mm: memcg: print statistics from live counters
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
1da177e4 56struct scan_control {
1da177e4
LT
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
a79311c1
RR
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
7b51755c
KM
66 unsigned long hibernation_mode;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4
LT
70
71 int may_writepage;
72
a6dc60f8
JW
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
f1fd1067 75
2e2e4259
KM
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
5ad333eb 79 int order;
66e1707b 80
9e3b2f8c
KK
81 /* Scan (total_size >> priority) pages at once */
82 int priority;
83
f16015fb
JW
84 /*
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
87 */
88 struct mem_cgroup *target_mem_cgroup;
66e1707b 89
327c0e96
KH
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
00f0b825 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
89b5fae5
JW
137static bool global_reclaim(struct scan_control *sc)
138{
f16015fb 139 return !sc->target_mem_cgroup;
89b5fae5 140}
91a45470 141#else
89b5fae5
JW
142static bool global_reclaim(struct scan_control *sc)
143{
144 return true;
145}
91a45470
KH
146#endif
147
074291fe 148static unsigned long get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 149{
c3c787e8 150 if (!mem_cgroup_disabled())
074291fe 151 return mem_cgroup_get_lruvec_size(lruvec, lru);
a3d8e054 152
074291fe 153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
154}
155
1da177e4
LT
156/*
157 * Add a shrinker callback to be called from the vm
158 */
8e1f936b 159void register_shrinker(struct shrinker *shrinker)
1da177e4 160{
83aeeada 161 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
162 down_write(&shrinker_rwsem);
163 list_add_tail(&shrinker->list, &shrinker_list);
164 up_write(&shrinker_rwsem);
1da177e4 165}
8e1f936b 166EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
167
168/*
169 * Remove one
170 */
8e1f936b 171void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
172{
173 down_write(&shrinker_rwsem);
174 list_del(&shrinker->list);
175 up_write(&shrinker_rwsem);
1da177e4 176}
8e1f936b 177EXPORT_SYMBOL(unregister_shrinker);
1da177e4 178
1495f230
YH
179static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 struct shrink_control *sc,
181 unsigned long nr_to_scan)
182{
183 sc->nr_to_scan = nr_to_scan;
184 return (*shrinker->shrink)(shrinker, sc);
185}
186
1da177e4
LT
187#define SHRINK_BATCH 128
188/*
189 * Call the shrink functions to age shrinkable caches
190 *
191 * Here we assume it costs one seek to replace a lru page and that it also
192 * takes a seek to recreate a cache object. With this in mind we age equal
193 * percentages of the lru and ageable caches. This should balance the seeks
194 * generated by these structures.
195 *
183ff22b 196 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
197 * slab to avoid swapping.
198 *
199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
200 *
201 * `lru_pages' represents the number of on-LRU pages in all the zones which
202 * are eligible for the caller's allocation attempt. It is used for balancing
203 * slab reclaim versus page reclaim.
b15e0905 204 *
205 * Returns the number of slab objects which we shrunk.
1da177e4 206 */
a09ed5e0 207unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 208 unsigned long nr_pages_scanned,
a09ed5e0 209 unsigned long lru_pages)
1da177e4
LT
210{
211 struct shrinker *shrinker;
69e05944 212 unsigned long ret = 0;
1da177e4 213
1495f230
YH
214 if (nr_pages_scanned == 0)
215 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 216
f06590bd
MK
217 if (!down_read_trylock(&shrinker_rwsem)) {
218 /* Assume we'll be able to shrink next time */
219 ret = 1;
220 goto out;
221 }
1da177e4
LT
222
223 list_for_each_entry(shrinker, &shrinker_list, list) {
224 unsigned long long delta;
635697c6
KK
225 long total_scan;
226 long max_pass;
09576073 227 int shrink_ret = 0;
acf92b48
DC
228 long nr;
229 long new_nr;
e9299f50
DC
230 long batch_size = shrinker->batch ? shrinker->batch
231 : SHRINK_BATCH;
1da177e4 232
635697c6
KK
233 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
234 if (max_pass <= 0)
235 continue;
236
acf92b48
DC
237 /*
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
241 */
83aeeada 242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
243
244 total_scan = nr;
1495f230 245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 246 delta *= max_pass;
1da177e4 247 do_div(delta, lru_pages + 1);
acf92b48
DC
248 total_scan += delta;
249 if (total_scan < 0) {
88c3bd70
DR
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
251 "delete nr=%ld\n",
acf92b48
DC
252 shrinker->shrink, total_scan);
253 total_scan = max_pass;
ea164d73
AA
254 }
255
3567b59a
DC
256 /*
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
263 * memory.
264 *
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
267 */
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
270
ea164d73
AA
271 /*
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
274 * freeable entries.
275 */
acf92b48
DC
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
1da177e4 278
acf92b48 279 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
282
e9299f50 283 while (total_scan >= batch_size) {
b15e0905 284 int nr_before;
1da177e4 285
1495f230
YH
286 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 288 batch_size);
1da177e4
LT
289 if (shrink_ret == -1)
290 break;
b15e0905 291 if (shrink_ret < nr_before)
292 ret += nr_before - shrink_ret;
e9299f50
DC
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
1da177e4
LT
295
296 cond_resched();
297 }
298
acf92b48
DC
299 /*
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
303 */
83aeeada
KK
304 if (total_scan > 0)
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_in_batch);
307 else
308 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
309
310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
311 }
312 up_read(&shrinker_rwsem);
f06590bd
MK
313out:
314 cond_resched();
b15e0905 315 return ret;
1da177e4
LT
316}
317
1da177e4
LT
318static inline int is_page_cache_freeable(struct page *page)
319{
ceddc3a5
JW
320 /*
321 * A freeable page cache page is referenced only by the caller
322 * that isolated the page, the page cache radix tree and
323 * optional buffer heads at page->private.
324 */
edcf4748 325 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
326}
327
7d3579e8
KM
328static int may_write_to_queue(struct backing_dev_info *bdi,
329 struct scan_control *sc)
1da177e4 330{
930d9152 331 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
332 return 1;
333 if (!bdi_write_congested(bdi))
334 return 1;
335 if (bdi == current->backing_dev_info)
336 return 1;
337 return 0;
338}
339
340/*
341 * We detected a synchronous write error writing a page out. Probably
342 * -ENOSPC. We need to propagate that into the address_space for a subsequent
343 * fsync(), msync() or close().
344 *
345 * The tricky part is that after writepage we cannot touch the mapping: nothing
346 * prevents it from being freed up. But we have a ref on the page and once
347 * that page is locked, the mapping is pinned.
348 *
349 * We're allowed to run sleeping lock_page() here because we know the caller has
350 * __GFP_FS.
351 */
352static void handle_write_error(struct address_space *mapping,
353 struct page *page, int error)
354{
7eaceacc 355 lock_page(page);
3e9f45bd
GC
356 if (page_mapping(page) == mapping)
357 mapping_set_error(mapping, error);
1da177e4
LT
358 unlock_page(page);
359}
360
04e62a29
CL
361/* possible outcome of pageout() */
362typedef enum {
363 /* failed to write page out, page is locked */
364 PAGE_KEEP,
365 /* move page to the active list, page is locked */
366 PAGE_ACTIVATE,
367 /* page has been sent to the disk successfully, page is unlocked */
368 PAGE_SUCCESS,
369 /* page is clean and locked */
370 PAGE_CLEAN,
371} pageout_t;
372
1da177e4 373/*
1742f19f
AM
374 * pageout is called by shrink_page_list() for each dirty page.
375 * Calls ->writepage().
1da177e4 376 */
c661b078 377static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 378 struct scan_control *sc)
1da177e4
LT
379{
380 /*
381 * If the page is dirty, only perform writeback if that write
382 * will be non-blocking. To prevent this allocation from being
383 * stalled by pagecache activity. But note that there may be
384 * stalls if we need to run get_block(). We could test
385 * PagePrivate for that.
386 *
6aceb53b 387 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
388 * this page's queue, we can perform writeback even if that
389 * will block.
390 *
391 * If the page is swapcache, write it back even if that would
392 * block, for some throttling. This happens by accident, because
393 * swap_backing_dev_info is bust: it doesn't reflect the
394 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
395 */
396 if (!is_page_cache_freeable(page))
397 return PAGE_KEEP;
398 if (!mapping) {
399 /*
400 * Some data journaling orphaned pages can have
401 * page->mapping == NULL while being dirty with clean buffers.
402 */
266cf658 403 if (page_has_private(page)) {
1da177e4
LT
404 if (try_to_free_buffers(page)) {
405 ClearPageDirty(page);
d40cee24 406 printk("%s: orphaned page\n", __func__);
1da177e4
LT
407 return PAGE_CLEAN;
408 }
409 }
410 return PAGE_KEEP;
411 }
412 if (mapping->a_ops->writepage == NULL)
413 return PAGE_ACTIVATE;
0e093d99 414 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
415 return PAGE_KEEP;
416
417 if (clear_page_dirty_for_io(page)) {
418 int res;
419 struct writeback_control wbc = {
420 .sync_mode = WB_SYNC_NONE,
421 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
422 .range_start = 0,
423 .range_end = LLONG_MAX,
1da177e4
LT
424 .for_reclaim = 1,
425 };
426
427 SetPageReclaim(page);
428 res = mapping->a_ops->writepage(page, &wbc);
429 if (res < 0)
430 handle_write_error(mapping, page, res);
994fc28c 431 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
432 ClearPageReclaim(page);
433 return PAGE_ACTIVATE;
434 }
c661b078 435
1da177e4
LT
436 if (!PageWriteback(page)) {
437 /* synchronous write or broken a_ops? */
438 ClearPageReclaim(page);
439 }
23b9da55 440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 441 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
442 return PAGE_SUCCESS;
443 }
444
445 return PAGE_CLEAN;
446}
447
a649fd92 448/*
e286781d
NP
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
a649fd92 451 */
e286781d 452static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 453{
28e4d965
NP
454 BUG_ON(!PageLocked(page));
455 BUG_ON(mapping != page_mapping(page));
49d2e9cc 456
19fd6231 457 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 458 /*
0fd0e6b0
NP
459 * The non racy check for a busy page.
460 *
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
465 *
466 * get_user_pages(&page);
467 * [user mapping goes away]
468 * write_to(page);
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
471 * put_page(page);
472 * !page_count(page) [good, discard it]
473 *
474 * [oops, our write_to data is lost]
475 *
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
479 *
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 482 */
e286781d 483 if (!page_freeze_refs(page, 2))
49d2e9cc 484 goto cannot_free;
e286781d
NP
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page))) {
487 page_unfreeze_refs(page, 2);
49d2e9cc 488 goto cannot_free;
e286781d 489 }
49d2e9cc
CL
490
491 if (PageSwapCache(page)) {
492 swp_entry_t swap = { .val = page_private(page) };
493 __delete_from_swap_cache(page);
19fd6231 494 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 495 swapcache_free(swap, page);
e286781d 496 } else {
6072d13c
LT
497 void (*freepage)(struct page *);
498
499 freepage = mapping->a_ops->freepage;
500
e64a782f 501 __delete_from_page_cache(page);
19fd6231 502 spin_unlock_irq(&mapping->tree_lock);
e767e056 503 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
504
505 if (freepage != NULL)
506 freepage(page);
49d2e9cc
CL
507 }
508
49d2e9cc
CL
509 return 1;
510
511cannot_free:
19fd6231 512 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
513 return 0;
514}
515
e286781d
NP
516/*
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
520 * this page.
521 */
522int remove_mapping(struct address_space *mapping, struct page *page)
523{
524 if (__remove_mapping(mapping, page)) {
525 /*
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
528 * atomic operation.
529 */
530 page_unfreeze_refs(page, 1);
531 return 1;
532 }
533 return 0;
534}
535
894bc310
LS
536/**
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
539 *
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
542 *
543 * lru_lock must not be held, interrupts must be enabled.
544 */
894bc310
LS
545void putback_lru_page(struct page *page)
546{
547 int lru;
548 int active = !!TestClearPageActive(page);
bbfd28ee 549 int was_unevictable = PageUnevictable(page);
894bc310
LS
550
551 VM_BUG_ON(PageLRU(page));
552
553redo:
554 ClearPageUnevictable(page);
555
556 if (page_evictable(page, NULL)) {
557 /*
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
562 */
401a8e1c 563 lru = active + page_lru_base_type(page);
894bc310
LS
564 lru_cache_add_lru(page, lru);
565 } else {
566 /*
567 * Put unevictable pages directly on zone's unevictable
568 * list.
569 */
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
6a7b9548 572 /*
21ee9f39
MK
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
24513264 576 * isolation/check_move_unevictable_pages,
21ee9f39 577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
578 * the page back to the evictable list.
579 *
21ee9f39 580 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
581 */
582 smp_mb();
894bc310 583 }
894bc310
LS
584
585 /*
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
589 */
590 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
591 if (!isolate_lru_page(page)) {
592 put_page(page);
593 goto redo;
594 }
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
598 */
599 }
600
bbfd28ee
LS
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
605
894bc310
LS
606 put_page(page); /* drop ref from isolate */
607}
608
dfc8d636
JW
609enum page_references {
610 PAGEREF_RECLAIM,
611 PAGEREF_RECLAIM_CLEAN,
64574746 612 PAGEREF_KEEP,
dfc8d636
JW
613 PAGEREF_ACTIVATE,
614};
615
616static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
618{
64574746 619 int referenced_ptes, referenced_page;
dfc8d636 620 unsigned long vm_flags;
dfc8d636 621
c3ac9a8a
JW
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
623 &vm_flags);
64574746 624 referenced_page = TestClearPageReferenced(page);
dfc8d636 625
dfc8d636
JW
626 /*
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
629 */
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
632
64574746 633 if (referenced_ptes) {
e4898273 634 if (PageSwapBacked(page))
64574746
JW
635 return PAGEREF_ACTIVATE;
636 /*
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
640 * than once.
