mm: support THPs in zero_user_segments
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
b1de0d13
MH
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
1da177e4 15#include <linux/mm.h>
5b3cc15a 16#include <linux/sched/mm.h>
1da177e4 17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
64e3d12f 47#include <linux/pagevec.h>
268bb0ce 48#include <linux/prefetch.h>
b1de0d13 49#include <linux/printk.h>
f9fe48be 50#include <linux/dax.h>
eb414681 51#include <linux/psi.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
ee814fe2
JW
68 /*
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 * are scanned.
71 */
72 nodemask_t *nodemask;
9e3b2f8c 73
f16015fb
JW
74 /*
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
77 */
78 struct mem_cgroup *target_mem_cgroup;
66e1707b 79
7cf111bc
JW
80 /*
81 * Scan pressure balancing between anon and file LRUs
82 */
83 unsigned long anon_cost;
84 unsigned long file_cost;
85
b91ac374
JW
86 /* Can active pages be deactivated as part of reclaim? */
87#define DEACTIVATE_ANON 1
88#define DEACTIVATE_FILE 2
89 unsigned int may_deactivate:2;
90 unsigned int force_deactivate:1;
91 unsigned int skipped_deactivate:1;
92
1276ad68 93 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
94 unsigned int may_writepage:1;
95
96 /* Can mapped pages be reclaimed? */
97 unsigned int may_unmap:1;
98
99 /* Can pages be swapped as part of reclaim? */
100 unsigned int may_swap:1;
101
d6622f63
YX
102 /*
103 * Cgroups are not reclaimed below their configured memory.low,
104 * unless we threaten to OOM. If any cgroups are skipped due to
105 * memory.low and nothing was reclaimed, go back for memory.low.
106 */
107 unsigned int memcg_low_reclaim:1;
108 unsigned int memcg_low_skipped:1;
241994ed 109
ee814fe2
JW
110 unsigned int hibernation_mode:1;
111
112 /* One of the zones is ready for compaction */
113 unsigned int compaction_ready:1;
114
b91ac374
JW
115 /* There is easily reclaimable cold cache in the current node */
116 unsigned int cache_trim_mode:1;
117
53138cea
JW
118 /* The file pages on the current node are dangerously low */
119 unsigned int file_is_tiny:1;
120
bb451fdf
GT
121 /* Allocation order */
122 s8 order;
123
124 /* Scan (total_size >> priority) pages at once */
125 s8 priority;
126
127 /* The highest zone to isolate pages for reclaim from */
128 s8 reclaim_idx;
129
130 /* This context's GFP mask */
131 gfp_t gfp_mask;
132
ee814fe2
JW
133 /* Incremented by the number of inactive pages that were scanned */
134 unsigned long nr_scanned;
135
136 /* Number of pages freed so far during a call to shrink_zones() */
137 unsigned long nr_reclaimed;
d108c772
AR
138
139 struct {
140 unsigned int dirty;
141 unsigned int unqueued_dirty;
142 unsigned int congested;
143 unsigned int writeback;
144 unsigned int immediate;
145 unsigned int file_taken;
146 unsigned int taken;
147 } nr;
e5ca8071
YS
148
149 /* for recording the reclaimed slab by now */
150 struct reclaim_state reclaim_state;
1da177e4
LT
151};
152
1da177e4
LT
153#ifdef ARCH_HAS_PREFETCHW
154#define prefetchw_prev_lru_page(_page, _base, _field) \
155 do { \
156 if ((_page)->lru.prev != _base) { \
157 struct page *prev; \
158 \
159 prev = lru_to_page(&(_page->lru)); \
160 prefetchw(&prev->_field); \
161 } \
162 } while (0)
163#else
164#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165#endif
166
167/*
c843966c 168 * From 0 .. 200. Higher means more swappy.
1da177e4
LT
169 */
170int vm_swappiness = 60;
1da177e4 171
0a432dcb
YS
172static void set_task_reclaim_state(struct task_struct *task,
173 struct reclaim_state *rs)
174{
175 /* Check for an overwrite */
176 WARN_ON_ONCE(rs && task->reclaim_state);
177
178 /* Check for the nulling of an already-nulled member */
179 WARN_ON_ONCE(!rs && !task->reclaim_state);
180
181 task->reclaim_state = rs;
182}
183
1da177e4
LT
184static LIST_HEAD(shrinker_list);
185static DECLARE_RWSEM(shrinker_rwsem);
186
0a432dcb 187#ifdef CONFIG_MEMCG
7e010df5
KT
188/*
189 * We allow subsystems to populate their shrinker-related
190 * LRU lists before register_shrinker_prepared() is called
191 * for the shrinker, since we don't want to impose
192 * restrictions on their internal registration order.
193 * In this case shrink_slab_memcg() may find corresponding
194 * bit is set in the shrinkers map.
195 *
196 * This value is used by the function to detect registering
197 * shrinkers and to skip do_shrink_slab() calls for them.
198 */
199#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
200
b4c2b231
KT
201static DEFINE_IDR(shrinker_idr);
202static int shrinker_nr_max;
203
204static int prealloc_memcg_shrinker(struct shrinker *shrinker)
205{
206 int id, ret = -ENOMEM;
207
208 down_write(&shrinker_rwsem);
209 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 210 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
211 if (id < 0)
212 goto unlock;
213
0a4465d3
KT
214 if (id >= shrinker_nr_max) {
215 if (memcg_expand_shrinker_maps(id)) {
216 idr_remove(&shrinker_idr, id);
217 goto unlock;
218 }
219
b4c2b231 220 shrinker_nr_max = id + 1;
0a4465d3 221 }
b4c2b231
KT
222 shrinker->id = id;
223 ret = 0;
224unlock:
225 up_write(&shrinker_rwsem);
226 return ret;
227}
228
229static void unregister_memcg_shrinker(struct shrinker *shrinker)
230{
231 int id = shrinker->id;
232
233 BUG_ON(id < 0);
234
235 down_write(&shrinker_rwsem);
236 idr_remove(&shrinker_idr, id);
237 up_write(&shrinker_rwsem);
238}
b4c2b231 239
b5ead35e 240static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 241{
b5ead35e 242 return sc->target_mem_cgroup;
89b5fae5 243}
97c9341f
TH
244
245/**
b5ead35e 246 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
97c9341f
TH
247 * @sc: scan_control in question
248 *
249 * The normal page dirty throttling mechanism in balance_dirty_pages() is
250 * completely broken with the legacy memcg and direct stalling in
251 * shrink_page_list() is used for throttling instead, which lacks all the
252 * niceties such as fairness, adaptive pausing, bandwidth proportional
253 * allocation and configurability.
254 *
255 * This function tests whether the vmscan currently in progress can assume
256 * that the normal dirty throttling mechanism is operational.
257 */
b5ead35e 258static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f 259{
b5ead35e 260 if (!cgroup_reclaim(sc))
97c9341f
TH
261 return true;
262#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 263 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
264 return true;
265#endif
266 return false;
267}
91a45470 268#else
0a432dcb
YS
269static int prealloc_memcg_shrinker(struct shrinker *shrinker)
270{
271 return 0;
272}
273
274static void unregister_memcg_shrinker(struct shrinker *shrinker)
275{
276}
277
b5ead35e 278static bool cgroup_reclaim(struct scan_control *sc)
89b5fae5 279{
b5ead35e 280 return false;
89b5fae5 281}
97c9341f 282
b5ead35e 283static bool writeback_throttling_sane(struct scan_control *sc)
97c9341f
TH
284{
285 return true;
286}
91a45470
KH
287#endif
288
5a1c84b4
MG
289/*
290 * This misses isolated pages which are not accounted for to save counters.
291 * As the data only determines if reclaim or compaction continues, it is
292 * not expected that isolated pages will be a dominating factor.
293 */
294unsigned long zone_reclaimable_pages(struct zone *zone)
295{
296 unsigned long nr;
297
298 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
299 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
300 if (get_nr_swap_pages() > 0)
301 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
302 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
303
304 return nr;
305}
306
fd538803
MH
307/**
308 * lruvec_lru_size - Returns the number of pages on the given LRU list.
309 * @lruvec: lru vector
310 * @lru: lru to use
311 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
312 */
313unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 314{
de3b0150 315 unsigned long size = 0;
fd538803
MH
316 int zid;
317
de3b0150 318 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
fd538803 319 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
c9f299d9 320
fd538803
MH
321 if (!managed_zone(zone))
322 continue;
323
324 if (!mem_cgroup_disabled())
de3b0150 325 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
fd538803 326 else
de3b0150 327 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
fd538803 328 }
de3b0150 329 return size;
b4536f0c
MH
330}
331
1da177e4 332/*
1d3d4437 333 * Add a shrinker callback to be called from the vm.
1da177e4 334 */
8e04944f 335int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 336{
b9726c26 337 unsigned int size = sizeof(*shrinker->nr_deferred);
1d3d4437 338
1d3d4437
GC
339 if (shrinker->flags & SHRINKER_NUMA_AWARE)
340 size *= nr_node_ids;
341
342 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
343 if (!shrinker->nr_deferred)
344 return -ENOMEM;
b4c2b231
KT
345
346 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
347 if (prealloc_memcg_shrinker(shrinker))
348 goto free_deferred;
349 }
350
8e04944f 351 return 0;
b4c2b231
KT
352
353free_deferred:
354 kfree(shrinker->nr_deferred);
355 shrinker->nr_deferred = NULL;
356 return -ENOMEM;
8e04944f
TH
357}
358
359void free_prealloced_shrinker(struct shrinker *shrinker)
360{
b4c2b231
KT
361 if (!shrinker->nr_deferred)
362 return;
363
364 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
365 unregister_memcg_shrinker(shrinker);
366
8e04944f
TH
367 kfree(shrinker->nr_deferred);
368 shrinker->nr_deferred = NULL;
369}
1d3d4437 370
8e04944f
TH
371void register_shrinker_prepared(struct shrinker *shrinker)
372{
8e1f936b
RR
373 down_write(&shrinker_rwsem);
374 list_add_tail(&shrinker->list, &shrinker_list);
42a9a53b 375#ifdef CONFIG_MEMCG
8df4a44c
KT
376 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
377 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 378#endif
8e1f936b 379 up_write(&shrinker_rwsem);
8e04944f
TH
380}
381
382int register_shrinker(struct shrinker *shrinker)
383{
384 int err = prealloc_shrinker(shrinker);
385
386 if (err)
387 return err;
388 register_shrinker_prepared(shrinker);
1d3d4437 389 return 0;
1da177e4 390}
8e1f936b 391EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
392
393/*
394 * Remove one
395 */
8e1f936b 396void unregister_shrinker(struct shrinker *shrinker)
1da177e4 397{
bb422a73
TH
398 if (!shrinker->nr_deferred)
399 return;
b4c2b231
KT
400 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
401 unregister_memcg_shrinker(shrinker);
1da177e4
LT
402 down_write(&shrinker_rwsem);
403 list_del(&shrinker->list);
404 up_write(&shrinker_rwsem);
ae393321 405 kfree(shrinker->nr_deferred);
bb422a73 406 shrinker->nr_deferred = NULL;
1da177e4 407}
8e1f936b 408EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
409
410#define SHRINK_BATCH 128
1d3d4437 411
cb731d6c 412static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 413 struct shrinker *shrinker, int priority)
1d3d4437
GC
414{
415 unsigned long freed = 0;
416 unsigned long long delta;
417 long total_scan;
d5bc5fd3 418 long freeable;
1d3d4437
GC
419 long nr;
420 long new_nr;
421 int nid = shrinkctl->nid;
422 long batch_size = shrinker->batch ? shrinker->batch
423 : SHRINK_BATCH;
5f33a080 424 long scanned = 0, next_deferred;
1d3d4437 425
ac7fb3ad
KT
426 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
427 nid = 0;
428
d5bc5fd3 429 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
430 if (freeable == 0 || freeable == SHRINK_EMPTY)
431 return freeable;
1d3d4437
GC
432
433 /*
434 * copy the current shrinker scan count into a local variable
435 * and zero it so that other concurrent shrinker invocations
436 * don't also do this scanning work.
437 */
438 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
439
440 total_scan = nr;
4b85afbd
JW
441 if (shrinker->seeks) {
442 delta = freeable >> priority;
443 delta *= 4;
444 do_div(delta, shrinker->seeks);
445 } else {
446 /*
447 * These objects don't require any IO to create. Trim
448 * them aggressively under memory pressure to keep
449 * them from causing refetches in the IO caches.
450 */
451 delta = freeable / 2;
452 }
172b06c3 453
1d3d4437
GC
454 total_scan += delta;
455 if (total_scan < 0) {
d75f773c 456 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
a0b02131 457 shrinker->scan_objects, total_scan);
d5bc5fd3 458 total_scan = freeable;
5f33a080
SL
459 next_deferred = nr;
460 } else
461 next_deferred = total_scan;
1d3d4437
GC
462
463 /*
464 * We need to avoid excessive windup on filesystem shrinkers
465 * due to large numbers of GFP_NOFS allocations causing the
466 * shrinkers to return -1 all the time. This results in a large
467 * nr being built up so when a shrink that can do some work
468 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 469 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
470 * memory.
471 *
472 * Hence only allow the shrinker to scan the entire cache when
473 * a large delta change is calculated directly.
474 */
d5bc5fd3
VD
475 if (delta < freeable / 4)
476 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
477
478 /*
479 * Avoid risking looping forever due to too large nr value:
480 * never try to free more than twice the estimate number of
481 * freeable entries.
482 */
d5bc5fd3
VD
483 if (total_scan > freeable * 2)
484 total_scan = freeable * 2;
1d3d4437
GC
485
486 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 487 freeable, delta, total_scan, priority);
1d3d4437 488
0b1fb40a
VD
489 /*
490 * Normally, we should not scan less than batch_size objects in one
491 * pass to avoid too frequent shrinker calls, but if the slab has less
492 * than batch_size objects in total and we are really tight on memory,
493 * we will try to reclaim all available objects, otherwise we can end
494 * up failing allocations although there are plenty of reclaimable
495 * objects spread over several slabs with usage less than the
496 * batch_size.
497 *
498 * We detect the "tight on memory" situations by looking at the total
499 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 500 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
501 * scanning at high prio and therefore should try to reclaim as much as
502 * possible.
503 */
504 while (total_scan >= batch_size ||
d5bc5fd3 505 total_scan >= freeable) {
a0b02131 506 unsigned long ret;
0b1fb40a 507 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 508
0b1fb40a 509 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 510 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
511 ret = shrinker->scan_objects(shrinker, shrinkctl);
512 if (ret == SHRINK_STOP)
513 break;
514 freed += ret;
1d3d4437 515
d460acb5
CW
516 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
517 total_scan -= shrinkctl->nr_scanned;
518 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
519
520 cond_resched();
521 }
522
5f33a080
SL
523 if (next_deferred >= scanned)
524 next_deferred -= scanned;
525 else
526 next_deferred = 0;
1d3d4437
GC
527 /*
528 * move the unused scan count back into the shrinker in a
529 * manner that handles concurrent updates. If we exhausted the
530 * scan, there is no need to do an update.
531 */
5f33a080
SL
532 if (next_deferred > 0)
533 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
534 &shrinker->nr_deferred[nid]);
535 else
536 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
537
df9024a8 538 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 539 return freed;
1495f230
YH
540}
541
0a432dcb 542#ifdef CONFIG_MEMCG
b0dedc49
KT
543static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
544 struct mem_cgroup *memcg, int priority)
545{
546 struct memcg_shrinker_map *map;
b8e57efa
KT
547 unsigned long ret, freed = 0;
548 int i;
b0dedc49 549
0a432dcb 550 if (!mem_cgroup_online(memcg))
b0dedc49
KT
551 return 0;
552
553 if (!down_read_trylock(&shrinker_rwsem))
554 return 0;
555
556 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
557 true);
558 if (unlikely(!map))
559 goto unlock;
560
561 for_each_set_bit(i, map->map, shrinker_nr_max) {
562 struct shrink_control sc = {
563 .gfp_mask = gfp_mask,
564 .nid = nid,
565 .memcg = memcg,
566 };
567 struct shrinker *shrinker;
568
569 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
570 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
571 if (!shrinker)
572 clear_bit(i, map->map);
b0dedc49
KT
573 continue;
574 }
575
0a432dcb
YS
576 /* Call non-slab shrinkers even though kmem is disabled */
577 if (!memcg_kmem_enabled() &&
578 !(shrinker->flags & SHRINKER_NONSLAB))
579 continue;
580
b0dedc49 581 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
582 if (ret == SHRINK_EMPTY) {
583 clear_bit(i, map->map);
584 /*
585 * After the shrinker reported that it had no objects to
586 * free, but before we cleared the corresponding bit in
587 * the memcg shrinker map, a new object might have been
588 * added. To make sure, we have the bit set in this
589 * case, we invoke the shrinker one more time and reset
590 * the bit if it reports that it is not empty anymore.
591 * The memory barrier here pairs with the barrier in
592 * memcg_set_shrinker_bit():
593 *
594 * list_lru_add() shrink_slab_memcg()
595 * list_add_tail() clear_bit()
596 * <MB> <MB>
597 * set_bit() do_shrink_slab()
598 */
599 smp_mb__after_atomic();
600 ret = do_shrink_slab(&sc, shrinker, priority);
601 if (ret == SHRINK_EMPTY)
602 ret = 0;
603 else
604 memcg_set_shrinker_bit(memcg, nid, i);
605 }
b0dedc49
KT
606 freed += ret;
607
608 if (rwsem_is_contended(&shrinker_rwsem)) {
609 freed = freed ? : 1;
610 break;
611 }
612 }
613unlock:
614 up_read(&shrinker_rwsem);
615 return freed;
616}
0a432dcb 617#else /* CONFIG_MEMCG */
b0dedc49
KT
618static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
619 struct mem_cgroup *memcg, int priority)
620{
621 return 0;
622}
0a432dcb 623#endif /* CONFIG_MEMCG */
b0dedc49 624
6b4f7799 625/**
cb731d6c 626 * shrink_slab - shrink slab caches
6b4f7799
JW
627 * @gfp_mask: allocation context
628 * @nid: node whose slab caches to target
cb731d6c 629 * @memcg: memory cgroup whose slab caches to target
9092c71b 630 * @priority: the reclaim priority
1da177e4 631 *
6b4f7799 632 * Call the shrink functions to age shrinkable caches.
1da177e4 633 *
6b4f7799
JW
634 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
635 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 636 *
aeed1d32
VD
637 * @memcg specifies the memory cgroup to target. Unaware shrinkers
638 * are called only if it is the root cgroup.
cb731d6c 639 *
9092c71b
JB
640 * @priority is sc->priority, we take the number of objects and >> by priority
641 * in order to get the scan target.
b15e0905 642 *
6b4f7799 643 * Returns the number of reclaimed slab objects.
