mm: make arch_has_descending_max_zone_pfns() static
[linux-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
ffedd09f 20 * page->index: links together all component pages of a zspage
48b4800a
MK
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
ffedd09f 23 * page->page_type: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
b475d42d
MK
33/*
34 * lock ordering:
35 * page_lock
c0547d0b 36 * pool->lock
b475d42d
MK
37 * zspage->lock
38 */
39
61989a80
NG
40#include <linux/module.h>
41#include <linux/kernel.h>
312fcae2 42#include <linux/sched.h>
61989a80
NG
43#include <linux/bitops.h>
44#include <linux/errno.h>
45#include <linux/highmem.h>
61989a80
NG
46#include <linux/string.h>
47#include <linux/slab.h>
ca5999fd 48#include <linux/pgtable.h>
65fddcfc 49#include <asm/tlbflush.h>
61989a80
NG
50#include <linux/cpumask.h>
51#include <linux/cpu.h>
0cbb613f 52#include <linux/vmalloc.h>
759b26b2 53#include <linux/preempt.h>
0959c63f 54#include <linux/spinlock.h>
93144ca3 55#include <linux/shrinker.h>
0959c63f 56#include <linux/types.h>
0f050d99 57#include <linux/debugfs.h>
bcf1647d 58#include <linux/zsmalloc.h>
c795779d 59#include <linux/zpool.h>
dd4123f3 60#include <linux/migrate.h>
701d6785 61#include <linux/wait.h>
48b4800a 62#include <linux/pagemap.h>
cdc346b3 63#include <linux/fs.h>
a3726599 64#include <linux/local_lock.h>
48b4800a
MK
65
66#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
67
68/*
cb152a1a 69 * This must be power of 2 and greater than or equal to sizeof(link_free).
0959c63f
SJ
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
2e40e163
MK
76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
0959c63f
SJ
78/*
79 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 80 * a single (unsigned long) handle value.
0959c63f 81 *
bfd093f5 82 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
02390b87
KS
87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
88#ifdef MAX_PHYSMEM_BITS
89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90#else
0959c63f
SJ
91/*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
02390b87 95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
96#endif
97#endif
02390b87
KS
98
99#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2 100
312fcae2
MK
101/*
102 * Head in allocated object should have OBJ_ALLOCATED_TAG
103 * to identify the object was allocated or not.
104 * It's okay to add the status bit in the least bit because
105 * header keeps handle which is 4byte-aligned address so we
106 * have room for two bit at least.
107 */
108#define OBJ_ALLOCATED_TAG 1
85b32581
NP
109
110#ifdef CONFIG_ZPOOL
111/*
112 * The second least-significant bit in the object's header identifies if the
113 * value stored at the header is a deferred handle from the last reclaim
114 * attempt.
115 *
116 * As noted above, this is valid because we have room for two bits.
117 */
118#define OBJ_DEFERRED_HANDLE_TAG 2
119#define OBJ_TAG_BITS 2
120#define OBJ_TAG_MASK (OBJ_ALLOCATED_TAG | OBJ_DEFERRED_HANDLE_TAG)
121#else
122#define OBJ_TAG_BITS 1
123#define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
124#endif /* CONFIG_ZPOOL */
125
312fcae2 126#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
127#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
128
a41ec880 129#define HUGE_BITS 1
4c7ac972 130#define FULLNESS_BITS 4
cf8e0fed 131#define CLASS_BITS 8
4ff93b29 132#define ISOLATED_BITS 5
cf8e0fed
JM
133#define MAGIC_VAL_BITS 8
134
0959c63f 135#define MAX(a, b) ((a) >= (b) ? (a) : (b))
4ff93b29
SS
136
137#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
138
0959c63f
SJ
139/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140#define ZS_MIN_ALLOC_SIZE \
141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 142/* each chunk includes extra space to keep handle */
7b60a685 143#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
144
145/*
7eb52512 146 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
147 * trader-off here:
148 * - Large number of size classes is potentially wasteful as free page are
149 * spread across these classes
150 * - Small number of size classes causes large internal fragmentation
151 * - Probably its better to use specific size classes (empirically
152 * determined). NOTE: all those class sizes must be set as multiple of
153 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
154 *
155 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
156 * (reason above)
157 */
3783689a 158#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
159#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
160 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 161
4c7ac972
SS
162/*
163 * Pages are distinguished by the ratio of used memory (that is the ratio
164 * of ->inuse objects to all objects that page can store). For example,
165 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
166 *
167 * The number of fullness groups is not random. It allows us to keep
168 * difference between the least busy page in the group (minimum permitted
169 * number of ->inuse objects) and the most busy page (maximum permitted
170 * number of ->inuse objects) at a reasonable value.
171 */
0959c63f 172enum fullness_group {
4c7ac972
SS
173 ZS_INUSE_RATIO_0,
174 ZS_INUSE_RATIO_10,
e1807d5d 175 /* NOTE: 8 more fullness groups here */
4c7ac972
SS
176 ZS_INUSE_RATIO_99 = 10,
177 ZS_INUSE_RATIO_100,
178 NR_FULLNESS_GROUPS,
0959c63f
SJ
179};
180
3828a764 181enum class_stat_type {
4c7ac972
SS
182 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
183 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
184 ZS_OBJS_INUSE,
185 NR_CLASS_STAT_TYPES,
0f050d99
GM
186};
187
0f050d99 188struct zs_size_stat {
4c7ac972 189 unsigned long objs[NR_CLASS_STAT_TYPES];
0f050d99
GM
190};
191
57244594
SS
192#ifdef CONFIG_ZSMALLOC_STAT
193static struct dentry *zs_stat_root;
0f050d99
GM
194#endif
195
010b495e 196static size_t huge_class_size;
0959c63f
SJ
197
198struct size_class {
4c7ac972 199 struct list_head fullness_list[NR_FULLNESS_GROUPS];
0959c63f
SJ
200 /*
201 * Size of objects stored in this class. Must be multiple
202 * of ZS_ALIGN.
203 */
204 int size;
1fc6e27d 205 int objs_per_zspage;
7dfa4612
WY
206 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
207 int pages_per_zspage;
48b4800a
MK
208
209 unsigned int index;
210 struct zs_size_stat stats;
0959c63f
SJ
211};
212
213/*
214 * Placed within free objects to form a singly linked list.
3783689a 215 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
216 *
217 * This must be power of 2 and less than or equal to ZS_ALIGN
218 */
219struct link_free {
2e40e163
MK
220 union {
221 /*
bfd093f5 222 * Free object index;
2e40e163
MK
223 * It's valid for non-allocated object
224 */
bfd093f5 225 unsigned long next;
2e40e163
MK
226 /*
227 * Handle of allocated object.
228 */
229 unsigned long handle;
85b32581
NP
230#ifdef CONFIG_ZPOOL
231 /*
232 * Deferred handle of a reclaimed object.
233 */
234 unsigned long deferred_handle;
235#endif
2e40e163 236 };
0959c63f
SJ
237};
238
239struct zs_pool {
6f3526d6 240 const char *name;
0f050d99 241
cf8e0fed 242 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 243 struct kmem_cache *handle_cachep;
3783689a 244 struct kmem_cache *zspage_cachep;
0959c63f 245
13de8933 246 atomic_long_t pages_allocated;
0f050d99 247
7d3f3938 248 struct zs_pool_stats stats;
ab9d306d
SS
249
250 /* Compact classes */
251 struct shrinker shrinker;
93144ca3 252
64f768c6
NP
253#ifdef CONFIG_ZPOOL
254 /* List tracking the zspages in LRU order by most recently added object */
255 struct list_head lru;
bd0fded2
NP
256 struct zpool *zpool;
257 const struct zpool_ops *zpool_ops;
64f768c6
NP
258#endif
259
0f050d99
GM
260#ifdef CONFIG_ZSMALLOC_STAT
261 struct dentry *stat_dentry;
262#endif
48b4800a 263#ifdef CONFIG_COMPACTION
48b4800a
MK
264 struct work_struct free_work;
265#endif
c0547d0b 266 spinlock_t lock;
0959c63f 267};
61989a80 268
3783689a
MK
269struct zspage {
270 struct {
a41ec880 271 unsigned int huge:HUGE_BITS;
3783689a 272 unsigned int fullness:FULLNESS_BITS;
85d492f2 273 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
274 unsigned int isolated:ISOLATED_BITS;
275 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
276 };
277 unsigned int inuse;
bfd093f5 278 unsigned int freeobj;
3783689a
MK
279 struct page *first_page;
280 struct list_head list; /* fullness list */
64f768c6
NP
281
282#ifdef CONFIG_ZPOOL
283 /* links the zspage to the lru list in the pool */
284 struct list_head lru;
9997bc01 285 bool under_reclaim;
64f768c6
NP
286#endif
287
68f2736a 288 struct zs_pool *pool;
48b4800a 289 rwlock_t lock;
3783689a 290};
61989a80 291
f553646a 292struct mapping_area {
a3726599 293 local_lock_t lock;
f553646a 294 char *vm_buf; /* copy buffer for objects that span pages */
f553646a
SJ
295 char *vm_addr; /* address of kmap_atomic()'ed pages */
296 enum zs_mapmode vm_mm; /* mapping mode */
297};
298
a41ec880
MK
299/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
300static void SetZsHugePage(struct zspage *zspage)
301{
302 zspage->huge = 1;
303}
304
305static bool ZsHugePage(struct zspage *zspage)
306{
307 return zspage->huge;
308}
309
48b4800a
MK
310static void migrate_lock_init(struct zspage *zspage);
311static void migrate_read_lock(struct zspage *zspage);
312static void migrate_read_unlock(struct zspage *zspage);
9997bc01
NP
313
314#ifdef CONFIG_COMPACTION
b475d42d
MK
315static void migrate_write_lock(struct zspage *zspage);
316static void migrate_write_lock_nested(struct zspage *zspage);
317static void migrate_write_unlock(struct zspage *zspage);
48b4800a
MK
318static void kick_deferred_free(struct zs_pool *pool);
319static void init_deferred_free(struct zs_pool *pool);
320static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
321#else
b475d42d
MK
322static void migrate_write_lock(struct zspage *zspage) {}
323static void migrate_write_lock_nested(struct zspage *zspage) {}
324static void migrate_write_unlock(struct zspage *zspage) {}
48b4800a
MK
325static void kick_deferred_free(struct zs_pool *pool) {}
326static void init_deferred_free(struct zs_pool *pool) {}
327static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
328#endif
329
3783689a 330static int create_cache(struct zs_pool *pool)
2e40e163
MK
331{
332 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
333 0, 0, NULL);
3783689a
MK
334 if (!pool->handle_cachep)
335 return 1;
336
337 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
338 0, 0, NULL);
339 if (!pool->zspage_cachep) {
340 kmem_cache_destroy(pool->handle_cachep);
341 pool->handle_cachep = NULL;
342 return 1;
343 }
344
345 return 0;
2e40e163
MK
346}
347
3783689a 348static void destroy_cache(struct zs_pool *pool)
2e40e163 349{
cd10add0 350 kmem_cache_destroy(pool->handle_cachep);
3783689a 351 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
352}
353
3783689a 354static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
355{
356 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 357 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
358}
359
3783689a 360static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
361{
362 kmem_cache_free(pool->handle_cachep, (void *)handle);
363}
364
3783689a
MK
365static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
366{
f0231305 367 return kmem_cache_zalloc(pool->zspage_cachep,
48b4800a 368 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 369}
3783689a
MK
370
371static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
372{
373 kmem_cache_free(pool->zspage_cachep, zspage);
374}
375
c0547d0b 376/* pool->lock(which owns the handle) synchronizes races */
2e40e163
MK
377static void record_obj(unsigned long handle, unsigned long obj)
378{
b475d42d 379 *(unsigned long *)handle = obj;
2e40e163
MK
380}
381
c795779d
DS
382/* zpool driver */
383
384#ifdef CONFIG_ZPOOL
385
6f3526d6 386static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 387 const struct zpool_ops *zpool_ops,
479305fd 388 struct zpool *zpool)
c795779d 389{
d0d8da2d
SS
390 /*
391 * Ignore global gfp flags: zs_malloc() may be invoked from
392 * different contexts and its caller must provide a valid
393 * gfp mask.