641 *
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
645 *
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
648 * quickly recovered.
649 */
650 SetPageReferenced(page);
651
34dbc67a 652 if (referenced_page || referenced_ptes > 1)
64574746
JW
653 return PAGEREF_ACTIVATE;
654
c909e993
KK
655 /*
656 * Activate file-backed executable pages after first usage.
657 */
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
660
64574746
JW
661 return PAGEREF_KEEP;
662 }
dfc8d636
JW
663
664 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 665 if (referenced_page && !PageSwapBacked(page))
64574746
JW
666 return PAGEREF_RECLAIM_CLEAN;
667
668 return PAGEREF_RECLAIM;
dfc8d636
JW
669}
670
1da177e4 671/*
1742f19f 672 * shrink_page_list() returns the number of reclaimed pages
1da177e4 673 */
1742f19f 674static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 675 struct zone *zone,
f84f6e2b 676 struct scan_control *sc,
92df3a72
MG
677 unsigned long *ret_nr_dirty,
678 unsigned long *ret_nr_writeback)
1da177e4
LT
679{
680 LIST_HEAD(ret_pages);
abe4c3b5 681 LIST_HEAD(free_pages);
1da177e4 682 int pgactivate = 0;
0e093d99
MG
683 unsigned long nr_dirty = 0;
684 unsigned long nr_congested = 0;
05ff5137 685 unsigned long nr_reclaimed = 0;
92df3a72 686 unsigned long nr_writeback = 0;
1da177e4
LT
687
688 cond_resched();
689
1da177e4 690 while (!list_empty(page_list)) {
dfc8d636 691 enum page_references references;
1da177e4
LT
692 struct address_space *mapping;
693 struct page *page;
694 int may_enter_fs;
1da177e4
LT
695
696 cond_resched();
697
698 page = lru_to_page(page_list);
699 list_del(&page->lru);
700
529ae9aa 701 if (!trylock_page(page))
1da177e4
LT
702 goto keep;
703
725d704e 704 VM_BUG_ON(PageActive(page));
6a18adb3 705 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
706
707 sc->nr_scanned++;
80e43426 708
b291f000
NP
709 if (unlikely(!page_evictable(page, NULL)))
710 goto cull_mlocked;
894bc310 711
a6dc60f8 712 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
713 goto keep_locked;
714
1da177e4
LT
715 /* Double the slab pressure for mapped and swapcache pages */
716 if (page_mapped(page) || PageSwapCache(page))
717 sc->nr_scanned++;
718
c661b078
AW
719 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
720 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
721
722 if (PageWriteback(page)) {
92df3a72 723 nr_writeback++;
41ac1999
MG
724 unlock_page(page);
725 goto keep;
c661b078 726 }
1da177e4 727
6a18adb3 728 references = page_check_references(page, sc);
dfc8d636
JW
729 switch (references) {
730 case PAGEREF_ACTIVATE:
1da177e4 731 goto activate_locked;
64574746
JW
732 case PAGEREF_KEEP:
733 goto keep_locked;
dfc8d636
JW
734 case PAGEREF_RECLAIM:
735 case PAGEREF_RECLAIM_CLEAN:
736 ; /* try to reclaim the page below */
737 }
1da177e4 738
1da177e4
LT
739 /*
740 * Anonymous process memory has backing store?
741 * Try to allocate it some swap space here.
742 */
b291f000 743 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
744 if (!(sc->gfp_mask & __GFP_IO))
745 goto keep_locked;
ac47b003 746 if (!add_to_swap(page))
1da177e4 747 goto activate_locked;
63eb6b93 748 may_enter_fs = 1;
b291f000 749 }
1da177e4
LT
750
751 mapping = page_mapping(page);
1da177e4
LT
752
753 /*
754 * The page is mapped into the page tables of one or more
755 * processes. Try to unmap it here.
756 */
757 if (page_mapped(page) && mapping) {
14fa31b8 758 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
759 case SWAP_FAIL:
760 goto activate_locked;
761 case SWAP_AGAIN:
762 goto keep_locked;
b291f000
NP
763 case SWAP_MLOCK:
764 goto cull_mlocked;
1da177e4
LT
765 case SWAP_SUCCESS:
766 ; /* try to free the page below */
767 }
768 }
769
770 if (PageDirty(page)) {
0e093d99
MG
771 nr_dirty++;
772
ee72886d
MG
773 /*
774 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
775 * avoid risk of stack overflow but do not writeback
776 * unless under significant pressure.
ee72886d 777 */
f84f6e2b 778 if (page_is_file_cache(page) &&
9e3b2f8c
KK
779 (!current_is_kswapd() ||
780 sc->priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
781 /*
782 * Immediately reclaim when written back.
783 * Similar in principal to deactivate_page()
784 * except we already have the page isolated
785 * and know it's dirty
786 */
787 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
788 SetPageReclaim(page);
789
ee72886d
MG
790 goto keep_locked;
791 }
792
dfc8d636 793 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 794 goto keep_locked;
4dd4b920 795 if (!may_enter_fs)
1da177e4 796 goto keep_locked;
52a8363e 797 if (!sc->may_writepage)
1da177e4
LT
798 goto keep_locked;
799
800 /* Page is dirty, try to write it out here */
7d3579e8 801 switch (pageout(page, mapping, sc)) {
1da177e4 802 case PAGE_KEEP:
0e093d99 803 nr_congested++;
1da177e4
LT
804 goto keep_locked;
805 case PAGE_ACTIVATE:
806 goto activate_locked;
807 case PAGE_SUCCESS:
7d3579e8 808 if (PageWriteback(page))
41ac1999 809 goto keep;
7d3579e8 810 if (PageDirty(page))
1da177e4 811 goto keep;
7d3579e8 812
1da177e4
LT
813 /*
814 * A synchronous write - probably a ramdisk. Go
815 * ahead and try to reclaim the page.
816 */
529ae9aa 817 if (!trylock_page(page))
1da177e4
LT
818 goto keep;
819 if (PageDirty(page) || PageWriteback(page))
820 goto keep_locked;
821 mapping = page_mapping(page);
822 case PAGE_CLEAN:
823 ; /* try to free the page below */
824 }
825 }
826
827 /*
828 * If the page has buffers, try to free the buffer mappings
829 * associated with this page. If we succeed we try to free
830 * the page as well.
831 *
832 * We do this even if the page is PageDirty().
833 * try_to_release_page() does not perform I/O, but it is
834 * possible for a page to have PageDirty set, but it is actually
835 * clean (all its buffers are clean). This happens if the
836 * buffers were written out directly, with submit_bh(). ext3
894bc310 837 * will do this, as well as the blockdev mapping.
1da177e4
LT
838 * try_to_release_page() will discover that cleanness and will
839 * drop the buffers and mark the page clean - it can be freed.
840 *
841 * Rarely, pages can have buffers and no ->mapping. These are
842 * the pages which were not successfully invalidated in
843 * truncate_complete_page(). We try to drop those buffers here
844 * and if that worked, and the page is no longer mapped into
845 * process address space (page_count == 1) it can be freed.
846 * Otherwise, leave the page on the LRU so it is swappable.
847 */
266cf658 848 if (page_has_private(page)) {
1da177e4
LT
849 if (!try_to_release_page(page, sc->gfp_mask))
850 goto activate_locked;
e286781d
NP
851 if (!mapping && page_count(page) == 1) {
852 unlock_page(page);
853 if (put_page_testzero(page))
854 goto free_it;
855 else {
856 /*
857 * rare race with speculative reference.
858 * the speculative reference will free
859 * this page shortly, so we may
860 * increment nr_reclaimed here (and
861 * leave it off the LRU).
862 */
863 nr_reclaimed++;
864 continue;
865 }
866 }
1da177e4
LT
867 }
868
e286781d 869 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 870 goto keep_locked;
1da177e4 871
a978d6f5
NP
872 /*
873 * At this point, we have no other references and there is
874 * no way to pick any more up (removed from LRU, removed
875 * from pagecache). Can use non-atomic bitops now (and
876 * we obviously don't have to worry about waking up a process
877 * waiting on the page lock, because there are no references.
878 */
879 __clear_page_locked(page);
e286781d 880free_it:
05ff5137 881 nr_reclaimed++;
abe4c3b5
MG
882
883 /*
884 * Is there need to periodically free_page_list? It would
885 * appear not as the counts should be low
886 */
887 list_add(&page->lru, &free_pages);
1da177e4
LT
888 continue;
889
b291f000 890cull_mlocked:
63d6c5ad
HD
891 if (PageSwapCache(page))
892 try_to_free_swap(page);
b291f000
NP
893 unlock_page(page);
894 putback_lru_page(page);
895 continue;
896
1da177e4 897activate_locked:
68a22394
RR
898 /* Not a candidate for swapping, so reclaim swap space. */
899 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 900 try_to_free_swap(page);
894bc310 901 VM_BUG_ON(PageActive(page));
1da177e4
LT
902 SetPageActive(page);
903 pgactivate++;
904keep_locked:
905 unlock_page(page);
906keep:
907 list_add(&page->lru, &ret_pages);
b291f000 908 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 909 }
abe4c3b5 910
0e093d99
MG
911 /*
912 * Tag a zone as congested if all the dirty pages encountered were
913 * backed by a congested BDI. In this case, reclaimers should just
914 * back off and wait for congestion to clear because further reclaim
915 * will encounter the same problem
916 */
89b5fae5 917 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
6a18adb3 918 zone_set_flag(zone, ZONE_CONGESTED);
0e093d99 919
cc59850e 920 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 921
1da177e4 922 list_splice(&ret_pages, page_list);
f8891e5e 923 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
924 *ret_nr_dirty += nr_dirty;
925 *ret_nr_writeback += nr_writeback;
05ff5137 926 return nr_reclaimed;
1da177e4
LT
927}
928
5ad333eb
AW
929/*
930 * Attempt to remove the specified page from its LRU. Only take this page
931 * if it is of the appropriate PageActive status. Pages which are being
932 * freed elsewhere are also ignored.
933 *
934 * page: page to consider
935 * mode: one of the LRU isolation modes defined above
936 *
937 * returns 0 on success, -ve errno on failure.
938 */
f3fd4a61 939int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
940{
941 int ret = -EINVAL;
942
943 /* Only take pages on the LRU. */
944 if (!PageLRU(page))
945 return ret;
946
c53919ad 947 /* Do not give back unevictable pages for compaction */
894bc310
LS
948 if (PageUnevictable(page))
949 return ret;
950
5ad333eb 951 ret = -EBUSY;
08e552c6 952
c8244935
MG
953 /*
954 * To minimise LRU disruption, the caller can indicate that it only
955 * wants to isolate pages it will be able to operate on without
956 * blocking - clean pages for the most part.
957 *
958 * ISOLATE_CLEAN means that only clean pages should be isolated. This
959 * is used by reclaim when it is cannot write to backing storage
960 *
961 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
962 * that it is possible to migrate without blocking
963 */
964 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
965 /* All the caller can do on PageWriteback is block */
966 if (PageWriteback(page))
967 return ret;
968
969 if (PageDirty(page)) {
970 struct address_space *mapping;
971
972 /* ISOLATE_CLEAN means only clean pages */
973 if (mode & ISOLATE_CLEAN)
974 return ret;
975
976 /*
977 * Only pages without mappings or that have a
978 * ->migratepage callback are possible to migrate
979 * without blocking
980 */
981 mapping = page_mapping(page);
982 if (mapping && !mapping->a_ops->migratepage)
983 return ret;
984 }
985 }
39deaf85 986
f80c0673
MK
987 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
988 return ret;
989
5ad333eb
AW
990 if (likely(get_page_unless_zero(page))) {
991 /*
992 * Be careful not to clear PageLRU until after we're
993 * sure the page is not being freed elsewhere -- the
994 * page release code relies on it.
995 */
996 ClearPageLRU(page);
997 ret = 0;
998 }
999
1000 return ret;
1001}
1002
1da177e4
LT
1003/*
1004 * zone->lru_lock is heavily contended. Some of the functions that
1005 * shrink the lists perform better by taking out a batch of pages
1006 * and working on them outside the LRU lock.
1007 *
1008 * For pagecache intensive workloads, this function is the hottest
1009 * spot in the kernel (apart from copy_*_user functions).
1010 *
1011 * Appropriate locks must be held before calling this function.
1012 *
1013 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1014 * @lruvec: The LRU vector to pull pages from.
1da177e4 1015 * @dst: The temp list to put pages on to.
f626012d 1016 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1017 * @sc: The scan_control struct for this reclaim session
5ad333eb 1018 * @mode: One of the LRU isolation modes
3cb99451 1019 * @lru: LRU list id for isolating
1da177e4
LT
1020 *
1021 * returns how many pages were moved onto *@dst.
