mm/vmscan: Consider anonymous pages without swap
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
26aa2d19 44#include <linux/migrate.h>
873b4771 45#include <linux/delayacct.h>
af936a16 46#include <linux/sysctl.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55#include <asm/div64.h>
56
57#include <linux/swapops.h>
117aad1e 58#include <linux/balloon_compaction.h>
1da177e4 59
0f8053a5
NP
60#include "internal.h"
61
33906bc5
MG
62#define CREATE_TRACE_POINTS
63#include <trace/events/vmscan.h>
64
1da177e4 65struct scan_control {
22fba335
KM
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
ee814fe2
JW
69 /*
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
71 * are scanned.
72 */
73 nodemask_t *nodemask;
9e3b2f8c 74
f16015fb
JW
75 /*
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
78 */
79 struct mem_cgroup *target_mem_cgroup;
66e1707b 80
7cf111bc
JW
81 /*
82 * Scan pressure balancing between anon and file LRUs
83 */
84 unsigned long anon_cost;
85 unsigned long file_cost;
86
b91ac374
JW
87 /* Can active pages be deactivated as part of reclaim? */
88#define DEACTIVATE_ANON 1
89#define DEACTIVATE_FILE 2
90 unsigned int may_deactivate:2;
91 unsigned int force_deactivate:1;
92 unsigned int skipped_deactivate:1;
93
1276ad68 94 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
95 unsigned int may_writepage:1;
96
97 /* Can mapped pages be reclaimed? */
98 unsigned int may_unmap:1;
99
100 /* Can pages be swapped as part of reclaim? */
101 unsigned int may_swap:1;
102
d6622f63 103 /*
f56ce412
JW
104 * Cgroup memory below memory.low is protected as long as we
105 * don't threaten to OOM. If any cgroup is reclaimed at
106 * reduced force or passed over entirely due to its memory.low
107 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 * result, then go back for one more cycle that reclaims the protected
109 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
110 */
111 unsigned int memcg_low_reclaim:1;
112 unsigned int memcg_low_skipped:1;
241994ed 113
ee814fe2
JW
114 unsigned int hibernation_mode:1;
115
116 /* One of the zones is ready for compaction */
117 unsigned int compaction_ready:1;
118
b91ac374
JW
119 /* There is easily reclaimable cold cache in the current node */
120 unsigned int cache_trim_mode:1;
121
53138cea
JW
122 /* The file pages on the current node are dangerously low */
123 unsigned int file_is_tiny:1;
124
26aa2d19
DH
125 /* Always discard instead of demoting to lower tier memory */
126 unsigned int no_demotion:1;
127
bb451fdf
GT
128 /* Allocation order */
129 s8 order;
130
131 /* Scan (total_size >> priority) pages at once */
132 s8 priority;
133
134 /* The highest zone to isolate pages for reclaim from */
135 s8 reclaim_idx;
136
137 /* This context's GFP mask */
138 gfp_t gfp_mask;
139
ee814fe2
JW
140 /* Incremented by the number of inactive pages that were scanned */
141 unsigned long nr_scanned;
142
143 /* Number of pages freed so far during a call to shrink_zones() */
144 unsigned long nr_reclaimed;
d108c772
AR
145
146 struct {
147 unsigned int dirty;
148 unsigned int unqueued_dirty;
149 unsigned int congested;
150 unsigned int writeback;
151 unsigned int immediate;
152 unsigned int file_taken;
153 unsigned int taken;
154 } nr;
e5ca8071
YS
155
156 /* for recording the reclaimed slab by now */
157 struct reclaim_state reclaim_state;
1da177e4
LT
158};
159
1da177e4
LT
160#ifdef ARCH_HAS_PREFETCHW
161#define prefetchw_prev_lru_page(_page, _base, _field) \
162 do { \
163 if ((_page)->lru.prev != _base) { \
164 struct page *prev; \
165 \
166 prev = lru_to_page(&(_page->lru)); \
167 prefetchw(&prev->_field); \
168 } \
169 } while (0)
170#else
171#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
172#endif
173
174/*
c843966c 175 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
176 */
177int vm_swappiness = 60;
1da177e4 178
0a432dcb
YS
179static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
181{
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
184
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
187
188 task->reclaim_state = rs;
189}
190
1da177e4
LT
191static LIST_HEAD(shrinker_list);
192static DECLARE_RWSEM(shrinker_rwsem);
193
0a432dcb 194#ifdef CONFIG_MEMCG
a2fb1261 195static int shrinker_nr_max;
2bfd3637 196
3c6f17e6 197/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
198static inline int shrinker_map_size(int nr_items)
199{
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
201}
2bfd3637 202
3c6f17e6
YS
203static inline int shrinker_defer_size(int nr_items)
204{
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
206}
207
468ab843
YS
208static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
209 int nid)
210{
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
213}
214
e4262c4f 215static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size)
2bfd3637 218{
e4262c4f 219 struct shrinker_info *new, *old;
2bfd3637
YS
220 struct mem_cgroup_per_node *pn;
221 int nid;
3c6f17e6 222 int size = map_size + defer_size;
2bfd3637 223
2bfd3637
YS
224 for_each_node(nid) {
225 pn = memcg->nodeinfo[nid];
468ab843 226 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
227 /* Not yet online memcg */
228 if (!old)
229 return 0;
230
231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
232 if (!new)
233 return -ENOMEM;
234
3c6f17e6
YS
235 new->nr_deferred = (atomic_long_t *)(new + 1);
236 new->map = (void *)new->nr_deferred + defer_size;
237
238 /* map: set all old bits, clear all new bits */
239 memset(new->map, (int)0xff, old_map_size);
240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 /* nr_deferred: copy old values, clear all new values */
242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 memset((void *)new->nr_deferred + old_defer_size, 0,
244 defer_size - old_defer_size);
2bfd3637 245
e4262c4f 246 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 247 kvfree_rcu(old, rcu);
2bfd3637
YS
248 }
249
250 return 0;
251}
252
e4262c4f 253void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
254{
255 struct mem_cgroup_per_node *pn;
e4262c4f 256 struct shrinker_info *info;
2bfd3637
YS
257 int nid;
258
2bfd3637
YS
259 for_each_node(nid) {
260 pn = memcg->nodeinfo[nid];
e4262c4f
YS
261 info = rcu_dereference_protected(pn->shrinker_info, true);
262 kvfree(info);
263 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
264 }
265}
266
e4262c4f 267int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 268{
e4262c4f 269 struct shrinker_info *info;
2bfd3637 270 int nid, size, ret = 0;
3c6f17e6 271 int map_size, defer_size = 0;
2bfd3637 272
d27cf2aa 273 down_write(&shrinker_rwsem);
3c6f17e6
YS
274 map_size = shrinker_map_size(shrinker_nr_max);
275 defer_size = shrinker_defer_size(shrinker_nr_max);
276 size = map_size + defer_size;
2bfd3637 277 for_each_node(nid) {
e4262c4f
YS
278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
279 if (!info) {
280 free_shrinker_info(memcg);
2bfd3637
YS
281 ret = -ENOMEM;
282 break;
283 }
3c6f17e6
YS
284 info->nr_deferred = (atomic_long_t *)(info + 1);
285 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 287 }
d27cf2aa 288 up_write(&shrinker_rwsem);
2bfd3637
YS
289
290 return ret;
291}
292
3c6f17e6
YS
293static inline bool need_expand(int nr_max)
294{
295 return round_up(nr_max, BITS_PER_LONG) >
296 round_up(shrinker_nr_max, BITS_PER_LONG);
297}
298
e4262c4f 299static int expand_shrinker_info(int new_id)
2bfd3637 300{
3c6f17e6 301 int ret = 0;
a2fb1261 302 int new_nr_max = new_id + 1;
3c6f17e6
YS
303 int map_size, defer_size = 0;
304 int old_map_size, old_defer_size = 0;
2bfd3637
YS
305 struct mem_cgroup *memcg;
306
3c6f17e6 307 if (!need_expand(new_nr_max))
a2fb1261 308 goto out;
2bfd3637 309
2bfd3637 310 if (!root_mem_cgroup)
d27cf2aa
YS
311 goto out;
312
313 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 314
3c6f17e6
YS
315 map_size = shrinker_map_size(new_nr_max);
316 defer_size = shrinker_defer_size(new_nr_max);
317 old_map_size = shrinker_map_size(shrinker_nr_max);
318 old_defer_size = shrinker_defer_size(shrinker_nr_max);
319
2bfd3637
YS
320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
321 do {
3c6f17e6
YS
322 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 old_map_size, old_defer_size);
2bfd3637
YS
324 if (ret) {
325 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 326 goto out;
2bfd3637
YS
327 }
328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 329out:
2bfd3637 330 if (!ret)
a2fb1261 331 shrinker_nr_max = new_nr_max;
d27cf2aa 332
2bfd3637
YS
333 return ret;
334}
335
336void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
337{
338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 339 struct shrinker_info *info;
2bfd3637
YS
340
341 rcu_read_lock();
e4262c4f 342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
e4262c4f 345 set_bit(shrinker_id, info->map);
2bfd3637
YS
346 rcu_read_unlock();
347 }
348}
349
b4c2b231 350static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
351
352static int prealloc_memcg_shrinker(struct shrinker *shrinker)
353{
354 int id, ret = -ENOMEM;
355
476b30a0
YS
356 if (mem_cgroup_disabled())
357 return -ENOSYS;
358
b4c2b231
KT
359 down_write(&shrinker_rwsem);
360 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
362 if (id < 0)
363 goto unlock;
364
0a4465d3 365 if (id >= shrinker_nr_max) {
e4262c4f 366 if (expand_shrinker_info(id)) {
0a4465d3
KT
367 idr_remove(&shrinker_idr, id);
368 goto unlock;
369 }
0a4465d3 370 }
b4c2b231
KT
371 shrinker->id = id;
372 ret = 0;
373unlock:
374 up_write(&shrinker_rwsem);
375 return ret;
376}
377
378static void unregister_memcg_shrinker(struct shrinker *shrinker)
379{
380 int id = shrinker->id;
381
382 BUG_ON(id < 0);
383
41ca668a
YS
384 lockdep_assert_held(&shrinker_rwsem);
385
b4c2b231 386 idr_remove(&shrinker_idr, id);
b4c2b231 387}
b4c2b231 388
86750830
YS
389static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 struct mem_cgroup *memcg)
391{
392 struct shrinker_info *info;
393
394 info = shrinker_info_protected(memcg, nid);
395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
396}
397
398static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 struct mem_cgroup *memcg)
400{
401 struct shrinker_info *info;
402
403 info = shrinker_info_protected(memcg, nid);
404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
405}
406
a178015c
YS
407void reparent_shrinker_deferred(struct mem_cgroup *memcg)
408{
409 int i, nid;
410 long nr;
411 struct mem_cgroup *parent;
412 struct shrinker_info *child_info, *parent_info;
413
414 parent = parent_mem_cgroup(memcg);
415 if (!parent)
416 parent = root_mem_cgroup;
417
418 /* Prevent from concurrent shrinker_info expand */
419 down_read(&shrinker_rwsem);
420 for_each_node(nid) {
421 child_info = shrinker_info_protected(memcg, nid);
422 parent_info = shrinker_info_protected(parent, nid);
423 for (i = 0; i < shrinker_nr_max; i++) {
424 nr = atomic_long_read(&child_info->nr_deferred[i]);
425 atomic_long_add(nr, &parent_info->nr_deferred[i]);
426 }
427 }
428 up_read(&shrinker_rwsem);
429}
430
b5ead35e 431static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 432{
b5ead35e 433 return sc->target_mem_cgroup;
89b5fae5 434}
97c9341f
TH
435
436/**
b5ead35e 437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
438 * @sc: scan_control in question
439 *
440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
441 * completely broken with the legacy memcg and direct stalling in
442 * shrink_page_list() is used for throttling instead, which lacks all the
443 * niceties such as fairness, adaptive pausing, bandwidth proportional
444 * allocation and configurability.
445 *
446 * This function tests whether the vmscan currently in progress can assume
447 * that the normal dirty throttling mechanism is operational.
448 */
b5ead35e 449static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 450{
b5ead35e 451 if (!cgroup_reclaim(sc))
97c9341f
TH
452 return true;
453#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
455 return true;
456#endif
457 return false;
458}
91a45470 459#else
0a432dcb
YS
460static int prealloc_memcg_shrinker(struct shrinker *shrinker)
461{
476b30a0 462 return -ENOSYS;
0a432dcb
YS
463}
464
465static void unregister_memcg_shrinker(struct shrinker *shrinker)
466{
467}
468
86750830
YS
469static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 struct mem_cgroup *memcg)
471{
472 return 0;
473}
474
475static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 struct mem_cgroup *memcg)
477{
478 return 0;
479}
480
b5ead35e 481static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 482{
b5ead35e 483 return false;
89b5fae5 484}
97c9341f 485
b5ead35e 486static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
487{
488 return true;
489}
91a45470
KH
490#endif
491
86750830
YS
492static long xchg_nr_deferred(struct shrinker *shrinker,
493 struct shrink_control *sc)
494{
495 int nid = sc->nid;
496
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
498 nid = 0;
499
500 if (sc->memcg &&
501 (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 return xchg_nr_deferred_memcg(nid, shrinker,
503 sc->memcg);
504
505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
506}
507
508
509static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 struct shrink_control *sc)
511{
512 int nid = sc->nid;
513
514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
515 nid = 0;
516
517 if (sc->memcg &&
518 (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 return add_nr_deferred_memcg(nr, nid, shrinker,
520 sc->memcg);
521
522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
523}
524
26aa2d19
DH
525static bool can_demote(int nid, struct scan_control *sc)
526{
a2a36488 527 if (sc && sc->no_demotion)
26aa2d19
DH
528 return false;
529 if (next_demotion_node(nid) == NUMA_NO_NODE)
530 return false;
531
532 // FIXME: actually enable this later in the series
533 return false;
534}
535
a2a36488
KB
536static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
537 int nid,
538 struct scan_control *sc)
539{
540 if (memcg == NULL) {
541 /*
542 * For non-memcg reclaim, is there
543 * space in any swap device?
544 */
545 if (get_nr_swap_pages() > 0)
546 return true;
547 } else {
548 /* Is the memcg below its swap limit? */
549 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
550 return true;
551 }
552
553 /*
554 * The page can not be swapped.
555 *
556 * Can it be reclaimed from this node via demotion?
557 */
558 return can_demote(nid, sc);
559}
560
5a1c84b4
MG
561/*
562 * This misses isolated pages which are not accounted for to save counters.
563 * As the data only determines if reclaim or compaction continues, it is
564 * not expected that isolated pages will be a dominating factor.
565 */
566unsigned long zone_reclaimable_pages(struct zone *zone)
567{
568 unsigned long nr;
569
570 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
571 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 572 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
573 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
574 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
575
576 return nr;
577}
578
fd538803
MH
579/**
580 * lruvec_lru_size - Returns the number of pages on the given LRU list.
581 * @lruvec: lru vector
582 * @lru: lru to use
583 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
584 */
2091339d
YZ
585static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
586 int zone_idx)
c9f299d9 587{
de3b0150 588 unsigned long size = 0;
fd538803
MH
589 int zid;
590
de3b0150 591 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 592 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 593
fd538803
MH
594 if (!managed_zone(zone))
595 continue;
596
597 if (!mem_cgroup_disabled())
de3b0150 598 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 599 else
de3b0150 600 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 601 }
de3b0150 602 return size;
b4536f0c
MH
603}
604
1da177e4 605/*
1d3d4437 606 * Add a shrinker callback to be called from the vm.
1da177e4 607 */
8e04944f 608int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 609{
476b30a0
YS
610 unsigned int size;
611 int err;
612
613 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
614 err = prealloc_memcg_shrinker(shrinker);
615 if (err != -ENOSYS)
616 return err;
1d3d4437 617
476b30a0
YS
618 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
619 }
620
621 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
622 if (shrinker->flags & SHRINKER_NUMA_AWARE)
623 size *= nr_node_ids;
624
625 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
626 if (!shrinker->nr_deferred)
627 return -ENOMEM;
b4c2b231 628
8e04944f
TH
629 return 0;
630}
631
632void free_prealloced_shrinker(struct shrinker *shrinker)
633{
41ca668a
YS
634 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
635 down_write(&shrinker_rwsem);
b4c2b231 636 unregister_memcg_shrinker(shrinker);
41ca668a 637 up_write(&shrinker_rwsem);
476b30a0 638 return;
41ca668a 639 }
b4c2b231 640
8e04944f
TH
641 kfree(shrinker->nr_deferred);
642 shrinker->nr_deferred = NULL;
643}
1d3d4437 644
8e04944f
TH
645void register_shrinker_prepared(struct shrinker *shrinker)
646{
8e1f936b
RR
647 down_write(&shrinker_rwsem);
648 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 649 shrinker->flags |= SHRINKER_REGISTERED;
8e1f936b 650 up_write(&shrinker_rwsem);
8e04944f
TH
651}
652
653int register_shrinker(struct shrinker *shrinker)
654{
655 int err = prealloc_shrinker(shrinker);
656
657 if (err)
658 return err;
659 register_shrinker_prepared(shrinker);
1d3d4437 660 return 0;
1da177e4 661}
8e1f936b 662EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
663
664/*
665 * Remove one
666 */
8e1f936b 667void unregister_shrinker(struct shrinker *shrinker)
1da177e4 668{
41ca668a 669 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 670 return;
41ca668a 671
1da177e4
LT
672 down_write(&shrinker_rwsem);
673 list_del(&shrinker->list);
41ca668a
YS
674 shrinker->flags &= ~SHRINKER_REGISTERED;
675 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
676 unregister_memcg_shrinker(shrinker);
1da177e4 677 up_write(&shrinker_rwsem);
41ca668a 678
ae393321 679 kfree(shrinker->nr_deferred);
bb422a73 680 shrinker->nr_deferred = NULL;
1da177e4 681}
8e1f936b 682EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
683
684#define SHRINK_BATCH 128
1d3d4437 685
cb731d6c 686static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 687 struct shrinker *shrinker, int priority)
1d3d4437
GC
688{
689 unsigned long freed = 0;
690 unsigned long long delta;
691 long total_scan;
d5bc5fd3 692 long freeable;
1d3d4437
GC
693 long nr;
694 long new_nr;
1d3d4437
GC
695 long batch_size = shrinker->batch ? shrinker->batch
696 : SHRINK_BATCH;
5f33a080 697 long scanned = 0, next_deferred;
1d3d4437 698
d5bc5fd3 699 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
700 if (freeable == 0 || freeable == SHRINK_EMPTY)
701 return freeable;
1d3d4437
GC
702
703 /*
704 * copy the current shrinker scan count into a local variable
705 * and zero it so that other concurrent shrinker invocations
706 * don't also do this scanning work.
707 */
86750830 708 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 709
4b85afbd
JW
710 if (shrinker->seeks) {
711 delta = freeable >> priority;
712 delta *= 4;
713 do_div(delta, shrinker->seeks);
714 } else {
715 /*
716 * These objects don't require any IO to create. Trim
717 * them aggressively under memory pressure to keep
718 * them from causing refetches in the IO caches.
719 */
720 delta = freeable / 2;
721 }
172b06c3 722
18bb473e 723 total_scan = nr >> priority;
1d3d4437 724 total_scan += delta;
18bb473e 725 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
726
727 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 728 freeable, delta, total_scan, priority);
1d3d4437 729
0b1fb40a
VD
730 /*
731 * Normally, we should not scan less than batch_size objects in one
732 * pass to avoid too frequent shrinker calls, but if the slab has less
733 * than batch_size objects in total and we are really tight on memory,
734 * we will try to reclaim all available objects, otherwise we can end
735 * up failing allocations although there are plenty of reclaimable
736 * objects spread over several slabs with usage less than the
737 * batch_size.
