mm/memcg: move reclaim_stat into lruvec
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
1da177e4 56struct scan_control {
1da177e4
LT
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
a79311c1
RR
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
7b51755c
KM
66 unsigned long hibernation_mode;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4
LT
70
71 int may_writepage;
72
a6dc60f8
JW
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
f1fd1067 75
2e2e4259
KM
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
5ad333eb 79 int order;
66e1707b 80
f16015fb
JW
81 /*
82 * The memory cgroup that hit its limit and as a result is the
83 * primary target of this reclaim invocation.
84 */
85 struct mem_cgroup *target_mem_cgroup;
66e1707b 86
327c0e96
KH
87 /*
88 * Nodemask of nodes allowed by the caller. If NULL, all nodes
89 * are scanned.
90 */
91 nodemask_t *nodemask;
1da177e4
LT
92};
93
f16015fb
JW
94struct mem_cgroup_zone {
95 struct mem_cgroup *mem_cgroup;
96 struct zone *zone;
97};
98
1da177e4
LT
99#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101#ifdef ARCH_HAS_PREFETCH
102#define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111#else
112#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113#endif
114
115#ifdef ARCH_HAS_PREFETCHW
116#define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125#else
126#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127#endif
128
129/*
130 * From 0 .. 100. Higher means more swappy.
131 */
132int vm_swappiness = 60;
bd1e22b8 133long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
134
135static LIST_HEAD(shrinker_list);
136static DECLARE_RWSEM(shrinker_rwsem);
137
00f0b825 138#ifdef CONFIG_CGROUP_MEM_RES_CTLR
89b5fae5
JW
139static bool global_reclaim(struct scan_control *sc)
140{
f16015fb 141 return !sc->target_mem_cgroup;
89b5fae5 142}
91a45470 143#else
89b5fae5
JW
144static bool global_reclaim(struct scan_control *sc)
145{
146 return true;
147}
91a45470
KH
148#endif
149
f16015fb 150static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
6e901571 151{
89abfab1 152 return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
6e901571
KM
153}
154
f16015fb
JW
155static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
156 enum lru_list lru)
c9f299d9 157{
c3c787e8 158 if (!mem_cgroup_disabled())
f16015fb
JW
159 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
160 zone_to_nid(mz->zone),
161 zone_idx(mz->zone),
162 BIT(lru));
a3d8e054 163
f16015fb 164 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
c9f299d9
KM
165}
166
167
1da177e4
LT
168/*
169 * Add a shrinker callback to be called from the vm
170 */
8e1f936b 171void register_shrinker(struct shrinker *shrinker)
1da177e4 172{
83aeeada 173 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
174 down_write(&shrinker_rwsem);
175 list_add_tail(&shrinker->list, &shrinker_list);
176 up_write(&shrinker_rwsem);
1da177e4 177}
8e1f936b 178EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
179
180/*
181 * Remove one
182 */
8e1f936b 183void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
184{
185 down_write(&shrinker_rwsem);
186 list_del(&shrinker->list);
187 up_write(&shrinker_rwsem);
1da177e4 188}
8e1f936b 189EXPORT_SYMBOL(unregister_shrinker);
1da177e4 190
1495f230
YH
191static inline int do_shrinker_shrink(struct shrinker *shrinker,
192 struct shrink_control *sc,
193 unsigned long nr_to_scan)
194{
195 sc->nr_to_scan = nr_to_scan;
196 return (*shrinker->shrink)(shrinker, sc);
197}
198
1da177e4
LT
199#define SHRINK_BATCH 128
200/*
201 * Call the shrink functions to age shrinkable caches
202 *
203 * Here we assume it costs one seek to replace a lru page and that it also
204 * takes a seek to recreate a cache object. With this in mind we age equal
205 * percentages of the lru and ageable caches. This should balance the seeks
206 * generated by these structures.
207 *
183ff22b 208 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
209 * slab to avoid swapping.
210 *
211 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
212 *
213 * `lru_pages' represents the number of on-LRU pages in all the zones which
214 * are eligible for the caller's allocation attempt. It is used for balancing
215 * slab reclaim versus page reclaim.
b15e0905 216 *
217 * Returns the number of slab objects which we shrunk.
1da177e4 218 */
a09ed5e0 219unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 220 unsigned long nr_pages_scanned,
a09ed5e0 221 unsigned long lru_pages)
1da177e4
LT
222{
223 struct shrinker *shrinker;
69e05944 224 unsigned long ret = 0;
1da177e4 225
1495f230
YH
226 if (nr_pages_scanned == 0)
227 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 228
f06590bd
MK
229 if (!down_read_trylock(&shrinker_rwsem)) {
230 /* Assume we'll be able to shrink next time */
231 ret = 1;
232 goto out;
233 }
1da177e4
LT
234
235 list_for_each_entry(shrinker, &shrinker_list, list) {
236 unsigned long long delta;
635697c6
KK
237 long total_scan;
238 long max_pass;
09576073 239 int shrink_ret = 0;
acf92b48
DC
240 long nr;
241 long new_nr;
e9299f50
DC
242 long batch_size = shrinker->batch ? shrinker->batch
243 : SHRINK_BATCH;
1da177e4 244
635697c6
KK
245 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
246 if (max_pass <= 0)
247 continue;
248
acf92b48
DC
249 /*
250 * copy the current shrinker scan count into a local variable
251 * and zero it so that other concurrent shrinker invocations
252 * don't also do this scanning work.
253 */
83aeeada 254 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
255
256 total_scan = nr;
1495f230 257 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 258 delta *= max_pass;
1da177e4 259 do_div(delta, lru_pages + 1);
acf92b48
DC
260 total_scan += delta;
261 if (total_scan < 0) {
88c3bd70
DR
262 printk(KERN_ERR "shrink_slab: %pF negative objects to "
263 "delete nr=%ld\n",
acf92b48
DC
264 shrinker->shrink, total_scan);
265 total_scan = max_pass;
ea164d73
AA
266 }
267
3567b59a
DC
268 /*
269 * We need to avoid excessive windup on filesystem shrinkers
270 * due to large numbers of GFP_NOFS allocations causing the
271 * shrinkers to return -1 all the time. This results in a large
272 * nr being built up so when a shrink that can do some work
273 * comes along it empties the entire cache due to nr >>>
274 * max_pass. This is bad for sustaining a working set in
275 * memory.
276 *
277 * Hence only allow the shrinker to scan the entire cache when
278 * a large delta change is calculated directly.
279 */
280 if (delta < max_pass / 4)
281 total_scan = min(total_scan, max_pass / 2);
282
ea164d73
AA
283 /*
284 * Avoid risking looping forever due to too large nr value:
285 * never try to free more than twice the estimate number of
286 * freeable entries.
287 */
acf92b48
DC
288 if (total_scan > max_pass * 2)
289 total_scan = max_pass * 2;
1da177e4 290
acf92b48 291 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
292 nr_pages_scanned, lru_pages,
293 max_pass, delta, total_scan);
294
e9299f50 295 while (total_scan >= batch_size) {
b15e0905 296 int nr_before;
1da177e4 297
1495f230
YH
298 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
299 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 300 batch_size);
1da177e4
LT
301 if (shrink_ret == -1)
302 break;
b15e0905 303 if (shrink_ret < nr_before)
304 ret += nr_before - shrink_ret;
e9299f50
DC
305 count_vm_events(SLABS_SCANNED, batch_size);
306 total_scan -= batch_size;
1da177e4
LT
307
308 cond_resched();
309 }
310
acf92b48
DC
311 /*
312 * move the unused scan count back into the shrinker in a
313 * manner that handles concurrent updates. If we exhausted the
314 * scan, there is no need to do an update.
315 */
83aeeada
KK
316 if (total_scan > 0)
317 new_nr = atomic_long_add_return(total_scan,
318 &shrinker->nr_in_batch);
319 else
320 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
321
322 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
323 }
324 up_read(&shrinker_rwsem);
f06590bd
MK
325out:
326 cond_resched();
b15e0905 327 return ret;
1da177e4
LT
328}
329
1da177e4
LT
330static inline int is_page_cache_freeable(struct page *page)
331{
ceddc3a5
JW
332 /*
333 * A freeable page cache page is referenced only by the caller
334 * that isolated the page, the page cache radix tree and
335 * optional buffer heads at page->private.
336 */
edcf4748 337 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
338}
339
7d3579e8
KM
340static int may_write_to_queue(struct backing_dev_info *bdi,
341 struct scan_control *sc)
1da177e4 342{
930d9152 343 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
344 return 1;
345 if (!bdi_write_congested(bdi))
346 return 1;
347 if (bdi == current->backing_dev_info)
348 return 1;
349 return 0;
350}
351
352/*
353 * We detected a synchronous write error writing a page out. Probably
354 * -ENOSPC. We need to propagate that into the address_space for a subsequent
355 * fsync(), msync() or close().
356 *
357 * The tricky part is that after writepage we cannot touch the mapping: nothing
358 * prevents it from being freed up. But we have a ref on the page and once
359 * that page is locked, the mapping is pinned.
360 *
361 * We're allowed to run sleeping lock_page() here because we know the caller has
362 * __GFP_FS.
363 */
364static void handle_write_error(struct address_space *mapping,
365 struct page *page, int error)
366{
7eaceacc 367 lock_page(page);
3e9f45bd
GC
368 if (page_mapping(page) == mapping)
369 mapping_set_error(mapping, error);
1da177e4
LT
370 unlock_page(page);
371}
372
04e62a29
CL
373/* possible outcome of pageout() */
374typedef enum {
375 /* failed to write page out, page is locked */
376 PAGE_KEEP,
377 /* move page to the active list, page is locked */
378 PAGE_ACTIVATE,
379 /* page has been sent to the disk successfully, page is unlocked */
380 PAGE_SUCCESS,
381 /* page is clean and locked */
382 PAGE_CLEAN,
383} pageout_t;
384
1da177e4 385/*
1742f19f
AM
386 * pageout is called by shrink_page_list() for each dirty page.
387 * Calls ->writepage().
1da177e4 388 */
c661b078 389static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 390 struct scan_control *sc)
1da177e4
LT
391{
392 /*
393 * If the page is dirty, only perform writeback if that write
394 * will be non-blocking. To prevent this allocation from being
395 * stalled by pagecache activity. But note that there may be
396 * stalls if we need to run get_block(). We could test
397 * PagePrivate for that.
398 *
6aceb53b 399 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
400 * this page's queue, we can perform writeback even if that
401 * will block.
402 *
403 * If the page is swapcache, write it back even if that would
404 * block, for some throttling. This happens by accident, because
405 * swap_backing_dev_info is bust: it doesn't reflect the
406 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
407 */
408 if (!is_page_cache_freeable(page))
409 return PAGE_KEEP;
410 if (!mapping) {
411 /*
412 * Some data journaling orphaned pages can have
413 * page->mapping == NULL while being dirty with clean buffers.
414 */
266cf658 415 if (page_has_private(page)) {
1da177e4
LT
416 if (try_to_free_buffers(page)) {
417 ClearPageDirty(page);
d40cee24 418 printk("%s: orphaned page\n", __func__);
1da177e4
LT
419 return PAGE_CLEAN;
420 }
421 }
422 return PAGE_KEEP;
423 }
424 if (mapping->a_ops->writepage == NULL)
425 return PAGE_ACTIVATE;
0e093d99 426 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
427 return PAGE_KEEP;
428
429 if (clear_page_dirty_for_io(page)) {
430 int res;
431 struct writeback_control wbc = {
432 .sync_mode = WB_SYNC_NONE,
433 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
434 .range_start = 0,
435 .range_end = LLONG_MAX,
1da177e4
LT
436 .for_reclaim = 1,
437 };
438
439 SetPageReclaim(page);
440 res = mapping->a_ops->writepage(page, &wbc);
441 if (res < 0)
442 handle_write_error(mapping, page, res);
994fc28c 443 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
444 ClearPageReclaim(page);
445 return PAGE_ACTIVATE;
446 }
c661b078 447
1da177e4
LT
448 if (!PageWriteback(page)) {
449 /* synchronous write or broken a_ops? */
450 ClearPageReclaim(page);
451 }
23b9da55 452 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 453 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
454 return PAGE_SUCCESS;
455 }
456
457 return PAGE_CLEAN;
458}
459
a649fd92 460/*
e286781d
NP
461 * Same as remove_mapping, but if the page is removed from the mapping, it
462 * gets returned with a refcount of 0.
a649fd92 463 */
e286781d 464static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 465{
28e4d965
NP
466 BUG_ON(!PageLocked(page));
467 BUG_ON(mapping != page_mapping(page));
49d2e9cc 468
19fd6231 469 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 470 /*
0fd0e6b0
NP
471 * The non racy check for a busy page.
472 *
473 * Must be careful with the order of the tests. When someone has
474 * a ref to the page, it may be possible that they dirty it then
475 * drop the reference. So if PageDirty is tested before page_count
476 * here, then the following race may occur:
477 *
478 * get_user_pages(&page);
479 * [user mapping goes away]
480 * write_to(page);
481 * !PageDirty(page) [good]
482 * SetPageDirty(page);
483 * put_page(page);
484 * !page_count(page) [good, discard it]
485 *
486 * [oops, our write_to data is lost]
487 *
488 * Reversing the order of the tests ensures such a situation cannot
489 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
490 * load is not satisfied before that of page->_count.
491 *
492 * Note that if SetPageDirty is always performed via set_page_dirty,
493 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 494 */
e286781d 495 if (!page_freeze_refs(page, 2))
49d2e9cc 496 goto cannot_free;
e286781d
NP
497 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
498 if (unlikely(PageDirty(page))) {
499 page_unfreeze_refs(page, 2);
49d2e9cc 500 goto cannot_free;
e286781d 501 }
49d2e9cc
CL
502
503 if (PageSwapCache(page)) {
504 swp_entry_t swap = { .val = page_private(page) };
505 __delete_from_swap_cache(page);
19fd6231 506 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 507 swapcache_free(swap, page);
e286781d 508 } else {
6072d13c
LT
509 void (*freepage)(struct page *);
510
511 freepage = mapping->a_ops->freepage;
512
e64a782f 513 __delete_from_page_cache(page);
19fd6231 514 spin_unlock_irq(&mapping->tree_lock);
e767e056 515 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
516
517 if (freepage != NULL)
518 freepage(page);
49d2e9cc
CL
519 }
520
49d2e9cc
CL
521 return 1;
522
523cannot_free:
19fd6231 524 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
525 return 0;
526}
527
e286781d
NP
528/*
529 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
530 * someone else has a ref on the page, abort and return 0. If it was
531 * successfully detached, return 1. Assumes the caller has a single ref on
532 * this page.
