x86/pti: Disallow global kernel text with RANDSTRUCT
[linux-2.6-block.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
48b4800a
MK
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
fd854463 23 * page->units: first object offset in a subpage of zspage
2db51dae
NG
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
399d8eeb 27 * PG_owner_priv_1: identifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
50d34394 36#include <linux/magic.h>
61989a80
NG
37#include <linux/bitops.h>
38#include <linux/errno.h>
39#include <linux/highmem.h>
61989a80
NG
40#include <linux/string.h>
41#include <linux/slab.h>
42#include <asm/tlbflush.h>
43#include <asm/pgtable.h>
44#include <linux/cpumask.h>
45#include <linux/cpu.h>
0cbb613f 46#include <linux/vmalloc.h>
759b26b2 47#include <linux/preempt.h>
0959c63f 48#include <linux/spinlock.h>
93144ca3 49#include <linux/shrinker.h>
0959c63f 50#include <linux/types.h>
0f050d99 51#include <linux/debugfs.h>
bcf1647d 52#include <linux/zsmalloc.h>
c795779d 53#include <linux/zpool.h>
48b4800a 54#include <linux/mount.h>
dd4123f3 55#include <linux/migrate.h>
48b4800a 56#include <linux/pagemap.h>
cdc346b3 57#include <linux/fs.h>
48b4800a
MK
58
59#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
60
61/*
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
66 */
67#define ZS_ALIGN 8
68
69/*
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72 */
73#define ZS_MAX_ZSPAGE_ORDER 2
74#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75
2e40e163
MK
76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
77
0959c63f
SJ
78/*
79 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 80 * as single (unsigned long) handle value.
0959c63f 81 *
bfd093f5 82 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
83 *
84 * This is made more complicated by various memory models and PAE.
85 */
86
02390b87
KS
87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
88#ifdef MAX_PHYSMEM_BITS
89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90#else
0959c63f
SJ
91/*
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
94 */
02390b87 95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
0959c63f
SJ
96#endif
97#endif
02390b87
KS
98
99#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
100
101/*
102 * Memory for allocating for handle keeps object position by
103 * encoding <page, obj_idx> and the encoded value has a room
104 * in least bit(ie, look at obj_to_location).
105 * We use the bit to synchronize between object access by
106 * user and migration.
107 */
108#define HANDLE_PIN_BIT 0
109
110/*
111 * Head in allocated object should have OBJ_ALLOCATED_TAG
112 * to identify the object was allocated or not.
113 * It's okay to add the status bit in the least bit because
114 * header keeps handle which is 4byte-aligned address so we
115 * have room for two bit at least.
116 */
117#define OBJ_ALLOCATED_TAG 1
118#define OBJ_TAG_BITS 1
119#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
120#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121
cf8e0fed
JM
122#define FULLNESS_BITS 2
123#define CLASS_BITS 8
124#define ISOLATED_BITS 3
125#define MAGIC_VAL_BITS 8
126
0959c63f
SJ
127#define MAX(a, b) ((a) >= (b) ? (a) : (b))
128/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129#define ZS_MIN_ALLOC_SIZE \
130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 131/* each chunk includes extra space to keep handle */
7b60a685 132#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
133
134/*
7eb52512 135 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
136 * trader-off here:
137 * - Large number of size classes is potentially wasteful as free page are
138 * spread across these classes
139 * - Small number of size classes causes large internal fragmentation
140 * - Probably its better to use specific size classes (empirically
141 * determined). NOTE: all those class sizes must be set as multiple of
142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143 *
144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145 * (reason above)
146 */
3783689a 147#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
cf8e0fed
JM
148#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 ZS_SIZE_CLASS_DELTA) + 1)
0959c63f 150
0959c63f 151enum fullness_group {
0959c63f 152 ZS_EMPTY,
48b4800a
MK
153 ZS_ALMOST_EMPTY,
154 ZS_ALMOST_FULL,
155 ZS_FULL,
156 NR_ZS_FULLNESS,
0959c63f
SJ
157};
158
0f050d99 159enum zs_stat_type {
48b4800a
MK
160 CLASS_EMPTY,
161 CLASS_ALMOST_EMPTY,
162 CLASS_ALMOST_FULL,
163 CLASS_FULL,
0f050d99
GM
164 OBJ_ALLOCATED,
165 OBJ_USED,
48b4800a 166 NR_ZS_STAT_TYPE,
0f050d99
GM
167};
168
0f050d99
GM
169struct zs_size_stat {
170 unsigned long objs[NR_ZS_STAT_TYPE];
171};
172
57244594
SS
173#ifdef CONFIG_ZSMALLOC_STAT
174static struct dentry *zs_stat_root;
0f050d99
GM
175#endif
176
48b4800a
MK
177#ifdef CONFIG_COMPACTION
178static struct vfsmount *zsmalloc_mnt;
179#endif
180
0959c63f
SJ
181/*
182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183 * n <= N / f, where
184 * n = number of allocated objects
185 * N = total number of objects zspage can store
6dd9737e 186 * f = fullness_threshold_frac
0959c63f
SJ
187 *
188 * Similarly, we assign zspage to:
189 * ZS_ALMOST_FULL when n > N / f
190 * ZS_EMPTY when n == 0
191 * ZS_FULL when n == N
192 *
193 * (see: fix_fullness_group())
194 */
195static const int fullness_threshold_frac = 4;
010b495e 196static size_t huge_class_size;
0959c63f
SJ
197
198struct size_class {
57244594 199 spinlock_t lock;
48b4800a 200 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
201 /*
202 * Size of objects stored in this class. Must be multiple
203 * of ZS_ALIGN.
204 */
205 int size;
1fc6e27d 206 int objs_per_zspage;
7dfa4612
WY
207 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
208 int pages_per_zspage;
48b4800a
MK
209
210 unsigned int index;
211 struct zs_size_stat stats;
0959c63f
SJ
212};
213
48b4800a
MK
214/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
215static void SetPageHugeObject(struct page *page)
216{
217 SetPageOwnerPriv1(page);
218}
219
220static void ClearPageHugeObject(struct page *page)
221{
222 ClearPageOwnerPriv1(page);
223}
224
225static int PageHugeObject(struct page *page)
226{
227 return PageOwnerPriv1(page);
228}
229
0959c63f
SJ
230/*
231 * Placed within free objects to form a singly linked list.
3783689a 232 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
233 *
234 * This must be power of 2 and less than or equal to ZS_ALIGN
235 */
236struct link_free {
2e40e163
MK
237 union {
238 /*
bfd093f5 239 * Free object index;
2e40e163
MK
240 * It's valid for non-allocated object
241 */
bfd093f5 242 unsigned long next;
2e40e163
MK
243 /*
244 * Handle of allocated object.
245 */
246 unsigned long handle;
247 };
0959c63f
SJ
248};
249
250struct zs_pool {
6f3526d6 251 const char *name;
0f050d99 252
cf8e0fed 253 struct size_class *size_class[ZS_SIZE_CLASSES];
2e40e163 254 struct kmem_cache *handle_cachep;
3783689a 255 struct kmem_cache *zspage_cachep;
0959c63f 256
13de8933 257 atomic_long_t pages_allocated;
0f050d99 258
7d3f3938 259 struct zs_pool_stats stats;
ab9d306d
SS
260
261 /* Compact classes */
262 struct shrinker shrinker;
93144ca3 263
0f050d99
GM
264#ifdef CONFIG_ZSMALLOC_STAT
265 struct dentry *stat_dentry;
266#endif
48b4800a
MK
267#ifdef CONFIG_COMPACTION
268 struct inode *inode;
269 struct work_struct free_work;
270#endif
0959c63f 271};
61989a80 272
3783689a
MK
273struct zspage {
274 struct {
275 unsigned int fullness:FULLNESS_BITS;
85d492f2 276 unsigned int class:CLASS_BITS + 1;
48b4800a
MK
277 unsigned int isolated:ISOLATED_BITS;
278 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
279 };
280 unsigned int inuse;
bfd093f5 281 unsigned int freeobj;
3783689a
MK
282 struct page *first_page;
283 struct list_head list; /* fullness list */
48b4800a
MK
284#ifdef CONFIG_COMPACTION
285 rwlock_t lock;
286#endif
3783689a 287};
61989a80 288
f553646a 289struct mapping_area {
1b945aee 290#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
291 struct vm_struct *vm; /* vm area for mapping object that span pages */
292#else
293 char *vm_buf; /* copy buffer for objects that span pages */
294#endif
295 char *vm_addr; /* address of kmap_atomic()'ed pages */
296 enum zs_mapmode vm_mm; /* mapping mode */
297};
298
48b4800a
MK
299#ifdef CONFIG_COMPACTION
300static int zs_register_migration(struct zs_pool *pool);
301static void zs_unregister_migration(struct zs_pool *pool);
302static void migrate_lock_init(struct zspage *zspage);
303static void migrate_read_lock(struct zspage *zspage);
304static void migrate_read_unlock(struct zspage *zspage);
305static void kick_deferred_free(struct zs_pool *pool);
306static void init_deferred_free(struct zs_pool *pool);
307static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308#else
309static int zsmalloc_mount(void) { return 0; }
310static void zsmalloc_unmount(void) {}
311static int zs_register_migration(struct zs_pool *pool) { return 0; }
312static void zs_unregister_migration(struct zs_pool *pool) {}
313static void migrate_lock_init(struct zspage *zspage) {}
314static void migrate_read_lock(struct zspage *zspage) {}
315static void migrate_read_unlock(struct zspage *zspage) {}
316static void kick_deferred_free(struct zs_pool *pool) {}
317static void init_deferred_free(struct zs_pool *pool) {}
318static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
319#endif
320
3783689a 321static int create_cache(struct zs_pool *pool)
2e40e163
MK
322{
323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324 0, 0, NULL);
3783689a
MK
325 if (!pool->handle_cachep)
326 return 1;
327
328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329 0, 0, NULL);
330 if (!pool->zspage_cachep) {
331 kmem_cache_destroy(pool->handle_cachep);
332 pool->handle_cachep = NULL;
333 return 1;
334 }
335
336 return 0;
2e40e163
MK
337}
338
3783689a 339static void destroy_cache(struct zs_pool *pool)
2e40e163 340{
cd10add0 341 kmem_cache_destroy(pool->handle_cachep);
3783689a 342 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
343}
344
3783689a 345static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
346{
347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
349}
350
3783689a 351static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
352{
353 kmem_cache_free(pool->handle_cachep, (void *)handle);
354}
355
3783689a
MK
356static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
357{
48b4800a
MK
358 return kmem_cache_alloc(pool->zspage_cachep,
359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
399d8eeb 360}
3783689a
MK
361
362static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
363{
364 kmem_cache_free(pool->zspage_cachep, zspage);
365}
366
2e40e163
MK
367static void record_obj(unsigned long handle, unsigned long obj)
368{
c102f07c
JL
369 /*
370 * lsb of @obj represents handle lock while other bits
371 * represent object value the handle is pointing so
372 * updating shouldn't do store tearing.
