zsmalloc: move migration destination zspage inuse check
[linux-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
ffedd09f 20 * page->index: links together all component pages of a zspage
48b4800a
MK
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
ffedd09f 23 * page->page_type: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
b475d42d
MK
33/*
34 * lock ordering:
35 * page_lock
c0547d0b 36 * pool->lock
b475d42d
MK
37 * zspage->lock
38 */
39
61989a80
NG
40#include <linux/module.h>
41#include <linux/kernel.h>
312fcae2 42#include <linux/sched.h>
61989a80
NG
43#include <linux/bitops.h>
44#include <linux/errno.h>
45#include <linux/highmem.h>
61989a80
NG
46#include <linux/string.h>
47#include <linux/slab.h>
ca5999fd 48#include <linux/pgtable.h>
65fddcfc 49#include <asm/tlbflush.h>
61989a80
NG
50#include <linux/cpumask.h>
51#include <linux/cpu.h>
0cbb613f 52#include <linux/vmalloc.h>
759b26b2 53#include <linux/preempt.h>
0959c63f 54#include <linux/spinlock.h>
93144ca3 55#include <linux/shrinker.h>
0959c63f 56#include <linux/types.h>
0f050d99 57#include <linux/debugfs.h>
bcf1647d 58#include <linux/zsmalloc.h>
c795779d 59#include <linux/zpool.h>
dd4123f3 60#include <linux/migrate.h>
701d6785 61#include <linux/wait.h>
48b4800a 62#include <linux/pagemap.h>
cdc346b3 63#include <linux/fs.h>
a3726599 64#include <linux/local_lock.h>
48b4800a
MK
65
66#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
67
68/*
cb152a1a 69 * This must be power of 2 and greater than or equal to sizeof(link_free).
0959c63f
SJ
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
2e40e163
MK
76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
0959c63f
SJ
78/*
79 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 80 * a single (unsigned long) handle value.
0959c63f 81 *
bfd093f5 82 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
02390b87
KS
87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
88#ifdef MAX_PHYSMEM_BITS
89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90#else
0959c63f
SJ
91/*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
02390b87 95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
96#endif
97#endif
02390b87
KS
98
99#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2 100
312fcae2
MK
101/*
102 * Head in allocated object should have OBJ_ALLOCATED_TAG
103 * to identify the object was allocated or not.
104 * It's okay to add the status bit in the least bit because
105 * header keeps handle which is 4byte-aligned address so we
106 * have room for two bit at least.
107 */
108#define OBJ_ALLOCATED_TAG 1
85b32581 109
85b32581
NP
110#define OBJ_TAG_BITS 1
111#define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
85b32581 112
312fcae2 113#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
114#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
115
a41ec880 116#define HUGE_BITS 1
4c7ac972 117#define FULLNESS_BITS 4
cf8e0fed 118#define CLASS_BITS 8
4ff93b29 119#define ISOLATED_BITS 5
cf8e0fed
JM
120#define MAGIC_VAL_BITS 8
121
0959c63f 122#define MAX(a, b) ((a) >= (b) ? (a) : (b))
4ff93b29
SS
123
124#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
125
0959c63f
SJ
126/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
127#define ZS_MIN_ALLOC_SIZE \
128 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 129/* each chunk includes extra space to keep handle */
7b60a685 130#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
131
132/*
7eb52512 133 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
134 * trader-off here:
135 * - Large number of size classes is potentially wasteful as free page are
136 * spread across these classes
137 * - Small number of size classes causes large internal fragmentation
138 * - Probably its better to use specific size classes (empirically
139 * determined). NOTE: all those class sizes must be set as multiple of
140 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
141 *
142 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
143 * (reason above)
144 */
3783689a 145#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
146#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
147 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 148
4c7ac972
SS
149/*
150 * Pages are distinguished by the ratio of used memory (that is the ratio
151 * of ->inuse objects to all objects that page can store). For example,
152 * INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
153 *
154 * The number of fullness groups is not random. It allows us to keep
155 * difference between the least busy page in the group (minimum permitted
156 * number of ->inuse objects) and the most busy page (maximum permitted
157 * number of ->inuse objects) at a reasonable value.
158 */
0959c63f 159enum fullness_group {
4c7ac972
SS
160 ZS_INUSE_RATIO_0,
161 ZS_INUSE_RATIO_10,
e1807d5d 162 /* NOTE: 8 more fullness groups here */
4c7ac972
SS
163 ZS_INUSE_RATIO_99 = 10,
164 ZS_INUSE_RATIO_100,
165 NR_FULLNESS_GROUPS,
0959c63f
SJ
166};
167
3828a764 168enum class_stat_type {
4c7ac972
SS
169 /* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
170 ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
171 ZS_OBJS_INUSE,
172 NR_CLASS_STAT_TYPES,
0f050d99
GM
173};
174
0f050d99 175struct zs_size_stat {
4c7ac972 176 unsigned long objs[NR_CLASS_STAT_TYPES];
0f050d99
GM
177};
178
57244594
SS
179#ifdef CONFIG_ZSMALLOC_STAT
180static struct dentry *zs_stat_root;
0f050d99
GM
181#endif
182
010b495e 183static size_t huge_class_size;
0959c63f
SJ
184
185struct size_class {
4c7ac972 186 struct list_head fullness_list[NR_FULLNESS_GROUPS];
0959c63f
SJ
187 /*
188 * Size of objects stored in this class. Must be multiple
189 * of ZS_ALIGN.
190 */
191 int size;
1fc6e27d 192 int objs_per_zspage;
7dfa4612
WY
193 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
194 int pages_per_zspage;
48b4800a
MK
195
196 unsigned int index;
197 struct zs_size_stat stats;
0959c63f
SJ
198};
199
200/*
201 * Placed within free objects to form a singly linked list.
3783689a 202 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
203 *
204 * This must be power of 2 and less than or equal to ZS_ALIGN
205 */
206struct link_free {
2e40e163
MK
207 union {
208 /*
bfd093f5 209 * Free object index;
2e40e163
MK
210 * It's valid for non-allocated object
211 */
bfd093f5 212 unsigned long next;
2e40e163
MK
213 /*
214 * Handle of allocated object.
215 */
216 unsigned long handle;
217 };
0959c63f
SJ
218};
219
220struct zs_pool {
6f3526d6 221 const char *name;
0f050d99 222
cf8e0fed 223 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 224 struct kmem_cache *handle_cachep;
3783689a 225 struct kmem_cache *zspage_cachep;
0959c63f 226
13de8933 227 atomic_long_t pages_allocated;
0f050d99 228
7d3f3938 229 struct zs_pool_stats stats;
ab9d306d
SS
230
231 /* Compact classes */
232 struct shrinker shrinker;
93144ca3 233
0f050d99
GM
234#ifdef CONFIG_ZSMALLOC_STAT
235 struct dentry *stat_dentry;
236#endif
48b4800a 237#ifdef CONFIG_COMPACTION
48b4800a
MK
238 struct work_struct free_work;
239#endif
c0547d0b 240 spinlock_t lock;
d2658f20 241 atomic_t compaction_in_progress;
0959c63f 242};
61989a80 243
3783689a
MK
244struct zspage {
245 struct {
a41ec880 246 unsigned int huge:HUGE_BITS;
3783689a 247 unsigned int fullness:FULLNESS_BITS;
85d492f2 248 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
249 unsigned int isolated:ISOLATED_BITS;
250 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
251 };
252 unsigned int inuse;
bfd093f5 253 unsigned int freeobj;
3783689a
MK
254 struct page *first_page;
255 struct list_head list; /* fullness list */
68f2736a 256 struct zs_pool *pool;
48b4800a 257 rwlock_t lock;
3783689a 258};
61989a80 259
f553646a 260struct mapping_area {
a3726599 261 local_lock_t lock;
f553646a 262 char *vm_buf; /* copy buffer for objects that span pages */
f553646a
SJ
263 char *vm_addr; /* address of kmap_atomic()'ed pages */
264 enum zs_mapmode vm_mm; /* mapping mode */
265};
266
a41ec880
MK
267/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
268static void SetZsHugePage(struct zspage *zspage)
269{
270 zspage->huge = 1;
271}
272
273static bool ZsHugePage(struct zspage *zspage)
274{
275 return zspage->huge;
276}
277
48b4800a
MK
278static void migrate_lock_init(struct zspage *zspage);
279static void migrate_read_lock(struct zspage *zspage);
280static void migrate_read_unlock(struct zspage *zspage);
9997bc01
NP
281
282#ifdef CONFIG_COMPACTION
b475d42d
MK
283static void migrate_write_lock(struct zspage *zspage);
284static void migrate_write_lock_nested(struct zspage *zspage);
285static void migrate_write_unlock(struct zspage *zspage);
48b4800a
MK
286static void kick_deferred_free(struct zs_pool *pool);
287static void init_deferred_free(struct zs_pool *pool);
288static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
289#else
b475d42d
MK
290static void migrate_write_lock(struct zspage *zspage) {}
291static void migrate_write_lock_nested(struct zspage *zspage) {}
292static void migrate_write_unlock(struct zspage *zspage) {}
48b4800a
MK
293static void kick_deferred_free(struct zs_pool *pool) {}
294static void init_deferred_free(struct zs_pool *pool) {}
295static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
296#endif
297
3783689a 298static int create_cache(struct zs_pool *pool)
2e40e163
MK
299{
300 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
301 0, 0, NULL);
3783689a
MK
302 if (!pool->handle_cachep)
303 return 1;
304
305 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
306 0, 0, NULL);
307 if (!pool->zspage_cachep) {
308 kmem_cache_destroy(pool->handle_cachep);
309 pool->handle_cachep = NULL;
310 return 1;
311 }
312
313 return 0;
2e40e163
MK
314}
315
3783689a 316static void destroy_cache(struct zs_pool *pool)
2e40e163 317{
cd10add0 318 kmem_cache_destroy(pool->handle_cachep);
3783689a 319 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
320}
321
3783689a 322static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
323{
324 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 325 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
326}
327
3783689a 328static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
329{
330 kmem_cache_free(pool->handle_cachep, (void *)handle);
331}
332
3783689a
MK
333static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
334{
f0231305 335 return kmem_cache_zalloc(pool->zspage_cachep,
48b4800a 336 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 337}
3783689a
MK
338
339static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
340{
341 kmem_cache_free(pool->zspage_cachep, zspage);
342}
343
c0547d0b 344/* pool->lock(which owns the handle) synchronizes races */
2e40e163
MK
345static void record_obj(unsigned long handle, unsigned long obj)
346{
b475d42d 347 *(unsigned long *)handle = obj;
2e40e163
MK
348}
349
c795779d
DS
350/* zpool driver */
351
352#ifdef CONFIG_ZPOOL
353
35499e2b 354static void *zs_zpool_create(const char *name, gfp_t gfp)
c795779d 355{
d0d8da2d
SS
356 /*
357 * Ignore global gfp flags: zs_malloc() may be invoked from
358 * different contexts and its caller must provide a valid
359 * gfp mask.
