sysctl: pass kernel pointers to ->proc_handler
[linux-block.git] / mm / vmstat.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
f6ac2354
CL
2/*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
2244b95a
CL
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
7cc36bbd 11 * Copyright (C) 2008-2014 Christoph Lameter
f6ac2354 12 */
8f32f7e5 13#include <linux/fs.h>
f6ac2354 14#include <linux/mm.h>
4e950f6f 15#include <linux/err.h>
2244b95a 16#include <linux/module.h>
5a0e3ad6 17#include <linux/slab.h>
df9ecaba 18#include <linux/cpu.h>
7cc36bbd 19#include <linux/cpumask.h>
c748e134 20#include <linux/vmstat.h>
3c486871
AM
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/debugfs.h>
e8edc6e0 24#include <linux/sched.h>
f1a5ab12 25#include <linux/math64.h>
79da826a 26#include <linux/writeback.h>
36deb0be 27#include <linux/compaction.h>
6e543d57 28#include <linux/mm_inline.h>
48c96a36
JK
29#include <linux/page_ext.h>
30#include <linux/page_owner.h>
6e543d57
LD
31
32#include "internal.h"
f6ac2354 33
1d90ca89
KW
34#define NUMA_STATS_THRESHOLD (U16_MAX - 2)
35
4518085e
KW
36#ifdef CONFIG_NUMA
37int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38
39/* zero numa counters within a zone */
40static void zero_zone_numa_counters(struct zone *zone)
41{
42 int item, cpu;
43
44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
45 atomic_long_set(&zone->vm_numa_stat[item], 0);
46 for_each_online_cpu(cpu)
47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
48 = 0;
49 }
50}
51
52/* zero numa counters of all the populated zones */
53static void zero_zones_numa_counters(void)
54{
55 struct zone *zone;
56
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
59}
60
61/* zero global numa counters */
62static void zero_global_numa_counters(void)
63{
64 int item;
65
66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
67 atomic_long_set(&vm_numa_stat[item], 0);
68}
69
70static void invalid_numa_statistics(void)
71{
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
74}
75
76static DEFINE_MUTEX(vm_numa_stat_lock);
77
78int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
32927393 79 void *buffer, size_t *length, loff_t *ppos)
4518085e
KW
80{
81 int ret, oldval;
82
83 mutex_lock(&vm_numa_stat_lock);
84 if (write)
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 if (ret || !write)
88 goto out;
89
90 if (oldval == sysctl_vm_numa_stat)
91 goto out;
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
95 } else {
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
99 }
100
101out:
102 mutex_unlock(&vm_numa_stat_lock);
103 return ret;
104}
105#endif
106
f8891e5e
CL
107#ifdef CONFIG_VM_EVENT_COUNTERS
108DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109EXPORT_PER_CPU_SYMBOL(vm_event_states);
110
31f961a8 111static void sum_vm_events(unsigned long *ret)
f8891e5e 112{
9eccf2a8 113 int cpu;
f8891e5e
CL
114 int i;
115
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117
31f961a8 118 for_each_online_cpu(cpu) {
f8891e5e
CL
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120
f8891e5e
CL
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
123 }
124}
125
126/*
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
130*/
131void all_vm_events(unsigned long *ret)
132{
b5be1132 133 get_online_cpus();
31f961a8 134 sum_vm_events(ret);
b5be1132 135 put_online_cpus();
f8891e5e 136}
32dd66fc 137EXPORT_SYMBOL_GPL(all_vm_events);
f8891e5e 138
f8891e5e
CL
139/*
140 * Fold the foreign cpu events into our own.
141 *
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
144 */
145void vm_events_fold_cpu(int cpu)
146{
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 int i;
149
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
153 }
154}
f8891e5e
CL
155
156#endif /* CONFIG_VM_EVENT_COUNTERS */
157
2244b95a
CL
158/*
159 * Manage combined zone based / global counters
160 *
161 * vm_stat contains the global counters
162 */
75ef7184 163atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
3a321d2a 164atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
75ef7184
MG
165atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
166EXPORT_SYMBOL(vm_zone_stat);
3a321d2a 167EXPORT_SYMBOL(vm_numa_stat);
75ef7184 168EXPORT_SYMBOL(vm_node_stat);
2244b95a
CL
169
170#ifdef CONFIG_SMP
171
b44129b3 172int calculate_pressure_threshold(struct zone *zone)
88f5acf8
MG
173{
174 int threshold;
175 int watermark_distance;
176
177 /*
178 * As vmstats are not up to date, there is drift between the estimated
179 * and real values. For high thresholds and a high number of CPUs, it
180 * is possible for the min watermark to be breached while the estimated
181 * value looks fine. The pressure threshold is a reduced value such
182 * that even the maximum amount of drift will not accidentally breach
183 * the min watermark
184 */
185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
186 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
187
188 /*
189 * Maximum threshold is 125
190 */
191 threshold = min(125, threshold);
192
193 return threshold;
194}
195
b44129b3 196int calculate_normal_threshold(struct zone *zone)
df9ecaba
CL
197{
198 int threshold;
199 int mem; /* memory in 128 MB units */
200
201 /*
202 * The threshold scales with the number of processors and the amount
203 * of memory per zone. More memory means that we can defer updates for
204 * longer, more processors could lead to more contention.
205 * fls() is used to have a cheap way of logarithmic scaling.
206 *
207 * Some sample thresholds:
208 *
209 * Threshold Processors (fls) Zonesize fls(mem+1)
210 * ------------------------------------------------------------------
211 * 8 1 1 0.9-1 GB 4
212 * 16 2 2 0.9-1 GB 4
213 * 20 2 2 1-2 GB 5
214 * 24 2 2 2-4 GB 6
215 * 28 2 2 4-8 GB 7
216 * 32 2 2 8-16 GB 8
217 * 4 2 2 <128M 1
218 * 30 4 3 2-4 GB 5
219 * 48 4 3 8-16 GB 8
220 * 32 8 4 1-2 GB 4
221 * 32 8 4 0.9-1GB 4
222 * 10 16 5 <128M 1
223 * 40 16 5 900M 4
224 * 70 64 7 2-4 GB 5
225 * 84 64 7 4-8 GB 6
226 * 108 512 9 4-8 GB 6
227 * 125 1024 10 8-16 GB 8
228 * 125 1024 10 16-32 GB 9
229 */
230
9705bea5 231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
df9ecaba
CL
232
233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
234
235 /*
236 * Maximum threshold is 125
237 */
238 threshold = min(125, threshold);
239
240 return threshold;
241}
2244b95a
CL
242
243/*
df9ecaba 244 * Refresh the thresholds for each zone.
2244b95a 245 */
a6cccdc3 246void refresh_zone_stat_thresholds(void)
2244b95a 247{
75ef7184 248 struct pglist_data *pgdat;
df9ecaba
CL
249 struct zone *zone;
250 int cpu;
251 int threshold;
252
75ef7184
MG
253 /* Zero current pgdat thresholds */
254 for_each_online_pgdat(pgdat) {
255 for_each_online_cpu(cpu) {
256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
257 }
258 }
259
ee99c71c 260 for_each_populated_zone(zone) {
75ef7184 261 struct pglist_data *pgdat = zone->zone_pgdat;
aa454840
CL
262 unsigned long max_drift, tolerate_drift;
263
b44129b3 264 threshold = calculate_normal_threshold(zone);
df9ecaba 265
75ef7184
MG
266 for_each_online_cpu(cpu) {
267 int pgdat_threshold;
268
99dcc3e5
CL
269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
270 = threshold;
1d90ca89 271
75ef7184
MG
272 /* Base nodestat threshold on the largest populated zone. */
273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
275 = max(threshold, pgdat_threshold);
276 }
277
aa454840
CL
278 /*
279 * Only set percpu_drift_mark if there is a danger that
280 * NR_FREE_PAGES reports the low watermark is ok when in fact
281 * the min watermark could be breached by an allocation
282 */
283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
284 max_drift = num_online_cpus() * threshold;
285 if (max_drift > tolerate_drift)
286 zone->percpu_drift_mark = high_wmark_pages(zone) +
287 max_drift;
df9ecaba 288 }
2244b95a
CL
289}
290
b44129b3
MG
291void set_pgdat_percpu_threshold(pg_data_t *pgdat,
292 int (*calculate_pressure)(struct zone *))
88f5acf8
MG
293{
294 struct zone *zone;
295 int cpu;
296 int threshold;
297 int i;
298
88f5acf8
MG
299 for (i = 0; i < pgdat->nr_zones; i++) {
300 zone = &pgdat->node_zones[i];
301 if (!zone->percpu_drift_mark)
302 continue;
303
b44129b3 304 threshold = (*calculate_pressure)(zone);
1d90ca89 305 for_each_online_cpu(cpu)
88f5acf8
MG
306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
307 = threshold;
308 }
88f5acf8
MG
309}
310
2244b95a 311/*
bea04b07
JZ
312 * For use when we know that interrupts are disabled,
313 * or when we know that preemption is disabled and that
314 * particular counter cannot be updated from interrupt context.