1da177e4 644 */
cb731d6c
VD
645static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
646 struct mem_cgroup *memcg,
9092c71b 647 int priority)
1da177e4 648{
b8e57efa 649 unsigned long ret, freed = 0;
1da177e4
LT
650 struct shrinker *shrinker;
651
fa1e512f
YS
652 /*
653 * The root memcg might be allocated even though memcg is disabled
654 * via "cgroup_disable=memory" boot parameter. This could make
655 * mem_cgroup_is_root() return false, then just run memcg slab
656 * shrink, but skip global shrink. This may result in premature
657 * oom.
658 */
659 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
b0dedc49 660 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 661
e830c63a 662 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 663 goto out;
1da177e4
LT
664
665 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
666 struct shrink_control sc = {
667 .gfp_mask = gfp_mask,
668 .nid = nid,
cb731d6c 669 .memcg = memcg,
6b4f7799 670 };
ec97097b 671
9b996468
KT
672 ret = do_shrink_slab(&sc, shrinker, priority);
673 if (ret == SHRINK_EMPTY)
674 ret = 0;
675 freed += ret;
e496612c
MK
676 /*
677 * Bail out if someone want to register a new shrinker to
55b65a57 678 * prevent the registration from being stalled for long periods
e496612c
MK
679 * by parallel ongoing shrinking.
680 */
681 if (rwsem_is_contended(&shrinker_rwsem)) {
682 freed = freed ? : 1;
683 break;
684 }
1da177e4 685 }
6b4f7799 686
1da177e4 687 up_read(&shrinker_rwsem);
f06590bd
MK
688out:
689 cond_resched();
24f7c6b9 690 return freed;
1da177e4
LT
691}
692
cb731d6c
VD
693void drop_slab_node(int nid)
694{
695 unsigned long freed;
696
697 do {
698 struct mem_cgroup *memcg = NULL;
699
069c411d
CZ
700 if (fatal_signal_pending(current))
701 return;
702
cb731d6c 703 freed = 0;
aeed1d32 704 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 705 do {
9092c71b 706 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
707 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
708 } while (freed > 10);
709}
710
711void drop_slab(void)
712{
713 int nid;
714
715 for_each_online_node(nid)
716 drop_slab_node(nid);
717}
718
1da177e4
LT
719static inline int is_page_cache_freeable(struct page *page)
720{
ceddc3a5
JW
721 /*
722 * A freeable page cache page is referenced only by the caller
67891fff
MW
723 * that isolated the page, the page cache and optional buffer
724 * heads at page->private.
ceddc3a5 725 */
3efe62e4 726 int page_cache_pins = thp_nr_pages(page);
67891fff 727 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
1da177e4
LT
728}
729
cb16556d 730static int may_write_to_inode(struct inode *inode)
1da177e4 731{
930d9152 732 if (current->flags & PF_SWAPWRITE)
1da177e4 733 return 1;
703c2708 734 if (!inode_write_congested(inode))
1da177e4 735 return 1;
703c2708 736 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
737 return 1;
738 return 0;
739}
740
741/*
742 * We detected a synchronous write error writing a page out. Probably
743 * -ENOSPC. We need to propagate that into the address_space for a subsequent
744 * fsync(), msync() or close().
745 *
746 * The tricky part is that after writepage we cannot touch the mapping: nothing
747 * prevents it from being freed up. But we have a ref on the page and once
748 * that page is locked, the mapping is pinned.
749 *
750 * We're allowed to run sleeping lock_page() here because we know the caller has
751 * __GFP_FS.
752 */
753static void handle_write_error(struct address_space *mapping,
754 struct page *page, int error)
755{
7eaceacc 756 lock_page(page);
3e9f45bd
GC
757 if (page_mapping(page) == mapping)
758 mapping_set_error(mapping, error);
1da177e4
LT
759 unlock_page(page);
760}
761
04e62a29
CL
762/* possible outcome of pageout() */
763typedef enum {
764 /* failed to write page out, page is locked */
765 PAGE_KEEP,
766 /* move page to the active list, page is locked */
767 PAGE_ACTIVATE,
768 /* page has been sent to the disk successfully, page is unlocked */
769 PAGE_SUCCESS,
770 /* page is clean and locked */
771 PAGE_CLEAN,
772} pageout_t;
773
1da177e4 774/*
1742f19f
AM
775 * pageout is called by shrink_page_list() for each dirty page.
776 * Calls ->writepage().
1da177e4 777 */
cb16556d 778static pageout_t pageout(struct page *page, struct address_space *mapping)
1da177e4
LT
779{
780 /*
781 * If the page is dirty, only perform writeback if that write
782 * will be non-blocking. To prevent this allocation from being
783 * stalled by pagecache activity. But note that there may be
784 * stalls if we need to run get_block(). We could test
785 * PagePrivate for that.
786 *
8174202b 787 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
788 * this page's queue, we can perform writeback even if that
789 * will block.
790 *
791 * If the page is swapcache, write it back even if that would
792 * block, for some throttling. This happens by accident, because
793 * swap_backing_dev_info is bust: it doesn't reflect the
794 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
795 */
796 if (!is_page_cache_freeable(page))
797 return PAGE_KEEP;
798 if (!mapping) {
799 /*
800 * Some data journaling orphaned pages can have
801 * page->mapping == NULL while being dirty with clean buffers.
802 */
266cf658 803 if (page_has_private(page)) {
1da177e4
LT
804 if (try_to_free_buffers(page)) {
805 ClearPageDirty(page);
b1de0d13 806 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
807 return PAGE_CLEAN;
808 }
809 }
810 return PAGE_KEEP;
811 }
812 if (mapping->a_ops->writepage == NULL)
813 return PAGE_ACTIVATE;
cb16556d 814 if (!may_write_to_inode(mapping->host))
1da177e4
LT
815 return PAGE_KEEP;
816
817 if (clear_page_dirty_for_io(page)) {
818 int res;
819 struct writeback_control wbc = {
820 .sync_mode = WB_SYNC_NONE,
821 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
822 .range_start = 0,
823 .range_end = LLONG_MAX,
1da177e4
LT
824 .for_reclaim = 1,
825 };
826
827 SetPageReclaim(page);
828 res = mapping->a_ops->writepage(page, &wbc);
829 if (res < 0)
830 handle_write_error(mapping, page, res);
994fc28c 831 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
832 ClearPageReclaim(page);
833 return PAGE_ACTIVATE;
834 }
c661b078 835
1da177e4
LT
836 if (!PageWriteback(page)) {
837 /* synchronous write or broken a_ops? */
838 ClearPageReclaim(page);
839 }
3aa23851 840 trace_mm_vmscan_writepage(page);
c4a25635 841 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
842 return PAGE_SUCCESS;
843 }
844
845 return PAGE_CLEAN;
846}
847
a649fd92 848/*
e286781d
NP
849 * Same as remove_mapping, but if the page is removed from the mapping, it
850 * gets returned with a refcount of 0.
a649fd92 851 */
a528910e 852static int __remove_mapping(struct address_space *mapping, struct page *page,
b910718a 853 bool reclaimed, struct mem_cgroup *target_memcg)
49d2e9cc 854{
c4843a75 855 unsigned long flags;
bd4c82c2 856 int refcount;
aae466b0 857 void *shadow = NULL;
c4843a75 858
28e4d965
NP
859 BUG_ON(!PageLocked(page));
860 BUG_ON(mapping != page_mapping(page));
49d2e9cc 861
b93b0163 862 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 863 /*
0fd0e6b0
NP
864 * The non racy check for a busy page.
865 *
866 * Must be careful with the order of the tests. When someone has
867 * a ref to the page, it may be possible that they dirty it then
868 * drop the reference. So if PageDirty is tested before page_count
869 * here, then the following race may occur:
870 *
871 * get_user_pages(&page);
872 * [user mapping goes away]
873 * write_to(page);
874 * !PageDirty(page) [good]
875 * SetPageDirty(page);
876 * put_page(page);
877 * !page_count(page) [good, discard it]
878 *
879 * [oops, our write_to data is lost]
880 *
881 * Reversing the order of the tests ensures such a situation cannot
882 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 883 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
884 *
885 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 886 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 887 */
906d278d 888 refcount = 1 + compound_nr(page);
bd4c82c2 889 if (!page_ref_freeze(page, refcount))
49d2e9cc 890 goto cannot_free;
1c4c3b99 891 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 892 if (unlikely(PageDirty(page))) {
bd4c82c2 893 page_ref_unfreeze(page, refcount);
49d2e9cc 894 goto cannot_free;
e286781d 895 }
49d2e9cc
CL
896
897 if (PageSwapCache(page)) {
898 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 899 mem_cgroup_swapout(page, swap);
aae466b0
JK
900 if (reclaimed && !mapping_exiting(mapping))
901 shadow = workingset_eviction(page, target_memcg);
902 __delete_from_swap_cache(page, swap, shadow);
b93b0163 903 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 904 put_swap_page(page, swap);
e286781d 905 } else {
6072d13c
LT
906 void (*freepage)(struct page *);
907
908 freepage = mapping->a_ops->freepage;
a528910e
JW
909 /*
910 * Remember a shadow entry for reclaimed file cache in
911 * order to detect refaults, thus thrashing, later on.
912 *
913 * But don't store shadows in an address space that is
238c3046 914 * already exiting. This is not just an optimization,
a528910e
JW
915 * inode reclaim needs to empty out the radix tree or
916 * the nodes are lost. Don't plant shadows behind its
917 * back.
f9fe48be
RZ
918 *
919 * We also don't store shadows for DAX mappings because the
920 * only page cache pages found in these are zero pages
921 * covering holes, and because we don't want to mix DAX
922 * exceptional entries and shadow exceptional entries in the
b93b0163 923 * same address_space.
a528910e 924 */
9de4f22a 925 if (reclaimed && page_is_file_lru(page) &&
f9fe48be 926 !mapping_exiting(mapping) && !dax_mapping(mapping))
b910718a 927 shadow = workingset_eviction(page, target_memcg);
62cccb8c 928 __delete_from_page_cache(page, shadow);
b93b0163 929 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
930
931 if (freepage != NULL)
932 freepage(page);
49d2e9cc
CL
933 }
934
49d2e9cc
CL
935 return 1;
936
937cannot_free:
b93b0163 938 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
939 return 0;
940}
941
e286781d
NP
942/*
943 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
944 * someone else has a ref on the page, abort and return 0. If it was
945 * successfully detached, return 1. Assumes the caller has a single ref on
946 * this page.
947 */
948int remove_mapping(struct address_space *mapping, struct page *page)
949{
b910718a 950 if (__remove_mapping(mapping, page, false, NULL)) {
e286781d
NP
951 /*
952 * Unfreezing the refcount with 1 rather than 2 effectively
953 * drops the pagecache ref for us without requiring another
954 * atomic operation.
955 */
fe896d18 956 page_ref_unfreeze(page, 1);
e286781d
NP
957 return 1;
958 }
959 return 0;
960}
961
894bc310
LS
962/**
963 * putback_lru_page - put previously isolated page onto appropriate LRU list
964 * @page: page to be put back to appropriate lru list
965 *
966 * Add previously isolated @page to appropriate LRU list.
967 * Page may still be unevictable for other reasons.
968 *
969 * lru_lock must not be held, interrupts must be enabled.
970 */
894bc310
LS
971void putback_lru_page(struct page *page)
972{
9c4e6b1a 973 lru_cache_add(page);
894bc310
LS
974 put_page(page); /* drop ref from isolate */
975}
976
dfc8d636
JW
977enum page_references {
978 PAGEREF_RECLAIM,
979 PAGEREF_RECLAIM_CLEAN,
64574746 980 PAGEREF_KEEP,
dfc8d636
JW
981 PAGEREF_ACTIVATE,
982};
983
984static enum page_references page_check_references(struct page *page,
985 struct scan_control *sc)
986{
64574746 987 int referenced_ptes, referenced_page;
dfc8d636 988 unsigned long vm_flags;
dfc8d636 989
c3ac9a8a
JW
990 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
991 &vm_flags);
64574746 992 referenced_page = TestClearPageReferenced(page);
dfc8d636 993
dfc8d636
JW
994 /*
995 * Mlock lost the isolation race with us. Let try_to_unmap()
996 * move the page to the unevictable list.
997 */
998 if (vm_flags & VM_LOCKED)
999 return PAGEREF_RECLAIM;
1000
64574746 1001 if (referenced_ptes) {
64574746
JW
1002 /*
1003 * All mapped pages start out with page table
1004 * references from the instantiating fault, so we need
1005 * to look twice if a mapped file page is used more
1006 * than once.
1007 *
1008 * Mark it and spare it for another trip around the
1009 * inactive list. Another page table reference will
1010 * lead to its activation.
1011 *
1012 * Note: the mark is set for activated pages as well
1013 * so that recently deactivated but used pages are
1014 * quickly recovered.
1015 */
1016 SetPageReferenced(page);
1017
34dbc67a 1018 if (referenced_page || referenced_ptes > 1)
64574746
JW
1019 return PAGEREF_ACTIVATE;
1020
c909e993
KK
1021 /*
1022 * Activate file-backed executable pages after first usage.
1023 */
b518154e 1024 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
c909e993
KK
1025 return PAGEREF_ACTIVATE;
1026
64574746
JW
1027 return PAGEREF_KEEP;
1028 }
dfc8d636
JW
1029
1030 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1031 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1032 return PAGEREF_RECLAIM_CLEAN;
1033
1034 return PAGEREF_RECLAIM;
dfc8d636
JW
1035}
1036
e2be15f6
MG
1037/* Check if a page is dirty or under writeback */
1038static void page_check_dirty_writeback(struct page *page,
1039 bool *dirty, bool *writeback)
1040{
b4597226
MG
1041 struct address_space *mapping;
1042
e2be15f6
MG
1043 /*
1044 * Anonymous pages are not handled by flushers and must be written
1045 * from reclaim context. Do not stall reclaim based on them
1046 */
9de4f22a 1047 if (!page_is_file_lru(page) ||
802a3a92 1048 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1049 *dirty = false;
1050 *writeback = false;
1051 return;
1052 }
1053
1054 /* By default assume that the page flags are accurate */
1055 *dirty = PageDirty(page);
1056 *writeback = PageWriteback(page);
b4597226
MG
1057
1058 /* Verify dirty/writeback state if the filesystem supports it */
1059 if (!page_has_private(page))
1060 return;
1061
1062 mapping = page_mapping(page);
1063 if (mapping && mapping->a_ops->is_dirty_writeback)
1064 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1065}
1066
1da177e4 1067/*
1742f19f 1068 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1069 */
730ec8c0
MS
1070static unsigned int shrink_page_list(struct list_head *page_list,
1071 struct pglist_data *pgdat,
1072 struct scan_control *sc,
730ec8c0
MS
1073 struct reclaim_stat *stat,
1074 bool ignore_references)
1da177e4
LT
1075{
1076 LIST_HEAD(ret_pages);
abe4c3b5 1077 LIST_HEAD(free_pages);
730ec8c0
MS
1078 unsigned int nr_reclaimed = 0;
1079 unsigned int pgactivate = 0;
1da177e4 1080
060f005f 1081 memset(stat, 0, sizeof(*stat));
1da177e4
LT
1082 cond_resched();
1083
1da177e4
LT
1084 while (!list_empty(page_list)) {
1085 struct address_space *mapping;
1086 struct page *page;
8940b34a 1087 enum page_references references = PAGEREF_RECLAIM;
4b793062 1088 bool dirty, writeback, may_enter_fs;
98879b3b 1089 unsigned int nr_pages;
1da177e4
LT
1090
1091 cond_resched();
1092
1093 page = lru_to_page(page_list);
1094 list_del(&page->lru);
1095
529ae9aa 1096 if (!trylock_page(page))
1da177e4
LT
1097 goto keep;
1098
309381fe 1099 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4 1100
d8c6546b 1101 nr_pages = compound_nr(page);
98879b3b
YS
1102
1103 /* Account the number of base pages even though THP */
1104 sc->nr_scanned += nr_pages;
80e43426 1105
39b5f29a 1106 if (unlikely(!page_evictable(page)))
ad6b6704 1107 goto activate_locked;
894bc310 1108
a6dc60f8 1109 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1110 goto keep_locked;
1111
c661b078
AW
1112 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1113 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1114
e2be15f6 1115 /*
894befec 1116 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1117 * reclaim_congested which affects wait_iff_congested. kswapd
1118 * will stall and start writing pages if the tail of the LRU
1119 * is all dirty unqueued pages.
1120 */
1121 page_check_dirty_writeback(page, &dirty, &writeback);
1122 if (dirty || writeback)
060f005f 1123 stat->nr_dirty++;
e2be15f6
MG
1124
1125 if (dirty && !writeback)
060f005f 1126 stat->nr_unqueued_dirty++;
e2be15f6 1127
d04e8acd
MG
1128 /*
1129 * Treat this page as congested if the underlying BDI is or if
1130 * pages are cycling through the LRU so quickly that the
1131 * pages marked for immediate reclaim are making it to the
1132 * end of the LRU a second time.
1133 */
e2be15f6 1134 mapping = page_mapping(page);
1da58ee2 1135 if (((dirty || writeback) && mapping &&
703c2708 1136 inode_write_congested(mapping->host)) ||
d04e8acd 1137 (writeback && PageReclaim(page)))
060f005f 1138 stat->nr_congested++;
e2be15f6 1139
283aba9f
MG
1140 /*
1141 * If a page at the tail of the LRU is under writeback, there
1142 * are three cases to consider.
1143 *
1144 * 1) If reclaim is encountering an excessive number of pages
1145 * under writeback and this page is both under writeback and
1146 * PageReclaim then it indicates that pages are being queued
1147 * for IO but are being recycled through the LRU before the
1148 * IO can complete. Waiting on the page itself risks an
1149 * indefinite stall if it is impossible to writeback the
1150 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1151 * note that the LRU is being scanned too quickly and the
1152 * caller can stall after page list has been processed.
283aba9f 1153 *
97c9341f 1154 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1155 * not marked for immediate reclaim, or the caller does not
1156 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1157 * not to fs). In this case mark the page for immediate
97c9341f 1158 * reclaim and continue scanning.
283aba9f 1159 *
ecf5fc6e
MH
1160 * Require may_enter_fs because we would wait on fs, which
1161 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1162 * enter reclaim, and deadlock if it waits on a page for
1163 * which it is needed to do the write (loop masks off
1164 * __GFP_IO|__GFP_FS for this reason); but more thought
1165 * would probably show more reasons.
