zpool: add malloc_support_movable to zpool_driver
[linux-2.6-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
48b4800a
MK
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
fd854463 23 * page->units: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
50d34394 36#include <linux/magic.h>
61989a80
NG
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
61989a80
NG
40#include <linux/string.h>
41#include <linux/slab.h>
42#include <asm/tlbflush.h>
43#include <asm/pgtable.h>
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
0cbb613f 46#include <linux/vmalloc.h>
759b26b2 47#include <linux/preempt.h>
0959c63f 48#include <linux/spinlock.h>
93144ca3 49#include <linux/shrinker.h>
0959c63f 50#include <linux/types.h>
0f050d99 51#include <linux/debugfs.h>
bcf1647d 52#include <linux/zsmalloc.h>
c795779d 53#include <linux/zpool.h>
48b4800a 54#include <linux/mount.h>
8e9231f8 55#include <linux/pseudo_fs.h>
dd4123f3 56#include <linux/migrate.h>
701d6785 57#include <linux/wait.h>
48b4800a 58#include <linux/pagemap.h>
cdc346b3 59#include <linux/fs.h>
48b4800a
MK
60
61#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
62
63/*
64 * This must be power of 2 and greater than of equal to sizeof(link_free).
65 * These two conditions ensure that any 'struct link_free' itself doesn't
66 * span more than 1 page which avoids complex case of mapping 2 pages simply
67 * to restore link_free pointer values.
68 */
69#define ZS_ALIGN 8
70
71/*
72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
74 */
75#define ZS_MAX_ZSPAGE_ORDER 2
76#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
77
2e40e163
MK
78#define ZS_HANDLE_SIZE (sizeof(unsigned long))
79
0959c63f
SJ
80/*
81 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 82 * as single (unsigned long) handle value.
0959c63f 83 *
bfd093f5 84 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
85 *
86 * This is made more complicated by various memory models and PAE.
87 */
88
02390b87
KS
89#ifndef MAX_POSSIBLE_PHYSMEM_BITS
90#ifdef MAX_PHYSMEM_BITS
91#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92#else
0959c63f
SJ
93/*
94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 * be PAGE_SHIFT
96 */
02390b87 97#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
98#endif
99#endif
02390b87
KS
100
101#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
102
103/*
104 * Memory for allocating for handle keeps object position by
105 * encoding <page, obj_idx> and the encoded value has a room
106 * in least bit(ie, look at obj_to_location).
107 * We use the bit to synchronize between object access by
108 * user and migration.
109 */
110#define HANDLE_PIN_BIT 0
111
112/*
113 * Head in allocated object should have OBJ_ALLOCATED_TAG
114 * to identify the object was allocated or not.
115 * It's okay to add the status bit in the least bit because
116 * header keeps handle which is 4byte-aligned address so we
117 * have room for two bit at least.
118 */
119#define OBJ_ALLOCATED_TAG 1
120#define OBJ_TAG_BITS 1
121#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
122#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
123
cf8e0fed
JM
124#define FULLNESS_BITS 2
125#define CLASS_BITS 8
126#define ISOLATED_BITS 3
127#define MAGIC_VAL_BITS 8
128
0959c63f
SJ
129#define MAX(a, b) ((a) >= (b) ? (a) : (b))
130/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
131#define ZS_MIN_ALLOC_SIZE \
132 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 133/* each chunk includes extra space to keep handle */
7b60a685 134#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
135
136/*
7eb52512 137 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
138 * trader-off here:
139 * - Large number of size classes is potentially wasteful as free page are
140 * spread across these classes
141 * - Small number of size classes causes large internal fragmentation
142 * - Probably its better to use specific size classes (empirically
143 * determined). NOTE: all those class sizes must be set as multiple of
144 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
145 *
146 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 * (reason above)
148 */
3783689a 149#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
150#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
151 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 152
0959c63f 153enum fullness_group {
0959c63f 154 ZS_EMPTY,
48b4800a
MK
155 ZS_ALMOST_EMPTY,
156 ZS_ALMOST_FULL,
157 ZS_FULL,
158 NR_ZS_FULLNESS,
0959c63f
SJ
159};
160
0f050d99 161enum zs_stat_type {
48b4800a
MK
162 CLASS_EMPTY,
163 CLASS_ALMOST_EMPTY,
164 CLASS_ALMOST_FULL,
165 CLASS_FULL,
0f050d99
GM
166 OBJ_ALLOCATED,
167 OBJ_USED,
48b4800a 168 NR_ZS_STAT_TYPE,
0f050d99
GM
169};
170
0f050d99
GM
171struct zs_size_stat {
172 unsigned long objs[NR_ZS_STAT_TYPE];
173};
174
57244594
SS
175#ifdef CONFIG_ZSMALLOC_STAT
176static struct dentry *zs_stat_root;
0f050d99
GM
177#endif
178
48b4800a
MK
179#ifdef CONFIG_COMPACTION
180static struct vfsmount *zsmalloc_mnt;
181#endif
182
0959c63f
SJ
183/*
184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
185 * n <= N / f, where
186 * n = number of allocated objects
187 * N = total number of objects zspage can store
6dd9737e 188 * f = fullness_threshold_frac
0959c63f
SJ
189 *
190 * Similarly, we assign zspage to:
191 * ZS_ALMOST_FULL when n > N / f
192 * ZS_EMPTY when n == 0
193 * ZS_FULL when n == N
194 *
195 * (see: fix_fullness_group())
196 */
197static const int fullness_threshold_frac = 4;
010b495e 198static size_t huge_class_size;
0959c63f
SJ
199
200struct size_class {
57244594 201 spinlock_t lock;
48b4800a 202 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
203 /*
204 * Size of objects stored in this class. Must be multiple
205 * of ZS_ALIGN.
206 */
207 int size;
1fc6e27d 208 int objs_per_zspage;
7dfa4612
WY
209 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
210 int pages_per_zspage;
48b4800a
MK
211
212 unsigned int index;
213 struct zs_size_stat stats;
0959c63f
SJ
214};
215
48b4800a
MK
216/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
217static void SetPageHugeObject(struct page *page)
218{
219 SetPageOwnerPriv1(page);
220}
221
222static void ClearPageHugeObject(struct page *page)
223{
224 ClearPageOwnerPriv1(page);
225}
226
227static int PageHugeObject(struct page *page)
228{
229 return PageOwnerPriv1(page);
230}
231
0959c63f
SJ
232/*
233 * Placed within free objects to form a singly linked list.
3783689a 234 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
235 *
236 * This must be power of 2 and less than or equal to ZS_ALIGN
237 */
238struct link_free {
2e40e163
MK
239 union {
240 /*
bfd093f5 241 * Free object index;
2e40e163
MK
242 * It's valid for non-allocated object
243 */
bfd093f5 244 unsigned long next;
2e40e163
MK
245 /*
246 * Handle of allocated object.
247 */
248 unsigned long handle;
249 };
0959c63f
SJ
250};
251
252struct zs_pool {
6f3526d6 253 const char *name;
0f050d99 254
cf8e0fed 255 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 256 struct kmem_cache *handle_cachep;
3783689a 257 struct kmem_cache *zspage_cachep;
0959c63f 258
13de8933 259 atomic_long_t pages_allocated;
0f050d99 260
7d3f3938 261 struct zs_pool_stats stats;
ab9d306d
SS
262
263 /* Compact classes */
264 struct shrinker shrinker;
93144ca3 265
0f050d99
GM
266#ifdef CONFIG_ZSMALLOC_STAT
267 struct dentry *stat_dentry;
268#endif
48b4800a
MK
269#ifdef CONFIG_COMPACTION
270 struct inode *inode;
271 struct work_struct free_work;
701d6785
HB
272 /* A wait queue for when migration races with async_free_zspage() */
273 struct wait_queue_head migration_wait;
274 atomic_long_t isolated_pages;
275 bool destroying;
48b4800a 276#endif
0959c63f 277};
61989a80 278
3783689a
MK
279struct zspage {
280 struct {
281 unsigned int fullness:FULLNESS_BITS;
85d492f2 282 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
283 unsigned int isolated:ISOLATED_BITS;
284 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
285 };
286 unsigned int inuse;
bfd093f5 287 unsigned int freeobj;
3783689a
MK
288 struct page *first_page;
289 struct list_head list; /* fullness list */
48b4800a
MK
290#ifdef CONFIG_COMPACTION
291 rwlock_t lock;
292#endif
3783689a 293};
61989a80 294
f553646a 295struct mapping_area {
1b945aee 296#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
297 struct vm_struct *vm; /* vm area for mapping object that span pages */
298#else
299 char *vm_buf; /* copy buffer for objects that span pages */
300#endif
301 char *vm_addr; /* address of kmap_atomic()'ed pages */
302 enum zs_mapmode vm_mm; /* mapping mode */
303};
304
48b4800a
MK
305#ifdef CONFIG_COMPACTION
306static int zs_register_migration(struct zs_pool *pool);
307static void zs_unregister_migration(struct zs_pool *pool);
308static void migrate_lock_init(struct zspage *zspage);
309static void migrate_read_lock(struct zspage *zspage);
310static void migrate_read_unlock(struct zspage *zspage);
311static void kick_deferred_free(struct zs_pool *pool);
312static void init_deferred_free(struct zs_pool *pool);
313static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
314#else
315static int zsmalloc_mount(void) { return 0; }
316static void zsmalloc_unmount(void) {}
317static int zs_register_migration(struct zs_pool *pool) { return 0; }
318static void zs_unregister_migration(struct zs_pool *pool) {}
319static void migrate_lock_init(struct zspage *zspage) {}
320static void migrate_read_lock(struct zspage *zspage) {}
321static void migrate_read_unlock(struct zspage *zspage) {}
322static void kick_deferred_free(struct zs_pool *pool) {}
323static void init_deferred_free(struct zs_pool *pool) {}
324static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
325#endif
326
3783689a 327static int create_cache(struct zs_pool *pool)
2e40e163
MK
328{
329 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
330 0, 0, NULL);
3783689a
MK
331 if (!pool->handle_cachep)
332 return 1;
333
334 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
335 0, 0, NULL);
336 if (!pool->zspage_cachep) {
337 kmem_cache_destroy(pool->handle_cachep);
338 pool->handle_cachep = NULL;
339 return 1;
340 }
341
342 return 0;
2e40e163
MK
343}
344
3783689a 345static void destroy_cache(struct zs_pool *pool)
2e40e163 346{
cd10add0 347 kmem_cache_destroy(pool->handle_cachep);
3783689a 348 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
349}
350
3783689a 351static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
352{
353 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 354 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
355}
356
3783689a 357static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
358{
359 kmem_cache_free(pool->handle_cachep, (void *)handle);
360}
361
3783689a
MK
362static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
363{
48b4800a
MK
364 return kmem_cache_alloc(pool->zspage_cachep,
365 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 366}
3783689a
MK
367
368static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
369{
370 kmem_cache_free(pool->zspage_cachep, zspage);
371}
372
2e40e163
MK
373static void record_obj(unsigned long handle, unsigned long obj)
374{
c102f07c
JL
375 /*
376 * lsb of @obj represents handle lock while other bits
377 * represent object value the handle is pointing so
378 * updating shouldn't do store tearing.
