mm: don't assume anonymous pages have SwapBacked flag
[linux-2.6-block.git] / mm / vmstat.c
CommitLineData
f6ac2354
CL
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
2244b95a
CL
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
7cc36bbd 10 * Copyright (C) 2008-2014 Christoph Lameter
f6ac2354 11 */
8f32f7e5 12#include <linux/fs.h>
f6ac2354 13#include <linux/mm.h>
4e950f6f 14#include <linux/err.h>
2244b95a 15#include <linux/module.h>
5a0e3ad6 16#include <linux/slab.h>
df9ecaba 17#include <linux/cpu.h>
7cc36bbd 18#include <linux/cpumask.h>
c748e134 19#include <linux/vmstat.h>
3c486871
AM
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/debugfs.h>
e8edc6e0 23#include <linux/sched.h>
f1a5ab12 24#include <linux/math64.h>
79da826a 25#include <linux/writeback.h>
36deb0be 26#include <linux/compaction.h>
6e543d57 27#include <linux/mm_inline.h>
48c96a36
JK
28#include <linux/page_ext.h>
29#include <linux/page_owner.h>
6e543d57
LD
30
31#include "internal.h"
f6ac2354 32
f8891e5e
CL
33#ifdef CONFIG_VM_EVENT_COUNTERS
34DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
31f961a8 37static void sum_vm_events(unsigned long *ret)
f8891e5e 38{
9eccf2a8 39 int cpu;
f8891e5e
CL
40 int i;
41
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
31f961a8 44 for_each_online_cpu(cpu) {
f8891e5e
CL
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
f8891e5e
CL
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
49 }
50}
51
52/*
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
56*/
57void all_vm_events(unsigned long *ret)
58{
b5be1132 59 get_online_cpus();
31f961a8 60 sum_vm_events(ret);
b5be1132 61 put_online_cpus();
f8891e5e 62}
32dd66fc 63EXPORT_SYMBOL_GPL(all_vm_events);
f8891e5e 64
f8891e5e
CL
65/*
66 * Fold the foreign cpu events into our own.
67 *
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
70 */
71void vm_events_fold_cpu(int cpu)
72{
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
75
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
79 }
80}
f8891e5e
CL
81
82#endif /* CONFIG_VM_EVENT_COUNTERS */
83
2244b95a
CL
84/*
85 * Manage combined zone based / global counters
86 *
87 * vm_stat contains the global counters
88 */
75ef7184
MG
89atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
90atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
91EXPORT_SYMBOL(vm_zone_stat);
92EXPORT_SYMBOL(vm_node_stat);
2244b95a
CL
93
94#ifdef CONFIG_SMP
95
b44129b3 96int calculate_pressure_threshold(struct zone *zone)
88f5acf8
MG
97{
98 int threshold;
99 int watermark_distance;
100
101 /*
102 * As vmstats are not up to date, there is drift between the estimated
103 * and real values. For high thresholds and a high number of CPUs, it
104 * is possible for the min watermark to be breached while the estimated
105 * value looks fine. The pressure threshold is a reduced value such
106 * that even the maximum amount of drift will not accidentally breach
107 * the min watermark
108 */
109 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
110 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
111
112 /*
113 * Maximum threshold is 125
114 */
115 threshold = min(125, threshold);
116
117 return threshold;
118}
119
b44129b3 120int calculate_normal_threshold(struct zone *zone)
df9ecaba
CL
121{
122 int threshold;
123 int mem; /* memory in 128 MB units */
124
125 /*
126 * The threshold scales with the number of processors and the amount
127 * of memory per zone. More memory means that we can defer updates for
128 * longer, more processors could lead to more contention.
129 * fls() is used to have a cheap way of logarithmic scaling.
130 *
131 * Some sample thresholds:
132 *
133 * Threshold Processors (fls) Zonesize fls(mem+1)
134 * ------------------------------------------------------------------
135 * 8 1 1 0.9-1 GB 4
136 * 16 2 2 0.9-1 GB 4
137 * 20 2 2 1-2 GB 5
138 * 24 2 2 2-4 GB 6
139 * 28 2 2 4-8 GB 7
140 * 32 2 2 8-16 GB 8
141 * 4 2 2 <128M 1
142 * 30 4 3 2-4 GB 5
143 * 48 4 3 8-16 GB 8
144 * 32 8 4 1-2 GB 4
145 * 32 8 4 0.9-1GB 4
146 * 10 16 5 <128M 1
147 * 40 16 5 900M 4
148 * 70 64 7 2-4 GB 5
149 * 84 64 7 4-8 GB 6
150 * 108 512 9 4-8 GB 6
151 * 125 1024 10 8-16 GB 8
152 * 125 1024 10 16-32 GB 9
153 */
154
b40da049 155 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
df9ecaba
CL
156
157 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
158
159 /*
160 * Maximum threshold is 125
161 */
162 threshold = min(125, threshold);
163
164 return threshold;
165}
2244b95a
CL
166
167/*
df9ecaba 168 * Refresh the thresholds for each zone.
2244b95a 169 */
a6cccdc3 170void refresh_zone_stat_thresholds(void)
2244b95a 171{
75ef7184 172 struct pglist_data *pgdat;
df9ecaba
CL
173 struct zone *zone;
174 int cpu;
175 int threshold;
176
75ef7184
MG
177 /* Zero current pgdat thresholds */
178 for_each_online_pgdat(pgdat) {
179 for_each_online_cpu(cpu) {
180 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
181 }
182 }
183
ee99c71c 184 for_each_populated_zone(zone) {
75ef7184 185 struct pglist_data *pgdat = zone->zone_pgdat;
aa454840
CL
186 unsigned long max_drift, tolerate_drift;
187
b44129b3 188 threshold = calculate_normal_threshold(zone);
df9ecaba 189
75ef7184
MG
190 for_each_online_cpu(cpu) {
191 int pgdat_threshold;
192
99dcc3e5
CL
193 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
194 = threshold;
aa454840 195
75ef7184
MG
196 /* Base nodestat threshold on the largest populated zone. */
197 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
198 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
199 = max(threshold, pgdat_threshold);
200 }
201
aa454840
CL
202 /*
203 * Only set percpu_drift_mark if there is a danger that
204 * NR_FREE_PAGES reports the low watermark is ok when in fact
205 * the min watermark could be breached by an allocation
206 */
207 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
208 max_drift = num_online_cpus() * threshold;
209 if (max_drift > tolerate_drift)
210 zone->percpu_drift_mark = high_wmark_pages(zone) +
211 max_drift;
df9ecaba 212 }
2244b95a
CL
213}
214
b44129b3
MG
215void set_pgdat_percpu_threshold(pg_data_t *pgdat,
216 int (*calculate_pressure)(struct zone *))
88f5acf8
MG
217{
218 struct zone *zone;
219 int cpu;
220 int threshold;
221 int i;
222
88f5acf8
MG
223 for (i = 0; i < pgdat->nr_zones; i++) {
224 zone = &pgdat->node_zones[i];
225 if (!zone->percpu_drift_mark)
226 continue;
227
b44129b3 228 threshold = (*calculate_pressure)(zone);
bb0b6dff 229 for_each_online_cpu(cpu)
88f5acf8
MG
230 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
231 = threshold;
232 }
88f5acf8
MG
233}
234
2244b95a 235/*
bea04b07
JZ
236 * For use when we know that interrupts are disabled,
237 * or when we know that preemption is disabled and that
238 * particular counter cannot be updated from interrupt context.
2244b95a
CL
239 */
240void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 241 long delta)
2244b95a 242{
12938a92
CL
243 struct per_cpu_pageset __percpu *pcp = zone->pageset;
244 s8 __percpu *p = pcp->vm_stat_diff + item;
2244b95a 245 long x;
12938a92
CL
246 long t;
247
248 x = delta + __this_cpu_read(*p);
2244b95a 249
12938a92 250 t = __this_cpu_read(pcp->stat_threshold);
2244b95a 251
12938a92 252 if (unlikely(x > t || x < -t)) {
2244b95a
CL
253 zone_page_state_add(x, zone, item);
254 x = 0;
255 }
12938a92 256 __this_cpu_write(*p, x);
2244b95a
CL
257}
258EXPORT_SYMBOL(__mod_zone_page_state);
259
75ef7184
MG
260void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
261 long delta)
262{
263 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
264 s8 __percpu *p = pcp->vm_node_stat_diff + item;
265 long x;
266 long t;
267
268 x = delta + __this_cpu_read(*p);
269
270 t = __this_cpu_read(pcp->stat_threshold);
271
272 if (unlikely(x > t || x < -t)) {
273 node_page_state_add(x, pgdat, item);
274 x = 0;
275 }
276 __this_cpu_write(*p, x);
277}
278EXPORT_SYMBOL(__mod_node_page_state);
279
2244b95a
CL
280/*
281 * Optimized increment and decrement functions.
