ksm: convert to use common struct mm_slot
[linux-block.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
07f67a8d 29#include <linux/buffer_head.h> /* for buffer_heads_over_limit */
1da177e4 30#include <linux/mm_inline.h>
1da177e4
LT
31#include <linux/backing-dev.h>
32#include <linux/rmap.h>
33#include <linux/topology.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
3e7d3449 36#include <linux/compaction.h>
1da177e4
LT
37#include <linux/notifier.h>
38#include <linux/rwsem.h>
248a0301 39#include <linux/delay.h>
3218ae14 40#include <linux/kthread.h>
7dfb7103 41#include <linux/freezer.h>
66e1707b 42#include <linux/memcontrol.h>
26aa2d19 43#include <linux/migrate.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
91952440 46#include <linux/memory-tiers.h>
929bea7c 47#include <linux/oom.h>
64e3d12f 48#include <linux/pagevec.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
eb414681 52#include <linux/psi.h>
bd74fdae
YZ
53#include <linux/pagewalk.h>
54#include <linux/shmem_fs.h>
354ed597 55#include <linux/ctype.h>
d6c3af7d 56#include <linux/debugfs.h>
1da177e4
LT
57
58#include <asm/tlbflush.h>
59#include <asm/div64.h>
60
61#include <linux/swapops.h>
117aad1e 62#include <linux/balloon_compaction.h>
c574bbe9 63#include <linux/sched/sysctl.h>
1da177e4 64
0f8053a5 65#include "internal.h"
014bb1de 66#include "swap.h"
0f8053a5 67
33906bc5
MG
68#define CREATE_TRACE_POINTS
69#include <trace/events/vmscan.h>
70
1da177e4 71struct scan_control {
22fba335
KM
72 /* How many pages shrink_list() should reclaim */
73 unsigned long nr_to_reclaim;
74
ee814fe2
JW
75 /*
76 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * are scanned.
78 */
79 nodemask_t *nodemask;
9e3b2f8c 80
f16015fb
JW
81 /*
82 * The memory cgroup that hit its limit and as a result is the
83 * primary target of this reclaim invocation.
84 */
85 struct mem_cgroup *target_mem_cgroup;
66e1707b 86
7cf111bc
JW
87 /*
88 * Scan pressure balancing between anon and file LRUs
89 */
90 unsigned long anon_cost;
91 unsigned long file_cost;
92
b91ac374
JW
93 /* Can active pages be deactivated as part of reclaim? */
94#define DEACTIVATE_ANON 1
95#define DEACTIVATE_FILE 2
96 unsigned int may_deactivate:2;
97 unsigned int force_deactivate:1;
98 unsigned int skipped_deactivate:1;
99
1276ad68 100 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
101 unsigned int may_writepage:1;
102
103 /* Can mapped pages be reclaimed? */
104 unsigned int may_unmap:1;
105
106 /* Can pages be swapped as part of reclaim? */
107 unsigned int may_swap:1;
108
73b73bac
YA
109 /* Proactive reclaim invoked by userspace through memory.reclaim */
110 unsigned int proactive:1;
111
d6622f63 112 /*
f56ce412
JW
113 * Cgroup memory below memory.low is protected as long as we
114 * don't threaten to OOM. If any cgroup is reclaimed at
115 * reduced force or passed over entirely due to its memory.low
116 * setting (memcg_low_skipped), and nothing is reclaimed as a
117 * result, then go back for one more cycle that reclaims the protected
118 * memory (memcg_low_reclaim) to avert OOM.
d6622f63
YX
119 */
120 unsigned int memcg_low_reclaim:1;
121 unsigned int memcg_low_skipped:1;
241994ed 122
ee814fe2
JW
123 unsigned int hibernation_mode:1;
124
125 /* One of the zones is ready for compaction */
126 unsigned int compaction_ready:1;
127
b91ac374
JW
128 /* There is easily reclaimable cold cache in the current node */
129 unsigned int cache_trim_mode:1;
130
53138cea
JW
131 /* The file pages on the current node are dangerously low */
132 unsigned int file_is_tiny:1;
133
26aa2d19
DH
134 /* Always discard instead of demoting to lower tier memory */
135 unsigned int no_demotion:1;
136
f76c8337
YZ
137#ifdef CONFIG_LRU_GEN
138 /* help kswapd make better choices among multiple memcgs */
139 unsigned int memcgs_need_aging:1;
140 unsigned long last_reclaimed;
141#endif
142
bb451fdf
GT
143 /* Allocation order */
144 s8 order;
145
146 /* Scan (total_size >> priority) pages at once */
147 s8 priority;
148
149 /* The highest zone to isolate pages for reclaim from */
150 s8 reclaim_idx;
151
152 /* This context's GFP mask */
153 gfp_t gfp_mask;
154
ee814fe2
JW
155 /* Incremented by the number of inactive pages that were scanned */
156 unsigned long nr_scanned;
157
158 /* Number of pages freed so far during a call to shrink_zones() */
159 unsigned long nr_reclaimed;
d108c772
AR
160
161 struct {
162 unsigned int dirty;
163 unsigned int unqueued_dirty;
164 unsigned int congested;
165 unsigned int writeback;
166 unsigned int immediate;
167 unsigned int file_taken;
168 unsigned int taken;
169 } nr;
e5ca8071
YS
170
171 /* for recording the reclaimed slab by now */
172 struct reclaim_state reclaim_state;
1da177e4
LT
173};
174
1da177e4 175#ifdef ARCH_HAS_PREFETCHW
166e3d32 176#define prefetchw_prev_lru_folio(_folio, _base, _field) \
1da177e4 177 do { \
166e3d32
MWO
178 if ((_folio)->lru.prev != _base) { \
179 struct folio *prev; \
1da177e4 180 \
166e3d32 181 prev = lru_to_folio(&(_folio->lru)); \
1da177e4
LT
182 prefetchw(&prev->_field); \
183 } \
184 } while (0)
185#else
166e3d32 186#define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
1da177e4
LT
187#endif
188
189/*
c843966c 190 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
191 */
192int vm_swappiness = 60;
1da177e4 193
0a432dcb
YS
194static void set_task_reclaim_state(struct task_struct *task,
195 struct reclaim_state *rs)
196{
197 /* Check for an overwrite */
198 WARN_ON_ONCE(rs && task->reclaim_state);
199
200 /* Check for the nulling of an already-nulled member */
201 WARN_ON_ONCE(!rs && !task->reclaim_state);
202
203 task->reclaim_state = rs;
204}
205
5035ebc6
RG
206LIST_HEAD(shrinker_list);
207DECLARE_RWSEM(shrinker_rwsem);
1da177e4 208
0a432dcb 209#ifdef CONFIG_MEMCG
a2fb1261 210static int shrinker_nr_max;
2bfd3637 211
3c6f17e6 212/* The shrinker_info is expanded in a batch of BITS_PER_LONG */
a2fb1261
YS
213static inline int shrinker_map_size(int nr_items)
214{
215 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
216}
2bfd3637 217
3c6f17e6
YS
218static inline int shrinker_defer_size(int nr_items)
219{
220 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
221}
222
468ab843
YS
223static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
224 int nid)
225{
226 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
227 lockdep_is_held(&shrinker_rwsem));
228}
229
e4262c4f 230static int expand_one_shrinker_info(struct mem_cgroup *memcg,
3c6f17e6
YS
231 int map_size, int defer_size,
232 int old_map_size, int old_defer_size)
2bfd3637 233{
e4262c4f 234 struct shrinker_info *new, *old;
2bfd3637
YS
235 struct mem_cgroup_per_node *pn;
236 int nid;
3c6f17e6 237 int size = map_size + defer_size;
2bfd3637 238
2bfd3637
YS
239 for_each_node(nid) {
240 pn = memcg->nodeinfo[nid];
468ab843 241 old = shrinker_info_protected(memcg, nid);
2bfd3637
YS
242 /* Not yet online memcg */
243 if (!old)
244 return 0;
245
246 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
247 if (!new)
248 return -ENOMEM;
249
3c6f17e6
YS
250 new->nr_deferred = (atomic_long_t *)(new + 1);
251 new->map = (void *)new->nr_deferred + defer_size;
252
253 /* map: set all old bits, clear all new bits */
254 memset(new->map, (int)0xff, old_map_size);
255 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
256 /* nr_deferred: copy old values, clear all new values */
257 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
258 memset((void *)new->nr_deferred + old_defer_size, 0,
259 defer_size - old_defer_size);
2bfd3637 260
e4262c4f 261 rcu_assign_pointer(pn->shrinker_info, new);
72673e86 262 kvfree_rcu(old, rcu);
2bfd3637
YS
263 }
264
265 return 0;
266}
267
e4262c4f 268void free_shrinker_info(struct mem_cgroup *memcg)
2bfd3637
YS
269{
270 struct mem_cgroup_per_node *pn;
e4262c4f 271 struct shrinker_info *info;
2bfd3637
YS
272 int nid;
273
2bfd3637
YS
274 for_each_node(nid) {
275 pn = memcg->nodeinfo[nid];
e4262c4f
YS
276 info = rcu_dereference_protected(pn->shrinker_info, true);
277 kvfree(info);
278 rcu_assign_pointer(pn->shrinker_info, NULL);
2bfd3637
YS
279 }
280}
281
e4262c4f 282int alloc_shrinker_info(struct mem_cgroup *memcg)
2bfd3637 283{
e4262c4f 284 struct shrinker_info *info;
2bfd3637 285 int nid, size, ret = 0;
3c6f17e6 286 int map_size, defer_size = 0;
2bfd3637 287
d27cf2aa 288 down_write(&shrinker_rwsem);
3c6f17e6
YS
289 map_size = shrinker_map_size(shrinker_nr_max);
290 defer_size = shrinker_defer_size(shrinker_nr_max);
291 size = map_size + defer_size;
2bfd3637 292 for_each_node(nid) {
e4262c4f
YS
293 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
294 if (!info) {
295 free_shrinker_info(memcg);
2bfd3637
YS
296 ret = -ENOMEM;
297 break;
298 }
3c6f17e6
YS
299 info->nr_deferred = (atomic_long_t *)(info + 1);
300 info->map = (void *)info->nr_deferred + defer_size;
e4262c4f 301 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
2bfd3637 302 }
d27cf2aa 303 up_write(&shrinker_rwsem);
2bfd3637
YS
304
305 return ret;
306}
307
3c6f17e6
YS
308static inline bool need_expand(int nr_max)
309{
310 return round_up(nr_max, BITS_PER_LONG) >
311 round_up(shrinker_nr_max, BITS_PER_LONG);
312}
313
e4262c4f 314static int expand_shrinker_info(int new_id)
2bfd3637 315{
3c6f17e6 316 int ret = 0;
a2fb1261 317 int new_nr_max = new_id + 1;
3c6f17e6
YS
318 int map_size, defer_size = 0;
319 int old_map_size, old_defer_size = 0;
2bfd3637
YS
320 struct mem_cgroup *memcg;
321
3c6f17e6 322 if (!need_expand(new_nr_max))
a2fb1261 323 goto out;
2bfd3637 324
2bfd3637 325 if (!root_mem_cgroup)
d27cf2aa
YS
326 goto out;
327
328 lockdep_assert_held(&shrinker_rwsem);
2bfd3637 329
3c6f17e6
YS
330 map_size = shrinker_map_size(new_nr_max);
331 defer_size = shrinker_defer_size(new_nr_max);
332 old_map_size = shrinker_map_size(shrinker_nr_max);
333 old_defer_size = shrinker_defer_size(shrinker_nr_max);
334
2bfd3637
YS
335 memcg = mem_cgroup_iter(NULL, NULL, NULL);
336 do {
3c6f17e6
YS
337 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
338 old_map_size, old_defer_size);
2bfd3637
YS
339 if (ret) {
340 mem_cgroup_iter_break(NULL, memcg);
d27cf2aa 341 goto out;
2bfd3637
YS
342 }
343 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
d27cf2aa 344out:
2bfd3637 345 if (!ret)
a2fb1261 346 shrinker_nr_max = new_nr_max;
d27cf2aa 347
2bfd3637
YS
348 return ret;
349}
350
351void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
352{
353 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
e4262c4f 354 struct shrinker_info *info;
2bfd3637
YS
355
356 rcu_read_lock();
e4262c4f 357 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
2bfd3637
YS
358 /* Pairs with smp mb in shrink_slab() */
359 smp_mb__before_atomic();
e4262c4f 360 set_bit(shrinker_id, info->map);
2bfd3637
YS
361 rcu_read_unlock();
362 }
363}
364
b4c2b231 365static DEFINE_IDR(shrinker_idr);
b4c2b231
KT
366
367static int prealloc_memcg_shrinker(struct shrinker *shrinker)
368{
369 int id, ret = -ENOMEM;
370
476b30a0
YS
371 if (mem_cgroup_disabled())
372 return -ENOSYS;
373
b4c2b231
KT
374 down_write(&shrinker_rwsem);
375 /* This may call shrinker, so it must use down_read_trylock() */
41ca668a 376 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
b4c2b231
KT
377 if (id < 0)
378 goto unlock;
379
0a4465d3 380 if (id >= shrinker_nr_max) {
e4262c4f 381 if (expand_shrinker_info(id)) {
0a4465d3
KT
382 idr_remove(&shrinker_idr, id);
383 goto unlock;
384 }
0a4465d3 385 }
b4c2b231
KT
386 shrinker->id = id;
387 ret = 0;
388unlock:
389 up_write(&shrinker_rwsem);
390 return ret;
391}
392
393static void unregister_memcg_shrinker(struct shrinker *shrinker)
394{
395 int id = shrinker->id;
396
397 BUG_ON(id < 0);
398
41ca668a
YS
399 lockdep_assert_held(&shrinker_rwsem);
400
b4c2b231 401 idr_remove(&shrinker_idr, id);
b4c2b231 402}
b4c2b231 403
86750830
YS
404static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
405 struct mem_cgroup *memcg)
406{
407 struct shrinker_info *info;
408
409 info = shrinker_info_protected(memcg, nid);
410 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
411}
412
413static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
414 struct mem_cgroup *memcg)
415{
416 struct shrinker_info *info;
417
418 info = shrinker_info_protected(memcg, nid);
419 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
420}
421
a178015c
YS
422void reparent_shrinker_deferred(struct mem_cgroup *memcg)
423{
424 int i, nid;
425 long nr;
426 struct mem_cgroup *parent;
427 struct shrinker_info *child_info, *parent_info;
428
429 parent = parent_mem_cgroup(memcg);
430 if (!parent)
431 parent = root_mem_cgroup;
432
433 /* Prevent from concurrent shrinker_info expand */
434 down_read(&shrinker_rwsem);
435 for_each_node(nid) {
436 child_info = shrinker_info_protected(memcg, nid);
437 parent_info = shrinker_info_protected(parent, nid);
438 for (i = 0; i < shrinker_nr_max; i++) {
439 nr = atomic_long_read(&child_info->nr_deferred[i]);
440 atomic_long_add(nr, &parent_info->nr_deferred[i]);
441 }
442 }
443 up_read(&shrinker_rwsem);
444}
445
b5ead35e 446static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 447{
b5ead35e 448 return sc->target_mem_cgroup;
89b5fae5 449}
97c9341f
TH
450
451/**
b5ead35e 452 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
453 * @sc: scan_control in question
454 *
455 * The normal page dirty throttling mechanism in balance_dirty_pages() is
456 * completely broken with the legacy memcg and direct stalling in
457 * shrink_page_list() is used for throttling instead, which lacks all the
458 * niceties such as fairness, adaptive pausing, bandwidth proportional
459 * allocation and configurability.
460 *
461 * This function tests whether the vmscan currently in progress can assume
462 * that the normal dirty throttling mechanism is operational.
463 */
b5ead35e 464static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 465{
b5ead35e 466 if (!cgroup_reclaim(sc))
97c9341f
TH
467 return true;
468#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 469 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
470 return true;
471#endif
472 return false;
473}
91a45470 474#else
0a432dcb
YS
475static int prealloc_memcg_shrinker(struct shrinker *shrinker)
476{
476b30a0 477 return -ENOSYS;
0a432dcb
YS
478}
479
480static void unregister_memcg_shrinker(struct shrinker *shrinker)
481{
482}
483
86750830
YS
484static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
485 struct mem_cgroup *memcg)
486{
487 return 0;
488}
489
490static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
491 struct mem_cgroup *memcg)
492{
493 return 0;
494}
495
b5ead35e 496static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 497{
b5ead35e 498 return false;
89b5fae5 499}
97c9341f 500
b5ead35e 501static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
502{
503 return true;
504}
91a45470
KH
505#endif
506
86750830
YS
507static long xchg_nr_deferred(struct shrinker *shrinker,
508 struct shrink_control *sc)
509{
510 int nid = sc->nid;
511
512 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
513 nid = 0;
514
515 if (sc->memcg &&
516 (shrinker->flags & SHRINKER_MEMCG_AWARE))
517 return xchg_nr_deferred_memcg(nid, shrinker,
518 sc->memcg);
519
520 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
521}
522
523
524static long add_nr_deferred(long nr, struct shrinker *shrinker,
525 struct shrink_control *sc)
526{
527 int nid = sc->nid;
528
529 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
530 nid = 0;
531
532 if (sc->memcg &&
533 (shrinker->flags & SHRINKER_MEMCG_AWARE))
534 return add_nr_deferred_memcg(nr, nid, shrinker,
535 sc->memcg);
536
537 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
538}
539
26aa2d19
DH
540static bool can_demote(int nid, struct scan_control *sc)
541{
20b51af1
HY
542 if (!numa_demotion_enabled)
543 return false;
3f1509c5
JW
544 if (sc && sc->no_demotion)
545 return false;
26aa2d19
DH
546 if (next_demotion_node(nid) == NUMA_NO_NODE)
547 return false;
548
20b51af1 549 return true;
26aa2d19
DH
550}
551
a2a36488
KB
552static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
553 int nid,
554 struct scan_control *sc)
555{
556 if (memcg == NULL) {
557 /*
558 * For non-memcg reclaim, is there
559 * space in any swap device?
560 */
561 if (get_nr_swap_pages() > 0)
562 return true;
563 } else {
564 /* Is the memcg below its swap limit? */
565 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
566 return true;
567 }
568
569 /*
570 * The page can not be swapped.
571 *
572 * Can it be reclaimed from this node via demotion?
573 */
574 return can_demote(nid, sc);
575}
576
5a1c84b4
MG
577/*
578 * This misses isolated pages which are not accounted for to save counters.
579 * As the data only determines if reclaim or compaction continues, it is
580 * not expected that isolated pages will be a dominating factor.
581 */
582unsigned long zone_reclaimable_pages(struct zone *zone)
583{
584 unsigned long nr;
585
586 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
587 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
a2a36488 588 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
5a1c84b4
MG
589 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
590 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
591
592 return nr;
593}
594
fd538803
MH
595/**
596 * lruvec_lru_size - Returns the number of pages on the given LRU list.
597 * @lruvec: lru vector
598 * @lru: lru to use
8b3a899a 599 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
fd538803 600 */
2091339d
YZ
601static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
602 int zone_idx)
c9f299d9 603{
de3b0150 604 unsigned long size = 0;
fd538803
MH
605 int zid;
606
8b3a899a 607 for (zid = 0; zid <= zone_idx; zid++) {
fd538803 608 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 609
fd538803
MH
610 if (!managed_zone(zone))
611 continue;
612
613 if (!mem_cgroup_disabled())
de3b0150 614 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 615 else
de3b0150 616 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 617 }
de3b0150 618 return size;
b4536f0c
MH
619}
620
1da177e4 621/*
1d3d4437 622 * Add a shrinker callback to be called from the vm.
1da177e4 623 */
e33c267a 624static int __prealloc_shrinker(struct shrinker *shrinker)
1da177e4 625{
476b30a0
YS
626 unsigned int size;
627 int err;
628
629 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
630 err = prealloc_memcg_shrinker(shrinker);
631 if (err != -ENOSYS)
632 return err;
1d3d4437 633
476b30a0
YS
634 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
635 }
636
637 size = sizeof(*shrinker->nr_deferred);
1d3d4437
GC
638 if (shrinker->flags & SHRINKER_NUMA_AWARE)
639 size *= nr_node_ids;
640
641 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
642 if (!shrinker->nr_deferred)
643 return -ENOMEM;
b4c2b231 644
8e04944f
TH
645 return 0;
646}
647
e33c267a
RG
648#ifdef CONFIG_SHRINKER_DEBUG
649int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
650{
651 va_list ap;
652 int err;
653
654 va_start(ap, fmt);
655 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
656 va_end(ap);
657 if (!shrinker->name)
658 return -ENOMEM;
659
660 err = __prealloc_shrinker(shrinker);
14773bfa 661 if (err) {
e33c267a 662 kfree_const(shrinker->name);
14773bfa
TH
663 shrinker->name = NULL;
664 }
e33c267a
RG
665
666 return err;
667}
668#else
669int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
670{
671 return __prealloc_shrinker(shrinker);
672}
673#endif
674
8e04944f
TH
675void free_prealloced_shrinker(struct shrinker *shrinker)
676{
e33c267a
RG
677#ifdef CONFIG_SHRINKER_DEBUG
678 kfree_const(shrinker->name);
14773bfa 679 shrinker->name = NULL;
e33c267a 680#endif
41ca668a
YS
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
682 down_write(&shrinker_rwsem);
b4c2b231 683 unregister_memcg_shrinker(shrinker);
41ca668a 684 up_write(&shrinker_rwsem);
476b30a0 685 return;
41ca668a 686 }
b4c2b231 687
8e04944f
TH
688 kfree(shrinker->nr_deferred);
689 shrinker->nr_deferred = NULL;
690}
1d3d4437 691
8e04944f
TH
692void register_shrinker_prepared(struct shrinker *shrinker)
693{
8e1f936b
RR
694 down_write(&shrinker_rwsem);
695 list_add_tail(&shrinker->list, &shrinker_list);
41ca668a 696 shrinker->flags |= SHRINKER_REGISTERED;
5035ebc6 697 shrinker_debugfs_add(shrinker);
8e1f936b 698 up_write(&shrinker_rwsem);
8e04944f
TH
699}
700
e33c267a 701static int __register_shrinker(struct shrinker *shrinker)
8e04944f 702{
e33c267a 703 int err = __prealloc_shrinker(shrinker);
8e04944f
TH
704
705 if (err)
706 return err;
707 register_shrinker_prepared(shrinker);
1d3d4437 708 return 0;
1da177e4 709}
e33c267a
RG
710
711#ifdef CONFIG_SHRINKER_DEBUG
712int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
713{
714 va_list ap;
715 int err;
716
717 va_start(ap, fmt);
718 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
719 va_end(ap);
720 if (!shrinker->name)
721 return -ENOMEM;
722
723 err = __register_shrinker(shrinker);
14773bfa 724 if (err) {
e33c267a 725 kfree_const(shrinker->name);
14773bfa
TH
726 shrinker->name = NULL;
727 }
e33c267a
RG
728 return err;
729}
730#else
731int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
732{
733 return __register_shrinker(shrinker);
734}
735#endif
8e1f936b 736EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
737
738/*
739 * Remove one
740 */
8e1f936b 741void unregister_shrinker(struct shrinker *shrinker)
1da177e4 742{
41ca668a 743 if (!(shrinker->flags & SHRINKER_REGISTERED))
bb422a73 744 return;
41ca668a 745
1da177e4
LT
746 down_write(&shrinker_rwsem);
747 list_del(&shrinker->list);
41ca668a
YS
748 shrinker->flags &= ~SHRINKER_REGISTERED;
749 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
750 unregister_memcg_shrinker(shrinker);
5035ebc6 751 shrinker_debugfs_remove(shrinker);
1da177e4 752 up_write(&shrinker_rwsem);
41ca668a 753
ae393321 754 kfree(shrinker->nr_deferred);
bb422a73 755 shrinker->nr_deferred = NULL;
1da177e4 756}
8e1f936b 757EXPORT_SYMBOL(unregister_shrinker);
1da177e4 758
880121be
CK
759/**
760 * synchronize_shrinkers - Wait for all running shrinkers to complete.
761 *
762 * This is equivalent to calling unregister_shrink() and register_shrinker(),
763 * but atomically and with less overhead. This is useful to guarantee that all
764 * shrinker invocations have seen an update, before freeing memory, similar to
765 * rcu.
766 */
767void synchronize_shrinkers(void)
768{
769 down_write(&shrinker_rwsem);
770 up_write(&shrinker_rwsem);
771}
772EXPORT_SYMBOL(synchronize_shrinkers);
773
1da177e4 774#define SHRINK_BATCH 128
1d3d4437 775
cb731d6c 776static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 777 struct shrinker *shrinker, int priority)
1d3d4437
GC
778{
779 unsigned long freed = 0;
780 unsigned long long delta;
781 long total_scan;
d5bc5fd3 782 long freeable;
1d3d4437
GC
783 long nr;
784 long new_nr;
1d3d4437
GC
785 long batch_size = shrinker->batch ? shrinker->batch
786 : SHRINK_BATCH;
5f33a080 787 long scanned = 0, next_deferred;
1d3d4437 788
d5bc5fd3 789 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
790 if (freeable == 0 || freeable == SHRINK_EMPTY)
791 return freeable;
1d3d4437
GC
792
793 /*
794 * copy the current shrinker scan count into a local variable
795 * and zero it so that other concurrent shrinker invocations
796 * don't also do this scanning work.
797 */
86750830 798 nr = xchg_nr_deferred(shrinker, shrinkctl);
1d3d4437 799
4b85afbd
JW
800 if (shrinker->seeks) {
801 delta = freeable >> priority;
802 delta *= 4;
803 do_div(delta, shrinker->seeks);
804 } else {
805 /*
806 * These objects don't require any IO to create. Trim
807 * them aggressively under memory pressure to keep
808 * them from causing refetches in the IO caches.
809 */
810 delta = freeable / 2;
811 }
172b06c3 812
18bb473e 813 total_scan = nr >> priority;
1d3d4437 814 total_scan += delta;
18bb473e 815 total_scan = min(total_scan, (2 * freeable));
1d3d4437
GC
816
817 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 818 freeable, delta, total_scan, priority);
1d3d4437 819
0b1fb40a
VD
820 /*
821 * Normally, we should not scan less than batch_size objects in one
822 * pass to avoid too frequent shrinker calls, but if the slab has less
823 * than batch_size objects in total and we are really tight on memory,
824 * we will try to reclaim all available objects, otherwise we can end
825 * up failing allocations although there are plenty of reclaimable
826 * objects spread over several slabs with usage less than the
827 * batch_size.
828 *
829 * We detect the "tight on memory" situations by looking at the total
830 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 831 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
832 * scanning at high prio and therefore should try to reclaim as much as
833 * possible.
834 */
835 while (total_scan >= batch_size ||
d5bc5fd3 836 total_scan >= freeable) {
a0b02131 837 unsigned long ret;
0b1fb40a 838 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 839
0b1fb40a 840 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 841 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
842 ret = shrinker->scan_objects(shrinker, shrinkctl);
843 if (ret == SHRINK_STOP)
844 break;
845 freed += ret;
1d3d4437 846
d460acb5
CW
847 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
848 total_scan -= shrinkctl->nr_scanned;
849 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
850
851 cond_resched();
852 }
853
18bb473e
YS
854 /*
855 * The deferred work is increased by any new work (delta) that wasn't
856 * done, decreased by old deferred work that was done now.
857 *
858 * And it is capped to two times of the freeable items.
859 */
860 next_deferred = max_t(long, (nr + delta - scanned), 0);
861 next_deferred = min(next_deferred, (2 * freeable));
862
1d3d4437
GC
863 /*
864 * move the unused scan count back into the shrinker in a
86750830 865 * manner that handles concurrent updates.
1d3d4437 866 */
86750830 867 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
1d3d4437 868
8efb4b59 869 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
1d3d4437 870 return freed;
1495f230
YH
871}
872
0a432dcb 873#ifdef CONFIG_MEMCG
b0dedc49
KT
874static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
875 struct mem_cgroup *memcg, int priority)
876{
e4262c4f 877 struct shrinker_info *info;
b8e57efa
KT
878 unsigned long ret, freed = 0;
879 int i;
b0dedc49 880
0a432dcb 881 if (!mem_cgroup_online(memcg))
b0dedc49
KT
882 return 0;
883
884 if (!down_read_trylock(&shrinker_rwsem))
885 return 0;
886
468ab843 887 info = shrinker_info_protected(memcg, nid);
e4262c4f 888 if (unlikely(!info))
b0dedc49
KT
889 goto unlock;
890
e4262c4f 891 for_each_set_bit(i, info->map, shrinker_nr_max) {
b0dedc49
KT
892 struct shrink_control sc = {
893 .gfp_mask = gfp_mask,
894 .nid = nid,
895 .memcg = memcg,
896 };
897 struct shrinker *shrinker;
898
899 shrinker = idr_find(&shrinker_idr, i);
41ca668a 900 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
7e010df5 901 if (!shrinker)
e4262c4f 902 clear_bit(i, info->map);
b0dedc49
KT
903 continue;
904 }
905
0a432dcb
YS
906 /* Call non-slab shrinkers even though kmem is disabled */
907 if (!memcg_kmem_enabled() &&
908 !(shrinker->flags & SHRINKER_NONSLAB))
909 continue;
910
b0dedc49 911 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6 912 if (ret == SHRINK_EMPTY) {
e4262c4f 913 clear_bit(i, info->map);
f90280d6
KT
914 /*
915 * After the shrinker reported that it had no objects to
916 * free, but before we cleared the corresponding bit in
917 * the memcg shrinker map, a new object might have been
918 * added. To make sure, we have the bit set in this
919 * case, we invoke the shrinker one more time and reset
920 * the bit if it reports that it is not empty anymore.
921 * The memory barrier here pairs with the barrier in
2bfd3637 922 * set_shrinker_bit():
f90280d6
KT
923 *
924 * list_lru_add() shrink_slab_memcg()
925 * list_add_tail() clear_bit()
926 * <MB> <MB>
927 * set_bit() do_shrink_slab()
928 */
929 smp_mb__after_atomic();
930 ret = do_shrink_slab(&sc, shrinker, priority);
931 if (ret == SHRINK_EMPTY)
932 ret = 0;
933 else
2bfd3637 934 set_shrinker_bit(memcg, nid, i);
f90280d6 935 }
b0dedc49
KT
936 freed += ret;
937
938 if (rwsem_is_contended(&shrinker_rwsem)) {
939 freed = freed ? : 1;
940 break;
941 }
942 }
943unlock:
944 up_read(&shrinker_rwsem);
945 return freed;
946}
0a432dcb 947#else /* CONFIG_MEMCG */
b0dedc49
KT
948static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
949 struct mem_cgroup *memcg, int priority)
950{
951 return 0;
952}
0a432dcb 953#endif /* CONFIG_MEMCG */
b0dedc49 954
6b4f7799 955/**
cb731d6c 956 * shrink_slab - shrink slab caches
6b4f7799
JW
957 * @gfp_mask: allocation context
958 * @nid: node whose slab caches to target
cb731d6c 959 * @memcg: memory cgroup whose slab caches to target
9092c71b 960 * @priority: the reclaim priority
1da177e4 961 *
6b4f7799 962 * Call the shrink functions to age shrinkable caches.
1da177e4 963 *
6b4f7799
JW
964 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
965 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 966 *
aeed1d32
VD
967 * @memcg specifies the memory cgroup to target. Unaware shrinkers
968 * are called only if it is the root cgroup.
cb731d6c 969 *
9092c71b
JB
970 * @priority is sc->priority, we take the number of objects and >> by priority
971 * in order to get the scan target.
b15e0905 972 *
6b4f7799 973 * Returns the number of reclaimed slab objects.