1166 *
7fadc820 1167 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1168 * PageReclaim. memcg does not have any dirty pages
1169 * throttling so we could easily OOM just because too many
1170 * pages are in writeback and there is nothing else to
1171 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1172 *
1173 * In cases 1) and 2) we activate the pages to get them out of
1174 * the way while we continue scanning for clean pages on the
1175 * inactive list and refilling from the active list. The
1176 * observation here is that waiting for disk writes is more
1177 * expensive than potentially causing reloads down the line.
1178 * Since they're marked for immediate reclaim, they won't put
1179 * memory pressure on the cache working set any longer than it
1180 * takes to write them to disk.
283aba9f 1181 */
c661b078 1182 if (PageWriteback(page)) {
283aba9f
MG
1183 /* Case 1 above */
1184 if (current_is_kswapd() &&
1185 PageReclaim(page) &&
599d0c95 1186 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
060f005f 1187 stat->nr_immediate++;
c55e8d03 1188 goto activate_locked;
283aba9f
MG
1189
1190 /* Case 2 above */
b5ead35e 1191 } else if (writeback_throttling_sane(sc) ||
ecf5fc6e 1192 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1193 /*
1194 * This is slightly racy - end_page_writeback()
1195 * might have just cleared PageReclaim, then
1196 * setting PageReclaim here end up interpreted
1197 * as PageReadahead - but that does not matter
1198 * enough to care. What we do want is for this
1199 * page to have PageReclaim set next time memcg
1200 * reclaim reaches the tests above, so it will
1201 * then wait_on_page_writeback() to avoid OOM;
1202 * and it's also appropriate in global reclaim.
1203 */
1204 SetPageReclaim(page);
060f005f 1205 stat->nr_writeback++;
c55e8d03 1206 goto activate_locked;
283aba9f
MG
1207
1208 /* Case 3 above */
1209 } else {
7fadc820 1210 unlock_page(page);
283aba9f 1211 wait_on_page_writeback(page);
7fadc820
HD
1212 /* then go back and try same page again */
1213 list_add_tail(&page->lru, page_list);
1214 continue;
e62e384e 1215 }
c661b078 1216 }
1da177e4 1217
8940b34a 1218 if (!ignore_references)
02c6de8d
MK
1219 references = page_check_references(page, sc);
1220
dfc8d636
JW
1221 switch (references) {
1222 case PAGEREF_ACTIVATE:
1da177e4 1223 goto activate_locked;
64574746 1224 case PAGEREF_KEEP:
98879b3b 1225 stat->nr_ref_keep += nr_pages;
64574746 1226 goto keep_locked;
dfc8d636
JW
1227 case PAGEREF_RECLAIM:
1228 case PAGEREF_RECLAIM_CLEAN:
1229 ; /* try to reclaim the page below */
1230 }
1da177e4 1231
1da177e4
LT
1232 /*
1233 * Anonymous process memory has backing store?
1234 * Try to allocate it some swap space here.
802a3a92 1235 * Lazyfree page could be freed directly
1da177e4 1236 */
bd4c82c2
HY
1237 if (PageAnon(page) && PageSwapBacked(page)) {
1238 if (!PageSwapCache(page)) {
1239 if (!(sc->gfp_mask & __GFP_IO))
1240 goto keep_locked;
1241 if (PageTransHuge(page)) {
1242 /* cannot split THP, skip it */
1243 if (!can_split_huge_page(page, NULL))
1244 goto activate_locked;
1245 /*
1246 * Split pages without a PMD map right
1247 * away. Chances are some or all of the
1248 * tail pages can be freed without IO.
1249 */
1250 if (!compound_mapcount(page) &&
1251 split_huge_page_to_list(page,
1252 page_list))
1253 goto activate_locked;
1254 }
1255 if (!add_to_swap(page)) {
1256 if (!PageTransHuge(page))
98879b3b 1257 goto activate_locked_split;
bd4c82c2
HY
1258 /* Fallback to swap normal pages */
1259 if (split_huge_page_to_list(page,
1260 page_list))
1261 goto activate_locked;
fe490cc0
HY
1262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263 count_vm_event(THP_SWPOUT_FALLBACK);
1264#endif
bd4c82c2 1265 if (!add_to_swap(page))
98879b3b 1266 goto activate_locked_split;
bd4c82c2 1267 }
0f074658 1268
4b793062 1269 may_enter_fs = true;
1da177e4 1270
bd4c82c2
HY
1271 /* Adding to swap updated mapping */
1272 mapping = page_mapping(page);
1273 }
7751b2da
KS
1274 } else if (unlikely(PageTransHuge(page))) {
1275 /* Split file THP */
1276 if (split_huge_page_to_list(page, page_list))
1277 goto keep_locked;
e2be15f6 1278 }
1da177e4 1279
98879b3b
YS
1280 /*
1281 * THP may get split above, need minus tail pages and update
1282 * nr_pages to avoid accounting tail pages twice.
1283 *
1284 * The tail pages that are added into swap cache successfully
1285 * reach here.
1286 */
1287 if ((nr_pages > 1) && !PageTransHuge(page)) {
1288 sc->nr_scanned -= (nr_pages - 1);
1289 nr_pages = 1;
1290 }
1291
1da177e4
LT
1292 /*
1293 * The page is mapped into the page tables of one or more
1294 * processes. Try to unmap it here.
1295 */
802a3a92 1296 if (page_mapped(page)) {
013339df 1297 enum ttu_flags flags = TTU_BATCH_FLUSH;
1f318a9b 1298 bool was_swapbacked = PageSwapBacked(page);
bd4c82c2
HY
1299
1300 if (unlikely(PageTransHuge(page)))
1301 flags |= TTU_SPLIT_HUGE_PMD;
1f318a9b 1302
bd4c82c2 1303 if (!try_to_unmap(page, flags)) {
98879b3b 1304 stat->nr_unmap_fail += nr_pages;
1f318a9b
JK
1305 if (!was_swapbacked && PageSwapBacked(page))
1306 stat->nr_lazyfree_fail += nr_pages;
1da177e4 1307 goto activate_locked;
1da177e4
LT
1308 }
1309 }
1310
1311 if (PageDirty(page)) {
ee72886d 1312 /*
4eda4823
JW
1313 * Only kswapd can writeback filesystem pages
1314 * to avoid risk of stack overflow. But avoid
1315 * injecting inefficient single-page IO into
1316 * flusher writeback as much as possible: only
1317 * write pages when we've encountered many
1318 * dirty pages, and when we've already scanned
1319 * the rest of the LRU for clean pages and see
1320 * the same dirty pages again (PageReclaim).
ee72886d 1321 */
9de4f22a 1322 if (page_is_file_lru(page) &&
4eda4823
JW
1323 (!current_is_kswapd() || !PageReclaim(page) ||
1324 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1325 /*
1326 * Immediately reclaim when written back.
1327 * Similar in principal to deactivate_page()
1328 * except we already have the page isolated
1329 * and know it's dirty
1330 */
c4a25635 1331 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1332 SetPageReclaim(page);
1333
c55e8d03 1334 goto activate_locked;
ee72886d
MG
1335 }
1336
dfc8d636 1337 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1338 goto keep_locked;
4dd4b920 1339 if (!may_enter_fs)
1da177e4 1340 goto keep_locked;
52a8363e 1341 if (!sc->may_writepage)
1da177e4
LT
1342 goto keep_locked;
1343
d950c947
MG
1344 /*
1345 * Page is dirty. Flush the TLB if a writable entry
1346 * potentially exists to avoid CPU writes after IO
1347 * starts and then write it out here.
1348 */
1349 try_to_unmap_flush_dirty();
cb16556d 1350 switch (pageout(page, mapping)) {
1da177e4
LT
1351 case PAGE_KEEP:
1352 goto keep_locked;
1353 case PAGE_ACTIVATE:
1354 goto activate_locked;
1355 case PAGE_SUCCESS:
6c357848 1356 stat->nr_pageout += thp_nr_pages(page);
96f8bf4f 1357
7d3579e8 1358 if (PageWriteback(page))
41ac1999 1359 goto keep;
7d3579e8 1360 if (PageDirty(page))
1da177e4 1361 goto keep;
7d3579e8 1362
1da177e4
LT
1363 /*
1364 * A synchronous write - probably a ramdisk. Go
1365 * ahead and try to reclaim the page.
1366 */
529ae9aa 1367 if (!trylock_page(page))
1da177e4
LT
1368 goto keep;
1369 if (PageDirty(page) || PageWriteback(page))
1370 goto keep_locked;
1371 mapping = page_mapping(page);
1372 case PAGE_CLEAN:
1373 ; /* try to free the page below */
1374 }
1375 }
1376
1377 /*
1378 * If the page has buffers, try to free the buffer mappings
1379 * associated with this page. If we succeed we try to free
1380 * the page as well.
1381 *
1382 * We do this even if the page is PageDirty().
1383 * try_to_release_page() does not perform I/O, but it is
1384 * possible for a page to have PageDirty set, but it is actually
1385 * clean (all its buffers are clean). This happens if the
1386 * buffers were written out directly, with submit_bh(). ext3
894bc310 1387 * will do this, as well as the blockdev mapping.
1da177e4
LT
1388 * try_to_release_page() will discover that cleanness and will
1389 * drop the buffers and mark the page clean - it can be freed.
1390 *
1391 * Rarely, pages can have buffers and no ->mapping. These are
1392 * the pages which were not successfully invalidated in
1393 * truncate_complete_page(). We try to drop those buffers here
1394 * and if that worked, and the page is no longer mapped into
1395 * process address space (page_count == 1) it can be freed.
1396 * Otherwise, leave the page on the LRU so it is swappable.
1397 */
266cf658 1398 if (page_has_private(page)) {
1da177e4
LT
1399 if (!try_to_release_page(page, sc->gfp_mask))
1400 goto activate_locked;
e286781d
NP
1401 if (!mapping && page_count(page) == 1) {
1402 unlock_page(page);
1403 if (put_page_testzero(page))
1404 goto free_it;
1405 else {
1406 /*
1407 * rare race with speculative reference.
1408 * the speculative reference will free
1409 * this page shortly, so we may
1410 * increment nr_reclaimed here (and
1411 * leave it off the LRU).
1412 */
1413 nr_reclaimed++;
1414 continue;
1415 }
1416 }
1da177e4
LT
1417 }
1418
802a3a92
SL
1419 if (PageAnon(page) && !PageSwapBacked(page)) {
1420 /* follow __remove_mapping for reference */
1421 if (!page_ref_freeze(page, 1))
1422 goto keep_locked;
1423 if (PageDirty(page)) {
1424 page_ref_unfreeze(page, 1);
1425 goto keep_locked;
1426 }
1da177e4 1427
802a3a92 1428 count_vm_event(PGLAZYFREED);
2262185c 1429 count_memcg_page_event(page, PGLAZYFREED);
b910718a
JW
1430 } else if (!mapping || !__remove_mapping(mapping, page, true,
1431 sc->target_mem_cgroup))
802a3a92 1432 goto keep_locked;
9a1ea439
HD
1433
1434 unlock_page(page);
e286781d 1435free_it:
98879b3b
YS
1436 /*
1437 * THP may get swapped out in a whole, need account
1438 * all base pages.
1439 */
1440 nr_reclaimed += nr_pages;
abe4c3b5
MG
1441
1442 /*
1443 * Is there need to periodically free_page_list? It would
1444 * appear not as the counts should be low
1445 */
7ae88534 1446 if (unlikely(PageTransHuge(page)))
ff45fc3c 1447 destroy_compound_page(page);
7ae88534 1448 else
bd4c82c2 1449 list_add(&page->lru, &free_pages);
1da177e4
LT
1450 continue;
1451
98879b3b
YS
1452activate_locked_split:
1453 /*
1454 * The tail pages that are failed to add into swap cache
1455 * reach here. Fixup nr_scanned and nr_pages.
1456 */
1457 if (nr_pages > 1) {
1458 sc->nr_scanned -= (nr_pages - 1);
1459 nr_pages = 1;
1460 }
1da177e4 1461activate_locked:
68a22394 1462 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1463 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1464 PageMlocked(page)))
a2c43eed 1465 try_to_free_swap(page);
309381fe 1466 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704 1467 if (!PageMlocked(page)) {
9de4f22a 1468 int type = page_is_file_lru(page);
ad6b6704 1469 SetPageActive(page);
98879b3b 1470 stat->nr_activate[type] += nr_pages;
2262185c 1471 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1472 }
1da177e4
LT
1473keep_locked:
1474 unlock_page(page);
1475keep:
1476 list_add(&page->lru, &ret_pages);
309381fe 1477 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1478 }
abe4c3b5 1479
98879b3b
YS
1480 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1481
747db954 1482 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1483 try_to_unmap_flush();
2d4894b5 1484 free_unref_page_list(&free_pages);
abe4c3b5 1485
1da177e4 1486 list_splice(&ret_pages, page_list);
886cf190 1487 count_vm_events(PGACTIVATE, pgactivate);
060f005f 1488
05ff5137 1489 return nr_reclaimed;
1da177e4
LT
1490}
1491
730ec8c0 1492unsigned int reclaim_clean_pages_from_list(struct zone *zone,
02c6de8d
MK
1493 struct list_head *page_list)
1494{
1495 struct scan_control sc = {
1496 .gfp_mask = GFP_KERNEL,
1497 .priority = DEF_PRIORITY,
1498 .may_unmap = 1,
1499 };
1f318a9b 1500 struct reclaim_stat stat;
730ec8c0 1501 unsigned int nr_reclaimed;
02c6de8d
MK
1502 struct page *page, *next;
1503 LIST_HEAD(clean_pages);
1504
1505 list_for_each_entry_safe(page, next, page_list, lru) {
9de4f22a 1506 if (page_is_file_lru(page) && !PageDirty(page) &&
a58f2cef 1507 !__PageMovable(page) && !PageUnevictable(page)) {
02c6de8d
MK
1508 ClearPageActive(page);
1509 list_move(&page->lru, &clean_pages);
1510 }
1511 }
1512
1f318a9b 1513 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
013339df 1514 &stat, true);
02c6de8d 1515 list_splice(&clean_pages, page_list);
2da9f630
NP
1516 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1517 -(long)nr_reclaimed);
1f318a9b
JK
1518 /*
1519 * Since lazyfree pages are isolated from file LRU from the beginning,
1520 * they will rotate back to anonymous LRU in the end if it failed to
1521 * discard so isolated count will be mismatched.
1522 * Compensate the isolated count for both LRU lists.
1523 */
1524 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1525 stat.nr_lazyfree_fail);
1526 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2da9f630 1527 -(long)stat.nr_lazyfree_fail);
1f318a9b 1528 return nr_reclaimed;
02c6de8d
MK
1529}
1530
5ad333eb
AW
1531/*
1532 * Attempt to remove the specified page from its LRU. Only take this page
1533 * if it is of the appropriate PageActive status. Pages which are being
1534 * freed elsewhere are also ignored.
1535 *
1536 * page: page to consider
1537 * mode: one of the LRU isolation modes defined above
1538 *
1539 * returns 0 on success, -ve errno on failure.
1540 */
f3fd4a61 1541int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1542{
1543 int ret = -EINVAL;
1544
1545 /* Only take pages on the LRU. */
1546 if (!PageLRU(page))
1547 return ret;
1548
e46a2879
MK
1549 /* Compaction should not handle unevictable pages but CMA can do so */
1550 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1551 return ret;
1552
5ad333eb 1553 ret = -EBUSY;
08e552c6 1554
c8244935
MG
1555 /*
1556 * To minimise LRU disruption, the caller can indicate that it only
1557 * wants to isolate pages it will be able to operate on without
1558 * blocking - clean pages for the most part.
1559 *
c8244935
MG
1560 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1561 * that it is possible to migrate without blocking
1562 */
1276ad68 1563 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1564 /* All the caller can do on PageWriteback is block */
1565 if (PageWriteback(page))
1566 return ret;
1567
1568 if (PageDirty(page)) {
1569 struct address_space *mapping;
69d763fc 1570 bool migrate_dirty;
c8244935 1571
c8244935
MG
1572 /*
1573 * Only pages without mappings or that have a
1574 * ->migratepage callback are possible to migrate
69d763fc
MG
1575 * without blocking. However, we can be racing with
1576 * truncation so it's necessary to lock the page
1577 * to stabilise the mapping as truncation holds
1578 * the page lock until after the page is removed
1579 * from the page cache.
c8244935 1580 */
69d763fc
MG
1581 if (!trylock_page(page))
1582 return ret;
1583
c8244935 1584 mapping = page_mapping(page);
145e1a71 1585 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1586 unlock_page(page);
1587 if (!migrate_dirty)
c8244935
MG
1588 return ret;
1589 }
1590 }
39deaf85 1591
f80c0673
MK
1592 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1593 return ret;
1594
5ad333eb
AW
1595 if (likely(get_page_unless_zero(page))) {
1596 /*
1597 * Be careful not to clear PageLRU until after we're
1598 * sure the page is not being freed elsewhere -- the
1599 * page release code relies on it.
1600 */
1601 ClearPageLRU(page);
1602 ret = 0;
1603 }
1604
1605 return ret;
1606}
1607
7ee36a14
MG
1608
1609/*
1610 * Update LRU sizes after isolating pages. The LRU size updates must
55b65a57 1611 * be complete before mem_cgroup_update_lru_size due to a sanity check.
7ee36a14
MG
1612 */
1613static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1614 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1615{
7ee36a14
MG
1616 int zid;
1617
7ee36a14
MG
1618 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1619 if (!nr_zone_taken[zid])
1620 continue;
1621
a892cb6b 1622 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
b4536f0c
MH
1623 }
1624
7ee36a14
MG
1625}
1626
f4b7e272
AR
1627/**
1628 * pgdat->lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1629 * shrink the lists perform better by taking out a batch of pages
1630 * and working on them outside the LRU lock.
1631 *
1632 * For pagecache intensive workloads, this function is the hottest
1633 * spot in the kernel (apart from copy_*_user functions).
1634 *
1635 * Appropriate locks must be held before calling this function.
1636 *
791b48b6 1637 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1638 * @lruvec: The LRU vector to pull pages from.
1da177e4 1639 * @dst: The temp list to put pages on to.
f626012d 1640 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1641 * @sc: The scan_control struct for this reclaim session
3cb99451 1642 * @lru: LRU list id for isolating
1da177e4
LT
1643 *
1644 * returns how many pages were moved onto *@dst.