2244b95a
CL
315 */
316void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 317 long delta)
2244b95a 318{
12938a92
CL
319 struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 s8 __percpu *p = pcp->vm_stat_diff + item;
2244b95a 321 long x;
12938a92
CL
322 long t;
323
324 x = delta + __this_cpu_read(*p);
2244b95a 325
12938a92 326 t = __this_cpu_read(pcp->stat_threshold);
2244b95a 327
12938a92 328 if (unlikely(x > t || x < -t)) {
2244b95a
CL
329 zone_page_state_add(x, zone, item);
330 x = 0;
331 }
12938a92 332 __this_cpu_write(*p, x);
2244b95a
CL
333}
334EXPORT_SYMBOL(__mod_zone_page_state);
335
75ef7184
MG
336void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
337 long delta)
338{
339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
340 s8 __percpu *p = pcp->vm_node_stat_diff + item;
341 long x;
342 long t;
343
344 x = delta + __this_cpu_read(*p);
345
346 t = __this_cpu_read(pcp->stat_threshold);
347
348 if (unlikely(x > t || x < -t)) {
349 node_page_state_add(x, pgdat, item);
350 x = 0;
351 }
352 __this_cpu_write(*p, x);
353}
354EXPORT_SYMBOL(__mod_node_page_state);
355
2244b95a
CL
356/*
357 * Optimized increment and decrement functions.
358 *
359 * These are only for a single page and therefore can take a struct page *
360 * argument instead of struct zone *. This allows the inclusion of the code
361 * generated for page_zone(page) into the optimized functions.
362 *
363 * No overflow check is necessary and therefore the differential can be
364 * incremented or decremented in place which may allow the compilers to
365 * generate better code.
2244b95a
CL
366 * The increment or decrement is known and therefore one boundary check can
367 * be omitted.
368 *
df9ecaba
CL
369 * NOTE: These functions are very performance sensitive. Change only
370 * with care.
371 *
2244b95a
CL
372 * Some processors have inc/dec instructions that are atomic vs an interrupt.
373 * However, the code must first determine the differential location in a zone
374 * based on the processor number and then inc/dec the counter. There is no
375 * guarantee without disabling preemption that the processor will not change
376 * in between and therefore the atomicity vs. interrupt cannot be exploited
377 * in a useful way here.
378 */
c8785385 379void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 380{
12938a92
CL
381 struct per_cpu_pageset __percpu *pcp = zone->pageset;
382 s8 __percpu *p = pcp->vm_stat_diff + item;
383 s8 v, t;
2244b95a 384
908ee0f1 385 v = __this_cpu_inc_return(*p);
12938a92
CL
386 t = __this_cpu_read(pcp->stat_threshold);
387 if (unlikely(v > t)) {
388 s8 overstep = t >> 1;
df9ecaba 389
12938a92
CL
390 zone_page_state_add(v + overstep, zone, item);
391 __this_cpu_write(*p, -overstep);
2244b95a
CL
392 }
393}
ca889e6c 394
75ef7184
MG
395void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
396{
397 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
398 s8 __percpu *p = pcp->vm_node_stat_diff + item;
399 s8 v, t;
400
401 v = __this_cpu_inc_return(*p);
402 t = __this_cpu_read(pcp->stat_threshold);
403 if (unlikely(v > t)) {
404 s8 overstep = t >> 1;
405
406 node_page_state_add(v + overstep, pgdat, item);
407 __this_cpu_write(*p, -overstep);
408 }
409}
410
ca889e6c
CL
411void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
412{
413 __inc_zone_state(page_zone(page), item);
414}
2244b95a
CL
415EXPORT_SYMBOL(__inc_zone_page_state);
416
75ef7184
MG
417void __inc_node_page_state(struct page *page, enum node_stat_item item)
418{
419 __inc_node_state(page_pgdat(page), item);
420}
421EXPORT_SYMBOL(__inc_node_page_state);
422
c8785385 423void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 424{
12938a92
CL
425 struct per_cpu_pageset __percpu *pcp = zone->pageset;
426 s8 __percpu *p = pcp->vm_stat_diff + item;
427 s8 v, t;
2244b95a 428
908ee0f1 429 v = __this_cpu_dec_return(*p);
12938a92
CL
430 t = __this_cpu_read(pcp->stat_threshold);
431 if (unlikely(v < - t)) {
432 s8 overstep = t >> 1;
2244b95a 433
12938a92
CL
434 zone_page_state_add(v - overstep, zone, item);
435 __this_cpu_write(*p, overstep);
2244b95a
CL
436 }
437}
c8785385 438
75ef7184
MG
439void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
440{
441 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
442 s8 __percpu *p = pcp->vm_node_stat_diff + item;
443 s8 v, t;
444
445 v = __this_cpu_dec_return(*p);
446 t = __this_cpu_read(pcp->stat_threshold);
447 if (unlikely(v < - t)) {
448 s8 overstep = t >> 1;
449
450 node_page_state_add(v - overstep, pgdat, item);
451 __this_cpu_write(*p, overstep);
452 }
453}
454
c8785385
CL
455void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
456{
457 __dec_zone_state(page_zone(page), item);
458}
2244b95a
CL
459EXPORT_SYMBOL(__dec_zone_page_state);
460
75ef7184
MG
461void __dec_node_page_state(struct page *page, enum node_stat_item item)
462{
463 __dec_node_state(page_pgdat(page), item);
464}
465EXPORT_SYMBOL(__dec_node_page_state);
466
4156153c 467#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
7c839120
CL
468/*
469 * If we have cmpxchg_local support then we do not need to incur the overhead
470 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
471 *
472 * mod_state() modifies the zone counter state through atomic per cpu
473 * operations.
474 *
475 * Overstep mode specifies how overstep should handled:
476 * 0 No overstepping
477 * 1 Overstepping half of threshold
478 * -1 Overstepping minus half of threshold
479*/
75ef7184
MG
480static inline void mod_zone_state(struct zone *zone,
481 enum zone_stat_item item, long delta, int overstep_mode)
7c839120
CL
482{
483 struct per_cpu_pageset __percpu *pcp = zone->pageset;
484 s8 __percpu *p = pcp->vm_stat_diff + item;
485 long o, n, t, z;
486
487 do {
488 z = 0; /* overflow to zone counters */
489
490 /*
491 * The fetching of the stat_threshold is racy. We may apply
492 * a counter threshold to the wrong the cpu if we get
d3bc2367
CL
493 * rescheduled while executing here. However, the next
494 * counter update will apply the threshold again and
495 * therefore bring the counter under the threshold again.
496 *
497 * Most of the time the thresholds are the same anyways
498 * for all cpus in a zone.
7c839120
CL
499 */
500 t = this_cpu_read(pcp->stat_threshold);
501
502 o = this_cpu_read(*p);
503 n = delta + o;
504
505 if (n > t || n < -t) {
506 int os = overstep_mode * (t >> 1) ;
507
508 /* Overflow must be added to zone counters */
509 z = n + os;
510 n = -os;
511 }
512 } while (this_cpu_cmpxchg(*p, o, n) != o);
513
514 if (z)
515 zone_page_state_add(z, zone, item);
516}
517
518void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 519 long delta)
7c839120 520{
75ef7184 521 mod_zone_state(zone, item, delta, 0);
7c839120
CL
522}
523EXPORT_SYMBOL(mod_zone_page_state);
524
7c839120
CL
525void inc_zone_page_state(struct page *page, enum zone_stat_item item)
526{
75ef7184 527 mod_zone_state(page_zone(page), item, 1, 1);
7c839120
CL
528}
529EXPORT_SYMBOL(inc_zone_page_state);
530
531void dec_zone_page_state(struct page *page, enum zone_stat_item item)
532{
75ef7184 533 mod_zone_state(page_zone(page), item, -1, -1);
7c839120
CL
534}
535EXPORT_SYMBOL(dec_zone_page_state);
75ef7184
MG
536
537static inline void mod_node_state(struct pglist_data *pgdat,
538 enum node_stat_item item, int delta, int overstep_mode)
539{
540 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
541 s8 __percpu *p = pcp->vm_node_stat_diff + item;
542 long o, n, t, z;
543
544 do {
545 z = 0; /* overflow to node counters */
546
547 /*
548 * The fetching of the stat_threshold is racy. We may apply
549 * a counter threshold to the wrong the cpu if we get
550 * rescheduled while executing here. However, the next
551 * counter update will apply the threshold again and
552 * therefore bring the counter under the threshold again.
553 *
554 * Most of the time the thresholds are the same anyways
555 * for all cpus in a node.