360 */
b3067742 361 return zs_create_pool(name);
c795779d
DS
362}
363
364static void zs_zpool_destroy(void *pool)
365{
366 zs_destroy_pool(pool);
367}
368
369static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
370 unsigned long *handle)
371{
d0d8da2d 372 *handle = zs_malloc(pool, size, gfp);
c7e6f17b 373
65917b53 374 if (IS_ERR_VALUE(*handle))
c7e6f17b
HZ
375 return PTR_ERR((void *)*handle);
376 return 0;
c795779d
DS
377}
378static void zs_zpool_free(void *pool, unsigned long handle)
379{
380 zs_free(pool, handle);
381}
382
c795779d
DS
383static void *zs_zpool_map(void *pool, unsigned long handle,
384 enum zpool_mapmode mm)
385{
386 enum zs_mapmode zs_mm;
387
388 switch (mm) {
389 case ZPOOL_MM_RO:
390 zs_mm = ZS_MM_RO;
391 break;
392 case ZPOOL_MM_WO:
393 zs_mm = ZS_MM_WO;
394 break;
e4a9bc58 395 case ZPOOL_MM_RW:
c795779d
DS
396 default:
397 zs_mm = ZS_MM_RW;
398 break;
399 }
400
401 return zs_map_object(pool, handle, zs_mm);
402}
403static void zs_zpool_unmap(void *pool, unsigned long handle)
404{
405 zs_unmap_object(pool, handle);
406}
407
408static u64 zs_zpool_total_size(void *pool)
409{
722cdc17 410 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
411}
412
413static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
414 .type = "zsmalloc",
415 .owner = THIS_MODULE,
416 .create = zs_zpool_create,
417 .destroy = zs_zpool_destroy,
418 .malloc_support_movable = true,
419 .malloc = zs_zpool_malloc,
420 .free = zs_zpool_free,
421 .map = zs_zpool_map,
422 .unmap = zs_zpool_unmap,
423 .total_size = zs_zpool_total_size,
c795779d
DS
424};
425
137f8cff 426MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
427#endif /* CONFIG_ZPOOL */
428
61989a80 429/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
a3726599
MG
430static DEFINE_PER_CPU(struct mapping_area, zs_map_area) = {
431 .lock = INIT_LOCAL_LOCK(lock),
432};
61989a80 433
3457f414 434static __maybe_unused int is_first_page(struct page *page)
61989a80 435{
a27545bf 436 return PagePrivate(page);
61989a80
NG
437}
438
c0547d0b 439/* Protected by pool->lock */
3783689a 440static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 441{
3783689a 442 return zspage->inuse;
4f42047b
MK
443}
444
4f42047b 445
3783689a 446static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 447{
3783689a 448 zspage->inuse += val;
4f42047b
MK
449}
450
48b4800a 451static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 452{
48b4800a 453 struct page *first_page = zspage->first_page;
3783689a 454
48b4800a
MK
455 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
456 return first_page;
4f42047b
MK
457}
458
671f2fa8 459static inline unsigned int get_first_obj_offset(struct page *page)
4f42047b 460{
ffedd09f 461 return page->page_type;
48b4800a 462}
3783689a 463
671f2fa8 464static inline void set_first_obj_offset(struct page *page, unsigned int offset)
48b4800a 465{
ffedd09f 466 page->page_type = offset;
4f42047b
MK
467}
468
bfd093f5 469static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 470{
bfd093f5 471 return zspage->freeobj;
4f42047b
MK
472}
473
bfd093f5 474static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 475{
bfd093f5 476 zspage->freeobj = obj;
4f42047b
MK
477}
478
3783689a 479static void get_zspage_mapping(struct zspage *zspage,
4c7ac972
SS
480 unsigned int *class_idx,
481 int *fullness)
61989a80 482{
48b4800a
MK
483 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
484
3783689a
MK
485 *fullness = zspage->fullness;
486 *class_idx = zspage->class;
61989a80
NG
487}
488
67f1c9cd 489static struct size_class *zspage_class(struct zs_pool *pool,
4c7ac972 490 struct zspage *zspage)
67f1c9cd
MK
491{
492 return pool->size_class[zspage->class];
493}
494
3783689a 495static void set_zspage_mapping(struct zspage *zspage,
4c7ac972
SS
496 unsigned int class_idx,
497 int fullness)
61989a80 498{
3783689a
MK
499 zspage->class = class_idx;
500 zspage->fullness = fullness;
61989a80
NG
501}
502
c3e3e88a
NC
503/*
504 * zsmalloc divides the pool into various size classes where each
505 * class maintains a list of zspages where each zspage is divided
506 * into equal sized chunks. Each allocation falls into one of these
507 * classes depending on its size. This function returns index of the
cb152a1a 508 * size class which has chunk size big enough to hold the given size.
c3e3e88a 509 */
61989a80
NG
510static int get_size_class_index(int size)
511{
512 int idx = 0;
513
514 if (likely(size > ZS_MIN_ALLOC_SIZE))
515 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
516 ZS_SIZE_CLASS_DELTA);
517
cf8e0fed 518 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
519}
520
3828a764 521static inline void class_stat_inc(struct size_class *class,
3eb95fea 522 int type, unsigned long cnt)
248ca1b0 523{
48b4800a 524 class->stats.objs[type] += cnt;
248ca1b0
MK
525}
526
3828a764 527static inline void class_stat_dec(struct size_class *class,
3eb95fea 528 int type, unsigned long cnt)
248ca1b0 529{
48b4800a 530 class->stats.objs[type] -= cnt;
248ca1b0
MK
531}
532
4c7ac972 533static inline unsigned long zs_stat_get(struct size_class *class, int type)
248ca1b0 534{
48b4800a 535 return class->stats.objs[type];
248ca1b0
MK
536}
537
57244594
SS
538#ifdef CONFIG_ZSMALLOC_STAT
539
4abaac9b 540static void __init zs_stat_init(void)
248ca1b0 541{
4abaac9b
DS
542 if (!debugfs_initialized()) {
543 pr_warn("debugfs not available, stat dir not created\n");
544 return;
545 }
248ca1b0
MK
546
547 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
548}
549
550static void __exit zs_stat_exit(void)
551{
552 debugfs_remove_recursive(zs_stat_root);
553}
554
1120ed54
SS
555static unsigned long zs_can_compact(struct size_class *class);
556
248ca1b0
MK
557static int zs_stats_size_show(struct seq_file *s, void *v)
558{
e1807d5d 559 int i, fg;
248ca1b0
MK
560 struct zs_pool *pool = s->private;
561 struct size_class *class;
562 int objs_per_zspage;
1120ed54 563 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0 564 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 565 unsigned long total_freeable = 0;
e1807d5d 566 unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
248ca1b0 567
e1807d5d
SS
568 seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
569 "class", "size", "10%", "20%", "30%", "40%",
570 "50%", "60%", "70%", "80%", "90%", "99%", "100%",
248ca1b0 571 "obj_allocated", "obj_used", "pages_used",
1120ed54 572 "pages_per_zspage", "freeable");
248ca1b0 573
cf8e0fed 574 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
4c7ac972 575
248ca1b0
MK
576 class = pool->size_class[i];
577
578 if (class->index != i)
579 continue;
580
c0547d0b 581 spin_lock(&pool->lock);
e1807d5d
SS
582
583 seq_printf(s, " %5u %5u ", i, class->size);
584 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
585 inuse_totals[fg] += zs_stat_get(class, fg);
586 seq_printf(s, "%9lu ", zs_stat_get(class, fg));
587 }
4c7ac972
SS
588
589 obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
590 obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
1120ed54 591 freeable = zs_can_compact(class);
c0547d0b 592 spin_unlock(&pool->lock);
248ca1b0 593
b4fd07a0 594 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
595 pages_used = obj_allocated / objs_per_zspage *
596 class->pages_per_zspage;
597
e1807d5d
SS
598 seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
599 obj_allocated, obj_used, pages_used,
600 class->pages_per_zspage, freeable);
248ca1b0 601
248ca1b0
MK
602 total_objs += obj_allocated;
603 total_used_objs += obj_used;
604 total_pages += pages_used;
1120ed54 605 total_freeable += freeable;
248ca1b0
MK
606 }
607
608 seq_puts(s, "\n");
e1807d5d
SS
609 seq_printf(s, " %5s %5s ", "Total", "");
610
611 for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
612 seq_printf(s, "%9lu ", inuse_totals[fg]);
613
614 seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
615 total_objs, total_used_objs, total_pages, "",
616 total_freeable);
248ca1b0
MK
617
618 return 0;
619}
5ad35093 620DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 621
d34f6157 622static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 623{
4abaac9b
DS
624 if (!zs_stat_root) {
625 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 626 return;
4abaac9b 627 }
248ca1b0 628
4268509a
GKH
629 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
630
631 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
632 &zs_stats_size_fops);
248ca1b0
MK
633}
634
635static void zs_pool_stat_destroy(struct zs_pool *pool)
636{
637 debugfs_remove_recursive(pool->stat_dentry);
638}
639
640#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 641static void __init zs_stat_init(void)
248ca1b0 642{
248ca1b0
MK
643}
644
645static void __exit zs_stat_exit(void)
646{
647}
648
d34f6157 649static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 650{
248ca1b0
MK
651}
652
653static inline void zs_pool_stat_destroy(struct zs_pool *pool)
654{
655}
248ca1b0
MK
656#endif
657
48b4800a 658
c3e3e88a
NC
659/*
660 * For each size class, zspages are divided into different groups
4c7ac972 661 * depending on their usage ratio. This function returns fullness
c3e3e88a
NC
662 * status of the given page.