533 */
534int remove_mapping(struct address_space *mapping, struct page *page)
535{
536 if (__remove_mapping(mapping, page)) {
537 /*
538 * Unfreezing the refcount with 1 rather than 2 effectively
539 * drops the pagecache ref for us without requiring another
540 * atomic operation.
541 */
542 page_unfreeze_refs(page, 1);
543 return 1;
544 }
545 return 0;
546}
547
894bc310
LS
548/**
549 * putback_lru_page - put previously isolated page onto appropriate LRU list
550 * @page: page to be put back to appropriate lru list
551 *
552 * Add previously isolated @page to appropriate LRU list.
553 * Page may still be unevictable for other reasons.
554 *
555 * lru_lock must not be held, interrupts must be enabled.
556 */
894bc310
LS
557void putback_lru_page(struct page *page)
558{
559 int lru;
560 int active = !!TestClearPageActive(page);
bbfd28ee 561 int was_unevictable = PageUnevictable(page);
894bc310
LS
562
563 VM_BUG_ON(PageLRU(page));
564
565redo:
566 ClearPageUnevictable(page);
567
568 if (page_evictable(page, NULL)) {
569 /*
570 * For evictable pages, we can use the cache.
571 * In event of a race, worst case is we end up with an
572 * unevictable page on [in]active list.
573 * We know how to handle that.
574 */
401a8e1c 575 lru = active + page_lru_base_type(page);
894bc310
LS
576 lru_cache_add_lru(page, lru);
577 } else {
578 /*
579 * Put unevictable pages directly on zone's unevictable
580 * list.
581 */
582 lru = LRU_UNEVICTABLE;
583 add_page_to_unevictable_list(page);
6a7b9548 584 /*
21ee9f39
MK
585 * When racing with an mlock or AS_UNEVICTABLE clearing
586 * (page is unlocked) make sure that if the other thread
587 * does not observe our setting of PG_lru and fails
24513264 588 * isolation/check_move_unevictable_pages,
21ee9f39 589 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
590 * the page back to the evictable list.
591 *
21ee9f39 592 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
593 */
594 smp_mb();
894bc310 595 }
894bc310
LS
596
597 /*
598 * page's status can change while we move it among lru. If an evictable
599 * page is on unevictable list, it never be freed. To avoid that,
600 * check after we added it to the list, again.
601 */
602 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
603 if (!isolate_lru_page(page)) {
604 put_page(page);
605 goto redo;
606 }
607 /* This means someone else dropped this page from LRU
608 * So, it will be freed or putback to LRU again. There is
609 * nothing to do here.
610 */
611 }
612
bbfd28ee
LS
613 if (was_unevictable && lru != LRU_UNEVICTABLE)
614 count_vm_event(UNEVICTABLE_PGRESCUED);
615 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
616 count_vm_event(UNEVICTABLE_PGCULLED);
617
894bc310
LS
618 put_page(page); /* drop ref from isolate */
619}
620
dfc8d636
JW
621enum page_references {
622 PAGEREF_RECLAIM,
623 PAGEREF_RECLAIM_CLEAN,
64574746 624 PAGEREF_KEEP,
dfc8d636
JW
625 PAGEREF_ACTIVATE,
626};
627
628static enum page_references page_check_references(struct page *page,
f16015fb 629 struct mem_cgroup_zone *mz,
dfc8d636
JW
630 struct scan_control *sc)
631{
64574746 632 int referenced_ptes, referenced_page;
dfc8d636 633 unsigned long vm_flags;
dfc8d636 634
c3ac9a8a
JW
635 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
636 &vm_flags);
64574746 637 referenced_page = TestClearPageReferenced(page);
dfc8d636 638
dfc8d636
JW
639 /*
640 * Mlock lost the isolation race with us. Let try_to_unmap()
641 * move the page to the unevictable list.
642 */
643 if (vm_flags & VM_LOCKED)
644 return PAGEREF_RECLAIM;
645
64574746 646 if (referenced_ptes) {
e4898273 647 if (PageSwapBacked(page))
64574746
JW
648 return PAGEREF_ACTIVATE;
649 /*
650 * All mapped pages start out with page table
651 * references from the instantiating fault, so we need
652 * to look twice if a mapped file page is used more
653 * than once.
654 *
655 * Mark it and spare it for another trip around the
656 * inactive list. Another page table reference will
657 * lead to its activation.
658 *
659 * Note: the mark is set for activated pages as well
660 * so that recently deactivated but used pages are
661 * quickly recovered.
662 */
663 SetPageReferenced(page);
664
34dbc67a 665 if (referenced_page || referenced_ptes > 1)
64574746
JW
666 return PAGEREF_ACTIVATE;
667
c909e993
KK
668 /*
669 * Activate file-backed executable pages after first usage.
670 */
671 if (vm_flags & VM_EXEC)
672 return PAGEREF_ACTIVATE;
673
64574746
JW
674 return PAGEREF_KEEP;
675 }
dfc8d636
JW
676
677 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 678 if (referenced_page && !PageSwapBacked(page))
64574746
JW
679 return PAGEREF_RECLAIM_CLEAN;
680
681 return PAGEREF_RECLAIM;
dfc8d636
JW
682}
683
1da177e4 684/*
1742f19f 685 * shrink_page_list() returns the number of reclaimed pages
1da177e4 686 */
1742f19f 687static unsigned long shrink_page_list(struct list_head *page_list,
f16015fb 688 struct mem_cgroup_zone *mz,
f84f6e2b 689 struct scan_control *sc,
92df3a72
MG
690 int priority,
691 unsigned long *ret_nr_dirty,
692 unsigned long *ret_nr_writeback)
1da177e4
LT
693{
694 LIST_HEAD(ret_pages);
abe4c3b5 695 LIST_HEAD(free_pages);
1da177e4 696 int pgactivate = 0;
0e093d99
MG
697 unsigned long nr_dirty = 0;
698 unsigned long nr_congested = 0;
05ff5137 699 unsigned long nr_reclaimed = 0;
92df3a72 700 unsigned long nr_writeback = 0;
1da177e4
LT
701
702 cond_resched();
703
1da177e4 704 while (!list_empty(page_list)) {
dfc8d636 705 enum page_references references;
1da177e4
LT
706 struct address_space *mapping;
707 struct page *page;
708 int may_enter_fs;
1da177e4
LT
709
710 cond_resched();
711
712 page = lru_to_page(page_list);
713 list_del(&page->lru);
714
529ae9aa 715 if (!trylock_page(page))
1da177e4
LT
716 goto keep;
717
725d704e 718 VM_BUG_ON(PageActive(page));
f16015fb 719 VM_BUG_ON(page_zone(page) != mz->zone);
1da177e4
LT
720
721 sc->nr_scanned++;
80e43426 722
b291f000
NP
723 if (unlikely(!page_evictable(page, NULL)))
724 goto cull_mlocked;
894bc310 725
a6dc60f8 726 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
727 goto keep_locked;
728
1da177e4
LT
729 /* Double the slab pressure for mapped and swapcache pages */
730 if (page_mapped(page) || PageSwapCache(page))
731 sc->nr_scanned++;
732
c661b078
AW
733 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
734 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
735
736 if (PageWriteback(page)) {
92df3a72 737 nr_writeback++;
41ac1999
MG
738 unlock_page(page);
739 goto keep;
c661b078 740 }
1da177e4 741
f16015fb 742 references = page_check_references(page, mz, sc);
dfc8d636
JW
743 switch (references) {
744 case PAGEREF_ACTIVATE:
1da177e4 745 goto activate_locked;
64574746
JW
746 case PAGEREF_KEEP:
747 goto keep_locked;
dfc8d636
JW
748 case PAGEREF_RECLAIM:
749 case PAGEREF_RECLAIM_CLEAN:
750 ; /* try to reclaim the page below */
751 }
1da177e4 752
1da177e4
LT
753 /*
754 * Anonymous process memory has backing store?
755 * Try to allocate it some swap space here.
756 */
b291f000 757 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
758 if (!(sc->gfp_mask & __GFP_IO))
759 goto keep_locked;
ac47b003 760 if (!add_to_swap(page))
1da177e4 761 goto activate_locked;
63eb6b93 762 may_enter_fs = 1;
b291f000 763 }
1da177e4
LT
764
765 mapping = page_mapping(page);
1da177e4
LT
766
767 /*
768 * The page is mapped into the page tables of one or more
769 * processes. Try to unmap it here.
770 */
771 if (page_mapped(page) && mapping) {
14fa31b8 772 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
773 case SWAP_FAIL:
774 goto activate_locked;
775 case SWAP_AGAIN:
776 goto keep_locked;
b291f000
NP
777 case SWAP_MLOCK:
778 goto cull_mlocked;
1da177e4
LT
779 case SWAP_SUCCESS:
780 ; /* try to free the page below */
781 }
782 }
783
784 if (PageDirty(page)) {
0e093d99
MG
785 nr_dirty++;
786
ee72886d
MG
787 /*
788 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
789 * avoid risk of stack overflow but do not writeback
790 * unless under significant pressure.
ee72886d 791 */
f84f6e2b
MG
792 if (page_is_file_cache(page) &&
793 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
794 /*
795 * Immediately reclaim when written back.
796 * Similar in principal to deactivate_page()
797 * except we already have the page isolated
798 * and know it's dirty
799 */
800 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
801 SetPageReclaim(page);
802
ee72886d
MG
803 goto keep_locked;
804 }
805
dfc8d636 806 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 807 goto keep_locked;
4dd4b920 808 if (!may_enter_fs)
1da177e4 809 goto keep_locked;
52a8363e 810 if (!sc->may_writepage)
1da177e4
LT
811 goto keep_locked;
812
813 /* Page is dirty, try to write it out here */
7d3579e8 814 switch (pageout(page, mapping, sc)) {
1da177e4 815 case PAGE_KEEP:
0e093d99 816 nr_congested++;
1da177e4
LT
817 goto keep_locked;
818 case PAGE_ACTIVATE:
819 goto activate_locked;
820 case PAGE_SUCCESS:
7d3579e8 821 if (PageWriteback(page))
41ac1999 822 goto keep;
7d3579e8 823 if (PageDirty(page))
1da177e4 824 goto keep;
7d3579e8 825
1da177e4
LT
826 /*
827 * A synchronous write - probably a ramdisk. Go
828 * ahead and try to reclaim the page.
829 */
529ae9aa 830 if (!trylock_page(page))
1da177e4
LT
831 goto keep;
832 if (PageDirty(page) || PageWriteback(page))
833 goto keep_locked;
834 mapping = page_mapping(page);
835 case PAGE_CLEAN:
836 ; /* try to free the page below */
837 }
838 }
839
840 /*
841 * If the page has buffers, try to free the buffer mappings
842 * associated with this page. If we succeed we try to free
843 * the page as well.
844 *
845 * We do this even if the page is PageDirty().
846 * try_to_release_page() does not perform I/O, but it is
847 * possible for a page to have PageDirty set, but it is actually
848 * clean (all its buffers are clean). This happens if the
849 * buffers were written out directly, with submit_bh(). ext3
894bc310 850 * will do this, as well as the blockdev mapping.
1da177e4
LT
851 * try_to_release_page() will discover that cleanness and will
852 * drop the buffers and mark the page clean - it can be freed.
853 *
854 * Rarely, pages can have buffers and no ->mapping. These are
855 * the pages which were not successfully invalidated in
856 * truncate_complete_page(). We try to drop those buffers here
857 * and if that worked, and the page is no longer mapped into
858 * process address space (page_count == 1) it can be freed.
859 * Otherwise, leave the page on the LRU so it is swappable.
860 */
266cf658 861 if (page_has_private(page)) {
1da177e4
LT
862 if (!try_to_release_page(page, sc->gfp_mask))
863 goto activate_locked;
e286781d
NP
864 if (!mapping && page_count(page) == 1) {
865 unlock_page(page);
866 if (put_page_testzero(page))
867 goto free_it;
868 else {
869 /*
870 * rare race with speculative reference.
871 * the speculative reference will free
872 * this page shortly, so we may
873 * increment nr_reclaimed here (and
874 * leave it off the LRU).
875 */
876 nr_reclaimed++;
877 continue;
878 }
879 }
1da177e4
LT
880 }
881
e286781d 882 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 883 goto keep_locked;
1da177e4 884
a978d6f5
NP
885 /*
886 * At this point, we have no other references and there is
887 * no way to pick any more up (removed from LRU, removed
888 * from pagecache). Can use non-atomic bitops now (and
889 * we obviously don't have to worry about waking up a process
890 * waiting on the page lock, because there are no references.
891 */
892 __clear_page_locked(page);
e286781d 893free_it:
05ff5137 894 nr_reclaimed++;
abe4c3b5
MG
895
896 /*
897 * Is there need to periodically free_page_list? It would
898 * appear not as the counts should be low
899 */
900 list_add(&page->lru, &free_pages);
1da177e4
LT
901 continue;
902
b291f000 903cull_mlocked:
63d6c5ad
HD
904 if (PageSwapCache(page))
905 try_to_free_swap(page);
b291f000
NP
906 unlock_page(page);
907 putback_lru_page(page);
908 continue;
909
1da177e4 910activate_locked:
68a22394
RR
911 /* Not a candidate for swapping, so reclaim swap space. */
912 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 913 try_to_free_swap(page);
894bc310 914 VM_BUG_ON(PageActive(page));
1da177e4
LT
915 SetPageActive(page);
916 pgactivate++;
917keep_locked:
918 unlock_page(page);
919keep:
920 list_add(&page->lru, &ret_pages);
b291f000 921 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 922 }
abe4c3b5 923
0e093d99
MG
924 /*
925 * Tag a zone as congested if all the dirty pages encountered were
926 * backed by a congested BDI. In this case, reclaimers should just
927 * back off and wait for congestion to clear because further reclaim
928 * will encounter the same problem
929 */
89b5fae5 930 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
f16015fb 931 zone_set_flag(mz->zone, ZONE_CONGESTED);
0e093d99 932
cc59850e 933 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 934
1da177e4 935 list_splice(&ret_pages, page_list);
f8891e5e 936 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
937 *ret_nr_dirty += nr_dirty;
938 *ret_nr_writeback += nr_writeback;
05ff5137 939 return nr_reclaimed;
1da177e4
LT
940}
941
5ad333eb
AW
942/*
943 * Attempt to remove the specified page from its LRU. Only take this page
944 * if it is of the appropriate PageActive status. Pages which are being
945 * freed elsewhere are also ignored.
