locking/rwlocks: introduce write_lock_nested
[linux-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
ffedd09f 20 * page->index: links together all component pages of a zspage
48b4800a
MK
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
ffedd09f 23 * page->page_type: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
50d34394 36#include <linux/magic.h>
61989a80
NG
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
61989a80
NG
40#include <linux/string.h>
41#include <linux/slab.h>
ca5999fd 42#include <linux/pgtable.h>
65fddcfc 43#include <asm/tlbflush.h>
61989a80
NG
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
0cbb613f 46#include <linux/vmalloc.h>
759b26b2 47#include <linux/preempt.h>
0959c63f 48#include <linux/spinlock.h>
93144ca3 49#include <linux/shrinker.h>
0959c63f 50#include <linux/types.h>
0f050d99 51#include <linux/debugfs.h>
bcf1647d 52#include <linux/zsmalloc.h>
c795779d 53#include <linux/zpool.h>
48b4800a 54#include <linux/mount.h>
8e9231f8 55#include <linux/pseudo_fs.h>
dd4123f3 56#include <linux/migrate.h>
701d6785 57#include <linux/wait.h>
48b4800a 58#include <linux/pagemap.h>
cdc346b3 59#include <linux/fs.h>
48b4800a
MK
60
61#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
62
63/*
cb152a1a 64 * This must be power of 2 and greater than or equal to sizeof(link_free).
0959c63f
SJ
65 * These two conditions ensure that any 'struct link_free' itself doesn't
66 * span more than 1 page which avoids complex case of mapping 2 pages simply
67 * to restore link_free pointer values.
68 */
69#define ZS_ALIGN 8
70
71/*
72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74 */
75#define ZS_MAX_ZSPAGE_ORDER 2
76#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
2e40e163
MK
78#define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
0959c63f
SJ
80/*
81 * Object location (<PFN>, <obj_idx>) is encoded as
b956b5ac 82 * a single (unsigned long) handle value.
0959c63f 83 *
bfd093f5 84 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
85 *
86 * This is made more complicated by various memory models and PAE.
87 */
88
02390b87
KS
89#ifndef MAX_POSSIBLE_PHYSMEM_BITS
90#ifdef MAX_PHYSMEM_BITS
91#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92#else
0959c63f
SJ
93/*
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 * be PAGE_SHIFT
96 */
02390b87 97#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
98#endif
99#endif
02390b87
KS
100
101#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
102
103/*
104 * Memory for allocating for handle keeps object position by
105 * encoding <page, obj_idx> and the encoded value has a room
106 * in least bit(ie, look at obj_to_location).
107 * We use the bit to synchronize between object access by
108 * user and migration.
109 */
110#define HANDLE_PIN_BIT 0
111
112/*
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
118 */
119#define OBJ_ALLOCATED_TAG 1
120#define OBJ_TAG_BITS 1
121#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
122#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
a41ec880 124#define HUGE_BITS 1
cf8e0fed
JM
125#define FULLNESS_BITS 2
126#define CLASS_BITS 8
127#define ISOLATED_BITS 3
128#define MAGIC_VAL_BITS 8
129
0959c63f
SJ
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 134/* each chunk includes extra space to keep handle */
7b60a685 135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
136
137/*
7eb52512 138 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
3783689a 150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
151#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
152 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 153
0959c63f 154enum fullness_group {
0959c63f 155 ZS_EMPTY,
48b4800a
MK
156 ZS_ALMOST_EMPTY,
157 ZS_ALMOST_FULL,
158 ZS_FULL,
159 NR_ZS_FULLNESS,
0959c63f
SJ
160};
161
3828a764 162enum class_stat_type {
48b4800a
MK
163 CLASS_EMPTY,
164 CLASS_ALMOST_EMPTY,
165 CLASS_ALMOST_FULL,
166 CLASS_FULL,
0f050d99
GM
167 OBJ_ALLOCATED,
168 OBJ_USED,
48b4800a 169 NR_ZS_STAT_TYPE,
0f050d99
GM
170};
171
0f050d99
GM
172struct zs_size_stat {
173 unsigned long objs[NR_ZS_STAT_TYPE];
174};
175
57244594
SS
176#ifdef CONFIG_ZSMALLOC_STAT
177static struct dentry *zs_stat_root;
0f050d99
GM
178#endif
179
48b4800a
MK
180#ifdef CONFIG_COMPACTION
181static struct vfsmount *zsmalloc_mnt;
182#endif
183
0959c63f
SJ
184/*
185 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
186 * n <= N / f, where
187 * n = number of allocated objects
188 * N = total number of objects zspage can store
6dd9737e 189 * f = fullness_threshold_frac
0959c63f
SJ
190 *
191 * Similarly, we assign zspage to:
192 * ZS_ALMOST_FULL when n > N / f
193 * ZS_EMPTY when n == 0
194 * ZS_FULL when n == N
195 *
196 * (see: fix_fullness_group())
197 */
198static const int fullness_threshold_frac = 4;
010b495e 199static size_t huge_class_size;
0959c63f
SJ
200
201struct size_class {
57244594 202 spinlock_t lock;
48b4800a 203 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
204 /*
205 * Size of objects stored in this class. Must be multiple
206 * of ZS_ALIGN.
207 */
208 int size;
1fc6e27d 209 int objs_per_zspage;
7dfa4612
WY
210 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
211 int pages_per_zspage;
48b4800a
MK
212
213 unsigned int index;
214 struct zs_size_stat stats;
0959c63f
SJ
215};
216
217/*
218 * Placed within free objects to form a singly linked list.
3783689a 219 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
220 *
221 * This must be power of 2 and less than or equal to ZS_ALIGN
222 */
223struct link_free {
2e40e163
MK
224 union {
225 /*
bfd093f5 226 * Free object index;
2e40e163
MK
227 * It's valid for non-allocated object
228 */
bfd093f5 229 unsigned long next;
2e40e163
MK
230 /*
231 * Handle of allocated object.
232 */
233 unsigned long handle;
234 };
0959c63f
SJ
235};
236
237struct zs_pool {
6f3526d6 238 const char *name;
0f050d99 239
cf8e0fed 240 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 241 struct kmem_cache *handle_cachep;
3783689a 242 struct kmem_cache *zspage_cachep;
0959c63f 243
13de8933 244 atomic_long_t pages_allocated;
0f050d99 245
7d3f3938 246 struct zs_pool_stats stats;
ab9d306d
SS
247
248 /* Compact classes */
249 struct shrinker shrinker;
93144ca3 250
0f050d99
GM
251#ifdef CONFIG_ZSMALLOC_STAT
252 struct dentry *stat_dentry;
253#endif
48b4800a
MK
254#ifdef CONFIG_COMPACTION
255 struct inode *inode;
256 struct work_struct free_work;
257#endif
0959c63f 258};
61989a80 259
3783689a
MK
260struct zspage {
261 struct {
a41ec880 262 unsigned int huge:HUGE_BITS;
3783689a 263 unsigned int fullness:FULLNESS_BITS;
85d492f2 264 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
265 unsigned int isolated:ISOLATED_BITS;
266 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
267 };
268 unsigned int inuse;
bfd093f5 269 unsigned int freeobj;
3783689a
MK
270 struct page *first_page;
271 struct list_head list; /* fullness list */
48b4800a
MK
272#ifdef CONFIG_COMPACTION
273 rwlock_t lock;
274#endif
3783689a 275};
61989a80 276
f553646a 277struct mapping_area {
f553646a 278 char *vm_buf; /* copy buffer for objects that span pages */
f553646a
SJ
279 char *vm_addr; /* address of kmap_atomic()'ed pages */
280 enum zs_mapmode vm_mm; /* mapping mode */
281};
282
a41ec880
MK
283/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
284static void SetZsHugePage(struct zspage *zspage)
285{
286 zspage->huge = 1;
287}
288
289static bool ZsHugePage(struct zspage *zspage)
290{
291 return zspage->huge;
292}
293
48b4800a
MK
294#ifdef CONFIG_COMPACTION
295static int zs_register_migration(struct zs_pool *pool);
296static void zs_unregister_migration(struct zs_pool *pool);
297static void migrate_lock_init(struct zspage *zspage);
298static void migrate_read_lock(struct zspage *zspage);
299static void migrate_read_unlock(struct zspage *zspage);
300static void kick_deferred_free(struct zs_pool *pool);
301static void init_deferred_free(struct zs_pool *pool);
302static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
303#else
304static int zsmalloc_mount(void) { return 0; }
305static void zsmalloc_unmount(void) {}
306static int zs_register_migration(struct zs_pool *pool) { return 0; }
307static void zs_unregister_migration(struct zs_pool *pool) {}
308static void migrate_lock_init(struct zspage *zspage) {}
309static void migrate_read_lock(struct zspage *zspage) {}
310static void migrate_read_unlock(struct zspage *zspage) {}
311static void kick_deferred_free(struct zs_pool *pool) {}
312static void init_deferred_free(struct zs_pool *pool) {}
313static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
314#endif
315
3783689a 316static int create_cache(struct zs_pool *pool)
2e40e163
MK
317{
318 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
319 0, 0, NULL);
3783689a
MK
320 if (!pool->handle_cachep)
321 return 1;
322
323 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
324 0, 0, NULL);
325 if (!pool->zspage_cachep) {
326 kmem_cache_destroy(pool->handle_cachep);
327 pool->handle_cachep = NULL;
328 return 1;
329 }
330
331 return 0;
2e40e163
MK
332}
333
3783689a 334static void destroy_cache(struct zs_pool *pool)
2e40e163 335{
cd10add0 336 kmem_cache_destroy(pool->handle_cachep);
3783689a 337 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
338}
339
3783689a 340static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
341{
342 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 343 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
344}
345
3783689a 346static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
347{
348 kmem_cache_free(pool->handle_cachep, (void *)handle);
349}
350
3783689a
MK
351static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
352{
f0231305 353 return kmem_cache_zalloc(pool->zspage_cachep,
48b4800a 354 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 355}
3783689a
MK
356
357static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
358{
359 kmem_cache_free(pool->zspage_cachep, zspage);
360}
361
2e40e163
MK
362static void record_obj(unsigned long handle, unsigned long obj)
363{
c102f07c
JL
364 /*
365 * lsb of @obj represents handle lock while other bits
366 * represent object value the handle is pointing so
367 * updating shouldn't do store tearing.