379 */
380 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
381}
382
c795779d
DS
383/* zpool driver */
384
385#ifdef CONFIG_ZPOOL
386
6f3526d6 387static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 388 const struct zpool_ops *zpool_ops,
479305fd 389 struct zpool *zpool)
c795779d 390{
d0d8da2d
SS
391 /*
392 * Ignore global gfp flags: zs_malloc() may be invoked from
393 * different contexts and its caller must provide a valid
394 * gfp mask.
395 */
396 return zs_create_pool(name);
c795779d
DS
397}
398
399static void zs_zpool_destroy(void *pool)
400{
401 zs_destroy_pool(pool);
402}
403
404static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
405 unsigned long *handle)
406{
d0d8da2d 407 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
408 return *handle ? 0 : -1;
409}
410static void zs_zpool_free(void *pool, unsigned long handle)
411{
412 zs_free(pool, handle);
413}
414
c795779d
DS
415static void *zs_zpool_map(void *pool, unsigned long handle,
416 enum zpool_mapmode mm)
417{
418 enum zs_mapmode zs_mm;
419
420 switch (mm) {
421 case ZPOOL_MM_RO:
422 zs_mm = ZS_MM_RO;
423 break;
424 case ZPOOL_MM_WO:
425 zs_mm = ZS_MM_WO;
426 break;
61855f02 427 case ZPOOL_MM_RW: /* fall through */
c795779d
DS
428 default:
429 zs_mm = ZS_MM_RW;
430 break;
431 }
432
433 return zs_map_object(pool, handle, zs_mm);
434}
435static void zs_zpool_unmap(void *pool, unsigned long handle)
436{
437 zs_unmap_object(pool, handle);
438}
439
440static u64 zs_zpool_total_size(void *pool)
441{
722cdc17 442 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
443}
444
445static struct zpool_driver zs_zpool_driver = {
c165f25d
HZ
446 .type = "zsmalloc",
447 .owner = THIS_MODULE,
448 .create = zs_zpool_create,
449 .destroy = zs_zpool_destroy,
450 .malloc_support_movable = true,
451 .malloc = zs_zpool_malloc,
452 .free = zs_zpool_free,
453 .map = zs_zpool_map,
454 .unmap = zs_zpool_unmap,
455 .total_size = zs_zpool_total_size,
c795779d
DS
456};
457
137f8cff 458MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
459#endif /* CONFIG_ZPOOL */
460
61989a80
NG
461/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
462static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
463
48b4800a
MK
464static bool is_zspage_isolated(struct zspage *zspage)
465{
466 return zspage->isolated;
467}
468
3457f414 469static __maybe_unused int is_first_page(struct page *page)
61989a80 470{
a27545bf 471 return PagePrivate(page);
61989a80
NG
472}
473
48b4800a 474/* Protected by class->lock */
3783689a 475static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 476{
3783689a 477 return zspage->inuse;
4f42047b
MK
478}
479
3783689a 480static inline void set_zspage_inuse(struct zspage *zspage, int val)
4f42047b 481{
3783689a 482 zspage->inuse = val;
4f42047b
MK
483}
484
3783689a 485static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 486{
3783689a 487 zspage->inuse += val;
4f42047b
MK
488}
489
48b4800a 490static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 491{
48b4800a 492 struct page *first_page = zspage->first_page;
3783689a 493
48b4800a
MK
494 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
495 return first_page;
4f42047b
MK
496}
497
48b4800a 498static inline int get_first_obj_offset(struct page *page)
4f42047b 499{
48b4800a
MK
500 return page->units;
501}
3783689a 502
48b4800a
MK
503static inline void set_first_obj_offset(struct page *page, int offset)
504{
505 page->units = offset;
4f42047b
MK
506}
507
bfd093f5 508static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 509{
bfd093f5 510 return zspage->freeobj;
4f42047b
MK
511}
512
bfd093f5 513static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 514{
bfd093f5 515 zspage->freeobj = obj;
4f42047b
MK
516}
517
3783689a 518static void get_zspage_mapping(struct zspage *zspage,
a4209467 519 unsigned int *class_idx,
61989a80
NG
520 enum fullness_group *fullness)
521{
48b4800a
MK
522 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
523
3783689a
MK
524 *fullness = zspage->fullness;
525 *class_idx = zspage->class;
61989a80
NG
526}
527
3783689a 528static void set_zspage_mapping(struct zspage *zspage,
a4209467 529 unsigned int class_idx,
61989a80
NG
530 enum fullness_group fullness)
531{
3783689a
MK
532 zspage->class = class_idx;
533 zspage->fullness = fullness;
61989a80
NG
534}
535
c3e3e88a
NC
536/*
537 * zsmalloc divides the pool into various size classes where each
538 * class maintains a list of zspages where each zspage is divided
539 * into equal sized chunks. Each allocation falls into one of these
540 * classes depending on its size. This function returns index of the
541 * size class which has chunk size big enough to hold the give size.
542 */
61989a80
NG
543static int get_size_class_index(int size)
544{
545 int idx = 0;
546
547 if (likely(size > ZS_MIN_ALLOC_SIZE))
548 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
549 ZS_SIZE_CLASS_DELTA);
550
cf8e0fed 551 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
552}
553
3eb95fea 554/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 555static inline void zs_stat_inc(struct size_class *class,
3eb95fea 556 int type, unsigned long cnt)
248ca1b0 557{
48b4800a 558 class->stats.objs[type] += cnt;
248ca1b0
MK
559}
560
3eb95fea 561/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 562static inline void zs_stat_dec(struct size_class *class,
3eb95fea 563 int type, unsigned long cnt)
248ca1b0 564{
48b4800a 565 class->stats.objs[type] -= cnt;
248ca1b0
MK
566}
567
3eb95fea 568/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 569static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 570 int type)
248ca1b0 571{
48b4800a 572 return class->stats.objs[type];
248ca1b0
MK
573}
574
57244594
SS
575#ifdef CONFIG_ZSMALLOC_STAT
576
4abaac9b 577static void __init zs_stat_init(void)
248ca1b0 578{
4abaac9b
DS
579 if (!debugfs_initialized()) {
580 pr_warn("debugfs not available, stat dir not created\n");
581 return;
582 }
248ca1b0
MK
583
584 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
248ca1b0
MK
585}
586
587static void __exit zs_stat_exit(void)
588{
589 debugfs_remove_recursive(zs_stat_root);
590}
591
1120ed54
SS
592static unsigned long zs_can_compact(struct size_class *class);
593
248ca1b0
MK
594static int zs_stats_size_show(struct seq_file *s, void *v)
595{
596 int i;
597 struct zs_pool *pool = s->private;
598 struct size_class *class;
599 int objs_per_zspage;
600 unsigned long class_almost_full, class_almost_empty;
1120ed54 601 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
602 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
603 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 604 unsigned long total_freeable = 0;
248ca1b0 605
1120ed54 606 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
607 "class", "size", "almost_full", "almost_empty",
608 "obj_allocated", "obj_used", "pages_used",
1120ed54 609 "pages_per_zspage", "freeable");
248ca1b0 610
cf8e0fed 611 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
612 class = pool->size_class[i];
613
614 if (class->index != i)
615 continue;
616
617 spin_lock(&class->lock);
618 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
619 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
620 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
621 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 622 freeable = zs_can_compact(class);
248ca1b0
MK
623 spin_unlock(&class->lock);
624
b4fd07a0 625 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
626 pages_used = obj_allocated / objs_per_zspage *
627 class->pages_per_zspage;
628
1120ed54
SS
629 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
630 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
631 i, class->size, class_almost_full, class_almost_empty,
632 obj_allocated, obj_used, pages_used,
1120ed54 633 class->pages_per_zspage, freeable);
248ca1b0
MK
634
635 total_class_almost_full += class_almost_full;
636 total_class_almost_empty += class_almost_empty;
637 total_objs += obj_allocated;
638 total_used_objs += obj_used;
639 total_pages += pages_used;
1120ed54 640 total_freeable += freeable;
248ca1b0
MK
641 }
642
643 seq_puts(s, "\n");
1120ed54 644 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
645 "Total", "", total_class_almost_full,
646 total_class_almost_empty, total_objs,
1120ed54 647 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
648
649 return 0;
650}
5ad35093 651DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 652
d34f6157 653static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 654{
4abaac9b
DS
655 if (!zs_stat_root) {
656 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 657 return;
4abaac9b 658 }
248ca1b0 659
4268509a
GKH
660 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
661
662 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
663 &zs_stats_size_fops);
248ca1b0
MK
664}
665
666static void zs_pool_stat_destroy(struct zs_pool *pool)
667{
668 debugfs_remove_recursive(pool->stat_dentry);
669}
670
671#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 672static void __init zs_stat_init(void)
248ca1b0 673{
248ca1b0
MK
674}
675
676static void __exit zs_stat_exit(void)
677{
678}
679
d34f6157 680static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 681{
248ca1b0
MK
682}
683
684static inline void zs_pool_stat_destroy(struct zs_pool *pool)
685{
686}
248ca1b0
MK
687#endif
688
48b4800a 689
c3e3e88a
NC
690/*
691 * For each size class, zspages are divided into different groups
692 * depending on how "full" they are. This was done so that we could
693 * easily find empty or nearly empty zspages when we try to shrink
694 * the pool (not yet implemented). This function returns fullness
695 * status of the given page.
696 */
1fc6e27d 697static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 698 struct zspage *zspage)
61989a80 699{
1fc6e27d 700 int inuse, objs_per_zspage;
61989a80 701 enum fullness_group fg;
830e4bc5 702
3783689a 703 inuse = get_zspage_inuse(zspage);
1fc6e27d 704 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
705
706 if (inuse == 0)
707 fg = ZS_EMPTY;
1fc6e27d 708 else if (inuse == objs_per_zspage)
61989a80 709 fg = ZS_FULL;
1fc6e27d 710 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
711 fg = ZS_ALMOST_EMPTY;
712 else
713 fg = ZS_ALMOST_FULL;
714
715 return fg;
716}
717
c3e3e88a
NC
718/*
719 * Each size class maintains various freelists and zspages are assigned
720 * to one of these freelists based on the number of live objects they
721 * have. This functions inserts the given zspage into the freelist
722 * identified by <class, fullness_group>.