282 *
283 * These are only for a single page and therefore can take a struct page *
284 * argument instead of struct zone *. This allows the inclusion of the code
285 * generated for page_zone(page) into the optimized functions.
286 *
287 * No overflow check is necessary and therefore the differential can be
288 * incremented or decremented in place which may allow the compilers to
289 * generate better code.
2244b95a
CL
290 * The increment or decrement is known and therefore one boundary check can
291 * be omitted.
292 *
df9ecaba
CL
293 * NOTE: These functions are very performance sensitive. Change only
294 * with care.
295 *
2244b95a
CL
296 * Some processors have inc/dec instructions that are atomic vs an interrupt.
297 * However, the code must first determine the differential location in a zone
298 * based on the processor number and then inc/dec the counter. There is no
299 * guarantee without disabling preemption that the processor will not change
300 * in between and therefore the atomicity vs. interrupt cannot be exploited
301 * in a useful way here.
302 */
c8785385 303void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 304{
12938a92
CL
305 struct per_cpu_pageset __percpu *pcp = zone->pageset;
306 s8 __percpu *p = pcp->vm_stat_diff + item;
307 s8 v, t;
2244b95a 308
908ee0f1 309 v = __this_cpu_inc_return(*p);
12938a92
CL
310 t = __this_cpu_read(pcp->stat_threshold);
311 if (unlikely(v > t)) {
312 s8 overstep = t >> 1;
df9ecaba 313
12938a92
CL
314 zone_page_state_add(v + overstep, zone, item);
315 __this_cpu_write(*p, -overstep);
2244b95a
CL
316 }
317}
ca889e6c 318
75ef7184
MG
319void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
320{
321 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
322 s8 __percpu *p = pcp->vm_node_stat_diff + item;
323 s8 v, t;
324
325 v = __this_cpu_inc_return(*p);
326 t = __this_cpu_read(pcp->stat_threshold);
327 if (unlikely(v > t)) {
328 s8 overstep = t >> 1;
329
330 node_page_state_add(v + overstep, pgdat, item);
331 __this_cpu_write(*p, -overstep);
332 }
333}
334
ca889e6c
CL
335void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
336{
337 __inc_zone_state(page_zone(page), item);
338}
2244b95a
CL
339EXPORT_SYMBOL(__inc_zone_page_state);
340
75ef7184
MG
341void __inc_node_page_state(struct page *page, enum node_stat_item item)
342{
343 __inc_node_state(page_pgdat(page), item);
344}
345EXPORT_SYMBOL(__inc_node_page_state);
346
c8785385 347void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 348{
12938a92
CL
349 struct per_cpu_pageset __percpu *pcp = zone->pageset;
350 s8 __percpu *p = pcp->vm_stat_diff + item;
351 s8 v, t;
2244b95a 352
908ee0f1 353 v = __this_cpu_dec_return(*p);
12938a92
CL
354 t = __this_cpu_read(pcp->stat_threshold);
355 if (unlikely(v < - t)) {
356 s8 overstep = t >> 1;
2244b95a 357
12938a92
CL
358 zone_page_state_add(v - overstep, zone, item);
359 __this_cpu_write(*p, overstep);
2244b95a
CL
360 }
361}
c8785385 362
75ef7184
MG
363void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
364{
365 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
366 s8 __percpu *p = pcp->vm_node_stat_diff + item;
367 s8 v, t;
368
369 v = __this_cpu_dec_return(*p);
370 t = __this_cpu_read(pcp->stat_threshold);
371 if (unlikely(v < - t)) {
372 s8 overstep = t >> 1;
373
374 node_page_state_add(v - overstep, pgdat, item);
375 __this_cpu_write(*p, overstep);
376 }
377}
378
c8785385
CL
379void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
380{
381 __dec_zone_state(page_zone(page), item);
382}
2244b95a
CL
383EXPORT_SYMBOL(__dec_zone_page_state);
384
75ef7184
MG
385void __dec_node_page_state(struct page *page, enum node_stat_item item)
386{
387 __dec_node_state(page_pgdat(page), item);
388}
389EXPORT_SYMBOL(__dec_node_page_state);
390
4156153c 391#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
7c839120
CL
392/*
393 * If we have cmpxchg_local support then we do not need to incur the overhead
394 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
395 *
396 * mod_state() modifies the zone counter state through atomic per cpu
397 * operations.
398 *
399 * Overstep mode specifies how overstep should handled:
400 * 0 No overstepping
401 * 1 Overstepping half of threshold
402 * -1 Overstepping minus half of threshold
403*/
75ef7184
MG
404static inline void mod_zone_state(struct zone *zone,
405 enum zone_stat_item item, long delta, int overstep_mode)
7c839120
CL
406{
407 struct per_cpu_pageset __percpu *pcp = zone->pageset;
408 s8 __percpu *p = pcp->vm_stat_diff + item;
409 long o, n, t, z;
410
411 do {
412 z = 0; /* overflow to zone counters */
413
414 /*
415 * The fetching of the stat_threshold is racy. We may apply
416 * a counter threshold to the wrong the cpu if we get
d3bc2367
CL
417 * rescheduled while executing here. However, the next
418 * counter update will apply the threshold again and
419 * therefore bring the counter under the threshold again.
420 *
421 * Most of the time the thresholds are the same anyways
422 * for all cpus in a zone.
7c839120
CL
423 */
424 t = this_cpu_read(pcp->stat_threshold);
425
426 o = this_cpu_read(*p);
427 n = delta + o;
428
429 if (n > t || n < -t) {
430 int os = overstep_mode * (t >> 1) ;
431
432 /* Overflow must be added to zone counters */
433 z = n + os;
434 n = -os;
435 }
436 } while (this_cpu_cmpxchg(*p, o, n) != o);
437
438 if (z)
439 zone_page_state_add(z, zone, item);
440}
441
442void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 443 long delta)
7c839120 444{
75ef7184 445 mod_zone_state(zone, item, delta, 0);
7c839120
CL
446}
447EXPORT_SYMBOL(mod_zone_page_state);
448
7c839120
CL
449void inc_zone_page_state(struct page *page, enum zone_stat_item item)
450{
75ef7184 451 mod_zone_state(page_zone(page), item, 1, 1);
7c839120
CL
452}
453EXPORT_SYMBOL(inc_zone_page_state);
454
455void dec_zone_page_state(struct page *page, enum zone_stat_item item)
456{
75ef7184 457 mod_zone_state(page_zone(page), item, -1, -1);
7c839120
CL
458}
459EXPORT_SYMBOL(dec_zone_page_state);
75ef7184
MG
460
461static inline void mod_node_state(struct pglist_data *pgdat,
462 enum node_stat_item item, int delta, int overstep_mode)
463{
464 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
465 s8 __percpu *p = pcp->vm_node_stat_diff + item;
466 long o, n, t, z;
467
468 do {
469 z = 0; /* overflow to node counters */
470
471 /*
472 * The fetching of the stat_threshold is racy. We may apply
473 * a counter threshold to the wrong the cpu if we get
474 * rescheduled while executing here. However, the next
475 * counter update will apply the threshold again and
476 * therefore bring the counter under the threshold again.
477 *
478 * Most of the time the thresholds are the same anyways
479 * for all cpus in a node.
