->lock
38 */
39
61989a80
NG
40#include <linux/module.h>
41#include <linux/kernel.h>
312fcae2 42#include <linux/sched.h>
61989a80
NG
43#include <linux/bitops.h>
44#include <linux/errno.h>
45#include <linux/highmem.h>
61989a80
NG
46#include <linux/string.h>
47#include <linux/slab.h>
ca5999fd 48#include <linux/pgtable.h>
65fddcfc 49#include <asm/tlbflush.h>
61989a80
NG
50#include <linux/cpumask.h>
51#include <linux/cpu.h>
0cbb613f 52#include <linux/vmalloc.h>
759b26b2 53#include <linux/preempt.h>
0959c63f 54#include <linux/spinlock.h>
93144ca3 55#include <linux/shrinker.h>
0959c63f 56#include <linux/types.h>
0f050d99 57#include <linux/debugfs.h>
bcf1647d 58#include <linux/zsmalloc.h>
c795779d 59#include <linux/zpool.h>
dd4123f3 60#include <linux/migrate.h>
701d6785 61#include <linux/wait.h>
48b4800a 62#include <linux/pagemap.h>
cdc346b3 63#include <linux/fs.h>
a3726599 64#include <linux/local_lock.h>
48b4800a
MK
65
66#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
67
68/*
cb152a1a 69 * This must be power of 2 and greater than or equal to sizeof(link_free).
0959c63f
SJ
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
2e40e163
MK
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
0959c63f
SJ
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 87 * a single (unsigned long) handle value.
0959c63f 88 *
bfd093f5 89 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
90 *
91 * This is made more complicated by various memory models and PAE.
92 */
93
02390b87
KS
94#ifndef MAX_POSSIBLE_PHYSMEM_BITS
95#ifdef MAX_PHYSMEM_BITS
96#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
97#else
0959c63f
SJ
98/*
99 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
100 * be PAGE_SHIFT
101 */
02390b87 102#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
103#endif
104#endif
02390b87
KS
105
106#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2 107
312fcae2
MK
108/*
109 * Head in allocated object should have OBJ_ALLOCATED_TAG
110 * to identify the object was allocated or not.
111 * It's okay to add the status bit in the least bit because
112 * header keeps handle which is 4byte-aligned address so we
113 * have room for two bit at least.
114 */
115#define OBJ_ALLOCATED_TAG 1
116#define OBJ_TAG_BITS 1
117#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
118#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119
a41ec880 120#define HUGE_BITS 1
cf8e0fed
JM
121#define FULLNESS_BITS 2
122#define CLASS_BITS 8
123#define ISOLATED_BITS 3
124#define MAGIC_VAL_BITS 8
125
0959c63f
SJ
126#define MAX(a, b) ((a) >= (b) ? (a) : (b))
127/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128#define ZS_MIN_ALLOC_SIZE \
129 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 130/* each chunk includes extra space to keep handle */
7b60a685 131#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
132
133/*
7eb52512 134 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
135 * trader-off here:
136 * - Large number of size classes is potentially wasteful as free page are
137 * spread across these classes
138 * - Small number of size classes causes large internal fragmentation
139 * - Probably its better to use specific size classes (empirically
140 * determined). NOTE: all those class sizes must be set as multiple of
141 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
142 *
143 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
144 * (reason above)
145 */
3783689a 146#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
147#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 149
0959c63f 150enum fullness_group {
0959c63f 151 ZS_EMPTY,
48b4800a
MK
152 ZS_ALMOST_EMPTY,
153 ZS_ALMOST_FULL,
154 ZS_FULL,
155 NR_ZS_FULLNESS,
0959c63f
SJ
156};
157
3828a764 158enum class_stat_type {
48b4800a
MK
159 CLASS_EMPTY,
160 CLASS_ALMOST_EMPTY,
161 CLASS_ALMOST_FULL,
162 CLASS_FULL,
0f050d99
GM
163 OBJ_ALLOCATED,
164 OBJ_USED,
48b4800a 165 NR_ZS_STAT_TYPE,
0f050d99
GM
166};
167
0f050d99
GM
168struct zs_size_stat {
169 unsigned long objs[NR_ZS_STAT_TYPE];
170};
171
57244594
SS
172#ifdef CONFIG_ZSMALLOC_STAT
173static struct dentry *zs_stat_root;
0f050d99
GM
174#endif
175
0959c63f
SJ
176/*
177 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
178 * n <= N / f, where
179 * n = number of allocated objects
180 * N = total number of objects zspage can store
6dd9737e 181 * f = fullness_threshold_frac
0959c63f
SJ
182 *
183 * Similarly, we assign zspage to:
184 * ZS_ALMOST_FULL when n > N / f
185 * ZS_EMPTY when n == 0
186 * ZS_FULL when n == N
187 *
188 * (see: fix_fullness_group())
189 */
190static const int fullness_threshold_frac = 4;
010b495e 191static size_t huge_class_size;
0959c63f
SJ
192
193struct size_class {
48b4800a 194 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
195 /*
196 * Size of objects stored in this class. Must be multiple
197 * of ZS_ALIGN.
198 */
199 int size;
1fc6e27d 200 int objs_per_zspage;
7dfa4612
WY
201 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
202 int pages_per_zspage;
48b4800a
MK
203
204 unsigned int index;
205 struct zs_size_stat stats;
0959c63f
SJ
206};
207
208/*
209 * Placed within free objects to form a singly linked list.
3783689a 210 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
211 *
212 * This must be power of 2 and less than or equal to ZS_ALIGN
213 */
214struct link_free {
2e40e163
MK
215 union {
216 /*
bfd093f5 217 * Free object index;
2e40e163
MK
218 * It's valid for non-allocated object
219 */
bfd093f5 220 unsigned long next;
2e40e163
MK
221 /*
222 * Handle of allocated object.
223 */
224 unsigned long handle;
225 };
0959c63f
SJ
226};
227
228struct zs_pool {
6f3526d6 229 const char *name;
0f050d99 230
cf8e0fed 231 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 232 struct kmem_cache *handle_cachep;
3783689a 233 struct kmem_cache *zspage_cachep;
0959c63f 234
13de8933 235 atomic_long_t pages_allocated;
0f050d99 236
7d3f3938 237 struct zs_pool_stats stats;
ab9d306d
SS
238
239 /* Compact classes */
240 struct shrinker shrinker;
93144ca3 241
64f768c6
NP
242#ifdef CONFIG_ZPOOL
243 /* List tracking the zspages in LRU order by most recently added object */
244 struct list_head lru;
245#endif
246
0f050d99
GM
247#ifdef CONFIG_ZSMALLOC_STAT
248 struct dentry *stat_dentry;
249#endif
48b4800a 250#ifdef CONFIG_COMPACTION
48b4800a
MK
251 struct work_struct free_work;
252#endif
c0547d0b 253 spinlock_t lock;
0959c63f 254};
61989a80 255
3783689a
MK
256struct zspage {
257 struct {
a41ec880 258 unsigned int huge:HUGE_BITS;
3783689a 259 unsigned int fullness:FULLNESS_BITS;
85d492f2 260 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
261 unsigned int isolated:ISOLATED_BITS;
262 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
263 };
264 unsigned int inuse;
bfd093f5 265 unsigned int freeobj;
3783689a
MK
266 struct page *first_page;
267 struct list_head list; /* fullness list */
64f768c6
NP
268
269#ifdef CONFIG_ZPOOL
270 /* links the zspage to the lru list in the pool */
271 struct list_head lru;
272#endif
273
68f2736a 274 struct zs_pool *pool;
48b4800a
MK
275#ifdef CONFIG_COMPACTION
276 rwlock_t lock;
277#endif
3783689a 278};
61989a80 279
f553646a 280struct mapping_area {
a3726599 281 local_lock_t lock;
f553646a 282 char *vm_buf; /* copy buffer for objects that span pages */
f553646a
SJ
283 char *vm_addr; /* address of kmap_atomic()'ed pages */
284 enum zs_mapmode vm_mm; /* mapping mode */
285};
286
a41ec880
MK
287/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
288static void SetZsHugePage(struct zspage *zspage)
289{
290 zspage->huge = 1;
291}
292
293static bool ZsHugePage(struct zspage *zspage)
294{
295 return zspage->huge;
296}
297
48b4800a 298#ifdef CONFIG_COMPACTION
48b4800a
MK
299static void migrate_lock_init(struct zspage *zspage);
300static void migrate_read_lock(struct zspage *zspage);
301static void migrate_read_unlock(struct zspage *zspage);
b475d42d
MK
302static void migrate_write_lock(struct zspage *zspage);
303static void migrate_write_lock_nested(struct zspage *zspage);
304static void migrate_write_unlock(struct zspage *zspage);
48b4800a
MK
305static void kick_deferred_free(struct zs_pool *pool);
306static void init_deferred_free(struct zs_pool *pool);
307static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308#else
48b4800a
MK
309static void migrate_lock_init(struct zspage *zspage) {}
310static void migrate_read_lock(struct zspage *zspage) {}
311static void migrate_read_unlock(struct zspage *zspage) {}
b475d42d
MK
312static void migrate_write_lock(struct zspage *zspage) {}
313static void migrate_write_lock_nested(struct zspage *zspage) {}
314static void migrate_write_unlock(struct zspage *zspage) {}
48b4800a
MK
315static void kick_deferred_free(struct zs_pool *pool) {}
316static void init_deferred_free(struct zs_pool *pool) {}
317static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
318#endif
319
3783689a 320static int create_cache(struct zs_pool *pool)
2e40e163
MK
321{
322 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
323 0, 0, NULL);
3783689a
MK
324 if (!pool->handle_cachep)
325 return 1;
326
327 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
328 0, 0, NULL);
329 if (!pool->zspage_cachep) {
330 kmem_cache_destroy(pool->handle_cachep);
331 pool->handle_cachep = NULL;
332 return 1;
333 }
334
335 return 0;
2e40e163
MK
336}
337
3783689a 338static void destroy_cache(struct zs_pool *pool)
2e40e163 339{
cd10add0 340 kmem_cache_destroy(pool->handle_cachep);
3783689a 341 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
342}
343
3783689a 344static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
345{
346 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 347 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
348}
349
3783689a 350static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
351{
352 kmem_cache_free(pool->handle_cachep, (void *)handle);
353}
354
3783689a
MK
355static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
356{
f0231305 357 return kmem_cache_zalloc(pool->zspage_cachep,
48b4800a 358 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 359}
3783689a
MK
360
361static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
362{
363 kmem_cache_free(pool->zspage_cachep, zspage);
364}
365
c0547d0b 366/* pool->lock(which owns the handle) synchronizes races */
2e40e163
MK
367static void record_obj(unsigned long handle, unsigned long obj)
368{
b475d42d 369 *(unsigned long *)handle = obj;
2e40e163
MK
370}
371
c795779d
DS
372/* zpool driver */
373
374#ifdef CONFIG_ZPOOL
375
6f3526d6 376static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 377 const struct zpool_ops *zpool_ops,
479305fd 378 struct zpool *zpool)
c795779d 379{
d0d8da2d
SS
380 /*
381 * Ignore global gfp flags: zs_malloc() may be invoked from
382 * different contexts and its caller must provide a valid
383 * gfp mask.