738 *
739 * We detect the "tight on memory" situations by looking at the total
740 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 741 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
742 * scanning at high prio and therefore should try to reclaim as much as
743 * possible.
744 */
745 while (total_scan >= batch_size ||
d5bc5fd3 746 total_scan >= freeable) {
a0b02131 747 unsigned long ret;
0b1fb40a 748 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 749
0b1fb40a 750 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 751 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
752 ret = shrinker->scan_objects(shrinker, shrinkctl);
753 if (ret == SHRINK_STOP)
754 break;
755 freed += ret;
1d3d4437 756
d460acb5
CW
757 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
758 total_scan -= shrinkctl->nr_scanned;
759 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
760
761 cond_resched();
762 }
763
18bb473e
YS
764 /*
765 * The deferred work is increased by any new work (delta) that wasn't
766 * done, decreased by old deferred work that was done now.
767 *
768 * And it is capped to two times of the freeable items.
769 */
770 next_deferred = max_t(long, (nr + delta - scanned), 0);
771 next_deferred = min(next_deferred, (2 * freeable));
772
1d3d4437
GC
773 /*
774 * move the unused scan count back into the shrinker in a
86750830 775 * manner that handles concurrent updates.
1d3d4437 776 */
86750830 777 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 778
8efb4b59 779 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 780 return freed;
1495f230
YH
781}
782
0a432dcb 783#ifdef CONFIG_MEMCG
b0dedc49
KT
784static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
785 struct mem_cgroup *memcg, int priority)
786{
e4262c4f 787 struct shrinker_info *info;
b8e57efa
KT
788 unsigned long ret, freed = 0;
789 int i;
b0dedc49 790
0a432dcb 791 if (!mem_cgroup_online(memcg))
b0dedc49
KT
792 return 0;
793
794 if (!down_read_trylock(&shrinker_rwsem))
795 return 0;
796
468ab843 797 info = shrinker_info_protected(memcg, nid);
e4262c4f 798 if (unlikely(!info))
b0dedc49
KT
799 goto unlock;
800
e4262c4f 801 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
802 struct shrink_control sc = {
803 .gfp_mask = gfp_mask,
804 .nid = nid,
805 .memcg = memcg,
806 };
807 struct shrinker *shrinker;
808
809 shrinker = idr_find(&shrinker_idr, i);
41ca668a 810 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 811 if (!shrinker)
e4262c4f 812 clear_bit(i, info->map);
b0dedc49
KT
813 continue;
814 }
815
0a432dcb
YS
816 /* Call non-slab shrinkers even though kmem is disabled */
817 if (!memcg_kmem_enabled() &&
818 !(shrinker->flags & SHRINKER_NONSLAB))
819 continue;
820
b0dedc49 821 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 822 if (ret == SHRINK_EMPTY) {
e4262c4f 823 clear_bit(i, info->map);
f90280d6
KT
824 /*
825 * After the shrinker reported that it had no objects to
826 * free, but before we cleared the corresponding bit in
827 * the memcg shrinker map, a new object might have been
828 * added. To make sure, we have the bit set in this
829 * case, we invoke the shrinker one more time and reset
830 * the bit if it reports that it is not empty anymore.
831 * The memory barrier here pairs with the barrier in
2bfd3637 832 * set_shrinker_bit():
f90280d6
KT
833 *
834 * list_lru_add() shrink_slab_memcg()
835 * list_add_tail() clear_bit()
836 * <MB> <MB>
837 * set_bit() do_shrink_slab()
838 */
839 smp_mb__after_atomic();
840 ret = do_shrink_slab(&sc, shrinker, priority);
841 if (ret == SHRINK_EMPTY)
842 ret = 0;
843 else
2bfd3637 844 set_shrinker_bit(memcg, nid, i);
f90280d6 845 }
b0dedc49
KT
846 freed += ret;
847
848 if (rwsem_is_contended(&shrinker_rwsem)) {
849 freed = freed ? : 1;
850 break;
851 }
852 }
853unlock:
854 up_read(&shrinker_rwsem);
855 return freed;
856}
0a432dcb 857#else /* CONFIG_MEMCG */
b0dedc49
KT
858static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
859 struct mem_cgroup *memcg, int priority)
860{
861 return 0;
862}
0a432dcb 863#endif /* CONFIG_MEMCG */
b0dedc49 864
6b4f7799 865/**
cb731d6c 866 * shrink_slab - shrink slab caches
6b4f7799
JW
867 * @gfp_mask: allocation context
868 * @nid: node whose slab caches to target
cb731d6c 869 * @memcg: memory cgroup whose slab caches to target
9092c71b 870 * @priority: the reclaim priority
1da177e4 871 *
6b4f7799 872 * Call the shrink functions to age shrinkable caches.
1da177e4 873 *
6b4f7799
JW
874 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
875 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 876 *
aeed1d32
VD
877 * @memcg specifies the memory cgroup to target. Unaware shrinkers
878 * are called only if it is the root cgroup.
cb731d6c 879 *
9092c71b
JB
880 * @priority is sc->priority, we take the number of objects and >> by priority
881 * in order to get the scan target.
b15e0905 882 *
6b4f7799 883 * Returns the number of reclaimed slab objects.
1da177e4 884 */
cb731d6c
VD
885static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
886 struct mem_cgroup *memcg,
9092c71b 887 int priority)
1da177e4 888{
b8e57efa 889 unsigned long ret, freed = 0;
1da177e4
LT
890 struct shrinker *shrinker;
891
fa1e512f
YS
892 /*
893 * The root memcg might be allocated even though memcg is disabled
894 * via "cgroup_disable=memory" boot parameter. This could make
895 * mem_cgroup_is_root() return false, then just run memcg slab
896 * shrink, but skip global shrink. This may result in premature
897 * oom.
898 */
899 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 900 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 901
e830c63a 902 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 903 goto out;
1da177e4
LT
904
905 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
906 struct shrink_control sc = {
907 .gfp_mask = gfp_mask,
908 .nid = nid,
cb731d6c 909 .memcg = memcg,
6b4f7799 910 };
ec97097b 911
9b996468
KT
912 ret = do_shrink_slab(&sc, shrinker, priority);
913 if (ret == SHRINK_EMPTY)
914 ret = 0;
915 freed += ret;
e496612c
MK
916 /*
917 * Bail out if someone want to register a new shrinker to
55b65a57 918 * prevent the registration from being stalled for long periods
e496612c
MK
919 * by parallel ongoing shrinking.
920 */
921 if (rwsem_is_contended(&shrinker_rwsem)) {
922 freed = freed ? : 1;
923 break;
924 }
1da177e4 925 }
6b4f7799 926
1da177e4 927 up_read(&shrinker_rwsem);
f06590bd
MK
928out:
929 cond_resched();
24f7c6b9 930 return freed;
1da177e4
LT
931}
932
cb731d6c
VD
933void drop_slab_node(int nid)
934{
935 unsigned long freed;
936
937 do {
938 struct mem_cgroup *memcg = NULL;
939
069c411d
CZ
940 if (fatal_signal_pending(current))
941 return;
942
cb731d6c 943 freed = 0;
aeed1d32 944 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 945 do {
9092c71b 946 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
947 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
948 } while (freed > 10);
949}
950
951void drop_slab(void)
952{
953 int nid;
954
955 for_each_online_node(nid)
956 drop_slab_node(nid);
957}
958
1da177e4
LT
959static inline int is_page_cache_freeable(struct page *page)
960{
ceddc3a5
JW
961 /*
962 * A freeable page cache page is referenced only by the caller
67891fff
MW
963 * that isolated the page, the page cache and optional buffer
964 * heads at page->private.
ceddc3a5 965 */
3efe62e4 966 int page_cache_pins = thp_nr_pages(page);
67891fff 967 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
968}
969
cb16556d 970static int may_write_to_inode(struct inode *inode)
1da177e4 971{
930d9152 972 if (current->flags & PF_SWAPWRITE)
1da177e4 973 return 1;
703c2708 974 if (!inode_write_congested(inode))
1da177e4 975 return 1;
703c2708 976 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
977 return 1;
978 return 0;
979}
980
981/*
982 * We detected a synchronous write error writing a page out. Probably
983 * -ENOSPC. We need to propagate that into the address_space for a subsequent
984 * fsync(), msync() or close().
985 *
986 * The tricky part is that after writepage we cannot touch the mapping: nothing
987 * prevents it from being freed up. But we have a ref on the page and once
988 * that page is locked, the mapping is pinned.
989 *
990 * We're allowed to run sleeping lock_page() here because we know the caller has
991 * __GFP_FS.
992 */
993static void handle_write_error(struct address_space *mapping,
994 struct page *page, int error)
995{
7eaceacc 996 lock_page(page);
3e9f45bd
GC
997 if (page_mapping(page) == mapping)
998 mapping_set_error(mapping, error);
1da177e4
LT
999 unlock_page(page);
1000}
1001
04e62a29
CL
1002/* possible outcome of pageout() */
1003typedef enum {
1004 /* failed to write page out, page is locked */
1005 PAGE_KEEP,
1006 /* move page to the active list, page is locked */
1007 PAGE_ACTIVATE,
1008 /* page has been sent to the disk successfully, page is unlocked */
1009 PAGE_SUCCESS,
1010 /* page is clean and locked */
1011 PAGE_CLEAN,
1012} pageout_t;
1013
1da177e4 1014/*
1742f19f
AM
1015 * pageout is called by shrink_page_list() for each dirty page.
1016 * Calls ->writepage().
1da177e4 1017 */
cb16556d 1018static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
1019{
1020 /*
1021 * If the page is dirty, only perform writeback if that write
1022 * will be non-blocking. To prevent this allocation from being
1023 * stalled by pagecache activity. But note that there may be
1024 * stalls if we need to run get_block(). We could test
1025 * PagePrivate for that.
1026 *
8174202b 1027 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
1028 * this page's queue, we can perform writeback even if that
1029 * will block.
1030 *
1031 * If the page is swapcache, write it back even if that would
1032 * block, for some throttling. This happens by accident, because
1033 * swap_backing_dev_info is bust: it doesn't reflect the
1034 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
1035 */
1036 if (!is_page_cache_freeable(page))
1037 return PAGE_KEEP;
1038 if (!mapping) {
1039 /*
1040 * Some data journaling orphaned pages can have
1041 * page->mapping == NULL while being dirty with clean buffers.
1042 */
266cf658 1043 if (page_has_private(page)) {
1da177e4
LT
1044 if (try_to_free_buffers(page)) {
1045 ClearPageDirty(page);
b1de0d13 1046 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
1047 return PAGE_CLEAN;
1048 }
1049 }
1050 return PAGE_KEEP;
1051 }
1052 if (mapping->a_ops->writepage == NULL)
1053 return PAGE_ACTIVATE;
cb16556d 1054 if (!may_write_to_inode(mapping->host))
1da177e4
LT
1055 return PAGE_KEEP;
1056
1057 if (clear_page_dirty_for_io(page)) {
1058 int res;
1059 struct writeback_control wbc = {
1060 .sync_mode = WB_SYNC_NONE,
1061 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1062 .range_start = 0,
1063 .range_end = LLONG_MAX,
1da177e4
LT
1064 .for_reclaim = 1,
1065 };
1066
1067 SetPageReclaim(page);
1068 res = mapping->a_ops->writepage(page, &wbc);
1069 if (res < 0)
1070 handle_write_error(mapping, page, res);
994fc28c 1071 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
1072 ClearPageReclaim(page);
1073 return PAGE_ACTIVATE;
1074 }
c661b078 1075
1da177e4
LT
1076 if (!PageWriteback(page)) {
1077 /* synchronous write or broken a_ops? */
1078 ClearPageReclaim(page);
1079 }
3aa23851 1080 trace_mm_vmscan_writepage(page);
c4a25635 1081 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
1082 return PAGE_SUCCESS;
1083 }
1084
1085 return PAGE_CLEAN;
1086}
1087
a649fd92 1088/*
e286781d
NP
1089 * Same as remove_mapping, but if the page is removed from the mapping, it
1090 * gets returned with a refcount of 0.
a649fd92 1091 */
a528910e 1092static int __remove_mapping(struct address_space *mapping, struct page *page,
b910718a 1093 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1094{
bd4c82c2 1095 int refcount;
aae466b0 1096 void *shadow = NULL;
c4843a75 1097
28e4d965
NP
1098 BUG_ON(!PageLocked(page));
1099 BUG_ON(mapping != page_mapping(page));
49d2e9cc 1100
30472509 1101 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1102 /*
0fd0e6b0
NP
1103 * The non racy check for a busy page.
1104 *
1105 * Must be careful with the order of the tests. When someone has
1106 * a ref to the page, it may be possible that they dirty it then
1107 * drop the reference. So if PageDirty is tested before page_count
1108 * here, then the following race may occur:
1109 *
1110 * get_user_pages(&page);
1111 * [user mapping goes away]
1112 * write_to(page);
1113 * !PageDirty(page) [good]
1114 * SetPageDirty(page);
1115 * put_page(page);
1116 * !page_count(page) [good, discard it]
1117 *
1118 * [oops, our write_to data is lost]
1119 *
1120 * Reversing the order of the tests ensures such a situation cannot
1121 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1122 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1123 *
1124 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1125 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1126 */
906d278d 1127 refcount = 1 + compound_nr(page);
bd4c82c2 1128 if (!page_ref_freeze(page, refcount))
49d2e9cc 1129 goto cannot_free;
1c4c3b99 1130 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 1131 if (unlikely(PageDirty(page))) {
bd4c82c2 1132 page_ref_unfreeze(page, refcount);
49d2e9cc 1133 goto cannot_free;
e286781d 1134 }
49d2e9cc
CL
1135
1136 if (PageSwapCache(page)) {
1137 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 1138 mem_cgroup_swapout(page, swap);
aae466b0
JK
1139 if (reclaimed && !mapping_exiting(mapping))
1140 shadow = workingset_eviction(page, target_memcg);
1141 __delete_from_swap_cache(page, swap, shadow);
30472509 1142 xa_unlock_irq(&mapping->i_pages);
75f6d6d2 1143 put_swap_page(page, swap);
e286781d 1144 } else {
6072d13c
LT
1145 void (*freepage)(struct page *);
1146
1147 freepage = mapping->a_ops->freepage;
a528910e
JW
1148 /*
1149 * Remember a shadow entry for reclaimed file cache in
1150 * order to detect refaults, thus thrashing, later on.
1151 *
1152 * But don't store shadows in an address space that is
238c3046 1153 * already exiting. This is not just an optimization,
a528910e
JW
1154 * inode reclaim needs to empty out the radix tree or
1155 * the nodes are lost. Don't plant shadows behind its
1156 * back.
f9fe48be
RZ
1157 *
1158 * We also don't store shadows for DAX mappings because the
1159 * only page cache pages found in these are zero pages
1160 * covering holes, and because we don't want to mix DAX
1161 * exceptional entries and shadow exceptional entries in the
b93b0163 1162 * same address_space.
a528910e 1163 */
9de4f22a 1164 if (reclaimed && page_is_file_lru(page) &&
f9fe48be 1165 !mapping_exiting(mapping) && !dax_mapping(mapping))
b910718a 1166 shadow = workingset_eviction(page, target_memcg);
62cccb8c 1167 __delete_from_page_cache(page, shadow);
30472509 1168 xa_unlock_irq(&mapping->i_pages);
6072d13c
LT
1169
1170 if (freepage != NULL)
1171 freepage(page);
49d2e9cc
CL
1172 }
1173
49d2e9cc
CL
1174 return 1;
1175
1176cannot_free:
30472509 1177 xa_unlock_irq(&mapping->i_pages);
49d2e9cc
CL
1178 return 0;
1179}
1180
e286781d
NP
1181/*
1182 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1183 * someone else has a ref on the page, abort and return 0. If it was
1184 * successfully detached, return 1. Assumes the caller has a single ref on
1185 * this page.
1186 */
1187int remove_mapping(struct address_space *mapping, struct page *page)
1188{
b910718a 1189 if (__remove_mapping(mapping, page, false, NULL)) {
e286781d
NP
1190 /*
1191 * Unfreezing the refcount with 1 rather than 2 effectively
1192 * drops the pagecache ref for us without requiring another
1193 * atomic operation.
1194 */
fe896d18 1195 page_ref_unfreeze(page, 1);
e286781d
NP
1196 return 1;
1197 }
1198 return 0;
1199}
1200
894bc310
LS
1201/**
1202 * putback_lru_page - put previously isolated page onto appropriate LRU list
1203 * @page: page to be put back to appropriate lru list
1204 *
1205 * Add previously isolated @page to appropriate LRU list.
1206 * Page may still be unevictable for other reasons.
1207 *
1208 * lru_lock must not be held, interrupts must be enabled.
1209 */
894bc310
LS
1210void putback_lru_page(struct page *page)
1211{
9c4e6b1a 1212 lru_cache_add(page);
894bc310
LS
1213 put_page(page); /* drop ref from isolate */
1214}
1215
dfc8d636
JW
1216enum page_references {
1217 PAGEREF_RECLAIM,
1218 PAGEREF_RECLAIM_CLEAN,
64574746 1219 PAGEREF_KEEP,
dfc8d636
JW
1220 PAGEREF_ACTIVATE,
1221};
1222
1223static enum page_references page_check_references(struct page *page,
1224 struct scan_control *sc)
1225{
64574746 1226 int referenced_ptes, referenced_page;
dfc8d636 1227 unsigned long vm_flags;
dfc8d636 1228
c3ac9a8a
JW
1229 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1230 &vm_flags);
64574746 1231 referenced_page = TestClearPageReferenced(page);
dfc8d636 1232
dfc8d636
JW
1233 /*
1234 * Mlock lost the isolation race with us. Let try_to_unmap()
1235 * move the page to the unevictable list.
1236 */
1237 if (vm_flags & VM_LOCKED)
1238 return PAGEREF_RECLAIM;
1239
64574746 1240 if (referenced_ptes) {
64574746
JW
1241 /*
1242 * All mapped pages start out with page table
1243 * references from the instantiating fault, so we need
1244 * to look twice if a mapped file page is used more
1245 * than once.
1246 *
1247 * Mark it and spare it for another trip around the
1248 * inactive list. Another page table reference will
1249 * lead to its activation.
1250 *
1251 * Note: the mark is set for activated pages as well
1252 * so that recently deactivated but used pages are
1253 * quickly recovered.
1254 */
1255 SetPageReferenced(page);
1256
34dbc67a 1257 if (referenced_page || referenced_ptes > 1)
64574746
JW
1258 return PAGEREF_ACTIVATE;
1259
c909e993
KK
1260 /*
1261 * Activate file-backed executable pages after first usage.
1262 */
b518154e 1263 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
c909e993
KK
1264 return PAGEREF_ACTIVATE;
1265
64574746
JW
1266 return PAGEREF_KEEP;
1267 }
dfc8d636
JW
1268
1269 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1270 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1271 return PAGEREF_RECLAIM_CLEAN;
1272
1273 return PAGEREF_RECLAIM;
dfc8d636
JW
1274}
1275
e2be15f6
MG
1276/* Check if a page is dirty or under writeback */
1277static void page_check_dirty_writeback(struct page *page,
1278 bool *dirty, bool *writeback)
1279{
b4597226
MG
1280 struct address_space *mapping;
1281
e2be15f6
MG
1282 /*
1283 * Anonymous pages are not handled by flushers and must be written
1284 * from reclaim context. Do not stall reclaim based on them
1285 */
9de4f22a 1286 if (!page_is_file_lru(page) ||
802a3a92 1287 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1288 *dirty = false;
1289 *writeback = false;
1290 return;
1291 }
1292
1293 /* By default assume that the page flags are accurate */
1294 *dirty = PageDirty(page);
1295 *writeback = PageWriteback(page);
b4597226
MG
1296
1297 /* Verify dirty/writeback state if the filesystem supports it */
1298 if (!page_has_private(page))
1299 return;
1300
1301 mapping = page_mapping(page);
1302 if (mapping && mapping->a_ops->is_dirty_writeback)
1303 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1304}
1305
26aa2d19
DH
1306static struct page *alloc_demote_page(struct page *page, unsigned long node)
1307{
1308 struct migration_target_control mtc = {
1309 /*
1310 * Allocate from 'node', or fail quickly and quietly.