373 */
374 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
375}
376
c795779d
DS
377/* zpool driver */
378
379#ifdef CONFIG_ZPOOL
380
6f3526d6 381static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 382 const struct zpool_ops *zpool_ops,
479305fd 383 struct zpool *zpool)
c795779d 384{
d0d8da2d
SS
385 /*
386 * Ignore global gfp flags: zs_malloc() may be invoked from
387 * different contexts and its caller must provide a valid
388 * gfp mask.
389 */
390 return zs_create_pool(name);
c795779d
DS
391}
392
393static void zs_zpool_destroy(void *pool)
394{
395 zs_destroy_pool(pool);
396}
397
398static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 unsigned long *handle)
400{
d0d8da2d 401 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
402 return *handle ? 0 : -1;
403}
404static void zs_zpool_free(void *pool, unsigned long handle)
405{
406 zs_free(pool, handle);
407}
408
c795779d
DS
409static void *zs_zpool_map(void *pool, unsigned long handle,
410 enum zpool_mapmode mm)
411{
412 enum zs_mapmode zs_mm;
413
414 switch (mm) {
415 case ZPOOL_MM_RO:
416 zs_mm = ZS_MM_RO;
417 break;
418 case ZPOOL_MM_WO:
419 zs_mm = ZS_MM_WO;
420 break;
421 case ZPOOL_MM_RW: /* fallthru */
422 default:
423 zs_mm = ZS_MM_RW;
424 break;
425 }
426
427 return zs_map_object(pool, handle, zs_mm);
428}
429static void zs_zpool_unmap(void *pool, unsigned long handle)
430{
431 zs_unmap_object(pool, handle);
432}
433
434static u64 zs_zpool_total_size(void *pool)
435{
722cdc17 436 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
437}
438
439static struct zpool_driver zs_zpool_driver = {
440 .type = "zsmalloc",
441 .owner = THIS_MODULE,
442 .create = zs_zpool_create,
443 .destroy = zs_zpool_destroy,
444 .malloc = zs_zpool_malloc,
445 .free = zs_zpool_free,
c795779d
DS
446 .map = zs_zpool_map,
447 .unmap = zs_zpool_unmap,
448 .total_size = zs_zpool_total_size,
449};
450
137f8cff 451MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
452#endif /* CONFIG_ZPOOL */
453
61989a80
NG
454/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
455static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
456
48b4800a
MK
457static bool is_zspage_isolated(struct zspage *zspage)
458{
459 return zspage->isolated;
460}
461
3457f414 462static __maybe_unused int is_first_page(struct page *page)
61989a80 463{
a27545bf 464 return PagePrivate(page);
61989a80
NG
465}
466
48b4800a 467/* Protected by class->lock */
3783689a 468static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 469{
3783689a 470 return zspage->inuse;
4f42047b
MK
471}
472
3783689a 473static inline void set_zspage_inuse(struct zspage *zspage, int val)
4f42047b 474{
3783689a 475 zspage->inuse = val;
4f42047b
MK
476}
477
3783689a 478static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 479{
3783689a 480 zspage->inuse += val;
4f42047b
MK
481}
482
48b4800a 483static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 484{
48b4800a 485 struct page *first_page = zspage->first_page;
3783689a 486
48b4800a
MK
487 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
488 return first_page;
4f42047b
MK
489}
490
48b4800a 491static inline int get_first_obj_offset(struct page *page)
4f42047b 492{
48b4800a
MK
493 return page->units;
494}
3783689a 495
48b4800a
MK
496static inline void set_first_obj_offset(struct page *page, int offset)
497{
498 page->units = offset;
4f42047b
MK
499}
500
bfd093f5 501static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 502{
bfd093f5 503 return zspage->freeobj;
4f42047b
MK
504}
505
bfd093f5 506static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 507{
bfd093f5 508 zspage->freeobj = obj;
4f42047b
MK
509}
510
3783689a 511static void get_zspage_mapping(struct zspage *zspage,
a4209467 512 unsigned int *class_idx,
61989a80
NG
513 enum fullness_group *fullness)
514{
48b4800a
MK
515 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
516
3783689a
MK
517 *fullness = zspage->fullness;
518 *class_idx = zspage->class;
61989a80
NG
519}
520
3783689a 521static void set_zspage_mapping(struct zspage *zspage,
a4209467 522 unsigned int class_idx,
61989a80
NG
523 enum fullness_group fullness)
524{
3783689a
MK
525 zspage->class = class_idx;
526 zspage->fullness = fullness;
61989a80
NG
527}
528
c3e3e88a
NC
529/*
530 * zsmalloc divides the pool into various size classes where each
531 * class maintains a list of zspages where each zspage is divided
532 * into equal sized chunks. Each allocation falls into one of these
533 * classes depending on its size. This function returns index of the
534 * size class which has chunk size big enough to hold the give size.
535 */
61989a80
NG
536static int get_size_class_index(int size)
537{
538 int idx = 0;
539
540 if (likely(size > ZS_MIN_ALLOC_SIZE))
541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 ZS_SIZE_CLASS_DELTA);
543
cf8e0fed 544 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
61989a80
NG
545}
546
3eb95fea 547/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 548static inline void zs_stat_inc(struct size_class *class,
3eb95fea 549 int type, unsigned long cnt)
248ca1b0 550{
48b4800a 551 class->stats.objs[type] += cnt;
248ca1b0
MK
552}
553
3eb95fea 554/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 555static inline void zs_stat_dec(struct size_class *class,
3eb95fea 556 int type, unsigned long cnt)
248ca1b0 557{
48b4800a 558 class->stats.objs[type] -= cnt;
248ca1b0
MK
559}
560
3eb95fea 561/* type can be of enum type zs_stat_type or fullness_group */
248ca1b0 562static inline unsigned long zs_stat_get(struct size_class *class,
3eb95fea 563 int type)
248ca1b0 564{
48b4800a 565 return class->stats.objs[type];
248ca1b0
MK
566}
567
57244594
SS
568#ifdef CONFIG_ZSMALLOC_STAT
569
4abaac9b 570static void __init zs_stat_init(void)
248ca1b0 571{
4abaac9b
DS
572 if (!debugfs_initialized()) {
573 pr_warn("debugfs not available, stat dir not created\n");
574 return;
575 }
248ca1b0
MK
576
577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578 if (!zs_stat_root)
4abaac9b 579 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
248ca1b0
MK
580}
581
582static void __exit zs_stat_exit(void)
583{
584 debugfs_remove_recursive(zs_stat_root);
585}
586
1120ed54
SS
587static unsigned long zs_can_compact(struct size_class *class);
588
248ca1b0
MK
589static int zs_stats_size_show(struct seq_file *s, void *v)
590{
591 int i;
592 struct zs_pool *pool = s->private;
593 struct size_class *class;
594 int objs_per_zspage;
595 unsigned long class_almost_full, class_almost_empty;
1120ed54 596 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
597 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
598 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 599 unsigned long total_freeable = 0;
248ca1b0 600
1120ed54 601 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
602 "class", "size", "almost_full", "almost_empty",
603 "obj_allocated", "obj_used", "pages_used",
1120ed54 604 "pages_per_zspage", "freeable");
248ca1b0 605
cf8e0fed 606 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
248ca1b0
MK
607 class = pool->size_class[i];
608
609 if (class->index != i)
610 continue;
611
612 spin_lock(&class->lock);
613 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
614 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
615 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
616 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 617 freeable = zs_can_compact(class);
248ca1b0
MK
618 spin_unlock(&class->lock);
619
b4fd07a0 620 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
621 pages_used = obj_allocated / objs_per_zspage *
622 class->pages_per_zspage;
623
1120ed54
SS
624 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
625 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
626 i, class->size, class_almost_full, class_almost_empty,
627 obj_allocated, obj_used, pages_used,
1120ed54 628 class->pages_per_zspage, freeable);
248ca1b0
MK
629
630 total_class_almost_full += class_almost_full;
631 total_class_almost_empty += class_almost_empty;
632 total_objs += obj_allocated;
633 total_used_objs += obj_used;
634 total_pages += pages_used;
1120ed54 635 total_freeable += freeable;
248ca1b0
MK
636 }
637
638 seq_puts(s, "\n");
1120ed54 639 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
640 "Total", "", total_class_almost_full,
641 total_class_almost_empty, total_objs,
1120ed54 642 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
643
644 return 0;
645}
5ad35093 646DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
248ca1b0 647
d34f6157 648static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0
MK
649{
650 struct dentry *entry;
651
4abaac9b
DS
652 if (!zs_stat_root) {
653 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 654 return;
4abaac9b 655 }
248ca1b0
MK
656
657 entry = debugfs_create_dir(name, zs_stat_root);
658 if (!entry) {
659 pr_warn("debugfs dir <%s> creation failed\n", name);
d34f6157 660 return;
248ca1b0
MK
661 }
662 pool->stat_dentry = entry;
663
664 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
5ad35093 665 pool->stat_dentry, pool, &zs_stats_size_fops);
248ca1b0
MK
666 if (!entry) {
667 pr_warn("%s: debugfs file entry <%s> creation failed\n",
668 name, "classes");
4abaac9b
DS
669 debugfs_remove_recursive(pool->stat_dentry);
670 pool->stat_dentry = NULL;
248ca1b0 671 }
248ca1b0
MK
672}
673
674static void zs_pool_stat_destroy(struct zs_pool *pool)
675{
676 debugfs_remove_recursive(pool->stat_dentry);
677}
678
679#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 680static void __init zs_stat_init(void)
248ca1b0 681{
248ca1b0
MK
682}
683
684static void __exit zs_stat_exit(void)
685{
686}
687
d34f6157 688static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 689{
248ca1b0
MK
690}
691
692static inline void zs_pool_stat_destroy(struct zs_pool *pool)
693{
694}
248ca1b0
MK
695#endif
696
48b4800a 697
c3e3e88a
NC
698/*
699 * For each size class, zspages are divided into different groups
700 * depending on how "full" they are. This was done so that we could
701 * easily find empty or nearly empty zspages when we try to shrink
702 * the pool (not yet implemented). This function returns fullness
703 * status of the given page.