663 */
4c7ac972 664static int get_fullness_group(struct size_class *class, struct zspage *zspage)
61989a80 665{
4c7ac972 666 int inuse, objs_per_zspage, ratio;
830e4bc5 667
3783689a 668 inuse = get_zspage_inuse(zspage);
1fc6e27d 669 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
670
671 if (inuse == 0)
4c7ac972
SS
672 return ZS_INUSE_RATIO_0;
673 if (inuse == objs_per_zspage)
674 return ZS_INUSE_RATIO_100;
61989a80 675
4c7ac972
SS
676 ratio = 100 * inuse / objs_per_zspage;
677 /*
678 * Take integer division into consideration: a page with one inuse
679 * object out of 127 possible, will end up having 0 usage ratio,
680 * which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
681 */
682 return ratio / 10 + 1;
61989a80
NG
683}
684
c3e3e88a
NC
685/*
686 * Each size class maintains various freelists and zspages are assigned
687 * to one of these freelists based on the number of live objects they
688 * have. This functions inserts the given zspage into the freelist
689 * identified by <class, fullness_group>.
690 */
251cbb95 691static void insert_zspage(struct size_class *class,
3783689a 692 struct zspage *zspage,
4c7ac972 693 int fullness)
61989a80 694{
3828a764 695 class_stat_inc(class, fullness, 1);
a40a71e8 696 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
697}
698
c3e3e88a
NC
699/*
700 * This function removes the given zspage from the freelist identified
701 * by <class, fullness_group>.
702 */
251cbb95 703static void remove_zspage(struct size_class *class,
3783689a 704 struct zspage *zspage,
4c7ac972 705 int fullness)
61989a80 706{
3783689a 707 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
61989a80 708
3783689a 709 list_del_init(&zspage->list);
3828a764 710 class_stat_dec(class, fullness, 1);
61989a80
NG
711}
712
c3e3e88a
NC
713/*
714 * Each size class maintains zspages in different fullness groups depending
715 * on the number of live objects they contain. When allocating or freeing
4c7ac972
SS
716 * objects, the fullness status of the page can change, for instance, from
717 * INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
718 * checks if such a status change has occurred for the given page and
719 * accordingly moves the page from the list of the old fullness group to that
720 * of the new fullness group.
c3e3e88a 721 */
4c7ac972 722static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
61989a80
NG
723{
724 int class_idx;
4c7ac972 725 int currfg, newfg;
61989a80 726
3783689a
MK
727 get_zspage_mapping(zspage, &class_idx, &currfg);
728 newfg = get_fullness_group(class, zspage);
61989a80
NG
729 if (newfg == currfg)
730 goto out;
731
c4549b87
MK
732 remove_zspage(class, zspage, currfg);
733 insert_zspage(class, zspage, newfg);
3783689a 734 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
735out:
736 return newfg;
737}
738
3783689a 739static struct zspage *get_zspage(struct page *page)
61989a80 740{
a6c5e0f7 741 struct zspage *zspage = (struct zspage *)page_private(page);
48b4800a
MK
742
743 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
744 return zspage;
61989a80
NG
745}
746
747static struct page *get_next_page(struct page *page)
748{
a41ec880
MK
749 struct zspage *zspage = get_zspage(page);
750
751 if (unlikely(ZsHugePage(zspage)))
48b4800a
MK
752 return NULL;
753
ffedd09f 754 return (struct page *)page->index;
61989a80
NG
755}
756
bfd093f5
MK
757/**
758 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 759 * @obj: the encoded object value
bfd093f5
MK
760 * @page: page object resides in zspage
761 * @obj_idx: object index
67296874 762 */
bfd093f5
MK
763static void obj_to_location(unsigned long obj, struct page **page,
764 unsigned int *obj_idx)
61989a80 765{
bfd093f5
MK
766 obj >>= OBJ_TAG_BITS;
767 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
768 *obj_idx = (obj & OBJ_INDEX_MASK);
769}
61989a80 770
67f1c9cd
MK
771static void obj_to_page(unsigned long obj, struct page **page)
772{
773 obj >>= OBJ_TAG_BITS;
774 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
775}
776
bfd093f5
MK
777/**
778 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
779 * @page: page object resides in zspage
780 * @obj_idx: object index
781 */
782static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
783{
784 unsigned long obj;
61989a80 785
312fcae2 786 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 787 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 788 obj <<= OBJ_TAG_BITS;
61989a80 789
bfd093f5 790 return obj;
61989a80
NG
791}
792
2e40e163
MK
793static unsigned long handle_to_obj(unsigned long handle)
794{
795 return *(unsigned long *)handle;
796}
797
85b32581
NP
798static bool obj_tagged(struct page *page, void *obj, unsigned long *phandle,
799 int tag)
312fcae2 800{
3ae92ac2 801 unsigned long handle;
a41ec880 802 struct zspage *zspage = get_zspage(page);
3ae92ac2 803
a41ec880 804 if (unlikely(ZsHugePage(zspage))) {
830e4bc5 805 VM_BUG_ON_PAGE(!is_first_page(page), page);
3ae92ac2 806 handle = page->index;
7b60a685 807 } else
3ae92ac2
MK
808 handle = *(unsigned long *)obj;
809
85b32581 810 if (!(handle & tag))
3ae92ac2
MK
811 return false;
812
85b32581
NP
813 /* Clear all tags before returning the handle */
814 *phandle = handle & ~OBJ_TAG_MASK;
3ae92ac2 815 return true;
312fcae2
MK
816}
817
85b32581
NP
818static inline bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
819{
820 return obj_tagged(page, obj, phandle, OBJ_ALLOCATED_TAG);
821}
822
f4477e90
NG
823static void reset_page(struct page *page)
824{
48b4800a 825 __ClearPageMovable(page);
18fd06bf 826 ClearPagePrivate(page);
f4477e90 827 set_page_private(page, 0);
48b4800a 828 page_mapcount_reset(page);
ffedd09f 829 page->index = 0;
48b4800a
MK
830}
831
4d0a5402 832static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
833{
834 struct page *cursor, *fail;
835
836 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
837 get_next_page(cursor)) {
838 if (!trylock_page(cursor)) {
839 fail = cursor;
840 goto unlock;
841 }
842 }
843
844 return 1;
845unlock:
846 for (cursor = get_first_page(zspage); cursor != fail; cursor =
847 get_next_page(cursor))
848 unlock_page(cursor);
849
850 return 0;
f4477e90
NG
851}
852
48b4800a
MK
853static void __free_zspage(struct zs_pool *pool, struct size_class *class,
854 struct zspage *zspage)
61989a80 855{
3783689a 856 struct page *page, *next;
4c7ac972 857 int fg;
48b4800a
MK
858 unsigned int class_idx;
859
860 get_zspage_mapping(zspage, &class_idx, &fg);
861
c0547d0b 862 assert_spin_locked(&pool->lock);
61989a80 863
3783689a 864 VM_BUG_ON(get_zspage_inuse(zspage));
4c7ac972 865 VM_BUG_ON(fg != ZS_INUSE_RATIO_0);
61989a80 866
48b4800a 867 next = page = get_first_page(zspage);
3783689a 868 do {
48b4800a
MK
869 VM_BUG_ON_PAGE(!PageLocked(page), page);
870 next = get_next_page(page);
3783689a 871 reset_page(page);
48b4800a 872 unlock_page(page);
91537fee 873 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
874 put_page(page);
875 page = next;
876 } while (page != NULL);
61989a80 877
3783689a 878 cache_free_zspage(pool, zspage);
48b4800a 879
4c7ac972
SS
880 class_stat_dec(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
881 atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
48b4800a
MK
882}
883
884static void free_zspage(struct zs_pool *pool, struct size_class *class,
885 struct zspage *zspage)
886{
887 VM_BUG_ON(get_zspage_inuse(zspage));
888 VM_BUG_ON(list_empty(&zspage->list));
889
b475d42d
MK
890 /*
891 * Since zs_free couldn't be sleepable, this function cannot call
892 * lock_page. The page locks trylock_zspage got will be released
893 * by __free_zspage.
894 */
48b4800a
MK
895 if (!trylock_zspage(zspage)) {
896 kick_deferred_free(pool);
897 return;
898 }
899
4c7ac972 900 remove_zspage(class, zspage, ZS_INUSE_RATIO_0);
48b4800a 901 __free_zspage(pool, class, zspage);
61989a80
NG
902}
903
904/* Initialize a newly allocated zspage */
3783689a 905static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 906{
bfd093f5 907 unsigned int freeobj = 1;
61989a80 908 unsigned long off = 0;
48b4800a 909 struct page *page = get_first_page(zspage);
830e4bc5 910
61989a80
NG
911 while (page) {
912 struct page *next_page;
913 struct link_free *link;
af4ee5e9 914 void *vaddr;
61989a80 915
3783689a 916 set_first_obj_offset(page, off);
61989a80 917
af4ee5e9
MK
918 vaddr = kmap_atomic(page);
919 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
920
921 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 922 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 923 link += class->size / sizeof(*link);
61989a80
NG
924 }
925
926 /*
927 * We now come to the last (full or partial) object on this
928 * page, which must point to the first object on the next
929 * page (if present)
930 */
931 next_page = get_next_page(page);
bfd093f5 932 if (next_page) {
3b1d9ca6 933 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
934 } else {
935 /*
3b1d9ca6 936 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
937 * whether it's allocated object or not.
938 */
01a6ad9a 939 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 940 }
af4ee5e9 941 kunmap_atomic(vaddr);
61989a80 942 page = next_page;
5538c562 943 off %= PAGE_SIZE;
61989a80 944 }
bdb0af7c 945
bfd093f5 946 set_freeobj(zspage, 0);
61989a80
NG
947}
948
48b4800a
MK
949static void create_page_chain(struct size_class *class, struct zspage *zspage,
950 struct page *pages[])
61989a80 951{
bdb0af7c
MK
952 int i;
953 struct page *page;
954 struct page *prev_page = NULL;
48b4800a 955 int nr_pages = class->pages_per_zspage;
61989a80
NG
956
957 /*
958 * Allocate individual pages and link them together as:
ffedd09f 959 * 1. all pages are linked together using page->index
3783689a 960 * 2. each sub-page point to zspage using page->private
61989a80 961 *
3783689a 962 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 963 * has this flag set).
