vmscan: tracing: add trace events for LRU page isolation
[linux-block.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
33906bc5
MG
51#define CREATE_TRACE_POINTS
52#include <trace/events/vmscan.h>
53
1da177e4 54struct scan_control {
1da177e4
LT
55 /* Incremented by the number of inactive pages that were scanned */
56 unsigned long nr_scanned;
57
a79311c1
RR
58 /* Number of pages freed so far during a call to shrink_zones() */
59 unsigned long nr_reclaimed;
60
22fba335
KM
61 /* How many pages shrink_list() should reclaim */
62 unsigned long nr_to_reclaim;
63
7b51755c
KM
64 unsigned long hibernation_mode;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4
LT
68
69 int may_writepage;
70
a6dc60f8
JW
71 /* Can mapped pages be reclaimed? */
72 int may_unmap;
f1fd1067 73
2e2e4259
KM
74 /* Can pages be swapped as part of reclaim? */
75 int may_swap;
76
d6277db4 77 int swappiness;
408d8544 78
5ad333eb 79 int order;
66e1707b 80
5f53e762
KM
81 /*
82 * Intend to reclaim enough contenious memory rather than to reclaim
83 * enough amount memory. I.e, it's the mode for high order allocation.
84 */
85 bool lumpy_reclaim_mode;
86
66e1707b
BS
87 /* Which cgroup do we reclaim from */
88 struct mem_cgroup *mem_cgroup;
89
327c0e96
KH
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
00f0b825 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 137#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 138#else
e72e2bd6 139#define scanning_global_lru(sc) (1)
91a45470
KH
140#endif
141
6e901571
KM
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144{
e72e2bd6 145 if (!scanning_global_lru(sc))
3e2f41f1
KM
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
6e901571
KM
148 return &zone->reclaim_stat;
149}
150
0b217676
VL
151static unsigned long zone_nr_lru_pages(struct zone *zone,
152 struct scan_control *sc, enum lru_list lru)
c9f299d9 153{
e72e2bd6 154 if (!scanning_global_lru(sc))
a3d8e054
KM
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
c9f299d9
KM
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
1da177e4
LT
161/*
162 * Add a shrinker callback to be called from the vm
163 */
8e1f936b 164void register_shrinker(struct shrinker *shrinker)
1da177e4 165{
8e1f936b
RR
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
1da177e4 170}
8e1f936b 171EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
172
173/*
174 * Remove one
175 */
8e1f936b 176void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
177{
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
1da177e4 181}
8e1f936b 182EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
183ff22b 193 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
b15e0905 201 *
202 * Returns the number of slab objects which we shrunk.
1da177e4 203 */
69e05944
AM
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
1da177e4
LT
206{
207 struct shrinker *shrinker;
69e05944 208 unsigned long ret = 0;
1da177e4
LT
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 214 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
7f8275d0 219 unsigned long max_pass;
1da177e4 220
7f8275d0 221 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
1da177e4 222 delta = (4 * scanned) / shrinker->seeks;
ea164d73 223 delta *= max_pass;
1da177e4
LT
224 do_div(delta, lru_pages + 1);
225 shrinker->nr += delta;
ea164d73 226 if (shrinker->nr < 0) {
88c3bd70
DR
227 printk(KERN_ERR "shrink_slab: %pF negative objects to "
228 "delete nr=%ld\n",
229 shrinker->shrink, shrinker->nr);
ea164d73
AA
230 shrinker->nr = max_pass;
231 }
232
233 /*
234 * Avoid risking looping forever due to too large nr value:
235 * never try to free more than twice the estimate number of
236 * freeable entries.
237 */
238 if (shrinker->nr > max_pass * 2)
239 shrinker->nr = max_pass * 2;
1da177e4
LT
240
241 total_scan = shrinker->nr;
242 shrinker->nr = 0;
243
244 while (total_scan >= SHRINK_BATCH) {
245 long this_scan = SHRINK_BATCH;
246 int shrink_ret;
b15e0905 247 int nr_before;
1da177e4 248
7f8275d0
DC
249 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
250 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
251 gfp_mask);
1da177e4
LT
252 if (shrink_ret == -1)
253 break;
b15e0905 254 if (shrink_ret < nr_before)
255 ret += nr_before - shrink_ret;
f8891e5e 256 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
257 total_scan -= this_scan;
258
259 cond_resched();
260 }
261
262 shrinker->nr += total_scan;
263 }
264 up_read(&shrinker_rwsem);
b15e0905 265 return ret;
1da177e4
LT
266}
267
1da177e4
LT
268static inline int is_page_cache_freeable(struct page *page)
269{
ceddc3a5
JW
270 /*
271 * A freeable page cache page is referenced only by the caller
272 * that isolated the page, the page cache radix tree and
273 * optional buffer heads at page->private.
274 */
edcf4748 275 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
276}
277
278static int may_write_to_queue(struct backing_dev_info *bdi)
279{
930d9152 280 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
281 return 1;
282 if (!bdi_write_congested(bdi))
283 return 1;
284 if (bdi == current->backing_dev_info)
285 return 1;
286 return 0;
287}
288
289/*
290 * We detected a synchronous write error writing a page out. Probably
291 * -ENOSPC. We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
293 *
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up. But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
297 *
298 * We're allowed to run sleeping lock_page() here because we know the caller has
299 * __GFP_FS.
300 */
301static void handle_write_error(struct address_space *mapping,
302 struct page *page, int error)
303{
a6aa62a0 304 lock_page_nosync(page);
3e9f45bd
GC
305 if (page_mapping(page) == mapping)
306 mapping_set_error(mapping, error);
1da177e4
LT
307 unlock_page(page);
308}
309
c661b078
AW
310/* Request for sync pageout. */
311enum pageout_io {
312 PAGEOUT_IO_ASYNC,
313 PAGEOUT_IO_SYNC,
314};
315
04e62a29
CL
316/* possible outcome of pageout() */
317typedef enum {
318 /* failed to write page out, page is locked */
319 PAGE_KEEP,
320 /* move page to the active list, page is locked */
321 PAGE_ACTIVATE,
322 /* page has been sent to the disk successfully, page is unlocked */
323 PAGE_SUCCESS,
324 /* page is clean and locked */
325 PAGE_CLEAN,
326} pageout_t;
327
1da177e4 328/*
1742f19f
AM
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
1da177e4 331 */
c661b078
AW
332static pageout_t pageout(struct page *page, struct address_space *mapping,
333 enum pageout_io sync_writeback)
1da177e4
LT
334{
335 /*
336 * If the page is dirty, only perform writeback if that write
337 * will be non-blocking. To prevent this allocation from being
338 * stalled by pagecache activity. But note that there may be
339 * stalls if we need to run get_block(). We could test
340 * PagePrivate for that.
341 *
6aceb53b 342 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
343 * this page's queue, we can perform writeback even if that
344 * will block.
345 *
346 * If the page is swapcache, write it back even if that would
347 * block, for some throttling. This happens by accident, because
348 * swap_backing_dev_info is bust: it doesn't reflect the
349 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
350 */
351 if (!is_page_cache_freeable(page))
352 return PAGE_KEEP;
353 if (!mapping) {
354 /*
355 * Some data journaling orphaned pages can have
356 * page->mapping == NULL while being dirty with clean buffers.
357 */
266cf658 358 if (page_has_private(page)) {
1da177e4
LT
359 if (try_to_free_buffers(page)) {
360 ClearPageDirty(page);
d40cee24 361 printk("%s: orphaned page\n", __func__);
1da177e4
LT
362 return PAGE_CLEAN;
363 }
364 }
365 return PAGE_KEEP;
366 }
367 if (mapping->a_ops->writepage == NULL)
368 return PAGE_ACTIVATE;
369 if (!may_write_to_queue(mapping->backing_dev_info))
370 return PAGE_KEEP;
371
372 if (clear_page_dirty_for_io(page)) {
373 int res;
374 struct writeback_control wbc = {
375 .sync_mode = WB_SYNC_NONE,
376 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
377 .range_start = 0,
378 .range_end = LLONG_MAX,
1da177e4
LT
379 .nonblocking = 1,
380 .for_reclaim = 1,
381 };
382
383 SetPageReclaim(page);
384 res = mapping->a_ops->writepage(page, &wbc);
385 if (res < 0)
386 handle_write_error(mapping, page, res);
994fc28c 387 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
388 ClearPageReclaim(page);
389 return PAGE_ACTIVATE;
390 }
c661b078
AW
391
392 /*
393 * Wait on writeback if requested to. This happens when
394 * direct reclaiming a large contiguous area and the
395 * first attempt to free a range of pages fails.
396 */
397 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
398 wait_on_page_writeback(page);
399
1da177e4
LT
400 if (!PageWriteback(page)) {
401 /* synchronous write or broken a_ops? */
402 ClearPageReclaim(page);
403 }
e129b5c2 404 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
405 return PAGE_SUCCESS;
406 }
407
408 return PAGE_CLEAN;
409}
410
a649fd92 411/*
e286781d
NP
412 * Same as remove_mapping, but if the page is removed from the mapping, it
413 * gets returned with a refcount of 0.
a649fd92 414 */
e286781d 415static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 416{
28e4d965
NP
417 BUG_ON(!PageLocked(page));
418 BUG_ON(mapping != page_mapping(page));
49d2e9cc 419
19fd6231 420 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 421 /*
0fd0e6b0
NP
422 * The non racy check for a busy page.
423 *
424 * Must be careful with the order of the tests. When someone has
425 * a ref to the page, it may be possible that they dirty it then
426 * drop the reference. So if PageDirty is tested before page_count
427 * here, then the following race may occur:
428 *
429 * get_user_pages(&page);
430 * [user mapping goes away]
431 * write_to(page);
432 * !PageDirty(page) [good]
433 * SetPageDirty(page);
434 * put_page(page);
435 * !page_count(page) [good, discard it]
436 *
437 * [oops, our write_to data is lost]
438 *
439 * Reversing the order of the tests ensures such a situation cannot
440 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
441 * load is not satisfied before that of page->_count.
442 *
443 * Note that if SetPageDirty is always performed via set_page_dirty,
444 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 445 */
e286781d 446 if (!page_freeze_refs(page, 2))
49d2e9cc 447 goto cannot_free;
e286781d
NP
448 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
449 if (unlikely(PageDirty(page))) {
450 page_unfreeze_refs(page, 2);
49d2e9cc 451 goto cannot_free;
e286781d 452 }
49d2e9cc
CL
453
454 if (PageSwapCache(page)) {
455 swp_entry_t swap = { .val = page_private(page) };
456 __delete_from_swap_cache(page);
19fd6231 457 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 458 swapcache_free(swap, page);
e286781d
NP
459 } else {
460 __remove_from_page_cache(page);
19fd6231 461 spin_unlock_irq(&mapping->tree_lock);
e767e056 462 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
463 }
464
49d2e9cc
CL
465 return 1;
466
467cannot_free:
19fd6231 468 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
469 return 0;
470}
471
e286781d
NP
472/*
473 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
474 * someone else has a ref on the page, abort and return 0. If it was
475 * successfully detached, return 1. Assumes the caller has a single ref on
476 * this page.
477 */
478int remove_mapping(struct address_space *mapping, struct page *page)
479{
480 if (__remove_mapping(mapping, page)) {
481 /*
482 * Unfreezing the refcount with 1 rather than 2 effectively
483 * drops the pagecache ref for us without requiring another
484 * atomic operation.
485 */
486 page_unfreeze_refs(page, 1);
487 return 1;
488 }
489 return 0;
490}
491
894bc310
LS
492/**
493 * putback_lru_page - put previously isolated page onto appropriate LRU list
494 * @page: page to be put back to appropriate lru list
495 *
496 * Add previously isolated @page to appropriate LRU list.
497 * Page may still be unevictable for other reasons.
498 *
499 * lru_lock must not be held, interrupts must be enabled.