704 */
1fc6e27d 705static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 706 struct zspage *zspage)
61989a80 707{
1fc6e27d 708 int inuse, objs_per_zspage;
61989a80 709 enum fullness_group fg;
830e4bc5 710
3783689a 711 inuse = get_zspage_inuse(zspage);
1fc6e27d 712 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
713
714 if (inuse == 0)
715 fg = ZS_EMPTY;
1fc6e27d 716 else if (inuse == objs_per_zspage)
61989a80 717 fg = ZS_FULL;
1fc6e27d 718 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
719 fg = ZS_ALMOST_EMPTY;
720 else
721 fg = ZS_ALMOST_FULL;
722
723 return fg;
724}
725
c3e3e88a
NC
726/*
727 * Each size class maintains various freelists and zspages are assigned
728 * to one of these freelists based on the number of live objects they
729 * have. This functions inserts the given zspage into the freelist
730 * identified by <class, fullness_group>.
731 */
251cbb95 732static void insert_zspage(struct size_class *class,
3783689a
MK
733 struct zspage *zspage,
734 enum fullness_group fullness)
61989a80 735{
3783689a 736 struct zspage *head;
61989a80 737
48b4800a 738 zs_stat_inc(class, fullness, 1);
3783689a
MK
739 head = list_first_entry_or_null(&class->fullness_list[fullness],
740 struct zspage, list);
58f17117 741 /*
3783689a
MK
742 * We want to see more ZS_FULL pages and less almost empty/full.
743 * Put pages with higher ->inuse first.
58f17117 744 */
3783689a
MK
745 if (head) {
746 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
747 list_add(&zspage->list, &head->list);
748 return;
749 }
750 }
751 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
752}
753
c3e3e88a
NC
754/*
755 * This function removes the given zspage from the freelist identified
756 * by <class, fullness_group>.
757 */
251cbb95 758static void remove_zspage(struct size_class *class,
3783689a
MK
759 struct zspage *zspage,
760 enum fullness_group fullness)
61989a80 761{
3783689a 762 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
48b4800a 763 VM_BUG_ON(is_zspage_isolated(zspage));
61989a80 764
3783689a 765 list_del_init(&zspage->list);
48b4800a 766 zs_stat_dec(class, fullness, 1);
61989a80
NG
767}
768
c3e3e88a
NC
769/*
770 * Each size class maintains zspages in different fullness groups depending
771 * on the number of live objects they contain. When allocating or freeing
772 * objects, the fullness status of the page can change, say, from ALMOST_FULL
773 * to ALMOST_EMPTY when freeing an object. This function checks if such
774 * a status change has occurred for the given page and accordingly moves the
775 * page from the freelist of the old fullness group to that of the new
776 * fullness group.
777 */
c7806261 778static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 779 struct zspage *zspage)
61989a80
NG
780{
781 int class_idx;
61989a80
NG
782 enum fullness_group currfg, newfg;
783
3783689a
MK
784 get_zspage_mapping(zspage, &class_idx, &currfg);
785 newfg = get_fullness_group(class, zspage);
61989a80
NG
786 if (newfg == currfg)
787 goto out;
788
48b4800a
MK
789 if (!is_zspage_isolated(zspage)) {
790 remove_zspage(class, zspage, currfg);
791 insert_zspage(class, zspage, newfg);
792 }
793
3783689a 794 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
795
796out:
797 return newfg;
798}
799
800/*
801 * We have to decide on how many pages to link together
802 * to form a zspage for each size class. This is important
803 * to reduce wastage due to unusable space left at end of
804 * each zspage which is given as:
888fa374
YX
805 * wastage = Zp % class_size
806 * usage = Zp - wastage
61989a80
NG
807 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
808 *
809 * For example, for size class of 3/8 * PAGE_SIZE, we should
810 * link together 3 PAGE_SIZE sized pages to form a zspage
811 * since then we can perfectly fit in 8 such objects.
812 */
2e3b6154 813static int get_pages_per_zspage(int class_size)
61989a80
NG
814{
815 int i, max_usedpc = 0;
816 /* zspage order which gives maximum used size per KB */
817 int max_usedpc_order = 1;
818
84d4faab 819 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
820 int zspage_size;
821 int waste, usedpc;
822
823 zspage_size = i * PAGE_SIZE;
824 waste = zspage_size % class_size;
825 usedpc = (zspage_size - waste) * 100 / zspage_size;
826
827 if (usedpc > max_usedpc) {
828 max_usedpc = usedpc;
829 max_usedpc_order = i;
830 }
831 }
832
833 return max_usedpc_order;
834}
835
3783689a 836static struct zspage *get_zspage(struct page *page)
61989a80 837{
48b4800a
MK
838 struct zspage *zspage = (struct zspage *)page->private;
839
840 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
841 return zspage;
61989a80
NG
842}
843
844static struct page *get_next_page(struct page *page)
845{
48b4800a
MK
846 if (unlikely(PageHugeObject(page)))
847 return NULL;
848
849 return page->freelist;
61989a80
NG
850}
851
bfd093f5
MK
852/**
853 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
e8b098fc 854 * @obj: the encoded object value
bfd093f5
MK
855 * @page: page object resides in zspage
856 * @obj_idx: object index
67296874 857 */
bfd093f5
MK
858static void obj_to_location(unsigned long obj, struct page **page,
859 unsigned int *obj_idx)
61989a80 860{
bfd093f5
MK
861 obj >>= OBJ_TAG_BITS;
862 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
863 *obj_idx = (obj & OBJ_INDEX_MASK);
864}
61989a80 865
bfd093f5
MK
866/**
867 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
868 * @page: page object resides in zspage
869 * @obj_idx: object index
870 */
871static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
872{
873 unsigned long obj;
61989a80 874
312fcae2 875 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 876 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 877 obj <<= OBJ_TAG_BITS;
61989a80 878
bfd093f5 879 return obj;
61989a80
NG
880}
881
2e40e163
MK
882static unsigned long handle_to_obj(unsigned long handle)
883{
884 return *(unsigned long *)handle;
885}
886
48b4800a 887static unsigned long obj_to_head(struct page *page, void *obj)
312fcae2 888{
48b4800a 889 if (unlikely(PageHugeObject(page))) {
830e4bc5 890 VM_BUG_ON_PAGE(!is_first_page(page), page);
3783689a 891 return page->index;
7b60a685
MK
892 } else
893 return *(unsigned long *)obj;
312fcae2
MK
894}
895
48b4800a
MK
896static inline int testpin_tag(unsigned long handle)
897{
898 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
899}
900
312fcae2
MK
901static inline int trypin_tag(unsigned long handle)
902{
1b8320b6 903 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
904}
905
906static void pin_tag(unsigned long handle)
907{
1b8320b6 908 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
909}
910
911static void unpin_tag(unsigned long handle)
912{
1b8320b6 913 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
914}
915
f4477e90
NG
916static void reset_page(struct page *page)
917{
48b4800a 918 __ClearPageMovable(page);
18fd06bf 919 ClearPagePrivate(page);
f4477e90 920 set_page_private(page, 0);
48b4800a
MK
921 page_mapcount_reset(page);
922 ClearPageHugeObject(page);
923 page->freelist = NULL;
924}
925
926/*
927 * To prevent zspage destroy during migration, zspage freeing should
928 * hold locks of all pages in the zspage.
929 */
930void lock_zspage(struct zspage *zspage)
931{
932 struct page *page = get_first_page(zspage);
933
934 do {
935 lock_page(page);
936 } while ((page = get_next_page(page)) != NULL);
937}
938
939int trylock_zspage(struct zspage *zspage)
940{
941 struct page *cursor, *fail;
942
943 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
944 get_next_page(cursor)) {
945 if (!trylock_page(cursor)) {
946 fail = cursor;
947 goto unlock;
948 }
949 }
950
951 return 1;
952unlock:
953 for (cursor = get_first_page(zspage); cursor != fail; cursor =
954 get_next_page(cursor))
955 unlock_page(cursor);
956
957 return 0;
f4477e90
NG
958}
959
48b4800a
MK
960static void __free_zspage(struct zs_pool *pool, struct size_class *class,
961 struct zspage *zspage)
61989a80 962{
3783689a 963 struct page *page, *next;
48b4800a
MK
964 enum fullness_group fg;
965 unsigned int class_idx;
966
967 get_zspage_mapping(zspage, &class_idx, &fg);
968
969 assert_spin_locked(&class->lock);
61989a80 970
3783689a 971 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 972 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 973
48b4800a 974 next = page = get_first_page(zspage);
3783689a 975 do {
48b4800a
MK
976 VM_BUG_ON_PAGE(!PageLocked(page), page);
977 next = get_next_page(page);
3783689a 978 reset_page(page);
48b4800a 979 unlock_page(page);
91537fee 980 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
981 put_page(page);
982 page = next;
983 } while (page != NULL);
61989a80 984
3783689a 985 cache_free_zspage(pool, zspage);
48b4800a 986
b4fd07a0 987 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
988 atomic_long_sub(class->pages_per_zspage,
989 &pool->pages_allocated);
990}
991
992static void free_zspage(struct zs_pool *pool, struct size_class *class,
993 struct zspage *zspage)
994{
995 VM_BUG_ON(get_zspage_inuse(zspage));
996 VM_BUG_ON(list_empty(&zspage->list));
997
998 if (!trylock_zspage(zspage)) {
999 kick_deferred_free(pool);
1000 return;
1001 }
1002
1003 remove_zspage(class, zspage, ZS_EMPTY);
1004 __free_zspage(pool, class, zspage);
61989a80
NG
1005}
1006
1007/* Initialize a newly allocated zspage */
3783689a 1008static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 1009{
bfd093f5 1010 unsigned int freeobj = 1;
61989a80 1011 unsigned long off = 0;
48b4800a 1012 struct page *page = get_first_page(zspage);
830e4bc5 1013
61989a80
NG
1014 while (page) {
1015 struct page *next_page;
1016 struct link_free *link;
af4ee5e9 1017 void *vaddr;
61989a80 1018
3783689a 1019 set_first_obj_offset(page, off);
61989a80 1020
af4ee5e9
MK
1021 vaddr = kmap_atomic(page);
1022 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1023
1024 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1025 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1026 link += class->size / sizeof(*link);
61989a80
NG
1027 }
1028
1029 /*
1030 * We now come to the last (full or partial) object on this
1031 * page, which must point to the first object on the next
1032 * page (if present)
1033 */
1034 next_page = get_next_page(page);
bfd093f5 1035 if (next_page) {
3b1d9ca6 1036 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1037 } else {
1038 /*
3b1d9ca6 1039 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1040 * whether it's allocated object or not.