1311 * When this happens, 'page' will likely just be discarded
1312 * instead of migrated.
1313 */
1314 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1315 __GFP_THISNODE | __GFP_NOWARN |
1316 __GFP_NOMEMALLOC | GFP_NOWAIT,
1317 .nid = node
1318 };
1319
1320 return alloc_migration_target(page, (unsigned long)&mtc);
1321}
1322
1323/*
1324 * Take pages on @demote_list and attempt to demote them to
1325 * another node. Pages which are not demoted are left on
1326 * @demote_pages.
1327 */
1328static unsigned int demote_page_list(struct list_head *demote_pages,
1329 struct pglist_data *pgdat)
1330{
1331 int target_nid = next_demotion_node(pgdat->node_id);
1332 unsigned int nr_succeeded;
1333 int err;
1334
1335 if (list_empty(demote_pages))
1336 return 0;
1337
1338 if (target_nid == NUMA_NO_NODE)
1339 return 0;
1340
1341 /* Demotion ignores all cpuset and mempolicy settings */
1342 err = migrate_pages(demote_pages, alloc_demote_page, NULL,
1343 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1344 &nr_succeeded);
1345
668e4147
YS
1346 if (current_is_kswapd())
1347 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1348 else
1349 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1350
26aa2d19
DH
1351 return nr_succeeded;
1352}
1353
1da177e4 1354/*
1742f19f 1355 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1356 */
730ec8c0
MS
1357static unsigned int shrink_page_list(struct list_head *page_list,
1358 struct pglist_data *pgdat,
1359 struct scan_control *sc,
730ec8c0
MS
1360 struct reclaim_stat *stat,
1361 bool ignore_references)
1da177e4
LT
1362{
1363 LIST_HEAD(ret_pages);
abe4c3b5 1364 LIST_HEAD(free_pages);
26aa2d19 1365 LIST_HEAD(demote_pages);
730ec8c0
MS
1366 unsigned int nr_reclaimed = 0;
1367 unsigned int pgactivate = 0;
26aa2d19 1368 bool do_demote_pass;
1da177e4 1369
060f005f 1370 memset(stat, 0, sizeof(*stat));
1da177e4 1371 cond_resched();
26aa2d19 1372 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1373
26aa2d19 1374retry:
1da177e4
LT
1375 while (!list_empty(page_list)) {
1376 struct address_space *mapping;
1377 struct page *page;
8940b34a 1378 enum page_references references = PAGEREF_RECLAIM;
4b793062 1379 bool dirty, writeback, may_enter_fs;
98879b3b 1380 unsigned int nr_pages;
1da177e4
LT
1381
1382 cond_resched();
1383
1384 page = lru_to_page(page_list);
1385 list_del(&page->lru);
1386
529ae9aa 1387 if (!trylock_page(page))
1da177e4
LT
1388 goto keep;
1389
309381fe 1390 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1391
d8c6546b 1392 nr_pages = compound_nr(page);
98879b3b
YS
1393
1394 /* Account the number of base pages even though THP */
1395 sc->nr_scanned += nr_pages;
80e43426 1396
39b5f29a 1397 if (unlikely(!page_evictable(page)))
ad6b6704 1398 goto activate_locked;
894bc310 1399
a6dc60f8 1400 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1401 goto keep_locked;
1402
c661b078
AW
1403 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1404 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1405
e2be15f6 1406 /*
894befec 1407 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1408 * reclaim_congested which affects wait_iff_congested. kswapd
1409 * will stall and start writing pages if the tail of the LRU
1410 * is all dirty unqueued pages.
1411 */
1412 page_check_dirty_writeback(page, &dirty, &writeback);
1413 if (dirty || writeback)
060f005f 1414 stat->nr_dirty++;
e2be15f6
MG
1415
1416 if (dirty && !writeback)
060f005f 1417 stat->nr_unqueued_dirty++;
e2be15f6 1418
d04e8acd
MG
1419 /*
1420 * Treat this page as congested if the underlying BDI is or if
1421 * pages are cycling through the LRU so quickly that the
1422 * pages marked for immediate reclaim are making it to the
1423 * end of the LRU a second time.
1424 */
e2be15f6 1425 mapping = page_mapping(page);
1da58ee2 1426 if (((dirty || writeback) && mapping &&
703c2708 1427 inode_write_congested(mapping->host)) ||
d04e8acd 1428 (writeback && PageReclaim(page)))
060f005f 1429 stat->nr_congested++;
e2be15f6 1430
283aba9f
MG
1431 /*
1432 * If a page at the tail of the LRU is under writeback, there
1433 * are three cases to consider.
1434 *
1435 * 1) If reclaim is encountering an excessive number of pages
1436 * under writeback and this page is both under writeback and
1437 * PageReclaim then it indicates that pages are being queued
1438 * for IO but are being recycled through the LRU before the
1439 * IO can complete. Waiting on the page itself risks an
1440 * indefinite stall if it is impossible to writeback the
1441 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1442 * note that the LRU is being scanned too quickly and the
1443 * caller can stall after page list has been processed.
283aba9f 1444 *
97c9341f 1445 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1446 * not marked for immediate reclaim, or the caller does not
1447 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1448 * not to fs). In this case mark the page for immediate
97c9341f 1449 * reclaim and continue scanning.
283aba9f 1450 *
ecf5fc6e
MH
1451 * Require may_enter_fs because we would wait on fs, which
1452 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1453 * enter reclaim, and deadlock if it waits on a page for
1454 * which it is needed to do the write (loop masks off
1455 * __GFP_IO|__GFP_FS for this reason); but more thought
1456 * would probably show more reasons.
1457 *
7fadc820 1458 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1459 * PageReclaim. memcg does not have any dirty pages
1460 * throttling so we could easily OOM just because too many
1461 * pages are in writeback and there is nothing else to
1462 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1463 *
1464 * In cases 1) and 2) we activate the pages to get them out of
1465 * the way while we continue scanning for clean pages on the
1466 * inactive list and refilling from the active list. The
1467 * observation here is that waiting for disk writes is more
1468 * expensive than potentially causing reloads down the line.
1469 * Since they're marked for immediate reclaim, they won't put
1470 * memory pressure on the cache working set any longer than it
1471 * takes to write them to disk.
283aba9f 1472 */
c661b078 1473 if (PageWriteback(page)) {
283aba9f
MG
1474 /* Case 1 above */
1475 if (current_is_kswapd() &&
1476 PageReclaim(page) &&
599d0c95 1477 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1478 stat->nr_immediate++;
c55e8d03 1479 goto activate_locked;
283aba9f
MG
1480
1481 /* Case 2 above */
b5ead35e 1482 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1483 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1484 /*
1485 * This is slightly racy - end_page_writeback()
1486 * might have just cleared PageReclaim, then
1487 * setting PageReclaim here end up interpreted
1488 * as PageReadahead - but that does not matter
1489 * enough to care. What we do want is for this
1490 * page to have PageReclaim set next time memcg
1491 * reclaim reaches the tests above, so it will
1492 * then wait_on_page_writeback() to avoid OOM;
1493 * and it's also appropriate in global reclaim.
1494 */
1495 SetPageReclaim(page);
060f005f 1496 stat->nr_writeback++;
c55e8d03 1497 goto activate_locked;
283aba9f
MG
1498
1499 /* Case 3 above */
1500 } else {
7fadc820 1501 unlock_page(page);
283aba9f 1502 wait_on_page_writeback(page);
7fadc820
HD
1503 /* then go back and try same page again */
1504 list_add_tail(&page->lru, page_list);
1505 continue;
e62e384e 1506 }
c661b078 1507 }
1da177e4 1508
8940b34a 1509 if (!ignore_references)
02c6de8d
MK
1510 references = page_check_references(page, sc);
1511
dfc8d636
JW
1512 switch (references) {
1513 case PAGEREF_ACTIVATE:
1da177e4 1514 goto activate_locked;
64574746 1515 case PAGEREF_KEEP:
98879b3b 1516 stat->nr_ref_keep += nr_pages;
64574746 1517 goto keep_locked;
dfc8d636
JW
1518 case PAGEREF_RECLAIM:
1519 case PAGEREF_RECLAIM_CLEAN:
1520 ; /* try to reclaim the page below */
1521 }
1da177e4 1522
26aa2d19
DH
1523 /*
1524 * Before reclaiming the page, try to relocate
1525 * its contents to another node.
1526 */
1527 if (do_demote_pass &&
1528 (thp_migration_supported() || !PageTransHuge(page))) {
1529 list_add(&page->lru, &demote_pages);
1530 unlock_page(page);
1531 continue;
1532 }
1533
1da177e4
LT
1534 /*
1535 * Anonymous process memory has backing store?
1536 * Try to allocate it some swap space here.
802a3a92 1537 * Lazyfree page could be freed directly
1da177e4 1538 */
bd4c82c2
HY
1539 if (PageAnon(page) && PageSwapBacked(page)) {
1540 if (!PageSwapCache(page)) {
1541 if (!(sc->gfp_mask & __GFP_IO))
1542 goto keep_locked;
feb889fb
LT
1543 if (page_maybe_dma_pinned(page))
1544 goto keep_locked;
bd4c82c2
HY
1545 if (PageTransHuge(page)) {
1546 /* cannot split THP, skip it */
1547 if (!can_split_huge_page(page, NULL))
1548 goto activate_locked;
1549 /*
1550 * Split pages without a PMD map right
1551 * away. Chances are some or all of the
1552 * tail pages can be freed without IO.
1553 */
1554 if (!compound_mapcount(page) &&
1555 split_huge_page_to_list(page,
1556 page_list))
1557 goto activate_locked;
1558 }
1559 if (!add_to_swap(page)) {
1560 if (!PageTransHuge(page))
98879b3b 1561 goto activate_locked_split;
bd4c82c2
HY
1562 /* Fallback to swap normal pages */
1563 if (split_huge_page_to_list(page,
1564 page_list))
1565 goto activate_locked;
fe490cc0
HY
1566#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1567 count_vm_event(THP_SWPOUT_FALLBACK);
1568#endif
bd4c82c2 1569 if (!add_to_swap(page))
98879b3b 1570 goto activate_locked_split;
bd4c82c2 1571 }
0f074658 1572
4b793062 1573 may_enter_fs = true;
1da177e4 1574
bd4c82c2
HY
1575 /* Adding to swap updated mapping */
1576 mapping = page_mapping(page);
1577 }
7751b2da
KS
1578 } else if (unlikely(PageTransHuge(page))) {
1579 /* Split file THP */
1580 if (split_huge_page_to_list(page, page_list))
1581 goto keep_locked;
e2be15f6 1582 }
1da177e4 1583
98879b3b
YS
1584 /*
1585 * THP may get split above, need minus tail pages and update
1586 * nr_pages to avoid accounting tail pages twice.
1587 *
1588 * The tail pages that are added into swap cache successfully
1589 * reach here.
1590 */
1591 if ((nr_pages > 1) && !PageTransHuge(page)) {
1592 sc->nr_scanned -= (nr_pages - 1);
1593 nr_pages = 1;
1594 }
1595
1da177e4
LT
1596 /*
1597 * The page is mapped into the page tables of one or more
1598 * processes. Try to unmap it here.
1599 */
802a3a92 1600 if (page_mapped(page)) {
013339df 1601 enum ttu_flags flags = TTU_BATCH_FLUSH;
1f318a9b 1602 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2
HY
1603
1604 if (unlikely(PageTransHuge(page)))
1605 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1606
1fb08ac6
YS
1607 try_to_unmap(page, flags);
1608 if (page_mapped(page)) {
98879b3b 1609 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1610 if (!was_swapbacked && PageSwapBacked(page))
1611 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1612 goto activate_locked;
1da177e4
LT
1613 }
1614 }
1615
1616 if (PageDirty(page)) {
ee72886d 1617 /*
4eda4823
JW
1618 * Only kswapd can writeback filesystem pages
1619 * to avoid risk of stack overflow. But avoid
1620 * injecting inefficient single-page IO into
1621 * flusher writeback as much as possible: only
1622 * write pages when we've encountered many
1623 * dirty pages, and when we've already scanned
1624 * the rest of the LRU for clean pages and see
1625 * the same dirty pages again (PageReclaim).
ee72886d 1626 */
9de4f22a 1627 if (page_is_file_lru(page) &&
4eda4823
JW
1628 (!current_is_kswapd() || !PageReclaim(page) ||
1629 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1630 /*
1631 * Immediately reclaim when written back.
1632 * Similar in principal to deactivate_page()
1633 * except we already have the page isolated
1634 * and know it's dirty
1635 */
c4a25635 1636 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1637 SetPageReclaim(page);
1638
c55e8d03 1639 goto activate_locked;
ee72886d
MG
1640 }
1641
dfc8d636 1642 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1643 goto keep_locked;
4dd4b920 1644 if (!may_enter_fs)
1da177e4 1645 goto keep_locked;
52a8363e 1646 if (!sc->may_writepage)
1da177e4
LT
1647 goto keep_locked;
1648
d950c947
MG
1649 /*
1650 * Page is dirty. Flush the TLB if a writable entry
1651 * potentially exists to avoid CPU writes after IO
1652 * starts and then write it out here.
1653 */
1654 try_to_unmap_flush_dirty();
cb16556d 1655 switch (pageout(page, mapping)) {
1da177e4
LT
1656 case PAGE_KEEP:
1657 goto keep_locked;
1658 case PAGE_ACTIVATE:
1659 goto activate_locked;
1660 case PAGE_SUCCESS:
6c357848 1661 stat->nr_pageout += thp_nr_pages(page);
96f8bf4f 1662
7d3579e8 1663 if (PageWriteback(page))
41ac1999 1664 goto keep;
7d3579e8 1665 if (PageDirty(page))
1da177e4 1666 goto keep;
7d3579e8 1667
1da177e4
LT
1668 /*
1669 * A synchronous write - probably a ramdisk. Go
1670 * ahead and try to reclaim the page.
1671 */
529ae9aa 1672 if (!trylock_page(page))
1da177e4
LT
1673 goto keep;
1674 if (PageDirty(page) || PageWriteback(page))
1675 goto keep_locked;
1676 mapping = page_mapping(page);
01359eb2 1677 fallthrough;
1da177e4
LT
1678 case PAGE_CLEAN:
1679 ; /* try to free the page below */
1680 }
1681 }
1682
1683 /*
1684 * If the page has buffers, try to free the buffer mappings
1685 * associated with this page. If we succeed we try to free
1686 * the page as well.
1687 *
1688 * We do this even if the page is PageDirty().
1689 * try_to_release_page() does not perform I/O, but it is
1690 * possible for a page to have PageDirty set, but it is actually
1691 * clean (all its buffers are clean). This happens if the
1692 * buffers were written out directly, with submit_bh(). ext3
894bc310 1693 * will do this, as well as the blockdev mapping.
1da177e4
LT
1694 * try_to_release_page() will discover that cleanness and will
1695 * drop the buffers and mark the page clean - it can be freed.
1696 *
1697 * Rarely, pages can have buffers and no ->mapping. These are
1698 * the pages which were not successfully invalidated in
d12b8951 1699 * truncate_cleanup_page(). We try to drop those buffers here
1da177e4
LT
1700 * and if that worked, and the page is no longer mapped into
1701 * process address space (page_count == 1) it can be freed.
1702 * Otherwise, leave the page on the LRU so it is swappable.
1703 */
266cf658 1704 if (page_has_private(page)) {
1da177e4
LT
1705 if (!try_to_release_page(page, sc->gfp_mask))
1706 goto activate_locked;
e286781d
NP
1707 if (!mapping && page_count(page) == 1) {
1708 unlock_page(page);
1709 if (put_page_testzero(page))
1710 goto free_it;
1711 else {
1712 /*
1713 * rare race with speculative reference.
1714 * the speculative reference will free
1715 * this page shortly, so we may
1716 * increment nr_reclaimed here (and
1717 * leave it off the LRU).
1718 */
1719 nr_reclaimed++;
1720 continue;
1721 }
1722 }
1da177e4
LT
1723 }
1724
802a3a92
SL
1725 if (PageAnon(page) && !PageSwapBacked(page)) {
1726 /* follow __remove_mapping for reference */
1727 if (!page_ref_freeze(page, 1))
1728 goto keep_locked;
1729 if (PageDirty(page)) {
1730 page_ref_unfreeze(page, 1);
1731 goto keep_locked;
1732 }
1da177e4 1733
802a3a92 1734 count_vm_event(PGLAZYFREED);
2262185c 1735 count_memcg_page_event(page, PGLAZYFREED);
b910718a
JW
1736 } else if (!mapping || !__remove_mapping(mapping, page, true,
1737 sc->target_mem_cgroup))
802a3a92 1738 goto keep_locked;
9a1ea439
HD
1739
1740 unlock_page(page);
e286781d 1741free_it:
98879b3b
YS
1742 /*
1743 * THP may get swapped out in a whole, need account
1744 * all base pages.
1745 */
1746 nr_reclaimed += nr_pages;
abe4c3b5
MG
1747
1748 /*
1749 * Is there need to periodically free_page_list? It would
1750 * appear not as the counts should be low
1751 */
7ae88534 1752 if (unlikely(PageTransHuge(page)))
ff45fc3c 1753 destroy_compound_page(page);
7ae88534 1754 else
bd4c82c2 1755 list_add(&page->lru, &free_pages);
1da177e4
LT
1756 continue;
1757
98879b3b
YS
1758activate_locked_split:
1759 /*
1760 * The tail pages that are failed to add into swap cache
1761 * reach here. Fixup nr_scanned and nr_pages.
1762 */
1763 if (nr_pages > 1) {
1764 sc->nr_scanned -= (nr_pages - 1);
1765 nr_pages = 1;
1766 }
1da177e4 1767activate_locked:
68a22394 1768 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1769 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1770 PageMlocked(page)))
a2c43eed 1771 try_to_free_swap(page);
309381fe 1772 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1773 if (!PageMlocked(page)) {
9de4f22a 1774 int type = page_is_file_lru(page);
ad6b6704 1775 SetPageActive(page);
98879b3b 1776 stat->nr_activate[type] += nr_pages;
2262185c 1777 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1778 }
1da177e4
LT
1779keep_locked:
1780 unlock_page(page);
1781keep:
1782 list_add(&page->lru, &ret_pages);
309381fe 1783 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1784 }
26aa2d19
DH
1785 /* 'page_list' is always empty here */
1786
1787 /* Migrate pages selected for demotion */
1788 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1789 /* Pages that could not be demoted are still in @demote_pages */
1790 if (!list_empty(&demote_pages)) {
1791 /* Pages which failed to demoted go back on @page_list for retry: */
1792 list_splice_init(&demote_pages, page_list);
1793 do_demote_pass = false;
1794 goto retry;
1795 }
abe4c3b5 1796
98879b3b
YS
1797 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1798
747db954 1799 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1800 try_to_unmap_flush();
2d4894b5 1801 free_unref_page_list(&free_pages);
abe4c3b5 1802
1da177e4 1803 list_splice(&ret_pages, page_list);
886cf190 1804 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1805
05ff5137 1806 return nr_reclaimed;
1da177e4
LT
1807}
1808
730ec8c0 1809unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1810 struct list_head *page_list)
1811{
1812 struct scan_control sc = {
1813 .gfp_mask = GFP_KERNEL,
1814 .priority = DEF_PRIORITY,
1815 .may_unmap = 1,
1816 };
1f318a9b 1817 struct reclaim_stat stat;
730ec8c0 1818 unsigned int nr_reclaimed;
02c6de8d
MK
1819 struct page *page, *next;
1820 LIST_HEAD(clean_pages);
2d2b8d2b 1821 unsigned int noreclaim_flag;
02c6de8d
MK
1822
1823 list_for_each_entry_safe(page, next, page_list, lru) {
ae37c7ff
OS
1824 if (!PageHuge(page) && page_is_file_lru(page) &&
1825 !PageDirty(page) && !__PageMovable(page) &&
1826 !PageUnevictable(page)) {
02c6de8d
MK
1827 ClearPageActive(page);
1828 list_move(&page->lru, &clean_pages);
1829 }
1830 }
1831
2d2b8d2b
YZ
1832 /*
1833 * We should be safe here since we are only dealing with file pages and
1834 * we are not kswapd and therefore cannot write dirty file pages. But
1835 * call memalloc_noreclaim_save() anyway, just in case these conditions
1836 * change in the future.
