Merge tag 'sched-rt-2022-10-05' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / vmstat.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
f6ac2354
CL
2/*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
2244b95a
CL
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
7cc36bbd 11 * Copyright (C) 2008-2014 Christoph Lameter
f6ac2354 12 */
8f32f7e5 13#include <linux/fs.h>
f6ac2354 14#include <linux/mm.h>
4e950f6f 15#include <linux/err.h>
2244b95a 16#include <linux/module.h>
5a0e3ad6 17#include <linux/slab.h>
df9ecaba 18#include <linux/cpu.h>
7cc36bbd 19#include <linux/cpumask.h>
c748e134 20#include <linux/vmstat.h>
3c486871
AM
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/debugfs.h>
e8edc6e0 24#include <linux/sched.h>
f1a5ab12 25#include <linux/math64.h>
79da826a 26#include <linux/writeback.h>
36deb0be 27#include <linux/compaction.h>
6e543d57 28#include <linux/mm_inline.h>
48c96a36
JK
29#include <linux/page_ext.h>
30#include <linux/page_owner.h>
734c1570 31#include <linux/migrate.h>
6e543d57
LD
32
33#include "internal.h"
f6ac2354 34
4518085e
KW
35#ifdef CONFIG_NUMA
36int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
37
38/* zero numa counters within a zone */
39static void zero_zone_numa_counters(struct zone *zone)
40{
41 int item, cpu;
42
f19298b9
MG
43 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
44 atomic_long_set(&zone->vm_numa_event[item], 0);
45 for_each_online_cpu(cpu) {
46 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
4518085e 47 = 0;
f19298b9 48 }
4518085e
KW
49 }
50}
51
52/* zero numa counters of all the populated zones */
53static void zero_zones_numa_counters(void)
54{
55 struct zone *zone;
56
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
59}
60
61/* zero global numa counters */
62static void zero_global_numa_counters(void)
63{
64 int item;
65
f19298b9
MG
66 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
67 atomic_long_set(&vm_numa_event[item], 0);
4518085e
KW
68}
69
70static void invalid_numa_statistics(void)
71{
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
74}
75
76static DEFINE_MUTEX(vm_numa_stat_lock);
77
78int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
32927393 79 void *buffer, size_t *length, loff_t *ppos)
4518085e
KW
80{
81 int ret, oldval;
82
83 mutex_lock(&vm_numa_stat_lock);
84 if (write)
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 if (ret || !write)
88 goto out;
89
90 if (oldval == sysctl_vm_numa_stat)
91 goto out;
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
95 } else {
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
99 }
100
101out:
102 mutex_unlock(&vm_numa_stat_lock);
103 return ret;
104}
105#endif
106
f8891e5e
CL
107#ifdef CONFIG_VM_EVENT_COUNTERS
108DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109EXPORT_PER_CPU_SYMBOL(vm_event_states);
110
31f961a8 111static void sum_vm_events(unsigned long *ret)
f8891e5e 112{
9eccf2a8 113 int cpu;
f8891e5e
CL
114 int i;
115
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117
31f961a8 118 for_each_online_cpu(cpu) {
f8891e5e
CL
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120
f8891e5e
CL
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
123 }
124}
125
126/*
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
130*/
131void all_vm_events(unsigned long *ret)
132{
7625eccd 133 cpus_read_lock();
31f961a8 134 sum_vm_events(ret);
7625eccd 135 cpus_read_unlock();
f8891e5e 136}
32dd66fc 137EXPORT_SYMBOL_GPL(all_vm_events);
f8891e5e 138
f8891e5e
CL
139/*
140 * Fold the foreign cpu events into our own.
141 *
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
144 */
145void vm_events_fold_cpu(int cpu)
146{
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 int i;
149
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
153 }
154}
f8891e5e
CL
155
156#endif /* CONFIG_VM_EVENT_COUNTERS */
157
2244b95a
CL
158/*
159 * Manage combined zone based / global counters
160 *
161 * vm_stat contains the global counters
162 */
75ef7184
MG
163atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
f19298b9 165atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
75ef7184
MG
166EXPORT_SYMBOL(vm_zone_stat);
167EXPORT_SYMBOL(vm_node_stat);
2244b95a 168
ebeac3ea
GU
169#ifdef CONFIG_NUMA
170static void fold_vm_zone_numa_events(struct zone *zone)
171{
172 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
173 int cpu;
174 enum numa_stat_item item;
175
176 for_each_online_cpu(cpu) {
177 struct per_cpu_zonestat *pzstats;
178
179 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
180 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
181 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
182 }
183
184 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
185 zone_numa_event_add(zone_numa_events[item], zone, item);
186}
187
188void fold_vm_numa_events(void)
189{
190 struct zone *zone;
191
192 for_each_populated_zone(zone)
193 fold_vm_zone_numa_events(zone);
194}
195#endif
196
2244b95a
CL
197#ifdef CONFIG_SMP
198
b44129b3 199int calculate_pressure_threshold(struct zone *zone)
88f5acf8
MG
200{
201 int threshold;
202 int watermark_distance;
203
204 /*
205 * As vmstats are not up to date, there is drift between the estimated
206 * and real values. For high thresholds and a high number of CPUs, it
207 * is possible for the min watermark to be breached while the estimated
208 * value looks fine. The pressure threshold is a reduced value such
209 * that even the maximum amount of drift will not accidentally breach
210 * the min watermark
211 */
212 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
213 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
214
215 /*
216 * Maximum threshold is 125
217 */
218 threshold = min(125, threshold);
219
220 return threshold;
221}
222
b44129b3 223int calculate_normal_threshold(struct zone *zone)
df9ecaba
CL
224{
225 int threshold;
226 int mem; /* memory in 128 MB units */
227
228 /*
229 * The threshold scales with the number of processors and the amount
230 * of memory per zone. More memory means that we can defer updates for
231 * longer, more processors could lead to more contention.
232 * fls() is used to have a cheap way of logarithmic scaling.
233 *
234 * Some sample thresholds:
235 *
ea15ba17 236 * Threshold Processors (fls) Zonesize fls(mem)+1
df9ecaba
CL
237 * ------------------------------------------------------------------
238 * 8 1 1 0.9-1 GB 4
239 * 16 2 2 0.9-1 GB 4
240 * 20 2 2 1-2 GB 5
241 * 24 2 2 2-4 GB 6
242 * 28 2 2 4-8 GB 7
243 * 32 2 2 8-16 GB 8
244 * 4 2 2 <128M 1
245 * 30 4 3 2-4 GB 5
246 * 48 4 3 8-16 GB 8
247 * 32 8 4 1-2 GB 4
248 * 32 8 4 0.9-1GB 4
249 * 10 16 5 <128M 1
250 * 40 16 5 900M 4
251 * 70 64 7 2-4 GB 5
252 * 84 64 7 4-8 GB 6
253 * 108 512 9 4-8 GB 6
254 * 125 1024 10 8-16 GB 8
255 * 125 1024 10 16-32 GB 9
256 */
257
9705bea5 258 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
df9ecaba
CL
259
260 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
261
262 /*
263 * Maximum threshold is 125
264 */
265 threshold = min(125, threshold);
266
267 return threshold;
268}
2244b95a
CL
269
270/*
df9ecaba 271 * Refresh the thresholds for each zone.
2244b95a 272 */
a6cccdc3 273void refresh_zone_stat_thresholds(void)
2244b95a 274{
75ef7184 275 struct pglist_data *pgdat;
df9ecaba
CL
276 struct zone *zone;
277 int cpu;
278 int threshold;
279
75ef7184
MG
280 /* Zero current pgdat thresholds */
281 for_each_online_pgdat(pgdat) {
282 for_each_online_cpu(cpu) {
283 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
284 }
285 }
286
ee99c71c 287 for_each_populated_zone(zone) {
75ef7184 288 struct pglist_data *pgdat = zone->zone_pgdat;
aa454840
CL
289 unsigned long max_drift, tolerate_drift;
290
b44129b3 291 threshold = calculate_normal_threshold(zone);
df9ecaba 292
75ef7184
MG
293 for_each_online_cpu(cpu) {
294 int pgdat_threshold;
295
28f836b6 296 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
99dcc3e5 297 = threshold;
1d90ca89 298
75ef7184
MG
299 /* Base nodestat threshold on the largest populated zone. */
300 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
301 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
302 = max(threshold, pgdat_threshold);
303 }
304
aa454840
CL
305 /*
306 * Only set percpu_drift_mark if there is a danger that
307 * NR_FREE_PAGES reports the low watermark is ok when in fact
308 * the min watermark could be breached by an allocation
309 */
310 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
311 max_drift = num_online_cpus() * threshold;
312 if (max_drift > tolerate_drift)
313 zone->percpu_drift_mark = high_wmark_pages(zone) +
314 max_drift;
df9ecaba 315 }
2244b95a
CL
316}
317
b44129b3
MG
318void set_pgdat_percpu_threshold(pg_data_t *pgdat,
319 int (*calculate_pressure)(struct zone *))
88f5acf8
MG
320{
321 struct zone *zone;
322 int cpu;
323 int threshold;
324 int i;
325
88f5acf8
MG
326 for (i = 0; i < pgdat->nr_zones; i++) {
327 zone = &pgdat->node_zones[i];
328 if (!zone->percpu_drift_mark)
329 continue;
330
b44129b3 331 threshold = (*calculate_pressure)(zone);
1d90ca89 332 for_each_online_cpu(cpu)
28f836b6 333 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
88f5acf8
MG
334 = threshold;
335 }
88f5acf8
MG
336}
337
2244b95a 338/*
bea04b07
JZ
339 * For use when we know that interrupts are disabled,
340 * or when we know that preemption is disabled and that
341 * particular counter cannot be updated from interrupt context.