500 */
894bc310
LS
501void putback_lru_page(struct page *page)
502{
503 int lru;
504 int active = !!TestClearPageActive(page);
bbfd28ee 505 int was_unevictable = PageUnevictable(page);
894bc310
LS
506
507 VM_BUG_ON(PageLRU(page));
508
509redo:
510 ClearPageUnevictable(page);
511
512 if (page_evictable(page, NULL)) {
513 /*
514 * For evictable pages, we can use the cache.
515 * In event of a race, worst case is we end up with an
516 * unevictable page on [in]active list.
517 * We know how to handle that.
518 */
401a8e1c 519 lru = active + page_lru_base_type(page);
894bc310
LS
520 lru_cache_add_lru(page, lru);
521 } else {
522 /*
523 * Put unevictable pages directly on zone's unevictable
524 * list.
525 */
526 lru = LRU_UNEVICTABLE;
527 add_page_to_unevictable_list(page);
6a7b9548
JW
528 /*
529 * When racing with an mlock clearing (page is
530 * unlocked), make sure that if the other thread does
531 * not observe our setting of PG_lru and fails
532 * isolation, we see PG_mlocked cleared below and move
533 * the page back to the evictable list.
534 *
535 * The other side is TestClearPageMlocked().
536 */
537 smp_mb();
894bc310 538 }
894bc310
LS
539
540 /*
541 * page's status can change while we move it among lru. If an evictable
542 * page is on unevictable list, it never be freed. To avoid that,
543 * check after we added it to the list, again.
544 */
545 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
546 if (!isolate_lru_page(page)) {
547 put_page(page);
548 goto redo;
549 }
550 /* This means someone else dropped this page from LRU
551 * So, it will be freed or putback to LRU again. There is
552 * nothing to do here.
553 */
554 }
555
bbfd28ee
LS
556 if (was_unevictable && lru != LRU_UNEVICTABLE)
557 count_vm_event(UNEVICTABLE_PGRESCUED);
558 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
559 count_vm_event(UNEVICTABLE_PGCULLED);
560
894bc310
LS
561 put_page(page); /* drop ref from isolate */
562}
563
dfc8d636
JW
564enum page_references {
565 PAGEREF_RECLAIM,
566 PAGEREF_RECLAIM_CLEAN,
64574746 567 PAGEREF_KEEP,
dfc8d636
JW
568 PAGEREF_ACTIVATE,
569};
570
571static enum page_references page_check_references(struct page *page,
572 struct scan_control *sc)
573{
64574746 574 int referenced_ptes, referenced_page;
dfc8d636 575 unsigned long vm_flags;
dfc8d636 576
64574746
JW
577 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
578 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
579
580 /* Lumpy reclaim - ignore references */
5f53e762 581 if (sc->lumpy_reclaim_mode)
dfc8d636
JW
582 return PAGEREF_RECLAIM;
583
584 /*
585 * Mlock lost the isolation race with us. Let try_to_unmap()
586 * move the page to the unevictable list.
587 */
588 if (vm_flags & VM_LOCKED)
589 return PAGEREF_RECLAIM;
590
64574746
JW
591 if (referenced_ptes) {
592 if (PageAnon(page))
593 return PAGEREF_ACTIVATE;
594 /*
595 * All mapped pages start out with page table
596 * references from the instantiating fault, so we need
597 * to look twice if a mapped file page is used more
598 * than once.
599 *
600 * Mark it and spare it for another trip around the
601 * inactive list. Another page table reference will
602 * lead to its activation.
603 *
604 * Note: the mark is set for activated pages as well
605 * so that recently deactivated but used pages are
606 * quickly recovered.
607 */
608 SetPageReferenced(page);
609
610 if (referenced_page)
611 return PAGEREF_ACTIVATE;
612
613 return PAGEREF_KEEP;
614 }
dfc8d636
JW
615
616 /* Reclaim if clean, defer dirty pages to writeback */
64574746
JW
617 if (referenced_page)
618 return PAGEREF_RECLAIM_CLEAN;
619
620 return PAGEREF_RECLAIM;
dfc8d636
JW
621}
622
1da177e4 623/*
1742f19f 624 * shrink_page_list() returns the number of reclaimed pages
1da177e4 625 */
1742f19f 626static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
627 struct scan_control *sc,
628 enum pageout_io sync_writeback)
1da177e4
LT
629{
630 LIST_HEAD(ret_pages);
631 struct pagevec freed_pvec;
632 int pgactivate = 0;
05ff5137 633 unsigned long nr_reclaimed = 0;
1da177e4
LT
634
635 cond_resched();
636
637 pagevec_init(&freed_pvec, 1);
638 while (!list_empty(page_list)) {
dfc8d636 639 enum page_references references;
1da177e4
LT
640 struct address_space *mapping;
641 struct page *page;
642 int may_enter_fs;
1da177e4
LT
643
644 cond_resched();
645
646 page = lru_to_page(page_list);
647 list_del(&page->lru);
648
529ae9aa 649 if (!trylock_page(page))
1da177e4
LT
650 goto keep;
651
725d704e 652 VM_BUG_ON(PageActive(page));
1da177e4
LT
653
654 sc->nr_scanned++;
80e43426 655
b291f000
NP
656 if (unlikely(!page_evictable(page, NULL)))
657 goto cull_mlocked;
894bc310 658
a6dc60f8 659 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
660 goto keep_locked;
661
1da177e4
LT
662 /* Double the slab pressure for mapped and swapcache pages */
663 if (page_mapped(page) || PageSwapCache(page))
664 sc->nr_scanned++;
665
c661b078
AW
666 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
667 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
668
669 if (PageWriteback(page)) {
670 /*
671 * Synchronous reclaim is performed in two passes,
672 * first an asynchronous pass over the list to
673 * start parallel writeback, and a second synchronous
674 * pass to wait for the IO to complete. Wait here
675 * for any page for which writeback has already
676 * started.
677 */
678 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
679 wait_on_page_writeback(page);
4dd4b920 680 else
c661b078
AW
681 goto keep_locked;
682 }
1da177e4 683
dfc8d636
JW
684 references = page_check_references(page, sc);
685 switch (references) {
686 case PAGEREF_ACTIVATE:
1da177e4 687 goto activate_locked;
64574746
JW
688 case PAGEREF_KEEP:
689 goto keep_locked;
dfc8d636
JW
690 case PAGEREF_RECLAIM:
691 case PAGEREF_RECLAIM_CLEAN:
692 ; /* try to reclaim the page below */
693 }
1da177e4 694
1da177e4
LT
695 /*
696 * Anonymous process memory has backing store?
697 * Try to allocate it some swap space here.
698 */
b291f000 699 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
700 if (!(sc->gfp_mask & __GFP_IO))
701 goto keep_locked;
ac47b003 702 if (!add_to_swap(page))
1da177e4 703 goto activate_locked;
63eb6b93 704 may_enter_fs = 1;
b291f000 705 }
1da177e4
LT
706
707 mapping = page_mapping(page);
1da177e4
LT
708
709 /*
710 * The page is mapped into the page tables of one or more
711 * processes. Try to unmap it here.
712 */
713 if (page_mapped(page) && mapping) {
14fa31b8 714 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
715 case SWAP_FAIL:
716 goto activate_locked;
717 case SWAP_AGAIN:
718 goto keep_locked;
b291f000
NP
719 case SWAP_MLOCK:
720 goto cull_mlocked;
1da177e4
LT
721 case SWAP_SUCCESS:
722 ; /* try to free the page below */
723 }
724 }
725
726 if (PageDirty(page)) {
dfc8d636 727 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 728 goto keep_locked;
4dd4b920 729 if (!may_enter_fs)
1da177e4 730 goto keep_locked;
52a8363e 731 if (!sc->may_writepage)
1da177e4
LT
732 goto keep_locked;
733
734 /* Page is dirty, try to write it out here */
c661b078 735 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
736 case PAGE_KEEP:
737 goto keep_locked;
738 case PAGE_ACTIVATE:
739 goto activate_locked;
740 case PAGE_SUCCESS:
4dd4b920 741 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
742 goto keep;
743 /*
744 * A synchronous write - probably a ramdisk. Go
745 * ahead and try to reclaim the page.
746 */
529ae9aa 747 if (!trylock_page(page))
1da177e4
LT
748 goto keep;
749 if (PageDirty(page) || PageWriteback(page))
750 goto keep_locked;
751 mapping = page_mapping(page);
752 case PAGE_CLEAN:
753 ; /* try to free the page below */
754 }
755 }
756
757 /*
758 * If the page has buffers, try to free the buffer mappings
759 * associated with this page. If we succeed we try to free
760 * the page as well.
761 *
762 * We do this even if the page is PageDirty().
763 * try_to_release_page() does not perform I/O, but it is
764 * possible for a page to have PageDirty set, but it is actually
765 * clean (all its buffers are clean). This happens if the
766 * buffers were written out directly, with submit_bh(). ext3
894bc310 767 * will do this, as well as the blockdev mapping.
1da177e4
LT
768 * try_to_release_page() will discover that cleanness and will
769 * drop the buffers and mark the page clean - it can be freed.
770 *
771 * Rarely, pages can have buffers and no ->mapping. These are
772 * the pages which were not successfully invalidated in
773 * truncate_complete_page(). We try to drop those buffers here
774 * and if that worked, and the page is no longer mapped into
775 * process address space (page_count == 1) it can be freed.
776 * Otherwise, leave the page on the LRU so it is swappable.
777 */
266cf658 778 if (page_has_private(page)) {
1da177e4
LT
779 if (!try_to_release_page(page, sc->gfp_mask))
780 goto activate_locked;
e286781d
NP
781 if (!mapping && page_count(page) == 1) {
782 unlock_page(page);
783 if (put_page_testzero(page))
784 goto free_it;
785 else {
786 /*
787 * rare race with speculative reference.
788 * the speculative reference will free
789 * this page shortly, so we may
790 * increment nr_reclaimed here (and
791 * leave it off the LRU).
792 */
793 nr_reclaimed++;
794 continue;
795 }
796 }
1da177e4
LT
797 }
798
e286781d 799 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 800 goto keep_locked;
1da177e4 801
a978d6f5
NP
802 /*
803 * At this point, we have no other references and there is
804 * no way to pick any more up (removed from LRU, removed
805 * from pagecache). Can use non-atomic bitops now (and
806 * we obviously don't have to worry about waking up a process
807 * waiting on the page lock, because there are no references.
808 */
809 __clear_page_locked(page);
e286781d 810free_it:
05ff5137 811 nr_reclaimed++;
e286781d
NP
812 if (!pagevec_add(&freed_pvec, page)) {
813 __pagevec_free(&freed_pvec);
814 pagevec_reinit(&freed_pvec);
815 }
1da177e4
LT
816 continue;
817
b291f000 818cull_mlocked:
63d6c5ad
HD
819 if (PageSwapCache(page))
820 try_to_free_swap(page);
b291f000
NP
821 unlock_page(page);
822 putback_lru_page(page);
823 continue;
824
1da177e4 825activate_locked:
68a22394
RR
826 /* Not a candidate for swapping, so reclaim swap space. */
827 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 828 try_to_free_swap(page);
894bc310 829 VM_BUG_ON(PageActive(page));
1da177e4
LT
830 SetPageActive(page);
831 pgactivate++;
832keep_locked:
833 unlock_page(page);
834keep:
835 list_add(&page->lru, &ret_pages);
b291f000 836 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
837 }
838 list_splice(&ret_pages, page_list);
839 if (pagevec_count(&freed_pvec))
e286781d 840 __pagevec_free(&freed_pvec);
f8891e5e 841 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 842 return nr_reclaimed;
1da177e4
LT
843}
844
5ad333eb
AW
845/*
846 * Attempt to remove the specified page from its LRU. Only take this page
847 * if it is of the appropriate PageActive status. Pages which are being
848 * freed elsewhere are also ignored.
849 *
850 * page: page to consider
851 * mode: one of the LRU isolation modes defined above
852 *
853 * returns 0 on success, -ve errno on failure.