1837 */
1838 noreclaim_flag = memalloc_noreclaim_save();
1f318a9b 1839 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 1840 &stat, true);
2d2b8d2b
YZ
1841 memalloc_noreclaim_restore(noreclaim_flag);
1842
02c6de8d 1843 list_splice(&clean_pages, page_list);
2da9f630
NP
1844 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1845 -(long)nr_reclaimed);
1f318a9b
JK
1846 /*
1847 * Since lazyfree pages are isolated from file LRU from the beginning,
1848 * they will rotate back to anonymous LRU in the end if it failed to
1849 * discard so isolated count will be mismatched.
1850 * Compensate the isolated count for both LRU lists.
1851 */
1852 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1853 stat.nr_lazyfree_fail);
1854 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 1855 -(long)stat.nr_lazyfree_fail);
1f318a9b 1856 return nr_reclaimed;
02c6de8d
MK
1857}
1858
5ad333eb
AW
1859/*
1860 * Attempt to remove the specified page from its LRU. Only take this page
1861 * if it is of the appropriate PageActive status. Pages which are being
1862 * freed elsewhere are also ignored.
1863 *
1864 * page: page to consider
1865 * mode: one of the LRU isolation modes defined above
1866 *
c2135f7c 1867 * returns true on success, false on failure.
5ad333eb 1868 */
c2135f7c 1869bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
5ad333eb 1870{
5ad333eb
AW
1871 /* Only take pages on the LRU. */
1872 if (!PageLRU(page))
c2135f7c 1873 return false;
5ad333eb 1874
e46a2879
MK
1875 /* Compaction should not handle unevictable pages but CMA can do so */
1876 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
c2135f7c 1877 return false;
894bc310 1878
c8244935
MG
1879 /*
1880 * To minimise LRU disruption, the caller can indicate that it only
1881 * wants to isolate pages it will be able to operate on without
1882 * blocking - clean pages for the most part.
1883 *
c8244935
MG
1884 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1885 * that it is possible to migrate without blocking
1886 */
1276ad68 1887 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1888 /* All the caller can do on PageWriteback is block */
1889 if (PageWriteback(page))
c2135f7c 1890 return false;
c8244935
MG
1891
1892 if (PageDirty(page)) {
1893 struct address_space *mapping;
69d763fc 1894 bool migrate_dirty;
c8244935 1895
c8244935
MG
1896 /*
1897 * Only pages without mappings or that have a
1898 * ->migratepage callback are possible to migrate
69d763fc
MG
1899 * without blocking. However, we can be racing with
1900 * truncation so it's necessary to lock the page
1901 * to stabilise the mapping as truncation holds
1902 * the page lock until after the page is removed
1903 * from the page cache.
c8244935 1904 */
69d763fc 1905 if (!trylock_page(page))
c2135f7c 1906 return false;
69d763fc 1907
c8244935 1908 mapping = page_mapping(page);
145e1a71 1909 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1910 unlock_page(page);
1911 if (!migrate_dirty)
c2135f7c 1912 return false;
c8244935
MG
1913 }
1914 }
39deaf85 1915
f80c0673 1916 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
c2135f7c 1917 return false;
f80c0673 1918
c2135f7c 1919 return true;
5ad333eb
AW
1920}
1921
7ee36a14
MG
1922/*
1923 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 1924 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
1925 */
1926static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1927 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1928{
7ee36a14
MG
1929 int zid;
1930
7ee36a14
MG
1931 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1932 if (!nr_zone_taken[zid])
1933 continue;
1934
a892cb6b 1935 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
1936 }
1937
7ee36a14
MG
1938}
1939
f611fab7 1940/*
15b44736
HD
1941 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1942 *
1943 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1944 * shrink the lists perform better by taking out a batch of pages
1945 * and working on them outside the LRU lock.
1946 *
1947 * For pagecache intensive workloads, this function is the hottest
1948 * spot in the kernel (apart from copy_*_user functions).
1949 *
15b44736 1950 * Lru_lock must be held before calling this function.
1da177e4 1951 *
791b48b6 1952 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1953 * @lruvec: The LRU vector to pull pages from.
1da177e4 1954 * @dst: The temp list to put pages on to.
f626012d 1955 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1956 * @sc: The scan_control struct for this reclaim session
3cb99451 1957 * @lru: LRU list id for isolating
1da177e4
LT
1958 *
1959 * returns how many pages were moved onto *@dst.
1960 */
69e05944 1961static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1962 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1963 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1964 enum lru_list lru)
1da177e4 1965{
75b00af7 1966 struct list_head *src = &lruvec->lists[lru];
69e05944 1967 unsigned long nr_taken = 0;
599d0c95 1968 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1969 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1970 unsigned long skipped = 0;
791b48b6 1971 unsigned long scan, total_scan, nr_pages;
b2e18757 1972 LIST_HEAD(pages_skipped);
a9e7c39f 1973 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1974
98879b3b 1975 total_scan = 0;
791b48b6 1976 scan = 0;
98879b3b 1977 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1978 struct page *page;
5ad333eb 1979
1da177e4
LT
1980 page = lru_to_page(src);
1981 prefetchw_prev_lru_page(page, src, flags);
1982
d8c6546b 1983 nr_pages = compound_nr(page);
98879b3b
YS
1984 total_scan += nr_pages;
1985
b2e18757
MG
1986 if (page_zonenum(page) > sc->reclaim_idx) {
1987 list_move(&page->lru, &pages_skipped);
98879b3b 1988 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1989 continue;
1990 }
1991
791b48b6
MK
1992 /*
1993 * Do not count skipped pages because that makes the function
1994 * return with no isolated pages if the LRU mostly contains
1995 * ineligible pages. This causes the VM to not reclaim any
1996 * pages, triggering a premature OOM.
98879b3b
YS
1997 *
1998 * Account all tail pages of THP. This would not cause
1999 * premature OOM since __isolate_lru_page() returns -EBUSY
2000 * only when the page is being freed somewhere else.
791b48b6 2001 */
98879b3b 2002 scan += nr_pages;
c2135f7c
AS
2003 if (!__isolate_lru_page_prepare(page, mode)) {
2004 /* It is being freed elsewhere */
2005 list_move(&page->lru, src);
2006 continue;
2007 }
2008 /*
2009 * Be careful not to clear PageLRU until after we're
2010 * sure the page is not being freed elsewhere -- the
2011 * page release code relies on it.
2012 */
2013 if (unlikely(!get_page_unless_zero(page))) {
2014 list_move(&page->lru, src);
2015 continue;
2016 }
5ad333eb 2017
c2135f7c
AS
2018 if (!TestClearPageLRU(page)) {
2019 /* Another thread is already isolating this page */
2020 put_page(page);
5ad333eb 2021 list_move(&page->lru, src);
c2135f7c 2022 continue;
5ad333eb 2023 }
c2135f7c
AS
2024
2025 nr_taken += nr_pages;
2026 nr_zone_taken[page_zonenum(page)] += nr_pages;
2027 list_move(&page->lru, dst);
1da177e4
LT
2028 }
2029
b2e18757
MG
2030 /*
2031 * Splice any skipped pages to the start of the LRU list. Note that
2032 * this disrupts the LRU order when reclaiming for lower zones but
2033 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2034 * scanning would soon rescan the same pages to skip and put the
2035 * system at risk of premature OOM.
2036 */
7cc30fcf
MG
2037 if (!list_empty(&pages_skipped)) {
2038 int zid;
2039
3db65812 2040 list_splice(&pages_skipped, src);
7cc30fcf
MG
2041 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2042 if (!nr_skipped[zid])
2043 continue;
2044
2045 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2046 skipped += nr_skipped[zid];
7cc30fcf
MG
2047 }
2048 }
791b48b6 2049 *nr_scanned = total_scan;
1265e3a6 2050 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 2051 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 2052 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2053 return nr_taken;
2054}
2055
62695a84
NP
2056/**
2057 * isolate_lru_page - tries to isolate a page from its LRU list
2058 * @page: page to isolate from its LRU list
2059 *
2060 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2061 * vmstat statistic corresponding to whatever LRU list the page was on.
2062 *
2063 * Returns 0 if the page was removed from an LRU list.
2064 * Returns -EBUSY if the page was not on an LRU list.
2065 *
2066 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
2067 * the active list, it will have PageActive set. If it was found on
2068 * the unevictable list, it will have the PageUnevictable bit set. That flag
2069 * may need to be cleared by the caller before letting the page go.
62695a84
NP
2070 *
2071 * The vmstat statistic corresponding to the list on which the page was
2072 * found will be decremented.
2073 *
2074 * Restrictions:
a5d09bed 2075 *
62695a84 2076 * (1) Must be called with an elevated refcount on the page. This is a
01c4776b 2077 * fundamental difference from isolate_lru_pages (which is called
62695a84
NP
2078 * without a stable reference).
2079 * (2) the lru_lock must not be held.
2080 * (3) interrupts must be enabled.
2081 */
2082int isolate_lru_page(struct page *page)
2083{
2084 int ret = -EBUSY;
2085
309381fe 2086 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 2087 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 2088
d25b5bd8 2089 if (TestClearPageLRU(page)) {
fa9add64 2090 struct lruvec *lruvec;
62695a84 2091
d25b5bd8 2092 get_page(page);
6168d0da 2093 lruvec = lock_page_lruvec_irq(page);
46ae6b2c 2094 del_page_from_lru_list(page, lruvec);
6168d0da 2095 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2096 ret = 0;
62695a84 2097 }
d25b5bd8 2098
62695a84
NP
2099 return ret;
2100}
2101
35cd7815 2102/*
d37dd5dc 2103 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2104 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2105 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2106 * the LRU list will go small and be scanned faster than necessary, leading to
2107 * unnecessary swapping, thrashing and OOM.
35cd7815 2108 */
599d0c95 2109static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2110 struct scan_control *sc)
2111{
2112 unsigned long inactive, isolated;
2113
2114 if (current_is_kswapd())
2115 return 0;
2116
b5ead35e 2117 if (!writeback_throttling_sane(sc))
35cd7815
RR
2118 return 0;
2119
2120 if (file) {
599d0c95
MG
2121 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2122 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2123 } else {
599d0c95
MG
2124 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2125 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2126 }
2127
3cf23841
FW
2128 /*
2129 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2130 * won't get blocked by normal direct-reclaimers, forming a circular
2131 * deadlock.
2132 */
d0164adc 2133 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2134 inactive >>= 3;
2135
35cd7815
RR
2136 return isolated > inactive;
2137}
2138
a222f341 2139/*
15b44736
HD
2140 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2141 * On return, @list is reused as a list of pages to be freed by the caller.
a222f341
KT
2142 *
2143 * Returns the number of pages moved to the given lruvec.
2144 */
9ef56b78
MS
2145static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2146 struct list_head *list)
66635629 2147{
a222f341 2148 int nr_pages, nr_moved = 0;
3f79768f 2149 LIST_HEAD(pages_to_free);
a222f341 2150 struct page *page;
66635629 2151
a222f341
KT
2152 while (!list_empty(list)) {
2153 page = lru_to_page(list);
309381fe 2154 VM_BUG_ON_PAGE(PageLRU(page), page);
3d06afab 2155 list_del(&page->lru);
39b5f29a 2156 if (unlikely(!page_evictable(page))) {
6168d0da 2157 spin_unlock_irq(&lruvec->lru_lock);
66635629 2158 putback_lru_page(page);
6168d0da 2159 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2160 continue;
2161 }
fa9add64 2162
3d06afab
AS
2163 /*
2164 * The SetPageLRU needs to be kept here for list integrity.
2165 * Otherwise:
2166 * #0 move_pages_to_lru #1 release_pages
2167 * if !put_page_testzero
2168 * if (put_page_testzero())
2169 * !PageLRU //skip lru_lock
2170 * SetPageLRU()
2171 * list_add(&page->lru,)
2172 * list_add(&page->lru,)
2173 */
7a608572 2174 SetPageLRU(page);
a222f341 2175
3d06afab 2176 if (unlikely(put_page_testzero(page))) {
87560179 2177 __clear_page_lru_flags(page);
2bcf8879
HD
2178
2179 if (unlikely(PageCompound(page))) {
6168d0da 2180 spin_unlock_irq(&lruvec->lru_lock);
ff45fc3c 2181 destroy_compound_page(page);
6168d0da 2182 spin_lock_irq(&lruvec->lru_lock);
2bcf8879
HD
2183 } else
2184 list_add(&page->lru, &pages_to_free);
3d06afab
AS
2185
2186 continue;
66635629 2187 }
3d06afab 2188
afca9157
AS
2189 /*
2190 * All pages were isolated from the same lruvec (and isolation
2191 * inhibits memcg migration).
2192 */
7467c391 2193 VM_BUG_ON_PAGE(!page_matches_lruvec(page, lruvec), page);
3a9c9788 2194 add_page_to_lru_list(page, lruvec);
3d06afab 2195 nr_pages = thp_nr_pages(page);
3d06afab
AS
2196 nr_moved += nr_pages;
2197 if (PageActive(page))
2198 workingset_age_nonresident(lruvec, nr_pages);
66635629 2199 }
66635629 2200
3f79768f
HD
2201 /*
2202 * To save our caller's stack, now use input list for pages to free.
2203 */
a222f341
KT
2204 list_splice(&pages_to_free, list);
2205
2206 return nr_moved;
66635629
MG
2207}
2208
399ba0b9
N
2209/*
2210 * If a kernel thread (such as nfsd for loop-back mounts) services
a37b0715 2211 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
399ba0b9
N
2212 * In that case we should only throttle if the backing device it is
2213 * writing to is congested. In other cases it is safe to throttle.
2214 */
2215static int current_may_throttle(void)
2216{
a37b0715 2217 return !(current->flags & PF_LOCAL_THROTTLE) ||
399ba0b9
N
2218 current->backing_dev_info == NULL ||
2219 bdi_write_congested(current->backing_dev_info);
2220}
2221
1da177e4 2222/*
b2e18757 2223 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2224 * of reclaimed pages
1da177e4 2225 */
9ef56b78 2226static unsigned long
1a93be0e 2227shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2228 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2229{
2230 LIST_HEAD(page_list);
e247dbce 2231 unsigned long nr_scanned;
730ec8c0 2232 unsigned int nr_reclaimed = 0;
e247dbce 2233 unsigned long nr_taken;
060f005f 2234 struct reclaim_stat stat;
497a6c1b 2235 bool file = is_file_lru(lru);
f46b7912 2236 enum vm_event_item item;
599d0c95 2237 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2238 bool stalled = false;
78dc583d 2239
599d0c95 2240 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2241 if (stalled)
2242 return 0;
2243
2244 /* wait a bit for the reclaimer. */
2245 msleep(100);
2246 stalled = true;
35cd7815
RR
2247
2248 /* We are about to die and free our memory. Return now. */
2249 if (fatal_signal_pending(current))
2250 return SWAP_CLUSTER_MAX;
2251 }
2252
1da177e4 2253 lru_add_drain();
f80c0673 2254
6168d0da 2255 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2256
5dc35979 2257 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2258 &nr_scanned, sc, lru);
95d918fc 2259
599d0c95 2260 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2261 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2262 if (!cgroup_reclaim(sc))
f46b7912
KT
2263 __count_vm_events(item, nr_scanned);
2264 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2265 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2266
6168d0da 2267 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2268
d563c050 2269 if (nr_taken == 0)
66635629 2270 return 0;
5ad333eb 2271
013339df 2272 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2273
6168d0da 2274 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2275 move_pages_to_lru(lruvec, &page_list);
2276
2277 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2278 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2279 if (!cgroup_reclaim(sc))
f46b7912
KT
2280 __count_vm_events(item, nr_reclaimed);
2281 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2282 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2283 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2284
75cc3c91 2285 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2286 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2287 free_unref_page_list(&page_list);
e11da5b4 2288
1c610d5f
AR
2289 /*
2290 * If dirty pages are scanned that are not queued for IO, it
2291 * implies that flushers are not doing their job. This can
2292 * happen when memory pressure pushes dirty pages to the end of
2293 * the LRU before the dirty limits are breached and the dirty
2294 * data has expired. It can also happen when the proportion of
2295 * dirty pages grows not through writes but through memory
2296 * pressure reclaiming all the clean cache. And in some cases,
2297 * the flushers simply cannot keep up with the allocation
2298 * rate. Nudge the flusher threads in case they are asleep.
2299 */
2300 if (stat.nr_unqueued_dirty == nr_taken)
2301 wakeup_flusher_threads(WB_REASON_VMSCAN);
2302
d108c772
AR
2303 sc->nr.dirty += stat.nr_dirty;
2304 sc->nr.congested += stat.nr_congested;
2305 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2306 sc->nr.writeback += stat.nr_writeback;
2307 sc->nr.immediate += stat.nr_immediate;
2308 sc->nr.taken += nr_taken;
2309 if (file)
2310 sc->nr.file_taken += nr_taken;
8e950282 2311
599d0c95 2312 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2313 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2314 return nr_reclaimed;
1da177e4
LT
2315}
2316
15b44736
HD
2317/*
2318 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2319 *
2320 * We move them the other way if the page is referenced by one or more
2321 * processes.
2322 *
2323 * If the pages are mostly unmapped, the processing is fast and it is
2324 * appropriate to hold lru_lock across the whole operation. But if
2325 * the pages are mapped, the processing is slow (page_referenced()), so
2326 * we should drop lru_lock around each page. It's impossible to balance
2327 * this, so instead we remove the pages from the LRU while processing them.
2328 * It is safe to rely on PG_active against the non-LRU pages in here because
2329 * nobody will play with that bit on a non-LRU page.
2330 *
2331 * The downside is that we have to touch page->_refcount against each page.
2332 * But we had to alter page->flags anyway.
2333 */
f626012d 2334static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2335 struct lruvec *lruvec,
f16015fb 2336 struct scan_control *sc,
9e3b2f8c 2337 enum lru_list lru)
1da177e4 2338{
44c241f1 2339 unsigned long nr_taken;
f626012d 2340 unsigned long nr_scanned;
6fe6b7e3 2341 unsigned long vm_flags;
1da177e4 2342 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2343 LIST_HEAD(l_active);
b69408e8 2344 LIST_HEAD(l_inactive);
1da177e4 2345 struct page *page;
9d998b4f
MH
2346 unsigned nr_deactivate, nr_activate;
2347 unsigned nr_rotated = 0;
3cb99451 2348 int file = is_file_lru(lru);
599d0c95 2349 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2350
2351 lru_add_drain();
f80c0673 2352
6168d0da 2353 spin_lock_irq(&lruvec->lru_lock);
925b7673 2354
5dc35979 2355 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2356 &nr_scanned, sc, lru);
89b5fae5 2357
599d0c95 2358 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2359
912c0572
SB
2360 if (!cgroup_reclaim(sc))
2361 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2362 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2363
6168d0da 2364 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2365
1da177e4
LT
2366 while (!list_empty(&l_hold)) {
2367 cond_resched();
2368 page = lru_to_page(&l_hold);
2369 list_del(&page->lru);
7e9cd484 2370
39b5f29a 2371 if (unlikely(!page_evictable(page))) {
894bc310
LS
2372 putback_lru_page(page);
2373 continue;
2374 }
2375
cc715d99
MG
2376 if (unlikely(buffer_heads_over_limit)) {
2377 if (page_has_private(page) && trylock_page(page)) {
2378 if (page_has_private(page))
2379 try_to_release_page(page, 0);
2380 unlock_page(page);
2381 }
2382 }
2383
c3ac9a8a
JW
2384 if (page_referenced(page, 0, sc->target_mem_cgroup,
2385 &vm_flags)) {
8cab4754
WF
2386 /*
2387 * Identify referenced, file-backed active pages and
2388 * give them one more trip around the active list. So
2389 * that executable code get better chances to stay in
2390 * memory under moderate memory pressure. Anon pages
2391 * are not likely to be evicted by use-once streaming
2392 * IO, plus JVM can create lots of anon VM_EXEC pages,
2393 * so we ignore them here.