2244b95a
CL
342 */
343void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 344 long delta)
2244b95a 345{
28f836b6 346 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
12938a92 347 s8 __percpu *p = pcp->vm_stat_diff + item;
2244b95a 348 long x;
12938a92
CL
349 long t;
350
c68ed794
IM
351 /*
352 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
353 * atomicity is provided by IRQs being disabled -- either explicitly
354 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
355 * CPU migrations and preemption potentially corrupts a counter so
356 * disable preemption.
357 */
7a025e91 358 preempt_disable_nested();
c68ed794 359
12938a92 360 x = delta + __this_cpu_read(*p);
2244b95a 361
12938a92 362 t = __this_cpu_read(pcp->stat_threshold);
2244b95a 363
40610076 364 if (unlikely(abs(x) > t)) {
2244b95a
CL
365 zone_page_state_add(x, zone, item);
366 x = 0;
367 }
12938a92 368 __this_cpu_write(*p, x);
c68ed794 369
7a025e91 370 preempt_enable_nested();
2244b95a
CL
371}
372EXPORT_SYMBOL(__mod_zone_page_state);
373
75ef7184
MG
374void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
375 long delta)
376{
377 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
378 s8 __percpu *p = pcp->vm_node_stat_diff + item;
379 long x;
380 long t;
381
ea426c2a 382 if (vmstat_item_in_bytes(item)) {
629484ae
JW
383 /*
384 * Only cgroups use subpage accounting right now; at
385 * the global level, these items still change in
386 * multiples of whole pages. Store them as pages
387 * internally to keep the per-cpu counters compact.
388 */
ea426c2a
RG
389 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
390 delta >>= PAGE_SHIFT;
391 }
392
c68ed794 393 /* See __mod_node_page_state */
7a025e91 394 preempt_disable_nested();
c68ed794 395
75ef7184
MG
396 x = delta + __this_cpu_read(*p);
397
398 t = __this_cpu_read(pcp->stat_threshold);
399
40610076 400 if (unlikely(abs(x) > t)) {
75ef7184
MG
401 node_page_state_add(x, pgdat, item);
402 x = 0;
403 }
404 __this_cpu_write(*p, x);
c68ed794 405
7a025e91 406 preempt_enable_nested();
75ef7184
MG
407}
408EXPORT_SYMBOL(__mod_node_page_state);
409
2244b95a
CL
410/*
411 * Optimized increment and decrement functions.
412 *
413 * These are only for a single page and therefore can take a struct page *
414 * argument instead of struct zone *. This allows the inclusion of the code
415 * generated for page_zone(page) into the optimized functions.
416 *
417 * No overflow check is necessary and therefore the differential can be
418 * incremented or decremented in place which may allow the compilers to
419 * generate better code.
2244b95a
CL
420 * The increment or decrement is known and therefore one boundary check can
421 * be omitted.
422 *
df9ecaba
CL
423 * NOTE: These functions are very performance sensitive. Change only
424 * with care.
425 *
2244b95a
CL
426 * Some processors have inc/dec instructions that are atomic vs an interrupt.
427 * However, the code must first determine the differential location in a zone
428 * based on the processor number and then inc/dec the counter. There is no
429 * guarantee without disabling preemption that the processor will not change
430 * in between and therefore the atomicity vs. interrupt cannot be exploited
431 * in a useful way here.
432 */
c8785385 433void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 434{
28f836b6 435 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
12938a92
CL
436 s8 __percpu *p = pcp->vm_stat_diff + item;
437 s8 v, t;
2244b95a 438
c68ed794 439 /* See __mod_node_page_state */
7a025e91 440 preempt_disable_nested();
c68ed794 441
908ee0f1 442 v = __this_cpu_inc_return(*p);
12938a92
CL
443 t = __this_cpu_read(pcp->stat_threshold);
444 if (unlikely(v > t)) {
445 s8 overstep = t >> 1;
df9ecaba 446
12938a92
CL
447 zone_page_state_add(v + overstep, zone, item);
448 __this_cpu_write(*p, -overstep);
2244b95a 449 }
c68ed794 450
7a025e91 451 preempt_enable_nested();
2244b95a 452}
ca889e6c 453
75ef7184
MG
454void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
455{
456 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
457 s8 __percpu *p = pcp->vm_node_stat_diff + item;
458 s8 v, t;
459
ea426c2a
RG
460 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
461
c68ed794 462 /* See __mod_node_page_state */
7a025e91 463 preempt_disable_nested();
c68ed794 464
75ef7184
MG
465 v = __this_cpu_inc_return(*p);
466 t = __this_cpu_read(pcp->stat_threshold);
467 if (unlikely(v > t)) {
468 s8 overstep = t >> 1;
469
470 node_page_state_add(v + overstep, pgdat, item);
471 __this_cpu_write(*p, -overstep);
472 }
c68ed794 473
7a025e91 474 preempt_enable_nested();
75ef7184
MG
475}
476
ca889e6c
CL
477void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
478{
479 __inc_zone_state(page_zone(page), item);
480}
2244b95a
CL
481EXPORT_SYMBOL(__inc_zone_page_state);
482
75ef7184
MG
483void __inc_node_page_state(struct page *page, enum node_stat_item item)
484{
485 __inc_node_state(page_pgdat(page), item);
486}
487EXPORT_SYMBOL(__inc_node_page_state);
488
c8785385 489void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 490{
28f836b6 491 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
12938a92
CL
492 s8 __percpu *p = pcp->vm_stat_diff + item;
493 s8 v, t;
2244b95a 494
c68ed794 495 /* See __mod_node_page_state */
7a025e91 496 preempt_disable_nested();
c68ed794 497
908ee0f1 498 v = __this_cpu_dec_return(*p);
12938a92
CL
499 t = __this_cpu_read(pcp->stat_threshold);
500 if (unlikely(v < - t)) {
501 s8 overstep = t >> 1;
2244b95a 502
12938a92
CL
503 zone_page_state_add(v - overstep, zone, item);
504 __this_cpu_write(*p, overstep);
2244b95a 505 }
c68ed794 506
7a025e91 507 preempt_enable_nested();
2244b95a 508}
c8785385 509
75ef7184
MG
510void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
511{
512 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
513 s8 __percpu *p = pcp->vm_node_stat_diff + item;
514 s8 v, t;
515
ea426c2a
RG
516 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
517
c68ed794 518 /* See __mod_node_page_state */
7a025e91 519 preempt_disable_nested();
c68ed794 520
75ef7184
MG
521 v = __this_cpu_dec_return(*p);
522 t = __this_cpu_read(pcp->stat_threshold);
523 if (unlikely(v < - t)) {
524 s8 overstep = t >> 1;
525
526 node_page_state_add(v - overstep, pgdat, item);
527 __this_cpu_write(*p, overstep);
528 }
c68ed794 529
7a025e91 530 preempt_enable_nested();
75ef7184
MG
531}
532
c8785385
CL
533void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
534{
535 __dec_zone_state(page_zone(page), item);
536}
2244b95a
CL
537EXPORT_SYMBOL(__dec_zone_page_state);
538
75ef7184
MG
539void __dec_node_page_state(struct page *page, enum node_stat_item item)
540{
541 __dec_node_state(page_pgdat(page), item);
542}
543EXPORT_SYMBOL(__dec_node_page_state);
544
4156153c 545#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
7c839120
CL
546/*
547 * If we have cmpxchg_local support then we do not need to incur the overhead
548 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
549 *
550 * mod_state() modifies the zone counter state through atomic per cpu
551 * operations.
552 *
553 * Overstep mode specifies how overstep should handled:
554 * 0 No overstepping
555 * 1 Overstepping half of threshold
556 * -1 Overstepping minus half of threshold
557*/
75ef7184
MG
558static inline void mod_zone_state(struct zone *zone,
559 enum zone_stat_item item, long delta, int overstep_mode)
7c839120 560{
28f836b6 561 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
7c839120
CL
562 s8 __percpu *p = pcp->vm_stat_diff + item;
563 long o, n, t, z;
564
565 do {
566 z = 0; /* overflow to zone counters */
567
568 /*
569 * The fetching of the stat_threshold is racy. We may apply
570 * a counter threshold to the wrong the cpu if we get
d3bc2367
CL
571 * rescheduled while executing here. However, the next
572 * counter update will apply the threshold again and
573 * therefore bring the counter under the threshold again.
574 *
575 * Most of the time the thresholds are the same anyways
576 * for all cpus in a zone.
7c839120
CL
577 */
578 t = this_cpu_read(pcp->stat_threshold);
579
580 o = this_cpu_read(*p);
581 n = delta + o;
582
40610076 583 if (abs(n) > t) {
7c839120
CL
584 int os = overstep_mode * (t >> 1) ;
585
586 /* Overflow must be added to zone counters */
587 z = n + os;
588 n = -os;
589 }
590 } while (this_cpu_cmpxchg(*p, o, n) != o);
591
592 if (z)
593 zone_page_state_add(z, zone, item);
594}
595
596void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 597 long delta)
7c839120 598{
75ef7184 599 mod_zone_state(zone, item, delta, 0);
7c839120
CL
600}
601EXPORT_SYMBOL(mod_zone_page_state);
602
7c839120
CL
603void inc_zone_page_state(struct page *page, enum zone_stat_item item)
604{
75ef7184 605 mod_zone_state(page_zone(page), item, 1, 1);
7c839120
CL
606}
607EXPORT_SYMBOL(inc_zone_page_state);
608
609void dec_zone_page_state(struct page *page, enum zone_stat_item item)
610{
75ef7184 611 mod_zone_state(page_zone(page), item, -1, -1);
7c839120
CL
612}
613EXPORT_SYMBOL(dec_zone_page_state);
75ef7184
MG
614
615static inline void mod_node_state(struct pglist_data *pgdat,
616 enum node_stat_item item, int delta, int overstep_mode)
617{
618 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
619 s8 __percpu *p = pcp->vm_node_stat_diff + item;
620 long o, n, t, z;
621
ea426c2a 622 if (vmstat_item_in_bytes(item)) {
629484ae
JW
623 /*
624 * Only cgroups use subpage accounting right now; at
625 * the global level, these items still change in
626 * multiples of whole pages. Store them as pages
627 * internally to keep the per-cpu counters compact.
