mm: shrinkers: introduce debugfs interface for memory shrinkers
[linux-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
ffedd09f 20 * page->index: links together all component pages of a zspage
48b4800a
MK
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
ffedd09f 23 * page->page_type: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
b475d42d
MK
33/*
34 * lock ordering:
35 * page_lock
36 * pool->migrate_lock
37 * class->lock
38 * zspage->lock
39 */
40
61989a80
NG
41#include <linux/module.h>
42#include <linux/kernel.h>
312fcae2 43#include <linux/sched.h>
50d34394 44#include <linux/magic.h>
61989a80
NG
45#include <linux/bitops.h>
46#include <linux/errno.h>
47#include <linux/highmem.h>
61989a80
NG
48#include <linux/string.h>
49#include <linux/slab.h>
ca5999fd 50#include <linux/pgtable.h>
65fddcfc 51#include <asm/tlbflush.h>
61989a80
NG
52#include <linux/cpumask.h>
53#include <linux/cpu.h>
0cbb613f 54#include <linux/vmalloc.h>
759b26b2 55#include <linux/preempt.h>
0959c63f 56#include <linux/spinlock.h>
93144ca3 57#include <linux/shrinker.h>
0959c63f 58#include <linux/types.h>
0f050d99 59#include <linux/debugfs.h>
bcf1647d 60#include <linux/zsmalloc.h>
c795779d 61#include <linux/zpool.h>
48b4800a 62#include <linux/mount.h>
8e9231f8 63#include <linux/pseudo_fs.h>
dd4123f3 64#include <linux/migrate.h>
701d6785 65#include <linux/wait.h>
48b4800a 66#include <linux/pagemap.h>
cdc346b3 67#include <linux/fs.h>
a3726599 68#include <linux/local_lock.h>
48b4800a
MK
69
70#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
71
72/*
cb152a1a 73 * This must be power of 2 and greater than or equal to sizeof(link_free).
0959c63f
SJ
74 * These two conditions ensure that any 'struct link_free' itself doesn't
75 * span more than 1 page which avoids complex case of mapping 2 pages simply
76 * to restore link_free pointer values.
77 */
78#define ZS_ALIGN 8
79
80/*
81 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
82 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
83 */
84#define ZS_MAX_ZSPAGE_ORDER 2
85#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
86
2e40e163
MK
87#define ZS_HANDLE_SIZE (sizeof(unsigned long))
88
0959c63f
SJ
89/*
90 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 91 * a single (unsigned long) handle value.
0959c63f 92 *
bfd093f5 93 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
94 *
95 * This is made more complicated by various memory models and PAE.
96 */
97
02390b87
KS
98#ifndef MAX_POSSIBLE_PHYSMEM_BITS
99#ifdef MAX_PHYSMEM_BITS
100#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
101#else
0959c63f
SJ
102/*
103 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
104 * be PAGE_SHIFT
105 */
02390b87 106#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
107#endif
108#endif
02390b87
KS
109
110#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2 111
312fcae2
MK
112/*
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
118 */
119#define OBJ_ALLOCATED_TAG 1
120#define OBJ_TAG_BITS 1
121#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
122#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
a41ec880 124#define HUGE_BITS 1
cf8e0fed
JM
125#define FULLNESS_BITS 2
126#define CLASS_BITS 8
127#define ISOLATED_BITS 3
128#define MAGIC_VAL_BITS 8
129
0959c63f
SJ
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 134/* each chunk includes extra space to keep handle */
7b60a685 135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
136
137/*
7eb52512 138 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
3783689a 150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
151#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
152 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 153
0959c63f 154enum fullness_group {
0959c63f 155 ZS_EMPTY,
48b4800a
MK
156 ZS_ALMOST_EMPTY,
157 ZS_ALMOST_FULL,
158 ZS_FULL,
159 NR_ZS_FULLNESS,
0959c63f
SJ
160};
161
3828a764 162enum class_stat_type {
48b4800a
MK
163 CLASS_EMPTY,
164 CLASS_ALMOST_EMPTY,
165 CLASS_ALMOST_FULL,
166 CLASS_FULL,
0f050d99
GM
167 OBJ_ALLOCATED,
168 OBJ_USED,
48b4800a 169 NR_ZS_STAT_TYPE,
0f050d99
GM
170};
171
0f050d99
GM
172struct zs_size_stat {
173 unsigned long objs[NR_ZS_STAT_TYPE];
174};
175
57244594
SS
176#ifdef CONFIG_ZSMALLOC_STAT
177static struct dentry *zs_stat_root;
0f050d99
GM
178#endif
179
48b4800a
MK
180#ifdef CONFIG_COMPACTION
181static struct vfsmount *zsmalloc_mnt;
182#endif
183
0959c63f
SJ
184/*
185 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
186 * n <= N / f, where
187 * n = number of allocated objects
188 * N = total number of objects zspage can store
6dd9737e 189 * f = fullness_threshold_frac
0959c63f
SJ
190 *
191 * Similarly, we assign zspage to:
192 * ZS_ALMOST_FULL when n > N / f
193 * ZS_EMPTY when n == 0
194 * ZS_FULL when n == N
195 *
196 * (see: fix_fullness_group())
197 */
198static const int fullness_threshold_frac = 4;
010b495e 199static size_t huge_class_size;
0959c63f
SJ
200
201struct size_class {
57244594 202 spinlock_t lock;
48b4800a 203 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
204 /*
205 * Size of objects stored in this class. Must be multiple
206 * of ZS_ALIGN.
207 */
208 int size;
1fc6e27d 209 int objs_per_zspage;
7dfa4612
WY
210 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
211 int pages_per_zspage;
48b4800a
MK
212
213 unsigned int index;
214 struct zs_size_stat stats;
0959c63f
SJ
215};
216
217/*
218 * Placed within free objects to form a singly linked list.
3783689a 219 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
220 *
221 * This must be power of 2 and less than or equal to ZS_ALIGN
222 */
223struct link_free {
2e40e163
MK
224 union {
225 /*
bfd093f5 226 * Free object index;
2e40e163
MK
227 * It's valid for non-allocated object
228 */
bfd093f5 229 unsigned long next;
2e40e163
MK
230 /*
231 * Handle of allocated object.
232 */
233 unsigned long handle;
234 };
0959c63f
SJ
235};
236
237struct zs_pool {
6f3526d6 238 const char *name;
0f050d99 239
cf8e0fed 240 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 241 struct kmem_cache *handle_cachep;
3783689a 242 struct kmem_cache *zspage_cachep;
0959c63f 243
13de8933 244 atomic_long_t pages_allocated;
0f050d99 245
7d3f3938 246 struct zs_pool_stats stats;
ab9d306d
SS
247
248 /* Compact classes */
249 struct shrinker shrinker;
93144ca3 250
0f050d99
GM
251#ifdef CONFIG_ZSMALLOC_STAT
252 struct dentry *stat_dentry;
253#endif
48b4800a
MK
254#ifdef CONFIG_COMPACTION
255 struct inode *inode;
256 struct work_struct free_work;
257#endif
b475d42d
MK
258 /* protect page/zspage migration */
259 rwlock_t migrate_lock;
0959c63f 260};
61989a80 261
3783689a
MK
262struct zspage {
263 struct {
a41ec880 264 unsigned int huge:HUGE_BITS;
3783689a 265 unsigned int fullness:FULLNESS_BITS;
85d492f2 266 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
267 unsigned int isolated:ISOLATED_BITS;
268 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
269 };
270 unsigned int inuse;
bfd093f5 271 unsigned int freeobj;
3783689a
MK
272 struct page *first_page;
273 struct list_head list; /* fullness list */
48b4800a
MK
274#ifdef CONFIG_COMPACTION
275 rwlock_t lock;
276#endif
3783689a 277};
61989a80 278
f553646a 279struct mapping_area {
a3726599 280 local_lock_t lock;
f553646a 281 char *vm_buf; /* copy buffer for objects that span pages */
f553646a
SJ
282 char *vm_addr; /* address of kmap_atomic()'ed pages */
283 enum zs_mapmode vm_mm; /* mapping mode */
284};
285
a41ec880
MK
286/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
287static void SetZsHugePage(struct zspage *zspage)
288{
289 zspage->huge = 1;
290}
291
292static bool ZsHugePage(struct zspage *zspage)
293{
294 return zspage->huge;
295}
296
48b4800a
MK
297#ifdef CONFIG_COMPACTION
298static int zs_register_migration(struct zs_pool *pool);
299static void zs_unregister_migration(struct zs_pool *pool);
300static void migrate_lock_init(struct zspage *zspage);
301static void migrate_read_lock(struct zspage *zspage);
302static void migrate_read_unlock(struct zspage *zspage);
b475d42d
MK
303static void migrate_write_lock(struct zspage *zspage);
304static void migrate_write_lock_nested(struct zspage *zspage);
305static void migrate_write_unlock(struct zspage *zspage);
48b4800a
MK
306static void kick_deferred_free(struct zs_pool *pool);
307static void init_deferred_free(struct zs_pool *pool);
308static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
309#else
310static int zsmalloc_mount(void) { return 0; }
311static void zsmalloc_unmount(void) {}
312static int zs_register_migration(struct zs_pool *pool) { return 0; }
313static void zs_unregister_migration(struct zs_pool *pool) {}
314static void migrate_lock_init(struct zspage *zspage) {}
315static void migrate_read_lock(struct zspage *zspage) {}
316static void migrate_read_unlock(struct zspage *zspage) {}
b475d42d
MK
317static void migrate_write_lock(struct zspage *zspage) {}
318static void migrate_write_lock_nested(struct zspage *zspage) {}
319static void migrate_write_unlock(struct zspage *zspage) {}
48b4800a
MK
320static void kick_deferred_free(struct zs_pool *pool) {}
321static void init_deferred_free(struct zs_pool *pool) {}
322static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
323#endif
324
3783689a 325static int create_cache(struct zs_pool *pool)
2e40e163
MK
326{
327 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
328 0, 0, NULL);
3783689a
MK
329 if (!pool->handle_cachep)
330 return 1;
331
332 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
333 0, 0, NULL);
334 if (!pool->zspage_cachep) {
335 kmem_cache_destroy(pool->handle_cachep);
336 pool->handle_cachep = NULL;
337 return 1;
338 }
339
340 return 0;
2e40e163
MK
341}
342
3783689a 343static void destroy_cache(struct zs_pool *pool)
2e40e163 344{
cd10add0 345 kmem_cache_destroy(pool->handle_cachep);
3783689a 346 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
347}
348
3783689a 349static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
350{
351 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 352 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
353}
354
3783689a 355static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
356{
357 kmem_cache_free(pool->handle_cachep, (void *)handle);
358}
359
3783689a
MK
360static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
361{
f0231305 362 return kmem_cache_zalloc(pool->zspage_cachep,
48b4800a 363 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 364}
3783689a
MK
365
366static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
367{
368 kmem_cache_free(pool->zspage_cachep, zspage);
369}
370
b475d42d 371/* class->lock(which owns the handle) synchronizes races */
2e40e163
MK
372static void record_obj(unsigned long handle, unsigned long obj)
373{
b475d42d 374 *(unsigned long *)handle = obj;
2e40e163
MK
375}
376
c795779d
DS
377/* zpool driver */
378
379#ifdef CONFIG_ZPOOL
380
6f3526d6 381static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 382 const struct zpool_ops *zpool_ops,
479305fd 383 struct zpool *zpool)
c795779d 384{
d0d8da2d
SS
385 /*
386 * Ignore global gfp flags: zs_malloc() may be invoked from
387 * different contexts and its caller must provide a valid
388 * gfp mask.