1645 */
69e05944 1646static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1647 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1648 unsigned long *nr_scanned, struct scan_control *sc,
a9e7c39f 1649 enum lru_list lru)
1da177e4 1650{
75b00af7 1651 struct list_head *src = &lruvec->lists[lru];
69e05944 1652 unsigned long nr_taken = 0;
599d0c95 1653 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1654 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1655 unsigned long skipped = 0;
791b48b6 1656 unsigned long scan, total_scan, nr_pages;
b2e18757 1657 LIST_HEAD(pages_skipped);
a9e7c39f 1658 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1da177e4 1659
98879b3b 1660 total_scan = 0;
791b48b6 1661 scan = 0;
98879b3b 1662 while (scan < nr_to_scan && !list_empty(src)) {
5ad333eb 1663 struct page *page;
5ad333eb 1664
1da177e4
LT
1665 page = lru_to_page(src);
1666 prefetchw_prev_lru_page(page, src, flags);
1667
309381fe 1668 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1669
d8c6546b 1670 nr_pages = compound_nr(page);
98879b3b
YS
1671 total_scan += nr_pages;
1672
b2e18757
MG
1673 if (page_zonenum(page) > sc->reclaim_idx) {
1674 list_move(&page->lru, &pages_skipped);
98879b3b 1675 nr_skipped[page_zonenum(page)] += nr_pages;
b2e18757
MG
1676 continue;
1677 }
1678
791b48b6
MK
1679 /*
1680 * Do not count skipped pages because that makes the function
1681 * return with no isolated pages if the LRU mostly contains
1682 * ineligible pages. This causes the VM to not reclaim any
1683 * pages, triggering a premature OOM.
98879b3b
YS
1684 *
1685 * Account all tail pages of THP. This would not cause
1686 * premature OOM since __isolate_lru_page() returns -EBUSY
1687 * only when the page is being freed somewhere else.
791b48b6 1688 */
98879b3b 1689 scan += nr_pages;
f3fd4a61 1690 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1691 case 0:
599d0c95
MG
1692 nr_taken += nr_pages;
1693 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1694 list_move(&page->lru, dst);
5ad333eb
AW
1695 break;
1696
1697 case -EBUSY:
1698 /* else it is being freed elsewhere */
1699 list_move(&page->lru, src);
1700 continue;
46453a6e 1701
5ad333eb
AW
1702 default:
1703 BUG();
1704 }
1da177e4
LT
1705 }
1706
b2e18757
MG
1707 /*
1708 * Splice any skipped pages to the start of the LRU list. Note that
1709 * this disrupts the LRU order when reclaiming for lower zones but
1710 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1711 * scanning would soon rescan the same pages to skip and put the
1712 * system at risk of premature OOM.
1713 */
7cc30fcf
MG
1714 if (!list_empty(&pages_skipped)) {
1715 int zid;
1716
3db65812 1717 list_splice(&pages_skipped, src);
7cc30fcf
MG
1718 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1719 if (!nr_skipped[zid])
1720 continue;
1721
1722 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1723 skipped += nr_skipped[zid];
7cc30fcf
MG
1724 }
1725 }
791b48b6 1726 *nr_scanned = total_scan;
1265e3a6 1727 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1728 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1729 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1730 return nr_taken;
1731}
1732
62695a84
NP
1733/**
1734 * isolate_lru_page - tries to isolate a page from its LRU list
1735 * @page: page to isolate from its LRU list
1736 *
1737 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1738 * vmstat statistic corresponding to whatever LRU list the page was on.
1739 *
1740 * Returns 0 if the page was removed from an LRU list.
1741 * Returns -EBUSY if the page was not on an LRU list.
1742 *
1743 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1744 * the active list, it will have PageActive set. If it was found on
1745 * the unevictable list, it will have the PageUnevictable bit set. That flag
1746 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1747 *
1748 * The vmstat statistic corresponding to the list on which the page was
1749 * found will be decremented.
1750 *
1751 * Restrictions:
a5d09bed 1752 *
62695a84 1753 * (1) Must be called with an elevated refcount on the page. This is a
01c4776b 1754 * fundamental difference from isolate_lru_pages (which is called
62695a84
NP
1755 * without a stable reference).
1756 * (2) the lru_lock must not be held.
1757 * (3) interrupts must be enabled.
1758 */
1759int isolate_lru_page(struct page *page)
1760{
1761 int ret = -EBUSY;
1762
309381fe 1763 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1764 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1765
62695a84 1766 if (PageLRU(page)) {
f4b7e272 1767 pg_data_t *pgdat = page_pgdat(page);
fa9add64 1768 struct lruvec *lruvec;
62695a84 1769
f4b7e272
AR
1770 spin_lock_irq(&pgdat->lru_lock);
1771 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0c917313 1772 if (PageLRU(page)) {
894bc310 1773 int lru = page_lru(page);
0c917313 1774 get_page(page);
62695a84 1775 ClearPageLRU(page);
fa9add64
HD
1776 del_page_from_lru_list(page, lruvec, lru);
1777 ret = 0;
62695a84 1778 }
f4b7e272 1779 spin_unlock_irq(&pgdat->lru_lock);
62695a84
NP
1780 }
1781 return ret;
1782}
1783
35cd7815 1784/*
d37dd5dc 1785 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
178821b8 1786 * then get rescheduled. When there are massive number of tasks doing page
d37dd5dc
FW
1787 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1788 * the LRU list will go small and be scanned faster than necessary, leading to
1789 * unnecessary swapping, thrashing and OOM.
35cd7815 1790 */
599d0c95 1791static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1792 struct scan_control *sc)
1793{
1794 unsigned long inactive, isolated;
1795
1796 if (current_is_kswapd())
1797 return 0;
1798
b5ead35e 1799 if (!writeback_throttling_sane(sc))
35cd7815
RR
1800 return 0;
1801
1802 if (file) {
599d0c95
MG
1803 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1804 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1805 } else {
599d0c95
MG
1806 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1807 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1808 }
1809
3cf23841
FW
1810 /*
1811 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1812 * won't get blocked by normal direct-reclaimers, forming a circular
1813 * deadlock.
1814 */
d0164adc 1815 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1816 inactive >>= 3;
1817
35cd7815
RR
1818 return isolated > inactive;
1819}
1820
a222f341
KT
1821/*
1822 * This moves pages from @list to corresponding LRU list.
1823 *
1824 * We move them the other way if the page is referenced by one or more
1825 * processes, from rmap.
1826 *
1827 * If the pages are mostly unmapped, the processing is fast and it is
1828 * appropriate to hold zone_lru_lock across the whole operation. But if
1829 * the pages are mapped, the processing is slow (page_referenced()) so we
1830 * should drop zone_lru_lock around each page. It's impossible to balance
1831 * this, so instead we remove the pages from the LRU while processing them.
1832 * It is safe to rely on PG_active against the non-LRU pages in here because
1833 * nobody will play with that bit on a non-LRU page.
1834 *
1835 * The downside is that we have to touch page->_refcount against each page.
1836 * But we had to alter page->flags anyway.
1837 *
1838 * Returns the number of pages moved to the given lruvec.
1839 */
1840
1841static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1842 struct list_head *list)
66635629 1843{
599d0c95 1844 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
a222f341 1845 int nr_pages, nr_moved = 0;
3f79768f 1846 LIST_HEAD(pages_to_free);
a222f341
KT
1847 struct page *page;
1848 enum lru_list lru;
66635629 1849
a222f341
KT
1850 while (!list_empty(list)) {
1851 page = lru_to_page(list);
309381fe 1852 VM_BUG_ON_PAGE(PageLRU(page), page);
39b5f29a 1853 if (unlikely(!page_evictable(page))) {
a222f341 1854 list_del(&page->lru);
599d0c95 1855 spin_unlock_irq(&pgdat->lru_lock);
66635629 1856 putback_lru_page(page);
599d0c95 1857 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1858 continue;
1859 }
599d0c95 1860 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1861
7a608572 1862 SetPageLRU(page);
66635629 1863 lru = page_lru(page);
a222f341 1864
6c357848 1865 nr_pages = thp_nr_pages(page);
a222f341
KT
1866 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1867 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1868
2bcf8879
HD
1869 if (put_page_testzero(page)) {
1870 __ClearPageLRU(page);
1871 __ClearPageActive(page);
fa9add64 1872 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1873
1874 if (unlikely(PageCompound(page))) {
599d0c95 1875 spin_unlock_irq(&pgdat->lru_lock);
ff45fc3c 1876 destroy_compound_page(page);
599d0c95 1877 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1878 } else
1879 list_add(&page->lru, &pages_to_free);
a222f341
KT
1880 } else {
1881 nr_moved += nr_pages;
31d8fcac
JW
1882 if (PageActive(page))
1883 workingset_age_nonresident(lruvec, nr_pages);
66635629
MG
1884 }
1885 }
66635629 1886
3f79768f
HD
1887 /*
1888 * To save our caller's stack, now use input list for pages to free.
1889 */
a222f341
KT
1890 list_splice(&pages_to_free, list);
1891
1892 return nr_moved;
66635629
MG
1893}
1894
399ba0b9
N
1895/*
1896 * If a kernel thread (such as nfsd for loop-back mounts) services
a37b0715 1897 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
399ba0b9
N
1898 * In that case we should only throttle if the backing device it is
1899 * writing to is congested. In other cases it is safe to throttle.
1900 */
1901static int current_may_throttle(void)
1902{
a37b0715 1903 return !(current->flags & PF_LOCAL_THROTTLE) ||
399ba0b9
N
1904 current->backing_dev_info == NULL ||
1905 bdi_write_congested(current->backing_dev_info);
1906}
1907
1da177e4 1908/*
b2e18757 1909 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1910 * of reclaimed pages
1da177e4 1911 */
66635629 1912static noinline_for_stack unsigned long
1a93be0e 1913shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1914 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1915{
1916 LIST_HEAD(page_list);
e247dbce 1917 unsigned long nr_scanned;
730ec8c0 1918 unsigned int nr_reclaimed = 0;
e247dbce 1919 unsigned long nr_taken;
060f005f 1920 struct reclaim_stat stat;
497a6c1b 1921 bool file = is_file_lru(lru);
f46b7912 1922 enum vm_event_item item;
599d0c95 1923 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
db73ee0d 1924 bool stalled = false;
78dc583d 1925
599d0c95 1926 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1927 if (stalled)
1928 return 0;
1929
1930 /* wait a bit for the reclaimer. */
1931 msleep(100);
1932 stalled = true;
35cd7815
RR
1933
1934 /* We are about to die and free our memory. Return now. */
1935 if (fatal_signal_pending(current))
1936 return SWAP_CLUSTER_MAX;
1937 }
1938
1da177e4 1939 lru_add_drain();
f80c0673 1940
599d0c95 1941 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1942
5dc35979 1943 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
a9e7c39f 1944 &nr_scanned, sc, lru);
95d918fc 1945
599d0c95 1946 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
f46b7912 1947 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
b5ead35e 1948 if (!cgroup_reclaim(sc))
f46b7912
KT
1949 __count_vm_events(item, nr_scanned);
1950 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
497a6c1b
JW
1951 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1952
599d0c95 1953 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1954
d563c050 1955 if (nr_taken == 0)
66635629 1956 return 0;
5ad333eb 1957
013339df 1958 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
c661b078 1959
599d0c95 1960 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1961
497a6c1b
JW
1962 move_pages_to_lru(lruvec, &page_list);
1963
1964 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
96f8bf4f 1965 lru_note_cost(lruvec, file, stat.nr_pageout);
f46b7912 1966 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
b5ead35e 1967 if (!cgroup_reclaim(sc))
f46b7912
KT
1968 __count_vm_events(item, nr_reclaimed);
1969 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
497a6c1b 1970 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
3f79768f 1971
599d0c95 1972 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1973
747db954 1974 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1975 free_unref_page_list(&page_list);
e11da5b4 1976
1c610d5f
AR
1977 /*
1978 * If dirty pages are scanned that are not queued for IO, it
1979 * implies that flushers are not doing their job. This can
1980 * happen when memory pressure pushes dirty pages to the end of
1981 * the LRU before the dirty limits are breached and the dirty
1982 * data has expired. It can also happen when the proportion of
1983 * dirty pages grows not through writes but through memory
1984 * pressure reclaiming all the clean cache. And in some cases,
1985 * the flushers simply cannot keep up with the allocation
1986 * rate. Nudge the flusher threads in case they are asleep.
1987 */
1988 if (stat.nr_unqueued_dirty == nr_taken)
1989 wakeup_flusher_threads(WB_REASON_VMSCAN);
1990
d108c772
AR
1991 sc->nr.dirty += stat.nr_dirty;
1992 sc->nr.congested += stat.nr_congested;
1993 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1994 sc->nr.writeback += stat.nr_writeback;
1995 sc->nr.immediate += stat.nr_immediate;
1996 sc->nr.taken += nr_taken;
1997 if (file)
1998 sc->nr.file_taken += nr_taken;
8e950282 1999
599d0c95 2000 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2001 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2002 return nr_reclaimed;
1da177e4
LT
2003}
2004
f626012d 2005static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2006 struct lruvec *lruvec,
f16015fb 2007 struct scan_control *sc,
9e3b2f8c 2008 enum lru_list lru)
1da177e4 2009{
44c241f1 2010 unsigned long nr_taken;
f626012d 2011 unsigned long nr_scanned;
6fe6b7e3 2012 unsigned long vm_flags;
1da177e4 2013 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2014 LIST_HEAD(l_active);
b69408e8 2015 LIST_HEAD(l_inactive);
1da177e4 2016 struct page *page;
9d998b4f
MH
2017 unsigned nr_deactivate, nr_activate;
2018 unsigned nr_rotated = 0;
3cb99451 2019 int file = is_file_lru(lru);
599d0c95 2020 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2021
2022 lru_add_drain();
f80c0673 2023
599d0c95 2024 spin_lock_irq(&pgdat->lru_lock);
925b7673 2025
5dc35979 2026 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
a9e7c39f 2027 &nr_scanned, sc, lru);
89b5fae5 2028
599d0c95 2029 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1cfb419b 2030
912c0572
SB
2031 if (!cgroup_reclaim(sc))
2032 __count_vm_events(PGREFILL, nr_scanned);
2fa2690c 2033 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2034
599d0c95 2035 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2036
1da177e4
LT
2037 while (!list_empty(&l_hold)) {
2038 cond_resched();
2039 page = lru_to_page(&l_hold);
2040 list_del(&page->lru);
7e9cd484 2041
39b5f29a 2042 if (unlikely(!page_evictable(page))) {
894bc310
LS
2043 putback_lru_page(page);
2044 continue;
2045 }
2046
cc715d99
MG
2047 if (unlikely(buffer_heads_over_limit)) {
2048 if (page_has_private(page) && trylock_page(page)) {
2049 if (page_has_private(page))
2050 try_to_release_page(page, 0);
2051 unlock_page(page);
2052 }
2053 }
2054
c3ac9a8a
JW
2055 if (page_referenced(page, 0, sc->target_mem_cgroup,
2056 &vm_flags)) {
8cab4754
WF
2057 /*
2058 * Identify referenced, file-backed active pages and
2059 * give them one more trip around the active list. So
2060 * that executable code get better chances to stay in
2061 * memory under moderate memory pressure. Anon pages
2062 * are not likely to be evicted by use-once streaming
2063 * IO, plus JVM can create lots of anon VM_EXEC pages,
2064 * so we ignore them here.
2065 */
9de4f22a 2066 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
6c357848 2067 nr_rotated += thp_nr_pages(page);
8cab4754
WF
2068 list_add(&page->lru, &l_active);
2069 continue;
2070 }
2071 }
7e9cd484 2072
5205e56e 2073 ClearPageActive(page); /* we are de-activating */
1899ad18 2074 SetPageWorkingset(page);
1da177e4
LT
2075 list_add(&page->lru, &l_inactive);
2076 }
2077
b555749a 2078 /*
8cab4754 2079 * Move pages back to the lru list.
b555749a 2080 */
599d0c95 2081 spin_lock_irq(&pgdat->lru_lock);
556adecb 2082
a222f341
KT
2083 nr_activate = move_pages_to_lru(lruvec, &l_active);
2084 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
f372d89e
KT
2085 /* Keep all free pages in l_active list */
2086 list_splice(&l_inactive, &l_active);
9851ac13
KT
2087
2088 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2089 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2090
599d0c95
MG
2091 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2092 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2093
f372d89e
KT
2094 mem_cgroup_uncharge_list(&l_active);
2095 free_unref_page_list(&l_active);
9d998b4f
MH
2096 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2097 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2098}
2099
1a4e58cc
MK
2100unsigned long reclaim_pages(struct list_head *page_list)
2101{
f661d007 2102 int nid = NUMA_NO_NODE;
730ec8c0 2103 unsigned int nr_reclaimed = 0;
1a4e58cc
MK
2104 LIST_HEAD(node_page_list);
2105 struct reclaim_stat dummy_stat;
2106 struct page *page;
2107 struct scan_control sc = {
2108 .gfp_mask = GFP_KERNEL,
2109 .priority = DEF_PRIORITY,
2110 .may_writepage = 1,
2111 .may_unmap = 1,
2112 .may_swap = 1,
2113 };
2114
2115 while (!list_empty(page_list)) {
2116 page = lru_to_page(page_list);
f661d007 2117 if (nid == NUMA_NO_NODE) {
1a4e58cc
MK
2118 nid = page_to_nid(page);
2119 INIT_LIST_HEAD(&node_page_list);
2120 }
2121
2122 if (nid == page_to_nid(page)) {
2123 ClearPageActive(page);
2124 list_move(&page->lru, &node_page_list);
2125 continue;
2126 }
2127
2128 nr_reclaimed += shrink_page_list(&node_page_list,
2129 NODE_DATA(nid),
013339df 2130 &sc, &dummy_stat, false);
1a4e58cc
MK
2131 while (!list_empty(&node_page_list)) {
2132 page = lru_to_page(&node_page_list);
2133 list_del(&page->lru);
2134 putback_lru_page(page);
2135 }
2136
f661d007 2137 nid = NUMA_NO_NODE;
1a4e58cc
MK
2138 }
2139
2140 if (!list_empty(&node_page_list)) {
2141 nr_reclaimed += shrink_page_list(&node_page_list,
2142 NODE_DATA(nid),
013339df 2143 &sc, &dummy_stat, false);
1a4e58cc
MK
2144 while (!list_empty(&node_page_list)) {
2145 page = lru_to_page(&node_page_list);
2146 list_del(&page->lru);
2147 putback_lru_page(page);
2148 }
2149 }
2150
2151 return nr_reclaimed;
2152}
2153
b91ac374
JW
2154static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2155 struct lruvec *lruvec, struct scan_control *sc)
2156{
2157 if (is_active_lru(lru)) {
2158 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2159 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2160 else
2161 sc->skipped_deactivate = 1;
2162 return 0;
2163 }
2164
2165 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2166}
2167
59dc76b0
RR
2168/*
2169 * The inactive anon list should be small enough that the VM never has
2170 * to do too much work.