1da177e4 974 */
cb731d6c
VD
975static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
976 struct mem_cgroup *memcg,
9092c71b 977 int priority)
1da177e4 978{
b8e57efa 979 unsigned long ret, freed = 0;
1da177e4
LT
980 struct shrinker *shrinker;
981
fa1e512f
YS
982 /*
983 * The root memcg might be allocated even though memcg is disabled
984 * via "cgroup_disable=memory" boot parameter. This could make
985 * mem_cgroup_is_root() return false, then just run memcg slab
986 * shrink, but skip global shrink. This may result in premature
987 * oom.
988 */
989 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 990 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 991
e830c63a 992 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 993 goto out;
1da177e4
LT
994
995 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
996 struct shrink_control sc = {
997 .gfp_mask = gfp_mask,
998 .nid = nid,
cb731d6c 999 .memcg = memcg,
6b4f7799 1000 };
ec97097b 1001
9b996468
KT
1002 ret = do_shrink_slab(&sc, shrinker, priority);
1003 if (ret == SHRINK_EMPTY)
1004 ret = 0;
1005 freed += ret;
e496612c
MK
1006 /*
1007 * Bail out if someone want to register a new shrinker to
55b65a57 1008 * prevent the registration from being stalled for long periods
e496612c
MK
1009 * by parallel ongoing shrinking.
1010 */
1011 if (rwsem_is_contended(&shrinker_rwsem)) {
1012 freed = freed ? : 1;
1013 break;
1014 }
1da177e4 1015 }
6b4f7799 1016
1da177e4 1017 up_read(&shrinker_rwsem);
f06590bd
MK
1018out:
1019 cond_resched();
24f7c6b9 1020 return freed;
1da177e4
LT
1021}
1022
e4b424b7 1023static void drop_slab_node(int nid)
cb731d6c
VD
1024{
1025 unsigned long freed;
1399af7e 1026 int shift = 0;
cb731d6c
VD
1027
1028 do {
1029 struct mem_cgroup *memcg = NULL;
1030
069c411d
CZ
1031 if (fatal_signal_pending(current))
1032 return;
1033
cb731d6c 1034 freed = 0;
aeed1d32 1035 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 1036 do {
9092c71b 1037 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c 1038 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1399af7e 1039 } while ((freed >> shift++) > 1);
cb731d6c
VD
1040}
1041
1042void drop_slab(void)
1043{
1044 int nid;
1045
1046 for_each_online_node(nid)
1047 drop_slab_node(nid);
1048}
1049
e0cd5e7f 1050static inline int is_page_cache_freeable(struct folio *folio)
1da177e4 1051{
ceddc3a5
JW
1052 /*
1053 * A freeable page cache page is referenced only by the caller
67891fff
MW
1054 * that isolated the page, the page cache and optional buffer
1055 * heads at page->private.
ceddc3a5 1056 */
e0cd5e7f
MWO
1057 return folio_ref_count(folio) - folio_test_private(folio) ==
1058 1 + folio_nr_pages(folio);
1da177e4
LT
1059}
1060
1da177e4 1061/*
e0cd5e7f 1062 * We detected a synchronous write error writing a folio out. Probably
1da177e4
LT
1063 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1064 * fsync(), msync() or close().
1065 *
1066 * The tricky part is that after writepage we cannot touch the mapping: nothing
e0cd5e7f
MWO
1067 * prevents it from being freed up. But we have a ref on the folio and once
1068 * that folio is locked, the mapping is pinned.
1da177e4 1069 *
e0cd5e7f 1070 * We're allowed to run sleeping folio_lock() here because we know the caller has
1da177e4
LT
1071 * __GFP_FS.
1072 */
1073static void handle_write_error(struct address_space *mapping,
e0cd5e7f 1074 struct folio *folio, int error)
1da177e4 1075{
e0cd5e7f
MWO
1076 folio_lock(folio);
1077 if (folio_mapping(folio) == mapping)
3e9f45bd 1078 mapping_set_error(mapping, error);
e0cd5e7f 1079 folio_unlock(folio);
1da177e4
LT
1080}
1081
1b4e3f26
MG
1082static bool skip_throttle_noprogress(pg_data_t *pgdat)
1083{
1084 int reclaimable = 0, write_pending = 0;
1085 int i;
1086
1087 /*
1088 * If kswapd is disabled, reschedule if necessary but do not
1089 * throttle as the system is likely near OOM.
1090 */
1091 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1092 return true;
1093
1094 /*
1095 * If there are a lot of dirty/writeback pages then do not
1096 * throttle as throttling will occur when the pages cycle
1097 * towards the end of the LRU if still under writeback.
1098 */
1099 for (i = 0; i < MAX_NR_ZONES; i++) {
1100 struct zone *zone = pgdat->node_zones + i;
1101
36c26128 1102 if (!managed_zone(zone))
1b4e3f26
MG
1103 continue;
1104
1105 reclaimable += zone_reclaimable_pages(zone);
1106 write_pending += zone_page_state_snapshot(zone,
1107 NR_ZONE_WRITE_PENDING);
1108 }
1109 if (2 * write_pending <= reclaimable)
1110 return true;
1111
1112 return false;
1113}
1114
c3f4a9a2 1115void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
8cd7c588
MG
1116{
1117 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
c3f4a9a2 1118 long timeout, ret;
8cd7c588
MG
1119 DEFINE_WAIT(wait);
1120
1121 /*
1122 * Do not throttle IO workers, kthreads other than kswapd or
1123 * workqueues. They may be required for reclaim to make
1124 * forward progress (e.g. journalling workqueues or kthreads).
1125 */
1126 if (!current_is_kswapd() &&
b485c6f1
MG
1127 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1128 cond_resched();
8cd7c588 1129 return;
b485c6f1 1130 }
8cd7c588 1131
c3f4a9a2
MG
1132 /*
1133 * These figures are pulled out of thin air.
1134 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1135 * parallel reclaimers which is a short-lived event so the timeout is
1136 * short. Failing to make progress or waiting on writeback are
1137 * potentially long-lived events so use a longer timeout. This is shaky
1138 * logic as a failure to make progress could be due to anything from
1139 * writeback to a slow device to excessive references pages at the tail
1140 * of the inactive LRU.
1141 */
1142 switch(reason) {
1143 case VMSCAN_THROTTLE_WRITEBACK:
1144 timeout = HZ/10;
1145
1146 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1147 WRITE_ONCE(pgdat->nr_reclaim_start,
1148 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1149 }
1150
1151 break;
1b4e3f26
MG
1152 case VMSCAN_THROTTLE_CONGESTED:
1153 fallthrough;
c3f4a9a2 1154 case VMSCAN_THROTTLE_NOPROGRESS:
1b4e3f26
MG
1155 if (skip_throttle_noprogress(pgdat)) {
1156 cond_resched();
1157 return;
1158 }
1159
1160 timeout = 1;
1161
c3f4a9a2
MG
1162 break;
1163 case VMSCAN_THROTTLE_ISOLATED:
1164 timeout = HZ/50;
1165 break;
1166 default:
1167 WARN_ON_ONCE(1);
1168 timeout = HZ;
1169 break;
8cd7c588
MG
1170 }
1171
1172 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1173 ret = schedule_timeout(timeout);
1174 finish_wait(wqh, &wait);
d818fca1 1175
c3f4a9a2 1176 if (reason == VMSCAN_THROTTLE_WRITEBACK)
d818fca1 1177 atomic_dec(&pgdat->nr_writeback_throttled);
8cd7c588
MG
1178
1179 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1180 jiffies_to_usecs(timeout - ret),
1181 reason);
1182}
1183
1184/*
1185 * Account for pages written if tasks are throttled waiting on dirty
1186 * pages to clean. If enough pages have been cleaned since throttling
1187 * started then wakeup the throttled tasks.
1188 */
512b7931 1189void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
8cd7c588
MG
1190 int nr_throttled)
1191{
1192 unsigned long nr_written;
1193
512b7931 1194 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
8cd7c588
MG
1195
1196 /*
1197 * This is an inaccurate read as the per-cpu deltas may not
1198 * be synchronised. However, given that the system is
1199 * writeback throttled, it is not worth taking the penalty
1200 * of getting an accurate count. At worst, the throttle
1201 * timeout guarantees forward progress.
1202 */
1203 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1204 READ_ONCE(pgdat->nr_reclaim_start);
1205
1206 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1207 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1208}
1209
04e62a29
CL
1210/* possible outcome of pageout() */
1211typedef enum {
1212 /* failed to write page out, page is locked */
1213 PAGE_KEEP,
1214 /* move page to the active list, page is locked */
1215 PAGE_ACTIVATE,
1216 /* page has been sent to the disk successfully, page is unlocked */
1217 PAGE_SUCCESS,
1218 /* page is clean and locked */
1219 PAGE_CLEAN,
1220} pageout_t;
1221
1da177e4 1222/*
1742f19f
AM
1223 * pageout is called by shrink_page_list() for each dirty page.
1224 * Calls ->writepage().
1da177e4 1225 */
2282679f
N
1226static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1227 struct swap_iocb **plug)
1da177e4
LT
1228{
1229 /*
e0cd5e7f 1230 * If the folio is dirty, only perform writeback if that write
1da177e4
LT
1231 * will be non-blocking. To prevent this allocation from being
1232 * stalled by pagecache activity. But note that there may be
1233 * stalls if we need to run get_block(). We could test
1234 * PagePrivate for that.
1235 *
8174202b 1236 * If this process is currently in __generic_file_write_iter() against
e0cd5e7f 1237 * this folio's queue, we can perform writeback even if that
1da177e4
LT
1238 * will block.
1239 *
e0cd5e7f 1240 * If the folio is swapcache, write it back even if that would
1da177e4
LT
1241 * block, for some throttling. This happens by accident, because
1242 * swap_backing_dev_info is bust: it doesn't reflect the
1243 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4 1244 */
e0cd5e7f 1245 if (!is_page_cache_freeable(folio))
1da177e4
LT
1246 return PAGE_KEEP;
1247 if (!mapping) {
1248 /*
e0cd5e7f
MWO
1249 * Some data journaling orphaned folios can have
1250 * folio->mapping == NULL while being dirty with clean buffers.
1da177e4 1251 */
e0cd5e7f 1252 if (folio_test_private(folio)) {
68189fef 1253 if (try_to_free_buffers(folio)) {
e0cd5e7f
MWO
1254 folio_clear_dirty(folio);
1255 pr_info("%s: orphaned folio\n", __func__);
1da177e4
LT
1256 return PAGE_CLEAN;
1257 }
1258 }
1259 return PAGE_KEEP;
1260 }
1261 if (mapping->a_ops->writepage == NULL)
1262 return PAGE_ACTIVATE;
1da177e4 1263
e0cd5e7f 1264 if (folio_clear_dirty_for_io(folio)) {
1da177e4
LT
1265 int res;
1266 struct writeback_control wbc = {
1267 .sync_mode = WB_SYNC_NONE,
1268 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
1269 .range_start = 0,
1270 .range_end = LLONG_MAX,
1da177e4 1271 .for_reclaim = 1,
2282679f 1272 .swap_plug = plug,
1da177e4
LT
1273 };
1274
e0cd5e7f
MWO
1275 folio_set_reclaim(folio);
1276 res = mapping->a_ops->writepage(&folio->page, &wbc);
1da177e4 1277 if (res < 0)
e0cd5e7f 1278 handle_write_error(mapping, folio, res);
994fc28c 1279 if (res == AOP_WRITEPAGE_ACTIVATE) {
e0cd5e7f 1280 folio_clear_reclaim(folio);
1da177e4
LT
1281 return PAGE_ACTIVATE;
1282 }
c661b078 1283
e0cd5e7f 1284 if (!folio_test_writeback(folio)) {
1da177e4 1285 /* synchronous write or broken a_ops? */
e0cd5e7f 1286 folio_clear_reclaim(folio);
1da177e4 1287 }
e0cd5e7f
MWO
1288 trace_mm_vmscan_write_folio(folio);
1289 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1da177e4
LT
1290 return PAGE_SUCCESS;
1291 }
1292
1293 return PAGE_CLEAN;
1294}
1295
a649fd92 1296/*
e286781d
NP
1297 * Same as remove_mapping, but if the page is removed from the mapping, it
1298 * gets returned with a refcount of 0.
a649fd92 1299 */
be7c07d6 1300static int __remove_mapping(struct address_space *mapping, struct folio *folio,
b910718a 1301 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 1302{
bd4c82c2 1303 int refcount;
aae466b0 1304 void *shadow = NULL;
c4843a75 1305
be7c07d6
MWO
1306 BUG_ON(!folio_test_locked(folio));
1307 BUG_ON(mapping != folio_mapping(folio));
49d2e9cc 1308
be7c07d6 1309 if (!folio_test_swapcache(folio))
51b8c1fe 1310 spin_lock(&mapping->host->i_lock);
30472509 1311 xa_lock_irq(&mapping->i_pages);
49d2e9cc 1312 /*
0fd0e6b0
NP
1313 * The non racy check for a busy page.
1314 *
1315 * Must be careful with the order of the tests. When someone has
1316 * a ref to the page, it may be possible that they dirty it then
1317 * drop the reference. So if PageDirty is tested before page_count
1318 * here, then the following race may occur:
1319 *
1320 * get_user_pages(&page);
1321 * [user mapping goes away]
1322 * write_to(page);
1323 * !PageDirty(page) [good]
1324 * SetPageDirty(page);
1325 * put_page(page);
1326 * !page_count(page) [good, discard it]
1327 *
1328 * [oops, our write_to data is lost]
1329 *
1330 * Reversing the order of the tests ensures such a situation cannot
1331 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 1332 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
1333 *
1334 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 1335 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 1336 */
be7c07d6
MWO
1337 refcount = 1 + folio_nr_pages(folio);
1338 if (!folio_ref_freeze(folio, refcount))
49d2e9cc 1339 goto cannot_free;
1c4c3b99 1340 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
be7c07d6
MWO
1341 if (unlikely(folio_test_dirty(folio))) {
1342 folio_ref_unfreeze(folio, refcount);
49d2e9cc 1343 goto cannot_free;
e286781d 1344 }
49d2e9cc 1345
be7c07d6
MWO
1346 if (folio_test_swapcache(folio)) {
1347 swp_entry_t swap = folio_swap_entry(folio);
ac35a490
YZ
1348
1349 /* get a shadow entry before mem_cgroup_swapout() clears folio_memcg() */
aae466b0 1350 if (reclaimed && !mapping_exiting(mapping))
8927f647 1351 shadow = workingset_eviction(folio, target_memcg);
ac35a490 1352 mem_cgroup_swapout(folio, swap);
ceff9d33 1353 __delete_from_swap_cache(folio, swap, shadow);
30472509 1354 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1355 put_swap_page(&folio->page, swap);
e286781d 1356 } else {
d2329aa0 1357 void (*free_folio)(struct folio *);
6072d13c 1358
d2329aa0 1359 free_folio = mapping->a_ops->free_folio;
a528910e
JW
1360 /*
1361 * Remember a shadow entry for reclaimed file cache in
1362 * order to detect refaults, thus thrashing, later on.
1363 *
1364 * But don't store shadows in an address space that is
238c3046 1365 * already exiting. This is not just an optimization,
a528910e
JW
1366 * inode reclaim needs to empty out the radix tree or
1367 * the nodes are lost. Don't plant shadows behind its
1368 * back.
f9fe48be
RZ
1369 *
1370 * We also don't store shadows for DAX mappings because the
1371 * only page cache pages found in these are zero pages
1372 * covering holes, and because we don't want to mix DAX
1373 * exceptional entries and shadow exceptional entries in the
b93b0163 1374 * same address_space.
a528910e 1375 */
be7c07d6 1376 if (reclaimed && folio_is_file_lru(folio) &&
f9fe48be 1377 !mapping_exiting(mapping) && !dax_mapping(mapping))
8927f647
MWO
1378 shadow = workingset_eviction(folio, target_memcg);
1379 __filemap_remove_folio(folio, shadow);
30472509 1380 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
1381 if (mapping_shrinkable(mapping))
1382 inode_add_lru(mapping->host);
1383 spin_unlock(&mapping->host->i_lock);
6072d13c 1384
d2329aa0
MWO
1385 if (free_folio)
1386 free_folio(folio);
49d2e9cc
CL
1387 }
1388
49d2e9cc
CL
1389 return 1;
1390
1391cannot_free:
30472509 1392 xa_unlock_irq(&mapping->i_pages);
be7c07d6 1393 if (!folio_test_swapcache(folio))
51b8c1fe 1394 spin_unlock(&mapping->host->i_lock);
49d2e9cc
CL
1395 return 0;
1396}
1397
5100da38
MWO
1398/**
1399 * remove_mapping() - Attempt to remove a folio from its mapping.
1400 * @mapping: The address space.
1401 * @folio: The folio to remove.
1402 *
1403 * If the folio is dirty, under writeback or if someone else has a ref
1404 * on it, removal will fail.
1405 * Return: The number of pages removed from the mapping. 0 if the folio
1406 * could not be removed.
1407 * Context: The caller should have a single refcount on the folio and
1408 * hold its lock.
e286781d 1409 */
5100da38 1410long remove_mapping(struct address_space *mapping, struct folio *folio)
e286781d 1411{
be7c07d6 1412 if (__remove_mapping(mapping, folio, false, NULL)) {
e286781d 1413 /*
5100da38 1414 * Unfreezing the refcount with 1 effectively
e286781d
NP
1415 * drops the pagecache ref for us without requiring another
1416 * atomic operation.
1417 */
be7c07d6 1418 folio_ref_unfreeze(folio, 1);
5100da38 1419 return folio_nr_pages(folio);
e286781d
NP
1420 }
1421 return 0;
1422}
1423
894bc310 1424/**
ca6d60f3
MWO
1425 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1426 * @folio: Folio to be returned to an LRU list.
894bc310 1427 *
ca6d60f3
MWO
1428 * Add previously isolated @folio to appropriate LRU list.
1429 * The folio may still be unevictable for other reasons.
894bc310 1430 *
ca6d60f3 1431 * Context: lru_lock must not be held, interrupts must be enabled.
894bc310 1432 */
ca6d60f3 1433void folio_putback_lru(struct folio *folio)
894bc310 1434{
ca6d60f3
MWO
1435 folio_add_lru(folio);
1436 folio_put(folio); /* drop ref from isolate */
894bc310
LS
1437}
1438
dfc8d636
JW
1439enum page_references {
1440 PAGEREF_RECLAIM,
1441 PAGEREF_RECLAIM_CLEAN,
64574746 1442 PAGEREF_KEEP,
dfc8d636
JW
1443 PAGEREF_ACTIVATE,
1444};
1445
d92013d1 1446static enum page_references folio_check_references(struct folio *folio,
dfc8d636
JW
1447 struct scan_control *sc)
1448{
d92013d1 1449 int referenced_ptes, referenced_folio;
dfc8d636 1450 unsigned long vm_flags;
dfc8d636 1451
b3ac0413
MWO
1452 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1453 &vm_flags);
d92013d1 1454 referenced_folio = folio_test_clear_referenced(folio);
dfc8d636 1455
dfc8d636 1456 /*
d92013d1
MWO
1457 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1458 * Let the folio, now marked Mlocked, be moved to the unevictable list.
dfc8d636
JW
1459 */
1460 if (vm_flags & VM_LOCKED)
47d4f3ee 1461 return PAGEREF_ACTIVATE;
dfc8d636 1462
6d4675e6
MK
1463 /* rmap lock contention: rotate */
1464 if (referenced_ptes == -1)
1465 return PAGEREF_KEEP;
1466
64574746 1467 if (referenced_ptes) {
64574746 1468 /*
d92013d1 1469 * All mapped folios start out with page table
64574746 1470 * references from the instantiating fault, so we need
9030fb0b 1471 * to look twice if a mapped file/anon folio is used more
64574746
JW
1472 * than once.
1473 *
1474 * Mark it and spare it for another trip around the
1475 * inactive list. Another page table reference will
1476 * lead to its activation.
1477 *
d92013d1
MWO
1478 * Note: the mark is set for activated folios as well
1479 * so that recently deactivated but used folios are
64574746
JW
1480 * quickly recovered.
1481 */
d92013d1 1482 folio_set_referenced(folio);
64574746 1483
d92013d1 1484 if (referenced_folio || referenced_ptes > 1)
64574746
JW
1485 return PAGEREF_ACTIVATE;
1486
c909e993 1487 /*
d92013d1 1488 * Activate file-backed executable folios after first usage.
c909e993 1489 */
f19a27e3 1490 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
c909e993
KK
1491 return PAGEREF_ACTIVATE;
1492
64574746
JW
1493 return PAGEREF_KEEP;
1494 }
dfc8d636 1495
d92013d1 1496 /* Reclaim if clean, defer dirty folios to writeback */
f19a27e3 1497 if (referenced_folio && folio_is_file_lru(folio))
64574746
JW
1498 return PAGEREF_RECLAIM_CLEAN;
1499
1500 return PAGEREF_RECLAIM;
dfc8d636
JW
1501}
1502
e2be15f6 1503/* Check if a page is dirty or under writeback */
e20c41b1 1504static void folio_check_dirty_writeback(struct folio *folio,
e2be15f6
MG
1505 bool *dirty, bool *writeback)
1506{
b4597226
MG
1507 struct address_space *mapping;
1508
e2be15f6
MG
1509 /*
1510 * Anonymous pages are not handled by flushers and must be written
32a331a7
ML
1511 * from reclaim context. Do not stall reclaim based on them.
1512 * MADV_FREE anonymous pages are put into inactive file list too.
1513 * They could be mistakenly treated as file lru. So further anon
1514 * test is needed.
e2be15f6 1515 */
e20c41b1
MWO
1516 if (!folio_is_file_lru(folio) ||
1517 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
e2be15f6
MG
1518 *dirty = false;
1519 *writeback = false;
1520 return;
1521 }
1522
e20c41b1
MWO
1523 /* By default assume that the folio flags are accurate */
1524 *dirty = folio_test_dirty(folio);
1525 *writeback = folio_test_writeback(folio);
b4597226
MG
1526
1527 /* Verify dirty/writeback state if the filesystem supports it */
e20c41b1 1528 if (!folio_test_private(folio))
b4597226
MG
1529 return;
1530
e20c41b1 1531 mapping = folio_mapping(folio);
b4597226 1532 if (mapping && mapping->a_ops->is_dirty_writeback)
520f301c 1533 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
e2be15f6
MG
1534}
1535
32008027 1536static struct page *alloc_demote_page(struct page *page, unsigned long private)
26aa2d19 1537{
32008027
JG
1538 struct page *target_page;
1539 nodemask_t *allowed_mask;
1540 struct migration_target_control *mtc;
1541
1542 mtc = (struct migration_target_control *)private;
1543
1544 allowed_mask = mtc->nmask;
1545 /*
1546 * make sure we allocate from the target node first also trying to
1547 * demote or reclaim pages from the target node via kswapd if we are
1548 * low on free memory on target node. If we don't do this and if
1549 * we have free memory on the slower(lower) memtier, we would start
1550 * allocating pages from slower(lower) memory tiers without even forcing
1551 * a demotion of cold pages from the target memtier. This can result
1552 * in the kernel placing hot pages in slower(lower) memory tiers.
1553 */
1554 mtc->nmask = NULL;
1555 mtc->gfp_mask |= __GFP_THISNODE;
1556 target_page = alloc_migration_target(page, (unsigned long)mtc);
1557 if (target_page)
1558 return target_page;
26aa2d19 1559
32008027
JG
1560 mtc->gfp_mask &= ~__GFP_THISNODE;
1561 mtc->nmask = allowed_mask;
1562
1563 return alloc_migration_target(page, (unsigned long)mtc);
26aa2d19
DH
1564}
1565
1566/*
1567 * Take pages on @demote_list and attempt to demote them to
1568 * another node. Pages which are not demoted are left on
1569 * @demote_pages.
1570 */
1571static unsigned int demote_page_list(struct list_head *demote_pages,
1572 struct pglist_data *pgdat)
1573{
1574 int target_nid = next_demotion_node(pgdat->node_id);
1575 unsigned int nr_succeeded;
32008027
JG
1576 nodemask_t allowed_mask;
1577
1578 struct migration_target_control mtc = {
1579 /*
1580 * Allocate from 'node', or fail quickly and quietly.
1581 * When this happens, 'page' will likely just be discarded
1582 * instead of migrated.
1583 */
1584 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1585 __GFP_NOMEMALLOC | GFP_NOWAIT,
1586 .nid = target_nid,
1587 .nmask = &allowed_mask
1588 };
26aa2d19
DH
1589
1590 if (list_empty(demote_pages))
1591 return 0;
1592
1593 if (target_nid == NUMA_NO_NODE)
1594 return 0;
1595
32008027
JG
1596 node_get_allowed_targets(pgdat, &allowed_mask);
1597
26aa2d19 1598 /* Demotion ignores all cpuset and mempolicy settings */
cb75463c 1599 migrate_pages(demote_pages, alloc_demote_page, NULL,
32008027
JG
1600 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1601 &nr_succeeded);
26aa2d19 1602
668e4147
YS
1603 if (current_is_kswapd())
1604 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1605 else
1606 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1607
26aa2d19
DH
1608 return nr_succeeded;
1609}
1610
c28a0e96 1611static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
d791ea67
N
1612{
1613 if (gfp_mask & __GFP_FS)
1614 return true;
c28a0e96 1615 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
d791ea67
N
1616 return false;
1617 /*
1618 * We can "enter_fs" for swap-cache with only __GFP_IO
1619 * providing this isn't SWP_FS_OPS.
1620 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1621 * but that will never affect SWP_FS_OPS, so the data_race
1622 * is safe.
1623 */
b98c359f 1624 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
d791ea67
N
1625}
1626
1da177e4 1627/*
1742f19f 1628 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1629 */
730ec8c0
MS
1630static unsigned int shrink_page_list(struct list_head *page_list,
1631 struct pglist_data *pgdat,
1632 struct scan_control *sc,
730ec8c0
MS
1633 struct reclaim_stat *stat,
1634 bool ignore_references)
1da177e4
LT
1635{
1636 LIST_HEAD(ret_pages);
abe4c3b5 1637 LIST_HEAD(free_pages);
26aa2d19 1638 LIST_HEAD(demote_pages);
730ec8c0
MS
1639 unsigned int nr_reclaimed = 0;
1640 unsigned int pgactivate = 0;
26aa2d19 1641 bool do_demote_pass;
2282679f 1642 struct swap_iocb *plug = NULL;
1da177e4 1643
060f005f 1644 memset(stat, 0, sizeof(*stat));
1da177e4 1645 cond_resched();
26aa2d19 1646 do_demote_pass = can_demote(pgdat->node_id, sc);
1da177e4 1647
26aa2d19 1648retry:
1da177e4
LT
1649 while (!list_empty(page_list)) {
1650 struct address_space *mapping;
be7c07d6 1651 struct folio *folio;
8940b34a 1652 enum page_references references = PAGEREF_RECLAIM;
d791ea67 1653 bool dirty, writeback;
98879b3b 1654 unsigned int nr_pages;
1da177e4
LT
1655
1656 cond_resched();
1657
be7c07d6
MWO
1658 folio = lru_to_folio(page_list);
1659 list_del(&folio->lru);
1da177e4 1660
c28a0e96 1661 if (!folio_trylock(folio))
1da177e4
LT
1662 goto keep;
1663
c28a0e96 1664 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1da177e4 1665
c28a0e96 1666 nr_pages = folio_nr_pages(folio);
98879b3b 1667
c28a0e96 1668 /* Account the number of base pages */
98879b3b 1669 sc->nr_scanned += nr_pages;
80e43426 1670
c28a0e96 1671 if (unlikely(!folio_evictable(folio)))
ad6b6704 1672 goto activate_locked;
894bc310 1673
1bee2c16 1674 if (!sc->may_unmap && folio_mapped(folio))
80e43426
CL
1675 goto keep_locked;
1676
018ee47f
YZ
1677 /* folio_update_gen() tried to promote this page? */
1678 if (lru_gen_enabled() && !ignore_references &&
1679 folio_mapped(folio) && folio_test_referenced(folio))
1680 goto keep_locked;
1681
e2be15f6 1682 /*
894befec 1683 * The number of dirty pages determines if a node is marked
8cd7c588 1684 * reclaim_congested. kswapd will stall and start writing
c28a0e96 1685 * folios if the tail of the LRU is all dirty unqueued folios.
e2be15f6 1686 */
e20c41b1 1687 folio_check_dirty_writeback(folio, &dirty, &writeback);
e2be15f6 1688 if (dirty || writeback)
c79b7b96 1689 stat->nr_dirty += nr_pages;
e2be15f6
MG
1690
1691 if (dirty && !writeback)
c79b7b96 1692 stat->nr_unqueued_dirty += nr_pages;
e2be15f6 1693
d04e8acd 1694 /*
c28a0e96
MWO
1695 * Treat this folio as congested if folios are cycling
1696 * through the LRU so quickly that the folios marked
1697 * for immediate reclaim are making it to the end of
1698 * the LRU a second time.
d04e8acd 1699 */
c28a0e96 1700 if (writeback && folio_test_reclaim(folio))
c79b7b96 1701 stat->nr_congested += nr_pages;
e2be15f6 1702
283aba9f 1703 /*
d33e4e14 1704 * If a folio at the tail of the LRU is under writeback, there
283aba9f
MG
1705 * are three cases to consider.
1706 *
c28a0e96
MWO
1707 * 1) If reclaim is encountering an excessive number
1708 * of folios under writeback and this folio has both
1709 * the writeback and reclaim flags set, then it
d33e4e14
MWO
1710 * indicates that folios are being queued for I/O but
1711 * are being recycled through the LRU before the I/O
1712 * can complete. Waiting on the folio itself risks an
1713 * indefinite stall if it is impossible to writeback
1714 * the folio due to I/O error or disconnected storage
1715 * so instead note that the LRU is being scanned too
1716 * quickly and the caller can stall after the folio
1717 * list has been processed.
283aba9f 1718 *
d33e4e14 1719 * 2) Global or new memcg reclaim encounters a folio that is
ecf5fc6e
MH
1720 * not marked for immediate reclaim, or the caller does not
1721 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
d33e4e14 1722 * not to fs). In this case mark the folio for immediate
97c9341f 1723 * reclaim and continue scanning.
283aba9f 1724 *
d791ea67 1725 * Require may_enter_fs() because we would wait on fs, which
d33e4e14
MWO
1726 * may not have submitted I/O yet. And the loop driver might
1727 * enter reclaim, and deadlock if it waits on a folio for
283aba9f
MG
1728 * which it is needed to do the write (loop masks off
1729 * __GFP_IO|__GFP_FS for this reason); but more thought
1730 * would probably show more reasons.
1731 *
d33e4e14
MWO
1732 * 3) Legacy memcg encounters a folio that already has the
1733 * reclaim flag set. memcg does not have any dirty folio
283aba9f 1734 * throttling so we could easily OOM just because too many
d33e4e14 1735 * folios are in writeback and there is nothing else to
283aba9f 1736 * reclaim. Wait for the writeback to complete.
c55e8d03 1737 *
d33e4e14
MWO
1738 * In cases 1) and 2) we activate the folios to get them out of
1739 * the way while we continue scanning for clean folios on the
c55e8d03
JW
1740 * inactive list and refilling from the active list. The
1741 * observation here is that waiting for disk writes is more
1742 * expensive than potentially causing reloads down the line.
1743 * Since they're marked for immediate reclaim, they won't put
1744 * memory pressure on the cache working set any longer than it
1745 * takes to write them to disk.
283aba9f 1746 */
d33e4e14 1747 if (folio_test_writeback(folio)) {
283aba9f
MG
1748 /* Case 1 above */
1749 if (current_is_kswapd() &&
d33e4e14 1750 folio_test_reclaim(folio) &&
599d0c95 1751 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
c79b7b96 1752 stat->nr_immediate += nr_pages;
c55e8d03 1753 goto activate_locked;
283aba9f
MG
1754
1755 /* Case 2 above */
b5ead35e 1756 } else if (writeback_throttling_sane(sc) ||
d33e4e14 1757 !folio_test_reclaim(folio) ||
c28a0e96 1758 !may_enter_fs(folio, sc->gfp_mask)) {
c3b94f44 1759 /*
d33e4e14 1760 * This is slightly racy -
c28a0e96
MWO
1761 * folio_end_writeback() might have
1762 * just cleared the reclaim flag, then
1763 * setting the reclaim flag here ends up
1764 * interpreted as the readahead flag - but
1765 * that does not matter enough to care.