389 */
390 return zs_create_pool(name);
c795779d
DS
391}
392
393static void zs_zpool_destroy(void *pool)
394{
395 zs_destroy_pool(pool);
396}
397
398static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 unsigned long *handle)
400{
d0d8da2d 401 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
402 return *handle ? 0 : -1;
403}
404static void zs_zpool_free(void *pool, unsigned long handle)
405{
406 zs_free(pool, handle);
407}
408
c795779d
DS
409static void *zs_zpool_map(void *pool, unsigned long handle,
410 enum zpool_mapmode mm)
411{
412 enum zs_mapmode zs_mm;
413
414 switch (mm) {
415 case ZPOOL_MM_RO:
416 zs_mm = ZS_MM_RO;
417 break;
418 case ZPOOL_MM_WO:
419 zs_mm = ZS_MM_WO;
420 break;
e4a9bc58 421 case ZPOOL_MM_RW:
c795779d
DS
422 default:
423 zs_mm = ZS_MM_RW;
424 break;
425 }
426
427 return zs_map_object(pool, handle, zs_mm);
428}
429static void zs_zpool_unmap(void *pool, unsigned long handle)
430{
431 zs_unmap_object(pool, handle);
432}
433
434static u64 zs_zpool_total_size(void *pool)
435{
722cdc17 436 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
437}
438
439static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
440 .type = "zsmalloc",
441 .owner = THIS_MODULE,
442 .create = zs_zpool_create,
443 .destroy = zs_zpool_destroy,
444 .malloc_support_movable = true,
445 .malloc = zs_zpool_malloc,
446 .free = zs_zpool_free,
447 .map = zs_zpool_map,
448 .unmap = zs_zpool_unmap,
449 .total_size = zs_zpool_total_size,
c795779d
DS
450};
451
137f8cff 452MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
453#endif /* CONFIG_ZPOOL */
454
61989a80 455/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
a3726599
MG
456static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
457 .lock = INIT_LOCAL_LOCK(lock),
458};
61989a80 459
3457f414 460static __maybe_unused int is_first_page(struct page *page)
61989a80 461{
a27545bf 462 return PagePrivate(page);
61989a80
NG
463}
464
48b4800a 465/* Protected by class->lock */
3783689a 466static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 467{
3783689a 468 return zspage->inuse;
4f42047b
MK
469}
470
4f42047b 471
3783689a 472static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 473{
3783689a 474 zspage->inuse += val;
4f42047b
MK
475}
476
48b4800a 477static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 478{
48b4800a 479 struct page *first_page = zspage->first_page;
3783689a 480
48b4800a
MK
481 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
482 return first_page;
4f42047b
MK
483}
484
48b4800a 485static inline int get_first_obj_offset(struct page *page)
4f42047b 486{
ffedd09f 487 return page->page_type;
48b4800a 488}
3783689a 489
48b4800a
MK
490static inline void set_first_obj_offset(struct page *page, int offset)
491{
ffedd09f 492 page->page_type = offset;
4f42047b
MK
493}
494
bfd093f5 495static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 496{
bfd093f5 497 return zspage->freeobj;
4f42047b
MK
498}
499
bfd093f5 500static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 501{
bfd093f5 502 zspage->freeobj = obj;
4f42047b
MK
503}
504
3783689a 505static void get_zspage_mapping(struct zspage *zspage,
a4209467 506 unsigned int *class_idx,
61989a80
NG
507 enum fullness_group *fullness)
508{
48b4800a
MK
509 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
510
3783689a
MK
511 *fullness = zspage->fullness;
512 *class_idx = zspage->class;
61989a80
NG
513}
514
67f1c9cd
MK
515static struct size_class *zspage_class(struct zs_pool *pool,
516 struct zspage *zspage)
517{
518 return pool->size_class[zspage->class];
519}
520
3783689a 521static void set_zspage_mapping(struct zspage *zspage,
a4209467 522 unsigned int class_idx,
61989a80
NG
523 enum fullness_group fullness)
524{
3783689a
MK
525 zspage->class = class_idx;
526 zspage->fullness = fullness;
61989a80
NG
527}
528
c3e3e88a
NC
529/*
530 * zsmalloc divides the pool into various size classes where each
531 * class maintains a list of zspages where each zspage is divided
532 * into equal sized chunks. Each allocation falls into one of these
533 * classes depending on its size. This function returns index of the
cb152a1a 534 * size class which has chunk size big enough to hold the given size.
c3e3e88a 535 */
61989a80
NG
536static int get_size_class_index(int size)
537{
538 int idx = 0;
539
540 if (likely(size > ZS_MIN_ALLOC_SIZE))
541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 ZS_SIZE_CLASS_DELTA);
543
cf8e0fed 544 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
545}
546
3828a764
MK
547/* type can be of enum type class_stat_type or fullness_group */
548static inline void class_stat_inc(struct size_class *class,
3eb95fea 549 int type, unsigned long cnt)
248ca1b0 550{
48b4800a 551 class->stats.objs[type] += cnt;
248ca1b0
MK
552}
553
3828a764
MK
554/* type can be of enum type class_stat_type or fullness_group */
555static inline void class_stat_dec(struct size_class *class,
3eb95fea 556 int type, unsigned long cnt)
248ca1b0 557{
48b4800a 558 class->stats.objs[type] -= cnt;
248ca1b0
MK
559}
560
3828a764 561/* type can be of enum type class_stat_type or fullness_group */
248ca1b0 562static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 563 int type)
248ca1b0 564{
48b4800a 565 return class->stats.objs[type];
248ca1b0
MK
566}
567
57244594
SS
568#ifdef CONFIG_ZSMALLOC_STAT
569
4abaac9b 570static void __init zs_stat_init(void)
248ca1b0 571{
4abaac9b
DS
572 if (!debugfs_initialized()) {
573 pr_warn("debugfs not available, stat dir not created\n");
574 return;
575 }
248ca1b0
MK
576
577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
578}
579
580static void __exit zs_stat_exit(void)
581{
582 debugfs_remove_recursive(zs_stat_root);
583}
584
1120ed54
SS
585static unsigned long zs_can_compact(struct size_class *class);
586
248ca1b0
MK
587static int zs_stats_size_show(struct seq_file *s, void *v)
588{
589 int i;
590 struct zs_pool *pool = s->private;
591 struct size_class *class;
592 int objs_per_zspage;
593 unsigned long class_almost_full, class_almost_empty;
1120ed54 594 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
595 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
596 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 597 unsigned long total_freeable = 0;
248ca1b0 598
1120ed54 599 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
600 "class", "size", "almost_full", "almost_empty",
601 "obj_allocated", "obj_used", "pages_used",
1120ed54 602 "pages_per_zspage", "freeable");
248ca1b0 603
cf8e0fed 604 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
605 class = pool->size_class[i];
606
607 if (class->index != i)
608 continue;
609
610 spin_lock(&class->lock);
611 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
612 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
613 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
614 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 615 freeable = zs_can_compact(class);
248ca1b0
MK
616 spin_unlock(&class->lock);
617
b4fd07a0 618 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
619 pages_used = obj_allocated / objs_per_zspage *
620 class->pages_per_zspage;
621
1120ed54
SS
622 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
623 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
624 i, class->size, class_almost_full, class_almost_empty,
625 obj_allocated, obj_used, pages_used,
1120ed54 626 class->pages_per_zspage, freeable);
248ca1b0
MK
627
628 total_class_almost_full += class_almost_full;
629 total_class_almost_empty += class_almost_empty;
630 total_objs += obj_allocated;
631 total_used_objs += obj_used;
632 total_pages += pages_used;
1120ed54 633 total_freeable += freeable;
248ca1b0
MK
634 }
635
636 seq_puts(s, "\n");
1120ed54 637 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
638 "Total", "", total_class_almost_full,
639 total_class_almost_empty, total_objs,
1120ed54 640 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
641
642 return 0;
643}
5ad35093 644DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 645
d34f6157 646static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 647{
4abaac9b
DS
648 if (!zs_stat_root) {
649 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 650 return;
4abaac9b 651 }
248ca1b0 652
4268509a
GKH
653 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
654
655 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
656 &zs_stats_size_fops);
248ca1b0
MK
657}
658
659static void zs_pool_stat_destroy(struct zs_pool *pool)
660{
661 debugfs_remove_recursive(pool->stat_dentry);
662}
663
664#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 665static void __init zs_stat_init(void)
248ca1b0 666{
248ca1b0
MK
667}
668
669static void __exit zs_stat_exit(void)
670{
671}
672
d34f6157 673static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 674{
248ca1b0
MK
675}
676
677static inline void zs_pool_stat_destroy(struct zs_pool *pool)
678{
679}
248ca1b0
MK
680#endif
681
48b4800a 682
c3e3e88a
NC
683/*
684 * For each size class, zspages are divided into different groups
685 * depending on how "full" they are. This was done so that we could
686 * easily find empty or nearly empty zspages when we try to shrink
687 * the pool (not yet implemented). This function returns fullness
688 * status of the given page.
