zswap: memcg accounting
[linux-block.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
26aa2d19 44#include <linux/migrate.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55#include <asm/div64.h>
56
57#include <linux/swapops.h>
117aad1e 58#include <linux/balloon_compaction.h>
c574bbe9 59#include <linux/sched/sysctl.h>
1da177e4 60
0f8053a5 61#include "internal.h"
014bb1de 62#include "swap.h"
0f8053a5 63
33906bc5
MG
64#define CREATE_TRACE_POINTS
65#include <trace/events/vmscan.h>
66
1da177e4 67struct scan_control {
22fba335
KM
68 /* How many pages shrink_list() should reclaim */
69 unsigned long nr_to_reclaim;
70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
7cf111bc
JW
83 /*
84 * Scan pressure balancing between anon and file LRUs
85 */
86 unsigned long anon_cost;
87 unsigned long file_cost;
88
b91ac374
JW
89 /* Can active pages be deactivated as part of reclaim? */
90#define DEACTIVATE_ANON 1
91#define DEACTIVATE_FILE 2
92 unsigned int may_deactivate:2;
93 unsigned int force_deactivate:1;
94 unsigned int skipped_deactivate:1;
95
1276ad68 96 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
97 unsigned int may_writepage:1;
98
99 /* Can mapped pages be reclaimed? */
100 unsigned int may_unmap:1;
101
102 /* Can pages be swapped as part of reclaim? */
103 unsigned int may_swap:1;
104
d6622f63 105 /*
f56ce412
JW
106 * Cgroup memory below memory.low is protected as long as we
107 * don't threaten to OOM. If any cgroup is reclaimed at
108 * reduced force or passed over entirely due to its memory.low
109 * setting (memcg_low_skipped), and nothing is reclaimed as a
110 * result, then go back for one more cycle that reclaims the protected
111 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
112 */
113 unsigned int memcg_low_reclaim:1;
114 unsigned int memcg_low_skipped:1;
241994ed 115
ee814fe2
JW
116 unsigned int hibernation_mode:1;
117
118 /* One of the zones is ready for compaction */
119 unsigned int compaction_ready:1;
120
b91ac374
JW
121 /* There is easily reclaimable cold cache in the current node */
122 unsigned int cache_trim_mode:1;
123
53138cea
JW
124 /* The file pages on the current node are dangerously low */
125 unsigned int file_is_tiny:1;
126
26aa2d19
DH
127 /* Always discard instead of demoting to lower tier memory */
128 unsigned int no_demotion:1;
129
bb451fdf
GT
130 /* Allocation order */
131 s8 order;
132
133 /* Scan (total_size >> priority) pages at once */
134 s8 priority;
135
136 /* The highest zone to isolate pages for reclaim from */
137 s8 reclaim_idx;
138
139 /* This context's GFP mask */
140 gfp_t gfp_mask;
141
ee814fe2
JW
142 /* Incremented by the number of inactive pages that were scanned */
143 unsigned long nr_scanned;
144
145 /* Number of pages freed so far during a call to shrink_zones() */
146 unsigned long nr_reclaimed;
d108c772
AR
147
148 struct {
149 unsigned int dirty;
150 unsigned int unqueued_dirty;
151 unsigned int congested;
152 unsigned int writeback;
153 unsigned int immediate;
154 unsigned int file_taken;
155 unsigned int taken;
156 } nr;
e5ca8071
YS
157
158 /* for recording the reclaimed slab by now */
159 struct reclaim_state reclaim_state;
1da177e4
LT
160};
161
1da177e4
LT
162#ifdef ARCH_HAS_PREFETCHW
163#define prefetchw_prev_lru_page(_page, _base, _field) \
164 do { \
165 if ((_page)->lru.prev != _base) { \
166 struct page *prev; \
167 \
168 prev = lru_to_page(&(_page->lru)); \
169 prefetchw(&prev->_field); \
170 } \
171 } while (0)
172#else
173#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
174#endif
175
176/*
c843966c 177 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
178 */
179int vm_swappiness = 60;
1da177e4 180
0a432dcb
YS
181static void set_task_reclaim_state(struct task_struct *task,
182 struct reclaim_state *rs)
183{
184 /* Check for an overwrite */
185 WARN_ON_ONCE(rs && task->reclaim_state);
186
187 /* Check for the nulling of an already-nulled member */
188 WARN_ON_ONCE(!rs && !task->reclaim_state);
189
190 task->reclaim_state = rs;
191}
192
1da177e4
LT
193static LIST_HEAD(shrinker_list);
194static DECLARE_RWSEM(shrinker_rwsem);
195
0a432dcb 196#ifdef CONFIG_MEMCG
a2fb1261 197static int shrinker_nr_max;
2bfd3637 198
3c6f17e6 199/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
200static inline int shrinker_map_size(int nr_items)
201{
202 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
203}
2bfd3637 204
3c6f17e6
YS
205static inline int shrinker_defer_size(int nr_items)
206{
207 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
208}
209
468ab843
YS
210static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
211 int nid)
212{
213 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
214 lockdep_is_held(&shrinker_rwsem));
215}
216
e4262c4f 217static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
218 int map_size, int defer_size,
219 int old_map_size, int old_defer_size)
2bfd3637 220{
e4262c4f 221 struct shrinker_info *new, *old;
2bfd3637
YS
222 struct mem_cgroup_per_node *pn;
223 int nid;
3c6f17e6 224 int size = map_size + defer_size;
2bfd3637 225
2bfd3637
YS
226 for_each_node(nid) {
227 pn = memcg->nodeinfo[nid];
468ab843 228 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
229 /* Not yet online memcg */
230 if (!old)
231 return 0;
232
233 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
234 if (!new)
235 return -ENOMEM;
236
3c6f17e6
YS
237 new->nr_deferred = (atomic_long_t *)(new + 1);
238 new->map = (void *)new->nr_deferred + defer_size;
239
240 /* map: set all old bits, clear all new bits */
241 memset(new->map, (int)0xff, old_map_size);
242 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
243 /* nr_deferred: copy old values, clear all new values */
244 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
245 memset((void *)new->nr_deferred + old_defer_size, 0,
246 defer_size - old_defer_size);
2bfd3637 247
e4262c4f 248 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 249 kvfree_rcu(old, rcu);
2bfd3637
YS
250 }
251
252 return 0;
253}
254
e4262c4f 255void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
256{
257 struct mem_cgroup_per_node *pn;
e4262c4f 258 struct shrinker_info *info;
2bfd3637
YS
259 int nid;
260
2bfd3637
YS
261 for_each_node(nid) {
262 pn = memcg->nodeinfo[nid];
e4262c4f
YS
263 info = rcu_dereference_protected(pn->shrinker_info, true);
264 kvfree(info);
265 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
266 }
267}
268
e4262c4f 269int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 270{
e4262c4f 271 struct shrinker_info *info;
2bfd3637 272 int nid, size, ret = 0;
3c6f17e6 273 int map_size, defer_size = 0;
2bfd3637 274
d27cf2aa 275 down_write(&shrinker_rwsem);
3c6f17e6
YS
276 map_size = shrinker_map_size(shrinker_nr_max);
277 defer_size = shrinker_defer_size(shrinker_nr_max);
278 size = map_size + defer_size;
2bfd3637 279 for_each_node(nid) {
e4262c4f
YS
280 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
281 if (!info) {
282 free_shrinker_info(memcg);
2bfd3637
YS
283 ret = -ENOMEM;
284 break;
285 }
3c6f17e6
YS
286 info->nr_deferred = (atomic_long_t *)(info + 1);
287 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 288 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 289 }
d27cf2aa 290 up_write(&shrinker_rwsem);
2bfd3637
YS
291
292 return ret;
293}
294
3c6f17e6
YS
295static inline bool need_expand(int nr_max)
296{
297 return round_up(nr_max, BITS_PER_LONG) >
298 round_up(shrinker_nr_max, BITS_PER_LONG);
299}
300
e4262c4f 301static int expand_shrinker_info(int new_id)
2bfd3637 302{
3c6f17e6 303 int ret = 0;
a2fb1261 304 int new_nr_max = new_id + 1;
3c6f17e6
YS
305 int map_size, defer_size = 0;
306 int old_map_size, old_defer_size = 0;
2bfd3637
YS
307 struct mem_cgroup *memcg;
308
3c6f17e6 309 if (!need_expand(new_nr_max))
a2fb1261 310 goto out;
2bfd3637 311
2bfd3637 312 if (!root_mem_cgroup)
d27cf2aa
YS
313 goto out;
314
315 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 316
3c6f17e6
YS
317 map_size = shrinker_map_size(new_nr_max);
318 defer_size = shrinker_defer_size(new_nr_max);
319 old_map_size = shrinker_map_size(shrinker_nr_max);
320 old_defer_size = shrinker_defer_size(shrinker_nr_max);
321
2bfd3637
YS
322 memcg = mem_cgroup_iter(NULL, NULL, NULL);
323 do {
3c6f17e6
YS
324 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
325 old_map_size, old_defer_size);
2bfd3637
YS
326 if (ret) {
327 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 328 goto out;
2bfd3637
YS
329 }
330 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 331out:
2bfd3637 332 if (!ret)
a2fb1261 333 shrinker_nr_max = new_nr_max;
d27cf2aa 334
2bfd3637
YS
335 return ret;
336}
337
338void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
339{
340 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 341 struct shrinker_info *info;
2bfd3637
YS
342
343 rcu_read_lock();
e4262c4f 344 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
345 /* Pairs with smp mb in shrink_slab() */
346 smp_mb__before_atomic();
e4262c4f 347 set_bit(shrinker_id, info->map);
2bfd3637
YS
348 rcu_read_unlock();
349 }
350}
351
b4c2b231 352static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
353
354static int prealloc_memcg_shrinker(struct shrinker *shrinker)
355{
356 int id, ret = -ENOMEM;
357
476b30a0
YS
358 if (mem_cgroup_disabled())
359 return -ENOSYS;
360
b4c2b231
KT
361 down_write(&shrinker_rwsem);
362 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 363 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
364 if (id < 0)
365 goto unlock;
366
0a4465d3 367 if (id >= shrinker_nr_max) {
e4262c4f 368 if (expand_shrinker_info(id)) {
0a4465d3
KT
369 idr_remove(&shrinker_idr, id);
370 goto unlock;
371 }
0a4465d3 372 }
b4c2b231
KT
373 shrinker->id = id;
374 ret = 0;
375unlock:
376 up_write(&shrinker_rwsem);
377 return ret;
378}
379
380static void unregister_memcg_shrinker(struct shrinker *shrinker)
381{
382 int id = shrinker->id;
383
384 BUG_ON(id < 0);
385
41ca668a
YS
386 lockdep_assert_held(&shrinker_rwsem);
387
b4c2b231 388 idr_remove(&shrinker_idr, id);
b4c2b231 389}
b4c2b231 390
86750830
YS
391static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
392 struct mem_cgroup *memcg)
393{
394 struct shrinker_info *info;
395
396 info = shrinker_info_protected(memcg, nid);
397 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
398}
399
400static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
401 struct mem_cgroup *memcg)
402{
403 struct shrinker_info *info;
404
405 info = shrinker_info_protected(memcg, nid);
406 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
407}
408
a178015c
YS
409void reparent_shrinker_deferred(struct mem_cgroup *memcg)
410{
411 int i, nid;
412 long nr;
413 struct mem_cgroup *parent;
414 struct shrinker_info *child_info, *parent_info;
415
416 parent = parent_mem_cgroup(memcg);
417 if (!parent)
418 parent = root_mem_cgroup;
419
420 /* Prevent from concurrent shrinker_info expand */
421 down_read(&shrinker_rwsem);
422 for_each_node(nid) {
423 child_info = shrinker_info_protected(memcg, nid);
424 parent_info = shrinker_info_protected(parent, nid);
425 for (i = 0; i < shrinker_nr_max; i++) {
426 nr = atomic_long_read(&child_info->nr_deferred[i]);
427 atomic_long_add(nr, &parent_info->nr_deferred[i]);
428 }
429 }
430 up_read(&shrinker_rwsem);
431}
432
b5ead35e 433static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 434{
b5ead35e 435 return sc->target_mem_cgroup;
89b5fae5 436}
97c9341f
TH
437
438/**
b5ead35e 439 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
440 * @sc: scan_control in question
441 *
442 * The normal page dirty throttling mechanism in balance_dirty_pages() is
443 * completely broken with the legacy memcg and direct stalling in
444 * shrink_page_list() is used for throttling instead, which lacks all the
445 * niceties such as fairness, adaptive pausing, bandwidth proportional
446 * allocation and configurability.
447 *
448 * This function tests whether the vmscan currently in progress can assume
449 * that the normal dirty throttling mechanism is operational.
450 */
b5ead35e 451static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 452{
b5ead35e 453 if (!cgroup_reclaim(sc))
97c9341f
TH
454 return true;
455#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 456 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
457 return true;
458#endif
459 return false;
460}
91a45470 461#else
0a432dcb
YS
462static int prealloc_memcg_shrinker(struct shrinker *shrinker)
463{
476b30a0 464 return -ENOSYS;
0a432dcb
YS
465}
466
467static void unregister_memcg_shrinker(struct shrinker *shrinker)
468{
469}
470
86750830
YS
471static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
472 struct mem_cgroup *memcg)
473{
474 return 0;
475}
476
477static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
478 struct mem_cgroup *memcg)
479{
480 return 0;
481}
482
b5ead35e 483static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 484{
b5ead35e 485 return false;
89b5fae5 486}
97c9341f 487
b5ead35e 488static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
489{
490 return true;
491}
91a45470
KH
492#endif
493
86750830
YS
494static long xchg_nr_deferred(struct shrinker *shrinker,
495 struct shrink_control *sc)
496{
497 int nid = sc->nid;
498
499 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
500 nid = 0;
501
502 if (sc->memcg &&
503 (shrinker->flags & SHRINKER_MEMCG_AWARE))
504 return xchg_nr_deferred_memcg(nid, shrinker,
505 sc->memcg);
506
507 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
508}
509
510
511static long add_nr_deferred(long nr, struct shrinker *shrinker,
512 struct shrink_control *sc)
513{
514 int nid = sc->nid;
515
516 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
517 nid = 0;
518
519 if (sc->memcg &&
520 (shrinker->flags & SHRINKER_MEMCG_AWARE))
521 return add_nr_deferred_memcg(nr, nid, shrinker,
522 sc->memcg);
523
524 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
525}
526
26aa2d19
DH
527static bool can_demote(int nid, struct scan_control *sc)
528{
20b51af1
HY
529 if (!numa_demotion_enabled)
530 return false;
3a235693
DH
531 if (sc) {
532 if (sc->no_demotion)
533 return false;
534 /* It is pointless to do demotion in memcg reclaim */
535 if (cgroup_reclaim(sc))
536 return false;
537 }
26aa2d19
DH
538 if (next_demotion_node(nid) == NUMA_NO_NODE)
539 return false;
540
20b51af1 541 return true;
26aa2d19
DH
542}
543
a2a36488
KB
544static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
545 int nid,
546 struct scan_control *sc)
547{
548 if (memcg == NULL) {
549 /*
550 * For non-memcg reclaim, is there
551 * space in any swap device?
552 */
553 if (get_nr_swap_pages() > 0)
554 return true;
555 } else {
556 /* Is the memcg below its swap limit? */
557 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
558 return true;
559 }
560
561 /*
562 * The page can not be swapped.
563 *
564 * Can it be reclaimed from this node via demotion?
565 */
566 return can_demote(nid, sc);
567}
568
5a1c84b4
MG
569/*
570 * This misses isolated pages which are not accounted for to save counters.
571 * As the data only determines if reclaim or compaction continues, it is
572 * not expected that isolated pages will be a dominating factor.
573 */
574unsigned long zone_reclaimable_pages(struct zone *zone)
575{
576 unsigned long nr;
577
578 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
579 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 580 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
581 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
582 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
583
584 return nr;
585}
586
fd538803
MH
587/**
588 * lruvec_lru_size - Returns the number of pages on the given LRU list.
589 * @lruvec: lru vector
590 * @lru: lru to use
8b3a899a 591 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
fd538803 592 */
2091339d
YZ
593static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
594 int zone_idx)
c9f299d9 595{
de3b0150 596 unsigned long size = 0;
fd538803
MH
597 int zid;
598
8b3a899a 599 for (zid = 0; zid <= zone_idx; zid++) {
fd538803 600 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 601
fd538803
MH
602 if (!managed_zone(zone))
603 continue;
604
605 if (!mem_cgroup_disabled())
de3b0150 606 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 607 else
de3b0150 608 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 609 }
de3b0150 610 return size;
b4536f0c
MH
611}
612
1da177e4 613/*
1d3d4437 614 * Add a shrinker callback to be called from the vm.
1da177e4 615 */
8e04944f 616int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 617{
476b30a0
YS
618 unsigned int size;
619 int err;
620
621 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
622 err = prealloc_memcg_shrinker(shrinker);
623 if (err != -ENOSYS)
624 return err;
1d3d4437 625
476b30a0
YS
626 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
627 }
628
629 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
630 if (shrinker->flags & SHRINKER_NUMA_AWARE)
631 size *= nr_node_ids;
632
633 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
634 if (!shrinker->nr_deferred)
635 return -ENOMEM;
b4c2b231 636
8e04944f
TH
637 return 0;
638}
639
640void free_prealloced_shrinker(struct shrinker *shrinker)
641{
41ca668a
YS
642 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
643 down_write(&shrinker_rwsem);
b4c2b231 644 unregister_memcg_shrinker(shrinker);
41ca668a 645 up_write(&shrinker_rwsem);
476b30a0 646 return;
41ca668a 647 }
b4c2b231 648
8e04944f
TH
649 kfree(shrinker->nr_deferred);
650 shrinker->nr_deferred = NULL;
651}
1d3d4437 652
8e04944f
TH
653void register_shrinker_prepared(struct shrinker *shrinker)
654{
8e1f936b
RR
655 down_write(&shrinker_rwsem);
656 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 657 shrinker->flags |= SHRINKER_REGISTERED;
8e1f936b 658 up_write(&shrinker_rwsem);
8e04944f
TH
659}
660
661int register_shrinker(struct shrinker *shrinker)
662{
663 int err = prealloc_shrinker(shrinker);
664
665 if (err)
666 return err;
667 register_shrinker_prepared(shrinker);
1d3d4437 668 return 0;
1da177e4 669}
8e1f936b 670EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
671
672/*
673 * Remove one
674 */
8e1f936b 675void unregister_shrinker(struct shrinker *shrinker)
1da177e4 676{
41ca668a 677 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 678 return;
41ca668a 679
1da177e4
LT
680 down_write(&shrinker_rwsem);
681 list_del(&shrinker->list);
41ca668a
YS
682 shrinker->flags &= ~SHRINKER_REGISTERED;
683 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
684 unregister_memcg_shrinker(shrinker);
1da177e4 685 up_write(&shrinker_rwsem);
41ca668a 686
ae393321 687 kfree(shrinker->nr_deferred);
bb422a73 688 shrinker->nr_deferred = NULL;
1da177e4 689}
8e1f936b 690EXPORT_SYMBOL(unregister_shrinker);
1da177e4 691
880121be
CK
692/**
693 * synchronize_shrinkers - Wait for all running shrinkers to complete.
694 *
695 * This is equivalent to calling unregister_shrink() and register_shrinker(),
696 * but atomically and with less overhead. This is useful to guarantee that all
697 * shrinker invocations have seen an update, before freeing memory, similar to
698 * rcu.
699 */
700void synchronize_shrinkers(void)
701{
702 down_write(&shrinker_rwsem);
703 up_write(&shrinker_rwsem);
704}
705EXPORT_SYMBOL(synchronize_shrinkers);
706
1da177e4 707#define SHRINK_BATCH 128
1d3d4437 708
cb731d6c 709static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 710 struct shrinker *shrinker, int priority)
1d3d4437
GC
711{
712 unsigned long freed = 0;
713 unsigned long long delta;
714 long total_scan;
d5bc5fd3 715 long freeable;
1d3d4437
GC
716 long nr;
717 long new_nr;
1d3d4437
GC
718 long batch_size = shrinker->batch ? shrinker->batch
719 : SHRINK_BATCH;
5f33a080 720 long scanned = 0, next_deferred;
1d3d4437 721
d5bc5fd3 722 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
723 if (freeable == 0 || freeable == SHRINK_EMPTY)
724 return freeable;
1d3d4437
GC
725
726 /*
727 * copy the current shrinker scan count into a local variable
728 * and zero it so that other concurrent shrinker invocations
729 * don't also do this scanning work.
730 */
86750830 731 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 732
4b85afbd
JW
733 if (shrinker->seeks) {
734 delta = freeable >> priority;
735 delta *= 4;
736 do_div(delta, shrinker->seeks);
737 } else {
738 /*
739 * These objects don't require any IO to create. Trim
740 * them aggressively under memory pressure to keep
741 * them from causing refetches in the IO caches.