1041 */
01a6ad9a 1042 link->next = -1UL << OBJ_TAG_BITS;
bfd093f5 1043 }
af4ee5e9 1044 kunmap_atomic(vaddr);
61989a80 1045 page = next_page;
5538c562 1046 off %= PAGE_SIZE;
61989a80 1047 }
bdb0af7c 1048
bfd093f5 1049 set_freeobj(zspage, 0);
61989a80
NG
1050}
1051
48b4800a
MK
1052static void create_page_chain(struct size_class *class, struct zspage *zspage,
1053 struct page *pages[])
61989a80 1054{
bdb0af7c
MK
1055 int i;
1056 struct page *page;
1057 struct page *prev_page = NULL;
48b4800a 1058 int nr_pages = class->pages_per_zspage;
61989a80
NG
1059
1060 /*
1061 * Allocate individual pages and link them together as:
48b4800a 1062 * 1. all pages are linked together using page->freelist
3783689a 1063 * 2. each sub-page point to zspage using page->private
61989a80 1064 *
3783689a 1065 * we set PG_private to identify the first page (i.e. no other sub-page
22c5cef1 1066 * has this flag set).
61989a80 1067 */
bdb0af7c
MK
1068 for (i = 0; i < nr_pages; i++) {
1069 page = pages[i];
3783689a 1070 set_page_private(page, (unsigned long)zspage);
48b4800a 1071 page->freelist = NULL;
bdb0af7c 1072 if (i == 0) {
3783689a 1073 zspage->first_page = page;
a27545bf 1074 SetPagePrivate(page);
48b4800a
MK
1075 if (unlikely(class->objs_per_zspage == 1 &&
1076 class->pages_per_zspage == 1))
1077 SetPageHugeObject(page);
3783689a 1078 } else {
48b4800a 1079 prev_page->freelist = page;
61989a80 1080 }
61989a80
NG
1081 prev_page = page;
1082 }
bdb0af7c 1083}
61989a80 1084
bdb0af7c
MK
1085/*
1086 * Allocate a zspage for the given size class
1087 */
3783689a
MK
1088static struct zspage *alloc_zspage(struct zs_pool *pool,
1089 struct size_class *class,
1090 gfp_t gfp)
bdb0af7c
MK
1091{
1092 int i;
bdb0af7c 1093 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1094 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1095
1096 if (!zspage)
1097 return NULL;
1098
1099 memset(zspage, 0, sizeof(struct zspage));
48b4800a
MK
1100 zspage->magic = ZSPAGE_MAGIC;
1101 migrate_lock_init(zspage);
61989a80 1102
bdb0af7c
MK
1103 for (i = 0; i < class->pages_per_zspage; i++) {
1104 struct page *page;
61989a80 1105
3783689a 1106 page = alloc_page(gfp);
bdb0af7c 1107 if (!page) {
91537fee
MK
1108 while (--i >= 0) {
1109 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1110 __free_page(pages[i]);
91537fee 1111 }
3783689a 1112 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1113 return NULL;
1114 }
91537fee
MK
1115
1116 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1117 pages[i] = page;
61989a80
NG
1118 }
1119
48b4800a 1120 create_page_chain(class, zspage, pages);
3783689a 1121 init_zspage(class, zspage);
bdb0af7c 1122
3783689a 1123 return zspage;
61989a80
NG
1124}
1125
3783689a 1126static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1127{
1128 int i;
3783689a 1129 struct zspage *zspage;
61989a80 1130
48b4800a 1131 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1132 zspage = list_first_entry_or_null(&class->fullness_list[i],
1133 struct zspage, list);
1134 if (zspage)
61989a80
NG
1135 break;
1136 }
1137
3783689a 1138 return zspage;
61989a80
NG
1139}
1140
1b945aee 1141#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1142static inline int __zs_cpu_up(struct mapping_area *area)
1143{
1144 /*
1145 * Make sure we don't leak memory if a cpu UP notification
1146 * and zs_init() race and both call zs_cpu_up() on the same cpu
1147 */
1148 if (area->vm)
1149 return 0;
1150 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1151 if (!area->vm)
1152 return -ENOMEM;
1153 return 0;
1154}
1155
1156static inline void __zs_cpu_down(struct mapping_area *area)
1157{
1158 if (area->vm)
1159 free_vm_area(area->vm);
1160 area->vm = NULL;
1161}
1162
1163static inline void *__zs_map_object(struct mapping_area *area,
1164 struct page *pages[2], int off, int size)
1165{
f6f8ed47 1166 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1167 area->vm_addr = area->vm->addr;
1168 return area->vm_addr + off;
1169}
1170
1171static inline void __zs_unmap_object(struct mapping_area *area,
1172 struct page *pages[2], int off, int size)
1173{
1174 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1175
d95abbbb 1176 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1177}
1178
1b945aee 1179#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1180
1181static inline int __zs_cpu_up(struct mapping_area *area)
1182{
1183 /*
1184 * Make sure we don't leak memory if a cpu UP notification
1185 * and zs_init() race and both call zs_cpu_up() on the same cpu
1186 */
1187 if (area->vm_buf)
1188 return 0;
40f9fb8c 1189 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1190 if (!area->vm_buf)
1191 return -ENOMEM;
1192 return 0;
1193}
1194
1195static inline void __zs_cpu_down(struct mapping_area *area)
1196{
40f9fb8c 1197 kfree(area->vm_buf);
f553646a
SJ
1198 area->vm_buf = NULL;
1199}
1200
1201static void *__zs_map_object(struct mapping_area *area,
1202 struct page *pages[2], int off, int size)
5f601902 1203{
5f601902
SJ
1204 int sizes[2];
1205 void *addr;
f553646a 1206 char *buf = area->vm_buf;
5f601902 1207
f553646a
SJ
1208 /* disable page faults to match kmap_atomic() return conditions */
1209 pagefault_disable();
1210
1211 /* no read fastpath */
1212 if (area->vm_mm == ZS_MM_WO)
1213 goto out;
5f601902
SJ
1214
1215 sizes[0] = PAGE_SIZE - off;
1216 sizes[1] = size - sizes[0];
1217
5f601902
SJ
1218 /* copy object to per-cpu buffer */
1219 addr = kmap_atomic(pages[0]);
1220 memcpy(buf, addr + off, sizes[0]);
1221 kunmap_atomic(addr);
1222 addr = kmap_atomic(pages[1]);
1223 memcpy(buf + sizes[0], addr, sizes[1]);
1224 kunmap_atomic(addr);
f553646a
SJ
1225out:
1226 return area->vm_buf;
5f601902
SJ
1227}
1228
f553646a
SJ
1229static void __zs_unmap_object(struct mapping_area *area,
1230 struct page *pages[2], int off, int size)
5f601902 1231{
5f601902
SJ
1232 int sizes[2];
1233 void *addr;
2e40e163 1234 char *buf;
5f601902 1235
f553646a
SJ
1236 /* no write fastpath */
1237 if (area->vm_mm == ZS_MM_RO)
1238 goto out;
5f601902 1239
7b60a685 1240 buf = area->vm_buf;
a82cbf07
YX
1241 buf = buf + ZS_HANDLE_SIZE;
1242 size -= ZS_HANDLE_SIZE;
1243 off += ZS_HANDLE_SIZE;
2e40e163 1244
5f601902
SJ
1245 sizes[0] = PAGE_SIZE - off;
1246 sizes[1] = size - sizes[0];
1247
1248 /* copy per-cpu buffer to object */
1249 addr = kmap_atomic(pages[0]);
1250 memcpy(addr + off, buf, sizes[0]);
1251 kunmap_atomic(addr);
1252 addr = kmap_atomic(pages[1]);
1253 memcpy(addr, buf + sizes[0], sizes[1]);
1254 kunmap_atomic(addr);
f553646a
SJ
1255
1256out:
1257 /* enable page faults to match kunmap_atomic() return conditions */
1258 pagefault_enable();
5f601902 1259}
61989a80 1260
1b945aee 1261#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1262
215c89d0 1263static int zs_cpu_prepare(unsigned int cpu)
61989a80 1264{
61989a80
NG
1265 struct mapping_area *area;
1266
215c89d0
SAS
1267 area = &per_cpu(zs_map_area, cpu);
1268 return __zs_cpu_up(area);
61989a80
NG
1269}
1270
215c89d0 1271static int zs_cpu_dead(unsigned int cpu)
61989a80 1272{
215c89d0 1273 struct mapping_area *area;
40f9fb8c 1274
215c89d0
SAS
1275 area = &per_cpu(zs_map_area, cpu);
1276 __zs_cpu_down(area);
1277 return 0;
b1b00a5b
SS
1278}
1279
64d90465
GM
1280static bool can_merge(struct size_class *prev, int pages_per_zspage,
1281 int objs_per_zspage)
9eec4cd5 1282{
64d90465
GM
1283 if (prev->pages_per_zspage == pages_per_zspage &&
1284 prev->objs_per_zspage == objs_per_zspage)
1285 return true;
9eec4cd5 1286
64d90465 1287 return false;
9eec4cd5
JK
1288}
1289
3783689a 1290static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1291{
3783689a 1292 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1293}
1294
66cdef66
GM
1295unsigned long zs_get_total_pages(struct zs_pool *pool)
1296{
1297 return atomic_long_read(&pool->pages_allocated);
1298}
1299EXPORT_SYMBOL_GPL(zs_get_total_pages);
1300
4bbc0bc0 1301/**
66cdef66
GM
1302 * zs_map_object - get address of allocated object from handle.
1303 * @pool: pool from which the object was allocated
1304 * @handle: handle returned from zs_malloc
e8b098fc 1305 * @mm: maping mode to use
4bbc0bc0 1306 *
66cdef66
GM
1307 * Before using an object allocated from zs_malloc, it must be mapped using
1308 * this function. When done with the object, it must be unmapped using
1309 * zs_unmap_object.