480 */
481 t = this_cpu_read(pcp->stat_threshold);
482
483 o = this_cpu_read(*p);
484 n = delta + o;
485
486 if (n > t || n < -t) {
487 int os = overstep_mode * (t >> 1) ;
488
489 /* Overflow must be added to node counters */
490 z = n + os;
491 n = -os;
492 }
493 } while (this_cpu_cmpxchg(*p, o, n) != o);
494
495 if (z)
496 node_page_state_add(z, pgdat, item);
497}
498
499void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
500 long delta)
501{
502 mod_node_state(pgdat, item, delta, 0);
503}
504EXPORT_SYMBOL(mod_node_page_state);
505
506void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
507{
508 mod_node_state(pgdat, item, 1, 1);
509}
510
511void inc_node_page_state(struct page *page, enum node_stat_item item)
512{
513 mod_node_state(page_pgdat(page), item, 1, 1);
514}
515EXPORT_SYMBOL(inc_node_page_state);
516
517void dec_node_page_state(struct page *page, enum node_stat_item item)
518{
519 mod_node_state(page_pgdat(page), item, -1, -1);
520}
521EXPORT_SYMBOL(dec_node_page_state);
7c839120
CL
522#else
523/*
524 * Use interrupt disable to serialize counter updates
525 */
526void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 527 long delta)
7c839120
CL
528{
529 unsigned long flags;
530
531 local_irq_save(flags);
532 __mod_zone_page_state(zone, item, delta);
533 local_irq_restore(flags);
534}
535EXPORT_SYMBOL(mod_zone_page_state);
536
2244b95a
CL
537void inc_zone_page_state(struct page *page, enum zone_stat_item item)
538{
539 unsigned long flags;
540 struct zone *zone;
2244b95a
CL
541
542 zone = page_zone(page);
543 local_irq_save(flags);
ca889e6c 544 __inc_zone_state(zone, item);
2244b95a
CL
545 local_irq_restore(flags);
546}
547EXPORT_SYMBOL(inc_zone_page_state);
548
549void dec_zone_page_state(struct page *page, enum zone_stat_item item)
550{
551 unsigned long flags;
2244b95a 552
2244b95a 553 local_irq_save(flags);
a302eb4e 554 __dec_zone_page_state(page, item);
2244b95a
CL
555 local_irq_restore(flags);
556}
557EXPORT_SYMBOL(dec_zone_page_state);
558
75ef7184
MG
559void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
560{
561 unsigned long flags;
562
563 local_irq_save(flags);
564 __inc_node_state(pgdat, item);
565 local_irq_restore(flags);
566}
567EXPORT_SYMBOL(inc_node_state);
568
569void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
570 long delta)
571{
572 unsigned long flags;
573
574 local_irq_save(flags);
575 __mod_node_page_state(pgdat, item, delta);
576 local_irq_restore(flags);
577}
578EXPORT_SYMBOL(mod_node_page_state);
579
580void inc_node_page_state(struct page *page, enum node_stat_item item)
581{
582 unsigned long flags;
583 struct pglist_data *pgdat;
584
585 pgdat = page_pgdat(page);
586 local_irq_save(flags);
587 __inc_node_state(pgdat, item);
588 local_irq_restore(flags);
589}
590EXPORT_SYMBOL(inc_node_page_state);
591
592void dec_node_page_state(struct page *page, enum node_stat_item item)
593{
594 unsigned long flags;
595
596 local_irq_save(flags);
597 __dec_node_page_state(page, item);
598 local_irq_restore(flags);
599}
600EXPORT_SYMBOL(dec_node_page_state);
601#endif
7cc36bbd
CL
602
603/*
604 * Fold a differential into the global counters.
605 * Returns the number of counters updated.
606 */
75ef7184 607static int fold_diff(int *zone_diff, int *node_diff)
4edb0748
CL
608{
609 int i;
7cc36bbd 610 int changes = 0;
4edb0748
CL
611
612 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
75ef7184
MG
613 if (zone_diff[i]) {
614 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
615 changes++;
616 }
617
618 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
619 if (node_diff[i]) {
620 atomic_long_add(node_diff[i], &vm_node_stat[i]);
7cc36bbd
CL
621 changes++;
622 }
623 return changes;
4edb0748
CL
624}
625
2244b95a 626/*
2bb921e5 627 * Update the zone counters for the current cpu.
a7f75e25 628 *
4037d452
CL
629 * Note that refresh_cpu_vm_stats strives to only access
630 * node local memory. The per cpu pagesets on remote zones are placed
631 * in the memory local to the processor using that pageset. So the
632 * loop over all zones will access a series of cachelines local to
633 * the processor.
634 *
635 * The call to zone_page_state_add updates the cachelines with the
636 * statistics in the remote zone struct as well as the global cachelines
637 * with the global counters. These could cause remote node cache line
638 * bouncing and will have to be only done when necessary.
7cc36bbd
CL
639 *
640 * The function returns the number of global counters updated.
2244b95a 641 */
0eb77e98 642static int refresh_cpu_vm_stats(bool do_pagesets)
2244b95a 643{
75ef7184 644 struct pglist_data *pgdat;
2244b95a
CL
645 struct zone *zone;
646 int i;
75ef7184
MG
647 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
648 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
7cc36bbd 649 int changes = 0;
2244b95a 650
ee99c71c 651 for_each_populated_zone(zone) {
fbc2edb0 652 struct per_cpu_pageset __percpu *p = zone->pageset;
2244b95a 653
fbc2edb0
CL
654 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
655 int v;
2244b95a 656
fbc2edb0
CL
657 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
658 if (v) {
a7f75e25 659
a7f75e25 660 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 661 global_zone_diff[i] += v;
4037d452
CL
662#ifdef CONFIG_NUMA
663 /* 3 seconds idle till flush */
fbc2edb0 664 __this_cpu_write(p->expire, 3);
4037d452 665#endif
2244b95a 666 }
fbc2edb0 667 }
4037d452 668#ifdef CONFIG_NUMA
0eb77e98
CL
669 if (do_pagesets) {
670 cond_resched();
671 /*
672 * Deal with draining the remote pageset of this
673 * processor
674 *
675 * Check if there are pages remaining in this pageset
676 * if not then there is nothing to expire.
677 */
678 if (!__this_cpu_read(p->expire) ||
fbc2edb0 679 !__this_cpu_read(p->pcp.count))
0eb77e98 680 continue;
4037d452 681
0eb77e98
CL
682 /*
683 * We never drain zones local to this processor.
684 */
685 if (zone_to_nid(zone) == numa_node_id()) {
686 __this_cpu_write(p->expire, 0);
687 continue;
688 }
4037d452 689
0eb77e98
CL
690 if (__this_cpu_dec_return(p->expire))
691 continue;
4037d452 692
0eb77e98
CL
693 if (__this_cpu_read(p->pcp.count)) {
694 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
695 changes++;
696 }
7cc36bbd 697 }
4037d452 698#endif
2244b95a 699 }
75ef7184
MG
700
701 for_each_online_pgdat(pgdat) {
702 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
703
704 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
705 int v;
706
707 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
708 if (v) {
709 atomic_long_add(v, &pgdat->vm_stat[i]);
710 global_node_diff[i] += v;
711 }
712 }
713 }
714
715 changes += fold_diff(global_zone_diff, global_node_diff);
7cc36bbd 716 return changes;
2244b95a
CL
717}
718
2bb921e5
CL
719/*
720 * Fold the data for an offline cpu into the global array.
721 * There cannot be any access by the offline cpu and therefore
722 * synchronization is simplified.
723 */
724void cpu_vm_stats_fold(int cpu)
725{
75ef7184 726 struct pglist_data *pgdat;
2bb921e5
CL
727 struct zone *zone;
728 int i;
75ef7184
MG
729 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
730 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
2bb921e5
CL
731
732 for_each_populated_zone(zone) {
733 struct per_cpu_pageset *p;
734
735 p = per_cpu_ptr(zone->pageset, cpu);
736
737 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
738 if (p->vm_stat_diff[i]) {
739 int v;
740
741 v = p->vm_stat_diff[i];
742 p->vm_stat_diff[i] = 0;
743 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 744 global_zone_diff[i] += v;
2bb921e5
CL
745 }
746 }
747
75ef7184
MG
748 for_each_online_pgdat(pgdat) {
749 struct per_cpu_nodestat *p;
750
751 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
752
753 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
754 if (p->vm_node_stat_diff[i]) {
755 int v;
756
757 v = p->vm_node_stat_diff[i];
758 p->vm_node_stat_diff[i] = 0;
759 atomic_long_add(v, &pgdat->vm_stat[i]);
760 global_node_diff[i] += v;
761 }
762 }
763
764 fold_diff(global_zone_diff, global_node_diff);
2bb921e5
CL
765}
766
40f4b1ea
CS
767/*
768 * this is only called if !populated_zone(zone), which implies no other users of
769 * pset->vm_stat_diff[] exsist.