946 *
947 * page: page to consider
948 * mode: one of the LRU isolation modes defined above
949 *
950 * returns 0 on success, -ve errno on failure.
951 */
4356f21d 952int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
5ad333eb 953{
4356f21d 954 bool all_lru_mode;
5ad333eb
AW
955 int ret = -EINVAL;
956
957 /* Only take pages on the LRU. */
958 if (!PageLRU(page))
959 return ret;
960
4356f21d
MK
961 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
962 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
963
5ad333eb
AW
964 /*
965 * When checking the active state, we need to be sure we are
966 * dealing with comparible boolean values. Take the logical not
967 * of each.
968 */
4356f21d 969 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
5ad333eb
AW
970 return ret;
971
4356f21d 972 if (!all_lru_mode && !!page_is_file_cache(page) != file)
4f98a2fe
RR
973 return ret;
974
c53919ad 975 /* Do not give back unevictable pages for compaction */
894bc310
LS
976 if (PageUnevictable(page))
977 return ret;
978
5ad333eb 979 ret = -EBUSY;
08e552c6 980
c8244935
MG
981 /*
982 * To minimise LRU disruption, the caller can indicate that it only
983 * wants to isolate pages it will be able to operate on without
984 * blocking - clean pages for the most part.
985 *
986 * ISOLATE_CLEAN means that only clean pages should be isolated. This
987 * is used by reclaim when it is cannot write to backing storage
988 *
989 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
990 * that it is possible to migrate without blocking
991 */
992 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
993 /* All the caller can do on PageWriteback is block */
994 if (PageWriteback(page))
995 return ret;
996
997 if (PageDirty(page)) {
998 struct address_space *mapping;
999
1000 /* ISOLATE_CLEAN means only clean pages */
1001 if (mode & ISOLATE_CLEAN)
1002 return ret;
1003
1004 /*
1005 * Only pages without mappings or that have a
1006 * ->migratepage callback are possible to migrate
1007 * without blocking
1008 */
1009 mapping = page_mapping(page);
1010 if (mapping && !mapping->a_ops->migratepage)
1011 return ret;
1012 }
1013 }
39deaf85 1014
f80c0673
MK
1015 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1016 return ret;
1017
5ad333eb
AW
1018 if (likely(get_page_unless_zero(page))) {
1019 /*
1020 * Be careful not to clear PageLRU until after we're
1021 * sure the page is not being freed elsewhere -- the
1022 * page release code relies on it.
1023 */
1024 ClearPageLRU(page);
1025 ret = 0;
1026 }
1027
1028 return ret;
1029}
1030
1da177e4
LT
1031/*
1032 * zone->lru_lock is heavily contended. Some of the functions that
1033 * shrink the lists perform better by taking out a batch of pages
1034 * and working on them outside the LRU lock.
1035 *
1036 * For pagecache intensive workloads, this function is the hottest
1037 * spot in the kernel (apart from copy_*_user functions).
1038 *
1039 * Appropriate locks must be held before calling this function.
1040 *
1041 * @nr_to_scan: The number of pages to look through on the list.
f626012d 1042 * @mz: The mem_cgroup_zone to pull pages from.
1da177e4 1043 * @dst: The temp list to put pages on to.
f626012d 1044 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1045 * @sc: The scan_control struct for this reclaim session
5ad333eb 1046 * @mode: One of the LRU isolation modes
f626012d 1047 * @active: True [1] if isolating active pages
4f98a2fe 1048 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
1049 *
1050 * returns how many pages were moved onto *@dst.
1051 */
69e05944 1052static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
f626012d 1053 struct mem_cgroup_zone *mz, struct list_head *dst,
fe2c2a10
RR
1054 unsigned long *nr_scanned, struct scan_control *sc,
1055 isolate_mode_t mode, int active, int file)
1da177e4 1056{
f626012d
HD
1057 struct lruvec *lruvec;
1058 struct list_head *src;
69e05944 1059 unsigned long nr_taken = 0;
c9b02d97 1060 unsigned long scan;
f626012d
HD
1061 int lru = LRU_BASE;
1062
1063 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1064 if (active)
1065 lru += LRU_ACTIVE;
1066 if (file)
1067 lru += LRU_FILE;
1068 src = &lruvec->lists[lru];
1da177e4 1069
c9b02d97 1070 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1071 struct page *page;
5ad333eb 1072
1da177e4
LT
1073 page = lru_to_page(src);
1074 prefetchw_prev_lru_page(page, src, flags);
1075
725d704e 1076 VM_BUG_ON(!PageLRU(page));
8d438f96 1077
4f98a2fe 1078 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb 1079 case 0:
925b7673 1080 mem_cgroup_lru_del(page);
5ad333eb 1081 list_move(&page->lru, dst);
2c888cfb 1082 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1083 break;
1084
1085 case -EBUSY:
1086 /* else it is being freed elsewhere */
1087 list_move(&page->lru, src);
1088 continue;
46453a6e 1089
5ad333eb
AW
1090 default:
1091 BUG();
1092 }
1da177e4
LT
1093 }
1094
f626012d 1095 *nr_scanned = scan;
a8a94d15 1096
fe2c2a10 1097 trace_mm_vmscan_lru_isolate(sc->order,
a8a94d15
MG
1098 nr_to_scan, scan,
1099 nr_taken,
ea4d349f 1100 mode, file);
1da177e4
LT
1101 return nr_taken;
1102}
1103
62695a84
NP
1104/**
1105 * isolate_lru_page - tries to isolate a page from its LRU list
1106 * @page: page to isolate from its LRU list
1107 *
1108 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1109 * vmstat statistic corresponding to whatever LRU list the page was on.
1110 *
1111 * Returns 0 if the page was removed from an LRU list.
1112 * Returns -EBUSY if the page was not on an LRU list.
1113 *
1114 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1115 * the active list, it will have PageActive set. If it was found on
1116 * the unevictable list, it will have the PageUnevictable bit set. That flag
1117 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1118 *
1119 * The vmstat statistic corresponding to the list on which the page was
1120 * found will be decremented.
1121 *
1122 * Restrictions:
1123 * (1) Must be called with an elevated refcount on the page. This is a
1124 * fundamentnal difference from isolate_lru_pages (which is called
1125 * without a stable reference).
1126 * (2) the lru_lock must not be held.
1127 * (3) interrupts must be enabled.
1128 */
1129int isolate_lru_page(struct page *page)
1130{
1131 int ret = -EBUSY;
1132
0c917313
KK
1133 VM_BUG_ON(!page_count(page));
1134
62695a84
NP
1135 if (PageLRU(page)) {
1136 struct zone *zone = page_zone(page);
1137
1138 spin_lock_irq(&zone->lru_lock);
0c917313 1139 if (PageLRU(page)) {
894bc310 1140 int lru = page_lru(page);
62695a84 1141 ret = 0;
0c917313 1142 get_page(page);
62695a84 1143 ClearPageLRU(page);
4f98a2fe 1144
4f98a2fe 1145 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1146 }
1147 spin_unlock_irq(&zone->lru_lock);
1148 }
1149 return ret;
1150}
1151
35cd7815
RR
1152/*
1153 * Are there way too many processes in the direct reclaim path already?
1154 */
1155static int too_many_isolated(struct zone *zone, int file,
1156 struct scan_control *sc)
1157{
1158 unsigned long inactive, isolated;
1159
1160 if (current_is_kswapd())
1161 return 0;
1162
89b5fae5 1163 if (!global_reclaim(sc))
35cd7815
RR
1164 return 0;
1165
1166 if (file) {
1167 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1168 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1169 } else {
1170 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1171 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1172 }
1173
1174 return isolated > inactive;
1175}
1176
66635629 1177static noinline_for_stack void
3f79768f
HD
1178putback_inactive_pages(struct mem_cgroup_zone *mz,
1179 struct list_head *page_list)
66635629 1180{
f16015fb 1181 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
3f79768f
HD
1182 struct zone *zone = mz->zone;
1183 LIST_HEAD(pages_to_free);
66635629 1184
66635629
MG
1185 /*
1186 * Put back any unfreeable pages.
1187 */
66635629 1188 while (!list_empty(page_list)) {
3f79768f 1189 struct page *page = lru_to_page(page_list);
66635629 1190 int lru;
3f79768f 1191
66635629
MG
1192 VM_BUG_ON(PageLRU(page));
1193 list_del(&page->lru);
1194 if (unlikely(!page_evictable(page, NULL))) {
1195 spin_unlock_irq(&zone->lru_lock);
1196 putback_lru_page(page);
1197 spin_lock_irq(&zone->lru_lock);
1198 continue;
1199 }
7a608572 1200 SetPageLRU(page);
66635629 1201 lru = page_lru(page);
7a608572 1202 add_page_to_lru_list(zone, page, lru);
66635629
MG
1203 if (is_active_lru(lru)) {
1204 int file = is_file_lru(lru);
9992af10
RR
1205 int numpages = hpage_nr_pages(page);
1206 reclaim_stat->recent_rotated[file] += numpages;
66635629 1207 }
2bcf8879
HD
1208 if (put_page_testzero(page)) {
1209 __ClearPageLRU(page);
1210 __ClearPageActive(page);
1211 del_page_from_lru_list(zone, page, lru);
1212
1213 if (unlikely(PageCompound(page))) {
1214 spin_unlock_irq(&zone->lru_lock);
1215 (*get_compound_page_dtor(page))(page);
1216 spin_lock_irq(&zone->lru_lock);
1217 } else
1218 list_add(&page->lru, &pages_to_free);
66635629
MG
1219 }
1220 }
66635629 1221
3f79768f
HD
1222 /*
1223 * To save our caller's stack, now use input list for pages to free.
1224 */
1225 list_splice(&pages_to_free, page_list);
66635629
MG
1226}
1227
f16015fb
JW
1228static noinline_for_stack void
1229update_isolated_counts(struct mem_cgroup_zone *mz,
3f79768f 1230 struct list_head *page_list,
f16015fb 1231 unsigned long *nr_anon,
3f79768f 1232 unsigned long *nr_file)
1489fa14 1233{
f16015fb 1234 struct zone *zone = mz->zone;
1489fa14 1235 unsigned int count[NR_LRU_LISTS] = { 0, };
3f79768f
HD
1236 unsigned long nr_active = 0;
1237 struct page *page;
1238 int lru;
1239
1240 /*
1241 * Count pages and clear active flags
1242 */
1243 list_for_each_entry(page, page_list, lru) {
1244 int numpages = hpage_nr_pages(page);
1245 lru = page_lru_base_type(page);
1246 if (PageActive(page)) {
1247 lru += LRU_ACTIVE;
1248 ClearPageActive(page);
1249 nr_active += numpages;
1250 }
1251 count[lru] += numpages;
1252 }
1489fa14 1253
d563c050 1254 preempt_disable();
1489fa14
MG
1255 __count_vm_events(PGDEACTIVATE, nr_active);
1256
1257 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1258 -count[LRU_ACTIVE_FILE]);
1259 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1260 -count[LRU_INACTIVE_FILE]);
1261 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1262 -count[LRU_ACTIVE_ANON]);
1263 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1264 -count[LRU_INACTIVE_ANON]);
1265
1266 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1267 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1489fa14 1268
d563c050
HD
1269 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1270 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1271 preempt_enable();
1489fa14
MG
1272}
1273
1da177e4 1274/*
1742f19f
AM
1275 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1276 * of reclaimed pages
1da177e4 1277 */
66635629 1278static noinline_for_stack unsigned long
f16015fb
JW
1279shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1280 struct scan_control *sc, int priority, int file)
1da177e4
LT
1281{
1282 LIST_HEAD(page_list);
e247dbce 1283 unsigned long nr_scanned;
05ff5137 1284 unsigned long nr_reclaimed = 0;
e247dbce 1285 unsigned long nr_taken;
e247dbce
KM
1286 unsigned long nr_anon;
1287 unsigned long nr_file;
92df3a72
MG
1288 unsigned long nr_dirty = 0;
1289 unsigned long nr_writeback = 0;
61317289 1290 isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
f16015fb 1291 struct zone *zone = mz->zone;
d563c050 1292 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
78dc583d 1293
35cd7815 1294 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1295 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1296
1297 /* We are about to die and free our memory. Return now. */
1298 if (fatal_signal_pending(current))
1299 return SWAP_CLUSTER_MAX;
1300 }
1301
1da177e4 1302 lru_add_drain();
f80c0673
MK
1303
1304 if (!sc->may_unmap)
61317289 1305 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1306 if (!sc->may_writepage)
61317289 1307 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1308
1da177e4 1309 spin_lock_irq(&zone->lru_lock);
b35ea17b 1310
fe2c2a10
RR
1311 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1312 sc, isolate_mode, 0, file);
89b5fae5 1313 if (global_reclaim(sc)) {
e247dbce
KM
1314 zone->pages_scanned += nr_scanned;
1315 if (current_is_kswapd())
1316 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1317 nr_scanned);
1318 else
1319 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1320 nr_scanned);
e247dbce 1321 }
d563c050 1322 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1323
d563c050 1324 if (nr_taken == 0)
66635629 1325 return 0;
5ad333eb 1326
3f79768f
HD
1327 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1328
f16015fb 1329 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
92df3a72 1330 &nr_dirty, &nr_writeback);
c661b078 1331
3f79768f
HD
1332 spin_lock_irq(&zone->lru_lock);
1333
d563c050
HD
1334 reclaim_stat->recent_scanned[0] += nr_anon;
1335 reclaim_stat->recent_scanned[1] += nr_file;
1336
904249aa
YH
1337 if (global_reclaim(sc)) {
1338 if (current_is_kswapd())
1339 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1340 nr_reclaimed);
1341 else
1342 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1343 nr_reclaimed);
1344 }
a74609fa 1345
3f79768f
HD
1346 putback_inactive_pages(mz, &page_list);
1347
1348 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1349 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1350
1351 spin_unlock_irq(&zone->lru_lock);
1352
1353 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1354
92df3a72
MG
1355 /*
1356 * If reclaim is isolating dirty pages under writeback, it implies
1357 * that the long-lived page allocation rate is exceeding the page
1358 * laundering rate. Either the global limits are not being effective
1359 * at throttling processes due to the page distribution throughout
1360 * zones or there is heavy usage of a slow backing device. The
1361 * only option is to throttle from reclaim context which is not ideal
1362 * as there is no guarantee the dirtying process is throttled in the
1363 * same way balance_dirty_pages() manages.