854 */
4f98a2fe 855int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
856{
857 int ret = -EINVAL;
858
859 /* Only take pages on the LRU. */
860 if (!PageLRU(page))
861 return ret;
862
863 /*
864 * When checking the active state, we need to be sure we are
865 * dealing with comparible boolean values. Take the logical not
866 * of each.
867 */
868 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
869 return ret;
870
6c0b1351 871 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
4f98a2fe
RR
872 return ret;
873
894bc310
LS
874 /*
875 * When this function is being called for lumpy reclaim, we
876 * initially look into all LRU pages, active, inactive and
877 * unevictable; only give shrink_page_list evictable pages.
878 */
879 if (PageUnevictable(page))
880 return ret;
881
5ad333eb 882 ret = -EBUSY;
08e552c6 883
5ad333eb
AW
884 if (likely(get_page_unless_zero(page))) {
885 /*
886 * Be careful not to clear PageLRU until after we're
887 * sure the page is not being freed elsewhere -- the
888 * page release code relies on it.
889 */
890 ClearPageLRU(page);
891 ret = 0;
892 }
893
894 return ret;
895}
896
1da177e4
LT
897/*
898 * zone->lru_lock is heavily contended. Some of the functions that
899 * shrink the lists perform better by taking out a batch of pages
900 * and working on them outside the LRU lock.
901 *
902 * For pagecache intensive workloads, this function is the hottest
903 * spot in the kernel (apart from copy_*_user functions).
904 *
905 * Appropriate locks must be held before calling this function.
906 *
907 * @nr_to_scan: The number of pages to look through on the list.
908 * @src: The LRU list to pull pages off.
909 * @dst: The temp list to put pages on to.
910 * @scanned: The number of pages that were scanned.
5ad333eb
AW
911 * @order: The caller's attempted allocation order
912 * @mode: One of the LRU isolation modes
4f98a2fe 913 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
914 *
915 * returns how many pages were moved onto *@dst.
916 */
69e05944
AM
917static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
918 struct list_head *src, struct list_head *dst,
4f98a2fe 919 unsigned long *scanned, int order, int mode, int file)
1da177e4 920{
69e05944 921 unsigned long nr_taken = 0;
a8a94d15
MG
922 unsigned long nr_lumpy_taken = 0;
923 unsigned long nr_lumpy_dirty = 0;
924 unsigned long nr_lumpy_failed = 0;
c9b02d97 925 unsigned long scan;
1da177e4 926
c9b02d97 927 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
928 struct page *page;
929 unsigned long pfn;
930 unsigned long end_pfn;
931 unsigned long page_pfn;
932 int zone_id;
933
1da177e4
LT
934 page = lru_to_page(src);
935 prefetchw_prev_lru_page(page, src, flags);
936
725d704e 937 VM_BUG_ON(!PageLRU(page));
8d438f96 938
4f98a2fe 939 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
940 case 0:
941 list_move(&page->lru, dst);
2ffebca6 942 mem_cgroup_del_lru(page);
7c8ee9a8 943 nr_taken++;
5ad333eb
AW
944 break;
945
946 case -EBUSY:
947 /* else it is being freed elsewhere */
948 list_move(&page->lru, src);
2ffebca6 949 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 950 continue;
46453a6e 951
5ad333eb
AW
952 default:
953 BUG();
954 }
955
956 if (!order)
957 continue;
958
959 /*
960 * Attempt to take all pages in the order aligned region
961 * surrounding the tag page. Only take those pages of
962 * the same active state as that tag page. We may safely
963 * round the target page pfn down to the requested order
964 * as the mem_map is guarenteed valid out to MAX_ORDER,
965 * where that page is in a different zone we will detect
966 * it from its zone id and abort this block scan.
967 */
968 zone_id = page_zone_id(page);
969 page_pfn = page_to_pfn(page);
970 pfn = page_pfn & ~((1 << order) - 1);
971 end_pfn = pfn + (1 << order);
972 for (; pfn < end_pfn; pfn++) {
973 struct page *cursor_page;
974
975 /* The target page is in the block, ignore it. */
976 if (unlikely(pfn == page_pfn))
977 continue;
978
979 /* Avoid holes within the zone. */
980 if (unlikely(!pfn_valid_within(pfn)))
981 break;
982
983 cursor_page = pfn_to_page(pfn);
4f98a2fe 984
5ad333eb
AW
985 /* Check that we have not crossed a zone boundary. */
986 if (unlikely(page_zone_id(cursor_page) != zone_id))
987 continue;
de2e7567
MK
988
989 /*
990 * If we don't have enough swap space, reclaiming of
991 * anon page which don't already have a swap slot is
992 * pointless.
993 */
994 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
995 !PageSwapCache(cursor_page))
996 continue;
997
ee993b13 998 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 999 list_move(&cursor_page->lru, dst);
cb4cbcf6 1000 mem_cgroup_del_lru(cursor_page);
5ad333eb 1001 nr_taken++;
a8a94d15
MG
1002 nr_lumpy_taken++;
1003 if (PageDirty(cursor_page))
1004 nr_lumpy_dirty++;
5ad333eb 1005 scan++;
a8a94d15
MG
1006 } else {
1007 if (mode == ISOLATE_BOTH &&
1008 page_count(cursor_page))
1009 nr_lumpy_failed++;
5ad333eb
AW
1010 }
1011 }
1da177e4
LT
1012 }
1013
1014 *scanned = scan;
a8a94d15
MG
1015
1016 trace_mm_vmscan_lru_isolate(order,
1017 nr_to_scan, scan,
1018 nr_taken,
1019 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1020 mode);
1da177e4
LT
1021 return nr_taken;
1022}
1023
66e1707b
BS
1024static unsigned long isolate_pages_global(unsigned long nr,
1025 struct list_head *dst,
1026 unsigned long *scanned, int order,
1027 int mode, struct zone *z,
4f98a2fe 1028 int active, int file)
66e1707b 1029{
4f98a2fe 1030 int lru = LRU_BASE;
66e1707b 1031 if (active)
4f98a2fe
RR
1032 lru += LRU_ACTIVE;
1033 if (file)
1034 lru += LRU_FILE;
1035 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 1036 mode, file);
66e1707b
BS
1037}
1038
5ad333eb
AW
1039/*
1040 * clear_active_flags() is a helper for shrink_active_list(), clearing
1041 * any active bits from the pages in the list.
1042 */
4f98a2fe
RR
1043static unsigned long clear_active_flags(struct list_head *page_list,
1044 unsigned int *count)
5ad333eb
AW
1045{
1046 int nr_active = 0;
4f98a2fe 1047 int lru;
5ad333eb
AW
1048 struct page *page;
1049
4f98a2fe 1050 list_for_each_entry(page, page_list, lru) {
401a8e1c 1051 lru = page_lru_base_type(page);
5ad333eb 1052 if (PageActive(page)) {
4f98a2fe 1053 lru += LRU_ACTIVE;
5ad333eb
AW
1054 ClearPageActive(page);
1055 nr_active++;
1056 }
4f98a2fe
RR
1057 count[lru]++;
1058 }
5ad333eb
AW
1059
1060 return nr_active;
1061}
1062
62695a84
NP
1063/**
1064 * isolate_lru_page - tries to isolate a page from its LRU list
1065 * @page: page to isolate from its LRU list
1066 *
1067 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1068 * vmstat statistic corresponding to whatever LRU list the page was on.
1069 *
1070 * Returns 0 if the page was removed from an LRU list.
1071 * Returns -EBUSY if the page was not on an LRU list.
1072 *
1073 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1074 * the active list, it will have PageActive set. If it was found on
1075 * the unevictable list, it will have the PageUnevictable bit set. That flag
1076 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1077 *
1078 * The vmstat statistic corresponding to the list on which the page was
1079 * found will be decremented.
1080 *
1081 * Restrictions:
1082 * (1) Must be called with an elevated refcount on the page. This is a
1083 * fundamentnal difference from isolate_lru_pages (which is called
1084 * without a stable reference).
1085 * (2) the lru_lock must not be held.
1086 * (3) interrupts must be enabled.
1087 */
1088int isolate_lru_page(struct page *page)
1089{
1090 int ret = -EBUSY;
1091
1092 if (PageLRU(page)) {
1093 struct zone *zone = page_zone(page);
1094
1095 spin_lock_irq(&zone->lru_lock);
1096 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1097 int lru = page_lru(page);
62695a84
NP
1098 ret = 0;
1099 ClearPageLRU(page);
4f98a2fe 1100
4f98a2fe 1101 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1102 }
1103 spin_unlock_irq(&zone->lru_lock);
1104 }
1105 return ret;
1106}
1107
35cd7815
RR
1108/*
1109 * Are there way too many processes in the direct reclaim path already?
1110 */
1111static int too_many_isolated(struct zone *zone, int file,
1112 struct scan_control *sc)
1113{
1114 unsigned long inactive, isolated;
1115
1116 if (current_is_kswapd())
1117 return 0;
1118
1119 if (!scanning_global_lru(sc))
1120 return 0;
1121
1122 if (file) {
1123 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1124 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1125 } else {
1126 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1127 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1128 }
1129
1130 return isolated > inactive;
1131}
1132
1da177e4 1133/*
1742f19f
AM
1134 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1135 * of reclaimed pages
1da177e4 1136 */
1742f19f 1137static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1138 struct zone *zone, struct scan_control *sc,
1139 int priority, int file)
1da177e4
LT
1140{
1141 LIST_HEAD(page_list);
1142 struct pagevec pvec;
69e05944 1143 unsigned long nr_scanned = 0;
05ff5137 1144 unsigned long nr_reclaimed = 0;
6e901571 1145 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
78dc583d 1146
35cd7815 1147 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1148 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1149
1150 /* We are about to die and free our memory. Return now. */
1151 if (fatal_signal_pending(current))
1152 return SWAP_CLUSTER_MAX;
1153 }
1154
1da177e4
LT
1155
1156 pagevec_init(&pvec, 1);
1157
1158 lru_add_drain();
1159 spin_lock_irq(&zone->lru_lock);
69e05944 1160 do {
1da177e4 1161 struct page *page;
69e05944
AM
1162 unsigned long nr_taken;
1163 unsigned long nr_scan;
1164 unsigned long nr_freed;
5ad333eb 1165 unsigned long nr_active;
4f98a2fe 1166 unsigned int count[NR_LRU_LISTS] = { 0, };
5f53e762 1167 int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE;
a731286d
KM
1168 unsigned long nr_anon;
1169 unsigned long nr_file;
1da177e4 1170
b35ea17b 1171 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1172 nr_taken = isolate_pages_global(SWAP_CLUSTER_MAX,
1173 &page_list, &nr_scan,
1174 sc->order, mode,
1175 zone, 0, file);
b35ea17b
KM
1176 zone->pages_scanned += nr_scan;
1177 if (current_is_kswapd())
1178 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1179 nr_scan);
1180 else
1181 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1182 nr_scan);
8b25c6d2
JW
1183 } else {
1184 nr_taken = mem_cgroup_isolate_pages(SWAP_CLUSTER_MAX,
1185 &page_list, &nr_scan,
1186 sc->order, mode,
1187 zone, sc->mem_cgroup,
1188 0, file);
1189 /*
1190 * mem_cgroup_isolate_pages() keeps track of
1191 * scanned pages on its own.