394 */
bd0fded2
NP
395 struct zs_pool *pool = zs_create_pool(name);
396
397 if (pool) {
398 pool->zpool = zpool;
399 pool->zpool_ops = zpool_ops;
400 }
401
402 return pool;
c795779d
DS
403}
404
405static void zs_zpool_destroy(void *pool)
406{
407 zs_destroy_pool(pool);
408}
409
410static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
411 unsigned long *handle)
412{
d0d8da2d 413 *handle = zs_malloc(pool, size, gfp);
c7e6f17b 414
65917b53 415 if (IS_ERR_VALUE(*handle))
c7e6f17b
HZ
416 return PTR_ERR((void *)*handle);
417 return 0;
c795779d
DS
418}
419static void zs_zpool_free(void *pool, unsigned long handle)
420{
421 zs_free(pool, handle);
422}
423
9997bc01
NP
424static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries);
425
426static int zs_zpool_shrink(void *pool, unsigned int pages,
427 unsigned int *reclaimed)
428{
429 unsigned int total = 0;
430 int ret = -EINVAL;
431
432 while (total < pages) {
433 ret = zs_reclaim_page(pool, 8);
434 if (ret < 0)
435 break;
436 total++;
437 }
438
439 if (reclaimed)
440 *reclaimed = total;
441
442 return ret;
443}
444
c795779d
DS
445static void *zs_zpool_map(void *pool, unsigned long handle,
446 enum zpool_mapmode mm)
447{
448 enum zs_mapmode zs_mm;
449
450 switch (mm) {
451 case ZPOOL_MM_RO:
452 zs_mm = ZS_MM_RO;
453 break;
454 case ZPOOL_MM_WO:
455 zs_mm = ZS_MM_WO;
456 break;
e4a9bc58 457 case ZPOOL_MM_RW:
c795779d
DS
458 default:
459 zs_mm = ZS_MM_RW;
460 break;
461 }
462
463 return zs_map_object(pool, handle, zs_mm);
464}
465static void zs_zpool_unmap(void *pool, unsigned long handle)
466{
467 zs_unmap_object(pool, handle);
468}
469
470static u64 zs_zpool_total_size(void *pool)
471{
722cdc17 472 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
473}
474
475static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
476 .type = "zsmalloc",
477 .owner = THIS_MODULE,
478 .create = zs_zpool_create,
479 .destroy = zs_zpool_destroy,
480 .malloc_support_movable = true,
481 .malloc = zs_zpool_malloc,
482 .free = zs_zpool_free,
9997bc01 483 .shrink = zs_zpool_shrink,
c165f25d
HZ
484 .map = zs_zpool_map,
485 .unmap = zs_zpool_unmap,
486 .total_size = zs_zpool_total_size,
c795779d
DS
487};
488
137f8cff 489MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
490#endif /* CONFIG_ZPOOL */
491
61989a80 492/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
a3726599
MG
493static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
494 .lock = INIT_LOCAL_LOCK(lock),
495};
61989a80 496
3457f414 497static __maybe_unused int is_first_page(struct page *page)
61989a80 498{
a27545bf 499 return PagePrivate(page);
61989a80
NG
500}
501
c0547d0b 502/* Protected by pool->lock */
3783689a 503static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 504{
3783689a 505 return zspage->inuse;
4f42047b
MK
506}
507
4f42047b 508
3783689a 509static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 510{
3783689a 511 zspage->inuse += val;
4f42047b
MK
512}
513
48b4800a 514static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 515{
48b4800a 516 struct page *first_page = zspage->first_page;
3783689a 517
48b4800a
MK
518 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
519 return first_page;
4f42047b
MK
520}
521
671f2fa8 522static inline unsigned int get_first_obj_offset(struct page *page)
4f42047b 523{
ffedd09f 524 return page->page_type;
48b4800a 525}
3783689a 526
671f2fa8 527static inline void set_first_obj_offset(struct page *page, unsigned int offset)
48b4800a 528{
ffedd09f 529 page->page_type = offset;
4f42047b
MK
530}
531
bfd093f5 532static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 533{
bfd093f5 534 return zspage->freeobj;
4f42047b
MK
535}
536
bfd093f5 537static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 538{
bfd093f5 539 zspage->freeobj = obj;
4f42047b
MK
540}
541
3783689a 542static void get_zspage_mapping(struct zspage *zspage,
4c7ac972
SS
543 unsigned int *class_idx,
544 int *fullness)
61989a80 545{
48b4800a
MK
546 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
547
3783689a
MK
548 *fullness = zspage->fullness;
549 *class_idx = zspage->class;
61989a80
NG
550}
551
67f1c9cd 552static struct size_class *zspage_class(struct zs_pool *pool,
4c7ac972 553 struct zspage *zspage)
67f1c9cd
MK
554{
555 return pool->size_class[zspage->class];
556}
557
3783689a 558static void set_zspage_mapping(struct zspage *zspage,
4c7ac972
SS
559 unsigned int class_idx,
560 int fullness)
61989a80 561{
3783689a
MK
562 zspage->class = class_idx;
563 zspage->fullness = fullness;
61989a80
NG
564}
565
c3e3e88a
NC
566/*
567 * zsmalloc divides the pool into various size classes where each
568 * class maintains a list of zspages where each zspage is divided
569 * into equal sized chunks. Each allocation falls into one of these
570 * classes depending on its size. This function returns index of the
cb152a1a 571 * size class which has chunk size big enough to hold the given size.
c3e3e88a 572 */
61989a80
NG
573static int get_size_class_index(int size)
574{
575 int idx = 0;
576
577 if (likely(size > ZS_MIN_ALLOC_SIZE))
578 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
579 ZS_SIZE_CLASS_DELTA);
580
cf8e0fed 581 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
582}
583
3828a764 584static inline void class_stat_inc(struct size_class *class,
3eb95fea 585 int type, unsigned long cnt)
248ca1b0 586{
48b4800a 587 class->stats.objs[type] += cnt;
248ca1b0
MK
588}
589
3828a764 590static inline void class_stat_dec(struct size_class *class,
3eb95fea 591 int type, unsigned long cnt)
248ca1b0 592{
48b4800a 593 class->stats.objs[type] -= cnt;
248ca1b0
MK
594}
595
4c7ac972 596static inline unsigned long zs_stat_get(struct size_class *class, int type)
248ca1b0 597{
48b4800a 598 return class->stats.objs[type];
248ca1b0
MK
599}
600
57244594
SS
601#ifdef CONFIG_ZSMALLOC_STAT
602
4abaac9b 603static void __init zs_stat_init(void)
248ca1b0 604{
4abaac9b
DS
605 if (!debugfs_initialized()) {
606 pr_warn("debugfs not available, stat dir not created\n");
607 return;
608 }
248ca1b0
MK
609
610 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
611}
612
613static void __exit zs_stat_exit(void)
614{
615 debugfs_remove_recursive(zs_stat_root);
616}
617
1120ed54
SS
618static unsigned long zs_can_compact(struct size_class *class);
619
248ca1b0
MK
620static int zs_stats_size_show(struct seq_file *s, void *v)
621{
e1807d5d 622 int i, fg;
248ca1b0
MK
623 struct zs_pool *pool = s->private;
624 struct size_class *class;
625 int objs_per_zspage;
1120ed54 626 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0 627 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 628 unsigned long total_freeable = 0;
e1807d5d 629 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
248ca1b0 630
e1807d5d
SS
631 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
632 "class", "size", "10%", "20%", "30%", "40%",
633 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
248ca1b0 634 "obj_allocated", "obj_used", "pages_used",
1120ed54 635 "pages_per_zspage", "freeable");
248ca1b0 636
cf8e0fed 637 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
4c7ac972 638
248ca1b0
MK
639 class = pool->size_class[i];
640
641 if (class->index != i)
642 continue;
643
c0547d0b 644 spin_lock(&pool->lock);
e1807d5d
SS
645
646 seq_printf(s, " %5u %5u ", i, class->size);
647 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
648 inuse_totals[fg] += zs_stat_get(class, fg);
649 seq_printf(s, "%9lu ", zs_stat_get(class, fg));
650 }
4c7ac972
SS
651
652 obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
653 obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
1120ed54 654 freeable = zs_can_compact(class);
c0547d0b 655 spin_unlock(&pool->lock);
248ca1b0 656
b4fd07a0 657 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
658 pages_used = obj_allocated / objs_per_zspage *
659 class->pages_per_zspage;
660
e1807d5d
SS
661 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
662 obj_allocated, obj_used, pages_used,
663 class->pages_per_zspage, freeable);
248ca1b0 664
248ca1b0
MK
665 total_objs += obj_allocated;
666 total_used_objs += obj_used;
667 total_pages += pages_used;
1120ed54 668 total_freeable += freeable;
248ca1b0
MK
669 }
670
671 seq_puts(s, "\n");
e1807d5d
SS
672 seq_printf(s, " %5s %5s ", "Total", "");
673
674 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
675 seq_printf(s, "%9lu ", inuse_totals[fg]);
676
677 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
678 total_objs, total_used_objs, total_pages, "",
679 total_freeable);
248ca1b0
MK
680
681 return 0;
682}
5ad35093 683DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 684
d34f6157 685static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 686{
4abaac9b
DS
687 if (!zs_stat_root) {
688 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 689 return;
4abaac9b 690 }
248ca1b0 691
4268509a
GKH
692 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
693
694 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
695 &zs_stats_size_fops);
248ca1b0
MK
696}
697
698static void zs_pool_stat_destroy(struct zs_pool *pool)
699{
700 debugfs_remove_recursive(pool->stat_dentry);
701}
702
703#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 704static void __init zs_stat_init(void)
248ca1b0 705{
248ca1b0
MK
706}
707
708static void __exit zs_stat_exit(void)
709{
710}
711
d34f6157 712static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 713{
248ca1b0
MK
714}
715
716static inline void zs_pool_stat_destroy(struct zs_pool *pool)
717{
718}
248ca1b0
MK
719#endif
720
48b4800a 721
c3e3e88a
NC
722/*
723 * For each size class, zspages are divided into different groups
4c7ac972 724 * depending on their usage ratio. This function returns fullness
c3e3e88a
NC
725 * status of the given page.
726 */
4c7ac972 727static int get_fullness_group(struct size_class *class, struct zspage *zspage)
61989a80 728{
4c7ac972 729 int inuse, objs_per_zspage, ratio;
830e4bc5 730
3783689a 731 inuse = get_zspage_inuse(zspage);
1fc6e27d 732 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
733
734 if (inuse == 0)
4c7ac972
SS
735 return ZS_INUSE_RATIO_0;
736 if (inuse == objs_per_zspage)
737 return ZS_INUSE_RATIO_100;
61989a80 738
4c7ac972
SS
739 ratio = 100 * inuse / objs_per_zspage;
740 /*
741 * Take integer division into consideration: a page with one inuse
742 * object out of 127 possible, will end up having 0 usage ratio,
743 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
744 */
745 return ratio / 10 + 1;
61989a80
NG
746}
747
c3e3e88a
NC
748/*
749 * Each size class maintains various freelists and zspages are assigned
750 * to one of these freelists based on the number of live objects they
751 * have. This functions inserts the given zspage into the freelist
752 * identified by <class, fullness_group>.
753 */
251cbb95 754static void insert_zspage(struct size_class *class,
3783689a 755 struct zspage *zspage,
4c7ac972 756 int fullness)
61989a80 757{
3828a764 758 class_stat_inc(class, fullness, 1);
a40a71e8 759 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
760}
761
c3e3e88a
NC
762/*
763 * This function removes the given zspage from the freelist identified
764 * by <class, fullness_group>.