770 */
5a883813
MK
771void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
772{
773 int i;
774
775 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
776 if (pset->vm_stat_diff[i]) {
777 int v = pset->vm_stat_diff[i];
778 pset->vm_stat_diff[i] = 0;
779 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 780 atomic_long_add(v, &vm_zone_stat[i]);
5a883813
MK
781 }
782}
2244b95a
CL
783#endif
784
ca889e6c 785#ifdef CONFIG_NUMA
c2d42c16 786/*
75ef7184
MG
787 * Determine the per node value of a stat item. This function
788 * is called frequently in a NUMA machine, so try to be as
789 * frugal as possible.
c2d42c16 790 */
75ef7184
MG
791unsigned long sum_zone_node_page_state(int node,
792 enum zone_stat_item item)
c2d42c16
AM
793{
794 struct zone *zones = NODE_DATA(node)->node_zones;
e87d59f7
JK
795 int i;
796 unsigned long count = 0;
c2d42c16 797
e87d59f7
JK
798 for (i = 0; i < MAX_NR_ZONES; i++)
799 count += zone_page_state(zones + i, item);
800
801 return count;
c2d42c16
AM
802}
803
75ef7184
MG
804/*
805 * Determine the per node value of a stat item.
806 */
807unsigned long node_page_state(struct pglist_data *pgdat,
808 enum node_stat_item item)
809{
810 long x = atomic_long_read(&pgdat->vm_stat[item]);
811#ifdef CONFIG_SMP
812 if (x < 0)
813 x = 0;
814#endif
815 return x;
816}
ca889e6c
CL
817#endif
818
d7a5752c 819#ifdef CONFIG_COMPACTION
36deb0be 820
d7a5752c
MG
821struct contig_page_info {
822 unsigned long free_pages;
823 unsigned long free_blocks_total;
824 unsigned long free_blocks_suitable;
825};
826
827/*
828 * Calculate the number of free pages in a zone, how many contiguous
829 * pages are free and how many are large enough to satisfy an allocation of
830 * the target size. Note that this function makes no attempt to estimate
831 * how many suitable free blocks there *might* be if MOVABLE pages were
832 * migrated. Calculating that is possible, but expensive and can be
833 * figured out from userspace
834 */
835static void fill_contig_page_info(struct zone *zone,
836 unsigned int suitable_order,
837 struct contig_page_info *info)
838{
839 unsigned int order;
840
841 info->free_pages = 0;
842 info->free_blocks_total = 0;
843 info->free_blocks_suitable = 0;
844
845 for (order = 0; order < MAX_ORDER; order++) {
846 unsigned long blocks;
847
848 /* Count number of free blocks */
849 blocks = zone->free_area[order].nr_free;
850 info->free_blocks_total += blocks;
851
852 /* Count free base pages */
853 info->free_pages += blocks << order;
854
855 /* Count the suitable free blocks */
856 if (order >= suitable_order)
857 info->free_blocks_suitable += blocks <<
858 (order - suitable_order);
859 }
860}
f1a5ab12
MG
861
862/*
863 * A fragmentation index only makes sense if an allocation of a requested
864 * size would fail. If that is true, the fragmentation index indicates
865 * whether external fragmentation or a lack of memory was the problem.
866 * The value can be used to determine if page reclaim or compaction
867 * should be used
868 */
56de7263 869static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
f1a5ab12
MG
870{
871 unsigned long requested = 1UL << order;
872
873 if (!info->free_blocks_total)
874 return 0;
875
876 /* Fragmentation index only makes sense when a request would fail */
877 if (info->free_blocks_suitable)
878 return -1000;
879
880 /*
881 * Index is between 0 and 1 so return within 3 decimal places
882 *
883 * 0 => allocation would fail due to lack of memory
884 * 1 => allocation would fail due to fragmentation
885 */
886 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
887}
56de7263
MG
888
889/* Same as __fragmentation index but allocs contig_page_info on stack */
890int fragmentation_index(struct zone *zone, unsigned int order)
891{
892 struct contig_page_info info;
893
894 fill_contig_page_info(zone, order, &info);
895 return __fragmentation_index(order, &info);
896}
d7a5752c
MG
897#endif
898
0d6617c7 899#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
fa25c503
KM
900#ifdef CONFIG_ZONE_DMA
901#define TEXT_FOR_DMA(xx) xx "_dma",
902#else
903#define TEXT_FOR_DMA(xx)
904#endif
905
906#ifdef CONFIG_ZONE_DMA32
907#define TEXT_FOR_DMA32(xx) xx "_dma32",
908#else
909#define TEXT_FOR_DMA32(xx)
910#endif
911
912#ifdef CONFIG_HIGHMEM
913#define TEXT_FOR_HIGHMEM(xx) xx "_high",
914#else
915#define TEXT_FOR_HIGHMEM(xx)
916#endif
917
918#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
919 TEXT_FOR_HIGHMEM(xx) xx "_movable",
920
921const char * const vmstat_text[] = {
09316c09 922 /* enum zone_stat_item countes */
fa25c503 923 "nr_free_pages",
71c799f4
MK
924 "nr_zone_inactive_anon",
925 "nr_zone_active_anon",
926 "nr_zone_inactive_file",
927 "nr_zone_active_file",
928 "nr_zone_unevictable",
5a1c84b4 929 "nr_zone_write_pending",
fa25c503 930 "nr_mlock",
fa25c503
KM
931 "nr_slab_reclaimable",
932 "nr_slab_unreclaimable",
933 "nr_page_table_pages",
934 "nr_kernel_stack",
fa25c503 935 "nr_bounce",
91537fee
MK
936#if IS_ENABLED(CONFIG_ZSMALLOC)
937 "nr_zspages",
938#endif
fa25c503
KM
939#ifdef CONFIG_NUMA
940 "numa_hit",
941 "numa_miss",
942 "numa_foreign",
943 "numa_interleave",
944 "numa_local",
945 "numa_other",
946#endif
d1ce749a 947 "nr_free_cma",
09316c09 948
599d0c95
MG
949 /* Node-based counters */
950 "nr_inactive_anon",
951 "nr_active_anon",
952 "nr_inactive_file",
953 "nr_active_file",
954 "nr_unevictable",
955 "nr_isolated_anon",
956 "nr_isolated_file",
1e6b1085
MG
957 "workingset_refault",
958 "workingset_activate",
959 "workingset_nodereclaim",
50658e2e
MG
960 "nr_anon_pages",
961 "nr_mapped",
11fb9989
MG
962 "nr_file_pages",
963 "nr_dirty",
964 "nr_writeback",
965 "nr_writeback_temp",
966 "nr_shmem",
967 "nr_shmem_hugepages",
968 "nr_shmem_pmdmapped",
969 "nr_anon_transparent_hugepages",
970 "nr_unstable",
c4a25635
MG
971 "nr_vmscan_write",
972 "nr_vmscan_immediate_reclaim",
973 "nr_dirtied",
974 "nr_written",
599d0c95 975
09316c09 976 /* enum writeback_stat_item counters */
fa25c503
KM
977 "nr_dirty_threshold",
978 "nr_dirty_background_threshold",
979
980#ifdef CONFIG_VM_EVENT_COUNTERS
09316c09 981 /* enum vm_event_item counters */
fa25c503
KM
982 "pgpgin",
983 "pgpgout",
984 "pswpin",
985 "pswpout",
986
987 TEXTS_FOR_ZONES("pgalloc")
7cc30fcf
MG
988 TEXTS_FOR_ZONES("allocstall")
989 TEXTS_FOR_ZONES("pgskip")
fa25c503
KM
990
991 "pgfree",
992 "pgactivate",
993 "pgdeactivate",
994
995 "pgfault",
996 "pgmajfault",
854e9ed0 997 "pglazyfreed",
fa25c503 998
599d0c95
MG
999 "pgrefill",
1000 "pgsteal_kswapd",
1001 "pgsteal_direct",
1002 "pgscan_kswapd",
1003 "pgscan_direct",
68243e76 1004 "pgscan_direct_throttle",
fa25c503
KM
1005
1006#ifdef CONFIG_NUMA
1007 "zone_reclaim_failed",
1008#endif
1009 "pginodesteal",
1010 "slabs_scanned",
fa25c503
KM
1011 "kswapd_inodesteal",
1012 "kswapd_low_wmark_hit_quickly",
1013 "kswapd_high_wmark_hit_quickly",
fa25c503 1014 "pageoutrun",
fa25c503
KM
1015
1016 "pgrotated",
1017
5509a5d2
DH
1018 "drop_pagecache",
1019 "drop_slab",
1020
03c5a6e1
MG
1021#ifdef CONFIG_NUMA_BALANCING
1022 "numa_pte_updates",
72403b4a 1023 "numa_huge_pte_updates",
03c5a6e1
MG
1024 "numa_hint_faults",
1025 "numa_hint_faults_local",
1026 "numa_pages_migrated",
1027#endif
5647bc29
MG
1028#ifdef CONFIG_MIGRATION
1029 "pgmigrate_success",
1030 "pgmigrate_fail",
1031#endif
fa25c503 1032#ifdef CONFIG_COMPACTION
397487db
MG
1033 "compact_migrate_scanned",
1034 "compact_free_scanned",
1035 "compact_isolated",
fa25c503
KM
1036 "compact_stall",