1022 */
69e05944 1023static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1024 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1025 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1026 isolate_mode_t mode, enum lru_list lru)
1da177e4 1027{
f626012d 1028 struct list_head *src;
69e05944 1029 unsigned long nr_taken = 0;
c9b02d97 1030 unsigned long scan;
3cb99451 1031 int file = is_file_lru(lru);
f626012d 1032
f626012d 1033 src = &lruvec->lists[lru];
1da177e4 1034
c9b02d97 1035 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1036 struct page *page;
5ad333eb 1037
1da177e4
LT
1038 page = lru_to_page(src);
1039 prefetchw_prev_lru_page(page, src, flags);
1040
725d704e 1041 VM_BUG_ON(!PageLRU(page));
8d438f96 1042
f3fd4a61 1043 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1044 case 0:
bbf808ed 1045 mem_cgroup_lru_del_list(page, lru);
5ad333eb 1046 list_move(&page->lru, dst);
2c888cfb 1047 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1048 break;
1049
1050 case -EBUSY:
1051 /* else it is being freed elsewhere */
1052 list_move(&page->lru, src);
1053 continue;
46453a6e 1054
5ad333eb
AW
1055 default:
1056 BUG();
1057 }
1da177e4
LT
1058 }
1059
f626012d 1060 *nr_scanned = scan;
a8a94d15 1061
fe2c2a10 1062 trace_mm_vmscan_lru_isolate(sc->order,
a8a94d15
MG
1063 nr_to_scan, scan,
1064 nr_taken,
ea4d349f 1065 mode, file);
1da177e4
LT
1066 return nr_taken;
1067}
1068
62695a84
NP
1069/**
1070 * isolate_lru_page - tries to isolate a page from its LRU list
1071 * @page: page to isolate from its LRU list
1072 *
1073 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1074 * vmstat statistic corresponding to whatever LRU list the page was on.
1075 *
1076 * Returns 0 if the page was removed from an LRU list.
1077 * Returns -EBUSY if the page was not on an LRU list.
1078 *
1079 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1080 * the active list, it will have PageActive set. If it was found on
1081 * the unevictable list, it will have the PageUnevictable bit set. That flag
1082 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1083 *
1084 * The vmstat statistic corresponding to the list on which the page was
1085 * found will be decremented.
1086 *
1087 * Restrictions:
1088 * (1) Must be called with an elevated refcount on the page. This is a
1089 * fundamentnal difference from isolate_lru_pages (which is called
1090 * without a stable reference).
1091 * (2) the lru_lock must not be held.
1092 * (3) interrupts must be enabled.
1093 */
1094int isolate_lru_page(struct page *page)
1095{
1096 int ret = -EBUSY;
1097
0c917313
KK
1098 VM_BUG_ON(!page_count(page));
1099
62695a84
NP
1100 if (PageLRU(page)) {
1101 struct zone *zone = page_zone(page);
1102
1103 spin_lock_irq(&zone->lru_lock);
0c917313 1104 if (PageLRU(page)) {
894bc310 1105 int lru = page_lru(page);
62695a84 1106 ret = 0;
0c917313 1107 get_page(page);
62695a84 1108 ClearPageLRU(page);
4f98a2fe 1109
4f98a2fe 1110 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1111 }
1112 spin_unlock_irq(&zone->lru_lock);
1113 }
1114 return ret;
1115}
1116
35cd7815
RR
1117/*
1118 * Are there way too many processes in the direct reclaim path already?
1119 */
1120static int too_many_isolated(struct zone *zone, int file,
1121 struct scan_control *sc)
1122{
1123 unsigned long inactive, isolated;
1124
1125 if (current_is_kswapd())
1126 return 0;
1127
89b5fae5 1128 if (!global_reclaim(sc))
35cd7815
RR
1129 return 0;
1130
1131 if (file) {
1132 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1133 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1134 } else {
1135 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1136 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1137 }
1138
1139 return isolated > inactive;
1140}
1141
66635629 1142static noinline_for_stack void
27ac81d8 1143putback_inactive_pages(struct lruvec *lruvec,
3f79768f 1144 struct list_head *page_list)
66635629 1145{
27ac81d8
KK
1146 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1147 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1148 LIST_HEAD(pages_to_free);
66635629 1149
66635629
MG
1150 /*
1151 * Put back any unfreeable pages.
1152 */
66635629 1153 while (!list_empty(page_list)) {
3f79768f 1154 struct page *page = lru_to_page(page_list);
66635629 1155 int lru;
3f79768f 1156
66635629
MG
1157 VM_BUG_ON(PageLRU(page));
1158 list_del(&page->lru);
1159 if (unlikely(!page_evictable(page, NULL))) {
1160 spin_unlock_irq(&zone->lru_lock);
1161 putback_lru_page(page);
1162 spin_lock_irq(&zone->lru_lock);
1163 continue;
1164 }
7a608572 1165 SetPageLRU(page);
66635629 1166 lru = page_lru(page);
7a608572 1167 add_page_to_lru_list(zone, page, lru);
66635629
MG
1168 if (is_active_lru(lru)) {
1169 int file = is_file_lru(lru);
9992af10
RR
1170 int numpages = hpage_nr_pages(page);
1171 reclaim_stat->recent_rotated[file] += numpages;
66635629 1172 }
2bcf8879
HD
1173 if (put_page_testzero(page)) {
1174 __ClearPageLRU(page);
1175 __ClearPageActive(page);
1176 del_page_from_lru_list(zone, page, lru);
1177
1178 if (unlikely(PageCompound(page))) {
1179 spin_unlock_irq(&zone->lru_lock);
1180 (*get_compound_page_dtor(page))(page);
1181 spin_lock_irq(&zone->lru_lock);
1182 } else
1183 list_add(&page->lru, &pages_to_free);
66635629
MG
1184 }
1185 }
66635629 1186
3f79768f
HD
1187 /*
1188 * To save our caller's stack, now use input list for pages to free.
1189 */
1190 list_splice(&pages_to_free, page_list);
66635629
MG
1191}
1192
1da177e4 1193/*
1742f19f
AM
1194 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1195 * of reclaimed pages
1da177e4 1196 */
66635629 1197static noinline_for_stack unsigned long
1a93be0e 1198shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1199 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1200{
1201 LIST_HEAD(page_list);
e247dbce 1202 unsigned long nr_scanned;
05ff5137 1203 unsigned long nr_reclaimed = 0;
e247dbce 1204 unsigned long nr_taken;
92df3a72
MG
1205 unsigned long nr_dirty = 0;
1206 unsigned long nr_writeback = 0;
f3fd4a61 1207 isolate_mode_t isolate_mode = 0;
3cb99451 1208 int file = is_file_lru(lru);
1a93be0e
KK
1209 struct zone *zone = lruvec_zone(lruvec);
1210 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1211
35cd7815 1212 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1213 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1214
1215 /* We are about to die and free our memory. Return now. */
1216 if (fatal_signal_pending(current))
1217 return SWAP_CLUSTER_MAX;
1218 }
1219
1da177e4 1220 lru_add_drain();
f80c0673
MK
1221
1222 if (!sc->may_unmap)
61317289 1223 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1224 if (!sc->may_writepage)
61317289 1225 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1226
1da177e4 1227 spin_lock_irq(&zone->lru_lock);
b35ea17b 1228
5dc35979
KK
1229 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1230 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1231
1232 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1233 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1234
89b5fae5 1235 if (global_reclaim(sc)) {
e247dbce
KM
1236 zone->pages_scanned += nr_scanned;
1237 if (current_is_kswapd())
1238 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1239 nr_scanned);
1240 else
1241 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1242 nr_scanned);
e247dbce 1243 }
d563c050 1244 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1245
d563c050 1246 if (nr_taken == 0)
66635629 1247 return 0;
5ad333eb 1248
6a18adb3 1249 nr_reclaimed = shrink_page_list(&page_list, zone, sc,
92df3a72 1250 &nr_dirty, &nr_writeback);
c661b078 1251
3f79768f
HD
1252 spin_lock_irq(&zone->lru_lock);
1253
95d918fc 1254 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1255
904249aa
YH
1256 if (global_reclaim(sc)) {
1257 if (current_is_kswapd())
1258 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1259 nr_reclaimed);
1260 else
1261 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1262 nr_reclaimed);
1263 }
a74609fa 1264
27ac81d8 1265 putback_inactive_pages(lruvec, &page_list);
3f79768f 1266
95d918fc 1267 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1268
1269 spin_unlock_irq(&zone->lru_lock);
1270
1271 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1272
92df3a72
MG
1273 /*
1274 * If reclaim is isolating dirty pages under writeback, it implies
1275 * that the long-lived page allocation rate is exceeding the page
1276 * laundering rate. Either the global limits are not being effective
1277 * at throttling processes due to the page distribution throughout
1278 * zones or there is heavy usage of a slow backing device. The
1279 * only option is to throttle from reclaim context which is not ideal
1280 * as there is no guarantee the dirtying process is throttled in the
1281 * same way balance_dirty_pages() manages.
1282 *
1283 * This scales the number of dirty pages that must be under writeback
1284 * before throttling depending on priority. It is a simple backoff
1285 * function that has the most effect in the range DEF_PRIORITY to
1286 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1287 * in trouble and reclaim is considered to be in trouble.
1288 *
1289 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1290 * DEF_PRIORITY-1 50% must be PageWriteback
1291 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1292 * ...
1293 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1294 * isolated page is PageWriteback
1295 */
9e3b2f8c
KK
1296 if (nr_writeback && nr_writeback >=
1297 (nr_taken >> (DEF_PRIORITY - sc->priority)))
92df3a72
MG
1298 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1299
e11da5b4
MG
1300 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1301 zone_idx(zone),
1302 nr_scanned, nr_reclaimed,
9e3b2f8c 1303 sc->priority,
23b9da55 1304 trace_shrink_flags(file));
05ff5137 1305 return nr_reclaimed;
1da177e4
LT
1306}
1307
1308/*
1309 * This moves pages from the active list to the inactive list.
1310 *
1311 * We move them the other way if the page is referenced by one or more
1312 * processes, from rmap.
1313 *
1314 * If the pages are mostly unmapped, the processing is fast and it is
1315 * appropriate to hold zone->lru_lock across the whole operation. But if
1316 * the pages are mapped, the processing is slow (page_referenced()) so we
1317 * should drop zone->lru_lock around each page. It's impossible to balance
1318 * this, so instead we remove the pages from the LRU while processing them.
1319 * It is safe to rely on PG_active against the non-LRU pages in here because
1320 * nobody will play with that bit on a non-LRU page.
1321 *
1322 * The downside is that we have to touch page->_count against each page.
1323 * But we had to alter page->flags anyway.
1324 */
1cfb419b 1325
3eb4140f
WF
1326static void move_active_pages_to_lru(struct zone *zone,
1327 struct list_head *list,
2bcf8879 1328 struct list_head *pages_to_free,
3eb4140f
WF
1329 enum lru_list lru)
1330{
1331 unsigned long pgmoved = 0;
3eb4140f
WF
1332 struct page *page;
1333
3eb4140f 1334 while (!list_empty(list)) {
925b7673
JW
1335 struct lruvec *lruvec;
1336
3eb4140f 1337 page = lru_to_page(list);
3eb4140f
WF
1338
1339 VM_BUG_ON(PageLRU(page));
1340 SetPageLRU(page);
1341
925b7673
JW
1342 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1343 list_move(&page->lru, &lruvec->lists[lru]);
2c888cfb 1344 pgmoved += hpage_nr_pages(page);
3eb4140f 1345
2bcf8879
HD
1346 if (put_page_testzero(page)) {
1347 __ClearPageLRU(page);
1348 __ClearPageActive(page);
1349 del_page_from_lru_list(zone, page, lru);
1350
1351 if (unlikely(PageCompound(page))) {
1352 spin_unlock_irq(&zone->lru_lock);
1353 (*get_compound_page_dtor(page))(page);
1354 spin_lock_irq(&zone->lru_lock);
1355 } else
1356 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1357 }
1358 }
1359 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1360 if (!is_active_lru(lru))
1361 __count_vm_events(PGDEACTIVATE, pgmoved);
1362}
1cfb419b 1363
f626012d 1364static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1365 struct lruvec *lruvec,
f16015fb 1366 struct scan_control *sc,
9e3b2f8c 1367 enum lru_list lru)
1da177e4 1368{
44c241f1 1369 unsigned long nr_taken;
f626012d 1370 unsigned long nr_scanned;
6fe6b7e3 1371 unsigned long vm_flags;
1da177e4 1372 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1373 LIST_HEAD(l_active);
b69408e8 1374 LIST_HEAD(l_inactive);
1da177e4 1375 struct page *page;
1a93be0e 1376 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1377 unsigned long nr_rotated = 0;
f3fd4a61 1378 isolate_mode_t isolate_mode = 0;
3cb99451 1379 int file = is_file_lru(lru);
1a93be0e 1380 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1381
1382 lru_add_drain();
f80c0673
MK
1383
1384 if (!sc->may_unmap)
61317289 1385 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1386 if (!sc->may_writepage)
61317289 1387 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1388
1da177e4 1389 spin_lock_irq(&zone->lru_lock);
925b7673 1390
5dc35979
KK
1391 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1392 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1393 if (global_reclaim(sc))
f626012d 1394 zone->pages_scanned += nr_scanned;
89b5fae5 1395
b7c46d15 1396 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1397
f626012d 1398 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1399 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1400 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1401 spin_unlock_irq(&zone->lru_lock);
1402
1da177e4
LT
1403 while (!list_empty(&l_hold)) {
1404 cond_resched();
1405 page = lru_to_page(&l_hold);
1406 list_del(&page->lru);
7e9cd484 1407
894bc310
LS
1408 if (unlikely(!page_evictable(page, NULL))) {
1409 putback_lru_page(page);
1410 continue;
1411 }
1412
cc715d99
MG
1413 if (unlikely(buffer_heads_over_limit)) {
1414 if (page_has_private(page) && trylock_page(page)) {
1415 if (page_has_private(page))
1416 try_to_release_page(page, 0);
1417 unlock_page(page);
1418 }
1419 }
1420
c3ac9a8a
JW
1421 if (page_referenced(page, 0, sc->target_mem_cgroup,
1422 &vm_flags)) {
9992af10 1423 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1424 /*
1425 * Identify referenced, file-backed active pages and
1426 * give them one more trip around the active list. So
1427 * that executable code get better chances to stay in
1428 * memory under moderate memory pressure. Anon pages
1429 * are not likely to be evicted by use-once streaming
1430 * IO, plus JVM can create lots of anon VM_EXEC pages,
1431 * so we ignore them here.