765 */
251cbb95 766static void remove_zspage(struct size_class *class,
3783689a 767 struct zspage *zspage,
4c7ac972 768 int fullness)
61989a80 769{
3783689a 770 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
61989a80 771
3783689a 772 list_del_init(&zspage->list);
3828a764 773 class_stat_dec(class, fullness, 1);
61989a80
NG
774}
775
c3e3e88a
NC
776/*
777 * Each size class maintains zspages in different fullness groups depending
778 * on the number of live objects they contain. When allocating or freeing
4c7ac972
SS
779 * objects, the fullness status of the page can change, for instance, from
780 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
781 * checks if such a status change has occurred for the given page and
782 * accordingly moves the page from the list of the old fullness group to that
783 * of the new fullness group.
c3e3e88a 784 */
4c7ac972 785static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
61989a80
NG
786{
787 int class_idx;
4c7ac972 788 int currfg, newfg;
61989a80 789
3783689a
MK
790 get_zspage_mapping(zspage, &class_idx, &currfg);
791 newfg = get_fullness_group(class, zspage);
61989a80
NG
792 if (newfg == currfg)
793 goto out;
794
c4549b87
MK
795 remove_zspage(class, zspage, currfg);
796 insert_zspage(class, zspage, newfg);
3783689a 797 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
798out:
799 return newfg;
800}
801
3783689a 802static struct zspage *get_zspage(struct page *page)
61989a80 803{
a6c5e0f7 804 struct zspage *zspage = (struct zspage *)page_private(page);
48b4800a
MK
805
806 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
807 return zspage;
61989a80
NG
808}
809
810static struct page *get_next_page(struct page *page)
811{
a41ec880
MK
812 struct zspage *zspage = get_zspage(page);
813
814 if (unlikely(ZsHugePage(zspage)))
48b4800a
MK
815 return NULL;
816
ffedd09f 817 return (struct page *)page->index;
61989a80
NG
818}
819
bfd093f5
MK
820/**
821 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 822 * @obj: the encoded object value
bfd093f5
MK
823 * @page: page object resides in zspage
824 * @obj_idx: object index
67296874 825 */
bfd093f5
MK
826static void obj_to_location(unsigned long obj, struct page **page,
827 unsigned int *obj_idx)
61989a80 828{
bfd093f5
MK
829 obj >>= OBJ_TAG_BITS;
830 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
831 *obj_idx = (obj & OBJ_INDEX_MASK);
832}
61989a80 833
67f1c9cd
MK
834static void obj_to_page(unsigned long obj, struct page **page)
835{
836 obj >>= OBJ_TAG_BITS;
837 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
838}
839
bfd093f5
MK
840/**
841 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
842 * @page: page object resides in zspage
843 * @obj_idx: object index
844 */
845static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
846{
847 unsigned long obj;
61989a80 848
312fcae2 849 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 850 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 851 obj <<= OBJ_TAG_BITS;
61989a80 852
bfd093f5 853 return obj;
61989a80
NG
854}
855
2e40e163
MK
856static unsigned long handle_to_obj(unsigned long handle)
857{
858 return *(unsigned long *)handle;
859}
860
85b32581
NP
861static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
862 int tag)
312fcae2 863{
3ae92ac2 864 unsigned long handle;
a41ec880 865 struct zspage *zspage = get_zspage(page);
3ae92ac2 866
a41ec880 867 if (unlikely(ZsHugePage(zspage))) {
830e4bc5 868 VM_BUG_ON_PAGE(!is_first_page(page), page);
3ae92ac2 869 handle = page->index;
7b60a685 870 } else
3ae92ac2
MK
871 handle = *(unsigned long *)obj;
872
85b32581 873 if (!(handle & tag))
3ae92ac2
MK
874 return false;
875
85b32581
NP
876 /* Clear all tags before returning the handle */
877 *phandle = handle & ~OBJ_TAG_MASK;
3ae92ac2 878 return true;
312fcae2
MK
879}
880
85b32581
NP
881static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
882{
883 return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
884}
885
886#ifdef CONFIG_ZPOOL
887static bool obj_stores_deferred_handle(struct page *page, void *obj,
888 unsigned long *phandle)
889{
890 return obj_tagged(page, obj, phandle, OBJ_DEFERRED_HANDLE_TAG);
891}
892#endif
893
f4477e90
NG
894static void reset_page(struct page *page)
895{
48b4800a 896 __ClearPageMovable(page);
18fd06bf 897 ClearPagePrivate(page);
f4477e90 898 set_page_private(page, 0);
48b4800a 899 page_mapcount_reset(page);
ffedd09f 900 page->index = 0;
48b4800a
MK
901}
902
4d0a5402 903static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
904{
905 struct page *cursor, *fail;
906
907 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
908 get_next_page(cursor)) {
909 if (!trylock_page(cursor)) {
910 fail = cursor;
911 goto unlock;
912 }
913 }
914
915 return 1;
916unlock:
917 for (cursor = get_first_page(zspage); cursor != fail; cursor =
918 get_next_page(cursor))
919 unlock_page(cursor);
920
921 return 0;
f4477e90
NG
922}
923
9997bc01 924#ifdef CONFIG_ZPOOL
85b32581
NP
925static unsigned long find_deferred_handle_obj(struct size_class *class,
926 struct page *page, int *obj_idx);
927
9997bc01
NP
928/*
929 * Free all the deferred handles whose objects are freed in zs_free.
930 */
85b32581
NP
931static void free_handles(struct zs_pool *pool, struct size_class *class,
932 struct zspage *zspage)
9997bc01 933{
85b32581
NP
934 int obj_idx = 0;
935 struct page *page = get_first_page(zspage);
936 unsigned long handle;
9997bc01 937
85b32581
NP
938 while (1) {
939 handle = find_deferred_handle_obj(class, page, &obj_idx);
940 if (!handle) {
941 page = get_next_page(page);
942 if (!page)
943 break;
944 obj_idx = 0;
945 continue;
946 }
9997bc01
NP
947
948 cache_free_handle(pool, handle);
85b32581 949 obj_idx++;
9997bc01
NP
950 }
951}
952#else
85b32581
NP
953static inline void free_handles(struct zs_pool *pool, struct size_class *class,
954 struct zspage *zspage) {}
9997bc01
NP
955#endif
956
48b4800a
MK
957static void __free_zspage(struct zs_pool *pool, struct size_class *class,
958 struct zspage *zspage)
61989a80 959{
3783689a 960 struct page *page, *next;
4c7ac972 961 int fg;
48b4800a
MK
962 unsigned int class_idx;
963
964 get_zspage_mapping(zspage, &class_idx, &fg);
965
c0547d0b 966 assert_spin_locked(&pool->lock);
61989a80 967
3783689a 968 VM_BUG_ON(get_zspage_inuse(zspage));
4c7ac972 969 VM_BUG_ON(fg != ZS_INUSE_RATIO_0);
61989a80 970
9997bc01 971 /* Free all deferred handles from zs_free */
85b32581 972 free_handles(pool, class, zspage);
9997bc01 973
48b4800a 974 next = page = get_first_page(zspage);
3783689a 975 do {
48b4800a
MK
976 VM_BUG_ON_PAGE(!PageLocked(page), page);
977 next = get_next_page(page);
3783689a 978 reset_page(page);
48b4800a 979 unlock_page(page);
91537fee 980 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
981 put_page(page);
982 page = next;
983 } while (page != NULL);
61989a80 984
3783689a 985 cache_free_zspage(pool, zspage);
48b4800a 986
4c7ac972
SS
987 class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
988 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
48b4800a
MK
989}
990
991static void free_zspage(struct zs_pool *pool, struct size_class *class,
992 struct zspage *zspage)
993{
994 VM_BUG_ON(get_zspage_inuse(zspage));
995 VM_BUG_ON(list_empty(&zspage->list));
996
b475d42d
MK
997 /*
998 * Since zs_free couldn't be sleepable, this function cannot call
999 * lock_page. The page locks trylock_zspage got will be released
1000 * by __free_zspage.
1001 */
48b4800a
MK
1002 if (!trylock_zspage(zspage)) {
1003 kick_deferred_free(pool);
1004 return;
1005 }
1006
4c7ac972 1007 remove_zspage(class, zspage, ZS_INUSE_RATIO_0);
64f768c6
NP
1008#ifdef CONFIG_ZPOOL
1009 list_del(&zspage->lru);
1010#endif
48b4800a 1011 __free_zspage(pool, class, zspage);
61989a80
NG
1012}
1013
1014/* Initialize a newly allocated zspage */
3783689a 1015static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 1016{
bfd093f5 1017 unsigned int freeobj = 1;
61989a80 1018 unsigned long off = 0;
48b4800a 1019 struct page *page = get_first_page(zspage);
830e4bc5 1020
61989a80
NG
1021 while (page) {
1022 struct page *next_page;
1023 struct link_free *link;
af4ee5e9 1024 void *vaddr;
61989a80 1025
3783689a 1026 set_first_obj_offset(page, off);
61989a80 1027
af4ee5e9
MK
1028 vaddr = kmap_atomic(page);
1029 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1030
1031 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1032 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1033 link += class->size / sizeof(*link);
61989a80
NG
1034 }
1035
1036 /*
1037 * We now come to the last (full or partial) object on this
1038 * page, which must point to the first object on the next
1039 * page (if present)
1040 */
1041 next_page = get_next_page(page);
bfd093f5 1042 if (next_page) {
3b1d9ca6 1043 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1044 } else {
1045 /*
3b1d9ca6 1046 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1047 * whether it's allocated object or not.
1048 */
01a6ad9a 1049 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1050 }
af4ee5e9 1051 kunmap_atomic(vaddr);
61989a80 1052 page = next_page;
5538c562 1053 off %= PAGE_SIZE;
61989a80 1054 }
bdb0af7c 1055
64f768c6
NP
1056#ifdef CONFIG_ZPOOL
1057 INIT_LIST_HEAD(&zspage->lru);
9997bc01 1058 zspage->under_reclaim = false;
64f768c6
NP
1059#endif
1060
bfd093f5 1061 set_freeobj(zspage, 0);
61989a80
NG
1062}
1063
48b4800a
MK
1064static void create_page_chain(struct size_class *class, struct zspage *zspage,
1065 struct page *pages[])
61989a80 1066{
bdb0af7c
MK
1067 int i;
1068 struct page *page;
1069 struct page *prev_page = NULL;
48b4800a 1070 int nr_pages = class->pages_per_zspage;
61989a80
NG
1071
1072 /*
1073 * Allocate individual pages and link them together as:
ffedd09f 1074 * 1. all pages are linked together using page->index
3783689a 1075 * 2. each sub-page point to zspage using page->private
61989a80 1076 *
3783689a 1077 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1078 * has this flag set).