556 */
557 t = this_cpu_read(pcp->stat_threshold);
558
559 o = this_cpu_read(*p);
560 n = delta + o;
561
562 if (n > t || n < -t) {
563 int os = overstep_mode * (t >> 1) ;
564
565 /* Overflow must be added to node counters */
566 z = n + os;
567 n = -os;
568 }
569 } while (this_cpu_cmpxchg(*p, o, n) != o);
570
571 if (z)
572 node_page_state_add(z, pgdat, item);
573}
574
575void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
576 long delta)
577{
578 mod_node_state(pgdat, item, delta, 0);
579}
580EXPORT_SYMBOL(mod_node_page_state);
581
582void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
583{
584 mod_node_state(pgdat, item, 1, 1);
585}
586
587void inc_node_page_state(struct page *page, enum node_stat_item item)
588{
589 mod_node_state(page_pgdat(page), item, 1, 1);
590}
591EXPORT_SYMBOL(inc_node_page_state);
592
593void dec_node_page_state(struct page *page, enum node_stat_item item)
594{
595 mod_node_state(page_pgdat(page), item, -1, -1);
596}
597EXPORT_SYMBOL(dec_node_page_state);
7c839120
CL
598#else
599/*
600 * Use interrupt disable to serialize counter updates
601 */
602void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
6cdb18ad 603 long delta)
7c839120
CL
604{
605 unsigned long flags;
606
607 local_irq_save(flags);
608 __mod_zone_page_state(zone, item, delta);
609 local_irq_restore(flags);
610}
611EXPORT_SYMBOL(mod_zone_page_state);
612
2244b95a
CL
613void inc_zone_page_state(struct page *page, enum zone_stat_item item)
614{
615 unsigned long flags;
616 struct zone *zone;
2244b95a
CL
617
618 zone = page_zone(page);
619 local_irq_save(flags);
ca889e6c 620 __inc_zone_state(zone, item);
2244b95a
CL
621 local_irq_restore(flags);
622}
623EXPORT_SYMBOL(inc_zone_page_state);
624
625void dec_zone_page_state(struct page *page, enum zone_stat_item item)
626{
627 unsigned long flags;
2244b95a 628
2244b95a 629 local_irq_save(flags);
a302eb4e 630 __dec_zone_page_state(page, item);
2244b95a
CL
631 local_irq_restore(flags);
632}
633EXPORT_SYMBOL(dec_zone_page_state);
634
75ef7184
MG
635void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
636{
637 unsigned long flags;
638
639 local_irq_save(flags);
640 __inc_node_state(pgdat, item);
641 local_irq_restore(flags);
642}
643EXPORT_SYMBOL(inc_node_state);
644
645void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
646 long delta)
647{
648 unsigned long flags;
649
650 local_irq_save(flags);
651 __mod_node_page_state(pgdat, item, delta);
652 local_irq_restore(flags);
653}
654EXPORT_SYMBOL(mod_node_page_state);
655
656void inc_node_page_state(struct page *page, enum node_stat_item item)
657{
658 unsigned long flags;
659 struct pglist_data *pgdat;
660
661 pgdat = page_pgdat(page);
662 local_irq_save(flags);
663 __inc_node_state(pgdat, item);
664 local_irq_restore(flags);
665}
666EXPORT_SYMBOL(inc_node_page_state);
667
668void dec_node_page_state(struct page *page, enum node_stat_item item)
669{
670 unsigned long flags;
671
672 local_irq_save(flags);
673 __dec_node_page_state(page, item);
674 local_irq_restore(flags);
675}
676EXPORT_SYMBOL(dec_node_page_state);
677#endif
7cc36bbd
CL
678
679/*
680 * Fold a differential into the global counters.
681 * Returns the number of counters updated.
682 */
3a321d2a
KW
683#ifdef CONFIG_NUMA
684static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
685{
686 int i;
687 int changes = 0;
688
689 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
690 if (zone_diff[i]) {
691 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
692 changes++;
693 }
694
695 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
696 if (numa_diff[i]) {
697 atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
698 changes++;
699 }
700
701 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
702 if (node_diff[i]) {
703 atomic_long_add(node_diff[i], &vm_node_stat[i]);
704 changes++;
705 }
706 return changes;
707}
708#else
75ef7184 709static int fold_diff(int *zone_diff, int *node_diff)
4edb0748
CL
710{
711 int i;
7cc36bbd 712 int changes = 0;
4edb0748
CL
713
714 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
75ef7184
MG
715 if (zone_diff[i]) {
716 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
717 changes++;
718 }
719
720 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
721 if (node_diff[i]) {
722 atomic_long_add(node_diff[i], &vm_node_stat[i]);
7cc36bbd
CL
723 changes++;
724 }
725 return changes;
4edb0748 726}
3a321d2a 727#endif /* CONFIG_NUMA */
4edb0748 728
2244b95a 729/*
2bb921e5 730 * Update the zone counters for the current cpu.
a7f75e25 731 *
4037d452
CL
732 * Note that refresh_cpu_vm_stats strives to only access
733 * node local memory. The per cpu pagesets on remote zones are placed
734 * in the memory local to the processor using that pageset. So the
735 * loop over all zones will access a series of cachelines local to
736 * the processor.
737 *
738 * The call to zone_page_state_add updates the cachelines with the
739 * statistics in the remote zone struct as well as the global cachelines
740 * with the global counters. These could cause remote node cache line
741 * bouncing and will have to be only done when necessary.
7cc36bbd
CL
742 *
743 * The function returns the number of global counters updated.
2244b95a 744 */
0eb77e98 745static int refresh_cpu_vm_stats(bool do_pagesets)
2244b95a 746{
75ef7184 747 struct pglist_data *pgdat;
2244b95a
CL
748 struct zone *zone;
749 int i;
75ef7184 750 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
3a321d2a
KW
751#ifdef CONFIG_NUMA
752 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
753#endif
75ef7184 754 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
7cc36bbd 755 int changes = 0;
2244b95a 756
ee99c71c 757 for_each_populated_zone(zone) {
fbc2edb0 758 struct per_cpu_pageset __percpu *p = zone->pageset;
2244b95a 759
fbc2edb0
CL
760 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
761 int v;
2244b95a 762
fbc2edb0
CL
763 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
764 if (v) {
a7f75e25 765
a7f75e25 766 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 767 global_zone_diff[i] += v;
4037d452
CL
768#ifdef CONFIG_NUMA
769 /* 3 seconds idle till flush */
fbc2edb0 770 __this_cpu_write(p->expire, 3);
4037d452 771#endif
2244b95a 772 }
fbc2edb0 773 }
4037d452 774#ifdef CONFIG_NUMA
3a321d2a
KW
775 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
776 int v;
777
778 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
779 if (v) {
780
781 atomic_long_add(v, &zone->vm_numa_stat[i]);
782 global_numa_diff[i] += v;
783 __this_cpu_write(p->expire, 3);
784 }
785 }
786
0eb77e98
CL
787 if (do_pagesets) {
788 cond_resched();
789 /*
790 * Deal with draining the remote pageset of this
791 * processor
792 *
793 * Check if there are pages remaining in this pageset
794 * if not then there is nothing to expire.
795 */
796 if (!__this_cpu_read(p->expire) ||
fbc2edb0 797 !__this_cpu_read(p->pcp.count))
0eb77e98 798 continue;
4037d452 799
0eb77e98
CL
800 /*
801 * We never drain zones local to this processor.
802 */
803 if (zone_to_nid(zone) == numa_node_id()) {
804 __this_cpu_write(p->expire, 0);
805 continue;
806 }
4037d452 807
0eb77e98
CL
808 if (__this_cpu_dec_return(p->expire))
809 continue;
4037d452 810
0eb77e98
CL
811 if (__this_cpu_read(p->pcp.count)) {
812 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
813 changes++;
814 }
7cc36bbd 815 }
4037d452 816#endif
2244b95a 817 }
75ef7184
MG
818
819 for_each_online_pgdat(pgdat) {
820 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
821
822 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
823 int v;
824
825 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
826 if (v) {
827 atomic_long_add(v, &pgdat->vm_stat[i]);
828 global_node_diff[i] += v;
829 }
830 }
831 }
832
3a321d2a
KW
833#ifdef CONFIG_NUMA
834 changes += fold_diff(global_zone_diff, global_numa_diff,
835 global_node_diff);
836#else
75ef7184 837 changes += fold_diff(global_zone_diff, global_node_diff);
3a321d2a 838#endif
7cc36bbd 839 return changes;
2244b95a
CL
840}
841
2bb921e5
CL
842/*
843 * Fold the data for an offline cpu into the global array.
844 * There cannot be any access by the offline cpu and therefore
845 * synchronization is simplified.