1192 */
b35ea17b
KM
1193 }
1194
1195 if (nr_taken == 0)
1196 goto done;
1197
4f98a2fe 1198 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1199 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1200
4f98a2fe
RR
1201 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1202 -count[LRU_ACTIVE_FILE]);
1203 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1204 -count[LRU_INACTIVE_FILE]);
1205 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1206 -count[LRU_ACTIVE_ANON]);
1207 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1208 -count[LRU_INACTIVE_ANON]);
1209
a731286d
KM
1210 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1211 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1212 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1213 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
3e2f41f1 1214
62c0c2f1
HS
1215 reclaim_stat->recent_scanned[0] += nr_anon;
1216 reclaim_stat->recent_scanned[1] += nr_file;
3e2f41f1 1217
1da177e4
LT
1218 spin_unlock_irq(&zone->lru_lock);
1219
69e05944 1220 nr_scanned += nr_scan;
c661b078
AW
1221 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1222
1223 /*
1224 * If we are direct reclaiming for contiguous pages and we do
1225 * not reclaim everything in the list, try again and wait
1226 * for IO to complete. This will stall high-order allocations
1227 * but that should be acceptable to the caller
1228 */
1229 if (nr_freed < nr_taken && !current_is_kswapd() &&
5f53e762 1230 sc->lumpy_reclaim_mode) {
8aa7e847 1231 congestion_wait(BLK_RW_ASYNC, HZ/10);
c661b078
AW
1232
1233 /*
1234 * The attempt at page out may have made some
1235 * of the pages active, mark them inactive again.
1236 */
4f98a2fe 1237 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1238 count_vm_events(PGDEACTIVATE, nr_active);
1239
1240 nr_freed += shrink_page_list(&page_list, sc,
1241 PAGEOUT_IO_SYNC);
1242 }
1243
05ff5137 1244 nr_reclaimed += nr_freed;
b35ea17b 1245
a74609fa 1246 local_irq_disable();
b35ea17b 1247 if (current_is_kswapd())
f8891e5e 1248 __count_vm_events(KSWAPD_STEAL, nr_freed);
918d3f90 1249 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa
NP
1250
1251 spin_lock(&zone->lru_lock);
1da177e4
LT
1252 /*
1253 * Put back any unfreeable pages.
1254 */
1255 while (!list_empty(&page_list)) {
894bc310 1256 int lru;
1da177e4 1257 page = lru_to_page(&page_list);
725d704e 1258 VM_BUG_ON(PageLRU(page));
1da177e4 1259 list_del(&page->lru);
894bc310
LS
1260 if (unlikely(!page_evictable(page, NULL))) {
1261 spin_unlock_irq(&zone->lru_lock);
1262 putback_lru_page(page);
1263 spin_lock_irq(&zone->lru_lock);
1264 continue;
1265 }
1266 SetPageLRU(page);
1267 lru = page_lru(page);
1268 add_page_to_lru_list(zone, page, lru);
74a1c48f 1269 if (is_active_lru(lru)) {
b7c46d15 1270 int file = is_file_lru(lru);
6e901571 1271 reclaim_stat->recent_rotated[file]++;
4f98a2fe 1272 }
1da177e4
LT
1273 if (!pagevec_add(&pvec, page)) {
1274 spin_unlock_irq(&zone->lru_lock);
1275 __pagevec_release(&pvec);
1276 spin_lock_irq(&zone->lru_lock);
1277 }
1278 }
a731286d
KM
1279 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1280 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1281
69e05944 1282 } while (nr_scanned < max_scan);
b35ea17b 1283
1da177e4 1284done:
b35ea17b 1285 spin_unlock_irq(&zone->lru_lock);
1da177e4 1286 pagevec_release(&pvec);
05ff5137 1287 return nr_reclaimed;
1da177e4
LT
1288}
1289
3bb1a852
MB
1290/*
1291 * We are about to scan this zone at a certain priority level. If that priority
1292 * level is smaller (ie: more urgent) than the previous priority, then note
1293 * that priority level within the zone. This is done so that when the next
1294 * process comes in to scan this zone, it will immediately start out at this
1295 * priority level rather than having to build up its own scanning priority.
1296 * Here, this priority affects only the reclaim-mapped threshold.
1297 */
1298static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1299{
1300 if (priority < zone->prev_priority)
1301 zone->prev_priority = priority;
1302}
1303
1da177e4
LT
1304/*
1305 * This moves pages from the active list to the inactive list.
1306 *
1307 * We move them the other way if the page is referenced by one or more
1308 * processes, from rmap.
1309 *
1310 * If the pages are mostly unmapped, the processing is fast and it is
1311 * appropriate to hold zone->lru_lock across the whole operation. But if
1312 * the pages are mapped, the processing is slow (page_referenced()) so we
1313 * should drop zone->lru_lock around each page. It's impossible to balance
1314 * this, so instead we remove the pages from the LRU while processing them.
1315 * It is safe to rely on PG_active against the non-LRU pages in here because
1316 * nobody will play with that bit on a non-LRU page.
1317 *
1318 * The downside is that we have to touch page->_count against each page.
1319 * But we had to alter page->flags anyway.
1320 */
1cfb419b 1321
3eb4140f
WF
1322static void move_active_pages_to_lru(struct zone *zone,
1323 struct list_head *list,
1324 enum lru_list lru)
1325{
1326 unsigned long pgmoved = 0;
1327 struct pagevec pvec;
1328 struct page *page;
1329
1330 pagevec_init(&pvec, 1);
1331
1332 while (!list_empty(list)) {
1333 page = lru_to_page(list);
3eb4140f
WF
1334
1335 VM_BUG_ON(PageLRU(page));
1336 SetPageLRU(page);
1337
3eb4140f
WF
1338 list_move(&page->lru, &zone->lru[lru].list);
1339 mem_cgroup_add_lru_list(page, lru);
1340 pgmoved++;
1341
1342 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1343 spin_unlock_irq(&zone->lru_lock);
1344 if (buffer_heads_over_limit)
1345 pagevec_strip(&pvec);
1346 __pagevec_release(&pvec);
1347 spin_lock_irq(&zone->lru_lock);
1348 }
1349 }
1350 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1351 if (!is_active_lru(lru))
1352 __count_vm_events(PGDEACTIVATE, pgmoved);
1353}
1cfb419b 1354
1742f19f 1355static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1356 struct scan_control *sc, int priority, int file)
1da177e4 1357{
44c241f1 1358 unsigned long nr_taken;
69e05944 1359 unsigned long pgscanned;
6fe6b7e3 1360 unsigned long vm_flags;
1da177e4 1361 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1362 LIST_HEAD(l_active);
b69408e8 1363 LIST_HEAD(l_inactive);
1da177e4 1364 struct page *page;
6e901571 1365 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1366 unsigned long nr_rotated = 0;
1da177e4
LT
1367
1368 lru_add_drain();
1369 spin_lock_irq(&zone->lru_lock);
e72e2bd6 1370 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1371 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1372 &pgscanned, sc->order,
1373 ISOLATE_ACTIVE, zone,
1374 1, file);
1cfb419b 1375 zone->pages_scanned += pgscanned;
8b25c6d2
JW
1376 } else {
1377 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1378 &pgscanned, sc->order,
1379 ISOLATE_ACTIVE, zone,
1380 sc->mem_cgroup, 1, file);
1381 /*
1382 * mem_cgroup_isolate_pages() keeps track of
1383 * scanned pages on its own.
1384 */
4f98a2fe 1385 }
8b25c6d2 1386
b7c46d15 1387 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1388
3eb4140f 1389 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1390 if (file)
44c241f1 1391 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1392 else
44c241f1 1393 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1394 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1395 spin_unlock_irq(&zone->lru_lock);
1396
1da177e4
LT
1397 while (!list_empty(&l_hold)) {
1398 cond_resched();
1399 page = lru_to_page(&l_hold);
1400 list_del(&page->lru);
7e9cd484 1401
894bc310
LS
1402 if (unlikely(!page_evictable(page, NULL))) {
1403 putback_lru_page(page);
1404 continue;
1405 }
1406
64574746 1407 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
44c241f1 1408 nr_rotated++;
8cab4754
WF
1409 /*
1410 * Identify referenced, file-backed active pages and
1411 * give them one more trip around the active list. So
1412 * that executable code get better chances to stay in
1413 * memory under moderate memory pressure. Anon pages
1414 * are not likely to be evicted by use-once streaming
1415 * IO, plus JVM can create lots of anon VM_EXEC pages,
1416 * so we ignore them here.
1417 */
41e20983 1418 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1419 list_add(&page->lru, &l_active);
1420 continue;
1421 }
1422 }
7e9cd484 1423
5205e56e 1424 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1425 list_add(&page->lru, &l_inactive);
1426 }
1427
b555749a 1428 /*
8cab4754 1429 * Move pages back to the lru list.
b555749a 1430 */
2a1dc509 1431 spin_lock_irq(&zone->lru_lock);
556adecb 1432 /*
8cab4754
WF
1433 * Count referenced pages from currently used mappings as rotated,
1434 * even though only some of them are actually re-activated. This
1435 * helps balance scan pressure between file and anonymous pages in
1436 * get_scan_ratio.
7e9cd484 1437 */
b7c46d15 1438 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1439
3eb4140f
WF
1440 move_active_pages_to_lru(zone, &l_active,
1441 LRU_ACTIVE + file * LRU_FILE);
1442 move_active_pages_to_lru(zone, &l_inactive,
1443 LRU_BASE + file * LRU_FILE);
a731286d 1444 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1445 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1446}
1447
14797e23 1448static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1449{
1450 unsigned long active, inactive;
1451
1452 active = zone_page_state(zone, NR_ACTIVE_ANON);
1453 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1454
1455 if (inactive * zone->inactive_ratio < active)
1456 return 1;
1457
1458 return 0;
1459}
1460
14797e23
KM
1461/**
1462 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1463 * @zone: zone to check
1464 * @sc: scan control of this context
1465 *
1466 * Returns true if the zone does not have enough inactive anon pages,
1467 * meaning some active anon pages need to be deactivated.
1468 */
1469static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1470{
1471 int low;
1472
e72e2bd6 1473 if (scanning_global_lru(sc))
14797e23
KM
1474 low = inactive_anon_is_low_global(zone);
1475 else
c772be93 1476 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1477 return low;
1478}
1479
56e49d21
RR
1480static int inactive_file_is_low_global(struct zone *zone)
1481{
1482 unsigned long active, inactive;
1483
1484 active = zone_page_state(zone, NR_ACTIVE_FILE);
1485 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1486
1487 return (active > inactive);
1488}
1489
1490/**
1491 * inactive_file_is_low - check if file pages need to be deactivated
1492 * @zone: zone to check
1493 * @sc: scan control of this context
1494 *
1495 * When the system is doing streaming IO, memory pressure here
1496 * ensures that active file pages get deactivated, until more
1497 * than half of the file pages are on the inactive list.
1498 *
1499 * Once we get to that situation, protect the system's working
1500 * set from being evicted by disabling active file page aging.
1501 *
1502 * This uses a different ratio than the anonymous pages, because
1503 * the page cache uses a use-once replacement algorithm.
1504 */
1505static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1506{
1507 int low;
1508
1509 if (scanning_global_lru(sc))
1510 low = inactive_file_is_low_global(zone);
1511 else
1512 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1513 return low;
1514}
1515
b39415b2
RR
1516static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1517 int file)
1518{
1519 if (file)
1520 return inactive_file_is_low(zone, sc);
1521 else
1522 return inactive_anon_is_low(zone, sc);
1523}
1524
4f98a2fe 1525static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1526 struct zone *zone, struct scan_control *sc, int priority)
1527{
4f98a2fe
RR
1528 int file = is_file_lru(lru);
1529
b39415b2
RR
1530 if (is_active_lru(lru)) {
1531 if (inactive_list_is_low(zone, sc, file))
1532 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1533 return 0;
1534 }
1535
33c120ed 1536 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1537}
1538
76a33fc3
SL
1539/*
1540 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1541 * until we collected @swap_cluster_max pages to scan.
1542 */
1543static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1544 unsigned long *nr_saved_scan)
1545{
1546 unsigned long nr;
1547
1548 *nr_saved_scan += nr_to_scan;
1549 nr = *nr_saved_scan;
1550
1551 if (nr >= SWAP_CLUSTER_MAX)
1552 *nr_saved_scan = 0;
1553 else
1554 nr = 0;
1555
1556 return nr;
1557}
1558
4f98a2fe
RR
1559/*
1560 * Determine how aggressively the anon and file LRU lists should be
1561 * scanned. The relative value of each set of LRU lists is determined
1562 * by looking at the fraction of the pages scanned we did rotate back
1563 * onto the active list instead of evict.