14797e23 2171 *
59dc76b0
RR
2172 * The inactive file list should be small enough to leave most memory
2173 * to the established workingset on the scan-resistant active list,
2174 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2175 *
59dc76b0
RR
2176 * Both inactive lists should also be large enough that each inactive
2177 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2178 *
2a2e4885
JW
2179 * If that fails and refaulting is observed, the inactive list grows.
2180 *
59dc76b0 2181 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2182 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2183 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2184 *
59dc76b0
RR
2185 * total target max
2186 * memory ratio inactive
2187 * -------------------------------------
2188 * 10MB 1 5MB
2189 * 100MB 1 50MB
2190 * 1GB 3 250MB
2191 * 10GB 10 0.9GB
2192 * 100GB 31 3GB
2193 * 1TB 101 10GB
2194 * 10TB 320 32GB
56e49d21 2195 */
b91ac374 2196static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
56e49d21 2197{
b91ac374 2198 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2a2e4885
JW
2199 unsigned long inactive, active;
2200 unsigned long inactive_ratio;
59dc76b0 2201 unsigned long gb;
e3790144 2202
b91ac374
JW
2203 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2204 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
f8d1a311 2205
b91ac374 2206 gb = (inactive + active) >> (30 - PAGE_SHIFT);
4002570c 2207 if (gb)
b91ac374
JW
2208 inactive_ratio = int_sqrt(10 * gb);
2209 else
2210 inactive_ratio = 1;
fd538803 2211
59dc76b0 2212 return inactive * inactive_ratio < active;
b39415b2
RR
2213}
2214
9a265114
JW
2215enum scan_balance {
2216 SCAN_EQUAL,
2217 SCAN_FRACT,
2218 SCAN_ANON,
2219 SCAN_FILE,
2220};
2221
4f98a2fe
RR
2222/*
2223 * Determine how aggressively the anon and file LRU lists should be
2224 * scanned. The relative value of each set of LRU lists is determined
2225 * by looking at the fraction of the pages scanned we did rotate back
2226 * onto the active list instead of evict.
2227 *
be7bd59d
WL
2228 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2229 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2230 */
afaf07a6
JW
2231static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2232 unsigned long *nr)
4f98a2fe 2233{
afaf07a6 2234 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
d483a5dd 2235 unsigned long anon_cost, file_cost, total_cost;
33377678 2236 int swappiness = mem_cgroup_swappiness(memcg);
ed017373 2237 u64 fraction[ANON_AND_FILE];
9a265114 2238 u64 denominator = 0; /* gcc */
9a265114 2239 enum scan_balance scan_balance;
4f98a2fe 2240 unsigned long ap, fp;
4111304d 2241 enum lru_list lru;
76a33fc3
SL
2242
2243 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2244 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2245 scan_balance = SCAN_FILE;
76a33fc3
SL
2246 goto out;
2247 }
4f98a2fe 2248
10316b31
JW
2249 /*
2250 * Global reclaim will swap to prevent OOM even with no
2251 * swappiness, but memcg users want to use this knob to
2252 * disable swapping for individual groups completely when
2253 * using the memory controller's swap limit feature would be
2254 * too expensive.
2255 */
b5ead35e 2256 if (cgroup_reclaim(sc) && !swappiness) {
9a265114 2257 scan_balance = SCAN_FILE;
10316b31
JW
2258 goto out;
2259 }
2260
2261 /*
2262 * Do not apply any pressure balancing cleverness when the
2263 * system is close to OOM, scan both anon and file equally
2264 * (unless the swappiness setting disagrees with swapping).
2265 */
02695175 2266 if (!sc->priority && swappiness) {
9a265114 2267 scan_balance = SCAN_EQUAL;
10316b31
JW
2268 goto out;
2269 }
2270
62376251 2271 /*
53138cea 2272 * If the system is almost out of file pages, force-scan anon.
62376251 2273 */
b91ac374 2274 if (sc->file_is_tiny) {
53138cea
JW
2275 scan_balance = SCAN_ANON;
2276 goto out;
62376251
JW
2277 }
2278
7c5bd705 2279 /*
b91ac374
JW
2280 * If there is enough inactive page cache, we do not reclaim
2281 * anything from the anonymous working right now.
7c5bd705 2282 */
b91ac374 2283 if (sc->cache_trim_mode) {
9a265114 2284 scan_balance = SCAN_FILE;
7c5bd705
JW
2285 goto out;
2286 }
2287
9a265114 2288 scan_balance = SCAN_FRACT;
58c37f6e 2289 /*
314b57fb
JW
2290 * Calculate the pressure balance between anon and file pages.
2291 *
2292 * The amount of pressure we put on each LRU is inversely
2293 * proportional to the cost of reclaiming each list, as
2294 * determined by the share of pages that are refaulting, times
2295 * the relative IO cost of bringing back a swapped out
2296 * anonymous page vs reloading a filesystem page (swappiness).
2297 *
d483a5dd
JW
2298 * Although we limit that influence to ensure no list gets
2299 * left behind completely: at least a third of the pressure is
2300 * applied, before swappiness.
2301 *
314b57fb 2302 * With swappiness at 100, anon and file have equal IO cost.
58c37f6e 2303 */
d483a5dd
JW
2304 total_cost = sc->anon_cost + sc->file_cost;
2305 anon_cost = total_cost + sc->anon_cost;
2306 file_cost = total_cost + sc->file_cost;
2307 total_cost = anon_cost + file_cost;
58c37f6e 2308
d483a5dd
JW
2309 ap = swappiness * (total_cost + 1);
2310 ap /= anon_cost + 1;
4f98a2fe 2311
d483a5dd
JW
2312 fp = (200 - swappiness) * (total_cost + 1);
2313 fp /= file_cost + 1;
4f98a2fe 2314
76a33fc3
SL
2315 fraction[0] = ap;
2316 fraction[1] = fp;
a4fe1631 2317 denominator = ap + fp;
76a33fc3 2318out:
688035f7
JW
2319 for_each_evictable_lru(lru) {
2320 int file = is_file_lru(lru);
9783aa99 2321 unsigned long lruvec_size;
688035f7 2322 unsigned long scan;
1bc63fb1 2323 unsigned long protection;
9783aa99
CD
2324
2325 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
22f7496f
YS
2326 protection = mem_cgroup_protection(sc->target_mem_cgroup,
2327 memcg,
1bc63fb1 2328 sc->memcg_low_reclaim);
9783aa99 2329
1bc63fb1 2330 if (protection) {
9783aa99
CD
2331 /*
2332 * Scale a cgroup's reclaim pressure by proportioning
2333 * its current usage to its memory.low or memory.min
2334 * setting.
2335 *
2336 * This is important, as otherwise scanning aggression
2337 * becomes extremely binary -- from nothing as we
2338 * approach the memory protection threshold, to totally
2339 * nominal as we exceed it. This results in requiring
2340 * setting extremely liberal protection thresholds. It
2341 * also means we simply get no protection at all if we
2342 * set it too low, which is not ideal.
1bc63fb1
CD
2343 *
2344 * If there is any protection in place, we reduce scan
2345 * pressure by how much of the total memory used is
2346 * within protection thresholds.
9783aa99 2347 *
9de7ca46
CD
2348 * There is one special case: in the first reclaim pass,
2349 * we skip over all groups that are within their low
2350 * protection. If that fails to reclaim enough pages to
2351 * satisfy the reclaim goal, we come back and override
2352 * the best-effort low protection. However, we still
2353 * ideally want to honor how well-behaved groups are in
2354 * that case instead of simply punishing them all
2355 * equally. As such, we reclaim them based on how much
1bc63fb1
CD
2356 * memory they are using, reducing the scan pressure
2357 * again by how much of the total memory used is under
2358 * hard protection.
9783aa99 2359 */
1bc63fb1
CD
2360 unsigned long cgroup_size = mem_cgroup_size(memcg);
2361
2362 /* Avoid TOCTOU with earlier protection check */
2363 cgroup_size = max(cgroup_size, protection);
2364
2365 scan = lruvec_size - lruvec_size * protection /
2366 cgroup_size;
9783aa99
CD
2367
2368 /*
1bc63fb1 2369 * Minimally target SWAP_CLUSTER_MAX pages to keep
55b65a57 2370 * reclaim moving forwards, avoiding decrementing
9de7ca46 2371 * sc->priority further than desirable.
9783aa99 2372 */
1bc63fb1 2373 scan = max(scan, SWAP_CLUSTER_MAX);
9783aa99
CD
2374 } else {
2375 scan = lruvec_size;
2376 }
2377
2378 scan >>= sc->priority;
6b4f7799 2379
688035f7
JW
2380 /*
2381 * If the cgroup's already been deleted, make sure to
2382 * scrape out the remaining cache.
2383 */
2384 if (!scan && !mem_cgroup_online(memcg))
9783aa99 2385 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
6b4f7799 2386
688035f7
JW
2387 switch (scan_balance) {
2388 case SCAN_EQUAL:
2389 /* Scan lists relative to size */
2390 break;
2391 case SCAN_FRACT:
9a265114 2392 /*
688035f7
JW
2393 * Scan types proportional to swappiness and
2394 * their relative recent reclaim efficiency.
76073c64
GS
2395 * Make sure we don't miss the last page on
2396 * the offlined memory cgroups because of a
2397 * round-off error.
9a265114 2398 */
76073c64
GS
2399 scan = mem_cgroup_online(memcg) ?
2400 div64_u64(scan * fraction[file], denominator) :
2401 DIV64_U64_ROUND_UP(scan * fraction[file],
68600f62 2402 denominator);
688035f7
JW
2403 break;
2404 case SCAN_FILE:
2405 case SCAN_ANON:
2406 /* Scan one type exclusively */
e072bff6 2407 if ((scan_balance == SCAN_FILE) != file)
688035f7 2408 scan = 0;
688035f7
JW
2409 break;
2410 default:
2411 /* Look ma, no brain */
2412 BUG();
9a265114 2413 }
688035f7 2414
688035f7 2415 nr[lru] = scan;
76a33fc3 2416 }
6e08a369 2417}
4f98a2fe 2418
afaf07a6 2419static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
9b4f98cd
JW
2420{
2421 unsigned long nr[NR_LRU_LISTS];
e82e0561 2422 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2423 unsigned long nr_to_scan;
2424 enum lru_list lru;
2425 unsigned long nr_reclaimed = 0;
2426 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2427 struct blk_plug plug;
1a501907 2428 bool scan_adjusted;
9b4f98cd 2429
afaf07a6 2430 get_scan_count(lruvec, sc, nr);
9b4f98cd 2431
e82e0561
MG
2432 /* Record the original scan target for proportional adjustments later */
2433 memcpy(targets, nr, sizeof(nr));
2434
1a501907
MG
2435 /*
2436 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2437 * event that can occur when there is little memory pressure e.g.
2438 * multiple streaming readers/writers. Hence, we do not abort scanning
2439 * when the requested number of pages are reclaimed when scanning at
2440 * DEF_PRIORITY on the assumption that the fact we are direct
2441 * reclaiming implies that kswapd is not keeping up and it is best to
2442 * do a batch of work at once. For memcg reclaim one check is made to
2443 * abort proportional reclaim if either the file or anon lru has already
2444 * dropped to zero at the first pass.
2445 */
b5ead35e 2446 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
1a501907
MG
2447 sc->priority == DEF_PRIORITY);
2448
9b4f98cd
JW
2449 blk_start_plug(&plug);
2450 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2451 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2452 unsigned long nr_anon, nr_file, percentage;
2453 unsigned long nr_scanned;
2454
9b4f98cd
JW
2455 for_each_evictable_lru(lru) {
2456 if (nr[lru]) {
2457 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2458 nr[lru] -= nr_to_scan;
2459
2460 nr_reclaimed += shrink_list(lru, nr_to_scan,
3b991208 2461 lruvec, sc);
9b4f98cd
JW
2462 }
2463 }
e82e0561 2464
bd041733
MH
2465 cond_resched();
2466
e82e0561
MG
2467 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2468 continue;
2469
e82e0561
MG
2470 /*
2471 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2472 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2473 * proportionally what was requested by get_scan_count(). We
2474 * stop reclaiming one LRU and reduce the amount scanning
2475 * proportional to the original scan target.
2476 */
2477 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2478 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2479
1a501907
MG
2480 /*
2481 * It's just vindictive to attack the larger once the smaller
2482 * has gone to zero. And given the way we stop scanning the
2483 * smaller below, this makes sure that we only make one nudge
2484 * towards proportionality once we've got nr_to_reclaim.
2485 */
2486 if (!nr_file || !nr_anon)
2487 break;
2488
e82e0561
MG
2489 if (nr_file > nr_anon) {
2490 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2491 targets[LRU_ACTIVE_ANON] + 1;
2492 lru = LRU_BASE;
2493 percentage = nr_anon * 100 / scan_target;
2494 } else {
2495 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2496 targets[LRU_ACTIVE_FILE] + 1;
2497 lru = LRU_FILE;
2498 percentage = nr_file * 100 / scan_target;
2499 }
2500
2501 /* Stop scanning the smaller of the LRU */
2502 nr[lru] = 0;
2503 nr[lru + LRU_ACTIVE] = 0;
2504
2505 /*
2506 * Recalculate the other LRU scan count based on its original
2507 * scan target and the percentage scanning already complete
2508 */
2509 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2510 nr_scanned = targets[lru] - nr[lru];
2511 nr[lru] = targets[lru] * (100 - percentage) / 100;
2512 nr[lru] -= min(nr[lru], nr_scanned);
2513
2514 lru += LRU_ACTIVE;
2515 nr_scanned = targets[lru] - nr[lru];
2516 nr[lru] = targets[lru] * (100 - percentage) / 100;
2517 nr[lru] -= min(nr[lru], nr_scanned);
2518
2519 scan_adjusted = true;
9b4f98cd
JW
2520 }
2521 blk_finish_plug(&plug);
2522 sc->nr_reclaimed += nr_reclaimed;
2523
2524 /*
2525 * Even if we did not try to evict anon pages at all, we want to
2526 * rebalance the anon lru active/inactive ratio.
2527 */
b91ac374 2528 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
9b4f98cd
JW
2529 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2530 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2531}
2532
23b9da55 2533/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2534static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2535{
d84da3f9 2536 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2537 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2538 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2539 return true;
2540
2541 return false;
2542}
2543
3e7d3449 2544/*
23b9da55
MG
2545 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2546 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2547 * true if more pages should be reclaimed such that when the page allocator
df3a45f9 2548 * calls try_to_compact_pages() that it will have enough free pages to succeed.
23b9da55 2549 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2550 */
a9dd0a83 2551static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449 2552 unsigned long nr_reclaimed,
3e7d3449
MG
2553 struct scan_control *sc)
2554{
2555 unsigned long pages_for_compaction;
2556 unsigned long inactive_lru_pages;
a9dd0a83 2557 int z;
3e7d3449
MG
2558
2559 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2560 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2561 return false;
2562
5ee04716
VB
2563 /*
2564 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2565 * number of pages that were scanned. This will return to the caller
2566 * with the risk reclaim/compaction and the resulting allocation attempt
2567 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2568 * allocations through requiring that the full LRU list has been scanned
2569 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2570 * scan, but that approximation was wrong, and there were corner cases
2571 * where always a non-zero amount of pages were scanned.
2572 */
2573 if (!nr_reclaimed)
2574 return false;
3e7d3449 2575
3e7d3449 2576 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2577 for (z = 0; z <= sc->reclaim_idx; z++) {
2578 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2579 if (!managed_zone(zone))
a9dd0a83
MG
2580 continue;
2581
2582 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2583 case COMPACT_SUCCESS:
a9dd0a83
MG
2584 case COMPACT_CONTINUE:
2585 return false;
2586 default:
2587 /* check next zone */
2588 ;
2589 }
3e7d3449 2590 }
1c6c1597
HD
2591
2592 /*
2593 * If we have not reclaimed enough pages for compaction and the
2594 * inactive lists are large enough, continue reclaiming
2595 */
2596 pages_for_compaction = compact_gap(sc->order);
2597 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2598 if (get_nr_swap_pages() > 0)
2599 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2600
5ee04716 2601 return inactive_lru_pages > pages_for_compaction;
3e7d3449
MG
2602}
2603
0f6a5cff 2604static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2605{
0f6a5cff 2606 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
d2af3397 2607 struct mem_cgroup *memcg;
1da177e4 2608
0f6a5cff 2609 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
d2af3397 2610 do {
afaf07a6 2611 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
d2af3397
JW
2612 unsigned long reclaimed;
2613 unsigned long scanned;
5660048c 2614
e3336cab
XP
2615 /*
2616 * This loop can become CPU-bound when target memcgs
2617 * aren't eligible for reclaim - either because they
2618 * don't have any reclaimable pages, or because their
2619 * memory is explicitly protected. Avoid soft lockups.
2620 */
2621 cond_resched();
2622
45c7f7e1
CD
2623 mem_cgroup_calculate_protection(target_memcg, memcg);
2624
2625 if (mem_cgroup_below_min(memcg)) {
d2af3397
JW
2626 /*
2627 * Hard protection.
2628 * If there is no reclaimable memory, OOM.
2629 */
2630 continue;
45c7f7e1 2631 } else if (mem_cgroup_below_low(memcg)) {
d2af3397
JW
2632 /*
2633 * Soft protection.
2634 * Respect the protection only as long as
2635 * there is an unprotected supply
2636 * of reclaimable memory from other cgroups.
2637 */
2638 if (!sc->memcg_low_reclaim) {
2639 sc->memcg_low_skipped = 1;
bf8d5d52 2640 continue;
241994ed 2641 }
d2af3397 2642 memcg_memory_event(memcg, MEMCG_LOW);
d2af3397 2643 }
241994ed 2644
d2af3397
JW
2645 reclaimed = sc->nr_reclaimed;
2646 scanned = sc->nr_scanned;
afaf07a6
JW
2647
2648 shrink_lruvec(lruvec, sc);
70ddf637 2649
d2af3397
JW
2650 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2651 sc->priority);
6b4f7799 2652
d2af3397
JW
2653 /* Record the group's reclaim efficiency */
2654 vmpressure(sc->gfp_mask, memcg, false,
2655 sc->nr_scanned - scanned,
2656 sc->nr_reclaimed - reclaimed);
70ddf637 2657
0f6a5cff
JW
2658 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2659}
2660
6c9e0907 2661static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
0f6a5cff
JW
2662{
2663 struct reclaim_state *reclaim_state = current->reclaim_state;
0f6a5cff 2664 unsigned long nr_reclaimed, nr_scanned;
1b05117d 2665 struct lruvec *target_lruvec;
0f6a5cff 2666 bool reclaimable = false;
b91ac374 2667 unsigned long file;
0f6a5cff 2668
1b05117d
JW
2669 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2670
0f6a5cff
JW
2671again:
2672 memset(&sc->nr, 0, sizeof(sc->nr));
2673
2674 nr_reclaimed = sc->nr_reclaimed;
2675 nr_scanned = sc->nr_scanned;
2676
7cf111bc
JW
2677 /*
2678 * Determine the scan balance between anon and file LRUs.