1037 "compact_fail",
1038 "compact_success",
698b1b30 1039 "compact_daemon_wake",
7f354a54
DR
1040 "compact_daemon_migrate_scanned",
1041 "compact_daemon_free_scanned",
fa25c503
KM
1042#endif
1043
1044#ifdef CONFIG_HUGETLB_PAGE
1045 "htlb_buddy_alloc_success",
1046 "htlb_buddy_alloc_fail",
1047#endif
1048 "unevictable_pgs_culled",
1049 "unevictable_pgs_scanned",
1050 "unevictable_pgs_rescued",
1051 "unevictable_pgs_mlocked",
1052 "unevictable_pgs_munlocked",
1053 "unevictable_pgs_cleared",
1054 "unevictable_pgs_stranded",
fa25c503
KM
1055
1056#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1057 "thp_fault_alloc",
1058 "thp_fault_fallback",
1059 "thp_collapse_alloc",
1060 "thp_collapse_alloc_failed",
95ecedcd
KS
1061 "thp_file_alloc",
1062 "thp_file_mapped",
122afea9
KS
1063 "thp_split_page",
1064 "thp_split_page_failed",
f9719a03 1065 "thp_deferred_split_page",
122afea9 1066 "thp_split_pmd",
ce9311cf
YX
1067#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1068 "thp_split_pud",
1069#endif
d8a8e1f0
KS
1070 "thp_zero_page_alloc",
1071 "thp_zero_page_alloc_failed",
fa25c503 1072#endif
09316c09
KK
1073#ifdef CONFIG_MEMORY_BALLOON
1074 "balloon_inflate",
1075 "balloon_deflate",
1076#ifdef CONFIG_BALLOON_COMPACTION
1077 "balloon_migrate",
1078#endif
1079#endif /* CONFIG_MEMORY_BALLOON */
ec659934 1080#ifdef CONFIG_DEBUG_TLBFLUSH
6df46865 1081#ifdef CONFIG_SMP
9824cf97
DH
1082 "nr_tlb_remote_flush",
1083 "nr_tlb_remote_flush_received",
ec659934 1084#endif /* CONFIG_SMP */
9824cf97
DH
1085 "nr_tlb_local_flush_all",
1086 "nr_tlb_local_flush_one",
ec659934 1087#endif /* CONFIG_DEBUG_TLBFLUSH */
fa25c503 1088
4f115147
DB
1089#ifdef CONFIG_DEBUG_VM_VMACACHE
1090 "vmacache_find_calls",
1091 "vmacache_find_hits",
f5f302e2 1092 "vmacache_full_flushes",
4f115147 1093#endif
fa25c503
KM
1094#endif /* CONFIG_VM_EVENTS_COUNTERS */
1095};
0d6617c7 1096#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
fa25c503
KM
1097
1098
3c486871
AM
1099#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1100 defined(CONFIG_PROC_FS)
1101static void *frag_start(struct seq_file *m, loff_t *pos)
1102{
1103 pg_data_t *pgdat;
1104 loff_t node = *pos;
1105
1106 for (pgdat = first_online_pgdat();
1107 pgdat && node;
1108 pgdat = next_online_pgdat(pgdat))
1109 --node;
1110
1111 return pgdat;
1112}
1113
1114static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1115{
1116 pg_data_t *pgdat = (pg_data_t *)arg;
1117
1118 (*pos)++;
1119 return next_online_pgdat(pgdat);
1120}
1121
1122static void frag_stop(struct seq_file *m, void *arg)
1123{
1124}
1125
1126/* Walk all the zones in a node and print using a callback */
1127static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1128 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1129{
1130 struct zone *zone;
1131 struct zone *node_zones = pgdat->node_zones;
1132 unsigned long flags;
1133
1134 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1135 if (!populated_zone(zone))
1136 continue;
1137
1138 spin_lock_irqsave(&zone->lock, flags);
1139 print(m, pgdat, zone);
1140 spin_unlock_irqrestore(&zone->lock, flags);
1141 }
1142}
1143#endif
1144
d7a5752c 1145#ifdef CONFIG_PROC_FS
467c996c
MG
1146static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1147 struct zone *zone)
1148{
1149 int order;
1150
1151 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1152 for (order = 0; order < MAX_ORDER; ++order)
1153 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1154 seq_putc(m, '\n');
1155}
1156
1157/*
1158 * This walks the free areas for each zone.
1159 */
1160static int frag_show(struct seq_file *m, void *arg)
1161{
1162 pg_data_t *pgdat = (pg_data_t *)arg;
1163 walk_zones_in_node(m, pgdat, frag_show_print);
1164 return 0;
1165}
1166
1167static void pagetypeinfo_showfree_print(struct seq_file *m,
1168 pg_data_t *pgdat, struct zone *zone)
1169{
1170 int order, mtype;
1171
1172 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1173 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1174 pgdat->node_id,
1175 zone->name,
1176 migratetype_names[mtype]);
1177 for (order = 0; order < MAX_ORDER; ++order) {
1178 unsigned long freecount = 0;
1179 struct free_area *area;
1180 struct list_head *curr;
1181
1182 area = &(zone->free_area[order]);
1183
1184 list_for_each(curr, &area->free_list[mtype])
1185 freecount++;
1186 seq_printf(m, "%6lu ", freecount);
1187 }
f6ac2354
CL
1188 seq_putc(m, '\n');
1189 }
467c996c
MG
1190}
1191
1192/* Print out the free pages at each order for each migatetype */
1193static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1194{
1195 int order;
1196 pg_data_t *pgdat = (pg_data_t *)arg;
1197
1198 /* Print header */
1199 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1200 for (order = 0; order < MAX_ORDER; ++order)
1201 seq_printf(m, "%6d ", order);
1202 seq_putc(m, '\n');
1203
1204 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
1205
1206 return 0;
1207}
1208
1209static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1210 pg_data_t *pgdat, struct zone *zone)
1211{
1212 int mtype;
1213 unsigned long pfn;
1214 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 1215 unsigned long end_pfn = zone_end_pfn(zone);
467c996c
MG
1216 unsigned long count[MIGRATE_TYPES] = { 0, };
1217
1218 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1219 struct page *page;
1220
1221 if (!pfn_valid(pfn))
1222 continue;
1223
1224 page = pfn_to_page(pfn);
eb33575c
MG
1225
1226 /* Watch for unexpected holes punched in the memmap */
1227 if (!memmap_valid_within(pfn, page, zone))
e80d6a24 1228 continue;
eb33575c 1229
a91c43c7
JK
1230 if (page_zone(page) != zone)
1231 continue;
1232
467c996c
MG
1233 mtype = get_pageblock_migratetype(page);
1234
e80d6a24
MG
1235 if (mtype < MIGRATE_TYPES)
1236 count[mtype]++;
467c996c
MG
1237 }
1238
1239 /* Print counts */
1240 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1241 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1242 seq_printf(m, "%12lu ", count[mtype]);
1243 seq_putc(m, '\n');
1244}
1245
1246/* Print out the free pages at each order for each migratetype */
1247static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1248{
1249 int mtype;
1250 pg_data_t *pgdat = (pg_data_t *)arg;
1251
1252 seq_printf(m, "\n%-23s", "Number of blocks type ");
1253 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1254 seq_printf(m, "%12s ", migratetype_names[mtype]);
1255 seq_putc(m, '\n');
1256 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1257
1258 return 0;
1259}
1260
48c96a36
JK
1261/*
1262 * Print out the number of pageblocks for each migratetype that contain pages
1263 * of other types. This gives an indication of how well fallbacks are being
1264 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1265 * to determine what is going on
1266 */
1267static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1268{
1269#ifdef CONFIG_PAGE_OWNER
1270 int mtype;
1271
7dd80b8a 1272 if (!static_branch_unlikely(&page_owner_inited))
48c96a36
JK
1273 return;
1274
1275 drain_all_pages(NULL);
1276
1277 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1278 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1279 seq_printf(m, "%12s ", migratetype_names[mtype]);
1280 seq_putc(m, '\n');
1281
1282 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1283#endif /* CONFIG_PAGE_OWNER */
1284}
1285
467c996c
MG
1286/*
1287 * This prints out statistics in relation to grouping pages by mobility.