368 */
369 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
370}
371
c795779d
DS
372/* zpool driver */
373
374#ifdef CONFIG_ZPOOL
375
6f3526d6 376static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 377 const struct zpool_ops *zpool_ops,
479305fd 378 struct zpool *zpool)
c795779d 379{
d0d8da2d
SS
380 /*
381 * Ignore global gfp flags: zs_malloc() may be invoked from
382 * different contexts and its caller must provide a valid
383 * gfp mask.
384 */
385 return zs_create_pool(name);
c795779d
DS
386}
387
388static void zs_zpool_destroy(void *pool)
389{
390 zs_destroy_pool(pool);
391}
392
393static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
394 unsigned long *handle)
395{
d0d8da2d 396 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
397 return *handle ? 0 : -1;
398}
399static void zs_zpool_free(void *pool, unsigned long handle)
400{
401 zs_free(pool, handle);
402}
403
c795779d
DS
404static void *zs_zpool_map(void *pool, unsigned long handle,
405 enum zpool_mapmode mm)
406{
407 enum zs_mapmode zs_mm;
408
409 switch (mm) {
410 case ZPOOL_MM_RO:
411 zs_mm = ZS_MM_RO;
412 break;
413 case ZPOOL_MM_WO:
414 zs_mm = ZS_MM_WO;
415 break;
e4a9bc58 416 case ZPOOL_MM_RW:
c795779d
DS
417 default:
418 zs_mm = ZS_MM_RW;
419 break;
420 }
421
422 return zs_map_object(pool, handle, zs_mm);
423}
424static void zs_zpool_unmap(void *pool, unsigned long handle)
425{
426 zs_unmap_object(pool, handle);
427}
428
429static u64 zs_zpool_total_size(void *pool)
430{
722cdc17 431 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
432}
433
434static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
435 .type = "zsmalloc",
436 .owner = THIS_MODULE,
437 .create = zs_zpool_create,
438 .destroy = zs_zpool_destroy,
439 .malloc_support_movable = true,
440 .malloc = zs_zpool_malloc,
441 .free = zs_zpool_free,
442 .map = zs_zpool_map,
443 .unmap = zs_zpool_unmap,
444 .total_size = zs_zpool_total_size,
c795779d
DS
445};
446
137f8cff 447MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
448#endif /* CONFIG_ZPOOL */
449
61989a80
NG
450/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
451static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
452
3457f414 453static __maybe_unused int is_first_page(struct page *page)
61989a80 454{
a27545bf 455 return PagePrivate(page);
61989a80
NG
456}
457
48b4800a 458/* Protected by class->lock */
3783689a 459static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 460{
3783689a 461 return zspage->inuse;
4f42047b
MK
462}
463
4f42047b 464
3783689a 465static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 466{
3783689a 467 zspage->inuse += val;
4f42047b
MK
468}
469
48b4800a 470static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 471{
48b4800a 472 struct page *first_page = zspage->first_page;
3783689a 473
48b4800a
MK
474 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
475 return first_page;
4f42047b
MK
476}
477
48b4800a 478static inline int get_first_obj_offset(struct page *page)
4f42047b 479{
ffedd09f 480 return page->page_type;
48b4800a 481}
3783689a 482
48b4800a
MK
483static inline void set_first_obj_offset(struct page *page, int offset)
484{
ffedd09f 485 page->page_type = offset;
4f42047b
MK
486}
487
bfd093f5 488static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 489{
bfd093f5 490 return zspage->freeobj;
4f42047b
MK
491}
492
bfd093f5 493static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 494{
bfd093f5 495 zspage->freeobj = obj;
4f42047b
MK
496}
497
3783689a 498static void get_zspage_mapping(struct zspage *zspage,
a4209467 499 unsigned int *class_idx,
61989a80
NG
500 enum fullness_group *fullness)
501{
48b4800a
MK
502 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
503
3783689a
MK
504 *fullness = zspage->fullness;
505 *class_idx = zspage->class;
61989a80
NG
506}
507
67f1c9cd
MK
508static struct size_class *zspage_class(struct zs_pool *pool,
509 struct zspage *zspage)
510{
511 return pool->size_class[zspage->class];
512}
513
3783689a 514static void set_zspage_mapping(struct zspage *zspage,
a4209467 515 unsigned int class_idx,
61989a80
NG
516 enum fullness_group fullness)
517{
3783689a
MK
518 zspage->class = class_idx;
519 zspage->fullness = fullness;
61989a80
NG
520}
521
c3e3e88a
NC
522/*
523 * zsmalloc divides the pool into various size classes where each
524 * class maintains a list of zspages where each zspage is divided
525 * into equal sized chunks. Each allocation falls into one of these
526 * classes depending on its size. This function returns index of the
cb152a1a 527 * size class which has chunk size big enough to hold the given size.
c3e3e88a 528 */
61989a80
NG
529static int get_size_class_index(int size)
530{
531 int idx = 0;
532
533 if (likely(size > ZS_MIN_ALLOC_SIZE))
534 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
535 ZS_SIZE_CLASS_DELTA);
536
cf8e0fed 537 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
538}
539
3828a764
MK
540/* type can be of enum type class_stat_type or fullness_group */
541static inline void class_stat_inc(struct size_class *class,
3eb95fea 542 int type, unsigned long cnt)
248ca1b0 543{
48b4800a 544 class->stats.objs[type] += cnt;
248ca1b0
MK
545}
546
3828a764
MK
547/* type can be of enum type class_stat_type or fullness_group */
548static inline void class_stat_dec(struct size_class *class,
3eb95fea 549 int type, unsigned long cnt)
248ca1b0 550{
48b4800a 551 class->stats.objs[type] -= cnt;
248ca1b0
MK
552}
553
3828a764 554/* type can be of enum type class_stat_type or fullness_group */
248ca1b0 555static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 556 int type)
248ca1b0 557{
48b4800a 558 return class->stats.objs[type];
248ca1b0
MK
559}
560
57244594
SS
561#ifdef CONFIG_ZSMALLOC_STAT
562
4abaac9b 563static void __init zs_stat_init(void)
248ca1b0 564{
4abaac9b
DS
565 if (!debugfs_initialized()) {
566 pr_warn("debugfs not available, stat dir not created\n");
567 return;
568 }
248ca1b0
MK
569
570 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
571}
572
573static void __exit zs_stat_exit(void)
574{
575 debugfs_remove_recursive(zs_stat_root);
576}
577
1120ed54
SS
578static unsigned long zs_can_compact(struct size_class *class);
579
248ca1b0
MK
580static int zs_stats_size_show(struct seq_file *s, void *v)
581{
582 int i;
583 struct zs_pool *pool = s->private;
584 struct size_class *class;
585 int objs_per_zspage;
586 unsigned long class_almost_full, class_almost_empty;
1120ed54 587 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
588 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
589 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 590 unsigned long total_freeable = 0;
248ca1b0 591
1120ed54 592 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
593 "class", "size", "almost_full", "almost_empty",
594 "obj_allocated", "obj_used", "pages_used",
1120ed54 595 "pages_per_zspage", "freeable");
248ca1b0 596
cf8e0fed 597 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
598 class = pool->size_class[i];
599
600 if (class->index != i)
601 continue;
602
603 spin_lock(&class->lock);
604 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
605 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
606 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
607 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 608 freeable = zs_can_compact(class);
248ca1b0
MK
609 spin_unlock(&class->lock);
610
b4fd07a0 611 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
612 pages_used = obj_allocated / objs_per_zspage *
613 class->pages_per_zspage;
614
1120ed54
SS
615 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
616 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
617 i, class->size, class_almost_full, class_almost_empty,
618 obj_allocated, obj_used, pages_used,
1120ed54 619 class->pages_per_zspage, freeable);
248ca1b0
MK
620
621 total_class_almost_full += class_almost_full;
622 total_class_almost_empty += class_almost_empty;
623 total_objs += obj_allocated;
624 total_used_objs += obj_used;
625 total_pages += pages_used;
1120ed54 626 total_freeable += freeable;
248ca1b0
MK
627 }
628
629 seq_puts(s, "\n");
1120ed54 630 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
631 "Total", "", total_class_almost_full,
632 total_class_almost_empty, total_objs,
1120ed54 633 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
634
635 return 0;
636}
5ad35093 637DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 638
d34f6157 639static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 640{
4abaac9b
DS
641 if (!zs_stat_root) {
642 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 643 return;
4abaac9b 644 }
248ca1b0 645
4268509a
GKH
646 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
647
648 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
649 &zs_stats_size_fops);
248ca1b0
MK
650}
651
652static void zs_pool_stat_destroy(struct zs_pool *pool)
653{
654 debugfs_remove_recursive(pool->stat_dentry);
655}
656
657#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 658static void __init zs_stat_init(void)
248ca1b0 659{
248ca1b0
MK
660}
661
662static void __exit zs_stat_exit(void)
663{
664}
665
d34f6157 666static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 667{
248ca1b0
MK
668}
669
670static inline void zs_pool_stat_destroy(struct zs_pool *pool)
671{
672}
248ca1b0
MK
673#endif
674
48b4800a 675
c3e3e88a
NC
676/*
677 * For each size class, zspages are divided into different groups
678 * depending on how "full" they are. This was done so that we could
679 * easily find empty or nearly empty zspages when we try to shrink
680 * the pool (not yet implemented). This function returns fullness
681 * status of the given page.