61989a80 964 */
bdb0af7c
MK
965 for (i = 0; i < nr_pages; i++) {
966 page = pages[i];
3783689a 967 set_page_private(page, (unsigned long)zspage);
ffedd09f 968 page->index = 0;
bdb0af7c 969 if (i == 0) {
3783689a 970 zspage->first_page = page;
a27545bf 971 SetPagePrivate(page);
48b4800a
MK
972 if (unlikely(class->objs_per_zspage == 1 &&
973 class->pages_per_zspage == 1))
a41ec880 974 SetZsHugePage(zspage);
3783689a 975 } else {
ffedd09f 976 prev_page->index = (unsigned long)page;
61989a80 977 }
61989a80
NG
978 prev_page = page;
979 }
bdb0af7c 980}
61989a80 981
bdb0af7c
MK
982/*
983 * Allocate a zspage for the given size class
984 */
3783689a
MK
985static struct zspage *alloc_zspage(struct zs_pool *pool,
986 struct size_class *class,
987 gfp_t gfp)
bdb0af7c
MK
988{
989 int i;
bdb0af7c 990 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
991 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
992
993 if (!zspage)
994 return NULL;
995
48b4800a
MK
996 zspage->magic = ZSPAGE_MAGIC;
997 migrate_lock_init(zspage);
61989a80 998
bdb0af7c
MK
999 for (i = 0; i < class->pages_per_zspage; i++) {
1000 struct page *page;
61989a80 1001
3783689a 1002 page = alloc_page(gfp);
bdb0af7c 1003 if (!page) {
91537fee
MK
1004 while (--i >= 0) {
1005 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1006 __free_page(pages[i]);
91537fee 1007 }
3783689a 1008 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1009 return NULL;
1010 }
91537fee
MK
1011
1012 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1013 pages[i] = page;
61989a80
NG
1014 }
1015
48b4800a 1016 create_page_chain(class, zspage, pages);
3783689a 1017 init_zspage(class, zspage);
68f2736a 1018 zspage->pool = pool;
bdb0af7c 1019
3783689a 1020 return zspage;
61989a80
NG
1021}
1022
3783689a 1023static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1024{
1025 int i;
3783689a 1026 struct zspage *zspage;
61989a80 1027
4c7ac972 1028 for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
3783689a 1029 zspage = list_first_entry_or_null(&class->fullness_list[i],
4c7ac972 1030 struct zspage, list);
3783689a 1031 if (zspage)
61989a80
NG
1032 break;
1033 }
1034
3783689a 1035 return zspage;
61989a80
NG
1036}
1037
f553646a
SJ
1038static inline int __zs_cpu_up(struct mapping_area *area)
1039{
1040 /*
1041 * Make sure we don't leak memory if a cpu UP notification
1042 * and zs_init() race and both call zs_cpu_up() on the same cpu
1043 */
1044 if (area->vm_buf)
1045 return 0;
40f9fb8c 1046 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1047 if (!area->vm_buf)
1048 return -ENOMEM;
1049 return 0;
1050}
1051
1052static inline void __zs_cpu_down(struct mapping_area *area)
1053{
40f9fb8c 1054 kfree(area->vm_buf);
f553646a
SJ
1055 area->vm_buf = NULL;
1056}
1057
1058static void *__zs_map_object(struct mapping_area *area,
1059 struct page *pages[2], int off, int size)
5f601902 1060{
5f601902
SJ
1061 int sizes[2];
1062 void *addr;
f553646a 1063 char *buf = area->vm_buf;
5f601902 1064
f553646a
SJ
1065 /* disable page faults to match kmap_atomic() return conditions */
1066 pagefault_disable();
1067
1068 /* no read fastpath */
1069 if (area->vm_mm == ZS_MM_WO)
1070 goto out;
5f601902
SJ
1071
1072 sizes[0] = PAGE_SIZE - off;
1073 sizes[1] = size - sizes[0];
1074
5f601902
SJ
1075 /* copy object to per-cpu buffer */
1076 addr = kmap_atomic(pages[0]);
1077 memcpy(buf, addr + off, sizes[0]);
1078 kunmap_atomic(addr);
1079 addr = kmap_atomic(pages[1]);
1080 memcpy(buf + sizes[0], addr, sizes[1]);
1081 kunmap_atomic(addr);
f553646a
SJ
1082out:
1083 return area->vm_buf;
5f601902
SJ
1084}
1085
f553646a
SJ
1086static void __zs_unmap_object(struct mapping_area *area,
1087 struct page *pages[2], int off, int size)
5f601902 1088{
5f601902
SJ
1089 int sizes[2];
1090 void *addr;
2e40e163 1091 char *buf;
5f601902 1092
f553646a
SJ
1093 /* no write fastpath */
1094 if (area->vm_mm == ZS_MM_RO)
1095 goto out;
5f601902 1096
7b60a685 1097 buf = area->vm_buf;
a82cbf07
YX
1098 buf = buf + ZS_HANDLE_SIZE;
1099 size -= ZS_HANDLE_SIZE;
1100 off += ZS_HANDLE_SIZE;
2e40e163 1101
5f601902
SJ
1102 sizes[0] = PAGE_SIZE - off;
1103 sizes[1] = size - sizes[0];
1104
1105 /* copy per-cpu buffer to object */
1106 addr = kmap_atomic(pages[0]);
1107 memcpy(addr + off, buf, sizes[0]);
1108 kunmap_atomic(addr);
1109 addr = kmap_atomic(pages[1]);
1110 memcpy(addr, buf + sizes[0], sizes[1]);
1111 kunmap_atomic(addr);
f553646a
SJ
1112
1113out:
1114 /* enable page faults to match kunmap_atomic() return conditions */
1115 pagefault_enable();
5f601902 1116}
61989a80 1117
215c89d0 1118static int zs_cpu_prepare(unsigned int cpu)
61989a80 1119{
61989a80
NG
1120 struct mapping_area *area;
1121
215c89d0
SAS
1122 area = &per_cpu(zs_map_area, cpu);
1123 return __zs_cpu_up(area);
61989a80
NG
1124}
1125
215c89d0 1126static int zs_cpu_dead(unsigned int cpu)
61989a80 1127{
215c89d0 1128 struct mapping_area *area;
40f9fb8c 1129
215c89d0
SAS
1130 area = &per_cpu(zs_map_area, cpu);
1131 __zs_cpu_down(area);
1132 return 0;
b1b00a5b
SS
1133}
1134
64d90465
GM
1135static bool can_merge(struct size_class *prev, int pages_per_zspage,
1136 int objs_per_zspage)
9eec4cd5 1137{
64d90465
GM
1138 if (prev->pages_per_zspage == pages_per_zspage &&
1139 prev->objs_per_zspage == objs_per_zspage)
1140 return true;
9eec4cd5 1141
64d90465 1142 return false;
9eec4cd5
JK
1143}
1144
3783689a 1145static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1146{
3783689a 1147 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2 1148}
7c2af309 1149
df9cd3cb
SS
1150static bool zspage_empty(struct zspage *zspage)
1151{
1152 return get_zspage_inuse(zspage) == 0;
1153}
1154
7c2af309
AR
1155/**
1156 * zs_lookup_class_index() - Returns index of the zsmalloc &size_class
1157 * that hold objects of the provided size.
1158 * @pool: zsmalloc pool to use
1159 * @size: object size
1160 *
1161 * Context: Any context.
1162 *
1163 * Return: the index of the zsmalloc &size_class that hold objects of the
1164 * provided size.
1165 */
1166unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
1167{
1168 struct size_class *class;
1169
1170 class = pool->size_class[get_size_class_index(size)];
1171
1172 return class->index;
1173}
1174EXPORT_SYMBOL_GPL(zs_lookup_class_index);
312fcae2 1175
66cdef66
GM
1176unsigned long zs_get_total_pages(struct zs_pool *pool)
1177{
1178 return atomic_long_read(&pool->pages_allocated);
1179}
1180EXPORT_SYMBOL_GPL(zs_get_total_pages);
1181
4bbc0bc0 1182/**
66cdef66
GM
1183 * zs_map_object - get address of allocated object from handle.
1184 * @pool: pool from which the object was allocated
1185 * @handle: handle returned from zs_malloc
f0953a1b 1186 * @mm: mapping mode to use
4bbc0bc0 1187 *
66cdef66
GM
1188 * Before using an object allocated from zs_malloc, it must be mapped using
1189 * this function. When done with the object, it must be unmapped using
1190 * zs_unmap_object.
4bbc0bc0 1191 *
66cdef66
GM
1192 * Only one object can be mapped per cpu at a time. There is no protection
1193 * against nested mappings.
1194 *
1195 * This function returns with preemption and page faults disabled.
4bbc0bc0 1196 */
66cdef66
GM
1197void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1198 enum zs_mapmode mm)
61989a80 1199{
3783689a 1200 struct zspage *zspage;
66cdef66 1201 struct page *page;
bfd093f5
MK
1202 unsigned long obj, off;
1203 unsigned int obj_idx;
61989a80 1204
66cdef66
GM
1205 struct size_class *class;
1206 struct mapping_area *area;
1207 struct page *pages[2];
2e40e163 1208 void *ret;
61989a80 1209
9eec4cd5 1210 /*
66cdef66
GM
1211 * Because we use per-cpu mapping areas shared among the
1212 * pools/users, we can't allow mapping in interrupt context
1213 * because it can corrupt another users mappings.
9eec4cd5 1214 */
1aedcafb 1215 BUG_ON(in_interrupt());
61989a80 1216
b475d42d 1217 /* It guarantees it can get zspage from handle safely */
c0547d0b 1218 spin_lock(&pool->lock);
2e40e163
MK
1219 obj = handle_to_obj(handle);
1220 obj_to_location(obj, &page, &obj_idx);
3783689a 1221 zspage = get_zspage(page);
48b4800a 1222
b475d42d 1223 /*
c0547d0b 1224 * migration cannot move any zpages in this zspage. Here, pool->lock
b475d42d
MK
1225 * is too heavy since callers would take some time until they calls
1226 * zs_unmap_object API so delegate the locking from class to zspage
1227 * which is smaller granularity.