723 */
251cbb95 724static void insert_zspage(struct size_class *class,
3783689a
MK
725 struct zspage *zspage,
726 enum fullness_group fullness)
61989a80 727{
3783689a 728 struct zspage *head;
61989a80 729
48b4800a 730 zs_stat_inc(class, fullness, 1);
3783689a
MK
731 head = list_first_entry_or_null(&class->fullness_list[fullness],
732 struct zspage, list);
58f17117 733 /*
3783689a
MK
734 * We want to see more ZS_FULL pages and less almost empty/full.
735 * Put pages with higher ->inuse first.
58f17117 736 */
3783689a
MK
737 if (head) {
738 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
739 list_add(&zspage->list, &head->list);
740 return;
741 }
742 }
743 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
744}
745
c3e3e88a
NC
746/*
747 * This function removes the given zspage from the freelist identified
748 * by <class, fullness_group>.
749 */
251cbb95 750static void remove_zspage(struct size_class *class,
3783689a
MK
751 struct zspage *zspage,
752 enum fullness_group fullness)
61989a80 753{
3783689a 754 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
48b4800a 755 VM_BUG_ON(is_zspage_isolated(zspage));
61989a80 756
3783689a 757 list_del_init(&zspage->list);
48b4800a 758 zs_stat_dec(class, fullness, 1);
61989a80
NG
759}
760
c3e3e88a
NC
761/*
762 * Each size class maintains zspages in different fullness groups depending
763 * on the number of live objects they contain. When allocating or freeing
764 * objects, the fullness status of the page can change, say, from ALMOST_FULL
765 * to ALMOST_EMPTY when freeing an object. This function checks if such
766 * a status change has occurred for the given page and accordingly moves the
767 * page from the freelist of the old fullness group to that of the new
768 * fullness group.
769 */
c7806261 770static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 771 struct zspage *zspage)
61989a80
NG
772{
773 int class_idx;
61989a80
NG
774 enum fullness_group currfg, newfg;
775
3783689a
MK
776 get_zspage_mapping(zspage, &class_idx, &currfg);
777 newfg = get_fullness_group(class, zspage);
61989a80
NG
778 if (newfg == currfg)
779 goto out;
780
48b4800a
MK
781 if (!is_zspage_isolated(zspage)) {
782 remove_zspage(class, zspage, currfg);
783 insert_zspage(class, zspage, newfg);
784 }
785
3783689a 786 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
787
788out:
789 return newfg;
790}
791
792/*
793 * We have to decide on how many pages to link together
794 * to form a zspage for each size class. This is important
795 * to reduce wastage due to unusable space left at end of
796 * each zspage which is given as:
888fa374
YX
797 * wastage = Zp % class_size
798 * usage = Zp - wastage
61989a80
NG
799 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
800 *
801 * For example, for size class of 3/8 * PAGE_SIZE, we should
802 * link together 3 PAGE_SIZE sized pages to form a zspage
803 * since then we can perfectly fit in 8 such objects.
804 */
2e3b6154 805static int get_pages_per_zspage(int class_size)
61989a80
NG
806{
807 int i, max_usedpc = 0;
808 /* zspage order which gives maximum used size per KB */
809 int max_usedpc_order = 1;
810
84d4faab 811 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
812 int zspage_size;
813 int waste, usedpc;
814
815 zspage_size = i * PAGE_SIZE;
816 waste = zspage_size % class_size;
817 usedpc = (zspage_size - waste) * 100 / zspage_size;
818
819 if (usedpc > max_usedpc) {
820 max_usedpc = usedpc;
821 max_usedpc_order = i;
822 }
823 }
824
825 return max_usedpc_order;
826}
827
3783689a 828static struct zspage *get_zspage(struct page *page)
61989a80 829{
48b4800a
MK
830 struct zspage *zspage = (struct zspage *)page->private;
831
832 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
833 return zspage;
61989a80
NG
834}
835
836static struct page *get_next_page(struct page *page)
837{
48b4800a
MK
838 if (unlikely(PageHugeObject(page)))
839 return NULL;
840
841 return page->freelist;
61989a80
NG
842}
843
bfd093f5
MK
844/**
845 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 846 * @obj: the encoded object value
bfd093f5
MK
847 * @page: page object resides in zspage
848 * @obj_idx: object index
67296874 849 */
bfd093f5
MK
850static void obj_to_location(unsigned long obj, struct page **page,
851 unsigned int *obj_idx)
61989a80 852{
bfd093f5
MK
853 obj >>= OBJ_TAG_BITS;
854 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
855 *obj_idx = (obj & OBJ_INDEX_MASK);
856}
61989a80 857
bfd093f5
MK
858/**
859 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
860 * @page: page object resides in zspage
861 * @obj_idx: object index
862 */
863static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
864{
865 unsigned long obj;
61989a80 866
312fcae2 867 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 868 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 869 obj <<= OBJ_TAG_BITS;
61989a80 870
bfd093f5 871 return obj;
61989a80
NG
872}
873
2e40e163
MK
874static unsigned long handle_to_obj(unsigned long handle)
875{
876 return *(unsigned long *)handle;
877}
878
48b4800a 879static unsigned long obj_to_head(struct page *page, void *obj)
312fcae2 880{
48b4800a 881 if (unlikely(PageHugeObject(page))) {
830e4bc5 882 VM_BUG_ON_PAGE(!is_first_page(page), page);
3783689a 883 return page->index;
7b60a685
MK
884 } else
885 return *(unsigned long *)obj;
312fcae2
MK
886}
887
48b4800a
MK
888static inline int testpin_tag(unsigned long handle)
889{
890 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
891}
892
312fcae2
MK
893static inline int trypin_tag(unsigned long handle)
894{
1b8320b6 895 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
896}
897
898static void pin_tag(unsigned long handle)
899{
1b8320b6 900 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
901}
902
903static void unpin_tag(unsigned long handle)
904{
1b8320b6 905 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
906}
907
f4477e90
NG
908static void reset_page(struct page *page)
909{
48b4800a 910 __ClearPageMovable(page);
18fd06bf 911 ClearPagePrivate(page);
f4477e90 912 set_page_private(page, 0);
48b4800a
MK
913 page_mapcount_reset(page);
914 ClearPageHugeObject(page);
915 page->freelist = NULL;
916}
917
4d0a5402 918static int trylock_zspage(struct zspage *zspage)
48b4800a
MK
919{
920 struct page *cursor, *fail;
921
922 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
923 get_next_page(cursor)) {
924 if (!trylock_page(cursor)) {
925 fail = cursor;
926 goto unlock;
927 }
928 }
929
930 return 1;
931unlock:
932 for (cursor = get_first_page(zspage); cursor != fail; cursor =
933 get_next_page(cursor))
934 unlock_page(cursor);
935
936 return 0;
f4477e90
NG
937}
938
48b4800a
MK
939static void __free_zspage(struct zs_pool *pool, struct size_class *class,
940 struct zspage *zspage)
61989a80 941{
3783689a 942 struct page *page, *next;
48b4800a
MK
943 enum fullness_group fg;
944 unsigned int class_idx;
945
946 get_zspage_mapping(zspage, &class_idx, &fg);
947
948 assert_spin_locked(&class->lock);
61989a80 949
3783689a 950 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 951 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 952
48b4800a 953 next = page = get_first_page(zspage);
3783689a 954 do {
48b4800a
MK
955 VM_BUG_ON_PAGE(!PageLocked(page), page);
956 next = get_next_page(page);
3783689a 957 reset_page(page);
48b4800a 958 unlock_page(page);
91537fee 959 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
960 put_page(page);
961 page = next;
962 } while (page != NULL);
61989a80 963
3783689a 964 cache_free_zspage(pool, zspage);
48b4800a 965
b4fd07a0 966 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
967 atomic_long_sub(class->pages_per_zspage,
968 &pool->pages_allocated);
969}
970
971static void free_zspage(struct zs_pool *pool, struct size_class *class,
972 struct zspage *zspage)
973{
974 VM_BUG_ON(get_zspage_inuse(zspage));
975 VM_BUG_ON(list_empty(&zspage->list));
976
977 if (!trylock_zspage(zspage)) {
978 kick_deferred_free(pool);
979 return;
980 }
981
982 remove_zspage(class, zspage, ZS_EMPTY);
983 __free_zspage(pool, class, zspage);
61989a80
NG
984}
985
986/* Initialize a newly allocated zspage */
3783689a 987static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 988{
bfd093f5 989 unsigned int freeobj = 1;
61989a80 990 unsigned long off = 0;
48b4800a 991 struct page *page = get_first_page(zspage);
830e4bc5 992
61989a80
NG
993 while (page) {
994 struct page *next_page;
995 struct link_free *link;
af4ee5e9 996 void *vaddr;
61989a80 997
3783689a 998 set_first_obj_offset(page, off);
61989a80 999
af4ee5e9
MK
1000 vaddr = kmap_atomic(page);
1001 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1002
1003 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1004 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1005 link += class->size / sizeof(*link);
61989a80
NG
1006 }
1007
1008 /*
1009 * We now come to the last (full or partial) object on this
1010 * page, which must point to the first object on the next
1011 * page (if present)
1012 */
1013 next_page = get_next_page(page);
bfd093f5 1014 if (next_page) {
3b1d9ca6 1015 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1016 } else {
1017 /*
3b1d9ca6 1018 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1019 * whether it's allocated object or not.
1020 */
01a6ad9a 1021 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1022 }
af4ee5e9 1023 kunmap_atomic(vaddr);
61989a80 1024 page = next_page;
5538c562 1025 off %= PAGE_SIZE;
61989a80 1026 }
bdb0af7c 1027
bfd093f5 1028 set_freeobj(zspage, 0);
61989a80
NG
1029}
1030
48b4800a
MK
1031static void create_page_chain(struct size_class *class, struct zspage *zspage,
1032 struct page *pages[])
61989a80 1033{
bdb0af7c
MK
1034 int i;
1035 struct page *page;
1036 struct page *prev_page = NULL;
48b4800a 1037 int nr_pages = class->pages_per_zspage;
61989a80
NG
1038
1039 /*
1040 * Allocate individual pages and link them together as:
48b4800a 1041 * 1. all pages are linked together using page->freelist
3783689a 1042 * 2. each sub-page point to zspage using page->private
61989a80 1043 *
3783689a 1044 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1045 * has this flag set).