682 */
1fc6e27d 683static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 684 struct zspage *zspage)
61989a80 685{
1fc6e27d 686 int inuse, objs_per_zspage;
61989a80 687 enum fullness_group fg;
830e4bc5 688
3783689a 689 inuse = get_zspage_inuse(zspage);
1fc6e27d 690 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
691
692 if (inuse == 0)
693 fg = ZS_EMPTY;
1fc6e27d 694 else if (inuse == objs_per_zspage)
61989a80 695 fg = ZS_FULL;
1fc6e27d 696 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
697 fg = ZS_ALMOST_EMPTY;
698 else
699 fg = ZS_ALMOST_FULL;
700
701 return fg;
702}
703
c3e3e88a
NC
704/*
705 * Each size class maintains various freelists and zspages are assigned
706 * to one of these freelists based on the number of live objects they
707 * have. This functions inserts the given zspage into the freelist
708 * identified by <class, fullness_group>.
709 */
251cbb95 710static void insert_zspage(struct size_class *class,
3783689a
MK
711 struct zspage *zspage,
712 enum fullness_group fullness)
61989a80 713{
3783689a 714 struct zspage *head;
61989a80 715
3828a764 716 class_stat_inc(class, fullness, 1);
3783689a
MK
717 head = list_first_entry_or_null(&class->fullness_list[fullness],
718 struct zspage, list);
58f17117 719 /*
3783689a
MK
720 * We want to see more ZS_FULL pages and less almost empty/full.
721 * Put pages with higher ->inuse first.
58f17117 722 */
110ceb82
ML
723 if (head && get_zspage_inuse(zspage) < get_zspage_inuse(head))
724 list_add(&zspage->list, &head->list);
725 else
726 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
727}
728
c3e3e88a
NC
729/*
730 * This function removes the given zspage from the freelist identified
731 * by <class, fullness_group>.
732 */
251cbb95 733static void remove_zspage(struct size_class *class,
3783689a
MK
734 struct zspage *zspage,
735 enum fullness_group fullness)
61989a80 736{
3783689a 737 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
61989a80 738
3783689a 739 list_del_init(&zspage->list);
3828a764 740 class_stat_dec(class, fullness, 1);
61989a80
NG
741}
742
c3e3e88a
NC
743/*
744 * Each size class maintains zspages in different fullness groups depending
745 * on the number of live objects they contain. When allocating or freeing
746 * objects, the fullness status of the page can change, say, from ALMOST_FULL
747 * to ALMOST_EMPTY when freeing an object. This function checks if such
748 * a status change has occurred for the given page and accordingly moves the
749 * page from the freelist of the old fullness group to that of the new
750 * fullness group.
751 */
c7806261 752static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 753 struct zspage *zspage)
61989a80
NG
754{
755 int class_idx;
61989a80
NG
756 enum fullness_group currfg, newfg;
757
3783689a
MK
758 get_zspage_mapping(zspage, &class_idx, &currfg);
759 newfg = get_fullness_group(class, zspage);
61989a80
NG
760 if (newfg == currfg)
761 goto out;
762
c4549b87
MK
763 remove_zspage(class, zspage, currfg);
764 insert_zspage(class, zspage, newfg);
3783689a 765 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
766out:
767 return newfg;
768}
769
770/*
771 * We have to decide on how many pages to link together
772 * to form a zspage for each size class. This is important
773 * to reduce wastage due to unusable space left at end of
774 * each zspage which is given as:
888fa374
YX
775 * wastage = Zp % class_size
776 * usage = Zp - wastage
61989a80
NG
777 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
778 *
779 * For example, for size class of 3/8 * PAGE_SIZE, we should
780 * link together 3 PAGE_SIZE sized pages to form a zspage
781 * since then we can perfectly fit in 8 such objects.
782 */
2e3b6154 783static int get_pages_per_zspage(int class_size)
61989a80
NG
784{
785 int i, max_usedpc = 0;
786 /* zspage order which gives maximum used size per KB */
787 int max_usedpc_order = 1;
788
84d4faab 789 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
790 int zspage_size;
791 int waste, usedpc;
792
793 zspage_size = i * PAGE_SIZE;
794 waste = zspage_size % class_size;
795 usedpc = (zspage_size - waste) * 100 / zspage_size;
796
797 if (usedpc > max_usedpc) {
798 max_usedpc = usedpc;
799 max_usedpc_order = i;
800 }
801 }
802
803 return max_usedpc_order;
804}
805
3783689a 806static struct zspage *get_zspage(struct page *page)
61989a80 807{
a6c5e0f7 808 struct zspage *zspage = (struct zspage *)page_private(page);
48b4800a
MK
809
810 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
811 return zspage;
61989a80
NG
812}
813
814static struct page *get_next_page(struct page *page)
815{
a41ec880
MK
816 struct zspage *zspage = get_zspage(page);
817
818 if (unlikely(ZsHugePage(zspage)))
48b4800a
MK
819 return NULL;
820
ffedd09f 821 return (struct page *)page->index;
61989a80
NG
822}
823
bfd093f5
MK
824/**
825 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 826 * @obj: the encoded object value
bfd093f5
MK
827 * @page: page object resides in zspage
828 * @obj_idx: object index
67296874 829 */
bfd093f5
MK
830static void obj_to_location(unsigned long obj, struct page **page,
831 unsigned int *obj_idx)
61989a80 832{
bfd093f5
MK
833 obj >>= OBJ_TAG_BITS;
834 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
835 *obj_idx = (obj & OBJ_INDEX_MASK);
836}
61989a80 837
67f1c9cd
MK
838static void obj_to_page(unsigned long obj, struct page **page)
839{
840 obj >>= OBJ_TAG_BITS;
841 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
842}
843
bfd093f5
MK
844/**
845 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
846 * @page: page object resides in zspage
847 * @obj_idx: object index
848 */
849static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
850{
851 unsigned long obj;
61989a80 852
312fcae2 853 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 854 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 855 obj <<= OBJ_TAG_BITS;
61989a80 856
bfd093f5 857 return obj;
61989a80
NG
858}
859
2e40e163
MK
860static unsigned long handle_to_obj(unsigned long handle)
861{
862 return *(unsigned long *)handle;
863}
864
3ae92ac2 865static bool obj_allocated(struct page *page, void *obj, unsigned long *phandle)
312fcae2 866{
3ae92ac2 867 unsigned long handle;
a41ec880 868 struct zspage *zspage = get_zspage(page);
3ae92ac2 869
a41ec880 870 if (unlikely(ZsHugePage(zspage))) {
830e4bc5 871 VM_BUG_ON_PAGE(!is_first_page(page), page);
3ae92ac2 872 handle = page->index;
7b60a685 873 } else
3ae92ac2
MK
874 handle = *(unsigned long *)obj;
875
876 if (!(handle & OBJ_ALLOCATED_TAG))
877 return false;
878
879 *phandle = handle & ~OBJ_ALLOCATED_TAG;
880 return true;
312fcae2
MK
881}
882
48b4800a
MK
883static inline int testpin_tag(unsigned long handle)
884{
885 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
886}
887
312fcae2
MK
888static inline int trypin_tag(unsigned long handle)
889{
1b8320b6 890 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
891}
892
70c7ec95 893static void pin_tag(unsigned long handle) __acquires(bitlock)
312fcae2 894{
1b8320b6 895 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
896}
897
bc22b18b 898static void unpin_tag(unsigned long handle) __releases(bitlock)
312fcae2 899{
1b8320b6 900 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
901}
902
f4477e90
NG
903static void reset_page(struct page *page)
904{
48b4800a 905 __ClearPageMovable(page);
18fd06bf 906 ClearPagePrivate(page);
f4477e90 907 set_page_private(page, 0);
48b4800a 908 page_mapcount_reset(page);
ffedd09f 909 page->index = 0;
48b4800a
MK
910}
911
4d0a5402 912static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
913{
914 struct page *cursor, *fail;
915
916 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
917 get_next_page(cursor)) {
918 if (!trylock_page(cursor)) {
919 fail = cursor;
920 goto unlock;
921 }
922 }
923
924 return 1;
925unlock:
926 for (cursor = get_first_page(zspage); cursor != fail; cursor =
927 get_next_page(cursor))
928 unlock_page(cursor);
929
930 return 0;
f4477e90
NG
931}
932
48b4800a
MK
933static void __free_zspage(struct zs_pool *pool, struct size_class *class,
934 struct zspage *zspage)
61989a80 935{
3783689a 936 struct page *page, *next;
48b4800a
MK
937 enum fullness_group fg;
938 unsigned int class_idx;
939
940 get_zspage_mapping(zspage, &class_idx, &fg);
941
942 assert_spin_locked(&class->lock);
61989a80 943
3783689a 944 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 945 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 946
48b4800a 947 next = page = get_first_page(zspage);
3783689a 948 do {
48b4800a
MK
949 VM_BUG_ON_PAGE(!PageLocked(page), page);
950 next = get_next_page(page);
3783689a 951 reset_page(page);
48b4800a 952 unlock_page(page);
91537fee 953 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
954 put_page(page);
955 page = next;
956 } while (page != NULL);
61989a80 957
3783689a 958 cache_free_zspage(pool, zspage);
48b4800a 959
3828a764 960 class_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
961 atomic_long_sub(class->pages_per_zspage,
962 &pool->pages_allocated);
963}
964
965static void free_zspage(struct zs_pool *pool, struct size_class *class,
966 struct zspage *zspage)
967{
968 VM_BUG_ON(get_zspage_inuse(zspage));
969 VM_BUG_ON(list_empty(&zspage->list));
970
971 if (!trylock_zspage(zspage)) {
972 kick_deferred_free(pool);
973 return;
974 }
975
976 remove_zspage(class, zspage, ZS_EMPTY);
977 __free_zspage(pool, class, zspage);
61989a80
NG
978}
979
980/* Initialize a newly allocated zspage */
3783689a 981static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 982{
bfd093f5 983 unsigned int freeobj = 1;
61989a80 984 unsigned long off = 0;
48b4800a 985 struct page *page = get_first_page(zspage);
830e4bc5 986
61989a80
NG
987 while (page) {
988 struct page *next_page;
989 struct link_free *link;
af4ee5e9 990 void *vaddr;
61989a80 991
3783689a 992 set_first_obj_offset(page, off);
61989a80 993
af4ee5e9
MK
994 vaddr = kmap_atomic(page);
995 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
996
997 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 998 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 999 link += class->size / sizeof(*link);
61989a80
NG
1000 }
1001
1002 /*
1003 * We now come to the last (full or partial) object on this
1004 * page, which must point to the first object on the next
1005 * page (if present)
1006 */
1007 next_page = get_next_page(page);
bfd093f5 1008 if (next_page) {
3b1d9ca6 1009 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1010 } else {
1011 /*
3b1d9ca6 1012 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1013 * whether it's allocated object or not.