2394 */
9de4f22a 2395 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2396 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2397 list_add(&page->lru, &l_active);
2398 continue;
2399 }
2400 }
7e9cd484 2401
5205e56e 2402 ClearPageActive(page); /* we are de-activating */
1899ad18 2403 SetPageWorkingset(page);
1da177e4
LT
2404 list_add(&page->lru, &l_inactive);
2405 }
2406
b555749a 2407 /*
8cab4754 2408 * Move pages back to the lru list.
b555749a 2409 */
6168d0da 2410 spin_lock_irq(&lruvec->lru_lock);
556adecb 2411
a222f341
KT
2412 nr_activate = move_pages_to_lru(lruvec, &l_active);
2413 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2414 /* Keep all free pages in l_active list */
2415 list_splice(&l_inactive, &l_active);
9851ac13
KT
2416
2417 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2418 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2419
599d0c95 2420 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2421 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2422
f372d89e
KT
2423 mem_cgroup_uncharge_list(&l_active);
2424 free_unref_page_list(&l_active);
9d998b4f
MH
2425 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2426 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2427}
2428
1a4e58cc
MK
2429unsigned long reclaim_pages(struct list_head *page_list)
2430{
f661d007 2431 int nid = NUMA_NO_NODE;
730ec8c0 2432 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2433 LIST_HEAD(node_page_list);
2434 struct reclaim_stat dummy_stat;
2435 struct page *page;
2d2b8d2b 2436 unsigned int noreclaim_flag;
1a4e58cc
MK
2437 struct scan_control sc = {
2438 .gfp_mask = GFP_KERNEL,
2439 .priority = DEF_PRIORITY,
2440 .may_writepage = 1,
2441 .may_unmap = 1,
2442 .may_swap = 1,
26aa2d19 2443 .no_demotion = 1,
1a4e58cc
MK
2444 };
2445
2d2b8d2b
YZ
2446 noreclaim_flag = memalloc_noreclaim_save();
2447
1a4e58cc
MK
2448 while (!list_empty(page_list)) {
2449 page = lru_to_page(page_list);
f661d007 2450 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2451 nid = page_to_nid(page);
2452 INIT_LIST_HEAD(&node_page_list);
2453 }
2454
2455 if (nid == page_to_nid(page)) {
2456 ClearPageActive(page);
2457 list_move(&page->lru, &node_page_list);
2458 continue;
2459 }
2460
2461 nr_reclaimed += shrink_page_list(&node_page_list,
2462 NODE_DATA(nid),
013339df 2463 &sc, &dummy_stat, false);
1a4e58cc
MK
2464 while (!list_empty(&node_page_list)) {
2465 page = lru_to_page(&node_page_list);
2466 list_del(&page->lru);
2467 putback_lru_page(page);
2468 }
2469
f661d007 2470 nid = NUMA_NO_NODE;
1a4e58cc
MK
2471 }
2472
2473 if (!list_empty(&node_page_list)) {
2474 nr_reclaimed += shrink_page_list(&node_page_list,
2475 NODE_DATA(nid),
013339df 2476 &sc, &dummy_stat, false);
1a4e58cc
MK
2477 while (!list_empty(&node_page_list)) {
2478 page = lru_to_page(&node_page_list);
2479 list_del(&page->lru);
2480 putback_lru_page(page);
2481 }
2482 }
2483
2d2b8d2b
YZ
2484 memalloc_noreclaim_restore(noreclaim_flag);
2485
1a4e58cc
MK
2486 return nr_reclaimed;
2487}
2488
b91ac374
JW
2489static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2490 struct lruvec *lruvec, struct scan_control *sc)
2491{
2492 if (is_active_lru(lru)) {
2493 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2494 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2495 else
2496 sc->skipped_deactivate = 1;
2497 return 0;
2498 }
2499
2500 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2501}
2502
59dc76b0
RR
2503/*
2504 * The inactive anon list should be small enough that the VM never has
2505 * to do too much work.
14797e23 2506 *
59dc76b0
RR
2507 * The inactive file list should be small enough to leave most memory
2508 * to the established workingset on the scan-resistant active list,
2509 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2510 *
59dc76b0
RR
2511 * Both inactive lists should also be large enough that each inactive
2512 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2513 *
2a2e4885
JW
2514 * If that fails and refaulting is observed, the inactive list grows.
2515 *
59dc76b0 2516 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2517 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2518 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2519 *
59dc76b0
RR
2520 * total target max
2521 * memory ratio inactive
2522 * -------------------------------------
2523 * 10MB 1 5MB
2524 * 100MB 1 50MB
2525 * 1GB 3 250MB
2526 * 10GB 10 0.9GB
2527 * 100GB 31 3GB
2528 * 1TB 101 10GB
2529 * 10TB 320 32GB
56e49d21 2530 */
b91ac374 2531static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2532{
b91ac374 2533 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2534 unsigned long inactive, active;
2535 unsigned long inactive_ratio;
59dc76b0 2536 unsigned long gb;
e3790144 2537
b91ac374
JW
2538 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2539 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2540
b91ac374 2541 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2542 if (gb)
b91ac374
JW
2543 inactive_ratio = int_sqrt(10 * gb);
2544 else
2545 inactive_ratio = 1;
fd538803 2546
59dc76b0 2547 return inactive * inactive_ratio < active;
b39415b2
RR
2548}
2549
9a265114
JW
2550enum scan_balance {
2551 SCAN_EQUAL,
2552 SCAN_FRACT,
2553 SCAN_ANON,
2554 SCAN_FILE,
2555};
2556
4f98a2fe
RR
2557/*
2558 * Determine how aggressively the anon and file LRU lists should be
2559 * scanned. The relative value of each set of LRU lists is determined
2560 * by looking at the fraction of the pages scanned we did rotate back
2561 * onto the active list instead of evict.
2562 *
be7bd59d
WL
2563 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2564 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2565 */
afaf07a6
JW
2566static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2567 unsigned long *nr)
4f98a2fe 2568{
a2a36488 2569 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2570 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2571 unsigned long anon_cost, file_cost, total_cost;
33377678 2572 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2573 u64 fraction[ANON_AND_FILE];
9a265114 2574 u64 denominator = 0; /* gcc */
9a265114 2575 enum scan_balance scan_balance;
4f98a2fe 2576 unsigned long ap, fp;
4111304d 2577 enum lru_list lru;
76a33fc3
SL
2578
2579 /* If we have no swap space, do not bother scanning anon pages. */
a2a36488 2580 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2581 scan_balance = SCAN_FILE;
76a33fc3
SL
2582 goto out;
2583 }
4f98a2fe 2584
10316b31
JW
2585 /*
2586 * Global reclaim will swap to prevent OOM even with no
2587 * swappiness, but memcg users want to use this knob to
2588 * disable swapping for individual groups completely when
2589 * using the memory controller's swap limit feature would be
2590 * too expensive.
2591 */
b5ead35e 2592 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2593 scan_balance = SCAN_FILE;
10316b31
JW
2594 goto out;
2595 }
2596
2597 /*
2598 * Do not apply any pressure balancing cleverness when the
2599 * system is close to OOM, scan both anon and file equally
2600 * (unless the swappiness setting disagrees with swapping).
2601 */
02695175 2602 if (!sc->priority && swappiness) {
9a265114 2603 scan_balance = SCAN_EQUAL;
10316b31
JW
2604 goto out;
2605 }
2606
62376251 2607 /*
53138cea 2608 * If the system is almost out of file pages, force-scan anon.
62376251 2609 */
b91ac374 2610 if (sc->file_is_tiny) {
53138cea
JW
2611 scan_balance = SCAN_ANON;
2612 goto out;
62376251
JW
2613 }
2614
7c5bd705 2615 /*
b91ac374
JW
2616 * If there is enough inactive page cache, we do not reclaim
2617 * anything from the anonymous working right now.
7c5bd705 2618 */
b91ac374 2619 if (sc->cache_trim_mode) {
9a265114 2620 scan_balance = SCAN_FILE;
7c5bd705
JW
2621 goto out;
2622 }
2623
9a265114 2624 scan_balance = SCAN_FRACT;
58c37f6e 2625 /*
314b57fb
JW
2626 * Calculate the pressure balance between anon and file pages.
2627 *
2628 * The amount of pressure we put on each LRU is inversely
2629 * proportional to the cost of reclaiming each list, as
2630 * determined by the share of pages that are refaulting, times
2631 * the relative IO cost of bringing back a swapped out
2632 * anonymous page vs reloading a filesystem page (swappiness).
2633 *
d483a5dd
JW
2634 * Although we limit that influence to ensure no list gets
2635 * left behind completely: at least a third of the pressure is
2636 * applied, before swappiness.
2637 *
314b57fb 2638 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2639 */
d483a5dd
JW
2640 total_cost = sc->anon_cost + sc->file_cost;
2641 anon_cost = total_cost + sc->anon_cost;
2642 file_cost = total_cost + sc->file_cost;
2643 total_cost = anon_cost + file_cost;
58c37f6e 2644
d483a5dd
JW
2645 ap = swappiness * (total_cost + 1);
2646 ap /= anon_cost + 1;
4f98a2fe 2647
d483a5dd
JW
2648 fp = (200 - swappiness) * (total_cost + 1);
2649 fp /= file_cost + 1;
4f98a2fe 2650
76a33fc3
SL
2651 fraction[0] = ap;
2652 fraction[1] = fp;
a4fe1631 2653 denominator = ap + fp;
76a33fc3 2654out:
688035f7
JW
2655 for_each_evictable_lru(lru) {
2656 int file = is_file_lru(lru);
9783aa99 2657 unsigned long lruvec_size;
f56ce412 2658 unsigned long low, min;
688035f7 2659 unsigned long scan;
9783aa99
CD
2660
2661 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2662 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2663 &min, &low);
9783aa99 2664
f56ce412 2665 if (min || low) {
9783aa99
CD
2666 /*
2667 * Scale a cgroup's reclaim pressure by proportioning
2668 * its current usage to its memory.low or memory.min
2669 * setting.
2670 *
2671 * This is important, as otherwise scanning aggression
2672 * becomes extremely binary -- from nothing as we
2673 * approach the memory protection threshold, to totally
2674 * nominal as we exceed it. This results in requiring
2675 * setting extremely liberal protection thresholds. It
2676 * also means we simply get no protection at all if we
2677 * set it too low, which is not ideal.
1bc63fb1
CD
2678 *
2679 * If there is any protection in place, we reduce scan
2680 * pressure by how much of the total memory used is
2681 * within protection thresholds.
9783aa99 2682 *
9de7ca46
CD
2683 * There is one special case: in the first reclaim pass,
2684 * we skip over all groups that are within their low
2685 * protection. If that fails to reclaim enough pages to
2686 * satisfy the reclaim goal, we come back and override
2687 * the best-effort low protection. However, we still
2688 * ideally want to honor how well-behaved groups are in
2689 * that case instead of simply punishing them all
2690 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2691 * memory they are using, reducing the scan pressure
2692 * again by how much of the total memory used is under
2693 * hard protection.
9783aa99 2694 */
1bc63fb1 2695 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
2696 unsigned long protection;
2697
2698 /* memory.low scaling, make sure we retry before OOM */
2699 if (!sc->memcg_low_reclaim && low > min) {
2700 protection = low;
2701 sc->memcg_low_skipped = 1;
2702 } else {
2703 protection = min;
2704 }
1bc63fb1
CD
2705
2706 /* Avoid TOCTOU with earlier protection check */
2707 cgroup_size = max(cgroup_size, protection);
2708
2709 scan = lruvec_size - lruvec_size * protection /
2710 cgroup_size;
9783aa99
CD
2711
2712 /*
1bc63fb1 2713 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2714 * reclaim moving forwards, avoiding decrementing
9de7ca46 2715 * sc->priority further than desirable.
9783aa99 2716 */
1bc63fb1 2717 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2718 } else {
2719 scan = lruvec_size;
2720 }
2721
2722 scan >>= sc->priority;
6b4f7799 2723
688035f7
JW
2724 /*
2725 * If the cgroup's already been deleted, make sure to
2726 * scrape out the remaining cache.
2727 */
2728 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2729 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2730
688035f7
JW
2731 switch (scan_balance) {
2732 case SCAN_EQUAL:
2733 /* Scan lists relative to size */
2734 break;
2735 case SCAN_FRACT:
9a265114 2736 /*
688035f7
JW
2737 * Scan types proportional to swappiness and
2738 * their relative recent reclaim efficiency.
76073c64
GS
2739 * Make sure we don't miss the last page on
2740 * the offlined memory cgroups because of a
2741 * round-off error.
9a265114 2742 */
76073c64
GS
2743 scan = mem_cgroup_online(memcg) ?
2744 div64_u64(scan * fraction[file], denominator) :
2745 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2746 denominator);
688035f7
JW
2747 break;
2748 case SCAN_FILE:
2749 case SCAN_ANON:
2750 /* Scan one type exclusively */
e072bff6 2751 if ((scan_balance == SCAN_FILE) != file)
688035f7 2752 scan = 0;
688035f7
JW
2753 break;
2754 default:
2755 /* Look ma, no brain */
2756 BUG();
9a265114 2757 }
688035f7 2758
688035f7 2759 nr[lru] = scan;
76a33fc3 2760 }
6e08a369 2761}
4f98a2fe 2762
2f368a9f
DH
2763/*
2764 * Anonymous LRU management is a waste if there is
2765 * ultimately no way to reclaim the memory.
2766 */
2767static bool can_age_anon_pages(struct pglist_data *pgdat,
2768 struct scan_control *sc)
2769{
2770 /* Aging the anon LRU is valuable if swap is present: */
2771 if (total_swap_pages > 0)
2772 return true;
2773
2774 /* Also valuable if anon pages can be demoted: */
2775 return can_demote(pgdat->node_id, sc);
2776}
2777
afaf07a6 2778static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2779{
2780 unsigned long nr[NR_LRU_LISTS];
e82e0561 2781 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2782 unsigned long nr_to_scan;
2783 enum lru_list lru;
2784 unsigned long nr_reclaimed = 0;
2785 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2786 struct blk_plug plug;
1a501907 2787 bool scan_adjusted;
9b4f98cd 2788
afaf07a6 2789 get_scan_count(lruvec, sc, nr);
9b4f98cd 2790
e82e0561
MG
2791 /* Record the original scan target for proportional adjustments later */
2792 memcpy(targets, nr, sizeof(nr));
2793
1a501907
MG
2794 /*
2795 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2796 * event that can occur when there is little memory pressure e.g.
2797 * multiple streaming readers/writers. Hence, we do not abort scanning
2798 * when the requested number of pages are reclaimed when scanning at
2799 * DEF_PRIORITY on the assumption that the fact we are direct
2800 * reclaiming implies that kswapd is not keeping up and it is best to
2801 * do a batch of work at once. For memcg reclaim one check is made to
2802 * abort proportional reclaim if either the file or anon lru has already
2803 * dropped to zero at the first pass.
2804 */
b5ead35e 2805 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2806 sc->priority == DEF_PRIORITY);
2807
9b4f98cd
JW
2808 blk_start_plug(&plug);
2809 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2810 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2811 unsigned long nr_anon, nr_file, percentage;
2812 unsigned long nr_scanned;
2813
9b4f98cd
JW
2814 for_each_evictable_lru(lru) {
2815 if (nr[lru]) {
2816 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2817 nr[lru] -= nr_to_scan;
2818
2819 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2820 lruvec, sc);
9b4f98cd
JW
2821 }
2822 }
e82e0561 2823
bd041733
MH
2824 cond_resched();
2825
e82e0561
MG
2826 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2827 continue;
2828
e82e0561
MG
2829 /*
2830 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2831 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2832 * proportionally what was requested by get_scan_count(). We
2833 * stop reclaiming one LRU and reduce the amount scanning
2834 * proportional to the original scan target.
2835 */
2836 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2837 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2838
1a501907
MG
2839 /*
2840 * It's just vindictive to attack the larger once the smaller
2841 * has gone to zero. And given the way we stop scanning the
2842 * smaller below, this makes sure that we only make one nudge
2843 * towards proportionality once we've got nr_to_reclaim.
2844 */
2845 if (!nr_file || !nr_anon)
2846 break;
2847
e82e0561
MG
2848 if (nr_file > nr_anon) {
2849 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2850 targets[LRU_ACTIVE_ANON] + 1;
2851 lru = LRU_BASE;
2852 percentage = nr_anon * 100 / scan_target;
2853 } else {
2854 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2855 targets[LRU_ACTIVE_FILE] + 1;
2856 lru = LRU_FILE;
2857 percentage = nr_file * 100 / scan_target;
2858 }
2859
2860 /* Stop scanning the smaller of the LRU */
2861 nr[lru] = 0;
2862 nr[lru + LRU_ACTIVE] = 0;
2863
2864 /*
2865 * Recalculate the other LRU scan count based on its original
2866 * scan target and the percentage scanning already complete
2867 */
2868 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2869 nr_scanned = targets[lru] - nr[lru];
2870 nr[lru] = targets[lru] * (100 - percentage) / 100;
2871 nr[lru] -= min(nr[lru], nr_scanned);
2872
2873 lru += LRU_ACTIVE;
2874 nr_scanned = targets[lru] - nr[lru];
2875 nr[lru] = targets[lru] * (100 - percentage) / 100;
2876 nr[lru] -= min(nr[lru], nr_scanned);
2877
2878 scan_adjusted = true;
9b4f98cd
JW
2879 }
2880 blk_finish_plug(&plug);
2881 sc->nr_reclaimed += nr_reclaimed;
2882
2883 /*
2884 * Even if we did not try to evict anon pages at all, we want to
2885 * rebalance the anon lru active/inactive ratio.
2886 */
2f368a9f
DH
2887 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2888 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
2889 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2890 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2891}
2892
23b9da55 2893/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2894static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2895{
d84da3f9 2896 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2897 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2898 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2899 return true;
2900
2901 return false;
2902}
2903
3e7d3449 2904/*
23b9da55
MG
2905 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2906 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2907 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 2908 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 2909 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2910 */
a9dd0a83 2911static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 2912 unsigned long nr_reclaimed,
3e7d3449
MG
2913 struct scan_control *sc)
2914{
2915 unsigned long pages_for_compaction;
2916 unsigned long inactive_lru_pages;
a9dd0a83 2917 int z;
3e7d3449
MG
2918
2919 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2920 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2921 return false;
2922
5ee04716
VB
2923 /*
2924 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2925 * number of pages that were scanned. This will return to the caller
2926 * with the risk reclaim/compaction and the resulting allocation attempt
2927 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2928 * allocations through requiring that the full LRU list has been scanned
2929 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2930 * scan, but that approximation was wrong, and there were corner cases
2931 * where always a non-zero amount of pages were scanned.