61989a80 1079 */
bdb0af7c
MK
1080 for (i = 0; i < nr_pages; i++) {
1081 page = pages[i];
3783689a 1082 set_page_private(page, (unsigned long)zspage);
ffedd09f 1083 page->index = 0;
bdb0af7c 1084 if (i == 0) {
3783689a 1085 zspage->first_page = page;
a27545bf 1086 SetPagePrivate(page);
48b4800a
MK
1087 if (unlikely(class->objs_per_zspage == 1 &&
1088 class->pages_per_zspage == 1))
a41ec880 1089 SetZsHugePage(zspage);
3783689a 1090 } else {
ffedd09f 1091 prev_page->index = (unsigned long)page;
61989a80 1092 }
61989a80
NG
1093 prev_page = page;
1094 }
bdb0af7c 1095}
61989a80 1096
bdb0af7c
MK
1097/*
1098 * Allocate a zspage for the given size class
1099 */
3783689a
MK
1100static struct zspage *alloc_zspage(struct zs_pool *pool,
1101 struct size_class *class,
1102 gfp_t gfp)
bdb0af7c
MK
1103{
1104 int i;
bdb0af7c 1105 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1106 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1107
1108 if (!zspage)
1109 return NULL;
1110
48b4800a
MK
1111 zspage->magic = ZSPAGE_MAGIC;
1112 migrate_lock_init(zspage);
61989a80 1113
bdb0af7c
MK
1114 for (i = 0; i < class->pages_per_zspage; i++) {
1115 struct page *page;
61989a80 1116
3783689a 1117 page = alloc_page(gfp);
bdb0af7c 1118 if (!page) {
91537fee
MK
1119 while (--i >= 0) {
1120 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1121 __free_page(pages[i]);
91537fee 1122 }
3783689a 1123 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1124 return NULL;
1125 }
91537fee
MK
1126
1127 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1128 pages[i] = page;
61989a80
NG
1129 }
1130
48b4800a 1131 create_page_chain(class, zspage, pages);
3783689a 1132 init_zspage(class, zspage);
68f2736a 1133 zspage->pool = pool;
bdb0af7c 1134
3783689a 1135 return zspage;
61989a80
NG
1136}
1137
3783689a 1138static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1139{
1140 int i;
3783689a 1141 struct zspage *zspage;
61989a80 1142
4c7ac972 1143 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
3783689a 1144 zspage = list_first_entry_or_null(&class->fullness_list[i],
4c7ac972 1145 struct zspage, list);
3783689a 1146 if (zspage)
61989a80
NG
1147 break;
1148 }
1149
3783689a 1150 return zspage;
61989a80
NG
1151}
1152
f553646a
SJ
1153static inline int __zs_cpu_up(struct mapping_area *area)
1154{
1155 /*
1156 * Make sure we don't leak memory if a cpu UP notification
1157 * and zs_init() race and both call zs_cpu_up() on the same cpu
1158 */
1159 if (area->vm_buf)
1160 return 0;
40f9fb8c 1161 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1162 if (!area->vm_buf)
1163 return -ENOMEM;
1164 return 0;
1165}
1166
1167static inline void __zs_cpu_down(struct mapping_area *area)
1168{
40f9fb8c 1169 kfree(area->vm_buf);
f553646a
SJ
1170 area->vm_buf = NULL;
1171}
1172
1173static void *__zs_map_object(struct mapping_area *area,
1174 struct page *pages[2], int off, int size)
5f601902 1175{
5f601902
SJ
1176 int sizes[2];
1177 void *addr;
f553646a 1178 char *buf = area->vm_buf;
5f601902 1179
f553646a
SJ
1180 /* disable page faults to match kmap_atomic() return conditions */
1181 pagefault_disable();
1182
1183 /* no read fastpath */
1184 if (area->vm_mm == ZS_MM_WO)
1185 goto out;
5f601902
SJ
1186
1187 sizes[0] = PAGE_SIZE - off;
1188 sizes[1] = size - sizes[0];
1189
5f601902
SJ
1190 /* copy object to per-cpu buffer */
1191 addr = kmap_atomic(pages[0]);
1192 memcpy(buf, addr + off, sizes[0]);
1193 kunmap_atomic(addr);
1194 addr = kmap_atomic(pages[1]);
1195 memcpy(buf + sizes[0], addr, sizes[1]);
1196 kunmap_atomic(addr);
f553646a
SJ
1197out:
1198 return area->vm_buf;
5f601902
SJ
1199}
1200
f553646a
SJ
1201static void __zs_unmap_object(struct mapping_area *area,
1202 struct page *pages[2], int off, int size)
5f601902 1203{
5f601902
SJ
1204 int sizes[2];
1205 void *addr;
2e40e163 1206 char *buf;
5f601902 1207
f553646a
SJ
1208 /* no write fastpath */
1209 if (area->vm_mm == ZS_MM_RO)
1210 goto out;
5f601902 1211
7b60a685 1212 buf = area->vm_buf;
a82cbf07
YX
1213 buf = buf + ZS_HANDLE_SIZE;
1214 size -= ZS_HANDLE_SIZE;
1215 off += ZS_HANDLE_SIZE;
2e40e163 1216
5f601902
SJ
1217 sizes[0] = PAGE_SIZE - off;
1218 sizes[1] = size - sizes[0];
1219
1220 /* copy per-cpu buffer to object */
1221 addr = kmap_atomic(pages[0]);
1222 memcpy(addr + off, buf, sizes[0]);
1223 kunmap_atomic(addr);
1224 addr = kmap_atomic(pages[1]);
1225 memcpy(addr, buf + sizes[0], sizes[1]);
1226 kunmap_atomic(addr);
f553646a
SJ
1227
1228out:
1229 /* enable page faults to match kunmap_atomic() return conditions */
1230 pagefault_enable();
5f601902 1231}
61989a80 1232
215c89d0 1233static int zs_cpu_prepare(unsigned int cpu)
61989a80 1234{
61989a80
NG
1235 struct mapping_area *area;
1236
215c89d0
SAS
1237 area = &per_cpu(zs_map_area, cpu);
1238 return __zs_cpu_up(area);
61989a80
NG
1239}
1240
215c89d0 1241static int zs_cpu_dead(unsigned int cpu)
61989a80 1242{
215c89d0 1243 struct mapping_area *area;
40f9fb8c 1244
215c89d0
SAS
1245 area = &per_cpu(zs_map_area, cpu);
1246 __zs_cpu_down(area);
1247 return 0;
b1b00a5b
SS
1248}
1249
64d90465
GM
1250static bool can_merge(struct size_class *prev, int pages_per_zspage,
1251 int objs_per_zspage)
9eec4cd5 1252{
64d90465
GM
1253 if (prev->pages_per_zspage == pages_per_zspage &&
1254 prev->objs_per_zspage == objs_per_zspage)
1255 return true;
9eec4cd5 1256
64d90465 1257 return false;
9eec4cd5
JK
1258}
1259
3783689a 1260static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1261{
3783689a 1262 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2 1263}
7c2af309
AR
1264
1265/**
1266 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1267 * that hold objects of the provided size.
1268 * @pool: zsmalloc pool to use
1269 * @size: object size
1270 *
1271 * Context: Any context.
1272 *
1273 * Return: the index of the zsmalloc &size_class that hold objects of the
1274 * provided size.
1275 */
1276unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1277{
1278 struct size_class *class;
1279
1280 class = pool->size_class[get_size_class_index(size)];
1281
1282 return class->index;
1283}
1284EXPORT_SYMBOL_GPL(zs_lookup_class_index);
312fcae2 1285
66cdef66
GM
1286unsigned long zs_get_total_pages(struct zs_pool *pool)
1287{
1288 return atomic_long_read(&pool->pages_allocated);
1289}
1290EXPORT_SYMBOL_GPL(zs_get_total_pages);
1291
4bbc0bc0 1292/**
66cdef66
GM
1293 * zs_map_object - get address of allocated object from handle.
1294 * @pool: pool from which the object was allocated
1295 * @handle: handle returned from zs_malloc
f0953a1b 1296 * @mm: mapping mode to use
4bbc0bc0 1297 *
66cdef66
GM
1298 * Before using an object allocated from zs_malloc, it must be mapped using
1299 * this function. When done with the object, it must be unmapped using
1300 * zs_unmap_object.
4bbc0bc0 1301 *
66cdef66
GM
1302 * Only one object can be mapped per cpu at a time. There is no protection
1303 * against nested mappings.
1304 *
1305 * This function returns with preemption and page faults disabled.
4bbc0bc0 1306 */
66cdef66
GM
1307void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1308 enum zs_mapmode mm)
61989a80 1309{
3783689a 1310 struct zspage *zspage;
66cdef66 1311 struct page *page;
bfd093f5
MK
1312 unsigned long obj, off;
1313 unsigned int obj_idx;
61989a80 1314
66cdef66
GM
1315 struct size_class *class;
1316 struct mapping_area *area;
1317 struct page *pages[2];
2e40e163 1318 void *ret;
61989a80 1319
9eec4cd5 1320 /*
66cdef66
GM
1321 * Because we use per-cpu mapping areas shared among the
1322 * pools/users, we can't allow mapping in interrupt context
1323 * because it can corrupt another users mappings.
9eec4cd5 1324 */
1aedcafb 1325 BUG_ON(in_interrupt());
61989a80 1326
b475d42d 1327 /* It guarantees it can get zspage from handle safely */
c0547d0b 1328 spin_lock(&pool->lock);
2e40e163
MK
1329 obj = handle_to_obj(handle);
1330 obj_to_location(obj, &page, &obj_idx);
3783689a 1331 zspage = get_zspage(page);
48b4800a 1332
64f768c6
NP
1333#ifdef CONFIG_ZPOOL
1334 /*
1335 * Move the zspage to front of pool's LRU.
1336 *
1337 * Note that this is swap-specific, so by definition there are no ongoing
1338 * accesses to the memory while the page is swapped out that would make
1339 * it "hot". A new entry is hot, then ages to the tail until it gets either
1340 * written back or swaps back in.
1341 *
1342 * Furthermore, map is also called during writeback. We must not put an
1343 * isolated page on the LRU mid-reclaim.
1344 *
1345 * As a result, only update the LRU when the page is mapped for write
1346 * when it's first instantiated.
1347 *
1348 * This is a deviation from the other backends, which perform this update
1349 * in the allocation function (zbud_alloc, z3fold_alloc).
1350 */
1351 if (mm == ZS_MM_WO) {
1352 if (!list_empty(&zspage->lru))
1353 list_del(&zspage->lru);
1354 list_add(&zspage->lru, &pool->lru);
1355 }
1356#endif
1357
b475d42d 1358 /*
c0547d0b 1359 * migration cannot move any zpages in this zspage. Here, pool->lock
b475d42d
MK
1360 * is too heavy since callers would take some time until they calls
1361 * zs_unmap_object API so delegate the locking from class to zspage
1362 * which is smaller granularity.
1363 */
48b4800a 1364 migrate_read_lock(zspage);
c0547d0b 1365 spin_unlock(&pool->lock);
48b4800a 1366
67f1c9cd 1367 class = zspage_class(pool, zspage);
bfd093f5 1368 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1369
a3726599
MG
1370 local_lock(&zs_map_area.lock);
1371 area = this_cpu_ptr(&zs_map_area);
66cdef66
GM
1372 area->vm_mm = mm;
1373 if (off + class->size <= PAGE_SIZE) {
1374 /* this object is contained entirely within a page */
1375 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1376 ret = area->vm_addr + off;
1377 goto out;
61989a80
NG
1378 }
1379
66cdef66
GM
1380 /* this object spans two pages */
1381 pages[0] = page;
1382 pages[1] = get_next_page(page);
1383 BUG_ON(!pages[1]);
9eec4cd5 1384
2e40e163
MK
1385 ret = __zs_map_object(area, pages, off, class->size);
1386out:
a41ec880 1387 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1388 ret += ZS_HANDLE_SIZE;
1389
1390 return ret;
61989a80 1391}
66cdef66 1392EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1393
66cdef66 1394void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1395{
3783689a 1396 struct zspage *zspage;
66cdef66 1397 struct page *page;
bfd093f5
MK
1398 unsigned long obj, off;
1399 unsigned int obj_idx;
61989a80 1400
66cdef66
GM
1401 struct size_class *class;
1402 struct mapping_area *area;
9eec4cd5 1403
2e40e163
MK
1404 obj = handle_to_obj(handle);
1405 obj_to_location(obj, &page, &obj_idx);
3783689a 1406 zspage = get_zspage(page);
67f1c9cd 1407 class = zspage_class(pool, zspage);
bfd093f5 1408 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1409
66cdef66
GM
1410 area = this_cpu_ptr(&zs_map_area);
1411 if (off + class->size <= PAGE_SIZE)
1412 kunmap_atomic(area->vm_addr);
1413 else {
1414 struct page *pages[2];
40f9fb8c 1415
66cdef66
GM
1416 pages[0] = page;
1417 pages[1] = get_next_page(page);
1418 BUG_ON(!pages[1]);
1419
1420 __zs_unmap_object(area, pages, off, class->size);
1421 }
a3726599 1422 local_unlock(&zs_map_area.lock);
48b4800a
MK
1423
1424 migrate_read_unlock(zspage);
61989a80 1425}
66cdef66 1426EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1427
010b495e
SS
1428/**
1429 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1430 * zsmalloc &size_class.