689 */
1fc6e27d 690static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 691 struct zspage *zspage)
61989a80 692{
1fc6e27d 693 int inuse, objs_per_zspage;
61989a80 694 enum fullness_group fg;
830e4bc5 695
3783689a 696 inuse = get_zspage_inuse(zspage);
1fc6e27d 697 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
698
699 if (inuse == 0)
700 fg = ZS_EMPTY;
1fc6e27d 701 else if (inuse == objs_per_zspage)
61989a80 702 fg = ZS_FULL;
1fc6e27d 703 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
704 fg = ZS_ALMOST_EMPTY;
705 else
706 fg = ZS_ALMOST_FULL;
707
708 return fg;
709}
710
c3e3e88a
NC
711/*
712 * Each size class maintains various freelists and zspages are assigned
713 * to one of these freelists based on the number of live objects they
714 * have. This functions inserts the given zspage into the freelist
715 * identified by <class, fullness_group>.
716 */
251cbb95 717static void insert_zspage(struct size_class *class,
3783689a
MK
718 struct zspage *zspage,
719 enum fullness_group fullness)
61989a80 720{
3783689a 721 struct zspage *head;
61989a80 722
3828a764 723 class_stat_inc(class, fullness, 1);
3783689a
MK
724 head = list_first_entry_or_null(&class->fullness_list[fullness],
725 struct zspage, list);
58f17117 726 /*
3783689a
MK
727 * We want to see more ZS_FULL pages and less almost empty/full.
728 * Put pages with higher ->inuse first.
58f17117 729 */
110ceb82
ML
730 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
731 list_add(&zspage->list, &head->list);
732 else
733 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
734}
735
c3e3e88a
NC
736/*
737 * This function removes the given zspage from the freelist identified
738 * by <class, fullness_group>.
739 */
251cbb95 740static void remove_zspage(struct size_class *class,
3783689a
MK
741 struct zspage *zspage,
742 enum fullness_group fullness)
61989a80 743{
3783689a 744 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
61989a80 745
3783689a 746 list_del_init(&zspage->list);
3828a764 747 class_stat_dec(class, fullness, 1);
61989a80
NG
748}
749
c3e3e88a
NC
750/*
751 * Each size class maintains zspages in different fullness groups depending
752 * on the number of live objects they contain. When allocating or freeing
753 * objects, the fullness status of the page can change, say, from ALMOST_FULL
754 * to ALMOST_EMPTY when freeing an object. This function checks if such
755 * a status change has occurred for the given page and accordingly moves the
756 * page from the freelist of the old fullness group to that of the new
757 * fullness group.
758 */
c7806261 759static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 760 struct zspage *zspage)
61989a80
NG
761{
762 int class_idx;
61989a80
NG
763 enum fullness_group currfg, newfg;
764
3783689a
MK
765 get_zspage_mapping(zspage, &class_idx, &currfg);
766 newfg = get_fullness_group(class, zspage);
61989a80
NG
767 if (newfg == currfg)
768 goto out;
769
c4549b87
MK
770 remove_zspage(class, zspage, currfg);
771 insert_zspage(class, zspage, newfg);
3783689a 772 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
773out:
774 return newfg;
775}
776
777/*
778 * We have to decide on how many pages to link together
779 * to form a zspage for each size class. This is important
780 * to reduce wastage due to unusable space left at end of
781 * each zspage which is given as:
888fa374
YX
782 * wastage = Zp % class_size
783 * usage = Zp - wastage
61989a80
NG
784 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
785 *
786 * For example, for size class of 3/8 * PAGE_SIZE, we should
787 * link together 3 PAGE_SIZE sized pages to form a zspage
788 * since then we can perfectly fit in 8 such objects.
789 */
2e3b6154 790static int get_pages_per_zspage(int class_size)
61989a80
NG
791{
792 int i, max_usedpc = 0;
793 /* zspage order which gives maximum used size per KB */
794 int max_usedpc_order = 1;
795
84d4faab 796 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
797 int zspage_size;
798 int waste, usedpc;
799
800 zspage_size = i * PAGE_SIZE;
801 waste = zspage_size % class_size;
802 usedpc = (zspage_size - waste) * 100 / zspage_size;
803
804 if (usedpc > max_usedpc) {
805 max_usedpc = usedpc;
806 max_usedpc_order = i;
807 }
808 }
809
810 return max_usedpc_order;
811}
812
3783689a 813static struct zspage *get_zspage(struct page *page)
61989a80 814{
a6c5e0f7 815 struct zspage *zspage = (struct zspage *)page_private(page);
48b4800a
MK
816
817 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
818 return zspage;
61989a80
NG
819}
820
821static struct page *get_next_page(struct page *page)
822{
a41ec880
MK
823 struct zspage *zspage = get_zspage(page);
824
825 if (unlikely(ZsHugePage(zspage)))
48b4800a
MK
826 return NULL;
827
ffedd09f 828 return (struct page *)page->index;
61989a80
NG
829}
830
bfd093f5
MK
831/**
832 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 833 * @obj: the encoded object value
bfd093f5
MK
834 * @page: page object resides in zspage
835 * @obj_idx: object index
67296874 836 */
bfd093f5
MK
837static void obj_to_location(unsigned long obj, struct page **page,
838 unsigned int *obj_idx)
61989a80 839{
bfd093f5
MK
840 obj >>= OBJ_TAG_BITS;
841 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
842 *obj_idx = (obj & OBJ_INDEX_MASK);
843}
61989a80 844
67f1c9cd
MK
845static void obj_to_page(unsigned long obj, struct page **page)
846{
847 obj >>= OBJ_TAG_BITS;
848 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
849}
850
bfd093f5
MK
851/**
852 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
853 * @page: page object resides in zspage
854 * @obj_idx: object index
855 */
856static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
857{
858 unsigned long obj;
61989a80 859
312fcae2 860 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 861 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 862 obj <<= OBJ_TAG_BITS;
61989a80 863
bfd093f5 864 return obj;
61989a80
NG
865}
866
2e40e163
MK
867static unsigned long handle_to_obj(unsigned long handle)
868{
869 return *(unsigned long *)handle;
870}
871
3ae92ac2 872static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
312fcae2 873{
3ae92ac2 874 unsigned long handle;
a41ec880 875 struct zspage *zspage = get_zspage(page);
3ae92ac2 876
a41ec880 877 if (unlikely(ZsHugePage(zspage))) {
830e4bc5 878 VM_BUG_ON_PAGE(!is_first_page(page), page);
3ae92ac2 879 handle = page->index;
7b60a685 880 } else
3ae92ac2
MK
881 handle = *(unsigned long *)obj;
882
883 if (!(handle & OBJ_ALLOCATED_TAG))
884 return false;
885
886 *phandle = handle & ~OBJ_ALLOCATED_TAG;
887 return true;
312fcae2
MK
888}
889
f4477e90
NG
890static void reset_page(struct page *page)
891{
48b4800a 892 __ClearPageMovable(page);
18fd06bf 893 ClearPagePrivate(page);
f4477e90 894 set_page_private(page, 0);
48b4800a 895 page_mapcount_reset(page);
ffedd09f 896 page->index = 0;
48b4800a
MK
897}
898
4d0a5402 899static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
900{
901 struct page *cursor, *fail;
902
903 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
904 get_next_page(cursor)) {
905 if (!trylock_page(cursor)) {
906 fail = cursor;
907 goto unlock;
908 }
909 }
910
911 return 1;
912unlock:
913 for (cursor = get_first_page(zspage); cursor != fail; cursor =
914 get_next_page(cursor))
915 unlock_page(cursor);
916
917 return 0;
f4477e90
NG
918}
919
48b4800a
MK
920static void __free_zspage(struct zs_pool *pool, struct size_class *class,
921 struct zspage *zspage)
61989a80 922{
3783689a 923 struct page *page, *next;
48b4800a
MK
924 enum fullness_group fg;
925 unsigned int class_idx;
926
927 get_zspage_mapping(zspage, &class_idx, &fg);
928
929 assert_spin_locked(&class->lock);
61989a80 930
3783689a 931 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 932 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 933
48b4800a 934 next = page = get_first_page(zspage);
3783689a 935 do {
48b4800a
MK
936 VM_BUG_ON_PAGE(!PageLocked(page), page);
937 next = get_next_page(page);
3783689a 938 reset_page(page);
48b4800a 939 unlock_page(page);
91537fee 940 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
941 put_page(page);
942 page = next;
943 } while (page != NULL);
61989a80 944
3783689a 945 cache_free_zspage(pool, zspage);
48b4800a 946
3828a764 947 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
948 atomic_long_sub(class->pages_per_zspage,
949 &pool->pages_allocated);
950}
951
952static void free_zspage(struct zs_pool *pool, struct size_class *class,
953 struct zspage *zspage)
954{
955 VM_BUG_ON(get_zspage_inuse(zspage));
956 VM_BUG_ON(list_empty(&zspage->list));
957
b475d42d
MK
958 /*
959 * Since zs_free couldn't be sleepable, this function cannot call
960 * lock_page. The page locks trylock_zspage got will be released
961 * by __free_zspage.
962 */
48b4800a
MK
963 if (!trylock_zspage(zspage)) {
964 kick_deferred_free(pool);
965 return;
966 }
967
968 remove_zspage(class, zspage, ZS_EMPTY);
969 __free_zspage(pool, class, zspage);
61989a80
NG
970}
971
972/* Initialize a newly allocated zspage */
3783689a 973static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 974{
bfd093f5 975 unsigned int freeobj = 1;
61989a80 976 unsigned long off = 0;
48b4800a 977 struct page *page = get_first_page(zspage);
830e4bc5 978
61989a80
NG
979 while (page) {
980 struct page *next_page;
981 struct link_free *link;
af4ee5e9 982 void *vaddr;
61989a80 983
3783689a 984 set_first_obj_offset(page, off);
61989a80 985
af4ee5e9
MK
986 vaddr = kmap_atomic(page);
987 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
988
989 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 990 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 991 link += class->size / sizeof(*link);
61989a80
NG
992 }
993
994 /*
995 * We now come to the last (full or partial) object on this
996 * page, which must point to the first object on the next
997 * page (if present)
998 */
999 next_page = get_next_page(page);
bfd093f5 1000 if (next_page) {
3b1d9ca6 1001 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1002 } else {
1003 /*
3b1d9ca6 1004 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1005 * whether it's allocated object or not.