846 */
847void cpu_vm_stats_fold(int cpu)
848{
75ef7184 849 struct pglist_data *pgdat;
2bb921e5
CL
850 struct zone *zone;
851 int i;
75ef7184 852 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
3a321d2a
KW
853#ifdef CONFIG_NUMA
854 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
855#endif
75ef7184 856 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
2bb921e5
CL
857
858 for_each_populated_zone(zone) {
859 struct per_cpu_pageset *p;
860
861 p = per_cpu_ptr(zone->pageset, cpu);
862
863 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
864 if (p->vm_stat_diff[i]) {
865 int v;
866
867 v = p->vm_stat_diff[i];
868 p->vm_stat_diff[i] = 0;
869 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 870 global_zone_diff[i] += v;
2bb921e5 871 }
3a321d2a
KW
872
873#ifdef CONFIG_NUMA
874 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
875 if (p->vm_numa_stat_diff[i]) {
876 int v;
877
878 v = p->vm_numa_stat_diff[i];
879 p->vm_numa_stat_diff[i] = 0;
880 atomic_long_add(v, &zone->vm_numa_stat[i]);
881 global_numa_diff[i] += v;
882 }
883#endif
2bb921e5
CL
884 }
885
75ef7184
MG
886 for_each_online_pgdat(pgdat) {
887 struct per_cpu_nodestat *p;
888
889 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
890
891 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
892 if (p->vm_node_stat_diff[i]) {
893 int v;
894
895 v = p->vm_node_stat_diff[i];
896 p->vm_node_stat_diff[i] = 0;
897 atomic_long_add(v, &pgdat->vm_stat[i]);
898 global_node_diff[i] += v;
899 }
900 }
901
3a321d2a
KW
902#ifdef CONFIG_NUMA
903 fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
904#else
75ef7184 905 fold_diff(global_zone_diff, global_node_diff);
3a321d2a 906#endif
2bb921e5
CL
907}
908
40f4b1ea
CS
909/*
910 * this is only called if !populated_zone(zone), which implies no other users of
911 * pset->vm_stat_diff[] exsist.
912 */
5a883813
MK
913void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
914{
915 int i;
916
917 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
918 if (pset->vm_stat_diff[i]) {
919 int v = pset->vm_stat_diff[i];
920 pset->vm_stat_diff[i] = 0;
921 atomic_long_add(v, &zone->vm_stat[i]);
75ef7184 922 atomic_long_add(v, &vm_zone_stat[i]);
5a883813 923 }
3a321d2a
KW
924
925#ifdef CONFIG_NUMA
926 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
927 if (pset->vm_numa_stat_diff[i]) {
928 int v = pset->vm_numa_stat_diff[i];
929
930 pset->vm_numa_stat_diff[i] = 0;
931 atomic_long_add(v, &zone->vm_numa_stat[i]);
932 atomic_long_add(v, &vm_numa_stat[i]);
933 }
934#endif
5a883813 935}
2244b95a
CL
936#endif
937
ca889e6c 938#ifdef CONFIG_NUMA
3a321d2a
KW
939void __inc_numa_state(struct zone *zone,
940 enum numa_stat_item item)
941{
942 struct per_cpu_pageset __percpu *pcp = zone->pageset;
1d90ca89
KW
943 u16 __percpu *p = pcp->vm_numa_stat_diff + item;
944 u16 v;
3a321d2a
KW
945
946 v = __this_cpu_inc_return(*p);
3a321d2a 947
1d90ca89
KW
948 if (unlikely(v > NUMA_STATS_THRESHOLD)) {
949 zone_numa_state_add(v, zone, item);
950 __this_cpu_write(*p, 0);
3a321d2a
KW
951 }
952}
953
c2d42c16 954/*
75ef7184
MG
955 * Determine the per node value of a stat item. This function
956 * is called frequently in a NUMA machine, so try to be as
957 * frugal as possible.
c2d42c16 958 */
75ef7184
MG
959unsigned long sum_zone_node_page_state(int node,
960 enum zone_stat_item item)
c2d42c16
AM
961{
962 struct zone *zones = NODE_DATA(node)->node_zones;
e87d59f7
JK
963 int i;
964 unsigned long count = 0;
c2d42c16 965
e87d59f7
JK
966 for (i = 0; i < MAX_NR_ZONES; i++)
967 count += zone_page_state(zones + i, item);
968
969 return count;
c2d42c16
AM
970}
971
63803222
KW
972/*
973 * Determine the per node value of a numa stat item. To avoid deviation,
974 * the per cpu stat number in vm_numa_stat_diff[] is also included.
975 */
3a321d2a
KW
976unsigned long sum_zone_numa_state(int node,
977 enum numa_stat_item item)
978{
979 struct zone *zones = NODE_DATA(node)->node_zones;
980 int i;
981 unsigned long count = 0;
982
983 for (i = 0; i < MAX_NR_ZONES; i++)
63803222 984 count += zone_numa_state_snapshot(zones + i, item);
3a321d2a
KW
985
986 return count;
987}
988
75ef7184
MG
989/*
990 * Determine the per node value of a stat item.
991 */
992unsigned long node_page_state(struct pglist_data *pgdat,
993 enum node_stat_item item)
994{
995 long x = atomic_long_read(&pgdat->vm_stat[item]);
996#ifdef CONFIG_SMP
997 if (x < 0)
998 x = 0;
999#endif
1000 return x;
1001}
ca889e6c
CL
1002#endif
1003
d7a5752c 1004#ifdef CONFIG_COMPACTION
36deb0be 1005
d7a5752c
MG
1006struct contig_page_info {
1007 unsigned long free_pages;
1008 unsigned long free_blocks_total;
1009 unsigned long free_blocks_suitable;
1010};
1011
1012/*
1013 * Calculate the number of free pages in a zone, how many contiguous
1014 * pages are free and how many are large enough to satisfy an allocation of
1015 * the target size. Note that this function makes no attempt to estimate
1016 * how many suitable free blocks there *might* be if MOVABLE pages were
1017 * migrated. Calculating that is possible, but expensive and can be
1018 * figured out from userspace
1019 */
1020static void fill_contig_page_info(struct zone *zone,
1021 unsigned int suitable_order,
1022 struct contig_page_info *info)
1023{
1024 unsigned int order;
1025
1026 info->free_pages = 0;
1027 info->free_blocks_total = 0;
1028 info->free_blocks_suitable = 0;
1029
1030 for (order = 0; order < MAX_ORDER; order++) {
1031 unsigned long blocks;
1032
1033 /* Count number of free blocks */
1034 blocks = zone->free_area[order].nr_free;
1035 info->free_blocks_total += blocks;
1036
1037 /* Count free base pages */
1038 info->free_pages += blocks << order;
1039
1040 /* Count the suitable free blocks */
1041 if (order >= suitable_order)
1042 info->free_blocks_suitable += blocks <<
1043 (order - suitable_order);
1044 }
1045}
f1a5ab12
MG
1046
1047/*
1048 * A fragmentation index only makes sense if an allocation of a requested
1049 * size would fail. If that is true, the fragmentation index indicates
1050 * whether external fragmentation or a lack of memory was the problem.
1051 * The value can be used to determine if page reclaim or compaction
1052 * should be used
1053 */
56de7263 1054static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
f1a5ab12
MG
1055{
1056 unsigned long requested = 1UL << order;
1057
88d6ac40
WY
1058 if (WARN_ON_ONCE(order >= MAX_ORDER))
1059 return 0;
1060
f1a5ab12
MG
1061 if (!info->free_blocks_total)
1062 return 0;
1063
1064 /* Fragmentation index only makes sense when a request would fail */
1065 if (info->free_blocks_suitable)
1066 return -1000;
1067
1068 /*
1069 * Index is between 0 and 1 so return within 3 decimal places
1070 *
1071 * 0 => allocation would fail due to lack of memory
1072 * 1 => allocation would fail due to fragmentation
1073 */
1074 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1075}
56de7263
MG
1076
1077/* Same as __fragmentation index but allocs contig_page_info on stack */
1078int fragmentation_index(struct zone *zone, unsigned int order)
1079{
1080 struct contig_page_info info;
1081
1082 fill_contig_page_info(zone, order, &info);
1083 return __fragmentation_index(order, &info);
1084}
d7a5752c
MG
1085#endif
1086
ebc5d83d
KK
1087#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1088 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
fa25c503
KM
1089#ifdef CONFIG_ZONE_DMA
1090#define TEXT_FOR_DMA(xx) xx "_dma",
1091#else
1092#define TEXT_FOR_DMA(xx)
1093#endif
1094
1095#ifdef CONFIG_ZONE_DMA32
1096#define TEXT_FOR_DMA32(xx) xx "_dma32",
1097#else
1098#define TEXT_FOR_DMA32(xx)
1099#endif
1100
1101#ifdef CONFIG_HIGHMEM
1102#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1103#else