1431 * @pool: zsmalloc pool to use
1432 *
1433 * The function returns the size of the first huge class - any object of equal
1434 * or bigger size will be stored in zspage consisting of a single physical
1435 * page.
1436 *
1437 * Context: Any context.
1438 *
1439 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1440 */
1441size_t zs_huge_class_size(struct zs_pool *pool)
1442{
1443 return huge_class_size;
1444}
1445EXPORT_SYMBOL_GPL(zs_huge_class_size);
1446
0a5f079b 1447static unsigned long obj_malloc(struct zs_pool *pool,
3783689a 1448 struct zspage *zspage, unsigned long handle)
c7806261 1449{
bfd093f5 1450 int i, nr_page, offset;
c7806261
MK
1451 unsigned long obj;
1452 struct link_free *link;
0a5f079b 1453 struct size_class *class;
c7806261
MK
1454
1455 struct page *m_page;
bfd093f5 1456 unsigned long m_offset;
c7806261
MK
1457 void *vaddr;
1458
0a5f079b 1459 class = pool->size_class[zspage->class];
312fcae2 1460 handle |= OBJ_ALLOCATED_TAG;
3783689a 1461 obj = get_freeobj(zspage);
bfd093f5
MK
1462
1463 offset = obj * class->size;
1464 nr_page = offset >> PAGE_SHIFT;
1465 m_offset = offset & ~PAGE_MASK;
1466 m_page = get_first_page(zspage);
1467
1468 for (i = 0; i < nr_page; i++)
1469 m_page = get_next_page(m_page);
c7806261
MK
1470
1471 vaddr = kmap_atomic(m_page);
1472 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1473 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
a41ec880 1474 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1475 /* record handle in the header of allocated chunk */
1476 link->handle = handle;
1477 else
3783689a
MK
1478 /* record handle to page->index */
1479 zspage->first_page->index = handle;
1480
c7806261 1481 kunmap_atomic(vaddr);
3783689a 1482 mod_zspage_inuse(zspage, 1);
c7806261 1483
bfd093f5
MK
1484 obj = location_to_obj(m_page, obj);
1485
c7806261
MK
1486 return obj;
1487}
1488
1489
61989a80
NG
1490/**
1491 * zs_malloc - Allocate block of given size from pool.
1492 * @pool: pool to allocate from
1493 * @size: size of block to allocate
fd854463 1494 * @gfp: gfp flags when allocating object
61989a80 1495 *
00a61d86 1496 * On success, handle to the allocated object is returned,
c7e6f17b 1497 * otherwise an ERR_PTR().
61989a80
NG
1498 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1499 */
d0d8da2d 1500unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1501{
2e40e163 1502 unsigned long handle, obj;
61989a80 1503 struct size_class *class;
4c7ac972 1504 int newfg;
3783689a 1505 struct zspage *zspage;
61989a80 1506
7b60a685 1507 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
c7e6f17b 1508 return (unsigned long)ERR_PTR(-EINVAL);
2e40e163 1509
3783689a 1510 handle = cache_alloc_handle(pool, gfp);
2e40e163 1511 if (!handle)
c7e6f17b 1512 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80 1513
2e40e163
MK
1514 /* extra space in chunk to keep the handle */
1515 size += ZS_HANDLE_SIZE;
9eec4cd5 1516 class = pool->size_class[get_size_class_index(size)];
61989a80 1517
c0547d0b
NP
1518 /* pool->lock effectively protects the zpage migration */
1519 spin_lock(&pool->lock);
3783689a 1520 zspage = find_get_zspage(class);
48b4800a 1521 if (likely(zspage)) {
0a5f079b 1522 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1523 /* Now move the zspage to another fullness group, if required */
1524 fix_fullness_group(class, zspage);
1525 record_obj(handle, obj);
4c7ac972 1526 class_stat_inc(class, ZS_OBJS_INUSE, 1);
c0547d0b 1527 spin_unlock(&pool->lock);
61989a80 1528
48b4800a
MK
1529 return handle;
1530 }
0f050d99 1531
c0547d0b 1532 spin_unlock(&pool->lock);
48b4800a
MK
1533
1534 zspage = alloc_zspage(pool, class, gfp);
1535 if (!zspage) {
1536 cache_free_handle(pool, handle);
c7e6f17b 1537 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80
NG
1538 }
1539
c0547d0b 1540 spin_lock(&pool->lock);
0a5f079b 1541 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1542 newfg = get_fullness_group(class, zspage);
1543 insert_zspage(class, zspage, newfg);
1544 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1545 record_obj(handle, obj);
4c7ac972
SS
1546 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1547 class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1548 class_stat_inc(class, ZS_OBJS_INUSE, 1);
48b4800a
MK
1549
1550 /* We completely set up zspage so mark them as movable */
1551 SetZsPageMovable(pool, zspage);
c0547d0b 1552 spin_unlock(&pool->lock);
61989a80 1553
2e40e163 1554 return handle;
61989a80
NG
1555}
1556EXPORT_SYMBOL_GPL(zs_malloc);
1557
85b32581 1558static void obj_free(int class_size, unsigned long obj, unsigned long *handle)
61989a80
NG
1559{
1560 struct link_free *link;
3783689a
MK
1561 struct zspage *zspage;
1562 struct page *f_page;
bfd093f5
MK
1563 unsigned long f_offset;
1564 unsigned int f_objidx;
af4ee5e9 1565 void *vaddr;
61989a80 1566
2e40e163 1567 obj_to_location(obj, &f_page, &f_objidx);
0a5f079b 1568 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
3783689a 1569 zspage = get_zspage(f_page);
61989a80 1570
c7806261 1571 vaddr = kmap_atomic(f_page);
af4ee5e9 1572 link = (struct link_free *)(vaddr + f_offset);
85b32581
NP
1573
1574 if (handle) {
1575#ifdef CONFIG_ZPOOL
1576 /* Stores the (deferred) handle in the object's header */
1577 *handle |= OBJ_DEFERRED_HANDLE_TAG;
1578 *handle &= ~OBJ_ALLOCATED_TAG;
1579
1580 if (likely(!ZsHugePage(zspage)))
1581 link->deferred_handle = *handle;
1582 else
1583 f_page->index = *handle;
1584#endif
1585 } else {
1586 /* Insert this object in containing zspage's freelist */
1587 if (likely(!ZsHugePage(zspage)))
1588 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1589 else
1590 f_page->index = 0;
1591 set_freeobj(zspage, f_objidx);
1592 }
1593
af4ee5e9 1594 kunmap_atomic(vaddr);
3783689a 1595 mod_zspage_inuse(zspage, -1);
c7806261
MK
1596}
1597
1598void zs_free(struct zs_pool *pool, unsigned long handle)
1599{
3783689a
MK
1600 struct zspage *zspage;
1601 struct page *f_page;
bfd093f5 1602 unsigned long obj;
c7806261 1603 struct size_class *class;
4c7ac972 1604 int fullness;
c7806261 1605
a5d21721 1606 if (IS_ERR_OR_NULL((void *)handle))
c7806261
MK
1607 return;
1608
b475d42d 1609 /*
c0547d0b 1610 * The pool->lock protects the race with zpage's migration
b475d42d
MK
1611 * so it's safe to get the page from handle.
1612 */
c0547d0b 1613 spin_lock(&pool->lock);
c7806261 1614 obj = handle_to_obj(handle);
67f1c9cd 1615 obj_to_page(obj, &f_page);
3783689a 1616 zspage = get_zspage(f_page);
67f1c9cd 1617 class = zspage_class(pool, zspage);
b475d42d 1618
4c7ac972 1619 class_stat_dec(class, ZS_OBJS_INUSE, 1);
9997bc01
NP
1620
1621#ifdef CONFIG_ZPOOL
1622 if (zspage->under_reclaim) {
1623 /*
1624 * Reclaim needs the handles during writeback. It'll free
1625 * them along with the zspage when it's done with them.
1626 *
85b32581 1627 * Record current deferred handle in the object's header.
9997bc01 1628 */
85b32581 1629 obj_free(class->size, obj, &handle);
9997bc01
NP
1630 spin_unlock(&pool->lock);
1631 return;
1632 }
1633#endif
85b32581
NP
1634 obj_free(class->size, obj, NULL);
1635
3783689a 1636 fullness = fix_fullness_group(class, zspage);
4c7ac972 1637 if (fullness == ZS_INUSE_RATIO_0)
9997bc01 1638 free_zspage(pool, class, zspage);
48b4800a 1639
c0547d0b 1640 spin_unlock(&pool->lock);
3783689a 1641 cache_free_handle(pool, handle);
312fcae2
MK
1642}
1643EXPORT_SYMBOL_GPL(zs_free);
1644
251cbb95
MK
1645static void zs_object_copy(struct size_class *class, unsigned long dst,
1646 unsigned long src)
312fcae2
MK
1647{
1648 struct page *s_page, *d_page;
bfd093f5 1649 unsigned int s_objidx, d_objidx;
312fcae2
MK
1650 unsigned long s_off, d_off;
1651 void *s_addr, *d_addr;
1652 int s_size, d_size, size;
1653 int written = 0;
1654
1655 s_size = d_size = class->size;
1656
1657 obj_to_location(src, &s_page, &s_objidx);
1658 obj_to_location(dst, &d_page, &d_objidx);
1659
bfd093f5
MK
1660 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1661 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1662
1663 if (s_off + class->size > PAGE_SIZE)
1664 s_size = PAGE_SIZE - s_off;
1665
1666 if (d_off + class->size > PAGE_SIZE)
1667 d_size = PAGE_SIZE - d_off;
1668
1669 s_addr = kmap_atomic(s_page);
1670 d_addr = kmap_atomic(d_page);
1671
1672 while (1) {
1673 size = min(s_size, d_size);
1674 memcpy(d_addr + d_off, s_addr + s_off, size);
1675 written += size;
1676
1677 if (written == class->size)
1678 break;
1679
495819ea
SS
1680 s_off += size;
1681 s_size -= size;
1682 d_off += size;
1683 d_size -= size;
1684
050a388b
AR
1685 /*
1686 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1687 * calls must occurs in reverse order of calls to kmap_atomic().
1688 * So, to call kunmap_atomic(s_addr) we should first call
46e87152
AR
1689 * kunmap_atomic(d_addr). For more details see
1690 * Documentation/mm/highmem.rst.
050a388b 1691 */
495819ea 1692 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1693 kunmap_atomic(d_addr);
1694 kunmap_atomic(s_addr);
1695 s_page = get_next_page(s_page);
312fcae2
MK
1696 s_addr = kmap_atomic(s_page);
1697 d_addr = kmap_atomic(d_page);
1698 s_size = class->size - written;
1699 s_off = 0;
312fcae2
MK
1700 }
1701
495819ea 1702 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1703 kunmap_atomic(d_addr);
1704 d_page = get_next_page(d_page);
312fcae2
MK
1705 d_addr = kmap_atomic(d_page);
1706 d_size = class->size - written;
1707 d_off = 0;
312fcae2
MK
1708 }
1709 }
1710
1711 kunmap_atomic(d_addr);
1712 kunmap_atomic(s_addr);
1713}
1714
1715/*
85b32581 1716 * Find object with a certain tag in zspage from index object and
312fcae2
MK
1717 * return handle.