742 */
743 delta = freeable / 2;
744 }
172b06c3 745
18bb473e 746 total_scan = nr >> priority;
1d3d4437 747 total_scan += delta;
18bb473e 748 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
749
750 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 751 freeable, delta, total_scan, priority);
1d3d4437 752
0b1fb40a
VD
753 /*
754 * Normally, we should not scan less than batch_size objects in one
755 * pass to avoid too frequent shrinker calls, but if the slab has less
756 * than batch_size objects in total and we are really tight on memory,
757 * we will try to reclaim all available objects, otherwise we can end
758 * up failing allocations although there are plenty of reclaimable
759 * objects spread over several slabs with usage less than the
760 * batch_size.
761 *
762 * We detect the "tight on memory" situations by looking at the total
763 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 764 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
765 * scanning at high prio and therefore should try to reclaim as much as
766 * possible.
767 */
768 while (total_scan >= batch_size ||
d5bc5fd3 769 total_scan >= freeable) {
a0b02131 770 unsigned long ret;
0b1fb40a 771 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 772
0b1fb40a 773 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 774 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
775 ret = shrinker->scan_objects(shrinker, shrinkctl);
776 if (ret == SHRINK_STOP)
777 break;
778 freed += ret;
1d3d4437 779
d460acb5
CW
780 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
781 total_scan -= shrinkctl->nr_scanned;
782 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
783
784 cond_resched();
785 }
786
18bb473e
YS
787 /*
788 * The deferred work is increased by any new work (delta) that wasn't
789 * done, decreased by old deferred work that was done now.
790 *
791 * And it is capped to two times of the freeable items.
792 */
793 next_deferred = max_t(long, (nr + delta - scanned), 0);
794 next_deferred = min(next_deferred, (2 * freeable));
795
1d3d4437
GC
796 /*
797 * move the unused scan count back into the shrinker in a
86750830 798 * manner that handles concurrent updates.
1d3d4437 799 */
86750830 800 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 801
8efb4b59 802 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 803 return freed;
1495f230
YH
804}
805
0a432dcb 806#ifdef CONFIG_MEMCG
b0dedc49
KT
807static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
808 struct mem_cgroup *memcg, int priority)
809{
e4262c4f 810 struct shrinker_info *info;
b8e57efa
KT
811 unsigned long ret, freed = 0;
812 int i;
b0dedc49 813
0a432dcb 814 if (!mem_cgroup_online(memcg))
b0dedc49
KT
815 return 0;
816
817 if (!down_read_trylock(&shrinker_rwsem))
818 return 0;
819
468ab843 820 info = shrinker_info_protected(memcg, nid);
e4262c4f 821 if (unlikely(!info))
b0dedc49
KT
822 goto unlock;
823
e4262c4f 824 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
825 struct shrink_control sc = {
826 .gfp_mask = gfp_mask,
827 .nid = nid,
828 .memcg = memcg,
829 };
830 struct shrinker *shrinker;
831
832 shrinker = idr_find(&shrinker_idr, i);
41ca668a 833 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 834 if (!shrinker)
e4262c4f 835 clear_bit(i, info->map);
b0dedc49
KT
836 continue;
837 }
838
0a432dcb
YS
839 /* Call non-slab shrinkers even though kmem is disabled */
840 if (!memcg_kmem_enabled() &&
841 !(shrinker->flags & SHRINKER_NONSLAB))
842 continue;
843
b0dedc49 844 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 845 if (ret == SHRINK_EMPTY) {
e4262c4f 846 clear_bit(i, info->map);
f90280d6
KT
847 /*
848 * After the shrinker reported that it had no objects to
849 * free, but before we cleared the corresponding bit in
850 * the memcg shrinker map, a new object might have been
851 * added. To make sure, we have the bit set in this
852 * case, we invoke the shrinker one more time and reset
853 * the bit if it reports that it is not empty anymore.
854 * The memory barrier here pairs with the barrier in
2bfd3637 855 * set_shrinker_bit():
f90280d6
KT
856 *
857 * list_lru_add() shrink_slab_memcg()
858 * list_add_tail() clear_bit()
859 * <MB> <MB>
860 * set_bit() do_shrink_slab()
861 */
862 smp_mb__after_atomic();
863 ret = do_shrink_slab(&sc, shrinker, priority);
864 if (ret == SHRINK_EMPTY)
865 ret = 0;
866 else
2bfd3637 867 set_shrinker_bit(memcg, nid, i);
f90280d6 868 }
b0dedc49
KT
869 freed += ret;
870
871 if (rwsem_is_contended(&shrinker_rwsem)) {
872 freed = freed ? : 1;
873 break;
874 }
875 }
876unlock:
877 up_read(&shrinker_rwsem);
878 return freed;
879}
0a432dcb 880#else /* CONFIG_MEMCG */
b0dedc49
KT
881static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
882 struct mem_cgroup *memcg, int priority)
883{
884 return 0;
885}
0a432dcb 886#endif /* CONFIG_MEMCG */
b0dedc49 887
6b4f7799 888/**
cb731d6c 889 * shrink_slab - shrink slab caches
6b4f7799
JW
890 * @gfp_mask: allocation context
891 * @nid: node whose slab caches to target
cb731d6c 892 * @memcg: memory cgroup whose slab caches to target
9092c71b 893 * @priority: the reclaim priority
1da177e4 894 *
6b4f7799 895 * Call the shrink functions to age shrinkable caches.
1da177e4 896 *
6b4f7799
JW
897 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
898 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 899 *
aeed1d32
VD
900 * @memcg specifies the memory cgroup to target. Unaware shrinkers
901 * are called only if it is the root cgroup.
cb731d6c 902 *
9092c71b
JB
903 * @priority is sc->priority, we take the number of objects and >> by priority
904 * in order to get the scan target.
b15e0905 905 *
6b4f7799 906 * Returns the number of reclaimed slab objects.
1da177e4 907 */
cb731d6c
VD
908static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
909 struct mem_cgroup *memcg,
9092c71b 910 int priority)
1da177e4 911{
b8e57efa 912 unsigned long ret, freed = 0;
1da177e4
LT
913 struct shrinker *shrinker;
914
fa1e512f
YS
915 /*
916 * The root memcg might be allocated even though memcg is disabled
917 * via "cgroup_disable=memory" boot parameter. This could make
918 * mem_cgroup_is_root() return false, then just run memcg slab
919 * shrink, but skip global shrink. This may result in premature
920 * oom.
921 */
922 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 923 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 924
e830c63a 925 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 926 goto out;
1da177e4
LT
927
928 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
929 struct shrink_control sc = {
930 .gfp_mask = gfp_mask,
931 .nid = nid,
cb731d6c 932 .memcg = memcg,
6b4f7799 933 };
ec97097b 934
9b996468
KT
935 ret = do_shrink_slab(&sc, shrinker, priority);
936 if (ret == SHRINK_EMPTY)
937 ret = 0;
938 freed += ret;
e496612c
MK
939 /*
940 * Bail out if someone want to register a new shrinker to
55b65a57 941 * prevent the registration from being stalled for long periods
e496612c
MK
942 * by parallel ongoing shrinking.
943 */
944 if (rwsem_is_contended(&shrinker_rwsem)) {
945 freed = freed ? : 1;
946 break;
947 }
1da177e4 948 }
6b4f7799 949
1da177e4 950 up_read(&shrinker_rwsem);
f06590bd
MK
951out:
952 cond_resched();
24f7c6b9 953 return freed;
1da177e4
LT
954}
955
e4b424b7 956static void drop_slab_node(int nid)
cb731d6c
VD
957{
958 unsigned long freed;
1399af7e 959 int shift = 0;
cb731d6c
VD
960
961 do {
962 struct mem_cgroup *memcg = NULL;
963
069c411d
CZ
964 if (fatal_signal_pending(current))
965 return;
966
cb731d6c 967 freed = 0;
aeed1d32 968 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 969 do {
9092c71b 970 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c 971 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1399af7e 972 } while ((freed >> shift++) > 1);
cb731d6c
VD
973}
974
975void drop_slab(void)
976{
977 int nid;
978
979 for_each_online_node(nid)
980 drop_slab_node(nid);
981}
982
e0cd5e7f 983static inline int is_page_cache_freeable(struct folio *folio)
1da177e4 984{
ceddc3a5
JW
985 /*
986 * A freeable page cache page is referenced only by the caller
67891fff
MW
987 * that isolated the page, the page cache and optional buffer
988 * heads at page->private.
ceddc3a5 989 */
e0cd5e7f
MWO
990 return folio_ref_count(folio) - folio_test_private(folio) ==
991 1 + folio_nr_pages(folio);
1da177e4
LT
992}
993
1da177e4 994/*
e0cd5e7f 995 * We detected a synchronous write error writing a folio out. Probably
1da177e4
LT
996 * -ENOSPC. We need to propagate that into the address_space for a subsequent
997 * fsync(), msync() or close().
998 *
999 * The tricky part is that after writepage we cannot touch the mapping: nothing
e0cd5e7f
MWO
1000 * prevents it from being freed up. But we have a ref on the folio and once
1001 * that folio is locked, the mapping is pinned.
1da177e4 1002 *
e0cd5e7f 1003 * We're allowed to run sleeping folio_lock() here because we know the caller has
1da177e4
LT
1004 * __GFP_FS.
1005 */
1006static void handle_write_error(struct address_space *mapping,
e0cd5e7f 1007 struct folio *folio, int error)
1da177e4 1008{
e0cd5e7f
MWO
1009 folio_lock(folio);
1010 if (folio_mapping(folio) == mapping)
3e9f45bd 1011 mapping_set_error(mapping, error);
e0cd5e7f 1012 folio_unlock(folio);
1da177e4
LT
1013}
1014
1b4e3f26
MG
1015static bool skip_throttle_noprogress(pg_data_t *pgdat)
1016{
1017 int reclaimable = 0, write_pending = 0;
1018 int i;
1019
1020 /*
1021 * If kswapd is disabled, reschedule if necessary but do not
1022 * throttle as the system is likely near OOM.
1023 */
1024 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1025 return true;
1026
1027 /*
1028 * If there are a lot of dirty/writeback pages then do not
1029 * throttle as throttling will occur when the pages cycle
1030 * towards the end of the LRU if still under writeback.
1031 */
1032 for (i = 0; i < MAX_NR_ZONES; i++) {
1033 struct zone *zone = pgdat->node_zones + i;
1034
36c26128 1035 if (!managed_zone(zone))
1b4e3f26
MG
1036 continue;
1037
1038 reclaimable += zone_reclaimable_pages(zone);
1039 write_pending += zone_page_state_snapshot(zone,
1040 NR_ZONE_WRITE_PENDING);
1041 }
1042 if (2 * write_pending <= reclaimable)
1043 return true;
1044
1045 return false;
1046}
1047
c3f4a9a2 1048void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
8cd7c588
MG
1049{
1050 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
c3f4a9a2 1051 long timeout, ret;
8cd7c588
MG
1052 DEFINE_WAIT(wait);
1053
1054 /*
1055 * Do not throttle IO workers, kthreads other than kswapd or
1056 * workqueues. They may be required for reclaim to make
1057 * forward progress (e.g. journalling workqueues or kthreads).
1058 */
1059 if (!current_is_kswapd() &&
b485c6f1
MG
1060 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1061 cond_resched();
8cd7c588 1062 return;
b485c6f1 1063 }
8cd7c588 1064
c3f4a9a2
MG
1065 /*
1066 * These figures are pulled out of thin air.
1067 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1068 * parallel reclaimers which is a short-lived event so the timeout is
1069 * short. Failing to make progress or waiting on writeback are
1070 * potentially long-lived events so use a longer timeout. This is shaky
1071 * logic as a failure to make progress could be due to anything from
1072 * writeback to a slow device to excessive references pages at the tail
1073 * of the inactive LRU.
1074 */
1075 switch(reason) {
1076 case VMSCAN_THROTTLE_WRITEBACK:
1077 timeout = HZ/10;
1078
1079 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1080 WRITE_ONCE(pgdat->nr_reclaim_start,
1081 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1082 }
1083
1084 break;
1b4e3f26
MG
1085 case VMSCAN_THROTTLE_CONGESTED:
1086 fallthrough;
c3f4a9a2 1087 case VMSCAN_THROTTLE_NOPROGRESS:
1b4e3f26
MG
1088 if (skip_throttle_noprogress(pgdat)) {
1089 cond_resched();
1090 return;
1091 }
1092
1093 timeout = 1;
1094
c3f4a9a2
MG
1095 break;
1096 case VMSCAN_THROTTLE_ISOLATED:
1097 timeout = HZ/50;
1098 break;
1099 default:
1100 WARN_ON_ONCE(1);
1101 timeout = HZ;
1102 break;
8cd7c588
MG
1103 }
1104
1105 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1106 ret = schedule_timeout(timeout);
1107 finish_wait(wqh, &wait);
d818fca1 1108
c3f4a9a2 1109 if (reason == VMSCAN_THROTTLE_WRITEBACK)
d818fca1 1110 atomic_dec(&pgdat->nr_writeback_throttled);
8cd7c588
MG
1111
1112 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1113 jiffies_to_usecs(timeout - ret),
1114 reason);
1115}
1116
1117/*
1118 * Account for pages written if tasks are throttled waiting on dirty
1119 * pages to clean. If enough pages have been cleaned since throttling
1120 * started then wakeup the throttled tasks.
1121 */
512b7931 1122void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
8cd7c588
MG
1123 int nr_throttled)
1124{
1125 unsigned long nr_written;
1126
512b7931 1127 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
8cd7c588
MG
1128
1129 /*
1130 * This is an inaccurate read as the per-cpu deltas may not
1131 * be synchronised. However, given that the system is
1132 * writeback throttled, it is not worth taking the penalty
1133 * of getting an accurate count. At worst, the throttle
1134 * timeout guarantees forward progress.
1135 */
1136 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1137 READ_ONCE(pgdat->nr_reclaim_start);
1138
1139 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1140 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1141}
1142
04e62a29
CL
1143/* possible outcome of pageout() */
1144typedef enum {
1145 /* failed to write page out, page is locked */
1146 PAGE_KEEP,
1147 /* move page to the active list, page is locked */
1148 PAGE_ACTIVATE,
1149 /* page has been sent to the disk successfully, page is unlocked */
1150 PAGE_SUCCESS,
1151 /* page is clean and locked */
1152 PAGE_CLEAN,
1153} pageout_t;
1154
1da177e4 1155/*
1742f19f
AM
1156 * pageout is called by shrink_page_list() for each dirty page.
1157 * Calls ->writepage().
1da177e4 1158 */
2282679f
N
1159static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1160 struct swap_iocb **plug)
1da177e4
LT
1161{
1162 /*
e0cd5e7f 1163 * If the folio is dirty, only perform writeback if that write
1da177e4
LT
1164 * will be non-blocking. To prevent this allocation from being
1165 * stalled by pagecache activity. But note that there may be
1166 * stalls if we need to run get_block(). We could test
1167 * PagePrivate for that.
1168 *
8174202b 1169 * If this process is currently in __generic_file_write_iter() against
e0cd5e7f 1170 * this folio's queue, we can perform writeback even if that
1da177e4
LT
1171 * will block.
1172 *
e0cd5e7f 1173 * If the folio is swapcache, write it back even if that would
1da177e4
LT
1174 * block, for some throttling. This happens by accident, because
1175 * swap_backing_dev_info is bust: it doesn't reflect the
1176 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4 1177 */
e0cd5e7f 1178 if (!is_page_cache_freeable(folio))
1da177e4
LT
1179 return PAGE_KEEP;
1180 if (!mapping) {
1181 /*
e0cd5e7f
MWO
1182 * Some data journaling orphaned folios can have
1183 * folio->mapping == NULL while being dirty with clean buffers.
1da177e4 1184 */
e0cd5e7f
MWO
1185 if (folio_test_private(folio)) {
1186 if (try_to_free_buffers(&folio->page)) {
1187 folio_clear_dirty(folio);
1188 pr_info("%s: orphaned folio\n", __func__);
1da177e4
LT
1189 return PAGE_CLEAN;
1190 }
1191 }
1192 return PAGE_KEEP;
1193 }
1194 if (mapping->a_ops->writepage == NULL)
1195 return PAGE_ACTIVATE;
1da177e4 1196
e0cd5e7f 1197 if (folio_clear_dirty_for_io(folio)) {
1da177e4
LT
1198 int res;
1199 struct writeback_control wbc = {
1200 .sync_mode = WB_SYNC_NONE,
1201 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1202 .range_start = 0,
1203 .range_end = LLONG_MAX,
1da177e4 1204 .for_reclaim = 1,
2282679f 1205 .swap_plug = plug,
1da177e4
LT
1206 };
1207
e0cd5e7f
MWO
1208 folio_set_reclaim(folio);
1209 res = mapping->a_ops->writepage(&folio->page, &wbc);
1da177e4 1210 if (res < 0)
e0cd5e7f 1211 handle_write_error(mapping, folio, res);
994fc28c 1212 if (res == AOP_WRITEPAGE_ACTIVATE) {
e0cd5e7f 1213 folio_clear_reclaim(folio);
1da177e4
LT
1214 return PAGE_ACTIVATE;
1215 }
c661b078 1216
e0cd5e7f 1217 if (!folio_test_writeback(folio)) {
1da177e4 1218 /* synchronous write or broken a_ops? */
e0cd5e7f 1219 folio_clear_reclaim(folio);
1da177e4 1220 }
e0cd5e7f
MWO
1221 trace_mm_vmscan_write_folio(folio);
1222 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1da177e4
LT
1223 return PAGE_SUCCESS;
1224 }
1225
1226 return PAGE_CLEAN;
1227}
1228
a649fd92 1229/*
e286781d
NP
1230 * Same as remove_mapping, but if the page is removed from the mapping, it
1231 * gets returned with a refcount of 0.
a649fd92 1232 */
be7c07d6 1233static int __remove_mapping(struct address_space *mapping, struct folio *folio,
b910718a 1234 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1235{
bd4c82c2 1236 int refcount;
aae466b0 1237 void *shadow = NULL;
c4843a75 1238
be7c07d6
MWO
1239 BUG_ON(!folio_test_locked(folio));
1240 BUG_ON(mapping != folio_mapping(folio));
49d2e9cc 1241
be7c07d6 1242 if (!folio_test_swapcache(folio))
51b8c1fe 1243 spin_lock(&mapping->host->i_lock);
30472509 1244 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1245 /*
0fd0e6b0
NP
1246 * The non racy check for a busy page.
1247 *
1248 * Must be careful with the order of the tests. When someone has
1249 * a ref to the page, it may be possible that they dirty it then
1250 * drop the reference. So if PageDirty is tested before page_count
1251 * here, then the following race may occur:
1252 *
1253 * get_user_pages(&page);
1254 * [user mapping goes away]
1255 * write_to(page);
1256 * !PageDirty(page) [good]
1257 * SetPageDirty(page);
1258 * put_page(page);
1259 * !page_count(page) [good, discard it]
1260 *
1261 * [oops, our write_to data is lost]
1262 *
1263 * Reversing the order of the tests ensures such a situation cannot
1264 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1265 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1266 *
1267 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1268 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1269 */
be7c07d6
MWO
1270 refcount = 1 + folio_nr_pages(folio);
1271 if (!folio_ref_freeze(folio, refcount))
49d2e9cc 1272 goto cannot_free;
1c4c3b99 1273 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
be7c07d6
MWO
1274 if (unlikely(folio_test_dirty(folio))) {
1275 folio_ref_unfreeze(folio, refcount);
49d2e9cc 1276 goto cannot_free;
e286781d 1277 }
49d2e9cc 1278
be7c07d6
MWO
1279 if (folio_test_swapcache(folio)) {
1280 swp_entry_t swap = folio_swap_entry(folio);
3ecb0087 1281 mem_cgroup_swapout(folio, swap);
aae466b0 1282 if (reclaimed && !mapping_exiting(mapping))
8927f647 1283 shadow = workingset_eviction(folio, target_memcg);
be7c07d6 1284 __delete_from_swap_cache(&folio->page, swap, shadow);
30472509 1285 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1286 put_swap_page(&folio->page, swap);
e286781d 1287 } else {
6072d13c
LT
1288 void (*freepage)(struct page *);
1289
1290 freepage = mapping->a_ops->freepage;
a528910e
JW
1291 /*
1292 * Remember a shadow entry for reclaimed file cache in
1293 * order to detect refaults, thus thrashing, later on.
1294 *
1295 * But don't store shadows in an address space that is
238c3046 1296 * already exiting. This is not just an optimization,
a528910e
JW
1297 * inode reclaim needs to empty out the radix tree or
1298 * the nodes are lost. Don't plant shadows behind its
1299 * back.
f9fe48be
RZ
1300 *
1301 * We also don't store shadows for DAX mappings because the
1302 * only page cache pages found in these are zero pages
1303 * covering holes, and because we don't want to mix DAX
1304 * exceptional entries and shadow exceptional entries in the
b93b0163 1305 * same address_space.
a528910e 1306 */
be7c07d6 1307 if (reclaimed && folio_is_file_lru(folio) &&
f9fe48be 1308 !mapping_exiting(mapping) && !dax_mapping(mapping))
8927f647
MWO
1309 shadow = workingset_eviction(folio, target_memcg);
1310 __filemap_remove_folio(folio, shadow);
30472509 1311 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1312 if (mapping_shrinkable(mapping))
1313 inode_add_lru(mapping->host);
1314 spin_unlock(&mapping->host->i_lock);
6072d13c
LT
1315
1316 if (freepage != NULL)
be7c07d6 1317 freepage(&folio->page);
49d2e9cc
CL
1318 }
1319
49d2e9cc
CL
1320 return 1;
1321
1322cannot_free:
30472509 1323 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1324 if (!folio_test_swapcache(folio))
51b8c1fe 1325 spin_unlock(&mapping->host->i_lock);
49d2e9cc
CL
1326 return 0;
1327}
1328
5100da38
MWO
1329/**
1330 * remove_mapping() - Attempt to remove a folio from its mapping.