1564 *
76a33fc3 1565 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1566 */
76a33fc3
SL
1567static void get_scan_count(struct zone *zone, struct scan_control *sc,
1568 unsigned long *nr, int priority)
4f98a2fe
RR
1569{
1570 unsigned long anon, file, free;
1571 unsigned long anon_prio, file_prio;
1572 unsigned long ap, fp;
6e901571 1573 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
76a33fc3
SL
1574 u64 fraction[2], denominator;
1575 enum lru_list l;
1576 int noswap = 0;
1577
1578 /* If we have no swap space, do not bother scanning anon pages. */
1579 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1580 noswap = 1;
1581 fraction[0] = 0;
1582 fraction[1] = 1;
1583 denominator = 1;
1584 goto out;
1585 }
4f98a2fe 1586
0b217676
VL
1587 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1588 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1589 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1590 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1591
e72e2bd6 1592 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1593 free = zone_page_state(zone, NR_FREE_PAGES);
1594 /* If we have very few page cache pages,
1595 force-scan anon pages. */
41858966 1596 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1597 fraction[0] = 1;
1598 fraction[1] = 0;
1599 denominator = 1;
1600 goto out;
eeee9a8c 1601 }
4f98a2fe
RR
1602 }
1603
1604 /*
1605 * OK, so we have swap space and a fair amount of page cache
1606 * pages. We use the recently rotated / recently scanned
1607 * ratios to determine how valuable each cache is.
1608 *
1609 * Because workloads change over time (and to avoid overflow)
1610 * we keep these statistics as a floating average, which ends
1611 * up weighing recent references more than old ones.
1612 *
1613 * anon in [0], file in [1]
1614 */
6e901571 1615 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
4f98a2fe 1616 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1617 reclaim_stat->recent_scanned[0] /= 2;
1618 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1619 spin_unlock_irq(&zone->lru_lock);
1620 }
1621
6e901571 1622 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
4f98a2fe 1623 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1624 reclaim_stat->recent_scanned[1] /= 2;
1625 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1626 spin_unlock_irq(&zone->lru_lock);
1627 }
1628
1629 /*
1630 * With swappiness at 100, anonymous and file have the same priority.
1631 * This scanning priority is essentially the inverse of IO cost.
1632 */
1633 anon_prio = sc->swappiness;
1634 file_prio = 200 - sc->swappiness;
1635
1636 /*
00d8089c
RR
1637 * The amount of pressure on anon vs file pages is inversely
1638 * proportional to the fraction of recently scanned pages on
1639 * each list that were recently referenced and in active use.
4f98a2fe 1640 */
6e901571
KM
1641 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1642 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1643
6e901571
KM
1644 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1645 fp /= reclaim_stat->recent_rotated[1] + 1;
4f98a2fe 1646
76a33fc3
SL
1647 fraction[0] = ap;
1648 fraction[1] = fp;
1649 denominator = ap + fp + 1;
1650out:
1651 for_each_evictable_lru(l) {
1652 int file = is_file_lru(l);
1653 unsigned long scan;
6e08a369 1654
76a33fc3
SL
1655 scan = zone_nr_lru_pages(zone, sc, l);
1656 if (priority || noswap) {
1657 scan >>= priority;
1658 scan = div64_u64(scan * fraction[file], denominator);
1659 }
1660 nr[l] = nr_scan_try_batch(scan,
1661 &reclaim_stat->nr_saved_scan[l]);
1662 }
6e08a369 1663}
4f98a2fe 1664
5f53e762
KM
1665static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1666{
1667 /*
1668 * If we need a large contiguous chunk of memory, or have
1669 * trouble getting a small set of contiguous pages, we
1670 * will reclaim both active and inactive pages.
1671 */
1672 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1673 sc->lumpy_reclaim_mode = 1;
1674 else if (sc->order && priority < DEF_PRIORITY - 2)
1675 sc->lumpy_reclaim_mode = 1;
1676 else
1677 sc->lumpy_reclaim_mode = 0;
1678}
1679
1da177e4
LT
1680/*
1681 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1682 */
a79311c1 1683static void shrink_zone(int priority, struct zone *zone,
05ff5137 1684 struct scan_control *sc)
1da177e4 1685{
b69408e8 1686 unsigned long nr[NR_LRU_LISTS];
8695949a 1687 unsigned long nr_to_scan;
b69408e8 1688 enum lru_list l;
01dbe5c9 1689 unsigned long nr_reclaimed = sc->nr_reclaimed;
22fba335 1690 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
e0f79b8f 1691
76a33fc3 1692 get_scan_count(zone, sc, nr, priority);
1da177e4 1693
5f53e762
KM
1694 set_lumpy_reclaim_mode(priority, sc);
1695
556adecb
RR
1696 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1697 nr[LRU_INACTIVE_FILE]) {
894bc310 1698 for_each_evictable_lru(l) {
b69408e8 1699 if (nr[l]) {
ece74b2e
KM
1700 nr_to_scan = min_t(unsigned long,
1701 nr[l], SWAP_CLUSTER_MAX);
b69408e8 1702 nr[l] -= nr_to_scan;
1da177e4 1703
01dbe5c9
KM
1704 nr_reclaimed += shrink_list(l, nr_to_scan,
1705 zone, sc, priority);
b69408e8 1706 }
1da177e4 1707 }
a79311c1
RR
1708 /*
1709 * On large memory systems, scan >> priority can become
1710 * really large. This is fine for the starting priority;
1711 * we want to put equal scanning pressure on each zone.
1712 * However, if the VM has a harder time of freeing pages,
1713 * with multiple processes reclaiming pages, the total
1714 * freeing target can get unreasonably large.
1715 */
338fde90 1716 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1717 break;
1da177e4
LT
1718 }
1719
01dbe5c9
KM
1720 sc->nr_reclaimed = nr_reclaimed;
1721
556adecb
RR
1722 /*
1723 * Even if we did not try to evict anon pages at all, we want to
1724 * rebalance the anon lru active/inactive ratio.
1725 */
69c85481 1726 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
556adecb
RR
1727 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1728
232ea4d6 1729 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1730}
1731
1732/*
1733 * This is the direct reclaim path, for page-allocating processes. We only
1734 * try to reclaim pages from zones which will satisfy the caller's allocation
1735 * request.
1736 *
41858966
MG
1737 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1738 * Because:
1da177e4
LT
1739 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1740 * allocation or
41858966
MG
1741 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1742 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1743 * zone defense algorithm.
1da177e4 1744 *
1da177e4
LT
1745 * If a zone is deemed to be full of pinned pages then just give it a light
1746 * scan then give up on it.
1747 */
bb21c7ce 1748static bool shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1749 struct scan_control *sc)
1da177e4 1750{
54a6eb5c 1751 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1752 struct zoneref *z;
54a6eb5c 1753 struct zone *zone;
bb21c7ce 1754 bool all_unreclaimable = true;
1cfb419b 1755
327c0e96
KH
1756 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1757 sc->nodemask) {
f3fe6512 1758 if (!populated_zone(zone))
1da177e4 1759 continue;
1cfb419b
KH
1760 /*
1761 * Take care memory controller reclaiming has small influence
1762 * to global LRU.
1763 */
e72e2bd6 1764 if (scanning_global_lru(sc)) {
1cfb419b
KH
1765 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1766 continue;
1767 note_zone_scanning_priority(zone, priority);
1da177e4 1768
93e4a89a 1769 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 1770 continue; /* Let kswapd poll it */
1cfb419b
KH
1771 } else {
1772 /*
1773 * Ignore cpuset limitation here. We just want to reduce
1774 * # of used pages by us regardless of memory shortage.
1775 */
1cfb419b
KH
1776 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1777 priority);
1778 }
408d8544 1779
a79311c1 1780 shrink_zone(priority, zone, sc);
bb21c7ce 1781 all_unreclaimable = false;
1da177e4 1782 }
bb21c7ce 1783 return all_unreclaimable;
1da177e4 1784}
4f98a2fe 1785
1da177e4
LT
1786/*
1787 * This is the main entry point to direct page reclaim.
1788 *
1789 * If a full scan of the inactive list fails to free enough memory then we
1790 * are "out of memory" and something needs to be killed.
1791 *
1792 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1793 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
1794 * caller can't do much about. We kick the writeback threads and take explicit
1795 * naps in the hope that some of these pages can be written. But if the
1796 * allocating task holds filesystem locks which prevent writeout this might not
1797 * work, and the allocation attempt will fail.
a41f24ea
NA
1798 *
1799 * returns: 0, if no pages reclaimed
1800 * else, the number of pages reclaimed
1da177e4 1801 */
dac1d27b 1802static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1803 struct scan_control *sc)
1da177e4
LT
1804{
1805 int priority;
bb21c7ce 1806 bool all_unreclaimable;
69e05944 1807 unsigned long total_scanned = 0;
1da177e4 1808 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 1809 struct zoneref *z;
54a6eb5c 1810 struct zone *zone;
dd1a239f 1811 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
22fba335 1812 unsigned long writeback_threshold;
1da177e4 1813
c0ff7453 1814 get_mems_allowed();
873b4771
KK
1815 delayacct_freepages_start();
1816
e72e2bd6 1817 if (scanning_global_lru(sc))
1cfb419b 1818 count_vm_event(ALLOCSTALL);
1da177e4
LT
1819
1820 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1821 sc->nr_scanned = 0;
f7b7fd8f
RR
1822 if (!priority)
1823 disable_swap_token();
bb21c7ce 1824 all_unreclaimable = shrink_zones(priority, zonelist, sc);
66e1707b
BS
1825 /*
1826 * Don't shrink slabs when reclaiming memory from
1827 * over limit cgroups
1828 */
e72e2bd6 1829 if (scanning_global_lru(sc)) {
c6a8a8c5
KM
1830 unsigned long lru_pages = 0;
1831 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1832 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1833 continue;
1834
1835 lru_pages += zone_reclaimable_pages(zone);
1836 }
1837
dd1a239f 1838 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1839 if (reclaim_state) {
a79311c1 1840 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1841 reclaim_state->reclaimed_slab = 0;
1842 }
1da177e4 1843 }
66e1707b 1844 total_scanned += sc->nr_scanned;
bb21c7ce 1845 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 1846 goto out;
1da177e4
LT
1847
1848 /*
1849 * Try to write back as many pages as we just scanned. This
1850 * tends to cause slow streaming writers to write data to the
1851 * disk smoothly, at the dirtying rate, which is nice. But
1852 * that's undesirable in laptop mode, where we *want* lumpy
1853 * writeout. So in laptop mode, write out the whole world.
1854 */
22fba335
KM
1855 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1856 if (total_scanned > writeback_threshold) {
03ba3782 1857 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 1858 sc->may_writepage = 1;
1da177e4
LT
1859 }
1860
1861 /* Take a nap, wait for some writeback to complete */
7b51755c
KM
1862 if (!sc->hibernation_mode && sc->nr_scanned &&
1863 priority < DEF_PRIORITY - 2)
8aa7e847 1864 congestion_wait(BLK_RW_ASYNC, HZ/10);
1da177e4 1865 }
bb21c7ce 1866
1da177e4 1867out:
3bb1a852
MB
1868 /*
1869 * Now that we've scanned all the zones at this priority level, note
1870 * that level within the zone so that the next thread which performs
1871 * scanning of this zone will immediately start out at this priority
1872 * level. This affects only the decision whether or not to bring
1873 * mapped pages onto the inactive list.