1718 */
85b32581
NP
1719static unsigned long find_tagged_obj(struct size_class *class,
1720 struct page *page, int *obj_idx, int tag)
312fcae2 1721{
671f2fa8 1722 unsigned int offset;
cf675acb 1723 int index = *obj_idx;
312fcae2
MK
1724 unsigned long handle = 0;
1725 void *addr = kmap_atomic(page);
1726
3783689a 1727 offset = get_first_obj_offset(page);
312fcae2
MK
1728 offset += class->size * index;
1729
1730 while (offset < PAGE_SIZE) {
85b32581 1731 if (obj_tagged(page, addr + offset, &handle, tag))
b475d42d 1732 break;
312fcae2
MK
1733
1734 offset += class->size;
1735 index++;
1736 }
1737
1738 kunmap_atomic(addr);
cf675acb
GM
1739
1740 *obj_idx = index;
1741
312fcae2
MK
1742 return handle;
1743}
1744
85b32581
NP
1745/*
1746 * Find alloced object in zspage from index object and
1747 * return handle.
1748 */
1749static unsigned long find_alloced_obj(struct size_class *class,
1750 struct page *page, int *obj_idx)
1751{
1752 return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1753}
1754
1755#ifdef CONFIG_ZPOOL
1756/*
1757 * Find object storing a deferred handle in header in zspage from index object
1758 * and return handle.
1759 */
1760static unsigned long find_deferred_handle_obj(struct size_class *class,
1761 struct page *page, int *obj_idx)
1762{
1763 return find_tagged_obj(class, page, obj_idx, OBJ_DEFERRED_HANDLE_TAG);
1764}
1765#endif
1766
312fcae2 1767struct zs_compact_control {
3783689a 1768 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1769 struct page *s_page;
1770 /* Destination page for migration which should be a first page
1771 * of zspage. */
1772 struct page *d_page;
1773 /* Starting object index within @s_page which used for live object
1774 * in the subpage. */
41b88e14 1775 int obj_idx;
312fcae2
MK
1776};
1777
5a845e9f
SS
1778static void migrate_zspage(struct zs_pool *pool, struct size_class *class,
1779 struct zs_compact_control *cc)
312fcae2
MK
1780{
1781 unsigned long used_obj, free_obj;
1782 unsigned long handle;
1783 struct page *s_page = cc->s_page;
1784 struct page *d_page = cc->d_page;
41b88e14 1785 int obj_idx = cc->obj_idx;
312fcae2
MK
1786
1787 while (1) {
cf675acb 1788 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1789 if (!handle) {
1790 s_page = get_next_page(s_page);
1791 if (!s_page)
1792 break;
41b88e14 1793 obj_idx = 0;
312fcae2
MK
1794 continue;
1795 }
1796
1797 /* Stop if there is no more space */
5a845e9f 1798 if (zspage_full(class, get_zspage(d_page)))
312fcae2 1799 break;
312fcae2
MK
1800
1801 used_obj = handle_to_obj(handle);
0a5f079b 1802 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
251cbb95 1803 zs_object_copy(class, free_obj, used_obj);
41b88e14 1804 obj_idx++;
312fcae2 1805 record_obj(handle, free_obj);
85b32581 1806 obj_free(class->size, used_obj, NULL);
312fcae2
MK
1807 }
1808
1809 /* Remember last position in this iteration */
1810 cc->s_page = s_page;
41b88e14 1811 cc->obj_idx = obj_idx;
312fcae2
MK
1812}
1813
4c7ac972 1814static struct zspage *isolate_src_zspage(struct size_class *class)
312fcae2 1815{
3783689a 1816 struct zspage *zspage;
4c7ac972 1817 int fg;
312fcae2 1818
4c7ac972
SS
1819 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1820 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1821 struct zspage, list);
1822 if (zspage) {
1823 remove_zspage(class, zspage, fg);
1824 return zspage;
1825 }
3783689a
MK
1826 }
1827
4c7ac972
SS
1828 return zspage;
1829}
1830
1831static struct zspage *isolate_dst_zspage(struct size_class *class)
1832{
1833 struct zspage *zspage;
1834 int fg;
1835
1836 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1837 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1838 struct zspage, list);
3783689a 1839 if (zspage) {
4c7ac972 1840 remove_zspage(class, zspage, fg);
3783689a 1841 return zspage;
312fcae2
MK
1842 }
1843 }
1844
3783689a 1845 return zspage;
312fcae2
MK
1846}
1847
860c707d 1848/*
3783689a 1849 * putback_zspage - add @zspage into right class's fullness list
860c707d 1850 * @class: destination class
3783689a 1851 * @zspage: target page
860c707d 1852 *
4c7ac972 1853 * Return @zspage's fullness status
860c707d 1854 */
4c7ac972 1855static int putback_zspage(struct size_class *class, struct zspage *zspage)
312fcae2 1856{
4c7ac972 1857 int fullness;
312fcae2 1858
3783689a
MK
1859 fullness = get_fullness_group(class, zspage);
1860 insert_zspage(class, zspage, fullness);
1861 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1862
860c707d 1863 return fullness;
61989a80 1864}
312fcae2 1865
9997bc01 1866#if defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION)
4d0a5402
CIK
1867/*
1868 * To prevent zspage destroy during migration, zspage freeing should
1869 * hold locks of all pages in the zspage.
1870 */
1871static void lock_zspage(struct zspage *zspage)
1872{
2505a981 1873 struct page *curr_page, *page;
4d0a5402 1874
2505a981
SA
1875 /*
1876 * Pages we haven't locked yet can be migrated off the list while we're
1877 * trying to lock them, so we need to be careful and only attempt to
1878 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1879 * may no longer belong to the zspage. This means that we may wait for
1880 * the wrong page to unlock, so we must take a reference to the page
1881 * prior to waiting for it to unlock outside migrate_read_lock().
1882 */
1883 while (1) {
1884 migrate_read_lock(zspage);
1885 page = get_first_page(zspage);
1886 if (trylock_page(page))
1887 break;
1888 get_page(page);
1889 migrate_read_unlock(zspage);
1890 wait_on_page_locked(page);
1891 put_page(page);
1892 }
1893
1894 curr_page = page;
1895 while ((page = get_next_page(curr_page))) {
1896 if (trylock_page(page)) {
1897 curr_page = page;
1898 } else {
1899 get_page(page);
1900 migrate_read_unlock(zspage);
1901 wait_on_page_locked(page);
1902 put_page(page);
1903 migrate_read_lock(zspage);
1904 }
1905 }
1906 migrate_read_unlock(zspage);
4d0a5402 1907}
9997bc01
NP
1908#endif /* defined(CONFIG_ZPOOL) || defined(CONFIG_COMPACTION) */
1909
1910#ifdef CONFIG_ZPOOL
1911/*
1912 * Unlocks all the pages of the zspage.
1913 *
1914 * pool->lock must be held before this function is called
1915 * to prevent the underlying pages from migrating.
1916 */
1917static void unlock_zspage(struct zspage *zspage)
1918{
1919 struct page *page = get_first_page(zspage);
1920
1921 do {
1922 unlock_page(page);
1923 } while ((page = get_next_page(page)) != NULL);
1924}
1925#endif /* CONFIG_ZPOOL */
4d0a5402 1926
48b4800a
MK
1927static void migrate_lock_init(struct zspage *zspage)
1928{
1929 rwlock_init(&zspage->lock);
1930}
1931
cfc451cf 1932static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1933{
1934 read_lock(&zspage->lock);
1935}
1936
8a374ccc 1937static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1938{
1939 read_unlock(&zspage->lock);
1940}
1941
9997bc01 1942#ifdef CONFIG_COMPACTION
48b4800a
MK
1943static void migrate_write_lock(struct zspage *zspage)
1944{
1945 write_lock(&zspage->lock);
1946}
1947
b475d42d
MK
1948static void migrate_write_lock_nested(struct zspage *zspage)
1949{
1950 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1951}
1952
48b4800a
MK
1953static void migrate_write_unlock(struct zspage *zspage)
1954{
1955 write_unlock(&zspage->lock);
1956}
1957
1958/* Number of isolated subpage for *page migration* in this zspage */
1959static void inc_zspage_isolation(struct zspage *zspage)
1960{
1961 zspage->isolated++;
1962}
1963
1964static void dec_zspage_isolation(struct zspage *zspage)
1965{
c4549b87 1966 VM_BUG_ON(zspage->isolated == 0);
48b4800a
MK
1967 zspage->isolated--;
1968}
1969
68f2736a
MWO
1970static const struct movable_operations zsmalloc_mops;
1971
48b4800a
MK
1972static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1973 struct page *newpage, struct page *oldpage)
1974{
1975 struct page *page;
1976 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1977 int idx = 0;
1978
1979 page = get_first_page(zspage);
1980 do {
1981 if (page == oldpage)
1982 pages[idx] = newpage;
1983 else
1984 pages[idx] = page;
1985 idx++;
1986 } while ((page = get_next_page(page)) != NULL);
1987
1988 create_page_chain(class, zspage, pages);
1989 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
a41ec880 1990 if (unlikely(ZsHugePage(zspage)))
48b4800a 1991 newpage->index = oldpage->index;
68f2736a 1992 __SetPageMovable(newpage, &zsmalloc_mops);
48b4800a
MK
1993}
1994
4d0a5402 1995static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a 1996{
48b4800a 1997 struct zspage *zspage;
48b4800a
MK
1998
1999 /*
2000 * Page is locked so zspage couldn't be destroyed. For detail, look at
2001 * lock_zspage in free_zspage.
2002 */
48b4800a
MK
2003 VM_BUG_ON_PAGE(PageIsolated(page), page);
2004
2005 zspage = get_zspage(page);
c4549b87 2006 migrate_write_lock(zspage);
48b4800a 2007 inc_zspage_isolation(zspage);
c4549b87 2008 migrate_write_unlock(zspage);
48b4800a
MK
2009
2010 return true;
2011}
2012
68f2736a
MWO
2013static int zs_page_migrate(struct page *newpage, struct page *page,
2014 enum migrate_mode mode)
48b4800a
MK
2015{
2016 struct zs_pool *pool;
2017 struct size_class *class;
48b4800a
MK
2018 struct zspage *zspage;
2019 struct page *dummy;
2020 void *s_addr, *d_addr, *addr;
671f2fa8 2021 unsigned int offset;
3ae92ac2 2022 unsigned long handle;
48b4800a
MK
2023 unsigned long old_obj, new_obj;
2024 unsigned int obj_idx;
48b4800a 2025
2916ecc0
JG
2026 /*
2027 * We cannot support the _NO_COPY case here, because copy needs to
2028 * happen under the zs lock, which does not work with
2029 * MIGRATE_SYNC_NO_COPY workflow.
2030 */
2031 if (mode == MIGRATE_SYNC_NO_COPY)
2032 return -EINVAL;
2033
48b4800a
MK
2034 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2035
68f2736a
MWO
2036 /* The page is locked, so this pointer must remain valid */
2037 zspage = get_zspage(page);
2038 pool = zspage->pool;
b475d42d
MK
2039
2040 /*
c0547d0b 2041 * The pool's lock protects the race between zpage migration
b475d42d
MK
2042 * and zs_free.
2043 */
c0547d0b 2044 spin_lock(&pool->lock);
67f1c9cd 2045 class = zspage_class(pool, zspage);
48b4800a 2046
b475d42d
MK
2047 /* the migrate_write_lock protects zpage access via zs_map_object */
2048 migrate_write_lock(zspage);
48b4800a 2049
b475d42d 2050 offset = get_first_obj_offset(page);
48b4800a 2051 s_addr = kmap_atomic(page);
48b4800a
MK
2052
2053 /*
2054 * Here, any user cannot access all objects in the zspage so let's move.