2679 */
2680 spin_lock_irq(&pgdat->lru_lock);
2681 sc->anon_cost = target_lruvec->anon_cost;
2682 sc->file_cost = target_lruvec->file_cost;
2683 spin_unlock_irq(&pgdat->lru_lock);
2684
b91ac374
JW
2685 /*
2686 * Target desirable inactive:active list ratios for the anon
2687 * and file LRU lists.
2688 */
2689 if (!sc->force_deactivate) {
2690 unsigned long refaults;
2691
170b04b7
JK
2692 refaults = lruvec_page_state(target_lruvec,
2693 WORKINGSET_ACTIVATE_ANON);
2694 if (refaults != target_lruvec->refaults[0] ||
2695 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
b91ac374
JW
2696 sc->may_deactivate |= DEACTIVATE_ANON;
2697 else
2698 sc->may_deactivate &= ~DEACTIVATE_ANON;
2699
2700 /*
2701 * When refaults are being observed, it means a new
2702 * workingset is being established. Deactivate to get
2703 * rid of any stale active pages quickly.
2704 */
2705 refaults = lruvec_page_state(target_lruvec,
170b04b7
JK
2706 WORKINGSET_ACTIVATE_FILE);
2707 if (refaults != target_lruvec->refaults[1] ||
b91ac374
JW
2708 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2709 sc->may_deactivate |= DEACTIVATE_FILE;
2710 else
2711 sc->may_deactivate &= ~DEACTIVATE_FILE;
2712 } else
2713 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2714
2715 /*
2716 * If we have plenty of inactive file pages that aren't
2717 * thrashing, try to reclaim those first before touching
2718 * anonymous pages.
2719 */
2720 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2721 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2722 sc->cache_trim_mode = 1;
2723 else
2724 sc->cache_trim_mode = 0;
2725
53138cea
JW
2726 /*
2727 * Prevent the reclaimer from falling into the cache trap: as
2728 * cache pages start out inactive, every cache fault will tip
2729 * the scan balance towards the file LRU. And as the file LRU
2730 * shrinks, so does the window for rotation from references.
2731 * This means we have a runaway feedback loop where a tiny
2732 * thrashing file LRU becomes infinitely more attractive than
2733 * anon pages. Try to detect this based on file LRU size.
2734 */
2735 if (!cgroup_reclaim(sc)) {
53138cea 2736 unsigned long total_high_wmark = 0;
b91ac374
JW
2737 unsigned long free, anon;
2738 int z;
53138cea
JW
2739
2740 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2741 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2742 node_page_state(pgdat, NR_INACTIVE_FILE);
2743
2744 for (z = 0; z < MAX_NR_ZONES; z++) {
2745 struct zone *zone = &pgdat->node_zones[z];
2746 if (!managed_zone(zone))
2747 continue;
2748
2749 total_high_wmark += high_wmark_pages(zone);
2750 }
2751
b91ac374
JW
2752 /*
2753 * Consider anon: if that's low too, this isn't a
2754 * runaway file reclaim problem, but rather just
2755 * extreme pressure. Reclaim as per usual then.
2756 */
2757 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2758
2759 sc->file_is_tiny =
2760 file + free <= total_high_wmark &&
2761 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2762 anon >> sc->priority;
53138cea
JW
2763 }
2764
0f6a5cff 2765 shrink_node_memcgs(pgdat, sc);
2344d7e4 2766
d2af3397
JW
2767 if (reclaim_state) {
2768 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2769 reclaim_state->reclaimed_slab = 0;
2770 }
d108c772 2771
d2af3397 2772 /* Record the subtree's reclaim efficiency */
1b05117d 2773 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
d2af3397
JW
2774 sc->nr_scanned - nr_scanned,
2775 sc->nr_reclaimed - nr_reclaimed);
d108c772 2776
d2af3397
JW
2777 if (sc->nr_reclaimed - nr_reclaimed)
2778 reclaimable = true;
d108c772 2779
d2af3397
JW
2780 if (current_is_kswapd()) {
2781 /*
2782 * If reclaim is isolating dirty pages under writeback,
2783 * it implies that the long-lived page allocation rate
2784 * is exceeding the page laundering rate. Either the
2785 * global limits are not being effective at throttling
2786 * processes due to the page distribution throughout
2787 * zones or there is heavy usage of a slow backing
2788 * device. The only option is to throttle from reclaim
2789 * context which is not ideal as there is no guarantee
2790 * the dirtying process is throttled in the same way
2791 * balance_dirty_pages() manages.
2792 *
2793 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2794 * count the number of pages under pages flagged for
2795 * immediate reclaim and stall if any are encountered
2796 * in the nr_immediate check below.
2797 */
2798 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2799 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2800
d2af3397
JW
2801 /* Allow kswapd to start writing pages during reclaim.*/
2802 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2803 set_bit(PGDAT_DIRTY, &pgdat->flags);
e3c1ac58 2804
d108c772 2805 /*
1eba09c1 2806 * If kswapd scans pages marked for immediate
d2af3397
JW
2807 * reclaim and under writeback (nr_immediate), it
2808 * implies that pages are cycling through the LRU
2809 * faster than they are written so also forcibly stall.
d108c772 2810 */
d2af3397
JW
2811 if (sc->nr.immediate)
2812 congestion_wait(BLK_RW_ASYNC, HZ/10);
2813 }
2814
2815 /*
1b05117d
JW
2816 * Tag a node/memcg as congested if all the dirty pages
2817 * scanned were backed by a congested BDI and
2818 * wait_iff_congested will stall.
2819 *
d2af3397
JW
2820 * Legacy memcg will stall in page writeback so avoid forcibly
2821 * stalling in wait_iff_congested().
2822 */
1b05117d
JW
2823 if ((current_is_kswapd() ||
2824 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
d2af3397 2825 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
1b05117d 2826 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
d2af3397
JW
2827
2828 /*
2829 * Stall direct reclaim for IO completions if underlying BDIs
2830 * and node is congested. Allow kswapd to continue until it
2831 * starts encountering unqueued dirty pages or cycling through
2832 * the LRU too quickly.
2833 */
1b05117d
JW
2834 if (!current_is_kswapd() && current_may_throttle() &&
2835 !sc->hibernation_mode &&
2836 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
d2af3397 2837 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2838
d2af3397
JW
2839 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2840 sc))
2841 goto again;
2344d7e4 2842
c73322d0
JW
2843 /*
2844 * Kswapd gives up on balancing particular nodes after too
2845 * many failures to reclaim anything from them and goes to
2846 * sleep. On reclaim progress, reset the failure counter. A
2847 * successful direct reclaim run will revive a dormant kswapd.
2848 */
2849 if (reclaimable)
2850 pgdat->kswapd_failures = 0;
f16015fb
JW
2851}
2852
53853e2d 2853/*
fdd4c614
VB
2854 * Returns true if compaction should go ahead for a costly-order request, or
2855 * the allocation would already succeed without compaction. Return false if we
2856 * should reclaim first.
53853e2d 2857 */
4f588331 2858static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2859{
31483b6a 2860 unsigned long watermark;
fdd4c614 2861 enum compact_result suitable;
fe4b1b24 2862
fdd4c614
VB
2863 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2864 if (suitable == COMPACT_SUCCESS)
2865 /* Allocation should succeed already. Don't reclaim. */
2866 return true;
2867 if (suitable == COMPACT_SKIPPED)
2868 /* Compaction cannot yet proceed. Do reclaim. */
2869 return false;
fe4b1b24 2870
53853e2d 2871 /*
fdd4c614
VB
2872 * Compaction is already possible, but it takes time to run and there
2873 * are potentially other callers using the pages just freed. So proceed
2874 * with reclaim to make a buffer of free pages available to give
2875 * compaction a reasonable chance of completing and allocating the page.
2876 * Note that we won't actually reclaim the whole buffer in one attempt
2877 * as the target watermark in should_continue_reclaim() is lower. But if
2878 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2879 */
fdd4c614 2880 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2881
fdd4c614 2882 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2883}
2884
1da177e4
LT
2885/*
2886 * This is the direct reclaim path, for page-allocating processes. We only
2887 * try to reclaim pages from zones which will satisfy the caller's allocation
2888 * request.
2889 *
1da177e4
LT
2890 * If a zone is deemed to be full of pinned pages then just give it a light
2891 * scan then give up on it.
2892 */
0a0337e0 2893static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2894{
dd1a239f 2895 struct zoneref *z;
54a6eb5c 2896 struct zone *zone;
0608f43d
AM
2897 unsigned long nr_soft_reclaimed;
2898 unsigned long nr_soft_scanned;
619d0d76 2899 gfp_t orig_mask;
79dafcdc 2900 pg_data_t *last_pgdat = NULL;
1cfb419b 2901
cc715d99
MG
2902 /*
2903 * If the number of buffer_heads in the machine exceeds the maximum
2904 * allowed level, force direct reclaim to scan the highmem zone as
2905 * highmem pages could be pinning lowmem pages storing buffer_heads
2906 */
619d0d76 2907 orig_mask = sc->gfp_mask;
b2e18757 2908 if (buffer_heads_over_limit) {
cc715d99 2909 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2910 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2911 }
cc715d99 2912
d4debc66 2913 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2914 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2915 /*
2916 * Take care memory controller reclaiming has small influence
2917 * to global LRU.
2918 */
b5ead35e 2919 if (!cgroup_reclaim(sc)) {
344736f2
VD
2920 if (!cpuset_zone_allowed(zone,
2921 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2922 continue;
65ec02cb 2923
0b06496a
JW
2924 /*
2925 * If we already have plenty of memory free for
2926 * compaction in this zone, don't free any more.
2927 * Even though compaction is invoked for any
2928 * non-zero order, only frequent costly order
2929 * reclamation is disruptive enough to become a
2930 * noticeable problem, like transparent huge
2931 * page allocations.
2932 */
2933 if (IS_ENABLED(CONFIG_COMPACTION) &&
2934 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2935 compaction_ready(zone, sc)) {
0b06496a
JW
2936 sc->compaction_ready = true;
2937 continue;
e0887c19 2938 }
0b06496a 2939
79dafcdc
MG
2940 /*
2941 * Shrink each node in the zonelist once. If the
2942 * zonelist is ordered by zone (not the default) then a
2943 * node may be shrunk multiple times but in that case
2944 * the user prefers lower zones being preserved.
2945 */
2946 if (zone->zone_pgdat == last_pgdat)
2947 continue;
2948
0608f43d
AM
2949 /*
2950 * This steals pages from memory cgroups over softlimit
2951 * and returns the number of reclaimed pages and
2952 * scanned pages. This works for global memory pressure
2953 * and balancing, not for a memcg's limit.
2954 */
2955 nr_soft_scanned = 0;
ef8f2327 2956 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2957 sc->order, sc->gfp_mask,
2958 &nr_soft_scanned);
2959 sc->nr_reclaimed += nr_soft_reclaimed;
2960 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2961 /* need some check for avoid more shrink_zone() */
1cfb419b 2962 }
408d8544 2963
79dafcdc
MG
2964 /* See comment about same check for global reclaim above */
2965 if (zone->zone_pgdat == last_pgdat)
2966 continue;
2967 last_pgdat = zone->zone_pgdat;
970a39a3 2968 shrink_node(zone->zone_pgdat, sc);
1da177e4 2969 }
e0c23279 2970
619d0d76
WY
2971 /*
2972 * Restore to original mask to avoid the impact on the caller if we
2973 * promoted it to __GFP_HIGHMEM.
2974 */
2975 sc->gfp_mask = orig_mask;
1da177e4 2976}
4f98a2fe 2977
b910718a 2978static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2a2e4885 2979{
b910718a
JW
2980 struct lruvec *target_lruvec;
2981 unsigned long refaults;
2a2e4885 2982
b910718a 2983 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
170b04b7
JK
2984 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2985 target_lruvec->refaults[0] = refaults;
2986 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2987 target_lruvec->refaults[1] = refaults;
2a2e4885
JW
2988}
2989
1da177e4
LT
2990/*
2991 * This is the main entry point to direct page reclaim.
2992 *
2993 * If a full scan of the inactive list fails to free enough memory then we
2994 * are "out of memory" and something needs to be killed.
2995 *
2996 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2997 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2998 * caller can't do much about. We kick the writeback threads and take explicit
2999 * naps in the hope that some of these pages can be written. But if the
3000 * allocating task holds filesystem locks which prevent writeout this might not
3001 * work, and the allocation attempt will fail.
a41f24ea
NA
3002 *
3003 * returns: 0, if no pages reclaimed
3004 * else, the number of pages reclaimed
1da177e4 3005 */
dac1d27b 3006static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3007 struct scan_control *sc)
1da177e4 3008{
241994ed 3009 int initial_priority = sc->priority;
2a2e4885
JW
3010 pg_data_t *last_pgdat;
3011 struct zoneref *z;
3012 struct zone *zone;
241994ed 3013retry:
873b4771
KK
3014 delayacct_freepages_start();
3015
b5ead35e 3016 if (!cgroup_reclaim(sc))
7cc30fcf 3017 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3018
9e3b2f8c 3019 do {
70ddf637
AV
3020 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3021 sc->priority);
66e1707b 3022 sc->nr_scanned = 0;
0a0337e0 3023 shrink_zones(zonelist, sc);
c6a8a8c5 3024
bb21c7ce 3025 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3026 break;
3027
3028 if (sc->compaction_ready)
3029 break;
1da177e4 3030
0e50ce3b
MK
3031 /*
3032 * If we're getting trouble reclaiming, start doing
3033 * writepage even in laptop mode.
3034 */
3035 if (sc->priority < DEF_PRIORITY - 2)
3036 sc->may_writepage = 1;
0b06496a 3037 } while (--sc->priority >= 0);
bb21c7ce 3038
2a2e4885
JW
3039 last_pgdat = NULL;
3040 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3041 sc->nodemask) {
3042 if (zone->zone_pgdat == last_pgdat)
3043 continue;
3044 last_pgdat = zone->zone_pgdat;
1b05117d 3045
2a2e4885 3046 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
1b05117d
JW
3047
3048 if (cgroup_reclaim(sc)) {
3049 struct lruvec *lruvec;
3050
3051 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3052 zone->zone_pgdat);
3053 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3054 }
2a2e4885
JW
3055 }
3056
873b4771
KK
3057 delayacct_freepages_end();
3058
bb21c7ce
KM
3059 if (sc->nr_reclaimed)
3060 return sc->nr_reclaimed;
3061
0cee34fd 3062 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3063 if (sc->compaction_ready)
7335084d
MG
3064 return 1;
3065
b91ac374
JW
3066 /*
3067 * We make inactive:active ratio decisions based on the node's
3068 * composition of memory, but a restrictive reclaim_idx or a
3069 * memory.low cgroup setting can exempt large amounts of
3070 * memory from reclaim. Neither of which are very common, so
3071 * instead of doing costly eligibility calculations of the
3072 * entire cgroup subtree up front, we assume the estimates are
3073 * good, and retry with forcible deactivation if that fails.
3074 */
3075 if (sc->skipped_deactivate) {
3076 sc->priority = initial_priority;
3077 sc->force_deactivate = 1;
3078 sc->skipped_deactivate = 0;
3079 goto retry;
3080 }
3081
241994ed 3082 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3083 if (sc->memcg_low_skipped) {
241994ed 3084 sc->priority = initial_priority;
b91ac374 3085 sc->force_deactivate = 0;
d6622f63
YX
3086 sc->memcg_low_reclaim = 1;
3087 sc->memcg_low_skipped = 0;
241994ed
JW
3088 goto retry;
3089 }
3090
bb21c7ce 3091 return 0;
1da177e4
LT
3092}
3093
c73322d0 3094static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3095{
3096 struct zone *zone;
3097 unsigned long pfmemalloc_reserve = 0;
3098 unsigned long free_pages = 0;
3099 int i;
3100 bool wmark_ok;
3101
c73322d0
JW
3102 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3103 return true;
3104
5515061d
MG
3105 for (i = 0; i <= ZONE_NORMAL; i++) {
3106 zone = &pgdat->node_zones[i];
d450abd8
JW
3107 if (!managed_zone(zone))
3108 continue;
3109
3110 if (!zone_reclaimable_pages(zone))
675becce
MG
3111 continue;
3112
5515061d
MG
3113 pfmemalloc_reserve += min_wmark_pages(zone);
3114 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3115 }
3116
675becce
MG
3117 /* If there are no reserves (unexpected config) then do not throttle */
3118 if (!pfmemalloc_reserve)
3119 return true;
3120
5515061d
MG
3121 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3122
3123 /* kswapd must be awake if processes are being throttled */
3124 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
97a225e6
JK
3125 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3126 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
5644e1fb 3127
5515061d
MG
3128 wake_up_interruptible(&pgdat->kswapd_wait);
3129 }
3130
3131 return wmark_ok;
3132}
3133
3134/*
3135 * Throttle direct reclaimers if backing storage is backed by the network
3136 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3137 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3138 * when the low watermark is reached.
3139 *
3140 * Returns true if a fatal signal was delivered during throttling. If this
3141 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3142 */
50694c28 3143static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3144 nodemask_t *nodemask)
3145{
675becce 3146 struct zoneref *z;
5515061d 3147 struct zone *zone;
675becce 3148 pg_data_t *pgdat = NULL;
5515061d
MG
3149
3150 /*
3151 * Kernel threads should not be throttled as they may be indirectly
3152 * responsible for cleaning pages necessary for reclaim to make forward
3153 * progress. kjournald for example may enter direct reclaim while
3154 * committing a transaction where throttling it could forcing other
3155 * processes to block on log_wait_commit().
3156 */
3157 if (current->flags & PF_KTHREAD)
50694c28
MG
3158 goto out;
3159
3160 /*
3161 * If a fatal signal is pending, this process should not throttle.
3162 * It should return quickly so it can exit and free its memory
3163 */
3164 if (fatal_signal_pending(current))
3165 goto out;
5515061d 3166
675becce
MG
3167 /*
3168 * Check if the pfmemalloc reserves are ok by finding the first node
3169 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3170 * GFP_KERNEL will be required for allocating network buffers when
3171 * swapping over the network so ZONE_HIGHMEM is unusable.