384 */
385 return zs_create_pool(name);
c795779d
DS
386}
387
388static void zs_zpool_destroy(void *pool)
389{
390 zs_destroy_pool(pool);
391}
392
393static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
394 unsigned long *handle)
395{
d0d8da2d 396 *handle = zs_malloc(pool, size, gfp);
c7e6f17b 397
65917b53 398 if (IS_ERR_VALUE(*handle))
c7e6f17b
HZ
399 return PTR_ERR((void *)*handle);
400 return 0;
c795779d
DS
401}
402static void zs_zpool_free(void *pool, unsigned long handle)
403{
404 zs_free(pool, handle);
405}
406
c795779d
DS
407static void *zs_zpool_map(void *pool, unsigned long handle,
408 enum zpool_mapmode mm)
409{
410 enum zs_mapmode zs_mm;
411
412 switch (mm) {
413 case ZPOOL_MM_RO:
414 zs_mm = ZS_MM_RO;
415 break;
416 case ZPOOL_MM_WO:
417 zs_mm = ZS_MM_WO;
418 break;
e4a9bc58 419 case ZPOOL_MM_RW:
c795779d
DS
420 default:
421 zs_mm = ZS_MM_RW;
422 break;
423 }
424
425 return zs_map_object(pool, handle, zs_mm);
426}
427static void zs_zpool_unmap(void *pool, unsigned long handle)
428{
429 zs_unmap_object(pool, handle);
430}
431
432static u64 zs_zpool_total_size(void *pool)
433{
722cdc17 434 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
435}
436
437static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
438 .type = "zsmalloc",
439 .owner = THIS_MODULE,
440 .create = zs_zpool_create,
441 .destroy = zs_zpool_destroy,
442 .malloc_support_movable = true,
443 .malloc = zs_zpool_malloc,
444 .free = zs_zpool_free,
445 .map = zs_zpool_map,
446 .unmap = zs_zpool_unmap,
447 .total_size = zs_zpool_total_size,
c795779d
DS
448};
449
137f8cff 450MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
451#endif /* CONFIG_ZPOOL */
452
61989a80 453/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
a3726599
MG
454static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
455 .lock = INIT_LOCAL_LOCK(lock),
456};
61989a80 457
3457f414 458static __maybe_unused int is_first_page(struct page *page)
61989a80 459{
a27545bf 460 return PagePrivate(page);
61989a80
NG
461}
462
c0547d0b 463/* Protected by pool->lock */
3783689a 464static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 465{
3783689a 466 return zspage->inuse;
4f42047b
MK
467}
468
4f42047b 469
3783689a 470static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 471{
3783689a 472 zspage->inuse += val;
4f42047b
MK
473}
474
48b4800a 475static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 476{
48b4800a 477 struct page *first_page = zspage->first_page;
3783689a 478
48b4800a
MK
479 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
480 return first_page;
4f42047b
MK
481}
482
671f2fa8 483static inline unsigned int get_first_obj_offset(struct page *page)
4f42047b 484{
ffedd09f 485 return page->page_type;
48b4800a 486}
3783689a 487
671f2fa8 488static inline void set_first_obj_offset(struct page *page, unsigned int offset)
48b4800a 489{
ffedd09f 490 page->page_type = offset;
4f42047b
MK
491}
492
bfd093f5 493static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 494{
bfd093f5 495 return zspage->freeobj;
4f42047b
MK
496}
497
bfd093f5 498static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 499{
bfd093f5 500 zspage->freeobj = obj;
4f42047b
MK
501}
502
3783689a 503static void get_zspage_mapping(struct zspage *zspage,
a4209467 504 unsigned int *class_idx,
61989a80
NG
505 enum fullness_group *fullness)
506{
48b4800a
MK
507 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
508
3783689a
MK
509 *fullness = zspage->fullness;
510 *class_idx = zspage->class;
61989a80
NG
511}
512
67f1c9cd
MK
513static struct size_class *zspage_class(struct zs_pool *pool,
514 struct zspage *zspage)
515{
516 return pool->size_class[zspage->class];
517}
518
3783689a 519static void set_zspage_mapping(struct zspage *zspage,
a4209467 520 unsigned int class_idx,
61989a80
NG
521 enum fullness_group fullness)
522{
3783689a
MK
523 zspage->class = class_idx;
524 zspage->fullness = fullness;
61989a80
NG
525}
526
c3e3e88a
NC
527/*
528 * zsmalloc divides the pool into various size classes where each
529 * class maintains a list of zspages where each zspage is divided
530 * into equal sized chunks. Each allocation falls into one of these
531 * classes depending on its size. This function returns index of the
cb152a1a 532 * size class which has chunk size big enough to hold the given size.
c3e3e88a 533 */
61989a80
NG
534static int get_size_class_index(int size)
535{
536 int idx = 0;
537
538 if (likely(size > ZS_MIN_ALLOC_SIZE))
539 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
540 ZS_SIZE_CLASS_DELTA);
541
cf8e0fed 542 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
543}
544
3828a764
MK
545/* type can be of enum type class_stat_type or fullness_group */
546static inline void class_stat_inc(struct size_class *class,
3eb95fea 547 int type, unsigned long cnt)
248ca1b0 548{
48b4800a 549 class->stats.objs[type] += cnt;
248ca1b0
MK
550}
551
3828a764
MK
552/* type can be of enum type class_stat_type or fullness_group */
553static inline void class_stat_dec(struct size_class *class,
3eb95fea 554 int type, unsigned long cnt)
248ca1b0 555{
48b4800a 556 class->stats.objs[type] -= cnt;
248ca1b0
MK
557}
558
3828a764 559/* type can be of enum type class_stat_type or fullness_group */
248ca1b0 560static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 561 int type)
248ca1b0 562{
48b4800a 563 return class->stats.objs[type];
248ca1b0
MK
564}
565
57244594
SS
566#ifdef CONFIG_ZSMALLOC_STAT
567
4abaac9b 568static void __init zs_stat_init(void)
248ca1b0 569{
4abaac9b
DS
570 if (!debugfs_initialized()) {
571 pr_warn("debugfs not available, stat dir not created\n");
572 return;
573 }
248ca1b0
MK
574
575 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
576}
577
578static void __exit zs_stat_exit(void)
579{
580 debugfs_remove_recursive(zs_stat_root);
581}
582
1120ed54
SS
583static unsigned long zs_can_compact(struct size_class *class);
584
248ca1b0
MK
585static int zs_stats_size_show(struct seq_file *s, void *v)
586{
587 int i;
588 struct zs_pool *pool = s->private;
589 struct size_class *class;
590 int objs_per_zspage;
591 unsigned long class_almost_full, class_almost_empty;
1120ed54 592 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
593 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
594 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 595 unsigned long total_freeable = 0;
248ca1b0 596
1120ed54 597 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
598 "class", "size", "almost_full", "almost_empty",
599 "obj_allocated", "obj_used", "pages_used",
1120ed54 600 "pages_per_zspage", "freeable");
248ca1b0 601
cf8e0fed 602 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
603 class = pool->size_class[i];
604
605 if (class->index != i)
606 continue;
607
c0547d0b 608 spin_lock(&pool->lock);
248ca1b0
MK
609 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
610 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
611 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
612 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 613 freeable = zs_can_compact(class);
c0547d0b 614 spin_unlock(&pool->lock);
248ca1b0 615
b4fd07a0 616 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
617 pages_used = obj_allocated / objs_per_zspage *
618 class->pages_per_zspage;
619
1120ed54
SS
620 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
621 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
622 i, class->size, class_almost_full, class_almost_empty,
623 obj_allocated, obj_used, pages_used,
1120ed54 624 class->pages_per_zspage, freeable);
248ca1b0
MK
625
626 total_class_almost_full += class_almost_full;
627 total_class_almost_empty += class_almost_empty;
628 total_objs += obj_allocated;
629 total_used_objs += obj_used;
630 total_pages += pages_used;
1120ed54 631 total_freeable += freeable;
248ca1b0
MK
632 }
633
634 seq_puts(s, "\n");
1120ed54 635 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
636 "Total", "", total_class_almost_full,
637 total_class_almost_empty, total_objs,
1120ed54 638 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
639
640 return 0;
641}
5ad35093 642DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 643
d34f6157 644static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 645{
4abaac9b
DS
646 if (!zs_stat_root) {
647 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 648 return;
4abaac9b 649 }
248ca1b0 650
4268509a
GKH
651 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
652
653 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
654 &zs_stats_size_fops);
248ca1b0
MK
655}
656
657static void zs_pool_stat_destroy(struct zs_pool *pool)
658{
659 debugfs_remove_recursive(pool->stat_dentry);
660}
661
662#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 663static void __init zs_stat_init(void)
248ca1b0 664{
248ca1b0
MK
665}
666
667static void __exit zs_stat_exit(void)
668{
669}
670
d34f6157 671static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 672{
248ca1b0
MK
673}
674
675static inline void zs_pool_stat_destroy(struct zs_pool *pool)
676{
677}
248ca1b0
MK
678#endif
679
48b4800a 680
c3e3e88a
NC
681/*
682 * For each size class, zspages are divided into different groups
683 * depending on how "full" they are. This was done so that we could
684 * easily find empty or nearly empty zspages when we try to shrink
685 * the pool (not yet implemented). This function returns fullness
686 * status of the given page.