2932 */
2933 if (!nr_reclaimed)
2934 return false;
3e7d3449 2935
3e7d3449 2936 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2937 for (z = 0; z <= sc->reclaim_idx; z++) {
2938 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2939 if (!managed_zone(zone))
a9dd0a83
MG
2940 continue;
2941
2942 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2943 case COMPACT_SUCCESS:
a9dd0a83
MG
2944 case COMPACT_CONTINUE:
2945 return false;
2946 default:
2947 /* check next zone */
2948 ;
2949 }
3e7d3449 2950 }
1c6c1597
HD
2951
2952 /*
2953 * If we have not reclaimed enough pages for compaction and the
2954 * inactive lists are large enough, continue reclaiming
2955 */
2956 pages_for_compaction = compact_gap(sc->order);
2957 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 2958 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
2959 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2960
5ee04716 2961 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
2962}
2963
0f6a5cff 2964static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2965{
0f6a5cff 2966 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 2967 struct mem_cgroup *memcg;
1da177e4 2968
0f6a5cff 2969 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 2970 do {
afaf07a6 2971 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
2972 unsigned long reclaimed;
2973 unsigned long scanned;
5660048c 2974
e3336cab
XP
2975 /*
2976 * This loop can become CPU-bound when target memcgs
2977 * aren't eligible for reclaim - either because they
2978 * don't have any reclaimable pages, or because their
2979 * memory is explicitly protected. Avoid soft lockups.
2980 */
2981 cond_resched();
2982
45c7f7e1
CD
2983 mem_cgroup_calculate_protection(target_memcg, memcg);
2984
2985 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
2986 /*
2987 * Hard protection.
2988 * If there is no reclaimable memory, OOM.
2989 */
2990 continue;
45c7f7e1 2991 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
2992 /*
2993 * Soft protection.
2994 * Respect the protection only as long as
2995 * there is an unprotected supply
2996 * of reclaimable memory from other cgroups.
2997 */
2998 if (!sc->memcg_low_reclaim) {
2999 sc->memcg_low_skipped = 1;
bf8d5d52 3000 continue;
241994ed 3001 }
d2af3397 3002 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 3003 }
241994ed 3004
d2af3397
JW
3005 reclaimed = sc->nr_reclaimed;
3006 scanned = sc->nr_scanned;
afaf07a6
JW
3007
3008 shrink_lruvec(lruvec, sc);
70ddf637 3009
d2af3397
JW
3010 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3011 sc->priority);
6b4f7799 3012
d2af3397
JW
3013 /* Record the group's reclaim efficiency */
3014 vmpressure(sc->gfp_mask, memcg, false,
3015 sc->nr_scanned - scanned,
3016 sc->nr_reclaimed - reclaimed);
70ddf637 3017
0f6a5cff
JW
3018 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3019}
3020
6c9e0907 3021static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
3022{
3023 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 3024 unsigned long nr_reclaimed, nr_scanned;
1b05117d 3025 struct lruvec *target_lruvec;
0f6a5cff 3026 bool reclaimable = false;
b91ac374 3027 unsigned long file;
0f6a5cff 3028
1b05117d
JW
3029 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3030
0f6a5cff 3031again:
aa48e47e
SB
3032 /*
3033 * Flush the memory cgroup stats, so that we read accurate per-memcg
3034 * lruvec stats for heuristics.
3035 */
3036 mem_cgroup_flush_stats();
3037
0f6a5cff
JW
3038 memset(&sc->nr, 0, sizeof(sc->nr));
3039
3040 nr_reclaimed = sc->nr_reclaimed;
3041 nr_scanned = sc->nr_scanned;
3042
7cf111bc
JW
3043 /*
3044 * Determine the scan balance between anon and file LRUs.
3045 */
6168d0da 3046 spin_lock_irq(&target_lruvec->lru_lock);
7cf111bc
JW
3047 sc->anon_cost = target_lruvec->anon_cost;
3048 sc->file_cost = target_lruvec->file_cost;
6168d0da 3049 spin_unlock_irq(&target_lruvec->lru_lock);
7cf111bc 3050
b91ac374
JW
3051 /*
3052 * Target desirable inactive:active list ratios for the anon
3053 * and file LRU lists.
3054 */
3055 if (!sc->force_deactivate) {
3056 unsigned long refaults;
3057
170b04b7
JK
3058 refaults = lruvec_page_state(target_lruvec,
3059 WORKINGSET_ACTIVATE_ANON);
3060 if (refaults != target_lruvec->refaults[0] ||
3061 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
3062 sc->may_deactivate |= DEACTIVATE_ANON;
3063 else
3064 sc->may_deactivate &= ~DEACTIVATE_ANON;
3065
3066 /*
3067 * When refaults are being observed, it means a new
3068 * workingset is being established. Deactivate to get
3069 * rid of any stale active pages quickly.
3070 */
3071 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
3072 WORKINGSET_ACTIVATE_FILE);
3073 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
3074 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3075 sc->may_deactivate |= DEACTIVATE_FILE;
3076 else
3077 sc->may_deactivate &= ~DEACTIVATE_FILE;
3078 } else
3079 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3080
3081 /*
3082 * If we have plenty of inactive file pages that aren't
3083 * thrashing, try to reclaim those first before touching
3084 * anonymous pages.
3085 */
3086 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3087 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3088 sc->cache_trim_mode = 1;
3089 else
3090 sc->cache_trim_mode = 0;
3091
53138cea
JW
3092 /*
3093 * Prevent the reclaimer from falling into the cache trap: as
3094 * cache pages start out inactive, every cache fault will tip
3095 * the scan balance towards the file LRU. And as the file LRU
3096 * shrinks, so does the window for rotation from references.
3097 * This means we have a runaway feedback loop where a tiny
3098 * thrashing file LRU becomes infinitely more attractive than
3099 * anon pages. Try to detect this based on file LRU size.
3100 */
3101 if (!cgroup_reclaim(sc)) {
53138cea 3102 unsigned long total_high_wmark = 0;
b91ac374
JW
3103 unsigned long free, anon;
3104 int z;
53138cea
JW
3105
3106 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3107 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3108 node_page_state(pgdat, NR_INACTIVE_FILE);
3109
3110 for (z = 0; z < MAX_NR_ZONES; z++) {
3111 struct zone *zone = &pgdat->node_zones[z];
3112 if (!managed_zone(zone))
3113 continue;
3114
3115 total_high_wmark += high_wmark_pages(zone);
3116 }
3117
b91ac374
JW
3118 /*
3119 * Consider anon: if that's low too, this isn't a
3120 * runaway file reclaim problem, but rather just
3121 * extreme pressure. Reclaim as per usual then.
3122 */
3123 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3124
3125 sc->file_is_tiny =
3126 file + free <= total_high_wmark &&
3127 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3128 anon >> sc->priority;
53138cea
JW
3129 }
3130
0f6a5cff 3131 shrink_node_memcgs(pgdat, sc);
2344d7e4 3132
d2af3397
JW
3133 if (reclaim_state) {
3134 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3135 reclaim_state->reclaimed_slab = 0;
3136 }
d108c772 3137
d2af3397 3138 /* Record the subtree's reclaim efficiency */
1b05117d 3139 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
3140 sc->nr_scanned - nr_scanned,
3141 sc->nr_reclaimed - nr_reclaimed);
d108c772 3142
d2af3397
JW
3143 if (sc->nr_reclaimed - nr_reclaimed)
3144 reclaimable = true;
d108c772 3145
d2af3397
JW
3146 if (current_is_kswapd()) {
3147 /*
3148 * If reclaim is isolating dirty pages under writeback,
3149 * it implies that the long-lived page allocation rate
3150 * is exceeding the page laundering rate. Either the
3151 * global limits are not being effective at throttling
3152 * processes due to the page distribution throughout
3153 * zones or there is heavy usage of a slow backing
3154 * device. The only option is to throttle from reclaim
3155 * context which is not ideal as there is no guarantee
3156 * the dirtying process is throttled in the same way
3157 * balance_dirty_pages() manages.
3158 *
3159 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3160 * count the number of pages under pages flagged for
3161 * immediate reclaim and stall if any are encountered
3162 * in the nr_immediate check below.
3163 */
3164 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3165 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 3166
d2af3397
JW
3167 /* Allow kswapd to start writing pages during reclaim.*/
3168 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3169 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 3170
d108c772 3171 /*
1eba09c1 3172 * If kswapd scans pages marked for immediate
d2af3397
JW
3173 * reclaim and under writeback (nr_immediate), it
3174 * implies that pages are cycling through the LRU
3175 * faster than they are written so also forcibly stall.
d108c772 3176 */
d2af3397
JW
3177 if (sc->nr.immediate)
3178 congestion_wait(BLK_RW_ASYNC, HZ/10);
3179 }
3180
3181 /*
1b05117d
JW
3182 * Tag a node/memcg as congested if all the dirty pages
3183 * scanned were backed by a congested BDI and
3184 * wait_iff_congested will stall.
3185 *
d2af3397
JW
3186 * Legacy memcg will stall in page writeback so avoid forcibly
3187 * stalling in wait_iff_congested().
3188 */
1b05117d
JW
3189 if ((current_is_kswapd() ||
3190 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 3191 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 3192 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
3193
3194 /*
3195 * Stall direct reclaim for IO completions if underlying BDIs
3196 * and node is congested. Allow kswapd to continue until it
3197 * starts encountering unqueued dirty pages or cycling through
3198 * the LRU too quickly.
3199 */
1b05117d
JW
3200 if (!current_is_kswapd() && current_may_throttle() &&
3201 !sc->hibernation_mode &&
3202 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
d2af3397 3203 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 3204
d2af3397
JW
3205 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3206 sc))
3207 goto again;
2344d7e4 3208
c73322d0
JW
3209 /*
3210 * Kswapd gives up on balancing particular nodes after too
3211 * many failures to reclaim anything from them and goes to
3212 * sleep. On reclaim progress, reset the failure counter. A
3213 * successful direct reclaim run will revive a dormant kswapd.
3214 */
3215 if (reclaimable)
3216 pgdat->kswapd_failures = 0;
f16015fb
JW
3217}
3218
53853e2d 3219/*
fdd4c614
VB
3220 * Returns true if compaction should go ahead for a costly-order request, or
3221 * the allocation would already succeed without compaction. Return false if we
3222 * should reclaim first.
53853e2d 3223 */
4f588331 3224static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 3225{
31483b6a 3226 unsigned long watermark;
fdd4c614 3227 enum compact_result suitable;
fe4b1b24 3228
fdd4c614
VB
3229 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3230 if (suitable == COMPACT_SUCCESS)
3231 /* Allocation should succeed already. Don't reclaim. */
3232 return true;
3233 if (suitable == COMPACT_SKIPPED)
3234 /* Compaction cannot yet proceed. Do reclaim. */
3235 return false;
fe4b1b24 3236
53853e2d 3237 /*
fdd4c614
VB
3238 * Compaction is already possible, but it takes time to run and there
3239 * are potentially other callers using the pages just freed. So proceed
3240 * with reclaim to make a buffer of free pages available to give
3241 * compaction a reasonable chance of completing and allocating the page.
3242 * Note that we won't actually reclaim the whole buffer in one attempt
3243 * as the target watermark in should_continue_reclaim() is lower. But if
3244 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 3245 */
fdd4c614 3246 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 3247
fdd4c614 3248 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
3249}
3250
1da177e4
LT
3251/*
3252 * This is the direct reclaim path, for page-allocating processes. We only
3253 * try to reclaim pages from zones which will satisfy the caller's allocation
3254 * request.
3255 *
1da177e4
LT
3256 * If a zone is deemed to be full of pinned pages then just give it a light
3257 * scan then give up on it.
3258 */
0a0337e0 3259static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 3260{
dd1a239f 3261 struct zoneref *z;
54a6eb5c 3262 struct zone *zone;
0608f43d
AM
3263 unsigned long nr_soft_reclaimed;
3264 unsigned long nr_soft_scanned;
619d0d76 3265 gfp_t orig_mask;
79dafcdc 3266 pg_data_t *last_pgdat = NULL;
1cfb419b 3267
cc715d99
MG
3268 /*
3269 * If the number of buffer_heads in the machine exceeds the maximum
3270 * allowed level, force direct reclaim to scan the highmem zone as
3271 * highmem pages could be pinning lowmem pages storing buffer_heads
3272 */
619d0d76 3273 orig_mask = sc->gfp_mask;
b2e18757 3274 if (buffer_heads_over_limit) {
cc715d99 3275 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 3276 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 3277 }
cc715d99 3278
d4debc66 3279 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 3280 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
3281 /*
3282 * Take care memory controller reclaiming has small influence
3283 * to global LRU.
3284 */
b5ead35e 3285 if (!cgroup_reclaim(sc)) {
344736f2
VD
3286 if (!cpuset_zone_allowed(zone,
3287 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 3288 continue;
65ec02cb 3289
0b06496a
JW
3290 /*
3291 * If we already have plenty of memory free for
3292 * compaction in this zone, don't free any more.
3293 * Even though compaction is invoked for any
3294 * non-zero order, only frequent costly order
3295 * reclamation is disruptive enough to become a
3296 * noticeable problem, like transparent huge
3297 * page allocations.
3298 */
3299 if (IS_ENABLED(CONFIG_COMPACTION) &&
3300 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 3301 compaction_ready(zone, sc)) {
0b06496a
JW
3302 sc->compaction_ready = true;
3303 continue;
e0887c19 3304 }
0b06496a 3305
79dafcdc
MG
3306 /*
3307 * Shrink each node in the zonelist once. If the
3308 * zonelist is ordered by zone (not the default) then a
3309 * node may be shrunk multiple times but in that case
3310 * the user prefers lower zones being preserved.
3311 */
3312 if (zone->zone_pgdat == last_pgdat)
3313 continue;
3314
0608f43d
AM
3315 /*
3316 * This steals pages from memory cgroups over softlimit
3317 * and returns the number of reclaimed pages and
3318 * scanned pages. This works for global memory pressure
3319 * and balancing, not for a memcg's limit.
3320 */
3321 nr_soft_scanned = 0;
ef8f2327 3322 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
3323 sc->order, sc->gfp_mask,
3324 &nr_soft_scanned);
3325 sc->nr_reclaimed += nr_soft_reclaimed;
3326 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 3327 /* need some check for avoid more shrink_zone() */
1cfb419b 3328 }
408d8544 3329
79dafcdc
MG
3330 /* See comment about same check for global reclaim above */
3331 if (zone->zone_pgdat == last_pgdat)
3332 continue;
3333 last_pgdat = zone->zone_pgdat;
970a39a3 3334 shrink_node(zone->zone_pgdat, sc);
1da177e4 3335 }
e0c23279 3336
619d0d76
WY
3337 /*
3338 * Restore to original mask to avoid the impact on the caller if we
3339 * promoted it to __GFP_HIGHMEM.
3340 */
3341 sc->gfp_mask = orig_mask;
1da177e4 3342}
4f98a2fe 3343
b910718a 3344static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 3345{
b910718a
JW
3346 struct lruvec *target_lruvec;
3347 unsigned long refaults;
2a2e4885 3348
b910718a 3349 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
3350 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3351 target_lruvec->refaults[0] = refaults;
3352 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3353 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
3354}
3355
1da177e4
LT
3356/*
3357 * This is the main entry point to direct page reclaim.
3358 *
3359 * If a full scan of the inactive list fails to free enough memory then we
3360 * are "out of memory" and something needs to be killed.
3361 *
3362 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3363 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3364 * caller can't do much about. We kick the writeback threads and take explicit
3365 * naps in the hope that some of these pages can be written. But if the
3366 * allocating task holds filesystem locks which prevent writeout this might not
3367 * work, and the allocation attempt will fail.
a41f24ea
NA
3368 *
3369 * returns: 0, if no pages reclaimed
3370 * else, the number of pages reclaimed
1da177e4 3371 */
dac1d27b 3372static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3373 struct scan_control *sc)
1da177e4 3374{
241994ed 3375 int initial_priority = sc->priority;
2a2e4885
JW
3376 pg_data_t *last_pgdat;
3377 struct zoneref *z;
3378 struct zone *zone;
241994ed 3379retry:
873b4771
KK
3380 delayacct_freepages_start();
3381
b5ead35e 3382 if (!cgroup_reclaim(sc))
7cc30fcf 3383 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3384
9e3b2f8c 3385 do {
70ddf637
AV
3386 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3387 sc->priority);
66e1707b 3388 sc->nr_scanned = 0;
0a0337e0 3389 shrink_zones(zonelist, sc);
c6a8a8c5 3390
bb21c7ce 3391 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3392 break;
3393
3394 if (sc->compaction_ready)
3395 break;
1da177e4 3396
0e50ce3b
MK
3397 /*
3398 * If we're getting trouble reclaiming, start doing
3399 * writepage even in laptop mode.
3400 */
3401 if (sc->priority < DEF_PRIORITY - 2)
3402 sc->may_writepage = 1;
0b06496a 3403 } while (--sc->priority >= 0);
bb21c7ce 3404
2a2e4885
JW
3405 last_pgdat = NULL;
3406 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3407 sc->nodemask) {
3408 if (zone->zone_pgdat == last_pgdat)
3409 continue;
3410 last_pgdat = zone->zone_pgdat;
1b05117d 3411
2a2e4885 3412 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3413
3414 if (cgroup_reclaim(sc)) {
3415 struct lruvec *lruvec;
3416
3417 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3418 zone->zone_pgdat);
3419 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3420 }
2a2e4885
JW
3421 }
3422
873b4771
KK
3423 delayacct_freepages_end();
3424
bb21c7ce
KM
3425 if (sc->nr_reclaimed)
3426 return sc->nr_reclaimed;
3427
0cee34fd 3428 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3429 if (sc->compaction_ready)
7335084d
MG
3430 return 1;
3431
b91ac374
JW
3432 /*
3433 * We make inactive:active ratio decisions based on the node's
3434 * composition of memory, but a restrictive reclaim_idx or a
3435 * memory.low cgroup setting can exempt large amounts of
3436 * memory from reclaim. Neither of which are very common, so
3437 * instead of doing costly eligibility calculations of the
3438 * entire cgroup subtree up front, we assume the estimates are
3439 * good, and retry with forcible deactivation if that fails.
3440 */
3441 if (sc->skipped_deactivate) {
3442 sc->priority = initial_priority;
3443 sc->force_deactivate = 1;
3444 sc->skipped_deactivate = 0;
3445 goto retry;
3446 }
3447
241994ed 3448 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3449 if (sc->memcg_low_skipped) {
241994ed 3450 sc->priority = initial_priority;
b91ac374 3451 sc->force_deactivate = 0;
d6622f63
YX
3452 sc->memcg_low_reclaim = 1;
3453 sc->memcg_low_skipped = 0;
241994ed
JW
3454 goto retry;
3455 }
3456
bb21c7ce 3457 return 0;
1da177e4
LT
3458}
3459
c73322d0 3460static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3461{
3462 struct zone *zone;
3463 unsigned long pfmemalloc_reserve = 0;
3464 unsigned long free_pages = 0;
3465 int i;
3466 bool wmark_ok;
3467
c73322d0
JW
3468 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3469 return true;
3470
5515061d
MG
3471 for (i = 0; i <= ZONE_NORMAL; i++) {
3472 zone = &pgdat->node_zones[i];
d450abd8
JW
3473 if (!managed_zone(zone))
3474 continue;
3475
3476 if (!zone_reclaimable_pages(zone))
675becce
MG
3477 continue;
3478
5515061d
MG
3479 pfmemalloc_reserve += min_wmark_pages(zone);
3480 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3481 }
3482
675becce
MG
3483 /* If there are no reserves (unexpected config) then do not throttle */
3484 if (!pfmemalloc_reserve)
3485 return true;
3486
5515061d
MG
3487 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3488
3489 /* kswapd must be awake if processes are being throttled */
3490 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3491 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3492 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3493
5515061d
MG
3494 wake_up_interruptible(&pgdat->kswapd_wait);
3495 }
3496
3497 return wmark_ok;
3498}
3499
3500/*
3501 * Throttle direct reclaimers if backing storage is backed by the network
3502 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3503 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3504 * when the low watermark is reached.