1006 */
01a6ad9a 1007 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1008 }
af4ee5e9 1009 kunmap_atomic(vaddr);
61989a80 1010 page = next_page;
5538c562 1011 off %= PAGE_SIZE;
61989a80 1012 }
bdb0af7c 1013
bfd093f5 1014 set_freeobj(zspage, 0);
61989a80
NG
1015}
1016
48b4800a
MK
1017static void create_page_chain(struct size_class *class, struct zspage *zspage,
1018 struct page *pages[])
61989a80 1019{
bdb0af7c
MK
1020 int i;
1021 struct page *page;
1022 struct page *prev_page = NULL;
48b4800a 1023 int nr_pages = class->pages_per_zspage;
61989a80
NG
1024
1025 /*
1026 * Allocate individual pages and link them together as:
ffedd09f 1027 * 1. all pages are linked together using page->index
3783689a 1028 * 2. each sub-page point to zspage using page->private
61989a80 1029 *
3783689a 1030 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1031 * has this flag set).
61989a80 1032 */
bdb0af7c
MK
1033 for (i = 0; i < nr_pages; i++) {
1034 page = pages[i];
3783689a 1035 set_page_private(page, (unsigned long)zspage);
ffedd09f 1036 page->index = 0;
bdb0af7c 1037 if (i == 0) {
3783689a 1038 zspage->first_page = page;
a27545bf 1039 SetPagePrivate(page);
48b4800a
MK
1040 if (unlikely(class->objs_per_zspage == 1 &&
1041 class->pages_per_zspage == 1))
a41ec880 1042 SetZsHugePage(zspage);
3783689a 1043 } else {
ffedd09f 1044 prev_page->index = (unsigned long)page;
61989a80 1045 }
61989a80
NG
1046 prev_page = page;
1047 }
bdb0af7c 1048}
61989a80 1049
bdb0af7c
MK
1050/*
1051 * Allocate a zspage for the given size class
1052 */
3783689a
MK
1053static struct zspage *alloc_zspage(struct zs_pool *pool,
1054 struct size_class *class,
1055 gfp_t gfp)
bdb0af7c
MK
1056{
1057 int i;
bdb0af7c 1058 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1059 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1060
1061 if (!zspage)
1062 return NULL;
1063
48b4800a
MK
1064 zspage->magic = ZSPAGE_MAGIC;
1065 migrate_lock_init(zspage);
61989a80 1066
bdb0af7c
MK
1067 for (i = 0; i < class->pages_per_zspage; i++) {
1068 struct page *page;
61989a80 1069
3783689a 1070 page = alloc_page(gfp);
bdb0af7c 1071 if (!page) {
91537fee
MK
1072 while (--i >= 0) {
1073 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1074 __free_page(pages[i]);
91537fee 1075 }
3783689a 1076 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1077 return NULL;
1078 }
91537fee
MK
1079
1080 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1081 pages[i] = page;
61989a80
NG
1082 }
1083
48b4800a 1084 create_page_chain(class, zspage, pages);
3783689a 1085 init_zspage(class, zspage);
bdb0af7c 1086
3783689a 1087 return zspage;
61989a80
NG
1088}
1089
3783689a 1090static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1091{
1092 int i;
3783689a 1093 struct zspage *zspage;
61989a80 1094
48b4800a 1095 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1096 zspage = list_first_entry_or_null(&class->fullness_list[i],
1097 struct zspage, list);
1098 if (zspage)
61989a80
NG
1099 break;
1100 }
1101
3783689a 1102 return zspage;
61989a80
NG
1103}
1104
f553646a
SJ
1105static inline int __zs_cpu_up(struct mapping_area *area)
1106{
1107 /*
1108 * Make sure we don't leak memory if a cpu UP notification
1109 * and zs_init() race and both call zs_cpu_up() on the same cpu
1110 */
1111 if (area->vm_buf)
1112 return 0;
40f9fb8c 1113 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1114 if (!area->vm_buf)
1115 return -ENOMEM;
1116 return 0;
1117}
1118
1119static inline void __zs_cpu_down(struct mapping_area *area)
1120{
40f9fb8c 1121 kfree(area->vm_buf);
f553646a
SJ
1122 area->vm_buf = NULL;
1123}
1124
1125static void *__zs_map_object(struct mapping_area *area,
1126 struct page *pages[2], int off, int size)
5f601902 1127{
5f601902
SJ
1128 int sizes[2];
1129 void *addr;
f553646a 1130 char *buf = area->vm_buf;
5f601902 1131
f553646a
SJ
1132 /* disable page faults to match kmap_atomic() return conditions */
1133 pagefault_disable();
1134
1135 /* no read fastpath */
1136 if (area->vm_mm == ZS_MM_WO)
1137 goto out;
5f601902
SJ
1138
1139 sizes[0] = PAGE_SIZE - off;
1140 sizes[1] = size - sizes[0];
1141
5f601902
SJ
1142 /* copy object to per-cpu buffer */
1143 addr = kmap_atomic(pages[0]);
1144 memcpy(buf, addr + off, sizes[0]);
1145 kunmap_atomic(addr);
1146 addr = kmap_atomic(pages[1]);
1147 memcpy(buf + sizes[0], addr, sizes[1]);
1148 kunmap_atomic(addr);
f553646a
SJ
1149out:
1150 return area->vm_buf;
5f601902
SJ
1151}
1152
f553646a
SJ
1153static void __zs_unmap_object(struct mapping_area *area,
1154 struct page *pages[2], int off, int size)
5f601902 1155{
5f601902
SJ
1156 int sizes[2];
1157 void *addr;
2e40e163 1158 char *buf;
5f601902 1159
f553646a
SJ
1160 /* no write fastpath */
1161 if (area->vm_mm == ZS_MM_RO)
1162 goto out;
5f601902 1163
7b60a685 1164 buf = area->vm_buf;
a82cbf07
YX
1165 buf = buf + ZS_HANDLE_SIZE;
1166 size -= ZS_HANDLE_SIZE;
1167 off += ZS_HANDLE_SIZE;
2e40e163 1168
5f601902
SJ
1169 sizes[0] = PAGE_SIZE - off;
1170 sizes[1] = size - sizes[0];
1171
1172 /* copy per-cpu buffer to object */
1173 addr = kmap_atomic(pages[0]);
1174 memcpy(addr + off, buf, sizes[0]);
1175 kunmap_atomic(addr);
1176 addr = kmap_atomic(pages[1]);
1177 memcpy(addr, buf + sizes[0], sizes[1]);
1178 kunmap_atomic(addr);
f553646a
SJ
1179
1180out:
1181 /* enable page faults to match kunmap_atomic() return conditions */
1182 pagefault_enable();
5f601902 1183}
61989a80 1184
215c89d0 1185static int zs_cpu_prepare(unsigned int cpu)
61989a80 1186{
61989a80
NG
1187 struct mapping_area *area;
1188
215c89d0
SAS
1189 area = &per_cpu(zs_map_area, cpu);
1190 return __zs_cpu_up(area);
61989a80
NG
1191}
1192
215c89d0 1193static int zs_cpu_dead(unsigned int cpu)
61989a80 1194{
215c89d0 1195 struct mapping_area *area;
40f9fb8c 1196
215c89d0
SAS
1197 area = &per_cpu(zs_map_area, cpu);
1198 __zs_cpu_down(area);
1199 return 0;
b1b00a5b
SS
1200}
1201
64d90465
GM
1202static bool can_merge(struct size_class *prev, int pages_per_zspage,
1203 int objs_per_zspage)
9eec4cd5 1204{
64d90465
GM
1205 if (prev->pages_per_zspage == pages_per_zspage &&
1206 prev->objs_per_zspage == objs_per_zspage)
1207 return true;
9eec4cd5 1208
64d90465 1209 return false;
9eec4cd5
JK
1210}
1211
3783689a 1212static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1213{
3783689a 1214 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1215}
1216
66cdef66
GM
1217unsigned long zs_get_total_pages(struct zs_pool *pool)
1218{
1219 return atomic_long_read(&pool->pages_allocated);
1220}
1221EXPORT_SYMBOL_GPL(zs_get_total_pages);
1222
4bbc0bc0 1223/**
66cdef66
GM
1224 * zs_map_object - get address of allocated object from handle.
1225 * @pool: pool from which the object was allocated
1226 * @handle: handle returned from zs_malloc
f0953a1b 1227 * @mm: mapping mode to use
4bbc0bc0 1228 *
66cdef66
GM
1229 * Before using an object allocated from zs_malloc, it must be mapped using
1230 * this function. When done with the object, it must be unmapped using
1231 * zs_unmap_object.
4bbc0bc0 1232 *
66cdef66
GM
1233 * Only one object can be mapped per cpu at a time. There is no protection
1234 * against nested mappings.
1235 *
1236 * This function returns with preemption and page faults disabled.
4bbc0bc0 1237 */
66cdef66
GM
1238void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1239 enum zs_mapmode mm)
61989a80 1240{
3783689a 1241 struct zspage *zspage;
66cdef66 1242 struct page *page;
bfd093f5
MK
1243 unsigned long obj, off;
1244 unsigned int obj_idx;
61989a80 1245
66cdef66
GM
1246 struct size_class *class;
1247 struct mapping_area *area;
1248 struct page *pages[2];
2e40e163 1249 void *ret;
61989a80 1250
9eec4cd5 1251 /*
66cdef66
GM
1252 * Because we use per-cpu mapping areas shared among the
1253 * pools/users, we can't allow mapping in interrupt context
1254 * because it can corrupt another users mappings.