61989a80 1046 */
bdb0af7c
MK
1047 for (i = 0; i < nr_pages; i++) {
1048 page = pages[i];
3783689a 1049 set_page_private(page, (unsigned long)zspage);
48b4800a 1050 page->freelist = NULL;
bdb0af7c 1051 if (i == 0) {
3783689a 1052 zspage->first_page = page;
a27545bf 1053 SetPagePrivate(page);
48b4800a
MK
1054 if (unlikely(class->objs_per_zspage == 1 &&
1055 class->pages_per_zspage == 1))
1056 SetPageHugeObject(page);
3783689a 1057 } else {
48b4800a 1058 prev_page->freelist = page;
61989a80 1059 }
61989a80
NG
1060 prev_page = page;
1061 }
bdb0af7c 1062}
61989a80 1063
bdb0af7c
MK
1064/*
1065 * Allocate a zspage for the given size class
1066 */
3783689a
MK
1067static struct zspage *alloc_zspage(struct zs_pool *pool,
1068 struct size_class *class,
1069 gfp_t gfp)
bdb0af7c
MK
1070{
1071 int i;
bdb0af7c 1072 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1073 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1074
1075 if (!zspage)
1076 return NULL;
1077
1078 memset(zspage, 0, sizeof(struct zspage));
48b4800a
MK
1079 zspage->magic = ZSPAGE_MAGIC;
1080 migrate_lock_init(zspage);
61989a80 1081
bdb0af7c
MK
1082 for (i = 0; i < class->pages_per_zspage; i++) {
1083 struct page *page;
61989a80 1084
3783689a 1085 page = alloc_page(gfp);
bdb0af7c 1086 if (!page) {
91537fee
MK
1087 while (--i >= 0) {
1088 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1089 __free_page(pages[i]);
91537fee 1090 }
3783689a 1091 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1092 return NULL;
1093 }
91537fee
MK
1094
1095 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1096 pages[i] = page;
61989a80
NG
1097 }
1098
48b4800a 1099 create_page_chain(class, zspage, pages);
3783689a 1100 init_zspage(class, zspage);
bdb0af7c 1101
3783689a 1102 return zspage;
61989a80
NG
1103}
1104
3783689a 1105static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1106{
1107 int i;
3783689a 1108 struct zspage *zspage;
61989a80 1109
48b4800a 1110 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1111 zspage = list_first_entry_or_null(&class->fullness_list[i],
1112 struct zspage, list);
1113 if (zspage)
61989a80
NG
1114 break;
1115 }
1116
3783689a 1117 return zspage;
61989a80
NG
1118}
1119
1b945aee 1120#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1121static inline int __zs_cpu_up(struct mapping_area *area)
1122{
1123 /*
1124 * Make sure we don't leak memory if a cpu UP notification
1125 * and zs_init() race and both call zs_cpu_up() on the same cpu
1126 */
1127 if (area->vm)
1128 return 0;
1129 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1130 if (!area->vm)
1131 return -ENOMEM;
1132 return 0;
1133}
1134
1135static inline void __zs_cpu_down(struct mapping_area *area)
1136{
1137 if (area->vm)
1138 free_vm_area(area->vm);
1139 area->vm = NULL;
1140}
1141
1142static inline void *__zs_map_object(struct mapping_area *area,
1143 struct page *pages[2], int off, int size)
1144{
f6f8ed47 1145 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1146 area->vm_addr = area->vm->addr;
1147 return area->vm_addr + off;
1148}
1149
1150static inline void __zs_unmap_object(struct mapping_area *area,
1151 struct page *pages[2], int off, int size)
1152{
1153 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1154
d95abbbb 1155 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1156}
1157
1b945aee 1158#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1159
1160static inline int __zs_cpu_up(struct mapping_area *area)
1161{
1162 /*
1163 * Make sure we don't leak memory if a cpu UP notification
1164 * and zs_init() race and both call zs_cpu_up() on the same cpu
1165 */
1166 if (area->vm_buf)
1167 return 0;
40f9fb8c 1168 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1169 if (!area->vm_buf)
1170 return -ENOMEM;
1171 return 0;
1172}
1173
1174static inline void __zs_cpu_down(struct mapping_area *area)
1175{
40f9fb8c 1176 kfree(area->vm_buf);
f553646a
SJ
1177 area->vm_buf = NULL;
1178}
1179
1180static void *__zs_map_object(struct mapping_area *area,
1181 struct page *pages[2], int off, int size)
5f601902 1182{
5f601902
SJ
1183 int sizes[2];
1184 void *addr;
f553646a 1185 char *buf = area->vm_buf;
5f601902 1186
f553646a
SJ
1187 /* disable page faults to match kmap_atomic() return conditions */
1188 pagefault_disable();
1189
1190 /* no read fastpath */
1191 if (area->vm_mm == ZS_MM_WO)
1192 goto out;
5f601902
SJ
1193
1194 sizes[0] = PAGE_SIZE - off;
1195 sizes[1] = size - sizes[0];
1196
5f601902
SJ
1197 /* copy object to per-cpu buffer */
1198 addr = kmap_atomic(pages[0]);
1199 memcpy(buf, addr + off, sizes[0]);
1200 kunmap_atomic(addr);
1201 addr = kmap_atomic(pages[1]);
1202 memcpy(buf + sizes[0], addr, sizes[1]);
1203 kunmap_atomic(addr);
f553646a
SJ
1204out:
1205 return area->vm_buf;
5f601902
SJ
1206}
1207
f553646a
SJ
1208static void __zs_unmap_object(struct mapping_area *area,
1209 struct page *pages[2], int off, int size)
5f601902 1210{
5f601902
SJ
1211 int sizes[2];
1212 void *addr;
2e40e163 1213 char *buf;
5f601902 1214
f553646a
SJ
1215 /* no write fastpath */
1216 if (area->vm_mm == ZS_MM_RO)
1217 goto out;
5f601902 1218
7b60a685 1219 buf = area->vm_buf;
a82cbf07
YX
1220 buf = buf + ZS_HANDLE_SIZE;
1221 size -= ZS_HANDLE_SIZE;
1222 off += ZS_HANDLE_SIZE;
2e40e163 1223
5f601902
SJ
1224 sizes[0] = PAGE_SIZE - off;
1225 sizes[1] = size - sizes[0];
1226
1227 /* copy per-cpu buffer to object */
1228 addr = kmap_atomic(pages[0]);
1229 memcpy(addr + off, buf, sizes[0]);
1230 kunmap_atomic(addr);
1231 addr = kmap_atomic(pages[1]);
1232 memcpy(addr, buf + sizes[0], sizes[1]);
1233 kunmap_atomic(addr);
f553646a
SJ
1234
1235out:
1236 /* enable page faults to match kunmap_atomic() return conditions */
1237 pagefault_enable();
5f601902 1238}
61989a80 1239
1b945aee 1240#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1241
215c89d0 1242static int zs_cpu_prepare(unsigned int cpu)
61989a80 1243{
61989a80
NG
1244 struct mapping_area *area;
1245
215c89d0
SAS
1246 area = &per_cpu(zs_map_area, cpu);
1247 return __zs_cpu_up(area);
61989a80
NG
1248}
1249
215c89d0 1250static int zs_cpu_dead(unsigned int cpu)
61989a80 1251{
215c89d0 1252 struct mapping_area *area;
40f9fb8c 1253
215c89d0
SAS
1254 area = &per_cpu(zs_map_area, cpu);
1255 __zs_cpu_down(area);
1256 return 0;
b1b00a5b
SS
1257}
1258
64d90465
GM
1259static bool can_merge(struct size_class *prev, int pages_per_zspage,
1260 int objs_per_zspage)
9eec4cd5 1261{
64d90465
GM
1262 if (prev->pages_per_zspage == pages_per_zspage &&
1263 prev->objs_per_zspage == objs_per_zspage)
1264 return true;
9eec4cd5 1265
64d90465 1266 return false;
9eec4cd5
JK
1267}
1268
3783689a 1269static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1270{
3783689a 1271 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1272}
1273
66cdef66
GM
1274unsigned long zs_get_total_pages(struct zs_pool *pool)
1275{
1276 return atomic_long_read(&pool->pages_allocated);
1277}
1278EXPORT_SYMBOL_GPL(zs_get_total_pages);
1279
4bbc0bc0 1280/**
66cdef66
GM
1281 * zs_map_object - get address of allocated object from handle.
1282 * @pool: pool from which the object was allocated
1283 * @handle: handle returned from zs_malloc
e8b098fc 1284 * @mm: maping mode to use
4bbc0bc0 1285 *
66cdef66
GM
1286 * Before using an object allocated from zs_malloc, it must be mapped using
1287 * this function. When done with the object, it must be unmapped using
1288 * zs_unmap_object.
4bbc0bc0 1289 *
66cdef66
GM
1290 * Only one object can be mapped per cpu at a time. There is no protection
1291 * against nested mappings.
1292 *
1293 * This function returns with preemption and page faults disabled.
4bbc0bc0 1294 */
66cdef66
GM
1295void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1296 enum zs_mapmode mm)
61989a80 1297{
3783689a 1298 struct zspage *zspage;
66cdef66 1299 struct page *page;
bfd093f5
MK
1300 unsigned long obj, off;
1301 unsigned int obj_idx;
61989a80 1302
66cdef66
GM
1303 unsigned int class_idx;
1304 enum fullness_group fg;
1305 struct size_class *class;
1306 struct mapping_area *area;
1307 struct page *pages[2];
2e40e163 1308 void *ret;
61989a80 1309
9eec4cd5 1310 /*
66cdef66
GM
1311 * Because we use per-cpu mapping areas shared among the
1312 * pools/users, we can't allow mapping in interrupt context
1313 * because it can corrupt another users mappings.