3172 *
3173 * Throttling is based on the first usable node and throttled processes
3174 * wait on a queue until kswapd makes progress and wakes them. There
3175 * is an affinity then between processes waking up and where reclaim
3176 * progress has been made assuming the process wakes on the same node.
3177 * More importantly, processes running on remote nodes will not compete
3178 * for remote pfmemalloc reserves and processes on different nodes
3179 * should make reasonable progress.
3180 */
3181 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3182 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3183 if (zone_idx(zone) > ZONE_NORMAL)
3184 continue;
3185
3186 /* Throttle based on the first usable node */
3187 pgdat = zone->zone_pgdat;
c73322d0 3188 if (allow_direct_reclaim(pgdat))
675becce
MG
3189 goto out;
3190 break;
3191 }
3192
3193 /* If no zone was usable by the allocation flags then do not throttle */
3194 if (!pgdat)
50694c28 3195 goto out;
5515061d 3196
68243e76
MG
3197 /* Account for the throttling */
3198 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3199
5515061d
MG
3200 /*
3201 * If the caller cannot enter the filesystem, it's possible that it
3202 * is due to the caller holding an FS lock or performing a journal
3203 * transaction in the case of a filesystem like ext[3|4]. In this case,
3204 * it is not safe to block on pfmemalloc_wait as kswapd could be
3205 * blocked waiting on the same lock. Instead, throttle for up to a
3206 * second before continuing.
3207 */
3208 if (!(gfp_mask & __GFP_FS)) {
3209 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3210 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3211
3212 goto check_pending;
5515061d
MG
3213 }
3214
3215 /* Throttle until kswapd wakes the process */
3216 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3217 allow_direct_reclaim(pgdat));
50694c28
MG
3218
3219check_pending:
3220 if (fatal_signal_pending(current))
3221 return true;
3222
3223out:
3224 return false;
5515061d
MG
3225}
3226
dac1d27b 3227unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3228 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3229{
33906bc5 3230 unsigned long nr_reclaimed;
66e1707b 3231 struct scan_control sc = {
ee814fe2 3232 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3233 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3234 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3235 .order = order,
3236 .nodemask = nodemask,
3237 .priority = DEF_PRIORITY,
66e1707b 3238 .may_writepage = !laptop_mode,
a6dc60f8 3239 .may_unmap = 1,
2e2e4259 3240 .may_swap = 1,
66e1707b
BS
3241 };
3242
bb451fdf
GT
3243 /*
3244 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3245 * Confirm they are large enough for max values.
3246 */
3247 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3248 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3249 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3250
5515061d 3251 /*
50694c28
MG
3252 * Do not enter reclaim if fatal signal was delivered while throttled.
3253 * 1 is returned so that the page allocator does not OOM kill at this
3254 * point.
5515061d 3255 */
f2f43e56 3256 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3257 return 1;
3258
1732d2b0 3259 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3260 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
33906bc5 3261
3115cd91 3262 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3263
3264 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1732d2b0 3265 set_task_reclaim_state(current, NULL);
33906bc5
MG
3266
3267 return nr_reclaimed;
66e1707b
BS
3268}
3269
c255a458 3270#ifdef CONFIG_MEMCG
66e1707b 3271
d2e5fb92 3272/* Only used by soft limit reclaim. Do not reuse for anything else. */
a9dd0a83 3273unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3274 gfp_t gfp_mask, bool noswap,
ef8f2327 3275 pg_data_t *pgdat,
0ae5e89c 3276 unsigned long *nr_scanned)
4e416953 3277{
afaf07a6 3278 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4e416953 3279 struct scan_control sc = {
b8f5c566 3280 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3281 .target_mem_cgroup = memcg,
4e416953
BS
3282 .may_writepage = !laptop_mode,
3283 .may_unmap = 1,
b2e18757 3284 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3285 .may_swap = !noswap,
4e416953 3286 };
0ae5e89c 3287
d2e5fb92
MH
3288 WARN_ON_ONCE(!current->reclaim_state);
3289
4e416953
BS
3290 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3291 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3292
9e3b2f8c 3293 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3481c37f 3294 sc.gfp_mask);
bdce6d9e 3295
4e416953
BS
3296 /*
3297 * NOTE: Although we can get the priority field, using it
3298 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3299 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3300 * will pick up pages from other mem cgroup's as well. We hack
3301 * the priority and make it zero.
3302 */
afaf07a6 3303 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
3304
3305 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3306
0ae5e89c 3307 *nr_scanned = sc.nr_scanned;
0308f7cf 3308
4e416953
BS
3309 return sc.nr_reclaimed;
3310}
3311
72835c86 3312unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3313 unsigned long nr_pages,
a7885eb8 3314 gfp_t gfp_mask,
b70a2a21 3315 bool may_swap)
66e1707b 3316{
bdce6d9e 3317 unsigned long nr_reclaimed;
499118e9 3318 unsigned int noreclaim_flag;
66e1707b 3319 struct scan_control sc = {
b70a2a21 3320 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3321 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3322 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3323 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3324 .target_mem_cgroup = memcg,
3325 .priority = DEF_PRIORITY,
3326 .may_writepage = !laptop_mode,
3327 .may_unmap = 1,
b70a2a21 3328 .may_swap = may_swap,
a09ed5e0 3329 };
889976db 3330 /*
fa40d1ee
SB
3331 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3332 * equal pressure on all the nodes. This is based on the assumption that
3333 * the reclaim does not bail out early.
889976db 3334 */
fa40d1ee 3335 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
889976db 3336
fa40d1ee 3337 set_task_reclaim_state(current, &sc.reclaim_state);
3481c37f 3338 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
499118e9 3339 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3340
3115cd91 3341 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
eb414681 3342
499118e9 3343 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e 3344 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
1732d2b0 3345 set_task_reclaim_state(current, NULL);
bdce6d9e
KM
3346
3347 return nr_reclaimed;
66e1707b
BS
3348}
3349#endif
3350
1d82de61 3351static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3352 struct scan_control *sc)
f16015fb 3353{
b95a2f2d 3354 struct mem_cgroup *memcg;
b91ac374 3355 struct lruvec *lruvec;
f16015fb 3356
b95a2f2d
JW
3357 if (!total_swap_pages)
3358 return;
3359
b91ac374
JW
3360 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3361 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3362 return;
3363
b95a2f2d
JW
3364 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3365 do {
b91ac374
JW
3366 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3367 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3368 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3369 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3370 } while (memcg);
f16015fb
JW
3371}
3372
97a225e6 3373static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
1c30844d
MG
3374{
3375 int i;
3376 struct zone *zone;
3377
3378 /*
3379 * Check for watermark boosts top-down as the higher zones
3380 * are more likely to be boosted. Both watermarks and boosts
1eba09c1 3381 * should not be checked at the same time as reclaim would
1c30844d
MG
3382 * start prematurely when there is no boosting and a lower
3383 * zone is balanced.
3384 */
97a225e6 3385 for (i = highest_zoneidx; i >= 0; i--) {
1c30844d
MG
3386 zone = pgdat->node_zones + i;
3387 if (!managed_zone(zone))
3388 continue;
3389
3390 if (zone->watermark_boost)
3391 return true;
3392 }
3393
3394 return false;
3395}
3396
e716f2eb
MG
3397/*
3398 * Returns true if there is an eligible zone balanced for the request order
97a225e6 3399 * and highest_zoneidx
e716f2eb 3400 */
97a225e6 3401static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
60cefed4 3402{
e716f2eb
MG
3403 int i;
3404 unsigned long mark = -1;
3405 struct zone *zone;
60cefed4 3406
1c30844d
MG
3407 /*
3408 * Check watermarks bottom-up as lower zones are more likely to
3409 * meet watermarks.
3410 */
97a225e6 3411 for (i = 0; i <= highest_zoneidx; i++) {
e716f2eb 3412 zone = pgdat->node_zones + i;
6256c6b4 3413
e716f2eb
MG
3414 if (!managed_zone(zone))
3415 continue;
3416
3417 mark = high_wmark_pages(zone);
97a225e6 3418 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
e716f2eb
MG
3419 return true;
3420 }
3421
3422 /*
97a225e6 3423 * If a node has no populated zone within highest_zoneidx, it does not
e716f2eb
MG
3424 * need balancing by definition. This can happen if a zone-restricted
3425 * allocation tries to wake a remote kswapd.
3426 */
3427 if (mark == -1)
3428 return true;
3429
3430 return false;
60cefed4
JW
3431}
3432
631b6e08
MG
3433/* Clear pgdat state for congested, dirty or under writeback. */
3434static void clear_pgdat_congested(pg_data_t *pgdat)
3435{
1b05117d
JW
3436 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3437
3438 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
631b6e08
MG
3439 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3440 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3441}
3442
5515061d
MG
3443/*
3444 * Prepare kswapd for sleeping. This verifies that there are no processes
3445 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3446 *
3447 * Returns true if kswapd is ready to sleep
3448 */
97a225e6
JK
3449static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3450 int highest_zoneidx)
f50de2d3 3451{
5515061d 3452 /*
9e5e3661 3453 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3454 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3455 * race between when kswapd checks the watermarks and a process gets
3456 * throttled. There is also a potential race if processes get
3457 * throttled, kswapd wakes, a large process exits thereby balancing the
3458 * zones, which causes kswapd to exit balance_pgdat() before reaching
3459 * the wake up checks. If kswapd is going to sleep, no process should
3460 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3461 * the wake up is premature, processes will wake kswapd and get
3462 * throttled again. The difference from wake ups in balance_pgdat() is
3463 * that here we are under prepare_to_wait().
5515061d 3464 */
9e5e3661
VB
3465 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3466 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3467
c73322d0
JW
3468 /* Hopeless node, leave it to direct reclaim */
3469 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3470 return true;
3471
97a225e6 3472 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
e716f2eb
MG
3473 clear_pgdat_congested(pgdat);
3474 return true;
1d82de61
MG
3475 }
3476
333b0a45 3477 return false;
f50de2d3
MG
3478}
3479
75485363 3480/*
1d82de61
MG
3481 * kswapd shrinks a node of pages that are at or below the highest usable
3482 * zone that is currently unbalanced.
b8e83b94
MG
3483 *
3484 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3485 * reclaim or if the lack of progress was due to pages under writeback.
3486 * This is used to determine if the scanning priority needs to be raised.
75485363 3487 */
1d82de61 3488static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3489 struct scan_control *sc)
75485363 3490{
1d82de61
MG
3491 struct zone *zone;
3492 int z;
75485363 3493
1d82de61
MG
3494 /* Reclaim a number of pages proportional to the number of zones */
3495 sc->nr_to_reclaim = 0;
970a39a3 3496 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3497 zone = pgdat->node_zones + z;
6aa303de 3498 if (!managed_zone(zone))
1d82de61 3499 continue;
7c954f6d 3500
1d82de61
MG
3501 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3502 }
7c954f6d
MG
3503
3504 /*
1d82de61
MG
3505 * Historically care was taken to put equal pressure on all zones but
3506 * now pressure is applied based on node LRU order.
7c954f6d 3507 */
970a39a3 3508 shrink_node(pgdat, sc);
283aba9f 3509
7c954f6d 3510 /*
1d82de61
MG
3511 * Fragmentation may mean that the system cannot be rebalanced for
3512 * high-order allocations. If twice the allocation size has been
3513 * reclaimed then recheck watermarks only at order-0 to prevent
3514 * excessive reclaim. Assume that a process requested a high-order
3515 * can direct reclaim/compact.
7c954f6d 3516 */
9861a62c 3517 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3518 sc->order = 0;
7c954f6d 3519
b8e83b94 3520 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3521}
3522
1da177e4 3523/*
1d82de61
MG
3524 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3525 * that are eligible for use by the caller until at least one zone is
3526 * balanced.
1da177e4 3527 *
1d82de61 3528 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3529 *
3530 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3531 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
8bb4e7a2 3532 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
1d82de61
MG
3533 * or lower is eligible for reclaim until at least one usable zone is
3534 * balanced.
1da177e4 3535 */
97a225e6 3536static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
1da177e4 3537{
1da177e4 3538 int i;
0608f43d
AM
3539 unsigned long nr_soft_reclaimed;
3540 unsigned long nr_soft_scanned;
eb414681 3541 unsigned long pflags;
1c30844d
MG
3542 unsigned long nr_boost_reclaim;
3543 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3544 bool boosted;
1d82de61 3545 struct zone *zone;
179e9639
AM
3546 struct scan_control sc = {
3547 .gfp_mask = GFP_KERNEL,
ee814fe2 3548 .order = order,
a6dc60f8 3549 .may_unmap = 1,
179e9639 3550 };
93781325 3551
1732d2b0 3552 set_task_reclaim_state(current, &sc.reclaim_state);
eb414681 3553 psi_memstall_enter(&pflags);
93781325
OS
3554 __fs_reclaim_acquire();
3555
f8891e5e 3556 count_vm_event(PAGEOUTRUN);
1da177e4 3557
1c30844d
MG
3558 /*
3559 * Account for the reclaim boost. Note that the zone boost is left in
3560 * place so that parallel allocations that are near the watermark will
3561 * stall or direct reclaim until kswapd is finished.
3562 */
3563 nr_boost_reclaim = 0;
97a225e6 3564 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3565 zone = pgdat->node_zones + i;
3566 if (!managed_zone(zone))
3567 continue;
3568
3569 nr_boost_reclaim += zone->watermark_boost;
3570 zone_boosts[i] = zone->watermark_boost;
3571 }
3572 boosted = nr_boost_reclaim;
3573
3574restart:
3575 sc.priority = DEF_PRIORITY;
9e3b2f8c 3576 do {
c73322d0 3577 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3578 bool raise_priority = true;
1c30844d 3579 bool balanced;
93781325 3580 bool ret;
b8e83b94 3581
97a225e6 3582 sc.reclaim_idx = highest_zoneidx;
1da177e4 3583
86c79f6b 3584 /*
84c7a777
MG
3585 * If the number of buffer_heads exceeds the maximum allowed
3586 * then consider reclaiming from all zones. This has a dual
3587 * purpose -- on 64-bit systems it is expected that
3588 * buffer_heads are stripped during active rotation. On 32-bit
3589 * systems, highmem pages can pin lowmem memory and shrinking
3590 * buffers can relieve lowmem pressure. Reclaim may still not
3591 * go ahead if all eligible zones for the original allocation
3592 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3593 */
3594 if (buffer_heads_over_limit) {
3595 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3596 zone = pgdat->node_zones + i;
6aa303de 3597 if (!managed_zone(zone))
86c79f6b 3598 continue;
cc715d99 3599
970a39a3 3600 sc.reclaim_idx = i;
e1dbeda6 3601 break;
1da177e4 3602 }
1da177e4 3603 }
dafcb73e 3604
86c79f6b 3605 /*
1c30844d
MG
3606 * If the pgdat is imbalanced then ignore boosting and preserve
3607 * the watermarks for a later time and restart. Note that the
3608 * zone watermarks will be still reset at the end of balancing
3609 * on the grounds that the normal reclaim should be enough to
3610 * re-evaluate if boosting is required when kswapd next wakes.
3611 */
97a225e6 3612 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
1c30844d
MG
3613 if (!balanced && nr_boost_reclaim) {
3614 nr_boost_reclaim = 0;
3615 goto restart;
3616 }
3617
3618 /*
3619 * If boosting is not active then only reclaim if there are no
3620 * eligible zones. Note that sc.reclaim_idx is not used as
3621 * buffer_heads_over_limit may have adjusted it.
86c79f6b 3622 */
1c30844d 3623 if (!nr_boost_reclaim && balanced)
e716f2eb 3624 goto out;
e1dbeda6 3625
1c30844d
MG
3626 /* Limit the priority of boosting to avoid reclaim writeback */
3627 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3628 raise_priority = false;
3629
3630 /*
3631 * Do not writeback or swap pages for boosted reclaim. The
3632 * intent is to relieve pressure not issue sub-optimal IO
3633 * from reclaim context. If no pages are reclaimed, the
3634 * reclaim will be aborted.
3635 */
3636 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3637 sc.may_swap = !nr_boost_reclaim;
1c30844d 3638
1d82de61
MG
3639 /*
3640 * Do some background aging of the anon list, to give
3641 * pages a chance to be referenced before reclaiming. All
3642 * pages are rotated regardless of classzone as this is
3643 * about consistent aging.
3644 */
ef8f2327 3645 age_active_anon(pgdat, &sc);
1d82de61 3646
b7ea3c41
MG
3647 /*
3648 * If we're getting trouble reclaiming, start doing writepage
3649 * even in laptop mode.
3650 */
047d72c3 3651 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3652 sc.may_writepage = 1;
3653
1d82de61
MG
3654 /* Call soft limit reclaim before calling shrink_node. */
3655 sc.nr_scanned = 0;
3656 nr_soft_scanned = 0;
ef8f2327 3657 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3658 sc.gfp_mask, &nr_soft_scanned);
3659 sc.nr_reclaimed += nr_soft_reclaimed;
3660
1da177e4 3661 /*
1d82de61
MG
3662 * There should be no need to raise the scanning priority if
3663 * enough pages are already being scanned that that high
3664 * watermark would be met at 100% efficiency.
1da177e4 3665 */
970a39a3 3666 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3667 raise_priority = false;
5515061d
MG
3668
3669 /*
3670 * If the low watermark is met there is no need for processes
3671 * to be throttled on pfmemalloc_wait as they should not be
3672 * able to safely make forward progress. Wake them
3673 */
3674 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3675 allow_direct_reclaim(pgdat))
cfc51155 3676 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3677
b8e83b94 3678 /* Check if kswapd should be suspending */
93781325
OS
3679 __fs_reclaim_release();
3680 ret = try_to_freeze();
3681 __fs_reclaim_acquire();
3682 if (ret || kthread_should_stop())
b8e83b94 3683 break;
8357376d 3684
73ce02e9 3685 /*
b8e83b94
MG
3686 * Raise priority if scanning rate is too low or there was no
3687 * progress in reclaiming pages
73ce02e9 3688 */
c73322d0 3689 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
1c30844d
MG
3690 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3691
3692 /*
3693 * If reclaim made no progress for a boost, stop reclaim as
3694 * IO cannot be queued and it could be an infinite loop in
3695 * extreme circumstances.