1014 */
01a6ad9a 1015 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1016 }
af4ee5e9 1017 kunmap_atomic(vaddr);
61989a80 1018 page = next_page;
5538c562 1019 off %= PAGE_SIZE;
61989a80 1020 }
bdb0af7c 1021
bfd093f5 1022 set_freeobj(zspage, 0);
61989a80
NG
1023}
1024
48b4800a
MK
1025static void create_page_chain(struct size_class *class, struct zspage *zspage,
1026 struct page *pages[])
61989a80 1027{
bdb0af7c
MK
1028 int i;
1029 struct page *page;
1030 struct page *prev_page = NULL;
48b4800a 1031 int nr_pages = class->pages_per_zspage;
61989a80
NG
1032
1033 /*
1034 * Allocate individual pages and link them together as:
ffedd09f 1035 * 1. all pages are linked together using page->index
3783689a 1036 * 2. each sub-page point to zspage using page->private
61989a80 1037 *
3783689a 1038 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1039 * has this flag set).
61989a80 1040 */
bdb0af7c
MK
1041 for (i = 0; i < nr_pages; i++) {
1042 page = pages[i];
3783689a 1043 set_page_private(page, (unsigned long)zspage);
ffedd09f 1044 page->index = 0;
bdb0af7c 1045 if (i == 0) {
3783689a 1046 zspage->first_page = page;
a27545bf 1047 SetPagePrivate(page);
48b4800a
MK
1048 if (unlikely(class->objs_per_zspage == 1 &&
1049 class->pages_per_zspage == 1))
a41ec880 1050 SetZsHugePage(zspage);
3783689a 1051 } else {
ffedd09f 1052 prev_page->index = (unsigned long)page;
61989a80 1053 }
61989a80
NG
1054 prev_page = page;
1055 }
bdb0af7c 1056}
61989a80 1057
bdb0af7c
MK
1058/*
1059 * Allocate a zspage for the given size class
1060 */
3783689a
MK
1061static struct zspage *alloc_zspage(struct zs_pool *pool,
1062 struct size_class *class,
1063 gfp_t gfp)
bdb0af7c
MK
1064{
1065 int i;
bdb0af7c 1066 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1067 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1068
1069 if (!zspage)
1070 return NULL;
1071
48b4800a
MK
1072 zspage->magic = ZSPAGE_MAGIC;
1073 migrate_lock_init(zspage);
61989a80 1074
bdb0af7c
MK
1075 for (i = 0; i < class->pages_per_zspage; i++) {
1076 struct page *page;
61989a80 1077
3783689a 1078 page = alloc_page(gfp);
bdb0af7c 1079 if (!page) {
91537fee
MK
1080 while (--i >= 0) {
1081 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1082 __free_page(pages[i]);
91537fee 1083 }
3783689a 1084 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1085 return NULL;
1086 }
91537fee
MK
1087
1088 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1089 pages[i] = page;
61989a80
NG
1090 }
1091
48b4800a 1092 create_page_chain(class, zspage, pages);
3783689a 1093 init_zspage(class, zspage);
bdb0af7c 1094
3783689a 1095 return zspage;
61989a80
NG
1096}
1097
3783689a 1098static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1099{
1100 int i;
3783689a 1101 struct zspage *zspage;
61989a80 1102
48b4800a 1103 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1104 zspage = list_first_entry_or_null(&class->fullness_list[i],
1105 struct zspage, list);
1106 if (zspage)
61989a80
NG
1107 break;
1108 }
1109
3783689a 1110 return zspage;
61989a80
NG
1111}
1112
f553646a
SJ
1113static inline int __zs_cpu_up(struct mapping_area *area)
1114{
1115 /*
1116 * Make sure we don't leak memory if a cpu UP notification
1117 * and zs_init() race and both call zs_cpu_up() on the same cpu
1118 */
1119 if (area->vm_buf)
1120 return 0;
40f9fb8c 1121 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1122 if (!area->vm_buf)
1123 return -ENOMEM;
1124 return 0;
1125}
1126
1127static inline void __zs_cpu_down(struct mapping_area *area)
1128{
40f9fb8c 1129 kfree(area->vm_buf);
f553646a
SJ
1130 area->vm_buf = NULL;
1131}
1132
1133static void *__zs_map_object(struct mapping_area *area,
1134 struct page *pages[2], int off, int size)
5f601902 1135{
5f601902
SJ
1136 int sizes[2];
1137 void *addr;
f553646a 1138 char *buf = area->vm_buf;
5f601902 1139
f553646a
SJ
1140 /* disable page faults to match kmap_atomic() return conditions */
1141 pagefault_disable();
1142
1143 /* no read fastpath */
1144 if (area->vm_mm == ZS_MM_WO)
1145 goto out;
5f601902
SJ
1146
1147 sizes[0] = PAGE_SIZE - off;
1148 sizes[1] = size - sizes[0];
1149
5f601902
SJ
1150 /* copy object to per-cpu buffer */
1151 addr = kmap_atomic(pages[0]);
1152 memcpy(buf, addr + off, sizes[0]);
1153 kunmap_atomic(addr);
1154 addr = kmap_atomic(pages[1]);
1155 memcpy(buf + sizes[0], addr, sizes[1]);
1156 kunmap_atomic(addr);
f553646a
SJ
1157out:
1158 return area->vm_buf;
5f601902
SJ
1159}
1160
f553646a
SJ
1161static void __zs_unmap_object(struct mapping_area *area,
1162 struct page *pages[2], int off, int size)
5f601902 1163{
5f601902
SJ
1164 int sizes[2];
1165 void *addr;
2e40e163 1166 char *buf;
5f601902 1167
f553646a
SJ
1168 /* no write fastpath */
1169 if (area->vm_mm == ZS_MM_RO)
1170 goto out;
5f601902 1171
7b60a685 1172 buf = area->vm_buf;
a82cbf07
YX
1173 buf = buf + ZS_HANDLE_SIZE;
1174 size -= ZS_HANDLE_SIZE;
1175 off += ZS_HANDLE_SIZE;
2e40e163 1176
5f601902
SJ
1177 sizes[0] = PAGE_SIZE - off;
1178 sizes[1] = size - sizes[0];
1179
1180 /* copy per-cpu buffer to object */
1181 addr = kmap_atomic(pages[0]);
1182 memcpy(addr + off, buf, sizes[0]);
1183 kunmap_atomic(addr);
1184 addr = kmap_atomic(pages[1]);
1185 memcpy(addr, buf + sizes[0], sizes[1]);
1186 kunmap_atomic(addr);
f553646a
SJ
1187
1188out:
1189 /* enable page faults to match kunmap_atomic() return conditions */
1190 pagefault_enable();
5f601902 1191}
61989a80 1192
215c89d0 1193static int zs_cpu_prepare(unsigned int cpu)
61989a80 1194{
61989a80
NG
1195 struct mapping_area *area;
1196
215c89d0
SAS
1197 area = &per_cpu(zs_map_area, cpu);
1198 return __zs_cpu_up(area);
61989a80
NG
1199}
1200
215c89d0 1201static int zs_cpu_dead(unsigned int cpu)
61989a80 1202{
215c89d0 1203 struct mapping_area *area;
40f9fb8c 1204
215c89d0
SAS
1205 area = &per_cpu(zs_map_area, cpu);
1206 __zs_cpu_down(area);
1207 return 0;
b1b00a5b
SS
1208}
1209
64d90465
GM
1210static bool can_merge(struct size_class *prev, int pages_per_zspage,
1211 int objs_per_zspage)
9eec4cd5 1212{
64d90465
GM
1213 if (prev->pages_per_zspage == pages_per_zspage &&
1214 prev->objs_per_zspage == objs_per_zspage)
1215 return true;
9eec4cd5 1216
64d90465 1217 return false;
9eec4cd5
JK
1218}
1219
3783689a 1220static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1221{
3783689a 1222 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1223}
1224
66cdef66
GM
1225unsigned long zs_get_total_pages(struct zs_pool *pool)
1226{
1227 return atomic_long_read(&pool->pages_allocated);
1228}
1229EXPORT_SYMBOL_GPL(zs_get_total_pages);
1230
4bbc0bc0 1231/**
66cdef66
GM
1232 * zs_map_object - get address of allocated object from handle.
1233 * @pool: pool from which the object was allocated
1234 * @handle: handle returned from zs_malloc
f0953a1b 1235 * @mm: mapping mode to use
4bbc0bc0 1236 *
66cdef66
GM
1237 * Before using an object allocated from zs_malloc, it must be mapped using
1238 * this function. When done with the object, it must be unmapped using
1239 * zs_unmap_object.
4bbc0bc0 1240 *
66cdef66
GM
1241 * Only one object can be mapped per cpu at a time. There is no protection
1242 * against nested mappings.
1243 *
1244 * This function returns with preemption and page faults disabled.
4bbc0bc0 1245 */
66cdef66
GM
1246void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1247 enum zs_mapmode mm)
61989a80 1248{
3783689a 1249 struct zspage *zspage;
66cdef66 1250 struct page *page;
bfd093f5
MK
1251 unsigned long obj, off;
1252 unsigned int obj_idx;
61989a80 1253
66cdef66
GM
1254 struct size_class *class;
1255 struct mapping_area *area;
1256 struct page *pages[2];
2e40e163 1257 void *ret;
61989a80 1258
9eec4cd5 1259 /*
66cdef66
GM
1260 * Because we use per-cpu mapping areas shared among the
1261 * pools/users, we can't allow mapping in interrupt context
1262 * because it can corrupt another users mappings.