9eec4cd5 1255 */
1aedcafb 1256 BUG_ON(in_interrupt());
61989a80 1257
b475d42d
MK
1258 /* It guarantees it can get zspage from handle safely */
1259 read_lock(&pool->migrate_lock);
2e40e163
MK
1260 obj = handle_to_obj(handle);
1261 obj_to_location(obj, &page, &obj_idx);
3783689a 1262 zspage = get_zspage(page);
48b4800a 1263
b475d42d
MK
1264 /*
1265 * migration cannot move any zpages in this zspage. Here, class->lock
1266 * is too heavy since callers would take some time until they calls
1267 * zs_unmap_object API so delegate the locking from class to zspage
1268 * which is smaller granularity.
1269 */
48b4800a 1270 migrate_read_lock(zspage);
b475d42d 1271 read_unlock(&pool->migrate_lock);
48b4800a 1272
67f1c9cd 1273 class = zspage_class(pool, zspage);
bfd093f5 1274 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1275
a3726599
MG
1276 local_lock(&zs_map_area.lock);
1277 area = this_cpu_ptr(&zs_map_area);
66cdef66
GM
1278 area->vm_mm = mm;
1279 if (off + class->size <= PAGE_SIZE) {
1280 /* this object is contained entirely within a page */
1281 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1282 ret = area->vm_addr + off;
1283 goto out;
61989a80
NG
1284 }
1285
66cdef66
GM
1286 /* this object spans two pages */
1287 pages[0] = page;
1288 pages[1] = get_next_page(page);
1289 BUG_ON(!pages[1]);
9eec4cd5 1290
2e40e163
MK
1291 ret = __zs_map_object(area, pages, off, class->size);
1292out:
a41ec880 1293 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1294 ret += ZS_HANDLE_SIZE;
1295
1296 return ret;
61989a80 1297}
66cdef66 1298EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1299
66cdef66 1300void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1301{
3783689a 1302 struct zspage *zspage;
66cdef66 1303 struct page *page;
bfd093f5
MK
1304 unsigned long obj, off;
1305 unsigned int obj_idx;
61989a80 1306
66cdef66
GM
1307 struct size_class *class;
1308 struct mapping_area *area;
9eec4cd5 1309
2e40e163
MK
1310 obj = handle_to_obj(handle);
1311 obj_to_location(obj, &page, &obj_idx);
3783689a 1312 zspage = get_zspage(page);
67f1c9cd 1313 class = zspage_class(pool, zspage);
bfd093f5 1314 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1315
66cdef66
GM
1316 area = this_cpu_ptr(&zs_map_area);
1317 if (off + class->size <= PAGE_SIZE)
1318 kunmap_atomic(area->vm_addr);
1319 else {
1320 struct page *pages[2];
40f9fb8c 1321
66cdef66
GM
1322 pages[0] = page;
1323 pages[1] = get_next_page(page);
1324 BUG_ON(!pages[1]);
1325
1326 __zs_unmap_object(area, pages, off, class->size);
1327 }
a3726599 1328 local_unlock(&zs_map_area.lock);
48b4800a
MK
1329
1330 migrate_read_unlock(zspage);
61989a80 1331}
66cdef66 1332EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1333
010b495e
SS
1334/**
1335 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1336 * zsmalloc &size_class.
1337 * @pool: zsmalloc pool to use
1338 *
1339 * The function returns the size of the first huge class - any object of equal
1340 * or bigger size will be stored in zspage consisting of a single physical
1341 * page.
1342 *
1343 * Context: Any context.
1344 *
1345 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1346 */
1347size_t zs_huge_class_size(struct zs_pool *pool)
1348{
1349 return huge_class_size;
1350}
1351EXPORT_SYMBOL_GPL(zs_huge_class_size);
1352
0a5f079b 1353static unsigned long obj_malloc(struct zs_pool *pool,
3783689a 1354 struct zspage *zspage, unsigned long handle)
c7806261 1355{
bfd093f5 1356 int i, nr_page, offset;
c7806261
MK
1357 unsigned long obj;
1358 struct link_free *link;
0a5f079b 1359 struct size_class *class;
c7806261
MK
1360
1361 struct page *m_page;
bfd093f5 1362 unsigned long m_offset;
c7806261
MK
1363 void *vaddr;
1364
0a5f079b 1365 class = pool->size_class[zspage->class];
312fcae2 1366 handle |= OBJ_ALLOCATED_TAG;
3783689a 1367 obj = get_freeobj(zspage);
bfd093f5
MK
1368
1369 offset = obj * class->size;
1370 nr_page = offset >> PAGE_SHIFT;
1371 m_offset = offset & ~PAGE_MASK;
1372 m_page = get_first_page(zspage);
1373
1374 for (i = 0; i < nr_page; i++)
1375 m_page = get_next_page(m_page);
c7806261
MK
1376
1377 vaddr = kmap_atomic(m_page);
1378 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1379 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
a41ec880 1380 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1381 /* record handle in the header of allocated chunk */
1382 link->handle = handle;
1383 else
3783689a
MK
1384 /* record handle to page->index */
1385 zspage->first_page->index = handle;
1386
c7806261 1387 kunmap_atomic(vaddr);
3783689a 1388 mod_zspage_inuse(zspage, 1);
c7806261 1389
bfd093f5
MK
1390 obj = location_to_obj(m_page, obj);
1391
c7806261
MK
1392 return obj;
1393}
1394
1395
61989a80
NG
1396/**
1397 * zs_malloc - Allocate block of given size from pool.
1398 * @pool: pool to allocate from
1399 * @size: size of block to allocate
fd854463 1400 * @gfp: gfp flags when allocating object
61989a80 1401 *
00a61d86 1402 * On success, handle to the allocated object is returned,
c2344348 1403 * otherwise 0.
61989a80
NG
1404 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1405 */
d0d8da2d 1406unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1407{
2e40e163 1408 unsigned long handle, obj;
61989a80 1409 struct size_class *class;
48b4800a 1410 enum fullness_group newfg;
3783689a 1411 struct zspage *zspage;
61989a80 1412
7b60a685 1413 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1414 return 0;
1415
3783689a 1416 handle = cache_alloc_handle(pool, gfp);
2e40e163 1417 if (!handle)
c2344348 1418 return 0;
61989a80 1419
2e40e163
MK
1420 /* extra space in chunk to keep the handle */
1421 size += ZS_HANDLE_SIZE;
9eec4cd5 1422 class = pool->size_class[get_size_class_index(size)];
61989a80 1423
b475d42d 1424 /* class->lock effectively protects the zpage migration */
61989a80 1425 spin_lock(&class->lock);
3783689a 1426 zspage = find_get_zspage(class);
48b4800a 1427 if (likely(zspage)) {
0a5f079b 1428 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1429 /* Now move the zspage to another fullness group, if required */
1430 fix_fullness_group(class, zspage);
1431 record_obj(handle, obj);
0a5f079b 1432 class_stat_inc(class, OBJ_USED, 1);
61989a80 1433 spin_unlock(&class->lock);
61989a80 1434
48b4800a
MK
1435 return handle;
1436 }
0f050d99 1437
48b4800a
MK
1438 spin_unlock(&class->lock);
1439
1440 zspage = alloc_zspage(pool, class, gfp);
1441 if (!zspage) {
1442 cache_free_handle(pool, handle);
1443 return 0;
61989a80
NG
1444 }
1445
48b4800a 1446 spin_lock(&class->lock);
0a5f079b 1447 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1448 newfg = get_fullness_group(class, zspage);
1449 insert_zspage(class, zspage, newfg);
1450 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1451 record_obj(handle, obj);
48b4800a
MK
1452 atomic_long_add(class->pages_per_zspage,
1453 &pool->pages_allocated);
3828a764 1454 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
0a5f079b 1455 class_stat_inc(class, OBJ_USED, 1);
48b4800a
MK
1456
1457 /* We completely set up zspage so mark them as movable */
1458 SetZsPageMovable(pool, zspage);
61989a80
NG
1459 spin_unlock(&class->lock);
1460
2e40e163 1461 return handle;
61989a80
NG
1462}
1463EXPORT_SYMBOL_GPL(zs_malloc);
1464
0a5f079b 1465static void obj_free(int class_size, unsigned long obj)
61989a80
NG
1466{
1467 struct link_free *link;
3783689a
MK
1468 struct zspage *zspage;
1469 struct page *f_page;
bfd093f5
MK
1470 unsigned long f_offset;
1471 unsigned int f_objidx;
af4ee5e9 1472 void *vaddr;
61989a80 1473
2e40e163 1474 obj_to_location(obj, &f_page, &f_objidx);
0a5f079b 1475 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
3783689a 1476 zspage = get_zspage(f_page);
61989a80 1477
c7806261 1478 vaddr = kmap_atomic(f_page);
61989a80
NG
1479
1480 /* Insert this object in containing zspage's freelist */
af4ee5e9 1481 link = (struct link_free *)(vaddr + f_offset);
a41ec880
MK
1482 if (likely(!ZsHugePage(zspage)))
1483 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1484 else
1485 f_page->index = 0;
af4ee5e9 1486 kunmap_atomic(vaddr);
bfd093f5 1487 set_freeobj(zspage, f_objidx);
3783689a 1488 mod_zspage_inuse(zspage, -1);
c7806261
MK
1489}
1490
1491void zs_free(struct zs_pool *pool, unsigned long handle)
1492{
3783689a
MK
1493 struct zspage *zspage;
1494 struct page *f_page;
bfd093f5 1495 unsigned long obj;
c7806261
MK
1496 struct size_class *class;
1497 enum fullness_group fullness;
1498
1499 if (unlikely(!handle))
1500 return;
1501
b475d42d
MK
1502 /*
1503 * The pool->migrate_lock protects the race with zpage's migration
1504 * so it's safe to get the page from handle.