687 */
1fc6e27d 688static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 689 struct zspage *zspage)
61989a80 690{
1fc6e27d 691 int inuse, objs_per_zspage;
61989a80 692 enum fullness_group fg;
830e4bc5 693
3783689a 694 inuse = get_zspage_inuse(zspage);
1fc6e27d 695 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
696
697 if (inuse == 0)
698 fg = ZS_EMPTY;
1fc6e27d 699 else if (inuse == objs_per_zspage)
61989a80 700 fg = ZS_FULL;
1fc6e27d 701 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
702 fg = ZS_ALMOST_EMPTY;
703 else
704 fg = ZS_ALMOST_FULL;
705
706 return fg;
707}
708
c3e3e88a
NC
709/*
710 * Each size class maintains various freelists and zspages are assigned
711 * to one of these freelists based on the number of live objects they
712 * have. This functions inserts the given zspage into the freelist
713 * identified by <class, fullness_group>.
714 */
251cbb95 715static void insert_zspage(struct size_class *class,
3783689a
MK
716 struct zspage *zspage,
717 enum fullness_group fullness)
61989a80 718{
3783689a 719 struct zspage *head;
61989a80 720
3828a764 721 class_stat_inc(class, fullness, 1);
3783689a
MK
722 head = list_first_entry_or_null(&class->fullness_list[fullness],
723 struct zspage, list);
58f17117 724 /*
3783689a
MK
725 * We want to see more ZS_FULL pages and less almost empty/full.
726 * Put pages with higher ->inuse first.
58f17117 727 */
110ceb82
ML
728 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
729 list_add(&zspage->list, &head->list);
730 else
731 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
732}
733
c3e3e88a
NC
734/*
735 * This function removes the given zspage from the freelist identified
736 * by <class, fullness_group>.
737 */
251cbb95 738static void remove_zspage(struct size_class *class,
3783689a
MK
739 struct zspage *zspage,
740 enum fullness_group fullness)
61989a80 741{
3783689a 742 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
61989a80 743
3783689a 744 list_del_init(&zspage->list);
3828a764 745 class_stat_dec(class, fullness, 1);
61989a80
NG
746}
747
c3e3e88a
NC
748/*
749 * Each size class maintains zspages in different fullness groups depending
750 * on the number of live objects they contain. When allocating or freeing
751 * objects, the fullness status of the page can change, say, from ALMOST_FULL
752 * to ALMOST_EMPTY when freeing an object. This function checks if such
753 * a status change has occurred for the given page and accordingly moves the
754 * page from the freelist of the old fullness group to that of the new
755 * fullness group.
756 */
c7806261 757static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 758 struct zspage *zspage)
61989a80
NG
759{
760 int class_idx;
61989a80
NG
761 enum fullness_group currfg, newfg;
762
3783689a
MK
763 get_zspage_mapping(zspage, &class_idx, &currfg);
764 newfg = get_fullness_group(class, zspage);
61989a80
NG
765 if (newfg == currfg)
766 goto out;
767
c4549b87
MK
768 remove_zspage(class, zspage, currfg);
769 insert_zspage(class, zspage, newfg);
3783689a 770 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
771out:
772 return newfg;
773}
774
775/*
776 * We have to decide on how many pages to link together
777 * to form a zspage for each size class. This is important
778 * to reduce wastage due to unusable space left at end of
779 * each zspage which is given as:
888fa374
YX
780 * wastage = Zp % class_size
781 * usage = Zp - wastage
61989a80
NG
782 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
783 *
784 * For example, for size class of 3/8 * PAGE_SIZE, we should
785 * link together 3 PAGE_SIZE sized pages to form a zspage
786 * since then we can perfectly fit in 8 such objects.
787 */
2e3b6154 788static int get_pages_per_zspage(int class_size)
61989a80
NG
789{
790 int i, max_usedpc = 0;
791 /* zspage order which gives maximum used size per KB */
792 int max_usedpc_order = 1;
793
84d4faab 794 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
795 int zspage_size;
796 int waste, usedpc;
797
798 zspage_size = i * PAGE_SIZE;
799 waste = zspage_size % class_size;
800 usedpc = (zspage_size - waste) * 100 / zspage_size;
801
802 if (usedpc > max_usedpc) {
803 max_usedpc = usedpc;
804 max_usedpc_order = i;
805 }
806 }
807
808 return max_usedpc_order;
809}
810
3783689a 811static struct zspage *get_zspage(struct page *page)
61989a80 812{
a6c5e0f7 813 struct zspage *zspage = (struct zspage *)page_private(page);
48b4800a
MK
814
815 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
816 return zspage;
61989a80
NG
817}
818
819static struct page *get_next_page(struct page *page)
820{
a41ec880
MK
821 struct zspage *zspage = get_zspage(page);
822
823 if (unlikely(ZsHugePage(zspage)))
48b4800a
MK
824 return NULL;
825
ffedd09f 826 return (struct page *)page->index;
61989a80
NG
827}
828
bfd093f5
MK
829/**
830 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 831 * @obj: the encoded object value
bfd093f5
MK
832 * @page: page object resides in zspage
833 * @obj_idx: object index
67296874 834 */
bfd093f5
MK
835static void obj_to_location(unsigned long obj, struct page **page,
836 unsigned int *obj_idx)
61989a80 837{
bfd093f5
MK
838 obj >>= OBJ_TAG_BITS;
839 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
840 *obj_idx = (obj & OBJ_INDEX_MASK);
841}
61989a80 842
67f1c9cd
MK
843static void obj_to_page(unsigned long obj, struct page **page)
844{
845 obj >>= OBJ_TAG_BITS;
846 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
847}
848
bfd093f5
MK
849/**
850 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
851 * @page: page object resides in zspage
852 * @obj_idx: object index
853 */
854static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
855{
856 unsigned long obj;
61989a80 857
312fcae2 858 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 859 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 860 obj <<= OBJ_TAG_BITS;
61989a80 861
bfd093f5 862 return obj;
61989a80
NG
863}
864
2e40e163
MK
865static unsigned long handle_to_obj(unsigned long handle)
866{
867 return *(unsigned long *)handle;
868}
869
3ae92ac2 870static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
312fcae2 871{
3ae92ac2 872 unsigned long handle;
a41ec880 873 struct zspage *zspage = get_zspage(page);
3ae92ac2 874
a41ec880 875 if (unlikely(ZsHugePage(zspage))) {
830e4bc5 876 VM_BUG_ON_PAGE(!is_first_page(page), page);
3ae92ac2 877 handle = page->index;
7b60a685 878 } else
3ae92ac2
MK
879 handle = *(unsigned long *)obj;
880
881 if (!(handle & OBJ_ALLOCATED_TAG))
882 return false;
883
884 *phandle = handle & ~OBJ_ALLOCATED_TAG;
885 return true;
312fcae2
MK
886}
887
f4477e90
NG
888static void reset_page(struct page *page)
889{
48b4800a 890 __ClearPageMovable(page);
18fd06bf 891 ClearPagePrivate(page);
f4477e90 892 set_page_private(page, 0);
48b4800a 893 page_mapcount_reset(page);
ffedd09f 894 page->index = 0;
48b4800a
MK
895}
896
4d0a5402 897static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
898{
899 struct page *cursor, *fail;
900
901 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
902 get_next_page(cursor)) {
903 if (!trylock_page(cursor)) {
904 fail = cursor;
905 goto unlock;
906 }
907 }
908
909 return 1;
910unlock:
911 for (cursor = get_first_page(zspage); cursor != fail; cursor =
912 get_next_page(cursor))
913 unlock_page(cursor);
914
915 return 0;
f4477e90
NG
916}
917
48b4800a
MK
918static void __free_zspage(struct zs_pool *pool, struct size_class *class,
919 struct zspage *zspage)
61989a80 920{
3783689a 921 struct page *page, *next;
48b4800a
MK
922 enum fullness_group fg;
923 unsigned int class_idx;
924
925 get_zspage_mapping(zspage, &class_idx, &fg);
926
c0547d0b 927 assert_spin_locked(&pool->lock);
61989a80 928
3783689a 929 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 930 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 931
48b4800a 932 next = page = get_first_page(zspage);
3783689a 933 do {
48b4800a
MK
934 VM_BUG_ON_PAGE(!PageLocked(page), page);
935 next = get_next_page(page);
3783689a 936 reset_page(page);
48b4800a 937 unlock_page(page);
91537fee 938 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
939 put_page(page);
940 page = next;
941 } while (page != NULL);
61989a80 942
3783689a 943 cache_free_zspage(pool, zspage);
48b4800a 944
3828a764 945 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
946 atomic_long_sub(class->pages_per_zspage,
947 &pool->pages_allocated);
948}
949
950static void free_zspage(struct zs_pool *pool, struct size_class *class,
951 struct zspage *zspage)
952{
953 VM_BUG_ON(get_zspage_inuse(zspage));
954 VM_BUG_ON(list_empty(&zspage->list));
955
b475d42d
MK
956 /*
957 * Since zs_free couldn't be sleepable, this function cannot call
958 * lock_page. The page locks trylock_zspage got will be released
959 * by __free_zspage.
960 */
48b4800a
MK
961 if (!trylock_zspage(zspage)) {
962 kick_deferred_free(pool);
963 return;
964 }
965
966 remove_zspage(class, zspage, ZS_EMPTY);
64f768c6
NP
967#ifdef CONFIG_ZPOOL
968 list_del(&zspage->lru);
969#endif
48b4800a 970 __free_zspage(pool, class, zspage);
61989a80
NG
971}
972
973/* Initialize a newly allocated zspage */
3783689a 974static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 975{
bfd093f5 976 unsigned int freeobj = 1;
61989a80 977 unsigned long off = 0;
48b4800a 978 struct page *page = get_first_page(zspage);
830e4bc5 979
61989a80
NG
980 while (page) {
981 struct page *next_page;
982 struct link_free *link;
af4ee5e9 983 void *vaddr;
61989a80 984
3783689a 985 set_first_obj_offset(page, off);
61989a80 986
af4ee5e9
MK
987 vaddr = kmap_atomic(page);
988 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
989
990 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 991 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 992 link += class->size / sizeof(*link);
61989a80
NG
993 }
994
995 /*
996 * We now come to the last (full or partial) object on this
997 * page, which must point to the first object on the next
998 * page (if present)
999 */
1000 next_page = get_next_page(page);
bfd093f5 1001 if (next_page) {
3b1d9ca6 1002 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1003 } else {
1004 /*
3b1d9ca6 1005 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1006 * whether it's allocated object or not.