1364 *
1365 * This scales the number of dirty pages that must be under writeback
1366 * before throttling depending on priority. It is a simple backoff
1367 * function that has the most effect in the range DEF_PRIORITY to
1368 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1369 * in trouble and reclaim is considered to be in trouble.
1370 *
1371 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1372 * DEF_PRIORITY-1 50% must be PageWriteback
1373 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1374 * ...
1375 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1376 * isolated page is PageWriteback
1377 */
1378 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1379 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1380
e11da5b4
MG
1381 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1382 zone_idx(zone),
1383 nr_scanned, nr_reclaimed,
1384 priority,
23b9da55 1385 trace_shrink_flags(file));
05ff5137 1386 return nr_reclaimed;
1da177e4
LT
1387}
1388
1389/*
1390 * This moves pages from the active list to the inactive list.
1391 *
1392 * We move them the other way if the page is referenced by one or more
1393 * processes, from rmap.
1394 *
1395 * If the pages are mostly unmapped, the processing is fast and it is
1396 * appropriate to hold zone->lru_lock across the whole operation. But if
1397 * the pages are mapped, the processing is slow (page_referenced()) so we
1398 * should drop zone->lru_lock around each page. It's impossible to balance
1399 * this, so instead we remove the pages from the LRU while processing them.
1400 * It is safe to rely on PG_active against the non-LRU pages in here because
1401 * nobody will play with that bit on a non-LRU page.
1402 *
1403 * The downside is that we have to touch page->_count against each page.
1404 * But we had to alter page->flags anyway.
1405 */
1cfb419b 1406
3eb4140f
WF
1407static void move_active_pages_to_lru(struct zone *zone,
1408 struct list_head *list,
2bcf8879 1409 struct list_head *pages_to_free,
3eb4140f
WF
1410 enum lru_list lru)
1411{
1412 unsigned long pgmoved = 0;
3eb4140f
WF
1413 struct page *page;
1414
3eb4140f 1415 while (!list_empty(list)) {
925b7673
JW
1416 struct lruvec *lruvec;
1417
3eb4140f 1418 page = lru_to_page(list);
3eb4140f
WF
1419
1420 VM_BUG_ON(PageLRU(page));
1421 SetPageLRU(page);
1422
925b7673
JW
1423 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1424 list_move(&page->lru, &lruvec->lists[lru]);
2c888cfb 1425 pgmoved += hpage_nr_pages(page);
3eb4140f 1426
2bcf8879
HD
1427 if (put_page_testzero(page)) {
1428 __ClearPageLRU(page);
1429 __ClearPageActive(page);
1430 del_page_from_lru_list(zone, page, lru);
1431
1432 if (unlikely(PageCompound(page))) {
1433 spin_unlock_irq(&zone->lru_lock);
1434 (*get_compound_page_dtor(page))(page);
1435 spin_lock_irq(&zone->lru_lock);
1436 } else
1437 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1438 }
1439 }
1440 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1441 if (!is_active_lru(lru))
1442 __count_vm_events(PGDEACTIVATE, pgmoved);
1443}
1cfb419b 1444
f626012d 1445static void shrink_active_list(unsigned long nr_to_scan,
f16015fb
JW
1446 struct mem_cgroup_zone *mz,
1447 struct scan_control *sc,
1448 int priority, int file)
1da177e4 1449{
44c241f1 1450 unsigned long nr_taken;
f626012d 1451 unsigned long nr_scanned;
6fe6b7e3 1452 unsigned long vm_flags;
1da177e4 1453 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1454 LIST_HEAD(l_active);
b69408e8 1455 LIST_HEAD(l_inactive);
1da177e4 1456 struct page *page;
f16015fb 1457 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
44c241f1 1458 unsigned long nr_rotated = 0;
61317289 1459 isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
f16015fb 1460 struct zone *zone = mz->zone;
1da177e4
LT
1461
1462 lru_add_drain();
f80c0673
MK
1463
1464 if (!sc->may_unmap)
61317289 1465 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1466 if (!sc->may_writepage)
61317289 1467 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1468
1da177e4 1469 spin_lock_irq(&zone->lru_lock);
925b7673 1470
fe2c2a10 1471 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
61317289 1472 isolate_mode, 1, file);
89b5fae5 1473 if (global_reclaim(sc))
f626012d 1474 zone->pages_scanned += nr_scanned;
89b5fae5 1475
b7c46d15 1476 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1477
f626012d 1478 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
4f98a2fe 1479 if (file)
44c241f1 1480 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1481 else
44c241f1 1482 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1483 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1484 spin_unlock_irq(&zone->lru_lock);
1485
1da177e4
LT
1486 while (!list_empty(&l_hold)) {
1487 cond_resched();
1488 page = lru_to_page(&l_hold);
1489 list_del(&page->lru);
7e9cd484 1490
894bc310
LS
1491 if (unlikely(!page_evictable(page, NULL))) {
1492 putback_lru_page(page);
1493 continue;
1494 }
1495
cc715d99
MG
1496 if (unlikely(buffer_heads_over_limit)) {
1497 if (page_has_private(page) && trylock_page(page)) {
1498 if (page_has_private(page))
1499 try_to_release_page(page, 0);
1500 unlock_page(page);
1501 }
1502 }
1503
c3ac9a8a
JW
1504 if (page_referenced(page, 0, sc->target_mem_cgroup,
1505 &vm_flags)) {
9992af10 1506 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1507 /*
1508 * Identify referenced, file-backed active pages and
1509 * give them one more trip around the active list. So
1510 * that executable code get better chances to stay in
1511 * memory under moderate memory pressure. Anon pages
1512 * are not likely to be evicted by use-once streaming
1513 * IO, plus JVM can create lots of anon VM_EXEC pages,
1514 * so we ignore them here.
1515 */
41e20983 1516 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1517 list_add(&page->lru, &l_active);
1518 continue;
1519 }
1520 }
7e9cd484 1521
5205e56e 1522 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1523 list_add(&page->lru, &l_inactive);
1524 }
1525
b555749a 1526 /*
8cab4754 1527 * Move pages back to the lru list.
b555749a 1528 */
2a1dc509 1529 spin_lock_irq(&zone->lru_lock);
556adecb 1530 /*
8cab4754
WF
1531 * Count referenced pages from currently used mappings as rotated,
1532 * even though only some of them are actually re-activated. This
1533 * helps balance scan pressure between file and anonymous pages in
1534 * get_scan_ratio.
7e9cd484 1535 */
b7c46d15 1536 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1537
2bcf8879 1538 move_active_pages_to_lru(zone, &l_active, &l_hold,
3eb4140f 1539 LRU_ACTIVE + file * LRU_FILE);
2bcf8879 1540 move_active_pages_to_lru(zone, &l_inactive, &l_hold,
3eb4140f 1541 LRU_BASE + file * LRU_FILE);
a731286d 1542 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1543 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1544
1545 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1546}
1547
74e3f3c3 1548#ifdef CONFIG_SWAP
14797e23 1549static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1550{
1551 unsigned long active, inactive;
1552
1553 active = zone_page_state(zone, NR_ACTIVE_ANON);
1554 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1555
1556 if (inactive * zone->inactive_ratio < active)
1557 return 1;
1558
1559 return 0;
1560}
1561
14797e23
KM
1562/**
1563 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1564 * @zone: zone to check
1565 * @sc: scan control of this context
1566 *
1567 * Returns true if the zone does not have enough inactive anon pages,
1568 * meaning some active anon pages need to be deactivated.
1569 */
f16015fb 1570static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
14797e23 1571{
74e3f3c3
MK
1572 /*
1573 * If we don't have swap space, anonymous page deactivation
1574 * is pointless.
1575 */
1576 if (!total_swap_pages)
1577 return 0;
1578
c3c787e8 1579 if (!mem_cgroup_disabled())
f16015fb
JW
1580 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1581 mz->zone);
1582
1583 return inactive_anon_is_low_global(mz->zone);
14797e23 1584}
74e3f3c3 1585#else
f16015fb 1586static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
74e3f3c3
MK
1587{
1588 return 0;
1589}
1590#endif
14797e23 1591
56e49d21
RR
1592static int inactive_file_is_low_global(struct zone *zone)
1593{
1594 unsigned long active, inactive;
1595
1596 active = zone_page_state(zone, NR_ACTIVE_FILE);
1597 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1598
1599 return (active > inactive);
1600}
1601
1602/**
1603 * inactive_file_is_low - check if file pages need to be deactivated
f16015fb 1604 * @mz: memory cgroup and zone to check
56e49d21
RR
1605 *
1606 * When the system is doing streaming IO, memory pressure here
1607 * ensures that active file pages get deactivated, until more
1608 * than half of the file pages are on the inactive list.
1609 *
1610 * Once we get to that situation, protect the system's working
1611 * set from being evicted by disabling active file page aging.
1612 *
1613 * This uses a different ratio than the anonymous pages, because
1614 * the page cache uses a use-once replacement algorithm.
1615 */
f16015fb 1616static int inactive_file_is_low(struct mem_cgroup_zone *mz)
56e49d21 1617{
c3c787e8 1618 if (!mem_cgroup_disabled())
f16015fb
JW
1619 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1620 mz->zone);
56e49d21 1621
f16015fb 1622 return inactive_file_is_low_global(mz->zone);
56e49d21
RR
1623}
1624
f16015fb 1625static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
b39415b2
RR
1626{
1627 if (file)
f16015fb 1628 return inactive_file_is_low(mz);
b39415b2 1629 else
f16015fb 1630 return inactive_anon_is_low(mz);
b39415b2
RR
1631}
1632
4f98a2fe 1633static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
f16015fb
JW
1634 struct mem_cgroup_zone *mz,
1635 struct scan_control *sc, int priority)
b69408e8 1636{
4f98a2fe
RR
1637 int file = is_file_lru(lru);
1638
b39415b2 1639 if (is_active_lru(lru)) {
f16015fb
JW
1640 if (inactive_list_is_low(mz, file))
1641 shrink_active_list(nr_to_scan, mz, sc, priority, file);
556adecb
RR
1642 return 0;
1643 }
1644
f16015fb 1645 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
4f98a2fe
RR
1646}
1647
f16015fb
JW
1648static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1649 struct scan_control *sc)
1f4c025b 1650{
89b5fae5 1651 if (global_reclaim(sc))
1f4c025b 1652 return vm_swappiness;
f16015fb 1653 return mem_cgroup_swappiness(mz->mem_cgroup);
1f4c025b
KH
1654}
1655
4f98a2fe
RR
1656/*
1657 * Determine how aggressively the anon and file LRU lists should be
1658 * scanned. The relative value of each set of LRU lists is determined
1659 * by looking at the fraction of the pages scanned we did rotate back
1660 * onto the active list instead of evict.
1661 *
76a33fc3 1662 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1663 */
f16015fb
JW
1664static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1665 unsigned long *nr, int priority)
4f98a2fe
RR
1666{
1667 unsigned long anon, file, free;
1668 unsigned long anon_prio, file_prio;
1669 unsigned long ap, fp;
f16015fb 1670 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
76a33fc3 1671 u64 fraction[2], denominator;
4111304d 1672 enum lru_list lru;
76a33fc3 1673 int noswap = 0;
a4d3e9e7 1674 bool force_scan = false;
246e87a9 1675
f11c0ca5
JW
1676 /*
1677 * If the zone or memcg is small, nr[l] can be 0. This
1678 * results in no scanning on this priority and a potential
1679 * priority drop. Global direct reclaim can go to the next
1680 * zone and tends to have no problems. Global kswapd is for
1681 * zone balancing and it needs to scan a minimum amount. When
1682 * reclaiming for a memcg, a priority drop can cause high
1683 * latencies, so it's better to scan a minimum amount there as
1684 * well.
1685 */
b95a2f2d 1686 if (current_is_kswapd() && mz->zone->all_unreclaimable)
a4d3e9e7 1687 force_scan = true;
89b5fae5 1688 if (!global_reclaim(sc))
a4d3e9e7 1689 force_scan = true;
76a33fc3
SL
1690
1691 /* If we have no swap space, do not bother scanning anon pages. */
1692 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1693 noswap = 1;
1694 fraction[0] = 0;
1695 fraction[1] = 1;
1696 denominator = 1;
1697 goto out;
1698 }
4f98a2fe 1699
f16015fb
JW
1700 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1701 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1702 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1703 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
a4d3e9e7 1704
89b5fae5 1705 if (global_reclaim(sc)) {
f16015fb 1706 free = zone_page_state(mz->zone, NR_FREE_PAGES);
eeee9a8c
KM
1707 /* If we have very few page cache pages,
1708 force-scan anon pages. */
f16015fb 1709 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
76a33fc3
SL
1710 fraction[0] = 1;
1711 fraction[1] = 0;
1712 denominator = 1;
1713 goto out;
eeee9a8c 1714 }
4f98a2fe
RR
1715 }
1716
58c37f6e
KM
1717 /*
1718 * With swappiness at 100, anonymous and file have the same priority.
1719 * This scanning priority is essentially the inverse of IO cost.
1720 */
f16015fb
JW
1721 anon_prio = vmscan_swappiness(mz, sc);
1722 file_prio = 200 - vmscan_swappiness(mz, sc);
58c37f6e 1723
4f98a2fe
RR
1724 /*
1725 * OK, so we have swap space and a fair amount of page cache
1726 * pages. We use the recently rotated / recently scanned
1727 * ratios to determine how valuable each cache is.
1728 *
1729 * Because workloads change over time (and to avoid overflow)
1730 * we keep these statistics as a floating average, which ends
1731 * up weighing recent references more than old ones.
1732 *
1733 * anon in [0], file in [1]
1734 */
f16015fb 1735 spin_lock_irq(&mz->zone->lru_lock);
6e901571 1736 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1737 reclaim_stat->recent_scanned[0] /= 2;
1738 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1739 }
1740
6e901571 1741 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1742 reclaim_stat->recent_scanned[1] /= 2;
1743 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1744 }
1745
4f98a2fe 1746 /*
00d8089c
RR
1747 * The amount of pressure on anon vs file pages is inversely
1748 * proportional to the fraction of recently scanned pages on
1749 * each list that were recently referenced and in active use.