1505 */
1506 read_lock(&pool->migrate_lock);
c7806261 1507 obj = handle_to_obj(handle);
67f1c9cd 1508 obj_to_page(obj, &f_page);
3783689a 1509 zspage = get_zspage(f_page);
67f1c9cd 1510 class = zspage_class(pool, zspage);
c7806261 1511 spin_lock(&class->lock);
b475d42d
MK
1512 read_unlock(&pool->migrate_lock);
1513
0a5f079b
MK
1514 obj_free(class->size, obj);
1515 class_stat_dec(class, OBJ_USED, 1);
3783689a 1516 fullness = fix_fullness_group(class, zspage);
b475d42d 1517 if (fullness != ZS_EMPTY)
48b4800a 1518 goto out;
48b4800a 1519
c4549b87 1520 free_zspage(pool, class, zspage);
48b4800a 1521out:
61989a80 1522 spin_unlock(&class->lock);
3783689a 1523 cache_free_handle(pool, handle);
312fcae2
MK
1524}
1525EXPORT_SYMBOL_GPL(zs_free);
1526
251cbb95
MK
1527static void zs_object_copy(struct size_class *class, unsigned long dst,
1528 unsigned long src)
312fcae2
MK
1529{
1530 struct page *s_page, *d_page;
bfd093f5 1531 unsigned int s_objidx, d_objidx;
312fcae2
MK
1532 unsigned long s_off, d_off;
1533 void *s_addr, *d_addr;
1534 int s_size, d_size, size;
1535 int written = 0;
1536
1537 s_size = d_size = class->size;
1538
1539 obj_to_location(src, &s_page, &s_objidx);
1540 obj_to_location(dst, &d_page, &d_objidx);
1541
bfd093f5
MK
1542 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1543 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1544
1545 if (s_off + class->size > PAGE_SIZE)
1546 s_size = PAGE_SIZE - s_off;
1547
1548 if (d_off + class->size > PAGE_SIZE)
1549 d_size = PAGE_SIZE - d_off;
1550
1551 s_addr = kmap_atomic(s_page);
1552 d_addr = kmap_atomic(d_page);
1553
1554 while (1) {
1555 size = min(s_size, d_size);
1556 memcpy(d_addr + d_off, s_addr + s_off, size);
1557 written += size;
1558
1559 if (written == class->size)
1560 break;
1561
495819ea
SS
1562 s_off += size;
1563 s_size -= size;
1564 d_off += size;
1565 d_size -= size;
1566
1567 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1568 kunmap_atomic(d_addr);
1569 kunmap_atomic(s_addr);
1570 s_page = get_next_page(s_page);
312fcae2
MK
1571 s_addr = kmap_atomic(s_page);
1572 d_addr = kmap_atomic(d_page);
1573 s_size = class->size - written;
1574 s_off = 0;
312fcae2
MK
1575 }
1576
495819ea 1577 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1578 kunmap_atomic(d_addr);
1579 d_page = get_next_page(d_page);
312fcae2
MK
1580 d_addr = kmap_atomic(d_page);
1581 d_size = class->size - written;
1582 d_off = 0;
312fcae2
MK
1583 }
1584 }
1585
1586 kunmap_atomic(d_addr);
1587 kunmap_atomic(s_addr);
1588}
1589
1590/*
1591 * Find alloced object in zspage from index object and
1592 * return handle.
1593 */
251cbb95 1594static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1595 struct page *page, int *obj_idx)
312fcae2 1596{
312fcae2 1597 int offset = 0;
cf675acb 1598 int index = *obj_idx;
312fcae2
MK
1599 unsigned long handle = 0;
1600 void *addr = kmap_atomic(page);
1601
3783689a 1602 offset = get_first_obj_offset(page);
312fcae2
MK
1603 offset += class->size * index;
1604
1605 while (offset < PAGE_SIZE) {
b475d42d
MK
1606 if (obj_allocated(page, addr + offset, &handle))
1607 break;
312fcae2
MK
1608
1609 offset += class->size;
1610 index++;
1611 }
1612
1613 kunmap_atomic(addr);
cf675acb
GM
1614
1615 *obj_idx = index;
1616
312fcae2
MK
1617 return handle;
1618}
1619
1620struct zs_compact_control {
3783689a 1621 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1622 struct page *s_page;
1623 /* Destination page for migration which should be a first page
1624 * of zspage. */
1625 struct page *d_page;
1626 /* Starting object index within @s_page which used for live object
1627 * in the subpage. */
41b88e14 1628 int obj_idx;
312fcae2
MK
1629};
1630
1631static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1632 struct zs_compact_control *cc)
1633{
1634 unsigned long used_obj, free_obj;
1635 unsigned long handle;
1636 struct page *s_page = cc->s_page;
1637 struct page *d_page = cc->d_page;
41b88e14 1638 int obj_idx = cc->obj_idx;
312fcae2
MK
1639 int ret = 0;
1640
1641 while (1) {
cf675acb 1642 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1643 if (!handle) {
1644 s_page = get_next_page(s_page);
1645 if (!s_page)
1646 break;
41b88e14 1647 obj_idx = 0;
312fcae2
MK
1648 continue;
1649 }
1650
1651 /* Stop if there is no more space */
3783689a 1652 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1653 ret = -ENOMEM;
1654 break;
1655 }
1656
1657 used_obj = handle_to_obj(handle);
0a5f079b 1658 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
251cbb95 1659 zs_object_copy(class, free_obj, used_obj);
41b88e14 1660 obj_idx++;
312fcae2 1661 record_obj(handle, free_obj);
0a5f079b 1662 obj_free(class->size, used_obj);
312fcae2
MK
1663 }
1664
1665 /* Remember last position in this iteration */
1666 cc->s_page = s_page;
41b88e14 1667 cc->obj_idx = obj_idx;
312fcae2
MK
1668
1669 return ret;
1670}
1671
3783689a 1672static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1673{
1674 int i;
3783689a
MK
1675 struct zspage *zspage;
1676 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1677
3783689a
MK
1678 if (!source) {
1679 fg[0] = ZS_ALMOST_FULL;
1680 fg[1] = ZS_ALMOST_EMPTY;
1681 }
1682
1683 for (i = 0; i < 2; i++) {
1684 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1685 struct zspage, list);
1686 if (zspage) {
1687 remove_zspage(class, zspage, fg[i]);
1688 return zspage;
312fcae2
MK
1689 }
1690 }
1691
3783689a 1692 return zspage;
312fcae2
MK
1693}
1694
860c707d 1695/*
3783689a 1696 * putback_zspage - add @zspage into right class's fullness list
860c707d 1697 * @class: destination class
3783689a 1698 * @zspage: target page
860c707d 1699 *
3783689a 1700 * Return @zspage's fullness_group
860c707d 1701 */
4aa409ca 1702static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1703 struct zspage *zspage)
312fcae2 1704{
312fcae2
MK
1705 enum fullness_group fullness;
1706
3783689a
MK
1707 fullness = get_fullness_group(class, zspage);
1708 insert_zspage(class, zspage, fullness);
1709 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1710
860c707d 1711 return fullness;
61989a80 1712}
312fcae2 1713
48b4800a 1714#ifdef CONFIG_COMPACTION
4d0a5402
CIK
1715/*
1716 * To prevent zspage destroy during migration, zspage freeing should
1717 * hold locks of all pages in the zspage.
1718 */
1719static void lock_zspage(struct zspage *zspage)
1720{
2505a981 1721 struct page *curr_page, *page;
4d0a5402 1722
2505a981
SA
1723 /*
1724 * Pages we haven't locked yet can be migrated off the list while we're
1725 * trying to lock them, so we need to be careful and only attempt to
1726 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1727 * may no longer belong to the zspage. This means that we may wait for
1728 * the wrong page to unlock, so we must take a reference to the page
1729 * prior to waiting for it to unlock outside migrate_read_lock().
1730 */
1731 while (1) {
1732 migrate_read_lock(zspage);
1733 page = get_first_page(zspage);
1734 if (trylock_page(page))
1735 break;
1736 get_page(page);
1737 migrate_read_unlock(zspage);
1738 wait_on_page_locked(page);
1739 put_page(page);
1740 }
1741
1742 curr_page = page;
1743 while ((page = get_next_page(curr_page))) {
1744 if (trylock_page(page)) {
1745 curr_page = page;
1746 } else {
1747 get_page(page);
1748 migrate_read_unlock(zspage);
1749 wait_on_page_locked(page);
1750 put_page(page);
1751 migrate_read_lock(zspage);
1752 }
1753 }
1754 migrate_read_unlock(zspage);
4d0a5402
CIK
1755}
1756
8e9231f8 1757static int zs_init_fs_context(struct fs_context *fc)
48b4800a 1758{
8e9231f8 1759 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
48b4800a
MK
1760}
1761
1762static struct file_system_type zsmalloc_fs = {
1763 .name = "zsmalloc",
8e9231f8 1764 .init_fs_context = zs_init_fs_context,
48b4800a
MK
1765 .kill_sb = kill_anon_super,
1766};
1767
1768static int zsmalloc_mount(void)
1769{
1770 int ret = 0;
1771
1772 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1773 if (IS_ERR(zsmalloc_mnt))
1774 ret = PTR_ERR(zsmalloc_mnt);
1775
1776 return ret;
1777}
1778
1779static void zsmalloc_unmount(void)
1780{
1781 kern_unmount(zsmalloc_mnt);
1782}
1783
1784static void migrate_lock_init(struct zspage *zspage)
1785{
1786 rwlock_init(&zspage->lock);
1787}
1788
cfc451cf 1789static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1790{
1791 read_lock(&zspage->lock);
1792}
1793
8a374ccc 1794static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1795{
1796 read_unlock(&zspage->lock);
1797}
1798
1799static void migrate_write_lock(struct zspage *zspage)
1800{
1801 write_lock(&zspage->lock);
1802}
1803
b475d42d
MK
1804static void migrate_write_lock_nested(struct zspage *zspage)
1805{
1806 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1807}
1808
48b4800a
MK
1809static void migrate_write_unlock(struct zspage *zspage)
1810{
1811 write_unlock(&zspage->lock);
1812}
1813
1814/* Number of isolated subpage for *page migration* in this zspage */
1815static void inc_zspage_isolation(struct zspage *zspage)
1816{
1817 zspage->isolated++;
1818}
1819
1820static void dec_zspage_isolation(struct zspage *zspage)
1821{
c4549b87 1822 VM_BUG_ON(zspage->isolated == 0);
48b4800a
MK
1823 zspage->isolated--;
1824}
1825
1826static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1827 struct page *newpage, struct page *oldpage)
1828{
1829 struct page *page;
1830 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1831 int idx = 0;
1832
1833 page = get_first_page(zspage);
1834 do {
1835 if (page == oldpage)
1836 pages[idx] = newpage;
1837 else
1838 pages[idx] = page;
1839 idx++;
1840 } while ((page = get_next_page(page)) != NULL);
1841
1842 create_page_chain(class, zspage, pages);
1843 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
a41ec880 1844 if (unlikely(ZsHugePage(zspage)))
48b4800a
MK
1845 newpage->index = oldpage->index;
1846 __SetPageMovable(newpage, page_mapping(oldpage));
1847}
1848
4d0a5402 1849static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a 1850{
48b4800a 1851 struct zspage *zspage;
48b4800a
MK
1852
1853 /*
1854 * Page is locked so zspage couldn't be destroyed. For detail, look at
1855 * lock_zspage in free_zspage.