2055 */
2056 d_addr = kmap_atomic(newpage);
2057 memcpy(d_addr, s_addr, PAGE_SIZE);
2058 kunmap_atomic(d_addr);
2059
b475d42d 2060 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
48b4800a 2061 addr += class->size) {
3ae92ac2 2062 if (obj_allocated(page, addr, &handle)) {
48b4800a
MK
2063
2064 old_obj = handle_to_obj(handle);
2065 obj_to_location(old_obj, &dummy, &obj_idx);
2066 new_obj = (unsigned long)location_to_obj(newpage,
2067 obj_idx);
48b4800a
MK
2068 record_obj(handle, new_obj);
2069 }
2070 }
b475d42d 2071 kunmap_atomic(s_addr);
48b4800a
MK
2072
2073 replace_sub_page(class, zspage, newpage, page);
b475d42d
MK
2074 /*
2075 * Since we complete the data copy and set up new zspage structure,
c0547d0b 2076 * it's okay to release the pool's lock.
b475d42d 2077 */
c0547d0b 2078 spin_unlock(&pool->lock);
48b4800a 2079 dec_zspage_isolation(zspage);
b475d42d 2080 migrate_write_unlock(zspage);
48b4800a 2081
b475d42d 2082 get_page(newpage);
ac8f05da
CM
2083 if (page_zone(newpage) != page_zone(page)) {
2084 dec_zone_page_state(page, NR_ZSPAGES);
2085 inc_zone_page_state(newpage, NR_ZSPAGES);
2086 }
2087
48b4800a
MK
2088 reset_page(page);
2089 put_page(page);
48b4800a 2090
b475d42d 2091 return MIGRATEPAGE_SUCCESS;
48b4800a
MK
2092}
2093
4d0a5402 2094static void zs_page_putback(struct page *page)
48b4800a 2095{
48b4800a
MK
2096 struct zspage *zspage;
2097
48b4800a
MK
2098 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2099
2100 zspage = get_zspage(page);
c4549b87 2101 migrate_write_lock(zspage);
48b4800a 2102 dec_zspage_isolation(zspage);
c4549b87 2103 migrate_write_unlock(zspage);
48b4800a
MK
2104}
2105
68f2736a 2106static const struct movable_operations zsmalloc_mops = {
48b4800a 2107 .isolate_page = zs_page_isolate,
68f2736a 2108 .migrate_page = zs_page_migrate,
48b4800a
MK
2109 .putback_page = zs_page_putback,
2110};
2111
48b4800a
MK
2112/*
2113 * Caller should hold page_lock of all pages in the zspage
2114 * In here, we cannot use zspage meta data.
2115 */
2116static void async_free_zspage(struct work_struct *work)
2117{
2118 int i;
2119 struct size_class *class;
2120 unsigned int class_idx;
4c7ac972 2121 int fullness;
48b4800a
MK
2122 struct zspage *zspage, *tmp;
2123 LIST_HEAD(free_pages);
2124 struct zs_pool *pool = container_of(work, struct zs_pool,
2125 free_work);
2126
cf8e0fed 2127 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2128 class = pool->size_class[i];
2129 if (class->index != i)
2130 continue;
2131
c0547d0b 2132 spin_lock(&pool->lock);
4c7ac972
SS
2133 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
2134 &free_pages);
c0547d0b 2135 spin_unlock(&pool->lock);
48b4800a
MK
2136 }
2137
48b4800a
MK
2138 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2139 list_del(&zspage->list);
2140 lock_zspage(zspage);
2141
2142 get_zspage_mapping(zspage, &class_idx, &fullness);
4c7ac972 2143 VM_BUG_ON(fullness != ZS_INUSE_RATIO_0);
48b4800a 2144 class = pool->size_class[class_idx];
c0547d0b 2145 spin_lock(&pool->lock);
64f768c6
NP
2146#ifdef CONFIG_ZPOOL
2147 list_del(&zspage->lru);
2148#endif
33848337 2149 __free_zspage(pool, class, zspage);
c0547d0b 2150 spin_unlock(&pool->lock);
48b4800a
MK
2151 }
2152};
2153
2154static void kick_deferred_free(struct zs_pool *pool)
2155{
2156 schedule_work(&pool->free_work);
2157}
2158
68f2736a
MWO
2159static void zs_flush_migration(struct zs_pool *pool)
2160{
2161 flush_work(&pool->free_work);
2162}
2163
48b4800a
MK
2164static void init_deferred_free(struct zs_pool *pool)
2165{
2166 INIT_WORK(&pool->free_work, async_free_zspage);
2167}
2168
2169static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2170{
2171 struct page *page = get_first_page(zspage);
2172
2173 do {
2174 WARN_ON(!trylock_page(page));
68f2736a 2175 __SetPageMovable(page, &zsmalloc_mops);
48b4800a
MK
2176 unlock_page(page);
2177 } while ((page = get_next_page(page)) != NULL);
2178}
68f2736a
MWO
2179#else
2180static inline void zs_flush_migration(struct zs_pool *pool) { }
48b4800a
MK
2181#endif
2182
04f05909
SS
2183/*
2184 *
2185 * Based on the number of unused allocated objects calculate
2186 * and return the number of pages that we can free.
04f05909
SS
2187 */
2188static unsigned long zs_can_compact(struct size_class *class)
2189{
2190 unsigned long obj_wasted;
4c7ac972
SS
2191 unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
2192 unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
04f05909 2193
44f43e99
SS
2194 if (obj_allocated <= obj_used)
2195 return 0;
04f05909 2196
44f43e99 2197 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2198 obj_wasted /= class->objs_per_zspage;
04f05909 2199
6cbf16b3 2200 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2201}
2202
23959281
RY
2203static unsigned long __zs_compact(struct zs_pool *pool,
2204 struct size_class *class)
312fcae2 2205{
312fcae2 2206 struct zs_compact_control cc;
5a845e9f 2207 struct zspage *src_zspage = NULL;
3783689a 2208 struct zspage *dst_zspage = NULL;
23959281 2209 unsigned long pages_freed = 0;
312fcae2 2210
c0547d0b
NP
2211 /*
2212 * protect the race between zpage migration and zs_free
2213 * as well as zpage allocation/free
2214 */
2215 spin_lock(&pool->lock);
5a845e9f
SS
2216 while (zs_can_compact(class)) {
2217 int fg;
312fcae2 2218
5a845e9f
SS
2219 if (!dst_zspage) {
2220 dst_zspage = isolate_dst_zspage(class);
2221 if (!dst_zspage)
2222 break;
2223 migrate_write_lock(dst_zspage);
2224 cc.d_page = get_first_page(dst_zspage);
2225 }
2226
2227 src_zspage = isolate_src_zspage(class);
2228 if (!src_zspage)
04f05909
SS
2229 break;
2230
5a845e9f
SS
2231 migrate_write_lock_nested(src_zspage);
2232
41b88e14 2233 cc.obj_idx = 0;
48b4800a 2234 cc.s_page = get_first_page(src_zspage);
5a845e9f
SS
2235 migrate_zspage(pool, class, &cc);
2236 fg = putback_zspage(class, src_zspage);
2237 migrate_write_unlock(src_zspage);
312fcae2 2238
5a845e9f
SS
2239 if (fg == ZS_INUSE_RATIO_0) {
2240 free_zspage(pool, class, src_zspage);
2241 pages_freed += class->pages_per_zspage;
2242 src_zspage = NULL;
2243 }
312fcae2 2244
5a845e9f
SS
2245 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
2246 || spin_is_contended(&pool->lock)) {
4aa409ca 2247 putback_zspage(class, dst_zspage);
b475d42d
MK
2248 migrate_write_unlock(dst_zspage);
2249 dst_zspage = NULL;
b475d42d 2250
5a845e9f
SS
2251 spin_unlock(&pool->lock);
2252 cond_resched();
2253 spin_lock(&pool->lock);
2254 }
312fcae2
MK
2255 }
2256
b475d42d 2257 if (src_zspage) {
4aa409ca 2258 putback_zspage(class, src_zspage);
b475d42d
MK
2259 migrate_write_unlock(src_zspage);
2260 }
312fcae2 2261
5a845e9f
SS
2262 if (dst_zspage) {
2263 putback_zspage(class, dst_zspage);
2264 migrate_write_unlock(dst_zspage);
2265 }
c0547d0b 2266 spin_unlock(&pool->lock);
23959281
RY
2267
2268 return pages_freed;
312fcae2
MK
2269}
2270
2271unsigned long zs_compact(struct zs_pool *pool)
2272{
2273 int i;
312fcae2 2274 struct size_class *class;
23959281 2275 unsigned long pages_freed = 0;
312fcae2 2276
cf8e0fed 2277 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2 2278 class = pool->size_class[i];
312fcae2
MK
2279 if (class->index != i)
2280 continue;
23959281 2281 pages_freed += __zs_compact(pool, class);
312fcae2 2282 }
23959281 2283 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
312fcae2 2284
23959281 2285 return pages_freed;
312fcae2
MK
2286}
2287EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2288
7d3f3938
SS
2289void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2290{
2291 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2292}
2293EXPORT_SYMBOL_GPL(zs_pool_stats);
2294
ab9d306d
SS
2295static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2296 struct shrink_control *sc)
2297{
2298 unsigned long pages_freed;
2299 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2300 shrinker);
2301
ab9d306d
SS
2302 /*
2303 * Compact classes and calculate compaction delta.
2304 * Can run concurrently with a manually triggered
2305 * (by user) compaction.
2306 */
23959281 2307 pages_freed = zs_compact(pool);
ab9d306d
SS
2308
2309 return pages_freed ? pages_freed : SHRINK_STOP;
2310}
2311
2312static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2313 struct shrink_control *sc)
2314{
2315 int i;
2316 struct size_class *class;
2317 unsigned long pages_to_free = 0;
2318 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2319 shrinker);
2320
cf8e0fed 2321 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d 2322 class = pool->size_class[i];
ab9d306d
SS
2323 if (class->index != i)
2324 continue;
2325
ab9d306d 2326 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2327 }
2328
2329 return pages_to_free;
2330}
2331
2332static void zs_unregister_shrinker(struct zs_pool *pool)
2333{
93144ca3 2334 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2335}
2336
2337static int zs_register_shrinker(struct zs_pool *pool)
2338{
2339 pool->shrinker.scan_objects = zs_shrinker_scan;
2340 pool->shrinker.count_objects = zs_shrinker_count;
2341 pool->shrinker.batch = 0;
2342 pool->shrinker.seeks = DEFAULT_SEEKS;
2343
e33c267a
RG
2344 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2345 pool->name);
ab9d306d
SS
2346}
2347
6260ae35
SS
2348static int calculate_zspage_chain_size(int class_size)
2349{
2350 int i, min_waste = INT_MAX;
2351 int chain_size = 1;
2352
e1d1f354
SS
2353 if (is_power_of_2(class_size))
2354 return chain_size;
2355
6260ae35
SS
2356 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2357 int waste;
2358
2359 waste = (i * PAGE_SIZE) % class_size;
2360 if (waste < min_waste) {
2361 min_waste = waste;
2362 chain_size = i;
2363 }
2364 }
2365
2366 return chain_size;
2367}
2368
00a61d86 2369/**
66cdef66 2370 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2371 * @name: pool name to be created
166cfda7 2372 *
66cdef66
GM
2373 * This function must be called before anything when using
2374 * the zsmalloc allocator.
166cfda7 2375 *
66cdef66
GM
2376 * On success, a pointer to the newly created pool is returned,
2377 * otherwise NULL.