1288 * It is expensive to collect so do not constantly read the file.
1289 */
1290static int pagetypeinfo_show(struct seq_file *m, void *arg)
1291{
1292 pg_data_t *pgdat = (pg_data_t *)arg;
1293
41b25a37 1294 /* check memoryless node */
a47b53c5 1295 if (!node_state(pgdat->node_id, N_MEMORY))
41b25a37
KM
1296 return 0;
1297
467c996c
MG
1298 seq_printf(m, "Page block order: %d\n", pageblock_order);
1299 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1300 seq_putc(m, '\n');
1301 pagetypeinfo_showfree(m, pgdat);
1302 pagetypeinfo_showblockcount(m, pgdat);
48c96a36 1303 pagetypeinfo_showmixedcount(m, pgdat);
467c996c 1304
f6ac2354
CL
1305 return 0;
1306}
1307
8f32f7e5 1308static const struct seq_operations fragmentation_op = {
f6ac2354
CL
1309 .start = frag_start,
1310 .next = frag_next,
1311 .stop = frag_stop,
1312 .show = frag_show,
1313};
1314
8f32f7e5
AD
1315static int fragmentation_open(struct inode *inode, struct file *file)
1316{
1317 return seq_open(file, &fragmentation_op);
1318}
1319
1320static const struct file_operations fragmentation_file_operations = {
1321 .open = fragmentation_open,
1322 .read = seq_read,
1323 .llseek = seq_lseek,
1324 .release = seq_release,
1325};
1326
74e2e8e8 1327static const struct seq_operations pagetypeinfo_op = {
467c996c
MG
1328 .start = frag_start,
1329 .next = frag_next,
1330 .stop = frag_stop,
1331 .show = pagetypeinfo_show,
1332};
1333
74e2e8e8
AD
1334static int pagetypeinfo_open(struct inode *inode, struct file *file)
1335{
1336 return seq_open(file, &pagetypeinfo_op);
1337}
1338
1339static const struct file_operations pagetypeinfo_file_ops = {
1340 .open = pagetypeinfo_open,
1341 .read = seq_read,
1342 .llseek = seq_lseek,
1343 .release = seq_release,
1344};
1345
e2ecc8a7
MG
1346static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1347{
1348 int zid;
1349
1350 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1351 struct zone *compare = &pgdat->node_zones[zid];
1352
1353 if (populated_zone(compare))
1354 return zone == compare;
1355 }
1356
1357 /* The zone must be somewhere! */
1358 WARN_ON_ONCE(1);
1359 return false;
1360}
1361
467c996c
MG
1362static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1363 struct zone *zone)
f6ac2354 1364{
467c996c
MG
1365 int i;
1366 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
e2ecc8a7
MG
1367 if (is_zone_first_populated(pgdat, zone)) {
1368 seq_printf(m, "\n per-node stats");
1369 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1370 seq_printf(m, "\n %-12s %lu",
1371 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
1372 node_page_state(pgdat, i));
1373 }
1374 }
467c996c
MG
1375 seq_printf(m,
1376 "\n pages free %lu"
1377 "\n min %lu"
1378 "\n low %lu"
1379 "\n high %lu"
467c996c 1380 "\n spanned %lu"
9feedc9d
JL
1381 "\n present %lu"
1382 "\n managed %lu",
88f5acf8 1383 zone_page_state(zone, NR_FREE_PAGES),
41858966
MG
1384 min_wmark_pages(zone),
1385 low_wmark_pages(zone),
1386 high_wmark_pages(zone),
467c996c 1387 zone->spanned_pages,
9feedc9d
JL
1388 zone->present_pages,
1389 zone->managed_pages);
467c996c
MG
1390
1391 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
599d0c95 1392 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
467c996c
MG
1393 zone_page_state(zone, i));
1394
1395 seq_printf(m,
3484b2de 1396 "\n protection: (%ld",
467c996c
MG
1397 zone->lowmem_reserve[0]);
1398 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
3484b2de 1399 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
467c996c
MG
1400 seq_printf(m,
1401 ")"
1402 "\n pagesets");
1403 for_each_online_cpu(i) {
1404 struct per_cpu_pageset *pageset;
467c996c 1405
99dcc3e5 1406 pageset = per_cpu_ptr(zone->pageset, i);
3dfa5721
CL
1407 seq_printf(m,
1408 "\n cpu: %i"
1409 "\n count: %i"
1410 "\n high: %i"
1411 "\n batch: %i",
1412 i,
1413 pageset->pcp.count,
1414 pageset->pcp.high,
1415 pageset->pcp.batch);
df9ecaba 1416#ifdef CONFIG_SMP
467c996c
MG
1417 seq_printf(m, "\n vm stats threshold: %d",
1418 pageset->stat_threshold);
df9ecaba 1419#endif
f6ac2354 1420 }
467c996c 1421 seq_printf(m,
599d0c95
MG
1422 "\n node_unreclaimable: %u"
1423 "\n start_pfn: %lu"
1424 "\n node_inactive_ratio: %u",
c73322d0 1425 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
556adecb 1426 zone->zone_start_pfn,
599d0c95 1427 zone->zone_pgdat->inactive_ratio);
467c996c
MG
1428 seq_putc(m, '\n');
1429}
1430
1431/*
1432 * Output information about zones in @pgdat.