4bbc0bc0 1310 *
66cdef66
GM
1311 * Only one object can be mapped per cpu at a time. There is no protection
1312 * against nested mappings.
1313 *
1314 * This function returns with preemption and page faults disabled.
4bbc0bc0 1315 */
66cdef66
GM
1316void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1317 enum zs_mapmode mm)
61989a80 1318{
3783689a 1319 struct zspage *zspage;
66cdef66 1320 struct page *page;
bfd093f5
MK
1321 unsigned long obj, off;
1322 unsigned int obj_idx;
61989a80 1323
66cdef66
GM
1324 unsigned int class_idx;
1325 enum fullness_group fg;
1326 struct size_class *class;
1327 struct mapping_area *area;
1328 struct page *pages[2];
2e40e163 1329 void *ret;
61989a80 1330
9eec4cd5 1331 /*
66cdef66
GM
1332 * Because we use per-cpu mapping areas shared among the
1333 * pools/users, we can't allow mapping in interrupt context
1334 * because it can corrupt another users mappings.
9eec4cd5 1335 */
1aedcafb 1336 BUG_ON(in_interrupt());
61989a80 1337
312fcae2
MK
1338 /* From now on, migration cannot move the object */
1339 pin_tag(handle);
1340
2e40e163
MK
1341 obj = handle_to_obj(handle);
1342 obj_to_location(obj, &page, &obj_idx);
3783689a 1343 zspage = get_zspage(page);
48b4800a
MK
1344
1345 /* migration cannot move any subpage in this zspage */
1346 migrate_read_lock(zspage);
1347
3783689a 1348 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1349 class = pool->size_class[class_idx];
bfd093f5 1350 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1351
66cdef66
GM
1352 area = &get_cpu_var(zs_map_area);
1353 area->vm_mm = mm;
1354 if (off + class->size <= PAGE_SIZE) {
1355 /* this object is contained entirely within a page */
1356 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1357 ret = area->vm_addr + off;
1358 goto out;
61989a80
NG
1359 }
1360
66cdef66
GM
1361 /* this object spans two pages */
1362 pages[0] = page;
1363 pages[1] = get_next_page(page);
1364 BUG_ON(!pages[1]);
9eec4cd5 1365
2e40e163
MK
1366 ret = __zs_map_object(area, pages, off, class->size);
1367out:
48b4800a 1368 if (likely(!PageHugeObject(page)))
7b60a685
MK
1369 ret += ZS_HANDLE_SIZE;
1370
1371 return ret;
61989a80 1372}
66cdef66 1373EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1374
66cdef66 1375void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1376{
3783689a 1377 struct zspage *zspage;
66cdef66 1378 struct page *page;
bfd093f5
MK
1379 unsigned long obj, off;
1380 unsigned int obj_idx;
61989a80 1381
66cdef66
GM
1382 unsigned int class_idx;
1383 enum fullness_group fg;
1384 struct size_class *class;
1385 struct mapping_area *area;
9eec4cd5 1386
2e40e163
MK
1387 obj = handle_to_obj(handle);
1388 obj_to_location(obj, &page, &obj_idx);
3783689a
MK
1389 zspage = get_zspage(page);
1390 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1391 class = pool->size_class[class_idx];
bfd093f5 1392 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1393
66cdef66
GM
1394 area = this_cpu_ptr(&zs_map_area);
1395 if (off + class->size <= PAGE_SIZE)
1396 kunmap_atomic(area->vm_addr);
1397 else {
1398 struct page *pages[2];
40f9fb8c 1399
66cdef66
GM
1400 pages[0] = page;
1401 pages[1] = get_next_page(page);
1402 BUG_ON(!pages[1]);
1403
1404 __zs_unmap_object(area, pages, off, class->size);
1405 }
1406 put_cpu_var(zs_map_area);
48b4800a
MK
1407
1408 migrate_read_unlock(zspage);
312fcae2 1409 unpin_tag(handle);
61989a80 1410}
66cdef66 1411EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1412
010b495e
SS
1413/**
1414 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1415 * zsmalloc &size_class.
1416 * @pool: zsmalloc pool to use
1417 *
1418 * The function returns the size of the first huge class - any object of equal
1419 * or bigger size will be stored in zspage consisting of a single physical
1420 * page.
1421 *
1422 * Context: Any context.
1423 *
1424 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1425 */
1426size_t zs_huge_class_size(struct zs_pool *pool)
1427{
1428 return huge_class_size;
1429}
1430EXPORT_SYMBOL_GPL(zs_huge_class_size);
1431
251cbb95 1432static unsigned long obj_malloc(struct size_class *class,
3783689a 1433 struct zspage *zspage, unsigned long handle)
c7806261 1434{
bfd093f5 1435 int i, nr_page, offset;
c7806261
MK
1436 unsigned long obj;
1437 struct link_free *link;
1438
1439 struct page *m_page;
bfd093f5 1440 unsigned long m_offset;
c7806261
MK
1441 void *vaddr;
1442
312fcae2 1443 handle |= OBJ_ALLOCATED_TAG;
3783689a 1444 obj = get_freeobj(zspage);
bfd093f5
MK
1445
1446 offset = obj * class->size;
1447 nr_page = offset >> PAGE_SHIFT;
1448 m_offset = offset & ~PAGE_MASK;
1449 m_page = get_first_page(zspage);
1450
1451 for (i = 0; i < nr_page; i++)
1452 m_page = get_next_page(m_page);
c7806261
MK
1453
1454 vaddr = kmap_atomic(m_page);
1455 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1456 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
48b4800a 1457 if (likely(!PageHugeObject(m_page)))
7b60a685
MK
1458 /* record handle in the header of allocated chunk */
1459 link->handle = handle;
1460 else
3783689a
MK
1461 /* record handle to page->index */
1462 zspage->first_page->index = handle;
1463
c7806261 1464 kunmap_atomic(vaddr);
3783689a 1465 mod_zspage_inuse(zspage, 1);
c7806261
MK
1466 zs_stat_inc(class, OBJ_USED, 1);
1467
bfd093f5
MK
1468 obj = location_to_obj(m_page, obj);
1469
c7806261
MK
1470 return obj;
1471}
1472
1473
61989a80
NG
1474/**
1475 * zs_malloc - Allocate block of given size from pool.
1476 * @pool: pool to allocate from
1477 * @size: size of block to allocate
fd854463 1478 * @gfp: gfp flags when allocating object
61989a80 1479 *
00a61d86 1480 * On success, handle to the allocated object is returned,
c2344348 1481 * otherwise 0.
61989a80
NG
1482 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1483 */
d0d8da2d 1484unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1485{
2e40e163 1486 unsigned long handle, obj;
61989a80 1487 struct size_class *class;
48b4800a 1488 enum fullness_group newfg;
3783689a 1489 struct zspage *zspage;
61989a80 1490
7b60a685 1491 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1492 return 0;
1493
3783689a 1494 handle = cache_alloc_handle(pool, gfp);
2e40e163 1495 if (!handle)
c2344348 1496 return 0;
61989a80 1497
2e40e163
MK
1498 /* extra space in chunk to keep the handle */
1499 size += ZS_HANDLE_SIZE;
9eec4cd5 1500 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1501
1502 spin_lock(&class->lock);
3783689a 1503 zspage = find_get_zspage(class);
48b4800a
MK
1504 if (likely(zspage)) {
1505 obj = obj_malloc(class, zspage, handle);
1506 /* Now move the zspage to another fullness group, if required */
1507 fix_fullness_group(class, zspage);
1508 record_obj(handle, obj);
61989a80 1509 spin_unlock(&class->lock);
61989a80 1510
48b4800a
MK
1511 return handle;
1512 }
0f050d99 1513
48b4800a
MK
1514 spin_unlock(&class->lock);
1515
1516 zspage = alloc_zspage(pool, class, gfp);
1517 if (!zspage) {
1518 cache_free_handle(pool, handle);
1519 return 0;
61989a80
NG
1520 }
1521
48b4800a 1522 spin_lock(&class->lock);
3783689a 1523 obj = obj_malloc(class, zspage, handle);
48b4800a
MK
1524 newfg = get_fullness_group(class, zspage);
1525 insert_zspage(class, zspage, newfg);
1526 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1527 record_obj(handle, obj);
48b4800a
MK
1528 atomic_long_add(class->pages_per_zspage,
1529 &pool->pages_allocated);
b4fd07a0 1530 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1531
1532 /* We completely set up zspage so mark them as movable */
1533 SetZsPageMovable(pool, zspage);
61989a80
NG
1534 spin_unlock(&class->lock);
1535
2e40e163 1536 return handle;
61989a80
NG
1537}
1538EXPORT_SYMBOL_GPL(zs_malloc);
1539
1ee47165 1540static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1541{
1542 struct link_free *link;
3783689a
MK
1543 struct zspage *zspage;
1544 struct page *f_page;
bfd093f5
MK
1545 unsigned long f_offset;
1546 unsigned int f_objidx;
af4ee5e9 1547 void *vaddr;
61989a80 1548
312fcae2 1549 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1550 obj_to_location(obj, &f_page, &f_objidx);
bfd093f5 1551 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
3783689a 1552 zspage = get_zspage(f_page);
61989a80 1553
c7806261 1554 vaddr = kmap_atomic(f_page);
61989a80
NG
1555
1556 /* Insert this object in containing zspage's freelist */
af4ee5e9 1557 link = (struct link_free *)(vaddr + f_offset);
3b1d9ca6 1558 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
af4ee5e9 1559 kunmap_atomic(vaddr);
bfd093f5 1560 set_freeobj(zspage, f_objidx);
3783689a 1561 mod_zspage_inuse(zspage, -1);
0f050d99 1562 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1563}
1564
1565void zs_free(struct zs_pool *pool, unsigned long handle)
1566{
3783689a
MK
1567 struct zspage *zspage;
1568 struct page *f_page;
bfd093f5
MK
1569 unsigned long obj;
1570 unsigned int f_objidx;
c7806261
MK
1571 int class_idx;
1572 struct size_class *class;
1573 enum fullness_group fullness;
48b4800a 1574 bool isolated;
c7806261
MK
1575
1576 if (unlikely(!handle))
1577 return;
1578
312fcae2 1579 pin_tag(handle);
c7806261 1580 obj = handle_to_obj(handle);
c7806261 1581 obj_to_location(obj, &f_page, &f_objidx);
3783689a 1582 zspage = get_zspage(f_page);
c7806261 1583
48b4800a
MK
1584 migrate_read_lock(zspage);
1585
3783689a 1586 get_zspage_mapping(zspage, &class_idx, &fullness);