1331 * @mapping: The address space.
1332 * @folio: The folio to remove.
1333 *
1334 * If the folio is dirty, under writeback or if someone else has a ref
1335 * on it, removal will fail.
1336 * Return: The number of pages removed from the mapping. 0 if the folio
1337 * could not be removed.
1338 * Context: The caller should have a single refcount on the folio and
1339 * hold its lock.
e286781d 1340 */
5100da38 1341long remove_mapping(struct address_space *mapping, struct folio *folio)
e286781d 1342{
be7c07d6 1343 if (__remove_mapping(mapping, folio, false, NULL)) {
e286781d 1344 /*
5100da38 1345 * Unfreezing the refcount with 1 effectively
e286781d
NP
1346 * drops the pagecache ref for us without requiring another
1347 * atomic operation.
1348 */
be7c07d6 1349 folio_ref_unfreeze(folio, 1);
5100da38 1350 return folio_nr_pages(folio);
e286781d
NP
1351 }
1352 return 0;
1353}
1354
894bc310 1355/**
ca6d60f3
MWO
1356 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1357 * @folio: Folio to be returned to an LRU list.
894bc310 1358 *
ca6d60f3
MWO
1359 * Add previously isolated @folio to appropriate LRU list.
1360 * The folio may still be unevictable for other reasons.
894bc310 1361 *
ca6d60f3 1362 * Context: lru_lock must not be held, interrupts must be enabled.
894bc310 1363 */
ca6d60f3 1364void folio_putback_lru(struct folio *folio)
894bc310 1365{
ca6d60f3
MWO
1366 folio_add_lru(folio);
1367 folio_put(folio); /* drop ref from isolate */
894bc310
LS
1368}
1369
dfc8d636
JW
1370enum page_references {
1371 PAGEREF_RECLAIM,
1372 PAGEREF_RECLAIM_CLEAN,
64574746 1373 PAGEREF_KEEP,
dfc8d636
JW
1374 PAGEREF_ACTIVATE,
1375};
1376
d92013d1 1377static enum page_references folio_check_references(struct folio *folio,
dfc8d636
JW
1378 struct scan_control *sc)
1379{
d92013d1 1380 int referenced_ptes, referenced_folio;
dfc8d636 1381 unsigned long vm_flags;
dfc8d636 1382
b3ac0413
MWO
1383 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1384 &vm_flags);
d92013d1 1385 referenced_folio = folio_test_clear_referenced(folio);
dfc8d636 1386
dfc8d636 1387 /*
d92013d1
MWO
1388 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1389 * Let the folio, now marked Mlocked, be moved to the unevictable list.
dfc8d636
JW
1390 */
1391 if (vm_flags & VM_LOCKED)
47d4f3ee 1392 return PAGEREF_ACTIVATE;
dfc8d636 1393
64574746 1394 if (referenced_ptes) {
64574746 1395 /*
d92013d1 1396 * All mapped folios start out with page table
64574746 1397 * references from the instantiating fault, so we need
9030fb0b 1398 * to look twice if a mapped file/anon folio is used more
64574746
JW
1399 * than once.
1400 *
1401 * Mark it and spare it for another trip around the
1402 * inactive list. Another page table reference will
1403 * lead to its activation.
1404 *
d92013d1
MWO
1405 * Note: the mark is set for activated folios as well
1406 * so that recently deactivated but used folios are
64574746
JW
1407 * quickly recovered.
1408 */
d92013d1 1409 folio_set_referenced(folio);
64574746 1410
d92013d1 1411 if (referenced_folio || referenced_ptes > 1)
64574746
JW
1412 return PAGEREF_ACTIVATE;
1413
c909e993 1414 /*
d92013d1 1415 * Activate file-backed executable folios after first usage.
c909e993 1416 */
f19a27e3 1417 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
c909e993
KK
1418 return PAGEREF_ACTIVATE;
1419
64574746
JW
1420 return PAGEREF_KEEP;
1421 }
dfc8d636 1422
d92013d1 1423 /* Reclaim if clean, defer dirty folios to writeback */
f19a27e3 1424 if (referenced_folio && folio_is_file_lru(folio))
64574746
JW
1425 return PAGEREF_RECLAIM_CLEAN;
1426
1427 return PAGEREF_RECLAIM;
dfc8d636
JW
1428}
1429
e2be15f6 1430/* Check if a page is dirty or under writeback */
e20c41b1 1431static void folio_check_dirty_writeback(struct folio *folio,
e2be15f6
MG
1432 bool *dirty, bool *writeback)
1433{
b4597226
MG
1434 struct address_space *mapping;
1435
e2be15f6
MG
1436 /*
1437 * Anonymous pages are not handled by flushers and must be written
32a331a7
ML
1438 * from reclaim context. Do not stall reclaim based on them.
1439 * MADV_FREE anonymous pages are put into inactive file list too.
1440 * They could be mistakenly treated as file lru. So further anon
1441 * test is needed.
e2be15f6 1442 */
e20c41b1
MWO
1443 if (!folio_is_file_lru(folio) ||
1444 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
e2be15f6
MG
1445 *dirty = false;
1446 *writeback = false;
1447 return;
1448 }
1449
e20c41b1
MWO
1450 /* By default assume that the folio flags are accurate */
1451 *dirty = folio_test_dirty(folio);
1452 *writeback = folio_test_writeback(folio);
b4597226
MG
1453
1454 /* Verify dirty/writeback state if the filesystem supports it */
e20c41b1 1455 if (!folio_test_private(folio))
b4597226
MG
1456 return;
1457
e20c41b1 1458 mapping = folio_mapping(folio);
b4597226 1459 if (mapping && mapping->a_ops->is_dirty_writeback)
e20c41b1 1460 mapping->a_ops->is_dirty_writeback(&folio->page, dirty, writeback);
e2be15f6
MG
1461}
1462
26aa2d19
DH
1463static struct page *alloc_demote_page(struct page *page, unsigned long node)
1464{
1465 struct migration_target_control mtc = {
1466 /*
1467 * Allocate from 'node', or fail quickly and quietly.
1468 * When this happens, 'page' will likely just be discarded
1469 * instead of migrated.
1470 */
1471 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1472 __GFP_THISNODE | __GFP_NOWARN |
1473 __GFP_NOMEMALLOC | GFP_NOWAIT,
1474 .nid = node
1475 };
1476
1477 return alloc_migration_target(page, (unsigned long)&mtc);
1478}
1479
1480/*
1481 * Take pages on @demote_list and attempt to demote them to
1482 * another node. Pages which are not demoted are left on
1483 * @demote_pages.
1484 */
1485static unsigned int demote_page_list(struct list_head *demote_pages,
1486 struct pglist_data *pgdat)
1487{
1488 int target_nid = next_demotion_node(pgdat->node_id);
1489 unsigned int nr_succeeded;
26aa2d19
DH
1490
1491 if (list_empty(demote_pages))
1492 return 0;
1493
1494 if (target_nid == NUMA_NO_NODE)
1495 return 0;
1496
1497 /* Demotion ignores all cpuset and mempolicy settings */
cb75463c 1498 migrate_pages(demote_pages, alloc_demote_page, NULL,
26aa2d19
DH
1499 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1500 &nr_succeeded);
1501
668e4147
YS
1502 if (current_is_kswapd())
1503 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1504 else
1505 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1506
26aa2d19
DH
1507 return nr_succeeded;
1508}
1509
c28a0e96 1510static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
d791ea67
N
1511{
1512 if (gfp_mask & __GFP_FS)
1513 return true;
c28a0e96 1514 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
d791ea67
N
1515 return false;
1516 /*
1517 * We can "enter_fs" for swap-cache with only __GFP_IO
1518 * providing this isn't SWP_FS_OPS.
1519 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1520 * but that will never affect SWP_FS_OPS, so the data_race
1521 * is safe.
1522 */
c28a0e96 1523 return !data_race(page_swap_flags(&folio->page) & SWP_FS_OPS);
d791ea67
N
1524}
1525
1da177e4 1526/*
1742f19f 1527 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1528 */
730ec8c0
MS
1529static unsigned int shrink_page_list(struct list_head *page_list,
1530 struct pglist_data *pgdat,
1531 struct scan_control *sc,
730ec8c0
MS
1532 struct reclaim_stat *stat,
1533 bool ignore_references)
1da177e4
LT
1534{
1535 LIST_HEAD(ret_pages);
abe4c3b5 1536 LIST_HEAD(free_pages);
26aa2d19 1537 LIST_HEAD(demote_pages);
730ec8c0
MS
1538 unsigned int nr_reclaimed = 0;
1539 unsigned int pgactivate = 0;
26aa2d19 1540 bool do_demote_pass;
2282679f 1541 struct swap_iocb *plug = NULL;
1da177e4 1542
060f005f 1543 memset(stat, 0, sizeof(*stat));
1da177e4 1544 cond_resched();
26aa2d19 1545 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1546
26aa2d19 1547retry:
1da177e4
LT
1548 while (!list_empty(page_list)) {
1549 struct address_space *mapping;
be7c07d6 1550 struct folio *folio;
8940b34a 1551 enum page_references references = PAGEREF_RECLAIM;
d791ea67 1552 bool dirty, writeback;
98879b3b 1553 unsigned int nr_pages;
1da177e4
LT
1554
1555 cond_resched();
1556
be7c07d6
MWO
1557 folio = lru_to_folio(page_list);
1558 list_del(&folio->lru);
1da177e4 1559
c28a0e96 1560 if (!folio_trylock(folio))
1da177e4
LT
1561 goto keep;
1562
c28a0e96 1563 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1da177e4 1564
c28a0e96 1565 nr_pages = folio_nr_pages(folio);
98879b3b 1566
c28a0e96 1567 /* Account the number of base pages */
98879b3b 1568 sc->nr_scanned += nr_pages;
80e43426 1569
c28a0e96 1570 if (unlikely(!folio_evictable(folio)))
ad6b6704 1571 goto activate_locked;
894bc310 1572
1bee2c16 1573 if (!sc->may_unmap && folio_mapped(folio))
80e43426
CL
1574 goto keep_locked;
1575
e2be15f6 1576 /*
894befec 1577 * The number of dirty pages determines if a node is marked
8cd7c588 1578 * reclaim_congested. kswapd will stall and start writing
c28a0e96 1579 * folios if the tail of the LRU is all dirty unqueued folios.
e2be15f6 1580 */
e20c41b1 1581 folio_check_dirty_writeback(folio, &dirty, &writeback);
e2be15f6 1582 if (dirty || writeback)
c79b7b96 1583 stat->nr_dirty += nr_pages;
e2be15f6
MG
1584
1585 if (dirty && !writeback)
c79b7b96 1586 stat->nr_unqueued_dirty += nr_pages;
e2be15f6 1587
d04e8acd 1588 /*
c28a0e96
MWO
1589 * Treat this folio as congested if folios are cycling
1590 * through the LRU so quickly that the folios marked
1591 * for immediate reclaim are making it to the end of
1592 * the LRU a second time.
d04e8acd 1593 */
c28a0e96 1594 if (writeback && folio_test_reclaim(folio))
c79b7b96 1595 stat->nr_congested += nr_pages;
e2be15f6 1596
283aba9f 1597 /*
d33e4e14 1598 * If a folio at the tail of the LRU is under writeback, there
283aba9f
MG
1599 * are three cases to consider.
1600 *
c28a0e96
MWO
1601 * 1) If reclaim is encountering an excessive number
1602 * of folios under writeback and this folio has both
1603 * the writeback and reclaim flags set, then it
d33e4e14
MWO
1604 * indicates that folios are being queued for I/O but
1605 * are being recycled through the LRU before the I/O
1606 * can complete. Waiting on the folio itself risks an
1607 * indefinite stall if it is impossible to writeback
1608 * the folio due to I/O error or disconnected storage
1609 * so instead note that the LRU is being scanned too
1610 * quickly and the caller can stall after the folio
1611 * list has been processed.
283aba9f 1612 *
d33e4e14 1613 * 2) Global or new memcg reclaim encounters a folio that is
ecf5fc6e
MH
1614 * not marked for immediate reclaim, or the caller does not
1615 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
d33e4e14 1616 * not to fs). In this case mark the folio for immediate
97c9341f 1617 * reclaim and continue scanning.
283aba9f 1618 *
d791ea67 1619 * Require may_enter_fs() because we would wait on fs, which
d33e4e14
MWO
1620 * may not have submitted I/O yet. And the loop driver might
1621 * enter reclaim, and deadlock if it waits on a folio for
283aba9f
MG
1622 * which it is needed to do the write (loop masks off
1623 * __GFP_IO|__GFP_FS for this reason); but more thought
1624 * would probably show more reasons.
1625 *
d33e4e14
MWO
1626 * 3) Legacy memcg encounters a folio that already has the
1627 * reclaim flag set. memcg does not have any dirty folio
283aba9f 1628 * throttling so we could easily OOM just because too many
d33e4e14 1629 * folios are in writeback and there is nothing else to
283aba9f 1630 * reclaim. Wait for the writeback to complete.
c55e8d03 1631 *
d33e4e14
MWO
1632 * In cases 1) and 2) we activate the folios to get them out of
1633 * the way while we continue scanning for clean folios on the
c55e8d03
JW
1634 * inactive list and refilling from the active list. The
1635 * observation here is that waiting for disk writes is more
1636 * expensive than potentially causing reloads down the line.
1637 * Since they're marked for immediate reclaim, they won't put
1638 * memory pressure on the cache working set any longer than it
1639 * takes to write them to disk.
283aba9f 1640 */
d33e4e14 1641 if (folio_test_writeback(folio)) {
283aba9f
MG
1642 /* Case 1 above */
1643 if (current_is_kswapd() &&
d33e4e14 1644 folio_test_reclaim(folio) &&
599d0c95 1645 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
c79b7b96 1646 stat->nr_immediate += nr_pages;
c55e8d03 1647 goto activate_locked;
283aba9f
MG
1648
1649 /* Case 2 above */
b5ead35e 1650 } else if (writeback_throttling_sane(sc) ||
d33e4e14 1651 !folio_test_reclaim(folio) ||
c28a0e96 1652 !may_enter_fs(folio, sc->gfp_mask)) {
c3b94f44 1653 /*
d33e4e14 1654 * This is slightly racy -
c28a0e96
MWO
1655 * folio_end_writeback() might have
1656 * just cleared the reclaim flag, then
1657 * setting the reclaim flag here ends up
1658 * interpreted as the readahead flag - but
1659 * that does not matter enough to care.
1660 * What we do want is for this folio to
1661 * have the reclaim flag set next time
1662 * memcg reclaim reaches the tests above,
1663 * so it will then wait for writeback to
1664 * avoid OOM; and it's also appropriate
d33e4e14 1665 * in global reclaim.
c3b94f44 1666 */
d33e4e14 1667 folio_set_reclaim(folio);
c79b7b96 1668 stat->nr_writeback += nr_pages;
c55e8d03 1669 goto activate_locked;
283aba9f
MG
1670
1671 /* Case 3 above */
1672 } else {
d33e4e14
MWO
1673 folio_unlock(folio);
1674 folio_wait_writeback(folio);
1675 /* then go back and try same folio again */
1676 list_add_tail(&folio->lru, page_list);
7fadc820 1677 continue;
e62e384e 1678 }
c661b078 1679 }
1da177e4 1680
8940b34a 1681 if (!ignore_references)
d92013d1 1682 references = folio_check_references(folio, sc);
02c6de8d 1683
dfc8d636
JW
1684 switch (references) {
1685 case PAGEREF_ACTIVATE:
1da177e4 1686 goto activate_locked;
64574746 1687 case PAGEREF_KEEP:
98879b3b 1688 stat->nr_ref_keep += nr_pages;
64574746 1689 goto keep_locked;
dfc8d636
JW
1690 case PAGEREF_RECLAIM:
1691 case PAGEREF_RECLAIM_CLEAN:
c28a0e96 1692 ; /* try to reclaim the folio below */
dfc8d636 1693 }
1da177e4 1694
26aa2d19 1695 /*
c28a0e96 1696 * Before reclaiming the folio, try to relocate
26aa2d19
DH
1697 * its contents to another node.
1698 */
1699 if (do_demote_pass &&
c28a0e96
MWO
1700 (thp_migration_supported() || !folio_test_large(folio))) {
1701 list_add(&folio->lru, &demote_pages);
1702 folio_unlock(folio);
26aa2d19
DH
1703 continue;
1704 }
1705
1da177e4
LT
1706 /*
1707 * Anonymous process memory has backing store?
1708 * Try to allocate it some swap space here.
c28a0e96 1709 * Lazyfree folio could be freed directly
1da177e4 1710 */
c28a0e96
MWO
1711 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1712 if (!folio_test_swapcache(folio)) {
bd4c82c2
HY
1713 if (!(sc->gfp_mask & __GFP_IO))
1714 goto keep_locked;
d4b4084a 1715 if (folio_maybe_dma_pinned(folio))
feb889fb 1716 goto keep_locked;
c28a0e96
MWO
1717 if (folio_test_large(folio)) {
1718 /* cannot split folio, skip it */
d4b4084a 1719 if (!can_split_folio(folio, NULL))
bd4c82c2
HY
1720 goto activate_locked;
1721 /*
c28a0e96 1722 * Split folios without a PMD map right
bd4c82c2
HY
1723 * away. Chances are some or all of the
1724 * tail pages can be freed without IO.
1725 */
d4b4084a 1726 if (!folio_entire_mapcount(folio) &&
346cf613
MWO
1727 split_folio_to_list(folio,
1728 page_list))
bd4c82c2
HY
1729 goto activate_locked;
1730 }
09c02e56
MWO
1731 if (!add_to_swap(folio)) {
1732 if (!folio_test_large(folio))
98879b3b 1733 goto activate_locked_split;
bd4c82c2 1734 /* Fallback to swap normal pages */
346cf613
MWO
1735 if (split_folio_to_list(folio,
1736 page_list))
bd4c82c2 1737 goto activate_locked;
fe490cc0
HY
1738#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1739 count_vm_event(THP_SWPOUT_FALLBACK);
1740#endif
09c02e56 1741 if (!add_to_swap(folio))
98879b3b 1742 goto activate_locked_split;
bd4c82c2 1743 }
bd4c82c2 1744 }
c28a0e96
MWO
1745 } else if (folio_test_swapbacked(folio) &&
1746 folio_test_large(folio)) {
1747 /* Split shmem folio */
346cf613 1748 if (split_folio_to_list(folio, page_list))
7751b2da 1749 goto keep_locked;
e2be15f6 1750 }
1da177e4 1751
98879b3b 1752 /*
c28a0e96
MWO
1753 * If the folio was split above, the tail pages will make
1754 * their own pass through this function and be accounted
1755 * then.
98879b3b 1756 */
c28a0e96 1757 if ((nr_pages > 1) && !folio_test_large(folio)) {
98879b3b
YS
1758 sc->nr_scanned -= (nr_pages - 1);
1759 nr_pages = 1;
1760 }
1761
1da177e4 1762 /*
1bee2c16 1763 * The folio is mapped into the page tables of one or more
1da177e4
LT
1764 * processes. Try to unmap it here.
1765 */
1bee2c16 1766 if (folio_mapped(folio)) {
013339df 1767 enum ttu_flags flags = TTU_BATCH_FLUSH;
1bee2c16 1768 bool was_swapbacked = folio_test_swapbacked(folio);
bd4c82c2 1769
1bee2c16 1770 if (folio_test_pmd_mappable(folio))
bd4c82c2 1771 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1772
869f7ee6 1773 try_to_unmap(folio, flags);
1bee2c16 1774 if (folio_mapped(folio)) {
98879b3b 1775 stat->nr_unmap_fail += nr_pages;
1bee2c16
MWO
1776 if (!was_swapbacked &&
1777 folio_test_swapbacked(folio))
1f318a9b 1778 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1779 goto activate_locked;
1da177e4
LT
1780 }
1781 }
1782
5441d490 1783 mapping = folio_mapping(folio);
49bd2bf9 1784 if (folio_test_dirty(folio)) {
ee72886d 1785 /*
49bd2bf9 1786 * Only kswapd can writeback filesystem folios
4eda4823 1787 * to avoid risk of stack overflow. But avoid
49bd2bf9 1788 * injecting inefficient single-folio I/O into
4eda4823 1789 * flusher writeback as much as possible: only
49bd2bf9
MWO
1790 * write folios when we've encountered many
1791 * dirty folios, and when we've already scanned
1792 * the rest of the LRU for clean folios and see
1793 * the same dirty folios again (with the reclaim
1794 * flag set).
ee72886d 1795 */
49bd2bf9
MWO
1796 if (folio_is_file_lru(folio) &&
1797 (!current_is_kswapd() ||
1798 !folio_test_reclaim(folio) ||
4eda4823 1799 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1800 /*
1801 * Immediately reclaim when written back.