628 */
ea426c2a
RG
629 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
630 delta >>= PAGE_SHIFT;
631 }
632
75ef7184
MG
633 do {
634 z = 0; /* overflow to node counters */
635
636 /*
637 * The fetching of the stat_threshold is racy. We may apply
638 * a counter threshold to the wrong the cpu if we get
639 * rescheduled while executing here. However, the next
640 * counter update will apply the threshold again and
641 * therefore bring the counter under the threshold again.
642 *
643 * Most of the time the thresholds are the same anyways
644 * for all cpus in a node.
645 */
646 t = this_cpu_read(pcp->stat_threshold);
647
648 o = this_cpu_read(*p);
649 n = delta + o;
650
40610076 651 if (abs(n) > t) {
75ef7184
MG
652 int os = overstep_mode * (t >> 1) ;
653
654 /* Overflow must be added to node counters */
655 z = n + os;
656 n = -os;
657 }
658 } while (this_cpu_cmpxchg(*p, o, n) != o);
659
660 if (z)
661 node_page_state_add(z, pgdat, item);
662}
663
664void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
665 long delta)
666{
667 mod_node_state(pgdat, item, delta, 0);
668}
669EXPORT_SYMBOL(mod_node_page_state);
670
671void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
672{
673 mod_node_state(pgdat, item, 1, 1);
674}
675
676void inc_node_page_state(struct page *page, enum node_stat_item item)
677{
678 mod_node_state(page_pgdat(page), item, 1, 1);
679}
680EXPORT_SYMBOL(inc_node_page_state);
681
682void dec_node_page_state(struct page *page, enum node_stat_item item)
683{
684 mod_node_state(page_pgdat(page), item, -1, -1);
685}
686EXPORT_SYMBOL(dec_node_page_state);
7c839120
CL
687#else
688/*
689 * Use interrupt disable to serialize counter updates
690 */
691void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 692 long delta)
7c839120
CL
693{
694 unsigned long flags;
695
696 local_irq_save(flags);
697 __mod_zone_page_state(zone, item, delta);
698 local_irq_restore(flags);
699}
700EXPORT_SYMBOL(mod_zone_page_state);
701
2244b95a
CL
702void inc_zone_page_state(struct page *page, enum zone_stat_item item)
703{
704 unsigned long flags;
705 struct zone *zone;
2244b95a
CL
706
707 zone = page_zone(page);
708 local_irq_save(flags);
ca889e6c 709 __inc_zone_state(zone, item);
2244b95a
CL
710 local_irq_restore(flags);
711}
712EXPORT_SYMBOL(inc_zone_page_state);
713
714void dec_zone_page_state(struct page *page, enum zone_stat_item item)
715{
716 unsigned long flags;
2244b95a 717
2244b95a 718 local_irq_save(flags);
a302eb4e 719 __dec_zone_page_state(page, item);
2244b95a
CL
720 local_irq_restore(flags);
721}
722EXPORT_SYMBOL(dec_zone_page_state);
723
75ef7184
MG
724void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
725{
726 unsigned long flags;
727
728 local_irq_save(flags);
729 __inc_node_state(pgdat, item);
730 local_irq_restore(flags);
731}
732EXPORT_SYMBOL(inc_node_state);
733
734void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
735 long delta)
736{
737 unsigned long flags;
738
739 local_irq_save(flags);
740 __mod_node_page_state(pgdat, item, delta);
741 local_irq_restore(flags);
742}
743EXPORT_SYMBOL(mod_node_page_state);
744
745void inc_node_page_state(struct page *page, enum node_stat_item item)
746{
747 unsigned long flags;
748 struct pglist_data *pgdat;
749
750 pgdat = page_pgdat(page);
751 local_irq_save(flags);
752 __inc_node_state(pgdat, item);
753 local_irq_restore(flags);
754}
755EXPORT_SYMBOL(inc_node_page_state);
756
757void dec_node_page_state(struct page *page, enum node_stat_item item)
758{
759 unsigned long flags;
760
761 local_irq_save(flags);
762 __dec_node_page_state(page, item);
763 local_irq_restore(flags);
764}
765EXPORT_SYMBOL(dec_node_page_state);
766#endif
7cc36bbd
CL
767
768/*
769 * Fold a differential into the global counters.
770 * Returns the number of counters updated.
771 */
f19298b9 772static int fold_diff(int *zone_diff, int *node_diff)
3a321d2a
KW
773{
774 int i;
775 int changes = 0;
776
777 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
778 if (zone_diff[i]) {
779 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
780 changes++;
781 }
782
3a321d2a
KW
783 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
784 if (node_diff[i]) {
785 atomic_long_add(node_diff[i], &vm_node_stat[i]);
786 changes++;
787 }
788 return changes;
789}
f19298b9 790
2244b95a 791/*
2bb921e5 792 * Update the zone counters for the current cpu.
a7f75e25 793 *
4037d452
CL
794 * Note that refresh_cpu_vm_stats strives to only access
795 * node local memory. The per cpu pagesets on remote zones are placed
796 * in the memory local to the processor using that pageset. So the
797 * loop over all zones will access a series of cachelines local to
798 * the processor.
799 *
800 * The call to zone_page_state_add updates the cachelines with the
801 * statistics in the remote zone struct as well as the global cachelines
802 * with the global counters. These could cause remote node cache line
803 * bouncing and will have to be only done when necessary.
7cc36bbd
CL
804 *
805 * The function returns the number of global counters updated.
2244b95a 806 */
0eb77e98 807static int refresh_cpu_vm_stats(bool do_pagesets)
2244b95a 808{
75ef7184 809 struct pglist_data *pgdat;
2244b95a
CL
810 struct zone *zone;
811 int i;
75ef7184
MG
812 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
813 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
7cc36bbd 814 int changes = 0;
2244b95a 815
ee99c71c 816 for_each_populated_zone(zone) {
28f836b6
MG
817 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
818#ifdef CONFIG_NUMA
819 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
820#endif
2244b95a 821
fbc2edb0
CL
822 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
823 int v;
2244b95a 824
28f836b6 825 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
fbc2edb0 826 if (v) {
a7f75e25 827
a7f75e25 828 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 829 global_zone_diff[i] += v;
4037d452
CL
830#ifdef CONFIG_NUMA
831 /* 3 seconds idle till flush */
28f836b6 832 __this_cpu_write(pcp->expire, 3);
4037d452 833#endif
2244b95a 834 }
fbc2edb0 835 }
4037d452 836#ifdef CONFIG_NUMA
3a321d2a 837
0eb77e98
CL
838 if (do_pagesets) {
839 cond_resched();
840 /*
841 * Deal with draining the remote pageset of this
842 * processor
843 *
844 * Check if there are pages remaining in this pageset
845 * if not then there is nothing to expire.
846 */
28f836b6
MG
847 if (!__this_cpu_read(pcp->expire) ||
848 !__this_cpu_read(pcp->count))
0eb77e98 849 continue;
4037d452 850
0eb77e98
CL
851 /*
852 * We never drain zones local to this processor.
853 */
854 if (zone_to_nid(zone) == numa_node_id()) {
28f836b6 855 __this_cpu_write(pcp->expire, 0);
0eb77e98
CL
856 continue;
857 }
4037d452 858
28f836b6 859 if (__this_cpu_dec_return(pcp->expire))
0eb77e98 860 continue;
4037d452 861
28f836b6
MG
862 if (__this_cpu_read(pcp->count)) {
863 drain_zone_pages(zone, this_cpu_ptr(pcp));
0eb77e98
CL
864 changes++;
865 }
7cc36bbd 866 }
4037d452 867#endif
2244b95a 868 }
75ef7184
MG
869
870 for_each_online_pgdat(pgdat) {
871 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
872
873 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
874 int v;
875
876 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
877 if (v) {
878 atomic_long_add(v, &pgdat->vm_stat[i]);
879 global_node_diff[i] += v;
880 }
881 }
882 }
883
884 changes += fold_diff(global_zone_diff, global_node_diff);
7cc36bbd 885 return changes;
2244b95a
CL
886}
887
2bb921e5
CL
888/*
889 * Fold the data for an offline cpu into the global array.
890 * There cannot be any access by the offline cpu and therefore
891 * synchronization is simplified.
892 */
893void cpu_vm_stats_fold(int cpu)
894{
75ef7184 895 struct pglist_data *pgdat;
2bb921e5
CL
896 struct zone *zone;
897 int i;
75ef7184
MG
898 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
899 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
2bb921e5
CL
900
901 for_each_populated_zone(zone) {
28f836b6 902 struct per_cpu_zonestat *pzstats;
2bb921e5 903
28f836b6 904 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
2bb921e5 905
f19298b9 906 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
28f836b6 907 if (pzstats->vm_stat_diff[i]) {
2bb921e5
CL
908 int v;
909
28f836b6
MG
910 v = pzstats->vm_stat_diff[i];
911 pzstats->vm_stat_diff[i] = 0;
2bb921e5 912 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 913 global_zone_diff[i] += v;
2bb921e5 914 }
f19298b9 915 }
3a321d2a 916#ifdef CONFIG_NUMA
f19298b9
MG
917 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
918 if (pzstats->vm_numa_event[i]) {
919 unsigned long v;
3a321d2a 920
f19298b9
MG
921 v = pzstats->vm_numa_event[i];
922 pzstats->vm_numa_event[i] = 0;
923 zone_numa_event_add(v, zone, i);
3a321d2a 924 }
f19298b9 925 }
3a321d2a 926#endif
2bb921e5
CL
927 }
928
75ef7184
MG
929 for_each_online_pgdat(pgdat) {
930 struct per_cpu_nodestat *p;
931
932 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
933
934 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
935 if (p->vm_node_stat_diff[i]) {
936 int v;
937
938 v = p->vm_node_stat_diff[i];
939 p->vm_node_stat_diff[i] = 0;
940 atomic_long_add(v, &pgdat->vm_stat[i]);
941 global_node_diff[i] += v;
942 }
943 }
944
945 fold_diff(global_zone_diff, global_node_diff);
2bb921e5
CL
946}
947
40f4b1ea
CS
948/*
949 * this is only called if !populated_zone(zone), which implies no other users of
f0953a1b 950 * pset->vm_stat_diff[] exist.