1104#define TEXT_FOR_HIGHMEM(xx)
1105#endif
1106
1107#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1108 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1109
1110const char * const vmstat_text[] = {
09316c09 1111 /* enum zone_stat_item countes */
fa25c503 1112 "nr_free_pages",
71c799f4
MK
1113 "nr_zone_inactive_anon",
1114 "nr_zone_active_anon",
1115 "nr_zone_inactive_file",
1116 "nr_zone_active_file",
1117 "nr_zone_unevictable",
5a1c84b4 1118 "nr_zone_write_pending",
fa25c503 1119 "nr_mlock",
fa25c503
KM
1120 "nr_page_table_pages",
1121 "nr_kernel_stack",
fa25c503 1122 "nr_bounce",
91537fee
MK
1123#if IS_ENABLED(CONFIG_ZSMALLOC)
1124 "nr_zspages",
1125#endif
3a321d2a
KW
1126 "nr_free_cma",
1127
1128 /* enum numa_stat_item counters */
fa25c503
KM
1129#ifdef CONFIG_NUMA
1130 "numa_hit",
1131 "numa_miss",
1132 "numa_foreign",
1133 "numa_interleave",
1134 "numa_local",
1135 "numa_other",
1136#endif
09316c09 1137
9d7ea9a2 1138 /* enum node_stat_item counters */
599d0c95
MG
1139 "nr_inactive_anon",
1140 "nr_active_anon",
1141 "nr_inactive_file",
1142 "nr_active_file",
1143 "nr_unevictable",
385386cf
JW
1144 "nr_slab_reclaimable",
1145 "nr_slab_unreclaimable",
599d0c95
MG
1146 "nr_isolated_anon",
1147 "nr_isolated_file",
68d48e6a 1148 "workingset_nodes",
1e6b1085
MG
1149 "workingset_refault",
1150 "workingset_activate",
1899ad18 1151 "workingset_restore",
1e6b1085 1152 "workingset_nodereclaim",
50658e2e
MG
1153 "nr_anon_pages",
1154 "nr_mapped",
11fb9989
MG
1155 "nr_file_pages",
1156 "nr_dirty",
1157 "nr_writeback",
1158 "nr_writeback_temp",
1159 "nr_shmem",
1160 "nr_shmem_hugepages",
1161 "nr_shmem_pmdmapped",
60fbf0ab
SL
1162 "nr_file_hugepages",
1163 "nr_file_pmdmapped",
11fb9989
MG
1164 "nr_anon_transparent_hugepages",
1165 "nr_unstable",
c4a25635
MG
1166 "nr_vmscan_write",
1167 "nr_vmscan_immediate_reclaim",
1168 "nr_dirtied",
1169 "nr_written",
b29940c1 1170 "nr_kernel_misc_reclaimable",
1970dc6f
JH
1171 "nr_foll_pin_acquired",
1172 "nr_foll_pin_released",
599d0c95 1173
09316c09 1174 /* enum writeback_stat_item counters */
fa25c503
KM
1175 "nr_dirty_threshold",
1176 "nr_dirty_background_threshold",
1177
ebc5d83d 1178#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
09316c09 1179 /* enum vm_event_item counters */
fa25c503
KM
1180 "pgpgin",
1181 "pgpgout",
1182 "pswpin",
1183 "pswpout",
1184
1185 TEXTS_FOR_ZONES("pgalloc")
7cc30fcf
MG
1186 TEXTS_FOR_ZONES("allocstall")
1187 TEXTS_FOR_ZONES("pgskip")
fa25c503
KM
1188
1189 "pgfree",
1190 "pgactivate",
1191 "pgdeactivate",
f7ad2a6c 1192 "pglazyfree",
fa25c503
KM
1193
1194 "pgfault",
1195 "pgmajfault",
854e9ed0 1196 "pglazyfreed",
fa25c503 1197
599d0c95
MG
1198 "pgrefill",
1199 "pgsteal_kswapd",
1200 "pgsteal_direct",
1201 "pgscan_kswapd",
1202 "pgscan_direct",
68243e76 1203 "pgscan_direct_throttle",
fa25c503
KM
1204
1205#ifdef CONFIG_NUMA
1206 "zone_reclaim_failed",
1207#endif
1208 "pginodesteal",
1209 "slabs_scanned",
fa25c503
KM
1210 "kswapd_inodesteal",
1211 "kswapd_low_wmark_hit_quickly",
1212 "kswapd_high_wmark_hit_quickly",
fa25c503 1213 "pageoutrun",
fa25c503
KM
1214
1215 "pgrotated",
1216
5509a5d2
DH
1217 "drop_pagecache",
1218 "drop_slab",
8e675f7a 1219 "oom_kill",
5509a5d2 1220
03c5a6e1
MG
1221#ifdef CONFIG_NUMA_BALANCING
1222 "numa_pte_updates",
72403b4a 1223 "numa_huge_pte_updates",
03c5a6e1
MG
1224 "numa_hint_faults",
1225 "numa_hint_faults_local",
1226 "numa_pages_migrated",
1227#endif
5647bc29
MG
1228#ifdef CONFIG_MIGRATION
1229 "pgmigrate_success",
1230 "pgmigrate_fail",
1231#endif
fa25c503 1232#ifdef CONFIG_COMPACTION
397487db
MG
1233 "compact_migrate_scanned",
1234 "compact_free_scanned",
1235 "compact_isolated",
fa25c503
KM
1236 "compact_stall",
1237 "compact_fail",
1238 "compact_success",
698b1b30 1239 "compact_daemon_wake",
7f354a54
DR
1240 "compact_daemon_migrate_scanned",
1241 "compact_daemon_free_scanned",
fa25c503
KM
1242#endif
1243
1244#ifdef CONFIG_HUGETLB_PAGE
1245 "htlb_buddy_alloc_success",
1246 "htlb_buddy_alloc_fail",
1247#endif
1248 "unevictable_pgs_culled",
1249 "unevictable_pgs_scanned",
1250 "unevictable_pgs_rescued",
1251 "unevictable_pgs_mlocked",
1252 "unevictable_pgs_munlocked",
1253 "unevictable_pgs_cleared",
1254 "unevictable_pgs_stranded",
fa25c503
KM
1255
1256#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1257 "thp_fault_alloc",
1258 "thp_fault_fallback",
85b9f46e 1259 "thp_fault_fallback_charge",
fa25c503
KM
1260 "thp_collapse_alloc",
1261 "thp_collapse_alloc_failed",
95ecedcd 1262 "thp_file_alloc",
dcdf11ee 1263 "thp_file_fallback",
85b9f46e 1264 "thp_file_fallback_charge",
95ecedcd 1265 "thp_file_mapped",
122afea9
KS
1266 "thp_split_page",
1267 "thp_split_page_failed",
f9719a03 1268 "thp_deferred_split_page",
122afea9 1269 "thp_split_pmd",
ce9311cf
YX
1270#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1271 "thp_split_pud",
1272#endif
d8a8e1f0
KS
1273 "thp_zero_page_alloc",
1274 "thp_zero_page_alloc_failed",
225311a4 1275 "thp_swpout",
fe490cc0 1276 "thp_swpout_fallback",
fa25c503 1277#endif
09316c09
KK
1278#ifdef CONFIG_MEMORY_BALLOON
1279 "balloon_inflate",
1280 "balloon_deflate",
1281#ifdef CONFIG_BALLOON_COMPACTION
1282 "balloon_migrate",
1283#endif
1284#endif /* CONFIG_MEMORY_BALLOON */
ec659934 1285#ifdef CONFIG_DEBUG_TLBFLUSH
9824cf97
DH
1286 "nr_tlb_remote_flush",
1287 "nr_tlb_remote_flush_received",
1288 "nr_tlb_local_flush_all",
1289 "nr_tlb_local_flush_one",
ec659934 1290#endif /* CONFIG_DEBUG_TLBFLUSH */
fa25c503 1291
4f115147
DB
1292#ifdef CONFIG_DEBUG_VM_VMACACHE
1293 "vmacache_find_calls",
1294 "vmacache_find_hits",
1295#endif
cbc65df2
HY
1296#ifdef CONFIG_SWAP
1297 "swap_ra",
1298 "swap_ra_hit",
1299#endif
ebc5d83d 1300#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
fa25c503 1301};
ebc5d83d 1302#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
fa25c503 1303
3c486871
AM
1304#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1305 defined(CONFIG_PROC_FS)
1306static void *frag_start(struct seq_file *m, loff_t *pos)
1307{
1308 pg_data_t *pgdat;
1309 loff_t node = *pos;
1310
1311 for (pgdat = first_online_pgdat();
1312 pgdat && node;
1313 pgdat = next_online_pgdat(pgdat))
1314 --node;
1315
1316 return pgdat;
1317}
1318
1319static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1320{
1321 pg_data_t *pgdat = (pg_data_t *)arg;
1322
1323 (*pos)++;
1324 return next_online_pgdat(pgdat);
1325}
1326
1327static void frag_stop(struct seq_file *m, void *arg)
1328{
1329}
1330
b2bd8598
DR
1331/*
1332 * Walk zones in a node and print using a callback.
1333 * If @assert_populated is true, only use callback for zones that are populated.
1334 */
3c486871 1335static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
727c080f 1336 bool assert_populated, bool nolock,
3c486871
AM
1337 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1338{
1339 struct zone *zone;
1340 struct zone *node_zones = pgdat->node_zones;
1341 unsigned long flags;
1342
1343 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
b2bd8598 1344 if (assert_populated && !populated_zone(zone))
3c486871
AM
1345 continue;
1346
727c080f
VM
1347 if (!nolock)
1348 spin_lock_irqsave(&zone->lock, flags);
3c486871 1349 print(m, pgdat, zone);
727c080f
VM
1350 if (!nolock)
1351 spin_unlock_irqrestore(&zone->lock, flags);
3c486871
AM
1352 }
1353}
1354#endif
1355
d7a5752c 1356#ifdef CONFIG_PROC_FS
467c996c
MG
1357static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1358 struct zone *zone)
1359{
1360 int order;
1361
1362 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1363 for (order = 0; order < MAX_ORDER; ++order)
1364 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1365 seq_putc(m, '\n');
1366}
1367
1368/*
1369 * This walks the free areas for each zone.