1874 */
1875 if (priority < 0)
1876 priority = 0;
1da177e4 1877
e72e2bd6 1878 if (scanning_global_lru(sc)) {
54a6eb5c 1879 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1880
1881 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1882 continue;
1883
1884 zone->prev_priority = priority;
1885 }
1886 } else
1887 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1888
873b4771 1889 delayacct_freepages_end();
c0ff7453 1890 put_mems_allowed();
873b4771 1891
bb21c7ce
KM
1892 if (sc->nr_reclaimed)
1893 return sc->nr_reclaimed;
1894
1895 /* top priority shrink_zones still had more to do? don't OOM, then */
1896 if (scanning_global_lru(sc) && !all_unreclaimable)
1897 return 1;
1898
1899 return 0;
1da177e4
LT
1900}
1901
dac1d27b 1902unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1903 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 1904{
33906bc5 1905 unsigned long nr_reclaimed;
66e1707b
BS
1906 struct scan_control sc = {
1907 .gfp_mask = gfp_mask,
1908 .may_writepage = !laptop_mode,
22fba335 1909 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 1910 .may_unmap = 1,
2e2e4259 1911 .may_swap = 1,
66e1707b
BS
1912 .swappiness = vm_swappiness,
1913 .order = order,
1914 .mem_cgroup = NULL,
327c0e96 1915 .nodemask = nodemask,
66e1707b
BS
1916 };
1917
33906bc5
MG
1918 trace_mm_vmscan_direct_reclaim_begin(order,
1919 sc.may_writepage,
1920 gfp_mask);
1921
1922 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
1923
1924 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1925
1926 return nr_reclaimed;
66e1707b
BS
1927}
1928
00f0b825 1929#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1930
4e416953
BS
1931unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1932 gfp_t gfp_mask, bool noswap,
1933 unsigned int swappiness,
1934 struct zone *zone, int nid)
1935{
1936 struct scan_control sc = {
1937 .may_writepage = !laptop_mode,
1938 .may_unmap = 1,
1939 .may_swap = !noswap,
4e416953
BS
1940 .swappiness = swappiness,
1941 .order = 0,
1942 .mem_cgroup = mem,
4e416953
BS
1943 };
1944 nodemask_t nm = nodemask_of_node(nid);
1945
1946 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1947 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1948 sc.nodemask = &nm;
1949 sc.nr_reclaimed = 0;
1950 sc.nr_scanned = 0;
1951 /*
1952 * NOTE: Although we can get the priority field, using it
1953 * here is not a good idea, since it limits the pages we can scan.
1954 * if we don't reclaim here, the shrink_zone from balance_pgdat
1955 * will pick up pages from other mem cgroup's as well. We hack
1956 * the priority and make it zero.
1957 */
1958 shrink_zone(0, zone, &sc);
1959 return sc.nr_reclaimed;
1960}
1961
e1a1cd59 1962unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
1963 gfp_t gfp_mask,
1964 bool noswap,
1965 unsigned int swappiness)
66e1707b 1966{
4e416953 1967 struct zonelist *zonelist;
66e1707b 1968 struct scan_control sc = {
66e1707b 1969 .may_writepage = !laptop_mode,
a6dc60f8 1970 .may_unmap = 1,
2e2e4259 1971 .may_swap = !noswap,
22fba335 1972 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a7885eb8 1973 .swappiness = swappiness,
66e1707b
BS
1974 .order = 0,
1975 .mem_cgroup = mem_cont,
327c0e96 1976 .nodemask = NULL, /* we don't care the placement */
66e1707b 1977 };
66e1707b 1978
dd1a239f
MG
1979 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1980 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1981 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1982 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1983}
1984#endif
1985
f50de2d3 1986/* is kswapd sleeping prematurely? */
bb3ab596 1987static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
f50de2d3 1988{
bb3ab596 1989 int i;
f50de2d3
MG
1990
1991 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1992 if (remaining)
1993 return 1;
1994
1995 /* If after HZ/10, a zone is below the high mark, it's premature */
bb3ab596
KM
1996 for (i = 0; i < pgdat->nr_zones; i++) {
1997 struct zone *zone = pgdat->node_zones + i;
1998
1999 if (!populated_zone(zone))
2000 continue;
2001
93e4a89a 2002 if (zone->all_unreclaimable)
de3fab39
KM
2003 continue;
2004
f50de2d3
MG
2005 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
2006 0, 0))
2007 return 1;
bb3ab596 2008 }
f50de2d3
MG
2009
2010 return 0;
2011}
2012
1da177e4
LT
2013/*
2014 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2015 * they are all at high_wmark_pages(zone).
1da177e4 2016 *
1da177e4
LT
2017 * Returns the number of pages which were actually freed.
2018 *
2019 * There is special handling here for zones which are full of pinned pages.
2020 * This can happen if the pages are all mlocked, or if they are all used by
2021 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2022 * What we do is to detect the case where all pages in the zone have been
2023 * scanned twice and there has been zero successful reclaim. Mark the zone as
2024 * dead and from now on, only perform a short scan. Basically we're polling
2025 * the zone for when the problem goes away.
2026 *
2027 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2028 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2029 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2030 * lower zones regardless of the number of free pages in the lower zones. This
2031 * interoperates with the page allocator fallback scheme to ensure that aging
2032 * of pages is balanced across the zones.
1da177e4 2033 */
d6277db4 2034static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 2035{
1da177e4
LT
2036 int all_zones_ok;
2037 int priority;
2038 int i;
69e05944 2039 unsigned long total_scanned;
1da177e4 2040 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
2041 struct scan_control sc = {
2042 .gfp_mask = GFP_KERNEL,
a6dc60f8 2043 .may_unmap = 1,
2e2e4259 2044 .may_swap = 1,
22fba335
KM
2045 /*
2046 * kswapd doesn't want to be bailed out while reclaim. because
2047 * we want to put equal scanning pressure on each zone.
2048 */
2049 .nr_to_reclaim = ULONG_MAX,
d6277db4 2050 .swappiness = vm_swappiness,
5ad333eb 2051 .order = order,
66e1707b 2052 .mem_cgroup = NULL,
179e9639 2053 };
3bb1a852
MB
2054 /*
2055 * temp_priority is used to remember the scanning priority at which
41858966
MG
2056 * this zone was successfully refilled to
2057 * free_pages == high_wmark_pages(zone).
3bb1a852
MB
2058 */
2059 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
2060
2061loop_again:
2062 total_scanned = 0;
a79311c1 2063 sc.nr_reclaimed = 0;
c0bbbc73 2064 sc.may_writepage = !laptop_mode;
f8891e5e 2065 count_vm_event(PAGEOUTRUN);
1da177e4 2066
3bb1a852
MB
2067 for (i = 0; i < pgdat->nr_zones; i++)
2068 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
2069
2070 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2071 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2072 unsigned long lru_pages = 0;
bb3ab596 2073 int has_under_min_watermark_zone = 0;
1da177e4 2074
f7b7fd8f
RR
2075 /* The swap token gets in the way of swapout... */
2076 if (!priority)
2077 disable_swap_token();
2078
1da177e4
LT
2079 all_zones_ok = 1;
2080
d6277db4
RW
2081 /*
2082 * Scan in the highmem->dma direction for the highest
2083 * zone which needs scanning
2084 */
2085 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2086 struct zone *zone = pgdat->node_zones + i;
1da177e4 2087
d6277db4
RW
2088 if (!populated_zone(zone))
2089 continue;
1da177e4 2090
93e4a89a 2091 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2092 continue;
1da177e4 2093
556adecb
RR
2094 /*
2095 * Do some background aging of the anon list, to give
2096 * pages a chance to be referenced before reclaiming.
2097 */
14797e23 2098 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2099 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2100 &sc, priority, 0);
2101
41858966
MG
2102 if (!zone_watermark_ok(zone, order,
2103 high_wmark_pages(zone), 0, 0)) {
d6277db4 2104 end_zone = i;
e1dbeda6 2105 break;
1da177e4 2106 }
1da177e4 2107 }
e1dbeda6
AM
2108 if (i < 0)
2109 goto out;
2110
1da177e4
LT
2111 for (i = 0; i <= end_zone; i++) {
2112 struct zone *zone = pgdat->node_zones + i;
2113
adea02a1 2114 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2115 }
2116
2117 /*
2118 * Now scan the zone in the dma->highmem direction, stopping
2119 * at the last zone which needs scanning.
2120 *
2121 * We do this because the page allocator works in the opposite
2122 * direction. This prevents the page allocator from allocating
2123 * pages behind kswapd's direction of progress, which would
2124 * cause too much scanning of the lower zones.
2125 */
2126 for (i = 0; i <= end_zone; i++) {
2127 struct zone *zone = pgdat->node_zones + i;
b15e0905 2128 int nr_slab;
4e416953 2129 int nid, zid;
1da177e4 2130
f3fe6512 2131 if (!populated_zone(zone))
1da177e4
LT
2132 continue;
2133
93e4a89a 2134 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2135 continue;
2136
3bb1a852 2137 temp_priority[i] = priority;
1da177e4 2138 sc.nr_scanned = 0;
3bb1a852 2139 note_zone_scanning_priority(zone, priority);
4e416953
BS
2140
2141 nid = pgdat->node_id;
2142 zid = zone_idx(zone);
2143 /*
2144 * Call soft limit reclaim before calling shrink_zone.
2145 * For now we ignore the return value
2146 */
2147 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2148 nid, zid);
32a4330d
RR
2149 /*
2150 * We put equal pressure on every zone, unless one
2151 * zone has way too many pages free already.
2152 */
41858966
MG
2153 if (!zone_watermark_ok(zone, order,
2154 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 2155 shrink_zone(priority, zone, &sc);
1da177e4 2156 reclaim_state->reclaimed_slab = 0;
b15e0905 2157 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2158 lru_pages);
a79311c1 2159 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 2160 total_scanned += sc.nr_scanned;
93e4a89a 2161 if (zone->all_unreclaimable)
1da177e4 2162 continue;
93e4a89a
KM
2163 if (nr_slab == 0 &&
2164 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2165 zone->all_unreclaimable = 1;
1da177e4
LT
2166 /*
2167 * If we've done a decent amount of scanning and
2168 * the reclaim ratio is low, start doing writepage
2169 * even in laptop mode
2170 */
2171 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2172 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2173 sc.may_writepage = 1;
bb3ab596 2174
45973d74
MK
2175 if (!zone_watermark_ok(zone, order,
2176 high_wmark_pages(zone), end_zone, 0)) {
2177 all_zones_ok = 0;
2178 /*
2179 * We are still under min water mark. This
2180 * means that we have a GFP_ATOMIC allocation
2181 * failure risk. Hurry up!
2182 */
2183 if (!zone_watermark_ok(zone, order,
2184 min_wmark_pages(zone), end_zone, 0))
2185 has_under_min_watermark_zone = 1;
2186 }
bb3ab596 2187
1da177e4 2188 }
1da177e4
LT
2189 if (all_zones_ok)
2190 break; /* kswapd: all done */
2191 /*
2192 * OK, kswapd is getting into trouble. Take a nap, then take
2193 * another pass across the zones.
2194 */
bb3ab596
KM
2195 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2196 if (has_under_min_watermark_zone)
2197 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2198 else
2199 congestion_wait(BLK_RW_ASYNC, HZ/10);
2200 }
1da177e4
LT
2201
2202 /*
2203 * We do this so kswapd doesn't build up large priorities for
2204 * example when it is freeing in parallel with allocators. It
2205 * matches the direct reclaim path behaviour in terms of impact
2206 * on zone->*_priority.
2207 */
a79311c1 2208 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2209 break;
2210 }
2211out:
3bb1a852
MB
2212 /*
2213 * Note within each zone the priority level at which this zone was
2214 * brought into a happy state. So that the next thread which scans this
2215 * zone will start out at that priority level.
2216 */
1da177e4
LT
2217 for (i = 0; i < pgdat->nr_zones; i++) {
2218 struct zone *zone = pgdat->node_zones + i;
2219
3bb1a852 2220 zone->prev_priority = temp_priority[i];
1da177e4
LT
2221 }
2222 if (!all_zones_ok) {
2223 cond_resched();
8357376d
RW
2224
2225 try_to_freeze();
2226
73ce02e9
KM
2227 /*
2228 * Fragmentation may mean that the system cannot be
2229 * rebalanced for high-order allocations in all zones.