9eec4cd5 1263 */
1aedcafb 1264 BUG_ON(in_interrupt());
61989a80 1265
312fcae2
MK
1266 /* From now on, migration cannot move the object */
1267 pin_tag(handle);
1268
2e40e163
MK
1269 obj = handle_to_obj(handle);
1270 obj_to_location(obj, &page, &obj_idx);
3783689a 1271 zspage = get_zspage(page);
48b4800a
MK
1272
1273 /* migration cannot move any subpage in this zspage */
1274 migrate_read_lock(zspage);
1275
67f1c9cd 1276 class = zspage_class(pool, zspage);
bfd093f5 1277 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1278
66cdef66
GM
1279 area = &get_cpu_var(zs_map_area);
1280 area->vm_mm = mm;
1281 if (off + class->size <= PAGE_SIZE) {
1282 /* this object is contained entirely within a page */
1283 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1284 ret = area->vm_addr + off;
1285 goto out;
61989a80
NG
1286 }
1287
66cdef66
GM
1288 /* this object spans two pages */
1289 pages[0] = page;
1290 pages[1] = get_next_page(page);
1291 BUG_ON(!pages[1]);
9eec4cd5 1292
2e40e163
MK
1293 ret = __zs_map_object(area, pages, off, class->size);
1294out:
a41ec880 1295 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1296 ret += ZS_HANDLE_SIZE;
1297
1298 return ret;
61989a80 1299}
66cdef66 1300EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1301
66cdef66 1302void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1303{
3783689a 1304 struct zspage *zspage;
66cdef66 1305 struct page *page;
bfd093f5
MK
1306 unsigned long obj, off;
1307 unsigned int obj_idx;
61989a80 1308
66cdef66
GM
1309 struct size_class *class;
1310 struct mapping_area *area;
9eec4cd5 1311
2e40e163
MK
1312 obj = handle_to_obj(handle);
1313 obj_to_location(obj, &page, &obj_idx);
3783689a 1314 zspage = get_zspage(page);
67f1c9cd 1315 class = zspage_class(pool, zspage);
bfd093f5 1316 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1317
66cdef66
GM
1318 area = this_cpu_ptr(&zs_map_area);
1319 if (off + class->size <= PAGE_SIZE)
1320 kunmap_atomic(area->vm_addr);
1321 else {
1322 struct page *pages[2];
40f9fb8c 1323
66cdef66
GM
1324 pages[0] = page;
1325 pages[1] = get_next_page(page);
1326 BUG_ON(!pages[1]);
1327
1328 __zs_unmap_object(area, pages, off, class->size);
1329 }
1330 put_cpu_var(zs_map_area);
48b4800a
MK
1331
1332 migrate_read_unlock(zspage);
312fcae2 1333 unpin_tag(handle);
61989a80 1334}
66cdef66 1335EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1336
010b495e
SS
1337/**
1338 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1339 * zsmalloc &size_class.
1340 * @pool: zsmalloc pool to use
1341 *
1342 * The function returns the size of the first huge class - any object of equal
1343 * or bigger size will be stored in zspage consisting of a single physical
1344 * page.
1345 *
1346 * Context: Any context.
1347 *
1348 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1349 */
1350size_t zs_huge_class_size(struct zs_pool *pool)
1351{
1352 return huge_class_size;
1353}
1354EXPORT_SYMBOL_GPL(zs_huge_class_size);
1355
0a5f079b 1356static unsigned long obj_malloc(struct zs_pool *pool,
3783689a 1357 struct zspage *zspage, unsigned long handle)
c7806261 1358{
bfd093f5 1359 int i, nr_page, offset;
c7806261
MK
1360 unsigned long obj;
1361 struct link_free *link;
0a5f079b 1362 struct size_class *class;
c7806261
MK
1363
1364 struct page *m_page;
bfd093f5 1365 unsigned long m_offset;
c7806261
MK
1366 void *vaddr;
1367
0a5f079b 1368 class = pool->size_class[zspage->class];
312fcae2 1369 handle |= OBJ_ALLOCATED_TAG;
3783689a 1370 obj = get_freeobj(zspage);
bfd093f5
MK
1371
1372 offset = obj * class->size;
1373 nr_page = offset >> PAGE_SHIFT;
1374 m_offset = offset & ~PAGE_MASK;
1375 m_page = get_first_page(zspage);
1376
1377 for (i = 0; i < nr_page; i++)
1378 m_page = get_next_page(m_page);
c7806261
MK
1379
1380 vaddr = kmap_atomic(m_page);
1381 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1382 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
a41ec880 1383 if (likely(!ZsHugePage(zspage)))
7b60a685
MK
1384 /* record handle in the header of allocated chunk */
1385 link->handle = handle;
1386 else
3783689a
MK
1387 /* record handle to page->index */
1388 zspage->first_page->index = handle;
1389
c7806261 1390 kunmap_atomic(vaddr);
3783689a 1391 mod_zspage_inuse(zspage, 1);
c7806261 1392
bfd093f5
MK
1393 obj = location_to_obj(m_page, obj);
1394
c7806261
MK
1395 return obj;
1396}
1397
1398
61989a80
NG
1399/**
1400 * zs_malloc - Allocate block of given size from pool.
1401 * @pool: pool to allocate from
1402 * @size: size of block to allocate
fd854463 1403 * @gfp: gfp flags when allocating object
61989a80 1404 *
00a61d86 1405 * On success, handle to the allocated object is returned,
c2344348 1406 * otherwise 0.
61989a80
NG
1407 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1408 */
d0d8da2d 1409unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1410{
2e40e163 1411 unsigned long handle, obj;
61989a80 1412 struct size_class *class;
48b4800a 1413 enum fullness_group newfg;
3783689a 1414 struct zspage *zspage;
61989a80 1415
7b60a685 1416 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1417 return 0;
1418
3783689a 1419 handle = cache_alloc_handle(pool, gfp);
2e40e163 1420 if (!handle)
c2344348 1421 return 0;
61989a80 1422
2e40e163
MK
1423 /* extra space in chunk to keep the handle */
1424 size += ZS_HANDLE_SIZE;
9eec4cd5 1425 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1426
1427 spin_lock(&class->lock);
3783689a 1428 zspage = find_get_zspage(class);
48b4800a 1429 if (likely(zspage)) {
0a5f079b 1430 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1431 /* Now move the zspage to another fullness group, if required */
1432 fix_fullness_group(class, zspage);
1433 record_obj(handle, obj);
0a5f079b 1434 class_stat_inc(class, OBJ_USED, 1);
61989a80 1435 spin_unlock(&class->lock);
61989a80 1436
48b4800a
MK
1437 return handle;
1438 }
0f050d99 1439
48b4800a
MK
1440 spin_unlock(&class->lock);
1441
1442 zspage = alloc_zspage(pool, class, gfp);
1443 if (!zspage) {
1444 cache_free_handle(pool, handle);
1445 return 0;
61989a80
NG
1446 }
1447
48b4800a 1448 spin_lock(&class->lock);
0a5f079b 1449 obj = obj_malloc(pool, zspage, handle);
48b4800a
MK
1450 newfg = get_fullness_group(class, zspage);
1451 insert_zspage(class, zspage, newfg);
1452 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1453 record_obj(handle, obj);
48b4800a
MK
1454 atomic_long_add(class->pages_per_zspage,
1455 &pool->pages_allocated);
3828a764 1456 class_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
0a5f079b 1457 class_stat_inc(class, OBJ_USED, 1);
48b4800a
MK
1458
1459 /* We completely set up zspage so mark them as movable */
1460 SetZsPageMovable(pool, zspage);
61989a80
NG
1461 spin_unlock(&class->lock);
1462
2e40e163 1463 return handle;
61989a80
NG
1464}
1465EXPORT_SYMBOL_GPL(zs_malloc);
1466
0a5f079b 1467static void obj_free(int class_size, unsigned long obj)
61989a80
NG
1468{
1469 struct link_free *link;
3783689a
MK
1470 struct zspage *zspage;
1471 struct page *f_page;
bfd093f5
MK
1472 unsigned long f_offset;
1473 unsigned int f_objidx;
af4ee5e9 1474 void *vaddr;
61989a80 1475
2e40e163 1476 obj_to_location(obj, &f_page, &f_objidx);
0a5f079b 1477 f_offset = (class_size * f_objidx) & ~PAGE_MASK;
3783689a 1478 zspage = get_zspage(f_page);
61989a80 1479
c7806261 1480 vaddr = kmap_atomic(f_page);
61989a80
NG
1481
1482 /* Insert this object in containing zspage's freelist */
af4ee5e9 1483 link = (struct link_free *)(vaddr + f_offset);
a41ec880
MK
1484 if (likely(!ZsHugePage(zspage)))
1485 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1486 else
1487 f_page->index = 0;
af4ee5e9 1488 kunmap_atomic(vaddr);
bfd093f5 1489 set_freeobj(zspage, f_objidx);
3783689a 1490 mod_zspage_inuse(zspage, -1);
c7806261
MK
1491}
1492
1493void zs_free(struct zs_pool *pool, unsigned long handle)
1494{
3783689a
MK
1495 struct zspage *zspage;
1496 struct page *f_page;
bfd093f5 1497 unsigned long obj;
c7806261
MK
1498 struct size_class *class;
1499 enum fullness_group fullness;
1500
1501 if (unlikely(!handle))
1502 return;
1503
312fcae2 1504 pin_tag(handle);
c7806261 1505 obj = handle_to_obj(handle);
67f1c9cd 1506 obj_to_page(obj, &f_page);
3783689a 1507 zspage = get_zspage(f_page);
c7806261 1508
48b4800a 1509 migrate_read_lock(zspage);
67f1c9cd 1510 class = zspage_class(pool, zspage);
c7806261
MK
1511
1512 spin_lock(&class->lock);
0a5f079b
MK
1513 obj_free(class->size, obj);
1514 class_stat_dec(class, OBJ_USED, 1);
3783689a 1515 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1516 if (fullness != ZS_EMPTY) {
1517 migrate_read_unlock(zspage);
1518 goto out;
312fcae2 1519 }
48b4800a 1520
48b4800a
MK
1521 migrate_read_unlock(zspage);
1522 /* If zspage is isolated, zs_page_putback will free the zspage */
c4549b87 1523 free_zspage(pool, class, zspage);
48b4800a
MK
1524out:
1525
61989a80 1526 spin_unlock(&class->lock);