40f4b1ea 951 */
28f836b6 952void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
5a883813 953{
f19298b9 954 unsigned long v;
5a883813
MK
955 int i;
956
f19298b9 957 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
28f836b6 958 if (pzstats->vm_stat_diff[i]) {
f19298b9 959 v = pzstats->vm_stat_diff[i];
28f836b6 960 pzstats->vm_stat_diff[i] = 0;
f19298b9 961 zone_page_state_add(v, zone, i);
5a883813 962 }
f19298b9 963 }
3a321d2a
KW
964
965#ifdef CONFIG_NUMA
f19298b9
MG
966 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
967 if (pzstats->vm_numa_event[i]) {
968 v = pzstats->vm_numa_event[i];
969 pzstats->vm_numa_event[i] = 0;
970 zone_numa_event_add(v, zone, i);
3a321d2a 971 }
f19298b9 972 }
3a321d2a 973#endif
5a883813 974}
2244b95a
CL
975#endif
976
ca889e6c 977#ifdef CONFIG_NUMA
c2d42c16 978/*
75ef7184
MG
979 * Determine the per node value of a stat item. This function
980 * is called frequently in a NUMA machine, so try to be as
981 * frugal as possible.
c2d42c16 982 */
75ef7184
MG
983unsigned long sum_zone_node_page_state(int node,
984 enum zone_stat_item item)
c2d42c16
AM
985{
986 struct zone *zones = NODE_DATA(node)->node_zones;
e87d59f7
JK
987 int i;
988 unsigned long count = 0;
c2d42c16 989
e87d59f7
JK
990 for (i = 0; i < MAX_NR_ZONES; i++)
991 count += zone_page_state(zones + i, item);
992
993 return count;
c2d42c16
AM
994}
995
f19298b9
MG
996/* Determine the per node value of a numa stat item. */
997unsigned long sum_zone_numa_event_state(int node,
3a321d2a
KW
998 enum numa_stat_item item)
999{
1000 struct zone *zones = NODE_DATA(node)->node_zones;
3a321d2a 1001 unsigned long count = 0;
f19298b9 1002 int i;
3a321d2a
KW
1003
1004 for (i = 0; i < MAX_NR_ZONES; i++)
f19298b9 1005 count += zone_numa_event_state(zones + i, item);
3a321d2a
KW
1006
1007 return count;
1008}
1009
75ef7184
MG
1010/*
1011 * Determine the per node value of a stat item.
1012 */
ea426c2a
RG
1013unsigned long node_page_state_pages(struct pglist_data *pgdat,
1014 enum node_stat_item item)
75ef7184
MG
1015{
1016 long x = atomic_long_read(&pgdat->vm_stat[item]);
1017#ifdef CONFIG_SMP
1018 if (x < 0)
1019 x = 0;
1020#endif
1021 return x;
1022}
ea426c2a
RG
1023
1024unsigned long node_page_state(struct pglist_data *pgdat,
1025 enum node_stat_item item)
1026{
1027 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1028
1029 return node_page_state_pages(pgdat, item);
1030}
ca889e6c
CL
1031#endif
1032
d7a5752c 1033#ifdef CONFIG_COMPACTION
36deb0be 1034
d7a5752c
MG
1035struct contig_page_info {
1036 unsigned long free_pages;
1037 unsigned long free_blocks_total;
1038 unsigned long free_blocks_suitable;
1039};
1040
1041/*
1042 * Calculate the number of free pages in a zone, how many contiguous
1043 * pages are free and how many are large enough to satisfy an allocation of
1044 * the target size. Note that this function makes no attempt to estimate
1045 * how many suitable free blocks there *might* be if MOVABLE pages were
1046 * migrated. Calculating that is possible, but expensive and can be
1047 * figured out from userspace
1048 */
1049static void fill_contig_page_info(struct zone *zone,
1050 unsigned int suitable_order,
1051 struct contig_page_info *info)
1052{
1053 unsigned int order;
1054
1055 info->free_pages = 0;
1056 info->free_blocks_total = 0;
1057 info->free_blocks_suitable = 0;
1058
1059 for (order = 0; order < MAX_ORDER; order++) {
1060 unsigned long blocks;
1061
af1c31ac
LS
1062 /*
1063 * Count number of free blocks.
1064 *
1065 * Access to nr_free is lockless as nr_free is used only for
1066 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1067 */
1068 blocks = data_race(zone->free_area[order].nr_free);
d7a5752c
MG
1069 info->free_blocks_total += blocks;
1070
1071 /* Count free base pages */
1072 info->free_pages += blocks << order;
1073
1074 /* Count the suitable free blocks */
1075 if (order >= suitable_order)
1076 info->free_blocks_suitable += blocks <<
1077 (order - suitable_order);
1078 }
1079}
f1a5ab12
MG
1080
1081/*
1082 * A fragmentation index only makes sense if an allocation of a requested
1083 * size would fail. If that is true, the fragmentation index indicates
1084 * whether external fragmentation or a lack of memory was the problem.
1085 * The value can be used to determine if page reclaim or compaction
1086 * should be used
1087 */
56de7263 1088static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
f1a5ab12
MG
1089{
1090 unsigned long requested = 1UL << order;
1091
88d6ac40
WY
1092 if (WARN_ON_ONCE(order >= MAX_ORDER))
1093 return 0;
1094
f1a5ab12
MG
1095 if (!info->free_blocks_total)
1096 return 0;
1097
1098 /* Fragmentation index only makes sense when a request would fail */
1099 if (info->free_blocks_suitable)
1100 return -1000;
1101
1102 /*
1103 * Index is between 0 and 1 so return within 3 decimal places
1104 *
1105 * 0 => allocation would fail due to lack of memory
1106 * 1 => allocation would fail due to fragmentation
1107 */
1108 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1109}
56de7263 1110
facdaa91
NG
1111/*
1112 * Calculates external fragmentation within a zone wrt the given order.
1113 * It is defined as the percentage of pages found in blocks of size
1114 * less than 1 << order. It returns values in range [0, 100].