1766 * What we do want is for this folio to
1767 * have the reclaim flag set next time
1768 * memcg reclaim reaches the tests above,
1769 * so it will then wait for writeback to
1770 * avoid OOM; and it's also appropriate
d33e4e14 1771 * in global reclaim.
c3b94f44 1772 */
d33e4e14 1773 folio_set_reclaim(folio);
c79b7b96 1774 stat->nr_writeback += nr_pages;
c55e8d03 1775 goto activate_locked;
283aba9f
MG
1776
1777 /* Case 3 above */
1778 } else {
d33e4e14
MWO
1779 folio_unlock(folio);
1780 folio_wait_writeback(folio);
1781 /* then go back and try same folio again */
1782 list_add_tail(&folio->lru, page_list);
7fadc820 1783 continue;
e62e384e 1784 }
c661b078 1785 }
1da177e4 1786
8940b34a 1787 if (!ignore_references)
d92013d1 1788 references = folio_check_references(folio, sc);
02c6de8d 1789
dfc8d636
JW
1790 switch (references) {
1791 case PAGEREF_ACTIVATE:
1da177e4 1792 goto activate_locked;
64574746 1793 case PAGEREF_KEEP:
98879b3b 1794 stat->nr_ref_keep += nr_pages;
64574746 1795 goto keep_locked;
dfc8d636
JW
1796 case PAGEREF_RECLAIM:
1797 case PAGEREF_RECLAIM_CLEAN:
c28a0e96 1798 ; /* try to reclaim the folio below */
dfc8d636 1799 }
1da177e4 1800
26aa2d19 1801 /*
c28a0e96 1802 * Before reclaiming the folio, try to relocate
26aa2d19
DH
1803 * its contents to another node.
1804 */
1805 if (do_demote_pass &&
c28a0e96
MWO
1806 (thp_migration_supported() || !folio_test_large(folio))) {
1807 list_add(&folio->lru, &demote_pages);
1808 folio_unlock(folio);
26aa2d19
DH
1809 continue;
1810 }
1811
1da177e4
LT
1812 /*
1813 * Anonymous process memory has backing store?
1814 * Try to allocate it some swap space here.
c28a0e96 1815 * Lazyfree folio could be freed directly
1da177e4 1816 */
c28a0e96
MWO
1817 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1818 if (!folio_test_swapcache(folio)) {
bd4c82c2
HY
1819 if (!(sc->gfp_mask & __GFP_IO))
1820 goto keep_locked;
d4b4084a 1821 if (folio_maybe_dma_pinned(folio))
feb889fb 1822 goto keep_locked;
c28a0e96
MWO
1823 if (folio_test_large(folio)) {
1824 /* cannot split folio, skip it */
d4b4084a 1825 if (!can_split_folio(folio, NULL))
bd4c82c2
HY
1826 goto activate_locked;
1827 /*
c28a0e96 1828 * Split folios without a PMD map right
bd4c82c2
HY
1829 * away. Chances are some or all of the
1830 * tail pages can be freed without IO.
1831 */
d4b4084a 1832 if (!folio_entire_mapcount(folio) &&
346cf613
MWO
1833 split_folio_to_list(folio,
1834 page_list))
bd4c82c2
HY
1835 goto activate_locked;
1836 }
09c02e56
MWO
1837 if (!add_to_swap(folio)) {
1838 if (!folio_test_large(folio))
98879b3b 1839 goto activate_locked_split;
bd4c82c2 1840 /* Fallback to swap normal pages */
346cf613
MWO
1841 if (split_folio_to_list(folio,
1842 page_list))
bd4c82c2 1843 goto activate_locked;
fe490cc0
HY
1844#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1845 count_vm_event(THP_SWPOUT_FALLBACK);
1846#endif
09c02e56 1847 if (!add_to_swap(folio))
98879b3b 1848 goto activate_locked_split;
bd4c82c2 1849 }
bd4c82c2 1850 }
c28a0e96
MWO
1851 } else if (folio_test_swapbacked(folio) &&
1852 folio_test_large(folio)) {
1853 /* Split shmem folio */
346cf613 1854 if (split_folio_to_list(folio, page_list))
7751b2da 1855 goto keep_locked;
e2be15f6 1856 }
1da177e4 1857
98879b3b 1858 /*
c28a0e96
MWO
1859 * If the folio was split above, the tail pages will make
1860 * their own pass through this function and be accounted
1861 * then.
98879b3b 1862 */
c28a0e96 1863 if ((nr_pages > 1) && !folio_test_large(folio)) {
98879b3b
YS
1864 sc->nr_scanned -= (nr_pages - 1);
1865 nr_pages = 1;
1866 }
1867
1da177e4 1868 /*
1bee2c16 1869 * The folio is mapped into the page tables of one or more
1da177e4
LT
1870 * processes. Try to unmap it here.
1871 */
1bee2c16 1872 if (folio_mapped(folio)) {
013339df 1873 enum ttu_flags flags = TTU_BATCH_FLUSH;
1bee2c16 1874 bool was_swapbacked = folio_test_swapbacked(folio);
bd4c82c2 1875
1bee2c16 1876 if (folio_test_pmd_mappable(folio))
bd4c82c2 1877 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1878
869f7ee6 1879 try_to_unmap(folio, flags);
1bee2c16 1880 if (folio_mapped(folio)) {
98879b3b 1881 stat->nr_unmap_fail += nr_pages;
1bee2c16
MWO
1882 if (!was_swapbacked &&
1883 folio_test_swapbacked(folio))
1f318a9b 1884 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1885 goto activate_locked;
1da177e4
LT
1886 }
1887 }
1888
5441d490 1889 mapping = folio_mapping(folio);
49bd2bf9 1890 if (folio_test_dirty(folio)) {
ee72886d 1891 /*
49bd2bf9 1892 * Only kswapd can writeback filesystem folios
4eda4823 1893 * to avoid risk of stack overflow. But avoid
49bd2bf9 1894 * injecting inefficient single-folio I/O into
4eda4823 1895 * flusher writeback as much as possible: only
49bd2bf9
MWO
1896 * write folios when we've encountered many
1897 * dirty folios, and when we've already scanned
1898 * the rest of the LRU for clean folios and see
1899 * the same dirty folios again (with the reclaim
1900 * flag set).
ee72886d 1901 */
49bd2bf9
MWO
1902 if (folio_is_file_lru(folio) &&
1903 (!current_is_kswapd() ||
1904 !folio_test_reclaim(folio) ||
4eda4823 1905 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1906 /*
1907 * Immediately reclaim when written back.
49bd2bf9
MWO
1908 * Similar in principle to deactivate_page()
1909 * except we already have the folio isolated
49ea7eb6
MG
1910 * and know it's dirty
1911 */
49bd2bf9
MWO
1912 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1913 nr_pages);
1914 folio_set_reclaim(folio);
49ea7eb6 1915
c55e8d03 1916 goto activate_locked;
ee72886d
MG
1917 }
1918
dfc8d636 1919 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1920 goto keep_locked;
c28a0e96 1921 if (!may_enter_fs(folio, sc->gfp_mask))
1da177e4 1922 goto keep_locked;
52a8363e 1923 if (!sc->may_writepage)
1da177e4
LT
1924 goto keep_locked;
1925
d950c947 1926 /*
49bd2bf9
MWO
1927 * Folio is dirty. Flush the TLB if a writable entry
1928 * potentially exists to avoid CPU writes after I/O
d950c947
MG
1929 * starts and then write it out here.
1930 */
1931 try_to_unmap_flush_dirty();
2282679f 1932 switch (pageout(folio, mapping, &plug)) {
1da177e4
LT
1933 case PAGE_KEEP:
1934 goto keep_locked;
1935 case PAGE_ACTIVATE:
1936 goto activate_locked;
1937 case PAGE_SUCCESS:
c79b7b96 1938 stat->nr_pageout += nr_pages;
96f8bf4f 1939
49bd2bf9 1940 if (folio_test_writeback(folio))
41ac1999 1941 goto keep;
49bd2bf9 1942 if (folio_test_dirty(folio))
1da177e4 1943 goto keep;
7d3579e8 1944
1da177e4
LT
1945 /*
1946 * A synchronous write - probably a ramdisk. Go
49bd2bf9 1947 * ahead and try to reclaim the folio.
1da177e4 1948 */
49bd2bf9 1949 if (!folio_trylock(folio))
1da177e4 1950 goto keep;
49bd2bf9
MWO
1951 if (folio_test_dirty(folio) ||
1952 folio_test_writeback(folio))
1da177e4 1953 goto keep_locked;
49bd2bf9 1954 mapping = folio_mapping(folio);
01359eb2 1955 fallthrough;
1da177e4 1956 case PAGE_CLEAN:
49bd2bf9 1957 ; /* try to free the folio below */
1da177e4
LT
1958 }
1959 }
1960
1961 /*
0a36111c
MWO
1962 * If the folio has buffers, try to free the buffer
1963 * mappings associated with this folio. If we succeed
1964 * we try to free the folio as well.
1da177e4 1965 *
0a36111c
MWO
1966 * We do this even if the folio is dirty.
1967 * filemap_release_folio() does not perform I/O, but it
1968 * is possible for a folio to have the dirty flag set,
1969 * but it is actually clean (all its buffers are clean).
1970 * This happens if the buffers were written out directly,
1971 * with submit_bh(). ext3 will do this, as well as
1972 * the blockdev mapping. filemap_release_folio() will
1973 * discover that cleanness and will drop the buffers
1974 * and mark the folio clean - it can be freed.
1da177e4 1975 *
0a36111c
MWO
1976 * Rarely, folios can have buffers and no ->mapping.
1977 * These are the folios which were not successfully
1978 * invalidated in truncate_cleanup_folio(). We try to
1979 * drop those buffers here and if that worked, and the
1980 * folio is no longer mapped into process address space
1981 * (refcount == 1) it can be freed. Otherwise, leave
1982 * the folio on the LRU so it is swappable.
1da177e4 1983 */
0a36111c
MWO
1984 if (folio_has_private(folio)) {
1985 if (!filemap_release_folio(folio, sc->gfp_mask))
1da177e4 1986 goto activate_locked;
0a36111c
MWO
1987 if (!mapping && folio_ref_count(folio) == 1) {
1988 folio_unlock(folio);
1989 if (folio_put_testzero(folio))
e286781d
NP
1990 goto free_it;
1991 else {
1992 /*
1993 * rare race with speculative reference.
1994 * the speculative reference will free
0a36111c 1995 * this folio shortly, so we may
e286781d
NP
1996 * increment nr_reclaimed here (and
1997 * leave it off the LRU).
1998 */
9aafcffc 1999 nr_reclaimed += nr_pages;
e286781d
NP
2000 continue;
2001 }
2002 }
1da177e4
LT
2003 }
2004
64daa5d8 2005 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
802a3a92 2006 /* follow __remove_mapping for reference */
64daa5d8 2007 if (!folio_ref_freeze(folio, 1))
802a3a92 2008 goto keep_locked;
d17be2d9 2009 /*
64daa5d8 2010 * The folio has only one reference left, which is
d17be2d9 2011 * from the isolation. After the caller puts the
64daa5d8
MWO
2012 * folio back on the lru and drops the reference, the
2013 * folio will be freed anyway. It doesn't matter
2014 * which lru it goes on. So we don't bother checking
2015 * the dirty flag here.
d17be2d9 2016 */
64daa5d8
MWO
2017 count_vm_events(PGLAZYFREED, nr_pages);
2018 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
be7c07d6 2019 } else if (!mapping || !__remove_mapping(mapping, folio, true,
b910718a 2020 sc->target_mem_cgroup))
802a3a92 2021 goto keep_locked;
9a1ea439 2022
c28a0e96 2023 folio_unlock(folio);
e286781d 2024free_it:
98879b3b 2025 /*
c28a0e96
MWO
2026 * Folio may get swapped out as a whole, need to account
2027 * all pages in it.
98879b3b
YS
2028 */
2029 nr_reclaimed += nr_pages;
abe4c3b5
MG
2030
2031 /*
2032 * Is there need to periodically free_page_list? It would
2033 * appear not as the counts should be low
2034 */
c28a0e96 2035 if (unlikely(folio_test_large(folio)))
5375336c 2036 destroy_large_folio(folio);
7ae88534 2037 else
c28a0e96 2038 list_add(&folio->lru, &free_pages);
1da177e4
LT
2039 continue;
2040
98879b3b
YS
2041activate_locked_split:
2042 /*
2043 * The tail pages that are failed to add into swap cache
2044 * reach here. Fixup nr_scanned and nr_pages.
2045 */
2046 if (nr_pages > 1) {
2047 sc->nr_scanned -= (nr_pages - 1);
2048 nr_pages = 1;
2049 }
1da177e4 2050activate_locked:
68a22394 2051 /* Not a candidate for swapping, so reclaim swap space. */
246b6480
MWO
2052 if (folio_test_swapcache(folio) &&
2053 (mem_cgroup_swap_full(&folio->page) ||
2054 folio_test_mlocked(folio)))
2055 try_to_free_swap(&folio->page);
2056 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2057 if (!folio_test_mlocked(folio)) {
2058 int type = folio_is_file_lru(folio);
2059 folio_set_active(folio);
98879b3b 2060 stat->nr_activate[type] += nr_pages;
246b6480 2061 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
ad6b6704 2062 }
1da177e4 2063keep_locked:
c28a0e96 2064 folio_unlock(folio);
1da177e4 2065keep:
c28a0e96
MWO
2066 list_add(&folio->lru, &ret_pages);
2067 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2068 folio_test_unevictable(folio), folio);
1da177e4 2069 }
26aa2d19
DH
2070 /* 'page_list' is always empty here */
2071
c28a0e96 2072 /* Migrate folios selected for demotion */
26aa2d19 2073 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
c28a0e96 2074 /* Folios that could not be demoted are still in @demote_pages */
26aa2d19 2075 if (!list_empty(&demote_pages)) {
c28a0e96 2076 /* Folios which weren't demoted go back on @page_list for retry: */
26aa2d19
DH
2077 list_splice_init(&demote_pages, page_list);
2078 do_demote_pass = false;
2079 goto retry;
2080 }
abe4c3b5 2081
98879b3b
YS
2082 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2083
747db954 2084 mem_cgroup_uncharge_list(&free_pages);
72b252ae 2085 try_to_unmap_flush();
2d4894b5 2086 free_unref_page_list(&free_pages);
abe4c3b5 2087
1da177e4 2088 list_splice(&ret_pages, page_list);
886cf190 2089 count_vm_events(PGACTIVATE, pgactivate);
060f005f 2090
2282679f
N
2091 if (plug)
2092 swap_write_unplug(plug);
05ff5137 2093 return nr_reclaimed;
1da177e4
LT
2094}
2095
730ec8c0 2096unsigned int reclaim_clean_pages_from_list(struct zone *zone,
b8cecb93 2097 struct list_head *folio_list)
02c6de8d
MK
2098{
2099 struct scan_control sc = {
2100 .gfp_mask = GFP_KERNEL,
02c6de8d
MK
2101 .may_unmap = 1,
2102 };
1f318a9b 2103 struct reclaim_stat stat;
730ec8c0 2104 unsigned int nr_reclaimed;
b8cecb93
MWO
2105 struct folio *folio, *next;
2106 LIST_HEAD(clean_folios);
2d2b8d2b 2107 unsigned int noreclaim_flag;
02c6de8d 2108
b8cecb93
MWO
2109 list_for_each_entry_safe(folio, next, folio_list, lru) {
2110 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2111 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2112 !folio_test_unevictable(folio)) {
2113 folio_clear_active(folio);
2114 list_move(&folio->lru, &clean_folios);
02c6de8d
MK
2115 }
2116 }
2117
2d2b8d2b
YZ
2118 /*
2119 * We should be safe here since we are only dealing with file pages and
2120 * we are not kswapd and therefore cannot write dirty file pages. But
2121 * call memalloc_noreclaim_save() anyway, just in case these conditions
2122 * change in the future.
2123 */
2124 noreclaim_flag = memalloc_noreclaim_save();
b8cecb93 2125 nr_reclaimed = shrink_page_list(&clean_folios, zone->zone_pgdat, &sc,
013339df 2126 &stat, true);
2d2b8d2b
YZ
2127 memalloc_noreclaim_restore(noreclaim_flag);
2128
b8cecb93 2129 list_splice(&clean_folios, folio_list);
2da9f630
NP
2130 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2131 -(long)nr_reclaimed);
1f318a9b
JK
2132 /*
2133 * Since lazyfree pages are isolated from file LRU from the beginning,
2134 * they will rotate back to anonymous LRU in the end if it failed to
2135 * discard so isolated count will be mismatched.
2136 * Compensate the isolated count for both LRU lists.
2137 */
2138 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2139 stat.nr_lazyfree_fail);
2140 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 2141 -(long)stat.nr_lazyfree_fail);
1f318a9b 2142 return nr_reclaimed;
02c6de8d
MK
2143}
2144
7ee36a14
MG
2145/*
2146 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 2147 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
2148 */
2149static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 2150 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 2151{
7ee36a14
MG
2152 int zid;
2153
7ee36a14
MG
2154 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2155 if (!nr_zone_taken[zid])
2156 continue;
2157
a892cb6b 2158 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
2159 }
2160
7ee36a14
MG
2161}
2162
f611fab7 2163/*
15b44736
HD
2164 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2165 *
2166 * lruvec->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
2167 * shrink the lists perform better by taking out a batch of pages
2168 * and working on them outside the LRU lock.
2169 *
2170 * For pagecache intensive workloads, this function is the hottest
2171 * spot in the kernel (apart from copy_*_user functions).
2172 *
15b44736 2173 * Lru_lock must be held before calling this function.
1da177e4 2174 *
791b48b6 2175 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 2176 * @lruvec: The LRU vector to pull pages from.
1da177e4 2177 * @dst: The temp list to put pages on to.
f626012d 2178 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 2179 * @sc: The scan_control struct for this reclaim session
3cb99451 2180 * @lru: LRU list id for isolating
1da177e4
LT
2181 *
2182 * returns how many pages were moved onto *@dst.
2183 */
69e05944 2184static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 2185 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 2186 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 2187 enum lru_list lru)
1da177e4 2188{
75b00af7 2189 struct list_head *src = &lruvec->lists[lru];
69e05944 2190 unsigned long nr_taken = 0;
599d0c95 2191 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 2192 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 2193 unsigned long skipped = 0;
791b48b6 2194 unsigned long scan, total_scan, nr_pages;
166e3d32 2195 LIST_HEAD(folios_skipped);
1da177e4 2196
98879b3b 2197 total_scan = 0;
791b48b6 2198 scan = 0;
98879b3b 2199 while (scan < nr_to_scan && !list_empty(src)) {
89f6c88a 2200 struct list_head *move_to = src;
166e3d32 2201 struct folio *folio;
5ad333eb 2202
166e3d32
MWO
2203 folio = lru_to_folio(src);
2204 prefetchw_prev_lru_folio(folio, src, flags);
1da177e4 2205
166e3d32 2206 nr_pages = folio_nr_pages(folio);
98879b3b
YS
2207 total_scan += nr_pages;
2208
166e3d32
MWO
2209 if (folio_zonenum(folio) > sc->reclaim_idx) {
2210 nr_skipped[folio_zonenum(folio)] += nr_pages;
2211 move_to = &folios_skipped;
89f6c88a 2212 goto move;
b2e18757
MG
2213 }
2214
791b48b6 2215 /*
166e3d32
MWO
2216 * Do not count skipped folios because that makes the function
2217 * return with no isolated folios if the LRU mostly contains
2218 * ineligible folios. This causes the VM to not reclaim any
2219 * folios, triggering a premature OOM.
2220 * Account all pages in a folio.
791b48b6 2221 */
98879b3b 2222 scan += nr_pages;
89f6c88a 2223
166e3d32 2224 if (!folio_test_lru(folio))
89f6c88a 2225 goto move;
166e3d32 2226 if (!sc->may_unmap && folio_mapped(folio))
89f6c88a
HD
2227 goto move;
2228
c2135f7c 2229 /*
166e3d32
MWO
2230 * Be careful not to clear the lru flag until after we're
2231 * sure the folio is not being freed elsewhere -- the
2232 * folio release code relies on it.
c2135f7c 2233 */
166e3d32 2234 if (unlikely(!folio_try_get(folio)))
89f6c88a 2235 goto move;
5ad333eb 2236
166e3d32
MWO
2237 if (!folio_test_clear_lru(folio)) {
2238 /* Another thread is already isolating this folio */
2239 folio_put(folio);
89f6c88a 2240 goto move;
5ad333eb 2241 }
c2135f7c
AS
2242
2243 nr_taken += nr_pages;
166e3d32 2244 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
89f6c88a
HD
2245 move_to = dst;
2246move:
166e3d32 2247 list_move(&folio->lru, move_to);
1da177e4
LT
2248 }
2249
b2e18757 2250 /*
166e3d32 2251 * Splice any skipped folios to the start of the LRU list. Note that
b2e18757
MG
2252 * this disrupts the LRU order when reclaiming for lower zones but
2253 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
166e3d32 2254 * scanning would soon rescan the same folios to skip and waste lots
b2cb6826 2255 * of cpu cycles.
b2e18757 2256 */
166e3d32 2257 if (!list_empty(&folios_skipped)) {
7cc30fcf
MG
2258 int zid;
2259
166e3d32 2260 list_splice(&folios_skipped, src);
7cc30fcf
MG
2261 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2262 if (!nr_skipped[zid])
2263 continue;
2264
2265 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 2266 skipped += nr_skipped[zid];
7cc30fcf
MG
2267 }
2268 }
791b48b6 2269 *nr_scanned = total_scan;
1265e3a6 2270 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
89f6c88a
HD
2271 total_scan, skipped, nr_taken,
2272 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
b4536f0c 2273 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
2274 return nr_taken;
2275}
2276
62695a84 2277/**
d1d8a3b4
MWO
2278 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2279 * @folio: Folio to isolate from its LRU list.
62695a84 2280 *
d1d8a3b4
MWO
2281 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2282 * corresponding to whatever LRU list the folio was on.
62695a84 2283 *
d1d8a3b4
MWO
2284 * The folio will have its LRU flag cleared. If it was found on the
2285 * active list, it will have the Active flag set. If it was found on the
2286 * unevictable list, it will have the Unevictable flag set. These flags
894bc310 2287 * may need to be cleared by the caller before letting the page go.
62695a84 2288 *
d1d8a3b4 2289 * Context:
a5d09bed 2290 *
62695a84 2291 * (1) Must be called with an elevated refcount on the page. This is a
d1d8a3b4 2292 * fundamental difference from isolate_lru_pages() (which is called
62695a84 2293 * without a stable reference).
d1d8a3b4
MWO
2294 * (2) The lru_lock must not be held.
2295 * (3) Interrupts must be enabled.
2296 *
2297 * Return: 0 if the folio was removed from an LRU list.
2298 * -EBUSY if the folio was not on an LRU list.
62695a84 2299 */
d1d8a3b4 2300int folio_isolate_lru(struct folio *folio)
62695a84
NP
2301{
2302 int ret = -EBUSY;
2303
d1d8a3b4 2304 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
0c917313 2305
d1d8a3b4 2306 if (folio_test_clear_lru(folio)) {
fa9add64 2307 struct lruvec *lruvec;
62695a84 2308
d1d8a3b4 2309 folio_get(folio);
e809c3fe 2310 lruvec = folio_lruvec_lock_irq(folio);
d1d8a3b4 2311 lruvec_del_folio(lruvec, folio);
6168d0da 2312 unlock_page_lruvec_irq(lruvec);
d25b5bd8 2313 ret = 0;
62695a84 2314 }
d25b5bd8 2315
62695a84
NP
2316 return ret;
2317}
2318
35cd7815 2319/*
d37dd5dc 2320 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 2321 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
2322 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2323 * the LRU list will go small and be scanned faster than necessary, leading to
2324 * unnecessary swapping, thrashing and OOM.
35cd7815 2325 */
599d0c95 2326static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
2327 struct scan_control *sc)
2328{
2329 unsigned long inactive, isolated;
d818fca1 2330 bool too_many;
35cd7815
RR
2331
2332 if (current_is_kswapd())
2333 return 0;
2334
b5ead35e 2335 if (!writeback_throttling_sane(sc))
35cd7815
RR
2336 return 0;
2337
2338 if (file) {
599d0c95
MG
2339 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2340 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 2341 } else {
599d0c95
MG
2342 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2343 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
2344 }
2345
3cf23841
FW
2346 /*
2347 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2348 * won't get blocked by normal direct-reclaimers, forming a circular
2349 * deadlock.
2350 */
d0164adc 2351 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
2352 inactive >>= 3;
2353
d818fca1
MG
2354 too_many = isolated > inactive;
2355
2356 /* Wake up tasks throttled due to too_many_isolated. */
2357 if (!too_many)
2358 wake_throttle_isolated(pgdat);
2359
2360 return too_many;
35cd7815
RR
2361}
2362
a222f341 2363/*
ff00a170
MWO
2364 * move_pages_to_lru() moves folios from private @list to appropriate LRU list.
2365 * On return, @list is reused as a list of folios to be freed by the caller.
a222f341
KT
2366 *
2367 * Returns the number of pages moved to the given lruvec.
2368 */
9ef56b78
MS
2369static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2370 struct list_head *list)
66635629 2371{
a222f341 2372 int nr_pages, nr_moved = 0;
ff00a170 2373 LIST_HEAD(folios_to_free);
66635629 2374
a222f341 2375 while (!list_empty(list)) {
ff00a170
MWO
2376 struct folio *folio = lru_to_folio(list);
2377
2378 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2379 list_del(&folio->lru);
2380 if (unlikely(!folio_evictable(folio))) {
6168d0da 2381 spin_unlock_irq(&lruvec->lru_lock);
ff00a170 2382 folio_putback_lru(folio);
6168d0da 2383 spin_lock_irq(&lruvec->lru_lock);
66635629
MG
2384 continue;
2385 }
fa9add64 2386
3d06afab 2387 /*
ff00a170 2388 * The folio_set_lru needs to be kept here for list integrity.
3d06afab
AS
2389 * Otherwise:
2390 * #0 move_pages_to_lru #1 release_pages
ff00a170
MWO
2391 * if (!folio_put_testzero())
2392 * if (folio_put_testzero())
2393 * !lru //skip lru_lock
2394 * folio_set_lru()
2395 * list_add(&folio->lru,)
2396 * list_add(&folio->lru,)
3d06afab 2397 */
ff00a170 2398 folio_set_lru(folio);
a222f341 2399
ff00a170
MWO
2400 if (unlikely(folio_put_testzero(folio))) {
2401 __folio_clear_lru_flags(folio);
2bcf8879 2402
ff00a170 2403 if (unlikely(folio_test_large(folio))) {
6168d0da 2404 spin_unlock_irq(&lruvec->lru_lock);
5375336c 2405 destroy_large_folio(folio);
6168d0da 2406 spin_lock_irq(&lruvec->lru_lock);
2bcf8879 2407 } else
ff00a170 2408 list_add(&folio->lru, &folios_to_free);
3d06afab
AS
2409
2410 continue;
66635629 2411 }
3d06afab 2412
afca9157
AS
2413 /*
2414 * All pages were isolated from the same lruvec (and isolation
2415 * inhibits memcg migration).
2416 */
ff00a170
MWO
2417 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2418 lruvec_add_folio(lruvec, folio);
2419 nr_pages = folio_nr_pages(folio);
3d06afab 2420 nr_moved += nr_pages;
ff00a170 2421 if (folio_test_active(folio))
3d06afab 2422 workingset_age_nonresident(lruvec, nr_pages);
66635629 2423 }
66635629 2424
3f79768f
HD
2425 /*
2426 * To save our caller's stack, now use input list for pages to free.
2427 */
ff00a170 2428 list_splice(&folios_to_free, list);
a222f341
KT
2429
2430 return nr_moved;
66635629
MG
2431}
2432
399ba0b9 2433/*
5829f7db
ML
2434 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2435 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2436 * we should not throttle. Otherwise it is safe to do so.
399ba0b9
N
2437 */
2438static int current_may_throttle(void)
2439{
b9b1335e 2440 return !(current->flags & PF_LOCAL_THROTTLE);
399ba0b9
N
2441}
2442
1da177e4 2443/*
b2e18757 2444 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 2445 * of reclaimed pages
1da177e4 2446 */
9ef56b78 2447static unsigned long
1a93be0e 2448shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 2449 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
2450{
2451 LIST_HEAD(page_list);
e247dbce 2452 unsigned long nr_scanned;
730ec8c0 2453 unsigned int nr_reclaimed = 0;
e247dbce 2454 unsigned long nr_taken;
060f005f 2455 struct reclaim_stat stat;
497a6c1b 2456 bool file = is_file_lru(lru);
f46b7912 2457 enum vm_event_item item;
599d0c95 2458 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 2459 bool stalled = false;
78dc583d 2460
599d0c95 2461 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
2462 if (stalled)
2463 return 0;
2464
2465 /* wait a bit for the reclaimer. */
db73ee0d 2466 stalled = true;
c3f4a9a2 2467 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
35cd7815
RR
2468
2469 /* We are about to die and free our memory. Return now. */
2470 if (fatal_signal_pending(current))
2471 return SWAP_CLUSTER_MAX;
2472 }
2473
1da177e4 2474 lru_add_drain();
f80c0673 2475
6168d0da 2476 spin_lock_irq(&lruvec->lru_lock);
b35ea17b 2477
5dc35979 2478 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 2479 &nr_scanned, sc, lru);
95d918fc 2480
599d0c95 2481 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 2482 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 2483 if (!cgroup_reclaim(sc))
f46b7912
KT
2484 __count_vm_events(item, nr_scanned);
2485 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
2486 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2487
6168d0da 2488 spin_unlock_irq(&lruvec->lru_lock);
b35ea17b 2489
d563c050 2490 if (nr_taken == 0)
66635629 2491 return 0;
5ad333eb 2492
013339df 2493 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 2494
6168d0da 2495 spin_lock_irq(&lruvec->lru_lock);
497a6c1b
JW
2496 move_pages_to_lru(lruvec, &page_list);
2497
2498 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
f46b7912 2499 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 2500 if (!cgroup_reclaim(sc))
f46b7912
KT
2501 __count_vm_events(item, nr_reclaimed);
2502 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 2503 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
6168d0da 2504 spin_unlock_irq(&lruvec->lru_lock);
3f79768f 2505
75cc3c91 2506 lru_note_cost(lruvec, file, stat.nr_pageout);
747db954 2507 mem_cgroup_uncharge_list(&page_list);
2d4894b5 2508 free_unref_page_list(&page_list);
e11da5b4 2509
1c610d5f
AR
2510 /*
2511 * If dirty pages are scanned that are not queued for IO, it
2512 * implies that flushers are not doing their job. This can
2513 * happen when memory pressure pushes dirty pages to the end of
2514 * the LRU before the dirty limits are breached and the dirty
2515 * data has expired. It can also happen when the proportion of
2516 * dirty pages grows not through writes but through memory
2517 * pressure reclaiming all the clean cache. And in some cases,
2518 * the flushers simply cannot keep up with the allocation
2519 * rate. Nudge the flusher threads in case they are asleep.