1432 */
41e20983 1433 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1434 list_add(&page->lru, &l_active);
1435 continue;
1436 }
1437 }
7e9cd484 1438
5205e56e 1439 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1440 list_add(&page->lru, &l_inactive);
1441 }
1442
b555749a 1443 /*
8cab4754 1444 * Move pages back to the lru list.
b555749a 1445 */
2a1dc509 1446 spin_lock_irq(&zone->lru_lock);
556adecb 1447 /*
8cab4754
WF
1448 * Count referenced pages from currently used mappings as rotated,
1449 * even though only some of them are actually re-activated. This
1450 * helps balance scan pressure between file and anonymous pages in
1451 * get_scan_ratio.
7e9cd484 1452 */
b7c46d15 1453 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1454
3cb99451
KK
1455 move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1456 move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1457 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1458 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1459
1460 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1461}
1462
74e3f3c3 1463#ifdef CONFIG_SWAP
14797e23 1464static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1465{
1466 unsigned long active, inactive;
1467
1468 active = zone_page_state(zone, NR_ACTIVE_ANON);
1469 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1470
1471 if (inactive * zone->inactive_ratio < active)
1472 return 1;
1473
1474 return 0;
1475}
1476
14797e23
KM
1477/**
1478 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1479 * @lruvec: LRU vector to check
14797e23
KM
1480 *
1481 * Returns true if the zone does not have enough inactive anon pages,
1482 * meaning some active anon pages need to be deactivated.
1483 */
c56d5c7d 1484static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1485{
74e3f3c3
MK
1486 /*
1487 * If we don't have swap space, anonymous page deactivation
1488 * is pointless.
1489 */
1490 if (!total_swap_pages)
1491 return 0;
1492
c3c787e8 1493 if (!mem_cgroup_disabled())
c56d5c7d 1494 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1495
c56d5c7d 1496 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1497}
74e3f3c3 1498#else
c56d5c7d 1499static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1500{
1501 return 0;
1502}
1503#endif
14797e23 1504
56e49d21
RR
1505static int inactive_file_is_low_global(struct zone *zone)
1506{
1507 unsigned long active, inactive;
1508
1509 active = zone_page_state(zone, NR_ACTIVE_FILE);
1510 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1511
1512 return (active > inactive);
1513}
1514
1515/**
1516 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1517 * @lruvec: LRU vector to check
56e49d21
RR
1518 *
1519 * When the system is doing streaming IO, memory pressure here
1520 * ensures that active file pages get deactivated, until more
1521 * than half of the file pages are on the inactive list.
1522 *
1523 * Once we get to that situation, protect the system's working
1524 * set from being evicted by disabling active file page aging.
1525 *
1526 * This uses a different ratio than the anonymous pages, because
1527 * the page cache uses a use-once replacement algorithm.
1528 */
c56d5c7d 1529static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1530{
c3c787e8 1531 if (!mem_cgroup_disabled())
c56d5c7d 1532 return mem_cgroup_inactive_file_is_low(lruvec);
56e49d21 1533
c56d5c7d 1534 return inactive_file_is_low_global(lruvec_zone(lruvec));
56e49d21
RR
1535}
1536
c56d5c7d 1537static int inactive_list_is_low(struct lruvec *lruvec, int file)
b39415b2
RR
1538{
1539 if (file)
c56d5c7d 1540 return inactive_file_is_low(lruvec);
b39415b2 1541 else
c56d5c7d 1542 return inactive_anon_is_low(lruvec);
b39415b2
RR
1543}
1544
4f98a2fe 1545static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1546 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1547{
4f98a2fe
RR
1548 int file = is_file_lru(lru);
1549
b39415b2 1550 if (is_active_lru(lru)) {
c56d5c7d 1551 if (inactive_list_is_low(lruvec, file))
1a93be0e 1552 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1553 return 0;
1554 }
1555
1a93be0e 1556 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1557}
1558
3d58ab5c 1559static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1560{
89b5fae5 1561 if (global_reclaim(sc))
1f4c025b 1562 return vm_swappiness;
3d58ab5c 1563 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1564}
1565
4f98a2fe
RR
1566/*
1567 * Determine how aggressively the anon and file LRU lists should be
1568 * scanned. The relative value of each set of LRU lists is determined
1569 * by looking at the fraction of the pages scanned we did rotate back
1570 * onto the active list instead of evict.
1571 *
76a33fc3 1572 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1573 */
90126375 1574static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1575 unsigned long *nr)
4f98a2fe
RR
1576{
1577 unsigned long anon, file, free;
1578 unsigned long anon_prio, file_prio;
1579 unsigned long ap, fp;
90126375 1580 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
76a33fc3 1581 u64 fraction[2], denominator;
4111304d 1582 enum lru_list lru;
76a33fc3 1583 int noswap = 0;
a4d3e9e7 1584 bool force_scan = false;
90126375 1585 struct zone *zone = lruvec_zone(lruvec);
246e87a9 1586
f11c0ca5
JW
1587 /*
1588 * If the zone or memcg is small, nr[l] can be 0. This
1589 * results in no scanning on this priority and a potential
1590 * priority drop. Global direct reclaim can go to the next
1591 * zone and tends to have no problems. Global kswapd is for
1592 * zone balancing and it needs to scan a minimum amount. When
1593 * reclaiming for a memcg, a priority drop can cause high
1594 * latencies, so it's better to scan a minimum amount there as
1595 * well.
1596 */
90126375 1597 if (current_is_kswapd() && zone->all_unreclaimable)
a4d3e9e7 1598 force_scan = true;
89b5fae5 1599 if (!global_reclaim(sc))
a4d3e9e7 1600 force_scan = true;
76a33fc3
SL
1601
1602 /* If we have no swap space, do not bother scanning anon pages. */
1603 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1604 noswap = 1;
1605 fraction[0] = 0;
1606 fraction[1] = 1;
1607 denominator = 1;
1608 goto out;
1609 }
4f98a2fe 1610
074291fe
KK
1611 anon = get_lruvec_size(lruvec, LRU_ACTIVE_ANON) +
1612 get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
1613 file = get_lruvec_size(lruvec, LRU_ACTIVE_FILE) +
1614 get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1615
89b5fae5 1616 if (global_reclaim(sc)) {
90126375 1617 free = zone_page_state(zone, NR_FREE_PAGES);
eeee9a8c
KM
1618 /* If we have very few page cache pages,
1619 force-scan anon pages. */
90126375 1620 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1621 fraction[0] = 1;
1622 fraction[1] = 0;
1623 denominator = 1;
1624 goto out;
eeee9a8c 1625 }
4f98a2fe
RR
1626 }
1627
58c37f6e
KM
1628 /*
1629 * With swappiness at 100, anonymous and file have the same priority.
1630 * This scanning priority is essentially the inverse of IO cost.
1631 */
3d58ab5c
KK
1632 anon_prio = vmscan_swappiness(sc);
1633 file_prio = 200 - vmscan_swappiness(sc);
58c37f6e 1634
4f98a2fe
RR
1635 /*
1636 * OK, so we have swap space and a fair amount of page cache
1637 * pages. We use the recently rotated / recently scanned
1638 * ratios to determine how valuable each cache is.
1639 *
1640 * Because workloads change over time (and to avoid overflow)
1641 * we keep these statistics as a floating average, which ends
1642 * up weighing recent references more than old ones.
1643 *
1644 * anon in [0], file in [1]
1645 */
90126375 1646 spin_lock_irq(&zone->lru_lock);
6e901571 1647 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1648 reclaim_stat->recent_scanned[0] /= 2;
1649 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1650 }
1651
6e901571 1652 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1653 reclaim_stat->recent_scanned[1] /= 2;
1654 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1655 }
1656
4f98a2fe 1657 /*
00d8089c
RR
1658 * The amount of pressure on anon vs file pages is inversely
1659 * proportional to the fraction of recently scanned pages on
1660 * each list that were recently referenced and in active use.
4f98a2fe 1661 */
fe35004f 1662 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1663 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1664
fe35004f 1665 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1666 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1667 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1668
76a33fc3
SL
1669 fraction[0] = ap;
1670 fraction[1] = fp;
1671 denominator = ap + fp + 1;
1672out:
4111304d
HD
1673 for_each_evictable_lru(lru) {
1674 int file = is_file_lru(lru);
76a33fc3 1675 unsigned long scan;
6e08a369 1676
074291fe 1677 scan = get_lruvec_size(lruvec, lru);
9e3b2f8c
KK
1678 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1679 scan >>= sc->priority;
f11c0ca5
JW
1680 if (!scan && force_scan)
1681 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1682 scan = div64_u64(scan * fraction[file], denominator);
1683 }
4111304d 1684 nr[lru] = scan;
76a33fc3 1685 }
6e08a369 1686}
4f98a2fe 1687
23b9da55 1688/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 1689static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55
MG
1690{
1691 if (COMPACTION_BUILD && sc->order &&
1692 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 1693 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
1694 return true;
1695
1696 return false;
1697}
1698
3e7d3449 1699/*
23b9da55
MG
1700 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1701 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1702 * true if more pages should be reclaimed such that when the page allocator
1703 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1704 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1705 */
90bdcfaf 1706static inline bool should_continue_reclaim(struct lruvec *lruvec,
3e7d3449
MG
1707 unsigned long nr_reclaimed,
1708 unsigned long nr_scanned,
1709 struct scan_control *sc)
1710{
1711 unsigned long pages_for_compaction;
1712 unsigned long inactive_lru_pages;
1713
1714 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 1715 if (!in_reclaim_compaction(sc))
3e7d3449
MG
1716 return false;
1717
2876592f
MG
1718 /* Consider stopping depending on scan and reclaim activity */
1719 if (sc->gfp_mask & __GFP_REPEAT) {
1720 /*
1721 * For __GFP_REPEAT allocations, stop reclaiming if the
1722 * full LRU list has been scanned and we are still failing
1723 * to reclaim pages. This full LRU scan is potentially
1724 * expensive but a __GFP_REPEAT caller really wants to succeed
1725 */
1726 if (!nr_reclaimed && !nr_scanned)
1727 return false;
1728 } else {
1729 /*
1730 * For non-__GFP_REPEAT allocations which can presumably
1731 * fail without consequence, stop if we failed to reclaim
1732 * any pages from the last SWAP_CLUSTER_MAX number of
1733 * pages that were scanned. This will return to the
1734 * caller faster at the risk reclaim/compaction and
1735 * the resulting allocation attempt fails
1736 */
1737 if (!nr_reclaimed)
1738 return false;
1739 }
3e7d3449
MG
1740
1741 /*
1742 * If we have not reclaimed enough pages for compaction and the
1743 * inactive lists are large enough, continue reclaiming
1744 */
1745 pages_for_compaction = (2UL << sc->order);
074291fe 1746 inactive_lru_pages = get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
86cfd3a4 1747 if (nr_swap_pages > 0)
074291fe
KK
1748 inactive_lru_pages += get_lruvec_size(lruvec,
1749 LRU_INACTIVE_ANON);
3e7d3449
MG
1750 if (sc->nr_reclaimed < pages_for_compaction &&
1751 inactive_lru_pages > pages_for_compaction)
1752 return true;
1753
1754 /* If compaction would go ahead or the allocation would succeed, stop */
90bdcfaf 1755 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
3e7d3449
MG
1756 case COMPACT_PARTIAL:
1757 case COMPACT_CONTINUE:
1758 return false;
1759 default:
1760 return true;
1761 }
1762}
1763
1da177e4
LT
1764/*
1765 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1766 */
f9be23d6 1767static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1da177e4 1768{
b69408e8 1769 unsigned long nr[NR_LRU_LISTS];
8695949a 1770 unsigned long nr_to_scan;
4111304d 1771 enum lru_list lru;
f0fdc5e8 1772 unsigned long nr_reclaimed, nr_scanned;
22fba335 1773 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1774 struct blk_plug plug;
e0f79b8f 1775
3e7d3449
MG
1776restart:
1777 nr_reclaimed = 0;
f0fdc5e8 1778 nr_scanned = sc->nr_scanned;
90126375 1779 get_scan_count(lruvec, sc, nr);
1da177e4 1780
3da367c3 1781 blk_start_plug(&plug);
556adecb
RR
1782 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1783 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1784 for_each_evictable_lru(lru) {
1785 if (nr[lru]) {
ece74b2e 1786 nr_to_scan = min_t(unsigned long,
4111304d
HD
1787 nr[lru], SWAP_CLUSTER_MAX);
1788 nr[lru] -= nr_to_scan;
1da177e4 1789
4111304d 1790 nr_reclaimed += shrink_list(lru, nr_to_scan,
1a93be0e 1791 lruvec, sc);
b69408e8 1792 }
1da177e4 1793 }
a79311c1
RR
1794 /*
1795 * On large memory systems, scan >> priority can become
1796 * really large. This is fine for the starting priority;
1797 * we want to put equal scanning pressure on each zone.