3505 *
3506 * Returns true if a fatal signal was delivered during throttling. If this
3507 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3508 */
50694c28 3509static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3510 nodemask_t *nodemask)
3511{
675becce 3512 struct zoneref *z;
5515061d 3513 struct zone *zone;
675becce 3514 pg_data_t *pgdat = NULL;
5515061d
MG
3515
3516 /*
3517 * Kernel threads should not be throttled as they may be indirectly
3518 * responsible for cleaning pages necessary for reclaim to make forward
3519 * progress. kjournald for example may enter direct reclaim while
3520 * committing a transaction where throttling it could forcing other
3521 * processes to block on log_wait_commit().
3522 */
3523 if (current->flags & PF_KTHREAD)
50694c28
MG
3524 goto out;
3525
3526 /*
3527 * If a fatal signal is pending, this process should not throttle.
3528 * It should return quickly so it can exit and free its memory
3529 */
3530 if (fatal_signal_pending(current))
3531 goto out;
5515061d 3532
675becce
MG
3533 /*
3534 * Check if the pfmemalloc reserves are ok by finding the first node
3535 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3536 * GFP_KERNEL will be required for allocating network buffers when
3537 * swapping over the network so ZONE_HIGHMEM is unusable.
3538 *
3539 * Throttling is based on the first usable node and throttled processes
3540 * wait on a queue until kswapd makes progress and wakes them. There
3541 * is an affinity then between processes waking up and where reclaim
3542 * progress has been made assuming the process wakes on the same node.
3543 * More importantly, processes running on remote nodes will not compete
3544 * for remote pfmemalloc reserves and processes on different nodes
3545 * should make reasonable progress.
3546 */
3547 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3548 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3549 if (zone_idx(zone) > ZONE_NORMAL)
3550 continue;
3551
3552 /* Throttle based on the first usable node */
3553 pgdat = zone->zone_pgdat;
c73322d0 3554 if (allow_direct_reclaim(pgdat))
675becce
MG
3555 goto out;
3556 break;
3557 }
3558
3559 /* If no zone was usable by the allocation flags then do not throttle */
3560 if (!pgdat)
50694c28 3561 goto out;
5515061d 3562
68243e76
MG
3563 /* Account for the throttling */
3564 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3565
5515061d
MG
3566 /*
3567 * If the caller cannot enter the filesystem, it's possible that it
3568 * is due to the caller holding an FS lock or performing a journal
3569 * transaction in the case of a filesystem like ext[3|4]. In this case,
3570 * it is not safe to block on pfmemalloc_wait as kswapd could be
3571 * blocked waiting on the same lock. Instead, throttle for up to a
3572 * second before continuing.
3573 */
3574 if (!(gfp_mask & __GFP_FS)) {
3575 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3576 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3577
3578 goto check_pending;
5515061d
MG
3579 }
3580
3581 /* Throttle until kswapd wakes the process */
3582 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3583 allow_direct_reclaim(pgdat));
50694c28
MG
3584
3585check_pending:
3586 if (fatal_signal_pending(current))
3587 return true;
3588
3589out:
3590 return false;
5515061d
MG
3591}
3592
dac1d27b 3593unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3594 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3595{
33906bc5 3596 unsigned long nr_reclaimed;
66e1707b 3597 struct scan_control sc = {
ee814fe2 3598 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3599 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3600 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3601 .order = order,
3602 .nodemask = nodemask,
3603 .priority = DEF_PRIORITY,
66e1707b 3604 .may_writepage = !laptop_mode,
a6dc60f8 3605 .may_unmap = 1,
2e2e4259 3606 .may_swap = 1,
66e1707b
BS
3607 };
3608
bb451fdf
GT
3609 /*
3610 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3611 * Confirm they are large enough for max values.
3612 */
3613 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3614 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3615 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3616
5515061d 3617 /*
50694c28
MG
3618 * Do not enter reclaim if fatal signal was delivered while throttled.
3619 * 1 is returned so that the page allocator does not OOM kill at this
3620 * point.
5515061d 3621 */
f2f43e56 3622 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3623 return 1;
3624
1732d2b0 3625 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3626 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3627
3115cd91 3628 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3629
3630 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3631 set_task_reclaim_state(current, NULL);
33906bc5
MG
3632
3633 return nr_reclaimed;
66e1707b
BS
3634}
3635
c255a458 3636#ifdef CONFIG_MEMCG
66e1707b 3637
d2e5fb92 3638/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3639unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3640 gfp_t gfp_mask, bool noswap,
ef8f2327 3641 pg_data_t *pgdat,
0ae5e89c 3642 unsigned long *nr_scanned)
4e416953 3643{
afaf07a6 3644 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3645 struct scan_control sc = {
b8f5c566 3646 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3647 .target_mem_cgroup = memcg,
4e416953
BS
3648 .may_writepage = !laptop_mode,
3649 .may_unmap = 1,
b2e18757 3650 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3651 .may_swap = !noswap,
4e416953 3652 };
0ae5e89c 3653
d2e5fb92
MH
3654 WARN_ON_ONCE(!current->reclaim_state);
3655
4e416953
BS
3656 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3657 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3658
9e3b2f8c 3659 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3660 sc.gfp_mask);
bdce6d9e 3661
4e416953
BS
3662 /*
3663 * NOTE: Although we can get the priority field, using it
3664 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3665 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3666 * will pick up pages from other mem cgroup's as well. We hack
3667 * the priority and make it zero.
3668 */
afaf07a6 3669 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3670
3671 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3672
0ae5e89c 3673 *nr_scanned = sc.nr_scanned;
0308f7cf 3674
4e416953
BS
3675 return sc.nr_reclaimed;
3676}
3677
72835c86 3678unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3679 unsigned long nr_pages,
a7885eb8 3680 gfp_t gfp_mask,
b70a2a21 3681 bool may_swap)
66e1707b 3682{
bdce6d9e 3683 unsigned long nr_reclaimed;
499118e9 3684 unsigned int noreclaim_flag;
66e1707b 3685 struct scan_control sc = {
b70a2a21 3686 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3687 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3688 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3689 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3690 .target_mem_cgroup = memcg,
3691 .priority = DEF_PRIORITY,
3692 .may_writepage = !laptop_mode,
3693 .may_unmap = 1,
b70a2a21 3694 .may_swap = may_swap,
a09ed5e0 3695 };
889976db 3696 /*
fa40d1ee
SB
3697 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3698 * equal pressure on all the nodes. This is based on the assumption that
3699 * the reclaim does not bail out early.
889976db 3700 */
fa40d1ee 3701 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3702
fa40d1ee 3703 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3704 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3705 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3706
3115cd91 3707 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3708
499118e9 3709 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3710 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3711 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3712
3713 return nr_reclaimed;
66e1707b
BS
3714}
3715#endif
3716
1d82de61 3717static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3718 struct scan_control *sc)
f16015fb 3719{
b95a2f2d 3720 struct mem_cgroup *memcg;
b91ac374 3721 struct lruvec *lruvec;
f16015fb 3722
2f368a9f 3723 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
3724 return;
3725
b91ac374
JW
3726 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3727 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3728 return;
3729
b95a2f2d
JW
3730 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3731 do {
b91ac374
JW
3732 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3733 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3734 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3735 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3736 } while (memcg);
f16015fb
JW
3737}
3738
97a225e6 3739static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3740{
3741 int i;
3742 struct zone *zone;
3743
3744 /*
3745 * Check for watermark boosts top-down as the higher zones
3746 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3747 * should not be checked at the same time as reclaim would
1c30844d
MG
3748 * start prematurely when there is no boosting and a lower
3749 * zone is balanced.
3750 */
97a225e6 3751 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3752 zone = pgdat->node_zones + i;
3753 if (!managed_zone(zone))
3754 continue;
3755
3756 if (zone->watermark_boost)
3757 return true;
3758 }
3759
3760 return false;
3761}
3762
e716f2eb
MG
3763/*
3764 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3765 * and highest_zoneidx
e716f2eb 3766 */
97a225e6 3767static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3768{
e716f2eb
MG
3769 int i;
3770 unsigned long mark = -1;
3771 struct zone *zone;
60cefed4 3772
1c30844d
MG
3773 /*
3774 * Check watermarks bottom-up as lower zones are more likely to
3775 * meet watermarks.
3776 */
97a225e6 3777 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3778 zone = pgdat->node_zones + i;
6256c6b4 3779
e716f2eb
MG
3780 if (!managed_zone(zone))
3781 continue;
3782
3783 mark = high_wmark_pages(zone);
97a225e6 3784 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3785 return true;
3786 }
3787
3788 /*
97a225e6 3789 * If a node has no populated zone within highest_zoneidx, it does not
e716f2eb
MG
3790 * need balancing by definition. This can happen if a zone-restricted
3791 * allocation tries to wake a remote kswapd.
3792 */
3793 if (mark == -1)
3794 return true;
3795
3796 return false;
60cefed4
JW
3797}
3798
631b6e08
MG
3799/* Clear pgdat state for congested, dirty or under writeback. */
3800static void clear_pgdat_congested(pg_data_t *pgdat)
3801{
1b05117d
JW
3802 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3803
3804 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3805 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3806 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3807}
3808
5515061d
MG
3809/*
3810 * Prepare kswapd for sleeping. This verifies that there are no processes
3811 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3812 *
3813 * Returns true if kswapd is ready to sleep
3814 */
97a225e6
JK
3815static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3816 int highest_zoneidx)
f50de2d3 3817{
5515061d 3818 /*
9e5e3661 3819 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3820 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3821 * race between when kswapd checks the watermarks and a process gets
3822 * throttled. There is also a potential race if processes get
3823 * throttled, kswapd wakes, a large process exits thereby balancing the
3824 * zones, which causes kswapd to exit balance_pgdat() before reaching
3825 * the wake up checks. If kswapd is going to sleep, no process should
3826 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3827 * the wake up is premature, processes will wake kswapd and get
3828 * throttled again. The difference from wake ups in balance_pgdat() is
3829 * that here we are under prepare_to_wait().
5515061d 3830 */
9e5e3661
VB
3831 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3832 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3833
c73322d0
JW
3834 /* Hopeless node, leave it to direct reclaim */
3835 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3836 return true;
3837
97a225e6 3838 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3839 clear_pgdat_congested(pgdat);
3840 return true;
1d82de61
MG
3841 }
3842
333b0a45 3843 return false;
f50de2d3
MG
3844}
3845
75485363 3846/*
1d82de61
MG
3847 * kswapd shrinks a node of pages that are at or below the highest usable
3848 * zone that is currently unbalanced.
b8e83b94
MG
3849 *
3850 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3851 * reclaim or if the lack of progress was due to pages under writeback.
3852 * This is used to determine if the scanning priority needs to be raised.
75485363 3853 */
1d82de61 3854static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3855 struct scan_control *sc)
75485363 3856{
1d82de61
MG
3857 struct zone *zone;
3858 int z;
75485363 3859
1d82de61
MG
3860 /* Reclaim a number of pages proportional to the number of zones */
3861 sc->nr_to_reclaim = 0;
970a39a3 3862 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3863 zone = pgdat->node_zones + z;
6aa303de 3864 if (!managed_zone(zone))
1d82de61 3865 continue;
7c954f6d 3866
1d82de61
MG
3867 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3868 }
7c954f6d
MG
3869
3870 /*
1d82de61
MG
3871 * Historically care was taken to put equal pressure on all zones but
3872 * now pressure is applied based on node LRU order.
7c954f6d 3873 */
970a39a3 3874 shrink_node(pgdat, sc);
283aba9f 3875
7c954f6d 3876 /*
1d82de61
MG
3877 * Fragmentation may mean that the system cannot be rebalanced for
3878 * high-order allocations. If twice the allocation size has been
3879 * reclaimed then recheck watermarks only at order-0 to prevent
3880 * excessive reclaim. Assume that a process requested a high-order
3881 * can direct reclaim/compact.
7c954f6d 3882 */
9861a62c 3883 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3884 sc->order = 0;
7c954f6d 3885
b8e83b94 3886 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3887}
3888
c49c2c47
MG
3889/* Page allocator PCP high watermark is lowered if reclaim is active. */
3890static inline void
3891update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
3892{
3893 int i;
3894 struct zone *zone;
3895
3896 for (i = 0; i <= highest_zoneidx; i++) {
3897 zone = pgdat->node_zones + i;
3898
3899 if (!managed_zone(zone))
3900 continue;
3901
3902 if (active)
3903 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3904 else
3905 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
3906 }
3907}
3908
3909static inline void
3910set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3911{
3912 update_reclaim_active(pgdat, highest_zoneidx, true);
3913}
3914
3915static inline void
3916clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
3917{
3918 update_reclaim_active(pgdat, highest_zoneidx, false);
3919}
3920
1da177e4 3921/*
1d82de61
MG
3922 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3923 * that are eligible for use by the caller until at least one zone is
3924 * balanced.
1da177e4 3925 *
1d82de61 3926 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3927 *
3928 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3929 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3930 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3931 * or lower is eligible for reclaim until at least one usable zone is
3932 * balanced.
1da177e4 3933 */
97a225e6 3934static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 3935{
1da177e4 3936 int i;
0608f43d
AM
3937 unsigned long nr_soft_reclaimed;
3938 unsigned long nr_soft_scanned;
eb414681 3939 unsigned long pflags;
1c30844d
MG
3940 unsigned long nr_boost_reclaim;
3941 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3942 bool boosted;
1d82de61 3943 struct zone *zone;
179e9639
AM
3944 struct scan_control sc = {
3945 .gfp_mask = GFP_KERNEL,
ee814fe2 3946 .order = order,
a6dc60f8 3947 .may_unmap = 1,
179e9639 3948 };
93781325 3949
1732d2b0 3950 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3951 psi_memstall_enter(&pflags);
4f3eaf45 3952 __fs_reclaim_acquire(_THIS_IP_);
93781325 3953
f8891e5e 3954 count_vm_event(PAGEOUTRUN);
1da177e4 3955
1c30844d
MG
3956 /*
3957 * Account for the reclaim boost. Note that the zone boost is left in
3958 * place so that parallel allocations that are near the watermark will
3959 * stall or direct reclaim until kswapd is finished.
3960 */
3961 nr_boost_reclaim = 0;
97a225e6 3962 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3963 zone = pgdat->node_zones + i;
3964 if (!managed_zone(zone))
3965 continue;
3966
3967 nr_boost_reclaim += zone->watermark_boost;
3968 zone_boosts[i] = zone->watermark_boost;
3969 }
3970 boosted = nr_boost_reclaim;
3971
3972restart:
c49c2c47 3973 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 3974 sc.priority = DEF_PRIORITY;
9e3b2f8c 3975 do {
c73322d0 3976 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3977 bool raise_priority = true;
1c30844d 3978 bool balanced;
93781325 3979 bool ret;
b8e83b94 3980
97a225e6 3981 sc.reclaim_idx = highest_zoneidx;
1da177e4 3982
86c79f6b 3983 /*
84c7a777
MG
3984 * If the number of buffer_heads exceeds the maximum allowed
3985 * then consider reclaiming from all zones. This has a dual
3986 * purpose -- on 64-bit systems it is expected that
3987 * buffer_heads are stripped during active rotation. On 32-bit
3988 * systems, highmem pages can pin lowmem memory and shrinking
3989 * buffers can relieve lowmem pressure. Reclaim may still not
3990 * go ahead if all eligible zones for the original allocation
3991 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3992 */
3993 if (buffer_heads_over_limit) {
3994 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3995 zone = pgdat->node_zones + i;
6aa303de 3996 if (!managed_zone(zone))
86c79f6b 3997 continue;
cc715d99 3998
970a39a3 3999 sc.reclaim_idx = i;
e1dbeda6 4000 break;
1da177e4 4001 }
1da177e4 4002 }
dafcb73e 4003
86c79f6b 4004 /*
1c30844d
MG
4005 * If the pgdat is imbalanced then ignore boosting and preserve
4006 * the watermarks for a later time and restart. Note that the
4007 * zone watermarks will be still reset at the end of balancing
4008 * on the grounds that the normal reclaim should be enough to
4009 * re-evaluate if boosting is required when kswapd next wakes.
4010 */
97a225e6 4011 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
4012 if (!balanced && nr_boost_reclaim) {
4013 nr_boost_reclaim = 0;
4014 goto restart;
4015 }
4016
4017 /*
4018 * If boosting is not active then only reclaim if there are no
4019 * eligible zones. Note that sc.reclaim_idx is not used as
4020 * buffer_heads_over_limit may have adjusted it.
86c79f6b 4021 */
1c30844d 4022 if (!nr_boost_reclaim && balanced)
e716f2eb 4023 goto out;
e1dbeda6 4024
1c30844d
MG
4025 /* Limit the priority of boosting to avoid reclaim writeback */
4026 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4027 raise_priority = false;
4028
4029 /*
4030 * Do not writeback or swap pages for boosted reclaim. The
4031 * intent is to relieve pressure not issue sub-optimal IO
4032 * from reclaim context. If no pages are reclaimed, the
4033 * reclaim will be aborted.
4034 */
4035 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4036 sc.may_swap = !nr_boost_reclaim;
1c30844d 4037
1d82de61
MG
4038 /*
4039 * Do some background aging of the anon list, to give
4040 * pages a chance to be referenced before reclaiming. All
4041 * pages are rotated regardless of classzone as this is
4042 * about consistent aging.
4043 */
ef8f2327 4044 age_active_anon(pgdat, &sc);
1d82de61 4045
b7ea3c41
MG
4046 /*
4047 * If we're getting trouble reclaiming, start doing writepage
4048 * even in laptop mode.
4049 */
047d72c3 4050 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
4051 sc.may_writepage = 1;
4052
1d82de61
MG
4053 /* Call soft limit reclaim before calling shrink_node. */
4054 sc.nr_scanned = 0;
4055 nr_soft_scanned = 0;
ef8f2327 4056 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
4057 sc.gfp_mask, &nr_soft_scanned);
4058 sc.nr_reclaimed += nr_soft_reclaimed;
4059
1da177e4 4060 /*
1d82de61
MG
4061 * There should be no need to raise the scanning priority if
4062 * enough pages are already being scanned that that high
4063 * watermark would be met at 100% efficiency.
1da177e4 4064 */
970a39a3 4065 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 4066 raise_priority = false;
5515061d
MG
4067
4068 /*
4069 * If the low watermark is met there is no need for processes
4070 * to be throttled on pfmemalloc_wait as they should not be
4071 * able to safely make forward progress. Wake them
4072 */
4073 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 4074 allow_direct_reclaim(pgdat))
cfc51155 4075 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 4076
b8e83b94 4077 /* Check if kswapd should be suspending */
4f3eaf45 4078 __fs_reclaim_release(_THIS_IP_);
93781325 4079 ret = try_to_freeze();
4f3eaf45 4080 __fs_reclaim_acquire(_THIS_IP_);
93781325 4081 if (ret || kthread_should_stop())
b8e83b94 4082 break;
8357376d 4083
73ce02e9 4084 /*
b8e83b94
MG
4085 * Raise priority if scanning rate is too low or there was no
4086 * progress in reclaiming pages
73ce02e9 4087 */
c73322d0 4088 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
4089 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4090
4091 /*
4092 * If reclaim made no progress for a boost, stop reclaim as
4093 * IO cannot be queued and it could be an infinite loop in
4094 * extreme circumstances.