1370 */
1371static int frag_show(struct seq_file *m, void *arg)
1372{
1373 pg_data_t *pgdat = (pg_data_t *)arg;
727c080f 1374 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
467c996c
MG
1375 return 0;
1376}
1377
1378static void pagetypeinfo_showfree_print(struct seq_file *m,
1379 pg_data_t *pgdat, struct zone *zone)
1380{
1381 int order, mtype;
1382
1383 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1384 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1385 pgdat->node_id,
1386 zone->name,
1387 migratetype_names[mtype]);
1388 for (order = 0; order < MAX_ORDER; ++order) {
1389 unsigned long freecount = 0;
1390 struct free_area *area;
1391 struct list_head *curr;
93b3a674 1392 bool overflow = false;
467c996c
MG
1393
1394 area = &(zone->free_area[order]);
1395
93b3a674
MH
1396 list_for_each(curr, &area->free_list[mtype]) {
1397 /*
1398 * Cap the free_list iteration because it might
1399 * be really large and we are under a spinlock
1400 * so a long time spent here could trigger a
1401 * hard lockup detector. Anyway this is a
1402 * debugging tool so knowing there is a handful
1403 * of pages of this order should be more than
1404 * sufficient.
1405 */
1406 if (++freecount >= 100000) {
1407 overflow = true;
1408 break;
1409 }
1410 }
1411 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1412 spin_unlock_irq(&zone->lock);
1413 cond_resched();
1414 spin_lock_irq(&zone->lock);
467c996c 1415 }
f6ac2354
CL
1416 seq_putc(m, '\n');
1417 }
467c996c
MG
1418}
1419
1420/* Print out the free pages at each order for each migatetype */
1421static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1422{
1423 int order;
1424 pg_data_t *pgdat = (pg_data_t *)arg;
1425
1426 /* Print header */
1427 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1428 for (order = 0; order < MAX_ORDER; ++order)
1429 seq_printf(m, "%6d ", order);
1430 seq_putc(m, '\n');
1431
727c080f 1432 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
467c996c
MG
1433
1434 return 0;
1435}
1436
1437static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1438 pg_data_t *pgdat, struct zone *zone)
1439{
1440 int mtype;
1441 unsigned long pfn;
1442 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 1443 unsigned long end_pfn = zone_end_pfn(zone);
467c996c
MG
1444 unsigned long count[MIGRATE_TYPES] = { 0, };
1445
1446 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1447 struct page *page;
1448
d336e94e
MH
1449 page = pfn_to_online_page(pfn);
1450 if (!page)
467c996c
MG
1451 continue;
1452
eb33575c
MG
1453 /* Watch for unexpected holes punched in the memmap */
1454 if (!memmap_valid_within(pfn, page, zone))
e80d6a24 1455 continue;
eb33575c 1456
a91c43c7
JK
1457 if (page_zone(page) != zone)
1458 continue;
1459
467c996c
MG
1460 mtype = get_pageblock_migratetype(page);
1461
e80d6a24
MG
1462 if (mtype < MIGRATE_TYPES)
1463 count[mtype]++;
467c996c
MG
1464 }
1465
1466 /* Print counts */
1467 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1468 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1469 seq_printf(m, "%12lu ", count[mtype]);
1470 seq_putc(m, '\n');
1471}
1472
f113e641 1473/* Print out the number of pageblocks for each migratetype */
467c996c
MG
1474static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1475{
1476 int mtype;
1477 pg_data_t *pgdat = (pg_data_t *)arg;
1478
1479 seq_printf(m, "\n%-23s", "Number of blocks type ");
1480 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1481 seq_printf(m, "%12s ", migratetype_names[mtype]);
1482 seq_putc(m, '\n');
727c080f
VM
1483 walk_zones_in_node(m, pgdat, true, false,
1484 pagetypeinfo_showblockcount_print);
467c996c
MG
1485
1486 return 0;
1487}
1488
48c96a36
JK
1489/*
1490 * Print out the number of pageblocks for each migratetype that contain pages
1491 * of other types. This gives an indication of how well fallbacks are being
1492 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1493 * to determine what is going on
1494 */
1495static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1496{
1497#ifdef CONFIG_PAGE_OWNER
1498 int mtype;
1499
7dd80b8a 1500 if (!static_branch_unlikely(&page_owner_inited))
48c96a36
JK
1501 return;
1502
1503 drain_all_pages(NULL);
1504
1505 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1506 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1507 seq_printf(m, "%12s ", migratetype_names[mtype]);
1508 seq_putc(m, '\n');
1509
727c080f
VM
1510 walk_zones_in_node(m, pgdat, true, true,
1511 pagetypeinfo_showmixedcount_print);
48c96a36
JK
1512#endif /* CONFIG_PAGE_OWNER */
1513}
1514
467c996c
MG
1515/*
1516 * This prints out statistics in relation to grouping pages by mobility.
1517 * It is expensive to collect so do not constantly read the file.
1518 */
1519static int pagetypeinfo_show(struct seq_file *m, void *arg)
1520{
1521 pg_data_t *pgdat = (pg_data_t *)arg;
1522
41b25a37 1523 /* check memoryless node */
a47b53c5 1524 if (!node_state(pgdat->node_id, N_MEMORY))
41b25a37
KM
1525 return 0;
1526
467c996c
MG
1527 seq_printf(m, "Page block order: %d\n", pageblock_order);
1528 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1529 seq_putc(m, '\n');
1530 pagetypeinfo_showfree(m, pgdat);
1531 pagetypeinfo_showblockcount(m, pgdat);
48c96a36 1532 pagetypeinfo_showmixedcount(m, pgdat);
467c996c 1533
f6ac2354
CL
1534 return 0;
1535}
1536
8f32f7e5 1537static const struct seq_operations fragmentation_op = {
f6ac2354
CL
1538 .start = frag_start,
1539 .next = frag_next,
1540 .stop = frag_stop,
1541 .show = frag_show,
1542};
1543
74e2e8e8 1544static const struct seq_operations pagetypeinfo_op = {
467c996c
MG
1545 .start = frag_start,
1546 .next = frag_next,
1547 .stop = frag_stop,
1548 .show = pagetypeinfo_show,
1549};
1550
e2ecc8a7
MG
1551static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1552{
1553 int zid;
1554
1555 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1556 struct zone *compare = &pgdat->node_zones[zid];
1557
1558 if (populated_zone(compare))
1559 return zone == compare;
1560 }
1561
e2ecc8a7
MG
1562 return false;
1563}
1564
467c996c
MG
1565static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1566 struct zone *zone)
f6ac2354 1567{
467c996c
MG
1568 int i;
1569 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
e2ecc8a7
MG
1570 if (is_zone_first_populated(pgdat, zone)) {
1571 seq_printf(m, "\n per-node stats");
1572 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
9d7ea9a2
KK
1573 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1574 node_page_state(pgdat, i));
e2ecc8a7
MG
1575 }
1576 }
467c996c
MG
1577 seq_printf(m,
1578 "\n pages free %lu"
1579 "\n min %lu"
1580 "\n low %lu"
1581 "\n high %lu"
467c996c 1582 "\n spanned %lu"
9feedc9d
JL
1583 "\n present %lu"
1584 "\n managed %lu",
88f5acf8 1585 zone_page_state(zone, NR_FREE_PAGES),
41858966
MG
1586 min_wmark_pages(zone),
1587 low_wmark_pages(zone),
1588 high_wmark_pages(zone),
467c996c 1589 zone->spanned_pages,
9feedc9d 1590 zone->present_pages,
9705bea5 1591 zone_managed_pages(zone));
467c996c 1592
467c996c 1593 seq_printf(m,
3484b2de 1594 "\n protection: (%ld",
467c996c
MG
1595 zone->lowmem_reserve[0]);
1596 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
3484b2de 1597 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
7dfb8bf3
DR
1598 seq_putc(m, ')');
1599
1600 /* If unpopulated, no other information is useful */
1601 if (!populated_zone(zone)) {
1602 seq_putc(m, '\n');
1603 return;
1604 }
1605
1606 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
9d7ea9a2
KK
1607 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1608 zone_page_state(zone, i));
7dfb8bf3 1609
3a321d2a
KW
1610#ifdef CONFIG_NUMA
1611 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
9d7ea9a2
KK
1612 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1613 zone_numa_state_snapshot(zone, i));
3a321d2a
KW
1614#endif
1615
7dfb8bf3 1616 seq_printf(m, "\n pagesets");
467c996c
MG
1617 for_each_online_cpu(i) {
1618 struct per_cpu_pageset *pageset;
467c996c 1619
99dcc3e5 1620 pageset = per_cpu_ptr(zone->pageset, i);
3dfa5721
CL
1621 seq_printf(m,
1622 "\n cpu: %i"
1623 "\n count: %i"
1624 "\n high: %i"
1625 "\n batch: %i",
1626 i,