1798 * However, if the VM has a harder time of freeing pages,
1799 * with multiple processes reclaiming pages, the total
1800 * freeing target can get unreasonably large.
1801 */
9e3b2f8c
KK
1802 if (nr_reclaimed >= nr_to_reclaim &&
1803 sc->priority < DEF_PRIORITY)
a79311c1 1804 break;
1da177e4 1805 }
3da367c3 1806 blk_finish_plug(&plug);
3e7d3449 1807 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1808
556adecb
RR
1809 /*
1810 * Even if we did not try to evict anon pages at all, we want to
1811 * rebalance the anon lru active/inactive ratio.
1812 */
c56d5c7d 1813 if (inactive_anon_is_low(lruvec))
1a93be0e 1814 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 1815 sc, LRU_ACTIVE_ANON);
556adecb 1816
3e7d3449 1817 /* reclaim/compaction might need reclaim to continue */
90bdcfaf 1818 if (should_continue_reclaim(lruvec, nr_reclaimed,
9e3b2f8c 1819 sc->nr_scanned - nr_scanned, sc))
3e7d3449
MG
1820 goto restart;
1821
232ea4d6 1822 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1823}
1824
9e3b2f8c 1825static void shrink_zone(struct zone *zone, struct scan_control *sc)
f16015fb 1826{
5660048c
JW
1827 struct mem_cgroup *root = sc->target_mem_cgroup;
1828 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 1829 .zone = zone,
9e3b2f8c 1830 .priority = sc->priority,
f16015fb 1831 };
5660048c
JW
1832 struct mem_cgroup *memcg;
1833
5660048c
JW
1834 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1835 do {
f9be23d6
KK
1836 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1837
1838 shrink_lruvec(lruvec, sc);
f16015fb 1839
5660048c
JW
1840 /*
1841 * Limit reclaim has historically picked one memcg and
1842 * scanned it with decreasing priority levels until
1843 * nr_to_reclaim had been reclaimed. This priority
1844 * cycle is thus over after a single memcg.
b95a2f2d
JW
1845 *
1846 * Direct reclaim and kswapd, on the other hand, have
1847 * to scan all memory cgroups to fulfill the overall
1848 * scan target for the zone.
5660048c
JW
1849 */
1850 if (!global_reclaim(sc)) {
1851 mem_cgroup_iter_break(root, memcg);
1852 break;
1853 }
1854 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1855 } while (memcg);
f16015fb
JW
1856}
1857
fe4b1b24
MG
1858/* Returns true if compaction should go ahead for a high-order request */
1859static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1860{
1861 unsigned long balance_gap, watermark;
1862 bool watermark_ok;
1863
1864 /* Do not consider compaction for orders reclaim is meant to satisfy */
1865 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1866 return false;
1867
1868 /*
1869 * Compaction takes time to run and there are potentially other
1870 * callers using the pages just freed. Continue reclaiming until
1871 * there is a buffer of free pages available to give compaction
1872 * a reasonable chance of completing and allocating the page
1873 */
1874 balance_gap = min(low_wmark_pages(zone),
1875 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1876 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1877 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1878 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1879
1880 /*
1881 * If compaction is deferred, reclaim up to a point where
1882 * compaction will have a chance of success when re-enabled
1883 */
aff62249 1884 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
1885 return watermark_ok;
1886
1887 /* If compaction is not ready to start, keep reclaiming */
1888 if (!compaction_suitable(zone, sc->order))
1889 return false;
1890
1891 return watermark_ok;
1892}
1893
1da177e4
LT
1894/*
1895 * This is the direct reclaim path, for page-allocating processes. We only
1896 * try to reclaim pages from zones which will satisfy the caller's allocation
1897 * request.
1898 *
41858966
MG
1899 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1900 * Because:
1da177e4
LT
1901 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1902 * allocation or
41858966
MG
1903 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1904 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1905 * zone defense algorithm.
1da177e4 1906 *
1da177e4
LT
1907 * If a zone is deemed to be full of pinned pages then just give it a light
1908 * scan then give up on it.
e0c23279
MG
1909 *
1910 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 1911 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
1912 * the caller that it should consider retrying the allocation instead of
1913 * further reclaim.
1da177e4 1914 */
9e3b2f8c 1915static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 1916{
dd1a239f 1917 struct zoneref *z;
54a6eb5c 1918 struct zone *zone;
d149e3b2
YH
1919 unsigned long nr_soft_reclaimed;
1920 unsigned long nr_soft_scanned;
0cee34fd 1921 bool aborted_reclaim = false;
1cfb419b 1922
cc715d99
MG
1923 /*
1924 * If the number of buffer_heads in the machine exceeds the maximum
1925 * allowed level, force direct reclaim to scan the highmem zone as
1926 * highmem pages could be pinning lowmem pages storing buffer_heads
1927 */
1928 if (buffer_heads_over_limit)
1929 sc->gfp_mask |= __GFP_HIGHMEM;
1930
d4debc66
MG
1931 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1932 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 1933 if (!populated_zone(zone))
1da177e4 1934 continue;
1cfb419b
KH
1935 /*
1936 * Take care memory controller reclaiming has small influence
1937 * to global LRU.
1938 */
89b5fae5 1939 if (global_reclaim(sc)) {
1cfb419b
KH
1940 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1941 continue;
9e3b2f8c
KK
1942 if (zone->all_unreclaimable &&
1943 sc->priority != DEF_PRIORITY)
1cfb419b 1944 continue; /* Let kswapd poll it */
e0887c19
RR
1945 if (COMPACTION_BUILD) {
1946 /*
e0c23279
MG
1947 * If we already have plenty of memory free for
1948 * compaction in this zone, don't free any more.
1949 * Even though compaction is invoked for any
1950 * non-zero order, only frequent costly order
1951 * reclamation is disruptive enough to become a
c7cfa37b
CA
1952 * noticeable problem, like transparent huge
1953 * page allocations.
e0887c19 1954 */
fe4b1b24 1955 if (compaction_ready(zone, sc)) {
0cee34fd 1956 aborted_reclaim = true;
e0887c19 1957 continue;
e0c23279 1958 }
e0887c19 1959 }
ac34a1a3
KH
1960 /*
1961 * This steals pages from memory cgroups over softlimit
1962 * and returns the number of reclaimed pages and
1963 * scanned pages. This works for global memory pressure
1964 * and balancing, not for a memcg's limit.
1965 */
1966 nr_soft_scanned = 0;
1967 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1968 sc->order, sc->gfp_mask,
1969 &nr_soft_scanned);
1970 sc->nr_reclaimed += nr_soft_reclaimed;
1971 sc->nr_scanned += nr_soft_scanned;
1972 /* need some check for avoid more shrink_zone() */
1cfb419b 1973 }
408d8544 1974
9e3b2f8c 1975 shrink_zone(zone, sc);
1da177e4 1976 }
e0c23279 1977
0cee34fd 1978 return aborted_reclaim;
d1908362
MK
1979}
1980
1981static bool zone_reclaimable(struct zone *zone)
1982{
1983 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
1984}
1985
929bea7c 1986/* All zones in zonelist are unreclaimable? */
d1908362
MK
1987static bool all_unreclaimable(struct zonelist *zonelist,
1988 struct scan_control *sc)
1989{
1990 struct zoneref *z;
1991 struct zone *zone;
d1908362
MK
1992
1993 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1994 gfp_zone(sc->gfp_mask), sc->nodemask) {
1995 if (!populated_zone(zone))
1996 continue;
1997 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1998 continue;
929bea7c
KM
1999 if (!zone->all_unreclaimable)
2000 return false;
d1908362
MK
2001 }
2002
929bea7c 2003 return true;
1da177e4 2004}
4f98a2fe 2005
1da177e4
LT
2006/*
2007 * This is the main entry point to direct page reclaim.
2008 *
2009 * If a full scan of the inactive list fails to free enough memory then we
2010 * are "out of memory" and something needs to be killed.
2011 *
2012 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2013 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2014 * caller can't do much about. We kick the writeback threads and take explicit
2015 * naps in the hope that some of these pages can be written. But if the
2016 * allocating task holds filesystem locks which prevent writeout this might not
2017 * work, and the allocation attempt will fail.
a41f24ea
NA
2018 *
2019 * returns: 0, if no pages reclaimed
2020 * else, the number of pages reclaimed
1da177e4 2021 */
dac1d27b 2022static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2023 struct scan_control *sc,
2024 struct shrink_control *shrink)
1da177e4 2025{
69e05944 2026 unsigned long total_scanned = 0;
1da177e4 2027 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2028 struct zoneref *z;
54a6eb5c 2029 struct zone *zone;
22fba335 2030 unsigned long writeback_threshold;
0cee34fd 2031 bool aborted_reclaim;
1da177e4 2032
873b4771
KK
2033 delayacct_freepages_start();
2034
89b5fae5 2035 if (global_reclaim(sc))
1cfb419b 2036 count_vm_event(ALLOCSTALL);
1da177e4 2037
9e3b2f8c 2038 do {
66e1707b 2039 sc->nr_scanned = 0;
9e3b2f8c 2040 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2041
66e1707b
BS
2042 /*
2043 * Don't shrink slabs when reclaiming memory from
2044 * over limit cgroups
2045 */
89b5fae5 2046 if (global_reclaim(sc)) {
c6a8a8c5 2047 unsigned long lru_pages = 0;
d4debc66
MG
2048 for_each_zone_zonelist(zone, z, zonelist,
2049 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2050 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2051 continue;
2052
2053 lru_pages += zone_reclaimable_pages(zone);
2054 }
2055
1495f230 2056 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2057 if (reclaim_state) {
a79311c1 2058 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2059 reclaim_state->reclaimed_slab = 0;
2060 }
1da177e4 2061 }
66e1707b 2062 total_scanned += sc->nr_scanned;
bb21c7ce 2063 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2064 goto out;
1da177e4
LT
2065
2066 /*
2067 * Try to write back as many pages as we just scanned. This
2068 * tends to cause slow streaming writers to write data to the
2069 * disk smoothly, at the dirtying rate, which is nice. But
2070 * that's undesirable in laptop mode, where we *want* lumpy
2071 * writeout. So in laptop mode, write out the whole world.
2072 */
22fba335
KM
2073 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2074 if (total_scanned > writeback_threshold) {
0e175a18
CW
2075 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2076 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2077 sc->may_writepage = 1;
1da177e4
LT
2078 }
2079
2080 /* Take a nap, wait for some writeback to complete */
7b51755c 2081 if (!sc->hibernation_mode && sc->nr_scanned &&
9e3b2f8c 2082 sc->priority < DEF_PRIORITY - 2) {
0e093d99
MG
2083 struct zone *preferred_zone;
2084
2085 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2086 &cpuset_current_mems_allowed,
2087 &preferred_zone);
0e093d99
MG
2088 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2089 }
9e3b2f8c 2090 } while (--sc->priority >= 0);
bb21c7ce 2091
1da177e4 2092out:
873b4771
KK
2093 delayacct_freepages_end();
2094
bb21c7ce
KM
2095 if (sc->nr_reclaimed)
2096 return sc->nr_reclaimed;
2097
929bea7c
KM
2098 /*
2099 * As hibernation is going on, kswapd is freezed so that it can't mark
2100 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2101 * check.
2102 */
2103 if (oom_killer_disabled)
2104 return 0;
2105
0cee34fd
MG
2106 /* Aborted reclaim to try compaction? don't OOM, then */
2107 if (aborted_reclaim)
7335084d
MG
2108 return 1;
2109
bb21c7ce 2110 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2111 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2112 return 1;
2113
2114 return 0;
1da177e4
LT
2115}
2116
dac1d27b 2117unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2118 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2119{
33906bc5 2120 unsigned long nr_reclaimed;
66e1707b
BS
2121 struct scan_control sc = {
2122 .gfp_mask = gfp_mask,
2123 .may_writepage = !laptop_mode,
22fba335 2124 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2125 .may_unmap = 1,
2e2e4259 2126 .may_swap = 1,
66e1707b 2127 .order = order,
9e3b2f8c 2128 .priority = DEF_PRIORITY,
f16015fb 2129 .target_mem_cgroup = NULL,
327c0e96 2130 .nodemask = nodemask,
66e1707b 2131 };
a09ed5e0
YH
2132 struct shrink_control shrink = {
2133 .gfp_mask = sc.gfp_mask,
2134 };
66e1707b 2135
33906bc5
MG
2136 trace_mm_vmscan_direct_reclaim_begin(order,
2137 sc.may_writepage,
2138 gfp_mask);
2139
a09ed5e0 2140 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2141
2142 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2143
2144 return nr_reclaimed;
66e1707b
BS
2145}
2146
00f0b825 2147#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2148
72835c86 2149unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2150 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2151 struct zone *zone,
2152 unsigned long *nr_scanned)
4e416953
BS
2153{
2154 struct scan_control sc = {
0ae5e89c 2155 .nr_scanned = 0,
b8f5c566 2156 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2157 .may_writepage = !laptop_mode,
2158 .may_unmap = 1,
2159 .may_swap = !noswap,
4e416953 2160 .order = 0,
9e3b2f8c 2161 .priority = 0,
72835c86 2162 .target_mem_cgroup = memcg,
4e416953 2163 };
f9be23d6 2164 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2165
4e416953
BS
2166 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2167 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2168
9e3b2f8c 2169 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2170 sc.may_writepage,
2171 sc.gfp_mask);
2172
4e416953
BS
2173 /*
2174 * NOTE: Although we can get the priority field, using it
2175 * here is not a good idea, since it limits the pages we can scan.