9eec4cd5 1314 */
1aedcafb 1315 BUG_ON(in_interrupt());
61989a80 1316
312fcae2
MK
1317 /* From now on, migration cannot move the object */
1318 pin_tag(handle);
1319
2e40e163
MK
1320 obj = handle_to_obj(handle);
1321 obj_to_location(obj, &page, &obj_idx);
3783689a 1322 zspage = get_zspage(page);
48b4800a
MK
1323
1324 /* migration cannot move any subpage in this zspage */
1325 migrate_read_lock(zspage);
1326
3783689a 1327 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1328 class = pool->size_class[class_idx];
bfd093f5 1329 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1330
66cdef66
GM
1331 area = &get_cpu_var(zs_map_area);
1332 area->vm_mm = mm;
1333 if (off + class->size <= PAGE_SIZE) {
1334 /* this object is contained entirely within a page */
1335 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1336 ret = area->vm_addr + off;
1337 goto out;
61989a80
NG
1338 }
1339
66cdef66
GM
1340 /* this object spans two pages */
1341 pages[0] = page;
1342 pages[1] = get_next_page(page);
1343 BUG_ON(!pages[1]);
9eec4cd5 1344
2e40e163
MK
1345 ret = __zs_map_object(area, pages, off, class->size);
1346out:
48b4800a 1347 if (likely(!PageHugeObject(page)))
7b60a685
MK
1348 ret += ZS_HANDLE_SIZE;
1349
1350 return ret;
61989a80 1351}
66cdef66 1352EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1353
66cdef66 1354void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1355{
3783689a 1356 struct zspage *zspage;
66cdef66 1357 struct page *page;
bfd093f5
MK
1358 unsigned long obj, off;
1359 unsigned int obj_idx;
61989a80 1360
66cdef66
GM
1361 unsigned int class_idx;
1362 enum fullness_group fg;
1363 struct size_class *class;
1364 struct mapping_area *area;
9eec4cd5 1365
2e40e163
MK
1366 obj = handle_to_obj(handle);
1367 obj_to_location(obj, &page, &obj_idx);
3783689a
MK
1368 zspage = get_zspage(page);
1369 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1370 class = pool->size_class[class_idx];
bfd093f5 1371 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1372
66cdef66
GM
1373 area = this_cpu_ptr(&zs_map_area);
1374 if (off + class->size <= PAGE_SIZE)
1375 kunmap_atomic(area->vm_addr);
1376 else {
1377 struct page *pages[2];
40f9fb8c 1378
66cdef66
GM
1379 pages[0] = page;
1380 pages[1] = get_next_page(page);
1381 BUG_ON(!pages[1]);
1382
1383 __zs_unmap_object(area, pages, off, class->size);
1384 }
1385 put_cpu_var(zs_map_area);
48b4800a
MK
1386
1387 migrate_read_unlock(zspage);
312fcae2 1388 unpin_tag(handle);
61989a80 1389}
66cdef66 1390EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1391
010b495e
SS
1392/**
1393 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1394 * zsmalloc &size_class.
1395 * @pool: zsmalloc pool to use
1396 *
1397 * The function returns the size of the first huge class - any object of equal
1398 * or bigger size will be stored in zspage consisting of a single physical
1399 * page.
1400 *
1401 * Context: Any context.
1402 *
1403 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1404 */
1405size_t zs_huge_class_size(struct zs_pool *pool)
1406{
1407 return huge_class_size;
1408}
1409EXPORT_SYMBOL_GPL(zs_huge_class_size);
1410
251cbb95 1411static unsigned long obj_malloc(struct size_class *class,
3783689a 1412 struct zspage *zspage, unsigned long handle)
c7806261 1413{
bfd093f5 1414 int i, nr_page, offset;
c7806261
MK
1415 unsigned long obj;
1416 struct link_free *link;
1417
1418 struct page *m_page;
bfd093f5 1419 unsigned long m_offset;
c7806261
MK
1420 void *vaddr;
1421
312fcae2 1422 handle |= OBJ_ALLOCATED_TAG;
3783689a 1423 obj = get_freeobj(zspage);
bfd093f5
MK
1424
1425 offset = obj * class->size;
1426 nr_page = offset >> PAGE_SHIFT;
1427 m_offset = offset & ~PAGE_MASK;
1428 m_page = get_first_page(zspage);
1429
1430 for (i = 0; i < nr_page; i++)
1431 m_page = get_next_page(m_page);
c7806261
MK
1432
1433 vaddr = kmap_atomic(m_page);
1434 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1435 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
48b4800a 1436 if (likely(!PageHugeObject(m_page)))
7b60a685
MK
1437 /* record handle in the header of allocated chunk */
1438 link->handle = handle;
1439 else
3783689a
MK
1440 /* record handle to page->index */
1441 zspage->first_page->index = handle;
1442
c7806261 1443 kunmap_atomic(vaddr);
3783689a 1444 mod_zspage_inuse(zspage, 1);
c7806261
MK
1445 zs_stat_inc(class, OBJ_USED, 1);
1446
bfd093f5
MK
1447 obj = location_to_obj(m_page, obj);
1448
c7806261
MK
1449 return obj;
1450}
1451
1452
61989a80
NG
1453/**
1454 * zs_malloc - Allocate block of given size from pool.
1455 * @pool: pool to allocate from
1456 * @size: size of block to allocate
fd854463 1457 * @gfp: gfp flags when allocating object
61989a80 1458 *
00a61d86 1459 * On success, handle to the allocated object is returned,
c2344348 1460 * otherwise 0.
61989a80
NG
1461 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1462 */
d0d8da2d 1463unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1464{
2e40e163 1465 unsigned long handle, obj;
61989a80 1466 struct size_class *class;
48b4800a 1467 enum fullness_group newfg;
3783689a 1468 struct zspage *zspage;
61989a80 1469
7b60a685 1470 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1471 return 0;
1472
3783689a 1473 handle = cache_alloc_handle(pool, gfp);
2e40e163 1474 if (!handle)
c2344348 1475 return 0;
61989a80 1476
2e40e163
MK
1477 /* extra space in chunk to keep the handle */
1478 size += ZS_HANDLE_SIZE;
9eec4cd5 1479 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1480
1481 spin_lock(&class->lock);
3783689a 1482 zspage = find_get_zspage(class);
48b4800a
MK
1483 if (likely(zspage)) {
1484 obj = obj_malloc(class, zspage, handle);
1485 /* Now move the zspage to another fullness group, if required */
1486 fix_fullness_group(class, zspage);
1487 record_obj(handle, obj);
61989a80 1488 spin_unlock(&class->lock);
61989a80 1489
48b4800a
MK
1490 return handle;
1491 }
0f050d99 1492
48b4800a
MK
1493 spin_unlock(&class->lock);
1494
1495 zspage = alloc_zspage(pool, class, gfp);
1496 if (!zspage) {
1497 cache_free_handle(pool, handle);
1498 return 0;
61989a80
NG
1499 }
1500
48b4800a 1501 spin_lock(&class->lock);
3783689a 1502 obj = obj_malloc(class, zspage, handle);
48b4800a
MK
1503 newfg = get_fullness_group(class, zspage);
1504 insert_zspage(class, zspage, newfg);
1505 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1506 record_obj(handle, obj);
48b4800a
MK
1507 atomic_long_add(class->pages_per_zspage,
1508 &pool->pages_allocated);
b4fd07a0 1509 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1510
1511 /* We completely set up zspage so mark them as movable */
1512 SetZsPageMovable(pool, zspage);
61989a80
NG
1513 spin_unlock(&class->lock);
1514
2e40e163 1515 return handle;
61989a80
NG
1516}
1517EXPORT_SYMBOL_GPL(zs_malloc);
1518
1ee47165 1519static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1520{
1521 struct link_free *link;
3783689a
MK
1522 struct zspage *zspage;
1523 struct page *f_page;
bfd093f5
MK
1524 unsigned long f_offset;
1525 unsigned int f_objidx;
af4ee5e9 1526 void *vaddr;
61989a80 1527
312fcae2 1528 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1529 obj_to_location(obj, &f_page, &f_objidx);
bfd093f5 1530 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
3783689a 1531 zspage = get_zspage(f_page);
61989a80 1532
c7806261 1533 vaddr = kmap_atomic(f_page);
61989a80
NG
1534
1535 /* Insert this object in containing zspage's freelist */
af4ee5e9 1536 link = (struct link_free *)(vaddr + f_offset);
3b1d9ca6 1537 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
af4ee5e9 1538 kunmap_atomic(vaddr);
bfd093f5 1539 set_freeobj(zspage, f_objidx);
3783689a 1540 mod_zspage_inuse(zspage, -1);
0f050d99 1541 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1542}
1543
1544void zs_free(struct zs_pool *pool, unsigned long handle)
1545{
3783689a
MK
1546 struct zspage *zspage;
1547 struct page *f_page;
bfd093f5
MK
1548 unsigned long obj;
1549 unsigned int f_objidx;
c7806261
MK
1550 int class_idx;
1551 struct size_class *class;
1552 enum fullness_group fullness;
48b4800a 1553 bool isolated;
c7806261
MK
1554
1555 if (unlikely(!handle))
1556 return;
1557
312fcae2 1558 pin_tag(handle);
c7806261 1559 obj = handle_to_obj(handle);
c7806261 1560 obj_to_location(obj, &f_page, &f_objidx);
3783689a 1561 zspage = get_zspage(f_page);
c7806261 1562
48b4800a
MK
1563 migrate_read_lock(zspage);
1564
3783689a 1565 get_zspage_mapping(zspage, &class_idx, &fullness);
c7806261
MK
1566 class = pool->size_class[class_idx];
1567
1568 spin_lock(&class->lock);
1ee47165 1569 obj_free(class, obj);
3783689a 1570 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1571 if (fullness != ZS_EMPTY) {
1572 migrate_read_unlock(zspage);
1573 goto out;
312fcae2 1574 }
48b4800a
MK
1575
1576 isolated = is_zspage_isolated(zspage);
1577 migrate_read_unlock(zspage);
1578 /* If zspage is isolated, zs_page_putback will free the zspage */
1579 if (likely(!isolated))
1580 free_zspage(pool, class, zspage);
1581out:
1582
61989a80 1583 spin_unlock(&class->lock);
312fcae2 1584 unpin_tag(handle);
3783689a 1585 cache_free_handle(pool, handle);
312fcae2
MK
1586}
1587EXPORT_SYMBOL_GPL(zs_free);
1588
251cbb95
MK
1589static void zs_object_copy(struct size_class *class, unsigned long dst,
1590 unsigned long src)
312fcae2
MK
1591{
1592 struct page *s_page, *d_page;
bfd093f5 1593 unsigned int s_objidx, d_objidx;
312fcae2
MK
1594 unsigned long s_off, d_off;
1595 void *s_addr, *d_addr;
1596 int s_size, d_size, size;
1597 int written = 0;
1598
1599 s_size = d_size = class->size;
1600
1601 obj_to_location(src, &s_page, &s_objidx);
1602 obj_to_location(dst, &d_page, &d_objidx);
1603
bfd093f5
MK
1604 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1605 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1606
1607 if (s_off + class->size > PAGE_SIZE)
1608 s_size = PAGE_SIZE - s_off;
1609
1610 if (d_off + class->size > PAGE_SIZE)
1611 d_size = PAGE_SIZE - d_off;
1612
1613 s_addr = kmap_atomic(s_page);
1614 d_addr = kmap_atomic(d_page);
1615
1616 while (1) {
1617 size = min(s_size, d_size);
1618 memcpy(d_addr + d_off, s_addr + s_off, size);
1619 written += size;
1620
1621 if (written == class->size)
1622 break;
1623
495819ea
SS
1624 s_off += size;
1625 s_size -= size;
1626 d_off += size;
1627 d_size -= size;
1628
1629 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1630 kunmap_atomic(d_addr);
1631 kunmap_atomic(s_addr);
1632 s_page = get_next_page(s_page);
312fcae2
MK
1633 s_addr = kmap_atomic(s_page);
1634 d_addr = kmap_atomic(d_page);
1635 s_size = class->size - written;
1636 s_off = 0;
312fcae2
MK
1637 }
1638
495819ea 1639 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1640 kunmap_atomic(d_addr);
1641 d_page = get_next_page(d_page);
312fcae2
MK
1642 d_addr = kmap_atomic(d_page);
1643 d_size = class->size - written;
1644 d_off = 0;
312fcae2
MK
1645 }
1646 }
1647
1648 kunmap_atomic(d_addr);
1649 kunmap_atomic(s_addr);
1650}
1651
1652/*
1653 * Find alloced object in zspage from index object and
1654 * return handle.