1433 */
1434static int zoneinfo_show(struct seq_file *m, void *arg)
1435{
1436 pg_data_t *pgdat = (pg_data_t *)arg;
1437 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
f6ac2354
CL
1438 return 0;
1439}
1440
5c9fe628 1441static const struct seq_operations zoneinfo_op = {
f6ac2354
CL
1442 .start = frag_start, /* iterate over all zones. The same as in
1443 * fragmentation. */
1444 .next = frag_next,
1445 .stop = frag_stop,
1446 .show = zoneinfo_show,
1447};
1448
5c9fe628
AD
1449static int zoneinfo_open(struct inode *inode, struct file *file)
1450{
1451 return seq_open(file, &zoneinfo_op);
1452}
1453
1454static const struct file_operations proc_zoneinfo_file_operations = {
1455 .open = zoneinfo_open,
1456 .read = seq_read,
1457 .llseek = seq_lseek,
1458 .release = seq_release,
1459};
1460
79da826a
MR
1461enum writeback_stat_item {
1462 NR_DIRTY_THRESHOLD,
1463 NR_DIRTY_BG_THRESHOLD,
1464 NR_VM_WRITEBACK_STAT_ITEMS,
1465};
1466
f6ac2354
CL
1467static void *vmstat_start(struct seq_file *m, loff_t *pos)
1468{
2244b95a 1469 unsigned long *v;
79da826a 1470 int i, stat_items_size;
f6ac2354
CL
1471
1472 if (*pos >= ARRAY_SIZE(vmstat_text))
1473 return NULL;
79da826a 1474 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
75ef7184 1475 NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
79da826a 1476 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
f6ac2354 1477
f8891e5e 1478#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a 1479 stat_items_size += sizeof(struct vm_event_state);
f8891e5e 1480#endif
79da826a
MR
1481
1482 v = kmalloc(stat_items_size, GFP_KERNEL);
2244b95a
CL
1483 m->private = v;
1484 if (!v)
f6ac2354 1485 return ERR_PTR(-ENOMEM);
2244b95a
CL
1486 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1487 v[i] = global_page_state(i);
79da826a
MR
1488 v += NR_VM_ZONE_STAT_ITEMS;
1489
75ef7184
MG
1490 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1491 v[i] = global_node_page_state(i);
1492 v += NR_VM_NODE_STAT_ITEMS;
1493
79da826a
MR
1494 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1495 v + NR_DIRTY_THRESHOLD);
1496 v += NR_VM_WRITEBACK_STAT_ITEMS;
1497
f8891e5e 1498#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a
MR
1499 all_vm_events(v);
1500 v[PGPGIN] /= 2; /* sectors -> kbytes */
1501 v[PGPGOUT] /= 2;
f8891e5e 1502#endif
ff8b16d7 1503 return (unsigned long *)m->private + *pos;
f6ac2354
CL
1504}
1505
1506static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1507{
1508 (*pos)++;
1509 if (*pos >= ARRAY_SIZE(vmstat_text))
1510 return NULL;
1511 return (unsigned long *)m->private + *pos;
1512}
1513
1514static int vmstat_show(struct seq_file *m, void *arg)
1515{
1516 unsigned long *l = arg;
1517 unsigned long off = l - (unsigned long *)m->private;
68ba0326
AD
1518
1519 seq_puts(m, vmstat_text[off]);
75ba1d07 1520 seq_put_decimal_ull(m, " ", *l);
68ba0326 1521 seq_putc(m, '\n');
f6ac2354
CL
1522 return 0;
1523}
1524
1525static void vmstat_stop(struct seq_file *m, void *arg)
1526{
1527 kfree(m->private);
1528 m->private = NULL;
1529}
1530
b6aa44ab 1531static const struct seq_operations vmstat_op = {
f6ac2354
CL
1532 .start = vmstat_start,
1533 .next = vmstat_next,
1534 .stop = vmstat_stop,
1535 .show = vmstat_show,
1536};
1537
b6aa44ab
AD
1538static int vmstat_open(struct inode *inode, struct file *file)
1539{
1540 return seq_open(file, &vmstat_op);
1541}
1542
1543static const struct file_operations proc_vmstat_file_operations = {
1544 .open = vmstat_open,
1545 .read = seq_read,
1546 .llseek = seq_lseek,
1547 .release = seq_release,
1548};
f6ac2354
CL
1549#endif /* CONFIG_PROC_FS */
1550
df9ecaba 1551#ifdef CONFIG_SMP
d1187ed2 1552static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
77461ab3 1553int sysctl_stat_interval __read_mostly = HZ;
d1187ed2 1554
52b6f46b
HD
1555#ifdef CONFIG_PROC_FS
1556static void refresh_vm_stats(struct work_struct *work)
1557{
1558 refresh_cpu_vm_stats(true);
1559}
1560
1561int vmstat_refresh(struct ctl_table *table, int write,
1562 void __user *buffer, size_t *lenp, loff_t *ppos)
1563{
1564 long val;
1565 int err;
1566 int i;
1567
1568 /*
1569 * The regular update, every sysctl_stat_interval, may come later
1570 * than expected: leaving a significant amount in per_cpu buckets.
1571 * This is particularly misleading when checking a quantity of HUGE
1572 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1573 * which can equally be echo'ed to or cat'ted from (by root),
1574 * can be used to update the stats just before reading them.
1575 *
1576 * Oh, and since global_page_state() etc. are so careful to hide
1577 * transiently negative values, report an error here if any of
1578 * the stats is negative, so we know to go looking for imbalance.
1579 */
1580 err = schedule_on_each_cpu(refresh_vm_stats);
1581 if (err)
1582 return err;
1583 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
75ef7184 1584 val = atomic_long_read(&vm_zone_stat[i]);
52b6f46b 1585 if (val < 0) {
c822f622
JW
1586 pr_warn("%s: %s %ld\n",
1587 __func__, vmstat_text[i], val);
1588 err = -EINVAL;
52b6f46b
HD
1589 }
1590 }
1591 if (err)
1592 return err;
1593 if (write)
1594 *ppos += *lenp;
1595 else
1596 *lenp = 0;
1597 return 0;
1598}
1599#endif /* CONFIG_PROC_FS */
1600
d1187ed2
CL
1601static void vmstat_update(struct work_struct *w)
1602{
0eb77e98 1603 if (refresh_cpu_vm_stats(true)) {
7cc36bbd
CL
1604 /*
1605 * Counters were updated so we expect more updates
1606 * to occur in the future. Keep on running the
1607 * update worker thread.
1608 */
ce612879 1609 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
f01f17d3
MH
1610 this_cpu_ptr(&vmstat_work),
1611 round_jiffies_relative(sysctl_stat_interval));
7cc36bbd
CL
1612 }
1613}
1614
0eb77e98
CL
1615/*
1616 * Switch off vmstat processing and then fold all the remaining differentials
1617 * until the diffs stay at zero. The function is used by NOHZ and can only be
1618 * invoked when tick processing is not active.
1619 */
7cc36bbd
CL
1620/*
1621 * Check if the diffs for a certain cpu indicate that
1622 * an update is needed.
1623 */
1624static bool need_update(int cpu)
1625{
1626 struct zone *zone;
1627
1628 for_each_populated_zone(zone) {
1629 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1630
1631 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1632 /*
1633 * The fast way of checking if there are any vmstat diffs.
1634 * This works because the diffs are byte sized items.
1635 */
1636 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1637 return true;
1638
1639 }
1640 return false;
1641}
1642
7b8da4c7
CL
1643/*
1644 * Switch off vmstat processing and then fold all the remaining differentials
1645 * until the diffs stay at zero. The function is used by NOHZ and can only be
1646 * invoked when tick processing is not active.
1647 */
f01f17d3
MH
1648void quiet_vmstat(void)
1649{
1650 if (system_state != SYSTEM_RUNNING)
1651 return;
1652
7b8da4c7 1653 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
f01f17d3
MH
1654 return;
1655
1656 if (!need_update(smp_processor_id()))
1657 return;
1658
1659 /*
1660 * Just refresh counters and do not care about the pending delayed
1661 * vmstat_update. It doesn't fire that often to matter and canceling
1662 * it would be too expensive from this path.
1663 * vmstat_shepherd will take care about that for us.
1664 */
1665 refresh_cpu_vm_stats(false);
1666}
1667
7cc36bbd
CL
1668/*
1669 * Shepherd worker thread that checks the
1670 * differentials of processors that have their worker
1671 * threads for vm statistics updates disabled because of
1672 * inactivity.