1115 */
d34c0a75 1116unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
facdaa91
NG
1117{
1118 struct contig_page_info info;
1119
1120 fill_contig_page_info(zone, order, &info);
1121 if (info.free_pages == 0)
1122 return 0;
1123
1124 return div_u64((info.free_pages -
1125 (info.free_blocks_suitable << order)) * 100,
1126 info.free_pages);
1127}
1128
56de7263
MG
1129/* Same as __fragmentation index but allocs contig_page_info on stack */
1130int fragmentation_index(struct zone *zone, unsigned int order)
1131{
1132 struct contig_page_info info;
1133
1134 fill_contig_page_info(zone, order, &info);
1135 return __fragmentation_index(order, &info);
1136}
d7a5752c
MG
1137#endif
1138
ebc5d83d
KK
1139#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1140 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
fa25c503
KM
1141#ifdef CONFIG_ZONE_DMA
1142#define TEXT_FOR_DMA(xx) xx "_dma",
1143#else
1144#define TEXT_FOR_DMA(xx)
1145#endif
1146
1147#ifdef CONFIG_ZONE_DMA32
1148#define TEXT_FOR_DMA32(xx) xx "_dma32",
1149#else
1150#define TEXT_FOR_DMA32(xx)
1151#endif
1152
1153#ifdef CONFIG_HIGHMEM
1154#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1155#else
1156#define TEXT_FOR_HIGHMEM(xx)
1157#endif
1158
a39c5d3c
HL
1159#ifdef CONFIG_ZONE_DEVICE
1160#define TEXT_FOR_DEVICE(xx) xx "_device",
1161#else
1162#define TEXT_FOR_DEVICE(xx)
1163#endif
1164
fa25c503 1165#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
a39c5d3c
HL
1166 TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1167 TEXT_FOR_DEVICE(xx)
fa25c503
KM
1168
1169const char * const vmstat_text[] = {
8d92890b 1170 /* enum zone_stat_item counters */
fa25c503 1171 "nr_free_pages",
71c799f4
MK
1172 "nr_zone_inactive_anon",
1173 "nr_zone_active_anon",
1174 "nr_zone_inactive_file",
1175 "nr_zone_active_file",
1176 "nr_zone_unevictable",
5a1c84b4 1177 "nr_zone_write_pending",
fa25c503 1178 "nr_mlock",
fa25c503 1179 "nr_bounce",
91537fee
MK
1180#if IS_ENABLED(CONFIG_ZSMALLOC)
1181 "nr_zspages",
1182#endif
3a321d2a
KW
1183 "nr_free_cma",
1184
1185 /* enum numa_stat_item counters */
fa25c503
KM
1186#ifdef CONFIG_NUMA
1187 "numa_hit",
1188 "numa_miss",
1189 "numa_foreign",
1190 "numa_interleave",
1191 "numa_local",
1192 "numa_other",
1193#endif
09316c09 1194
9d7ea9a2 1195 /* enum node_stat_item counters */
599d0c95
MG
1196 "nr_inactive_anon",
1197 "nr_active_anon",
1198 "nr_inactive_file",
1199 "nr_active_file",
1200 "nr_unevictable",
385386cf
JW
1201 "nr_slab_reclaimable",
1202 "nr_slab_unreclaimable",
599d0c95
MG
1203 "nr_isolated_anon",
1204 "nr_isolated_file",
68d48e6a 1205 "workingset_nodes",
170b04b7
JK
1206 "workingset_refault_anon",
1207 "workingset_refault_file",
1208 "workingset_activate_anon",
1209 "workingset_activate_file",
1210 "workingset_restore_anon",
1211 "workingset_restore_file",
1e6b1085 1212 "workingset_nodereclaim",
50658e2e
MG
1213 "nr_anon_pages",
1214 "nr_mapped",
11fb9989
MG
1215 "nr_file_pages",
1216 "nr_dirty",
1217 "nr_writeback",
1218 "nr_writeback_temp",
1219 "nr_shmem",
1220 "nr_shmem_hugepages",
1221 "nr_shmem_pmdmapped",
60fbf0ab
SL
1222 "nr_file_hugepages",
1223 "nr_file_pmdmapped",
11fb9989 1224 "nr_anon_transparent_hugepages",
c4a25635
MG
1225 "nr_vmscan_write",
1226 "nr_vmscan_immediate_reclaim",
1227 "nr_dirtied",
1228 "nr_written",
8cd7c588 1229 "nr_throttled_written",
b29940c1 1230 "nr_kernel_misc_reclaimable",
1970dc6f
JH
1231 "nr_foll_pin_acquired",
1232 "nr_foll_pin_released",
991e7673
SB
1233 "nr_kernel_stack",
1234#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1235 "nr_shadow_call_stack",
1236#endif
f0c0c115 1237 "nr_page_table_pages",
ebc97a52 1238 "nr_sec_page_table_pages",
b6038942
SB
1239#ifdef CONFIG_SWAP
1240 "nr_swapcached",
1241#endif
e39bb6be
HY
1242#ifdef CONFIG_NUMA_BALANCING
1243 "pgpromote_success",
1244#endif
599d0c95 1245
09316c09 1246 /* enum writeback_stat_item counters */
fa25c503
KM
1247 "nr_dirty_threshold",
1248 "nr_dirty_background_threshold",
1249
ebc5d83d 1250#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
09316c09 1251 /* enum vm_event_item counters */
fa25c503
KM
1252 "pgpgin",
1253 "pgpgout",
1254 "pswpin",
1255 "pswpout",
1256
1257 TEXTS_FOR_ZONES("pgalloc")
7cc30fcf
MG
1258 TEXTS_FOR_ZONES("allocstall")
1259 TEXTS_FOR_ZONES("pgskip")
fa25c503
KM
1260
1261 "pgfree",
1262 "pgactivate",
1263 "pgdeactivate",
f7ad2a6c 1264 "pglazyfree",
fa25c503
KM
1265
1266 "pgfault",
1267 "pgmajfault",
854e9ed0 1268 "pglazyfreed",
fa25c503 1269
599d0c95 1270 "pgrefill",
798a6b87 1271 "pgreuse",
599d0c95
MG
1272 "pgsteal_kswapd",
1273 "pgsteal_direct",
668e4147
YS
1274 "pgdemote_kswapd",
1275 "pgdemote_direct",
599d0c95
MG
1276 "pgscan_kswapd",
1277 "pgscan_direct",
68243e76 1278 "pgscan_direct_throttle",
497a6c1b
JW
1279 "pgscan_anon",
1280 "pgscan_file",
1281 "pgsteal_anon",
1282 "pgsteal_file",
fa25c503
KM
1283
1284#ifdef CONFIG_NUMA
1285 "zone_reclaim_failed",
1286#endif
1287 "pginodesteal",
1288 "slabs_scanned",
fa25c503
KM
1289 "kswapd_inodesteal",
1290 "kswapd_low_wmark_hit_quickly",
1291 "kswapd_high_wmark_hit_quickly",
fa25c503 1292 "pageoutrun",
fa25c503
KM
1293
1294 "pgrotated",
1295
5509a5d2
DH
1296 "drop_pagecache",
1297 "drop_slab",
8e675f7a 1298 "oom_kill",
5509a5d2 1299
03c5a6e1
MG
1300#ifdef CONFIG_NUMA_BALANCING
1301 "numa_pte_updates",
72403b4a 1302 "numa_huge_pte_updates",
03c5a6e1
MG
1303 "numa_hint_faults",
1304 "numa_hint_faults_local",
1305 "numa_pages_migrated",
1306#endif
5647bc29
MG
1307#ifdef CONFIG_MIGRATION
1308 "pgmigrate_success",
1309 "pgmigrate_fail",
1a5bae25
AK
1310 "thp_migration_success",
1311 "thp_migration_fail",
1312 "thp_migration_split",
5647bc29 1313#endif
fa25c503 1314#ifdef CONFIG_COMPACTION
397487db
MG
1315 "compact_migrate_scanned",
1316 "compact_free_scanned",
1317 "compact_isolated",
fa25c503
KM
1318 "compact_stall",
1319 "compact_fail",
1320 "compact_success",
698b1b30 1321 "compact_daemon_wake",
7f354a54
DR
1322 "compact_daemon_migrate_scanned",
1323 "compact_daemon_free_scanned",
fa25c503
KM
1324#endif
1325
1326#ifdef CONFIG_HUGETLB_PAGE
1327 "htlb_buddy_alloc_success",
1328 "htlb_buddy_alloc_fail",
bbb26920
MK
1329#endif
1330#ifdef CONFIG_CMA
1331 "cma_alloc_success",
1332 "cma_alloc_fail",
fa25c503
KM
1333#endif
1334 "unevictable_pgs_culled",
1335 "unevictable_pgs_scanned",
1336 "unevictable_pgs_rescued",
1337 "unevictable_pgs_mlocked",
1338 "unevictable_pgs_munlocked",
1339 "unevictable_pgs_cleared",
1340 "unevictable_pgs_stranded",
fa25c503
KM
1341
1342#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1343 "thp_fault_alloc",
1344 "thp_fault_fallback",
85b9f46e 1345 "thp_fault_fallback_charge",
fa25c503
KM
1346 "thp_collapse_alloc",
1347 "thp_collapse_alloc_failed",
95ecedcd 1348 "thp_file_alloc",
dcdf11ee 1349 "thp_file_fallback",
85b9f46e 1350 "thp_file_fallback_charge",
95ecedcd 1351 "thp_file_mapped",
122afea9
KS
1352 "thp_split_page",
1353 "thp_split_page_failed",
f9719a03 1354 "thp_deferred_split_page",
122afea9 1355 "thp_split_pmd",
e9ea874a
YY
1356 "thp_scan_exceed_none_pte",
1357 "thp_scan_exceed_swap_pte",
1358 "thp_scan_exceed_share_pte",
ce9311cf
YX
1359#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1360 "thp_split_pud",
1361#endif
d8a8e1f0
KS
1362 "thp_zero_page_alloc",
1363 "thp_zero_page_alloc_failed",
225311a4 1364 "thp_swpout",
fe490cc0 1365 "thp_swpout_fallback",
fa25c503 1366#endif
09316c09
KK
1367#ifdef CONFIG_MEMORY_BALLOON
1368 "balloon_inflate",
1369 "balloon_deflate",
1370#ifdef CONFIG_BALLOON_COMPACTION
1371 "balloon_migrate",
1372#endif
1373#endif /* CONFIG_MEMORY_BALLOON */
ec659934 1374#ifdef CONFIG_DEBUG_TLBFLUSH
9824cf97
DH
1375 "nr_tlb_remote_flush",
1376 "nr_tlb_remote_flush_received",
1377 "nr_tlb_local_flush_all",
1378 "nr_tlb_local_flush_one",
ec659934 1379#endif /* CONFIG_DEBUG_TLBFLUSH */
fa25c503 1380
4f115147
DB
1381#ifdef CONFIG_DEBUG_VM_VMACACHE
1382 "vmacache_find_calls",
1383 "vmacache_find_hits",
1384#endif
cbc65df2
HY
1385#ifdef CONFIG_SWAP
1386 "swap_ra",
1387 "swap_ra_hit",
4d45c3af
YY
1388#ifdef CONFIG_KSM
1389 "ksm_swpin_copy",
1390#endif
cbc65df2 1391#endif
94bfe85b
YY
1392#ifdef CONFIG_KSM
1393 "cow_ksm",
1394#endif
f6498b77
JW
1395#ifdef CONFIG_ZSWAP
1396 "zswpin",
1397 "zswpout",
1398#endif
575299ea
S
1399#ifdef CONFIG_X86
1400 "direct_map_level2_splits",
1401 "direct_map_level3_splits",
1402#endif
ebc5d83d 1403#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
fa25c503 1404};
ebc5d83d 1405#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
fa25c503 1406
3c486871
AM
1407#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1408 defined(CONFIG_PROC_FS)
1409static void *frag_start(struct seq_file *m, loff_t *pos)
1410{
1411 pg_data_t *pgdat;
1412 loff_t node = *pos;
1413
1414 for (pgdat = first_online_pgdat();
1415 pgdat && node;
1416 pgdat = next_online_pgdat(pgdat))
1417 --node;
1418
1419 return pgdat;
1420}
1421
1422static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1423{
1424 pg_data_t *pgdat = (pg_data_t *)arg;
1425
1426 (*pos)++;
1427 return next_online_pgdat(pgdat);
1428}
1429
1430static void frag_stop(struct seq_file *m, void *arg)
1431{
1432}
1433
b2bd8598
DR
1434/*
1435 * Walk zones in a node and print using a callback.
1436 * If @assert_populated is true, only use callback for zones that are populated.