2520 */
2521 if (stat.nr_unqueued_dirty == nr_taken)
2522 wakeup_flusher_threads(WB_REASON_VMSCAN);
2523
d108c772
AR
2524 sc->nr.dirty += stat.nr_dirty;
2525 sc->nr.congested += stat.nr_congested;
2526 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2527 sc->nr.writeback += stat.nr_writeback;
2528 sc->nr.immediate += stat.nr_immediate;
2529 sc->nr.taken += nr_taken;
2530 if (file)
2531 sc->nr.file_taken += nr_taken;
8e950282 2532
599d0c95 2533 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2534 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2535 return nr_reclaimed;
1da177e4
LT
2536}
2537
15b44736 2538/*
07f67a8d 2539 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
15b44736 2540 *
07f67a8d 2541 * We move them the other way if the folio is referenced by one or more
15b44736
HD
2542 * processes.
2543 *
07f67a8d 2544 * If the folios are mostly unmapped, the processing is fast and it is
15b44736 2545 * appropriate to hold lru_lock across the whole operation. But if
07f67a8d
MWO
2546 * the folios are mapped, the processing is slow (folio_referenced()), so
2547 * we should drop lru_lock around each folio. It's impossible to balance
2548 * this, so instead we remove the folios from the LRU while processing them.
2549 * It is safe to rely on the active flag against the non-LRU folios in here
2550 * because nobody will play with that bit on a non-LRU folio.
15b44736 2551 *
07f67a8d
MWO
2552 * The downside is that we have to touch folio->_refcount against each folio.
2553 * But we had to alter folio->flags anyway.
15b44736 2554 */
f626012d 2555static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2556 struct lruvec *lruvec,
f16015fb 2557 struct scan_control *sc,
9e3b2f8c 2558 enum lru_list lru)
1da177e4 2559{
44c241f1 2560 unsigned long nr_taken;
f626012d 2561 unsigned long nr_scanned;
6fe6b7e3 2562 unsigned long vm_flags;
07f67a8d 2563 LIST_HEAD(l_hold); /* The folios which were snipped off */
8cab4754 2564 LIST_HEAD(l_active);
b69408e8 2565 LIST_HEAD(l_inactive);
9d998b4f
MH
2566 unsigned nr_deactivate, nr_activate;
2567 unsigned nr_rotated = 0;
3cb99451 2568 int file = is_file_lru(lru);
599d0c95 2569 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2570
2571 lru_add_drain();
f80c0673 2572
6168d0da 2573 spin_lock_irq(&lruvec->lru_lock);
925b7673 2574
5dc35979 2575 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2576 &nr_scanned, sc, lru);
89b5fae5 2577
599d0c95 2578 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2579
912c0572
SB
2580 if (!cgroup_reclaim(sc))
2581 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2582 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2583
6168d0da 2584 spin_unlock_irq(&lruvec->lru_lock);
1da177e4 2585
1da177e4 2586 while (!list_empty(&l_hold)) {
b3ac0413 2587 struct folio *folio;
b3ac0413 2588
1da177e4 2589 cond_resched();
b3ac0413
MWO
2590 folio = lru_to_folio(&l_hold);
2591 list_del(&folio->lru);
7e9cd484 2592
07f67a8d
MWO
2593 if (unlikely(!folio_evictable(folio))) {
2594 folio_putback_lru(folio);
894bc310
LS
2595 continue;
2596 }
2597
cc715d99 2598 if (unlikely(buffer_heads_over_limit)) {
36a3b14b
MWO
2599 if (folio_test_private(folio) && folio_trylock(folio)) {
2600 if (folio_test_private(folio))
07f67a8d
MWO
2601 filemap_release_folio(folio, 0);
2602 folio_unlock(folio);
cc715d99
MG
2603 }
2604 }
2605
6d4675e6 2606 /* Referenced or rmap lock contention: rotate */
b3ac0413 2607 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
6d4675e6 2608 &vm_flags) != 0) {
8cab4754 2609 /*
07f67a8d 2610 * Identify referenced, file-backed active folios and
8cab4754
WF
2611 * give them one more trip around the active list. So
2612 * that executable code get better chances to stay in
07f67a8d 2613 * memory under moderate memory pressure. Anon folios
8cab4754 2614 * are not likely to be evicted by use-once streaming
07f67a8d 2615 * IO, plus JVM can create lots of anon VM_EXEC folios,
8cab4754
WF
2616 * so we ignore them here.
2617 */
07f67a8d
MWO
2618 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2619 nr_rotated += folio_nr_pages(folio);
2620 list_add(&folio->lru, &l_active);
8cab4754
WF
2621 continue;
2622 }
2623 }
7e9cd484 2624
07f67a8d
MWO
2625 folio_clear_active(folio); /* we are de-activating */
2626 folio_set_workingset(folio);
2627 list_add(&folio->lru, &l_inactive);
1da177e4
LT
2628 }
2629
b555749a 2630 /*
07f67a8d 2631 * Move folios back to the lru list.
b555749a 2632 */
6168d0da 2633 spin_lock_irq(&lruvec->lru_lock);
556adecb 2634
a222f341
KT
2635 nr_activate = move_pages_to_lru(lruvec, &l_active);
2636 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
07f67a8d 2637 /* Keep all free folios in l_active list */
f372d89e 2638 list_splice(&l_inactive, &l_active);
9851ac13
KT
2639
2640 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2641 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2642
599d0c95 2643 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
6168d0da 2644 spin_unlock_irq(&lruvec->lru_lock);
2bcf8879 2645
f372d89e
KT
2646 mem_cgroup_uncharge_list(&l_active);
2647 free_unref_page_list(&l_active);
9d998b4f
MH
2648 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2649 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2650}
2651
1fe47c0b
ML
2652static unsigned int reclaim_page_list(struct list_head *page_list,
2653 struct pglist_data *pgdat)
1a4e58cc 2654{
1a4e58cc 2655 struct reclaim_stat dummy_stat;
1fe47c0b
ML
2656 unsigned int nr_reclaimed;
2657 struct folio *folio;
1a4e58cc
MK
2658 struct scan_control sc = {
2659 .gfp_mask = GFP_KERNEL,
1a4e58cc
MK
2660 .may_writepage = 1,
2661 .may_unmap = 1,
2662 .may_swap = 1,
26aa2d19 2663 .no_demotion = 1,
1a4e58cc
MK
2664 };
2665
1fe47c0b
ML
2666 nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false);
2667 while (!list_empty(page_list)) {
2668 folio = lru_to_folio(page_list);
2669 list_del(&folio->lru);
2670 folio_putback_lru(folio);
2671 }
2672
2673 return nr_reclaimed;
2674}
2675
a83f0551 2676unsigned long reclaim_pages(struct list_head *folio_list)
1fe47c0b 2677{
ed657e55 2678 int nid;
1fe47c0b 2679 unsigned int nr_reclaimed = 0;
a83f0551 2680 LIST_HEAD(node_folio_list);
1fe47c0b
ML
2681 unsigned int noreclaim_flag;
2682
a83f0551 2683 if (list_empty(folio_list))
1ae65e27
WY
2684 return nr_reclaimed;
2685
2d2b8d2b
YZ
2686 noreclaim_flag = memalloc_noreclaim_save();
2687
a83f0551 2688 nid = folio_nid(lru_to_folio(folio_list));
1ae65e27 2689 do {
a83f0551 2690 struct folio *folio = lru_to_folio(folio_list);
1a4e58cc 2691
a83f0551
MWO
2692 if (nid == folio_nid(folio)) {
2693 folio_clear_active(folio);
2694 list_move(&folio->lru, &node_folio_list);
1a4e58cc
MK
2695 continue;
2696 }
2697
a83f0551
MWO
2698 nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
2699 nid = folio_nid(lru_to_folio(folio_list));
2700 } while (!list_empty(folio_list));
1a4e58cc 2701
a83f0551 2702 nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
1a4e58cc 2703
2d2b8d2b
YZ
2704 memalloc_noreclaim_restore(noreclaim_flag);
2705
1a4e58cc
MK
2706 return nr_reclaimed;
2707}
2708
b91ac374
JW
2709static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2710 struct lruvec *lruvec, struct scan_control *sc)
2711{
2712 if (is_active_lru(lru)) {
2713 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2714 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2715 else
2716 sc->skipped_deactivate = 1;
2717 return 0;
2718 }
2719
2720 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2721}
2722
59dc76b0
RR
2723/*
2724 * The inactive anon list should be small enough that the VM never has
2725 * to do too much work.
14797e23 2726 *
59dc76b0
RR
2727 * The inactive file list should be small enough to leave most memory
2728 * to the established workingset on the scan-resistant active list,
2729 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2730 *
59dc76b0
RR
2731 * Both inactive lists should also be large enough that each inactive
2732 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2733 *
2a2e4885
JW
2734 * If that fails and refaulting is observed, the inactive list grows.
2735 *
59dc76b0 2736 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2737 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2738 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2739 *
59dc76b0
RR
2740 * total target max
2741 * memory ratio inactive
2742 * -------------------------------------
2743 * 10MB 1 5MB
2744 * 100MB 1 50MB
2745 * 1GB 3 250MB
2746 * 10GB 10 0.9GB
2747 * 100GB 31 3GB
2748 * 1TB 101 10GB
2749 * 10TB 320 32GB
56e49d21 2750 */
b91ac374 2751static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2752{
b91ac374 2753 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2754 unsigned long inactive, active;
2755 unsigned long inactive_ratio;
59dc76b0 2756 unsigned long gb;
e3790144 2757
b91ac374
JW
2758 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2759 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2760
b91ac374 2761 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2762 if (gb)
b91ac374
JW
2763 inactive_ratio = int_sqrt(10 * gb);
2764 else
2765 inactive_ratio = 1;
fd538803 2766
59dc76b0 2767 return inactive * inactive_ratio < active;
b39415b2
RR
2768}
2769
9a265114
JW
2770enum scan_balance {
2771 SCAN_EQUAL,
2772 SCAN_FRACT,
2773 SCAN_ANON,
2774 SCAN_FILE,
2775};
2776
f1e1a7be
YZ
2777static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2778{
2779 unsigned long file;
2780 struct lruvec *target_lruvec;
2781
ac35a490
YZ
2782 if (lru_gen_enabled())
2783 return;
2784
f1e1a7be
YZ
2785 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2786
2787 /*
2788 * Flush the memory cgroup stats, so that we read accurate per-memcg
2789 * lruvec stats for heuristics.
2790 */
2791 mem_cgroup_flush_stats();
2792
2793 /*
2794 * Determine the scan balance between anon and file LRUs.
2795 */
2796 spin_lock_irq(&target_lruvec->lru_lock);
2797 sc->anon_cost = target_lruvec->anon_cost;
2798 sc->file_cost = target_lruvec->file_cost;
2799 spin_unlock_irq(&target_lruvec->lru_lock);
2800
2801 /*
2802 * Target desirable inactive:active list ratios for the anon
2803 * and file LRU lists.
2804 */
2805 if (!sc->force_deactivate) {
2806 unsigned long refaults;
2807
2808 /*
2809 * When refaults are being observed, it means a new
2810 * workingset is being established. Deactivate to get
2811 * rid of any stale active pages quickly.
2812 */
2813 refaults = lruvec_page_state(target_lruvec,
2814 WORKINGSET_ACTIVATE_ANON);
2815 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2816 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2817 sc->may_deactivate |= DEACTIVATE_ANON;
2818 else
2819 sc->may_deactivate &= ~DEACTIVATE_ANON;
2820
2821 refaults = lruvec_page_state(target_lruvec,
2822 WORKINGSET_ACTIVATE_FILE);
2823 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2824 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2825 sc->may_deactivate |= DEACTIVATE_FILE;
2826 else
2827 sc->may_deactivate &= ~DEACTIVATE_FILE;
2828 } else
2829 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2830
2831 /*
2832 * If we have plenty of inactive file pages that aren't
2833 * thrashing, try to reclaim those first before touching
2834 * anonymous pages.
2835 */
2836 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2837 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2838 sc->cache_trim_mode = 1;
2839 else
2840 sc->cache_trim_mode = 0;
2841
2842 /*
2843 * Prevent the reclaimer from falling into the cache trap: as
2844 * cache pages start out inactive, every cache fault will tip
2845 * the scan balance towards the file LRU. And as the file LRU
2846 * shrinks, so does the window for rotation from references.
2847 * This means we have a runaway feedback loop where a tiny
2848 * thrashing file LRU becomes infinitely more attractive than
2849 * anon pages. Try to detect this based on file LRU size.
2850 */
2851 if (!cgroup_reclaim(sc)) {
2852 unsigned long total_high_wmark = 0;
2853 unsigned long free, anon;
2854 int z;
2855
2856 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2857 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2858 node_page_state(pgdat, NR_INACTIVE_FILE);
2859
2860 for (z = 0; z < MAX_NR_ZONES; z++) {
2861 struct zone *zone = &pgdat->node_zones[z];
2862
2863 if (!managed_zone(zone))
2864 continue;
2865
2866 total_high_wmark += high_wmark_pages(zone);
2867 }
2868
2869 /*
2870 * Consider anon: if that's low too, this isn't a
2871 * runaway file reclaim problem, but rather just
2872 * extreme pressure. Reclaim as per usual then.
2873 */
2874 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2875
2876 sc->file_is_tiny =
2877 file + free <= total_high_wmark &&
2878 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2879 anon >> sc->priority;
2880 }
2881}
2882
4f98a2fe
RR
2883/*
2884 * Determine how aggressively the anon and file LRU lists should be
02e458d8 2885 * scanned.
4f98a2fe 2886 *
be7bd59d
WL
2887 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2888 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2889 */
afaf07a6
JW
2890static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2891 unsigned long *nr)
4f98a2fe 2892{
a2a36488 2893 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
afaf07a6 2894 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2895 unsigned long anon_cost, file_cost, total_cost;
33377678 2896 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2897 u64 fraction[ANON_AND_FILE];
9a265114 2898 u64 denominator = 0; /* gcc */
9a265114 2899 enum scan_balance scan_balance;
4f98a2fe 2900 unsigned long ap, fp;
4111304d 2901 enum lru_list lru;
76a33fc3
SL
2902
2903 /* If we have no swap space, do not bother scanning anon pages. */
a2a36488 2904 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
9a265114 2905 scan_balance = SCAN_FILE;
76a33fc3
SL
2906 goto out;
2907 }
4f98a2fe 2908
10316b31
JW
2909 /*
2910 * Global reclaim will swap to prevent OOM even with no
2911 * swappiness, but memcg users want to use this knob to
2912 * disable swapping for individual groups completely when
2913 * using the memory controller's swap limit feature would be
2914 * too expensive.
2915 */
b5ead35e 2916 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2917 scan_balance = SCAN_FILE;
10316b31
JW
2918 goto out;
2919 }
2920
2921 /*
2922 * Do not apply any pressure balancing cleverness when the
2923 * system is close to OOM, scan both anon and file equally
2924 * (unless the swappiness setting disagrees with swapping).
2925 */
02695175 2926 if (!sc->priority && swappiness) {
9a265114 2927 scan_balance = SCAN_EQUAL;
10316b31
JW
2928 goto out;
2929 }
2930
62376251 2931 /*
53138cea 2932 * If the system is almost out of file pages, force-scan anon.
62376251 2933 */
b91ac374 2934 if (sc->file_is_tiny) {
53138cea
JW
2935 scan_balance = SCAN_ANON;
2936 goto out;
62376251
JW
2937 }
2938
7c5bd705 2939 /*
b91ac374
JW
2940 * If there is enough inactive page cache, we do not reclaim
2941 * anything from the anonymous working right now.
7c5bd705 2942 */
b91ac374 2943 if (sc->cache_trim_mode) {
9a265114 2944 scan_balance = SCAN_FILE;
7c5bd705
JW
2945 goto out;
2946 }
2947
9a265114 2948 scan_balance = SCAN_FRACT;
58c37f6e 2949 /*
314b57fb
JW
2950 * Calculate the pressure balance between anon and file pages.
2951 *
2952 * The amount of pressure we put on each LRU is inversely
2953 * proportional to the cost of reclaiming each list, as
2954 * determined by the share of pages that are refaulting, times
2955 * the relative IO cost of bringing back a swapped out
2956 * anonymous page vs reloading a filesystem page (swappiness).
2957 *
d483a5dd
JW
2958 * Although we limit that influence to ensure no list gets
2959 * left behind completely: at least a third of the pressure is
2960 * applied, before swappiness.
2961 *
314b57fb 2962 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2963 */
d483a5dd
JW
2964 total_cost = sc->anon_cost + sc->file_cost;
2965 anon_cost = total_cost + sc->anon_cost;
2966 file_cost = total_cost + sc->file_cost;
2967 total_cost = anon_cost + file_cost;
58c37f6e 2968
d483a5dd
JW
2969 ap = swappiness * (total_cost + 1);
2970 ap /= anon_cost + 1;
4f98a2fe 2971
d483a5dd
JW
2972 fp = (200 - swappiness) * (total_cost + 1);
2973 fp /= file_cost + 1;
4f98a2fe 2974
76a33fc3
SL
2975 fraction[0] = ap;
2976 fraction[1] = fp;
a4fe1631 2977 denominator = ap + fp;
76a33fc3 2978out:
688035f7
JW
2979 for_each_evictable_lru(lru) {
2980 int file = is_file_lru(lru);
9783aa99 2981 unsigned long lruvec_size;
f56ce412 2982 unsigned long low, min;
688035f7 2983 unsigned long scan;
9783aa99
CD
2984
2985 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
f56ce412
JW
2986 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2987 &min, &low);
9783aa99 2988
f56ce412 2989 if (min || low) {
9783aa99
CD
2990 /*
2991 * Scale a cgroup's reclaim pressure by proportioning
2992 * its current usage to its memory.low or memory.min
2993 * setting.
2994 *
2995 * This is important, as otherwise scanning aggression
2996 * becomes extremely binary -- from nothing as we
2997 * approach the memory protection threshold, to totally
2998 * nominal as we exceed it. This results in requiring
2999 * setting extremely liberal protection thresholds. It
3000 * also means we simply get no protection at all if we
3001 * set it too low, which is not ideal.
1bc63fb1
CD
3002 *
3003 * If there is any protection in place, we reduce scan
3004 * pressure by how much of the total memory used is
3005 * within protection thresholds.
9783aa99 3006 *
9de7ca46
CD
3007 * There is one special case: in the first reclaim pass,
3008 * we skip over all groups that are within their low
3009 * protection. If that fails to reclaim enough pages to
3010 * satisfy the reclaim goal, we come back and override
3011 * the best-effort low protection. However, we still
3012 * ideally want to honor how well-behaved groups are in
3013 * that case instead of simply punishing them all
3014 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
3015 * memory they are using, reducing the scan pressure
3016 * again by how much of the total memory used is under
3017 * hard protection.
9783aa99 3018 */
1bc63fb1 3019 unsigned long cgroup_size = mem_cgroup_size(memcg);
f56ce412
JW
3020 unsigned long protection;
3021
3022 /* memory.low scaling, make sure we retry before OOM */
3023 if (!sc->memcg_low_reclaim && low > min) {
3024 protection = low;
3025 sc->memcg_low_skipped = 1;
3026 } else {
3027 protection = min;
3028 }
1bc63fb1
CD
3029
3030 /* Avoid TOCTOU with earlier protection check */
3031 cgroup_size = max(cgroup_size, protection);
3032
3033 scan = lruvec_size - lruvec_size * protection /
32d4f4b7 3034 (cgroup_size + 1);
9783aa99
CD
3035
3036 /*
1bc63fb1 3037 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 3038 * reclaim moving forwards, avoiding decrementing
9de7ca46 3039 * sc->priority further than desirable.
9783aa99 3040 */
1bc63fb1 3041 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
3042 } else {
3043 scan = lruvec_size;
3044 }
3045
3046 scan >>= sc->priority;
6b4f7799 3047
688035f7
JW
3048 /*
3049 * If the cgroup's already been deleted, make sure to
3050 * scrape out the remaining cache.
3051 */
3052 if (!scan && !mem_cgroup_online(memcg))
9783aa99 3053 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 3054
688035f7
JW
3055 switch (scan_balance) {
3056 case SCAN_EQUAL:
3057 /* Scan lists relative to size */
3058 break;
3059 case SCAN_FRACT:
9a265114 3060 /*
688035f7
JW
3061 * Scan types proportional to swappiness and
3062 * their relative recent reclaim efficiency.
76073c64
GS
3063 * Make sure we don't miss the last page on
3064 * the offlined memory cgroups because of a
3065 * round-off error.
9a265114 3066 */
76073c64
GS
3067 scan = mem_cgroup_online(memcg) ?
3068 div64_u64(scan * fraction[file], denominator) :
3069 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 3070 denominator);
688035f7
JW
3071 break;
3072 case SCAN_FILE:
3073 case SCAN_ANON:
3074 /* Scan one type exclusively */
e072bff6 3075 if ((scan_balance == SCAN_FILE) != file)
688035f7 3076 scan = 0;
688035f7
JW
3077 break;
3078 default:
3079 /* Look ma, no brain */
3080 BUG();
9a265114 3081 }
688035f7 3082
688035f7 3083 nr[lru] = scan;
76a33fc3 3084 }
6e08a369 3085}
4f98a2fe 3086
2f368a9f
DH
3087/*
3088 * Anonymous LRU management is a waste if there is
3089 * ultimately no way to reclaim the memory.
3090 */
3091static bool can_age_anon_pages(struct pglist_data *pgdat,
3092 struct scan_control *sc)
3093{
3094 /* Aging the anon LRU is valuable if swap is present: */
3095 if (total_swap_pages > 0)
3096 return true;
3097
3098 /* Also valuable if anon pages can be demoted: */
3099 return can_demote(pgdat->node_id, sc);
3100}
3101
ec1c86b2
YZ
3102#ifdef CONFIG_LRU_GEN
3103
354ed597
YZ
3104#ifdef CONFIG_LRU_GEN_ENABLED
3105DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3106#define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3107#else
3108DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3109#define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3110#endif
3111
ec1c86b2
YZ
3112/******************************************************************************
3113 * shorthand helpers
3114 ******************************************************************************/
3115
ac35a490
YZ
3116#define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3117
3118#define DEFINE_MAX_SEQ(lruvec) \
3119 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3120
3121#define DEFINE_MIN_SEQ(lruvec) \
3122 unsigned long min_seq[ANON_AND_FILE] = { \
3123 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3124 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3125 }
3126
ec1c86b2
YZ
3127#define for_each_gen_type_zone(gen, type, zone) \
3128 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3129 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3130 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3131
bd74fdae 3132static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
ec1c86b2
YZ
3133{
3134 struct pglist_data *pgdat = NODE_DATA(nid);
3135
3136#ifdef CONFIG_MEMCG
3137 if (memcg) {
3138 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3139
3140 /* for hotadd_new_pgdat() */
3141 if (!lruvec->pgdat)
3142 lruvec->pgdat = pgdat;
3143
3144 return lruvec;
3145 }
3146#endif
3147 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3148
3149 return pgdat ? &pgdat->__lruvec : NULL;
3150}
3151
ac35a490
YZ
3152static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3153{
3154 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3155 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3156
3157 if (!can_demote(pgdat->node_id, sc) &&
3158 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3159 return 0;
3160
3161 return mem_cgroup_swappiness(memcg);
3162}
3163
3164static int get_nr_gens(struct lruvec *lruvec, int type)
3165{
3166 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3167}
3168
3169static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3170{
3171 /* see the comment on lru_gen_struct */
3172 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3173 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3174 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3175}
3176
bd74fdae
YZ
3177/******************************************************************************
3178 * mm_struct list
3179 ******************************************************************************/
3180
3181static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3182{
3183 static struct lru_gen_mm_list mm_list = {
3184 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3185 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3186 };
3187
3188#ifdef CONFIG_MEMCG
3189 if (memcg)
3190 return &memcg->mm_list;
3191#endif
3192 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3193
3194 return &mm_list;
3195}
3196
3197void lru_gen_add_mm(struct mm_struct *mm)
3198{
3199 int nid;
3200 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3201 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3202
3203 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3204#ifdef CONFIG_MEMCG
3205 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3206 mm->lru_gen.memcg = memcg;
3207#endif
3208 spin_lock(&mm_list->lock);
3209
3210 for_each_node_state(nid, N_MEMORY) {
3211 struct lruvec *lruvec = get_lruvec(memcg, nid);
3212
3213 if (!lruvec)
3214 continue;
3215
3216 /* the first addition since the last iteration */
3217 if (lruvec->mm_state.tail == &mm_list->fifo)
3218 lruvec->mm_state.tail = &mm->lru_gen.list;
3219 }
3220
3221 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3222
3223 spin_unlock(&mm_list->lock);
3224}
3225
3226void lru_gen_del_mm(struct mm_struct *mm)
3227{
3228 int nid;
3229 struct lru_gen_mm_list *mm_list;
3230 struct mem_cgroup *memcg = NULL;
3231
3232 if (list_empty(&mm->lru_gen.list))
3233 return;
3234
3235#ifdef CONFIG_MEMCG
3236 memcg = mm->lru_gen.memcg;
3237#endif
3238 mm_list = get_mm_list(memcg);
3239
3240 spin_lock(&mm_list->lock);
3241
3242 for_each_node(nid) {
3243 struct lruvec *lruvec = get_lruvec(memcg, nid);
3244
3245 if (!lruvec)
3246 continue;
3247
3248 /* where the last iteration ended (exclusive) */
3249 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3250 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3251
3252 /* where the current iteration continues (inclusive) */
3253 if (lruvec->mm_state.head != &mm->lru_gen.list)
3254 continue;
3255
3256 lruvec->mm_state.head = lruvec->mm_state.head->next;
3257 /* the deletion ends the current iteration */
3258 if (lruvec->mm_state.head == &mm_list->fifo)
3259 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3260 }
3261
3262 list_del_init(&mm->lru_gen.list);
3263
3264 spin_unlock(&mm_list->lock);
3265
3266#ifdef CONFIG_MEMCG
3267 mem_cgroup_put(mm->lru_gen.memcg);
3268 mm->lru_gen.memcg = NULL;
3269#endif
3270}
3271
3272#ifdef CONFIG_MEMCG
3273void lru_gen_migrate_mm(struct mm_struct *mm)
3274{
3275 struct mem_cgroup *memcg;
3276 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3277
3278 VM_WARN_ON_ONCE(task->mm != mm);
3279 lockdep_assert_held(&task->alloc_lock);
3280
3281 /* for mm_update_next_owner() */
3282 if (mem_cgroup_disabled())
3283 return;
3284
3285 rcu_read_lock();
3286 memcg = mem_cgroup_from_task(task);
3287 rcu_read_unlock();
3288 if (memcg == mm->lru_gen.memcg)
3289 return;
3290
3291 VM_WARN_ON_ONCE(!mm->lru_gen.memcg);
3292 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3293
3294 lru_gen_del_mm(mm);
3295 lru_gen_add_mm(mm);
3296}
3297#endif
3298
3299/*
3300 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3301 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3302 * bits in a bitmap, k is the number of hash functions and n is the number of
3303 * inserted items.
3304 *
3305 * Page table walkers use one of the two filters to reduce their search space.
3306 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3307 * aging uses the double-buffering technique to flip to the other filter each
3308 * time it produces a new generation. For non-leaf entries that have enough
3309 * leaf entries, the aging carries them over to the next generation in
3310 * walk_pmd_range(); the eviction also report them when walking the rmap
3311 * in lru_gen_look_around().
3312 *
3313 * For future optimizations:
3314 * 1. It's not necessary to keep both filters all the time. The spare one can be
3315 * freed after the RCU grace period and reallocated if needed again.
3316 * 2. And when reallocating, it's worth scaling its size according to the number
3317 * of inserted entries in the other filter, to reduce the memory overhead on
3318 * small systems and false positives on large systems.
3319 * 3. Jenkins' hash function is an alternative to Knuth's.
3320 */
3321#define BLOOM_FILTER_SHIFT 15
3322
3323static inline int filter_gen_from_seq(unsigned long seq)
3324{
3325 return seq % NR_BLOOM_FILTERS;
3326}
3327
3328static void get_item_key(void *item, int *key)
3329{
3330 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3331
3332 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3333
3334 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3335 key[1] = hash >> BLOOM_FILTER_SHIFT;
3336}
3337
3338static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3339{
3340 unsigned long *filter;
3341 int gen = filter_gen_from_seq(seq);
3342
3343 filter = lruvec->mm_state.filters[gen];
3344 if (filter) {
3345 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3346 return;
3347 }
3348
3349 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3350 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3351 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3352}
3353
3354static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3355{
3356 int key[2];
3357 unsigned long *filter;
3358 int gen = filter_gen_from_seq(seq);
3359
3360 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3361 if (!filter)
3362 return;
3363
3364 get_item_key(item, key);
3365
3366 if (!test_bit(key[0], filter))
3367 set_bit(key[0], filter);
3368 if (!test_bit(key[1], filter))
3369 set_bit(key[1], filter);
3370}
3371
3372static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3373{
3374 int key[2];
3375 unsigned long *filter;
3376 int gen = filter_gen_from_seq(seq);
3377
3378 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3379 if (!filter)
3380 return true;
3381
3382 get_item_key(item, key);
3383
3384 return test_bit(key[0], filter) && test_bit(key[1], filter);
3385}
3386
3387static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3388{
3389 int i;
3390 int hist;
3391
3392 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3393
3394 if (walk) {
3395 hist = lru_hist_from_seq(walk->max_seq);
3396
3397 for (i = 0; i < NR_MM_STATS; i++) {
3398 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3399 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3400 walk->mm_stats[i] = 0;
3401 }
3402 }
3403
3404 if (NR_HIST_GENS > 1 && last) {
3405 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3406
3407 for (i = 0; i < NR_MM_STATS; i++)
3408 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3409 }
3410}
3411
3412static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3413{
3414 int type;
3415 unsigned long size = 0;
3416 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3417 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3418
3419 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3420 return true;
3421
3422 clear_bit(key, &mm->lru_gen.bitmap);
3423
3424 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3425 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3426 get_mm_counter(mm, MM_ANONPAGES) +
3427 get_mm_counter(mm, MM_SHMEMPAGES);
3428 }
3429
3430 if (size < MIN_LRU_BATCH)
3431 return true;
3432
3433 return !mmget_not_zero(mm);
3434}
3435
3436static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3437 struct mm_struct **iter)
3438{
3439 bool first = false;
3440 bool last = true;
3441 struct mm_struct *mm = NULL;
3442 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3443 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3444 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3445
3446 /*
3447 * There are four interesting cases for this page table walker:
3448 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3449 * there is nothing left to do.
3450 * 2. It's the first of the current generation, and it needs to reset
3451 * the Bloom filter for the next generation.
3452 * 3. It reaches the end of mm_list, and it needs to increment
3453 * mm_state->seq; the iteration is done.
3454 * 4. It's the last of the current generation, and it needs to reset the
3455 * mm stats counters for the next generation.
3456 */
3457 spin_lock(&mm_list->lock);
3458
3459 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3460 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3461 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3462
3463 if (walk->max_seq <= mm_state->seq) {
3464 if (!*iter)
3465 last = false;
3466 goto done;
3467 }
3468
3469 if (!mm_state->nr_walkers) {
3470 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3471
3472 mm_state->head = mm_list->fifo.next;
3473 first = true;
3474 }
3475
3476 while (!mm && mm_state->head != &mm_list->fifo) {
3477 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3478
3479 mm_state->head = mm_state->head->next;
3480
3481 /* force scan for those added after the last iteration */
3482 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3483 mm_state->tail = mm_state->head;
3484 walk->force_scan = true;
3485 }
3486
3487 if (should_skip_mm(mm, walk))
3488 mm = NULL;
3489 }
3490
3491 if (mm_state->head == &mm_list->fifo)
3492 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3493done:
3494 if (*iter && !mm)
3495 mm_state->nr_walkers--;
3496 if (!*iter && mm)
3497 mm_state->nr_walkers++;
3498
3499 if (mm_state->nr_walkers)
3500 last = false;
3501
3502 if (*iter || last)
3503 reset_mm_stats(lruvec, walk, last);
3504
3505 spin_unlock(&mm_list->lock);
3506
3507 if (mm && first)
3508 reset_bloom_filter(lruvec, walk->max_seq + 1);
3509
3510 if (*iter)
3511 mmput_async(*iter);
3512
3513 *iter = mm;
3514
3515 return last;
3516}
3517
3518static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3519{
3520 bool success = false;
3521 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3522 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3523 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3524
3525 spin_lock(&mm_list->lock);
3526
3527 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3528
3529 if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3530 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3531
3532 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3533 reset_mm_stats(lruvec, NULL, true);
3534 success = true;
3535 }
3536
3537 spin_unlock(&mm_list->lock);
3538
3539 return success;
3540}
3541
ac35a490
YZ
3542/******************************************************************************
3543 * refault feedback loop
3544 ******************************************************************************/
3545
3546/*
3547 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3548 *
3549 * The P term is refaulted/(evicted+protected) from a tier in the generation
3550 * currently being evicted; the I term is the exponential moving average of the
3551 * P term over the generations previously evicted, using the smoothing factor
3552 * 1/2; the D term isn't supported.