1856 */
1857 VM_BUG_ON_PAGE(!PageMovable(page), page);
1858 VM_BUG_ON_PAGE(PageIsolated(page), page);
1859
1860 zspage = get_zspage(page);
c4549b87 1861 migrate_write_lock(zspage);
48b4800a 1862 inc_zspage_isolation(zspage);
c4549b87 1863 migrate_write_unlock(zspage);
48b4800a
MK
1864
1865 return true;
1866}
1867
4d0a5402 1868static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
48b4800a
MK
1869 struct page *page, enum migrate_mode mode)
1870{
1871 struct zs_pool *pool;
1872 struct size_class *class;
48b4800a
MK
1873 struct zspage *zspage;
1874 struct page *dummy;
1875 void *s_addr, *d_addr, *addr;
b475d42d 1876 int offset;
3ae92ac2 1877 unsigned long handle;
48b4800a
MK
1878 unsigned long old_obj, new_obj;
1879 unsigned int obj_idx;
48b4800a 1880
2916ecc0
JG
1881 /*
1882 * We cannot support the _NO_COPY case here, because copy needs to
1883 * happen under the zs lock, which does not work with
1884 * MIGRATE_SYNC_NO_COPY workflow.
1885 */
1886 if (mode == MIGRATE_SYNC_NO_COPY)
1887 return -EINVAL;
1888
48b4800a
MK
1889 VM_BUG_ON_PAGE(!PageMovable(page), page);
1890 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1891
48b4800a 1892 pool = mapping->private_data;
b475d42d
MK
1893
1894 /*
1895 * The pool migrate_lock protects the race between zpage migration
1896 * and zs_free.
1897 */
1898 write_lock(&pool->migrate_lock);
1899 zspage = get_zspage(page);
67f1c9cd 1900 class = zspage_class(pool, zspage);
48b4800a 1901
b475d42d
MK
1902 /*
1903 * the class lock protects zpage alloc/free in the zspage.
1904 */
48b4800a 1905 spin_lock(&class->lock);
b475d42d
MK
1906 /* the migrate_write_lock protects zpage access via zs_map_object */
1907 migrate_write_lock(zspage);
48b4800a 1908
b475d42d 1909 offset = get_first_obj_offset(page);
48b4800a 1910 s_addr = kmap_atomic(page);
48b4800a
MK
1911
1912 /*
1913 * Here, any user cannot access all objects in the zspage so let's move.
1914 */
1915 d_addr = kmap_atomic(newpage);
1916 memcpy(d_addr, s_addr, PAGE_SIZE);
1917 kunmap_atomic(d_addr);
1918
b475d42d 1919 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
48b4800a 1920 addr += class->size) {
3ae92ac2 1921 if (obj_allocated(page, addr, &handle)) {
48b4800a
MK
1922
1923 old_obj = handle_to_obj(handle);
1924 obj_to_location(old_obj, &dummy, &obj_idx);
1925 new_obj = (unsigned long)location_to_obj(newpage,
1926 obj_idx);
48b4800a
MK
1927 record_obj(handle, new_obj);
1928 }
1929 }
b475d42d 1930 kunmap_atomic(s_addr);
48b4800a
MK
1931
1932 replace_sub_page(class, zspage, newpage, page);
b475d42d
MK
1933 /*
1934 * Since we complete the data copy and set up new zspage structure,
1935 * it's okay to release migration_lock.
1936 */
1937 write_unlock(&pool->migrate_lock);
1938 spin_unlock(&class->lock);
48b4800a 1939 dec_zspage_isolation(zspage);
b475d42d 1940 migrate_write_unlock(zspage);
48b4800a 1941
b475d42d 1942 get_page(newpage);
ac8f05da
CM
1943 if (page_zone(newpage) != page_zone(page)) {
1944 dec_zone_page_state(page, NR_ZSPAGES);
1945 inc_zone_page_state(newpage, NR_ZSPAGES);
1946 }
1947
48b4800a
MK
1948 reset_page(page);
1949 put_page(page);
48b4800a 1950
b475d42d 1951 return MIGRATEPAGE_SUCCESS;
48b4800a
MK
1952}
1953
4d0a5402 1954static void zs_page_putback(struct page *page)
48b4800a 1955{
48b4800a
MK
1956 struct zspage *zspage;
1957
1958 VM_BUG_ON_PAGE(!PageMovable(page), page);
1959 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1960
1961 zspage = get_zspage(page);
c4549b87 1962 migrate_write_lock(zspage);
48b4800a 1963 dec_zspage_isolation(zspage);
c4549b87 1964 migrate_write_unlock(zspage);
48b4800a
MK
1965}
1966
4d0a5402 1967static const struct address_space_operations zsmalloc_aops = {
48b4800a
MK
1968 .isolate_page = zs_page_isolate,
1969 .migratepage = zs_page_migrate,
1970 .putback_page = zs_page_putback,
1971};
1972
1973static int zs_register_migration(struct zs_pool *pool)
1974{
1975 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
1976 if (IS_ERR(pool->inode)) {
1977 pool->inode = NULL;
1978 return 1;
1979 }
1980
1981 pool->inode->i_mapping->private_data = pool;
1982 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
1983 return 0;
1984}
1985
1986static void zs_unregister_migration(struct zs_pool *pool)
1987{
1988 flush_work(&pool->free_work);
c3491eca 1989 iput(pool->inode);
48b4800a
MK
1990}
1991
1992/*
1993 * Caller should hold page_lock of all pages in the zspage
1994 * In here, we cannot use zspage meta data.
1995 */
1996static void async_free_zspage(struct work_struct *work)
1997{
1998 int i;
1999 struct size_class *class;
2000 unsigned int class_idx;
2001 enum fullness_group fullness;
2002 struct zspage *zspage, *tmp;
2003 LIST_HEAD(free_pages);
2004 struct zs_pool *pool = container_of(work, struct zs_pool,
2005 free_work);
2006
cf8e0fed 2007 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2008 class = pool->size_class[i];
2009 if (class->index != i)
2010 continue;
2011
2012 spin_lock(&class->lock);
2013 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2014 spin_unlock(&class->lock);
2015 }
2016
48b4800a
MK
2017 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2018 list_del(&zspage->list);
2019 lock_zspage(zspage);
2020
2021 get_zspage_mapping(zspage, &class_idx, &fullness);
2022 VM_BUG_ON(fullness != ZS_EMPTY);
2023 class = pool->size_class[class_idx];
2024 spin_lock(&class->lock);
33848337 2025 __free_zspage(pool, class, zspage);
48b4800a
MK
2026 spin_unlock(&class->lock);
2027 }
2028};
2029
2030static void kick_deferred_free(struct zs_pool *pool)
2031{
2032 schedule_work(&pool->free_work);
2033}
2034
2035static void init_deferred_free(struct zs_pool *pool)
2036{
2037 INIT_WORK(&pool->free_work, async_free_zspage);
2038}
2039
2040static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2041{
2042 struct page *page = get_first_page(zspage);
2043
2044 do {
2045 WARN_ON(!trylock_page(page));
2046 __SetPageMovable(page, pool->inode->i_mapping);
2047 unlock_page(page);
2048 } while ((page = get_next_page(page)) != NULL);
2049}
2050#endif
2051
04f05909
SS
2052/*
2053 *
2054 * Based on the number of unused allocated objects calculate
2055 * and return the number of pages that we can free.
04f05909
SS
2056 */
2057static unsigned long zs_can_compact(struct size_class *class)
2058{
2059 unsigned long obj_wasted;
44f43e99
SS
2060 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2061 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2062
44f43e99
SS
2063 if (obj_allocated <= obj_used)
2064 return 0;
04f05909 2065
44f43e99 2066 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2067 obj_wasted /= class->objs_per_zspage;
04f05909 2068
6cbf16b3 2069 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2070}
2071
23959281
RY
2072static unsigned long __zs_compact(struct zs_pool *pool,
2073 struct size_class *class)
312fcae2 2074{
312fcae2 2075 struct zs_compact_control cc;
3783689a
MK
2076 struct zspage *src_zspage;
2077 struct zspage *dst_zspage = NULL;
23959281 2078 unsigned long pages_freed = 0;
312fcae2 2079
b475d42d
MK
2080 /* protect the race between zpage migration and zs_free */
2081 write_lock(&pool->migrate_lock);
2082 /* protect zpage allocation/free */
312fcae2 2083 spin_lock(&class->lock);
3783689a 2084 while ((src_zspage = isolate_zspage(class, true))) {
b475d42d
MK
2085 /* protect someone accessing the zspage(i.e., zs_map_object) */
2086 migrate_write_lock(src_zspage);
312fcae2 2087
04f05909
SS
2088 if (!zs_can_compact(class))
2089 break;
2090
41b88e14 2091 cc.obj_idx = 0;
48b4800a 2092 cc.s_page = get_first_page(src_zspage);
312fcae2 2093
3783689a 2094 while ((dst_zspage = isolate_zspage(class, false))) {
b475d42d
MK
2095 migrate_write_lock_nested(dst_zspage);
2096
48b4800a 2097 cc.d_page = get_first_page(dst_zspage);
312fcae2 2098 /*
0dc63d48
SS
2099 * If there is no more space in dst_page, resched
2100 * and see if anyone had allocated another zspage.