1007 */
01a6ad9a 1008 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1009 }
af4ee5e9 1010 kunmap_atomic(vaddr);
61989a80 1011 page = next_page;
5538c562 1012 off %= PAGE_SIZE;
61989a80 1013 }
bdb0af7c 1014
64f768c6
NP
1015#ifdef CONFIG_ZPOOL
1016 INIT_LIST_HEAD(&zspage->lru);
1017#endif
1018
bfd093f5 1019 set_freeobj(zspage, 0);
61989a80
NG
1020}
1021
48b4800a
MK
1022static void create_page_chain(struct size_class *class, struct zspage *zspage,
1023 struct page *pages[])
61989a80 1024{
bdb0af7c
MK
1025 int i;
1026 struct page *page;
1027 struct page *prev_page = NULL;
48b4800a 1028 int nr_pages = class->pages_per_zspage;
61989a80
NG
1029
1030 /*
1031 * Allocate individual pages and link them together as:
ffedd09f 1032 * 1. all pages are linked together using page->index
3783689a 1033 * 2. each sub-page point to zspage using page->private
61989a80 1034 *
3783689a 1035 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1036 * has this flag set).
61989a80 1037 */
bdb0af7c
MK
1038 for (i = 0; i < nr_pages; i++) {
1039 page = pages[i];
3783689a 1040 set_page_private(page, (unsigned long)zspage);
ffedd09f 1041 page->index = 0;
bdb0af7c 1042 if (i == 0) {
3783689a 1043 zspage->first_page = page;
a27545bf 1044 SetPagePrivate(page);
48b4800a
MK
1045 if (unlikely(class->objs_per_zspage == 1 &&
1046 class->pages_per_zspage == 1))
a41ec880 1047 SetZsHugePage(zspage);
3783689a 1048 } else {
ffedd09f 1049 prev_page->index = (unsigned long)page;
61989a80 1050 }
61989a80
NG
1051 prev_page = page;
1052 }
bdb0af7c 1053}
61989a80 1054
bdb0af7c
MK
1055/*
1056 * Allocate a zspage for the given size class
1057 */
3783689a
MK
1058static struct zspage *alloc_zspage(struct zs_pool *pool,
1059 struct size_class *class,
1060 gfp_t gfp)
bdb0af7c
MK
1061{
1062 int i;
bdb0af7c 1063 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1064 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1065
1066 if (!zspage)
1067 return NULL;
1068
48b4800a
MK
1069 zspage->magic = ZSPAGE_MAGIC;
1070 migrate_lock_init(zspage);
61989a80 1071
bdb0af7c
MK
1072 for (i = 0; i < class->pages_per_zspage; i++) {
1073 struct page *page;
61989a80 1074
3783689a 1075 page = alloc_page(gfp);
bdb0af7c 1076 if (!page) {
91537fee
MK
1077 while (--i >= 0) {
1078 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1079 __free_page(pages[i]);
91537fee 1080 }
3783689a 1081 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1082 return NULL;
1083 }
91537fee
MK
1084
1085 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1086 pages[i] = page;
61989a80
NG
1087 }
1088
48b4800a 1089 create_page_chain(class, zspage, pages);
3783689a 1090 init_zspage(class, zspage);
68f2736a 1091 zspage->pool = pool;
bdb0af7c 1092
3783689a 1093 return zspage;
61989a80
NG
1094}
1095
3783689a 1096static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1097{
1098 int i;
3783689a 1099 struct zspage *zspage;
61989a80 1100
48b4800a 1101 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1102 zspage = list_first_entry_or_null(&class->fullness_list[i],
1103 struct zspage, list);
1104 if (zspage)
61989a80
NG
1105 break;
1106 }
1107
3783689a 1108 return zspage;
61989a80
NG
1109}
1110
f553646a
SJ
1111static inline int __zs_cpu_up(struct mapping_area *area)
1112{
1113 /*
1114 * Make sure we don't leak memory if a cpu UP notification
1115 * and zs_init() race and both call zs_cpu_up() on the same cpu
1116 */
1117 if (area->vm_buf)
1118 return 0;
40f9fb8c 1119 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1120 if (!area->vm_buf)
1121 return -ENOMEM;
1122 return 0;
1123}
1124
1125static inline void __zs_cpu_down(struct mapping_area *area)
1126{
40f9fb8c 1127 kfree(area->vm_buf);
f553646a
SJ
1128 area->vm_buf = NULL;
1129}
1130
1131static void *__zs_map_object(struct mapping_area *area,
1132 struct page *pages[2], int off, int size)
5f601902 1133{
5f601902
SJ
1134 int sizes[2];
1135 void *addr;
f553646a 1136 char *buf = area->vm_buf;
5f601902 1137
f553646a
SJ
1138 /* disable page faults to match kmap_atomic() return conditions */
1139 pagefault_disable();
1140
1141 /* no read fastpath */
1142 if (area->vm_mm == ZS_MM_WO)
1143 goto out;
5f601902
SJ
1144
1145 sizes[0] = PAGE_SIZE - off;
1146 sizes[1] = size - sizes[0];
1147
5f601902
SJ
1148 /* copy object to per-cpu buffer */
1149 addr = kmap_atomic(pages[0]);
1150 memcpy(buf, addr + off, sizes[0]);
1151 kunmap_atomic(addr);
1152 addr = kmap_atomic(pages[1]);
1153 memcpy(buf + sizes[0], addr, sizes[1]);
1154 kunmap_atomic(addr);
f553646a
SJ
1155out:
1156 return area->vm_buf;
5f601902
SJ
1157}
1158
f553646a
SJ
1159static void __zs_unmap_object(struct mapping_area *area,
1160 struct page *pages[2], int off, int size)
5f601902 1161{
5f601902
SJ
1162 int sizes[2];
1163 void *addr;
2e40e163 1164 char *buf;
5f601902 1165
f553646a
SJ
1166 /* no write fastpath */
1167 if (area->vm_mm == ZS_MM_RO)
1168 goto out;
5f601902 1169
7b60a685 1170 buf = area->vm_buf;
a82cbf07
YX
1171 buf = buf + ZS_HANDLE_SIZE;
1172 size -= ZS_HANDLE_SIZE;
1173 off += ZS_HANDLE_SIZE;
2e40e163 1174
5f601902
SJ
1175 sizes[0] = PAGE_SIZE - off;
1176 sizes[1] = size - sizes[0];
1177
1178 /* copy per-cpu buffer to object */
1179 addr = kmap_atomic(pages[0]);
1180 memcpy(addr + off, buf, sizes[0]);
1181 kunmap_atomic(addr);
1182 addr = kmap_atomic(pages[1]);
1183 memcpy(addr, buf + sizes[0], sizes[1]);
1184 kunmap_atomic(addr);
f553646a
SJ
1185
1186out:
1187 /* enable page faults to match kunmap_atomic() return conditions */
1188 pagefault_enable();
5f601902 1189}
61989a80 1190
215c89d0 1191static int zs_cpu_prepare(unsigned int cpu)
61989a80 1192{
61989a80
NG
1193 struct mapping_area *area;
1194
215c89d0
SAS
1195 area = &per_cpu(zs_map_area, cpu);
1196 return __zs_cpu_up(area);
61989a80
NG
1197}
1198
215c89d0 1199static int zs_cpu_dead(unsigned int cpu)
61989a80 1200{
215c89d0 1201 struct mapping_area *area;
40f9fb8c 1202
215c89d0
SAS
1203 area = &per_cpu(zs_map_area, cpu);
1204 __zs_cpu_down(area);
1205 return 0;
b1b00a5b
SS
1206}
1207
64d90465
GM
1208static bool can_merge(struct size_class *prev, int pages_per_zspage,
1209 int objs_per_zspage)
9eec4cd5 1210{
64d90465
GM
1211 if (prev->pages_per_zspage == pages_per_zspage &&
1212 prev->objs_per_zspage == objs_per_zspage)
1213 return true;
9eec4cd5 1214
64d90465 1215 return false;
9eec4cd5
JK
1216}
1217
3783689a 1218static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1219{
3783689a 1220 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2 1221}
7c2af309
AR
1222
1223/**
1224 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1225 * that hold objects of the provided size.
1226 * @pool: zsmalloc pool to use
1227 * @size: object size
1228 *
1229 * Context: Any context.
1230 *
1231 * Return: the index of the zsmalloc &size_class that hold objects of the
1232 * provided size.
1233 */
1234unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1235{
1236 struct size_class *class;
1237
1238 class = pool->size_class[get_size_class_index(size)];
1239
1240 return class->index;
1241}
1242EXPORT_SYMBOL_GPL(zs_lookup_class_index);
312fcae2 1243
66cdef66
GM
1244unsigned long zs_get_total_pages(struct zs_pool *pool)
1245{
1246 return atomic_long_read(&pool->pages_allocated);
1247}
1248EXPORT_SYMBOL_GPL(zs_get_total_pages);
1249
4bbc0bc0 1250/**
66cdef66
GM
1251 * zs_map_object - get address of allocated object from handle.
1252 * @pool: pool from which the object was allocated
1253 * @handle: handle returned from zs_malloc
f0953a1b 1254 * @mm: mapping mode to use
4bbc0bc0 1255 *
66cdef66
GM
1256 * Before using an object allocated from zs_malloc, it must be mapped using
1257 * this function. When done with the object, it must be unmapped using
1258 * zs_unmap_object.
4bbc0bc0 1259 *
66cdef66
GM
1260 * Only one object can be mapped per cpu at a time. There is no protection
1261 * against nested mappings.
1262 *
1263 * This function returns with preemption and page faults disabled.
4bbc0bc0 1264 */
66cdef66
GM
1265void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1266 enum zs_mapmode mm)
61989a80 1267{
3783689a 1268 struct zspage *zspage;
66cdef66 1269 struct page *page;
bfd093f5
MK
1270 unsigned long obj, off;
1271 unsigned int obj_idx;
61989a80 1272
66cdef66
GM
1273 struct size_class *class;
1274 struct mapping_area *area;
1275 struct page *pages[2];
2e40e163 1276 void *ret;
61989a80 1277
9eec4cd5 1278 /*
66cdef66
GM
1279 * Because we use per-cpu mapping areas shared among the
1280 * pools/users, we can't allow mapping in interrupt context
1281 * because it can corrupt another users mappings.