1437 */
3c486871 1438static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
727c080f 1439 bool assert_populated, bool nolock,
3c486871
AM
1440 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1441{
1442 struct zone *zone;
1443 struct zone *node_zones = pgdat->node_zones;
1444 unsigned long flags;
1445
1446 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
b2bd8598 1447 if (assert_populated && !populated_zone(zone))
3c486871
AM
1448 continue;
1449
727c080f
VM
1450 if (!nolock)
1451 spin_lock_irqsave(&zone->lock, flags);
3c486871 1452 print(m, pgdat, zone);
727c080f
VM
1453 if (!nolock)
1454 spin_unlock_irqrestore(&zone->lock, flags);
3c486871
AM
1455 }
1456}
1457#endif
1458
d7a5752c 1459#ifdef CONFIG_PROC_FS
467c996c
MG
1460static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1461 struct zone *zone)
1462{
1463 int order;
1464
1465 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1466 for (order = 0; order < MAX_ORDER; ++order)
af1c31ac
LS
1467 /*
1468 * Access to nr_free is lockless as nr_free is used only for
1469 * printing purposes. Use data_race to avoid KCSAN warning.
1470 */
1471 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
467c996c
MG
1472 seq_putc(m, '\n');
1473}
1474
1475/*
1476 * This walks the free areas for each zone.
1477 */
1478static int frag_show(struct seq_file *m, void *arg)
1479{
1480 pg_data_t *pgdat = (pg_data_t *)arg;
727c080f 1481 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
467c996c
MG
1482 return 0;
1483}
1484
1485static void pagetypeinfo_showfree_print(struct seq_file *m,
1486 pg_data_t *pgdat, struct zone *zone)
1487{
1488 int order, mtype;
1489
1490 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1491 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1492 pgdat->node_id,
1493 zone->name,
1494 migratetype_names[mtype]);
1495 for (order = 0; order < MAX_ORDER; ++order) {
1496 unsigned long freecount = 0;
1497 struct free_area *area;
1498 struct list_head *curr;
93b3a674 1499 bool overflow = false;
467c996c
MG
1500
1501 area = &(zone->free_area[order]);
1502
93b3a674
MH
1503 list_for_each(curr, &area->free_list[mtype]) {
1504 /*
1505 * Cap the free_list iteration because it might
1506 * be really large and we are under a spinlock
1507 * so a long time spent here could trigger a
1508 * hard lockup detector. Anyway this is a
1509 * debugging tool so knowing there is a handful
1510 * of pages of this order should be more than
1511 * sufficient.
1512 */
1513 if (++freecount >= 100000) {
1514 overflow = true;
1515 break;
1516 }
1517 }
1518 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1519 spin_unlock_irq(&zone->lock);
1520 cond_resched();
1521 spin_lock_irq(&zone->lock);
467c996c 1522 }
f6ac2354
CL
1523 seq_putc(m, '\n');
1524 }
467c996c
MG
1525}
1526
1527/* Print out the free pages at each order for each migatetype */
33090af9 1528static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
467c996c
MG
1529{
1530 int order;
1531 pg_data_t *pgdat = (pg_data_t *)arg;
1532
1533 /* Print header */
1534 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1535 for (order = 0; order < MAX_ORDER; ++order)
1536 seq_printf(m, "%6d ", order);
1537 seq_putc(m, '\n');
1538
727c080f 1539 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
467c996c
MG
1540}
1541
1542static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1543 pg_data_t *pgdat, struct zone *zone)
1544{
1545 int mtype;
1546 unsigned long pfn;
1547 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 1548 unsigned long end_pfn = zone_end_pfn(zone);
467c996c
MG
1549 unsigned long count[MIGRATE_TYPES] = { 0, };
1550
1551 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1552 struct page *page;
1553
d336e94e
MH
1554 page = pfn_to_online_page(pfn);
1555 if (!page)
467c996c
MG
1556 continue;
1557
a91c43c7
JK
1558 if (page_zone(page) != zone)
1559 continue;
1560
467c996c
MG
1561 mtype = get_pageblock_migratetype(page);
1562
e80d6a24
MG
1563 if (mtype < MIGRATE_TYPES)
1564 count[mtype]++;
467c996c
MG
1565 }
1566
1567 /* Print counts */
1568 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1569 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1570 seq_printf(m, "%12lu ", count[mtype]);
1571 seq_putc(m, '\n');
1572}
1573
f113e641 1574/* Print out the number of pageblocks for each migratetype */
33090af9 1575static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
467c996c
MG
1576{
1577 int mtype;
1578 pg_data_t *pgdat = (pg_data_t *)arg;
1579
1580 seq_printf(m, "\n%-23s", "Number of blocks type ");
1581 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1582 seq_printf(m, "%12s ", migratetype_names[mtype]);
1583 seq_putc(m, '\n');
727c080f
VM
1584 walk_zones_in_node(m, pgdat, true, false,
1585 pagetypeinfo_showblockcount_print);
467c996c
MG
1586}
1587
48c96a36
JK
1588/*
1589 * Print out the number of pageblocks for each migratetype that contain pages
1590 * of other types. This gives an indication of how well fallbacks are being
1591 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1592 * to determine what is going on
1593 */
1594static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1595{
1596#ifdef CONFIG_PAGE_OWNER
1597 int mtype;
1598
7dd80b8a 1599 if (!static_branch_unlikely(&page_owner_inited))
48c96a36
JK
1600 return;
1601
1602 drain_all_pages(NULL);
1603
1604 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1605 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1606 seq_printf(m, "%12s ", migratetype_names[mtype]);
1607 seq_putc(m, '\n');
1608
727c080f
VM
1609 walk_zones_in_node(m, pgdat, true, true,
1610 pagetypeinfo_showmixedcount_print);
48c96a36
JK
1611#endif /* CONFIG_PAGE_OWNER */
1612}
1613
467c996c
MG
1614/*
1615 * This prints out statistics in relation to grouping pages by mobility.
1616 * It is expensive to collect so do not constantly read the file.
1617 */
1618static int pagetypeinfo_show(struct seq_file *m, void *arg)
1619{
1620 pg_data_t *pgdat = (pg_data_t *)arg;
1621
41b25a37 1622 /* check memoryless node */
a47b53c5 1623 if (!node_state(pgdat->node_id, N_MEMORY))
41b25a37
KM
1624 return 0;
1625
467c996c
MG
1626 seq_printf(m, "Page block order: %d\n", pageblock_order);
1627 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1628 seq_putc(m, '\n');
1629 pagetypeinfo_showfree(m, pgdat);
1630 pagetypeinfo_showblockcount(m, pgdat);
48c96a36 1631 pagetypeinfo_showmixedcount(m, pgdat);
467c996c 1632
f6ac2354
CL
1633 return 0;
1634}
1635
8f32f7e5 1636static const struct seq_operations fragmentation_op = {
f6ac2354
CL
1637 .start = frag_start,
1638 .next = frag_next,
1639 .stop = frag_stop,
1640 .show = frag_show,
1641};
1642
74e2e8e8 1643static const struct seq_operations pagetypeinfo_op = {
467c996c
MG
1644 .start = frag_start,
1645 .next = frag_next,
1646 .stop = frag_stop,
1647 .show = pagetypeinfo_show,
1648};
1649
e2ecc8a7
MG
1650static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1651{
1652 int zid;
1653
1654 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1655 struct zone *compare = &pgdat->node_zones[zid];
1656
1657 if (populated_zone(compare))
1658 return zone == compare;
1659 }
1660
e2ecc8a7
MG
1661 return false;
1662}
1663
467c996c
MG
1664static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1665 struct zone *zone)
f6ac2354 1666{
467c996c
MG
1667 int i;
1668 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
e2ecc8a7
MG
1669 if (is_zone_first_populated(pgdat, zone)) {
1670 seq_printf(m, "\n per-node stats");
1671 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
69473e5d
MS
1672 unsigned long pages = node_page_state_pages(pgdat, i);
1673
1674 if (vmstat_item_print_in_thp(i))
1675 pages /= HPAGE_PMD_NR;
9d7ea9a2 1676 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
69473e5d 1677 pages);
e2ecc8a7
MG
1678 }
1679 }
467c996c
MG
1680 seq_printf(m,
1681 "\n pages free %lu"
a6ea8b5b 1682 "\n boost %lu"
467c996c
MG
1683 "\n min %lu"
1684 "\n low %lu"
1685 "\n high %lu"
467c996c 1686 "\n spanned %lu"
9feedc9d 1687 "\n present %lu"
3c381db1
DH
1688 "\n managed %lu"
1689 "\n cma %lu",
88f5acf8 1690 zone_page_state(zone, NR_FREE_PAGES),
a6ea8b5b 1691 zone->watermark_boost,
41858966
MG
1692 min_wmark_pages(zone),
1693 low_wmark_pages(zone),
1694 high_wmark_pages(zone),
467c996c 1695 zone->spanned_pages,
9feedc9d 1696 zone->present_pages,
3c381db1
DH
1697 zone_managed_pages(zone),
1698 zone_cma_pages(zone));
467c996c 1699
467c996c 1700 seq_printf(m,
3484b2de 1701 "\n protection: (%ld",
467c996c
MG
1702 zone->lowmem_reserve[0]);
1703 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