312fcae2
MK
2101 */
2102 if (!migrate_zspage(pool, class, &cc))
2103 break;
2104
4aa409ca 2105 putback_zspage(class, dst_zspage);
b475d42d
MK
2106 migrate_write_unlock(dst_zspage);
2107 dst_zspage = NULL;
2108 if (rwlock_is_contended(&pool->migrate_lock))
2109 break;
312fcae2
MK
2110 }
2111
2112 /* Stop if we couldn't find slot */
3783689a 2113 if (dst_zspage == NULL)
312fcae2
MK
2114 break;
2115
4aa409ca 2116 putback_zspage(class, dst_zspage);
b475d42d
MK
2117 migrate_write_unlock(dst_zspage);
2118
4aa409ca 2119 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
b475d42d 2120 migrate_write_unlock(src_zspage);
48b4800a 2121 free_zspage(pool, class, src_zspage);
23959281 2122 pages_freed += class->pages_per_zspage;
b475d42d
MK
2123 } else
2124 migrate_write_unlock(src_zspage);
312fcae2 2125 spin_unlock(&class->lock);
b475d42d 2126 write_unlock(&pool->migrate_lock);
312fcae2 2127 cond_resched();
b475d42d 2128 write_lock(&pool->migrate_lock);
312fcae2
MK
2129 spin_lock(&class->lock);
2130 }
2131
b475d42d 2132 if (src_zspage) {
4aa409ca 2133 putback_zspage(class, src_zspage);
b475d42d
MK
2134 migrate_write_unlock(src_zspage);
2135 }
312fcae2 2136
7d3f3938 2137 spin_unlock(&class->lock);
b475d42d 2138 write_unlock(&pool->migrate_lock);
23959281
RY
2139
2140 return pages_freed;
312fcae2
MK
2141}
2142
2143unsigned long zs_compact(struct zs_pool *pool)
2144{
2145 int i;
312fcae2 2146 struct size_class *class;
23959281 2147 unsigned long pages_freed = 0;
312fcae2 2148
cf8e0fed 2149 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2150 class = pool->size_class[i];
2151 if (!class)
2152 continue;
2153 if (class->index != i)
2154 continue;
23959281 2155 pages_freed += __zs_compact(pool, class);
312fcae2 2156 }
23959281 2157 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
312fcae2 2158
23959281 2159 return pages_freed;
312fcae2
MK
2160}
2161EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2162
7d3f3938
SS
2163void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2164{
2165 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2166}
2167EXPORT_SYMBOL_GPL(zs_pool_stats);
2168
ab9d306d
SS
2169static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2170 struct shrink_control *sc)
2171{
2172 unsigned long pages_freed;
2173 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2174 shrinker);
2175
ab9d306d
SS
2176 /*
2177 * Compact classes and calculate compaction delta.
2178 * Can run concurrently with a manually triggered
2179 * (by user) compaction.
2180 */
23959281 2181 pages_freed = zs_compact(pool);
ab9d306d
SS
2182
2183 return pages_freed ? pages_freed : SHRINK_STOP;
2184}
2185
2186static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2187 struct shrink_control *sc)
2188{
2189 int i;
2190 struct size_class *class;
2191 unsigned long pages_to_free = 0;
2192 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2193 shrinker);
2194
cf8e0fed 2195 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2196 class = pool->size_class[i];
2197 if (!class)
2198 continue;
2199 if (class->index != i)
2200 continue;
2201
ab9d306d 2202 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2203 }
2204
2205 return pages_to_free;
2206}
2207
2208static void zs_unregister_shrinker(struct zs_pool *pool)
2209{
93144ca3 2210 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2211}
2212
2213static int zs_register_shrinker(struct zs_pool *pool)
2214{
2215 pool->shrinker.scan_objects = zs_shrinker_scan;
2216 pool->shrinker.count_objects = zs_shrinker_count;
2217 pool->shrinker.batch = 0;
2218 pool->shrinker.seeks = DEFAULT_SEEKS;
2219
2220 return register_shrinker(&pool->shrinker);
2221}
2222
00a61d86 2223/**
66cdef66 2224 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2225 * @name: pool name to be created
166cfda7 2226 *
66cdef66
GM
2227 * This function must be called before anything when using
2228 * the zsmalloc allocator.
166cfda7 2229 *
66cdef66
GM
2230 * On success, a pointer to the newly created pool is returned,
2231 * otherwise NULL.
396b7fd6 2232 */
d0d8da2d 2233struct zs_pool *zs_create_pool(const char *name)
61989a80 2234{
66cdef66
GM
2235 int i;
2236 struct zs_pool *pool;
2237 struct size_class *prev_class = NULL;
61989a80 2238
66cdef66
GM
2239 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2240 if (!pool)
2241 return NULL;
61989a80 2242
48b4800a 2243 init_deferred_free(pool);
b475d42d 2244 rwlock_init(&pool->migrate_lock);
61989a80 2245
2e40e163
MK
2246 pool->name = kstrdup(name, GFP_KERNEL);
2247 if (!pool->name)
2248 goto err;
2249
3783689a 2250 if (create_cache(pool))
2e40e163
MK
2251 goto err;
2252
c60369f0 2253 /*
399d8eeb 2254 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2255 * for merging should be larger or equal to current size.
c60369f0 2256 */
cf8e0fed 2257 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2258 int size;
2259 int pages_per_zspage;
64d90465 2260 int objs_per_zspage;
66cdef66 2261 struct size_class *class;
3783689a 2262 int fullness = 0;
c60369f0 2263
66cdef66
GM
2264 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2265 if (size > ZS_MAX_ALLOC_SIZE)
2266 size = ZS_MAX_ALLOC_SIZE;
2267 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2268 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2269
010b495e
SS
2270 /*
2271 * We iterate from biggest down to smallest classes,
2272 * so huge_class_size holds the size of the first huge
2273 * class. Any object bigger than or equal to that will
2274 * endup in the huge class.
2275 */
2276 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2277 !huge_class_size) {
2278 huge_class_size = size;
2279 /*
2280 * The object uses ZS_HANDLE_SIZE bytes to store the
2281 * handle. We need to subtract it, because zs_malloc()
2282 * unconditionally adds handle size before it performs
2283 * size class search - so object may be smaller than
2284 * huge class size, yet it still can end up in the huge
2285 * class because it grows by ZS_HANDLE_SIZE extra bytes
2286 * right before class lookup.
2287 */
2288 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2289 }
2290
66cdef66
GM
2291 /*
2292 * size_class is used for normal zsmalloc operation such
2293 * as alloc/free for that size. Although it is natural that we
2294 * have one size_class for each size, there is a chance that we
2295 * can get more memory utilization if we use one size_class for
2296 * many different sizes whose size_class have same
2297 * characteristics. So, we makes size_class point to
2298 * previous size_class if possible.
2299 */
2300 if (prev_class) {
64d90465 2301 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2302 pool->size_class[i] = prev_class;
2303 continue;
2304 }
2305 }
2306
2307 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2308 if (!class)
2309 goto err;
2310
2311 class->size = size;
2312 class->index = i;
2313 class->pages_per_zspage = pages_per_zspage;
64d90465 2314 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2315 spin_lock_init(&class->lock);
2316 pool->size_class[i] = class;
48b4800a
MK
2317 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2318 fullness++)
3783689a 2319 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2320
2321 prev_class = class;
61989a80
NG
2322 }
2323
d34f6157
DS
2324 /* debug only, don't abort if it fails */
2325 zs_pool_stat_create(pool, name);
0f050d99 2326
48b4800a
MK
2327 if (zs_register_migration(pool))
2328 goto err;
2329
ab9d306d 2330 /*
93144ca3
AK
2331 * Not critical since shrinker is only used to trigger internal
2332 * defragmentation of the pool which is pretty optional thing. If
2333 * registration fails we still can use the pool normally and user can
2334 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2335 */
93144ca3
AK
2336 zs_register_shrinker(pool);
2337
66cdef66
GM
2338 return pool;
2339
2340err:
2341 zs_destroy_pool(pool);
2342 return NULL;
61989a80 2343}
66cdef66 2344EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2345
66cdef66 2346void zs_destroy_pool(struct zs_pool *pool)
61989a80 2347{
66cdef66 2348 int i;
61989a80 2349
ab9d306d 2350 zs_unregister_shrinker(pool);
48b4800a 2351 zs_unregister_migration(pool);
0f050d99
GM
2352 zs_pool_stat_destroy(pool);
2353
cf8e0fed 2354 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2355 int fg;
2356 struct size_class *class = pool->size_class[i];
61989a80 2357
66cdef66
GM
2358 if (!class)
2359 continue;
61989a80 2360
66cdef66
GM
2361 if (class->index != i)
2362 continue;
61989a80 2363
48b4800a 2364 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2365 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2366 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2367 class->size, fg);
2368 }
2369 }
2370 kfree(class);
2371 }
f553646a 2372
3783689a 2373 destroy_cache(pool);
0f050d99 2374 kfree(pool->name);
66cdef66
GM
2375 kfree(pool);
2376}
2377EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2378
66cdef66
GM
2379static int __init zs_init(void)
2380{
48b4800a
MK
2381 int ret;
2382
2383 ret = zsmalloc_mount();
2384 if (ret)
2385 goto out;
2386
215c89d0
SAS
2387 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2388 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2389 if (ret)
215c89d0 2390 goto hp_setup_fail;
66cdef66 2391
66cdef66
GM
2392#ifdef CONFIG_ZPOOL
2393 zpool_register_driver(&zs_zpool_driver);
2394#endif
0f050d99 2395
4abaac9b
DS
2396 zs_stat_init();
2397
66cdef66 2398 return 0;
0f050d99 2399
215c89d0 2400hp_setup_fail:
48b4800a
MK
2401 zsmalloc_unmount();
2402out:
0f050d99 2403 return ret;
61989a80 2404}
61989a80 2405
66cdef66 2406static void __exit zs_exit(void)
61989a80 2407{
66cdef66
GM
2408#ifdef CONFIG_ZPOOL
2409 zpool_unregister_driver(&zs_zpool_driver);
2410#endif
48b4800a 2411 zsmalloc_unmount();
215c89d0 2412 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2413
2414 zs_stat_exit();
61989a80 2415}
069f101f
BH
2416
2417module_init(zs_init);
2418module_exit(zs_exit);
2419
2420MODULE_LICENSE("Dual BSD/GPL");
2421MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");