9eec4cd5 1282 */
1aedcafb 1283 BUG_ON(in_interrupt());
61989a80 1284
b475d42d 1285 /* It guarantees it can get zspage from handle safely */
c0547d0b 1286 spin_lock(&pool->lock);
2e40e163
MK
1287 obj = handle_to_obj(handle);
1288 obj_to_location(obj, &page, &obj_idx);
3783689a 1289 zspage = get_zspage(page);
48b4800a 1290
64f768c6
NP
1291#ifdef CONFIG_ZPOOL
1292 /*
1293 * Move the zspage to front of pool's LRU.
1294 *
1295 * Note that this is swap-specific, so by definition there are no ongoing
1296 * accesses to the memory while the page is swapped out that would make
1297 * it "hot". A new entry is hot, then ages to the tail until it gets either
1298 * written back or swaps back in.
1299 *
1300 * Furthermore, map is also called during writeback. We must not put an
1301 * isolated page on the LRU mid-reclaim.
1302 *
1303 * As a result, only update the LRU when the page is mapped for write
1304 * when it's first instantiated.
1305 *
1306 * This is a deviation from the other backends, which perform this update
1307 * in the allocation function (zbud_alloc, z3fold_alloc).
1308 */
1309 if (mm == ZS_MM_WO) {
1310 if (!list_empty(&zspage->lru))
1311 list_del(&zspage->lru);
1312 list_add(&zspage->lru, &pool->lru);
1313 }
1314#endif
1315
b475d42d 1316 /*
c0547d0b 1317 * migration cannot move any zpages in this zspage. Here, pool->lock
b475d42d
MK
1318 * is too heavy since callers would take some time until they calls
1319 * zs_unmap_object API so delegate the locking from class to zspage
1320 * which is smaller granularity.
1321 */
48b4800a 1322 migrate_read_lock(zspage);
c0547d0b 1323 spin_unlock(&pool->lock);
48b4800a 1324
67f1c9cd 1325 class = zspage_class(pool, zspage);
bfd093f5 1326 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1327
a3726599
MG
1328 local_lock(&zs_map_area.lock);
1329 area = this_cpu_ptr(&zs_map_area);
66cdef66
GM
1330 area->vm_mm = mm;
1331 if (off + class->size <= PAGE_SIZE) {
1332 /* this object is contained entirely within a page */
1333 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1334 ret = area->vm_addr + off;
1335 goto out;
61989a80
NG
1336 }
1337
66cdef66
GM
1338 /* this object spans two pages */
1339 pages[0] = page;
1340 pages[1] = get_next_page(page);
1341 BUG_ON(!pages[1]);
9eec4cd5 1342
2e40e163
MK
1343 ret = __zs_map_object(area, pages, off, class->size);
1344out:
a41ec880 1345 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1346 ret += ZS_HANDLE_SIZE;
1347
1348 return ret;
61989a80 1349}
66cdef66 1350EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1351
66cdef66 1352void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1353{
3783689a 1354 struct zspage *zspage;
66cdef66 1355 struct page *page;
bfd093f5
MK
1356 unsigned long obj, off;
1357 unsigned int obj_idx;
61989a80 1358
66cdef66
GM
1359 struct size_class *class;
1360 struct mapping_area *area;
9eec4cd5 1361
2e40e163
MK
1362 obj = handle_to_obj(handle);
1363 obj_to_location(obj, &page, &obj_idx);
3783689a 1364 zspage = get_zspage(page);
67f1c9cd 1365 class = zspage_class(pool, zspage);
bfd093f5 1366 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1367
66cdef66
GM
1368 area = this_cpu_ptr(&zs_map_area);
1369 if (off + class->size <= PAGE_SIZE)
1370 kunmap_atomic(area->vm_addr);
1371 else {
1372 struct page *pages[2];
40f9fb8c 1373
66cdef66
GM
1374 pages[0] = page;
1375 pages[1] = get_next_page(page);
1376 BUG_ON(!pages[1]);
1377
1378 __zs_unmap_object(area, pages, off, class->size);
1379 }
a3726599 1380 local_unlock(&zs_map_area.lock);
48b4800a
MK
1381
1382 migrate_read_unlock(zspage);
61989a80 1383}
66cdef66 1384EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1385
010b495e
SS
1386/**
1387 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1388 * zsmalloc &size_class.
1389 * @pool: zsmalloc pool to use
1390 *
1391 * The function returns the size of the first huge class - any object of equal
1392 * or bigger size will be stored in zspage consisting of a single physical
1393 * page.
1394 *
1395 * Context: Any context.
1396 *
1397 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1398 */
1399size_t zs_huge_class_size(struct zs_pool *pool)
1400{
1401 return huge_class_size;
1402}
1403EXPORT_SYMBOL_GPL(zs_huge_class_size);
1404
0a5f079b 1405static unsigned long obj_malloc(struct zs_pool *pool,
3783689a 1406 struct zspage *zspage, unsigned long handle)
c7806261 1407{
bfd093f5 1408 int i, nr_page, offset;
c7806261
MK
1409 unsigned long obj;
1410 struct link_free *link;
0a5f079b 1411 struct size_class *class;
c7806261
MK
1412
1413 struct page *m_page;
bfd093f5 1414 unsigned long m_offset;
c7806261
MK
1415 void *vaddr;
1416
0a5f079b 1417 class = pool->size_class[zspage->class];
312fcae2 1418 handle |= OBJ_ALLOCATED_TAG;
3783689a 1419 obj = get_freeobj(zspage);
bfd093f5
MK
1420
1421 offset = obj * class->size;
1422 nr_page = offset >> PAGE_SHIFT;
1423 m_offset = offset & ~PAGE_MASK;
1424 m_page = get_first_page(zspage);
1425
1426 for (i = 0; i < nr_page; i++)
1427 m_page = get_next_page(m_page);
c7806261
MK
1428
1429 vaddr = kmap_atomic(m_page);
1430 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1431 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
a41ec880 1432 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1433 /* record handle in the header of allocated chunk */
1434 link->handle = handle;
1435 else
3783689a
MK
1436 /* record handle to page->index */
1437 zspage->first_page->index = handle;
1438
c7806261 1439 kunmap_atomic(vaddr);
3783689a 1440 mod_zspage_inuse(zspage, 1);
c7806261 1441
bfd093f5
MK
1442 obj = location_to_obj(m_page, obj);
1443
c7806261
MK
1444 return obj;
1445}
1446
1447
61989a80
NG
1448/**
1449 * zs_malloc - Allocate block of given size from pool.
1450 * @pool: pool to allocate from
1451 * @size: size of block to allocate
fd854463 1452 * @gfp: gfp flags when allocating object
61989a80 1453 *
00a61d86 1454 * On success, handle to the allocated object is returned,
c7e6f17b 1455 * otherwise an ERR_PTR().
61989a80
NG
1456 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1457 */
d0d8da2d 1458unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1459{
2e40e163 1460 unsigned long handle, obj;
61989a80 1461 struct size_class *class;
48b4800a 1462 enum fullness_group newfg;
3783689a 1463 struct zspage *zspage;
61989a80 1464
7b60a685 1465 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
c7e6f17b 1466 return (unsigned long)ERR_PTR(-EINVAL);
2e40e163 1467
3783689a 1468 handle = cache_alloc_handle(pool, gfp);
2e40e163 1469 if (!handle)
c7e6f17b 1470 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80 1471
2e40e163
MK
1472 /* extra space in chunk to keep the handle */
1473 size += ZS_HANDLE_SIZE;
9eec4cd5 1474 class = pool->size_class[get_size_class_index(size)];
61989a80 1475
c0547d0b
NP
1476 /* pool->lock effectively protects the zpage migration */
1477 spin_lock(&pool->lock);
3783689a 1478 zspage = find_get_zspage(class);
48b4800a 1479 if (likely(zspage)) {
0a5f079b 1480 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1481 /* Now move the zspage to another fullness group, if required */
1482 fix_fullness_group(class, zspage);
1483 record_obj(handle, obj);
0a5f079b 1484 class_stat_inc(class, OBJ_USED, 1);
c0547d0b 1485 spin_unlock(&pool->lock);
61989a80 1486
48b4800a
MK
1487 return handle;
1488 }
0f050d99 1489
c0547d0b 1490 spin_unlock(&pool->lock);
48b4800a
MK
1491
1492 zspage = alloc_zspage(pool, class, gfp);
1493 if (!zspage) {
1494 cache_free_handle(pool, handle);
c7e6f17b 1495 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80
NG
1496 }
1497
c0547d0b 1498 spin_lock(&pool->lock);
0a5f079b 1499 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1500 newfg = get_fullness_group(class, zspage);
1501 insert_zspage(class, zspage, newfg);
1502 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1503 record_obj(handle, obj);
48b4800a
MK
1504 atomic_long_add(class->pages_per_zspage,
1505 &pool->pages_allocated);
3828a764 1506 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
0a5f079b 1507 class_stat_inc(class, OBJ_USED, 1);
48b4800a
MK
1508
1509 /* We completely set up zspage so mark them as movable */
1510 SetZsPageMovable(pool, zspage);
c0547d0b 1511 spin_unlock(&pool->lock);
61989a80 1512
2e40e163 1513 return handle;
61989a80
NG
1514}
1515EXPORT_SYMBOL_GPL(zs_malloc);
1516
0a5f079b 1517static void obj_free(int class_size, unsigned long obj)
61989a80
NG
1518{
1519 struct link_free *link;
3783689a
MK
1520 struct zspage *zspage;
1521 struct page *f_page;
bfd093f5
MK
1522 unsigned long f_offset;
1523 unsigned int f_objidx;
af4ee5e9 1524 void *vaddr;
61989a80 1525
2e40e163 1526 obj_to_location(obj, &f_page, &f_objidx);
0a5f079b 1527 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
3783689a 1528 zspage = get_zspage(f_page);
61989a80 1529
c7806261 1530 vaddr = kmap_atomic(f_page);
61989a80
NG
1531
1532 /* Insert this object in containing zspage's freelist */
af4ee5e9 1533 link = (struct link_free *)(vaddr + f_offset);
a41ec880
MK
1534 if (likely(!ZsHugePage(zspage)))
1535 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1536 else
1537 f_page->index = 0;
af4ee5e9 1538 kunmap_atomic(vaddr);
bfd093f5 1539 set_freeobj(zspage, f_objidx);
3783689a 1540 mod_zspage_inuse(zspage, -1);
c7806261
MK
1541}
1542
1543void zs_free(struct zs_pool *pool, unsigned long handle)
1544{
3783689a
MK
1545 struct zspage *zspage;
1546 struct page *f_page;
bfd093f5 1547 unsigned long obj;
c7806261
MK
1548 struct size_class *class;
1549 enum fullness_group fullness;
1550
a5d21721 1551 if (IS_ERR_OR_NULL((void *)handle))
c7806261
MK
1552 return;
1553
b475d42d 1554 /*
c0547d0b 1555 * The pool->lock protects the race with zpage's migration
b475d42d
MK
1556 * so it's safe to get the page from handle.