3484b2de 1704 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
7dfb8bf3
DR
1705 seq_putc(m, ')');
1706
a8a4b7ae
BH
1707 /* If unpopulated, no other information is useful */
1708 if (!populated_zone(zone)) {
1709 seq_putc(m, '\n');
1710 return;
1711 }
1712
7dfb8bf3 1713 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
9d7ea9a2
KK
1714 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1715 zone_page_state(zone, i));
7dfb8bf3 1716
3a321d2a 1717#ifdef CONFIG_NUMA
f19298b9 1718 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
9d7ea9a2 1719 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
f19298b9 1720 zone_numa_event_state(zone, i));
3a321d2a
KW
1721#endif
1722
7dfb8bf3 1723 seq_printf(m, "\n pagesets");
467c996c 1724 for_each_online_cpu(i) {
28f836b6
MG
1725 struct per_cpu_pages *pcp;
1726 struct per_cpu_zonestat __maybe_unused *pzstats;
467c996c 1727
28f836b6 1728 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
3dfa5721
CL
1729 seq_printf(m,
1730 "\n cpu: %i"
1731 "\n count: %i"
1732 "\n high: %i"
1733 "\n batch: %i",
1734 i,
28f836b6
MG
1735 pcp->count,
1736 pcp->high,
1737 pcp->batch);
df9ecaba 1738#ifdef CONFIG_SMP
28f836b6 1739 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
467c996c 1740 seq_printf(m, "\n vm stats threshold: %d",
28f836b6 1741 pzstats->stat_threshold);
df9ecaba 1742#endif
f6ac2354 1743 }
467c996c 1744 seq_printf(m,
599d0c95 1745 "\n node_unreclaimable: %u"
3a50d14d 1746 "\n start_pfn: %lu",
c73322d0 1747 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
3a50d14d 1748 zone->zone_start_pfn);
467c996c
MG
1749 seq_putc(m, '\n');
1750}
1751
1752/*
b2bd8598
DR
1753 * Output information about zones in @pgdat. All zones are printed regardless
1754 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1755 * set of all zones and userspace would not be aware of such zones if they are
1756 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
467c996c
MG
1757 */
1758static int zoneinfo_show(struct seq_file *m, void *arg)
1759{
1760 pg_data_t *pgdat = (pg_data_t *)arg;
727c080f 1761 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
f6ac2354
CL
1762 return 0;
1763}
1764
5c9fe628 1765static const struct seq_operations zoneinfo_op = {
f6ac2354
CL
1766 .start = frag_start, /* iterate over all zones. The same as in
1767 * fragmentation. */
1768 .next = frag_next,
1769 .stop = frag_stop,
1770 .show = zoneinfo_show,
1771};
1772
9d7ea9a2 1773#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
f19298b9 1774 NR_VM_NUMA_EVENT_ITEMS + \
9d7ea9a2
KK
1775 NR_VM_NODE_STAT_ITEMS + \
1776 NR_VM_WRITEBACK_STAT_ITEMS + \
1777 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1778 NR_VM_EVENT_ITEMS : 0))
79da826a 1779
f6ac2354
CL
1780static void *vmstat_start(struct seq_file *m, loff_t *pos)
1781{
2244b95a 1782 unsigned long *v;
9d7ea9a2 1783 int i;
f6ac2354 1784
9d7ea9a2 1785 if (*pos >= NR_VMSTAT_ITEMS)
f6ac2354 1786 return NULL;
79da826a 1787
9d7ea9a2 1788 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
f19298b9 1789 fold_vm_numa_events();
9d7ea9a2 1790 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
2244b95a
CL
1791 m->private = v;
1792 if (!v)
f6ac2354 1793 return ERR_PTR(-ENOMEM);
2244b95a 1794 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
c41f012a 1795 v[i] = global_zone_page_state(i);
79da826a
MR
1796 v += NR_VM_ZONE_STAT_ITEMS;
1797
3a321d2a 1798#ifdef CONFIG_NUMA
f19298b9
MG
1799 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1800 v[i] = global_numa_event_state(i);
1801 v += NR_VM_NUMA_EVENT_ITEMS;
3a321d2a
KW
1802#endif
1803
69473e5d 1804 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
ea426c2a 1805 v[i] = global_node_page_state_pages(i);
69473e5d
MS
1806 if (vmstat_item_print_in_thp(i))
1807 v[i] /= HPAGE_PMD_NR;
1808 }
75ef7184
MG
1809 v += NR_VM_NODE_STAT_ITEMS;
1810
79da826a
MR
1811 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1812 v + NR_DIRTY_THRESHOLD);
1813 v += NR_VM_WRITEBACK_STAT_ITEMS;
1814
f8891e5e 1815#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a
MR
1816 all_vm_events(v);
1817 v[PGPGIN] /= 2; /* sectors -> kbytes */
1818 v[PGPGOUT] /= 2;
f8891e5e 1819#endif
ff8b16d7 1820 return (unsigned long *)m->private + *pos;
f6ac2354
CL
1821}
1822
1823static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1824{
1825 (*pos)++;
9d7ea9a2 1826 if (*pos >= NR_VMSTAT_ITEMS)
f6ac2354
CL
1827 return NULL;
1828 return (unsigned long *)m->private + *pos;
1829}
1830
1831static int vmstat_show(struct seq_file *m, void *arg)
1832{
1833 unsigned long *l = arg;
1834 unsigned long off = l - (unsigned long *)m->private;
68ba0326
AD
1835
1836 seq_puts(m, vmstat_text[off]);
75ba1d07 1837 seq_put_decimal_ull(m, " ", *l);
68ba0326 1838 seq_putc(m, '\n');
8d92890b
N
1839
1840 if (off == NR_VMSTAT_ITEMS - 1) {
1841 /*
1842 * We've come to the end - add any deprecated counters to avoid
1843 * breaking userspace which might depend on them being present.
1844 */
1845 seq_puts(m, "nr_unstable 0\n");
1846 }
f6ac2354
CL
1847 return 0;
1848}
1849
1850static void vmstat_stop(struct seq_file *m, void *arg)
1851{
1852 kfree(m->private);
1853 m->private = NULL;
1854}
1855
b6aa44ab 1856static const struct seq_operations vmstat_op = {
f6ac2354
CL
1857 .start = vmstat_start,
1858 .next = vmstat_next,
1859 .stop = vmstat_stop,
1860 .show = vmstat_show,
1861};
f6ac2354
CL
1862#endif /* CONFIG_PROC_FS */
1863
df9ecaba 1864#ifdef CONFIG_SMP
d1187ed2 1865static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
77461ab3 1866int sysctl_stat_interval __read_mostly = HZ;
d1187ed2 1867
52b6f46b
HD
1868#ifdef CONFIG_PROC_FS
1869static void refresh_vm_stats(struct work_struct *work)
1870{
1871 refresh_cpu_vm_stats(true);
1872}
1873
1874int vmstat_refresh(struct ctl_table *table, int write,
32927393 1875 void *buffer, size_t *lenp, loff_t *ppos)
52b6f46b
HD
1876{
1877 long val;
1878 int err;
1879 int i;
1880
1881 /*
1882 * The regular update, every sysctl_stat_interval, may come later
1883 * than expected: leaving a significant amount in per_cpu buckets.
1884 * This is particularly misleading when checking a quantity of HUGE
1885 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1886 * which can equally be echo'ed to or cat'ted from (by root),
1887 * can be used to update the stats just before reading them.
1888 *
c41f012a 1889 * Oh, and since global_zone_page_state() etc. are so careful to hide
52b6f46b
HD
1890 * transiently negative values, report an error here if any of
1891 * the stats is negative, so we know to go looking for imbalance.
1892 */
1893 err = schedule_on_each_cpu(refresh_vm_stats);
1894 if (err)
1895 return err;
1896 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
75083aae
HD
1897 /*
1898 * Skip checking stats known to go negative occasionally.
1899 */
1900 switch (i) {
1901 case NR_ZONE_WRITE_PENDING:
1902 case NR_FREE_CMA_PAGES:
1903 continue;
1904 }
75ef7184 1905 val = atomic_long_read(&vm_zone_stat[i]);
52b6f46b 1906 if (val < 0) {
c822f622 1907 pr_warn("%s: %s %ld\n",
9d7ea9a2 1908 __func__, zone_stat_name(i), val);
52b6f46b
HD
1909 }
1910 }
76d8cc3c 1911 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
75083aae
HD
1912 /*
1913 * Skip checking stats known to go negative occasionally.
1914 */
1915 switch (i) {
1916 case NR_WRITEBACK:
1917 continue;
1918 }
76d8cc3c
HD
1919 val = atomic_long_read(&vm_node_stat[i]);
1920 if (val < 0) {
1921 pr_warn("%s: %s %ld\n",
1922 __func__, node_stat_name(i), val);
76d8cc3c
HD
1923 }
1924 }
52b6f46b
HD
1925 if (write)
1926 *ppos += *lenp;
1927 else
1928 *lenp = 0;
1929 return 0;
1930}
1931#endif /* CONFIG_PROC_FS */
1932
d1187ed2
CL
1933static void vmstat_update(struct work_struct *w)
1934{
0eb77e98 1935 if (refresh_cpu_vm_stats(true)) {
7cc36bbd
CL
1936 /*
1937 * Counters were updated so we expect more updates
1938 * to occur in the future. Keep on running the
1939 * update worker thread.
1940 */
ce612879 1941 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
f01f17d3
MH
1942 this_cpu_ptr(&vmstat_work),
1943 round_jiffies_relative(sysctl_stat_interval));
7cc36bbd
CL
1944 }
1945}
1946
1947/*
1948 * Check if the diffs for a certain cpu indicate that
1949 * an update is needed.
1950 */
1951static bool need_update(int cpu)
1952{
2bbd00ae 1953 pg_data_t *last_pgdat = NULL;
7cc36bbd
CL
1954 struct zone *zone;
1955
1956 for_each_populated_zone(zone) {
28f836b6 1957 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
2bbd00ae 1958 struct per_cpu_nodestat *n;
28f836b6 1959
7cc36bbd
CL
1960 /*
1961 * The fast way of checking if there are any vmstat diffs.