49bd2bf9
MWO
1802 * Similar in principle to deactivate_page()
1803 * except we already have the folio isolated
49ea7eb6
MG
1804 * and know it's dirty
1805 */
49bd2bf9
MWO
1806 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1807 nr_pages);
1808 folio_set_reclaim(folio);
49ea7eb6 1809
c55e8d03 1810 goto activate_locked;
ee72886d
MG
1811 }
1812
dfc8d636 1813 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1814 goto keep_locked;
c28a0e96 1815 if (!may_enter_fs(folio, sc->gfp_mask))
1da177e4 1816 goto keep_locked;
52a8363e 1817 if (!sc->may_writepage)
1da177e4
LT
1818 goto keep_locked;
1819
d950c947 1820 /*
49bd2bf9
MWO
1821 * Folio is dirty. Flush the TLB if a writable entry
1822 * potentially exists to avoid CPU writes after I/O
d950c947
MG
1823 * starts and then write it out here.
1824 */
1825 try_to_unmap_flush_dirty();
2282679f 1826 switch (pageout(folio, mapping, &plug)) {
1da177e4
LT
1827 case PAGE_KEEP:
1828 goto keep_locked;
1829 case PAGE_ACTIVATE:
1830 goto activate_locked;
1831 case PAGE_SUCCESS:
c79b7b96 1832 stat->nr_pageout += nr_pages;
96f8bf4f 1833
49bd2bf9 1834 if (folio_test_writeback(folio))
41ac1999 1835 goto keep;
49bd2bf9 1836 if (folio_test_dirty(folio))
1da177e4 1837 goto keep;
7d3579e8 1838
1da177e4
LT
1839 /*
1840 * A synchronous write - probably a ramdisk. Go
49bd2bf9 1841 * ahead and try to reclaim the folio.
1da177e4 1842 */
49bd2bf9 1843 if (!folio_trylock(folio))
1da177e4 1844 goto keep;
49bd2bf9
MWO
1845 if (folio_test_dirty(folio) ||
1846 folio_test_writeback(folio))
1da177e4 1847 goto keep_locked;
49bd2bf9 1848 mapping = folio_mapping(folio);
01359eb2 1849 fallthrough;
1da177e4 1850 case PAGE_CLEAN:
49bd2bf9 1851 ; /* try to free the folio below */
1da177e4
LT
1852 }
1853 }
1854
1855 /*
0a36111c
MWO
1856 * If the folio has buffers, try to free the buffer
1857 * mappings associated with this folio. If we succeed
1858 * we try to free the folio as well.
1da177e4 1859 *
0a36111c
MWO
1860 * We do this even if the folio is dirty.
1861 * filemap_release_folio() does not perform I/O, but it
1862 * is possible for a folio to have the dirty flag set,
1863 * but it is actually clean (all its buffers are clean).
1864 * This happens if the buffers were written out directly,
1865 * with submit_bh(). ext3 will do this, as well as
1866 * the blockdev mapping. filemap_release_folio() will
1867 * discover that cleanness and will drop the buffers
1868 * and mark the folio clean - it can be freed.
1da177e4 1869 *
0a36111c
MWO
1870 * Rarely, folios can have buffers and no ->mapping.
1871 * These are the folios which were not successfully
1872 * invalidated in truncate_cleanup_folio(). We try to
1873 * drop those buffers here and if that worked, and the
1874 * folio is no longer mapped into process address space
1875 * (refcount == 1) it can be freed. Otherwise, leave
1876 * the folio on the LRU so it is swappable.
1da177e4 1877 */
0a36111c
MWO
1878 if (folio_has_private(folio)) {
1879 if (!filemap_release_folio(folio, sc->gfp_mask))
1da177e4 1880 goto activate_locked;
0a36111c
MWO
1881 if (!mapping && folio_ref_count(folio) == 1) {
1882 folio_unlock(folio);
1883 if (folio_put_testzero(folio))
e286781d
NP
1884 goto free_it;
1885 else {
1886 /*
1887 * rare race with speculative reference.
1888 * the speculative reference will free
0a36111c 1889 * this folio shortly, so we may
e286781d
NP
1890 * increment nr_reclaimed here (and
1891 * leave it off the LRU).
1892 */
9aafcffc 1893 nr_reclaimed += nr_pages;
e286781d
NP
1894 continue;
1895 }
1896 }
1da177e4
LT
1897 }
1898
64daa5d8 1899 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
802a3a92 1900 /* follow __remove_mapping for reference */
64daa5d8 1901 if (!folio_ref_freeze(folio, 1))
802a3a92 1902 goto keep_locked;
d17be2d9 1903 /*
64daa5d8 1904 * The folio has only one reference left, which is
d17be2d9 1905 * from the isolation. After the caller puts the
64daa5d8
MWO
1906 * folio back on the lru and drops the reference, the
1907 * folio will be freed anyway. It doesn't matter
1908 * which lru it goes on. So we don't bother checking
1909 * the dirty flag here.
d17be2d9 1910 */
64daa5d8
MWO
1911 count_vm_events(PGLAZYFREED, nr_pages);
1912 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
be7c07d6 1913 } else if (!mapping || !__remove_mapping(mapping, folio, true,
b910718a 1914 sc->target_mem_cgroup))
802a3a92 1915 goto keep_locked;
9a1ea439 1916
c28a0e96 1917 folio_unlock(folio);
e286781d 1918free_it:
98879b3b 1919 /*
c28a0e96
MWO
1920 * Folio may get swapped out as a whole, need to account
1921 * all pages in it.
98879b3b
YS
1922 */
1923 nr_reclaimed += nr_pages;
abe4c3b5
MG
1924
1925 /*
1926 * Is there need to periodically free_page_list? It would
1927 * appear not as the counts should be low
1928 */
c28a0e96
MWO
1929 if (unlikely(folio_test_large(folio)))
1930 destroy_compound_page(&folio->page);
7ae88534 1931 else
c28a0e96 1932 list_add(&folio->lru, &free_pages);
1da177e4
LT
1933 continue;
1934
98879b3b
YS
1935activate_locked_split:
1936 /*
1937 * The tail pages that are failed to add into swap cache
1938 * reach here. Fixup nr_scanned and nr_pages.
1939 */
1940 if (nr_pages > 1) {
1941 sc->nr_scanned -= (nr_pages - 1);
1942 nr_pages = 1;
1943 }
1da177e4 1944activate_locked:
68a22394 1945 /* Not a candidate for swapping, so reclaim swap space. */
246b6480
MWO
1946 if (folio_test_swapcache(folio) &&
1947 (mem_cgroup_swap_full(&folio->page) ||
1948 folio_test_mlocked(folio)))
1949 try_to_free_swap(&folio->page);
1950 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1951 if (!folio_test_mlocked(folio)) {
1952 int type = folio_is_file_lru(folio);
1953 folio_set_active(folio);
98879b3b 1954 stat->nr_activate[type] += nr_pages;
246b6480 1955 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
ad6b6704 1956 }
1da177e4 1957keep_locked:
c28a0e96 1958 folio_unlock(folio);
1da177e4 1959keep:
c28a0e96
MWO
1960 list_add(&folio->lru, &ret_pages);
1961 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1962 folio_test_unevictable(folio), folio);
1da177e4 1963 }
26aa2d19
DH
1964 /* 'page_list' is always empty here */
1965
c28a0e96 1966 /* Migrate folios selected for demotion */
26aa2d19 1967 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
c28a0e96 1968 /* Folios that could not be demoted are still in @demote_pages */
26aa2d19 1969 if (!list_empty(&demote_pages)) {
c28a0e96 1970 /* Folios which weren't demoted go back on @page_list for retry: */
26aa2d19
DH
1971 list_splice_init(&demote_pages, page_list);
1972 do_demote_pass = false;
1973 goto retry;
1974 }
abe4c3b5 1975
98879b3b
YS
1976 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1977
747db954 1978 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1979 try_to_unmap_flush();
2d4894b5 1980 free_unref_page_list(&free_pages);
abe4c3b5 1981
1da177e4 1982 list_splice(&ret_pages, page_list);
886cf190 1983 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1984
2282679f
N
1985 if (plug)
1986 swap_write_unplug(plug);
05ff5137 1987 return nr_reclaimed;
1da177e4
LT
1988}
1989
730ec8c0 1990unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1991 struct list_head *page_list)
1992{
1993 struct scan_control sc = {
1994 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
1995 .may_unmap = 1,
1996 };
1f318a9b 1997 struct reclaim_stat stat;
730ec8c0 1998 unsigned int nr_reclaimed;
02c6de8d
MK
1999 struct page *page, *next;
2000 LIST_HEAD(clean_pages);
2d2b8d2b 2001 unsigned int noreclaim_flag;
02c6de8d
MK
2002
2003 list_for_each_entry_safe(page, next, page_list, lru) {
ae37c7ff
OS
2004 if (!PageHuge(page) && page_is_file_lru(page) &&
2005 !PageDirty(page) && !__PageMovable(page) &&
2006 !PageUnevictable(page)) {
02c6de8d
MK
2007 ClearPageActive(page);
2008 list_move(&page->lru, &clean_pages);
2009 }
2010 }
2011
2d2b8d2b
YZ
2012 /*
2013 * We should be safe here since we are only dealing with file pages and
2014 * we are not kswapd and therefore cannot write dirty file pages. But
2015 * call memalloc_noreclaim_save() anyway, just in case these conditions
2016 * change in the future.
2017 */
2018 noreclaim_flag = memalloc_noreclaim_save();
1f318a9b 2019 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 2020 &stat, true);
2d2b8d2b
YZ
2021 memalloc_noreclaim_restore(noreclaim_flag);
2022
02c6de8d 2023 list_splice(&clean_pages, page_list);
2da9f630
NP
2024 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2025 -(long)nr_reclaimed);
1f318a9b
JK
2026 /*
2027 * Since lazyfree pages are isolated from file LRU from the beginning,
2028 * they will rotate back to anonymous LRU in the end if it failed to
2029 * discard so isolated count will be mismatched.
2030 * Compensate the isolated count for both LRU lists.
2031 */
2032 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2033 stat.nr_lazyfree_fail);
2034 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 2035 -(long)stat.nr_lazyfree_fail);
1f318a9b 2036 return nr_reclaimed;
02c6de8d
MK
2037}
2038
7ee36a14
MG
2039/*
2040 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 2041 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
2042 */
2043static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 2044 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 2045{
7ee36a14
MG
2046 int zid;
2047
7ee36a14
MG
2048 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2049 if (!nr_zone_taken[zid])
2050 continue;
2051
a892cb6b 2052 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
2053 }
2054
7ee36a14
MG
2055}
2056
f611fab7 2057/*
15b44736
HD
2058 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2059 *
2060 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
2061 * shrink the lists perform better by taking out a batch of pages
2062 * and working on them outside the LRU lock.
2063 *
2064 * For pagecache intensive workloads, this function is the hottest
2065 * spot in the kernel (apart from copy_*_user functions).
2066 *
15b44736 2067 * Lru_lock must be held before calling this function.
1da177e4 2068 *
791b48b6 2069 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 2070 * @lruvec: The LRU vector to pull pages from.
1da177e4 2071 * @dst: The temp list to put pages on to.
f626012d 2072 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 2073 * @sc: The scan_control struct for this reclaim session
3cb99451 2074 * @lru: LRU list id for isolating
1da177e4
LT
2075 *
2076 * returns how many pages were moved onto *@dst.
2077 */
69e05944 2078static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 2079 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 2080 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 2081 enum lru_list lru)
1da177e4 2082{
75b00af7 2083 struct list_head *src = &lruvec->lists[lru];
69e05944 2084 unsigned long nr_taken = 0;
599d0c95 2085 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 2086 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 2087 unsigned long skipped = 0;
791b48b6 2088 unsigned long scan, total_scan, nr_pages;
b2e18757 2089 LIST_HEAD(pages_skipped);
1da177e4 2090
98879b3b 2091 total_scan = 0;
791b48b6 2092 scan = 0;
98879b3b 2093 while (scan < nr_to_scan && !list_empty(src)) {
89f6c88a 2094 struct list_head *move_to = src;
5ad333eb 2095 struct page *page;
5ad333eb 2096
1da177e4
LT
2097 page = lru_to_page(src);
2098 prefetchw_prev_lru_page(page, src, flags);
2099
d8c6546b 2100 nr_pages = compound_nr(page);
98879b3b
YS
2101 total_scan += nr_pages;
2102
b2e18757 2103 if (page_zonenum(page) > sc->reclaim_idx) {
98879b3b 2104 nr_skipped[page_zonenum(page)] += nr_pages;
89f6c88a
HD
2105 move_to = &pages_skipped;
2106 goto move;
b2e18757
MG
2107 }
2108
791b48b6
MK
2109 /*
2110 * Do not count skipped pages because that makes the function
2111 * return with no isolated pages if the LRU mostly contains
2112 * ineligible pages. This causes the VM to not reclaim any
2113 * pages, triggering a premature OOM.
89f6c88a 2114 * Account all tail pages of THP.
791b48b6 2115 */
98879b3b 2116 scan += nr_pages;
89f6c88a
HD
2117
2118 if (!PageLRU(page))
2119 goto move;
2120 if (!sc->may_unmap && page_mapped(page))
2121 goto move;
2122
c2135f7c
AS
2123 /*
2124 * Be careful not to clear PageLRU until after we're
2125 * sure the page is not being freed elsewhere -- the
2126 * page release code relies on it.
2127 */
89f6c88a
HD
2128 if (unlikely(!get_page_unless_zero(page)))
2129 goto move;
5ad333eb 2130
c2135f7c
AS
2131 if (!TestClearPageLRU(page)) {
2132 /* Another thread is already isolating this page */
2133 put_page(page);
89f6c88a 2134 goto move;
5ad333eb 2135 }
c2135f7c
AS
2136
2137 nr_taken += nr_pages;
2138 nr_zone_taken[page_zonenum(page)] += nr_pages;
89f6c88a
HD
2139 move_to = dst;
2140move:
2141 list_move(&page->lru, move_to);
1da177e4
LT
2142 }
2143
b2e18757
MG
2144 /*
2145 * Splice any skipped pages to the start of the LRU list. Note that
2146 * this disrupts the LRU order when reclaiming for lower zones but
2147 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
b2cb6826
ML
2148 * scanning would soon rescan the same pages to skip and waste lots
2149 * of cpu cycles.
b2e18757 2150 */
7cc30fcf
MG
2151 if (!list_empty(&pages_skipped)) {
2152 int zid;
2153
3db65812 2154 list_splice(&pages_skipped, src);
7cc30fcf
MG
2155 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2156 if (!nr_skipped[zid])
2157 continue;
2158
2159 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2160 skipped += nr_skipped[zid];
7cc30fcf
MG
2161 }
2162 }
791b48b6 2163 *nr_scanned = total_scan;
1265e3a6 2164 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
89f6c88a
HD
2165 total_scan, skipped, nr_taken,
2166 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
b4536f0c 2167 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2168 return nr_taken;
2169}
2170
62695a84 2171/**
d1d8a3b4
MWO
2172 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2173 * @folio: Folio to isolate from its LRU list.
62695a84 2174 *
d1d8a3b4
MWO
2175 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2176 * corresponding to whatever LRU list the folio was on.
62695a84 2177 *
d1d8a3b4
MWO
2178 * The folio will have its LRU flag cleared. If it was found on the
2179 * active list, it will have the Active flag set. If it was found on the
2180 * unevictable list, it will have the Unevictable flag set. These flags
894bc310 2181 * may need to be cleared by the caller before letting the page go.
62695a84 2182 *
d1d8a3b4 2183 * Context:
a5d09bed 2184 *
62695a84 2185 * (1) Must be called with an elevated refcount on the page. This is a
d1d8a3b4 2186 * fundamental difference from isolate_lru_pages() (which is called
62695a84 2187 * without a stable reference).
d1d8a3b4
MWO
2188 * (2) The lru_lock must not be held.
2189 * (3) Interrupts must be enabled.
2190 *
2191 * Return: 0 if the folio was removed from an LRU list.
2192 * -EBUSY if the folio was not on an LRU list.
62695a84 2193 */
d1d8a3b4 2194int folio_isolate_lru(struct folio *folio)
62695a84
NP
2195{
2196 int ret = -EBUSY;
2197
d1d8a3b4 2198 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
0c917313 2199
d1d8a3b4 2200 if (folio_test_clear_lru(folio)) {
fa9add64 2201 struct lruvec *lruvec;
62695a84 2202
d1d8a3b4 2203 folio_get(folio);
e809c3fe 2204 lruvec = folio_lruvec_lock_irq(folio);
d1d8a3b4 2205 lruvec_del_folio(lruvec, folio);
6168d0da 2206 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2207 ret = 0;
62695a84 2208 }
d25b5bd8 2209
62695a84
NP
2210 return ret;
2211}
2212
35cd7815 2213/*
d37dd5dc 2214 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2215 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2216 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2217 * the LRU list will go small and be scanned faster than necessary, leading to
2218 * unnecessary swapping, thrashing and OOM.
35cd7815 2219 */
599d0c95 2220static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2221 struct scan_control *sc)
2222{
2223 unsigned long inactive, isolated;
d818fca1 2224 bool too_many;
35cd7815
RR
2225
2226 if (current_is_kswapd())
2227 return 0;
2228
b5ead35e 2229 if (!writeback_throttling_sane(sc))
35cd7815
RR
2230 return 0;
2231
2232 if (file) {
599d0c95
MG
2233 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2234 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2235 } else {
599d0c95
MG
2236 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2237 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2238 }
2239
3cf23841
FW
2240 /*
2241 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2242 * won't get blocked by normal direct-reclaimers, forming a circular
2243 * deadlock.
2244 */
d0164adc 2245 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2246 inactive >>= 3;
2247
d818fca1
MG
2248 too_many = isolated > inactive;
2249
2250 /* Wake up tasks throttled due to too_many_isolated. */
2251 if (!too_many)
2252 wake_throttle_isolated(pgdat);
2253
2254 return too_many;
35cd7815
RR
2255}
2256
a222f341 2257/*
15b44736
HD
2258 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2259 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
2260 *
2261 * Returns the number of pages moved to the given lruvec.
2262 */
9ef56b78
MS
2263static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2264 struct list_head *list)
66635629 2265{
a222f341 2266 int nr_pages, nr_moved = 0;
3f79768f 2267 LIST_HEAD(pages_to_free);
a222f341 2268 struct page *page;
66635629 2269
a222f341
KT
2270 while (!list_empty(list)) {
2271 page = lru_to_page(list);
309381fe 2272 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 2273 list_del(&page->lru);
39b5f29a 2274 if (unlikely(!page_evictable(page))) {
6168d0da 2275 spin_unlock_irq(&lruvec->lru_lock);
66635629 2276 putback_lru_page(page);
6168d0da 2277 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2278 continue;
2279 }
fa9add64 2280
3d06afab
AS
2281 /*
2282 * The SetPageLRU needs to be kept here for list integrity.
2283 * Otherwise:
2284 * #0 move_pages_to_lru #1 release_pages
2285 * if !put_page_testzero
2286 * if (put_page_testzero())
2287 * !PageLRU //skip lru_lock
2288 * SetPageLRU()
2289 * list_add(&page->lru,)
2290 * list_add(&page->lru,)
2291 */
7a608572 2292 SetPageLRU(page);
a222f341 2293
3d06afab 2294 if (unlikely(put_page_testzero(page))) {
87560179 2295 __clear_page_lru_flags(page);
2bcf8879
HD
2296
2297 if (unlikely(PageCompound(page))) {
6168d0da 2298 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 2299 destroy_compound_page(page);
6168d0da 2300 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
2301 } else
2302 list_add(&page->lru, &pages_to_free);
3d06afab
AS
2303
2304 continue;
66635629 2305 }
3d06afab 2306
afca9157
AS
2307 /*
2308 * All pages were isolated from the same lruvec (and isolation
2309 * inhibits memcg migration).
2310 */
0de340cb 2311 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
3a9c9788 2312 add_page_to_lru_list(page, lruvec);
3d06afab 2313 nr_pages = thp_nr_pages(page);
3d06afab
AS
2314 nr_moved += nr_pages;
2315 if (PageActive(page))
2316 workingset_age_nonresident(lruvec, nr_pages);
66635629 2317 }
66635629 2318
3f79768f
HD
2319 /*
2320 * To save our caller's stack, now use input list for pages to free.
2321 */
a222f341
KT
2322 list_splice(&pages_to_free, list);
2323
2324 return nr_moved;
66635629
MG
2325}
2326
399ba0b9 2327/*
5829f7db
ML
2328 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2329 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2330 * we should not throttle. Otherwise it is safe to do so.