4f98a2fe 1750 */
fe35004f 1751 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1752 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1753
fe35004f 1754 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1755 fp /= reclaim_stat->recent_rotated[1] + 1;
f16015fb 1756 spin_unlock_irq(&mz->zone->lru_lock);
4f98a2fe 1757
76a33fc3
SL
1758 fraction[0] = ap;
1759 fraction[1] = fp;
1760 denominator = ap + fp + 1;
1761out:
4111304d
HD
1762 for_each_evictable_lru(lru) {
1763 int file = is_file_lru(lru);
76a33fc3 1764 unsigned long scan;
6e08a369 1765
4111304d 1766 scan = zone_nr_lru_pages(mz, lru);
fe35004f 1767 if (priority || noswap || !vmscan_swappiness(mz, sc)) {
76a33fc3 1768 scan >>= priority;
f11c0ca5
JW
1769 if (!scan && force_scan)
1770 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1771 scan = div64_u64(scan * fraction[file], denominator);
1772 }
4111304d 1773 nr[lru] = scan;
76a33fc3 1774 }
6e08a369 1775}
4f98a2fe 1776
23b9da55
MG
1777/* Use reclaim/compaction for costly allocs or under memory pressure */
1778static bool in_reclaim_compaction(int priority, struct scan_control *sc)
1779{
1780 if (COMPACTION_BUILD && sc->order &&
1781 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1782 priority < DEF_PRIORITY - 2))
1783 return true;
1784
1785 return false;
1786}
1787
3e7d3449 1788/*
23b9da55
MG
1789 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1790 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1791 * true if more pages should be reclaimed such that when the page allocator
1792 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1793 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1794 */
f16015fb 1795static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
3e7d3449
MG
1796 unsigned long nr_reclaimed,
1797 unsigned long nr_scanned,
23b9da55 1798 int priority,
3e7d3449
MG
1799 struct scan_control *sc)
1800{
1801 unsigned long pages_for_compaction;
1802 unsigned long inactive_lru_pages;
1803
1804 /* If not in reclaim/compaction mode, stop */
23b9da55 1805 if (!in_reclaim_compaction(priority, sc))
3e7d3449
MG
1806 return false;
1807
2876592f
MG
1808 /* Consider stopping depending on scan and reclaim activity */
1809 if (sc->gfp_mask & __GFP_REPEAT) {
1810 /*
1811 * For __GFP_REPEAT allocations, stop reclaiming if the
1812 * full LRU list has been scanned and we are still failing
1813 * to reclaim pages. This full LRU scan is potentially
1814 * expensive but a __GFP_REPEAT caller really wants to succeed
1815 */
1816 if (!nr_reclaimed && !nr_scanned)
1817 return false;
1818 } else {
1819 /*
1820 * For non-__GFP_REPEAT allocations which can presumably
1821 * fail without consequence, stop if we failed to reclaim
1822 * any pages from the last SWAP_CLUSTER_MAX number of
1823 * pages that were scanned. This will return to the
1824 * caller faster at the risk reclaim/compaction and
1825 * the resulting allocation attempt fails
1826 */
1827 if (!nr_reclaimed)
1828 return false;
1829 }
3e7d3449
MG
1830
1831 /*
1832 * If we have not reclaimed enough pages for compaction and the
1833 * inactive lists are large enough, continue reclaiming
1834 */
1835 pages_for_compaction = (2UL << sc->order);
f16015fb 1836 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
86cfd3a4 1837 if (nr_swap_pages > 0)
f16015fb 1838 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
3e7d3449
MG
1839 if (sc->nr_reclaimed < pages_for_compaction &&
1840 inactive_lru_pages > pages_for_compaction)
1841 return true;
1842
1843 /* If compaction would go ahead or the allocation would succeed, stop */
f16015fb 1844 switch (compaction_suitable(mz->zone, sc->order)) {
3e7d3449
MG
1845 case COMPACT_PARTIAL:
1846 case COMPACT_CONTINUE:
1847 return false;
1848 default:
1849 return true;
1850 }
1851}
1852
1da177e4
LT
1853/*
1854 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1855 */
f16015fb
JW
1856static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
1857 struct scan_control *sc)
1da177e4 1858{
b69408e8 1859 unsigned long nr[NR_LRU_LISTS];
8695949a 1860 unsigned long nr_to_scan;
4111304d 1861 enum lru_list lru;
f0fdc5e8 1862 unsigned long nr_reclaimed, nr_scanned;
22fba335 1863 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1864 struct blk_plug plug;
e0f79b8f 1865
3e7d3449
MG
1866restart:
1867 nr_reclaimed = 0;
f0fdc5e8 1868 nr_scanned = sc->nr_scanned;
f16015fb 1869 get_scan_count(mz, sc, nr, priority);
1da177e4 1870
3da367c3 1871 blk_start_plug(&plug);
556adecb
RR
1872 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1873 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1874 for_each_evictable_lru(lru) {
1875 if (nr[lru]) {
ece74b2e 1876 nr_to_scan = min_t(unsigned long,
4111304d
HD
1877 nr[lru], SWAP_CLUSTER_MAX);
1878 nr[lru] -= nr_to_scan;
1da177e4 1879
4111304d 1880 nr_reclaimed += shrink_list(lru, nr_to_scan,
f16015fb 1881 mz, sc, priority);
b69408e8 1882 }
1da177e4 1883 }
a79311c1
RR
1884 /*
1885 * On large memory systems, scan >> priority can become
1886 * really large. This is fine for the starting priority;
1887 * we want to put equal scanning pressure on each zone.
1888 * However, if the VM has a harder time of freeing pages,
1889 * with multiple processes reclaiming pages, the total
1890 * freeing target can get unreasonably large.
1891 */
41c93088 1892 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1893 break;
1da177e4 1894 }
3da367c3 1895 blk_finish_plug(&plug);
3e7d3449 1896 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1897
556adecb
RR
1898 /*
1899 * Even if we did not try to evict anon pages at all, we want to
1900 * rebalance the anon lru active/inactive ratio.
1901 */
f16015fb
JW
1902 if (inactive_anon_is_low(mz))
1903 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
556adecb 1904
3e7d3449 1905 /* reclaim/compaction might need reclaim to continue */
f16015fb 1906 if (should_continue_reclaim(mz, nr_reclaimed,
23b9da55
MG
1907 sc->nr_scanned - nr_scanned,
1908 priority, sc))
3e7d3449
MG
1909 goto restart;
1910
232ea4d6 1911 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1912}
1913
f16015fb
JW
1914static void shrink_zone(int priority, struct zone *zone,
1915 struct scan_control *sc)
1916{
5660048c
JW
1917 struct mem_cgroup *root = sc->target_mem_cgroup;
1918 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 1919 .zone = zone,
5660048c 1920 .priority = priority,
f16015fb 1921 };
5660048c
JW
1922 struct mem_cgroup *memcg;
1923
5660048c
JW
1924 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1925 do {
1926 struct mem_cgroup_zone mz = {
1927 .mem_cgroup = memcg,
1928 .zone = zone,
1929 };
f16015fb 1930
5660048c
JW
1931 shrink_mem_cgroup_zone(priority, &mz, sc);
1932 /*
1933 * Limit reclaim has historically picked one memcg and
1934 * scanned it with decreasing priority levels until
1935 * nr_to_reclaim had been reclaimed. This priority
1936 * cycle is thus over after a single memcg.
b95a2f2d
JW
1937 *
1938 * Direct reclaim and kswapd, on the other hand, have
1939 * to scan all memory cgroups to fulfill the overall
1940 * scan target for the zone.
5660048c
JW
1941 */
1942 if (!global_reclaim(sc)) {
1943 mem_cgroup_iter_break(root, memcg);
1944 break;
1945 }
1946 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1947 } while (memcg);
f16015fb
JW
1948}
1949
fe4b1b24
MG
1950/* Returns true if compaction should go ahead for a high-order request */
1951static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1952{
1953 unsigned long balance_gap, watermark;
1954 bool watermark_ok;
1955
1956 /* Do not consider compaction for orders reclaim is meant to satisfy */
1957 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1958 return false;
1959
1960 /*
1961 * Compaction takes time to run and there are potentially other
1962 * callers using the pages just freed. Continue reclaiming until
1963 * there is a buffer of free pages available to give compaction
1964 * a reasonable chance of completing and allocating the page
1965 */
1966 balance_gap = min(low_wmark_pages(zone),
1967 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1968 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1969 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1970 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1971
1972 /*
1973 * If compaction is deferred, reclaim up to a point where
1974 * compaction will have a chance of success when re-enabled
1975 */
aff62249 1976 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
1977 return watermark_ok;
1978
1979 /* If compaction is not ready to start, keep reclaiming */
1980 if (!compaction_suitable(zone, sc->order))
1981 return false;
1982
1983 return watermark_ok;
1984}
1985
1da177e4
LT
1986/*
1987 * This is the direct reclaim path, for page-allocating processes. We only
1988 * try to reclaim pages from zones which will satisfy the caller's allocation
1989 * request.
1990 *
41858966
MG
1991 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1992 * Because:
1da177e4
LT
1993 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1994 * allocation or
41858966
MG
1995 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1996 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1997 * zone defense algorithm.
1da177e4 1998 *
1da177e4
LT
1999 * If a zone is deemed to be full of pinned pages then just give it a light
2000 * scan then give up on it.
e0c23279
MG
2001 *
2002 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2003 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2004 * the caller that it should consider retrying the allocation instead of
2005 * further reclaim.
1da177e4 2006 */
e0c23279 2007static bool shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 2008 struct scan_control *sc)
1da177e4 2009{
dd1a239f 2010 struct zoneref *z;
54a6eb5c 2011 struct zone *zone;
d149e3b2
YH
2012 unsigned long nr_soft_reclaimed;
2013 unsigned long nr_soft_scanned;
0cee34fd 2014 bool aborted_reclaim = false;
1cfb419b 2015
cc715d99
MG
2016 /*
2017 * If the number of buffer_heads in the machine exceeds the maximum
2018 * allowed level, force direct reclaim to scan the highmem zone as
2019 * highmem pages could be pinning lowmem pages storing buffer_heads
2020 */
2021 if (buffer_heads_over_limit)
2022 sc->gfp_mask |= __GFP_HIGHMEM;
2023
d4debc66
MG
2024 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2025 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2026 if (!populated_zone(zone))
1da177e4 2027 continue;
1cfb419b
KH
2028 /*
2029 * Take care memory controller reclaiming has small influence
2030 * to global LRU.
2031 */
89b5fae5 2032 if (global_reclaim(sc)) {
1cfb419b
KH
2033 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2034 continue;
93e4a89a 2035 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2036 continue; /* Let kswapd poll it */
e0887c19
RR
2037 if (COMPACTION_BUILD) {
2038 /*
e0c23279
MG
2039 * If we already have plenty of memory free for
2040 * compaction in this zone, don't free any more.
2041 * Even though compaction is invoked for any
2042 * non-zero order, only frequent costly order
2043 * reclamation is disruptive enough to become a
c7cfa37b
CA
2044 * noticeable problem, like transparent huge
2045 * page allocations.
e0887c19 2046 */
fe4b1b24 2047 if (compaction_ready(zone, sc)) {
0cee34fd 2048 aborted_reclaim = true;
e0887c19 2049 continue;
e0c23279 2050 }
e0887c19 2051 }
ac34a1a3
KH
2052 /*
2053 * This steals pages from memory cgroups over softlimit
2054 * and returns the number of reclaimed pages and
2055 * scanned pages. This works for global memory pressure
2056 * and balancing, not for a memcg's limit.
2057 */
2058 nr_soft_scanned = 0;
2059 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2060 sc->order, sc->gfp_mask,
2061 &nr_soft_scanned);
2062 sc->nr_reclaimed += nr_soft_reclaimed;
2063 sc->nr_scanned += nr_soft_scanned;
2064 /* need some check for avoid more shrink_zone() */
1cfb419b 2065 }
408d8544 2066
a79311c1 2067 shrink_zone(priority, zone, sc);
1da177e4 2068 }
e0c23279 2069
0cee34fd 2070 return aborted_reclaim;
d1908362
MK
2071}
2072
2073static bool zone_reclaimable(struct zone *zone)
2074{
2075 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2076}
2077
929bea7c 2078/* All zones in zonelist are unreclaimable? */
d1908362
MK
2079static bool all_unreclaimable(struct zonelist *zonelist,
2080 struct scan_control *sc)
2081{
2082 struct zoneref *z;
2083 struct zone *zone;
d1908362
MK
2084
2085 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2086 gfp_zone(sc->gfp_mask), sc->nodemask) {
2087 if (!populated_zone(zone))
2088 continue;
2089 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2090 continue;
929bea7c
KM
2091 if (!zone->all_unreclaimable)
2092 return false;
d1908362
MK
2093 }
2094
929bea7c 2095 return true;
1da177e4 2096}
4f98a2fe 2097
1da177e4
LT
2098/*
2099 * This is the main entry point to direct page reclaim.
2100 *
2101 * If a full scan of the inactive list fails to free enough memory then we
2102 * are "out of memory" and something needs to be killed.
2103 *
2104 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2105 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2106 * caller can't do much about. We kick the writeback threads and take explicit
2107 * naps in the hope that some of these pages can be written. But if the
2108 * allocating task holds filesystem locks which prevent writeout this might not
2109 * work, and the allocation attempt will fail.
a41f24ea
NA
2110 *
2111 * returns: 0, if no pages reclaimed
2112 * else, the number of pages reclaimed
1da177e4 2113 */
dac1d27b 2114static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2115 struct scan_control *sc,
2116 struct shrink_control *shrink)
1da177e4
LT
2117{
2118 int priority;
69e05944 2119 unsigned long total_scanned = 0;
1da177e4 2120 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2121 struct zoneref *z;
54a6eb5c 2122 struct zone *zone;
22fba335 2123 unsigned long writeback_threshold;
0cee34fd 2124 bool aborted_reclaim;
1da177e4 2125
873b4771
KK
2126 delayacct_freepages_start();
2127
89b5fae5 2128 if (global_reclaim(sc))
1cfb419b 2129 count_vm_event(ALLOCSTALL);
1da177e4
LT
2130
2131 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2132 sc->nr_scanned = 0;
0cee34fd 2133 aborted_reclaim = shrink_zones(priority, zonelist, sc);
e0c23279 2134
66e1707b
BS
2135 /*
2136 * Don't shrink slabs when reclaiming memory from
2137 * over limit cgroups
2138 */
89b5fae5 2139 if (global_reclaim(sc)) {
c6a8a8c5 2140 unsigned long lru_pages = 0;
d4debc66
MG
2141 for_each_zone_zonelist(zone, z, zonelist,
2142 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2143 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2144 continue;
2145
2146 lru_pages += zone_reclaimable_pages(zone);
2147 }
2148
1495f230 2149 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2150 if (reclaim_state) {
a79311c1 2151 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2152 reclaim_state->reclaimed_slab = 0;
2153 }
1da177e4 2154 }
66e1707b 2155 total_scanned += sc->nr_scanned;
bb21c7ce 2156 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2157 goto out;
1da177e4
LT
2158
2159 /*
2160 * Try to write back as many pages as we just scanned. This
2161 * tends to cause slow streaming writers to write data to the
2162 * disk smoothly, at the dirtying rate, which is nice. But
2163 * that's undesirable in laptop mode, where we *want* lumpy
2164 * writeout. So in laptop mode, write out the whole world.