1655 */
251cbb95 1656static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1657 struct page *page, int *obj_idx)
312fcae2
MK
1658{
1659 unsigned long head;
1660 int offset = 0;
cf675acb 1661 int index = *obj_idx;
312fcae2
MK
1662 unsigned long handle = 0;
1663 void *addr = kmap_atomic(page);
1664
3783689a 1665 offset = get_first_obj_offset(page);
312fcae2
MK
1666 offset += class->size * index;
1667
1668 while (offset < PAGE_SIZE) {
48b4800a 1669 head = obj_to_head(page, addr + offset);
312fcae2
MK
1670 if (head & OBJ_ALLOCATED_TAG) {
1671 handle = head & ~OBJ_ALLOCATED_TAG;
1672 if (trypin_tag(handle))
1673 break;
1674 handle = 0;
1675 }
1676
1677 offset += class->size;
1678 index++;
1679 }
1680
1681 kunmap_atomic(addr);
cf675acb
GM
1682
1683 *obj_idx = index;
1684
312fcae2
MK
1685 return handle;
1686}
1687
1688struct zs_compact_control {
3783689a 1689 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1690 struct page *s_page;
1691 /* Destination page for migration which should be a first page
1692 * of zspage. */
1693 struct page *d_page;
1694 /* Starting object index within @s_page which used for live object
1695 * in the subpage. */
41b88e14 1696 int obj_idx;
312fcae2
MK
1697};
1698
1699static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1700 struct zs_compact_control *cc)
1701{
1702 unsigned long used_obj, free_obj;
1703 unsigned long handle;
1704 struct page *s_page = cc->s_page;
1705 struct page *d_page = cc->d_page;
41b88e14 1706 int obj_idx = cc->obj_idx;
312fcae2
MK
1707 int ret = 0;
1708
1709 while (1) {
cf675acb 1710 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1711 if (!handle) {
1712 s_page = get_next_page(s_page);
1713 if (!s_page)
1714 break;
41b88e14 1715 obj_idx = 0;
312fcae2
MK
1716 continue;
1717 }
1718
1719 /* Stop if there is no more space */
3783689a 1720 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1721 unpin_tag(handle);
1722 ret = -ENOMEM;
1723 break;
1724 }
1725
1726 used_obj = handle_to_obj(handle);
3783689a 1727 free_obj = obj_malloc(class, get_zspage(d_page), handle);
251cbb95 1728 zs_object_copy(class, free_obj, used_obj);
41b88e14 1729 obj_idx++;
c102f07c
JL
1730 /*
1731 * record_obj updates handle's value to free_obj and it will
1732 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1733 * breaks synchronization using pin_tag(e,g, zs_free) so
1734 * let's keep the lock bit.
1735 */
1736 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1737 record_obj(handle, free_obj);
1738 unpin_tag(handle);
1ee47165 1739 obj_free(class, used_obj);
312fcae2
MK
1740 }
1741
1742 /* Remember last position in this iteration */
1743 cc->s_page = s_page;
41b88e14 1744 cc->obj_idx = obj_idx;
312fcae2
MK
1745
1746 return ret;
1747}
1748
3783689a 1749static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1750{
1751 int i;
3783689a
MK
1752 struct zspage *zspage;
1753 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1754
3783689a
MK
1755 if (!source) {
1756 fg[0] = ZS_ALMOST_FULL;
1757 fg[1] = ZS_ALMOST_EMPTY;
1758 }
1759
1760 for (i = 0; i < 2; i++) {
1761 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1762 struct zspage, list);
1763 if (zspage) {
48b4800a 1764 VM_BUG_ON(is_zspage_isolated(zspage));
3783689a
MK
1765 remove_zspage(class, zspage, fg[i]);
1766 return zspage;
312fcae2
MK
1767 }
1768 }
1769
3783689a 1770 return zspage;
312fcae2
MK
1771}
1772
860c707d 1773/*
3783689a 1774 * putback_zspage - add @zspage into right class's fullness list
860c707d 1775 * @class: destination class
3783689a 1776 * @zspage: target page
860c707d 1777 *
3783689a 1778 * Return @zspage's fullness_group
860c707d 1779 */
4aa409ca 1780static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1781 struct zspage *zspage)
312fcae2 1782{
312fcae2
MK
1783 enum fullness_group fullness;
1784
48b4800a
MK
1785 VM_BUG_ON(is_zspage_isolated(zspage));
1786
3783689a
MK
1787 fullness = get_fullness_group(class, zspage);
1788 insert_zspage(class, zspage, fullness);
1789 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1790
860c707d 1791 return fullness;
61989a80 1792}
312fcae2 1793
48b4800a 1794#ifdef CONFIG_COMPACTION
4d0a5402
CIK
1795/*
1796 * To prevent zspage destroy during migration, zspage freeing should
1797 * hold locks of all pages in the zspage.
1798 */
1799static void lock_zspage(struct zspage *zspage)
1800{
1801 struct page *page = get_first_page(zspage);
1802
1803 do {
1804 lock_page(page);
1805 } while ((page = get_next_page(page)) != NULL);
1806}
1807
8e9231f8 1808static int zs_init_fs_context(struct fs_context *fc)
48b4800a 1809{
8e9231f8 1810 return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
48b4800a
MK
1811}
1812
1813static struct file_system_type zsmalloc_fs = {
1814 .name = "zsmalloc",
8e9231f8 1815 .init_fs_context = zs_init_fs_context,
48b4800a
MK
1816 .kill_sb = kill_anon_super,
1817};
1818
1819static int zsmalloc_mount(void)
1820{
1821 int ret = 0;
1822
1823 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1824 if (IS_ERR(zsmalloc_mnt))
1825 ret = PTR_ERR(zsmalloc_mnt);
1826
1827 return ret;
1828}
1829
1830static void zsmalloc_unmount(void)
1831{
1832 kern_unmount(zsmalloc_mnt);
1833}
1834
1835static void migrate_lock_init(struct zspage *zspage)
1836{
1837 rwlock_init(&zspage->lock);
1838}
1839
1840static void migrate_read_lock(struct zspage *zspage)
1841{
1842 read_lock(&zspage->lock);
1843}
1844
1845static void migrate_read_unlock(struct zspage *zspage)
1846{
1847 read_unlock(&zspage->lock);
1848}
1849
1850static void migrate_write_lock(struct zspage *zspage)
1851{
1852 write_lock(&zspage->lock);
1853}
1854
1855static void migrate_write_unlock(struct zspage *zspage)
1856{
1857 write_unlock(&zspage->lock);
1858}
1859
1860/* Number of isolated subpage for *page migration* in this zspage */
1861static void inc_zspage_isolation(struct zspage *zspage)
1862{
1863 zspage->isolated++;
1864}
1865
1866static void dec_zspage_isolation(struct zspage *zspage)
1867{
1868 zspage->isolated--;
1869}
1870
1a87aa03
HB
1871static void putback_zspage_deferred(struct zs_pool *pool,
1872 struct size_class *class,
1873 struct zspage *zspage)
1874{
1875 enum fullness_group fg;
1876
1877 fg = putback_zspage(class, zspage);
1878 if (fg == ZS_EMPTY)
1879 schedule_work(&pool->free_work);
1880
1881}
1882
701d6785
HB
1883static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1884{
1885 VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1886 atomic_long_dec(&pool->isolated_pages);
1887 /*
1888 * There's no possibility of racing, since wait_for_isolated_drain()
1889 * checks the isolated count under &class->lock after enqueuing
1890 * on migration_wait.
1891 */
1892 if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1893 wake_up_all(&pool->migration_wait);
1894}
1895
48b4800a
MK
1896static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1897 struct page *newpage, struct page *oldpage)
1898{
1899 struct page *page;
1900 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1901 int idx = 0;
1902
1903 page = get_first_page(zspage);
1904 do {
1905 if (page == oldpage)
1906 pages[idx] = newpage;
1907 else
1908 pages[idx] = page;
1909 idx++;
1910 } while ((page = get_next_page(page)) != NULL);
1911
1912 create_page_chain(class, zspage, pages);
1913 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1914 if (unlikely(PageHugeObject(oldpage)))
1915 newpage->index = oldpage->index;
1916 __SetPageMovable(newpage, page_mapping(oldpage));
1917}
1918
4d0a5402 1919static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
48b4800a
MK
1920{
1921 struct zs_pool *pool;
1922 struct size_class *class;
1923 int class_idx;
1924 enum fullness_group fullness;
1925 struct zspage *zspage;
1926 struct address_space *mapping;
1927
1928 /*
1929 * Page is locked so zspage couldn't be destroyed. For detail, look at
1930 * lock_zspage in free_zspage.
1931 */
1932 VM_BUG_ON_PAGE(!PageMovable(page), page);
1933 VM_BUG_ON_PAGE(PageIsolated(page), page);
1934
1935 zspage = get_zspage(page);
1936
1937 /*
1938 * Without class lock, fullness could be stale while class_idx is okay
1939 * because class_idx is constant unless page is freed so we should get
1940 * fullness again under class lock.
1941 */
1942 get_zspage_mapping(zspage, &class_idx, &fullness);
1943 mapping = page_mapping(page);
1944 pool = mapping->private_data;
1945 class = pool->size_class[class_idx];
1946
1947 spin_lock(&class->lock);
1948 if (get_zspage_inuse(zspage) == 0) {
1949 spin_unlock(&class->lock);
1950 return false;
1951 }
1952
1953 /* zspage is isolated for object migration */
1954 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1955 spin_unlock(&class->lock);
1956 return false;
1957 }
1958
1959 /*
1960 * If this is first time isolation for the zspage, isolate zspage from
1961 * size_class to prevent further object allocation from the zspage.