312fcae2 1527 unpin_tag(handle);
3783689a 1528 cache_free_handle(pool, handle);
312fcae2
MK
1529}
1530EXPORT_SYMBOL_GPL(zs_free);
1531
251cbb95
MK
1532static void zs_object_copy(struct size_class *class, unsigned long dst,
1533 unsigned long src)
312fcae2
MK
1534{
1535 struct page *s_page, *d_page;
bfd093f5 1536 unsigned int s_objidx, d_objidx;
312fcae2
MK
1537 unsigned long s_off, d_off;
1538 void *s_addr, *d_addr;
1539 int s_size, d_size, size;
1540 int written = 0;
1541
1542 s_size = d_size = class->size;
1543
1544 obj_to_location(src, &s_page, &s_objidx);
1545 obj_to_location(dst, &d_page, &d_objidx);
1546
bfd093f5
MK
1547 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1548 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1549
1550 if (s_off + class->size > PAGE_SIZE)
1551 s_size = PAGE_SIZE - s_off;
1552
1553 if (d_off + class->size > PAGE_SIZE)
1554 d_size = PAGE_SIZE - d_off;
1555
1556 s_addr = kmap_atomic(s_page);
1557 d_addr = kmap_atomic(d_page);
1558
1559 while (1) {
1560 size = min(s_size, d_size);
1561 memcpy(d_addr + d_off, s_addr + s_off, size);
1562 written += size;
1563
1564 if (written == class->size)
1565 break;
1566
495819ea
SS
1567 s_off += size;
1568 s_size -= size;
1569 d_off += size;
1570 d_size -= size;
1571
1572 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1573 kunmap_atomic(d_addr);
1574 kunmap_atomic(s_addr);
1575 s_page = get_next_page(s_page);
312fcae2
MK
1576 s_addr = kmap_atomic(s_page);
1577 d_addr = kmap_atomic(d_page);
1578 s_size = class->size - written;
1579 s_off = 0;
312fcae2
MK
1580 }
1581
495819ea 1582 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1583 kunmap_atomic(d_addr);
1584 d_page = get_next_page(d_page);
312fcae2
MK
1585 d_addr = kmap_atomic(d_page);
1586 d_size = class->size - written;
1587 d_off = 0;
312fcae2
MK
1588 }
1589 }
1590
1591 kunmap_atomic(d_addr);
1592 kunmap_atomic(s_addr);
1593}
1594
1595/*
1596 * Find alloced object in zspage from index object and
1597 * return handle.
1598 */
251cbb95 1599static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1600 struct page *page, int *obj_idx)
312fcae2 1601{
312fcae2 1602 int offset = 0;
cf675acb 1603 int index = *obj_idx;
312fcae2
MK
1604 unsigned long handle = 0;
1605 void *addr = kmap_atomic(page);
1606
3783689a 1607 offset = get_first_obj_offset(page);
312fcae2
MK
1608 offset += class->size * index;
1609
1610 while (offset < PAGE_SIZE) {
3ae92ac2 1611 if (obj_allocated(page, addr + offset, &handle)) {
312fcae2
MK
1612 if (trypin_tag(handle))
1613 break;
1614 handle = 0;
1615 }
1616
1617 offset += class->size;
1618 index++;
1619 }
1620
1621 kunmap_atomic(addr);
cf675acb
GM
1622
1623 *obj_idx = index;
1624
312fcae2
MK
1625 return handle;
1626}
1627
1628struct zs_compact_control {
3783689a 1629 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1630 struct page *s_page;
1631 /* Destination page for migration which should be a first page
1632 * of zspage. */
1633 struct page *d_page;
1634 /* Starting object index within @s_page which used for live object
1635 * in the subpage. */
41b88e14 1636 int obj_idx;
312fcae2
MK
1637};
1638
1639static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1640 struct zs_compact_control *cc)
1641{
1642 unsigned long used_obj, free_obj;
1643 unsigned long handle;
1644 struct page *s_page = cc->s_page;
1645 struct page *d_page = cc->d_page;
41b88e14 1646 int obj_idx = cc->obj_idx;
312fcae2
MK
1647 int ret = 0;
1648
1649 while (1) {
cf675acb 1650 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1651 if (!handle) {
1652 s_page = get_next_page(s_page);
1653 if (!s_page)
1654 break;
41b88e14 1655 obj_idx = 0;
312fcae2
MK
1656 continue;
1657 }
1658
1659 /* Stop if there is no more space */
3783689a 1660 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1661 unpin_tag(handle);
1662 ret = -ENOMEM;
1663 break;
1664 }
1665
1666 used_obj = handle_to_obj(handle);
0a5f079b 1667 free_obj = obj_malloc(pool, get_zspage(d_page), handle);
251cbb95 1668 zs_object_copy(class, free_obj, used_obj);
41b88e14 1669 obj_idx++;
c102f07c
JL
1670 /*
1671 * record_obj updates handle's value to free_obj and it will
1672 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1673 * breaks synchronization using pin_tag(e,g, zs_free) so
1674 * let's keep the lock bit.
1675 */
1676 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1677 record_obj(handle, free_obj);
1678 unpin_tag(handle);
0a5f079b 1679 obj_free(class->size, used_obj);
312fcae2
MK
1680 }
1681
1682 /* Remember last position in this iteration */
1683 cc->s_page = s_page;
41b88e14 1684 cc->obj_idx = obj_idx;
312fcae2
MK
1685
1686 return ret;
1687}
1688
3783689a 1689static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1690{
1691 int i;
3783689a
MK
1692 struct zspage *zspage;
1693 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1694
3783689a
MK
1695 if (!source) {
1696 fg[0] = ZS_ALMOST_FULL;
1697 fg[1] = ZS_ALMOST_EMPTY;
1698 }
1699
1700 for (i = 0; i < 2; i++) {
1701 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1702 struct zspage, list);
1703 if (zspage) {
1704 remove_zspage(class, zspage, fg[i]);
1705 return zspage;
312fcae2
MK
1706 }
1707 }
1708
3783689a 1709 return zspage;
312fcae2
MK
1710}
1711
860c707d 1712/*
3783689a 1713 * putback_zspage - add @zspage into right class's fullness list
860c707d 1714 * @class: destination class
3783689a 1715 * @zspage: target page
860c707d 1716 *
3783689a 1717 * Return @zspage's fullness_group
860c707d 1718 */
4aa409ca 1719static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1720 struct zspage *zspage)
312fcae2 1721{
312fcae2
MK
1722 enum fullness_group fullness;
1723
3783689a
MK
1724 fullness = get_fullness_group(class, zspage);
1725 insert_zspage(class, zspage, fullness);
1726 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1727
860c707d 1728 return fullness;
61989a80 1729}
312fcae2 1730
48b4800a 1731#ifdef CONFIG_COMPACTION
4d0a5402
CIK
1732/*
1733 * To prevent zspage destroy during migration, zspage freeing should
1734 * hold locks of all pages in the zspage.
1735 */
1736static void lock_zspage(struct zspage *zspage)
1737{
1738 struct page *page = get_first_page(zspage);
1739
1740 do {
1741 lock_page(page);
1742 } while ((page = get_next_page(page)) != NULL);
1743}
1744
8e9231f8 1745static int zs_init_fs_context(struct fs_context *fc)
48b4800a 1746{
8e9231f8 1747 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
48b4800a
MK
1748}
1749
1750static struct file_system_type zsmalloc_fs = {
1751 .name = "zsmalloc",
8e9231f8 1752 .init_fs_context = zs_init_fs_context,
48b4800a
MK
1753 .kill_sb = kill_anon_super,
1754};
1755
1756static int zsmalloc_mount(void)
1757{
1758 int ret = 0;
1759
1760 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1761 if (IS_ERR(zsmalloc_mnt))
1762 ret = PTR_ERR(zsmalloc_mnt);
1763
1764 return ret;
1765}
1766
1767static void zsmalloc_unmount(void)
1768{
1769 kern_unmount(zsmalloc_mnt);
1770}
1771
1772static void migrate_lock_init(struct zspage *zspage)
1773{
1774 rwlock_init(&zspage->lock);
1775}
1776
cfc451cf 1777static void migrate_read_lock(struct zspage *zspage) __acquires(&zspage->lock)
48b4800a
MK
1778{
1779 read_lock(&zspage->lock);
1780}
1781
8a374ccc 1782static void migrate_read_unlock(struct zspage *zspage) __releases(&zspage->lock)
48b4800a
MK
1783{
1784 read_unlock(&zspage->lock);
1785}
1786
1787static void migrate_write_lock(struct zspage *zspage)
1788{
1789 write_lock(&zspage->lock);
1790}
1791
1792static void migrate_write_unlock(struct zspage *zspage)
1793{
1794 write_unlock(&zspage->lock);
1795}
1796
1797/* Number of isolated subpage for *page migration* in this zspage */
1798static void inc_zspage_isolation(struct zspage *zspage)
1799{
1800 zspage->isolated++;
1801}
1802
1803static void dec_zspage_isolation(struct zspage *zspage)
1804{
c4549b87 1805 VM_BUG_ON(zspage->isolated == 0);
48b4800a
MK
1806 zspage->isolated--;
1807}
1808
1809static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1810 struct page *newpage, struct page *oldpage)
1811{
1812 struct page *page;
1813 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1814 int idx = 0;
1815
1816 page = get_first_page(zspage);
1817 do {
1818 if (page == oldpage)
1819 pages[idx] = newpage;
1820 else
1821 pages[idx] = page;
1822 idx++;
1823 } while ((page = get_next_page(page)) != NULL);
1824
1825 create_page_chain(class, zspage, pages);
1826 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
a41ec880 1827 if (unlikely(ZsHugePage(zspage)))
48b4800a
MK
1828 newpage->index = oldpage->index;
1829 __SetPageMovable(newpage, page_mapping(oldpage));
1830}
1831
4d0a5402 1832static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a 1833{
48b4800a 1834 struct zspage *zspage;
48b4800a
MK
1835
1836 /*
1837 * Page is locked so zspage couldn't be destroyed. For detail, look at
1838 * lock_zspage in free_zspage.