2165 */
22fba335
KM
2166 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2167 if (total_scanned > writeback_threshold) {
0e175a18
CW
2168 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2169 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2170 sc->may_writepage = 1;
1da177e4
LT
2171 }
2172
2173 /* Take a nap, wait for some writeback to complete */
7b51755c 2174 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2175 priority < DEF_PRIORITY - 2) {
2176 struct zone *preferred_zone;
2177
2178 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2179 &cpuset_current_mems_allowed,
2180 &preferred_zone);
0e093d99
MG
2181 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2182 }
1da177e4 2183 }
bb21c7ce 2184
1da177e4 2185out:
873b4771
KK
2186 delayacct_freepages_end();
2187
bb21c7ce
KM
2188 if (sc->nr_reclaimed)
2189 return sc->nr_reclaimed;
2190
929bea7c
KM
2191 /*
2192 * As hibernation is going on, kswapd is freezed so that it can't mark
2193 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2194 * check.
2195 */
2196 if (oom_killer_disabled)
2197 return 0;
2198
0cee34fd
MG
2199 /* Aborted reclaim to try compaction? don't OOM, then */
2200 if (aborted_reclaim)
7335084d
MG
2201 return 1;
2202
bb21c7ce 2203 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2204 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2205 return 1;
2206
2207 return 0;
1da177e4
LT
2208}
2209
dac1d27b 2210unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2211 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2212{
33906bc5 2213 unsigned long nr_reclaimed;
66e1707b
BS
2214 struct scan_control sc = {
2215 .gfp_mask = gfp_mask,
2216 .may_writepage = !laptop_mode,
22fba335 2217 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2218 .may_unmap = 1,
2e2e4259 2219 .may_swap = 1,
66e1707b 2220 .order = order,
f16015fb 2221 .target_mem_cgroup = NULL,
327c0e96 2222 .nodemask = nodemask,
66e1707b 2223 };
a09ed5e0
YH
2224 struct shrink_control shrink = {
2225 .gfp_mask = sc.gfp_mask,
2226 };
66e1707b 2227
33906bc5
MG
2228 trace_mm_vmscan_direct_reclaim_begin(order,
2229 sc.may_writepage,
2230 gfp_mask);
2231
a09ed5e0 2232 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2233
2234 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2235
2236 return nr_reclaimed;
66e1707b
BS
2237}
2238
00f0b825 2239#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2240
72835c86 2241unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2242 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2243 struct zone *zone,
2244 unsigned long *nr_scanned)
4e416953
BS
2245{
2246 struct scan_control sc = {
0ae5e89c 2247 .nr_scanned = 0,
b8f5c566 2248 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2249 .may_writepage = !laptop_mode,
2250 .may_unmap = 1,
2251 .may_swap = !noswap,
4e416953 2252 .order = 0,
72835c86 2253 .target_mem_cgroup = memcg,
4e416953 2254 };
5660048c 2255 struct mem_cgroup_zone mz = {
72835c86 2256 .mem_cgroup = memcg,
5660048c
JW
2257 .zone = zone,
2258 };
0ae5e89c 2259
4e416953
BS
2260 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2261 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2262
2263 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2264 sc.may_writepage,
2265 sc.gfp_mask);
2266
4e416953
BS
2267 /*
2268 * NOTE: Although we can get the priority field, using it
2269 * here is not a good idea, since it limits the pages we can scan.
2270 * if we don't reclaim here, the shrink_zone from balance_pgdat
2271 * will pick up pages from other mem cgroup's as well. We hack
2272 * the priority and make it zero.
2273 */
5660048c 2274 shrink_mem_cgroup_zone(0, &mz, &sc);
bdce6d9e
KM
2275
2276 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2277
0ae5e89c 2278 *nr_scanned = sc.nr_scanned;
4e416953
BS
2279 return sc.nr_reclaimed;
2280}
2281
72835c86 2282unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2283 gfp_t gfp_mask,
185efc0f 2284 bool noswap)
66e1707b 2285{
4e416953 2286 struct zonelist *zonelist;
bdce6d9e 2287 unsigned long nr_reclaimed;
889976db 2288 int nid;
66e1707b 2289 struct scan_control sc = {
66e1707b 2290 .may_writepage = !laptop_mode,
a6dc60f8 2291 .may_unmap = 1,
2e2e4259 2292 .may_swap = !noswap,
22fba335 2293 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2294 .order = 0,
72835c86 2295 .target_mem_cgroup = memcg,
327c0e96 2296 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2297 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2298 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2299 };
2300 struct shrink_control shrink = {
2301 .gfp_mask = sc.gfp_mask,
66e1707b 2302 };
66e1707b 2303
889976db
YH
2304 /*
2305 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2306 * take care of from where we get pages. So the node where we start the
2307 * scan does not need to be the current node.
2308 */
72835c86 2309 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2310
2311 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2312
2313 trace_mm_vmscan_memcg_reclaim_begin(0,
2314 sc.may_writepage,
2315 sc.gfp_mask);
2316
a09ed5e0 2317 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2318
2319 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2320
2321 return nr_reclaimed;
66e1707b
BS
2322}
2323#endif
2324
f16015fb
JW
2325static void age_active_anon(struct zone *zone, struct scan_control *sc,
2326 int priority)
2327{
b95a2f2d 2328 struct mem_cgroup *memcg;
f16015fb 2329
b95a2f2d
JW
2330 if (!total_swap_pages)
2331 return;
2332
2333 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2334 do {
2335 struct mem_cgroup_zone mz = {
2336 .mem_cgroup = memcg,
2337 .zone = zone,
2338 };
2339
2340 if (inactive_anon_is_low(&mz))
2341 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2342 sc, priority, 0);
2343
2344 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2345 } while (memcg);
f16015fb
JW
2346}
2347
1741c877
MG
2348/*
2349 * pgdat_balanced is used when checking if a node is balanced for high-order
2350 * allocations. Only zones that meet watermarks and are in a zone allowed
2351 * by the callers classzone_idx are added to balanced_pages. The total of
2352 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2353 * for the node to be considered balanced. Forcing all zones to be balanced
2354 * for high orders can cause excessive reclaim when there are imbalanced zones.
2355 * The choice of 25% is due to
2356 * o a 16M DMA zone that is balanced will not balance a zone on any
2357 * reasonable sized machine
2358 * o On all other machines, the top zone must be at least a reasonable
25985edc 2359 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2360 * would need to be at least 256M for it to be balance a whole node.
2361 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2362 * to balance a node on its own. These seemed like reasonable ratios.
2363 */
2364static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2365 int classzone_idx)
2366{
2367 unsigned long present_pages = 0;
2368 int i;
2369
2370 for (i = 0; i <= classzone_idx; i++)
2371 present_pages += pgdat->node_zones[i].present_pages;
2372
4746efde
SL
2373 /* A special case here: if zone has no page, we think it's balanced */
2374 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2375}
2376
f50de2d3 2377/* is kswapd sleeping prematurely? */
dc83edd9
MG
2378static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2379 int classzone_idx)
f50de2d3 2380{
bb3ab596 2381 int i;
1741c877
MG
2382 unsigned long balanced = 0;
2383 bool all_zones_ok = true;
f50de2d3
MG
2384
2385 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2386 if (remaining)
dc83edd9 2387 return true;
f50de2d3 2388
0abdee2b 2389 /* Check the watermark levels */
08951e54 2390 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2391 struct zone *zone = pgdat->node_zones + i;
2392
2393 if (!populated_zone(zone))
2394 continue;
2395
355b09c4
MG
2396 /*
2397 * balance_pgdat() skips over all_unreclaimable after
2398 * DEF_PRIORITY. Effectively, it considers them balanced so
2399 * they must be considered balanced here as well if kswapd
2400 * is to sleep
2401 */
2402 if (zone->all_unreclaimable) {
2403 balanced += zone->present_pages;
de3fab39 2404 continue;
355b09c4 2405 }
de3fab39 2406
88f5acf8 2407 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2408 i, 0))
1741c877
MG
2409 all_zones_ok = false;
2410 else
2411 balanced += zone->present_pages;
bb3ab596 2412 }
f50de2d3 2413
1741c877
MG
2414 /*
2415 * For high-order requests, the balanced zones must contain at least
2416 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2417 * must be balanced
2418 */
2419 if (order)
afc7e326 2420 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2421 else
2422 return !all_zones_ok;
f50de2d3
MG
2423}
2424
1da177e4
LT
2425/*
2426 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2427 * they are all at high_wmark_pages(zone).
1da177e4 2428 *
0abdee2b 2429 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2430 *
2431 * There is special handling here for zones which are full of pinned pages.
2432 * This can happen if the pages are all mlocked, or if they are all used by
2433 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2434 * What we do is to detect the case where all pages in the zone have been
2435 * scanned twice and there has been zero successful reclaim. Mark the zone as
2436 * dead and from now on, only perform a short scan. Basically we're polling
2437 * the zone for when the problem goes away.
2438 *
2439 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2440 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2441 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2442 * lower zones regardless of the number of free pages in the lower zones. This
2443 * interoperates with the page allocator fallback scheme to ensure that aging
2444 * of pages is balanced across the zones.
1da177e4 2445 */
99504748 2446static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2447 int *classzone_idx)
1da177e4 2448{
1da177e4 2449 int all_zones_ok;
1741c877 2450 unsigned long balanced;
1da177e4
LT
2451 int priority;
2452 int i;
99504748 2453 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2454 unsigned long total_scanned;
1da177e4 2455 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2456 unsigned long nr_soft_reclaimed;
2457 unsigned long nr_soft_scanned;
179e9639
AM
2458 struct scan_control sc = {
2459 .gfp_mask = GFP_KERNEL,
a6dc60f8 2460 .may_unmap = 1,
2e2e4259 2461 .may_swap = 1,
22fba335
KM
2462 /*
2463 * kswapd doesn't want to be bailed out while reclaim. because
2464 * we want to put equal scanning pressure on each zone.
2465 */
2466 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2467 .order = order,
f16015fb 2468 .target_mem_cgroup = NULL,
179e9639 2469 };
a09ed5e0
YH
2470 struct shrink_control shrink = {
2471 .gfp_mask = sc.gfp_mask,
2472 };
1da177e4
LT
2473loop_again:
2474 total_scanned = 0;
a79311c1 2475 sc.nr_reclaimed = 0;
c0bbbc73 2476 sc.may_writepage = !laptop_mode;
f8891e5e 2477 count_vm_event(PAGEOUTRUN);
1da177e4 2478
1da177e4 2479 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2480 unsigned long lru_pages = 0;
bb3ab596 2481 int has_under_min_watermark_zone = 0;
1da177e4
LT
2482
2483 all_zones_ok = 1;
1741c877 2484 balanced = 0;
1da177e4 2485
d6277db4
RW
2486 /*
2487 * Scan in the highmem->dma direction for the highest
2488 * zone which needs scanning
2489 */
2490 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2491 struct zone *zone = pgdat->node_zones + i;
1da177e4 2492
d6277db4
RW
2493 if (!populated_zone(zone))
2494 continue;
1da177e4 2495
93e4a89a 2496 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2497 continue;
1da177e4 2498
556adecb
RR
2499 /*
2500 * Do some background aging of the anon list, to give
2501 * pages a chance to be referenced before reclaiming.
2502 */
f16015fb 2503 age_active_anon(zone, &sc, priority);
556adecb 2504
cc715d99
MG
2505 /*
2506 * If the number of buffer_heads in the machine
2507 * exceeds the maximum allowed level and this node
2508 * has a highmem zone, force kswapd to reclaim from
2509 * it to relieve lowmem pressure.
2510 */
2511 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2512 end_zone = i;
2513 break;
2514 }
2515
88f5acf8 2516 if (!zone_watermark_ok_safe(zone, order,
41858966 2517 high_wmark_pages(zone), 0, 0)) {
d6277db4 2518 end_zone = i;
e1dbeda6 2519 break;
439423f6
SL
2520 } else {
2521 /* If balanced, clear the congested flag */
2522 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2523 }
1da177e4 2524 }
e1dbeda6
AM
2525 if (i < 0)
2526 goto out;
2527
1da177e4
LT
2528 for (i = 0; i <= end_zone; i++) {
2529 struct zone *zone = pgdat->node_zones + i;
2530
adea02a1 2531 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2532 }
2533
2534 /*
2535 * Now scan the zone in the dma->highmem direction, stopping
2536 * at the last zone which needs scanning.
2537 *
2538 * We do this because the page allocator works in the opposite
2539 * direction. This prevents the page allocator from allocating
2540 * pages behind kswapd's direction of progress, which would
2541 * cause too much scanning of the lower zones.
2542 */
2543 for (i = 0; i <= end_zone; i++) {
2544 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2545 int nr_slab, testorder;
8afdcece 2546 unsigned long balance_gap;
1da177e4 2547
f3fe6512 2548 if (!populated_zone(zone))
1da177e4
LT
2549 continue;
2550
93e4a89a 2551 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2552 continue;
2553
1da177e4 2554 sc.nr_scanned = 0;
4e416953 2555
0ae5e89c 2556 nr_soft_scanned = 0;
4e416953
BS
2557 /*
2558 * Call soft limit reclaim before calling shrink_zone.
4e416953 2559 */
0ae5e89c
YH
2560 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2561 order, sc.gfp_mask,
2562 &nr_soft_scanned);
2563 sc.nr_reclaimed += nr_soft_reclaimed;
2564 total_scanned += nr_soft_scanned;
00918b6a 2565
32a4330d 2566 /*
8afdcece
MG
2567 * We put equal pressure on every zone, unless
2568 * one zone has way too many pages free
2569 * already. The "too many pages" is defined
2570 * as the high wmark plus a "gap" where the
2571 * gap is either the low watermark or 1%
2572 * of the zone, whichever is smaller.
32a4330d 2573 */
8afdcece
MG
2574 balance_gap = min(low_wmark_pages(zone),
2575 (zone->present_pages +
2576 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2577 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2578 /*
2579 * Kswapd reclaims only single pages with compaction
2580 * enabled. Trying too hard to reclaim until contiguous
2581 * free pages have become available can hurt performance
2582 * by evicting too much useful data from memory.