3553 *
3554 * The setpoint (SP) is always the first tier of one type; the process variable
3555 * (PV) is either any tier of the other type or any other tier of the same
3556 * type.
3557 *
3558 * The error is the difference between the SP and the PV; the correction is to
3559 * turn off protection when SP>PV or turn on protection when SP<PV.
3560 *
3561 * For future optimizations:
3562 * 1. The D term may discount the other two terms over time so that long-lived
3563 * generations can resist stale information.
3564 */
3565struct ctrl_pos {
3566 unsigned long refaulted;
3567 unsigned long total;
3568 int gain;
3569};
3570
3571static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3572 struct ctrl_pos *pos)
3573{
3574 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3575 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3576
3577 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3578 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3579 pos->total = lrugen->avg_total[type][tier] +
3580 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3581 if (tier)
3582 pos->total += lrugen->protected[hist][type][tier - 1];
3583 pos->gain = gain;
3584}
3585
3586static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3587{
3588 int hist, tier;
3589 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3590 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3591 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3592
3593 lockdep_assert_held(&lruvec->lru_lock);
3594
3595 if (!carryover && !clear)
3596 return;
3597
3598 hist = lru_hist_from_seq(seq);
3599
3600 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3601 if (carryover) {
3602 unsigned long sum;
3603
3604 sum = lrugen->avg_refaulted[type][tier] +
3605 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3606 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3607
3608 sum = lrugen->avg_total[type][tier] +
3609 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3610 if (tier)
3611 sum += lrugen->protected[hist][type][tier - 1];
3612 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3613 }
3614
3615 if (clear) {
3616 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3617 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3618 if (tier)
3619 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3620 }
3621 }
3622}
3623
3624static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3625{
3626 /*
3627 * Return true if the PV has a limited number of refaults or a lower
3628 * refaulted/total than the SP.
3629 */
3630 return pv->refaulted < MIN_LRU_BATCH ||
3631 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3632 (sp->refaulted + 1) * pv->total * pv->gain;
3633}
3634
3635/******************************************************************************
3636 * the aging
3637 ******************************************************************************/
3638
018ee47f
YZ
3639/* promote pages accessed through page tables */
3640static int folio_update_gen(struct folio *folio, int gen)
3641{
3642 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3643
3644 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3645 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3646
3647 do {
3648 /* lru_gen_del_folio() has isolated this page? */
3649 if (!(old_flags & LRU_GEN_MASK)) {
3650 /* for shrink_page_list() */
3651 new_flags = old_flags | BIT(PG_referenced);
3652 continue;
3653 }
3654
3655 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3656 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3657 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3658
3659 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3660}
3661
ac35a490
YZ
3662/* protect pages accessed multiple times through file descriptors */
3663static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3664{
3665 int type = folio_is_file_lru(folio);
3666 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3667 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3668 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3669
3670 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3671
3672 do {
018ee47f
YZ
3673 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3674 /* folio_update_gen() has promoted this page? */
3675 if (new_gen >= 0 && new_gen != old_gen)
3676 return new_gen;
3677
ac35a490
YZ
3678 new_gen = (old_gen + 1) % MAX_NR_GENS;
3679
3680 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3681 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3682 /* for folio_end_writeback() */
3683 if (reclaiming)
3684 new_flags |= BIT(PG_reclaim);
3685 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3686
3687 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3688
3689 return new_gen;
3690}
3691
bd74fdae
YZ
3692static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3693 int old_gen, int new_gen)
3694{
3695 int type = folio_is_file_lru(folio);
3696 int zone = folio_zonenum(folio);
3697 int delta = folio_nr_pages(folio);
3698
3699 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3700 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3701
3702 walk->batched++;
3703
3704 walk->nr_pages[old_gen][type][zone] -= delta;
3705 walk->nr_pages[new_gen][type][zone] += delta;
3706}
3707
3708static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3709{
3710 int gen, type, zone;
3711 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3712
3713 walk->batched = 0;
3714
3715 for_each_gen_type_zone(gen, type, zone) {
3716 enum lru_list lru = type * LRU_INACTIVE_FILE;
3717 int delta = walk->nr_pages[gen][type][zone];
3718
3719 if (!delta)
3720 continue;
3721
3722 walk->nr_pages[gen][type][zone] = 0;
3723 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3724 lrugen->nr_pages[gen][type][zone] + delta);
3725
3726 if (lru_gen_is_active(lruvec, gen))
3727 lru += LRU_ACTIVE;
3728 __update_lru_size(lruvec, lru, zone, delta);
3729 }
3730}
3731
3732static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3733{
3734 struct address_space *mapping;
3735 struct vm_area_struct *vma = args->vma;
3736 struct lru_gen_mm_walk *walk = args->private;
3737
3738 if (!vma_is_accessible(vma))
3739 return true;
3740
3741 if (is_vm_hugetlb_page(vma))
3742 return true;
3743
3744 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3745 return true;
3746
3747 if (vma == get_gate_vma(vma->vm_mm))
3748 return true;
3749
3750 if (vma_is_anonymous(vma))
3751 return !walk->can_swap;
3752
3753 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3754 return true;
3755
3756 mapping = vma->vm_file->f_mapping;
3757 if (mapping_unevictable(mapping))
3758 return true;
3759
3760 if (shmem_mapping(mapping))
3761 return !walk->can_swap;
3762
3763 /* to exclude special mappings like dax, etc. */
3764 return !mapping->a_ops->read_folio;
3765}
3766
3767/*
3768 * Some userspace memory allocators map many single-page VMAs. Instead of
3769 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3770 * table to reduce zigzags and improve cache performance.
3771 */
3772static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3773 unsigned long *vm_start, unsigned long *vm_end)
3774{
3775 unsigned long start = round_up(*vm_end, size);
3776 unsigned long end = (start | ~mask) + 1;
78ba531f 3777 VMA_ITERATOR(vmi, args->mm, start);
bd74fdae
YZ
3778
3779 VM_WARN_ON_ONCE(mask & size);
3780 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3781
78ba531f 3782 for_each_vma(vmi, args->vma) {
bd74fdae
YZ
3783 if (end && end <= args->vma->vm_start)
3784 return false;
3785
78ba531f 3786 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
bd74fdae 3787 continue;
bd74fdae
YZ
3788
3789 *vm_start = max(start, args->vma->vm_start);
3790 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3791
3792 return true;
3793 }
3794
3795 return false;
3796}
3797
018ee47f
YZ
3798static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3799{
3800 unsigned long pfn = pte_pfn(pte);
3801
3802 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3803
3804 if (!pte_present(pte) || is_zero_pfn(pfn))
3805 return -1;
3806
3807 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3808 return -1;
3809
3810 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3811 return -1;
3812
3813 return pfn;
3814}
3815
bd74fdae
YZ
3816#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3817static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3818{
3819 unsigned long pfn = pmd_pfn(pmd);
3820
3821 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3822
3823 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3824 return -1;
3825
3826 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3827 return -1;
3828
3829 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3830 return -1;
3831
3832 return pfn;
3833}
3834#endif
3835
018ee47f 3836static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
bd74fdae 3837 struct pglist_data *pgdat, bool can_swap)
018ee47f
YZ
3838{
3839 struct folio *folio;
3840
3841 /* try to avoid unnecessary memory loads */
3842 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3843 return NULL;
3844
3845 folio = pfn_folio(pfn);
3846 if (folio_nid(folio) != pgdat->node_id)
3847 return NULL;
3848
3849 if (folio_memcg_rcu(folio) != memcg)
3850 return NULL;
3851
bd74fdae
YZ
3852 /* file VMAs can contain anon pages from COW */
3853 if (!folio_is_file_lru(folio) && !can_swap)
3854 return NULL;
3855
018ee47f
YZ
3856 return folio;
3857}
3858
bd74fdae
YZ
3859static bool suitable_to_scan(int total, int young)
3860{
3861 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3862
3863 /* suitable if the average number of young PTEs per cacheline is >=1 */
3864 return young * n >= total;
3865}
3866
3867static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3868 struct mm_walk *args)
3869{
3870 int i;
3871 pte_t *pte;
3872 spinlock_t *ptl;
3873 unsigned long addr;
3874 int total = 0;
3875 int young = 0;
3876 struct lru_gen_mm_walk *walk = args->private;
3877 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3878 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3879 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3880
3881 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3882
3883 ptl = pte_lockptr(args->mm, pmd);
3884 if (!spin_trylock(ptl))
3885 return false;
3886
3887 arch_enter_lazy_mmu_mode();
3888
3889 pte = pte_offset_map(pmd, start & PMD_MASK);
3890restart:
3891 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3892 unsigned long pfn;
3893 struct folio *folio;
3894
3895 total++;
3896 walk->mm_stats[MM_LEAF_TOTAL]++;
3897
3898 pfn = get_pte_pfn(pte[i], args->vma, addr);
3899 if (pfn == -1)
3900 continue;
3901
3902 if (!pte_young(pte[i])) {
3903 walk->mm_stats[MM_LEAF_OLD]++;
3904 continue;
3905 }
3906
3907 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3908 if (!folio)
3909 continue;
3910
3911 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3912 VM_WARN_ON_ONCE(true);
3913
3914 young++;
3915 walk->mm_stats[MM_LEAF_YOUNG]++;
3916
3917 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3918 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3919 !folio_test_swapcache(folio)))
3920 folio_mark_dirty(folio);
3921
3922 old_gen = folio_update_gen(folio, new_gen);
3923 if (old_gen >= 0 && old_gen != new_gen)
3924 update_batch_size(walk, folio, old_gen, new_gen);
3925 }
3926
3927 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3928 goto restart;
3929
3930 pte_unmap(pte);
3931
3932 arch_leave_lazy_mmu_mode();
3933 spin_unlock(ptl);
3934
3935 return suitable_to_scan(total, young);
3936}
3937
3938#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3939static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3940 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3941{
3942 int i;
3943 pmd_t *pmd;
3944 spinlock_t *ptl;
3945 struct lru_gen_mm_walk *walk = args->private;
3946 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3947 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3948 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3949
3950 VM_WARN_ON_ONCE(pud_leaf(*pud));
3951
3952 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3953 if (*start == -1) {
3954 *start = next;
3955 return;
3956 }
3957
3958 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
3959 if (i && i <= MIN_LRU_BATCH) {
3960 __set_bit(i - 1, bitmap);
3961 return;
3962 }
3963
3964 pmd = pmd_offset(pud, *start);
3965
3966 ptl = pmd_lockptr(args->mm, pmd);
3967 if (!spin_trylock(ptl))
3968 goto done;
3969
3970 arch_enter_lazy_mmu_mode();
3971
3972 do {
3973 unsigned long pfn;
3974 struct folio *folio;
3975 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
3976
3977 pfn = get_pmd_pfn(pmd[i], vma, addr);
3978 if (pfn == -1)
3979 goto next;
3980
3981 if (!pmd_trans_huge(pmd[i])) {
354ed597
YZ
3982 if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) &&
3983 get_cap(LRU_GEN_NONLEAF_YOUNG))
bd74fdae
YZ
3984 pmdp_test_and_clear_young(vma, addr, pmd + i);
3985 goto next;
3986 }
3987
3988 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3989 if (!folio)
3990 goto next;
3991
3992 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3993 goto next;
3994
3995 walk->mm_stats[MM_LEAF_YOUNG]++;
3996
3997 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3998 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3999 !folio_test_swapcache(folio)))
4000 folio_mark_dirty(folio);
4001
4002 old_gen = folio_update_gen(folio, new_gen);
4003 if (old_gen >= 0 && old_gen != new_gen)
4004 update_batch_size(walk, folio, old_gen, new_gen);
4005next:
4006 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4007 } while (i <= MIN_LRU_BATCH);
4008
4009 arch_leave_lazy_mmu_mode();
4010 spin_unlock(ptl);
4011done:
4012 *start = -1;
4013 bitmap_zero(bitmap, MIN_LRU_BATCH);
4014}
4015#else
4016static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4017 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4018{
4019}
4020#endif
4021
4022static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4023 struct mm_walk *args)
4024{
4025 int i;
4026 pmd_t *pmd;
4027 unsigned long next;
4028 unsigned long addr;
4029 struct vm_area_struct *vma;
4030 unsigned long pos = -1;
4031 struct lru_gen_mm_walk *walk = args->private;
4032 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4033
4034 VM_WARN_ON_ONCE(pud_leaf(*pud));
4035
4036 /*
4037 * Finish an entire PMD in two passes: the first only reaches to PTE
4038 * tables to avoid taking the PMD lock; the second, if necessary, takes
4039 * the PMD lock to clear the accessed bit in PMD entries.
4040 */
4041 pmd = pmd_offset(pud, start & PUD_MASK);
4042restart:
4043 /* walk_pte_range() may call get_next_vma() */
4044 vma = args->vma;
4045 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4046 pmd_t val = pmd_read_atomic(pmd + i);
4047
4048 /* for pmd_read_atomic() */
4049 barrier();
4050
4051 next = pmd_addr_end(addr, end);
4052
4053 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4054 walk->mm_stats[MM_LEAF_TOTAL]++;
4055 continue;
4056 }
4057
4058#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4059 if (pmd_trans_huge(val)) {
4060 unsigned long pfn = pmd_pfn(val);
4061 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4062
4063 walk->mm_stats[MM_LEAF_TOTAL]++;
4064
4065 if (!pmd_young(val)) {
4066 walk->mm_stats[MM_LEAF_OLD]++;
4067 continue;
4068 }
4069
4070 /* try to avoid unnecessary memory loads */
4071 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4072 continue;
4073
4074 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4075 continue;
4076 }
4077#endif
4078 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4079
4080#ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
354ed597
YZ
4081 if (get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4082 if (!pmd_young(val))
4083 continue;
bd74fdae 4084
354ed597
YZ
4085 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4086 }
bd74fdae
YZ
4087#endif
4088 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4089 continue;
4090
4091 walk->mm_stats[MM_NONLEAF_FOUND]++;
4092
4093 if (!walk_pte_range(&val, addr, next, args))
4094 continue;
4095
4096 walk->mm_stats[MM_NONLEAF_ADDED]++;
4097
4098 /* carry over to the next generation */
4099 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4100 }
4101
4102 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4103
4104 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4105 goto restart;
4106}
4107
4108static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4109 struct mm_walk *args)
4110{
4111 int i;
4112 pud_t *pud;
4113 unsigned long addr;
4114 unsigned long next;
4115 struct lru_gen_mm_walk *walk = args->private;
4116
4117 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4118
4119 pud = pud_offset(p4d, start & P4D_MASK);
4120restart:
4121 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4122 pud_t val = READ_ONCE(pud[i]);
4123
4124 next = pud_addr_end(addr, end);
4125
4126 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4127 continue;
4128
4129 walk_pmd_range(&val, addr, next, args);
4130
4131 /* a racy check to curtail the waiting time */
4132 if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4133 return 1;
4134
4135 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4136 end = (addr | ~PUD_MASK) + 1;
4137 goto done;
4138 }
4139 }
4140
4141 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4142 goto restart;
4143
4144 end = round_up(end, P4D_SIZE);
4145done:
4146 if (!end || !args->vma)
4147 return 1;
4148
4149 walk->next_addr = max(end, args->vma->vm_start);
4150
4151 return -EAGAIN;
4152}
4153
4154static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4155{
4156 static const struct mm_walk_ops mm_walk_ops = {
4157 .test_walk = should_skip_vma,
4158 .p4d_entry = walk_pud_range,
4159 };
4160
4161 int err;
4162 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4163
4164 walk->next_addr = FIRST_USER_ADDRESS;
4165
4166 do {
4167 err = -EBUSY;
4168
4169 /* folio_update_gen() requires stable folio_memcg() */
4170 if (!mem_cgroup_trylock_pages(memcg))
4171 break;
4172
4173 /* the caller might be holding the lock for write */
4174 if (mmap_read_trylock(mm)) {
4175 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4176
4177 mmap_read_unlock(mm);
4178 }
4179
4180 mem_cgroup_unlock_pages();
4181
4182 if (walk->batched) {
4183 spin_lock_irq(&lruvec->lru_lock);
4184 reset_batch_size(lruvec, walk);
4185 spin_unlock_irq(&lruvec->lru_lock);
4186 }
4187
4188 cond_resched();
4189 } while (err == -EAGAIN);
4190}
4191
4192static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
4193{
4194 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4195
4196 if (pgdat && current_is_kswapd()) {
4197 VM_WARN_ON_ONCE(walk);
4198
4199 walk = &pgdat->mm_walk;
4200 } else if (!pgdat && !walk) {
4201 VM_WARN_ON_ONCE(current_is_kswapd());
4202
4203 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4204 }
4205
4206 current->reclaim_state->mm_walk = walk;
4207
4208 return walk;
4209}
4210
4211static void clear_mm_walk(void)
4212{
4213 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4214
4215 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4216 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4217
4218 current->reclaim_state->mm_walk = NULL;
4219
4220 if (!current_is_kswapd())
4221 kfree(walk);
4222}
4223
d6c3af7d 4224static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
ac35a490 4225{
d6c3af7d
YZ
4226 int zone;
4227 int remaining = MAX_LRU_BATCH;
ac35a490 4228 struct lru_gen_struct *lrugen = &lruvec->lrugen;
d6c3af7d
YZ
4229 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4230
4231 if (type == LRU_GEN_ANON && !can_swap)
4232 goto done;
4233
4234 /* prevent cold/hot inversion if force_scan is true */
4235 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4236 struct list_head *head = &lrugen->lists[old_gen][type][zone];
4237
4238 while (!list_empty(head)) {
4239 struct folio *folio = lru_to_folio(head);
4240
4241 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4242 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4243 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4244 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
ac35a490 4245
d6c3af7d
YZ
4246 new_gen = folio_inc_gen(lruvec, folio, false);
4247 list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]);
4248
4249 if (!--remaining)
4250 return false;
4251 }
4252 }
4253done:
ac35a490
YZ
4254 reset_ctrl_pos(lruvec, type, true);
4255 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
d6c3af7d
YZ
4256
4257 return true;
ac35a490
YZ
4258}
4259
4260static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4261{
4262 int gen, type, zone;
4263 bool success = false;
4264 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4265 DEFINE_MIN_SEQ(lruvec);
4266
4267 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4268
4269 /* find the oldest populated generation */
4270 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4271 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4272 gen = lru_gen_from_seq(min_seq[type]);
4273
4274 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4275 if (!list_empty(&lrugen->lists[gen][type][zone]))
4276 goto next;
4277 }
4278
4279 min_seq[type]++;
4280 }
4281next:
4282 ;
4283 }
4284
4285 /* see the comment on lru_gen_struct */
4286 if (can_swap) {
4287 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4288 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4289 }
4290
4291 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4292 if (min_seq[type] == lrugen->min_seq[type])
4293 continue;
4294
4295 reset_ctrl_pos(lruvec, type, true);
4296 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4297 success = true;
4298 }
4299
4300 return success;
4301}
4302
d6c3af7d 4303static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
ac35a490
YZ
4304{
4305 int prev, next;
4306 int type, zone;
4307 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4308
4309 spin_lock_irq(&lruvec->lru_lock);
4310
4311 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4312
ac35a490
YZ
4313 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4314 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4315 continue;
4316
d6c3af7d 4317 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
ac35a490 4318
d6c3af7d
YZ
4319 while (!inc_min_seq(lruvec, type, can_swap)) {
4320 spin_unlock_irq(&lruvec->lru_lock);
4321 cond_resched();
4322 spin_lock_irq(&lruvec->lru_lock);
4323 }
ac35a490
YZ
4324 }
4325
4326 /*
4327 * Update the active/inactive LRU sizes for compatibility. Both sides of
4328 * the current max_seq need to be covered, since max_seq+1 can overlap
4329 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4330 * overlap, cold/hot inversion happens.
4331 */
4332 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4333 next = lru_gen_from_seq(lrugen->max_seq + 1);
4334
4335 for (type = 0; type < ANON_AND_FILE; type++) {
4336 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4337 enum lru_list lru = type * LRU_INACTIVE_FILE;
4338 long delta = lrugen->nr_pages[prev][type][zone] -
4339 lrugen->nr_pages[next][type][zone];
4340
4341 if (!delta)
4342 continue;
4343
4344 __update_lru_size(lruvec, lru, zone, delta);
4345 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4346 }
4347 }
4348
4349 for (type = 0; type < ANON_AND_FILE; type++)
4350 reset_ctrl_pos(lruvec, type, false);
4351
1332a809 4352 WRITE_ONCE(lrugen->timestamps[next], jiffies);
ac35a490
YZ
4353 /* make sure preceding modifications appear */
4354 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
bd74fdae 4355
ac35a490
YZ
4356 spin_unlock_irq(&lruvec->lru_lock);
4357}
4358
bd74fdae 4359static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
d6c3af7d 4360 struct scan_control *sc, bool can_swap, bool force_scan)
bd74fdae
YZ
4361{
4362 bool success;
4363 struct lru_gen_mm_walk *walk;
4364 struct mm_struct *mm = NULL;
4365 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4366
4367 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4368
4369 /* see the comment in iterate_mm_list() */
4370 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4371 success = false;
4372 goto done;
4373 }
4374
4375 /*
4376 * If the hardware doesn't automatically set the accessed bit, fallback
4377 * to lru_gen_look_around(), which only clears the accessed bit in a
4378 * handful of PTEs. Spreading the work out over a period of time usually
4379 * is less efficient, but it avoids bursty page faults.
4380 */
d6c3af7d 4381 if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
bd74fdae
YZ
4382 success = iterate_mm_list_nowalk(lruvec, max_seq);
4383 goto done;
4384 }
4385
4386 walk = set_mm_walk(NULL);
4387 if (!walk) {
4388 success = iterate_mm_list_nowalk(lruvec, max_seq);
4389 goto done;
4390 }
4391
4392 walk->lruvec = lruvec;
4393 walk->max_seq = max_seq;
4394 walk->can_swap = can_swap;
d6c3af7d 4395 walk->force_scan = force_scan;
bd74fdae
YZ
4396
4397 do {
4398 success = iterate_mm_list(lruvec, walk, &mm);
4399 if (mm)
4400 walk_mm(lruvec, mm, walk);
4401
4402 cond_resched();
4403 } while (mm);
4404done:
4405 if (!success) {
4406 if (sc->priority <= DEF_PRIORITY - 2)
4407 wait_event_killable(lruvec->mm_state.wait,
4408 max_seq < READ_ONCE(lrugen->max_seq));
4409
4410 return max_seq < READ_ONCE(lrugen->max_seq);
4411 }
4412
4413 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4414
d6c3af7d 4415 inc_max_seq(lruvec, can_swap, force_scan);
bd74fdae
YZ
4416 /* either this sees any waiters or they will see updated max_seq */
4417 if (wq_has_sleeper(&lruvec->mm_state.wait))
4418 wake_up_all(&lruvec->mm_state.wait);
4419
4420 wakeup_flusher_threads(WB_REASON_VMSCAN);
4421
4422 return true;
4423}
4424
ac35a490
YZ
4425static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
4426 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4427{
4428 int gen, type, zone;
4429 unsigned long old = 0;
4430 unsigned long young = 0;
4431 unsigned long total = 0;
4432 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4433 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4434
4435 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4436 unsigned long seq;
4437
4438 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4439 unsigned long size = 0;
4440
4441 gen = lru_gen_from_seq(seq);
4442
4443 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4444 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4445
4446 total += size;
4447 if (seq == max_seq)
4448 young += size;
4449 else if (seq + MIN_NR_GENS == max_seq)
4450 old += size;
4451 }
4452 }
4453
4454 /* try to scrape all its memory if this memcg was deleted */
4455 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4456
4457 /*
4458 * The aging tries to be lazy to reduce the overhead, while the eviction
4459 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4460 * ideal number of generations is MIN_NR_GENS+1.
4461 */
4462 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
4463 return true;
4464 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4465 return false;
4466
4467 /*
4468 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4469 * of the total number of pages for each generation. A reasonable range
4470 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4471 * aging cares about the upper bound of hot pages, while the eviction
4472 * cares about the lower bound of cold pages.
4473 */
4474 if (young * MIN_NR_GENS > total)
4475 return true;
4476 if (old * (MIN_NR_GENS + 2) < total)
4477 return true;
4478
4479 return false;
4480}
4481
1332a809 4482static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
ac35a490
YZ
4483{
4484 bool need_aging;
4485 unsigned long nr_to_scan;
4486 int swappiness = get_swappiness(lruvec, sc);
4487 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4488 DEFINE_MAX_SEQ(lruvec);
4489 DEFINE_MIN_SEQ(lruvec);
4490
4491 VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
4492
4493 mem_cgroup_calculate_protection(NULL, memcg);
4494
4495 if (mem_cgroup_below_min(memcg))
1332a809 4496 return false;
ac35a490
YZ
4497
4498 need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
1332a809
YZ
4499
4500 if (min_ttl) {
4501 int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4502 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4503
4504 if (time_is_after_jiffies(birth + min_ttl))
4505 return false;
4506
4507 /* the size is likely too small to be helpful */
4508 if (!nr_to_scan && sc->priority != DEF_PRIORITY)
4509 return false;
4510 }
4511
ac35a490 4512 if (need_aging)
d6c3af7d 4513 try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
1332a809
YZ
4514
4515 return true;
ac35a490
YZ
4516}
4517
1332a809
YZ
4518/* to protect the working set of the last N jiffies */
4519static unsigned long lru_gen_min_ttl __read_mostly;
4520
ac35a490
YZ
4521static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4522{
4523 struct mem_cgroup *memcg;
1332a809
YZ
4524 bool success = false;
4525 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
ac35a490
YZ
4526
4527 VM_WARN_ON_ONCE(!current_is_kswapd());
4528
f76c8337
YZ
4529 sc->last_reclaimed = sc->nr_reclaimed;
4530
4531 /*
4532 * To reduce the chance of going into the aging path, which can be
4533 * costly, optimistically skip it if the flag below was cleared in the
4534 * eviction path. This improves the overall performance when multiple
4535 * memcgs are available.
4536 */
4537 if (!sc->memcgs_need_aging) {
4538 sc->memcgs_need_aging = true;
4539 return;
4540 }
4541
bd74fdae
YZ
4542 set_mm_walk(pgdat);
4543
ac35a490
YZ
4544 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4545 do {
4546 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4547
1332a809
YZ
4548 if (age_lruvec(lruvec, sc, min_ttl))
4549 success = true;
ac35a490
YZ
4550
4551 cond_resched();
4552 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
bd74fdae
YZ
4553
4554 clear_mm_walk();
1332a809
YZ
4555
4556 /* check the order to exclude compaction-induced reclaim */
4557 if (success || !min_ttl || sc->order)
4558 return;
4559
4560 /*
4561 * The main goal is to OOM kill if every generation from all memcgs is
4562 * younger than min_ttl. However, another possibility is all memcgs are
4563 * either below min or empty.
4564 */
4565 if (mutex_trylock(&oom_lock)) {
4566 struct oom_control oc = {
4567 .gfp_mask = sc->gfp_mask,
4568 };
4569
4570 out_of_memory(&oc);
4571
4572 mutex_unlock(&oom_lock);
4573 }
ac35a490
YZ
4574}
4575
018ee47f
YZ
4576/*
4577 * This function exploits spatial locality when shrink_page_list() walks the
bd74fdae
YZ
4578 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4579 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4580 * the PTE table to the Bloom filter. This forms a feedback loop between the
4581 * eviction and the aging.