399ba0b9
N
2331 */
2332static int current_may_throttle(void)
2333{
b9b1335e 2334 return !(current->flags & PF_LOCAL_THROTTLE);
399ba0b9
N
2335}
2336
1da177e4 2337/*
b2e18757 2338 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2339 * of reclaimed pages
1da177e4 2340 */
9ef56b78 2341static unsigned long
1a93be0e 2342shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2343 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2344{
2345 LIST_HEAD(page_list);
e247dbce 2346 unsigned long nr_scanned;
730ec8c0 2347 unsigned int nr_reclaimed = 0;
e247dbce 2348 unsigned long nr_taken;
060f005f 2349 struct reclaim_stat stat;
497a6c1b 2350 bool file = is_file_lru(lru);
f46b7912 2351 enum vm_event_item item;
599d0c95 2352 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2353 bool stalled = false;
78dc583d 2354
599d0c95 2355 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2356 if (stalled)
2357 return 0;
2358
2359 /* wait a bit for the reclaimer. */
db73ee0d 2360 stalled = true;
c3f4a9a2 2361 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
35cd7815
RR
2362
2363 /* We are about to die and free our memory. Return now. */
2364 if (fatal_signal_pending(current))
2365 return SWAP_CLUSTER_MAX;
2366 }
2367
1da177e4 2368 lru_add_drain();
f80c0673 2369
6168d0da 2370 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2371
5dc35979 2372 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2373 &nr_scanned, sc, lru);
95d918fc 2374
599d0c95 2375 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2376 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2377 if (!cgroup_reclaim(sc))
f46b7912
KT
2378 __count_vm_events(item, nr_scanned);
2379 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2380 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2381
6168d0da 2382 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2383
d563c050 2384 if (nr_taken == 0)
66635629 2385 return 0;
5ad333eb 2386
013339df 2387 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2388
6168d0da 2389 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2390 move_pages_to_lru(lruvec, &page_list);
2391
2392 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2393 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2394 if (!cgroup_reclaim(sc))
f46b7912
KT
2395 __count_vm_events(item, nr_reclaimed);
2396 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2397 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2398 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2399
75cc3c91 2400 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2401 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2402 free_unref_page_list(&page_list);
e11da5b4 2403
1c610d5f
AR
2404 /*
2405 * If dirty pages are scanned that are not queued for IO, it
2406 * implies that flushers are not doing their job. This can
2407 * happen when memory pressure pushes dirty pages to the end of
2408 * the LRU before the dirty limits are breached and the dirty
2409 * data has expired. It can also happen when the proportion of
2410 * dirty pages grows not through writes but through memory
2411 * pressure reclaiming all the clean cache. And in some cases,
2412 * the flushers simply cannot keep up with the allocation
2413 * rate. Nudge the flusher threads in case they are asleep.
2414 */
2415 if (stat.nr_unqueued_dirty == nr_taken)
2416 wakeup_flusher_threads(WB_REASON_VMSCAN);
2417
d108c772
AR
2418 sc->nr.dirty += stat.nr_dirty;
2419 sc->nr.congested += stat.nr_congested;
2420 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2421 sc->nr.writeback += stat.nr_writeback;
2422 sc->nr.immediate += stat.nr_immediate;
2423 sc->nr.taken += nr_taken;
2424 if (file)
2425 sc->nr.file_taken += nr_taken;
8e950282 2426
599d0c95 2427 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2428 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2429 return nr_reclaimed;
1da177e4
LT
2430}
2431
15b44736
HD
2432/*
2433 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2434 *
2435 * We move them the other way if the page is referenced by one or more
2436 * processes.
2437 *
2438 * If the pages are mostly unmapped, the processing is fast and it is
2439 * appropriate to hold lru_lock across the whole operation. But if
b3ac0413 2440 * the pages are mapped, the processing is slow (folio_referenced()), so
15b44736
HD
2441 * we should drop lru_lock around each page. It's impossible to balance
2442 * this, so instead we remove the pages from the LRU while processing them.
2443 * It is safe to rely on PG_active against the non-LRU pages in here because
2444 * nobody will play with that bit on a non-LRU page.
2445 *
2446 * The downside is that we have to touch page->_refcount against each page.
2447 * But we had to alter page->flags anyway.
2448 */
f626012d 2449static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2450 struct lruvec *lruvec,
f16015fb 2451 struct scan_control *sc,
9e3b2f8c 2452 enum lru_list lru)
1da177e4 2453{
44c241f1 2454 unsigned long nr_taken;
f626012d 2455 unsigned long nr_scanned;
6fe6b7e3 2456 unsigned long vm_flags;
1da177e4 2457 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2458 LIST_HEAD(l_active);
b69408e8 2459 LIST_HEAD(l_inactive);
9d998b4f
MH
2460 unsigned nr_deactivate, nr_activate;
2461 unsigned nr_rotated = 0;
3cb99451 2462 int file = is_file_lru(lru);
599d0c95 2463 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2464
2465 lru_add_drain();
f80c0673 2466
6168d0da 2467 spin_lock_irq(&lruvec->lru_lock);
925b7673 2468
5dc35979 2469 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2470 &nr_scanned, sc, lru);
89b5fae5 2471
599d0c95 2472 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2473
912c0572
SB
2474 if (!cgroup_reclaim(sc))
2475 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2476 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2477
6168d0da 2478 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2479
1da177e4 2480 while (!list_empty(&l_hold)) {
b3ac0413
MWO
2481 struct folio *folio;
2482 struct page *page;
2483
1da177e4 2484 cond_resched();
b3ac0413
MWO
2485 folio = lru_to_folio(&l_hold);
2486 list_del(&folio->lru);
2487 page = &folio->page;
7e9cd484 2488
39b5f29a 2489 if (unlikely(!page_evictable(page))) {
894bc310
LS
2490 putback_lru_page(page);
2491 continue;
2492 }
2493
cc715d99
MG
2494 if (unlikely(buffer_heads_over_limit)) {
2495 if (page_has_private(page) && trylock_page(page)) {
2496 if (page_has_private(page))
2497 try_to_release_page(page, 0);
2498 unlock_page(page);
2499 }
2500 }
2501
b3ac0413
MWO
2502 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2503 &vm_flags)) {
8cab4754
WF
2504 /*
2505 * Identify referenced, file-backed active pages and
2506 * give them one more trip around the active list. So
2507 * that executable code get better chances to stay in
2508 * memory under moderate memory pressure. Anon pages
2509 * are not likely to be evicted by use-once streaming
2510 * IO, plus JVM can create lots of anon VM_EXEC pages,
2511 * so we ignore them here.
2512 */
9de4f22a 2513 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2514 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2515 list_add(&page->lru, &l_active);
2516 continue;
2517 }
2518 }
7e9cd484 2519
5205e56e 2520 ClearPageActive(page); /* we are de-activating */
1899ad18 2521 SetPageWorkingset(page);
1da177e4
LT
2522 list_add(&page->lru, &l_inactive);
2523 }
2524
b555749a 2525 /*
8cab4754 2526 * Move pages back to the lru list.
b555749a 2527 */
6168d0da 2528 spin_lock_irq(&lruvec->lru_lock);
556adecb 2529
a222f341
KT
2530 nr_activate = move_pages_to_lru(lruvec, &l_active);
2531 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2532 /* Keep all free pages in l_active list */
2533 list_splice(&l_inactive, &l_active);
9851ac13
KT
2534
2535 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2536 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2537
599d0c95 2538 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2539 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2540
f372d89e
KT
2541 mem_cgroup_uncharge_list(&l_active);
2542 free_unref_page_list(&l_active);
9d998b4f
MH
2543 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2544 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2545}
2546
1fe47c0b
ML
2547static unsigned int reclaim_page_list(struct list_head *page_list,
2548 struct pglist_data *pgdat)
1a4e58cc 2549{
1a4e58cc 2550 struct reclaim_stat dummy_stat;
1fe47c0b
ML
2551 unsigned int nr_reclaimed;
2552 struct folio *folio;
1a4e58cc
MK
2553 struct scan_control sc = {
2554 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2555 .may_writepage = 1,
2556 .may_unmap = 1,
2557 .may_swap = 1,
26aa2d19 2558 .no_demotion = 1,
1a4e58cc
MK
2559 };
2560
1fe47c0b
ML
2561 nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false);
2562 while (!list_empty(page_list)) {
2563 folio = lru_to_folio(page_list);
2564 list_del(&folio->lru);
2565 folio_putback_lru(folio);
2566 }
2567
2568 return nr_reclaimed;
2569}
2570
2571unsigned long reclaim_pages(struct list_head *page_list)
2572{
ed657e55 2573 int nid;
1fe47c0b
ML
2574 unsigned int nr_reclaimed = 0;
2575 LIST_HEAD(node_page_list);
2576 struct page *page;
2577 unsigned int noreclaim_flag;
2578
1ae65e27
WY
2579 if (list_empty(page_list))
2580 return nr_reclaimed;
2581
2d2b8d2b
YZ
2582 noreclaim_flag = memalloc_noreclaim_save();
2583
ed657e55 2584 nid = page_to_nid(lru_to_page(page_list));
1ae65e27 2585 do {
1a4e58cc 2586 page = lru_to_page(page_list);
1a4e58cc
MK
2587
2588 if (nid == page_to_nid(page)) {
2589 ClearPageActive(page);
2590 list_move(&page->lru, &node_page_list);
2591 continue;
2592 }
2593
1fe47c0b 2594 nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid));
ed657e55 2595 nid = page_to_nid(lru_to_page(page_list));
1ae65e27 2596 } while (!list_empty(page_list));
1a4e58cc 2597
1ae65e27 2598 nr_reclaimed += reclaim_page_list(&node_page_list, NODE_DATA(nid));
1a4e58cc 2599
2d2b8d2b
YZ
2600 memalloc_noreclaim_restore(noreclaim_flag);
2601
1a4e58cc
MK
2602 return nr_reclaimed;
2603}
2604
b91ac374
JW
2605static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2606 struct lruvec *lruvec, struct scan_control *sc)
2607{
2608 if (is_active_lru(lru)) {
2609 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2610 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2611 else
2612 sc->skipped_deactivate = 1;
2613 return 0;
2614 }
2615
2616 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2617}
2618
59dc76b0
RR
2619/*
2620 * The inactive anon list should be small enough that the VM never has
2621 * to do too much work.
14797e23 2622 *
59dc76b0
RR
2623 * The inactive file list should be small enough to leave most memory
2624 * to the established workingset on the scan-resistant active list,
2625 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2626 *
59dc76b0
RR
2627 * Both inactive lists should also be large enough that each inactive
2628 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2629 *
2a2e4885
JW
2630 * If that fails and refaulting is observed, the inactive list grows.
2631 *
59dc76b0 2632 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2633 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2634 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2635 *
59dc76b0
RR
2636 * total target max
2637 * memory ratio inactive
2638 * -------------------------------------
2639 * 10MB 1 5MB
2640 * 100MB 1 50MB
2641 * 1GB 3 250MB
2642 * 10GB 10 0.9GB
2643 * 100GB 31 3GB
2644 * 1TB 101 10GB
2645 * 10TB 320 32GB
56e49d21 2646 */
b91ac374 2647static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2648{
b91ac374 2649 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2650 unsigned long inactive, active;
2651 unsigned long inactive_ratio;
59dc76b0 2652 unsigned long gb;
e3790144 2653
b91ac374
JW
2654 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2655 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2656
b91ac374 2657 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2658 if (gb)
b91ac374
JW
2659 inactive_ratio = int_sqrt(10 * gb);
2660 else
2661 inactive_ratio = 1;
fd538803 2662
59dc76b0 2663 return inactive * inactive_ratio < active;
b39415b2
RR
2664}
2665
9a265114
JW
2666enum scan_balance {
2667 SCAN_EQUAL,
2668 SCAN_FRACT,
2669 SCAN_ANON,
2670 SCAN_FILE,
2671};
2672
4f98a2fe
RR
2673/*
2674 * Determine how aggressively the anon and file LRU lists should be
02e458d8 2675 * scanned.
4f98a2fe 2676 *
be7bd59d
WL
2677 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2678 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2679 */
afaf07a6
JW
2680static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2681 unsigned long *nr)
4f98a2fe 2682{
a2a36488 2683 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2684 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2685 unsigned long anon_cost, file_cost, total_cost;
33377678 2686 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2687 u64 fraction[ANON_AND_FILE];
9a265114 2688 u64 denominator = 0; /* gcc */
9a265114 2689 enum scan_balance scan_balance;
4f98a2fe 2690 unsigned long ap, fp;
4111304d 2691 enum lru_list lru;
76a33fc3
SL
2692
2693 /* If we have no swap space, do not bother scanning anon pages. */
a2a36488 2694 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2695 scan_balance = SCAN_FILE;
76a33fc3
SL
2696 goto out;
2697 }
4f98a2fe 2698
10316b31
JW
2699 /*
2700 * Global reclaim will swap to prevent OOM even with no
2701 * swappiness, but memcg users want to use this knob to
2702 * disable swapping for individual groups completely when
2703 * using the memory controller's swap limit feature would be
2704 * too expensive.
2705 */
b5ead35e 2706 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2707 scan_balance = SCAN_FILE;
10316b31
JW
2708 goto out;
2709 }
2710
2711 /*
2712 * Do not apply any pressure balancing cleverness when the
2713 * system is close to OOM, scan both anon and file equally
2714 * (unless the swappiness setting disagrees with swapping).
2715 */
02695175 2716 if (!sc->priority && swappiness) {
9a265114 2717 scan_balance = SCAN_EQUAL;
10316b31
JW
2718 goto out;
2719 }
2720
62376251 2721 /*
53138cea 2722 * If the system is almost out of file pages, force-scan anon.
62376251 2723 */
b91ac374 2724 if (sc->file_is_tiny) {
53138cea
JW
2725 scan_balance = SCAN_ANON;
2726 goto out;
62376251
JW
2727 }
2728
7c5bd705 2729 /*
b91ac374
JW
2730 * If there is enough inactive page cache, we do not reclaim
2731 * anything from the anonymous working right now.
7c5bd705 2732 */
b91ac374 2733 if (sc->cache_trim_mode) {
9a265114 2734 scan_balance = SCAN_FILE;
7c5bd705
JW
2735 goto out;
2736 }
2737
9a265114 2738 scan_balance = SCAN_FRACT;
58c37f6e 2739 /*
314b57fb
JW
2740 * Calculate the pressure balance between anon and file pages.
2741 *
2742 * The amount of pressure we put on each LRU is inversely
2743 * proportional to the cost of reclaiming each list, as
2744 * determined by the share of pages that are refaulting, times
2745 * the relative IO cost of bringing back a swapped out
2746 * anonymous page vs reloading a filesystem page (swappiness).
2747 *
d483a5dd
JW
2748 * Although we limit that influence to ensure no list gets
2749 * left behind completely: at least a third of the pressure is
2750 * applied, before swappiness.
2751 *
314b57fb 2752 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2753 */
d483a5dd
JW
2754 total_cost = sc->anon_cost + sc->file_cost;
2755 anon_cost = total_cost + sc->anon_cost;
2756 file_cost = total_cost + sc->file_cost;
2757 total_cost = anon_cost + file_cost;
58c37f6e 2758
d483a5dd
JW
2759 ap = swappiness * (total_cost + 1);
2760 ap /= anon_cost + 1;
4f98a2fe 2761
d483a5dd
JW
2762 fp = (200 - swappiness) * (total_cost + 1);
2763 fp /= file_cost + 1;
4f98a2fe 2764
76a33fc3
SL
2765 fraction[0] = ap;
2766 fraction[1] = fp;
a4fe1631 2767 denominator = ap + fp;
76a33fc3 2768out:
688035f7
JW
2769 for_each_evictable_lru(lru) {
2770 int file = is_file_lru(lru);
9783aa99 2771 unsigned long lruvec_size;
f56ce412 2772 unsigned long low, min;
688035f7 2773 unsigned long scan;
9783aa99
CD
2774
2775 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2776 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2777 &min, &low);
9783aa99 2778
f56ce412 2779 if (min || low) {
9783aa99
CD
2780 /*
2781 * Scale a cgroup's reclaim pressure by proportioning
2782 * its current usage to its memory.low or memory.min
2783 * setting.
2784 *
2785 * This is important, as otherwise scanning aggression
2786 * becomes extremely binary -- from nothing as we
2787 * approach the memory protection threshold, to totally
2788 * nominal as we exceed it. This results in requiring
2789 * setting extremely liberal protection thresholds. It
2790 * also means we simply get no protection at all if we
2791 * set it too low, which is not ideal.
1bc63fb1
CD
2792 *
2793 * If there is any protection in place, we reduce scan
2794 * pressure by how much of the total memory used is
2795 * within protection thresholds.
9783aa99 2796 *
9de7ca46
CD
2797 * There is one special case: in the first reclaim pass,
2798 * we skip over all groups that are within their low
2799 * protection. If that fails to reclaim enough pages to
2800 * satisfy the reclaim goal, we come back and override
2801 * the best-effort low protection. However, we still
2802 * ideally want to honor how well-behaved groups are in
2803 * that case instead of simply punishing them all
2804 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2805 * memory they are using, reducing the scan pressure
2806 * again by how much of the total memory used is under
2807 * hard protection.
9783aa99 2808 */
1bc63fb1 2809 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
2810 unsigned long protection;
2811
2812 /* memory.low scaling, make sure we retry before OOM */
2813 if (!sc->memcg_low_reclaim && low > min) {
2814 protection = low;
2815 sc->memcg_low_skipped = 1;
2816 } else {
2817 protection = min;
2818 }
1bc63fb1
CD
2819
2820 /* Avoid TOCTOU with earlier protection check */
2821 cgroup_size = max(cgroup_size, protection);
2822
2823 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 2824 (cgroup_size + 1);
9783aa99
CD
2825
2826 /*
1bc63fb1 2827 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2828 * reclaim moving forwards, avoiding decrementing
9de7ca46 2829 * sc->priority further than desirable.
9783aa99 2830 */
1bc63fb1 2831 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2832 } else {
2833 scan = lruvec_size;
2834 }
2835
2836 scan >>= sc->priority;
6b4f7799 2837
688035f7
JW
2838 /*
2839 * If the cgroup's already been deleted, make sure to
2840 * scrape out the remaining cache.
2841 */
2842 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2843 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2844
688035f7
JW
2845 switch (scan_balance) {
2846 case SCAN_EQUAL:
2847 /* Scan lists relative to size */
2848 break;
2849 case SCAN_FRACT:
9a265114 2850 /*
688035f7
JW
2851 * Scan types proportional to swappiness and
2852 * their relative recent reclaim efficiency.
76073c64
GS
2853 * Make sure we don't miss the last page on
2854 * the offlined memory cgroups because of a
2855 * round-off error.
9a265114 2856 */
76073c64
GS
2857 scan = mem_cgroup_online(memcg) ?
2858 div64_u64(scan * fraction[file], denominator) :
2859 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2860 denominator);
688035f7
JW
2861 break;
2862 case SCAN_FILE:
2863 case SCAN_ANON:
2864 /* Scan one type exclusively */
e072bff6 2865 if ((scan_balance == SCAN_FILE) != file)
688035f7 2866 scan = 0;
688035f7
JW
2867 break;
2868 default:
2869 /* Look ma, no brain */
2870 BUG();
9a265114 2871 }
688035f7 2872
688035f7 2873 nr[lru] = scan;
76a33fc3 2874 }
6e08a369 2875}
4f98a2fe 2876
2f368a9f
DH
2877/*
2878 * Anonymous LRU management is a waste if there is
2879 * ultimately no way to reclaim the memory.
2880 */
2881static bool can_age_anon_pages(struct pglist_data *pgdat,
2882 struct scan_control *sc)
2883{
2884 /* Aging the anon LRU is valuable if swap is present: */
2885 if (total_swap_pages > 0)
2886 return true;
2887
2888 /* Also valuable if anon pages can be demoted: */
2889 return can_demote(pgdat->node_id, sc);
2890}
2891
afaf07a6 2892static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2893{
2894 unsigned long nr[NR_LRU_LISTS];
e82e0561 2895 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2896 unsigned long nr_to_scan;
2897 enum lru_list lru;
2898 unsigned long nr_reclaimed = 0;
2899 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2900 struct blk_plug plug;
1a501907 2901 bool scan_adjusted;
9b4f98cd 2902
afaf07a6 2903 get_scan_count(lruvec, sc, nr);
9b4f98cd 2904
e82e0561
MG
2905 /* Record the original scan target for proportional adjustments later */
2906 memcpy(targets, nr, sizeof(nr));
2907
1a501907
MG
2908 /*
2909 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2910 * event that can occur when there is little memory pressure e.g.
2911 * multiple streaming readers/writers. Hence, we do not abort scanning
2912 * when the requested number of pages are reclaimed when scanning at
2913 * DEF_PRIORITY on the assumption that the fact we are direct
2914 * reclaiming implies that kswapd is not keeping up and it is best to
2915 * do a batch of work at once. For memcg reclaim one check is made to
2916 * abort proportional reclaim if either the file or anon lru has already
2917 * dropped to zero at the first pass.
2918 */
b5ead35e 2919 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2920 sc->priority == DEF_PRIORITY);
2921
9b4f98cd
JW
2922 blk_start_plug(&plug);
2923 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2924 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2925 unsigned long nr_anon, nr_file, percentage;
2926 unsigned long nr_scanned;
2927
9b4f98cd
JW
2928 for_each_evictable_lru(lru) {
2929 if (nr[lru]) {
2930 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2931 nr[lru] -= nr_to_scan;
2932
2933 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2934 lruvec, sc);
9b4f98cd
JW
2935 }
2936 }
e82e0561 2937
bd041733
MH
2938 cond_resched();
2939
e82e0561
MG
2940 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2941 continue;
2942
e82e0561
MG
2943 /*
2944 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2945 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2946 * proportionally what was requested by get_scan_count(). We
2947 * stop reclaiming one LRU and reduce the amount scanning
2948 * proportional to the original scan target.