396b7fd6 2378 */
d0d8da2d 2379struct zs_pool *zs_create_pool(const char *name)
61989a80 2380{
66cdef66
GM
2381 int i;
2382 struct zs_pool *pool;
2383 struct size_class *prev_class = NULL;
61989a80 2384
66cdef66
GM
2385 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2386 if (!pool)
2387 return NULL;
61989a80 2388
48b4800a 2389 init_deferred_free(pool);
c0547d0b 2390 spin_lock_init(&pool->lock);
61989a80 2391
2e40e163
MK
2392 pool->name = kstrdup(name, GFP_KERNEL);
2393 if (!pool->name)
2394 goto err;
2395
3783689a 2396 if (create_cache(pool))
2e40e163
MK
2397 goto err;
2398
c60369f0 2399 /*
399d8eeb 2400 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2401 * for merging should be larger or equal to current size.
c60369f0 2402 */
cf8e0fed 2403 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2404 int size;
2405 int pages_per_zspage;
64d90465 2406 int objs_per_zspage;
66cdef66 2407 struct size_class *class;
4c7ac972 2408 int fullness;
c60369f0 2409
66cdef66
GM
2410 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2411 if (size > ZS_MAX_ALLOC_SIZE)
2412 size = ZS_MAX_ALLOC_SIZE;
6260ae35 2413 pages_per_zspage = calculate_zspage_chain_size(size);
64d90465 2414 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2415
010b495e
SS
2416 /*
2417 * We iterate from biggest down to smallest classes,
2418 * so huge_class_size holds the size of the first huge
2419 * class. Any object bigger than or equal to that will
2420 * endup in the huge class.
2421 */
2422 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2423 !huge_class_size) {
2424 huge_class_size = size;
2425 /*
2426 * The object uses ZS_HANDLE_SIZE bytes to store the
2427 * handle. We need to subtract it, because zs_malloc()
2428 * unconditionally adds handle size before it performs
2429 * size class search - so object may be smaller than
2430 * huge class size, yet it still can end up in the huge
2431 * class because it grows by ZS_HANDLE_SIZE extra bytes
2432 * right before class lookup.
2433 */
2434 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2435 }
2436
66cdef66
GM
2437 /*
2438 * size_class is used for normal zsmalloc operation such
2439 * as alloc/free for that size. Although it is natural that we
2440 * have one size_class for each size, there is a chance that we
2441 * can get more memory utilization if we use one size_class for
2442 * many different sizes whose size_class have same
2443 * characteristics. So, we makes size_class point to
2444 * previous size_class if possible.
2445 */
2446 if (prev_class) {
64d90465 2447 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2448 pool->size_class[i] = prev_class;
2449 continue;
2450 }
2451 }
2452
2453 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2454 if (!class)
2455 goto err;
2456
2457 class->size = size;
2458 class->index = i;
2459 class->pages_per_zspage = pages_per_zspage;
64d90465 2460 class->objs_per_zspage = objs_per_zspage;
66cdef66 2461 pool->size_class[i] = class;
4c7ac972
SS
2462
2463 fullness = ZS_INUSE_RATIO_0;
2464 while (fullness < NR_FULLNESS_GROUPS) {
3783689a 2465 INIT_LIST_HEAD(&class->fullness_list[fullness]);
4c7ac972
SS
2466 fullness++;
2467 }
66cdef66
GM
2468
2469 prev_class = class;
61989a80
NG
2470 }
2471
d34f6157
DS
2472 /* debug only, don't abort if it fails */
2473 zs_pool_stat_create(pool, name);
0f050d99 2474
ab9d306d 2475 /*
93144ca3
AK
2476 * Not critical since shrinker is only used to trigger internal
2477 * defragmentation of the pool which is pretty optional thing. If
2478 * registration fails we still can use the pool normally and user can
2479 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2480 */
93144ca3
AK
2481 zs_register_shrinker(pool);
2482
64f768c6
NP
2483#ifdef CONFIG_ZPOOL
2484 INIT_LIST_HEAD(&pool->lru);
2485#endif
2486
66cdef66
GM
2487 return pool;
2488
2489err:
2490 zs_destroy_pool(pool);
2491 return NULL;
61989a80 2492}
66cdef66 2493EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2494
66cdef66 2495void zs_destroy_pool(struct zs_pool *pool)
61989a80 2496{
66cdef66 2497 int i;
61989a80 2498
ab9d306d 2499 zs_unregister_shrinker(pool);
68f2736a 2500 zs_flush_migration(pool);
0f050d99
GM
2501 zs_pool_stat_destroy(pool);
2502
cf8e0fed 2503 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2504 int fg;
2505 struct size_class *class = pool->size_class[i];
61989a80 2506
4249a05f
AR
2507 if (!class)
2508 continue;
2509
66cdef66
GM
2510 if (class->index != i)
2511 continue;
61989a80 2512
4c7ac972
SS
2513 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2514 if (list_empty(&class->fullness_list[fg]))
2515 continue;
2516
2517 pr_err("Class-%d fullness group %d is not empty\n",
2518 class->size, fg);
66cdef66
GM
2519 }
2520 kfree(class);
2521 }
f553646a 2522
3783689a 2523 destroy_cache(pool);
0f050d99 2524 kfree(pool->name);
66cdef66
GM
2525 kfree(pool);
2526}
2527EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2528
9997bc01 2529#ifdef CONFIG_ZPOOL
85b32581
NP
2530static void restore_freelist(struct zs_pool *pool, struct size_class *class,
2531 struct zspage *zspage)
2532{
2533 unsigned int obj_idx = 0;
2534 unsigned long handle, off = 0; /* off is within-page offset */
2535 struct page *page = get_first_page(zspage);
2536 struct link_free *prev_free = NULL;
2537 void *prev_page_vaddr = NULL;
2538
2539 /* in case no free object found */
2540 set_freeobj(zspage, (unsigned int)(-1UL));
2541
2542 while (page) {
2543 void *vaddr = kmap_atomic(page);
2544 struct page *next_page;
2545
2546 while (off < PAGE_SIZE) {
2547 void *obj_addr = vaddr + off;
2548
2549 /* skip allocated object */
2550 if (obj_allocated(page, obj_addr, &handle)) {
2551 obj_idx++;
2552 off += class->size;
2553 continue;
2554 }
2555
2556 /* free deferred handle from reclaim attempt */
2557 if (obj_stores_deferred_handle(page, obj_addr, &handle))
2558 cache_free_handle(pool, handle);
2559
2560 if (prev_free)
2561 prev_free->next = obj_idx << OBJ_TAG_BITS;
2562 else /* first free object found */
2563 set_freeobj(zspage, obj_idx);
2564
2565 prev_free = (struct link_free *)vaddr + off / sizeof(*prev_free);
2566 /* if last free object in a previous page, need to unmap */
2567 if (prev_page_vaddr) {
2568 kunmap_atomic(prev_page_vaddr);
2569 prev_page_vaddr = NULL;
2570 }
2571
2572 obj_idx++;
2573 off += class->size;
2574 }
2575
2576 /*
2577 * Handle the last (full or partial) object on this page.
2578 */
2579 next_page = get_next_page(page);
2580 if (next_page) {
2581 if (!prev_free || prev_page_vaddr) {
2582 /*
2583 * There is no free object in this page, so we can safely
2584 * unmap it.
2585 */
2586 kunmap_atomic(vaddr);
2587 } else {
2588 /* update prev_page_vaddr since prev_free is on this page */
2589 prev_page_vaddr = vaddr;
2590 }
2591 } else { /* this is the last page */
2592 if (prev_free) {
2593 /*
2594 * Reset OBJ_TAG_BITS bit to last link to tell
2595 * whether it's allocated object or not.
2596 */
2597 prev_free->next = -1UL << OBJ_TAG_BITS;
2598 }
2599
2600 /* unmap previous page (if not done yet) */
2601 if (prev_page_vaddr) {
2602 kunmap_atomic(prev_page_vaddr);
2603 prev_page_vaddr = NULL;
2604 }
2605
2606 kunmap_atomic(vaddr);
2607 }
2608
2609 page = next_page;
2610 off %= PAGE_SIZE;
2611 }
2612}
2613
9997bc01
NP
2614static int zs_reclaim_page(struct zs_pool *pool, unsigned int retries)
2615{
2616 int i, obj_idx, ret = 0;
2617 unsigned long handle;
2618 struct zspage *zspage;
2619 struct page *page;
4c7ac972 2620 int fullness;
9997bc01
NP
2621
2622 /* Lock LRU and fullness list */
2623 spin_lock(&pool->lock);
2624 if (list_empty(&pool->lru)) {
2625 spin_unlock(&pool->lock);
2626 return -EINVAL;
2627 }
2628
2629 for (i = 0; i < retries; i++) {
2630 struct size_class *class;
2631
2632 zspage = list_last_entry(&pool->lru, struct zspage, lru);
2633 list_del(&zspage->lru);
2634
2635 /* zs_free may free objects, but not the zspage and handles */
2636 zspage->under_reclaim = true;
2637
2638 class = zspage_class(pool, zspage);
2639 fullness = get_fullness_group(class, zspage);
2640
2641 /* Lock out object allocations and object compaction */
2642 remove_zspage(class, zspage, fullness);
2643
2644 spin_unlock(&pool->lock);
2645 cond_resched();
2646
2647 /* Lock backing pages into place */
2648 lock_zspage(zspage);
2649
2650 obj_idx = 0;
2651 page = get_first_page(zspage);
2652 while (1) {
2653 handle = find_alloced_obj(class, page, &obj_idx);
2654 if (!handle) {
2655 page = get_next_page(page);
2656 if (!page)
2657 break;
2658 obj_idx = 0;
2659 continue;
2660 }
2661
2662 /*
2663 * This will write the object and call zs_free.
2664 *
2665 * zs_free will free the object, but the
2666 * under_reclaim flag prevents it from freeing
2667 * the zspage altogether. This is necessary so
2668 * that we can continue working with the
2669 * zspage potentially after the last object
2670 * has been freed.
2671 */
2672 ret = pool->zpool_ops->evict(pool->zpool, handle);
2673 if (ret)
2674 goto next;
2675
2676 obj_idx++;
2677 }
2678
2679next:
2680 /* For freeing the zspage, or putting it back in the pool and LRU list. */
2681 spin_lock(&pool->lock);
2682 zspage->under_reclaim = false;
2683
2684 if (!get_zspage_inuse(zspage)) {
2685 /*
2686 * Fullness went stale as zs_free() won't touch it
2687 * while the page is removed from the pool. Fix it
2688 * up for the check in __free_zspage().
2689 */
4c7ac972 2690 zspage->fullness = ZS_INUSE_RATIO_0;
9997bc01
NP
2691
2692 __free_zspage(pool, class, zspage);
2693 spin_unlock(&pool->lock);
2694 return 0;
2695 }
2696
85b32581
NP
2697 /*
2698 * Eviction fails on one of the handles, so we need to restore zspage.
2699 * We need to rebuild its freelist (and free stored deferred handles),
2700 * put it back to the correct size class, and add it to the LRU list.
2701 */
2702 restore_freelist(pool, class, zspage);
9997bc01
NP
2703 putback_zspage(class, zspage);
2704 list_add(&zspage->lru, &pool->lru);
2705 unlock_zspage(zspage);
2706 }
2707
2708 spin_unlock(&pool->lock);
2709 return -EAGAIN;
2710}
2711#endif /* CONFIG_ZPOOL */
2712
66cdef66
GM
2713static int __init zs_init(void)
2714{
48b4800a
MK
2715 int ret;
2716
215c89d0
SAS
2717 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2718 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2719 if (ret)
68f2736a 2720 goto out;
66cdef66 2721
66cdef66
GM
2722#ifdef CONFIG_ZPOOL
2723 zpool_register_driver(&zs_zpool_driver);
2724#endif
0f050d99 2725
4abaac9b
DS
2726 zs_stat_init();
2727
66cdef66 2728 return 0;
0f050d99 2729
48b4800a 2730out:
0f050d99 2731 return ret;
61989a80 2732}
61989a80 2733
66cdef66 2734static void __exit zs_exit(void)
61989a80 2735{
66cdef66
GM
2736#ifdef CONFIG_ZPOOL
2737 zpool_unregister_driver(&zs_zpool_driver);
2738#endif
215c89d0 2739 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2740
2741 zs_stat_exit();
61989a80 2742}
069f101f
BH
2743
2744module_init(zs_init);
2745module_exit(zs_exit);
2746
2747MODULE_LICENSE("Dual BSD/GPL");
2748MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");