c7806261
MK
1587 class = pool->size_class[class_idx];
1588
1589 spin_lock(&class->lock);
1ee47165 1590 obj_free(class, obj);
3783689a 1591 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1592 if (fullness != ZS_EMPTY) {
1593 migrate_read_unlock(zspage);
1594 goto out;
312fcae2 1595 }
48b4800a
MK
1596
1597 isolated = is_zspage_isolated(zspage);
1598 migrate_read_unlock(zspage);
1599 /* If zspage is isolated, zs_page_putback will free the zspage */
1600 if (likely(!isolated))
1601 free_zspage(pool, class, zspage);
1602out:
1603
61989a80 1604 spin_unlock(&class->lock);
312fcae2 1605 unpin_tag(handle);
3783689a 1606 cache_free_handle(pool, handle);
312fcae2
MK
1607}
1608EXPORT_SYMBOL_GPL(zs_free);
1609
251cbb95
MK
1610static void zs_object_copy(struct size_class *class, unsigned long dst,
1611 unsigned long src)
312fcae2
MK
1612{
1613 struct page *s_page, *d_page;
bfd093f5 1614 unsigned int s_objidx, d_objidx;
312fcae2
MK
1615 unsigned long s_off, d_off;
1616 void *s_addr, *d_addr;
1617 int s_size, d_size, size;
1618 int written = 0;
1619
1620 s_size = d_size = class->size;
1621
1622 obj_to_location(src, &s_page, &s_objidx);
1623 obj_to_location(dst, &d_page, &d_objidx);
1624
bfd093f5
MK
1625 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1626 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1627
1628 if (s_off + class->size > PAGE_SIZE)
1629 s_size = PAGE_SIZE - s_off;
1630
1631 if (d_off + class->size > PAGE_SIZE)
1632 d_size = PAGE_SIZE - d_off;
1633
1634 s_addr = kmap_atomic(s_page);
1635 d_addr = kmap_atomic(d_page);
1636
1637 while (1) {
1638 size = min(s_size, d_size);
1639 memcpy(d_addr + d_off, s_addr + s_off, size);
1640 written += size;
1641
1642 if (written == class->size)
1643 break;
1644
495819ea
SS
1645 s_off += size;
1646 s_size -= size;
1647 d_off += size;
1648 d_size -= size;
1649
1650 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1651 kunmap_atomic(d_addr);
1652 kunmap_atomic(s_addr);
1653 s_page = get_next_page(s_page);
312fcae2
MK
1654 s_addr = kmap_atomic(s_page);
1655 d_addr = kmap_atomic(d_page);
1656 s_size = class->size - written;
1657 s_off = 0;
312fcae2
MK
1658 }
1659
495819ea 1660 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1661 kunmap_atomic(d_addr);
1662 d_page = get_next_page(d_page);
312fcae2
MK
1663 d_addr = kmap_atomic(d_page);
1664 d_size = class->size - written;
1665 d_off = 0;
312fcae2
MK
1666 }
1667 }
1668
1669 kunmap_atomic(d_addr);
1670 kunmap_atomic(s_addr);
1671}
1672
1673/*
1674 * Find alloced object in zspage from index object and
1675 * return handle.
1676 */
251cbb95 1677static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1678 struct page *page, int *obj_idx)
312fcae2
MK
1679{
1680 unsigned long head;
1681 int offset = 0;
cf675acb 1682 int index = *obj_idx;
312fcae2
MK
1683 unsigned long handle = 0;
1684 void *addr = kmap_atomic(page);
1685
3783689a 1686 offset = get_first_obj_offset(page);
312fcae2
MK
1687 offset += class->size * index;
1688
1689 while (offset < PAGE_SIZE) {
48b4800a 1690 head = obj_to_head(page, addr + offset);
312fcae2
MK
1691 if (head & OBJ_ALLOCATED_TAG) {
1692 handle = head & ~OBJ_ALLOCATED_TAG;
1693 if (trypin_tag(handle))
1694 break;
1695 handle = 0;
1696 }
1697
1698 offset += class->size;
1699 index++;
1700 }
1701
1702 kunmap_atomic(addr);
cf675acb
GM
1703
1704 *obj_idx = index;
1705
312fcae2
MK
1706 return handle;
1707}
1708
1709struct zs_compact_control {
3783689a 1710 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1711 struct page *s_page;
1712 /* Destination page for migration which should be a first page
1713 * of zspage. */
1714 struct page *d_page;
1715 /* Starting object index within @s_page which used for live object
1716 * in the subpage. */
41b88e14 1717 int obj_idx;
312fcae2
MK
1718};
1719
1720static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1721 struct zs_compact_control *cc)
1722{
1723 unsigned long used_obj, free_obj;
1724 unsigned long handle;
1725 struct page *s_page = cc->s_page;
1726 struct page *d_page = cc->d_page;
41b88e14 1727 int obj_idx = cc->obj_idx;
312fcae2
MK
1728 int ret = 0;
1729
1730 while (1) {
cf675acb 1731 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1732 if (!handle) {
1733 s_page = get_next_page(s_page);
1734 if (!s_page)
1735 break;
41b88e14 1736 obj_idx = 0;
312fcae2
MK
1737 continue;
1738 }
1739
1740 /* Stop if there is no more space */
3783689a 1741 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1742 unpin_tag(handle);
1743 ret = -ENOMEM;
1744 break;
1745 }
1746
1747 used_obj = handle_to_obj(handle);
3783689a 1748 free_obj = obj_malloc(class, get_zspage(d_page), handle);
251cbb95 1749 zs_object_copy(class, free_obj, used_obj);
41b88e14 1750 obj_idx++;
c102f07c
JL
1751 /*
1752 * record_obj updates handle's value to free_obj and it will
1753 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1754 * breaks synchronization using pin_tag(e,g, zs_free) so
1755 * let's keep the lock bit.
1756 */
1757 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1758 record_obj(handle, free_obj);
1759 unpin_tag(handle);
1ee47165 1760 obj_free(class, used_obj);
312fcae2
MK
1761 }
1762
1763 /* Remember last position in this iteration */
1764 cc->s_page = s_page;
41b88e14 1765 cc->obj_idx = obj_idx;
312fcae2
MK
1766
1767 return ret;
1768}
1769
3783689a 1770static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1771{
1772 int i;
3783689a
MK
1773 struct zspage *zspage;
1774 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1775
3783689a
MK
1776 if (!source) {
1777 fg[0] = ZS_ALMOST_FULL;
1778 fg[1] = ZS_ALMOST_EMPTY;
1779 }
1780
1781 for (i = 0; i < 2; i++) {
1782 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1783 struct zspage, list);
1784 if (zspage) {
48b4800a 1785 VM_BUG_ON(is_zspage_isolated(zspage));
3783689a
MK
1786 remove_zspage(class, zspage, fg[i]);
1787 return zspage;
312fcae2
MK
1788 }
1789 }
1790
3783689a 1791 return zspage;
312fcae2
MK
1792}
1793
860c707d 1794/*
3783689a 1795 * putback_zspage - add @zspage into right class's fullness list
860c707d 1796 * @class: destination class
3783689a 1797 * @zspage: target page
860c707d 1798 *
3783689a 1799 * Return @zspage's fullness_group
860c707d 1800 */
4aa409ca 1801static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1802 struct zspage *zspage)
312fcae2 1803{
312fcae2
MK
1804 enum fullness_group fullness;
1805
48b4800a
MK
1806 VM_BUG_ON(is_zspage_isolated(zspage));
1807
3783689a
MK
1808 fullness = get_fullness_group(class, zspage);
1809 insert_zspage(class, zspage, fullness);
1810 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1811
860c707d 1812 return fullness;
61989a80 1813}
312fcae2 1814
48b4800a
MK
1815#ifdef CONFIG_COMPACTION
1816static struct dentry *zs_mount(struct file_system_type *fs_type,
1817 int flags, const char *dev_name, void *data)
1818{
1819 static const struct dentry_operations ops = {
1820 .d_dname = simple_dname,
1821 };
1822
1823 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1824}
1825
1826static struct file_system_type zsmalloc_fs = {
1827 .name = "zsmalloc",
1828 .mount = zs_mount,
1829 .kill_sb = kill_anon_super,
1830};
1831
1832static int zsmalloc_mount(void)
1833{
1834 int ret = 0;
1835
1836 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1837 if (IS_ERR(zsmalloc_mnt))
1838 ret = PTR_ERR(zsmalloc_mnt);
1839
1840 return ret;
1841}
1842
1843static void zsmalloc_unmount(void)
1844{
1845 kern_unmount(zsmalloc_mnt);
1846}
1847
1848static void migrate_lock_init(struct zspage *zspage)
1849{
1850 rwlock_init(&zspage->lock);
1851}
1852
1853static void migrate_read_lock(struct zspage *zspage)
1854{
1855 read_lock(&zspage->lock);
1856}
1857
1858static void migrate_read_unlock(struct zspage *zspage)
1859{
1860 read_unlock(&zspage->lock);
1861}
1862
1863static void migrate_write_lock(struct zspage *zspage)
1864{
1865 write_lock(&zspage->lock);
1866}
1867
1868static void migrate_write_unlock(struct zspage *zspage)
1869{
1870 write_unlock(&zspage->lock);
1871}
1872
1873/* Number of isolated subpage for *page migration* in this zspage */
1874static void inc_zspage_isolation(struct zspage *zspage)
1875{
1876 zspage->isolated++;
1877}
1878
1879static void dec_zspage_isolation(struct zspage *zspage)
1880{
1881 zspage->isolated--;
1882}
1883
1884static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1885 struct page *newpage, struct page *oldpage)
1886{
1887 struct page *page;
1888 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1889 int idx = 0;
1890
1891 page = get_first_page(zspage);
1892 do {
1893 if (page == oldpage)
1894 pages[idx] = newpage;
1895 else
1896 pages[idx] = page;
1897 idx++;
1898 } while ((page = get_next_page(page)) != NULL);
1899
1900 create_page_chain(class, zspage, pages);
1901 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1902 if (unlikely(PageHugeObject(oldpage)))
1903 newpage->index = oldpage->index;
1904 __SetPageMovable(newpage, page_mapping(oldpage));
1905}
1906
1907bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1908{
1909 struct zs_pool *pool;
1910 struct size_class *class;
1911 int class_idx;
1912 enum fullness_group fullness;
1913 struct zspage *zspage;
1914 struct address_space *mapping;
1915
1916 /*
1917 * Page is locked so zspage couldn't be destroyed. For detail, look at
1918 * lock_zspage in free_zspage.