1557 */
c0547d0b 1558 spin_lock(&pool->lock);
c7806261 1559 obj = handle_to_obj(handle);
67f1c9cd 1560 obj_to_page(obj, &f_page);
3783689a 1561 zspage = get_zspage(f_page);
67f1c9cd 1562 class = zspage_class(pool, zspage);
b475d42d 1563
0a5f079b
MK
1564 obj_free(class->size, obj);
1565 class_stat_dec(class, OBJ_USED, 1);
3783689a 1566 fullness = fix_fullness_group(class, zspage);
b475d42d 1567 if (fullness != ZS_EMPTY)
48b4800a 1568 goto out;
48b4800a 1569
c4549b87 1570 free_zspage(pool, class, zspage);
48b4800a 1571out:
c0547d0b 1572 spin_unlock(&pool->lock);
3783689a 1573 cache_free_handle(pool, handle);
312fcae2
MK
1574}
1575EXPORT_SYMBOL_GPL(zs_free);
1576
251cbb95
MK
1577static void zs_object_copy(struct size_class *class, unsigned long dst,
1578 unsigned long src)
312fcae2
MK
1579{
1580 struct page *s_page, *d_page;
bfd093f5 1581 unsigned int s_objidx, d_objidx;
312fcae2
MK
1582 unsigned long s_off, d_off;
1583 void *s_addr, *d_addr;
1584 int s_size, d_size, size;
1585 int written = 0;
1586
1587 s_size = d_size = class->size;
1588
1589 obj_to_location(src, &s_page, &s_objidx);
1590 obj_to_location(dst, &d_page, &d_objidx);
1591
bfd093f5
MK
1592 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1593 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1594
1595 if (s_off + class->size > PAGE_SIZE)
1596 s_size = PAGE_SIZE - s_off;
1597
1598 if (d_off + class->size > PAGE_SIZE)
1599 d_size = PAGE_SIZE - d_off;
1600
1601 s_addr = kmap_atomic(s_page);
1602 d_addr = kmap_atomic(d_page);
1603
1604 while (1) {
1605 size = min(s_size, d_size);
1606 memcpy(d_addr + d_off, s_addr + s_off, size);
1607 written += size;
1608
1609 if (written == class->size)
1610 break;
1611
495819ea
SS
1612 s_off += size;
1613 s_size -= size;
1614 d_off += size;
1615 d_size -= size;
1616
050a388b
AR
1617 /*
1618 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1619 * calls must occurs in reverse order of calls to kmap_atomic().
1620 * So, to call kunmap_atomic(s_addr) we should first call
46e87152
AR
1621 * kunmap_atomic(d_addr). For more details see
1622 * Documentation/mm/highmem.rst.
050a388b 1623 */
495819ea 1624 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1625 kunmap_atomic(d_addr);
1626 kunmap_atomic(s_addr);
1627 s_page = get_next_page(s_page);
312fcae2
MK
1628 s_addr = kmap_atomic(s_page);
1629 d_addr = kmap_atomic(d_page);
1630 s_size = class->size - written;
1631 s_off = 0;
312fcae2
MK
1632 }
1633
495819ea 1634 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1635 kunmap_atomic(d_addr);
1636 d_page = get_next_page(d_page);
312fcae2
MK
1637 d_addr = kmap_atomic(d_page);
1638 d_size = class->size - written;
1639 d_off = 0;
312fcae2
MK
1640 }
1641 }
1642
1643 kunmap_atomic(d_addr);
1644 kunmap_atomic(s_addr);
1645}
1646
1647/*
1648 * Find alloced object in zspage from index object and
1649 * return handle.
1650 */
251cbb95 1651static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1652 struct page *page, int *obj_idx)
312fcae2 1653{
671f2fa8 1654 unsigned int offset;
cf675acb 1655 int index = *obj_idx;
312fcae2
MK
1656 unsigned long handle = 0;
1657 void *addr = kmap_atomic(page);
1658
3783689a 1659 offset = get_first_obj_offset(page);
312fcae2
MK
1660 offset += class->size * index;
1661
1662 while (offset < PAGE_SIZE) {
b475d42d
MK
1663 if (obj_allocated(page, addr + offset, &handle))
1664 break;
312fcae2
MK
1665
1666 offset += class->size;
1667 index++;
1668 }
1669
1670 kunmap_atomic(addr);
cf675acb
GM
1671
1672 *obj_idx = index;
1673
312fcae2
MK
1674 return handle;
1675}
1676
1677struct zs_compact_control {
3783689a 1678 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1679 struct page *s_page;
1680 /* Destination page for migration which should be a first page
1681 * of zspage. */
1682 struct page *d_page;
1683 /* Starting object index within @s_page which used for live object
1684 * in the subpage. */
41b88e14 1685 int obj_idx;
312fcae2
MK
1686};
1687
1688static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1689 struct zs_compact_control *cc)
1690{
1691 unsigned long used_obj, free_obj;
1692 unsigned long handle;
1693 struct page *s_page = cc->s_page;
1694 struct page *d_page = cc->d_page;
41b88e14 1695 int obj_idx = cc->obj_idx;
312fcae2
MK
1696 int ret = 0;
1697
1698 while (1) {
cf675acb 1699 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1700 if (!handle) {
1701 s_page = get_next_page(s_page);
1702 if (!s_page)
1703 break;
41b88e14 1704 obj_idx = 0;
312fcae2
MK
1705 continue;
1706 }
1707
1708 /* Stop if there is no more space */
3783689a 1709 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1710 ret = -ENOMEM;
1711 break;
1712 }
1713
1714 used_obj = handle_to_obj(handle);
0a5f079b 1715 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
251cbb95 1716 zs_object_copy(class, free_obj, used_obj);
41b88e14 1717 obj_idx++;
312fcae2 1718 record_obj(handle, free_obj);
0a5f079b 1719 obj_free(class->size, used_obj);
312fcae2
MK
1720 }
1721
1722 /* Remember last position in this iteration */
1723 cc->s_page = s_page;
41b88e14 1724 cc->obj_idx = obj_idx;
312fcae2
MK
1725
1726 return ret;
1727}
1728
3783689a 1729static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1730{
1731 int i;
3783689a
MK
1732 struct zspage *zspage;
1733 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1734
3783689a
MK
1735 if (!source) {
1736 fg[0] = ZS_ALMOST_FULL;
1737 fg[1] = ZS_ALMOST_EMPTY;
1738 }
1739
1740 for (i = 0; i < 2; i++) {
1741 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1742 struct zspage, list);
1743 if (zspage) {
1744 remove_zspage(class, zspage, fg[i]);
1745 return zspage;
312fcae2
MK
1746 }
1747 }
1748
3783689a 1749 return zspage;
312fcae2
MK
1750}
1751
860c707d 1752/*
3783689a 1753 * putback_zspage - add @zspage into right class's fullness list
860c707d 1754 * @class: destination class
3783689a 1755 * @zspage: target page
860c707d 1756 *
3783689a 1757 * Return @zspage's fullness_group
860c707d 1758 */
4aa409ca 1759static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1760 struct zspage *zspage)
312fcae2 1761{
312fcae2
MK
1762 enum fullness_group fullness;
1763
3783689a
MK
1764 fullness = get_fullness_group(class, zspage);
1765 insert_zspage(class, zspage, fullness);
1766 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1767
860c707d 1768 return fullness;
61989a80 1769}
312fcae2 1770
48b4800a 1771#ifdef CONFIG_COMPACTION
4d0a5402
CIK
1772/*
1773 * To prevent zspage destroy during migration, zspage freeing should
1774 * hold locks of all pages in the zspage.
1775 */
1776static void lock_zspage(struct zspage *zspage)
1777{
2505a981 1778 struct page *curr_page, *page;
4d0a5402 1779
2505a981
SA
1780 /*
1781 * Pages we haven't locked yet can be migrated off the list while we're
1782 * trying to lock them, so we need to be careful and only attempt to
1783 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1784 * may no longer belong to the zspage. This means that we may wait for
1785 * the wrong page to unlock, so we must take a reference to the page
1786 * prior to waiting for it to unlock outside migrate_read_lock().
1787 */
1788 while (1) {
1789 migrate_read_lock(zspage);
1790 page = get_first_page(zspage);
1791 if (trylock_page(page))
1792 break;
1793 get_page(page);
1794 migrate_read_unlock(zspage);
1795 wait_on_page_locked(page);
1796 put_page(page);
1797 }
1798
1799 curr_page = page;
1800 while ((page = get_next_page(curr_page))) {
1801 if (trylock_page(page)) {
1802 curr_page = page;
1803 } else {
1804 get_page(page);
1805 migrate_read_unlock(zspage);
1806 wait_on_page_locked(page);
1807 put_page(page);
1808 migrate_read_lock(zspage);
1809 }
1810 }
1811 migrate_read_unlock(zspage);
4d0a5402
CIK
1812}
1813
48b4800a
MK
1814static void migrate_lock_init(struct zspage *zspage)
1815{
1816 rwlock_init(&zspage->lock);
1817}
1818
cfc451cf 1819static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1820{
1821 read_lock(&zspage->lock);
1822}
1823
8a374ccc 1824static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1825{
1826 read_unlock(&zspage->lock);
1827}
1828
1829static void migrate_write_lock(struct zspage *zspage)
1830{
1831 write_lock(&zspage->lock);
1832}
1833
b475d42d
MK
1834static void migrate_write_lock_nested(struct zspage *zspage)
1835{
1836 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1837}
1838
48b4800a
MK
1839static void migrate_write_unlock(struct zspage *zspage)
1840{
1841 write_unlock(&zspage->lock);
1842}
1843
1844/* Number of isolated subpage for *page migration* in this zspage */
1845static void inc_zspage_isolation(struct zspage *zspage)
1846{
1847 zspage->isolated++;
1848}
1849
1850static void dec_zspage_isolation(struct zspage *zspage)
1851{
c4549b87 1852 VM_BUG_ON(zspage->isolated == 0);
48b4800a
MK
1853 zspage->isolated--;
1854}
1855
68f2736a
MWO
1856static const struct movable_operations zsmalloc_mops;
1857
48b4800a
MK
1858static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1859 struct page *newpage, struct page *oldpage)
1860{
1861 struct page *page;
1862 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1863 int idx = 0;
1864
1865 page = get_first_page(zspage);
1866 do {
1867 if (page == oldpage)
1868 pages[idx] = newpage;
1869 else
1870 pages[idx] = page;
1871 idx++;
1872 } while ((page = get_next_page(page)) != NULL);
1873
1874 create_page_chain(class, zspage, pages);
1875 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
a41ec880 1876 if (unlikely(ZsHugePage(zspage)))
48b4800a 1877 newpage->index = oldpage->index;
68f2736a 1878 __SetPageMovable(newpage, &zsmalloc_mops);
48b4800a
MK
1879}
1880
4d0a5402 1881static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a 1882{
48b4800a 1883 struct zspage *zspage;
48b4800a
MK
1884
1885 /*
1886 * Page is locked so zspage couldn't be destroyed. For detail, look at
1887 * lock_zspage in free_zspage.