2230 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2231 * it means the zones have been fully scanned and are still
2232 * not balanced. For high-order allocations, there is
2233 * little point trying all over again as kswapd may
2234 * infinite loop.
2235 *
2236 * Instead, recheck all watermarks at order-0 as they
2237 * are the most important. If watermarks are ok, kswapd will go
2238 * back to sleep. High-order users can still perform direct
2239 * reclaim if they wish.
2240 */
2241 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2242 order = sc.order = 0;
2243
1da177e4
LT
2244 goto loop_again;
2245 }
2246
a79311c1 2247 return sc.nr_reclaimed;
1da177e4
LT
2248}
2249
2250/*
2251 * The background pageout daemon, started as a kernel thread
4f98a2fe 2252 * from the init process.
1da177e4
LT
2253 *
2254 * This basically trickles out pages so that we have _some_
2255 * free memory available even if there is no other activity
2256 * that frees anything up. This is needed for things like routing
2257 * etc, where we otherwise might have all activity going on in
2258 * asynchronous contexts that cannot page things out.
2259 *
2260 * If there are applications that are active memory-allocators
2261 * (most normal use), this basically shouldn't matter.
2262 */
2263static int kswapd(void *p)
2264{
2265 unsigned long order;
2266 pg_data_t *pgdat = (pg_data_t*)p;
2267 struct task_struct *tsk = current;
2268 DEFINE_WAIT(wait);
2269 struct reclaim_state reclaim_state = {
2270 .reclaimed_slab = 0,
2271 };
a70f7302 2272 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2273
cf40bd16
NP
2274 lockdep_set_current_reclaim_state(GFP_KERNEL);
2275
174596a0 2276 if (!cpumask_empty(cpumask))
c5f59f08 2277 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2278 current->reclaim_state = &reclaim_state;
2279
2280 /*
2281 * Tell the memory management that we're a "memory allocator",
2282 * and that if we need more memory we should get access to it
2283 * regardless (see "__alloc_pages()"). "kswapd" should
2284 * never get caught in the normal page freeing logic.
2285 *
2286 * (Kswapd normally doesn't need memory anyway, but sometimes
2287 * you need a small amount of memory in order to be able to
2288 * page out something else, and this flag essentially protects
2289 * us from recursively trying to free more memory as we're
2290 * trying to free the first piece of memory in the first place).
2291 */
930d9152 2292 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2293 set_freezable();
1da177e4
LT
2294
2295 order = 0;
2296 for ( ; ; ) {
2297 unsigned long new_order;
8fe23e05 2298 int ret;
3e1d1d28 2299
1da177e4
LT
2300 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2301 new_order = pgdat->kswapd_max_order;
2302 pgdat->kswapd_max_order = 0;
2303 if (order < new_order) {
2304 /*
2305 * Don't sleep if someone wants a larger 'order'
2306 * allocation
2307 */
2308 order = new_order;
2309 } else {
f50de2d3
MG
2310 if (!freezing(current) && !kthread_should_stop()) {
2311 long remaining = 0;
2312
2313 /* Try to sleep for a short interval */
bb3ab596 2314 if (!sleeping_prematurely(pgdat, order, remaining)) {
f50de2d3
MG
2315 remaining = schedule_timeout(HZ/10);
2316 finish_wait(&pgdat->kswapd_wait, &wait);
2317 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2318 }
2319
2320 /*
2321 * After a short sleep, check if it was a
2322 * premature sleep. If not, then go fully
2323 * to sleep until explicitly woken up
2324 */
33906bc5
MG
2325 if (!sleeping_prematurely(pgdat, order, remaining)) {
2326 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
f50de2d3 2327 schedule();
33906bc5 2328 } else {
f50de2d3 2329 if (remaining)
bb3ab596 2330 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
f50de2d3 2331 else
bb3ab596 2332 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
f50de2d3
MG
2333 }
2334 }
b1296cc4 2335
1da177e4
LT
2336 order = pgdat->kswapd_max_order;
2337 }
2338 finish_wait(&pgdat->kswapd_wait, &wait);
2339
8fe23e05
DR
2340 ret = try_to_freeze();
2341 if (kthread_should_stop())
2342 break;
2343
2344 /*
2345 * We can speed up thawing tasks if we don't call balance_pgdat
2346 * after returning from the refrigerator
2347 */
33906bc5
MG
2348 if (!ret) {
2349 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
b1296cc4 2350 balance_pgdat(pgdat, order);
33906bc5 2351 }
1da177e4
LT
2352 }
2353 return 0;
2354}
2355
2356/*
2357 * A zone is low on free memory, so wake its kswapd task to service it.
2358 */
2359void wakeup_kswapd(struct zone *zone, int order)
2360{
2361 pg_data_t *pgdat;
2362
f3fe6512 2363 if (!populated_zone(zone))
1da177e4
LT
2364 return;
2365
2366 pgdat = zone->zone_pgdat;
41858966 2367 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2368 return;
2369 if (pgdat->kswapd_max_order < order)
2370 pgdat->kswapd_max_order = order;
33906bc5 2371 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
02a0e53d 2372 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2373 return;
8d0986e2 2374 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2375 return;
8d0986e2 2376 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2377}
2378
adea02a1
WF
2379/*
2380 * The reclaimable count would be mostly accurate.
2381 * The less reclaimable pages may be
2382 * - mlocked pages, which will be moved to unevictable list when encountered
2383 * - mapped pages, which may require several travels to be reclaimed
2384 * - dirty pages, which is not "instantly" reclaimable
2385 */
2386unsigned long global_reclaimable_pages(void)
4f98a2fe 2387{
adea02a1
WF
2388 int nr;
2389
2390 nr = global_page_state(NR_ACTIVE_FILE) +
2391 global_page_state(NR_INACTIVE_FILE);
2392
2393 if (nr_swap_pages > 0)
2394 nr += global_page_state(NR_ACTIVE_ANON) +
2395 global_page_state(NR_INACTIVE_ANON);
2396
2397 return nr;
2398}
2399
2400unsigned long zone_reclaimable_pages(struct zone *zone)
2401{
2402 int nr;
2403
2404 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2405 zone_page_state(zone, NR_INACTIVE_FILE);
2406
2407 if (nr_swap_pages > 0)
2408 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2409 zone_page_state(zone, NR_INACTIVE_ANON);
2410
2411 return nr;
4f98a2fe
RR
2412}
2413
c6f37f12 2414#ifdef CONFIG_HIBERNATION
1da177e4 2415/*
7b51755c 2416 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2417 * freed pages.
2418 *
2419 * Rather than trying to age LRUs the aim is to preserve the overall
2420 * LRU order by reclaiming preferentially
2421 * inactive > active > active referenced > active mapped
1da177e4 2422 */
7b51755c 2423unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2424{
d6277db4 2425 struct reclaim_state reclaim_state;
d6277db4 2426 struct scan_control sc = {
7b51755c
KM
2427 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2428 .may_swap = 1,
2429 .may_unmap = 1,
d6277db4 2430 .may_writepage = 1,
7b51755c
KM
2431 .nr_to_reclaim = nr_to_reclaim,
2432 .hibernation_mode = 1,
2433 .swappiness = vm_swappiness,
2434 .order = 0,
1da177e4 2435 };
7b51755c
KM
2436 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2437 struct task_struct *p = current;
2438 unsigned long nr_reclaimed;
1da177e4 2439
7b51755c
KM
2440 p->flags |= PF_MEMALLOC;
2441 lockdep_set_current_reclaim_state(sc.gfp_mask);
2442 reclaim_state.reclaimed_slab = 0;
2443 p->reclaim_state = &reclaim_state;
d6277db4 2444
7b51755c 2445 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 2446
7b51755c
KM
2447 p->reclaim_state = NULL;
2448 lockdep_clear_current_reclaim_state();
2449 p->flags &= ~PF_MEMALLOC;
d6277db4 2450
7b51755c 2451 return nr_reclaimed;
1da177e4 2452}
c6f37f12 2453#endif /* CONFIG_HIBERNATION */
1da177e4 2454
1da177e4
LT
2455/* It's optimal to keep kswapds on the same CPUs as their memory, but
2456 not required for correctness. So if the last cpu in a node goes
2457 away, we get changed to run anywhere: as the first one comes back,
2458 restore their cpu bindings. */
9c7b216d 2459static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2460 unsigned long action, void *hcpu)
1da177e4 2461{
58c0a4a7 2462 int nid;
1da177e4 2463
8bb78442 2464 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2465 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2466 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2467 const struct cpumask *mask;
2468
2469 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2470
3e597945 2471 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2472 /* One of our CPUs online: restore mask */
c5f59f08 2473 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2474 }
2475 }
2476 return NOTIFY_OK;
2477}
1da177e4 2478
3218ae14
YG
2479/*
2480 * This kswapd start function will be called by init and node-hot-add.
2481 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2482 */
2483int kswapd_run(int nid)
2484{
2485 pg_data_t *pgdat = NODE_DATA(nid);
2486 int ret = 0;
2487
2488 if (pgdat->kswapd)
2489 return 0;
2490
2491 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2492 if (IS_ERR(pgdat->kswapd)) {
2493 /* failure at boot is fatal */
2494 BUG_ON(system_state == SYSTEM_BOOTING);
2495 printk("Failed to start kswapd on node %d\n",nid);
2496 ret = -1;
2497 }
2498 return ret;
2499}
2500
8fe23e05
DR
2501/*
2502 * Called by memory hotplug when all memory in a node is offlined.
2503 */
2504void kswapd_stop(int nid)
2505{
2506 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2507
2508 if (kswapd)
2509 kthread_stop(kswapd);
2510}
2511
1da177e4
LT
2512static int __init kswapd_init(void)
2513{
3218ae14 2514 int nid;
69e05944 2515
1da177e4 2516 swap_setup();
9422ffba 2517 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2518 kswapd_run(nid);
1da177e4
LT
2519 hotcpu_notifier(cpu_callback, 0);
2520 return 0;
2521}
2522
2523module_init(kswapd_init)
9eeff239
CL
2524
2525#ifdef CONFIG_NUMA
2526/*
2527 * Zone reclaim mode
2528 *
2529 * If non-zero call zone_reclaim when the number of free pages falls below
2530 * the watermarks.
9eeff239
CL
2531 */
2532int zone_reclaim_mode __read_mostly;
2533
1b2ffb78 2534#define RECLAIM_OFF 0
7d03431c 2535#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2536#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2537#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2538
a92f7126
CL
2539/*
2540 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2541 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2542 * a zone.
2543 */
2544#define ZONE_RECLAIM_PRIORITY 4
2545
9614634f
CL
2546/*
2547 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2548 * occur.
2549 */
2550int sysctl_min_unmapped_ratio = 1;
2551
0ff38490
CL
2552/*
2553 * If the number of slab pages in a zone grows beyond this percentage then
2554 * slab reclaim needs to occur.
2555 */
2556int sysctl_min_slab_ratio = 5;
2557
90afa5de
MG
2558static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2559{
2560 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2561 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2562 zone_page_state(zone, NR_ACTIVE_FILE);
2563
2564 /*
2565 * It's possible for there to be more file mapped pages than
2566 * accounted for by the pages on the file LRU lists because
2567 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2568 */
2569 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2570}
2571
2572/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2573static long zone_pagecache_reclaimable(struct zone *zone)
2574{
2575 long nr_pagecache_reclaimable;
2576 long delta = 0;
2577
2578 /*
2579 * If RECLAIM_SWAP is set, then all file pages are considered
2580 * potentially reclaimable. Otherwise, we have to worry about
2581 * pages like swapcache and zone_unmapped_file_pages() provides
2582 * a better estimate
2583 */
2584 if (zone_reclaim_mode & RECLAIM_SWAP)
2585 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2586 else
2587 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2588
2589 /* If we can't clean pages, remove dirty pages from consideration */
2590 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2591 delta += zone_page_state(zone, NR_FILE_DIRTY);
2592
2593 /* Watch for any possible underflows due to delta */
2594 if (unlikely(delta > nr_pagecache_reclaimable))
2595 delta = nr_pagecache_reclaimable;
2596
2597 return nr_pagecache_reclaimable - delta;
2598}
2599
9eeff239
CL
2600/*
2601 * Try to free up some pages from this zone through reclaim.