2949 */
2950 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2951 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2952
1a501907
MG
2953 /*
2954 * It's just vindictive to attack the larger once the smaller
2955 * has gone to zero. And given the way we stop scanning the
2956 * smaller below, this makes sure that we only make one nudge
2957 * towards proportionality once we've got nr_to_reclaim.
2958 */
2959 if (!nr_file || !nr_anon)
2960 break;
2961
e82e0561
MG
2962 if (nr_file > nr_anon) {
2963 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2964 targets[LRU_ACTIVE_ANON] + 1;
2965 lru = LRU_BASE;
2966 percentage = nr_anon * 100 / scan_target;
2967 } else {
2968 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2969 targets[LRU_ACTIVE_FILE] + 1;
2970 lru = LRU_FILE;
2971 percentage = nr_file * 100 / scan_target;
2972 }
2973
2974 /* Stop scanning the smaller of the LRU */
2975 nr[lru] = 0;
2976 nr[lru + LRU_ACTIVE] = 0;
2977
2978 /*
2979 * Recalculate the other LRU scan count based on its original
2980 * scan target and the percentage scanning already complete
2981 */
2982 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2983 nr_scanned = targets[lru] - nr[lru];
2984 nr[lru] = targets[lru] * (100 - percentage) / 100;
2985 nr[lru] -= min(nr[lru], nr_scanned);
2986
2987 lru += LRU_ACTIVE;
2988 nr_scanned = targets[lru] - nr[lru];
2989 nr[lru] = targets[lru] * (100 - percentage) / 100;
2990 nr[lru] -= min(nr[lru], nr_scanned);
2991
2992 scan_adjusted = true;
9b4f98cd
JW
2993 }
2994 blk_finish_plug(&plug);
2995 sc->nr_reclaimed += nr_reclaimed;
2996
2997 /*
2998 * Even if we did not try to evict anon pages at all, we want to
2999 * rebalance the anon lru active/inactive ratio.
3000 */
2f368a9f
DH
3001 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3002 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
3003 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3004 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
3005}
3006
23b9da55 3007/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 3008static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 3009{
d84da3f9 3010 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 3011 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 3012 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
3013 return true;
3014
3015 return false;
3016}
3017
3e7d3449 3018/*
23b9da55
MG
3019 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3020 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3021 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 3022 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 3023 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 3024 */
a9dd0a83 3025static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 3026 unsigned long nr_reclaimed,
3e7d3449
MG
3027 struct scan_control *sc)
3028{
3029 unsigned long pages_for_compaction;
3030 unsigned long inactive_lru_pages;
a9dd0a83 3031 int z;
3e7d3449
MG
3032
3033 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 3034 if (!in_reclaim_compaction(sc))
3e7d3449
MG
3035 return false;
3036
5ee04716
VB
3037 /*
3038 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3039 * number of pages that were scanned. This will return to the caller
3040 * with the risk reclaim/compaction and the resulting allocation attempt
3041 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3042 * allocations through requiring that the full LRU list has been scanned
3043 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3044 * scan, but that approximation was wrong, and there were corner cases
3045 * where always a non-zero amount of pages were scanned.
3046 */
3047 if (!nr_reclaimed)
3048 return false;
3e7d3449 3049
3e7d3449 3050 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
3051 for (z = 0; z <= sc->reclaim_idx; z++) {
3052 struct zone *zone = &pgdat->node_zones[z];
6aa303de 3053 if (!managed_zone(zone))
a9dd0a83
MG
3054 continue;
3055
3056 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 3057 case COMPACT_SUCCESS:
a9dd0a83
MG
3058 case COMPACT_CONTINUE:
3059 return false;
3060 default:
3061 /* check next zone */
3062 ;
3063 }
3e7d3449 3064 }
1c6c1597
HD
3065
3066 /*
3067 * If we have not reclaimed enough pages for compaction and the
3068 * inactive lists are large enough, continue reclaiming
3069 */
3070 pages_for_compaction = compact_gap(sc->order);
3071 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 3072 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
3073 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3074
5ee04716 3075 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
3076}
3077
0f6a5cff 3078static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 3079{
0f6a5cff 3080 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 3081 struct mem_cgroup *memcg;
1da177e4 3082
0f6a5cff 3083 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 3084 do {
afaf07a6 3085 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
3086 unsigned long reclaimed;
3087 unsigned long scanned;
5660048c 3088
e3336cab
XP
3089 /*
3090 * This loop can become CPU-bound when target memcgs
3091 * aren't eligible for reclaim - either because they
3092 * don't have any reclaimable pages, or because their
3093 * memory is explicitly protected. Avoid soft lockups.
3094 */
3095 cond_resched();
3096
45c7f7e1
CD
3097 mem_cgroup_calculate_protection(target_memcg, memcg);
3098
3099 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
3100 /*
3101 * Hard protection.
3102 * If there is no reclaimable memory, OOM.
3103 */
3104 continue;
45c7f7e1 3105 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
3106 /*
3107 * Soft protection.
3108 * Respect the protection only as long as
3109 * there is an unprotected supply
3110 * of reclaimable memory from other cgroups.
3111 */
3112 if (!sc->memcg_low_reclaim) {
3113 sc->memcg_low_skipped = 1;
bf8d5d52 3114 continue;
241994ed 3115 }
d2af3397 3116 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 3117 }
241994ed 3118
d2af3397
JW
3119 reclaimed = sc->nr_reclaimed;
3120 scanned = sc->nr_scanned;
afaf07a6
JW
3121
3122 shrink_lruvec(lruvec, sc);
70ddf637 3123
d2af3397
JW
3124 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3125 sc->priority);
6b4f7799 3126
d2af3397
JW
3127 /* Record the group's reclaim efficiency */
3128 vmpressure(sc->gfp_mask, memcg, false,
3129 sc->nr_scanned - scanned,
3130 sc->nr_reclaimed - reclaimed);
70ddf637 3131
0f6a5cff
JW
3132 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3133}
3134
6c9e0907 3135static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
3136{
3137 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 3138 unsigned long nr_reclaimed, nr_scanned;
1b05117d 3139 struct lruvec *target_lruvec;
0f6a5cff 3140 bool reclaimable = false;
b91ac374 3141 unsigned long file;
0f6a5cff 3142
1b05117d
JW
3143 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3144
0f6a5cff 3145again:
aa48e47e
SB
3146 /*
3147 * Flush the memory cgroup stats, so that we read accurate per-memcg
3148 * lruvec stats for heuristics.
3149 */
3150 mem_cgroup_flush_stats();
3151
0f6a5cff
JW
3152 memset(&sc->nr, 0, sizeof(sc->nr));
3153
3154 nr_reclaimed = sc->nr_reclaimed;
3155 nr_scanned = sc->nr_scanned;
3156
7cf111bc
JW
3157 /*
3158 * Determine the scan balance between anon and file LRUs.
3159 */
6168d0da 3160 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
3161 sc->anon_cost = target_lruvec->anon_cost;
3162 sc->file_cost = target_lruvec->file_cost;
6168d0da 3163 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 3164
b91ac374
JW
3165 /*
3166 * Target desirable inactive:active list ratios for the anon
3167 * and file LRU lists.
3168 */
3169 if (!sc->force_deactivate) {
3170 unsigned long refaults;
3171
170b04b7
JK
3172 refaults = lruvec_page_state(target_lruvec,
3173 WORKINGSET_ACTIVATE_ANON);
3174 if (refaults != target_lruvec->refaults[0] ||
3175 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
3176 sc->may_deactivate |= DEACTIVATE_ANON;
3177 else
3178 sc->may_deactivate &= ~DEACTIVATE_ANON;
3179
3180 /*
3181 * When refaults are being observed, it means a new
3182 * workingset is being established. Deactivate to get
3183 * rid of any stale active pages quickly.
3184 */
3185 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
3186 WORKINGSET_ACTIVATE_FILE);
3187 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
3188 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3189 sc->may_deactivate |= DEACTIVATE_FILE;
3190 else
3191 sc->may_deactivate &= ~DEACTIVATE_FILE;
3192 } else
3193 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3194
3195 /*
3196 * If we have plenty of inactive file pages that aren't
3197 * thrashing, try to reclaim those first before touching
3198 * anonymous pages.
3199 */
3200 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3201 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3202 sc->cache_trim_mode = 1;
3203 else
3204 sc->cache_trim_mode = 0;
3205
53138cea
JW
3206 /*
3207 * Prevent the reclaimer from falling into the cache trap: as
3208 * cache pages start out inactive, every cache fault will tip
3209 * the scan balance towards the file LRU. And as the file LRU
3210 * shrinks, so does the window for rotation from references.
3211 * This means we have a runaway feedback loop where a tiny
3212 * thrashing file LRU becomes infinitely more attractive than
3213 * anon pages. Try to detect this based on file LRU size.
3214 */
3215 if (!cgroup_reclaim(sc)) {
53138cea 3216 unsigned long total_high_wmark = 0;
b91ac374
JW
3217 unsigned long free, anon;
3218 int z;
53138cea
JW
3219
3220 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3221 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3222 node_page_state(pgdat, NR_INACTIVE_FILE);
3223
3224 for (z = 0; z < MAX_NR_ZONES; z++) {
3225 struct zone *zone = &pgdat->node_zones[z];
3226 if (!managed_zone(zone))
3227 continue;
3228
3229 total_high_wmark += high_wmark_pages(zone);
3230 }
3231
b91ac374
JW
3232 /*
3233 * Consider anon: if that's low too, this isn't a
3234 * runaway file reclaim problem, but rather just
3235 * extreme pressure. Reclaim as per usual then.
3236 */
3237 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3238
3239 sc->file_is_tiny =
3240 file + free <= total_high_wmark &&
3241 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3242 anon >> sc->priority;
53138cea
JW
3243 }
3244
0f6a5cff 3245 shrink_node_memcgs(pgdat, sc);
2344d7e4 3246
d2af3397
JW
3247 if (reclaim_state) {
3248 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3249 reclaim_state->reclaimed_slab = 0;
3250 }
d108c772 3251
d2af3397 3252 /* Record the subtree's reclaim efficiency */
1b05117d 3253 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
3254 sc->nr_scanned - nr_scanned,
3255 sc->nr_reclaimed - nr_reclaimed);
d108c772 3256
d2af3397
JW
3257 if (sc->nr_reclaimed - nr_reclaimed)
3258 reclaimable = true;
d108c772 3259
d2af3397
JW
3260 if (current_is_kswapd()) {
3261 /*
3262 * If reclaim is isolating dirty pages under writeback,
3263 * it implies that the long-lived page allocation rate
3264 * is exceeding the page laundering rate. Either the
3265 * global limits are not being effective at throttling
3266 * processes due to the page distribution throughout
3267 * zones or there is heavy usage of a slow backing
3268 * device. The only option is to throttle from reclaim
3269 * context which is not ideal as there is no guarantee
3270 * the dirtying process is throttled in the same way
3271 * balance_dirty_pages() manages.
3272 *
3273 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3274 * count the number of pages under pages flagged for
3275 * immediate reclaim and stall if any are encountered
3276 * in the nr_immediate check below.
3277 */
3278 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3279 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 3280
d2af3397
JW
3281 /* Allow kswapd to start writing pages during reclaim.*/
3282 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3283 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 3284
d108c772 3285 /*
1eba09c1 3286 * If kswapd scans pages marked for immediate
d2af3397
JW
3287 * reclaim and under writeback (nr_immediate), it
3288 * implies that pages are cycling through the LRU
8cd7c588
MG
3289 * faster than they are written so forcibly stall
3290 * until some pages complete writeback.
d108c772 3291 */
d2af3397 3292 if (sc->nr.immediate)
c3f4a9a2 3293 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d2af3397
JW
3294 }
3295
3296 /*
8cd7c588
MG
3297 * Tag a node/memcg as congested if all the dirty pages were marked
3298 * for writeback and immediate reclaim (counted in nr.congested).
1b05117d 3299 *
d2af3397 3300 * Legacy memcg will stall in page writeback so avoid forcibly
8cd7c588 3301 * stalling in reclaim_throttle().
d2af3397 3302 */
1b05117d
JW
3303 if ((current_is_kswapd() ||
3304 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 3305 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 3306 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
3307
3308 /*
8cd7c588
MG
3309 * Stall direct reclaim for IO completions if the lruvec is
3310 * node is congested. Allow kswapd to continue until it
d2af3397
JW
3311 * starts encountering unqueued dirty pages or cycling through
3312 * the LRU too quickly.
3313 */
1b05117d
JW
3314 if (!current_is_kswapd() && current_may_throttle() &&
3315 !sc->hibernation_mode &&
3316 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
1b4e3f26 3317 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
d108c772 3318
d2af3397
JW
3319 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3320 sc))
3321 goto again;
2344d7e4 3322
c73322d0
JW
3323 /*
3324 * Kswapd gives up on balancing particular nodes after too
3325 * many failures to reclaim anything from them and goes to
3326 * sleep. On reclaim progress, reset the failure counter. A
3327 * successful direct reclaim run will revive a dormant kswapd.
3328 */
3329 if (reclaimable)
3330 pgdat->kswapd_failures = 0;
f16015fb
JW
3331}
3332
53853e2d 3333/*
fdd4c614
VB
3334 * Returns true if compaction should go ahead for a costly-order request, or
3335 * the allocation would already succeed without compaction. Return false if we
3336 * should reclaim first.
53853e2d 3337 */
4f588331 3338static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 3339{
31483b6a 3340 unsigned long watermark;
fdd4c614 3341 enum compact_result suitable;
fe4b1b24 3342
fdd4c614
VB
3343 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3344 if (suitable == COMPACT_SUCCESS)
3345 /* Allocation should succeed already. Don't reclaim. */
3346 return true;
3347 if (suitable == COMPACT_SKIPPED)
3348 /* Compaction cannot yet proceed. Do reclaim. */
3349 return false;
fe4b1b24 3350
53853e2d 3351 /*
fdd4c614
VB
3352 * Compaction is already possible, but it takes time to run and there
3353 * are potentially other callers using the pages just freed. So proceed
3354 * with reclaim to make a buffer of free pages available to give
3355 * compaction a reasonable chance of completing and allocating the page.
3356 * Note that we won't actually reclaim the whole buffer in one attempt
3357 * as the target watermark in should_continue_reclaim() is lower. But if
3358 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3359 */
fdd4c614 3360 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3361
fdd4c614 3362 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3363}
3364
69392a40
MG
3365static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3366{
66ce520b
MG
3367 /*
3368 * If reclaim is making progress greater than 12% efficiency then
3369 * wake all the NOPROGRESS throttled tasks.
3370 */
3371 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
69392a40
MG
3372 wait_queue_head_t *wqh;
3373
3374 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3375 if (waitqueue_active(wqh))
3376 wake_up(wqh);
3377
3378 return;
3379 }
3380
3381 /*
1b4e3f26
MG
3382 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3383 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3384 * under writeback and marked for immediate reclaim at the tail of the
3385 * LRU.
69392a40 3386 */
1b4e3f26 3387 if (current_is_kswapd() || cgroup_reclaim(sc))
69392a40
MG
3388 return;
3389
3390 /* Throttle if making no progress at high prioities. */
1b4e3f26 3391 if (sc->priority == 1 && !sc->nr_reclaimed)
c3f4a9a2 3392 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
69392a40
MG
3393}
3394
1da177e4
LT
3395/*
3396 * This is the direct reclaim path, for page-allocating processes. We only
3397 * try to reclaim pages from zones which will satisfy the caller's allocation
3398 * request.
3399 *
1da177e4
LT
3400 * If a zone is deemed to be full of pinned pages then just give it a light
3401 * scan then give up on it.
3402 */
0a0337e0 3403static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3404{
dd1a239f 3405 struct zoneref *z;
54a6eb5c 3406 struct zone *zone;
0608f43d
AM
3407 unsigned long nr_soft_reclaimed;
3408 unsigned long nr_soft_scanned;
619d0d76 3409 gfp_t orig_mask;
79dafcdc 3410 pg_data_t *last_pgdat = NULL;
1b4e3f26 3411 pg_data_t *first_pgdat = NULL;
1cfb419b 3412
cc715d99
MG
3413 /*
3414 * If the number of buffer_heads in the machine exceeds the maximum
3415 * allowed level, force direct reclaim to scan the highmem zone as
3416 * highmem pages could be pinning lowmem pages storing buffer_heads
3417 */
619d0d76 3418 orig_mask = sc->gfp_mask;
b2e18757 3419 if (buffer_heads_over_limit) {
cc715d99 3420 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3421 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3422 }
cc715d99 3423
d4debc66 3424 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3425 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3426 /*
3427 * Take care memory controller reclaiming has small influence
3428 * to global LRU.
3429 */
b5ead35e 3430 if (!cgroup_reclaim(sc)) {
344736f2
VD
3431 if (!cpuset_zone_allowed(zone,
3432 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3433 continue;
65ec02cb 3434
0b06496a
JW
3435 /*
3436 * If we already have plenty of memory free for
3437 * compaction in this zone, don't free any more.
3438 * Even though compaction is invoked for any
3439 * non-zero order, only frequent costly order
3440 * reclamation is disruptive enough to become a
3441 * noticeable problem, like transparent huge
3442 * page allocations.
3443 */
3444 if (IS_ENABLED(CONFIG_COMPACTION) &&
3445 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3446 compaction_ready(zone, sc)) {
0b06496a
JW
3447 sc->compaction_ready = true;
3448 continue;
e0887c19 3449 }
0b06496a 3450
79dafcdc
MG
3451 /*
3452 * Shrink each node in the zonelist once. If the
3453 * zonelist is ordered by zone (not the default) then a
3454 * node may be shrunk multiple times but in that case
3455 * the user prefers lower zones being preserved.
3456 */
3457 if (zone->zone_pgdat == last_pgdat)
3458 continue;
3459
0608f43d
AM
3460 /*
3461 * This steals pages from memory cgroups over softlimit
3462 * and returns the number of reclaimed pages and
3463 * scanned pages. This works for global memory pressure
3464 * and balancing, not for a memcg's limit.
3465 */
3466 nr_soft_scanned = 0;
ef8f2327 3467 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3468 sc->order, sc->gfp_mask,
3469 &nr_soft_scanned);
3470 sc->nr_reclaimed += nr_soft_reclaimed;
3471 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3472 /* need some check for avoid more shrink_zone() */
1cfb419b 3473 }
408d8544 3474
1b4e3f26
MG
3475 if (!first_pgdat)
3476 first_pgdat = zone->zone_pgdat;
3477
79dafcdc
MG
3478 /* See comment about same check for global reclaim above */
3479 if (zone->zone_pgdat == last_pgdat)
3480 continue;
3481 last_pgdat = zone->zone_pgdat;
970a39a3 3482 shrink_node(zone->zone_pgdat, sc);
1da177e4 3483 }
e0c23279 3484
80082938
MG
3485 if (first_pgdat)
3486 consider_reclaim_throttle(first_pgdat, sc);
1b4e3f26 3487
619d0d76
WY
3488 /*
3489 * Restore to original mask to avoid the impact on the caller if we
3490 * promoted it to __GFP_HIGHMEM.
3491 */
3492 sc->gfp_mask = orig_mask;
1da177e4 3493}
4f98a2fe 3494
b910718a 3495static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3496{
b910718a
JW
3497 struct lruvec *target_lruvec;
3498 unsigned long refaults;
2a2e4885 3499
b910718a 3500 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3501 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3502 target_lruvec->refaults[0] = refaults;
3503 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3504 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3505}
3506
1da177e4
LT
3507/*
3508 * This is the main entry point to direct page reclaim.
3509 *
3510 * If a full scan of the inactive list fails to free enough memory then we
3511 * are "out of memory" and something needs to be killed.
3512 *
3513 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3514 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3515 * caller can't do much about. We kick the writeback threads and take explicit
3516 * naps in the hope that some of these pages can be written. But if the
3517 * allocating task holds filesystem locks which prevent writeout this might not
3518 * work, and the allocation attempt will fail.
a41f24ea
NA
3519 *
3520 * returns: 0, if no pages reclaimed
3521 * else, the number of pages reclaimed
1da177e4 3522 */
dac1d27b 3523static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3524 struct scan_control *sc)
1da177e4 3525{
241994ed 3526 int initial_priority = sc->priority;
2a2e4885
JW
3527 pg_data_t *last_pgdat;
3528 struct zoneref *z;
3529 struct zone *zone;
241994ed 3530retry:
873b4771
KK
3531 delayacct_freepages_start();
3532
b5ead35e 3533 if (!cgroup_reclaim(sc))
7cc30fcf 3534 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3535
9e3b2f8c 3536 do {
70ddf637
AV
3537 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3538 sc->priority);
66e1707b 3539 sc->nr_scanned = 0;
0a0337e0 3540 shrink_zones(zonelist, sc);
c6a8a8c5 3541
bb21c7ce 3542 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3543 break;
3544
3545 if (sc->compaction_ready)
3546 break;
1da177e4 3547
0e50ce3b
MK
3548 /*
3549 * If we're getting trouble reclaiming, start doing
3550 * writepage even in laptop mode.