018ee47f
YZ
4582 */
4583void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4584{
4585 int i;
4586 pte_t *pte;
4587 unsigned long start;
4588 unsigned long end;
4589 unsigned long addr;
bd74fdae
YZ
4590 struct lru_gen_mm_walk *walk;
4591 int young = 0;
018ee47f
YZ
4592 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4593 struct folio *folio = pfn_folio(pvmw->pfn);
4594 struct mem_cgroup *memcg = folio_memcg(folio);
4595 struct pglist_data *pgdat = folio_pgdat(folio);
4596 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4597 DEFINE_MAX_SEQ(lruvec);
4598 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4599
4600 lockdep_assert_held(pvmw->ptl);
4601 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4602
4603 if (spin_is_contended(pvmw->ptl))
4604 return;
4605
bd74fdae
YZ
4606 /* avoid taking the LRU lock under the PTL when possible */
4607 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4608
018ee47f
YZ
4609 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4610 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4611
4612 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4613 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4614 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4615 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4616 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4617 else {
4618 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4619 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4620 }
4621 }
4622
4623 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4624
4625 rcu_read_lock();
4626 arch_enter_lazy_mmu_mode();
4627
4628 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4629 unsigned long pfn;
4630
4631 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4632 if (pfn == -1)
4633 continue;
4634
4635 if (!pte_young(pte[i]))
4636 continue;
4637
bd74fdae 4638 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
018ee47f
YZ
4639 if (!folio)
4640 continue;
4641
4642 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4643 VM_WARN_ON_ONCE(true);
4644
bd74fdae
YZ
4645 young++;
4646
018ee47f
YZ
4647 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4648 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4649 !folio_test_swapcache(folio)))
4650 folio_mark_dirty(folio);
4651
4652 old_gen = folio_lru_gen(folio);
4653 if (old_gen < 0)
4654 folio_set_referenced(folio);
4655 else if (old_gen != new_gen)
4656 __set_bit(i, bitmap);
4657 }
4658
4659 arch_leave_lazy_mmu_mode();
4660 rcu_read_unlock();
4661
bd74fdae
YZ
4662 /* feedback from rmap walkers to page table walkers */
4663 if (suitable_to_scan(i, young))
4664 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4665
4666 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
018ee47f
YZ
4667 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4668 folio = pfn_folio(pte_pfn(pte[i]));
4669 folio_activate(folio);
4670 }
4671 return;
4672 }
4673
4674 /* folio_update_gen() requires stable folio_memcg() */
4675 if (!mem_cgroup_trylock_pages(memcg))
4676 return;
4677
bd74fdae
YZ
4678 if (!walk) {
4679 spin_lock_irq(&lruvec->lru_lock);
4680 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4681 }
018ee47f
YZ
4682
4683 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4684 folio = pfn_folio(pte_pfn(pte[i]));
4685 if (folio_memcg_rcu(folio) != memcg)
4686 continue;
4687
4688 old_gen = folio_update_gen(folio, new_gen);
4689 if (old_gen < 0 || old_gen == new_gen)
4690 continue;
4691
bd74fdae
YZ
4692 if (walk)
4693 update_batch_size(walk, folio, old_gen, new_gen);
4694 else
4695 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
018ee47f
YZ
4696 }
4697
bd74fdae
YZ
4698 if (!walk)
4699 spin_unlock_irq(&lruvec->lru_lock);
018ee47f
YZ
4700
4701 mem_cgroup_unlock_pages();
4702}
4703
ac35a490
YZ
4704/******************************************************************************
4705 * the eviction
4706 ******************************************************************************/
4707
4708static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4709{
4710 bool success;
4711 int gen = folio_lru_gen(folio);
4712 int type = folio_is_file_lru(folio);
4713 int zone = folio_zonenum(folio);
4714 int delta = folio_nr_pages(folio);
4715 int refs = folio_lru_refs(folio);
4716 int tier = lru_tier_from_refs(refs);
4717 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4718
4719 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4720
4721 /* unevictable */
4722 if (!folio_evictable(folio)) {
4723 success = lru_gen_del_folio(lruvec, folio, true);
4724 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4725 folio_set_unevictable(folio);
4726 lruvec_add_folio(lruvec, folio);
4727 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4728 return true;
4729 }
4730
4731 /* dirty lazyfree */
4732 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4733 success = lru_gen_del_folio(lruvec, folio, true);
4734 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4735 folio_set_swapbacked(folio);
4736 lruvec_add_folio_tail(lruvec, folio);
4737 return true;
4738 }
4739
018ee47f
YZ
4740 /* promoted */
4741 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4742 list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4743 return true;
4744 }
4745
ac35a490
YZ
4746 /* protected */
4747 if (tier > tier_idx) {
4748 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4749
4750 gen = folio_inc_gen(lruvec, folio, false);
4751 list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]);
4752
4753 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4754 lrugen->protected[hist][type][tier - 1] + delta);
4755 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4756 return true;
4757 }
4758
4759 /* waiting for writeback */
4760 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4761 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4762 gen = folio_inc_gen(lruvec, folio, true);
4763 list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4764 return true;
4765 }
4766
4767 return false;
4768}
4769
4770static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4771{
4772 bool success;
4773
4774 /* unmapping inhibited */
4775 if (!sc->may_unmap && folio_mapped(folio))
4776 return false;
4777
4778 /* swapping inhibited */
4779 if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
4780 (folio_test_dirty(folio) ||
4781 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4782 return false;
4783
4784 /* raced with release_pages() */
4785 if (!folio_try_get(folio))
4786 return false;
4787
4788 /* raced with another isolation */
4789 if (!folio_test_clear_lru(folio)) {
4790 folio_put(folio);
4791 return false;
4792 }
4793
4794 /* see the comment on MAX_NR_TIERS */
4795 if (!folio_test_referenced(folio))
4796 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4797
4798 /* for shrink_page_list() */
4799 folio_clear_reclaim(folio);
4800 folio_clear_referenced(folio);
4801
4802 success = lru_gen_del_folio(lruvec, folio, true);
4803 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4804
4805 return true;
4806}
4807
4808static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4809 int type, int tier, struct list_head *list)
4810{
4811 int gen, zone;
4812 enum vm_event_item item;
4813 int sorted = 0;
4814 int scanned = 0;
4815 int isolated = 0;
4816 int remaining = MAX_LRU_BATCH;
4817 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4818 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4819
4820 VM_WARN_ON_ONCE(!list_empty(list));
4821
4822 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4823 return 0;
4824
4825 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4826
4827 for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4828 LIST_HEAD(moved);
4829 int skipped = 0;
4830 struct list_head *head = &lrugen->lists[gen][type][zone];
4831
4832 while (!list_empty(head)) {
4833 struct folio *folio = lru_to_folio(head);
4834 int delta = folio_nr_pages(folio);
4835
4836 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4837 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4838 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4839 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4840
4841 scanned += delta;
4842
4843 if (sort_folio(lruvec, folio, tier))
4844 sorted += delta;
4845 else if (isolate_folio(lruvec, folio, sc)) {
4846 list_add(&folio->lru, list);
4847 isolated += delta;
4848 } else {
4849 list_move(&folio->lru, &moved);
4850 skipped += delta;
4851 }
4852
4853 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4854 break;
4855 }
4856
4857 if (skipped) {
4858 list_splice(&moved, head);
4859 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4860 }
4861
4862 if (!remaining || isolated >= MIN_LRU_BATCH)
4863 break;
4864 }
4865
4866 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
4867 if (!cgroup_reclaim(sc)) {
4868 __count_vm_events(item, isolated);
4869 __count_vm_events(PGREFILL, sorted);
4870 }
4871 __count_memcg_events(memcg, item, isolated);
4872 __count_memcg_events(memcg, PGREFILL, sorted);
4873 __count_vm_events(PGSCAN_ANON + type, isolated);
4874
4875 /*
4876 * There might not be eligible pages due to reclaim_idx, may_unmap and
4877 * may_writepage. Check the remaining to prevent livelock if it's not
4878 * making progress.
4879 */
4880 return isolated || !remaining ? scanned : 0;
4881}
4882
4883static int get_tier_idx(struct lruvec *lruvec, int type)
4884{
4885 int tier;
4886 struct ctrl_pos sp, pv;
4887
4888 /*
4889 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4890 * This value is chosen because any other tier would have at least twice
4891 * as many refaults as the first tier.
4892 */
4893 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4894 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4895 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4896 if (!positive_ctrl_err(&sp, &pv))
4897 break;
4898 }
4899
4900 return tier - 1;
4901}
4902
4903static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4904{
4905 int type, tier;
4906 struct ctrl_pos sp, pv;
4907 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4908
4909 /*
4910 * Compare the first tier of anon with that of file to determine which
4911 * type to scan. Also need to compare other tiers of the selected type
4912 * with the first tier of the other type to determine the last tier (of
4913 * the selected type) to evict.
4914 */
4915 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4916 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4917 type = positive_ctrl_err(&sp, &pv);
4918
4919 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4920 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4921 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4922 if (!positive_ctrl_err(&sp, &pv))
4923 break;
4924 }
4925
4926 *tier_idx = tier - 1;
4927
4928 return type;
4929}
4930
4931static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4932 int *type_scanned, struct list_head *list)
4933{
4934 int i;
4935 int type;
4936 int scanned;
4937 int tier = -1;
4938 DEFINE_MIN_SEQ(lruvec);
4939
4940 /*
4941 * Try to make the obvious choice first. When anon and file are both
4942 * available from the same generation, interpret swappiness 1 as file
4943 * first and 200 as anon first.
4944 */
4945 if (!swappiness)
4946 type = LRU_GEN_FILE;
4947 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4948 type = LRU_GEN_ANON;
4949 else if (swappiness == 1)
4950 type = LRU_GEN_FILE;
4951 else if (swappiness == 200)
4952 type = LRU_GEN_ANON;
4953 else
4954 type = get_type_to_scan(lruvec, swappiness, &tier);
4955
4956 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4957 if (tier < 0)
4958 tier = get_tier_idx(lruvec, type);
4959
4960 scanned = scan_folios(lruvec, sc, type, tier, list);
4961 if (scanned)
4962 break;
4963
4964 type = !type;
4965 tier = -1;
4966 }
4967
4968 *type_scanned = type;
4969
4970 return scanned;
4971}
4972
f76c8337
YZ
4973static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4974 bool *need_swapping)
ac35a490
YZ
4975{
4976 int type;
4977 int scanned;
4978 int reclaimed;
4979 LIST_HEAD(list);
4980 struct folio *folio;
4981 enum vm_event_item item;
4982 struct reclaim_stat stat;
bd74fdae 4983 struct lru_gen_mm_walk *walk;
ac35a490
YZ
4984 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4985 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4986
4987 spin_lock_irq(&lruvec->lru_lock);
4988
4989 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4990
4991 scanned += try_to_inc_min_seq(lruvec, swappiness);
4992
4993 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4994 scanned = 0;
4995
4996 spin_unlock_irq(&lruvec->lru_lock);
4997
4998 if (list_empty(&list))
4999 return scanned;
5000
5001 reclaimed = shrink_page_list(&list, pgdat, sc, &stat, false);
5002
5003 list_for_each_entry(folio, &list, lru) {
5004 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5005 if (folio_test_workingset(folio))
5006 folio_set_referenced(folio);
5007
5008 /* don't add rejected pages to the oldest generation */
5009 if (folio_test_reclaim(folio) &&
5010 (folio_test_dirty(folio) || folio_test_writeback(folio)))
5011 folio_clear_active(folio);
5012 else
5013 folio_set_active(folio);
5014 }
5015
5016 spin_lock_irq(&lruvec->lru_lock);
5017
5018 move_pages_to_lru(lruvec, &list);
5019
bd74fdae
YZ
5020 walk = current->reclaim_state->mm_walk;
5021 if (walk && walk->batched)
5022 reset_batch_size(lruvec, walk);
5023
ac35a490
YZ
5024 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
5025 if (!cgroup_reclaim(sc))
5026 __count_vm_events(item, reclaimed);
5027 __count_memcg_events(memcg, item, reclaimed);
5028 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5029
5030 spin_unlock_irq(&lruvec->lru_lock);
5031
5032 mem_cgroup_uncharge_list(&list);
5033 free_unref_page_list(&list);
5034
5035 sc->nr_reclaimed += reclaimed;
5036
f76c8337
YZ
5037 if (need_swapping && type == LRU_GEN_ANON)
5038 *need_swapping = true;
5039
ac35a490
YZ
5040 return scanned;
5041}
5042
bd74fdae
YZ
5043/*
5044 * For future optimizations:
5045 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5046 * reclaim.
5047 */
ac35a490 5048static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
f76c8337 5049 bool can_swap, bool *need_aging)
ac35a490 5050{
ac35a490
YZ
5051 unsigned long nr_to_scan;
5052 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5053 DEFINE_MAX_SEQ(lruvec);
5054 DEFINE_MIN_SEQ(lruvec);
5055
5056 if (mem_cgroup_below_min(memcg) ||
5057 (mem_cgroup_below_low(memcg) && !sc->memcg_low_reclaim))
5058 return 0;
5059
f76c8337
YZ
5060 *need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
5061 if (!*need_aging)
ac35a490
YZ
5062 return nr_to_scan;
5063
5064 /* skip the aging path at the default priority */
5065 if (sc->priority == DEF_PRIORITY)
5066 goto done;
5067
5068 /* leave the work to lru_gen_age_node() */
5069 if (current_is_kswapd())
5070 return 0;
5071
d6c3af7d 5072 if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
bd74fdae 5073 return nr_to_scan;
ac35a490
YZ
5074done:
5075 return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
5076}
5077
f76c8337
YZ
5078static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq,
5079 struct scan_control *sc, bool need_swapping)
5080{
5081 int i;
5082 DEFINE_MAX_SEQ(lruvec);
5083
5084 if (!current_is_kswapd()) {
5085 /* age each memcg once to ensure fairness */
5086 if (max_seq - seq > 1)
5087 return true;
5088
5089 /* over-swapping can increase allocation latency */
5090 if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping)
5091 return true;
5092
5093 /* give this thread a chance to exit and free its memory */
5094 if (fatal_signal_pending(current)) {
5095 sc->nr_reclaimed += MIN_LRU_BATCH;
5096 return true;
5097 }
5098
5099 if (cgroup_reclaim(sc))
5100 return false;
5101 } else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim)
5102 return false;
5103
5104 /* keep scanning at low priorities to ensure fairness */
5105 if (sc->priority > DEF_PRIORITY - 2)
5106 return false;
5107
5108 /*
5109 * A minimum amount of work was done under global memory pressure. For
5110 * kswapd, it may be overshooting. For direct reclaim, the target isn't
5111 * met, and yet the allocation may still succeed, since kswapd may have
5112 * caught up. In either case, it's better to stop now, and restart if
5113 * necessary.
5114 */
5115 for (i = 0; i <= sc->reclaim_idx; i++) {
5116 unsigned long wmark;
5117 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5118
5119 if (!managed_zone(zone))
5120 continue;
5121
5122 wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone);
5123 if (wmark > zone_page_state(zone, NR_FREE_PAGES))
5124 return false;
5125 }
5126
5127 sc->nr_reclaimed += MIN_LRU_BATCH;
5128
5129 return true;
5130}
5131
ac35a490
YZ
5132static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5133{
5134 struct blk_plug plug;
f76c8337
YZ
5135 bool need_aging = false;
5136 bool need_swapping = false;
ac35a490 5137 unsigned long scanned = 0;
f76c8337
YZ
5138 unsigned long reclaimed = sc->nr_reclaimed;
5139 DEFINE_MAX_SEQ(lruvec);
ac35a490
YZ
5140
5141 lru_add_drain();
5142
5143 blk_start_plug(&plug);
5144
bd74fdae
YZ
5145 set_mm_walk(lruvec_pgdat(lruvec));
5146
ac35a490
YZ
5147 while (true) {
5148 int delta;
5149 int swappiness;
5150 unsigned long nr_to_scan;
5151
5152 if (sc->may_swap)
5153 swappiness = get_swappiness(lruvec, sc);
5154 else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
5155 swappiness = 1;
5156 else
5157 swappiness = 0;
5158
f76c8337 5159 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
ac35a490 5160 if (!nr_to_scan)
f76c8337 5161 goto done;
ac35a490 5162
f76c8337 5163 delta = evict_folios(lruvec, sc, swappiness, &need_swapping);
ac35a490 5164 if (!delta)
f76c8337 5165 goto done;
ac35a490
YZ
5166
5167 scanned += delta;
5168 if (scanned >= nr_to_scan)
5169 break;
5170
f76c8337
YZ
5171 if (should_abort_scan(lruvec, max_seq, sc, need_swapping))
5172 break;
5173
ac35a490
YZ
5174 cond_resched();
5175 }
5176
f76c8337
YZ
5177 /* see the comment in lru_gen_age_node() */
5178 if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
5179 sc->memcgs_need_aging = false;
5180done:
bd74fdae
YZ
5181 clear_mm_walk();
5182
ac35a490
YZ
5183 blk_finish_plug(&plug);
5184}
5185
354ed597
YZ
5186/******************************************************************************
5187 * state change
5188 ******************************************************************************/
5189
5190static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5191{
5192 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5193
5194 if (lrugen->enabled) {
5195 enum lru_list lru;
5196
5197 for_each_evictable_lru(lru) {
5198 if (!list_empty(&lruvec->lists[lru]))
5199 return false;
5200 }
5201 } else {
5202 int gen, type, zone;
5203
5204 for_each_gen_type_zone(gen, type, zone) {
5205 if (!list_empty(&lrugen->lists[gen][type][zone]))
5206 return false;
5207 }
5208 }
5209
5210 return true;
5211}
5212
5213static bool fill_evictable(struct lruvec *lruvec)
5214{
5215 enum lru_list lru;
5216 int remaining = MAX_LRU_BATCH;
5217
5218 for_each_evictable_lru(lru) {
5219 int type = is_file_lru(lru);
5220 bool active = is_active_lru(lru);
5221 struct list_head *head = &lruvec->lists[lru];
5222
5223 while (!list_empty(head)) {
5224 bool success;
5225 struct folio *folio = lru_to_folio(head);
5226
5227 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5228 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5229 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5230 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5231
5232 lruvec_del_folio(lruvec, folio);
5233 success = lru_gen_add_folio(lruvec, folio, false);
5234 VM_WARN_ON_ONCE(!success);
5235
5236 if (!--remaining)
5237 return false;
5238 }
5239 }
5240
5241 return true;
5242}
5243
5244static bool drain_evictable(struct lruvec *lruvec)
5245{
5246 int gen, type, zone;
5247 int remaining = MAX_LRU_BATCH;
5248
5249 for_each_gen_type_zone(gen, type, zone) {
5250 struct list_head *head = &lruvec->lrugen.lists[gen][type][zone];
5251
5252 while (!list_empty(head)) {
5253 bool success;
5254 struct folio *folio = lru_to_folio(head);
5255
5256 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5257 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5258 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5259 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5260
5261 success = lru_gen_del_folio(lruvec, folio, false);
5262 VM_WARN_ON_ONCE(!success);
5263 lruvec_add_folio(lruvec, folio);
5264
5265 if (!--remaining)
5266 return false;
5267 }
5268 }
5269
5270 return true;
5271}
5272
5273static void lru_gen_change_state(bool enabled)
5274{
5275 static DEFINE_MUTEX(state_mutex);
5276
5277 struct mem_cgroup *memcg;
5278
5279 cgroup_lock();
5280 cpus_read_lock();
5281 get_online_mems();
5282 mutex_lock(&state_mutex);
5283
5284 if (enabled == lru_gen_enabled())
5285 goto unlock;
5286
5287 if (enabled)
5288 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5289 else
5290 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5291
5292 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5293 do {
5294 int nid;
5295
5296 for_each_node(nid) {
5297 struct lruvec *lruvec = get_lruvec(memcg, nid);
5298
5299 if (!lruvec)
5300 continue;
5301
5302 spin_lock_irq(&lruvec->lru_lock);
5303
5304 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5305 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5306
5307 lruvec->lrugen.enabled = enabled;
5308
5309 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5310 spin_unlock_irq(&lruvec->lru_lock);
5311 cond_resched();
5312 spin_lock_irq(&lruvec->lru_lock);
5313 }
5314
5315 spin_unlock_irq(&lruvec->lru_lock);
5316 }
5317
5318 cond_resched();
5319 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5320unlock:
5321 mutex_unlock(&state_mutex);
5322 put_online_mems();
5323 cpus_read_unlock();
5324 cgroup_unlock();
5325}
5326
5327/******************************************************************************
5328 * sysfs interface
5329 ******************************************************************************/
5330
1332a809
YZ
5331static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5332{
5333 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5334}
5335
07017acb 5336/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
1332a809
YZ
5337static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5338 const char *buf, size_t len)
5339{
5340 unsigned int msecs;
5341
5342 if (kstrtouint(buf, 0, &msecs))
5343 return -EINVAL;
5344
5345 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5346
5347 return len;
5348}
5349
5350static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5351 min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5352);
5353
354ed597
YZ
5354static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5355{
5356 unsigned int caps = 0;
5357
5358 if (get_cap(LRU_GEN_CORE))
5359 caps |= BIT(LRU_GEN_CORE);
5360
5361 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5362 caps |= BIT(LRU_GEN_MM_WALK);
5363
5364 if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) && get_cap(LRU_GEN_NONLEAF_YOUNG))
5365 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5366
5367 return snprintf(buf, PAGE_SIZE, "0x%04x\n", caps);
5368}
5369
07017acb 5370/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
354ed597
YZ
5371static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5372 const char *buf, size_t len)
5373{
5374 int i;
5375 unsigned int caps;
5376
5377 if (tolower(*buf) == 'n')
5378 caps = 0;
5379 else if (tolower(*buf) == 'y')
5380 caps = -1;
5381 else if (kstrtouint(buf, 0, &caps))
5382 return -EINVAL;
5383
5384 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5385 bool enabled = caps & BIT(i);
5386
5387 if (i == LRU_GEN_CORE)
5388 lru_gen_change_state(enabled);
5389 else if (enabled)
5390 static_branch_enable(&lru_gen_caps[i]);
5391 else
5392 static_branch_disable(&lru_gen_caps[i]);
5393 }
5394
5395 return len;
5396}
5397
5398static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5399 enabled, 0644, show_enabled, store_enabled
5400);
5401
5402static struct attribute *lru_gen_attrs[] = {
1332a809 5403 &lru_gen_min_ttl_attr.attr,
354ed597
YZ
5404 &lru_gen_enabled_attr.attr,
5405 NULL
5406};
5407
5408static struct attribute_group lru_gen_attr_group = {
5409 .name = "lru_gen",
5410 .attrs = lru_gen_attrs,
5411};
5412
d6c3af7d
YZ
5413/******************************************************************************
5414 * debugfs interface
5415 ******************************************************************************/
5416
5417static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5418{
5419 struct mem_cgroup *memcg;
5420 loff_t nr_to_skip = *pos;
5421
5422 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5423 if (!m->private)
5424 return ERR_PTR(-ENOMEM);
5425
5426 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5427 do {
5428 int nid;
5429
5430 for_each_node_state(nid, N_MEMORY) {
5431 if (!nr_to_skip--)
5432 return get_lruvec(memcg, nid);
5433 }
5434 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5435
5436 return NULL;
5437}
5438
5439static void lru_gen_seq_stop(struct seq_file *m, void *v)
5440{
5441 if (!IS_ERR_OR_NULL(v))
5442 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5443
5444 kvfree(m->private);
5445 m->private = NULL;
5446}
5447
5448static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5449{
5450 int nid = lruvec_pgdat(v)->node_id;
5451 struct mem_cgroup *memcg = lruvec_memcg(v);
5452
5453 ++*pos;
5454
5455 nid = next_memory_node(nid);
5456 if (nid == MAX_NUMNODES) {
5457 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5458 if (!memcg)
5459 return NULL;
5460
5461 nid = first_memory_node;
5462 }
5463
5464 return get_lruvec(memcg, nid);
5465}
5466
5467static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5468 unsigned long max_seq, unsigned long *min_seq,
5469 unsigned long seq)
5470{
5471 int i;
5472 int type, tier;
5473 int hist = lru_hist_from_seq(seq);
5474 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5475
5476 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5477 seq_printf(m, " %10d", tier);
5478 for (type = 0; type < ANON_AND_FILE; type++) {
5479 const char *s = " ";
5480 unsigned long n[3] = {};
5481
5482 if (seq == max_seq) {
5483 s = "RT ";
5484 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5485 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5486 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5487 s = "rep";
5488 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5489 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5490 if (tier)
5491 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5492 }
5493
5494 for (i = 0; i < 3; i++)
5495 seq_printf(m, " %10lu%c", n[i], s[i]);
5496 }
5497 seq_putc(m, '\n');
5498 }
5499
5500 seq_puts(m, " ");
5501 for (i = 0; i < NR_MM_STATS; i++) {
5502 const char *s = " ";
5503 unsigned long n = 0;
5504
5505 if (seq == max_seq && NR_HIST_GENS == 1) {
5506 s = "LOYNFA";
5507 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5508 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5509 s = "loynfa";
5510 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5511 }
5512
5513 seq_printf(m, " %10lu%c", n, s[i]);
5514 }
5515 seq_putc(m, '\n');
5516}
5517
07017acb 5518/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
d6c3af7d
YZ
5519static int lru_gen_seq_show(struct seq_file *m, void *v)
5520{
5521 unsigned long seq;
5522 bool full = !debugfs_real_fops(m->file)->write;
5523 struct lruvec *lruvec = v;
5524 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5525 int nid = lruvec_pgdat(lruvec)->node_id;
5526 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5527 DEFINE_MAX_SEQ(lruvec);
5528 DEFINE_MIN_SEQ(lruvec);
5529
5530 if (nid == first_memory_node) {
5531 const char *path = memcg ? m->private : "";
5532
5533#ifdef CONFIG_MEMCG
5534 if (memcg)
5535 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5536#endif
5537 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5538 }
5539
5540 seq_printf(m, " node %5d\n", nid);
5541
5542 if (!full)
5543 seq = min_seq[LRU_GEN_ANON];
5544 else if (max_seq >= MAX_NR_GENS)
5545 seq = max_seq - MAX_NR_GENS + 1;
5546 else
5547 seq = 0;
5548
5549 for (; seq <= max_seq; seq++) {
5550 int type, zone;
5551 int gen = lru_gen_from_seq(seq);
5552 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5553
5554 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5555
5556 for (type = 0; type < ANON_AND_FILE; type++) {
5557 unsigned long size = 0;
5558 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5559
5560 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5561 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5562
5563 seq_printf(m, " %10lu%c", size, mark);
5564 }
5565
5566 seq_putc(m, '\n');
5567
5568 if (full)
5569 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5570 }
5571
5572 return 0;
5573}
5574
5575static const struct seq_operations lru_gen_seq_ops = {
5576 .start = lru_gen_seq_start,
5577 .stop = lru_gen_seq_stop,
5578 .next = lru_gen_seq_next,
5579 .show = lru_gen_seq_show,
5580};
5581
5582static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5583 bool can_swap, bool force_scan)
5584{
5585 DEFINE_MAX_SEQ(lruvec);
5586 DEFINE_MIN_SEQ(lruvec);
5587
5588 if (seq < max_seq)
5589 return 0;
5590
5591 if (seq > max_seq)
5592 return -EINVAL;
5593
5594 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5595 return -ERANGE;
5596
5597 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5598
5599 return 0;
5600}
5601
5602static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5603 int swappiness, unsigned long nr_to_reclaim)
5604{
5605 DEFINE_MAX_SEQ(lruvec);
5606
5607 if (seq + MIN_NR_GENS > max_seq)
5608 return -EINVAL;
5609
5610 sc->nr_reclaimed = 0;
5611
5612 while (!signal_pending(current)) {
5613 DEFINE_MIN_SEQ(lruvec);
5614
5615 if (seq < min_seq[!swappiness])
5616 return 0;
5617
5618 if (sc->nr_reclaimed >= nr_to_reclaim)
5619 return 0;
5620
5621 if (!evict_folios(lruvec, sc, swappiness, NULL))
5622 return 0;
5623
5624 cond_resched();
5625 }
5626
5627 return -EINTR;
5628}
5629
5630static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5631 struct scan_control *sc, int swappiness, unsigned long opt)
5632{
5633 struct lruvec *lruvec;
5634 int err = -EINVAL;
5635 struct mem_cgroup *memcg = NULL;
5636
5637 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5638 return -EINVAL;
5639
5640 if (!mem_cgroup_disabled()) {
5641 rcu_read_lock();
5642 memcg = mem_cgroup_from_id(memcg_id);
5643#ifdef CONFIG_MEMCG
5644 if (memcg && !css_tryget(&memcg->css))
5645 memcg = NULL;
5646#endif
5647 rcu_read_unlock();
5648
5649 if (!memcg)
5650 return -EINVAL;
5651 }
5652
5653 if (memcg_id != mem_cgroup_id(memcg))
5654 goto done;
5655
5656 lruvec = get_lruvec(memcg, nid);
5657
5658 if (swappiness < 0)
5659 swappiness = get_swappiness(lruvec, sc);
5660 else if (swappiness > 200)
5661 goto done;
5662
5663 switch (cmd) {
5664 case '+':
5665 err = run_aging(lruvec, seq, sc, swappiness, opt);
5666 break;
5667 case '-':
5668 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5669 break;
5670 }
5671done:
5672 mem_cgroup_put(memcg);
5673
5674 return err;
5675}
5676
07017acb 5677/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
d6c3af7d
YZ
5678static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5679 size_t len, loff_t *pos)
5680{
5681 void *buf;
5682 char *cur, *next;
5683 unsigned int flags;
5684 struct blk_plug plug;
5685 int err = -EINVAL;
5686 struct scan_control sc = {
5687 .may_writepage = true,
5688 .may_unmap = true,
5689 .may_swap = true,
5690 .reclaim_idx = MAX_NR_ZONES - 1,
5691 .gfp_mask = GFP_KERNEL,
5692 };
5693
5694 buf = kvmalloc(len + 1, GFP_KERNEL);
5695 if (!buf)
5696 return -ENOMEM;
5697
5698 if (copy_from_user(buf, src, len)) {
5699 kvfree(buf);
5700 return -EFAULT;
5701 }
5702
5703 set_task_reclaim_state(current, &sc.reclaim_state);
5704 flags = memalloc_noreclaim_save();
5705 blk_start_plug(&plug);
5706 if (!set_mm_walk(NULL)) {
5707 err = -ENOMEM;
5708 goto done;
5709 }
5710
5711 next = buf;
5712 next[len] = '\0';
5713
5714 while ((cur = strsep(&next, ",;\n"))) {
5715 int n;
5716 int end;
5717 char cmd;
5718 unsigned int memcg_id;
5719 unsigned int nid;
5720 unsigned long seq;
5721 unsigned int swappiness = -1;
5722 unsigned long opt = -1;
5723
5724 cur = skip_spaces(cur);
5725 if (!*cur)
5726 continue;
5727
5728 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5729 &seq, &end, &swappiness, &end, &opt, &end);
5730 if (n < 4 || cur[end]) {
5731 err = -EINVAL;
5732 break;
5733 }
5734
5735 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5736 if (err)
5737 break;
5738 }
5739done:
5740 clear_mm_walk();
5741 blk_finish_plug(&plug);
5742 memalloc_noreclaim_restore(flags);
5743 set_task_reclaim_state(current, NULL);
5744
5745 kvfree(buf);
5746
5747 return err ? : len;
5748}
5749
5750static int lru_gen_seq_open(struct inode *inode, struct file *file)
5751{
5752 return seq_open(file, &lru_gen_seq_ops);
5753}
5754
5755static const struct file_operations lru_gen_rw_fops = {
5756 .open = lru_gen_seq_open,
5757 .read = seq_read,
5758 .write = lru_gen_seq_write,
5759 .llseek = seq_lseek,
5760 .release = seq_release,
5761};
5762
5763static const struct file_operations lru_gen_ro_fops = {
5764 .open = lru_gen_seq_open,
5765 .read = seq_read,
5766 .llseek = seq_lseek,
5767 .release = seq_release,
5768};
5769
ec1c86b2
YZ
5770/******************************************************************************
5771 * initialization
5772 ******************************************************************************/
5773
5774void lru_gen_init_lruvec(struct lruvec *lruvec)
5775{
1332a809 5776 int i;
ec1c86b2
YZ
5777 int gen, type, zone;
5778 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5779
5780 lrugen->max_seq = MIN_NR_GENS + 1;
354ed597 5781 lrugen->enabled = lru_gen_enabled();
ec1c86b2 5782
1332a809
YZ
5783 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5784 lrugen->timestamps[i] = jiffies;
5785
ec1c86b2
YZ
5786 for_each_gen_type_zone(gen, type, zone)
5787 INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
bd74fdae
YZ
5788
5789 lruvec->mm_state.seq = MIN_NR_GENS;
5790 init_waitqueue_head(&lruvec->mm_state.wait);
ec1c86b2
YZ
5791}
5792
5793#ifdef CONFIG_MEMCG
5794void lru_gen_init_memcg(struct mem_cgroup *memcg)
5795{
bd74fdae
YZ
5796 INIT_LIST_HEAD(&memcg->mm_list.fifo);
5797 spin_lock_init(&memcg->mm_list.lock);
ec1c86b2
YZ
5798}
5799
5800void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5801{
bd74fdae 5802 int i;
ec1c86b2
YZ
5803 int nid;
5804
5805 for_each_node(nid) {
5806 struct lruvec *lruvec = get_lruvec(memcg, nid);
5807
5808 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5809 sizeof(lruvec->lrugen.nr_pages)));
bd74fdae
YZ
5810
5811 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5812 bitmap_free(lruvec->mm_state.filters[i]);
5813 lruvec->mm_state.filters[i] = NULL;
5814 }
ec1c86b2
YZ
5815 }
5816}
5817#endif
5818
5819static int __init init_lru_gen(void)
5820{
5821 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5822 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5823
354ed597
YZ
5824 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5825 pr_err("lru_gen: failed to create sysfs group\n");
5826
d6c3af7d
YZ
5827 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5828 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5829
ec1c86b2
YZ
5830 return 0;
5831};
5832late_initcall(init_lru_gen);
5833
ac35a490
YZ
5834#else /* !CONFIG_LRU_GEN */
5835
5836static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5837{
5838}
5839
5840static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5841{
5842}
5843
ec1c86b2
YZ
5844#endif /* CONFIG_LRU_GEN */
5845
afaf07a6 5846static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
5847{
5848 unsigned long nr[NR_LRU_LISTS];
e82e0561 5849 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
5850 unsigned long nr_to_scan;
5851 enum lru_list lru;
5852 unsigned long nr_reclaimed = 0;
5853 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5854 struct blk_plug plug;
1a501907 5855 bool scan_adjusted;
9b4f98cd 5856
ac35a490
YZ
5857 if (lru_gen_enabled()) {
5858 lru_gen_shrink_lruvec(lruvec, sc);
5859 return;
5860 }
5861
afaf07a6 5862 get_scan_count(lruvec, sc, nr);
9b4f98cd 5863
e82e0561
MG
5864 /* Record the original scan target for proportional adjustments later */
5865 memcpy(targets, nr, sizeof(nr));
5866
1a501907
MG
5867 /*
5868 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5869 * event that can occur when there is little memory pressure e.g.
5870 * multiple streaming readers/writers. Hence, we do not abort scanning
5871 * when the requested number of pages are reclaimed when scanning at
5872 * DEF_PRIORITY on the assumption that the fact we are direct
5873 * reclaiming implies that kswapd is not keeping up and it is best to
5874 * do a batch of work at once. For memcg reclaim one check is made to
5875 * abort proportional reclaim if either the file or anon lru has already
5876 * dropped to zero at the first pass.