2176 * if we don't reclaim here, the shrink_zone from balance_pgdat
2177 * will pick up pages from other mem cgroup's as well. We hack
2178 * the priority and make it zero.
2179 */
f9be23d6 2180 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2181
2182 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2183
0ae5e89c 2184 *nr_scanned = sc.nr_scanned;
4e416953
BS
2185 return sc.nr_reclaimed;
2186}
2187
72835c86 2188unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2189 gfp_t gfp_mask,
185efc0f 2190 bool noswap)
66e1707b 2191{
4e416953 2192 struct zonelist *zonelist;
bdce6d9e 2193 unsigned long nr_reclaimed;
889976db 2194 int nid;
66e1707b 2195 struct scan_control sc = {
66e1707b 2196 .may_writepage = !laptop_mode,
a6dc60f8 2197 .may_unmap = 1,
2e2e4259 2198 .may_swap = !noswap,
22fba335 2199 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2200 .order = 0,
9e3b2f8c 2201 .priority = DEF_PRIORITY,
72835c86 2202 .target_mem_cgroup = memcg,
327c0e96 2203 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2204 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2205 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2206 };
2207 struct shrink_control shrink = {
2208 .gfp_mask = sc.gfp_mask,
66e1707b 2209 };
66e1707b 2210
889976db
YH
2211 /*
2212 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2213 * take care of from where we get pages. So the node where we start the
2214 * scan does not need to be the current node.
2215 */
72835c86 2216 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2217
2218 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2219
2220 trace_mm_vmscan_memcg_reclaim_begin(0,
2221 sc.may_writepage,
2222 sc.gfp_mask);
2223
a09ed5e0 2224 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2225
2226 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2227
2228 return nr_reclaimed;
66e1707b
BS
2229}
2230#endif
2231
9e3b2f8c 2232static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2233{
b95a2f2d 2234 struct mem_cgroup *memcg;
f16015fb 2235
b95a2f2d
JW
2236 if (!total_swap_pages)
2237 return;
2238
2239 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2240 do {
c56d5c7d 2241 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2242
c56d5c7d 2243 if (inactive_anon_is_low(lruvec))
1a93be0e 2244 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2245 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2246
2247 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2248 } while (memcg);
f16015fb
JW
2249}
2250
1741c877
MG
2251/*
2252 * pgdat_balanced is used when checking if a node is balanced for high-order
2253 * allocations. Only zones that meet watermarks and are in a zone allowed
2254 * by the callers classzone_idx are added to balanced_pages. The total of
2255 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2256 * for the node to be considered balanced. Forcing all zones to be balanced
2257 * for high orders can cause excessive reclaim when there are imbalanced zones.
2258 * The choice of 25% is due to
2259 * o a 16M DMA zone that is balanced will not balance a zone on any
2260 * reasonable sized machine
2261 * o On all other machines, the top zone must be at least a reasonable
25985edc 2262 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2263 * would need to be at least 256M for it to be balance a whole node.
2264 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2265 * to balance a node on its own. These seemed like reasonable ratios.
2266 */
2267static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2268 int classzone_idx)
2269{
2270 unsigned long present_pages = 0;
2271 int i;
2272
2273 for (i = 0; i <= classzone_idx; i++)
2274 present_pages += pgdat->node_zones[i].present_pages;
2275
4746efde
SL
2276 /* A special case here: if zone has no page, we think it's balanced */
2277 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2278}
2279
f50de2d3 2280/* is kswapd sleeping prematurely? */
dc83edd9
MG
2281static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2282 int classzone_idx)
f50de2d3 2283{
bb3ab596 2284 int i;
1741c877
MG
2285 unsigned long balanced = 0;
2286 bool all_zones_ok = true;
f50de2d3
MG
2287
2288 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2289 if (remaining)
dc83edd9 2290 return true;
f50de2d3 2291
0abdee2b 2292 /* Check the watermark levels */
08951e54 2293 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2294 struct zone *zone = pgdat->node_zones + i;
2295
2296 if (!populated_zone(zone))
2297 continue;
2298
355b09c4
MG
2299 /*
2300 * balance_pgdat() skips over all_unreclaimable after
2301 * DEF_PRIORITY. Effectively, it considers them balanced so
2302 * they must be considered balanced here as well if kswapd
2303 * is to sleep
2304 */
2305 if (zone->all_unreclaimable) {
2306 balanced += zone->present_pages;
de3fab39 2307 continue;
355b09c4 2308 }
de3fab39 2309
88f5acf8 2310 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2311 i, 0))
1741c877
MG
2312 all_zones_ok = false;
2313 else
2314 balanced += zone->present_pages;
bb3ab596 2315 }
f50de2d3 2316
1741c877
MG
2317 /*
2318 * For high-order requests, the balanced zones must contain at least
2319 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2320 * must be balanced
2321 */
2322 if (order)
afc7e326 2323 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2324 else
2325 return !all_zones_ok;
f50de2d3
MG
2326}
2327
1da177e4
LT
2328/*
2329 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2330 * they are all at high_wmark_pages(zone).
1da177e4 2331 *
0abdee2b 2332 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2333 *
2334 * There is special handling here for zones which are full of pinned pages.
2335 * This can happen if the pages are all mlocked, or if they are all used by
2336 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2337 * What we do is to detect the case where all pages in the zone have been
2338 * scanned twice and there has been zero successful reclaim. Mark the zone as
2339 * dead and from now on, only perform a short scan. Basically we're polling
2340 * the zone for when the problem goes away.
2341 *
2342 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2343 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2344 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2345 * lower zones regardless of the number of free pages in the lower zones. This
2346 * interoperates with the page allocator fallback scheme to ensure that aging
2347 * of pages is balanced across the zones.
1da177e4 2348 */
99504748 2349static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2350 int *classzone_idx)
1da177e4 2351{
1da177e4 2352 int all_zones_ok;
1741c877 2353 unsigned long balanced;
1da177e4 2354 int i;
99504748 2355 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2356 unsigned long total_scanned;
1da177e4 2357 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2358 unsigned long nr_soft_reclaimed;
2359 unsigned long nr_soft_scanned;
179e9639
AM
2360 struct scan_control sc = {
2361 .gfp_mask = GFP_KERNEL,
a6dc60f8 2362 .may_unmap = 1,
2e2e4259 2363 .may_swap = 1,
22fba335
KM
2364 /*
2365 * kswapd doesn't want to be bailed out while reclaim. because
2366 * we want to put equal scanning pressure on each zone.
2367 */
2368 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2369 .order = order,
f16015fb 2370 .target_mem_cgroup = NULL,
179e9639 2371 };
a09ed5e0
YH
2372 struct shrink_control shrink = {
2373 .gfp_mask = sc.gfp_mask,
2374 };
1da177e4
LT
2375loop_again:
2376 total_scanned = 0;
9e3b2f8c 2377 sc.priority = DEF_PRIORITY;
a79311c1 2378 sc.nr_reclaimed = 0;
c0bbbc73 2379 sc.may_writepage = !laptop_mode;
f8891e5e 2380 count_vm_event(PAGEOUTRUN);
1da177e4 2381
9e3b2f8c 2382 do {
1da177e4 2383 unsigned long lru_pages = 0;
bb3ab596 2384 int has_under_min_watermark_zone = 0;
1da177e4
LT
2385
2386 all_zones_ok = 1;
1741c877 2387 balanced = 0;
1da177e4 2388
d6277db4
RW
2389 /*
2390 * Scan in the highmem->dma direction for the highest
2391 * zone which needs scanning
2392 */
2393 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2394 struct zone *zone = pgdat->node_zones + i;
1da177e4 2395
d6277db4
RW
2396 if (!populated_zone(zone))
2397 continue;
1da177e4 2398
9e3b2f8c
KK
2399 if (zone->all_unreclaimable &&
2400 sc.priority != DEF_PRIORITY)
d6277db4 2401 continue;
1da177e4 2402
556adecb
RR
2403 /*
2404 * Do some background aging of the anon list, to give
2405 * pages a chance to be referenced before reclaiming.
2406 */
9e3b2f8c 2407 age_active_anon(zone, &sc);
556adecb 2408
cc715d99
MG
2409 /*
2410 * If the number of buffer_heads in the machine
2411 * exceeds the maximum allowed level and this node
2412 * has a highmem zone, force kswapd to reclaim from
2413 * it to relieve lowmem pressure.
2414 */
2415 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2416 end_zone = i;
2417 break;
2418 }
2419
88f5acf8 2420 if (!zone_watermark_ok_safe(zone, order,
41858966 2421 high_wmark_pages(zone), 0, 0)) {
d6277db4 2422 end_zone = i;
e1dbeda6 2423 break;
439423f6
SL
2424 } else {
2425 /* If balanced, clear the congested flag */
2426 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2427 }
1da177e4 2428 }
e1dbeda6
AM
2429 if (i < 0)
2430 goto out;
2431
1da177e4
LT
2432 for (i = 0; i <= end_zone; i++) {
2433 struct zone *zone = pgdat->node_zones + i;
2434
adea02a1 2435 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2436 }
2437
2438 /*
2439 * Now scan the zone in the dma->highmem direction, stopping
2440 * at the last zone which needs scanning.
2441 *
2442 * We do this because the page allocator works in the opposite
2443 * direction. This prevents the page allocator from allocating
2444 * pages behind kswapd's direction of progress, which would
2445 * cause too much scanning of the lower zones.
2446 */
2447 for (i = 0; i <= end_zone; i++) {
2448 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2449 int nr_slab, testorder;
8afdcece 2450 unsigned long balance_gap;
1da177e4 2451
f3fe6512 2452 if (!populated_zone(zone))
1da177e4
LT
2453 continue;
2454
9e3b2f8c
KK
2455 if (zone->all_unreclaimable &&
2456 sc.priority != DEF_PRIORITY)
1da177e4
LT
2457 continue;
2458
1da177e4 2459 sc.nr_scanned = 0;
4e416953 2460
0ae5e89c 2461 nr_soft_scanned = 0;
4e416953
BS
2462 /*
2463 * Call soft limit reclaim before calling shrink_zone.
4e416953 2464 */
0ae5e89c
YH
2465 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2466 order, sc.gfp_mask,
2467 &nr_soft_scanned);
2468 sc.nr_reclaimed += nr_soft_reclaimed;
2469 total_scanned += nr_soft_scanned;
00918b6a 2470
32a4330d 2471 /*
8afdcece
MG
2472 * We put equal pressure on every zone, unless
2473 * one zone has way too many pages free
2474 * already. The "too many pages" is defined
2475 * as the high wmark plus a "gap" where the
2476 * gap is either the low watermark or 1%
2477 * of the zone, whichever is smaller.
32a4330d 2478 */
8afdcece
MG
2479 balance_gap = min(low_wmark_pages(zone),
2480 (zone->present_pages +
2481 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2482 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2483 /*
2484 * Kswapd reclaims only single pages with compaction
2485 * enabled. Trying too hard to reclaim until contiguous
2486 * free pages have become available can hurt performance
2487 * by evicting too much useful data from memory.
2488 * Do not reclaim more than needed for compaction.
2489 */
2490 testorder = order;
2491 if (COMPACTION_BUILD && order &&
2492 compaction_suitable(zone, order) !=
2493 COMPACT_SKIPPED)
2494 testorder = 0;
2495
cc715d99 2496 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
643ac9fc 2497 !zone_watermark_ok_safe(zone, testorder,
8afdcece 2498 high_wmark_pages(zone) + balance_gap,
d7868dae 2499 end_zone, 0)) {
9e3b2f8c 2500 shrink_zone(zone, &sc);
5a03b051 2501
d7868dae
MG
2502 reclaim_state->reclaimed_slab = 0;
2503 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2504 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2505 total_scanned += sc.nr_scanned;
2506
2507 if (nr_slab == 0 && !zone_reclaimable(zone))
2508 zone->all_unreclaimable = 1;
2509 }
2510
1da177e4
LT
2511 /*
2512 * If we've done a decent amount of scanning and
2513 * the reclaim ratio is low, start doing writepage
2514 * even in laptop mode
2515 */
2516 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2517 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2518 sc.may_writepage = 1;
bb3ab596 2519
215ddd66
MG
2520 if (zone->all_unreclaimable) {
2521 if (end_zone && end_zone == i)
2522 end_zone--;
d7868dae 2523 continue;
215ddd66 2524 }
d7868dae 2525
fe2c2a10 2526 if (!zone_watermark_ok_safe(zone, testorder,
45973d74
MK
2527 high_wmark_pages(zone), end_zone, 0)) {
2528 all_zones_ok = 0;
2529 /*
2530 * We are still under min water mark. This
2531 * means that we have a GFP_ATOMIC allocation
2532 * failure risk. Hurry up!
2533 */
88f5acf8 2534 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2535 min_wmark_pages(zone), end_zone, 0))
2536 has_under_min_watermark_zone = 1;
0e093d99
MG
2537 } else {
2538 /*
2539 * If a zone reaches its high watermark,
2540 * consider it to be no longer congested. It's
2541 * possible there are dirty pages backed by
2542 * congested BDIs but as pressure is relieved,
2543 * spectulatively avoid congestion waits
2544 */
2545 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2546 if (i <= *classzone_idx)
1741c877 2547 balanced += zone->present_pages;
45973d74 2548 }
bb3ab596 2549
1da177e4 2550 }
dc83edd9 2551 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2552 break; /* kswapd: all done */
2553 /*
2554 * OK, kswapd is getting into trouble. Take a nap, then take
2555 * another pass across the zones.