1627 pageset->pcp.count,
1628 pageset->pcp.high,
1629 pageset->pcp.batch);
df9ecaba 1630#ifdef CONFIG_SMP
467c996c
MG
1631 seq_printf(m, "\n vm stats threshold: %d",
1632 pageset->stat_threshold);
df9ecaba 1633#endif
f6ac2354 1634 }
467c996c 1635 seq_printf(m,
599d0c95 1636 "\n node_unreclaimable: %u"
3a50d14d 1637 "\n start_pfn: %lu",
c73322d0 1638 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
3a50d14d 1639 zone->zone_start_pfn);
467c996c
MG
1640 seq_putc(m, '\n');
1641}
1642
1643/*
b2bd8598
DR
1644 * Output information about zones in @pgdat. All zones are printed regardless
1645 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1646 * set of all zones and userspace would not be aware of such zones if they are
1647 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
467c996c
MG
1648 */
1649static int zoneinfo_show(struct seq_file *m, void *arg)
1650{
1651 pg_data_t *pgdat = (pg_data_t *)arg;
727c080f 1652 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
f6ac2354
CL
1653 return 0;
1654}
1655
5c9fe628 1656static const struct seq_operations zoneinfo_op = {
f6ac2354
CL
1657 .start = frag_start, /* iterate over all zones. The same as in
1658 * fragmentation. */
1659 .next = frag_next,
1660 .stop = frag_stop,
1661 .show = zoneinfo_show,
1662};
1663
9d7ea9a2
KK
1664#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1665 NR_VM_NUMA_STAT_ITEMS + \
1666 NR_VM_NODE_STAT_ITEMS + \
1667 NR_VM_WRITEBACK_STAT_ITEMS + \
1668 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1669 NR_VM_EVENT_ITEMS : 0))
79da826a 1670
f6ac2354
CL
1671static void *vmstat_start(struct seq_file *m, loff_t *pos)
1672{
2244b95a 1673 unsigned long *v;
9d7ea9a2 1674 int i;
f6ac2354 1675
9d7ea9a2 1676 if (*pos >= NR_VMSTAT_ITEMS)
f6ac2354 1677 return NULL;
79da826a 1678
9d7ea9a2
KK
1679 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1680 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
2244b95a
CL
1681 m->private = v;
1682 if (!v)
f6ac2354 1683 return ERR_PTR(-ENOMEM);
2244b95a 1684 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
c41f012a 1685 v[i] = global_zone_page_state(i);
79da826a
MR
1686 v += NR_VM_ZONE_STAT_ITEMS;
1687
3a321d2a
KW
1688#ifdef CONFIG_NUMA
1689 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1690 v[i] = global_numa_state(i);
1691 v += NR_VM_NUMA_STAT_ITEMS;
1692#endif
1693
75ef7184
MG
1694 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1695 v[i] = global_node_page_state(i);
1696 v += NR_VM_NODE_STAT_ITEMS;
1697
79da826a
MR
1698 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1699 v + NR_DIRTY_THRESHOLD);
1700 v += NR_VM_WRITEBACK_STAT_ITEMS;
1701
f8891e5e 1702#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a
MR
1703 all_vm_events(v);
1704 v[PGPGIN] /= 2; /* sectors -> kbytes */
1705 v[PGPGOUT] /= 2;
f8891e5e 1706#endif
ff8b16d7 1707 return (unsigned long *)m->private + *pos;
f6ac2354
CL
1708}
1709
1710static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1711{
1712 (*pos)++;
9d7ea9a2 1713 if (*pos >= NR_VMSTAT_ITEMS)
f6ac2354
CL
1714 return NULL;
1715 return (unsigned long *)m->private + *pos;
1716}
1717
1718static int vmstat_show(struct seq_file *m, void *arg)
1719{
1720 unsigned long *l = arg;
1721 unsigned long off = l - (unsigned long *)m->private;
68ba0326
AD
1722
1723 seq_puts(m, vmstat_text[off]);
75ba1d07 1724 seq_put_decimal_ull(m, " ", *l);
68ba0326 1725 seq_putc(m, '\n');
f6ac2354
CL
1726 return 0;
1727}
1728
1729static void vmstat_stop(struct seq_file *m, void *arg)
1730{
1731 kfree(m->private);
1732 m->private = NULL;
1733}
1734
b6aa44ab 1735static const struct seq_operations vmstat_op = {
f6ac2354
CL
1736 .start = vmstat_start,
1737 .next = vmstat_next,
1738 .stop = vmstat_stop,
1739 .show = vmstat_show,
1740};
f6ac2354
CL
1741#endif /* CONFIG_PROC_FS */
1742
df9ecaba 1743#ifdef CONFIG_SMP
d1187ed2 1744static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
77461ab3 1745int sysctl_stat_interval __read_mostly = HZ;
d1187ed2 1746
52b6f46b
HD
1747#ifdef CONFIG_PROC_FS
1748static void refresh_vm_stats(struct work_struct *work)
1749{
1750 refresh_cpu_vm_stats(true);
1751}
1752
1753int vmstat_refresh(struct ctl_table *table, int write,
32927393 1754 void *buffer, size_t *lenp, loff_t *ppos)
52b6f46b
HD
1755{
1756 long val;
1757 int err;
1758 int i;
1759
1760 /*
1761 * The regular update, every sysctl_stat_interval, may come later
1762 * than expected: leaving a significant amount in per_cpu buckets.
1763 * This is particularly misleading when checking a quantity of HUGE
1764 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1765 * which can equally be echo'ed to or cat'ted from (by root),
1766 * can be used to update the stats just before reading them.
1767 *
c41f012a 1768 * Oh, and since global_zone_page_state() etc. are so careful to hide
52b6f46b
HD
1769 * transiently negative values, report an error here if any of
1770 * the stats is negative, so we know to go looking for imbalance.
1771 */
1772 err = schedule_on_each_cpu(refresh_vm_stats);
1773 if (err)
1774 return err;
1775 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
75ef7184 1776 val = atomic_long_read(&vm_zone_stat[i]);
52b6f46b 1777 if (val < 0) {
c822f622 1778 pr_warn("%s: %s %ld\n",
9d7ea9a2 1779 __func__, zone_stat_name(i), val);
c822f622 1780 err = -EINVAL;
52b6f46b
HD
1781 }
1782 }
3a321d2a
KW
1783#ifdef CONFIG_NUMA
1784 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1785 val = atomic_long_read(&vm_numa_stat[i]);
1786 if (val < 0) {
1787 pr_warn("%s: %s %ld\n",
9d7ea9a2 1788 __func__, numa_stat_name(i), val);
3a321d2a
KW
1789 err = -EINVAL;
1790 }
1791 }
1792#endif
52b6f46b
HD
1793 if (err)
1794 return err;
1795 if (write)
1796 *ppos += *lenp;
1797 else
1798 *lenp = 0;
1799 return 0;
1800}
1801#endif /* CONFIG_PROC_FS */
1802
d1187ed2
CL
1803static void vmstat_update(struct work_struct *w)
1804{
0eb77e98 1805 if (refresh_cpu_vm_stats(true)) {
7cc36bbd
CL
1806 /*
1807 * Counters were updated so we expect more updates
1808 * to occur in the future. Keep on running the
1809 * update worker thread.
1810 */
ce612879 1811 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
f01f17d3
MH
1812 this_cpu_ptr(&vmstat_work),
1813 round_jiffies_relative(sysctl_stat_interval));
7cc36bbd
CL
1814 }
1815}
1816
0eb77e98
CL
1817/*
1818 * Switch off vmstat processing and then fold all the remaining differentials
1819 * until the diffs stay at zero. The function is used by NOHZ and can only be
1820 * invoked when tick processing is not active.
1821 */
7cc36bbd
CL
1822/*
1823 * Check if the diffs for a certain cpu indicate that
1824 * an update is needed.
1825 */
1826static bool need_update(int cpu)
1827{
1828 struct zone *zone;
1829
1830 for_each_populated_zone(zone) {
1831 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1832
1833 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
3a321d2a 1834#ifdef CONFIG_NUMA
1d90ca89 1835 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
3a321d2a 1836#endif
63803222 1837
7cc36bbd
CL
1838 /*
1839 * The fast way of checking if there are any vmstat diffs.
7cc36bbd 1840 */
13c9aaf7
JH
1841 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1842 sizeof(p->vm_stat_diff[0])))
7cc36bbd 1843 return true;
3a321d2a 1844#ifdef CONFIG_NUMA
13c9aaf7
JH
1845 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1846 sizeof(p->vm_numa_stat_diff[0])))
3a321d2a
KW
1847 return true;
1848#endif
7cc36bbd
CL
1849 }
1850 return false;
1851}
1852
7b8da4c7
CL
1853/*
1854 * Switch off vmstat processing and then fold all the remaining differentials
1855 * until the diffs stay at zero. The function is used by NOHZ and can only be
1856 * invoked when tick processing is not active.
1857 */
f01f17d3
MH
1858void quiet_vmstat(void)
1859{
1860 if (system_state != SYSTEM_RUNNING)
1861 return;
1862
7b8da4c7 1863 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
f01f17d3
MH
1864 return;
1865
1866 if (!need_update(smp_processor_id()))
1867 return;
1868
1869 /*
1870 * Just refresh counters and do not care about the pending delayed
1871 * vmstat_update. It doesn't fire that often to matter and canceling
1872 * it would be too expensive from this path.