1888 */
1889 VM_BUG_ON_PAGE(!PageMovable(page), page);
1890 VM_BUG_ON_PAGE(PageIsolated(page), page);
1891
1892 zspage = get_zspage(page);
c4549b87 1893 migrate_write_lock(zspage);
48b4800a 1894 inc_zspage_isolation(zspage);
c4549b87 1895 migrate_write_unlock(zspage);
48b4800a
MK
1896
1897 return true;
1898}
1899
68f2736a
MWO
1900static int zs_page_migrate(struct page *newpage, struct page *page,
1901 enum migrate_mode mode)
48b4800a
MK
1902{
1903 struct zs_pool *pool;
1904 struct size_class *class;
48b4800a
MK
1905 struct zspage *zspage;
1906 struct page *dummy;
1907 void *s_addr, *d_addr, *addr;
671f2fa8 1908 unsigned int offset;
3ae92ac2 1909 unsigned long handle;
48b4800a
MK
1910 unsigned long old_obj, new_obj;
1911 unsigned int obj_idx;
48b4800a 1912
2916ecc0
JG
1913 /*
1914 * We cannot support the _NO_COPY case here, because copy needs to
1915 * happen under the zs lock, which does not work with
1916 * MIGRATE_SYNC_NO_COPY workflow.
1917 */
1918 if (mode == MIGRATE_SYNC_NO_COPY)
1919 return -EINVAL;
1920
48b4800a
MK
1921 VM_BUG_ON_PAGE(!PageMovable(page), page);
1922 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1923
68f2736a
MWO
1924 /* The page is locked, so this pointer must remain valid */
1925 zspage = get_zspage(page);
1926 pool = zspage->pool;
b475d42d
MK
1927
1928 /*
c0547d0b 1929 * The pool's lock protects the race between zpage migration
b475d42d
MK
1930 * and zs_free.
1931 */
c0547d0b 1932 spin_lock(&pool->lock);
67f1c9cd 1933 class = zspage_class(pool, zspage);
48b4800a 1934
b475d42d
MK
1935 /* the migrate_write_lock protects zpage access via zs_map_object */
1936 migrate_write_lock(zspage);
48b4800a 1937
b475d42d 1938 offset = get_first_obj_offset(page);
48b4800a 1939 s_addr = kmap_atomic(page);
48b4800a
MK
1940
1941 /*
1942 * Here, any user cannot access all objects in the zspage so let's move.
1943 */
1944 d_addr = kmap_atomic(newpage);
1945 memcpy(d_addr, s_addr, PAGE_SIZE);
1946 kunmap_atomic(d_addr);
1947
b475d42d 1948 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
48b4800a 1949 addr += class->size) {
3ae92ac2 1950 if (obj_allocated(page, addr, &handle)) {
48b4800a
MK
1951
1952 old_obj = handle_to_obj(handle);
1953 obj_to_location(old_obj, &dummy, &obj_idx);
1954 new_obj = (unsigned long)location_to_obj(newpage,
1955 obj_idx);
48b4800a
MK
1956 record_obj(handle, new_obj);
1957 }
1958 }
b475d42d 1959 kunmap_atomic(s_addr);
48b4800a
MK
1960
1961 replace_sub_page(class, zspage, newpage, page);
b475d42d
MK
1962 /*
1963 * Since we complete the data copy and set up new zspage structure,
c0547d0b 1964 * it's okay to release the pool's lock.
b475d42d 1965 */
c0547d0b 1966 spin_unlock(&pool->lock);
48b4800a 1967 dec_zspage_isolation(zspage);
b475d42d 1968 migrate_write_unlock(zspage);
48b4800a 1969
b475d42d 1970 get_page(newpage);
ac8f05da
CM
1971 if (page_zone(newpage) != page_zone(page)) {
1972 dec_zone_page_state(page, NR_ZSPAGES);
1973 inc_zone_page_state(newpage, NR_ZSPAGES);
1974 }
1975
48b4800a
MK
1976 reset_page(page);
1977 put_page(page);
48b4800a 1978
b475d42d 1979 return MIGRATEPAGE_SUCCESS;
48b4800a
MK
1980}
1981
4d0a5402 1982static void zs_page_putback(struct page *page)
48b4800a 1983{
48b4800a
MK
1984 struct zspage *zspage;
1985
1986 VM_BUG_ON_PAGE(!PageMovable(page), page);
1987 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1988
1989 zspage = get_zspage(page);
c4549b87 1990 migrate_write_lock(zspage);
48b4800a 1991 dec_zspage_isolation(zspage);
c4549b87 1992 migrate_write_unlock(zspage);
48b4800a
MK
1993}
1994
68f2736a 1995static const struct movable_operations zsmalloc_mops = {
48b4800a 1996 .isolate_page = zs_page_isolate,
68f2736a 1997 .migrate_page = zs_page_migrate,
48b4800a
MK
1998 .putback_page = zs_page_putback,
1999};
2000
48b4800a
MK
2001/*
2002 * Caller should hold page_lock of all pages in the zspage
2003 * In here, we cannot use zspage meta data.
2004 */
2005static void async_free_zspage(struct work_struct *work)
2006{
2007 int i;
2008 struct size_class *class;
2009 unsigned int class_idx;
2010 enum fullness_group fullness;
2011 struct zspage *zspage, *tmp;
2012 LIST_HEAD(free_pages);
2013 struct zs_pool *pool = container_of(work, struct zs_pool,
2014 free_work);
2015
cf8e0fed 2016 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2017 class = pool->size_class[i];
2018 if (class->index != i)
2019 continue;
2020
c0547d0b 2021 spin_lock(&pool->lock);
48b4800a 2022 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
c0547d0b 2023 spin_unlock(&pool->lock);
48b4800a
MK
2024 }
2025
48b4800a
MK
2026 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2027 list_del(&zspage->list);
2028 lock_zspage(zspage);
2029
2030 get_zspage_mapping(zspage, &class_idx, &fullness);
2031 VM_BUG_ON(fullness != ZS_EMPTY);
2032 class = pool->size_class[class_idx];
c0547d0b 2033 spin_lock(&pool->lock);
64f768c6
NP
2034#ifdef CONFIG_ZPOOL
2035 list_del(&zspage->lru);
2036#endif
33848337 2037 __free_zspage(pool, class, zspage);
c0547d0b 2038 spin_unlock(&pool->lock);
48b4800a
MK
2039 }
2040};
2041
2042static void kick_deferred_free(struct zs_pool *pool)
2043{
2044 schedule_work(&pool->free_work);
2045}
2046
68f2736a
MWO
2047static void zs_flush_migration(struct zs_pool *pool)
2048{
2049 flush_work(&pool->free_work);
2050}
2051
48b4800a
MK
2052static void init_deferred_free(struct zs_pool *pool)
2053{
2054 INIT_WORK(&pool->free_work, async_free_zspage);
2055}
2056
2057static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2058{
2059 struct page *page = get_first_page(zspage);
2060
2061 do {
2062 WARN_ON(!trylock_page(page));
68f2736a 2063 __SetPageMovable(page, &zsmalloc_mops);
48b4800a
MK
2064 unlock_page(page);
2065 } while ((page = get_next_page(page)) != NULL);
2066}
68f2736a
MWO
2067#else
2068static inline void zs_flush_migration(struct zs_pool *pool) { }
48b4800a
MK
2069#endif
2070
04f05909
SS
2071/*
2072 *
2073 * Based on the number of unused allocated objects calculate
2074 * and return the number of pages that we can free.
04f05909
SS
2075 */
2076static unsigned long zs_can_compact(struct size_class *class)
2077{
2078 unsigned long obj_wasted;
44f43e99
SS
2079 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2080 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2081
44f43e99
SS
2082 if (obj_allocated <= obj_used)
2083 return 0;
04f05909 2084
44f43e99 2085 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2086 obj_wasted /= class->objs_per_zspage;
04f05909 2087
6cbf16b3 2088 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2089}
2090
23959281
RY
2091static unsigned long __zs_compact(struct zs_pool *pool,
2092 struct size_class *class)
312fcae2 2093{
312fcae2 2094 struct zs_compact_control cc;
3783689a
MK
2095 struct zspage *src_zspage;
2096 struct zspage *dst_zspage = NULL;
23959281 2097 unsigned long pages_freed = 0;
312fcae2 2098
c0547d0b
NP
2099 /*
2100 * protect the race between zpage migration and zs_free
2101 * as well as zpage allocation/free
2102 */
2103 spin_lock(&pool->lock);
3783689a 2104 while ((src_zspage = isolate_zspage(class, true))) {
b475d42d
MK
2105 /* protect someone accessing the zspage(i.e., zs_map_object) */
2106 migrate_write_lock(src_zspage);
312fcae2 2107
04f05909
SS
2108 if (!zs_can_compact(class))
2109 break;
2110
41b88e14 2111 cc.obj_idx = 0;
48b4800a 2112 cc.s_page = get_first_page(src_zspage);
312fcae2 2113
3783689a 2114 while ((dst_zspage = isolate_zspage(class, false))) {
b475d42d
MK
2115 migrate_write_lock_nested(dst_zspage);
2116
48b4800a 2117 cc.d_page = get_first_page(dst_zspage);
312fcae2 2118 /*
0dc63d48
SS
2119 * If there is no more space in dst_page, resched
2120 * and see if anyone had allocated another zspage.