3551 */
3552 if (sc->priority < DEF_PRIORITY - 2)
3553 sc->may_writepage = 1;
0b06496a 3554 } while (--sc->priority >= 0);
bb21c7ce 3555
2a2e4885
JW
3556 last_pgdat = NULL;
3557 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3558 sc->nodemask) {
3559 if (zone->zone_pgdat == last_pgdat)
3560 continue;
3561 last_pgdat = zone->zone_pgdat;
1b05117d 3562
2a2e4885 3563 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3564
3565 if (cgroup_reclaim(sc)) {
3566 struct lruvec *lruvec;
3567
3568 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3569 zone->zone_pgdat);
3570 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3571 }
2a2e4885
JW
3572 }
3573
873b4771
KK
3574 delayacct_freepages_end();
3575
bb21c7ce
KM
3576 if (sc->nr_reclaimed)
3577 return sc->nr_reclaimed;
3578
0cee34fd 3579 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3580 if (sc->compaction_ready)
7335084d
MG
3581 return 1;
3582
b91ac374
JW
3583 /*
3584 * We make inactive:active ratio decisions based on the node's
3585 * composition of memory, but a restrictive reclaim_idx or a
3586 * memory.low cgroup setting can exempt large amounts of
3587 * memory from reclaim. Neither of which are very common, so
3588 * instead of doing costly eligibility calculations of the
3589 * entire cgroup subtree up front, we assume the estimates are
3590 * good, and retry with forcible deactivation if that fails.
3591 */
3592 if (sc->skipped_deactivate) {
3593 sc->priority = initial_priority;
3594 sc->force_deactivate = 1;
3595 sc->skipped_deactivate = 0;
3596 goto retry;
3597 }
3598
241994ed 3599 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3600 if (sc->memcg_low_skipped) {
241994ed 3601 sc->priority = initial_priority;
b91ac374 3602 sc->force_deactivate = 0;
d6622f63
YX
3603 sc->memcg_low_reclaim = 1;
3604 sc->memcg_low_skipped = 0;
241994ed
JW
3605 goto retry;
3606 }
3607
bb21c7ce 3608 return 0;
1da177e4
LT
3609}
3610
c73322d0 3611static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3612{
3613 struct zone *zone;
3614 unsigned long pfmemalloc_reserve = 0;
3615 unsigned long free_pages = 0;
3616 int i;
3617 bool wmark_ok;
3618
c73322d0
JW
3619 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3620 return true;
3621
5515061d
MG
3622 for (i = 0; i <= ZONE_NORMAL; i++) {
3623 zone = &pgdat->node_zones[i];
d450abd8
JW
3624 if (!managed_zone(zone))
3625 continue;
3626
3627 if (!zone_reclaimable_pages(zone))
675becce
MG
3628 continue;
3629
5515061d
MG
3630 pfmemalloc_reserve += min_wmark_pages(zone);
3631 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3632 }
3633
675becce
MG
3634 /* If there are no reserves (unexpected config) then do not throttle */
3635 if (!pfmemalloc_reserve)
3636 return true;
3637
5515061d
MG
3638 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3639
3640 /* kswapd must be awake if processes are being throttled */
3641 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3642 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3643 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3644
5515061d
MG
3645 wake_up_interruptible(&pgdat->kswapd_wait);
3646 }
3647
3648 return wmark_ok;
3649}
3650
3651/*
3652 * Throttle direct reclaimers if backing storage is backed by the network
3653 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3654 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3655 * when the low watermark is reached.
3656 *
3657 * Returns true if a fatal signal was delivered during throttling. If this
3658 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3659 */
50694c28 3660static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3661 nodemask_t *nodemask)
3662{
675becce 3663 struct zoneref *z;
5515061d 3664 struct zone *zone;
675becce 3665 pg_data_t *pgdat = NULL;
5515061d
MG
3666
3667 /*
3668 * Kernel threads should not be throttled as they may be indirectly
3669 * responsible for cleaning pages necessary for reclaim to make forward
3670 * progress. kjournald for example may enter direct reclaim while
3671 * committing a transaction where throttling it could forcing other
3672 * processes to block on log_wait_commit().
3673 */
3674 if (current->flags & PF_KTHREAD)
50694c28
MG
3675 goto out;
3676
3677 /*
3678 * If a fatal signal is pending, this process should not throttle.
3679 * It should return quickly so it can exit and free its memory
3680 */
3681 if (fatal_signal_pending(current))
3682 goto out;
5515061d 3683
675becce
MG
3684 /*
3685 * Check if the pfmemalloc reserves are ok by finding the first node
3686 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3687 * GFP_KERNEL will be required for allocating network buffers when
3688 * swapping over the network so ZONE_HIGHMEM is unusable.
3689 *
3690 * Throttling is based on the first usable node and throttled processes
3691 * wait on a queue until kswapd makes progress and wakes them. There
3692 * is an affinity then between processes waking up and where reclaim
3693 * progress has been made assuming the process wakes on the same node.
3694 * More importantly, processes running on remote nodes will not compete
3695 * for remote pfmemalloc reserves and processes on different nodes
3696 * should make reasonable progress.
3697 */
3698 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3699 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3700 if (zone_idx(zone) > ZONE_NORMAL)
3701 continue;
3702
3703 /* Throttle based on the first usable node */
3704 pgdat = zone->zone_pgdat;
c73322d0 3705 if (allow_direct_reclaim(pgdat))
675becce
MG
3706 goto out;
3707 break;
3708 }
3709
3710 /* If no zone was usable by the allocation flags then do not throttle */
3711 if (!pgdat)
50694c28 3712 goto out;
5515061d 3713
68243e76
MG
3714 /* Account for the throttling */
3715 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3716
5515061d
MG
3717 /*
3718 * If the caller cannot enter the filesystem, it's possible that it
3719 * is due to the caller holding an FS lock or performing a journal
3720 * transaction in the case of a filesystem like ext[3|4]. In this case,
3721 * it is not safe to block on pfmemalloc_wait as kswapd could be
3722 * blocked waiting on the same lock. Instead, throttle for up to a
3723 * second before continuing.
3724 */
2e786d9e 3725 if (!(gfp_mask & __GFP_FS))
5515061d 3726 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3727 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
3728 else
3729 /* Throttle until kswapd wakes the process */
3730 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3731 allow_direct_reclaim(pgdat));
50694c28 3732
50694c28
MG
3733 if (fatal_signal_pending(current))
3734 return true;
3735
3736out:
3737 return false;
5515061d
MG
3738}
3739
dac1d27b 3740unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3741 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3742{
33906bc5 3743 unsigned long nr_reclaimed;
66e1707b 3744 struct scan_control sc = {
ee814fe2 3745 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3746 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3747 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3748 .order = order,
3749 .nodemask = nodemask,
3750 .priority = DEF_PRIORITY,
66e1707b 3751 .may_writepage = !laptop_mode,
a6dc60f8 3752 .may_unmap = 1,
2e2e4259 3753 .may_swap = 1,
66e1707b
BS
3754 };
3755
bb451fdf
GT
3756 /*
3757 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3758 * Confirm they are large enough for max values.
3759 */
3760 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3761 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3762 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3763
5515061d 3764 /*
50694c28
MG
3765 * Do not enter reclaim if fatal signal was delivered while throttled.
3766 * 1 is returned so that the page allocator does not OOM kill at this
3767 * point.
5515061d 3768 */
f2f43e56 3769 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3770 return 1;
3771
1732d2b0 3772 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3773 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3774
3115cd91 3775 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3776
3777 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3778 set_task_reclaim_state(current, NULL);
33906bc5
MG
3779
3780 return nr_reclaimed;
66e1707b
BS
3781}
3782
c255a458 3783#ifdef CONFIG_MEMCG
66e1707b 3784
d2e5fb92 3785/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3786unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3787 gfp_t gfp_mask, bool noswap,
ef8f2327 3788 pg_data_t *pgdat,
0ae5e89c 3789 unsigned long *nr_scanned)
4e416953 3790{
afaf07a6 3791 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3792 struct scan_control sc = {
b8f5c566 3793 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3794 .target_mem_cgroup = memcg,
4e416953
BS
3795 .may_writepage = !laptop_mode,
3796 .may_unmap = 1,
b2e18757 3797 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3798 .may_swap = !noswap,
4e416953 3799 };
0ae5e89c 3800
d2e5fb92
MH
3801 WARN_ON_ONCE(!current->reclaim_state);
3802
4e416953
BS
3803 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3804 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3805
9e3b2f8c 3806 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3807 sc.gfp_mask);
bdce6d9e 3808
4e416953
BS
3809 /*
3810 * NOTE: Although we can get the priority field, using it
3811 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3812 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3813 * will pick up pages from other mem cgroup's as well. We hack
3814 * the priority and make it zero.
3815 */
afaf07a6 3816 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3817
3818 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3819
0ae5e89c 3820 *nr_scanned = sc.nr_scanned;
0308f7cf 3821
4e416953
BS
3822 return sc.nr_reclaimed;
3823}
3824
72835c86 3825unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3826 unsigned long nr_pages,
a7885eb8 3827 gfp_t gfp_mask,
b70a2a21 3828 bool may_swap)
66e1707b 3829{
bdce6d9e 3830 unsigned long nr_reclaimed;
499118e9 3831 unsigned int noreclaim_flag;
66e1707b 3832 struct scan_control sc = {
b70a2a21 3833 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3834 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3835 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3836 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3837 .target_mem_cgroup = memcg,
3838 .priority = DEF_PRIORITY,
3839 .may_writepage = !laptop_mode,
3840 .may_unmap = 1,
b70a2a21 3841 .may_swap = may_swap,
a09ed5e0 3842 };
889976db 3843 /*
fa40d1ee
SB
3844 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3845 * equal pressure on all the nodes. This is based on the assumption that
3846 * the reclaim does not bail out early.
889976db 3847 */
fa40d1ee 3848 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3849
fa40d1ee 3850 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3851 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3852 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3853
3115cd91 3854 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3855
499118e9 3856 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3857 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3858 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3859
3860 return nr_reclaimed;
66e1707b
BS
3861}
3862#endif
3863
1d82de61 3864static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3865 struct scan_control *sc)
f16015fb 3866{
b95a2f2d 3867 struct mem_cgroup *memcg;
b91ac374 3868 struct lruvec *lruvec;
f16015fb 3869
2f368a9f 3870 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
3871 return;
3872
b91ac374
JW
3873 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3874 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3875 return;
3876
b95a2f2d
JW
3877 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3878 do {
b91ac374
JW
3879 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3880 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3881 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3882 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3883 } while (memcg);
f16015fb
JW
3884}
3885
97a225e6 3886static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3887{
3888 int i;
3889 struct zone *zone;
3890
3891 /*
3892 * Check for watermark boosts top-down as the higher zones
3893 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3894 * should not be checked at the same time as reclaim would
1c30844d
MG
3895 * start prematurely when there is no boosting and a lower
3896 * zone is balanced.
3897 */
97a225e6 3898 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3899 zone = pgdat->node_zones + i;
3900 if (!managed_zone(zone))
3901 continue;
3902
3903 if (zone->watermark_boost)
3904 return true;
3905 }
3906
3907 return false;
3908}
3909
e716f2eb
MG
3910/*
3911 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3912 * and highest_zoneidx
e716f2eb 3913 */
97a225e6 3914static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3915{
e716f2eb
MG
3916 int i;
3917 unsigned long mark = -1;
3918 struct zone *zone;
60cefed4 3919
1c30844d
MG
3920 /*
3921 * Check watermarks bottom-up as lower zones are more likely to
3922 * meet watermarks.
3923 */
97a225e6 3924 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3925 zone = pgdat->node_zones + i;
6256c6b4 3926
e716f2eb
MG
3927 if (!managed_zone(zone))
3928 continue;
3929
c574bbe9
HY
3930 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3931 mark = wmark_pages(zone, WMARK_PROMO);
3932 else
3933 mark = high_wmark_pages(zone);
97a225e6 3934 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3935 return true;
3936 }
3937
3938 /*
36c26128 3939 * If a node has no managed zone within highest_zoneidx, it does not
e716f2eb
MG
3940 * need balancing by definition. This can happen if a zone-restricted
3941 * allocation tries to wake a remote kswapd.
3942 */
3943 if (mark == -1)
3944 return true;
3945
3946 return false;
60cefed4
JW
3947}
3948
631b6e08
MG
3949/* Clear pgdat state for congested, dirty or under writeback. */
3950static void clear_pgdat_congested(pg_data_t *pgdat)
3951{
1b05117d
JW
3952 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3953
3954 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3955 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3956 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3957}
3958
5515061d
MG
3959/*
3960 * Prepare kswapd for sleeping. This verifies that there are no processes
3961 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3962 *
3963 * Returns true if kswapd is ready to sleep
3964 */
97a225e6
JK
3965static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3966 int highest_zoneidx)
f50de2d3 3967{
5515061d 3968 /*
9e5e3661 3969 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3970 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3971 * race between when kswapd checks the watermarks and a process gets
3972 * throttled. There is also a potential race if processes get
3973 * throttled, kswapd wakes, a large process exits thereby balancing the
3974 * zones, which causes kswapd to exit balance_pgdat() before reaching
3975 * the wake up checks. If kswapd is going to sleep, no process should
3976 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3977 * the wake up is premature, processes will wake kswapd and get
3978 * throttled again. The difference from wake ups in balance_pgdat() is
3979 * that here we are under prepare_to_wait().
5515061d 3980 */
9e5e3661
VB
3981 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3982 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3983
c73322d0
JW
3984 /* Hopeless node, leave it to direct reclaim */
3985 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3986 return true;
3987
97a225e6 3988 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3989 clear_pgdat_congested(pgdat);
3990 return true;
1d82de61
MG
3991 }
3992
333b0a45 3993 return false;
f50de2d3
MG
3994}
3995
75485363 3996/*
1d82de61
MG
3997 * kswapd shrinks a node of pages that are at or below the highest usable
3998 * zone that is currently unbalanced.
b8e83b94
MG
3999 *
4000 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
4001 * reclaim or if the lack of progress was due to pages under writeback.
4002 * This is used to determine if the scanning priority needs to be raised.
75485363 4003 */
1d82de61 4004static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 4005 struct scan_control *sc)
75485363 4006{
1d82de61
MG
4007 struct zone *zone;
4008 int z;
75485363 4009
1d82de61
MG
4010 /* Reclaim a number of pages proportional to the number of zones */
4011 sc->nr_to_reclaim = 0;
970a39a3 4012 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 4013 zone = pgdat->node_zones + z;
6aa303de 4014 if (!managed_zone(zone))
1d82de61 4015 continue;
7c954f6d 4016
1d82de61
MG
4017 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4018 }
7c954f6d
MG
4019
4020 /*
1d82de61
MG
4021 * Historically care was taken to put equal pressure on all zones but
4022 * now pressure is applied based on node LRU order.
7c954f6d 4023 */
970a39a3 4024 shrink_node(pgdat, sc);
283aba9f 4025
7c954f6d 4026 /*
1d82de61
MG
4027 * Fragmentation may mean that the system cannot be rebalanced for
4028 * high-order allocations. If twice the allocation size has been
4029 * reclaimed then recheck watermarks only at order-0 to prevent
4030 * excessive reclaim. Assume that a process requested a high-order
4031 * can direct reclaim/compact.
7c954f6d 4032 */
9861a62c 4033 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 4034 sc->order = 0;
7c954f6d 4035
b8e83b94 4036 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
4037}
4038
c49c2c47
MG
4039/* Page allocator PCP high watermark is lowered if reclaim is active. */
4040static inline void
4041update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4042{
4043 int i;
4044 struct zone *zone;
4045
4046 for (i = 0; i <= highest_zoneidx; i++) {
4047 zone = pgdat->node_zones + i;
4048
4049 if (!managed_zone(zone))
4050 continue;
4051
4052 if (active)
4053 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4054 else
4055 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4056 }
4057}
4058
4059static inline void
4060set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4061{
4062 update_reclaim_active(pgdat, highest_zoneidx, true);
4063}
4064
4065static inline void
4066clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4067{
4068 update_reclaim_active(pgdat, highest_zoneidx, false);
4069}
4070
1da177e4 4071/*
1d82de61
MG
4072 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4073 * that are eligible for use by the caller until at least one zone is
4074 * balanced.
1da177e4 4075 *
1d82de61 4076 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
4077 *
4078 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 4079 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 4080 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
4081 * or lower is eligible for reclaim until at least one usable zone is
4082 * balanced.
1da177e4 4083 */
97a225e6 4084static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 4085{
1da177e4 4086 int i;
0608f43d
AM
4087 unsigned long nr_soft_reclaimed;
4088 unsigned long nr_soft_scanned;
eb414681 4089 unsigned long pflags;
1c30844d
MG
4090 unsigned long nr_boost_reclaim;
4091 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4092 bool boosted;
1d82de61 4093 struct zone *zone;
179e9639
AM
4094 struct scan_control sc = {
4095 .gfp_mask = GFP_KERNEL,
ee814fe2 4096 .order = order,
a6dc60f8 4097 .may_unmap = 1,
179e9639 4098 };
93781325 4099
1732d2b0 4100 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 4101 psi_memstall_enter(&pflags);
4f3eaf45 4102 __fs_reclaim_acquire(_THIS_IP_);
93781325 4103
f8891e5e 4104 count_vm_event(PAGEOUTRUN);
1da177e4 4105
1c30844d
MG
4106 /*
4107 * Account for the reclaim boost. Note that the zone boost is left in
4108 * place so that parallel allocations that are near the watermark will
4109 * stall or direct reclaim until kswapd is finished.
4110 */
4111 nr_boost_reclaim = 0;
97a225e6 4112 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4113 zone = pgdat->node_zones + i;
4114 if (!managed_zone(zone))
4115 continue;
4116
4117 nr_boost_reclaim += zone->watermark_boost;
4118 zone_boosts[i] = zone->watermark_boost;
4119 }
4120 boosted = nr_boost_reclaim;
4121
4122restart:
c49c2c47 4123 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 4124 sc.priority = DEF_PRIORITY;
9e3b2f8c 4125 do {
c73322d0 4126 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 4127 bool raise_priority = true;
1c30844d 4128 bool balanced;
93781325 4129 bool ret;
b8e83b94 4130
97a225e6 4131 sc.reclaim_idx = highest_zoneidx;
1da177e4 4132
86c79f6b 4133 /*
84c7a777
MG
4134 * If the number of buffer_heads exceeds the maximum allowed
4135 * then consider reclaiming from all zones. This has a dual
4136 * purpose -- on 64-bit systems it is expected that
4137 * buffer_heads are stripped during active rotation. On 32-bit
4138 * systems, highmem pages can pin lowmem memory and shrinking
4139 * buffers can relieve lowmem pressure. Reclaim may still not
4140 * go ahead if all eligible zones for the original allocation
4141 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
4142 */
4143 if (buffer_heads_over_limit) {
4144 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4145 zone = pgdat->node_zones + i;
6aa303de 4146 if (!managed_zone(zone))
86c79f6b 4147 continue;
cc715d99 4148
970a39a3 4149 sc.reclaim_idx = i;
e1dbeda6 4150 break;
1da177e4 4151 }
1da177e4 4152 }
dafcb73e 4153
86c79f6b 4154 /*
1c30844d
MG
4155 * If the pgdat is imbalanced then ignore boosting and preserve
4156 * the watermarks for a later time and restart. Note that the
4157 * zone watermarks will be still reset at the end of balancing
4158 * on the grounds that the normal reclaim should be enough to
4159 * re-evaluate if boosting is required when kswapd next wakes.
4160 */
97a225e6 4161 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
4162 if (!balanced && nr_boost_reclaim) {
4163 nr_boost_reclaim = 0;
4164 goto restart;
4165 }
4166
4167 /*
4168 * If boosting is not active then only reclaim if there are no
4169 * eligible zones. Note that sc.reclaim_idx is not used as
4170 * buffer_heads_over_limit may have adjusted it.
86c79f6b 4171 */
1c30844d 4172 if (!nr_boost_reclaim && balanced)
e716f2eb 4173 goto out;
e1dbeda6 4174
1c30844d
MG
4175 /* Limit the priority of boosting to avoid reclaim writeback */
4176 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4177 raise_priority = false;
4178
4179 /*
4180 * Do not writeback or swap pages for boosted reclaim. The
4181 * intent is to relieve pressure not issue sub-optimal IO
4182 * from reclaim context. If no pages are reclaimed, the
4183 * reclaim will be aborted.
4184 */
4185 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4186 sc.may_swap = !nr_boost_reclaim;
1c30844d 4187
1d82de61
MG
4188 /*
4189 * Do some background aging of the anon list, to give
4190 * pages a chance to be referenced before reclaiming. All
4191 * pages are rotated regardless of classzone as this is
4192 * about consistent aging.
4193 */
ef8f2327 4194 age_active_anon(pgdat, &sc);
1d82de61 4195
b7ea3c41
MG
4196 /*
4197 * If we're getting trouble reclaiming, start doing writepage
4198 * even in laptop mode.