1839 */
1840 VM_BUG_ON_PAGE(!PageMovable(page), page);
1841 VM_BUG_ON_PAGE(PageIsolated(page), page);
1842
1843 zspage = get_zspage(page);
c4549b87 1844 migrate_write_lock(zspage);
48b4800a 1845 inc_zspage_isolation(zspage);
c4549b87 1846 migrate_write_unlock(zspage);
48b4800a
MK
1847
1848 return true;
1849}
1850
4d0a5402 1851static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
48b4800a
MK
1852 struct page *page, enum migrate_mode mode)
1853{
1854 struct zs_pool *pool;
1855 struct size_class *class;
48b4800a
MK
1856 struct zspage *zspage;
1857 struct page *dummy;
1858 void *s_addr, *d_addr, *addr;
1859 int offset, pos;
3ae92ac2 1860 unsigned long handle;
48b4800a
MK
1861 unsigned long old_obj, new_obj;
1862 unsigned int obj_idx;
1863 int ret = -EAGAIN;
1864
2916ecc0
JG
1865 /*
1866 * We cannot support the _NO_COPY case here, because copy needs to
1867 * happen under the zs lock, which does not work with
1868 * MIGRATE_SYNC_NO_COPY workflow.
1869 */
1870 if (mode == MIGRATE_SYNC_NO_COPY)
1871 return -EINVAL;
1872
48b4800a
MK
1873 VM_BUG_ON_PAGE(!PageMovable(page), page);
1874 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1875
1876 zspage = get_zspage(page);
1877
1878 /* Concurrent compactor cannot migrate any subpage in zspage */
1879 migrate_write_lock(zspage);
48b4800a 1880 pool = mapping->private_data;
67f1c9cd 1881 class = zspage_class(pool, zspage);
48b4800a
MK
1882 offset = get_first_obj_offset(page);
1883
1884 spin_lock(&class->lock);
1885 if (!get_zspage_inuse(zspage)) {
77ff4657
HZ
1886 /*
1887 * Set "offset" to end of the page so that every loops
1888 * skips unnecessary object scanning.
1889 */
1890 offset = PAGE_SIZE;
48b4800a
MK
1891 }
1892
1893 pos = offset;
1894 s_addr = kmap_atomic(page);
1895 while (pos < PAGE_SIZE) {
3ae92ac2 1896 if (obj_allocated(page, s_addr + pos, &handle)) {
48b4800a
MK
1897 if (!trypin_tag(handle))
1898 goto unpin_objects;
1899 }
1900 pos += class->size;
1901 }
1902
1903 /*
1904 * Here, any user cannot access all objects in the zspage so let's move.
1905 */
1906 d_addr = kmap_atomic(newpage);
1907 memcpy(d_addr, s_addr, PAGE_SIZE);
1908 kunmap_atomic(d_addr);
1909
1910 for (addr = s_addr + offset; addr < s_addr + pos;
1911 addr += class->size) {
3ae92ac2 1912 if (obj_allocated(page, addr, &handle)) {
ecfc2bda 1913 BUG_ON(!testpin_tag(handle));
48b4800a
MK
1914
1915 old_obj = handle_to_obj(handle);
1916 obj_to_location(old_obj, &dummy, &obj_idx);
1917 new_obj = (unsigned long)location_to_obj(newpage,
1918 obj_idx);
1919 new_obj |= BIT(HANDLE_PIN_BIT);
1920 record_obj(handle, new_obj);
1921 }
1922 }
1923
1924 replace_sub_page(class, zspage, newpage, page);
1925 get_page(newpage);
1926
1927 dec_zspage_isolation(zspage);
1928
ac8f05da
CM
1929 if (page_zone(newpage) != page_zone(page)) {
1930 dec_zone_page_state(page, NR_ZSPAGES);
1931 inc_zone_page_state(newpage, NR_ZSPAGES);
1932 }
1933
48b4800a
MK
1934 reset_page(page);
1935 put_page(page);
1936 page = newpage;
1937
dd4123f3 1938 ret = MIGRATEPAGE_SUCCESS;
48b4800a
MK
1939unpin_objects:
1940 for (addr = s_addr + offset; addr < s_addr + pos;
1941 addr += class->size) {
3ae92ac2 1942 if (obj_allocated(page, addr, &handle)) {
ecfc2bda 1943 BUG_ON(!testpin_tag(handle));
48b4800a
MK
1944 unpin_tag(handle);
1945 }
1946 }
1947 kunmap_atomic(s_addr);
48b4800a
MK
1948 spin_unlock(&class->lock);
1949 migrate_write_unlock(zspage);
1950
1951 return ret;
1952}
1953
4d0a5402 1954static void zs_page_putback(struct page *page)
48b4800a 1955{
48b4800a
MK
1956 struct zspage *zspage;
1957
1958 VM_BUG_ON_PAGE(!PageMovable(page), page);
1959 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1960
1961 zspage = get_zspage(page);
c4549b87 1962 migrate_write_lock(zspage);
48b4800a 1963 dec_zspage_isolation(zspage);
c4549b87 1964 migrate_write_unlock(zspage);
48b4800a
MK
1965}
1966
4d0a5402 1967static const struct address_space_operations zsmalloc_aops = {
48b4800a
MK
1968 .isolate_page = zs_page_isolate,
1969 .migratepage = zs_page_migrate,
1970 .putback_page = zs_page_putback,
1971};
1972
1973static int zs_register_migration(struct zs_pool *pool)
1974{
1975 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
1976 if (IS_ERR(pool->inode)) {
1977 pool->inode = NULL;
1978 return 1;
1979 }
1980
1981 pool->inode->i_mapping->private_data = pool;
1982 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
1983 return 0;
1984}
1985
1986static void zs_unregister_migration(struct zs_pool *pool)
1987{
1988 flush_work(&pool->free_work);
c3491eca 1989 iput(pool->inode);
48b4800a
MK
1990}
1991
1992/*
1993 * Caller should hold page_lock of all pages in the zspage
1994 * In here, we cannot use zspage meta data.
1995 */
1996static void async_free_zspage(struct work_struct *work)
1997{
1998 int i;
1999 struct size_class *class;
2000 unsigned int class_idx;
2001 enum fullness_group fullness;
2002 struct zspage *zspage, *tmp;
2003 LIST_HEAD(free_pages);
2004 struct zs_pool *pool = container_of(work, struct zs_pool,
2005 free_work);
2006
cf8e0fed 2007 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2008 class = pool->size_class[i];
2009 if (class->index != i)
2010 continue;
2011
2012 spin_lock(&class->lock);
2013 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2014 spin_unlock(&class->lock);
2015 }
2016
48b4800a
MK
2017 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2018 list_del(&zspage->list);
2019 lock_zspage(zspage);
2020
2021 get_zspage_mapping(zspage, &class_idx, &fullness);
2022 VM_BUG_ON(fullness != ZS_EMPTY);
2023 class = pool->size_class[class_idx];
2024 spin_lock(&class->lock);
33848337 2025 __free_zspage(pool, class, zspage);
48b4800a
MK
2026 spin_unlock(&class->lock);
2027 }
2028};
2029
2030static void kick_deferred_free(struct zs_pool *pool)
2031{
2032 schedule_work(&pool->free_work);
2033}
2034
2035static void init_deferred_free(struct zs_pool *pool)
2036{
2037 INIT_WORK(&pool->free_work, async_free_zspage);
2038}
2039
2040static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2041{
2042 struct page *page = get_first_page(zspage);
2043
2044 do {
2045 WARN_ON(!trylock_page(page));
2046 __SetPageMovable(page, pool->inode->i_mapping);
2047 unlock_page(page);
2048 } while ((page = get_next_page(page)) != NULL);
2049}
2050#endif
2051
04f05909
SS
2052/*
2053 *
2054 * Based on the number of unused allocated objects calculate
2055 * and return the number of pages that we can free.
04f05909
SS
2056 */
2057static unsigned long zs_can_compact(struct size_class *class)
2058{
2059 unsigned long obj_wasted;
44f43e99
SS
2060 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2061 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2062
44f43e99
SS
2063 if (obj_allocated <= obj_used)
2064 return 0;
04f05909 2065
44f43e99 2066 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2067 obj_wasted /= class->objs_per_zspage;
04f05909 2068
6cbf16b3 2069 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2070}
2071
23959281
RY
2072static unsigned long __zs_compact(struct zs_pool *pool,
2073 struct size_class *class)
312fcae2 2074{
312fcae2 2075 struct zs_compact_control cc;
3783689a
MK
2076 struct zspage *src_zspage;
2077 struct zspage *dst_zspage = NULL;
23959281 2078 unsigned long pages_freed = 0;
312fcae2 2079
312fcae2 2080 spin_lock(&class->lock);
3783689a 2081 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2082
04f05909
SS
2083 if (!zs_can_compact(class))
2084 break;
2085
41b88e14 2086 cc.obj_idx = 0;
48b4800a 2087 cc.s_page = get_first_page(src_zspage);
312fcae2 2088
3783689a 2089 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2090 cc.d_page = get_first_page(dst_zspage);
312fcae2 2091 /*
0dc63d48
SS
2092 * If there is no more space in dst_page, resched
2093 * and see if anyone had allocated another zspage.