7cc36bbd 1962 */
64632fd3 1963 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
7cc36bbd 1964 return true;
f19298b9 1965
2bbd00ae
JW
1966 if (last_pgdat == zone->zone_pgdat)
1967 continue;
1968 last_pgdat = zone->zone_pgdat;
1969 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
64632fd3
ML
1970 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1971 return true;
7cc36bbd
CL
1972 }
1973 return false;
1974}
1975
7b8da4c7
CL
1976/*
1977 * Switch off vmstat processing and then fold all the remaining differentials
1978 * until the diffs stay at zero. The function is used by NOHZ and can only be
1979 * invoked when tick processing is not active.
1980 */
f01f17d3
MH
1981void quiet_vmstat(void)
1982{
1983 if (system_state != SYSTEM_RUNNING)
1984 return;
1985
7b8da4c7 1986 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
f01f17d3
MH
1987 return;
1988
1989 if (!need_update(smp_processor_id()))
1990 return;
1991
1992 /*
1993 * Just refresh counters and do not care about the pending delayed
1994 * vmstat_update. It doesn't fire that often to matter and canceling
1995 * it would be too expensive from this path.
1996 * vmstat_shepherd will take care about that for us.
1997 */
1998 refresh_cpu_vm_stats(false);
1999}
2000
7cc36bbd
CL
2001/*
2002 * Shepherd worker thread that checks the
2003 * differentials of processors that have their worker
2004 * threads for vm statistics updates disabled because of
2005 * inactivity.
2006 */
2007static void vmstat_shepherd(struct work_struct *w);
2008
0eb77e98 2009static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
7cc36bbd
CL
2010
2011static void vmstat_shepherd(struct work_struct *w)
2012{
2013 int cpu;
2014
7625eccd 2015 cpus_read_lock();
7cc36bbd 2016 /* Check processors whose vmstat worker threads have been disabled */
7b8da4c7 2017 for_each_online_cpu(cpu) {
f01f17d3 2018 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
7cc36bbd 2019
7b8da4c7 2020 if (!delayed_work_pending(dw) && need_update(cpu))
ce612879 2021 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
fbcc8183
JB
2022
2023 cond_resched();
f01f17d3 2024 }
7625eccd 2025 cpus_read_unlock();
7cc36bbd
CL
2026
2027 schedule_delayed_work(&shepherd,
98f4ebb2 2028 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
2029}
2030
7cc36bbd 2031static void __init start_shepherd_timer(void)
d1187ed2 2032{
7cc36bbd
CL
2033 int cpu;
2034
2035 for_each_possible_cpu(cpu)
ccde8bd4 2036 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
7cc36bbd
CL
2037 vmstat_update);
2038
7cc36bbd
CL
2039 schedule_delayed_work(&shepherd,
2040 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
2041}
2042
03e86dba
TC
2043static void __init init_cpu_node_state(void)
2044{
4c501327 2045 int node;
03e86dba 2046
4c501327 2047 for_each_online_node(node) {
b55032f1 2048 if (!cpumask_empty(cpumask_of_node(node)))
4c501327
SAS
2049 node_set_state(node, N_CPU);
2050 }
03e86dba
TC
2051}
2052
5438da97
SAS
2053static int vmstat_cpu_online(unsigned int cpu)
2054{
2055 refresh_zone_stat_thresholds();
734c1570
OS
2056
2057 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2058 node_set_state(cpu_to_node(cpu), N_CPU);
2059 set_migration_target_nodes();
2060 }
2061
5438da97
SAS
2062 return 0;
2063}
2064
2065static int vmstat_cpu_down_prep(unsigned int cpu)
2066{
2067 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2068 return 0;
2069}
2070
2071static int vmstat_cpu_dead(unsigned int cpu)
807a1bd2 2072{
4c501327 2073 const struct cpumask *node_cpus;
5438da97 2074 int node;
807a1bd2 2075
5438da97
SAS
2076 node = cpu_to_node(cpu);
2077
2078 refresh_zone_stat_thresholds();
4c501327 2079 node_cpus = cpumask_of_node(node);
b55032f1 2080 if (!cpumask_empty(node_cpus))
5438da97 2081 return 0;
807a1bd2
TK
2082
2083 node_clear_state(node, N_CPU);
734c1570
OS
2084 set_migration_target_nodes();
2085
5438da97 2086 return 0;
807a1bd2
TK
2087}
2088
8f32f7e5 2089#endif
df9ecaba 2090
ce612879
MH
2091struct workqueue_struct *mm_percpu_wq;
2092
597b7305 2093void __init init_mm_internals(void)
df9ecaba 2094{
ce612879 2095 int ret __maybe_unused;
5438da97 2096
80d136e1 2097 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
ce612879
MH
2098
2099#ifdef CONFIG_SMP
5438da97
SAS
2100 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2101 NULL, vmstat_cpu_dead);
2102 if (ret < 0)
2103 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2104
2105 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2106 vmstat_cpu_online,
2107 vmstat_cpu_down_prep);
2108 if (ret < 0)
2109 pr_err("vmstat: failed to register 'online' hotplug state\n");
2110
7625eccd 2111 cpus_read_lock();
03e86dba 2112 init_cpu_node_state();
7625eccd 2113 cpus_read_unlock();
d1187ed2 2114
7cc36bbd 2115 start_shepherd_timer();
8f32f7e5 2116#endif
734c1570 2117 migrate_on_reclaim_init();
8f32f7e5 2118#ifdef CONFIG_PROC_FS
fddda2b7 2119 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
abaed011 2120 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
fddda2b7
CH
2121 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2122 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
8f32f7e5 2123#endif
df9ecaba 2124}
d7a5752c
MG
2125
2126#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
d7a5752c
MG
2127
2128/*
2129 * Return an index indicating how much of the available free memory is
2130 * unusable for an allocation of the requested size.
2131 */
2132static int unusable_free_index(unsigned int order,
2133 struct contig_page_info *info)
2134{
2135 /* No free memory is interpreted as all free memory is unusable */
2136 if (info->free_pages == 0)
2137 return 1000;
2138
2139 /*
2140 * Index should be a value between 0 and 1. Return a value to 3
2141 * decimal places.
2142 *
2143 * 0 => no fragmentation
2144 * 1 => high fragmentation
2145 */
2146 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2147
2148}
2149
2150static void unusable_show_print(struct seq_file *m,
2151 pg_data_t *pgdat, struct zone *zone)
2152{
2153 unsigned int order;
2154 int index;
2155 struct contig_page_info info;
2156
2157 seq_printf(m, "Node %d, zone %8s ",
2158 pgdat->node_id,
2159 zone->name);
2160 for (order = 0; order < MAX_ORDER; ++order) {
2161 fill_contig_page_info(zone, order, &info);
2162 index = unusable_free_index(order, &info);
2163 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2164 }
2165
2166 seq_putc(m, '\n');
2167}
2168
2169/*
2170 * Display unusable free space index
2171 *
2172 * The unusable free space index measures how much of the available free
2173 * memory cannot be used to satisfy an allocation of a given size and is a
2174 * value between 0 and 1. The higher the value, the more of free memory is
2175 * unusable and by implication, the worse the external fragmentation is. This
2176 * can be expressed as a percentage by multiplying by 100.
2177 */
2178static int unusable_show(struct seq_file *m, void *arg)
2179{
2180 pg_data_t *pgdat = (pg_data_t *)arg;
2181
2182 /* check memoryless node */
a47b53c5 2183 if (!node_state(pgdat->node_id, N_MEMORY))
d7a5752c
MG
2184 return 0;
2185
727c080f 2186 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
d7a5752c
MG
2187
2188 return 0;
2189}
2190
01a99560 2191static const struct seq_operations unusable_sops = {
d7a5752c
MG
2192 .start = frag_start,
2193 .next = frag_next,
2194 .stop = frag_stop,
2195 .show = unusable_show,
2196};
2197
01a99560 2198DEFINE_SEQ_ATTRIBUTE(unusable);
d7a5752c 2199
f1a5ab12
MG
2200static void extfrag_show_print(struct seq_file *m,
2201 pg_data_t *pgdat, struct zone *zone)
2202{
2203 unsigned int order;
2204 int index;
2205
2206 /* Alloc on stack as interrupts are disabled for zone walk */
2207 struct contig_page_info info;
2208
2209 seq_printf(m, "Node %d, zone %8s ",
2210 pgdat->node_id,
2211 zone->name);
2212 for (order = 0; order < MAX_ORDER; ++order) {
2213 fill_contig_page_info(zone, order, &info);
56de7263 2214 index = __fragmentation_index(order, &info);
a9970586 2215 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
f1a5ab12
MG
2216 }
2217
2218 seq_putc(m, '\n');
2219}
2220
2221/*
2222 * Display fragmentation index for orders that allocations would fail for
2223 */
2224static int extfrag_show(struct seq_file *m, void *arg)
2225{
2226 pg_data_t *pgdat = (pg_data_t *)arg;
2227
727c080f 2228 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
f1a5ab12
MG
2229
2230 return 0;
2231}
2232
01a99560 2233static const struct seq_operations extfrag_sops = {
f1a5ab12
MG
2234 .start = frag_start,
2235 .next = frag_next,
2236 .stop = frag_stop,
2237 .show = extfrag_show,
2238};
2239
01a99560 2240DEFINE_SEQ_ATTRIBUTE(extfrag);
f1a5ab12 2241
d7a5752c
MG
2242static int __init extfrag_debug_init(void)
2243{
bde8bd8a
S
2244 struct dentry *extfrag_debug_root;
2245
d7a5752c 2246 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
d7a5752c 2247
d9f7979c 2248 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
01a99560 2249 &unusable_fops);
d7a5752c 2250
d9f7979c 2251 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
01a99560 2252 &extfrag_fops);
f1a5ab12 2253
d7a5752c
MG
2254 return 0;
2255}
2256
2257module_init(extfrag_debug_init);
2258#endif