4199 */
047d72c3 4200 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
4201 sc.may_writepage = 1;
4202
1d82de61
MG
4203 /* Call soft limit reclaim before calling shrink_node. */
4204 sc.nr_scanned = 0;
4205 nr_soft_scanned = 0;
ef8f2327 4206 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
4207 sc.gfp_mask, &nr_soft_scanned);
4208 sc.nr_reclaimed += nr_soft_reclaimed;
4209
1da177e4 4210 /*
1d82de61
MG
4211 * There should be no need to raise the scanning priority if
4212 * enough pages are already being scanned that that high
4213 * watermark would be met at 100% efficiency.
1da177e4 4214 */
970a39a3 4215 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 4216 raise_priority = false;
5515061d
MG
4217
4218 /*
4219 * If the low watermark is met there is no need for processes
4220 * to be throttled on pfmemalloc_wait as they should not be
4221 * able to safely make forward progress. Wake them
4222 */
4223 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 4224 allow_direct_reclaim(pgdat))
cfc51155 4225 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 4226
b8e83b94 4227 /* Check if kswapd should be suspending */
4f3eaf45 4228 __fs_reclaim_release(_THIS_IP_);
93781325 4229 ret = try_to_freeze();
4f3eaf45 4230 __fs_reclaim_acquire(_THIS_IP_);
93781325 4231 if (ret || kthread_should_stop())
b8e83b94 4232 break;
8357376d 4233
73ce02e9 4234 /*
b8e83b94
MG
4235 * Raise priority if scanning rate is too low or there was no
4236 * progress in reclaiming pages
73ce02e9 4237 */
c73322d0 4238 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
4239 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4240
4241 /*
4242 * If reclaim made no progress for a boost, stop reclaim as
4243 * IO cannot be queued and it could be an infinite loop in
4244 * extreme circumstances.
4245 */
4246 if (nr_boost_reclaim && !nr_reclaimed)
4247 break;
4248
c73322d0 4249 if (raise_priority || !nr_reclaimed)
b8e83b94 4250 sc.priority--;
1d82de61 4251 } while (sc.priority >= 1);
1da177e4 4252
c73322d0
JW
4253 if (!sc.nr_reclaimed)
4254 pgdat->kswapd_failures++;
4255
b8e83b94 4256out:
c49c2c47
MG
4257 clear_reclaim_active(pgdat, highest_zoneidx);
4258
1c30844d
MG
4259 /* If reclaim was boosted, account for the reclaim done in this pass */
4260 if (boosted) {
4261 unsigned long flags;
4262
97a225e6 4263 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4264 if (!zone_boosts[i])
4265 continue;
4266
4267 /* Increments are under the zone lock */
4268 zone = pgdat->node_zones + i;
4269 spin_lock_irqsave(&zone->lock, flags);
4270 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4271 spin_unlock_irqrestore(&zone->lock, flags);
4272 }
4273
4274 /*
4275 * As there is now likely space, wakeup kcompact to defragment
4276 * pageblocks.
4277 */
97a225e6 4278 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
4279 }
4280
2a2e4885 4281 snapshot_refaults(NULL, pgdat);
4f3eaf45 4282 __fs_reclaim_release(_THIS_IP_);
eb414681 4283 psi_memstall_leave(&pflags);
1732d2b0 4284 set_task_reclaim_state(current, NULL);
e5ca8071 4285
0abdee2b 4286 /*
1d82de61
MG
4287 * Return the order kswapd stopped reclaiming at as
4288 * prepare_kswapd_sleep() takes it into account. If another caller
4289 * entered the allocator slow path while kswapd was awake, order will
4290 * remain at the higher level.
0abdee2b 4291 */
1d82de61 4292 return sc.order;
1da177e4
LT
4293}
4294
e716f2eb 4295/*
97a225e6
JK
4296 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4297 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4298 * not a valid index then either kswapd runs for first time or kswapd couldn't
4299 * sleep after previous reclaim attempt (node is still unbalanced). In that
4300 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 4301 */
97a225e6
JK
4302static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4303 enum zone_type prev_highest_zoneidx)
e716f2eb 4304{
97a225e6 4305 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4306
97a225e6 4307 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
4308}
4309
38087d9b 4310static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 4311 unsigned int highest_zoneidx)
f0bc0a60
KM
4312{
4313 long remaining = 0;
4314 DEFINE_WAIT(wait);
4315
4316 if (freezing(current) || kthread_should_stop())
4317 return;
4318
4319 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4320
333b0a45
SG
4321 /*
4322 * Try to sleep for a short interval. Note that kcompactd will only be
4323 * woken if it is possible to sleep for a short interval. This is
4324 * deliberate on the assumption that if reclaim cannot keep an
4325 * eligible zone balanced that it's also unlikely that compaction will
4326 * succeed.
4327 */
97a225e6 4328 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
4329 /*
4330 * Compaction records what page blocks it recently failed to
4331 * isolate pages from and skips them in the future scanning.
4332 * When kswapd is going to sleep, it is reasonable to assume
4333 * that pages and compaction may succeed so reset the cache.
4334 */
4335 reset_isolation_suitable(pgdat);
4336
4337 /*
4338 * We have freed the memory, now we should compact it to make
4339 * allocation of the requested order possible.
4340 */
97a225e6 4341 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 4342
f0bc0a60 4343 remaining = schedule_timeout(HZ/10);
38087d9b
MG
4344
4345 /*
97a225e6 4346 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
4347 * order. The values will either be from a wakeup request or
4348 * the previous request that slept prematurely.
4349 */
4350 if (remaining) {
97a225e6
JK
4351 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4352 kswapd_highest_zoneidx(pgdat,
4353 highest_zoneidx));
5644e1fb
QC
4354
4355 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4356 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
4357 }
4358
f0bc0a60
KM
4359 finish_wait(&pgdat->kswapd_wait, &wait);
4360 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4361 }
4362
4363 /*
4364 * After a short sleep, check if it was a premature sleep. If not, then
4365 * go fully to sleep until explicitly woken up.
4366 */
d9f21d42 4367 if (!remaining &&
97a225e6 4368 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
4369 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4370
4371 /*
4372 * vmstat counters are not perfectly accurate and the estimated
4373 * value for counters such as NR_FREE_PAGES can deviate from the
4374 * true value by nr_online_cpus * threshold. To avoid the zone
4375 * watermarks being breached while under pressure, we reduce the
4376 * per-cpu vmstat threshold while kswapd is awake and restore
4377 * them before going back to sleep.
4378 */
4379 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
4380
4381 if (!kthread_should_stop())
4382 schedule();
4383
f0bc0a60
KM
4384 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4385 } else {
4386 if (remaining)
4387 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4388 else
4389 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4390 }
4391 finish_wait(&pgdat->kswapd_wait, &wait);
4392}
4393
1da177e4
LT
4394/*
4395 * The background pageout daemon, started as a kernel thread
4f98a2fe 4396 * from the init process.
1da177e4
LT
4397 *
4398 * This basically trickles out pages so that we have _some_
4399 * free memory available even if there is no other activity
4400 * that frees anything up. This is needed for things like routing
4401 * etc, where we otherwise might have all activity going on in
4402 * asynchronous contexts that cannot page things out.
4403 *
4404 * If there are applications that are active memory-allocators
4405 * (most normal use), this basically shouldn't matter.
4406 */
4407static int kswapd(void *p)
4408{
e716f2eb 4409 unsigned int alloc_order, reclaim_order;
97a225e6 4410 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 4411 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 4412 struct task_struct *tsk = current;
a70f7302 4413 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 4414
174596a0 4415 if (!cpumask_empty(cpumask))
c5f59f08 4416 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
4417
4418 /*
4419 * Tell the memory management that we're a "memory allocator",
4420 * and that if we need more memory we should get access to it
4421 * regardless (see "__alloc_pages()"). "kswapd" should
4422 * never get caught in the normal page freeing logic.
4423 *
4424 * (Kswapd normally doesn't need memory anyway, but sometimes
4425 * you need a small amount of memory in order to be able to
4426 * page out something else, and this flag essentially protects
4427 * us from recursively trying to free more memory as we're
4428 * trying to free the first piece of memory in the first place).
4429 */
b698f0a1 4430 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
83144186 4431 set_freezable();
1da177e4 4432
5644e1fb 4433 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4434 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
8cd7c588 4435 atomic_set(&pgdat->nr_writeback_throttled, 0);
1da177e4 4436 for ( ; ; ) {
6f6313d4 4437 bool ret;
3e1d1d28 4438
5644e1fb 4439 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4440 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4441 highest_zoneidx);
e716f2eb 4442
38087d9b
MG
4443kswapd_try_sleep:
4444 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4445 highest_zoneidx);
215ddd66 4446
97a225e6 4447 /* Read the new order and highest_zoneidx */
2b47a24c 4448 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4449 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4450 highest_zoneidx);
5644e1fb 4451 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4452 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4453
8fe23e05
DR
4454 ret = try_to_freeze();
4455 if (kthread_should_stop())
4456 break;
4457
4458 /*
4459 * We can speed up thawing tasks if we don't call balance_pgdat
4460 * after returning from the refrigerator
4461 */
38087d9b
MG
4462 if (ret)
4463 continue;
4464
4465 /*
4466 * Reclaim begins at the requested order but if a high-order
4467 * reclaim fails then kswapd falls back to reclaiming for
4468 * order-0. If that happens, kswapd will consider sleeping
4469 * for the order it finished reclaiming at (reclaim_order)
4470 * but kcompactd is woken to compact for the original
4471 * request (alloc_order).
4472 */
97a225e6 4473 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4474 alloc_order);
97a225e6
JK
4475 reclaim_order = balance_pgdat(pgdat, alloc_order,
4476 highest_zoneidx);
38087d9b
MG
4477 if (reclaim_order < alloc_order)
4478 goto kswapd_try_sleep;
1da177e4 4479 }
b0a8cc58 4480
b698f0a1 4481 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
71abdc15 4482
1da177e4
LT
4483 return 0;
4484}
4485
4486/*
5ecd9d40
DR
4487 * A zone is low on free memory or too fragmented for high-order memory. If
4488 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4489 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4490 * has failed or is not needed, still wake up kcompactd if only compaction is
4491 * needed.
1da177e4 4492 */
5ecd9d40 4493void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4494 enum zone_type highest_zoneidx)
1da177e4
LT
4495{
4496 pg_data_t *pgdat;
5644e1fb 4497 enum zone_type curr_idx;
1da177e4 4498
6aa303de 4499 if (!managed_zone(zone))
1da177e4
LT
4500 return;
4501
5ecd9d40 4502 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4503 return;
5644e1fb 4504
88f5acf8 4505 pgdat = zone->zone_pgdat;
97a225e6 4506 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4507
97a225e6
JK
4508 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4509 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4510
4511 if (READ_ONCE(pgdat->kswapd_order) < order)
4512 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4513
8d0986e2 4514 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4515 return;
e1a55637 4516
5ecd9d40
DR
4517 /* Hopeless node, leave it to direct reclaim if possible */
4518 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4519 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4520 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4521 /*
4522 * There may be plenty of free memory available, but it's too
4523 * fragmented for high-order allocations. Wake up kcompactd
4524 * and rely on compaction_suitable() to determine if it's
4525 * needed. If it fails, it will defer subsequent attempts to
4526 * ratelimit its work.
4527 */
4528 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4529 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4530 return;
5ecd9d40 4531 }
88f5acf8 4532
97a225e6 4533 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4534 gfp_flags);
8d0986e2 4535 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4536}
4537
c6f37f12 4538#ifdef CONFIG_HIBERNATION
1da177e4 4539/*
7b51755c 4540 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4541 * freed pages.
4542 *
4543 * Rather than trying to age LRUs the aim is to preserve the overall
4544 * LRU order by reclaiming preferentially
4545 * inactive > active > active referenced > active mapped
1da177e4 4546 */
7b51755c 4547unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4548{
d6277db4 4549 struct scan_control sc = {
ee814fe2 4550 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4551 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4552 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4553 .priority = DEF_PRIORITY,
d6277db4 4554 .may_writepage = 1,
ee814fe2
JW
4555 .may_unmap = 1,
4556 .may_swap = 1,
7b51755c 4557 .hibernation_mode = 1,
1da177e4 4558 };
a09ed5e0 4559 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4560 unsigned long nr_reclaimed;
499118e9 4561 unsigned int noreclaim_flag;
1da177e4 4562
d92a8cfc 4563 fs_reclaim_acquire(sc.gfp_mask);
93781325 4564 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4565 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4566
3115cd91 4567 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4568
1732d2b0 4569 set_task_reclaim_state(current, NULL);
499118e9 4570 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4571 fs_reclaim_release(sc.gfp_mask);
d6277db4 4572
7b51755c 4573 return nr_reclaimed;
1da177e4 4574}
c6f37f12 4575#endif /* CONFIG_HIBERNATION */
1da177e4 4576
3218ae14
YG
4577/*
4578 * This kswapd start function will be called by init and node-hot-add.
3218ae14 4579 */
b87c517a 4580void kswapd_run(int nid)
3218ae14
YG
4581{
4582 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14
YG
4583
4584 if (pgdat->kswapd)
b87c517a 4585 return;
3218ae14
YG
4586
4587 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4588 if (IS_ERR(pgdat->kswapd)) {
4589 /* failure at boot is fatal */
c6202adf 4590 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9 4591 pr_err("Failed to start kswapd on node %d\n", nid);
d72515b8 4592 pgdat->kswapd = NULL;
3218ae14 4593 }
3218ae14
YG
4594}
4595
8fe23e05 4596/*
d8adde17 4597 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4598 * hold mem_hotplug_begin/end().
8fe23e05
DR
4599 */
4600void kswapd_stop(int nid)
4601{
4602 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4603
d8adde17 4604 if (kswapd) {
8fe23e05 4605 kthread_stop(kswapd);
d8adde17
JL
4606 NODE_DATA(nid)->kswapd = NULL;
4607 }
8fe23e05
DR
4608}
4609
1da177e4
LT
4610static int __init kswapd_init(void)
4611{
6b700b5b 4612 int nid;
69e05944 4613
1da177e4 4614 swap_setup();
48fb2e24 4615 for_each_node_state(nid, N_MEMORY)
3218ae14 4616 kswapd_run(nid);
1da177e4
LT
4617 return 0;
4618}
4619
4620module_init(kswapd_init)
9eeff239
CL
4621
4622#ifdef CONFIG_NUMA
4623/*
a5f5f91d 4624 * Node reclaim mode
9eeff239 4625 *
a5f5f91d 4626 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4627 * the watermarks.
9eeff239 4628 */
a5f5f91d 4629int node_reclaim_mode __read_mostly;
9eeff239 4630
a92f7126 4631/*
a5f5f91d 4632 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4633 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4634 * a zone.
4635 */
a5f5f91d 4636#define NODE_RECLAIM_PRIORITY 4
a92f7126 4637
9614634f 4638/*
a5f5f91d 4639 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4640 * occur.
4641 */
4642int sysctl_min_unmapped_ratio = 1;
4643
0ff38490
CL
4644/*
4645 * If the number of slab pages in a zone grows beyond this percentage then
4646 * slab reclaim needs to occur.
4647 */
4648int sysctl_min_slab_ratio = 5;
4649
11fb9989 4650static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4651{
11fb9989
MG
4652 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4653 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4654 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4655
4656 /*
4657 * It's possible for there to be more file mapped pages than
4658 * accounted for by the pages on the file LRU lists because
4659 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4660 */
4661 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4662}
4663
4664/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4665static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4666{
d031a157
AM
4667 unsigned long nr_pagecache_reclaimable;
4668 unsigned long delta = 0;
90afa5de
MG
4669
4670 /*
95bbc0c7 4671 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4672 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4673 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4674 * a better estimate
4675 */
a5f5f91d
MG
4676 if (node_reclaim_mode & RECLAIM_UNMAP)
4677 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4678 else
a5f5f91d 4679 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4680
4681 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4682 if (!(node_reclaim_mode & RECLAIM_WRITE))
4683 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4684
4685 /* Watch for any possible underflows due to delta */
4686 if (unlikely(delta > nr_pagecache_reclaimable))
4687 delta = nr_pagecache_reclaimable;
4688
4689 return nr_pagecache_reclaimable - delta;
4690}
4691
9eeff239 4692/*
a5f5f91d 4693 * Try to free up some pages from this node through reclaim.
9eeff239 4694 */
a5f5f91d 4695static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4696{
7fb2d46d 4697 /* Minimum pages needed in order to stay on node */
69e05944 4698 const unsigned long nr_pages = 1 << order;
9eeff239 4699 struct task_struct *p = current;
499118e9 4700 unsigned int noreclaim_flag;
179e9639 4701 struct scan_control sc = {
62b726c1 4702 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4703 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4704 .order = order,
a5f5f91d
MG
4705 .priority = NODE_RECLAIM_PRIORITY,
4706 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4707 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4708 .may_swap = 1,
f2f43e56 4709 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4710 };
57f29762 4711 unsigned long pflags;
9eeff239 4712
132bb8cf
YS
4713 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4714 sc.gfp_mask);
4715
9eeff239 4716 cond_resched();
57f29762 4717 psi_memstall_enter(&pflags);
93781325 4718 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4719 /*
95bbc0c7 4720 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4721 */
499118e9 4722 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4723 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4724
d8ff6fde
ML
4725 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
4726 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
0ff38490 4727 /*
894befec 4728 * Free memory by calling shrink node with increasing
0ff38490
CL
4729 * priorities until we have enough memory freed.
4730 */
0ff38490 4731 do {
970a39a3 4732 shrink_node(pgdat, &sc);
9e3b2f8c 4733 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4734 }
c84db23c 4735
1732d2b0 4736 set_task_reclaim_state(p, NULL);
499118e9 4737 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4738 fs_reclaim_release(sc.gfp_mask);
57f29762 4739 psi_memstall_leave(&pflags);
132bb8cf
YS
4740
4741 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4742
a79311c1 4743 return sc.nr_reclaimed >= nr_pages;
9eeff239 4744}
179e9639 4745
a5f5f91d 4746int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4747{
d773ed6b 4748 int ret;
179e9639
AM
4749
4750 /*
a5f5f91d 4751 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4752 * slab pages if we are over the defined limits.
34aa1330 4753 *
9614634f
CL
4754 * A small portion of unmapped file backed pages is needed for
4755 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4756 * thrown out if the node is overallocated. So we do not reclaim
4757 * if less than a specified percentage of the node is used by
9614634f 4758 * unmapped file backed pages.
179e9639 4759 */
a5f5f91d 4760 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4761 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4762 pgdat->min_slab_pages)
a5f5f91d 4763 return NODE_RECLAIM_FULL;
179e9639
AM
4764
4765 /*
d773ed6b 4766 * Do not scan if the allocation should not be delayed.
179e9639 4767 */
d0164adc 4768 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4769 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4770
4771 /*
a5f5f91d 4772 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4773 * have associated processors. This will favor the local processor
4774 * over remote processors and spread off node memory allocations
4775 * as wide as possible.
4776 */
a5f5f91d
MG
4777 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4778 return NODE_RECLAIM_NOSCAN;
d773ed6b 4779
a5f5f91d
MG
4780 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4781 return NODE_RECLAIM_NOSCAN;
fa5e084e 4782
a5f5f91d
MG
4783 ret = __node_reclaim(pgdat, gfp_mask, order);
4784 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4785
24cf7251
MG
4786 if (!ret)
4787 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4788
d773ed6b 4789 return ret;
179e9639 4790}
9eeff239 4791#endif
894bc310 4792
89e004ea 4793/**
64e3d12f
KHY
4794 * check_move_unevictable_pages - check pages for evictability and move to
4795 * appropriate zone lru list
4796 * @pvec: pagevec with lru pages to check
89e004ea 4797 *
64e3d12f
KHY
4798 * Checks pages for evictability, if an evictable page is in the unevictable
4799 * lru list, moves it to the appropriate evictable lru list. This function
4800 * should be only used for lru pages.
89e004ea 4801 */
64e3d12f 4802void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4803{
6168d0da 4804 struct lruvec *lruvec = NULL;
24513264
HD
4805 int pgscanned = 0;
4806 int pgrescued = 0;
4807 int i;
89e004ea 4808
64e3d12f
KHY
4809 for (i = 0; i < pvec->nr; i++) {
4810 struct page *page = pvec->pages[i];
0de340cb 4811 struct folio *folio = page_folio(page);
8d8869ca
HD
4812 int nr_pages;
4813
4814 if (PageTransTail(page))
4815 continue;
4816
4817 nr_pages = thp_nr_pages(page);
4818 pgscanned += nr_pages;
89e004ea 4819
d25b5bd8
AS
4820 /* block memcg migration during page moving between lru */
4821 if (!TestClearPageLRU(page))
4822 continue;
4823
0de340cb 4824 lruvec = folio_lruvec_relock_irq(folio, lruvec);
d25b5bd8 4825 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4826 del_page_from_lru_list(page, lruvec);
24513264 4827 ClearPageUnevictable(page);
3a9c9788 4828 add_page_to_lru_list(page, lruvec);
8d8869ca 4829 pgrescued += nr_pages;
89e004ea 4830 }
d25b5bd8 4831 SetPageLRU(page);
24513264 4832 }
89e004ea 4833
6168d0da 4834 if (lruvec) {
24513264
HD
4835 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4836 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4837 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4838 } else if (pgscanned) {
4839 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4840 }
89e004ea 4841}
64e3d12f 4842EXPORT_SYMBOL_GPL(check_move_unevictable_pages);