1228 */
48b4800a 1229 migrate_read_lock(zspage);
c0547d0b 1230 spin_unlock(&pool->lock);
48b4800a 1231
67f1c9cd 1232 class = zspage_class(pool, zspage);
f24f66ee 1233 off = offset_in_page(class->size * obj_idx);
df8b5bb9 1234
a3726599
MG
1235 local_lock(&zs_map_area.lock);
1236 area = this_cpu_ptr(&zs_map_area);
66cdef66
GM
1237 area->vm_mm = mm;
1238 if (off + class->size <= PAGE_SIZE) {
1239 /* this object is contained entirely within a page */
1240 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1241 ret = area->vm_addr + off;
1242 goto out;
61989a80
NG
1243 }
1244
66cdef66
GM
1245 /* this object spans two pages */
1246 pages[0] = page;
1247 pages[1] = get_next_page(page);
1248 BUG_ON(!pages[1]);
9eec4cd5 1249
2e40e163
MK
1250 ret = __zs_map_object(area, pages, off, class->size);
1251out:
a41ec880 1252 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1253 ret += ZS_HANDLE_SIZE;
1254
1255 return ret;
61989a80 1256}
66cdef66 1257EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1258
66cdef66 1259void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1260{
3783689a 1261 struct zspage *zspage;
66cdef66 1262 struct page *page;
bfd093f5
MK
1263 unsigned long obj, off;
1264 unsigned int obj_idx;
61989a80 1265
66cdef66
GM
1266 struct size_class *class;
1267 struct mapping_area *area;
9eec4cd5 1268
2e40e163
MK
1269 obj = handle_to_obj(handle);
1270 obj_to_location(obj, &page, &obj_idx);
3783689a 1271 zspage = get_zspage(page);
67f1c9cd 1272 class = zspage_class(pool, zspage);
f24f66ee 1273 off = offset_in_page(class->size * obj_idx);
61989a80 1274
66cdef66
GM
1275 area = this_cpu_ptr(&zs_map_area);
1276 if (off + class->size <= PAGE_SIZE)
1277 kunmap_atomic(area->vm_addr);
1278 else {
1279 struct page *pages[2];
40f9fb8c 1280
66cdef66
GM
1281 pages[0] = page;
1282 pages[1] = get_next_page(page);
1283 BUG_ON(!pages[1]);
1284
1285 __zs_unmap_object(area, pages, off, class->size);
1286 }
a3726599 1287 local_unlock(&zs_map_area.lock);
48b4800a
MK
1288
1289 migrate_read_unlock(zspage);
61989a80 1290}
66cdef66 1291EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1292
010b495e
SS
1293/**
1294 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1295 * zsmalloc &size_class.
1296 * @pool: zsmalloc pool to use
1297 *
1298 * The function returns the size of the first huge class - any object of equal
1299 * or bigger size will be stored in zspage consisting of a single physical
1300 * page.
1301 *
1302 * Context: Any context.
1303 *
1304 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1305 */
1306size_t zs_huge_class_size(struct zs_pool *pool)
1307{
1308 return huge_class_size;
1309}
1310EXPORT_SYMBOL_GPL(zs_huge_class_size);
1311
0a5f079b 1312static unsigned long obj_malloc(struct zs_pool *pool,
3783689a 1313 struct zspage *zspage, unsigned long handle)
c7806261 1314{
bfd093f5 1315 int i, nr_page, offset;
c7806261
MK
1316 unsigned long obj;
1317 struct link_free *link;
0a5f079b 1318 struct size_class *class;
c7806261
MK
1319
1320 struct page *m_page;
bfd093f5 1321 unsigned long m_offset;
c7806261
MK
1322 void *vaddr;
1323
0a5f079b 1324 class = pool->size_class[zspage->class];
312fcae2 1325 handle |= OBJ_ALLOCATED_TAG;
3783689a 1326 obj = get_freeobj(zspage);
bfd093f5
MK
1327
1328 offset = obj * class->size;
1329 nr_page = offset >> PAGE_SHIFT;
f24f66ee 1330 m_offset = offset_in_page(offset);
bfd093f5
MK
1331 m_page = get_first_page(zspage);
1332
1333 for (i = 0; i < nr_page; i++)
1334 m_page = get_next_page(m_page);
c7806261
MK
1335
1336 vaddr = kmap_atomic(m_page);
1337 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1338 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
a41ec880 1339 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1340 /* record handle in the header of allocated chunk */
1341 link->handle = handle;
1342 else
3783689a
MK
1343 /* record handle to page->index */
1344 zspage->first_page->index = handle;
1345
c7806261 1346 kunmap_atomic(vaddr);
3783689a 1347 mod_zspage_inuse(zspage, 1);
c7806261 1348
bfd093f5
MK
1349 obj = location_to_obj(m_page, obj);
1350
c7806261
MK
1351 return obj;
1352}
1353
1354
61989a80
NG
1355/**
1356 * zs_malloc - Allocate block of given size from pool.
1357 * @pool: pool to allocate from
1358 * @size: size of block to allocate
fd854463 1359 * @gfp: gfp flags when allocating object
61989a80 1360 *
00a61d86 1361 * On success, handle to the allocated object is returned,
c7e6f17b 1362 * otherwise an ERR_PTR().
61989a80
NG
1363 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1364 */
d0d8da2d 1365unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1366{
2e40e163 1367 unsigned long handle, obj;
61989a80 1368 struct size_class *class;
4c7ac972 1369 int newfg;
3783689a 1370 struct zspage *zspage;
61989a80 1371
7b60a685 1372 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
c7e6f17b 1373 return (unsigned long)ERR_PTR(-EINVAL);
2e40e163 1374
3783689a 1375 handle = cache_alloc_handle(pool, gfp);
2e40e163 1376 if (!handle)
c7e6f17b 1377 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80 1378
2e40e163
MK
1379 /* extra space in chunk to keep the handle */
1380 size += ZS_HANDLE_SIZE;
9eec4cd5 1381 class = pool->size_class[get_size_class_index(size)];
61989a80 1382
c0547d0b
NP
1383 /* pool->lock effectively protects the zpage migration */
1384 spin_lock(&pool->lock);
3783689a 1385 zspage = find_get_zspage(class);
48b4800a 1386 if (likely(zspage)) {
0a5f079b 1387 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1388 /* Now move the zspage to another fullness group, if required */
1389 fix_fullness_group(class, zspage);
1390 record_obj(handle, obj);
4c7ac972 1391 class_stat_inc(class, ZS_OBJS_INUSE, 1);
61989a80 1392
d461aac9 1393 goto out;
48b4800a 1394 }
0f050d99 1395
c0547d0b 1396 spin_unlock(&pool->lock);
48b4800a
MK
1397
1398 zspage = alloc_zspage(pool, class, gfp);
1399 if (!zspage) {
1400 cache_free_handle(pool, handle);
c7e6f17b 1401 return (unsigned long)ERR_PTR(-ENOMEM);
61989a80
NG
1402 }
1403
c0547d0b 1404 spin_lock(&pool->lock);
0a5f079b 1405 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1406 newfg = get_fullness_group(class, zspage);
1407 insert_zspage(class, zspage, newfg);
1408 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1409 record_obj(handle, obj);
4c7ac972
SS
1410 atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
1411 class_stat_inc(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
1412 class_stat_inc(class, ZS_OBJS_INUSE, 1);
48b4800a
MK
1413
1414 /* We completely set up zspage so mark them as movable */
1415 SetZsPageMovable(pool, zspage);
d461aac9 1416out:
c0547d0b 1417 spin_unlock(&pool->lock);
61989a80 1418
2e40e163 1419 return handle;
61989a80
NG
1420}
1421EXPORT_SYMBOL_GPL(zs_malloc);
1422
b3067742 1423static void obj_free(int class_size, unsigned long obj)
61989a80
NG
1424{
1425 struct link_free *link;
3783689a
MK
1426 struct zspage *zspage;
1427 struct page *f_page;
bfd093f5
MK
1428 unsigned long f_offset;
1429 unsigned int f_objidx;
af4ee5e9 1430 void *vaddr;
61989a80 1431
2e40e163 1432 obj_to_location(obj, &f_page, &f_objidx);
f24f66ee 1433 f_offset = offset_in_page(class_size * f_objidx);
3783689a 1434 zspage = get_zspage(f_page);
61989a80 1435
c7806261 1436 vaddr = kmap_atomic(f_page);
af4ee5e9 1437 link = (struct link_free *)(vaddr + f_offset);
85b32581 1438
b3067742
DC
1439 /* Insert this object in containing zspage's freelist */
1440 if (likely(!ZsHugePage(zspage)))
1441 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1442 else
1443 f_page->index = 0;
1444 set_freeobj(zspage, f_objidx);
85b32581 1445
af4ee5e9 1446 kunmap_atomic(vaddr);
3783689a 1447 mod_zspage_inuse(zspage, -1);
c7806261
MK
1448}
1449
1450void zs_free(struct zs_pool *pool, unsigned long handle)
1451{
3783689a
MK
1452 struct zspage *zspage;
1453 struct page *f_page;
bfd093f5 1454 unsigned long obj;
c7806261 1455 struct size_class *class;
4c7ac972 1456 int fullness;
c7806261 1457
a5d21721 1458 if (IS_ERR_OR_NULL((void *)handle))
c7806261
MK
1459 return;
1460
b475d42d 1461 /*
c0547d0b 1462 * The pool->lock protects the race with zpage's migration
b475d42d
MK
1463 * so it's safe to get the page from handle.
1464 */
c0547d0b 1465 spin_lock(&pool->lock);
c7806261 1466 obj = handle_to_obj(handle);
67f1c9cd 1467 obj_to_page(obj, &f_page);
3783689a 1468 zspage = get_zspage(f_page);
67f1c9cd 1469 class = zspage_class(pool, zspage);
b475d42d 1470
4c7ac972 1471 class_stat_dec(class, ZS_OBJS_INUSE, 1);
b3067742 1472 obj_free(class->size, obj);
85b32581 1473
3783689a 1474 fullness = fix_fullness_group(class, zspage);
4c7ac972 1475 if (fullness == ZS_INUSE_RATIO_0)
9997bc01 1476 free_zspage(pool, class, zspage);
48b4800a 1477
c0547d0b 1478 spin_unlock(&pool->lock);
3783689a 1479 cache_free_handle(pool, handle);
312fcae2
MK
1480}
1481EXPORT_SYMBOL_GPL(zs_free);
1482
251cbb95
MK
1483static void zs_object_copy(struct size_class *class, unsigned long dst,
1484 unsigned long src)
312fcae2
MK
1485{
1486 struct page *s_page, *d_page;
bfd093f5 1487 unsigned int s_objidx, d_objidx;
312fcae2
MK
1488 unsigned long s_off, d_off;
1489 void *s_addr, *d_addr;
1490 int s_size, d_size, size;
1491 int written = 0;
1492
1493 s_size = d_size = class->size;
1494
1495 obj_to_location(src, &s_page, &s_objidx);
1496 obj_to_location(dst, &d_page, &d_objidx);
1497
f24f66ee
AR
1498 s_off = offset_in_page(class->size * s_objidx);
1499 d_off = offset_in_page(class->size * d_objidx);
312fcae2
MK
1500
1501 if (s_off + class->size > PAGE_SIZE)
1502 s_size = PAGE_SIZE - s_off;
1503
1504 if (d_off + class->size > PAGE_SIZE)
1505 d_size = PAGE_SIZE - d_off;
1506
1507 s_addr = kmap_atomic(s_page);
1508 d_addr = kmap_atomic(d_page);
1509
1510 while (1) {
1511 size = min(s_size, d_size);
1512 memcpy(d_addr + d_off, s_addr + s_off, size);
1513 written += size;
1514
1515 if (written == class->size)
1516 break;
1517
495819ea
SS
1518 s_off += size;
1519 s_size -= size;
1520 d_off += size;
1521 d_size -= size;
1522
050a388b
AR
1523 /*
1524 * Calling kunmap_atomic(d_addr) is necessary. kunmap_atomic()
1525 * calls must occurs in reverse order of calls to kmap_atomic().