312fcae2
MK
2094 */
2095 if (!migrate_zspage(pool, class, &cc))
2096 break;
2097
4aa409ca 2098 putback_zspage(class, dst_zspage);
312fcae2
MK
2099 }
2100
2101 /* Stop if we couldn't find slot */
3783689a 2102 if (dst_zspage == NULL)
312fcae2
MK
2103 break;
2104
4aa409ca
MK
2105 putback_zspage(class, dst_zspage);
2106 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2107 free_zspage(pool, class, src_zspage);
23959281 2108 pages_freed += class->pages_per_zspage;
4aa409ca 2109 }
312fcae2 2110 spin_unlock(&class->lock);
312fcae2
MK
2111 cond_resched();
2112 spin_lock(&class->lock);
2113 }
2114
3783689a 2115 if (src_zspage)
4aa409ca 2116 putback_zspage(class, src_zspage);
312fcae2 2117
7d3f3938 2118 spin_unlock(&class->lock);
23959281
RY
2119
2120 return pages_freed;
312fcae2
MK
2121}
2122
2123unsigned long zs_compact(struct zs_pool *pool)
2124{
2125 int i;
312fcae2 2126 struct size_class *class;
23959281 2127 unsigned long pages_freed = 0;
312fcae2 2128
cf8e0fed 2129 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2130 class = pool->size_class[i];
2131 if (!class)
2132 continue;
2133 if (class->index != i)
2134 continue;
23959281 2135 pages_freed += __zs_compact(pool, class);
312fcae2 2136 }
23959281 2137 atomic_long_add(pages_freed, &pool->stats.pages_compacted);
312fcae2 2138
23959281 2139 return pages_freed;
312fcae2
MK
2140}
2141EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2142
7d3f3938
SS
2143void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2144{
2145 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2146}
2147EXPORT_SYMBOL_GPL(zs_pool_stats);
2148
ab9d306d
SS
2149static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2150 struct shrink_control *sc)
2151{
2152 unsigned long pages_freed;
2153 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2154 shrinker);
2155
ab9d306d
SS
2156 /*
2157 * Compact classes and calculate compaction delta.
2158 * Can run concurrently with a manually triggered
2159 * (by user) compaction.
2160 */
23959281 2161 pages_freed = zs_compact(pool);
ab9d306d
SS
2162
2163 return pages_freed ? pages_freed : SHRINK_STOP;
2164}
2165
2166static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2167 struct shrink_control *sc)
2168{
2169 int i;
2170 struct size_class *class;
2171 unsigned long pages_to_free = 0;
2172 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2173 shrinker);
2174
cf8e0fed 2175 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2176 class = pool->size_class[i];
2177 if (!class)
2178 continue;
2179 if (class->index != i)
2180 continue;
2181
ab9d306d 2182 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2183 }
2184
2185 return pages_to_free;
2186}
2187
2188static void zs_unregister_shrinker(struct zs_pool *pool)
2189{
93144ca3 2190 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2191}
2192
2193static int zs_register_shrinker(struct zs_pool *pool)
2194{
2195 pool->shrinker.scan_objects = zs_shrinker_scan;
2196 pool->shrinker.count_objects = zs_shrinker_count;
2197 pool->shrinker.batch = 0;
2198 pool->shrinker.seeks = DEFAULT_SEEKS;
2199
2200 return register_shrinker(&pool->shrinker);
2201}
2202
00a61d86 2203/**
66cdef66 2204 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2205 * @name: pool name to be created
166cfda7 2206 *
66cdef66
GM
2207 * This function must be called before anything when using
2208 * the zsmalloc allocator.
166cfda7 2209 *
66cdef66
GM
2210 * On success, a pointer to the newly created pool is returned,
2211 * otherwise NULL.
396b7fd6 2212 */
d0d8da2d 2213struct zs_pool *zs_create_pool(const char *name)
61989a80 2214{
66cdef66
GM
2215 int i;
2216 struct zs_pool *pool;
2217 struct size_class *prev_class = NULL;
61989a80 2218
66cdef66
GM
2219 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2220 if (!pool)
2221 return NULL;
61989a80 2222
48b4800a 2223 init_deferred_free(pool);
61989a80 2224
2e40e163
MK
2225 pool->name = kstrdup(name, GFP_KERNEL);
2226 if (!pool->name)
2227 goto err;
2228
3783689a 2229 if (create_cache(pool))
2e40e163
MK
2230 goto err;
2231
c60369f0 2232 /*
399d8eeb 2233 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2234 * for merging should be larger or equal to current size.
c60369f0 2235 */
cf8e0fed 2236 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2237 int size;
2238 int pages_per_zspage;
64d90465 2239 int objs_per_zspage;
66cdef66 2240 struct size_class *class;
3783689a 2241 int fullness = 0;
c60369f0 2242
66cdef66
GM
2243 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2244 if (size > ZS_MAX_ALLOC_SIZE)
2245 size = ZS_MAX_ALLOC_SIZE;
2246 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2247 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2248
010b495e
SS
2249 /*
2250 * We iterate from biggest down to smallest classes,
2251 * so huge_class_size holds the size of the first huge
2252 * class. Any object bigger than or equal to that will
2253 * endup in the huge class.
2254 */
2255 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2256 !huge_class_size) {
2257 huge_class_size = size;
2258 /*
2259 * The object uses ZS_HANDLE_SIZE bytes to store the
2260 * handle. We need to subtract it, because zs_malloc()
2261 * unconditionally adds handle size before it performs
2262 * size class search - so object may be smaller than
2263 * huge class size, yet it still can end up in the huge
2264 * class because it grows by ZS_HANDLE_SIZE extra bytes
2265 * right before class lookup.
2266 */
2267 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2268 }
2269
66cdef66
GM
2270 /*
2271 * size_class is used for normal zsmalloc operation such
2272 * as alloc/free for that size. Although it is natural that we
2273 * have one size_class for each size, there is a chance that we
2274 * can get more memory utilization if we use one size_class for
2275 * many different sizes whose size_class have same
2276 * characteristics. So, we makes size_class point to
2277 * previous size_class if possible.
2278 */
2279 if (prev_class) {
64d90465 2280 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2281 pool->size_class[i] = prev_class;
2282 continue;
2283 }
2284 }
2285
2286 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2287 if (!class)
2288 goto err;
2289
2290 class->size = size;
2291 class->index = i;
2292 class->pages_per_zspage = pages_per_zspage;
64d90465 2293 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2294 spin_lock_init(&class->lock);
2295 pool->size_class[i] = class;
48b4800a
MK
2296 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2297 fullness++)
3783689a 2298 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2299
2300 prev_class = class;
61989a80
NG
2301 }
2302
d34f6157
DS
2303 /* debug only, don't abort if it fails */
2304 zs_pool_stat_create(pool, name);
0f050d99 2305
48b4800a
MK
2306 if (zs_register_migration(pool))
2307 goto err;
2308
ab9d306d 2309 /*
93144ca3
AK
2310 * Not critical since shrinker is only used to trigger internal
2311 * defragmentation of the pool which is pretty optional thing. If
2312 * registration fails we still can use the pool normally and user can
2313 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2314 */
93144ca3
AK
2315 zs_register_shrinker(pool);
2316
66cdef66
GM
2317 return pool;
2318
2319err:
2320 zs_destroy_pool(pool);
2321 return NULL;
61989a80 2322}
66cdef66 2323EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2324
66cdef66 2325void zs_destroy_pool(struct zs_pool *pool)
61989a80 2326{
66cdef66 2327 int i;
61989a80 2328
ab9d306d 2329 zs_unregister_shrinker(pool);
48b4800a 2330 zs_unregister_migration(pool);
0f050d99
GM
2331 zs_pool_stat_destroy(pool);
2332
cf8e0fed 2333 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2334 int fg;
2335 struct size_class *class = pool->size_class[i];
61989a80 2336
66cdef66
GM
2337 if (!class)
2338 continue;
61989a80 2339
66cdef66
GM
2340 if (class->index != i)
2341 continue;
61989a80 2342
48b4800a 2343 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2344 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2345 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2346 class->size, fg);
2347 }
2348 }
2349 kfree(class);
2350 }
f553646a 2351
3783689a 2352 destroy_cache(pool);
0f050d99 2353 kfree(pool->name);
66cdef66
GM
2354 kfree(pool);
2355}
2356EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2357
66cdef66
GM
2358static int __init zs_init(void)
2359{
48b4800a
MK
2360 int ret;
2361
2362 ret = zsmalloc_mount();
2363 if (ret)
2364 goto out;
2365
215c89d0
SAS
2366 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2367 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2368 if (ret)
215c89d0 2369 goto hp_setup_fail;
66cdef66 2370
66cdef66
GM
2371#ifdef CONFIG_ZPOOL
2372 zpool_register_driver(&zs_zpool_driver);
2373#endif
0f050d99 2374
4abaac9b
DS
2375 zs_stat_init();
2376
66cdef66 2377 return 0;
0f050d99 2378
215c89d0 2379hp_setup_fail:
48b4800a
MK
2380 zsmalloc_unmount();
2381out:
0f050d99 2382 return ret;
61989a80 2383}
61989a80 2384
66cdef66 2385static void __exit zs_exit(void)
61989a80 2386{
66cdef66
GM
2387#ifdef CONFIG_ZPOOL
2388 zpool_unregister_driver(&zs_zpool_driver);
2389#endif
48b4800a 2390 zsmalloc_unmount();
215c89d0 2391 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2392
2393 zs_stat_exit();
61989a80 2394}
069f101f
BH
2395
2396module_init(zs_init);
2397module_exit(zs_exit);
2398
2399MODULE_LICENSE("Dual BSD/GPL");
2400MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");