1873 * vmstat_shepherd will take care about that for us.
1874 */
1875 refresh_cpu_vm_stats(false);
1876}
1877
7cc36bbd
CL
1878/*
1879 * Shepherd worker thread that checks the
1880 * differentials of processors that have their worker
1881 * threads for vm statistics updates disabled because of
1882 * inactivity.
1883 */
1884static void vmstat_shepherd(struct work_struct *w);
1885
0eb77e98 1886static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
7cc36bbd
CL
1887
1888static void vmstat_shepherd(struct work_struct *w)
1889{
1890 int cpu;
1891
1892 get_online_cpus();
1893 /* Check processors whose vmstat worker threads have been disabled */
7b8da4c7 1894 for_each_online_cpu(cpu) {
f01f17d3 1895 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
7cc36bbd 1896
7b8da4c7 1897 if (!delayed_work_pending(dw) && need_update(cpu))
ce612879 1898 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
f01f17d3 1899 }
7cc36bbd
CL
1900 put_online_cpus();
1901
1902 schedule_delayed_work(&shepherd,
98f4ebb2 1903 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1904}
1905
7cc36bbd 1906static void __init start_shepherd_timer(void)
d1187ed2 1907{
7cc36bbd
CL
1908 int cpu;
1909
1910 for_each_possible_cpu(cpu)
ccde8bd4 1911 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
7cc36bbd
CL
1912 vmstat_update);
1913
7cc36bbd
CL
1914 schedule_delayed_work(&shepherd,
1915 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1916}
1917
03e86dba
TC
1918static void __init init_cpu_node_state(void)
1919{
4c501327 1920 int node;
03e86dba 1921
4c501327
SAS
1922 for_each_online_node(node) {
1923 if (cpumask_weight(cpumask_of_node(node)) > 0)
1924 node_set_state(node, N_CPU);
1925 }
03e86dba
TC
1926}
1927
5438da97
SAS
1928static int vmstat_cpu_online(unsigned int cpu)
1929{
1930 refresh_zone_stat_thresholds();
1931 node_set_state(cpu_to_node(cpu), N_CPU);
1932 return 0;
1933}
1934
1935static int vmstat_cpu_down_prep(unsigned int cpu)
1936{
1937 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1938 return 0;
1939}
1940
1941static int vmstat_cpu_dead(unsigned int cpu)
807a1bd2 1942{
4c501327 1943 const struct cpumask *node_cpus;
5438da97 1944 int node;
807a1bd2 1945
5438da97
SAS
1946 node = cpu_to_node(cpu);
1947
1948 refresh_zone_stat_thresholds();
4c501327
SAS
1949 node_cpus = cpumask_of_node(node);
1950 if (cpumask_weight(node_cpus) > 0)
5438da97 1951 return 0;
807a1bd2
TK
1952
1953 node_clear_state(node, N_CPU);
5438da97 1954 return 0;
807a1bd2
TK
1955}
1956
8f32f7e5 1957#endif
df9ecaba 1958
ce612879
MH
1959struct workqueue_struct *mm_percpu_wq;
1960
597b7305 1961void __init init_mm_internals(void)
df9ecaba 1962{
ce612879 1963 int ret __maybe_unused;
5438da97 1964
80d136e1 1965 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
ce612879
MH
1966
1967#ifdef CONFIG_SMP
5438da97
SAS
1968 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1969 NULL, vmstat_cpu_dead);
1970 if (ret < 0)
1971 pr_err("vmstat: failed to register 'dead' hotplug state\n");
1972
1973 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
1974 vmstat_cpu_online,
1975 vmstat_cpu_down_prep);
1976 if (ret < 0)
1977 pr_err("vmstat: failed to register 'online' hotplug state\n");
1978
1979 get_online_cpus();
03e86dba 1980 init_cpu_node_state();
5438da97 1981 put_online_cpus();
d1187ed2 1982
7cc36bbd 1983 start_shepherd_timer();
8f32f7e5
AD
1984#endif
1985#ifdef CONFIG_PROC_FS
fddda2b7 1986 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
abaed011 1987 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
fddda2b7
CH
1988 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
1989 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
8f32f7e5 1990#endif
df9ecaba 1991}
d7a5752c
MG
1992
1993#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
d7a5752c
MG
1994
1995/*
1996 * Return an index indicating how much of the available free memory is
1997 * unusable for an allocation of the requested size.
1998 */
1999static int unusable_free_index(unsigned int order,
2000 struct contig_page_info *info)
2001{
2002 /* No free memory is interpreted as all free memory is unusable */
2003 if (info->free_pages == 0)
2004 return 1000;
2005
2006 /*
2007 * Index should be a value between 0 and 1. Return a value to 3
2008 * decimal places.
2009 *
2010 * 0 => no fragmentation
2011 * 1 => high fragmentation
2012 */
2013 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2014
2015}
2016
2017static void unusable_show_print(struct seq_file *m,
2018 pg_data_t *pgdat, struct zone *zone)
2019{
2020 unsigned int order;
2021 int index;
2022 struct contig_page_info info;
2023
2024 seq_printf(m, "Node %d, zone %8s ",
2025 pgdat->node_id,
2026 zone->name);
2027 for (order = 0; order < MAX_ORDER; ++order) {
2028 fill_contig_page_info(zone, order, &info);
2029 index = unusable_free_index(order, &info);
2030 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2031 }
2032
2033 seq_putc(m, '\n');
2034}
2035
2036/*
2037 * Display unusable free space index
2038 *
2039 * The unusable free space index measures how much of the available free
2040 * memory cannot be used to satisfy an allocation of a given size and is a
2041 * value between 0 and 1. The higher the value, the more of free memory is
2042 * unusable and by implication, the worse the external fragmentation is. This
2043 * can be expressed as a percentage by multiplying by 100.
2044 */
2045static int unusable_show(struct seq_file *m, void *arg)
2046{
2047 pg_data_t *pgdat = (pg_data_t *)arg;
2048
2049 /* check memoryless node */
a47b53c5 2050 if (!node_state(pgdat->node_id, N_MEMORY))
d7a5752c
MG
2051 return 0;
2052
727c080f 2053 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
d7a5752c
MG
2054
2055 return 0;
2056}
2057
2058static const struct seq_operations unusable_op = {
2059 .start = frag_start,
2060 .next = frag_next,
2061 .stop = frag_stop,
2062 .show = unusable_show,
2063};
2064
2065static int unusable_open(struct inode *inode, struct file *file)
2066{
2067 return seq_open(file, &unusable_op);
2068}
2069
2070static const struct file_operations unusable_file_ops = {
2071 .open = unusable_open,
2072 .read = seq_read,
2073 .llseek = seq_lseek,
2074 .release = seq_release,
2075};
2076
f1a5ab12
MG
2077static void extfrag_show_print(struct seq_file *m,
2078 pg_data_t *pgdat, struct zone *zone)
2079{
2080 unsigned int order;
2081 int index;
2082
2083 /* Alloc on stack as interrupts are disabled for zone walk */
2084 struct contig_page_info info;
2085
2086 seq_printf(m, "Node %d, zone %8s ",
2087 pgdat->node_id,
2088 zone->name);
2089 for (order = 0; order < MAX_ORDER; ++order) {
2090 fill_contig_page_info(zone, order, &info);
56de7263 2091 index = __fragmentation_index(order, &info);
f1a5ab12
MG
2092 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2093 }
2094
2095 seq_putc(m, '\n');
2096}
2097
2098/*
2099 * Display fragmentation index for orders that allocations would fail for
2100 */
2101static int extfrag_show(struct seq_file *m, void *arg)
2102{
2103 pg_data_t *pgdat = (pg_data_t *)arg;
2104
727c080f 2105 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
f1a5ab12
MG
2106
2107 return 0;
2108}
2109
2110static const struct seq_operations extfrag_op = {
2111 .start = frag_start,
2112 .next = frag_next,
2113 .stop = frag_stop,
2114 .show = extfrag_show,
2115};
2116
2117static int extfrag_open(struct inode *inode, struct file *file)
2118{
2119 return seq_open(file, &extfrag_op);
2120}
2121
2122static const struct file_operations extfrag_file_ops = {
2123 .open = extfrag_open,
2124 .read = seq_read,
2125 .llseek = seq_lseek,
2126 .release = seq_release,
2127};
2128
d7a5752c
MG
2129static int __init extfrag_debug_init(void)
2130{
bde8bd8a
S
2131 struct dentry *extfrag_debug_root;
2132
d7a5752c 2133 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
d7a5752c 2134
d9f7979c
GKH
2135 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2136 &unusable_file_ops);
d7a5752c 2137
d9f7979c
GKH
2138 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2139 &extfrag_file_ops);
f1a5ab12 2140
d7a5752c
MG
2141 return 0;
2142}
2143
2144module_init(extfrag_debug_init);
2145#endif