1526 * So, to call kunmap_atomic(s_addr) we should first call
46e87152
AR
1527 * kunmap_atomic(d_addr). For more details see
1528 * Documentation/mm/highmem.rst.
050a388b 1529 */
495819ea 1530 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1531 kunmap_atomic(d_addr);
1532 kunmap_atomic(s_addr);
1533 s_page = get_next_page(s_page);
312fcae2
MK
1534 s_addr = kmap_atomic(s_page);
1535 d_addr = kmap_atomic(d_page);
1536 s_size = class->size - written;
1537 s_off = 0;
312fcae2
MK
1538 }
1539
495819ea 1540 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1541 kunmap_atomic(d_addr);
1542 d_page = get_next_page(d_page);
312fcae2
MK
1543 d_addr = kmap_atomic(d_page);
1544 d_size = class->size - written;
1545 d_off = 0;
312fcae2
MK
1546 }
1547 }
1548
1549 kunmap_atomic(d_addr);
1550 kunmap_atomic(s_addr);
1551}
1552
1553/*
85b32581 1554 * Find object with a certain tag in zspage from index object and
312fcae2
MK
1555 * return handle.
1556 */
85b32581
NP
1557static unsigned long find_tagged_obj(struct size_class *class,
1558 struct page *page, int *obj_idx, int tag)
312fcae2 1559{
671f2fa8 1560 unsigned int offset;
cf675acb 1561 int index = *obj_idx;
312fcae2
MK
1562 unsigned long handle = 0;
1563 void *addr = kmap_atomic(page);
1564
3783689a 1565 offset = get_first_obj_offset(page);
312fcae2
MK
1566 offset += class->size * index;
1567
1568 while (offset < PAGE_SIZE) {
85b32581 1569 if (obj_tagged(page, addr + offset, &handle, tag))
b475d42d 1570 break;
312fcae2
MK
1571
1572 offset += class->size;
1573 index++;
1574 }
1575
1576 kunmap_atomic(addr);
cf675acb
GM
1577
1578 *obj_idx = index;
1579
312fcae2
MK
1580 return handle;
1581}
1582
85b32581
NP
1583/*
1584 * Find alloced object in zspage from index object and
1585 * return handle.
1586 */
1587static unsigned long find_alloced_obj(struct size_class *class,
1588 struct page *page, int *obj_idx)
1589{
1590 return find_tagged_obj(class, page, obj_idx, OBJ_ALLOCATED_TAG);
1591}
1592
312fcae2 1593struct zs_compact_control {
3783689a 1594 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1595 struct page *s_page;
1596 /* Destination page for migration which should be a first page
1597 * of zspage. */
1598 struct page *d_page;
1599 /* Starting object index within @s_page which used for live object
1600 * in the subpage. */
41b88e14 1601 int obj_idx;
312fcae2
MK
1602};
1603
5a845e9f
SS
1604static void migrate_zspage(struct zs_pool *pool, struct size_class *class,
1605 struct zs_compact_control *cc)
312fcae2
MK
1606{
1607 unsigned long used_obj, free_obj;
1608 unsigned long handle;
1609 struct page *s_page = cc->s_page;
1610 struct page *d_page = cc->d_page;
41b88e14 1611 int obj_idx = cc->obj_idx;
312fcae2
MK
1612
1613 while (1) {
cf675acb 1614 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1615 if (!handle) {
1616 s_page = get_next_page(s_page);
1617 if (!s_page)
1618 break;
41b88e14 1619 obj_idx = 0;
312fcae2
MK
1620 continue;
1621 }
1622
312fcae2 1623 used_obj = handle_to_obj(handle);
0a5f079b 1624 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
251cbb95 1625 zs_object_copy(class, free_obj, used_obj);
41b88e14 1626 obj_idx++;
312fcae2 1627 record_obj(handle, free_obj);
b3067742 1628 obj_free(class->size, used_obj);
df9cd3cb 1629
4ce36584
SS
1630 /* Stop if there is no more space */
1631 if (zspage_full(class, get_zspage(d_page)))
1632 break;
1633
df9cd3cb
SS
1634 /* Stop if there are no more objects to migrate */
1635 if (zspage_empty(get_zspage(s_page)))
1636 break;
312fcae2
MK
1637 }
1638
1639 /* Remember last position in this iteration */
1640 cc->s_page = s_page;
41b88e14 1641 cc->obj_idx = obj_idx;
312fcae2
MK
1642}
1643
4c7ac972 1644static struct zspage *isolate_src_zspage(struct size_class *class)
312fcae2 1645{
3783689a 1646 struct zspage *zspage;
4c7ac972 1647 int fg;
312fcae2 1648
4c7ac972
SS
1649 for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
1650 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1651 struct zspage, list);
1652 if (zspage) {
1653 remove_zspage(class, zspage, fg);
1654 return zspage;
1655 }
3783689a
MK
1656 }
1657
4c7ac972
SS
1658 return zspage;
1659}
1660
1661static struct zspage *isolate_dst_zspage(struct size_class *class)
1662{
1663 struct zspage *zspage;
1664 int fg;
1665
1666 for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
1667 zspage = list_first_entry_or_null(&class->fullness_list[fg],
1668 struct zspage, list);
3783689a 1669 if (zspage) {
4c7ac972 1670 remove_zspage(class, zspage, fg);
3783689a 1671 return zspage;
312fcae2
MK
1672 }
1673 }
1674
3783689a 1675 return zspage;
312fcae2
MK
1676}
1677
860c707d 1678/*
3783689a 1679 * putback_zspage - add @zspage into right class's fullness list
860c707d 1680 * @class: destination class
3783689a 1681 * @zspage: target page
860c707d 1682 *
4c7ac972 1683 * Return @zspage's fullness status
860c707d 1684 */
4c7ac972 1685static int putback_zspage(struct size_class *class, struct zspage *zspage)
312fcae2 1686{
4c7ac972 1687 int fullness;
312fcae2 1688
3783689a
MK
1689 fullness = get_fullness_group(class, zspage);
1690 insert_zspage(class, zspage, fullness);
1691 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1692
860c707d 1693 return fullness;
61989a80 1694}
312fcae2 1695
b3067742 1696#ifdef CONFIG_COMPACTION
4d0a5402
CIK
1697/*
1698 * To prevent zspage destroy during migration, zspage freeing should
1699 * hold locks of all pages in the zspage.
1700 */
1701static void lock_zspage(struct zspage *zspage)
1702{
2505a981 1703 struct page *curr_page, *page;
4d0a5402 1704
2505a981
SA
1705 /*
1706 * Pages we haven't locked yet can be migrated off the list while we're
1707 * trying to lock them, so we need to be careful and only attempt to
1708 * lock each page under migrate_read_lock(). Otherwise, the page we lock
1709 * may no longer belong to the zspage. This means that we may wait for
1710 * the wrong page to unlock, so we must take a reference to the page
1711 * prior to waiting for it to unlock outside migrate_read_lock().
1712 */
1713 while (1) {
1714 migrate_read_lock(zspage);
1715 page = get_first_page(zspage);
1716 if (trylock_page(page))
1717 break;
1718 get_page(page);
1719 migrate_read_unlock(zspage);
1720 wait_on_page_locked(page);
1721 put_page(page);
1722 }
1723
1724 curr_page = page;
1725 while ((page = get_next_page(curr_page))) {
1726 if (trylock_page(page)) {
1727 curr_page = page;
1728 } else {
1729 get_page(page);
1730 migrate_read_unlock(zspage);
1731 wait_on_page_locked(page);
1732 put_page(page);
1733 migrate_read_lock(zspage);
1734 }
1735 }
1736 migrate_read_unlock(zspage);
4d0a5402 1737}
b3067742 1738#endif /* CONFIG_COMPACTION */
4d0a5402 1739
48b4800a
MK
1740static void migrate_lock_init(struct zspage *zspage)
1741{
1742 rwlock_init(&zspage->lock);
1743}
1744
cfc451cf 1745static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1746{
1747 read_lock(&zspage->lock);
1748}
1749
8a374ccc 1750static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1751{
1752 read_unlock(&zspage->lock);
1753}
1754
9997bc01 1755#ifdef CONFIG_COMPACTION
48b4800a
MK
1756static void migrate_write_lock(struct zspage *zspage)
1757{
1758 write_lock(&zspage->lock);
1759}
1760
b475d42d
MK
1761static void migrate_write_lock_nested(struct zspage *zspage)
1762{
1763 write_lock_nested(&zspage->lock, SINGLE_DEPTH_NESTING);
1764}
1765
48b4800a
MK
1766static void migrate_write_unlock(struct zspage *zspage)
1767{
1768 write_unlock(&zspage->lock);
1769}
1770
1771/* Number of isolated subpage for *page migration* in this zspage */
1772static void inc_zspage_isolation(struct zspage *zspage)
1773{
1774 zspage->isolated++;
1775}
1776
1777static void dec_zspage_isolation(struct zspage *zspage)
1778{
c4549b87 1779 VM_BUG_ON(zspage->isolated == 0);
48b4800a
MK
1780 zspage->isolated--;
1781}
1782
68f2736a
MWO
1783static const struct movable_operations zsmalloc_mops;
1784
48b4800a
MK
1785static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1786 struct page *newpage, struct page *oldpage)
1787{
1788 struct page *page;
1789 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1790 int idx = 0;
1791
1792 page = get_first_page(zspage);
1793 do {
1794 if (page == oldpage)
1795 pages[idx] = newpage;
1796 else
1797 pages[idx] = page;
1798 idx++;
1799 } while ((page = get_next_page(page)) != NULL);
1800
1801 create_page_chain(class, zspage, pages);
1802 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
a41ec880 1803 if (unlikely(ZsHugePage(zspage)))
48b4800a 1804 newpage->index = oldpage->index;
68f2736a 1805 __SetPageMovable(newpage, &zsmalloc_mops);
48b4800a
MK
1806}
1807
4d0a5402 1808static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a 1809{
48b4800a 1810 struct zspage *zspage;
48b4800a
MK
1811
1812 /*
1813 * Page is locked so zspage couldn't be destroyed. For detail, look at
1814 * lock_zspage in free_zspage.