312fcae2
MK
2121 */
2122 if (!migrate_zspage(pool, class, &cc))
2123 break;
2124
4aa409ca 2125 putback_zspage(class, dst_zspage);
b475d42d
MK
2126 migrate_write_unlock(dst_zspage);
2127 dst_zspage = NULL;
c0547d0b 2128 if (spin_is_contended(&pool->lock))
b475d42d 2129 break;
312fcae2
MK
2130 }
2131
2132 /* Stop if we couldn't find slot */
3783689a 2133 if (dst_zspage == NULL)
312fcae2
MK
2134 break;
2135
4aa409ca 2136 putback_zspage(class, dst_zspage);
b475d42d
MK
2137 migrate_write_unlock(dst_zspage);
2138
4aa409ca 2139 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
b475d42d 2140 migrate_write_unlock(src_zspage);
48b4800a 2141 free_zspage(pool, class, src_zspage);
23959281 2142 pages_freed += class->pages_per_zspage;
b475d42d
MK
2143 } else
2144 migrate_write_unlock(src_zspage);
c0547d0b 2145 spin_unlock(&pool->lock);
312fcae2 2146 cond_resched();
c0547d0b 2147 spin_lock(&pool->lock);
312fcae2
MK
2148 }
2149
b475d42d 2150 if (src_zspage) {
4aa409ca 2151 putback_zspage(class, src_zspage);
b475d42d
MK
2152 migrate_write_unlock(src_zspage);
2153 }
312fcae2 2154
c0547d0b 2155 spin_unlock(&pool->lock);
23959281
RY
2156
2157 return pages_freed;
312fcae2
MK
2158}
2159
2160unsigned long zs_compact(struct zs_pool *pool)
2161{
2162 int i;
312fcae2 2163 struct size_class *class;
23959281 2164 unsigned long pages_freed = 0;
312fcae2 2165
cf8e0fed 2166 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2 2167 class = pool->size_class[i];
312fcae2
MK
2168 if (class->index != i)
2169 continue;
23959281 2170 pages_freed += __zs_compact(pool, class);
312fcae2 2171 }
23959281 2172 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
312fcae2 2173
23959281 2174 return pages_freed;
312fcae2
MK
2175}
2176EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2177
7d3f3938
SS
2178void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2179{
2180 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2181}
2182EXPORT_SYMBOL_GPL(zs_pool_stats);
2183
ab9d306d
SS
2184static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2185 struct shrink_control *sc)
2186{
2187 unsigned long pages_freed;
2188 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2189 shrinker);
2190
ab9d306d
SS
2191 /*
2192 * Compact classes and calculate compaction delta.
2193 * Can run concurrently with a manually triggered
2194 * (by user) compaction.
2195 */
23959281 2196 pages_freed = zs_compact(pool);
ab9d306d
SS
2197
2198 return pages_freed ? pages_freed : SHRINK_STOP;
2199}
2200
2201static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2202 struct shrink_control *sc)
2203{
2204 int i;
2205 struct size_class *class;
2206 unsigned long pages_to_free = 0;
2207 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2208 shrinker);
2209
cf8e0fed 2210 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d 2211 class = pool->size_class[i];
ab9d306d
SS
2212 if (class->index != i)
2213 continue;
2214
ab9d306d 2215 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2216 }
2217
2218 return pages_to_free;
2219}
2220
2221static void zs_unregister_shrinker(struct zs_pool *pool)
2222{
93144ca3 2223 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2224}
2225
2226static int zs_register_shrinker(struct zs_pool *pool)
2227{
2228 pool->shrinker.scan_objects = zs_shrinker_scan;
2229 pool->shrinker.count_objects = zs_shrinker_count;
2230 pool->shrinker.batch = 0;
2231 pool->shrinker.seeks = DEFAULT_SEEKS;
2232
e33c267a
RG
2233 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2234 pool->name);
ab9d306d
SS
2235}
2236
00a61d86 2237/**
66cdef66 2238 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2239 * @name: pool name to be created
166cfda7 2240 *
66cdef66
GM
2241 * This function must be called before anything when using
2242 * the zsmalloc allocator.
166cfda7 2243 *
66cdef66
GM
2244 * On success, a pointer to the newly created pool is returned,
2245 * otherwise NULL.
396b7fd6 2246 */
d0d8da2d 2247struct zs_pool *zs_create_pool(const char *name)
61989a80 2248{
66cdef66
GM
2249 int i;
2250 struct zs_pool *pool;
2251 struct size_class *prev_class = NULL;
61989a80 2252
66cdef66
GM
2253 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2254 if (!pool)
2255 return NULL;
61989a80 2256
48b4800a 2257 init_deferred_free(pool);
c0547d0b 2258 spin_lock_init(&pool->lock);
61989a80 2259
2e40e163
MK
2260 pool->name = kstrdup(name, GFP_KERNEL);
2261 if (!pool->name)
2262 goto err;
2263
3783689a 2264 if (create_cache(pool))
2e40e163
MK
2265 goto err;
2266
c60369f0 2267 /*
399d8eeb 2268 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2269 * for merging should be larger or equal to current size.
c60369f0 2270 */
cf8e0fed 2271 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2272 int size;
2273 int pages_per_zspage;
64d90465 2274 int objs_per_zspage;
66cdef66 2275 struct size_class *class;
3783689a 2276 int fullness = 0;
c60369f0 2277
66cdef66
GM
2278 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2279 if (size > ZS_MAX_ALLOC_SIZE)
2280 size = ZS_MAX_ALLOC_SIZE;
2281 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2282 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2283
010b495e
SS
2284 /*
2285 * We iterate from biggest down to smallest classes,
2286 * so huge_class_size holds the size of the first huge
2287 * class. Any object bigger than or equal to that will
2288 * endup in the huge class.
2289 */
2290 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2291 !huge_class_size) {
2292 huge_class_size = size;
2293 /*
2294 * The object uses ZS_HANDLE_SIZE bytes to store the
2295 * handle. We need to subtract it, because zs_malloc()
2296 * unconditionally adds handle size before it performs
2297 * size class search - so object may be smaller than
2298 * huge class size, yet it still can end up in the huge
2299 * class because it grows by ZS_HANDLE_SIZE extra bytes
2300 * right before class lookup.
2301 */
2302 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2303 }
2304
66cdef66
GM
2305 /*
2306 * size_class is used for normal zsmalloc operation such
2307 * as alloc/free for that size. Although it is natural that we
2308 * have one size_class for each size, there is a chance that we
2309 * can get more memory utilization if we use one size_class for
2310 * many different sizes whose size_class have same
2311 * characteristics. So, we makes size_class point to
2312 * previous size_class if possible.
2313 */
2314 if (prev_class) {
64d90465 2315 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2316 pool->size_class[i] = prev_class;
2317 continue;
2318 }
2319 }
2320
2321 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2322 if (!class)
2323 goto err;
2324
2325 class->size = size;
2326 class->index = i;
2327 class->pages_per_zspage = pages_per_zspage;
64d90465 2328 class->objs_per_zspage = objs_per_zspage;
66cdef66 2329 pool->size_class[i] = class;
48b4800a
MK
2330 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2331 fullness++)
3783689a 2332 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2333
2334 prev_class = class;
61989a80
NG
2335 }
2336
d34f6157
DS
2337 /* debug only, don't abort if it fails */
2338 zs_pool_stat_create(pool, name);
0f050d99 2339
ab9d306d 2340 /*
93144ca3
AK
2341 * Not critical since shrinker is only used to trigger internal
2342 * defragmentation of the pool which is pretty optional thing. If
2343 * registration fails we still can use the pool normally and user can
2344 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2345 */
93144ca3
AK
2346 zs_register_shrinker(pool);
2347
64f768c6
NP
2348#ifdef CONFIG_ZPOOL
2349 INIT_LIST_HEAD(&pool->lru);
2350#endif
2351
66cdef66
GM
2352 return pool;
2353
2354err:
2355 zs_destroy_pool(pool);
2356 return NULL;
61989a80 2357}
66cdef66 2358EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2359
66cdef66 2360void zs_destroy_pool(struct zs_pool *pool)
61989a80 2361{
66cdef66 2362 int i;
61989a80 2363
ab9d306d 2364 zs_unregister_shrinker(pool);
68f2736a 2365 zs_flush_migration(pool);
0f050d99
GM
2366 zs_pool_stat_destroy(pool);
2367
cf8e0fed 2368 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2369 int fg;
2370 struct size_class *class = pool->size_class[i];
61989a80 2371
4249a05f
AR
2372 if (!class)
2373 continue;
2374
66cdef66
GM
2375 if (class->index != i)
2376 continue;
61989a80 2377
48b4800a 2378 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2379 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2380 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2381 class->size, fg);
2382 }
2383 }
2384 kfree(class);
2385 }
f553646a 2386
3783689a 2387 destroy_cache(pool);
0f050d99 2388 kfree(pool->name);
66cdef66
GM
2389 kfree(pool);
2390}
2391EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2392
66cdef66
GM
2393static int __init zs_init(void)
2394{
48b4800a
MK
2395 int ret;
2396
215c89d0
SAS
2397 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2398 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2399 if (ret)
68f2736a 2400 goto out;
66cdef66 2401
66cdef66
GM
2402#ifdef CONFIG_ZPOOL
2403 zpool_register_driver(&zs_zpool_driver);
2404#endif
0f050d99 2405
4abaac9b
DS
2406 zs_stat_init();
2407
66cdef66 2408 return 0;
0f050d99 2409
48b4800a 2410out:
0f050d99 2411 return ret;
61989a80 2412}
61989a80 2413
66cdef66 2414static void __exit zs_exit(void)
61989a80 2415{
66cdef66
GM
2416#ifdef CONFIG_ZPOOL
2417 zpool_unregister_driver(&zs_zpool_driver);
2418#endif
215c89d0 2419 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2420
2421 zs_stat_exit();
61989a80 2422}
069f101f
BH
2423
2424module_init(zs_init);
2425module_exit(zs_exit);
2426
2427MODULE_LICENSE("Dual BSD/GPL");
2428MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");