2583 * Do not reclaim more than needed for compaction.
2584 */
2585 testorder = order;
2586 if (COMPACTION_BUILD && order &&
2587 compaction_suitable(zone, order) !=
2588 COMPACT_SKIPPED)
2589 testorder = 0;
2590
cc715d99 2591 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
643ac9fc 2592 !zone_watermark_ok_safe(zone, testorder,
8afdcece 2593 high_wmark_pages(zone) + balance_gap,
d7868dae 2594 end_zone, 0)) {
a79311c1 2595 shrink_zone(priority, zone, &sc);
5a03b051 2596
d7868dae
MG
2597 reclaim_state->reclaimed_slab = 0;
2598 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2599 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2600 total_scanned += sc.nr_scanned;
2601
2602 if (nr_slab == 0 && !zone_reclaimable(zone))
2603 zone->all_unreclaimable = 1;
2604 }
2605
1da177e4
LT
2606 /*
2607 * If we've done a decent amount of scanning and
2608 * the reclaim ratio is low, start doing writepage
2609 * even in laptop mode
2610 */
2611 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2612 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2613 sc.may_writepage = 1;
bb3ab596 2614
215ddd66
MG
2615 if (zone->all_unreclaimable) {
2616 if (end_zone && end_zone == i)
2617 end_zone--;
d7868dae 2618 continue;
215ddd66 2619 }
d7868dae 2620
fe2c2a10 2621 if (!zone_watermark_ok_safe(zone, testorder,
45973d74
MK
2622 high_wmark_pages(zone), end_zone, 0)) {
2623 all_zones_ok = 0;
2624 /*
2625 * We are still under min water mark. This
2626 * means that we have a GFP_ATOMIC allocation
2627 * failure risk. Hurry up!
2628 */
88f5acf8 2629 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2630 min_wmark_pages(zone), end_zone, 0))
2631 has_under_min_watermark_zone = 1;
0e093d99
MG
2632 } else {
2633 /*
2634 * If a zone reaches its high watermark,
2635 * consider it to be no longer congested. It's
2636 * possible there are dirty pages backed by
2637 * congested BDIs but as pressure is relieved,
2638 * spectulatively avoid congestion waits
2639 */
2640 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2641 if (i <= *classzone_idx)
1741c877 2642 balanced += zone->present_pages;
45973d74 2643 }
bb3ab596 2644
1da177e4 2645 }
dc83edd9 2646 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2647 break; /* kswapd: all done */
2648 /*
2649 * OK, kswapd is getting into trouble. Take a nap, then take
2650 * another pass across the zones.
2651 */
bb3ab596
KM
2652 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2653 if (has_under_min_watermark_zone)
2654 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2655 else
2656 congestion_wait(BLK_RW_ASYNC, HZ/10);
2657 }
1da177e4
LT
2658
2659 /*
2660 * We do this so kswapd doesn't build up large priorities for
2661 * example when it is freeing in parallel with allocators. It
2662 * matches the direct reclaim path behaviour in terms of impact
2663 * on zone->*_priority.
2664 */
a79311c1 2665 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2666 break;
2667 }
2668out:
99504748
MG
2669
2670 /*
2671 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2672 * high-order: Balanced zones must make up at least 25% of the node
2673 * for the node to be balanced
99504748 2674 */
dc83edd9 2675 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2676 cond_resched();
8357376d
RW
2677
2678 try_to_freeze();
2679
73ce02e9
KM
2680 /*
2681 * Fragmentation may mean that the system cannot be
2682 * rebalanced for high-order allocations in all zones.
2683 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2684 * it means the zones have been fully scanned and are still
2685 * not balanced. For high-order allocations, there is
2686 * little point trying all over again as kswapd may
2687 * infinite loop.
2688 *
2689 * Instead, recheck all watermarks at order-0 as they
2690 * are the most important. If watermarks are ok, kswapd will go
2691 * back to sleep. High-order users can still perform direct
2692 * reclaim if they wish.
2693 */
2694 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2695 order = sc.order = 0;
2696
1da177e4
LT
2697 goto loop_again;
2698 }
2699
99504748
MG
2700 /*
2701 * If kswapd was reclaiming at a higher order, it has the option of
2702 * sleeping without all zones being balanced. Before it does, it must
2703 * ensure that the watermarks for order-0 on *all* zones are met and
2704 * that the congestion flags are cleared. The congestion flag must
2705 * be cleared as kswapd is the only mechanism that clears the flag
2706 * and it is potentially going to sleep here.
2707 */
2708 if (order) {
7be62de9
RR
2709 int zones_need_compaction = 1;
2710
99504748
MG
2711 for (i = 0; i <= end_zone; i++) {
2712 struct zone *zone = pgdat->node_zones + i;
2713
2714 if (!populated_zone(zone))
2715 continue;
2716
2717 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2718 continue;
2719
fe2c2a10 2720 /* Would compaction fail due to lack of free memory? */
496b919b
RR
2721 if (COMPACTION_BUILD &&
2722 compaction_suitable(zone, order) == COMPACT_SKIPPED)
fe2c2a10
RR
2723 goto loop_again;
2724
99504748
MG
2725 /* Confirm the zone is balanced for order-0 */
2726 if (!zone_watermark_ok(zone, 0,
2727 high_wmark_pages(zone), 0, 0)) {
2728 order = sc.order = 0;
2729 goto loop_again;
2730 }
2731
7be62de9
RR
2732 /* Check if the memory needs to be defragmented. */
2733 if (zone_watermark_ok(zone, order,
2734 low_wmark_pages(zone), *classzone_idx, 0))
2735 zones_need_compaction = 0;
2736
99504748
MG
2737 /* If balanced, clear the congested flag */
2738 zone_clear_flag(zone, ZONE_CONGESTED);
2739 }
7be62de9
RR
2740
2741 if (zones_need_compaction)
2742 compact_pgdat(pgdat, order);
99504748
MG
2743 }
2744
0abdee2b
MG
2745 /*
2746 * Return the order we were reclaiming at so sleeping_prematurely()
2747 * makes a decision on the order we were last reclaiming at. However,
2748 * if another caller entered the allocator slow path while kswapd
2749 * was awake, order will remain at the higher level
2750 */
dc83edd9 2751 *classzone_idx = end_zone;
0abdee2b 2752 return order;
1da177e4
LT
2753}
2754
dc83edd9 2755static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2756{
2757 long remaining = 0;
2758 DEFINE_WAIT(wait);
2759
2760 if (freezing(current) || kthread_should_stop())
2761 return;
2762
2763 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2764
2765 /* Try to sleep for a short interval */
dc83edd9 2766 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2767 remaining = schedule_timeout(HZ/10);
2768 finish_wait(&pgdat->kswapd_wait, &wait);
2769 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2770 }
2771
2772 /*
2773 * After a short sleep, check if it was a premature sleep. If not, then
2774 * go fully to sleep until explicitly woken up.
2775 */
dc83edd9 2776 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2777 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2778
2779 /*
2780 * vmstat counters are not perfectly accurate and the estimated
2781 * value for counters such as NR_FREE_PAGES can deviate from the
2782 * true value by nr_online_cpus * threshold. To avoid the zone
2783 * watermarks being breached while under pressure, we reduce the
2784 * per-cpu vmstat threshold while kswapd is awake and restore
2785 * them before going back to sleep.
2786 */
2787 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2788 schedule();
2789 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2790 } else {
2791 if (remaining)
2792 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2793 else
2794 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2795 }
2796 finish_wait(&pgdat->kswapd_wait, &wait);
2797}
2798
1da177e4
LT
2799/*
2800 * The background pageout daemon, started as a kernel thread
4f98a2fe 2801 * from the init process.
1da177e4
LT
2802 *
2803 * This basically trickles out pages so that we have _some_
2804 * free memory available even if there is no other activity
2805 * that frees anything up. This is needed for things like routing
2806 * etc, where we otherwise might have all activity going on in
2807 * asynchronous contexts that cannot page things out.
2808 *
2809 * If there are applications that are active memory-allocators
2810 * (most normal use), this basically shouldn't matter.
2811 */
2812static int kswapd(void *p)
2813{
215ddd66 2814 unsigned long order, new_order;
d2ebd0f6 2815 unsigned balanced_order;
215ddd66 2816 int classzone_idx, new_classzone_idx;
d2ebd0f6 2817 int balanced_classzone_idx;
1da177e4
LT
2818 pg_data_t *pgdat = (pg_data_t*)p;
2819 struct task_struct *tsk = current;
f0bc0a60 2820
1da177e4
LT
2821 struct reclaim_state reclaim_state = {
2822 .reclaimed_slab = 0,
2823 };
a70f7302 2824 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2825
cf40bd16
NP
2826 lockdep_set_current_reclaim_state(GFP_KERNEL);
2827
174596a0 2828 if (!cpumask_empty(cpumask))
c5f59f08 2829 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2830 current->reclaim_state = &reclaim_state;
2831
2832 /*
2833 * Tell the memory management that we're a "memory allocator",
2834 * and that if we need more memory we should get access to it
2835 * regardless (see "__alloc_pages()"). "kswapd" should
2836 * never get caught in the normal page freeing logic.
2837 *
2838 * (Kswapd normally doesn't need memory anyway, but sometimes
2839 * you need a small amount of memory in order to be able to
2840 * page out something else, and this flag essentially protects
2841 * us from recursively trying to free more memory as we're
2842 * trying to free the first piece of memory in the first place).
2843 */
930d9152 2844 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2845 set_freezable();
1da177e4 2846
215ddd66 2847 order = new_order = 0;
d2ebd0f6 2848 balanced_order = 0;
215ddd66 2849 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2850 balanced_classzone_idx = classzone_idx;
1da177e4 2851 for ( ; ; ) {
8fe23e05 2852 int ret;
3e1d1d28 2853
215ddd66
MG
2854 /*
2855 * If the last balance_pgdat was unsuccessful it's unlikely a
2856 * new request of a similar or harder type will succeed soon
2857 * so consider going to sleep on the basis we reclaimed at
2858 */
d2ebd0f6
AS
2859 if (balanced_classzone_idx >= new_classzone_idx &&
2860 balanced_order == new_order) {
215ddd66
MG
2861 new_order = pgdat->kswapd_max_order;
2862 new_classzone_idx = pgdat->classzone_idx;
2863 pgdat->kswapd_max_order = 0;
2864 pgdat->classzone_idx = pgdat->nr_zones - 1;
2865 }
2866
99504748 2867 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2868 /*
2869 * Don't sleep if someone wants a larger 'order'
99504748 2870 * allocation or has tigher zone constraints
1da177e4
LT
2871 */
2872 order = new_order;
99504748 2873 classzone_idx = new_classzone_idx;
1da177e4 2874 } else {
d2ebd0f6
AS
2875 kswapd_try_to_sleep(pgdat, balanced_order,
2876 balanced_classzone_idx);
1da177e4 2877 order = pgdat->kswapd_max_order;
99504748 2878 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2879 new_order = order;
2880 new_classzone_idx = classzone_idx;
4d40502e 2881 pgdat->kswapd_max_order = 0;
215ddd66 2882 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2883 }
1da177e4 2884
8fe23e05
DR
2885 ret = try_to_freeze();
2886 if (kthread_should_stop())
2887 break;
2888
2889 /*
2890 * We can speed up thawing tasks if we don't call balance_pgdat
2891 * after returning from the refrigerator
2892 */
33906bc5
MG
2893 if (!ret) {
2894 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
2895 balanced_classzone_idx = classzone_idx;
2896 balanced_order = balance_pgdat(pgdat, order,
2897 &balanced_classzone_idx);
33906bc5 2898 }
1da177e4
LT
2899 }
2900 return 0;
2901}
2902
2903/*
2904 * A zone is low on free memory, so wake its kswapd task to service it.
2905 */
99504748 2906void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2907{
2908 pg_data_t *pgdat;
2909
f3fe6512 2910 if (!populated_zone(zone))
1da177e4
LT
2911 return;
2912
88f5acf8 2913 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2914 return;
88f5acf8 2915 pgdat = zone->zone_pgdat;
99504748 2916 if (pgdat->kswapd_max_order < order) {
1da177e4 2917 pgdat->kswapd_max_order = order;
99504748
MG
2918 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2919 }
8d0986e2 2920 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2921 return;
88f5acf8
MG
2922 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2923 return;
2924
2925 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2926 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2927}
2928
adea02a1
WF
2929/*
2930 * The reclaimable count would be mostly accurate.
2931 * The less reclaimable pages may be
2932 * - mlocked pages, which will be moved to unevictable list when encountered
2933 * - mapped pages, which may require several travels to be reclaimed
2934 * - dirty pages, which is not "instantly" reclaimable
2935 */
2936unsigned long global_reclaimable_pages(void)
4f98a2fe 2937{
adea02a1
WF
2938 int nr;
2939
2940 nr = global_page_state(NR_ACTIVE_FILE) +
2941 global_page_state(NR_INACTIVE_FILE);
2942
2943 if (nr_swap_pages > 0)
2944 nr += global_page_state(NR_ACTIVE_ANON) +
2945 global_page_state(NR_INACTIVE_ANON);
2946
2947 return nr;
2948}
2949
2950unsigned long zone_reclaimable_pages(struct zone *zone)
2951{
2952 int nr;
2953
2954 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2955 zone_page_state(zone, NR_INACTIVE_FILE);
2956
2957 if (nr_swap_pages > 0)
2958 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2959 zone_page_state(zone, NR_INACTIVE_ANON);
2960
2961 return nr;
4f98a2fe
RR
2962}
2963
c6f37f12 2964#ifdef CONFIG_HIBERNATION
1da177e4 2965/*
7b51755c 2966 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2967 * freed pages.