1919 */
1920 VM_BUG_ON_PAGE(!PageMovable(page), page);
1921 VM_BUG_ON_PAGE(PageIsolated(page), page);
1922
1923 zspage = get_zspage(page);
1924
1925 /*
1926 * Without class lock, fullness could be stale while class_idx is okay
1927 * because class_idx is constant unless page is freed so we should get
1928 * fullness again under class lock.
1929 */
1930 get_zspage_mapping(zspage, &class_idx, &fullness);
1931 mapping = page_mapping(page);
1932 pool = mapping->private_data;
1933 class = pool->size_class[class_idx];
1934
1935 spin_lock(&class->lock);
1936 if (get_zspage_inuse(zspage) == 0) {
1937 spin_unlock(&class->lock);
1938 return false;
1939 }
1940
1941 /* zspage is isolated for object migration */
1942 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1943 spin_unlock(&class->lock);
1944 return false;
1945 }
1946
1947 /*
1948 * If this is first time isolation for the zspage, isolate zspage from
1949 * size_class to prevent further object allocation from the zspage.
1950 */
1951 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1952 get_zspage_mapping(zspage, &class_idx, &fullness);
1953 remove_zspage(class, zspage, fullness);
1954 }
1955
1956 inc_zspage_isolation(zspage);
1957 spin_unlock(&class->lock);
1958
1959 return true;
1960}
1961
1962int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1963 struct page *page, enum migrate_mode mode)
1964{
1965 struct zs_pool *pool;
1966 struct size_class *class;
1967 int class_idx;
1968 enum fullness_group fullness;
1969 struct zspage *zspage;
1970 struct page *dummy;
1971 void *s_addr, *d_addr, *addr;
1972 int offset, pos;
1973 unsigned long handle, head;
1974 unsigned long old_obj, new_obj;
1975 unsigned int obj_idx;
1976 int ret = -EAGAIN;
1977
2916ecc0
JG
1978 /*
1979 * We cannot support the _NO_COPY case here, because copy needs to
1980 * happen under the zs lock, which does not work with
1981 * MIGRATE_SYNC_NO_COPY workflow.
1982 */
1983 if (mode == MIGRATE_SYNC_NO_COPY)
1984 return -EINVAL;
1985
48b4800a
MK
1986 VM_BUG_ON_PAGE(!PageMovable(page), page);
1987 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1988
1989 zspage = get_zspage(page);
1990
1991 /* Concurrent compactor cannot migrate any subpage in zspage */
1992 migrate_write_lock(zspage);
1993 get_zspage_mapping(zspage, &class_idx, &fullness);
1994 pool = mapping->private_data;
1995 class = pool->size_class[class_idx];
1996 offset = get_first_obj_offset(page);
1997
1998 spin_lock(&class->lock);
1999 if (!get_zspage_inuse(zspage)) {
77ff4657
HZ
2000 /*
2001 * Set "offset" to end of the page so that every loops
2002 * skips unnecessary object scanning.
2003 */
2004 offset = PAGE_SIZE;
48b4800a
MK
2005 }
2006
2007 pos = offset;
2008 s_addr = kmap_atomic(page);
2009 while (pos < PAGE_SIZE) {
2010 head = obj_to_head(page, s_addr + pos);
2011 if (head & OBJ_ALLOCATED_TAG) {
2012 handle = head & ~OBJ_ALLOCATED_TAG;
2013 if (!trypin_tag(handle))
2014 goto unpin_objects;
2015 }
2016 pos += class->size;
2017 }
2018
2019 /*
2020 * Here, any user cannot access all objects in the zspage so let's move.
2021 */
2022 d_addr = kmap_atomic(newpage);
2023 memcpy(d_addr, s_addr, PAGE_SIZE);
2024 kunmap_atomic(d_addr);
2025
2026 for (addr = s_addr + offset; addr < s_addr + pos;
2027 addr += class->size) {
2028 head = obj_to_head(page, addr);
2029 if (head & OBJ_ALLOCATED_TAG) {
2030 handle = head & ~OBJ_ALLOCATED_TAG;
2031 if (!testpin_tag(handle))
2032 BUG();
2033
2034 old_obj = handle_to_obj(handle);
2035 obj_to_location(old_obj, &dummy, &obj_idx);
2036 new_obj = (unsigned long)location_to_obj(newpage,
2037 obj_idx);
2038 new_obj |= BIT(HANDLE_PIN_BIT);
2039 record_obj(handle, new_obj);
2040 }
2041 }
2042
2043 replace_sub_page(class, zspage, newpage, page);
2044 get_page(newpage);
2045
2046 dec_zspage_isolation(zspage);
2047
2048 /*
2049 * Page migration is done so let's putback isolated zspage to
2050 * the list if @page is final isolated subpage in the zspage.
2051 */
2052 if (!is_zspage_isolated(zspage))
2053 putback_zspage(class, zspage);
2054
2055 reset_page(page);
2056 put_page(page);
2057 page = newpage;
2058
dd4123f3 2059 ret = MIGRATEPAGE_SUCCESS;
48b4800a
MK
2060unpin_objects:
2061 for (addr = s_addr + offset; addr < s_addr + pos;
2062 addr += class->size) {
2063 head = obj_to_head(page, addr);
2064 if (head & OBJ_ALLOCATED_TAG) {
2065 handle = head & ~OBJ_ALLOCATED_TAG;
2066 if (!testpin_tag(handle))
2067 BUG();
2068 unpin_tag(handle);
2069 }
2070 }
2071 kunmap_atomic(s_addr);
48b4800a
MK
2072 spin_unlock(&class->lock);
2073 migrate_write_unlock(zspage);
2074
2075 return ret;
2076}
2077
2078void zs_page_putback(struct page *page)
2079{
2080 struct zs_pool *pool;
2081 struct size_class *class;
2082 int class_idx;
2083 enum fullness_group fg;
2084 struct address_space *mapping;
2085 struct zspage *zspage;
2086
2087 VM_BUG_ON_PAGE(!PageMovable(page), page);
2088 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2089
2090 zspage = get_zspage(page);
2091 get_zspage_mapping(zspage, &class_idx, &fg);
2092 mapping = page_mapping(page);
2093 pool = mapping->private_data;
2094 class = pool->size_class[class_idx];
2095
2096 spin_lock(&class->lock);
2097 dec_zspage_isolation(zspage);
2098 if (!is_zspage_isolated(zspage)) {
2099 fg = putback_zspage(class, zspage);
2100 /*
2101 * Due to page_lock, we cannot free zspage immediately
2102 * so let's defer.
2103 */
2104 if (fg == ZS_EMPTY)
2105 schedule_work(&pool->free_work);
2106 }
2107 spin_unlock(&class->lock);
2108}
2109
2110const struct address_space_operations zsmalloc_aops = {
2111 .isolate_page = zs_page_isolate,
2112 .migratepage = zs_page_migrate,
2113 .putback_page = zs_page_putback,
2114};
2115
2116static int zs_register_migration(struct zs_pool *pool)
2117{
2118 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2119 if (IS_ERR(pool->inode)) {
2120 pool->inode = NULL;
2121 return 1;
2122 }
2123
2124 pool->inode->i_mapping->private_data = pool;
2125 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2126 return 0;
2127}
2128
2129static void zs_unregister_migration(struct zs_pool *pool)
2130{
2131 flush_work(&pool->free_work);
c3491eca 2132 iput(pool->inode);
48b4800a
MK
2133}
2134
2135/*
2136 * Caller should hold page_lock of all pages in the zspage
2137 * In here, we cannot use zspage meta data.
2138 */
2139static void async_free_zspage(struct work_struct *work)
2140{
2141 int i;
2142 struct size_class *class;
2143 unsigned int class_idx;
2144 enum fullness_group fullness;
2145 struct zspage *zspage, *tmp;
2146 LIST_HEAD(free_pages);
2147 struct zs_pool *pool = container_of(work, struct zs_pool,
2148 free_work);
2149
cf8e0fed 2150 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
48b4800a
MK
2151 class = pool->size_class[i];
2152 if (class->index != i)
2153 continue;
2154
2155 spin_lock(&class->lock);
2156 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2157 spin_unlock(&class->lock);
2158 }
2159
2160
2161 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2162 list_del(&zspage->list);
2163 lock_zspage(zspage);
2164
2165 get_zspage_mapping(zspage, &class_idx, &fullness);
2166 VM_BUG_ON(fullness != ZS_EMPTY);
2167 class = pool->size_class[class_idx];
2168 spin_lock(&class->lock);
2169 __free_zspage(pool, pool->size_class[class_idx], zspage);
2170 spin_unlock(&class->lock);
2171 }
2172};
2173
2174static void kick_deferred_free(struct zs_pool *pool)
2175{
2176 schedule_work(&pool->free_work);
2177}
2178
2179static void init_deferred_free(struct zs_pool *pool)
2180{
2181 INIT_WORK(&pool->free_work, async_free_zspage);
2182}
2183
2184static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2185{
2186 struct page *page = get_first_page(zspage);
2187
2188 do {
2189 WARN_ON(!trylock_page(page));
2190 __SetPageMovable(page, pool->inode->i_mapping);
2191 unlock_page(page);
2192 } while ((page = get_next_page(page)) != NULL);
2193}
2194#endif
2195
04f05909
SS
2196/*
2197 *
2198 * Based on the number of unused allocated objects calculate
2199 * and return the number of pages that we can free.
04f05909
SS
2200 */
2201static unsigned long zs_can_compact(struct size_class *class)
2202{
2203 unsigned long obj_wasted;
44f43e99
SS
2204 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2205 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2206
44f43e99
SS
2207 if (obj_allocated <= obj_used)
2208 return 0;
04f05909 2209
44f43e99 2210 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2211 obj_wasted /= class->objs_per_zspage;
04f05909 2212
6cbf16b3 2213 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2214}
2215
7d3f3938 2216static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 2217{
312fcae2 2218 struct zs_compact_control cc;
3783689a
MK
2219 struct zspage *src_zspage;
2220 struct zspage *dst_zspage = NULL;
312fcae2 2221
312fcae2 2222 spin_lock(&class->lock);
3783689a 2223 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2224
04f05909
SS
2225 if (!zs_can_compact(class))
2226 break;
2227
41b88e14 2228 cc.obj_idx = 0;
48b4800a 2229 cc.s_page = get_first_page(src_zspage);
312fcae2 2230
3783689a 2231 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2232 cc.d_page = get_first_page(dst_zspage);
312fcae2 2233 /*
0dc63d48
SS
2234 * If there is no more space in dst_page, resched
2235 * and see if anyone had allocated another zspage.