5877 */
b5ead35e 5878 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
5879 sc->priority == DEF_PRIORITY);
5880
9b4f98cd
JW
5881 blk_start_plug(&plug);
5882 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5883 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
5884 unsigned long nr_anon, nr_file, percentage;
5885 unsigned long nr_scanned;
5886
9b4f98cd
JW
5887 for_each_evictable_lru(lru) {
5888 if (nr[lru]) {
5889 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5890 nr[lru] -= nr_to_scan;
5891
5892 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 5893 lruvec, sc);
9b4f98cd
JW
5894 }
5895 }
e82e0561 5896
bd041733
MH
5897 cond_resched();
5898
e82e0561
MG
5899 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
5900 continue;
5901
e82e0561
MG
5902 /*
5903 * For kswapd and memcg, reclaim at least the number of pages
1a501907 5904 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
5905 * proportionally what was requested by get_scan_count(). We
5906 * stop reclaiming one LRU and reduce the amount scanning
5907 * proportional to the original scan target.
5908 */
5909 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5910 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5911
1a501907
MG
5912 /*
5913 * It's just vindictive to attack the larger once the smaller
5914 * has gone to zero. And given the way we stop scanning the
5915 * smaller below, this makes sure that we only make one nudge
5916 * towards proportionality once we've got nr_to_reclaim.
5917 */
5918 if (!nr_file || !nr_anon)
5919 break;
5920
e82e0561
MG
5921 if (nr_file > nr_anon) {
5922 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5923 targets[LRU_ACTIVE_ANON] + 1;
5924 lru = LRU_BASE;
5925 percentage = nr_anon * 100 / scan_target;
5926 } else {
5927 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5928 targets[LRU_ACTIVE_FILE] + 1;
5929 lru = LRU_FILE;
5930 percentage = nr_file * 100 / scan_target;
5931 }
5932
5933 /* Stop scanning the smaller of the LRU */
5934 nr[lru] = 0;
5935 nr[lru + LRU_ACTIVE] = 0;
5936
5937 /*
5938 * Recalculate the other LRU scan count based on its original
5939 * scan target and the percentage scanning already complete
5940 */
5941 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5942 nr_scanned = targets[lru] - nr[lru];
5943 nr[lru] = targets[lru] * (100 - percentage) / 100;
5944 nr[lru] -= min(nr[lru], nr_scanned);
5945
5946 lru += LRU_ACTIVE;
5947 nr_scanned = targets[lru] - nr[lru];
5948 nr[lru] = targets[lru] * (100 - percentage) / 100;
5949 nr[lru] -= min(nr[lru], nr_scanned);
5950
5951 scan_adjusted = true;
9b4f98cd
JW
5952 }
5953 blk_finish_plug(&plug);
5954 sc->nr_reclaimed += nr_reclaimed;
5955
5956 /*
5957 * Even if we did not try to evict anon pages at all, we want to
5958 * rebalance the anon lru active/inactive ratio.
5959 */
2f368a9f
DH
5960 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5961 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
5962 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5963 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
5964}
5965
23b9da55 5966/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 5967static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 5968{
d84da3f9 5969 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 5970 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 5971 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
5972 return true;
5973
5974 return false;
5975}
5976
3e7d3449 5977/*
23b9da55
MG
5978 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5979 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5980 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 5981 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 5982 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 5983 */
a9dd0a83 5984static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 5985 unsigned long nr_reclaimed,
3e7d3449
MG
5986 struct scan_control *sc)
5987{
5988 unsigned long pages_for_compaction;
5989 unsigned long inactive_lru_pages;
a9dd0a83 5990 int z;
3e7d3449
MG
5991
5992 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 5993 if (!in_reclaim_compaction(sc))
3e7d3449
MG
5994 return false;
5995
5ee04716
VB
5996 /*
5997 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5998 * number of pages that were scanned. This will return to the caller
5999 * with the risk reclaim/compaction and the resulting allocation attempt
6000 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6001 * allocations through requiring that the full LRU list has been scanned
6002 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6003 * scan, but that approximation was wrong, and there were corner cases
6004 * where always a non-zero amount of pages were scanned.
6005 */
6006 if (!nr_reclaimed)
6007 return false;
3e7d3449 6008
3e7d3449 6009 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
6010 for (z = 0; z <= sc->reclaim_idx; z++) {
6011 struct zone *zone = &pgdat->node_zones[z];
6aa303de 6012 if (!managed_zone(zone))
a9dd0a83
MG
6013 continue;
6014
6015 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 6016 case COMPACT_SUCCESS:
a9dd0a83
MG
6017 case COMPACT_CONTINUE:
6018 return false;
6019 default:
6020 /* check next zone */
6021 ;
6022 }
3e7d3449 6023 }
1c6c1597
HD
6024
6025 /*
6026 * If we have not reclaimed enough pages for compaction and the
6027 * inactive lists are large enough, continue reclaiming
6028 */
6029 pages_for_compaction = compact_gap(sc->order);
6030 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
a2a36488 6031 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
1c6c1597
HD
6032 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6033
5ee04716 6034 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
6035}
6036
0f6a5cff 6037static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 6038{
0f6a5cff 6039 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 6040 struct mem_cgroup *memcg;
1da177e4 6041
0f6a5cff 6042 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 6043 do {
afaf07a6 6044 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
6045 unsigned long reclaimed;
6046 unsigned long scanned;
5660048c 6047
e3336cab
XP
6048 /*
6049 * This loop can become CPU-bound when target memcgs
6050 * aren't eligible for reclaim - either because they
6051 * don't have any reclaimable pages, or because their
6052 * memory is explicitly protected. Avoid soft lockups.
6053 */
6054 cond_resched();
6055
45c7f7e1
CD
6056 mem_cgroup_calculate_protection(target_memcg, memcg);
6057
6058 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
6059 /*
6060 * Hard protection.
6061 * If there is no reclaimable memory, OOM.
6062 */
6063 continue;
45c7f7e1 6064 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
6065 /*
6066 * Soft protection.
6067 * Respect the protection only as long as
6068 * there is an unprotected supply
6069 * of reclaimable memory from other cgroups.
6070 */
6071 if (!sc->memcg_low_reclaim) {
6072 sc->memcg_low_skipped = 1;
bf8d5d52 6073 continue;
241994ed 6074 }
d2af3397 6075 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 6076 }
241994ed 6077
d2af3397
JW
6078 reclaimed = sc->nr_reclaimed;
6079 scanned = sc->nr_scanned;
afaf07a6
JW
6080
6081 shrink_lruvec(lruvec, sc);
70ddf637 6082
d2af3397
JW
6083 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6084 sc->priority);
6b4f7799 6085
d2af3397 6086 /* Record the group's reclaim efficiency */
73b73bac
YA
6087 if (!sc->proactive)
6088 vmpressure(sc->gfp_mask, memcg, false,
6089 sc->nr_scanned - scanned,
6090 sc->nr_reclaimed - reclaimed);
70ddf637 6091
0f6a5cff
JW
6092 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6093}
6094
6c9e0907 6095static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
6096{
6097 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 6098 unsigned long nr_reclaimed, nr_scanned;
1b05117d 6099 struct lruvec *target_lruvec;
0f6a5cff
JW
6100 bool reclaimable = false;
6101
1b05117d
JW
6102 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6103
0f6a5cff
JW
6104again:
6105 memset(&sc->nr, 0, sizeof(sc->nr));
6106
6107 nr_reclaimed = sc->nr_reclaimed;
6108 nr_scanned = sc->nr_scanned;
6109
f1e1a7be 6110 prepare_scan_count(pgdat, sc);
53138cea 6111
0f6a5cff 6112 shrink_node_memcgs(pgdat, sc);
2344d7e4 6113
d2af3397
JW
6114 if (reclaim_state) {
6115 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6116 reclaim_state->reclaimed_slab = 0;
6117 }
d108c772 6118
d2af3397 6119 /* Record the subtree's reclaim efficiency */
73b73bac
YA
6120 if (!sc->proactive)
6121 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6122 sc->nr_scanned - nr_scanned,
6123 sc->nr_reclaimed - nr_reclaimed);
d108c772 6124
d2af3397
JW
6125 if (sc->nr_reclaimed - nr_reclaimed)
6126 reclaimable = true;
d108c772 6127
d2af3397
JW
6128 if (current_is_kswapd()) {
6129 /*
6130 * If reclaim is isolating dirty pages under writeback,
6131 * it implies that the long-lived page allocation rate
6132 * is exceeding the page laundering rate. Either the
6133 * global limits are not being effective at throttling
6134 * processes due to the page distribution throughout
6135 * zones or there is heavy usage of a slow backing
6136 * device. The only option is to throttle from reclaim
6137 * context which is not ideal as there is no guarantee
6138 * the dirtying process is throttled in the same way
6139 * balance_dirty_pages() manages.
6140 *
6141 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6142 * count the number of pages under pages flagged for
6143 * immediate reclaim and stall if any are encountered
6144 * in the nr_immediate check below.
6145 */
6146 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6147 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 6148
d2af3397
JW
6149 /* Allow kswapd to start writing pages during reclaim.*/
6150 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6151 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 6152
d108c772 6153 /*
1eba09c1 6154 * If kswapd scans pages marked for immediate
d2af3397
JW
6155 * reclaim and under writeback (nr_immediate), it
6156 * implies that pages are cycling through the LRU
8cd7c588
MG
6157 * faster than they are written so forcibly stall
6158 * until some pages complete writeback.
d108c772 6159 */
d2af3397 6160 if (sc->nr.immediate)
c3f4a9a2 6161 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
d2af3397
JW
6162 }
6163
6164 /*
8cd7c588
MG
6165 * Tag a node/memcg as congested if all the dirty pages were marked
6166 * for writeback and immediate reclaim (counted in nr.congested).
1b05117d 6167 *
d2af3397 6168 * Legacy memcg will stall in page writeback so avoid forcibly
8cd7c588 6169 * stalling in reclaim_throttle().
d2af3397 6170 */
1b05117d
JW
6171 if ((current_is_kswapd() ||
6172 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 6173 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 6174 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
6175
6176 /*
8cd7c588
MG
6177 * Stall direct reclaim for IO completions if the lruvec is
6178 * node is congested. Allow kswapd to continue until it
d2af3397
JW
6179 * starts encountering unqueued dirty pages or cycling through
6180 * the LRU too quickly.
6181 */
1b05117d
JW
6182 if (!current_is_kswapd() && current_may_throttle() &&
6183 !sc->hibernation_mode &&
6184 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
1b4e3f26 6185 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
d108c772 6186
d2af3397
JW
6187 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6188 sc))
6189 goto again;
2344d7e4 6190
c73322d0
JW
6191 /*
6192 * Kswapd gives up on balancing particular nodes after too
6193 * many failures to reclaim anything from them and goes to
6194 * sleep. On reclaim progress, reset the failure counter. A
6195 * successful direct reclaim run will revive a dormant kswapd.
6196 */
6197 if (reclaimable)
6198 pgdat->kswapd_failures = 0;
f16015fb
JW
6199}
6200
53853e2d 6201/*
fdd4c614
VB
6202 * Returns true if compaction should go ahead for a costly-order request, or
6203 * the allocation would already succeed without compaction. Return false if we
6204 * should reclaim first.
53853e2d 6205 */
4f588331 6206static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 6207{
31483b6a 6208 unsigned long watermark;
fdd4c614 6209 enum compact_result suitable;
fe4b1b24 6210
fdd4c614
VB
6211 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6212 if (suitable == COMPACT_SUCCESS)
6213 /* Allocation should succeed already. Don't reclaim. */
6214 return true;
6215 if (suitable == COMPACT_SKIPPED)
6216 /* Compaction cannot yet proceed. Do reclaim. */
6217 return false;
fe4b1b24 6218
53853e2d 6219 /*
fdd4c614
VB
6220 * Compaction is already possible, but it takes time to run and there
6221 * are potentially other callers using the pages just freed. So proceed
6222 * with reclaim to make a buffer of free pages available to give
6223 * compaction a reasonable chance of completing and allocating the page.
6224 * Note that we won't actually reclaim the whole buffer in one attempt
6225 * as the target watermark in should_continue_reclaim() is lower. But if
6226 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 6227 */
fdd4c614 6228 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 6229
fdd4c614 6230 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
6231}
6232
69392a40
MG
6233static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6234{
66ce520b
MG
6235 /*
6236 * If reclaim is making progress greater than 12% efficiency then
6237 * wake all the NOPROGRESS throttled tasks.
6238 */
6239 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
69392a40
MG
6240 wait_queue_head_t *wqh;
6241
6242 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6243 if (waitqueue_active(wqh))
6244 wake_up(wqh);
6245
6246 return;
6247 }
6248
6249 /*
1b4e3f26
MG
6250 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6251 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6252 * under writeback and marked for immediate reclaim at the tail of the
6253 * LRU.
69392a40 6254 */
1b4e3f26 6255 if (current_is_kswapd() || cgroup_reclaim(sc))
69392a40
MG
6256 return;
6257
6258 /* Throttle if making no progress at high prioities. */
1b4e3f26 6259 if (sc->priority == 1 && !sc->nr_reclaimed)
c3f4a9a2 6260 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
69392a40
MG
6261}
6262
1da177e4
LT
6263/*
6264 * This is the direct reclaim path, for page-allocating processes. We only
6265 * try to reclaim pages from zones which will satisfy the caller's allocation
6266 * request.
6267 *
1da177e4
LT
6268 * If a zone is deemed to be full of pinned pages then just give it a light
6269 * scan then give up on it.
6270 */
0a0337e0 6271static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 6272{
dd1a239f 6273 struct zoneref *z;
54a6eb5c 6274 struct zone *zone;
0608f43d
AM
6275 unsigned long nr_soft_reclaimed;
6276 unsigned long nr_soft_scanned;
619d0d76 6277 gfp_t orig_mask;
79dafcdc 6278 pg_data_t *last_pgdat = NULL;
1b4e3f26 6279 pg_data_t *first_pgdat = NULL;
1cfb419b 6280
cc715d99
MG
6281 /*
6282 * If the number of buffer_heads in the machine exceeds the maximum
6283 * allowed level, force direct reclaim to scan the highmem zone as
6284 * highmem pages could be pinning lowmem pages storing buffer_heads
6285 */
619d0d76 6286 orig_mask = sc->gfp_mask;
b2e18757 6287 if (buffer_heads_over_limit) {
cc715d99 6288 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 6289 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 6290 }
cc715d99 6291
d4debc66 6292 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 6293 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
6294 /*
6295 * Take care memory controller reclaiming has small influence
6296 * to global LRU.
6297 */
b5ead35e 6298 if (!cgroup_reclaim(sc)) {
344736f2
VD
6299 if (!cpuset_zone_allowed(zone,
6300 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 6301 continue;
65ec02cb 6302
0b06496a
JW
6303 /*
6304 * If we already have plenty of memory free for
6305 * compaction in this zone, don't free any more.
6306 * Even though compaction is invoked for any
6307 * non-zero order, only frequent costly order
6308 * reclamation is disruptive enough to become a
6309 * noticeable problem, like transparent huge
6310 * page allocations.
6311 */
6312 if (IS_ENABLED(CONFIG_COMPACTION) &&
6313 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 6314 compaction_ready(zone, sc)) {
0b06496a
JW
6315 sc->compaction_ready = true;
6316 continue;
e0887c19 6317 }
0b06496a 6318
79dafcdc
MG
6319 /*
6320 * Shrink each node in the zonelist once. If the
6321 * zonelist is ordered by zone (not the default) then a
6322 * node may be shrunk multiple times but in that case
6323 * the user prefers lower zones being preserved.
6324 */
6325 if (zone->zone_pgdat == last_pgdat)
6326 continue;
6327
0608f43d
AM
6328 /*
6329 * This steals pages from memory cgroups over softlimit
6330 * and returns the number of reclaimed pages and
6331 * scanned pages. This works for global memory pressure
6332 * and balancing, not for a memcg's limit.
6333 */
6334 nr_soft_scanned = 0;
ef8f2327 6335 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
6336 sc->order, sc->gfp_mask,
6337 &nr_soft_scanned);
6338 sc->nr_reclaimed += nr_soft_reclaimed;
6339 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 6340 /* need some check for avoid more shrink_zone() */
1cfb419b 6341 }
408d8544 6342
1b4e3f26
MG
6343 if (!first_pgdat)
6344 first_pgdat = zone->zone_pgdat;
6345
79dafcdc
MG
6346 /* See comment about same check for global reclaim above */
6347 if (zone->zone_pgdat == last_pgdat)
6348 continue;
6349 last_pgdat = zone->zone_pgdat;
970a39a3 6350 shrink_node(zone->zone_pgdat, sc);
1da177e4 6351 }
e0c23279 6352
80082938
MG
6353 if (first_pgdat)
6354 consider_reclaim_throttle(first_pgdat, sc);
1b4e3f26 6355
619d0d76
WY
6356 /*
6357 * Restore to original mask to avoid the impact on the caller if we
6358 * promoted it to __GFP_HIGHMEM.
6359 */
6360 sc->gfp_mask = orig_mask;
1da177e4 6361}
4f98a2fe 6362
b910718a 6363static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 6364{
b910718a
JW
6365 struct lruvec *target_lruvec;
6366 unsigned long refaults;
2a2e4885 6367
ac35a490
YZ
6368 if (lru_gen_enabled())
6369 return;
6370
b910718a 6371 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7 6372 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
e9c2dbc8 6373 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
170b04b7 6374 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
e9c2dbc8 6375 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
2a2e4885
JW
6376}
6377
1da177e4
LT
6378/*
6379 * This is the main entry point to direct page reclaim.
6380 *
6381 * If a full scan of the inactive list fails to free enough memory then we
6382 * are "out of memory" and something needs to be killed.
6383 *
6384 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6385 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
6386 * caller can't do much about. We kick the writeback threads and take explicit
6387 * naps in the hope that some of these pages can be written. But if the
6388 * allocating task holds filesystem locks which prevent writeout this might not
6389 * work, and the allocation attempt will fail.
a41f24ea
NA
6390 *
6391 * returns: 0, if no pages reclaimed
6392 * else, the number of pages reclaimed
1da177e4 6393 */
dac1d27b 6394static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 6395 struct scan_control *sc)
1da177e4 6396{
241994ed 6397 int initial_priority = sc->priority;
2a2e4885
JW
6398 pg_data_t *last_pgdat;
6399 struct zoneref *z;
6400 struct zone *zone;
241994ed 6401retry:
873b4771
KK
6402 delayacct_freepages_start();
6403
b5ead35e 6404 if (!cgroup_reclaim(sc))
7cc30fcf 6405 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 6406
9e3b2f8c 6407 do {
73b73bac
YA
6408 if (!sc->proactive)
6409 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6410 sc->priority);
66e1707b 6411 sc->nr_scanned = 0;
0a0337e0 6412 shrink_zones(zonelist, sc);
c6a8a8c5 6413
bb21c7ce 6414 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
6415 break;
6416
6417 if (sc->compaction_ready)
6418 break;
1da177e4 6419
0e50ce3b
MK
6420 /*
6421 * If we're getting trouble reclaiming, start doing
6422 * writepage even in laptop mode.
6423 */
6424 if (sc->priority < DEF_PRIORITY - 2)
6425 sc->may_writepage = 1;
0b06496a 6426 } while (--sc->priority >= 0);
bb21c7ce 6427
2a2e4885
JW
6428 last_pgdat = NULL;
6429 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6430 sc->nodemask) {
6431 if (zone->zone_pgdat == last_pgdat)
6432 continue;
6433 last_pgdat = zone->zone_pgdat;
1b05117d 6434
2a2e4885 6435 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
6436
6437 if (cgroup_reclaim(sc)) {
6438 struct lruvec *lruvec;
6439
6440 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6441 zone->zone_pgdat);
6442 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6443 }
2a2e4885
JW
6444 }
6445
873b4771
KK
6446 delayacct_freepages_end();
6447
bb21c7ce
KM
6448 if (sc->nr_reclaimed)
6449 return sc->nr_reclaimed;
6450
0cee34fd 6451 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 6452 if (sc->compaction_ready)
7335084d
MG
6453 return 1;
6454
b91ac374
JW
6455 /*
6456 * We make inactive:active ratio decisions based on the node's
6457 * composition of memory, but a restrictive reclaim_idx or a
6458 * memory.low cgroup setting can exempt large amounts of
6459 * memory from reclaim. Neither of which are very common, so
6460 * instead of doing costly eligibility calculations of the
6461 * entire cgroup subtree up front, we assume the estimates are
6462 * good, and retry with forcible deactivation if that fails.
6463 */
6464 if (sc->skipped_deactivate) {
6465 sc->priority = initial_priority;
6466 sc->force_deactivate = 1;
6467 sc->skipped_deactivate = 0;
6468 goto retry;
6469 }
6470
241994ed 6471 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 6472 if (sc->memcg_low_skipped) {
241994ed 6473 sc->priority = initial_priority;
b91ac374 6474 sc->force_deactivate = 0;
d6622f63
YX
6475 sc->memcg_low_reclaim = 1;
6476 sc->memcg_low_skipped = 0;
241994ed
JW
6477 goto retry;
6478 }
6479
bb21c7ce 6480 return 0;
1da177e4
LT
6481}
6482
c73322d0 6483static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
6484{
6485 struct zone *zone;
6486 unsigned long pfmemalloc_reserve = 0;
6487 unsigned long free_pages = 0;
6488 int i;
6489 bool wmark_ok;
6490
c73322d0
JW
6491 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6492 return true;
6493
5515061d
MG
6494 for (i = 0; i <= ZONE_NORMAL; i++) {
6495 zone = &pgdat->node_zones[i];
d450abd8
JW
6496 if (!managed_zone(zone))
6497 continue;
6498
6499 if (!zone_reclaimable_pages(zone))
675becce
MG
6500 continue;
6501
5515061d
MG
6502 pfmemalloc_reserve += min_wmark_pages(zone);
6503 free_pages += zone_page_state(zone, NR_FREE_PAGES);
6504 }
6505
675becce
MG
6506 /* If there are no reserves (unexpected config) then do not throttle */
6507 if (!pfmemalloc_reserve)
6508 return true;
6509
5515061d
MG
6510 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6511
6512 /* kswapd must be awake if processes are being throttled */
6513 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
6514 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6515 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 6516
5515061d
MG
6517 wake_up_interruptible(&pgdat->kswapd_wait);
6518 }
6519
6520 return wmark_ok;
6521}
6522
6523/*
6524 * Throttle direct reclaimers if backing storage is backed by the network
6525 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6526 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
6527 * when the low watermark is reached.
6528 *
6529 * Returns true if a fatal signal was delivered during throttling. If this
6530 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 6531 */
50694c28 6532static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
6533 nodemask_t *nodemask)
6534{
675becce 6535 struct zoneref *z;
5515061d 6536 struct zone *zone;
675becce 6537 pg_data_t *pgdat = NULL;
5515061d
MG
6538
6539 /*
6540 * Kernel threads should not be throttled as they may be indirectly
6541 * responsible for cleaning pages necessary for reclaim to make forward
6542 * progress. kjournald for example may enter direct reclaim while
6543 * committing a transaction where throttling it could forcing other
6544 * processes to block on log_wait_commit().
6545 */
6546 if (current->flags & PF_KTHREAD)
50694c28
MG
6547 goto out;
6548
6549 /*
6550 * If a fatal signal is pending, this process should not throttle.
6551 * It should return quickly so it can exit and free its memory
6552 */
6553 if (fatal_signal_pending(current))
6554 goto out;
5515061d 6555
675becce
MG
6556 /*
6557 * Check if the pfmemalloc reserves are ok by finding the first node
6558 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6559 * GFP_KERNEL will be required for allocating network buffers when
6560 * swapping over the network so ZONE_HIGHMEM is unusable.
6561 *
6562 * Throttling is based on the first usable node and throttled processes
6563 * wait on a queue until kswapd makes progress and wakes them. There
6564 * is an affinity then between processes waking up and where reclaim
6565 * progress has been made assuming the process wakes on the same node.
6566 * More importantly, processes running on remote nodes will not compete
6567 * for remote pfmemalloc reserves and processes on different nodes
6568 * should make reasonable progress.
6569 */
6570 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 6571 gfp_zone(gfp_mask), nodemask) {
675becce
MG
6572 if (zone_idx(zone) > ZONE_NORMAL)
6573 continue;
6574
6575 /* Throttle based on the first usable node */
6576 pgdat = zone->zone_pgdat;
c73322d0 6577 if (allow_direct_reclaim(pgdat))
675becce
MG
6578 goto out;
6579 break;
6580 }
6581
6582 /* If no zone was usable by the allocation flags then do not throttle */
6583 if (!pgdat)
50694c28 6584 goto out;
5515061d 6585
68243e76
MG
6586 /* Account for the throttling */
6587 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6588
5515061d
MG
6589 /*
6590 * If the caller cannot enter the filesystem, it's possible that it
6591 * is due to the caller holding an FS lock or performing a journal
6592 * transaction in the case of a filesystem like ext[3|4]. In this case,
6593 * it is not safe to block on pfmemalloc_wait as kswapd could be
6594 * blocked waiting on the same lock. Instead, throttle for up to a
6595 * second before continuing.
6596 */
2e786d9e 6597 if (!(gfp_mask & __GFP_FS))
5515061d 6598 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 6599 allow_direct_reclaim(pgdat), HZ);
2e786d9e
ML
6600 else
6601 /* Throttle until kswapd wakes the process */
6602 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6603 allow_direct_reclaim(pgdat));
50694c28 6604
50694c28
MG
6605 if (fatal_signal_pending(current))
6606 return true;
6607
6608out:
6609 return false;
5515061d
MG
6610}
6611
dac1d27b 6612unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 6613 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 6614{
33906bc5 6615 unsigned long nr_reclaimed;
66e1707b 6616 struct scan_control sc = {
ee814fe2 6617 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 6618 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 6619 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
6620 .order = order,
6621 .nodemask = nodemask,
6622 .priority = DEF_PRIORITY,
66e1707b 6623 .may_writepage = !laptop_mode,
a6dc60f8 6624 .may_unmap = 1,
2e2e4259 6625 .may_swap = 1,
66e1707b
BS
6626 };
6627
bb451fdf
GT
6628 /*
6629 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6630 * Confirm they are large enough for max values.
6631 */
6632 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6633 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6634 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6635
5515061d 6636 /*
50694c28
MG
6637 * Do not enter reclaim if fatal signal was delivered while throttled.
6638 * 1 is returned so that the page allocator does not OOM kill at this
6639 * point.
5515061d 6640 */
f2f43e56 6641 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
6642 return 1;
6643
1732d2b0 6644 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 6645 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 6646
3115cd91 6647 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
6648
6649 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 6650 set_task_reclaim_state(current, NULL);
33906bc5
MG
6651
6652 return nr_reclaimed;
66e1707b
BS
6653}
6654
c255a458 6655#ifdef CONFIG_MEMCG
66e1707b 6656
d2e5fb92 6657/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 6658unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 6659 gfp_t gfp_mask, bool noswap,
ef8f2327 6660 pg_data_t *pgdat,
0ae5e89c 6661 unsigned long *nr_scanned)
4e416953 6662{
afaf07a6 6663 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 6664 struct scan_control sc = {
b8f5c566 6665 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 6666 .target_mem_cgroup = memcg,
4e416953
BS
6667 .may_writepage = !laptop_mode,
6668 .may_unmap = 1,
b2e18757 6669 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 6670 .may_swap = !noswap,
4e416953 6671 };
0ae5e89c 6672
d2e5fb92
MH
6673 WARN_ON_ONCE(!current->reclaim_state);
6674
4e416953
BS
6675 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6676 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 6677
9e3b2f8c 6678 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 6679 sc.gfp_mask);
bdce6d9e 6680
4e416953
BS
6681 /*
6682 * NOTE: Although we can get the priority field, using it
6683 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 6684 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
6685 * will pick up pages from other mem cgroup's as well. We hack
6686 * the priority and make it zero.
6687 */
afaf07a6 6688 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
6689
6690 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6691
0ae5e89c 6692 *nr_scanned = sc.nr_scanned;
0308f7cf 6693
4e416953
BS
6694 return sc.nr_reclaimed;
6695}
6696
72835c86 6697unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 6698 unsigned long nr_pages,
a7885eb8 6699 gfp_t gfp_mask,
73b73bac 6700 unsigned int reclaim_options)
66e1707b 6701{
bdce6d9e 6702 unsigned long nr_reclaimed;
499118e9 6703 unsigned int noreclaim_flag;
66e1707b 6704 struct scan_control sc = {
b70a2a21 6705 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 6706 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 6707 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 6708 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
6709 .target_mem_cgroup = memcg,
6710 .priority = DEF_PRIORITY,
6711 .may_writepage = !laptop_mode,
6712 .may_unmap = 1,
73b73bac
YA
6713 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6714 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
a09ed5e0 6715 };
889976db 6716 /*
fa40d1ee
SB
6717 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6718 * equal pressure on all the nodes. This is based on the assumption that
6719 * the reclaim does not bail out early.
889976db 6720 */
fa40d1ee 6721 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 6722
fa40d1ee 6723 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 6724 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 6725 noreclaim_flag = memalloc_noreclaim_save();
eb414681 6726
3115cd91 6727 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 6728
499118e9 6729 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 6730 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 6731 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
6732
6733 return nr_reclaimed;
66e1707b
BS
6734}
6735#endif
6736
ac35a490 6737static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
f16015fb 6738{
b95a2f2d 6739 struct mem_cgroup *memcg;
b91ac374 6740 struct lruvec *lruvec;
f16015fb 6741
ac35a490
YZ
6742 if (lru_gen_enabled()) {
6743 lru_gen_age_node(pgdat, sc);
6744 return;
6745 }
6746
2f368a9f 6747 if (!can_age_anon_pages(pgdat, sc))
b95a2f2d
JW
6748 return;
6749
b91ac374
JW
6750 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6751 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6752 return;
6753
b95a2f2d
JW
6754 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6755 do {
b91ac374
JW
6756 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6757 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6758 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
6759 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6760 } while (memcg);
f16015fb
JW
6761}
6762
97a225e6 6763static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
6764{
6765 int i;
6766 struct zone *zone;
6767
6768 /*
6769 * Check for watermark boosts top-down as the higher zones
6770 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 6771 * should not be checked at the same time as reclaim would
1c30844d
MG
6772 * start prematurely when there is no boosting and a lower
6773 * zone is balanced.
6774 */
97a225e6 6775 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
6776 zone = pgdat->node_zones + i;
6777 if (!managed_zone(zone))
6778 continue;
6779
6780 if (zone->watermark_boost)
6781 return true;
6782 }
6783
6784 return false;
6785}
6786
e716f2eb
MG
6787/*
6788 * Returns true if there is an eligible zone balanced for the request order
97a225e6 6789 * and highest_zoneidx
e716f2eb 6790 */
97a225e6 6791static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 6792{
e716f2eb
MG
6793 int i;
6794 unsigned long mark = -1;
6795 struct zone *zone;
60cefed4 6796
1c30844d
MG
6797 /*
6798 * Check watermarks bottom-up as lower zones are more likely to
6799 * meet watermarks.
6800 */
97a225e6 6801 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 6802 zone = pgdat->node_zones + i;
6256c6b4 6803
e716f2eb
MG
6804 if (!managed_zone(zone))
6805 continue;
6806
c574bbe9
HY
6807 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6808 mark = wmark_pages(zone, WMARK_PROMO);
6809 else
6810 mark = high_wmark_pages(zone);
97a225e6 6811 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
6812 return true;
6813 }
6814
6815 /*
36c26128 6816 * If a node has no managed zone within highest_zoneidx, it does not
e716f2eb
MG
6817 * need balancing by definition. This can happen if a zone-restricted
6818 * allocation tries to wake a remote kswapd.