1962 */
1963 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1964 get_zspage_mapping(zspage, &class_idx, &fullness);
701d6785 1965 atomic_long_inc(&pool->isolated_pages);
48b4800a
MK
1966 remove_zspage(class, zspage, fullness);
1967 }
1968
1969 inc_zspage_isolation(zspage);
1970 spin_unlock(&class->lock);
1971
1972 return true;
1973}
1974
4d0a5402 1975static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
48b4800a
MK
1976 struct page *page, enum migrate_mode mode)
1977{
1978 struct zs_pool *pool;
1979 struct size_class *class;
1980 int class_idx;
1981 enum fullness_group fullness;
1982 struct zspage *zspage;
1983 struct page *dummy;
1984 void *s_addr, *d_addr, *addr;
1985 int offset, pos;
1986 unsigned long handle, head;
1987 unsigned long old_obj, new_obj;
1988 unsigned int obj_idx;
1989 int ret = -EAGAIN;
1990
2916ecc0
JG
1991 /*
1992 * We cannot support the _NO_COPY case here, because copy needs to
1993 * happen under the zs lock, which does not work with
1994 * MIGRATE_SYNC_NO_COPY workflow.
1995 */
1996 if (mode == MIGRATE_SYNC_NO_COPY)
1997 return -EINVAL;
1998
48b4800a
MK
1999 VM_BUG_ON_PAGE(!PageMovable(page), page);
2000 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2001
2002 zspage = get_zspage(page);
2003
2004 /* Concurrent compactor cannot migrate any subpage in zspage */
2005 migrate_write_lock(zspage);
2006 get_zspage_mapping(zspage, &class_idx, &fullness);
2007 pool = mapping->private_data;
2008 class = pool->size_class[class_idx];
2009 offset = get_first_obj_offset(page);
2010
2011 spin_lock(&class->lock);
2012 if (!get_zspage_inuse(zspage)) {
77ff4657
HZ
2013 /*
2014 * Set "offset" to end of the page so that every loops
2015 * skips unnecessary object scanning.
2016 */
2017 offset = PAGE_SIZE;
48b4800a
MK
2018 }
2019
2020 pos = offset;
2021 s_addr = kmap_atomic(page);
2022 while (pos < PAGE_SIZE) {
2023 head = obj_to_head(page, s_addr + pos);
2024 if (head & OBJ_ALLOCATED_TAG) {
2025 handle = head & ~OBJ_ALLOCATED_TAG;
2026 if (!trypin_tag(handle))
2027 goto unpin_objects;
2028 }
2029 pos += class->size;
2030 }
2031
2032 /*
2033 * Here, any user cannot access all objects in the zspage so let's move.
2034 */
2035 d_addr = kmap_atomic(newpage);
2036 memcpy(d_addr, s_addr, PAGE_SIZE);
2037 kunmap_atomic(d_addr);
2038
2039 for (addr = s_addr + offset; addr < s_addr + pos;
2040 addr += class->size) {
2041 head = obj_to_head(page, addr);
2042 if (head & OBJ_ALLOCATED_TAG) {
2043 handle = head & ~OBJ_ALLOCATED_TAG;
2044 if (!testpin_tag(handle))
2045 BUG();
2046
2047 old_obj = handle_to_obj(handle);
2048 obj_to_location(old_obj, &dummy, &obj_idx);
2049 new_obj = (unsigned long)location_to_obj(newpage,
2050 obj_idx);
2051 new_obj |= BIT(HANDLE_PIN_BIT);
2052 record_obj(handle, new_obj);
2053 }
2054 }
2055
2056 replace_sub_page(class, zspage, newpage, page);
2057 get_page(newpage);
2058
2059 dec_zspage_isolation(zspage);
2060
2061 /*
2062 * Page migration is done so let's putback isolated zspage to
2063 * the list if @page is final isolated subpage in the zspage.
2064 */
701d6785
HB
2065 if (!is_zspage_isolated(zspage)) {
2066 /*
2067 * We cannot race with zs_destroy_pool() here because we wait
2068 * for isolation to hit zero before we start destroying.
2069 * Also, we ensure that everyone can see pool->destroying before
2070 * we start waiting.
2071 */
1a87aa03 2072 putback_zspage_deferred(pool, class, zspage);
701d6785
HB
2073 zs_pool_dec_isolated(pool);
2074 }
48b4800a
MK
2075
2076 reset_page(page);
2077 put_page(page);
2078 page = newpage;
2079
dd4123f3 2080 ret = MIGRATEPAGE_SUCCESS;
48b4800a
MK
2081unpin_objects:
2082 for (addr = s_addr + offset; addr < s_addr + pos;
2083 addr += class->size) {
2084 head = obj_to_head(page, addr);
2085 if (head & OBJ_ALLOCATED_TAG) {
2086 handle = head & ~OBJ_ALLOCATED_TAG;
2087 if (!testpin_tag(handle))
2088 BUG();
2089 unpin_tag(handle);
2090 }
2091 }
2092 kunmap_atomic(s_addr);
48b4800a
MK
2093 spin_unlock(&class->lock);
2094 migrate_write_unlock(zspage);
2095
2096 return ret;
2097}
2098
4d0a5402 2099static void zs_page_putback(struct page *page)
48b4800a
MK
2100{
2101 struct zs_pool *pool;
2102 struct size_class *class;
2103 int class_idx;
2104 enum fullness_group fg;
2105 struct address_space *mapping;
2106 struct zspage *zspage;
2107
2108 VM_BUG_ON_PAGE(!PageMovable(page), page);
2109 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2110
2111 zspage = get_zspage(page);
2112 get_zspage_mapping(zspage, &class_idx, &fg);
2113 mapping = page_mapping(page);
2114 pool = mapping->private_data;
2115 class = pool->size_class[class_idx];
2116
2117 spin_lock(&class->lock);
2118 dec_zspage_isolation(zspage);
2119 if (!is_zspage_isolated(zspage)) {
48b4800a
MK
2120 /*
2121 * Due to page_lock, we cannot free zspage immediately
2122 * so let's defer.
2123 */
1a87aa03 2124 putback_zspage_deferred(pool, class, zspage);
701d6785 2125 zs_pool_dec_isolated(pool);
48b4800a
MK
2126 }
2127 spin_unlock(&class->lock);
2128}
2129
4d0a5402 2130static const struct address_space_operations zsmalloc_aops = {
48b4800a
MK
2131 .isolate_page = zs_page_isolate,
2132 .migratepage = zs_page_migrate,
2133 .putback_page = zs_page_putback,
2134};
2135
2136static int zs_register_migration(struct zs_pool *pool)
2137{
2138 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2139 if (IS_ERR(pool->inode)) {
2140 pool->inode = NULL;
2141 return 1;
2142 }
2143
2144 pool->inode->i_mapping->private_data = pool;
2145 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2146 return 0;
2147}
2148
701d6785
HB
2149static bool pool_isolated_are_drained(struct zs_pool *pool)
2150{
2151 return atomic_long_read(&pool->isolated_pages) == 0;
2152}
2153
2154/* Function for resolving migration */
2155static void wait_for_isolated_drain(struct zs_pool *pool)
2156{
2157
2158 /*
2159 * We're in the process of destroying the pool, so there are no
2160 * active allocations. zs_page_isolate() fails for completely free
2161 * zspages, so we need only wait for the zs_pool's isolated
2162 * count to hit zero.
2163 */
2164 wait_event(pool->migration_wait,
2165 pool_isolated_are_drained(pool));
2166}
2167
48b4800a
MK
2168static void zs_unregister_migration(struct zs_pool *pool)
2169{
701d6785
HB
2170 pool->destroying = true;
2171 /*
2172 * We need a memory barrier here to ensure global visibility of
2173 * pool->destroying. Thus pool->isolated pages will either be 0 in which
2174 * case we don't care, or it will be > 0 and pool->destroying will
2175 * ensure that we wake up once isolation hits 0.
2176 */
2177 smp_mb();
2178 wait_for_isolated_drain(pool); /* This can block */
48b4800a 2179 flush_work(&pool->free_work);
c3491eca 2180 iput(pool->inode);
48b4800a
MK
2181}
2182
2183/*
2184 * Caller should hold page_lock of all pages in the zspage
2185 * In here, we cannot use zspage meta data.
2186 */
2187static void async_free_zspage(struct work_struct *work)
2188{
2189 int i;
2190 struct size_class *class;
2191 unsigned int class_idx;
2192 enum fullness_group fullness;
2193 struct zspage *zspage, *tmp;
2194 LIST_HEAD(free_pages);
2195 struct zs_pool *pool = container_of(work, struct zs_pool,
2196 free_work);
2197
cf8e0fed 2198 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2199 class = pool->size_class[i];
2200 if (class->index != i)
2201 continue;
2202
2203 spin_lock(&class->lock);
2204 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2205 spin_unlock(&class->lock);
2206 }
2207
2208
2209 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2210 list_del(&zspage->list);
2211 lock_zspage(zspage);
2212
2213 get_zspage_mapping(zspage, &class_idx, &fullness);
2214 VM_BUG_ON(fullness != ZS_EMPTY);
2215 class = pool->size_class[class_idx];
2216 spin_lock(&class->lock);
2217 __free_zspage(pool, pool->size_class[class_idx], zspage);
2218 spin_unlock(&class->lock);
2219 }
2220};
2221
2222static void kick_deferred_free(struct zs_pool *pool)
2223{
2224 schedule_work(&pool->free_work);
2225}
2226
2227static void init_deferred_free(struct zs_pool *pool)
2228{
2229 INIT_WORK(&pool->free_work, async_free_zspage);
2230}
2231
2232static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2233{
2234 struct page *page = get_first_page(zspage);
2235
2236 do {
2237 WARN_ON(!trylock_page(page));
2238 __SetPageMovable(page, pool->inode->i_mapping);
2239 unlock_page(page);
2240 } while ((page = get_next_page(page)) != NULL);
2241}
2242#endif
2243
04f05909
SS
2244/*
2245 *
2246 * Based on the number of unused allocated objects calculate
2247 * and return the number of pages that we can free.