312fcae2
MK
2236 */
2237 if (!migrate_zspage(pool, class, &cc))
2238 break;
2239
4aa409ca 2240 putback_zspage(class, dst_zspage);
312fcae2
MK
2241 }
2242
2243 /* Stop if we couldn't find slot */
3783689a 2244 if (dst_zspage == NULL)
312fcae2
MK
2245 break;
2246
4aa409ca
MK
2247 putback_zspage(class, dst_zspage);
2248 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2249 free_zspage(pool, class, src_zspage);
6cbf16b3 2250 pool->stats.pages_compacted += class->pages_per_zspage;
4aa409ca 2251 }
312fcae2 2252 spin_unlock(&class->lock);
312fcae2
MK
2253 cond_resched();
2254 spin_lock(&class->lock);
2255 }
2256
3783689a 2257 if (src_zspage)
4aa409ca 2258 putback_zspage(class, src_zspage);
312fcae2 2259
7d3f3938 2260 spin_unlock(&class->lock);
312fcae2
MK
2261}
2262
2263unsigned long zs_compact(struct zs_pool *pool)
2264{
2265 int i;
312fcae2
MK
2266 struct size_class *class;
2267
cf8e0fed 2268 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
312fcae2
MK
2269 class = pool->size_class[i];
2270 if (!class)
2271 continue;
2272 if (class->index != i)
2273 continue;
7d3f3938 2274 __zs_compact(pool, class);
312fcae2
MK
2275 }
2276
860c707d 2277 return pool->stats.pages_compacted;
312fcae2
MK
2278}
2279EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2280
7d3f3938
SS
2281void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2282{
2283 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2284}
2285EXPORT_SYMBOL_GPL(zs_pool_stats);
2286
ab9d306d
SS
2287static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2288 struct shrink_control *sc)
2289{
2290 unsigned long pages_freed;
2291 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2292 shrinker);
2293
2294 pages_freed = pool->stats.pages_compacted;
2295 /*
2296 * Compact classes and calculate compaction delta.
2297 * Can run concurrently with a manually triggered
2298 * (by user) compaction.
2299 */
2300 pages_freed = zs_compact(pool) - pages_freed;
2301
2302 return pages_freed ? pages_freed : SHRINK_STOP;
2303}
2304
2305static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2306 struct shrink_control *sc)
2307{
2308 int i;
2309 struct size_class *class;
2310 unsigned long pages_to_free = 0;
2311 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2312 shrinker);
2313
cf8e0fed 2314 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
ab9d306d
SS
2315 class = pool->size_class[i];
2316 if (!class)
2317 continue;
2318 if (class->index != i)
2319 continue;
2320
ab9d306d 2321 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2322 }
2323
2324 return pages_to_free;
2325}
2326
2327static void zs_unregister_shrinker(struct zs_pool *pool)
2328{
93144ca3 2329 unregister_shrinker(&pool->shrinker);
ab9d306d
SS
2330}
2331
2332static int zs_register_shrinker(struct zs_pool *pool)
2333{
2334 pool->shrinker.scan_objects = zs_shrinker_scan;
2335 pool->shrinker.count_objects = zs_shrinker_count;
2336 pool->shrinker.batch = 0;
2337 pool->shrinker.seeks = DEFAULT_SEEKS;
2338
2339 return register_shrinker(&pool->shrinker);
2340}
2341
00a61d86 2342/**
66cdef66 2343 * zs_create_pool - Creates an allocation pool to work from.
fd854463 2344 * @name: pool name to be created
166cfda7 2345 *
66cdef66
GM
2346 * This function must be called before anything when using
2347 * the zsmalloc allocator.
166cfda7 2348 *
66cdef66
GM
2349 * On success, a pointer to the newly created pool is returned,
2350 * otherwise NULL.
396b7fd6 2351 */
d0d8da2d 2352struct zs_pool *zs_create_pool(const char *name)
61989a80 2353{
66cdef66
GM
2354 int i;
2355 struct zs_pool *pool;
2356 struct size_class *prev_class = NULL;
61989a80 2357
66cdef66
GM
2358 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2359 if (!pool)
2360 return NULL;
61989a80 2361
48b4800a 2362 init_deferred_free(pool);
61989a80 2363
2e40e163
MK
2364 pool->name = kstrdup(name, GFP_KERNEL);
2365 if (!pool->name)
2366 goto err;
2367
3783689a 2368 if (create_cache(pool))
2e40e163
MK
2369 goto err;
2370
c60369f0 2371 /*
399d8eeb 2372 * Iterate reversely, because, size of size_class that we want to use
66cdef66 2373 * for merging should be larger or equal to current size.
c60369f0 2374 */
cf8e0fed 2375 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
66cdef66
GM
2376 int size;
2377 int pages_per_zspage;
64d90465 2378 int objs_per_zspage;
66cdef66 2379 struct size_class *class;
3783689a 2380 int fullness = 0;
c60369f0 2381
66cdef66
GM
2382 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2383 if (size > ZS_MAX_ALLOC_SIZE)
2384 size = ZS_MAX_ALLOC_SIZE;
2385 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2386 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2387
010b495e
SS
2388 /*
2389 * We iterate from biggest down to smallest classes,
2390 * so huge_class_size holds the size of the first huge
2391 * class. Any object bigger than or equal to that will
2392 * endup in the huge class.
2393 */
2394 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2395 !huge_class_size) {
2396 huge_class_size = size;
2397 /*
2398 * The object uses ZS_HANDLE_SIZE bytes to store the
2399 * handle. We need to subtract it, because zs_malloc()
2400 * unconditionally adds handle size before it performs
2401 * size class search - so object may be smaller than
2402 * huge class size, yet it still can end up in the huge
2403 * class because it grows by ZS_HANDLE_SIZE extra bytes
2404 * right before class lookup.
2405 */
2406 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2407 }
2408
66cdef66
GM
2409 /*
2410 * size_class is used for normal zsmalloc operation such
2411 * as alloc/free for that size. Although it is natural that we
2412 * have one size_class for each size, there is a chance that we
2413 * can get more memory utilization if we use one size_class for
2414 * many different sizes whose size_class have same
2415 * characteristics. So, we makes size_class point to
2416 * previous size_class if possible.
2417 */
2418 if (prev_class) {
64d90465 2419 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2420 pool->size_class[i] = prev_class;
2421 continue;
2422 }
2423 }
2424
2425 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2426 if (!class)
2427 goto err;
2428
2429 class->size = size;
2430 class->index = i;
2431 class->pages_per_zspage = pages_per_zspage;
64d90465 2432 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2433 spin_lock_init(&class->lock);
2434 pool->size_class[i] = class;
48b4800a
MK
2435 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2436 fullness++)
3783689a 2437 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2438
2439 prev_class = class;
61989a80
NG
2440 }
2441
d34f6157
DS
2442 /* debug only, don't abort if it fails */
2443 zs_pool_stat_create(pool, name);
0f050d99 2444
48b4800a
MK
2445 if (zs_register_migration(pool))
2446 goto err;
2447
ab9d306d 2448 /*
93144ca3
AK
2449 * Not critical since shrinker is only used to trigger internal
2450 * defragmentation of the pool which is pretty optional thing. If
2451 * registration fails we still can use the pool normally and user can
2452 * trigger compaction manually. Thus, ignore return code.
ab9d306d 2453 */
93144ca3
AK
2454 zs_register_shrinker(pool);
2455
66cdef66
GM
2456 return pool;
2457
2458err:
2459 zs_destroy_pool(pool);
2460 return NULL;
61989a80 2461}
66cdef66 2462EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2463
66cdef66 2464void zs_destroy_pool(struct zs_pool *pool)
61989a80 2465{
66cdef66 2466 int i;
61989a80 2467
ab9d306d 2468 zs_unregister_shrinker(pool);
48b4800a 2469 zs_unregister_migration(pool);
0f050d99
GM
2470 zs_pool_stat_destroy(pool);
2471
cf8e0fed 2472 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
66cdef66
GM
2473 int fg;
2474 struct size_class *class = pool->size_class[i];
61989a80 2475
66cdef66
GM
2476 if (!class)
2477 continue;
61989a80 2478
66cdef66
GM
2479 if (class->index != i)
2480 continue;
61989a80 2481
48b4800a 2482 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2483 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2484 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2485 class->size, fg);
2486 }
2487 }
2488 kfree(class);
2489 }
f553646a 2490
3783689a 2491 destroy_cache(pool);
0f050d99 2492 kfree(pool->name);
66cdef66
GM
2493 kfree(pool);
2494}
2495EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2496
66cdef66
GM
2497static int __init zs_init(void)
2498{
48b4800a
MK
2499 int ret;
2500
2501 ret = zsmalloc_mount();
2502 if (ret)
2503 goto out;
2504
215c89d0
SAS
2505 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2506 zs_cpu_prepare, zs_cpu_dead);
0f050d99 2507 if (ret)
215c89d0 2508 goto hp_setup_fail;
66cdef66 2509
66cdef66
GM
2510#ifdef CONFIG_ZPOOL
2511 zpool_register_driver(&zs_zpool_driver);
2512#endif
0f050d99 2513
4abaac9b
DS
2514 zs_stat_init();
2515
66cdef66 2516 return 0;
0f050d99 2517
215c89d0 2518hp_setup_fail:
48b4800a
MK
2519 zsmalloc_unmount();
2520out:
0f050d99 2521 return ret;
61989a80 2522}
61989a80 2523
66cdef66 2524static void __exit zs_exit(void)
61989a80 2525{
66cdef66
GM
2526#ifdef CONFIG_ZPOOL
2527 zpool_unregister_driver(&zs_zpool_driver);
2528#endif
48b4800a 2529 zsmalloc_unmount();
215c89d0 2530 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
0f050d99
GM
2531
2532 zs_stat_exit();
61989a80 2533}
069f101f
BH
2534
2535module_init(zs_init);
2536module_exit(zs_exit);
2537
2538MODULE_LICENSE("Dual BSD/GPL");
2539MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");