6819 */
6820 if (mark == -1)
6821 return true;
6822
6823 return false;
60cefed4
JW
6824}
6825
631b6e08
MG
6826/* Clear pgdat state for congested, dirty or under writeback. */
6827static void clear_pgdat_congested(pg_data_t *pgdat)
6828{
1b05117d
JW
6829 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6830
6831 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
6832 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6833 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6834}
6835
5515061d
MG
6836/*
6837 * Prepare kswapd for sleeping. This verifies that there are no processes
6838 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6839 *
6840 * Returns true if kswapd is ready to sleep
6841 */
97a225e6
JK
6842static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6843 int highest_zoneidx)
f50de2d3 6844{
5515061d 6845 /*
9e5e3661 6846 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 6847 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
6848 * race between when kswapd checks the watermarks and a process gets
6849 * throttled. There is also a potential race if processes get
6850 * throttled, kswapd wakes, a large process exits thereby balancing the
6851 * zones, which causes kswapd to exit balance_pgdat() before reaching
6852 * the wake up checks. If kswapd is going to sleep, no process should
6853 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6854 * the wake up is premature, processes will wake kswapd and get
6855 * throttled again. The difference from wake ups in balance_pgdat() is
6856 * that here we are under prepare_to_wait().
5515061d 6857 */
9e5e3661
VB
6858 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6859 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 6860
c73322d0
JW
6861 /* Hopeless node, leave it to direct reclaim */
6862 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6863 return true;
6864
97a225e6 6865 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
6866 clear_pgdat_congested(pgdat);
6867 return true;
1d82de61
MG
6868 }
6869
333b0a45 6870 return false;
f50de2d3
MG
6871}
6872
75485363 6873/*
1d82de61
MG
6874 * kswapd shrinks a node of pages that are at or below the highest usable
6875 * zone that is currently unbalanced.
b8e83b94
MG
6876 *
6877 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
6878 * reclaim or if the lack of progress was due to pages under writeback.
6879 * This is used to determine if the scanning priority needs to be raised.
75485363 6880 */
1d82de61 6881static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 6882 struct scan_control *sc)
75485363 6883{
1d82de61
MG
6884 struct zone *zone;
6885 int z;
75485363 6886
1d82de61
MG
6887 /* Reclaim a number of pages proportional to the number of zones */
6888 sc->nr_to_reclaim = 0;
970a39a3 6889 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 6890 zone = pgdat->node_zones + z;
6aa303de 6891 if (!managed_zone(zone))
1d82de61 6892 continue;
7c954f6d 6893
1d82de61
MG
6894 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6895 }
7c954f6d
MG
6896
6897 /*
1d82de61
MG
6898 * Historically care was taken to put equal pressure on all zones but
6899 * now pressure is applied based on node LRU order.
7c954f6d 6900 */
970a39a3 6901 shrink_node(pgdat, sc);
283aba9f 6902
7c954f6d 6903 /*
1d82de61
MG
6904 * Fragmentation may mean that the system cannot be rebalanced for
6905 * high-order allocations. If twice the allocation size has been
6906 * reclaimed then recheck watermarks only at order-0 to prevent
6907 * excessive reclaim. Assume that a process requested a high-order
6908 * can direct reclaim/compact.
7c954f6d 6909 */
9861a62c 6910 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 6911 sc->order = 0;
7c954f6d 6912
b8e83b94 6913 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
6914}
6915
c49c2c47
MG
6916/* Page allocator PCP high watermark is lowered if reclaim is active. */
6917static inline void
6918update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6919{
6920 int i;
6921 struct zone *zone;
6922
6923 for (i = 0; i <= highest_zoneidx; i++) {
6924 zone = pgdat->node_zones + i;
6925
6926 if (!managed_zone(zone))
6927 continue;
6928
6929 if (active)
6930 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6931 else
6932 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6933 }
6934}
6935
6936static inline void
6937set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6938{
6939 update_reclaim_active(pgdat, highest_zoneidx, true);
6940}
6941
6942static inline void
6943clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6944{
6945 update_reclaim_active(pgdat, highest_zoneidx, false);
6946}
6947
1da177e4 6948/*
1d82de61
MG
6949 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6950 * that are eligible for use by the caller until at least one zone is
6951 * balanced.
1da177e4 6952 *
1d82de61 6953 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
6954 *
6955 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 6956 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 6957 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
6958 * or lower is eligible for reclaim until at least one usable zone is
6959 * balanced.
1da177e4 6960 */
97a225e6 6961static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 6962{
1da177e4 6963 int i;
0608f43d
AM
6964 unsigned long nr_soft_reclaimed;
6965 unsigned long nr_soft_scanned;
eb414681 6966 unsigned long pflags;
1c30844d
MG
6967 unsigned long nr_boost_reclaim;
6968 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6969 bool boosted;
1d82de61 6970 struct zone *zone;
179e9639
AM
6971 struct scan_control sc = {
6972 .gfp_mask = GFP_KERNEL,
ee814fe2 6973 .order = order,
a6dc60f8 6974 .may_unmap = 1,
179e9639 6975 };
93781325 6976
1732d2b0 6977 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 6978 psi_memstall_enter(&pflags);
4f3eaf45 6979 __fs_reclaim_acquire(_THIS_IP_);
93781325 6980
f8891e5e 6981 count_vm_event(PAGEOUTRUN);
1da177e4 6982
1c30844d
MG
6983 /*
6984 * Account for the reclaim boost. Note that the zone boost is left in
6985 * place so that parallel allocations that are near the watermark will
6986 * stall or direct reclaim until kswapd is finished.
6987 */
6988 nr_boost_reclaim = 0;
97a225e6 6989 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
6990 zone = pgdat->node_zones + i;
6991 if (!managed_zone(zone))
6992 continue;
6993
6994 nr_boost_reclaim += zone->watermark_boost;
6995 zone_boosts[i] = zone->watermark_boost;
6996 }
6997 boosted = nr_boost_reclaim;
6998
6999restart:
c49c2c47 7000 set_reclaim_active(pgdat, highest_zoneidx);
1c30844d 7001 sc.priority = DEF_PRIORITY;
9e3b2f8c 7002 do {
c73322d0 7003 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 7004 bool raise_priority = true;
1c30844d 7005 bool balanced;
93781325 7006 bool ret;
b8e83b94 7007
97a225e6 7008 sc.reclaim_idx = highest_zoneidx;
1da177e4 7009
86c79f6b 7010 /*
84c7a777
MG
7011 * If the number of buffer_heads exceeds the maximum allowed
7012 * then consider reclaiming from all zones. This has a dual
7013 * purpose -- on 64-bit systems it is expected that
7014 * buffer_heads are stripped during active rotation. On 32-bit
7015 * systems, highmem pages can pin lowmem memory and shrinking
7016 * buffers can relieve lowmem pressure. Reclaim may still not
7017 * go ahead if all eligible zones for the original allocation
7018 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
7019 */
7020 if (buffer_heads_over_limit) {
7021 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7022 zone = pgdat->node_zones + i;
6aa303de 7023 if (!managed_zone(zone))
86c79f6b 7024 continue;
cc715d99 7025
970a39a3 7026 sc.reclaim_idx = i;
e1dbeda6 7027 break;
1da177e4 7028 }
1da177e4 7029 }
dafcb73e 7030
86c79f6b 7031 /*
1c30844d
MG
7032 * If the pgdat is imbalanced then ignore boosting and preserve
7033 * the watermarks for a later time and restart. Note that the
7034 * zone watermarks will be still reset at the end of balancing
7035 * on the grounds that the normal reclaim should be enough to
7036 * re-evaluate if boosting is required when kswapd next wakes.
7037 */
97a225e6 7038 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
7039 if (!balanced && nr_boost_reclaim) {
7040 nr_boost_reclaim = 0;
7041 goto restart;
7042 }
7043
7044 /*
7045 * If boosting is not active then only reclaim if there are no
7046 * eligible zones. Note that sc.reclaim_idx is not used as
7047 * buffer_heads_over_limit may have adjusted it.
86c79f6b 7048 */
1c30844d 7049 if (!nr_boost_reclaim && balanced)
e716f2eb 7050 goto out;
e1dbeda6 7051
1c30844d
MG
7052 /* Limit the priority of boosting to avoid reclaim writeback */
7053 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7054 raise_priority = false;
7055
7056 /*
7057 * Do not writeback or swap pages for boosted reclaim. The
7058 * intent is to relieve pressure not issue sub-optimal IO
7059 * from reclaim context. If no pages are reclaimed, the
7060 * reclaim will be aborted.
7061 */
7062 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7063 sc.may_swap = !nr_boost_reclaim;
1c30844d 7064
1d82de61 7065 /*
ac35a490
YZ
7066 * Do some background aging, to give pages a chance to be
7067 * referenced before reclaiming. All pages are rotated
7068 * regardless of classzone as this is about consistent aging.
1d82de61 7069 */
ac35a490 7070 kswapd_age_node(pgdat, &sc);
1d82de61 7071
b7ea3c41
MG
7072 /*
7073 * If we're getting trouble reclaiming, start doing writepage
7074 * even in laptop mode.
7075 */
047d72c3 7076 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
7077 sc.may_writepage = 1;
7078
1d82de61
MG
7079 /* Call soft limit reclaim before calling shrink_node. */
7080 sc.nr_scanned = 0;
7081 nr_soft_scanned = 0;
ef8f2327 7082 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
7083 sc.gfp_mask, &nr_soft_scanned);
7084 sc.nr_reclaimed += nr_soft_reclaimed;
7085
1da177e4 7086 /*
1d82de61
MG
7087 * There should be no need to raise the scanning priority if
7088 * enough pages are already being scanned that that high
7089 * watermark would be met at 100% efficiency.
1da177e4 7090 */
970a39a3 7091 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 7092 raise_priority = false;
5515061d
MG
7093
7094 /*
7095 * If the low watermark is met there is no need for processes
7096 * to be throttled on pfmemalloc_wait as they should not be
7097 * able to safely make forward progress. Wake them
7098 */
7099 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 7100 allow_direct_reclaim(pgdat))
cfc51155 7101 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 7102
b8e83b94 7103 /* Check if kswapd should be suspending */
4f3eaf45 7104 __fs_reclaim_release(_THIS_IP_);
93781325 7105 ret = try_to_freeze();
4f3eaf45 7106 __fs_reclaim_acquire(_THIS_IP_);
93781325 7107 if (ret || kthread_should_stop())
b8e83b94 7108 break;
8357376d 7109
73ce02e9 7110 /*
b8e83b94
MG
7111 * Raise priority if scanning rate is too low or there was no
7112 * progress in reclaiming pages
73ce02e9 7113 */
c73322d0 7114 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
7115 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7116
7117 /*
7118 * If reclaim made no progress for a boost, stop reclaim as
7119 * IO cannot be queued and it could be an infinite loop in
7120 * extreme circumstances.
7121 */
7122 if (nr_boost_reclaim && !nr_reclaimed)
7123 break;
7124
c73322d0 7125 if (raise_priority || !nr_reclaimed)
b8e83b94 7126 sc.priority--;
1d82de61 7127 } while (sc.priority >= 1);
1da177e4 7128
c73322d0
JW
7129 if (!sc.nr_reclaimed)
7130 pgdat->kswapd_failures++;
7131
b8e83b94 7132out:
c49c2c47
MG
7133 clear_reclaim_active(pgdat, highest_zoneidx);
7134
1c30844d
MG
7135 /* If reclaim was boosted, account for the reclaim done in this pass */
7136 if (boosted) {
7137 unsigned long flags;
7138
97a225e6 7139 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
7140 if (!zone_boosts[i])
7141 continue;
7142
7143 /* Increments are under the zone lock */
7144 zone = pgdat->node_zones + i;
7145 spin_lock_irqsave(&zone->lock, flags);
7146 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7147 spin_unlock_irqrestore(&zone->lock, flags);
7148 }
7149
7150 /*
7151 * As there is now likely space, wakeup kcompact to defragment
7152 * pageblocks.
7153 */
97a225e6 7154 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
7155 }
7156
2a2e4885 7157 snapshot_refaults(NULL, pgdat);
4f3eaf45 7158 __fs_reclaim_release(_THIS_IP_);
eb414681 7159 psi_memstall_leave(&pflags);
1732d2b0 7160 set_task_reclaim_state(current, NULL);
e5ca8071 7161
0abdee2b 7162 /*
1d82de61
MG
7163 * Return the order kswapd stopped reclaiming at as
7164 * prepare_kswapd_sleep() takes it into account. If another caller
7165 * entered the allocator slow path while kswapd was awake, order will
7166 * remain at the higher level.
0abdee2b 7167 */
1d82de61 7168 return sc.order;
1da177e4
LT
7169}
7170
e716f2eb 7171/*
97a225e6
JK
7172 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7173 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7174 * not a valid index then either kswapd runs for first time or kswapd couldn't
7175 * sleep after previous reclaim attempt (node is still unbalanced). In that
7176 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 7177 */
97a225e6
JK
7178static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7179 enum zone_type prev_highest_zoneidx)
e716f2eb 7180{
97a225e6 7181 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 7182
97a225e6 7183 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
7184}
7185
38087d9b 7186static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 7187 unsigned int highest_zoneidx)
f0bc0a60
KM
7188{
7189 long remaining = 0;
7190 DEFINE_WAIT(wait);
7191
7192 if (freezing(current) || kthread_should_stop())
7193 return;
7194
7195 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7196
333b0a45
SG
7197 /*
7198 * Try to sleep for a short interval. Note that kcompactd will only be
7199 * woken if it is possible to sleep for a short interval. This is
7200 * deliberate on the assumption that if reclaim cannot keep an
7201 * eligible zone balanced that it's also unlikely that compaction will
7202 * succeed.
7203 */
97a225e6 7204 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
7205 /*
7206 * Compaction records what page blocks it recently failed to
7207 * isolate pages from and skips them in the future scanning.
7208 * When kswapd is going to sleep, it is reasonable to assume
7209 * that pages and compaction may succeed so reset the cache.
7210 */
7211 reset_isolation_suitable(pgdat);
7212
7213 /*
7214 * We have freed the memory, now we should compact it to make
7215 * allocation of the requested order possible.
7216 */
97a225e6 7217 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 7218
f0bc0a60 7219 remaining = schedule_timeout(HZ/10);
38087d9b
MG
7220
7221 /*
97a225e6 7222 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
7223 * order. The values will either be from a wakeup request or
7224 * the previous request that slept prematurely.
7225 */
7226 if (remaining) {
97a225e6
JK
7227 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7228 kswapd_highest_zoneidx(pgdat,
7229 highest_zoneidx));
5644e1fb
QC
7230
7231 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7232 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
7233 }
7234
f0bc0a60
KM
7235 finish_wait(&pgdat->kswapd_wait, &wait);
7236 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7237 }
7238
7239 /*
7240 * After a short sleep, check if it was a premature sleep. If not, then
7241 * go fully to sleep until explicitly woken up.
7242 */
d9f21d42 7243 if (!remaining &&
97a225e6 7244 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
7245 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7246
7247 /*
7248 * vmstat counters are not perfectly accurate and the estimated
7249 * value for counters such as NR_FREE_PAGES can deviate from the
7250 * true value by nr_online_cpus * threshold. To avoid the zone
7251 * watermarks being breached while under pressure, we reduce the
7252 * per-cpu vmstat threshold while kswapd is awake and restore
7253 * them before going back to sleep.
7254 */
7255 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
7256
7257 if (!kthread_should_stop())
7258 schedule();
7259
f0bc0a60
KM
7260 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7261 } else {
7262 if (remaining)
7263 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7264 else
7265 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7266 }
7267 finish_wait(&pgdat->kswapd_wait, &wait);
7268}
7269
1da177e4
LT
7270/*
7271 * The background pageout daemon, started as a kernel thread
4f98a2fe 7272 * from the init process.
1da177e4
LT
7273 *
7274 * This basically trickles out pages so that we have _some_
7275 * free memory available even if there is no other activity
7276 * that frees anything up. This is needed for things like routing
7277 * etc, where we otherwise might have all activity going on in
7278 * asynchronous contexts that cannot page things out.
7279 *
7280 * If there are applications that are active memory-allocators
7281 * (most normal use), this basically shouldn't matter.
7282 */
7283static int kswapd(void *p)
7284{
e716f2eb 7285 unsigned int alloc_order, reclaim_order;
97a225e6 7286 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
68d68ff6 7287 pg_data_t *pgdat = (pg_data_t *)p;
1da177e4 7288 struct task_struct *tsk = current;
a70f7302 7289 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 7290
174596a0 7291 if (!cpumask_empty(cpumask))
c5f59f08 7292 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
7293
7294 /*
7295 * Tell the memory management that we're a "memory allocator",
7296 * and that if we need more memory we should get access to it
7297 * regardless (see "__alloc_pages()"). "kswapd" should
7298 * never get caught in the normal page freeing logic.
7299 *
7300 * (Kswapd normally doesn't need memory anyway, but sometimes
7301 * you need a small amount of memory in order to be able to
7302 * page out something else, and this flag essentially protects
7303 * us from recursively trying to free more memory as we're
7304 * trying to free the first piece of memory in the first place).
7305 */
b698f0a1 7306 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
83144186 7307 set_freezable();
1da177e4 7308
5644e1fb 7309 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 7310 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
8cd7c588 7311 atomic_set(&pgdat->nr_writeback_throttled, 0);
1da177e4 7312 for ( ; ; ) {
6f6313d4 7313 bool ret;
3e1d1d28 7314
5644e1fb 7315 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
7316 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7317 highest_zoneidx);
e716f2eb 7318
38087d9b
MG
7319kswapd_try_sleep:
7320 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 7321 highest_zoneidx);
215ddd66 7322
97a225e6 7323 /* Read the new order and highest_zoneidx */
2b47a24c 7324 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
7325 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7326 highest_zoneidx);
5644e1fb 7327 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 7328 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 7329
8fe23e05
DR
7330 ret = try_to_freeze();
7331 if (kthread_should_stop())
7332 break;
7333
7334 /*
7335 * We can speed up thawing tasks if we don't call balance_pgdat
7336 * after returning from the refrigerator
7337 */
38087d9b
MG
7338 if (ret)
7339 continue;
7340
7341 /*
7342 * Reclaim begins at the requested order but if a high-order
7343 * reclaim fails then kswapd falls back to reclaiming for
7344 * order-0. If that happens, kswapd will consider sleeping
7345 * for the order it finished reclaiming at (reclaim_order)
7346 * but kcompactd is woken to compact for the original
7347 * request (alloc_order).
7348 */
97a225e6 7349 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 7350 alloc_order);
97a225e6
JK
7351 reclaim_order = balance_pgdat(pgdat, alloc_order,
7352 highest_zoneidx);
38087d9b
MG
7353 if (reclaim_order < alloc_order)
7354 goto kswapd_try_sleep;
1da177e4 7355 }
b0a8cc58 7356
b698f0a1 7357 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
71abdc15 7358
1da177e4
LT
7359 return 0;
7360}
7361
7362/*
5ecd9d40
DR
7363 * A zone is low on free memory or too fragmented for high-order memory. If
7364 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7365 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7366 * has failed or is not needed, still wake up kcompactd if only compaction is
7367 * needed.
1da177e4 7368 */
5ecd9d40 7369void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 7370 enum zone_type highest_zoneidx)
1da177e4
LT
7371{
7372 pg_data_t *pgdat;
5644e1fb 7373 enum zone_type curr_idx;
1da177e4 7374
6aa303de 7375 if (!managed_zone(zone))
1da177e4
LT
7376 return;
7377
5ecd9d40 7378 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 7379 return;
5644e1fb 7380
88f5acf8 7381 pgdat = zone->zone_pgdat;
97a225e6 7382 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 7383
97a225e6
JK
7384 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7385 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
7386
7387 if (READ_ONCE(pgdat->kswapd_order) < order)
7388 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 7389
8d0986e2 7390 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 7391 return;
e1a55637 7392
5ecd9d40
DR
7393 /* Hopeless node, leave it to direct reclaim if possible */
7394 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
7395 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7396 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
7397 /*
7398 * There may be plenty of free memory available, but it's too
7399 * fragmented for high-order allocations. Wake up kcompactd
7400 * and rely on compaction_suitable() to determine if it's
7401 * needed. If it fails, it will defer subsequent attempts to
7402 * ratelimit its work.
7403 */
7404 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 7405 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 7406 return;
5ecd9d40 7407 }
88f5acf8 7408
97a225e6 7409 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 7410 gfp_flags);
8d0986e2 7411 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
7412}
7413
c6f37f12 7414#ifdef CONFIG_HIBERNATION
1da177e4 7415/*
7b51755c 7416 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
7417 * freed pages.
7418 *
7419 * Rather than trying to age LRUs the aim is to preserve the overall
7420 * LRU order by reclaiming preferentially
7421 * inactive > active > active referenced > active mapped
1da177e4 7422 */
7b51755c 7423unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 7424{
d6277db4 7425 struct scan_control sc = {
ee814fe2 7426 .nr_to_reclaim = nr_to_reclaim,
7b51755c 7427 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 7428 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 7429 .priority = DEF_PRIORITY,
d6277db4 7430 .may_writepage = 1,
ee814fe2
JW
7431 .may_unmap = 1,
7432 .may_swap = 1,
7b51755c 7433 .hibernation_mode = 1,
1da177e4 7434 };
a09ed5e0 7435 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 7436 unsigned long nr_reclaimed;
499118e9 7437 unsigned int noreclaim_flag;
1da177e4 7438
d92a8cfc 7439 fs_reclaim_acquire(sc.gfp_mask);
93781325 7440 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 7441 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 7442
3115cd91 7443 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 7444
1732d2b0 7445 set_task_reclaim_state(current, NULL);
499118e9 7446 memalloc_noreclaim_restore(noreclaim_flag);
93781325 7447 fs_reclaim_release(sc.gfp_mask);
d6277db4 7448
7b51755c 7449 return nr_reclaimed;
1da177e4 7450}
c6f37f12 7451#endif /* CONFIG_HIBERNATION */
1da177e4 7452
3218ae14
YG
7453/*
7454 * This kswapd start function will be called by init and node-hot-add.
3218ae14 7455 */
b87c517a 7456void kswapd_run(int nid)
3218ae14
YG
7457{
7458 pg_data_t *pgdat = NODE_DATA(nid);
3218ae14 7459
b4a0215e
KW
7460 pgdat_kswapd_lock(pgdat);
7461 if (!pgdat->kswapd) {
7462 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7463 if (IS_ERR(pgdat->kswapd)) {
7464 /* failure at boot is fatal */
7465 BUG_ON(system_state < SYSTEM_RUNNING);
7466 pr_err("Failed to start kswapd on node %d\n", nid);
7467 pgdat->kswapd = NULL;
7468 }
3218ae14 7469 }
b4a0215e 7470 pgdat_kswapd_unlock(pgdat);
3218ae14
YG
7471}
7472
8fe23e05 7473/*
d8adde17 7474 * Called by memory hotplug when all memory in a node is offlined. Caller must
e8da368a 7475 * be holding mem_hotplug_begin/done().
8fe23e05
DR
7476 */
7477void kswapd_stop(int nid)
7478{
b4a0215e
KW
7479 pg_data_t *pgdat = NODE_DATA(nid);
7480 struct task_struct *kswapd;
8fe23e05 7481
b4a0215e
KW
7482 pgdat_kswapd_lock(pgdat);
7483 kswapd = pgdat->kswapd;
d8adde17 7484 if (kswapd) {
8fe23e05 7485 kthread_stop(kswapd);
b4a0215e 7486 pgdat->kswapd = NULL;
d8adde17 7487 }
b4a0215e 7488 pgdat_kswapd_unlock(pgdat);
8fe23e05
DR
7489}
7490
1da177e4
LT
7491static int __init kswapd_init(void)
7492{
6b700b5b 7493 int nid;
69e05944 7494
1da177e4 7495 swap_setup();
48fb2e24 7496 for_each_node_state(nid, N_MEMORY)
3218ae14 7497 kswapd_run(nid);
1da177e4
LT
7498 return 0;
7499}
7500
7501module_init(kswapd_init)
9eeff239
CL
7502
7503#ifdef CONFIG_NUMA
7504/*
a5f5f91d 7505 * Node reclaim mode
9eeff239 7506 *
a5f5f91d 7507 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 7508 * the watermarks.
9eeff239 7509 */
a5f5f91d 7510int node_reclaim_mode __read_mostly;
9eeff239 7511
a92f7126 7512/*
a5f5f91d 7513 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
7514 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7515 * a zone.
7516 */
a5f5f91d 7517#define NODE_RECLAIM_PRIORITY 4
a92f7126 7518
9614634f 7519/*
a5f5f91d 7520 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
7521 * occur.
7522 */
7523int sysctl_min_unmapped_ratio = 1;
7524
0ff38490
CL
7525/*
7526 * If the number of slab pages in a zone grows beyond this percentage then
7527 * slab reclaim needs to occur.
7528 */
7529int sysctl_min_slab_ratio = 5;
7530
11fb9989 7531static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 7532{
11fb9989
MG
7533 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7534 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7535 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
7536
7537 /*
7538 * It's possible for there to be more file mapped pages than
7539 * accounted for by the pages on the file LRU lists because
7540 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7541 */
7542 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7543}
7544
7545/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 7546static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 7547{
d031a157
AM
7548 unsigned long nr_pagecache_reclaimable;
7549 unsigned long delta = 0;
90afa5de
MG
7550
7551 /*
95bbc0c7 7552 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 7553 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 7554 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
7555 * a better estimate
7556 */
a5f5f91d
MG
7557 if (node_reclaim_mode & RECLAIM_UNMAP)
7558 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 7559 else
a5f5f91d 7560 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
7561
7562 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
7563 if (!(node_reclaim_mode & RECLAIM_WRITE))
7564 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
7565
7566 /* Watch for any possible underflows due to delta */
7567 if (unlikely(delta > nr_pagecache_reclaimable))
7568 delta = nr_pagecache_reclaimable;
7569
7570 return nr_pagecache_reclaimable - delta;
7571}
7572
9eeff239 7573/*
a5f5f91d 7574 * Try to free up some pages from this node through reclaim.
9eeff239 7575 */
a5f5f91d 7576static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 7577{
7fb2d46d 7578 /* Minimum pages needed in order to stay on node */
69e05944 7579 const unsigned long nr_pages = 1 << order;
9eeff239 7580 struct task_struct *p = current;
499118e9 7581 unsigned int noreclaim_flag;
179e9639 7582 struct scan_control sc = {
62b726c1 7583 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 7584 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 7585 .order = order,
a5f5f91d
MG
7586 .priority = NODE_RECLAIM_PRIORITY,
7587 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7588 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 7589 .may_swap = 1,
f2f43e56 7590 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 7591 };
57f29762 7592 unsigned long pflags;
9eeff239 7593
132bb8cf
YS
7594 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7595 sc.gfp_mask);
7596
9eeff239 7597 cond_resched();
57f29762 7598 psi_memstall_enter(&pflags);
93781325 7599 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 7600 /*
95bbc0c7 7601 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 7602 */
499118e9 7603 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 7604 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 7605
d8ff6fde
ML
7606 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7607 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
0ff38490 7608 /*
894befec 7609 * Free memory by calling shrink node with increasing
0ff38490
CL
7610 * priorities until we have enough memory freed.
7611 */
0ff38490 7612 do {
970a39a3 7613 shrink_node(pgdat, &sc);
9e3b2f8c 7614 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 7615 }
c84db23c 7616
1732d2b0 7617 set_task_reclaim_state(p, NULL);
499118e9 7618 memalloc_noreclaim_restore(noreclaim_flag);
93781325 7619 fs_reclaim_release(sc.gfp_mask);
57f29762 7620 psi_memstall_leave(&pflags);
132bb8cf
YS
7621
7622 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7623
a79311c1 7624 return sc.nr_reclaimed >= nr_pages;
9eeff239 7625}
179e9639 7626
a5f5f91d 7627int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 7628{
d773ed6b 7629 int ret;
179e9639
AM
7630
7631 /*
a5f5f91d 7632 * Node reclaim reclaims unmapped file backed pages and
0ff38490 7633 * slab pages if we are over the defined limits.
34aa1330 7634 *
9614634f
CL
7635 * A small portion of unmapped file backed pages is needed for
7636 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
7637 * thrown out if the node is overallocated. So we do not reclaim
7638 * if less than a specified percentage of the node is used by
9614634f 7639 * unmapped file backed pages.
179e9639 7640 */
a5f5f91d 7641 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
7642 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7643 pgdat->min_slab_pages)
a5f5f91d 7644 return NODE_RECLAIM_FULL;
179e9639
AM
7645
7646 /*
d773ed6b 7647 * Do not scan if the allocation should not be delayed.
179e9639 7648 */
d0164adc 7649 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 7650 return NODE_RECLAIM_NOSCAN;
179e9639
AM
7651
7652 /*
a5f5f91d 7653 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
7654 * have associated processors. This will favor the local processor
7655 * over remote processors and spread off node memory allocations
7656 * as wide as possible.
7657 */
a5f5f91d
MG
7658 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7659 return NODE_RECLAIM_NOSCAN;
d773ed6b 7660
a5f5f91d
MG
7661 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7662 return NODE_RECLAIM_NOSCAN;
fa5e084e 7663
a5f5f91d
MG
7664 ret = __node_reclaim(pgdat, gfp_mask, order);
7665 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 7666
24cf7251
MG
7667 if (!ret)
7668 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7669
d773ed6b 7670 return ret;
179e9639 7671}
9eeff239 7672#endif
894bc310 7673
77414d19
MWO
7674void check_move_unevictable_pages(struct pagevec *pvec)
7675{
7676 struct folio_batch fbatch;
7677 unsigned i;
7678
7679 folio_batch_init(&fbatch);
7680 for (i = 0; i < pvec->nr; i++) {
7681 struct page *page = pvec->pages[i];
7682
7683 if (PageTransTail(page))
7684 continue;
7685 folio_batch_add(&fbatch, page_folio(page));
7686 }
7687 check_move_unevictable_folios(&fbatch);
7688}
7689EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7690
89e004ea 7691/**
77414d19
MWO
7692 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7693 * lru list
7694 * @fbatch: Batch of lru folios to check.
89e004ea 7695 *
77414d19 7696 * Checks folios for evictability, if an evictable folio is in the unevictable
64e3d12f 7697 * lru list, moves it to the appropriate evictable lru list. This function
77414d19 7698 * should be only used for lru folios.
89e004ea 7699 */
77414d19 7700void check_move_unevictable_folios(struct folio_batch *fbatch)
89e004ea 7701{
6168d0da 7702 struct lruvec *lruvec = NULL;
24513264
HD
7703 int pgscanned = 0;
7704 int pgrescued = 0;
7705 int i;
89e004ea 7706
77414d19
MWO
7707 for (i = 0; i < fbatch->nr; i++) {
7708 struct folio *folio = fbatch->folios[i];
7709 int nr_pages = folio_nr_pages(folio);
8d8869ca 7710
8d8869ca 7711 pgscanned += nr_pages;
89e004ea 7712
77414d19
MWO
7713 /* block memcg migration while the folio moves between lrus */
7714 if (!folio_test_clear_lru(folio))
d25b5bd8
AS
7715 continue;
7716
0de340cb 7717 lruvec = folio_lruvec_relock_irq(folio, lruvec);
77414d19
MWO
7718 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7719 lruvec_del_folio(lruvec, folio);
7720 folio_clear_unevictable(folio);
7721 lruvec_add_folio(lruvec, folio);
8d8869ca 7722 pgrescued += nr_pages;
89e004ea 7723 }
77414d19 7724 folio_set_lru(folio);
24513264 7725 }
89e004ea 7726
6168d0da 7727 if (lruvec) {
24513264
HD
7728 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7729 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
6168d0da 7730 unlock_page_lruvec_irq(lruvec);
d25b5bd8
AS
7731 } else if (pgscanned) {
7732 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
89e004ea 7733 }
89e004ea 7734}
77414d19 7735EXPORT_SYMBOL_GPL(check_move_unevictable_folios);