2968 *
2969 * Rather than trying to age LRUs the aim is to preserve the overall
2970 * LRU order by reclaiming preferentially
2971 * inactive > active > active referenced > active mapped
1da177e4 2972 */
7b51755c 2973unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2974{
d6277db4 2975 struct reclaim_state reclaim_state;
d6277db4 2976 struct scan_control sc = {
7b51755c
KM
2977 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2978 .may_swap = 1,
2979 .may_unmap = 1,
d6277db4 2980 .may_writepage = 1,
7b51755c
KM
2981 .nr_to_reclaim = nr_to_reclaim,
2982 .hibernation_mode = 1,
7b51755c 2983 .order = 0,
1da177e4 2984 };
a09ed5e0
YH
2985 struct shrink_control shrink = {
2986 .gfp_mask = sc.gfp_mask,
2987 };
2988 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2989 struct task_struct *p = current;
2990 unsigned long nr_reclaimed;
1da177e4 2991
7b51755c
KM
2992 p->flags |= PF_MEMALLOC;
2993 lockdep_set_current_reclaim_state(sc.gfp_mask);
2994 reclaim_state.reclaimed_slab = 0;
2995 p->reclaim_state = &reclaim_state;
d6277db4 2996
a09ed5e0 2997 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2998
7b51755c
KM
2999 p->reclaim_state = NULL;
3000 lockdep_clear_current_reclaim_state();
3001 p->flags &= ~PF_MEMALLOC;
d6277db4 3002
7b51755c 3003 return nr_reclaimed;
1da177e4 3004}
c6f37f12 3005#endif /* CONFIG_HIBERNATION */
1da177e4 3006
1da177e4
LT
3007/* It's optimal to keep kswapds on the same CPUs as their memory, but
3008 not required for correctness. So if the last cpu in a node goes
3009 away, we get changed to run anywhere: as the first one comes back,
3010 restore their cpu bindings. */
9c7b216d 3011static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 3012 unsigned long action, void *hcpu)
1da177e4 3013{
58c0a4a7 3014 int nid;
1da177e4 3015
8bb78442 3016 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 3017 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 3018 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3019 const struct cpumask *mask;
3020
3021 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3022
3e597945 3023 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3024 /* One of our CPUs online: restore mask */
c5f59f08 3025 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3026 }
3027 }
3028 return NOTIFY_OK;
3029}
1da177e4 3030
3218ae14
YG
3031/*
3032 * This kswapd start function will be called by init and node-hot-add.
3033 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3034 */
3035int kswapd_run(int nid)
3036{
3037 pg_data_t *pgdat = NODE_DATA(nid);
3038 int ret = 0;
3039
3040 if (pgdat->kswapd)
3041 return 0;
3042
3043 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3044 if (IS_ERR(pgdat->kswapd)) {
3045 /* failure at boot is fatal */
3046 BUG_ON(system_state == SYSTEM_BOOTING);
3047 printk("Failed to start kswapd on node %d\n",nid);
3048 ret = -1;
3049 }
3050 return ret;
3051}
3052
8fe23e05
DR
3053/*
3054 * Called by memory hotplug when all memory in a node is offlined.
3055 */
3056void kswapd_stop(int nid)
3057{
3058 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3059
3060 if (kswapd)
3061 kthread_stop(kswapd);
3062}
3063
1da177e4
LT
3064static int __init kswapd_init(void)
3065{
3218ae14 3066 int nid;
69e05944 3067
1da177e4 3068 swap_setup();
9422ffba 3069 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3070 kswapd_run(nid);
1da177e4
LT
3071 hotcpu_notifier(cpu_callback, 0);
3072 return 0;
3073}
3074
3075module_init(kswapd_init)
9eeff239
CL
3076
3077#ifdef CONFIG_NUMA
3078/*
3079 * Zone reclaim mode
3080 *
3081 * If non-zero call zone_reclaim when the number of free pages falls below
3082 * the watermarks.
9eeff239
CL
3083 */
3084int zone_reclaim_mode __read_mostly;
3085
1b2ffb78 3086#define RECLAIM_OFF 0
7d03431c 3087#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3088#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3089#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3090
a92f7126
CL
3091/*
3092 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3093 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3094 * a zone.
3095 */
3096#define ZONE_RECLAIM_PRIORITY 4
3097
9614634f
CL
3098/*
3099 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3100 * occur.
3101 */
3102int sysctl_min_unmapped_ratio = 1;
3103
0ff38490
CL
3104/*
3105 * If the number of slab pages in a zone grows beyond this percentage then
3106 * slab reclaim needs to occur.
3107 */
3108int sysctl_min_slab_ratio = 5;
3109
90afa5de
MG
3110static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3111{
3112 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3113 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3114 zone_page_state(zone, NR_ACTIVE_FILE);
3115
3116 /*
3117 * It's possible for there to be more file mapped pages than
3118 * accounted for by the pages on the file LRU lists because
3119 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3120 */
3121 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3122}
3123
3124/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3125static long zone_pagecache_reclaimable(struct zone *zone)
3126{
3127 long nr_pagecache_reclaimable;
3128 long delta = 0;
3129
3130 /*
3131 * If RECLAIM_SWAP is set, then all file pages are considered
3132 * potentially reclaimable. Otherwise, we have to worry about
3133 * pages like swapcache and zone_unmapped_file_pages() provides
3134 * a better estimate
3135 */
3136 if (zone_reclaim_mode & RECLAIM_SWAP)
3137 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3138 else
3139 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3140
3141 /* If we can't clean pages, remove dirty pages from consideration */
3142 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3143 delta += zone_page_state(zone, NR_FILE_DIRTY);
3144
3145 /* Watch for any possible underflows due to delta */
3146 if (unlikely(delta > nr_pagecache_reclaimable))
3147 delta = nr_pagecache_reclaimable;
3148
3149 return nr_pagecache_reclaimable - delta;
3150}
3151
9eeff239
CL
3152/*
3153 * Try to free up some pages from this zone through reclaim.
3154 */
179e9639 3155static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3156{
7fb2d46d 3157 /* Minimum pages needed in order to stay on node */
69e05944 3158 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3159 struct task_struct *p = current;
3160 struct reclaim_state reclaim_state;
8695949a 3161 int priority;
179e9639
AM
3162 struct scan_control sc = {
3163 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3164 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3165 .may_swap = 1,
22fba335
KM
3166 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3167 SWAP_CLUSTER_MAX),
179e9639 3168 .gfp_mask = gfp_mask,
bd2f6199 3169 .order = order,
179e9639 3170 };
a09ed5e0
YH
3171 struct shrink_control shrink = {
3172 .gfp_mask = sc.gfp_mask,
3173 };
15748048 3174 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3175
9eeff239 3176 cond_resched();
d4f7796e
CL
3177 /*
3178 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3179 * and we also need to be able to write out pages for RECLAIM_WRITE
3180 * and RECLAIM_SWAP.
3181 */
3182 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3183 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3184 reclaim_state.reclaimed_slab = 0;
3185 p->reclaim_state = &reclaim_state;
c84db23c 3186
90afa5de 3187 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3188 /*
3189 * Free memory by calling shrink zone with increasing
3190 * priorities until we have enough memory freed.
3191 */
3192 priority = ZONE_RECLAIM_PRIORITY;
3193 do {
a79311c1 3194 shrink_zone(priority, zone, &sc);
0ff38490 3195 priority--;
a79311c1 3196 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3197 }
c84db23c 3198
15748048
KM
3199 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3200 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3201 /*
7fb2d46d 3202 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3203 * many pages were freed in this zone. So we take the current
3204 * number of slab pages and shake the slab until it is reduced
3205 * by the same nr_pages that we used for reclaiming unmapped
3206 * pages.
2a16e3f4 3207 *
0ff38490
CL
3208 * Note that shrink_slab will free memory on all zones and may
3209 * take a long time.
2a16e3f4 3210 */
4dc4b3d9
KM
3211 for (;;) {
3212 unsigned long lru_pages = zone_reclaimable_pages(zone);
3213
3214 /* No reclaimable slab or very low memory pressure */
1495f230 3215 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3216 break;
3217
3218 /* Freed enough memory */
3219 nr_slab_pages1 = zone_page_state(zone,
3220 NR_SLAB_RECLAIMABLE);
3221 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3222 break;
3223 }
83e33a47
CL
3224
3225 /*
3226 * Update nr_reclaimed by the number of slab pages we
3227 * reclaimed from this zone.
3228 */
15748048
KM
3229 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3230 if (nr_slab_pages1 < nr_slab_pages0)
3231 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3232 }
3233
9eeff239 3234 p->reclaim_state = NULL;
d4f7796e 3235 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3236 lockdep_clear_current_reclaim_state();
a79311c1 3237 return sc.nr_reclaimed >= nr_pages;
9eeff239 3238}
179e9639
AM
3239
3240int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3241{
179e9639 3242 int node_id;
d773ed6b 3243 int ret;
179e9639
AM
3244
3245 /*
0ff38490
CL
3246 * Zone reclaim reclaims unmapped file backed pages and
3247 * slab pages if we are over the defined limits.
34aa1330 3248 *
9614634f
CL
3249 * A small portion of unmapped file backed pages is needed for
3250 * file I/O otherwise pages read by file I/O will be immediately
3251 * thrown out if the zone is overallocated. So we do not reclaim
3252 * if less than a specified percentage of the zone is used by
3253 * unmapped file backed pages.
179e9639 3254 */
90afa5de
MG
3255 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3256 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3257 return ZONE_RECLAIM_FULL;
179e9639 3258
93e4a89a 3259 if (zone->all_unreclaimable)
fa5e084e 3260 return ZONE_RECLAIM_FULL;
d773ed6b 3261
179e9639 3262 /*
d773ed6b 3263 * Do not scan if the allocation should not be delayed.
179e9639 3264 */
d773ed6b 3265 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3266 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3267
3268 /*
3269 * Only run zone reclaim on the local zone or on zones that do not
3270 * have associated processors. This will favor the local processor
3271 * over remote processors and spread off node memory allocations
3272 * as wide as possible.
3273 */
89fa3024 3274 node_id = zone_to_nid(zone);
37c0708d 3275 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3276 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3277
3278 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3279 return ZONE_RECLAIM_NOSCAN;
3280
d773ed6b
DR
3281 ret = __zone_reclaim(zone, gfp_mask, order);
3282 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3283
24cf7251
MG
3284 if (!ret)
3285 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3286
d773ed6b 3287 return ret;
179e9639 3288}
9eeff239 3289#endif
894bc310 3290
894bc310
LS
3291/*
3292 * page_evictable - test whether a page is evictable
3293 * @page: the page to test
3294 * @vma: the VMA in which the page is or will be mapped, may be NULL
3295 *
3296 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3297 * lists vs unevictable list. The vma argument is !NULL when called from the
3298 * fault path to determine how to instantate a new page.
894bc310
LS
3299 *
3300 * Reasons page might not be evictable:
ba9ddf49 3301 * (1) page's mapping marked unevictable
b291f000 3302 * (2) page is part of an mlocked VMA
ba9ddf49 3303 *
894bc310
LS
3304 */
3305int page_evictable(struct page *page, struct vm_area_struct *vma)
3306{
3307
ba9ddf49
LS
3308 if (mapping_unevictable(page_mapping(page)))
3309 return 0;
3310
096a7cf4 3311 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
b291f000 3312 return 0;
894bc310
LS
3313
3314 return 1;
3315}
89e004ea 3316
85046579 3317#ifdef CONFIG_SHMEM
89e004ea 3318/**
24513264
HD
3319 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3320 * @pages: array of pages to check
3321 * @nr_pages: number of pages to check
89e004ea 3322 *
24513264 3323 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3324 *
3325 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3326 */
24513264 3327void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3328{
925b7673 3329 struct lruvec *lruvec;
24513264
HD
3330 struct zone *zone = NULL;
3331 int pgscanned = 0;
3332 int pgrescued = 0;
3333 int i;
89e004ea 3334
24513264
HD
3335 for (i = 0; i < nr_pages; i++) {
3336 struct page *page = pages[i];
3337 struct zone *pagezone;
89e004ea 3338
24513264
HD
3339 pgscanned++;
3340 pagezone = page_zone(page);
3341 if (pagezone != zone) {
3342 if (zone)
3343 spin_unlock_irq(&zone->lru_lock);
3344 zone = pagezone;
3345 spin_lock_irq(&zone->lru_lock);
3346 }
89e004ea 3347
24513264
HD
3348 if (!PageLRU(page) || !PageUnevictable(page))
3349 continue;
89e004ea 3350
24513264
HD
3351 if (page_evictable(page, NULL)) {
3352 enum lru_list lru = page_lru_base_type(page);
3353
3354 VM_BUG_ON(PageActive(page));
3355 ClearPageUnevictable(page);
3356 __dec_zone_state(zone, NR_UNEVICTABLE);
3357 lruvec = mem_cgroup_lru_move_lists(zone, page,
3358 LRU_UNEVICTABLE, lru);
3359 list_move(&page->lru, &lruvec->lists[lru]);
3360 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3361 pgrescued++;
89e004ea 3362 }
24513264 3363 }
89e004ea 3364
24513264
HD
3365 if (zone) {
3366 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3367 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3368 spin_unlock_irq(&zone->lru_lock);
89e004ea 3369 }
89e004ea 3370}
85046579 3371#endif /* CONFIG_SHMEM */
af936a16 3372
264e56d8 3373static void warn_scan_unevictable_pages(void)
af936a16 3374{
264e56d8 3375 printk_once(KERN_WARNING
25bd91bd 3376 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3377 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3378 "one, please send an email to linux-mm@kvack.org.\n",
3379 current->comm);
af936a16
LS
3380}
3381
3382/*
3383 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3384 * all nodes' unevictable lists for evictable pages
3385 */
3386unsigned long scan_unevictable_pages;
3387
3388int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3389 void __user *buffer,
af936a16
LS
3390 size_t *length, loff_t *ppos)
3391{
264e56d8 3392 warn_scan_unevictable_pages();
8d65af78 3393 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3394 scan_unevictable_pages = 0;
3395 return 0;
3396}
3397
e4455abb 3398#ifdef CONFIG_NUMA
af936a16
LS
3399/*
3400 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3401 * a specified node's per zone unevictable lists for evictable pages.
3402 */
3403
10fbcf4c
KS
3404static ssize_t read_scan_unevictable_node(struct device *dev,
3405 struct device_attribute *attr,
af936a16
LS
3406 char *buf)
3407{
264e56d8 3408 warn_scan_unevictable_pages();
af936a16
LS
3409 return sprintf(buf, "0\n"); /* always zero; should fit... */
3410}
3411
10fbcf4c
KS
3412static ssize_t write_scan_unevictable_node(struct device *dev,
3413 struct device_attribute *attr,
af936a16
LS
3414 const char *buf, size_t count)
3415{
264e56d8 3416 warn_scan_unevictable_pages();
af936a16
LS
3417 return 1;
3418}
3419
3420
10fbcf4c 3421static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3422 read_scan_unevictable_node,
3423 write_scan_unevictable_node);
3424
3425int scan_unevictable_register_node(struct node *node)
3426{
10fbcf4c 3427 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3428}
3429
3430void scan_unevictable_unregister_node(struct node *node)
3431{
10fbcf4c 3432 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3433}
e4455abb 3434#endif