1673 */
1674static void vmstat_shepherd(struct work_struct *w);
1675
0eb77e98 1676static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
7cc36bbd
CL
1677
1678static void vmstat_shepherd(struct work_struct *w)
1679{
1680 int cpu;
1681
1682 get_online_cpus();
1683 /* Check processors whose vmstat worker threads have been disabled */
7b8da4c7 1684 for_each_online_cpu(cpu) {
f01f17d3 1685 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
7cc36bbd 1686
7b8da4c7 1687 if (!delayed_work_pending(dw) && need_update(cpu))
ce612879 1688 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
f01f17d3 1689 }
7cc36bbd
CL
1690 put_online_cpus();
1691
1692 schedule_delayed_work(&shepherd,
98f4ebb2 1693 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1694}
1695
7cc36bbd 1696static void __init start_shepherd_timer(void)
d1187ed2 1697{
7cc36bbd
CL
1698 int cpu;
1699
1700 for_each_possible_cpu(cpu)
ccde8bd4 1701 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
7cc36bbd
CL
1702 vmstat_update);
1703
7cc36bbd
CL
1704 schedule_delayed_work(&shepherd,
1705 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1706}
1707
03e86dba
TC
1708static void __init init_cpu_node_state(void)
1709{
4c501327 1710 int node;
03e86dba 1711
4c501327
SAS
1712 for_each_online_node(node) {
1713 if (cpumask_weight(cpumask_of_node(node)) > 0)
1714 node_set_state(node, N_CPU);
1715 }
03e86dba
TC
1716}
1717
5438da97
SAS
1718static int vmstat_cpu_online(unsigned int cpu)
1719{
1720 refresh_zone_stat_thresholds();
1721 node_set_state(cpu_to_node(cpu), N_CPU);
1722 return 0;
1723}
1724
1725static int vmstat_cpu_down_prep(unsigned int cpu)
1726{
1727 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1728 return 0;
1729}
1730
1731static int vmstat_cpu_dead(unsigned int cpu)
807a1bd2 1732{
4c501327 1733 const struct cpumask *node_cpus;
5438da97 1734 int node;
807a1bd2 1735
5438da97
SAS
1736 node = cpu_to_node(cpu);
1737
1738 refresh_zone_stat_thresholds();
4c501327
SAS
1739 node_cpus = cpumask_of_node(node);
1740 if (cpumask_weight(node_cpus) > 0)
5438da97 1741 return 0;
807a1bd2
TK
1742
1743 node_clear_state(node, N_CPU);
5438da97 1744 return 0;
807a1bd2
TK
1745}
1746
8f32f7e5 1747#endif
df9ecaba 1748
ce612879
MH
1749struct workqueue_struct *mm_percpu_wq;
1750
597b7305 1751void __init init_mm_internals(void)
df9ecaba 1752{
ce612879 1753 int ret __maybe_unused;
5438da97 1754
80d136e1 1755 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
ce612879
MH
1756
1757#ifdef CONFIG_SMP
5438da97
SAS
1758 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1759 NULL, vmstat_cpu_dead);
1760 if (ret < 0)
1761 pr_err("vmstat: failed to register 'dead' hotplug state\n");
1762
1763 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
1764 vmstat_cpu_online,
1765 vmstat_cpu_down_prep);
1766 if (ret < 0)
1767 pr_err("vmstat: failed to register 'online' hotplug state\n");
1768
1769 get_online_cpus();
03e86dba 1770 init_cpu_node_state();
5438da97 1771 put_online_cpus();
d1187ed2 1772
7cc36bbd 1773 start_shepherd_timer();
8f32f7e5
AD
1774#endif
1775#ifdef CONFIG_PROC_FS
1776 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
74e2e8e8 1777 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
b6aa44ab 1778 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
5c9fe628 1779 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
8f32f7e5 1780#endif
df9ecaba 1781}
d7a5752c
MG
1782
1783#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
d7a5752c
MG
1784
1785/*
1786 * Return an index indicating how much of the available free memory is
1787 * unusable for an allocation of the requested size.
1788 */
1789static int unusable_free_index(unsigned int order,
1790 struct contig_page_info *info)
1791{
1792 /* No free memory is interpreted as all free memory is unusable */
1793 if (info->free_pages == 0)
1794 return 1000;
1795
1796 /*
1797 * Index should be a value between 0 and 1. Return a value to 3
1798 * decimal places.
1799 *
1800 * 0 => no fragmentation
1801 * 1 => high fragmentation
1802 */
1803 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1804
1805}
1806
1807static void unusable_show_print(struct seq_file *m,
1808 pg_data_t *pgdat, struct zone *zone)
1809{
1810 unsigned int order;
1811 int index;
1812 struct contig_page_info info;
1813
1814 seq_printf(m, "Node %d, zone %8s ",
1815 pgdat->node_id,
1816 zone->name);
1817 for (order = 0; order < MAX_ORDER; ++order) {
1818 fill_contig_page_info(zone, order, &info);
1819 index = unusable_free_index(order, &info);
1820 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1821 }
1822
1823 seq_putc(m, '\n');
1824}
1825
1826/*
1827 * Display unusable free space index
1828 *
1829 * The unusable free space index measures how much of the available free
1830 * memory cannot be used to satisfy an allocation of a given size and is a
1831 * value between 0 and 1. The higher the value, the more of free memory is
1832 * unusable and by implication, the worse the external fragmentation is. This
1833 * can be expressed as a percentage by multiplying by 100.
1834 */
1835static int unusable_show(struct seq_file *m, void *arg)
1836{
1837 pg_data_t *pgdat = (pg_data_t *)arg;
1838
1839 /* check memoryless node */
a47b53c5 1840 if (!node_state(pgdat->node_id, N_MEMORY))
d7a5752c
MG
1841 return 0;
1842
1843 walk_zones_in_node(m, pgdat, unusable_show_print);
1844
1845 return 0;
1846}
1847
1848static const struct seq_operations unusable_op = {
1849 .start = frag_start,
1850 .next = frag_next,
1851 .stop = frag_stop,
1852 .show = unusable_show,
1853};
1854
1855static int unusable_open(struct inode *inode, struct file *file)
1856{
1857 return seq_open(file, &unusable_op);
1858}
1859
1860static const struct file_operations unusable_file_ops = {
1861 .open = unusable_open,
1862 .read = seq_read,
1863 .llseek = seq_lseek,
1864 .release = seq_release,
1865};
1866
f1a5ab12
MG
1867static void extfrag_show_print(struct seq_file *m,
1868 pg_data_t *pgdat, struct zone *zone)
1869{
1870 unsigned int order;
1871 int index;
1872
1873 /* Alloc on stack as interrupts are disabled for zone walk */
1874 struct contig_page_info info;
1875
1876 seq_printf(m, "Node %d, zone %8s ",
1877 pgdat->node_id,
1878 zone->name);
1879 for (order = 0; order < MAX_ORDER; ++order) {
1880 fill_contig_page_info(zone, order, &info);
56de7263 1881 index = __fragmentation_index(order, &info);
f1a5ab12
MG
1882 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1883 }
1884
1885 seq_putc(m, '\n');
1886}
1887
1888/*
1889 * Display fragmentation index for orders that allocations would fail for
1890 */
1891static int extfrag_show(struct seq_file *m, void *arg)
1892{
1893 pg_data_t *pgdat = (pg_data_t *)arg;
1894
1895 walk_zones_in_node(m, pgdat, extfrag_show_print);
1896
1897 return 0;
1898}
1899
1900static const struct seq_operations extfrag_op = {
1901 .start = frag_start,
1902 .next = frag_next,
1903 .stop = frag_stop,
1904 .show = extfrag_show,
1905};
1906
1907static int extfrag_open(struct inode *inode, struct file *file)
1908{
1909 return seq_open(file, &extfrag_op);
1910}
1911
1912static const struct file_operations extfrag_file_ops = {
1913 .open = extfrag_open,
1914 .read = seq_read,
1915 .llseek = seq_lseek,
1916 .release = seq_release,
1917};
1918
d7a5752c
MG
1919static int __init extfrag_debug_init(void)
1920{
bde8bd8a
S
1921 struct dentry *extfrag_debug_root;
1922
d7a5752c
MG
1923 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1924 if (!extfrag_debug_root)
1925 return -ENOMEM;
1926
1927 if (!debugfs_create_file("unusable_index", 0444,
1928 extfrag_debug_root, NULL, &unusable_file_ops))
bde8bd8a 1929 goto fail;
d7a5752c 1930
f1a5ab12
MG
1931 if (!debugfs_create_file("extfrag_index", 0444,
1932 extfrag_debug_root, NULL, &extfrag_file_ops))
bde8bd8a 1933 goto fail;
f1a5ab12 1934
d7a5752c 1935 return 0;
bde8bd8a
S
1936fail:
1937 debugfs_remove_recursive(extfrag_debug_root);
1938 return -ENOMEM;
d7a5752c
MG
1939}
1940
1941module_init(extfrag_debug_init);
1942#endif