2556 */
9e3b2f8c 2557 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
bb3ab596
KM
2558 if (has_under_min_watermark_zone)
2559 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2560 else
2561 congestion_wait(BLK_RW_ASYNC, HZ/10);
2562 }
1da177e4
LT
2563
2564 /*
2565 * We do this so kswapd doesn't build up large priorities for
2566 * example when it is freeing in parallel with allocators. It
2567 * matches the direct reclaim path behaviour in terms of impact
2568 * on zone->*_priority.
2569 */
a79311c1 2570 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4 2571 break;
9e3b2f8c 2572 } while (--sc.priority >= 0);
1da177e4 2573out:
99504748
MG
2574
2575 /*
2576 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2577 * high-order: Balanced zones must make up at least 25% of the node
2578 * for the node to be balanced
99504748 2579 */
dc83edd9 2580 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2581 cond_resched();
8357376d
RW
2582
2583 try_to_freeze();
2584
73ce02e9
KM
2585 /*
2586 * Fragmentation may mean that the system cannot be
2587 * rebalanced for high-order allocations in all zones.
2588 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2589 * it means the zones have been fully scanned and are still
2590 * not balanced. For high-order allocations, there is
2591 * little point trying all over again as kswapd may
2592 * infinite loop.
2593 *
2594 * Instead, recheck all watermarks at order-0 as they
2595 * are the most important. If watermarks are ok, kswapd will go
2596 * back to sleep. High-order users can still perform direct
2597 * reclaim if they wish.
2598 */
2599 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2600 order = sc.order = 0;
2601
1da177e4
LT
2602 goto loop_again;
2603 }
2604
99504748
MG
2605 /*
2606 * If kswapd was reclaiming at a higher order, it has the option of
2607 * sleeping without all zones being balanced. Before it does, it must
2608 * ensure that the watermarks for order-0 on *all* zones are met and
2609 * that the congestion flags are cleared. The congestion flag must
2610 * be cleared as kswapd is the only mechanism that clears the flag
2611 * and it is potentially going to sleep here.
2612 */
2613 if (order) {
7be62de9
RR
2614 int zones_need_compaction = 1;
2615
99504748
MG
2616 for (i = 0; i <= end_zone; i++) {
2617 struct zone *zone = pgdat->node_zones + i;
2618
2619 if (!populated_zone(zone))
2620 continue;
2621
9e3b2f8c
KK
2622 if (zone->all_unreclaimable &&
2623 sc.priority != DEF_PRIORITY)
99504748
MG
2624 continue;
2625
fe2c2a10 2626 /* Would compaction fail due to lack of free memory? */
496b919b
RR
2627 if (COMPACTION_BUILD &&
2628 compaction_suitable(zone, order) == COMPACT_SKIPPED)
fe2c2a10
RR
2629 goto loop_again;
2630
99504748
MG
2631 /* Confirm the zone is balanced for order-0 */
2632 if (!zone_watermark_ok(zone, 0,
2633 high_wmark_pages(zone), 0, 0)) {
2634 order = sc.order = 0;
2635 goto loop_again;
2636 }
2637
7be62de9
RR
2638 /* Check if the memory needs to be defragmented. */
2639 if (zone_watermark_ok(zone, order,
2640 low_wmark_pages(zone), *classzone_idx, 0))
2641 zones_need_compaction = 0;
2642
99504748
MG
2643 /* If balanced, clear the congested flag */
2644 zone_clear_flag(zone, ZONE_CONGESTED);
2645 }
7be62de9
RR
2646
2647 if (zones_need_compaction)
2648 compact_pgdat(pgdat, order);
99504748
MG
2649 }
2650
0abdee2b
MG
2651 /*
2652 * Return the order we were reclaiming at so sleeping_prematurely()
2653 * makes a decision on the order we were last reclaiming at. However,
2654 * if another caller entered the allocator slow path while kswapd
2655 * was awake, order will remain at the higher level
2656 */
dc83edd9 2657 *classzone_idx = end_zone;
0abdee2b 2658 return order;
1da177e4
LT
2659}
2660
dc83edd9 2661static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2662{
2663 long remaining = 0;
2664 DEFINE_WAIT(wait);
2665
2666 if (freezing(current) || kthread_should_stop())
2667 return;
2668
2669 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2670
2671 /* Try to sleep for a short interval */
dc83edd9 2672 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2673 remaining = schedule_timeout(HZ/10);
2674 finish_wait(&pgdat->kswapd_wait, &wait);
2675 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2676 }
2677
2678 /*
2679 * After a short sleep, check if it was a premature sleep. If not, then
2680 * go fully to sleep until explicitly woken up.
2681 */
dc83edd9 2682 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2683 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2684
2685 /*
2686 * vmstat counters are not perfectly accurate and the estimated
2687 * value for counters such as NR_FREE_PAGES can deviate from the
2688 * true value by nr_online_cpus * threshold. To avoid the zone
2689 * watermarks being breached while under pressure, we reduce the
2690 * per-cpu vmstat threshold while kswapd is awake and restore
2691 * them before going back to sleep.
2692 */
2693 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2694 schedule();
2695 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2696 } else {
2697 if (remaining)
2698 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2699 else
2700 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2701 }
2702 finish_wait(&pgdat->kswapd_wait, &wait);
2703}
2704
1da177e4
LT
2705/*
2706 * The background pageout daemon, started as a kernel thread
4f98a2fe 2707 * from the init process.
1da177e4
LT
2708 *
2709 * This basically trickles out pages so that we have _some_
2710 * free memory available even if there is no other activity
2711 * that frees anything up. This is needed for things like routing
2712 * etc, where we otherwise might have all activity going on in
2713 * asynchronous contexts that cannot page things out.
2714 *
2715 * If there are applications that are active memory-allocators
2716 * (most normal use), this basically shouldn't matter.
2717 */
2718static int kswapd(void *p)
2719{
215ddd66 2720 unsigned long order, new_order;
d2ebd0f6 2721 unsigned balanced_order;
215ddd66 2722 int classzone_idx, new_classzone_idx;
d2ebd0f6 2723 int balanced_classzone_idx;
1da177e4
LT
2724 pg_data_t *pgdat = (pg_data_t*)p;
2725 struct task_struct *tsk = current;
f0bc0a60 2726
1da177e4
LT
2727 struct reclaim_state reclaim_state = {
2728 .reclaimed_slab = 0,
2729 };
a70f7302 2730 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2731
cf40bd16
NP
2732 lockdep_set_current_reclaim_state(GFP_KERNEL);
2733
174596a0 2734 if (!cpumask_empty(cpumask))
c5f59f08 2735 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2736 current->reclaim_state = &reclaim_state;
2737
2738 /*
2739 * Tell the memory management that we're a "memory allocator",
2740 * and that if we need more memory we should get access to it
2741 * regardless (see "__alloc_pages()"). "kswapd" should
2742 * never get caught in the normal page freeing logic.
2743 *
2744 * (Kswapd normally doesn't need memory anyway, but sometimes
2745 * you need a small amount of memory in order to be able to
2746 * page out something else, and this flag essentially protects
2747 * us from recursively trying to free more memory as we're
2748 * trying to free the first piece of memory in the first place).
2749 */
930d9152 2750 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2751 set_freezable();
1da177e4 2752
215ddd66 2753 order = new_order = 0;
d2ebd0f6 2754 balanced_order = 0;
215ddd66 2755 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2756 balanced_classzone_idx = classzone_idx;
1da177e4 2757 for ( ; ; ) {
8fe23e05 2758 int ret;
3e1d1d28 2759
215ddd66
MG
2760 /*
2761 * If the last balance_pgdat was unsuccessful it's unlikely a
2762 * new request of a similar or harder type will succeed soon
2763 * so consider going to sleep on the basis we reclaimed at
2764 */
d2ebd0f6
AS
2765 if (balanced_classzone_idx >= new_classzone_idx &&
2766 balanced_order == new_order) {
215ddd66
MG
2767 new_order = pgdat->kswapd_max_order;
2768 new_classzone_idx = pgdat->classzone_idx;
2769 pgdat->kswapd_max_order = 0;
2770 pgdat->classzone_idx = pgdat->nr_zones - 1;
2771 }
2772
99504748 2773 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2774 /*
2775 * Don't sleep if someone wants a larger 'order'
99504748 2776 * allocation or has tigher zone constraints
1da177e4
LT
2777 */
2778 order = new_order;
99504748 2779 classzone_idx = new_classzone_idx;
1da177e4 2780 } else {
d2ebd0f6
AS
2781 kswapd_try_to_sleep(pgdat, balanced_order,
2782 balanced_classzone_idx);
1da177e4 2783 order = pgdat->kswapd_max_order;
99504748 2784 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2785 new_order = order;
2786 new_classzone_idx = classzone_idx;
4d40502e 2787 pgdat->kswapd_max_order = 0;
215ddd66 2788 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2789 }
1da177e4 2790
8fe23e05
DR
2791 ret = try_to_freeze();
2792 if (kthread_should_stop())
2793 break;
2794
2795 /*
2796 * We can speed up thawing tasks if we don't call balance_pgdat
2797 * after returning from the refrigerator
2798 */
33906bc5
MG
2799 if (!ret) {
2800 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
2801 balanced_classzone_idx = classzone_idx;
2802 balanced_order = balance_pgdat(pgdat, order,
2803 &balanced_classzone_idx);
33906bc5 2804 }
1da177e4
LT
2805 }
2806 return 0;
2807}
2808
2809/*
2810 * A zone is low on free memory, so wake its kswapd task to service it.
2811 */
99504748 2812void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2813{
2814 pg_data_t *pgdat;
2815
f3fe6512 2816 if (!populated_zone(zone))
1da177e4
LT
2817 return;
2818
88f5acf8 2819 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2820 return;
88f5acf8 2821 pgdat = zone->zone_pgdat;
99504748 2822 if (pgdat->kswapd_max_order < order) {
1da177e4 2823 pgdat->kswapd_max_order = order;
99504748
MG
2824 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2825 }
8d0986e2 2826 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2827 return;
88f5acf8
MG
2828 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2829 return;
2830
2831 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2832 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2833}
2834
adea02a1
WF
2835/*
2836 * The reclaimable count would be mostly accurate.
2837 * The less reclaimable pages may be
2838 * - mlocked pages, which will be moved to unevictable list when encountered
2839 * - mapped pages, which may require several travels to be reclaimed
2840 * - dirty pages, which is not "instantly" reclaimable
2841 */
2842unsigned long global_reclaimable_pages(void)
4f98a2fe 2843{
adea02a1
WF
2844 int nr;
2845
2846 nr = global_page_state(NR_ACTIVE_FILE) +
2847 global_page_state(NR_INACTIVE_FILE);
2848
2849 if (nr_swap_pages > 0)
2850 nr += global_page_state(NR_ACTIVE_ANON) +
2851 global_page_state(NR_INACTIVE_ANON);
2852
2853 return nr;
2854}
2855
2856unsigned long zone_reclaimable_pages(struct zone *zone)
2857{
2858 int nr;
2859
2860 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2861 zone_page_state(zone, NR_INACTIVE_FILE);
2862
2863 if (nr_swap_pages > 0)
2864 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2865 zone_page_state(zone, NR_INACTIVE_ANON);
2866
2867 return nr;
4f98a2fe
RR
2868}
2869
c6f37f12 2870#ifdef CONFIG_HIBERNATION
1da177e4 2871/*
7b51755c 2872 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2873 * freed pages.
2874 *
2875 * Rather than trying to age LRUs the aim is to preserve the overall
2876 * LRU order by reclaiming preferentially
2877 * inactive > active > active referenced > active mapped
1da177e4 2878 */
7b51755c 2879unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2880{
d6277db4 2881 struct reclaim_state reclaim_state;
d6277db4 2882 struct scan_control sc = {
7b51755c
KM
2883 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2884 .may_swap = 1,
2885 .may_unmap = 1,
d6277db4 2886 .may_writepage = 1,
7b51755c
KM
2887 .nr_to_reclaim = nr_to_reclaim,
2888 .hibernation_mode = 1,
7b51755c 2889 .order = 0,
9e3b2f8c 2890 .priority = DEF_PRIORITY,
1da177e4 2891 };
a09ed5e0
YH
2892 struct shrink_control shrink = {
2893 .gfp_mask = sc.gfp_mask,
2894 };
2895 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2896 struct task_struct *p = current;
2897 unsigned long nr_reclaimed;
1da177e4 2898
7b51755c
KM
2899 p->flags |= PF_MEMALLOC;
2900 lockdep_set_current_reclaim_state(sc.gfp_mask);
2901 reclaim_state.reclaimed_slab = 0;
2902 p->reclaim_state = &reclaim_state;
d6277db4 2903
a09ed5e0 2904 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2905
7b51755c
KM
2906 p->reclaim_state = NULL;
2907 lockdep_clear_current_reclaim_state();
2908 p->flags &= ~PF_MEMALLOC;
d6277db4 2909
7b51755c 2910 return nr_reclaimed;
1da177e4 2911}
c6f37f12 2912#endif /* CONFIG_HIBERNATION */
1da177e4 2913
1da177e4
LT
2914/* It's optimal to keep kswapds on the same CPUs as their memory, but
2915 not required for correctness. So if the last cpu in a node goes
2916 away, we get changed to run anywhere: as the first one comes back,
2917 restore their cpu bindings. */
9c7b216d 2918static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2919 unsigned long action, void *hcpu)
1da177e4 2920{
58c0a4a7 2921 int nid;
1da177e4 2922
8bb78442 2923 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2924 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2925 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2926 const struct cpumask *mask;
2927
2928 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2929
3e597945 2930 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2931 /* One of our CPUs online: restore mask */
c5f59f08 2932 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2933 }
2934 }
2935 return NOTIFY_OK;
2936}
1da177e4 2937
3218ae14
YG
2938/*
2939 * This kswapd start function will be called by init and node-hot-add.