4095 */
4096 if (nr_boost_reclaim && !nr_reclaimed)
4097 break;
4098
c73322d0 4099 if (raise_priority || !nr_reclaimed)
b8e83b94 4100 sc.priority--;
1d82de61 4101 } while (sc.priority >= 1);
1da177e4 4102
c73322d0
JW
4103 if (!sc.nr_reclaimed)
4104 pgdat->kswapd_failures++;
4105
b8e83b94 4106out:
c49c2c47
MG
4107 clear_reclaim_active(pgdat, highest_zoneidx);
4108
1c30844d
MG
4109 /* If reclaim was boosted, account for the reclaim done in this pass */
4110 if (boosted) {
4111 unsigned long flags;
4112
97a225e6 4113 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
4114 if (!zone_boosts[i])
4115 continue;
4116
4117 /* Increments are under the zone lock */
4118 zone = pgdat->node_zones + i;
4119 spin_lock_irqsave(&zone->lock, flags);
4120 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4121 spin_unlock_irqrestore(&zone->lock, flags);
4122 }
4123
4124 /*
4125 * As there is now likely space, wakeup kcompact to defragment
4126 * pageblocks.
4127 */
97a225e6 4128 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
4129 }
4130
2a2e4885 4131 snapshot_refaults(NULL, pgdat);
4f3eaf45 4132 __fs_reclaim_release(_THIS_IP_);
eb414681 4133 psi_memstall_leave(&pflags);
1732d2b0 4134 set_task_reclaim_state(current, NULL);
e5ca8071 4135
0abdee2b 4136 /*
1d82de61
MG
4137 * Return the order kswapd stopped reclaiming at as
4138 * prepare_kswapd_sleep() takes it into account. If another caller
4139 * entered the allocator slow path while kswapd was awake, order will
4140 * remain at the higher level.
0abdee2b 4141 */
1d82de61 4142 return sc.order;
1da177e4
LT
4143}
4144
e716f2eb 4145/*
97a225e6
JK
4146 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4147 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4148 * not a valid index then either kswapd runs for first time or kswapd couldn't
4149 * sleep after previous reclaim attempt (node is still unbalanced). In that
4150 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 4151 */
97a225e6
JK
4152static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4153 enum zone_type prev_highest_zoneidx)
e716f2eb 4154{
97a225e6 4155 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4156
97a225e6 4157 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
4158}
4159
38087d9b 4160static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 4161 unsigned int highest_zoneidx)
f0bc0a60
KM
4162{
4163 long remaining = 0;
4164 DEFINE_WAIT(wait);
4165
4166 if (freezing(current) || kthread_should_stop())
4167 return;
4168
4169 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4170
333b0a45
SG
4171 /*
4172 * Try to sleep for a short interval. Note that kcompactd will only be
4173 * woken if it is possible to sleep for a short interval. This is
4174 * deliberate on the assumption that if reclaim cannot keep an
4175 * eligible zone balanced that it's also unlikely that compaction will
4176 * succeed.
4177 */
97a225e6 4178 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
4179 /*
4180 * Compaction records what page blocks it recently failed to
4181 * isolate pages from and skips them in the future scanning.
4182 * When kswapd is going to sleep, it is reasonable to assume
4183 * that pages and compaction may succeed so reset the cache.
4184 */
4185 reset_isolation_suitable(pgdat);
4186
4187 /*
4188 * We have freed the memory, now we should compact it to make
4189 * allocation of the requested order possible.
4190 */
97a225e6 4191 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 4192
f0bc0a60 4193 remaining = schedule_timeout(HZ/10);
38087d9b
MG
4194
4195 /*
97a225e6 4196 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
4197 * order. The values will either be from a wakeup request or
4198 * the previous request that slept prematurely.
4199 */
4200 if (remaining) {
97a225e6
JK
4201 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4202 kswapd_highest_zoneidx(pgdat,
4203 highest_zoneidx));
5644e1fb
QC
4204
4205 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4206 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
4207 }
4208
f0bc0a60
KM
4209 finish_wait(&pgdat->kswapd_wait, &wait);
4210 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4211 }
4212
4213 /*
4214 * After a short sleep, check if it was a premature sleep. If not, then
4215 * go fully to sleep until explicitly woken up.
4216 */
d9f21d42 4217 if (!remaining &&
97a225e6 4218 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
4219 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4220
4221 /*
4222 * vmstat counters are not perfectly accurate and the estimated
4223 * value for counters such as NR_FREE_PAGES can deviate from the
4224 * true value by nr_online_cpus * threshold. To avoid the zone
4225 * watermarks being breached while under pressure, we reduce the
4226 * per-cpu vmstat threshold while kswapd is awake and restore
4227 * them before going back to sleep.
4228 */
4229 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
4230
4231 if (!kthread_should_stop())
4232 schedule();
4233
f0bc0a60
KM
4234 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4235 } else {
4236 if (remaining)
4237 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4238 else
4239 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4240 }
4241 finish_wait(&pgdat->kswapd_wait, &wait);
4242}
4243
1da177e4
LT
4244/*
4245 * The background pageout daemon, started as a kernel thread
4f98a2fe 4246 * from the init process.
1da177e4
LT
4247 *
4248 * This basically trickles out pages so that we have _some_
4249 * free memory available even if there is no other activity
4250 * that frees anything up. This is needed for things like routing
4251 * etc, where we otherwise might have all activity going on in
4252 * asynchronous contexts that cannot page things out.
4253 *
4254 * If there are applications that are active memory-allocators
4255 * (most normal use), this basically shouldn't matter.
4256 */
4257static int kswapd(void *p)
4258{
e716f2eb 4259 unsigned int alloc_order, reclaim_order;
97a225e6 4260 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 4261 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 4262 struct task_struct *tsk = current;
a70f7302 4263 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 4264
174596a0 4265 if (!cpumask_empty(cpumask))
c5f59f08 4266 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
4267
4268 /*
4269 * Tell the memory management that we're a "memory allocator",
4270 * and that if we need more memory we should get access to it
4271 * regardless (see "__alloc_pages()"). "kswapd" should
4272 * never get caught in the normal page freeing logic.
4273 *
4274 * (Kswapd normally doesn't need memory anyway, but sometimes
4275 * you need a small amount of memory in order to be able to
4276 * page out something else, and this flag essentially protects
4277 * us from recursively trying to free more memory as we're
4278 * trying to free the first piece of memory in the first place).
4279 */
930d9152 4280 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 4281 set_freezable();
1da177e4 4282
5644e1fb 4283 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4284 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4285 for ( ; ; ) {
6f6313d4 4286 bool ret;
3e1d1d28 4287
5644e1fb 4288 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4289 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4290 highest_zoneidx);
e716f2eb 4291
38087d9b
MG
4292kswapd_try_sleep:
4293 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 4294 highest_zoneidx);
215ddd66 4295
97a225e6 4296 /* Read the new order and highest_zoneidx */
2b47a24c 4297 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
4298 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4299 highest_zoneidx);
5644e1fb 4300 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 4301 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 4302
8fe23e05
DR
4303 ret = try_to_freeze();
4304 if (kthread_should_stop())
4305 break;
4306
4307 /*
4308 * We can speed up thawing tasks if we don't call balance_pgdat
4309 * after returning from the refrigerator
4310 */
38087d9b
MG
4311 if (ret)
4312 continue;
4313
4314 /*
4315 * Reclaim begins at the requested order but if a high-order
4316 * reclaim fails then kswapd falls back to reclaiming for
4317 * order-0. If that happens, kswapd will consider sleeping
4318 * for the order it finished reclaiming at (reclaim_order)
4319 * but kcompactd is woken to compact for the original
4320 * request (alloc_order).
4321 */
97a225e6 4322 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 4323 alloc_order);
97a225e6
JK
4324 reclaim_order = balance_pgdat(pgdat, alloc_order,
4325 highest_zoneidx);
38087d9b
MG
4326 if (reclaim_order < alloc_order)
4327 goto kswapd_try_sleep;
1da177e4 4328 }
b0a8cc58 4329
71abdc15 4330 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 4331
1da177e4
LT
4332 return 0;
4333}
4334
4335/*
5ecd9d40
DR
4336 * A zone is low on free memory or too fragmented for high-order memory. If
4337 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4338 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4339 * has failed or is not needed, still wake up kcompactd if only compaction is
4340 * needed.
1da177e4 4341 */
5ecd9d40 4342void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 4343 enum zone_type highest_zoneidx)
1da177e4
LT
4344{
4345 pg_data_t *pgdat;
5644e1fb 4346 enum zone_type curr_idx;
1da177e4 4347
6aa303de 4348 if (!managed_zone(zone))
1da177e4
LT
4349 return;
4350
5ecd9d40 4351 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 4352 return;
5644e1fb 4353
88f5acf8 4354 pgdat = zone->zone_pgdat;
97a225e6 4355 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 4356
97a225e6
JK
4357 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4358 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
4359
4360 if (READ_ONCE(pgdat->kswapd_order) < order)
4361 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 4362
8d0986e2 4363 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 4364 return;
e1a55637 4365
5ecd9d40
DR
4366 /* Hopeless node, leave it to direct reclaim if possible */
4367 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
4368 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4369 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
4370 /*
4371 * There may be plenty of free memory available, but it's too
4372 * fragmented for high-order allocations. Wake up kcompactd
4373 * and rely on compaction_suitable() to determine if it's
4374 * needed. If it fails, it will defer subsequent attempts to
4375 * ratelimit its work.
4376 */
4377 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 4378 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 4379 return;
5ecd9d40 4380 }
88f5acf8 4381
97a225e6 4382 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 4383 gfp_flags);
8d0986e2 4384 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
4385}
4386
c6f37f12 4387#ifdef CONFIG_HIBERNATION
1da177e4 4388/*
7b51755c 4389 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
4390 * freed pages.
4391 *
4392 * Rather than trying to age LRUs the aim is to preserve the overall
4393 * LRU order by reclaiming preferentially
4394 * inactive > active > active referenced > active mapped
1da177e4 4395 */
7b51755c 4396unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 4397{
d6277db4 4398 struct scan_control sc = {
ee814fe2 4399 .nr_to_reclaim = nr_to_reclaim,
7b51755c 4400 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4401 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4402 .priority = DEF_PRIORITY,
d6277db4 4403 .may_writepage = 1,
ee814fe2
JW
4404 .may_unmap = 1,
4405 .may_swap = 1,
7b51755c 4406 .hibernation_mode = 1,
1da177e4 4407 };
a09ed5e0 4408 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4409 unsigned long nr_reclaimed;
499118e9 4410 unsigned int noreclaim_flag;
1da177e4 4411
d92a8cfc 4412 fs_reclaim_acquire(sc.gfp_mask);
93781325 4413 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4414 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4415
3115cd91 4416 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4417
1732d2b0 4418 set_task_reclaim_state(current, NULL);
499118e9 4419 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4420 fs_reclaim_release(sc.gfp_mask);
d6277db4 4421
7b51755c 4422 return nr_reclaimed;
1da177e4 4423}
c6f37f12 4424#endif /* CONFIG_HIBERNATION */
1da177e4 4425
3218ae14
YG
4426/*
4427 * This kswapd start function will be called by init and node-hot-add.
4428 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4429 */
4430int kswapd_run(int nid)
4431{
4432 pg_data_t *pgdat = NODE_DATA(nid);
4433 int ret = 0;
4434
4435 if (pgdat->kswapd)
4436 return 0;
4437
4438 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4439 if (IS_ERR(pgdat->kswapd)) {
4440 /* failure at boot is fatal */
c6202adf 4441 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
4442 pr_err("Failed to start kswapd on node %d\n", nid);
4443 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4444 pgdat->kswapd = NULL;
3218ae14
YG
4445 }
4446 return ret;
4447}
4448
8fe23e05 4449/*
d8adde17 4450 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4451 * hold mem_hotplug_begin/end().
8fe23e05
DR
4452 */
4453void kswapd_stop(int nid)
4454{
4455 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4456
d8adde17 4457 if (kswapd) {
8fe23e05 4458 kthread_stop(kswapd);
d8adde17
JL
4459 NODE_DATA(nid)->kswapd = NULL;
4460 }
8fe23e05
DR
4461}
4462
1da177e4
LT
4463static int __init kswapd_init(void)
4464{
6b700b5b 4465 int nid;
69e05944 4466
1da177e4 4467 swap_setup();
48fb2e24 4468 for_each_node_state(nid, N_MEMORY)
3218ae14 4469 kswapd_run(nid);
1da177e4
LT
4470 return 0;
4471}
4472
4473module_init(kswapd_init)
9eeff239
CL
4474
4475#ifdef CONFIG_NUMA
4476/*
a5f5f91d 4477 * Node reclaim mode
9eeff239 4478 *
a5f5f91d 4479 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4480 * the watermarks.
9eeff239 4481 */
a5f5f91d 4482int node_reclaim_mode __read_mostly;
9eeff239 4483
a92f7126 4484/*
a5f5f91d 4485 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4486 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4487 * a zone.
4488 */
a5f5f91d 4489#define NODE_RECLAIM_PRIORITY 4
a92f7126 4490
9614634f 4491/*
a5f5f91d 4492 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4493 * occur.
4494 */
4495int sysctl_min_unmapped_ratio = 1;
4496
0ff38490
CL
4497/*
4498 * If the number of slab pages in a zone grows beyond this percentage then
4499 * slab reclaim needs to occur.
4500 */
4501int sysctl_min_slab_ratio = 5;
4502
11fb9989 4503static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4504{
11fb9989
MG
4505 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4506 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4507 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4508
4509 /*
4510 * It's possible for there to be more file mapped pages than
4511 * accounted for by the pages on the file LRU lists because
4512 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4513 */
4514 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4515}
4516
4517/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4518static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4519{
d031a157
AM
4520 unsigned long nr_pagecache_reclaimable;
4521 unsigned long delta = 0;
90afa5de
MG
4522
4523 /*
95bbc0c7 4524 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4525 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4526 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4527 * a better estimate
4528 */
a5f5f91d
MG
4529 if (node_reclaim_mode & RECLAIM_UNMAP)
4530 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4531 else
a5f5f91d 4532 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4533
4534 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4535 if (!(node_reclaim_mode & RECLAIM_WRITE))
4536 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4537
4538 /* Watch for any possible underflows due to delta */
4539 if (unlikely(delta > nr_pagecache_reclaimable))
4540 delta = nr_pagecache_reclaimable;
4541
4542 return nr_pagecache_reclaimable - delta;
4543}
4544
9eeff239 4545/*
a5f5f91d 4546 * Try to free up some pages from this node through reclaim.
9eeff239 4547 */
a5f5f91d 4548static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4549{
7fb2d46d 4550 /* Minimum pages needed in order to stay on node */
69e05944 4551 const unsigned long nr_pages = 1 << order;
9eeff239 4552 struct task_struct *p = current;
499118e9 4553 unsigned int noreclaim_flag;
179e9639 4554 struct scan_control sc = {
62b726c1 4555 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4556 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4557 .order = order,
a5f5f91d
MG
4558 .priority = NODE_RECLAIM_PRIORITY,
4559 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4560 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4561 .may_swap = 1,
f2f43e56 4562 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4563 };
57f29762 4564 unsigned long pflags;
9eeff239 4565
132bb8cf
YS
4566 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4567 sc.gfp_mask);
4568
9eeff239 4569 cond_resched();
57f29762 4570 psi_memstall_enter(&pflags);
93781325 4571 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4572 /*
95bbc0c7 4573 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4574 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4575 * and RECLAIM_UNMAP.
d4f7796e 4576 */
499118e9
VB
4577 noreclaim_flag = memalloc_noreclaim_save();
4578 p->flags |= PF_SWAPWRITE;
1732d2b0 4579 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4580
a5f5f91d 4581 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4582 /*
894befec 4583 * Free memory by calling shrink node with increasing
0ff38490
CL
4584 * priorities until we have enough memory freed.
4585 */
0ff38490 4586 do {
970a39a3 4587 shrink_node(pgdat, &sc);
9e3b2f8c 4588 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4589 }
c84db23c 4590
1732d2b0 4591 set_task_reclaim_state(p, NULL);
499118e9
VB
4592 current->flags &= ~PF_SWAPWRITE;
4593 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4594 fs_reclaim_release(sc.gfp_mask);
57f29762 4595 psi_memstall_leave(&pflags);
132bb8cf
YS
4596
4597 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4598
a79311c1 4599 return sc.nr_reclaimed >= nr_pages;
9eeff239 4600}
179e9639 4601
a5f5f91d 4602int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4603{
d773ed6b 4604 int ret;
179e9639
AM
4605
4606 /*
a5f5f91d 4607 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4608 * slab pages if we are over the defined limits.
34aa1330 4609 *
9614634f
CL
4610 * A small portion of unmapped file backed pages is needed for
4611 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4612 * thrown out if the node is overallocated. So we do not reclaim
4613 * if less than a specified percentage of the node is used by
9614634f 4614 * unmapped file backed pages.
179e9639 4615 */
a5f5f91d 4616 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4617 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4618 pgdat->min_slab_pages)
a5f5f91d 4619 return NODE_RECLAIM_FULL;
179e9639
AM
4620
4621 /*
d773ed6b 4622 * Do not scan if the allocation should not be delayed.
179e9639 4623 */
d0164adc 4624 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4625 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4626
4627 /*
a5f5f91d 4628 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4629 * have associated processors. This will favor the local processor
4630 * over remote processors and spread off node memory allocations
4631 * as wide as possible.
4632 */
a5f5f91d
MG
4633 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4634 return NODE_RECLAIM_NOSCAN;
d773ed6b 4635
a5f5f91d
MG
4636 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4637 return NODE_RECLAIM_NOSCAN;
fa5e084e 4638
a5f5f91d
MG
4639 ret = __node_reclaim(pgdat, gfp_mask, order);
4640 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4641
24cf7251
MG
4642 if (!ret)
4643 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4644
d773ed6b 4645 return ret;
179e9639 4646}
9eeff239 4647#endif
894bc310 4648
89e004ea 4649/**
64e3d12f
KHY
4650 * check_move_unevictable_pages - check pages for evictability and move to
4651 * appropriate zone lru list
4652 * @pvec: pagevec with lru pages to check
89e004ea 4653 *
64e3d12f
KHY
4654 * Checks pages for evictability, if an evictable page is in the unevictable
4655 * lru list, moves it to the appropriate evictable lru list. This function
4656 * should be only used for lru pages.
89e004ea 4657 */
64e3d12f 4658void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4659{
6168d0da 4660 struct lruvec *lruvec = NULL;
24513264
HD
4661 int pgscanned = 0;
4662 int pgrescued = 0;
4663 int i;
89e004ea 4664
64e3d12f
KHY
4665 for (i = 0; i < pvec->nr; i++) {
4666 struct page *page = pvec->pages[i];
8d8869ca
HD
4667 int nr_pages;
4668
4669 if (PageTransTail(page))
4670 continue;
4671
4672 nr_pages = thp_nr_pages(page);
4673 pgscanned += nr_pages;
89e004ea 4674
d25b5bd8
AS
4675 /* block memcg migration during page moving between lru */
4676 if (!TestClearPageLRU(page))
4677 continue;
4678
2a5e4e34 4679 lruvec = relock_page_lruvec_irq(page, lruvec);
d25b5bd8 4680 if (page_evictable(page) && PageUnevictable(page)) {
46ae6b2c 4681 del_page_from_lru_list(page, lruvec);
24513264 4682 ClearPageUnevictable(page);
3a9c9788 4683 add_page_to_lru_list(page, lruvec);
8d8869ca 4684 pgrescued += nr_pages;
89e004ea 4685 }
d25b5bd8 4686 SetPageLRU(page);
24513264 4687 }
89e004ea 4688
6168d0da 4689 if (lruvec) {
24513264
HD
4690 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4691 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 4692 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
4693 } else if (pgscanned) {
4694 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 4695 }
89e004ea 4696}
64e3d12f 4697EXPORT_SYMBOL_GPL(check_move_unevictable_pages);