1815 */
48b4800a
MK
1816 VM_BUG_ON_PAGE(PageIsolated(page), page);
1817
1818 zspage = get_zspage(page);
c4549b87 1819 migrate_write_lock(zspage);
48b4800a 1820 inc_zspage_isolation(zspage);
c4549b87 1821 migrate_write_unlock(zspage);
48b4800a
MK
1822
1823 return true;
1824}
1825
68f2736a
MWO
1826static int zs_page_migrate(struct page *newpage, struct page *page,
1827 enum migrate_mode mode)
48b4800a
MK
1828{
1829 struct zs_pool *pool;
1830 struct size_class *class;
48b4800a
MK
1831 struct zspage *zspage;
1832 struct page *dummy;
1833 void *s_addr, *d_addr, *addr;
671f2fa8 1834 unsigned int offset;
3ae92ac2 1835 unsigned long handle;
48b4800a
MK
1836 unsigned long old_obj, new_obj;
1837 unsigned int obj_idx;
48b4800a 1838
2916ecc0
JG
1839 /*
1840 * We cannot support the _NO_COPY case here, because copy needs to
1841 * happen under the zs lock, which does not work with
1842 * MIGRATE_SYNC_NO_COPY workflow.
1843 */
1844 if (mode == MIGRATE_SYNC_NO_COPY)
1845 return -EINVAL;
1846
48b4800a
MK
1847 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1848
68f2736a
MWO
1849 /* The page is locked, so this pointer must remain valid */
1850 zspage = get_zspage(page);
1851 pool = zspage->pool;
b475d42d
MK
1852
1853 /*
c0547d0b 1854 * The pool's lock protects the race between zpage migration
b475d42d
MK
1855 * and zs_free.
1856 */
c0547d0b 1857 spin_lock(&pool->lock);
67f1c9cd 1858 class = zspage_class(pool, zspage);
48b4800a 1859
b475d42d
MK
1860 /* the migrate_write_lock protects zpage access via zs_map_object */
1861 migrate_write_lock(zspage);
48b4800a 1862
b475d42d 1863 offset = get_first_obj_offset(page);
48b4800a 1864 s_addr = kmap_atomic(page);
48b4800a
MK
1865
1866 /*
1867 * Here, any user cannot access all objects in the zspage so let's move.
1868 */
1869 d_addr = kmap_atomic(newpage);
1870 memcpy(d_addr, s_addr, PAGE_SIZE);
1871 kunmap_atomic(d_addr);
1872
b475d42d 1873 for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
48b4800a 1874 addr += class->size) {
3ae92ac2 1875 if (obj_allocated(page, addr, &handle)) {
48b4800a
MK
1876
1877 old_obj = handle_to_obj(handle);
1878 obj_to_location(old_obj, &dummy, &obj_idx);
1879 new_obj = (unsigned long)location_to_obj(newpage,
1880 obj_idx);
48b4800a
MK
1881 record_obj(handle, new_obj);
1882 }
1883 }
b475d42d 1884 kunmap_atomic(s_addr);
48b4800a
MK
1885
1886 replace_sub_page(class, zspage, newpage, page);
b475d42d
MK
1887 /*
1888 * Since we complete the data copy and set up new zspage structure,
c0547d0b 1889 * it's okay to release the pool's lock.
b475d42d 1890 */
c0547d0b 1891 spin_unlock(&pool->lock);
48b4800a 1892 dec_zspage_isolation(zspage);
b475d42d 1893 migrate_write_unlock(zspage);
48b4800a 1894
b475d42d 1895 get_page(newpage);
ac8f05da
CM
1896 if (page_zone(newpage) != page_zone(page)) {
1897 dec_zone_page_state(page, NR_ZSPAGES);
1898 inc_zone_page_state(newpage, NR_ZSPAGES);
1899 }
1900
48b4800a
MK
1901 reset_page(page);
1902 put_page(page);
48b4800a 1903
b475d42d 1904 return MIGRATEPAGE_SUCCESS;
48b4800a
MK
1905}
1906
4d0a5402 1907static void zs_page_putback(struct page *page)
48b4800a 1908{
48b4800a
MK
1909 struct zspage *zspage;
1910
48b4800a
MK
1911 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1912
1913 zspage = get_zspage(page);
c4549b87 1914 migrate_write_lock(zspage);
48b4800a 1915 dec_zspage_isolation(zspage);
c4549b87 1916 migrate_write_unlock(zspage);
48b4800a
MK
1917}
1918
68f2736a 1919static const struct movable_operations zsmalloc_mops = {
48b4800a 1920 .isolate_page = zs_page_isolate,
68f2736a 1921 .migrate_page = zs_page_migrate,
48b4800a
MK
1922 .putback_page = zs_page_putback,
1923};
1924
48b4800a
MK
1925/*
1926 * Caller should hold page_lock of all pages in the zspage
1927 * In here, we cannot use zspage meta data.
1928 */
1929static void async_free_zspage(struct work_struct *work)
1930{
1931 int i;
1932 struct size_class *class;
1933 unsigned int class_idx;
4c7ac972 1934 int fullness;
48b4800a
MK
1935 struct zspage *zspage, *tmp;
1936 LIST_HEAD(free_pages);
1937 struct zs_pool *pool = container_of(work, struct zs_pool,
1938 free_work);
1939
cf8e0fed 1940 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
1941 class = pool->size_class[i];
1942 if (class->index != i)
1943 continue;
1944
c0547d0b 1945 spin_lock(&pool->lock);
4c7ac972
SS
1946 list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
1947 &free_pages);
c0547d0b 1948 spin_unlock(&pool->lock);
48b4800a
MK
1949 }
1950
48b4800a
MK
1951 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
1952 list_del(&zspage->list);
1953 lock_zspage(zspage);
1954
1955 get_zspage_mapping(zspage, &class_idx, &fullness);
4c7ac972 1956 VM_BUG_ON(fullness != ZS_INUSE_RATIO_0);
48b4800a 1957 class = pool->size_class[class_idx];
c0547d0b 1958 spin_lock(&pool->lock);
33848337 1959 __free_zspage(pool, class, zspage);
c0547d0b 1960 spin_unlock(&pool->lock);
48b4800a
MK
1961 }
1962};
1963
1964static void kick_deferred_free(struct zs_pool *pool)
1965{
1966 schedule_work(&pool->free_work);
1967}
1968
68f2736a
MWO
1969static void zs_flush_migration(struct zs_pool *pool)
1970{
1971 flush_work(&pool->free_work);
1972}
1973
48b4800a
MK
1974static void init_deferred_free(struct zs_pool *pool)
1975{
1976 INIT_WORK(&pool->free_work, async_free_zspage);
1977}
1978
1979static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
1980{
1981 struct page *page = get_first_page(zspage);
1982
1983 do {
1984 WARN_ON(!trylock_page(page));
68f2736a 1985 __SetPageMovable(page, &zsmalloc_mops);
48b4800a
MK
1986 unlock_page(page);
1987 } while ((page = get_next_page(page)) != NULL);
1988}
68f2736a
MWO
1989#else
1990static inline void zs_flush_migration(struct zs_pool *pool) { }
48b4800a
MK
1991#endif
1992
04f05909
SS
1993/*
1994 *
1995 * Based on the number of unused allocated objects calculate
1996 * and return the number of pages that we can free.
04f05909
SS
1997 */
1998static unsigned long zs_can_compact(struct size_class *class)
1999{
2000 unsigned long obj_wasted;
4c7ac972
SS
2001 unsigned long obj_allocated = zs_stat_get(class, ZS_OBJS_ALLOCATED);
2002 unsigned long obj_used = zs_stat_get(class, ZS_OBJS_INUSE);
04f05909 2003
44f43e99
SS
2004 if (obj_allocated <= obj_used)
2005 return 0;
04f05909 2006
44f43e99 2007 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2008 obj_wasted /= class->objs_per_zspage;
04f05909 2009
6cbf16b3 2010 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2011}
2012
23959281
RY
2013static unsigned long __zs_compact(struct zs_pool *pool,
2014 struct size_class *class)
312fcae2 2015{
312fcae2 2016 struct zs_compact_control cc;
5a845e9f 2017 struct zspage *src_zspage = NULL;
3783689a 2018 struct zspage *dst_zspage = NULL;
23959281 2019 unsigned long pages_freed = 0;
312fcae2 2020
c0547d0b
NP
2021 /*
2022 * protect the race between zpage migration and zs_free
2023 * as well as zpage allocation/free
2024 */
2025 spin_lock(&pool->lock);
5a845e9f
SS
2026 while (zs_can_compact(class)) {
2027 int fg;
312fcae2 2028
5a845e9f
SS
2029 if (!dst_zspage) {
2030 dst_zspage = isolate_dst_zspage(class);
2031 if (!dst_zspage)
2032 break;
2033 migrate_write_lock(dst_zspage);
2034 cc.d_page = get_first_page(dst_zspage);
2035 }
2036
2037 src_zspage = isolate_src_zspage(class);
2038 if (!src_zspage)
04f05909
SS
2039 break;
2040
5a845e9f
SS
2041 migrate_write_lock_nested(src_zspage);
2042
41b88e14 2043 cc.obj_idx = 0;
48b4800a 2044 cc.s_page = get_first_page(src_zspage);
5a845e9f
SS
2045 migrate_zspage(pool, class, &cc);
2046 fg = putback_zspage(class, src_zspage);
2047 migrate_write_unlock(src_zspage);
312fcae2 2048
5a845e9f
SS
2049 if (fg == ZS_INUSE_RATIO_0) {
2050 free_zspage(pool, class, src_zspage);
2051 pages_freed += class->pages_per_zspage;
5a845e9f 2052 }
f7ddb612 2053 src_zspage = NULL;
312fcae2 2054
5a845e9f
SS
2055 if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
2056 || spin_is_contended(&pool->lock)) {
4aa409ca 2057 putback_zspage(class, dst_zspage);
b475d42d
MK
2058 migrate_write_unlock(dst_zspage);
2059 dst_zspage = NULL;
b475d42d 2060
5a845e9f
SS
2061 spin_unlock(&pool->lock);
2062 cond_resched();
2063 spin_lock(&pool->lock);
2064 }
312fcae2
MK
2065 }
2066
b475d42d 2067 if (src_zspage) {
4aa409ca 2068 putback_zspage(class, src_zspage);
b475d42d
MK
2069 migrate_write_unlock(src_zspage);
2070 }
312fcae2 2071
5a845e9f
SS
2072 if (dst_zspage) {
2073 putback_zspage(class, dst_zspage);
2074 migrate_write_unlock(dst_zspage);
2075 }
c0547d0b 2076 spin_unlock(&pool->lock);
23959281
RY
2077
2078 return pages_freed;
312fcae2
MK
2079}
2080
2081unsigned long zs_compact(struct zs_pool *pool)
2082{
2083 int i;
312fcae2 2084 struct size_class *class;
23959281 2085 unsigned long pages_freed = 0;
312fcae2 2086
d2658f20
SS
2087 /*
2088 * Pool compaction is performed under pool->lock so it is basically
2089 * single-threaded. Having more than one thread in __zs_compact()
2090 * will increase pool->lock contention, which will impact other
2091 * zsmalloc operations that need pool->lock.