2602 */
179e9639 2603static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2604{
7fb2d46d 2605 /* Minimum pages needed in order to stay on node */
69e05944 2606 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2607 struct task_struct *p = current;
2608 struct reclaim_state reclaim_state;
8695949a 2609 int priority;
179e9639
AM
2610 struct scan_control sc = {
2611 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2612 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2613 .may_swap = 1,
22fba335
KM
2614 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2615 SWAP_CLUSTER_MAX),
179e9639 2616 .gfp_mask = gfp_mask,
d6277db4 2617 .swappiness = vm_swappiness,
bd2f6199 2618 .order = order,
179e9639 2619 };
83e33a47 2620 unsigned long slab_reclaimable;
9eeff239 2621
9eeff239 2622 cond_resched();
d4f7796e
CL
2623 /*
2624 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2625 * and we also need to be able to write out pages for RECLAIM_WRITE
2626 * and RECLAIM_SWAP.
2627 */
2628 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 2629 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
2630 reclaim_state.reclaimed_slab = 0;
2631 p->reclaim_state = &reclaim_state;
c84db23c 2632
90afa5de 2633 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
2634 /*
2635 * Free memory by calling shrink zone with increasing
2636 * priorities until we have enough memory freed.
2637 */
2638 priority = ZONE_RECLAIM_PRIORITY;
2639 do {
3bb1a852 2640 note_zone_scanning_priority(zone, priority);
a79311c1 2641 shrink_zone(priority, zone, &sc);
0ff38490 2642 priority--;
a79311c1 2643 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2644 }
c84db23c 2645
83e33a47
CL
2646 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2647 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2648 /*
7fb2d46d 2649 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2650 * many pages were freed in this zone. So we take the current
2651 * number of slab pages and shake the slab until it is reduced
2652 * by the same nr_pages that we used for reclaiming unmapped
2653 * pages.
2a16e3f4 2654 *
0ff38490
CL
2655 * Note that shrink_slab will free memory on all zones and may
2656 * take a long time.
2a16e3f4 2657 */
0ff38490 2658 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2659 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2660 slab_reclaimable - nr_pages)
0ff38490 2661 ;
83e33a47
CL
2662
2663 /*
2664 * Update nr_reclaimed by the number of slab pages we
2665 * reclaimed from this zone.
2666 */
a79311c1 2667 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2668 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2669 }
2670
9eeff239 2671 p->reclaim_state = NULL;
d4f7796e 2672 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 2673 lockdep_clear_current_reclaim_state();
a79311c1 2674 return sc.nr_reclaimed >= nr_pages;
9eeff239 2675}
179e9639
AM
2676
2677int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2678{
179e9639 2679 int node_id;
d773ed6b 2680 int ret;
179e9639
AM
2681
2682 /*
0ff38490
CL
2683 * Zone reclaim reclaims unmapped file backed pages and
2684 * slab pages if we are over the defined limits.
34aa1330 2685 *
9614634f
CL
2686 * A small portion of unmapped file backed pages is needed for
2687 * file I/O otherwise pages read by file I/O will be immediately
2688 * thrown out if the zone is overallocated. So we do not reclaim
2689 * if less than a specified percentage of the zone is used by
2690 * unmapped file backed pages.
179e9639 2691 */
90afa5de
MG
2692 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2693 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 2694 return ZONE_RECLAIM_FULL;
179e9639 2695
93e4a89a 2696 if (zone->all_unreclaimable)
fa5e084e 2697 return ZONE_RECLAIM_FULL;
d773ed6b 2698
179e9639 2699 /*
d773ed6b 2700 * Do not scan if the allocation should not be delayed.
179e9639 2701 */
d773ed6b 2702 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 2703 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
2704
2705 /*
2706 * Only run zone reclaim on the local zone or on zones that do not
2707 * have associated processors. This will favor the local processor
2708 * over remote processors and spread off node memory allocations
2709 * as wide as possible.
2710 */
89fa3024 2711 node_id = zone_to_nid(zone);
37c0708d 2712 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 2713 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
2714
2715 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
2716 return ZONE_RECLAIM_NOSCAN;
2717
d773ed6b
DR
2718 ret = __zone_reclaim(zone, gfp_mask, order);
2719 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2720
24cf7251
MG
2721 if (!ret)
2722 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2723
d773ed6b 2724 return ret;
179e9639 2725}
9eeff239 2726#endif
894bc310 2727
894bc310
LS
2728/*
2729 * page_evictable - test whether a page is evictable
2730 * @page: the page to test
2731 * @vma: the VMA in which the page is or will be mapped, may be NULL
2732 *
2733 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2734 * lists vs unevictable list. The vma argument is !NULL when called from the
2735 * fault path to determine how to instantate a new page.
894bc310
LS
2736 *
2737 * Reasons page might not be evictable:
ba9ddf49 2738 * (1) page's mapping marked unevictable
b291f000 2739 * (2) page is part of an mlocked VMA
ba9ddf49 2740 *
894bc310
LS
2741 */
2742int page_evictable(struct page *page, struct vm_area_struct *vma)
2743{
2744
ba9ddf49
LS
2745 if (mapping_unevictable(page_mapping(page)))
2746 return 0;
2747
b291f000
NP
2748 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2749 return 0;
894bc310
LS
2750
2751 return 1;
2752}
89e004ea
LS
2753
2754/**
2755 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2756 * @page: page to check evictability and move to appropriate lru list
2757 * @zone: zone page is in
2758 *
2759 * Checks a page for evictability and moves the page to the appropriate
2760 * zone lru list.
2761 *
2762 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2763 * have PageUnevictable set.
2764 */
2765static void check_move_unevictable_page(struct page *page, struct zone *zone)
2766{
2767 VM_BUG_ON(PageActive(page));
2768
2769retry:
2770 ClearPageUnevictable(page);
2771 if (page_evictable(page, NULL)) {
401a8e1c 2772 enum lru_list l = page_lru_base_type(page);
af936a16 2773
89e004ea
LS
2774 __dec_zone_state(zone, NR_UNEVICTABLE);
2775 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2776 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2777 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2778 __count_vm_event(UNEVICTABLE_PGRESCUED);
2779 } else {
2780 /*
2781 * rotate unevictable list
2782 */
2783 SetPageUnevictable(page);
2784 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2785 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2786 if (page_evictable(page, NULL))
2787 goto retry;
2788 }
2789}
2790
2791/**
2792 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2793 * @mapping: struct address_space to scan for evictable pages
2794 *
2795 * Scan all pages in mapping. Check unevictable pages for
2796 * evictability and move them to the appropriate zone lru list.
2797 */
2798void scan_mapping_unevictable_pages(struct address_space *mapping)
2799{
2800 pgoff_t next = 0;
2801 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2802 PAGE_CACHE_SHIFT;
2803 struct zone *zone;
2804 struct pagevec pvec;
2805
2806 if (mapping->nrpages == 0)
2807 return;
2808
2809 pagevec_init(&pvec, 0);
2810 while (next < end &&
2811 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2812 int i;
2813 int pg_scanned = 0;
2814
2815 zone = NULL;
2816
2817 for (i = 0; i < pagevec_count(&pvec); i++) {
2818 struct page *page = pvec.pages[i];
2819 pgoff_t page_index = page->index;
2820 struct zone *pagezone = page_zone(page);
2821
2822 pg_scanned++;
2823 if (page_index > next)
2824 next = page_index;
2825 next++;
2826
2827 if (pagezone != zone) {
2828 if (zone)
2829 spin_unlock_irq(&zone->lru_lock);
2830 zone = pagezone;
2831 spin_lock_irq(&zone->lru_lock);
2832 }
2833
2834 if (PageLRU(page) && PageUnevictable(page))
2835 check_move_unevictable_page(page, zone);
2836 }
2837 if (zone)
2838 spin_unlock_irq(&zone->lru_lock);
2839 pagevec_release(&pvec);
2840
2841 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2842 }
2843
2844}
af936a16
LS
2845
2846/**
2847 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2848 * @zone - zone of which to scan the unevictable list
2849 *
2850 * Scan @zone's unevictable LRU lists to check for pages that have become
2851 * evictable. Move those that have to @zone's inactive list where they
2852 * become candidates for reclaim, unless shrink_inactive_zone() decides
2853 * to reactivate them. Pages that are still unevictable are rotated
2854 * back onto @zone's unevictable list.
2855 */
2856#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2857static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2858{
2859 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2860 unsigned long scan;
2861 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2862
2863 while (nr_to_scan > 0) {
2864 unsigned long batch_size = min(nr_to_scan,
2865 SCAN_UNEVICTABLE_BATCH_SIZE);
2866
2867 spin_lock_irq(&zone->lru_lock);
2868 for (scan = 0; scan < batch_size; scan++) {
2869 struct page *page = lru_to_page(l_unevictable);
2870
2871 if (!trylock_page(page))
2872 continue;
2873
2874 prefetchw_prev_lru_page(page, l_unevictable, flags);
2875
2876 if (likely(PageLRU(page) && PageUnevictable(page)))
2877 check_move_unevictable_page(page, zone);
2878
2879 unlock_page(page);
2880 }
2881 spin_unlock_irq(&zone->lru_lock);
2882
2883 nr_to_scan -= batch_size;
2884 }
2885}
2886
2887
2888/**
2889 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2890 *
2891 * A really big hammer: scan all zones' unevictable LRU lists to check for
2892 * pages that have become evictable. Move those back to the zones'
2893 * inactive list where they become candidates for reclaim.
2894 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2895 * and we add swap to the system. As such, it runs in the context of a task
2896 * that has possibly/probably made some previously unevictable pages
2897 * evictable.
2898 */
ff30153b 2899static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2900{
2901 struct zone *zone;
2902
2903 for_each_zone(zone) {
2904 scan_zone_unevictable_pages(zone);
2905 }
2906}
2907
2908/*
2909 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2910 * all nodes' unevictable lists for evictable pages
2911 */
2912unsigned long scan_unevictable_pages;
2913
2914int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 2915 void __user *buffer,
af936a16
LS
2916 size_t *length, loff_t *ppos)
2917{
8d65af78 2918 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
2919
2920 if (write && *(unsigned long *)table->data)
2921 scan_all_zones_unevictable_pages();
2922
2923 scan_unevictable_pages = 0;
2924 return 0;
2925}
2926
2927/*
2928 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2929 * a specified node's per zone unevictable lists for evictable pages.
2930 */
2931
2932static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2933 struct sysdev_attribute *attr,
2934 char *buf)
2935{
2936 return sprintf(buf, "0\n"); /* always zero; should fit... */
2937}
2938
2939static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2940 struct sysdev_attribute *attr,
2941 const char *buf, size_t count)
2942{
2943 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2944 struct zone *zone;
2945 unsigned long res;
2946 unsigned long req = strict_strtoul(buf, 10, &res);
2947
2948 if (!req)
2949 return 1; /* zero is no-op */
2950
2951 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2952 if (!populated_zone(zone))
2953 continue;
2954 scan_zone_unevictable_pages(zone);
2955 }
2956 return 1;
2957}
2958
2959
2960static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2961 read_scan_unevictable_node,
2962 write_scan_unevictable_node);
2963
2964int scan_unevictable_register_node(struct node *node)
2965{
2966 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2967}
2968
2969void scan_unevictable_unregister_node(struct node *node)
2970{
2971 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2972}
2973