2940 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2941 */
2942int kswapd_run(int nid)
2943{
2944 pg_data_t *pgdat = NODE_DATA(nid);
2945 int ret = 0;
2946
2947 if (pgdat->kswapd)
2948 return 0;
2949
2950 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2951 if (IS_ERR(pgdat->kswapd)) {
2952 /* failure at boot is fatal */
2953 BUG_ON(system_state == SYSTEM_BOOTING);
2954 printk("Failed to start kswapd on node %d\n",nid);
2955 ret = -1;
2956 }
2957 return ret;
2958}
2959
8fe23e05
DR
2960/*
2961 * Called by memory hotplug when all memory in a node is offlined.
2962 */
2963void kswapd_stop(int nid)
2964{
2965 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2966
2967 if (kswapd)
2968 kthread_stop(kswapd);
2969}
2970
1da177e4
LT
2971static int __init kswapd_init(void)
2972{
3218ae14 2973 int nid;
69e05944 2974
1da177e4 2975 swap_setup();
9422ffba 2976 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2977 kswapd_run(nid);
1da177e4
LT
2978 hotcpu_notifier(cpu_callback, 0);
2979 return 0;
2980}
2981
2982module_init(kswapd_init)
9eeff239
CL
2983
2984#ifdef CONFIG_NUMA
2985/*
2986 * Zone reclaim mode
2987 *
2988 * If non-zero call zone_reclaim when the number of free pages falls below
2989 * the watermarks.
9eeff239
CL
2990 */
2991int zone_reclaim_mode __read_mostly;
2992
1b2ffb78 2993#define RECLAIM_OFF 0
7d03431c 2994#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2995#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2996#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2997
a92f7126
CL
2998/*
2999 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3000 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3001 * a zone.
3002 */
3003#define ZONE_RECLAIM_PRIORITY 4
3004
9614634f
CL
3005/*
3006 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3007 * occur.
3008 */
3009int sysctl_min_unmapped_ratio = 1;
3010
0ff38490
CL
3011/*
3012 * If the number of slab pages in a zone grows beyond this percentage then
3013 * slab reclaim needs to occur.
3014 */
3015int sysctl_min_slab_ratio = 5;
3016
90afa5de
MG
3017static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3018{
3019 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3020 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3021 zone_page_state(zone, NR_ACTIVE_FILE);
3022
3023 /*
3024 * It's possible for there to be more file mapped pages than
3025 * accounted for by the pages on the file LRU lists because
3026 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3027 */
3028 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3029}
3030
3031/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3032static long zone_pagecache_reclaimable(struct zone *zone)
3033{
3034 long nr_pagecache_reclaimable;
3035 long delta = 0;
3036
3037 /*
3038 * If RECLAIM_SWAP is set, then all file pages are considered
3039 * potentially reclaimable. Otherwise, we have to worry about
3040 * pages like swapcache and zone_unmapped_file_pages() provides
3041 * a better estimate
3042 */
3043 if (zone_reclaim_mode & RECLAIM_SWAP)
3044 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3045 else
3046 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3047
3048 /* If we can't clean pages, remove dirty pages from consideration */
3049 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3050 delta += zone_page_state(zone, NR_FILE_DIRTY);
3051
3052 /* Watch for any possible underflows due to delta */
3053 if (unlikely(delta > nr_pagecache_reclaimable))
3054 delta = nr_pagecache_reclaimable;
3055
3056 return nr_pagecache_reclaimable - delta;
3057}
3058
9eeff239
CL
3059/*
3060 * Try to free up some pages from this zone through reclaim.
3061 */
179e9639 3062static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3063{
7fb2d46d 3064 /* Minimum pages needed in order to stay on node */
69e05944 3065 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3066 struct task_struct *p = current;
3067 struct reclaim_state reclaim_state;
179e9639
AM
3068 struct scan_control sc = {
3069 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3070 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3071 .may_swap = 1,
22fba335
KM
3072 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3073 SWAP_CLUSTER_MAX),
179e9639 3074 .gfp_mask = gfp_mask,
bd2f6199 3075 .order = order,
9e3b2f8c 3076 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3077 };
a09ed5e0
YH
3078 struct shrink_control shrink = {
3079 .gfp_mask = sc.gfp_mask,
3080 };
15748048 3081 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3082
9eeff239 3083 cond_resched();
d4f7796e
CL
3084 /*
3085 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3086 * and we also need to be able to write out pages for RECLAIM_WRITE
3087 * and RECLAIM_SWAP.
3088 */
3089 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3090 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3091 reclaim_state.reclaimed_slab = 0;
3092 p->reclaim_state = &reclaim_state;
c84db23c 3093
90afa5de 3094 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3095 /*
3096 * Free memory by calling shrink zone with increasing
3097 * priorities until we have enough memory freed.
3098 */
0ff38490 3099 do {
9e3b2f8c
KK
3100 shrink_zone(zone, &sc);
3101 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3102 }
c84db23c 3103
15748048
KM
3104 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3105 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3106 /*
7fb2d46d 3107 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3108 * many pages were freed in this zone. So we take the current
3109 * number of slab pages and shake the slab until it is reduced
3110 * by the same nr_pages that we used for reclaiming unmapped
3111 * pages.
2a16e3f4 3112 *
0ff38490
CL
3113 * Note that shrink_slab will free memory on all zones and may
3114 * take a long time.
2a16e3f4 3115 */
4dc4b3d9
KM
3116 for (;;) {
3117 unsigned long lru_pages = zone_reclaimable_pages(zone);
3118
3119 /* No reclaimable slab or very low memory pressure */
1495f230 3120 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3121 break;
3122
3123 /* Freed enough memory */
3124 nr_slab_pages1 = zone_page_state(zone,
3125 NR_SLAB_RECLAIMABLE);
3126 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3127 break;
3128 }
83e33a47
CL
3129
3130 /*
3131 * Update nr_reclaimed by the number of slab pages we
3132 * reclaimed from this zone.
3133 */
15748048
KM
3134 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3135 if (nr_slab_pages1 < nr_slab_pages0)
3136 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3137 }
3138
9eeff239 3139 p->reclaim_state = NULL;
d4f7796e 3140 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3141 lockdep_clear_current_reclaim_state();
a79311c1 3142 return sc.nr_reclaimed >= nr_pages;
9eeff239 3143}
179e9639
AM
3144
3145int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3146{
179e9639 3147 int node_id;
d773ed6b 3148 int ret;
179e9639
AM
3149
3150 /*
0ff38490
CL
3151 * Zone reclaim reclaims unmapped file backed pages and
3152 * slab pages if we are over the defined limits.
34aa1330 3153 *
9614634f
CL
3154 * A small portion of unmapped file backed pages is needed for
3155 * file I/O otherwise pages read by file I/O will be immediately
3156 * thrown out if the zone is overallocated. So we do not reclaim
3157 * if less than a specified percentage of the zone is used by
3158 * unmapped file backed pages.
179e9639 3159 */
90afa5de
MG
3160 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3161 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3162 return ZONE_RECLAIM_FULL;
179e9639 3163
93e4a89a 3164 if (zone->all_unreclaimable)
fa5e084e 3165 return ZONE_RECLAIM_FULL;
d773ed6b 3166
179e9639 3167 /*
d773ed6b 3168 * Do not scan if the allocation should not be delayed.
179e9639 3169 */
d773ed6b 3170 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3171 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3172
3173 /*
3174 * Only run zone reclaim on the local zone or on zones that do not
3175 * have associated processors. This will favor the local processor
3176 * over remote processors and spread off node memory allocations
3177 * as wide as possible.
3178 */
89fa3024 3179 node_id = zone_to_nid(zone);
37c0708d 3180 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3181 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3182
3183 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3184 return ZONE_RECLAIM_NOSCAN;
3185
d773ed6b
DR
3186 ret = __zone_reclaim(zone, gfp_mask, order);
3187 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3188
24cf7251
MG
3189 if (!ret)
3190 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3191
d773ed6b 3192 return ret;
179e9639 3193}
9eeff239 3194#endif
894bc310 3195
894bc310
LS
3196/*
3197 * page_evictable - test whether a page is evictable
3198 * @page: the page to test
3199 * @vma: the VMA in which the page is or will be mapped, may be NULL
3200 *
3201 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3202 * lists vs unevictable list. The vma argument is !NULL when called from the
3203 * fault path to determine how to instantate a new page.
894bc310
LS
3204 *
3205 * Reasons page might not be evictable:
ba9ddf49 3206 * (1) page's mapping marked unevictable
b291f000 3207 * (2) page is part of an mlocked VMA
ba9ddf49 3208 *
894bc310
LS
3209 */
3210int page_evictable(struct page *page, struct vm_area_struct *vma)
3211{
3212
ba9ddf49
LS
3213 if (mapping_unevictable(page_mapping(page)))
3214 return 0;
3215
096a7cf4 3216 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
b291f000 3217 return 0;
894bc310
LS
3218
3219 return 1;
3220}
89e004ea 3221
85046579 3222#ifdef CONFIG_SHMEM
89e004ea 3223/**
24513264
HD
3224 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3225 * @pages: array of pages to check
3226 * @nr_pages: number of pages to check
89e004ea 3227 *
24513264 3228 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3229 *
3230 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3231 */
24513264 3232void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3233{
925b7673 3234 struct lruvec *lruvec;
24513264
HD
3235 struct zone *zone = NULL;
3236 int pgscanned = 0;
3237 int pgrescued = 0;
3238 int i;
89e004ea 3239
24513264
HD
3240 for (i = 0; i < nr_pages; i++) {
3241 struct page *page = pages[i];
3242 struct zone *pagezone;
89e004ea 3243
24513264
HD
3244 pgscanned++;
3245 pagezone = page_zone(page);
3246 if (pagezone != zone) {
3247 if (zone)
3248 spin_unlock_irq(&zone->lru_lock);
3249 zone = pagezone;
3250 spin_lock_irq(&zone->lru_lock);
3251 }
89e004ea 3252
24513264
HD
3253 if (!PageLRU(page) || !PageUnevictable(page))
3254 continue;
89e004ea 3255
24513264
HD
3256 if (page_evictable(page, NULL)) {
3257 enum lru_list lru = page_lru_base_type(page);
3258
3259 VM_BUG_ON(PageActive(page));
3260 ClearPageUnevictable(page);
3261 __dec_zone_state(zone, NR_UNEVICTABLE);
3262 lruvec = mem_cgroup_lru_move_lists(zone, page,
3263 LRU_UNEVICTABLE, lru);
3264 list_move(&page->lru, &lruvec->lists[lru]);
3265 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3266 pgrescued++;
89e004ea 3267 }
24513264 3268 }
89e004ea 3269
24513264
HD
3270 if (zone) {
3271 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3272 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3273 spin_unlock_irq(&zone->lru_lock);
89e004ea 3274 }
89e004ea 3275}
85046579 3276#endif /* CONFIG_SHMEM */
af936a16 3277
264e56d8 3278static void warn_scan_unevictable_pages(void)
af936a16 3279{
264e56d8 3280 printk_once(KERN_WARNING
25bd91bd 3281 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3282 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3283 "one, please send an email to linux-mm@kvack.org.\n",
3284 current->comm);
af936a16
LS
3285}
3286
3287/*
3288 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3289 * all nodes' unevictable lists for evictable pages
3290 */
3291unsigned long scan_unevictable_pages;
3292
3293int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3294 void __user *buffer,
af936a16
LS
3295 size_t *length, loff_t *ppos)
3296{
264e56d8 3297 warn_scan_unevictable_pages();
8d65af78 3298 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3299 scan_unevictable_pages = 0;
3300 return 0;
3301}
3302
e4455abb 3303#ifdef CONFIG_NUMA
af936a16
LS
3304/*
3305 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3306 * a specified node's per zone unevictable lists for evictable pages.
3307 */
3308
10fbcf4c
KS
3309static ssize_t read_scan_unevictable_node(struct device *dev,
3310 struct device_attribute *attr,
af936a16
LS
3311 char *buf)
3312{
264e56d8 3313 warn_scan_unevictable_pages();
af936a16
LS
3314 return sprintf(buf, "0\n"); /* always zero; should fit... */
3315}
3316
10fbcf4c
KS
3317static ssize_t write_scan_unevictable_node(struct device *dev,
3318 struct device_attribute *attr,
af936a16
LS
3319 const char *buf, size_t count)
3320{
264e56d8 3321 warn_scan_unevictable_pages();
af936a16
LS
3322 return 1;
3323}
3324
3325
10fbcf4c 3326static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3327 read_scan_unevictable_node,
3328 write_scan_unevictable_node);
3329
3330int scan_unevictable_register_node(struct node *node)
3331{
10fbcf4c 3332 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3333}
3334
3335void scan_unevictable_unregister_node(struct node *node)
3336{
10fbcf4c 3337 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3338}
e4455abb 3339#endif