2092 */
2093 if (atomic_xchg(&pool->compaction_in_progress, 1))
2094 return 0;
2095
cf8e0fed 2096 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2 2097 class = pool->size_class[i];
312fcae2
MK
2098 if (class->index != i)
2099 continue;
23959281 2100 pages_freed += __zs_compact(pool, class);
312fcae2 2101 }
23959281 2102 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
d2658f20 2103 atomic_set(&pool->compaction_in_progress, 0);
312fcae2 2104
23959281 2105 return pages_freed;
312fcae2
MK
2106}
2107EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2108
7d3f3938
SS
2109void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2110{
2111 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2112}
2113EXPORT_SYMBOL_GPL(zs_pool_stats);
2114
ab9d306d
SS
2115static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2116 struct shrink_control *sc)
2117{
2118 unsigned long pages_freed;
2119 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2120 shrinker);
2121
ab9d306d
SS
2122 /*
2123 * Compact classes and calculate compaction delta.
2124 * Can run concurrently with a manually triggered
2125 * (by user) compaction.
2126 */
23959281 2127 pages_freed = zs_compact(pool);
ab9d306d
SS
2128
2129 return pages_freed ? pages_freed : SHRINK_STOP;
2130}
2131
2132static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2133 struct shrink_control *sc)
2134{
2135 int i;
2136 struct size_class *class;
2137 unsigned long pages_to_free = 0;
2138 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2139 shrinker);
2140
cf8e0fed 2141 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d 2142 class = pool->size_class[i];
ab9d306d
SS
2143 if (class->index != i)
2144 continue;
2145
ab9d306d 2146 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2147 }
2148
2149 return pages_to_free;
2150}
2151
2152static void zs_unregister_shrinker(struct zs_pool *pool)
2153{
93144ca3 2154 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2155}
2156
2157static int zs_register_shrinker(struct zs_pool *pool)
2158{
2159 pool->shrinker.scan_objects = zs_shrinker_scan;
2160 pool->shrinker.count_objects = zs_shrinker_count;
2161 pool->shrinker.batch = 0;
2162 pool->shrinker.seeks = DEFAULT_SEEKS;
2163
e33c267a
RG
2164 return register_shrinker(&pool->shrinker, "mm-zspool:%s",
2165 pool->name);
ab9d306d
SS
2166}
2167
6260ae35
SS
2168static int calculate_zspage_chain_size(int class_size)
2169{
2170 int i, min_waste = INT_MAX;
2171 int chain_size = 1;
2172
e1d1f354
SS
2173 if (is_power_of_2(class_size))
2174 return chain_size;
2175
6260ae35
SS
2176 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
2177 int waste;
2178
2179 waste = (i * PAGE_SIZE) % class_size;
2180 if (waste < min_waste) {
2181 min_waste = waste;
2182 chain_size = i;
2183 }
2184 }
2185
2186 return chain_size;
2187}
2188
00a61d86 2189/**
66cdef66 2190 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2191 * @name: pool name to be created
166cfda7 2192 *
66cdef66
GM
2193 * This function must be called before anything when using
2194 * the zsmalloc allocator.
166cfda7 2195 *
66cdef66
GM
2196 * On success, a pointer to the newly created pool is returned,
2197 * otherwise NULL.
396b7fd6 2198 */
d0d8da2d 2199struct zs_pool *zs_create_pool(const char *name)
61989a80 2200{
66cdef66
GM
2201 int i;
2202 struct zs_pool *pool;
2203 struct size_class *prev_class = NULL;
61989a80 2204
66cdef66
GM
2205 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2206 if (!pool)
2207 return NULL;
61989a80 2208
48b4800a 2209 init_deferred_free(pool);
c0547d0b 2210 spin_lock_init(&pool->lock);
d2658f20 2211 atomic_set(&pool->compaction_in_progress, 0);
61989a80 2212
2e40e163
MK
2213 pool->name = kstrdup(name, GFP_KERNEL);
2214 if (!pool->name)
2215 goto err;
2216
3783689a 2217 if (create_cache(pool))
2e40e163
MK
2218 goto err;
2219
c60369f0 2220 /*
399d8eeb 2221 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2222 * for merging should be larger or equal to current size.
c60369f0 2223 */
cf8e0fed 2224 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2225 int size;
2226 int pages_per_zspage;
64d90465 2227 int objs_per_zspage;
66cdef66 2228 struct size_class *class;
4c7ac972 2229 int fullness;
c60369f0 2230
66cdef66
GM
2231 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2232 if (size > ZS_MAX_ALLOC_SIZE)
2233 size = ZS_MAX_ALLOC_SIZE;
6260ae35 2234 pages_per_zspage = calculate_zspage_chain_size(size);
64d90465 2235 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2236
010b495e
SS
2237 /*
2238 * We iterate from biggest down to smallest classes,
2239 * so huge_class_size holds the size of the first huge
2240 * class. Any object bigger than or equal to that will
2241 * endup in the huge class.
2242 */
2243 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2244 !huge_class_size) {
2245 huge_class_size = size;
2246 /*
2247 * The object uses ZS_HANDLE_SIZE bytes to store the
2248 * handle. We need to subtract it, because zs_malloc()
2249 * unconditionally adds handle size before it performs
2250 * size class search - so object may be smaller than
2251 * huge class size, yet it still can end up in the huge
2252 * class because it grows by ZS_HANDLE_SIZE extra bytes
2253 * right before class lookup.
2254 */
2255 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2256 }
2257
66cdef66
GM
2258 /*
2259 * size_class is used for normal zsmalloc operation such
2260 * as alloc/free for that size. Although it is natural that we
2261 * have one size_class for each size, there is a chance that we
2262 * can get more memory utilization if we use one size_class for
2263 * many different sizes whose size_class have same
2264 * characteristics. So, we makes size_class point to
2265 * previous size_class if possible.
2266 */
2267 if (prev_class) {
64d90465 2268 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2269 pool->size_class[i] = prev_class;
2270 continue;
2271 }
2272 }
2273
2274 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2275 if (!class)
2276 goto err;
2277
2278 class->size = size;
2279 class->index = i;
2280 class->pages_per_zspage = pages_per_zspage;
64d90465 2281 class->objs_per_zspage = objs_per_zspage;
66cdef66 2282 pool->size_class[i] = class;
4c7ac972
SS
2283
2284 fullness = ZS_INUSE_RATIO_0;
2285 while (fullness < NR_FULLNESS_GROUPS) {
3783689a 2286 INIT_LIST_HEAD(&class->fullness_list[fullness]);
4c7ac972
SS
2287 fullness++;
2288 }
66cdef66
GM
2289
2290 prev_class = class;
61989a80
NG
2291 }
2292
d34f6157
DS
2293 /* debug only, don't abort if it fails */
2294 zs_pool_stat_create(pool, name);
0f050d99 2295
ab9d306d 2296 /*
93144ca3
AK
2297 * Not critical since shrinker is only used to trigger internal
2298 * defragmentation of the pool which is pretty optional thing. If
2299 * registration fails we still can use the pool normally and user can
2300 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2301 */
93144ca3
AK
2302 zs_register_shrinker(pool);
2303
66cdef66
GM
2304 return pool;
2305
2306err:
2307 zs_destroy_pool(pool);
2308 return NULL;
61989a80 2309}
66cdef66 2310EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2311
66cdef66 2312void zs_destroy_pool(struct zs_pool *pool)
61989a80 2313{
66cdef66 2314 int i;
61989a80 2315
ab9d306d 2316 zs_unregister_shrinker(pool);
68f2736a 2317 zs_flush_migration(pool);
0f050d99
GM
2318 zs_pool_stat_destroy(pool);
2319
cf8e0fed 2320 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2321 int fg;
2322 struct size_class *class = pool->size_class[i];
61989a80 2323
4249a05f
AR
2324 if (!class)
2325 continue;
2326
66cdef66
GM
2327 if (class->index != i)
2328 continue;
61989a80 2329
4c7ac972
SS
2330 for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
2331 if (list_empty(&class->fullness_list[fg]))
2332 continue;
2333
2334 pr_err("Class-%d fullness group %d is not empty\n",
2335 class->size, fg);
66cdef66
GM
2336 }
2337 kfree(class);
2338 }
f553646a 2339
3783689a 2340 destroy_cache(pool);
0f050d99 2341 kfree(pool->name);
66cdef66
GM
2342 kfree(pool);
2343}
2344EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2345
66cdef66
GM
2346static int __init zs_init(void)
2347{
48b4800a
MK
2348 int ret;
2349
215c89d0
SAS
2350 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2351 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2352 if (ret)
68f2736a 2353 goto out;
66cdef66 2354
66cdef66
GM
2355#ifdef CONFIG_ZPOOL
2356 zpool_register_driver(&zs_zpool_driver);
2357#endif
0f050d99 2358
4abaac9b
DS
2359 zs_stat_init();
2360
66cdef66 2361 return 0;
0f050d99 2362
48b4800a 2363out:
0f050d99 2364 return ret;
61989a80 2365}
61989a80 2366
66cdef66 2367static void __exit zs_exit(void)
61989a80 2368{
66cdef66
GM
2369#ifdef CONFIG_ZPOOL
2370 zpool_unregister_driver(&zs_zpool_driver);
2371#endif
215c89d0 2372 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2373
2374 zs_stat_exit();
61989a80 2375}
069f101f
BH
2376
2377module_init(zs_init);
2378module_exit(zs_exit);
2379
2380MODULE_LICENSE("Dual BSD/GPL");
2381MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");