04f05909
SS
2248 */
2249static unsigned long zs_can_compact(struct size_class *class)
2250{
2251 unsigned long obj_wasted;
44f43e99
SS
2252 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2253 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2254
44f43e99
SS
2255 if (obj_allocated <= obj_used)
2256 return 0;
04f05909 2257
44f43e99 2258 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2259 obj_wasted /= class->objs_per_zspage;
04f05909 2260
6cbf16b3 2261 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2262}
2263
7d3f3938 2264static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 2265{
312fcae2 2266 struct zs_compact_control cc;
3783689a
MK
2267 struct zspage *src_zspage;
2268 struct zspage *dst_zspage = NULL;
312fcae2 2269
312fcae2 2270 spin_lock(&class->lock);
3783689a 2271 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2272
04f05909
SS
2273 if (!zs_can_compact(class))
2274 break;
2275
41b88e14 2276 cc.obj_idx = 0;
48b4800a 2277 cc.s_page = get_first_page(src_zspage);
312fcae2 2278
3783689a 2279 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2280 cc.d_page = get_first_page(dst_zspage);
312fcae2 2281 /*
0dc63d48
SS
2282 * If there is no more space in dst_page, resched
2283 * and see if anyone had allocated another zspage.
312fcae2
MK
2284 */
2285 if (!migrate_zspage(pool, class, &cc))
2286 break;
2287
4aa409ca 2288 putback_zspage(class, dst_zspage);
312fcae2
MK
2289 }
2290
2291 /* Stop if we couldn't find slot */
3783689a 2292 if (dst_zspage == NULL)
312fcae2
MK
2293 break;
2294
4aa409ca
MK
2295 putback_zspage(class, dst_zspage);
2296 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2297 free_zspage(pool, class, src_zspage);
6cbf16b3 2298 pool->stats.pages_compacted += class->pages_per_zspage;
4aa409ca 2299 }
312fcae2 2300 spin_unlock(&class->lock);
312fcae2
MK
2301 cond_resched();
2302 spin_lock(&class->lock);
2303 }
2304
3783689a 2305 if (src_zspage)
4aa409ca 2306 putback_zspage(class, src_zspage);
312fcae2 2307
7d3f3938 2308 spin_unlock(&class->lock);
312fcae2
MK
2309}
2310
2311unsigned long zs_compact(struct zs_pool *pool)
2312{
2313 int i;
312fcae2
MK
2314 struct size_class *class;
2315
cf8e0fed 2316 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2317 class = pool->size_class[i];
2318 if (!class)
2319 continue;
2320 if (class->index != i)
2321 continue;
7d3f3938 2322 __zs_compact(pool, class);
312fcae2
MK
2323 }
2324
860c707d 2325 return pool->stats.pages_compacted;
312fcae2
MK
2326}
2327EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2328
7d3f3938
SS
2329void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2330{
2331 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2332}
2333EXPORT_SYMBOL_GPL(zs_pool_stats);
2334
ab9d306d
SS
2335static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2336 struct shrink_control *sc)
2337{
2338 unsigned long pages_freed;
2339 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2340 shrinker);
2341
2342 pages_freed = pool->stats.pages_compacted;
2343 /*
2344 * Compact classes and calculate compaction delta.
2345 * Can run concurrently with a manually triggered
2346 * (by user) compaction.
2347 */
2348 pages_freed = zs_compact(pool) - pages_freed;
2349
2350 return pages_freed ? pages_freed : SHRINK_STOP;
2351}
2352
2353static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2354 struct shrink_control *sc)
2355{
2356 int i;
2357 struct size_class *class;
2358 unsigned long pages_to_free = 0;
2359 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2360 shrinker);
2361
cf8e0fed 2362 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2363 class = pool->size_class[i];
2364 if (!class)
2365 continue;
2366 if (class->index != i)
2367 continue;
2368
ab9d306d 2369 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2370 }
2371
2372 return pages_to_free;
2373}
2374
2375static void zs_unregister_shrinker(struct zs_pool *pool)
2376{
93144ca3 2377 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2378}
2379
2380static int zs_register_shrinker(struct zs_pool *pool)
2381{
2382 pool->shrinker.scan_objects = zs_shrinker_scan;
2383 pool->shrinker.count_objects = zs_shrinker_count;
2384 pool->shrinker.batch = 0;
2385 pool->shrinker.seeks = DEFAULT_SEEKS;
2386
2387 return register_shrinker(&pool->shrinker);
2388}
2389
00a61d86 2390/**
66cdef66 2391 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2392 * @name: pool name to be created
166cfda7 2393 *
66cdef66
GM
2394 * This function must be called before anything when using
2395 * the zsmalloc allocator.
166cfda7 2396 *
66cdef66
GM
2397 * On success, a pointer to the newly created pool is returned,
2398 * otherwise NULL.
396b7fd6 2399 */
d0d8da2d 2400struct zs_pool *zs_create_pool(const char *name)
61989a80 2401{
66cdef66
GM
2402 int i;
2403 struct zs_pool *pool;
2404 struct size_class *prev_class = NULL;
61989a80 2405
66cdef66
GM
2406 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2407 if (!pool)
2408 return NULL;
61989a80 2409
48b4800a 2410 init_deferred_free(pool);
61989a80 2411
2e40e163
MK
2412 pool->name = kstrdup(name, GFP_KERNEL);
2413 if (!pool->name)
2414 goto err;
2415
441e254c 2416#ifdef CONFIG_COMPACTION
701d6785 2417 init_waitqueue_head(&pool->migration_wait);
441e254c 2418#endif
701d6785 2419
3783689a 2420 if (create_cache(pool))
2e40e163
MK
2421 goto err;
2422
c60369f0 2423 /*
399d8eeb 2424 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2425 * for merging should be larger or equal to current size.
c60369f0 2426 */
cf8e0fed 2427 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2428 int size;
2429 int pages_per_zspage;
64d90465 2430 int objs_per_zspage;
66cdef66 2431 struct size_class *class;
3783689a 2432 int fullness = 0;
c60369f0 2433
66cdef66
GM
2434 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2435 if (size > ZS_MAX_ALLOC_SIZE)
2436 size = ZS_MAX_ALLOC_SIZE;
2437 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2438 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2439
010b495e
SS
2440 /*
2441 * We iterate from biggest down to smallest classes,
2442 * so huge_class_size holds the size of the first huge
2443 * class. Any object bigger than or equal to that will
2444 * endup in the huge class.
2445 */
2446 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2447 !huge_class_size) {
2448 huge_class_size = size;
2449 /*
2450 * The object uses ZS_HANDLE_SIZE bytes to store the
2451 * handle. We need to subtract it, because zs_malloc()
2452 * unconditionally adds handle size before it performs
2453 * size class search - so object may be smaller than
2454 * huge class size, yet it still can end up in the huge
2455 * class because it grows by ZS_HANDLE_SIZE extra bytes
2456 * right before class lookup.
2457 */
2458 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2459 }
2460
66cdef66
GM
2461 /*
2462 * size_class is used for normal zsmalloc operation such
2463 * as alloc/free for that size. Although it is natural that we
2464 * have one size_class for each size, there is a chance that we
2465 * can get more memory utilization if we use one size_class for
2466 * many different sizes whose size_class have same
2467 * characteristics. So, we makes size_class point to
2468 * previous size_class if possible.
2469 */
2470 if (prev_class) {
64d90465 2471 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2472 pool->size_class[i] = prev_class;
2473 continue;
2474 }
2475 }
2476
2477 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2478 if (!class)
2479 goto err;
2480
2481 class->size = size;
2482 class->index = i;
2483 class->pages_per_zspage = pages_per_zspage;
64d90465 2484 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2485 spin_lock_init(&class->lock);
2486 pool->size_class[i] = class;
48b4800a
MK
2487 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2488 fullness++)
3783689a 2489 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2490
2491 prev_class = class;
61989a80
NG
2492 }
2493
d34f6157
DS
2494 /* debug only, don't abort if it fails */
2495 zs_pool_stat_create(pool, name);
0f050d99 2496
48b4800a
MK
2497 if (zs_register_migration(pool))
2498 goto err;
2499
ab9d306d 2500 /*
93144ca3
AK
2501 * Not critical since shrinker is only used to trigger internal
2502 * defragmentation of the pool which is pretty optional thing. If
2503 * registration fails we still can use the pool normally and user can
2504 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2505 */
93144ca3
AK
2506 zs_register_shrinker(pool);
2507
66cdef66
GM
2508 return pool;
2509
2510err:
2511 zs_destroy_pool(pool);
2512 return NULL;
61989a80 2513}
66cdef66 2514EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2515
66cdef66 2516void zs_destroy_pool(struct zs_pool *pool)
61989a80 2517{
66cdef66 2518 int i;
61989a80 2519
ab9d306d 2520 zs_unregister_shrinker(pool);
48b4800a 2521 zs_unregister_migration(pool);
0f050d99
GM
2522 zs_pool_stat_destroy(pool);
2523
cf8e0fed 2524 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2525 int fg;
2526 struct size_class *class = pool->size_class[i];
61989a80 2527
66cdef66
GM
2528 if (!class)
2529 continue;
61989a80 2530
66cdef66
GM
2531 if (class->index != i)
2532 continue;
61989a80 2533
48b4800a 2534 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2535 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2536 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2537 class->size, fg);
2538 }
2539 }
2540 kfree(class);
2541 }
f553646a 2542
3783689a 2543 destroy_cache(pool);
0f050d99 2544 kfree(pool->name);
66cdef66
GM
2545 kfree(pool);
2546}
2547EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2548
66cdef66
GM
2549static int __init zs_init(void)
2550{
48b4800a
MK
2551 int ret;
2552
2553 ret = zsmalloc_mount();
2554 if (ret)
2555 goto out;
2556
215c89d0
SAS
2557 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2558 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2559 if (ret)
215c89d0 2560 goto hp_setup_fail;
66cdef66 2561
66cdef66
GM
2562#ifdef CONFIG_ZPOOL
2563 zpool_register_driver(&zs_zpool_driver);
2564#endif
0f050d99 2565
4abaac9b
DS
2566 zs_stat_init();
2567
66cdef66 2568 return 0;
0f050d99 2569
215c89d0 2570hp_setup_fail:
48b4800a
MK
2571 zsmalloc_unmount();
2572out:
0f050d99 2573 return ret;
61989a80 2574}
61989a80 2575
66cdef66 2576static void __exit zs_exit(void)
61989a80 2577{
66cdef66
GM
2578#ifdef CONFIG_ZPOOL
2579 zpool_unregister_driver(&zs_zpool_driver);
2580#endif
48b4800a 2581 zsmalloc_unmount();
215c89d0 2582 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2583
2584 zs_stat_exit();
61989a80 2585}
069f101f
BH
2586
2587module_init(zs_init);
2588module_exit(zs_exit);
2589
2590MODULE_LICENSE("Dual BSD/GPL");
2591MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");