3696 */
3697 if (nr_boost_reclaim && !nr_reclaimed)
3698 break;
3699
c73322d0 3700 if (raise_priority || !nr_reclaimed)
b8e83b94 3701 sc.priority--;
1d82de61 3702 } while (sc.priority >= 1);
1da177e4 3703
c73322d0
JW
3704 if (!sc.nr_reclaimed)
3705 pgdat->kswapd_failures++;
3706
b8e83b94 3707out:
1c30844d
MG
3708 /* If reclaim was boosted, account for the reclaim done in this pass */
3709 if (boosted) {
3710 unsigned long flags;
3711
97a225e6 3712 for (i = 0; i <= highest_zoneidx; i++) {
1c30844d
MG
3713 if (!zone_boosts[i])
3714 continue;
3715
3716 /* Increments are under the zone lock */
3717 zone = pgdat->node_zones + i;
3718 spin_lock_irqsave(&zone->lock, flags);
3719 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3720 spin_unlock_irqrestore(&zone->lock, flags);
3721 }
3722
3723 /*
3724 * As there is now likely space, wakeup kcompact to defragment
3725 * pageblocks.
3726 */
97a225e6 3727 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
1c30844d
MG
3728 }
3729
2a2e4885 3730 snapshot_refaults(NULL, pgdat);
93781325 3731 __fs_reclaim_release();
eb414681 3732 psi_memstall_leave(&pflags);
1732d2b0 3733 set_task_reclaim_state(current, NULL);
e5ca8071 3734
0abdee2b 3735 /*
1d82de61
MG
3736 * Return the order kswapd stopped reclaiming at as
3737 * prepare_kswapd_sleep() takes it into account. If another caller
3738 * entered the allocator slow path while kswapd was awake, order will
3739 * remain at the higher level.
0abdee2b 3740 */
1d82de61 3741 return sc.order;
1da177e4
LT
3742}
3743
e716f2eb 3744/*
97a225e6
JK
3745 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3746 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3747 * not a valid index then either kswapd runs for first time or kswapd couldn't
3748 * sleep after previous reclaim attempt (node is still unbalanced). In that
3749 * case return the zone index of the previous kswapd reclaim cycle.
e716f2eb 3750 */
97a225e6
JK
3751static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3752 enum zone_type prev_highest_zoneidx)
e716f2eb 3753{
97a225e6 3754 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 3755
97a225e6 3756 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
e716f2eb
MG
3757}
3758
38087d9b 3759static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
97a225e6 3760 unsigned int highest_zoneidx)
f0bc0a60
KM
3761{
3762 long remaining = 0;
3763 DEFINE_WAIT(wait);
3764
3765 if (freezing(current) || kthread_should_stop())
3766 return;
3767
3768 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3769
333b0a45
SG
3770 /*
3771 * Try to sleep for a short interval. Note that kcompactd will only be
3772 * woken if it is possible to sleep for a short interval. This is
3773 * deliberate on the assumption that if reclaim cannot keep an
3774 * eligible zone balanced that it's also unlikely that compaction will
3775 * succeed.
3776 */
97a225e6 3777 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
fd901c95
VB
3778 /*
3779 * Compaction records what page blocks it recently failed to
3780 * isolate pages from and skips them in the future scanning.
3781 * When kswapd is going to sleep, it is reasonable to assume
3782 * that pages and compaction may succeed so reset the cache.
3783 */
3784 reset_isolation_suitable(pgdat);
3785
3786 /*
3787 * We have freed the memory, now we should compact it to make
3788 * allocation of the requested order possible.
3789 */
97a225e6 3790 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
fd901c95 3791
f0bc0a60 3792 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3793
3794 /*
97a225e6 3795 * If woken prematurely then reset kswapd_highest_zoneidx and
38087d9b
MG
3796 * order. The values will either be from a wakeup request or
3797 * the previous request that slept prematurely.
3798 */
3799 if (remaining) {
97a225e6
JK
3800 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3801 kswapd_highest_zoneidx(pgdat,
3802 highest_zoneidx));
5644e1fb
QC
3803
3804 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3805 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
38087d9b
MG
3806 }
3807
f0bc0a60
KM
3808 finish_wait(&pgdat->kswapd_wait, &wait);
3809 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3810 }
3811
3812 /*
3813 * After a short sleep, check if it was a premature sleep. If not, then
3814 * go fully to sleep until explicitly woken up.
3815 */
d9f21d42 3816 if (!remaining &&
97a225e6 3817 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
f0bc0a60
KM
3818 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3819
3820 /*
3821 * vmstat counters are not perfectly accurate and the estimated
3822 * value for counters such as NR_FREE_PAGES can deviate from the
3823 * true value by nr_online_cpus * threshold. To avoid the zone
3824 * watermarks being breached while under pressure, we reduce the
3825 * per-cpu vmstat threshold while kswapd is awake and restore
3826 * them before going back to sleep.
3827 */
3828 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3829
3830 if (!kthread_should_stop())
3831 schedule();
3832
f0bc0a60
KM
3833 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3834 } else {
3835 if (remaining)
3836 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3837 else
3838 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3839 }
3840 finish_wait(&pgdat->kswapd_wait, &wait);
3841}
3842
1da177e4
LT
3843/*
3844 * The background pageout daemon, started as a kernel thread
4f98a2fe 3845 * from the init process.
1da177e4
LT
3846 *
3847 * This basically trickles out pages so that we have _some_
3848 * free memory available even if there is no other activity
3849 * that frees anything up. This is needed for things like routing
3850 * etc, where we otherwise might have all activity going on in
3851 * asynchronous contexts that cannot page things out.
3852 *
3853 * If there are applications that are active memory-allocators
3854 * (most normal use), this basically shouldn't matter.
3855 */
3856static int kswapd(void *p)
3857{
e716f2eb 3858 unsigned int alloc_order, reclaim_order;
97a225e6 3859 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
1da177e4
LT
3860 pg_data_t *pgdat = (pg_data_t*)p;
3861 struct task_struct *tsk = current;
a70f7302 3862 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3863
174596a0 3864 if (!cpumask_empty(cpumask))
c5f59f08 3865 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3866
3867 /*
3868 * Tell the memory management that we're a "memory allocator",
3869 * and that if we need more memory we should get access to it
3870 * regardless (see "__alloc_pages()"). "kswapd" should
3871 * never get caught in the normal page freeing logic.
3872 *
3873 * (Kswapd normally doesn't need memory anyway, but sometimes
3874 * you need a small amount of memory in order to be able to
3875 * page out something else, and this flag essentially protects
3876 * us from recursively trying to free more memory as we're
3877 * trying to free the first piece of memory in the first place).
3878 */
930d9152 3879 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3880 set_freezable();
1da177e4 3881
5644e1fb 3882 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 3883 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 3884 for ( ; ; ) {
6f6313d4 3885 bool ret;
3e1d1d28 3886
5644e1fb 3887 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
3888 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3889 highest_zoneidx);
e716f2eb 3890
38087d9b
MG
3891kswapd_try_sleep:
3892 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
97a225e6 3893 highest_zoneidx);
215ddd66 3894
97a225e6 3895 /* Read the new order and highest_zoneidx */
2b47a24c 3896 alloc_order = READ_ONCE(pgdat->kswapd_order);
97a225e6
JK
3897 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3898 highest_zoneidx);
5644e1fb 3899 WRITE_ONCE(pgdat->kswapd_order, 0);
97a225e6 3900 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
1da177e4 3901
8fe23e05
DR
3902 ret = try_to_freeze();
3903 if (kthread_should_stop())
3904 break;
3905
3906 /*
3907 * We can speed up thawing tasks if we don't call balance_pgdat
3908 * after returning from the refrigerator
3909 */
38087d9b
MG
3910 if (ret)
3911 continue;
3912
3913 /*
3914 * Reclaim begins at the requested order but if a high-order
3915 * reclaim fails then kswapd falls back to reclaiming for
3916 * order-0. If that happens, kswapd will consider sleeping
3917 * for the order it finished reclaiming at (reclaim_order)
3918 * but kcompactd is woken to compact for the original
3919 * request (alloc_order).
3920 */
97a225e6 3921 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
e5146b12 3922 alloc_order);
97a225e6
JK
3923 reclaim_order = balance_pgdat(pgdat, alloc_order,
3924 highest_zoneidx);
38087d9b
MG
3925 if (reclaim_order < alloc_order)
3926 goto kswapd_try_sleep;
1da177e4 3927 }
b0a8cc58 3928
71abdc15 3929 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
71abdc15 3930
1da177e4
LT
3931 return 0;
3932}
3933
3934/*
5ecd9d40
DR
3935 * A zone is low on free memory or too fragmented for high-order memory. If
3936 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3937 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3938 * has failed or is not needed, still wake up kcompactd if only compaction is
3939 * needed.
1da177e4 3940 */
5ecd9d40 3941void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
97a225e6 3942 enum zone_type highest_zoneidx)
1da177e4
LT
3943{
3944 pg_data_t *pgdat;
5644e1fb 3945 enum zone_type curr_idx;
1da177e4 3946
6aa303de 3947 if (!managed_zone(zone))
1da177e4
LT
3948 return;
3949
5ecd9d40 3950 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3951 return;
5644e1fb 3952
88f5acf8 3953 pgdat = zone->zone_pgdat;
97a225e6 3954 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
5644e1fb 3955
97a225e6
JK
3956 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3957 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
5644e1fb
QC
3958
3959 if (READ_ONCE(pgdat->kswapd_order) < order)
3960 WRITE_ONCE(pgdat->kswapd_order, order);
dffcac2c 3961
8d0986e2 3962 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3963 return;
e1a55637 3964
5ecd9d40
DR
3965 /* Hopeless node, leave it to direct reclaim if possible */
3966 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
97a225e6
JK
3967 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
3968 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
5ecd9d40
DR
3969 /*
3970 * There may be plenty of free memory available, but it's too
3971 * fragmented for high-order allocations. Wake up kcompactd
3972 * and rely on compaction_suitable() to determine if it's
3973 * needed. If it fails, it will defer subsequent attempts to
3974 * ratelimit its work.
3975 */
3976 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
97a225e6 3977 wakeup_kcompactd(pgdat, order, highest_zoneidx);
e716f2eb 3978 return;
5ecd9d40 3979 }
88f5acf8 3980
97a225e6 3981 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
5ecd9d40 3982 gfp_flags);
8d0986e2 3983 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3984}
3985
c6f37f12 3986#ifdef CONFIG_HIBERNATION
1da177e4 3987/*
7b51755c 3988 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3989 * freed pages.
3990 *
3991 * Rather than trying to age LRUs the aim is to preserve the overall
3992 * LRU order by reclaiming preferentially
3993 * inactive > active > active referenced > active mapped
1da177e4 3994 */
7b51755c 3995unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3996{
d6277db4 3997 struct scan_control sc = {
ee814fe2 3998 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3999 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 4000 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 4001 .priority = DEF_PRIORITY,
d6277db4 4002 .may_writepage = 1,
ee814fe2
JW
4003 .may_unmap = 1,
4004 .may_swap = 1,
7b51755c 4005 .hibernation_mode = 1,
1da177e4 4006 };
a09ed5e0 4007 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c 4008 unsigned long nr_reclaimed;
499118e9 4009 unsigned int noreclaim_flag;
1da177e4 4010
d92a8cfc 4011 fs_reclaim_acquire(sc.gfp_mask);
93781325 4012 noreclaim_flag = memalloc_noreclaim_save();
1732d2b0 4013 set_task_reclaim_state(current, &sc.reclaim_state);
d6277db4 4014
3115cd91 4015 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 4016
1732d2b0 4017 set_task_reclaim_state(current, NULL);
499118e9 4018 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4019 fs_reclaim_release(sc.gfp_mask);
d6277db4 4020
7b51755c 4021 return nr_reclaimed;
1da177e4 4022}
c6f37f12 4023#endif /* CONFIG_HIBERNATION */
1da177e4 4024
3218ae14
YG
4025/*
4026 * This kswapd start function will be called by init and node-hot-add.
4027 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4028 */
4029int kswapd_run(int nid)
4030{
4031 pg_data_t *pgdat = NODE_DATA(nid);
4032 int ret = 0;
4033
4034 if (pgdat->kswapd)
4035 return 0;
4036
4037 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4038 if (IS_ERR(pgdat->kswapd)) {
4039 /* failure at boot is fatal */
c6202adf 4040 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
4041 pr_err("Failed to start kswapd on node %d\n", nid);
4042 ret = PTR_ERR(pgdat->kswapd);
d72515b8 4043 pgdat->kswapd = NULL;
3218ae14
YG
4044 }
4045 return ret;
4046}
4047
8fe23e05 4048/*
d8adde17 4049 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 4050 * hold mem_hotplug_begin/end().
8fe23e05
DR
4051 */
4052void kswapd_stop(int nid)
4053{
4054 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4055
d8adde17 4056 if (kswapd) {
8fe23e05 4057 kthread_stop(kswapd);
d8adde17
JL
4058 NODE_DATA(nid)->kswapd = NULL;
4059 }
8fe23e05
DR
4060}
4061
1da177e4
LT
4062static int __init kswapd_init(void)
4063{
6b700b5b 4064 int nid;
69e05944 4065
1da177e4 4066 swap_setup();
48fb2e24 4067 for_each_node_state(nid, N_MEMORY)
3218ae14 4068 kswapd_run(nid);
1da177e4
LT
4069 return 0;
4070}
4071
4072module_init(kswapd_init)
9eeff239
CL
4073
4074#ifdef CONFIG_NUMA
4075/*
a5f5f91d 4076 * Node reclaim mode
9eeff239 4077 *
a5f5f91d 4078 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 4079 * the watermarks.
9eeff239 4080 */
a5f5f91d 4081int node_reclaim_mode __read_mostly;
9eeff239 4082
648b5cf3
AS
4083#define RECLAIM_WRITE (1<<0) /* Writeout pages during reclaim */
4084#define RECLAIM_UNMAP (1<<1) /* Unmap pages during reclaim */
1b2ffb78 4085
a92f7126 4086/*
a5f5f91d 4087 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
4088 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4089 * a zone.
4090 */
a5f5f91d 4091#define NODE_RECLAIM_PRIORITY 4
a92f7126 4092
9614634f 4093/*
a5f5f91d 4094 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
4095 * occur.
4096 */
4097int sysctl_min_unmapped_ratio = 1;
4098
0ff38490
CL
4099/*
4100 * If the number of slab pages in a zone grows beyond this percentage then
4101 * slab reclaim needs to occur.
4102 */
4103int sysctl_min_slab_ratio = 5;
4104
11fb9989 4105static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4106{
11fb9989
MG
4107 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4108 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4109 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4110
4111 /*
4112 * It's possible for there to be more file mapped pages than
4113 * accounted for by the pages on the file LRU lists because
4114 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4115 */
4116 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4117}
4118
4119/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4120static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4121{
d031a157
AM
4122 unsigned long nr_pagecache_reclaimable;
4123 unsigned long delta = 0;
90afa5de
MG
4124
4125 /*
95bbc0c7 4126 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4127 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4128 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4129 * a better estimate
4130 */
a5f5f91d
MG
4131 if (node_reclaim_mode & RECLAIM_UNMAP)
4132 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4133 else
a5f5f91d 4134 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4135
4136 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4137 if (!(node_reclaim_mode & RECLAIM_WRITE))
4138 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4139
4140 /* Watch for any possible underflows due to delta */
4141 if (unlikely(delta > nr_pagecache_reclaimable))
4142 delta = nr_pagecache_reclaimable;
4143
4144 return nr_pagecache_reclaimable - delta;
4145}
4146
9eeff239 4147/*
a5f5f91d 4148 * Try to free up some pages from this node through reclaim.
9eeff239 4149 */
a5f5f91d 4150static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4151{
7fb2d46d 4152 /* Minimum pages needed in order to stay on node */
69e05944 4153 const unsigned long nr_pages = 1 << order;
9eeff239 4154 struct task_struct *p = current;
499118e9 4155 unsigned int noreclaim_flag;
179e9639 4156 struct scan_control sc = {
62b726c1 4157 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4158 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4159 .order = order,
a5f5f91d
MG
4160 .priority = NODE_RECLAIM_PRIORITY,
4161 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4162 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4163 .may_swap = 1,
f2f43e56 4164 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4165 };
9eeff239 4166
132bb8cf
YS
4167 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4168 sc.gfp_mask);
4169
9eeff239 4170 cond_resched();
93781325 4171 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4172 /*
95bbc0c7 4173 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4174 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4175 * and RECLAIM_UNMAP.
d4f7796e 4176 */
499118e9
VB
4177 noreclaim_flag = memalloc_noreclaim_save();
4178 p->flags |= PF_SWAPWRITE;
1732d2b0 4179 set_task_reclaim_state(p, &sc.reclaim_state);
c84db23c 4180
a5f5f91d 4181 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4182 /*
894befec 4183 * Free memory by calling shrink node with increasing
0ff38490
CL
4184 * priorities until we have enough memory freed.
4185 */
0ff38490 4186 do {
970a39a3 4187 shrink_node(pgdat, &sc);
9e3b2f8c 4188 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4189 }
c84db23c 4190
1732d2b0 4191 set_task_reclaim_state(p, NULL);
499118e9
VB
4192 current->flags &= ~PF_SWAPWRITE;
4193 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4194 fs_reclaim_release(sc.gfp_mask);
132bb8cf
YS
4195
4196 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4197
a79311c1 4198 return sc.nr_reclaimed >= nr_pages;
9eeff239 4199}
179e9639 4200
a5f5f91d 4201int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4202{
d773ed6b 4203 int ret;
179e9639
AM
4204
4205 /*
a5f5f91d 4206 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4207 * slab pages if we are over the defined limits.
34aa1330 4208 *
9614634f
CL
4209 * A small portion of unmapped file backed pages is needed for
4210 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4211 * thrown out if the node is overallocated. So we do not reclaim
4212 * if less than a specified percentage of the node is used by
9614634f 4213 * unmapped file backed pages.
179e9639 4214 */
a5f5f91d 4215 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
d42f3245
RG
4216 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4217 pgdat->min_slab_pages)
a5f5f91d 4218 return NODE_RECLAIM_FULL;
179e9639
AM
4219
4220 /*
d773ed6b 4221 * Do not scan if the allocation should not be delayed.
179e9639 4222 */
d0164adc 4223 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4224 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4225
4226 /*
a5f5f91d 4227 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4228 * have associated processors. This will favor the local processor
4229 * over remote processors and spread off node memory allocations
4230 * as wide as possible.
4231 */
a5f5f91d
MG
4232 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4233 return NODE_RECLAIM_NOSCAN;
d773ed6b 4234
a5f5f91d
MG
4235 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4236 return NODE_RECLAIM_NOSCAN;
fa5e084e 4237
a5f5f91d
MG
4238 ret = __node_reclaim(pgdat, gfp_mask, order);
4239 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4240
24cf7251
MG
4241 if (!ret)
4242 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4243
d773ed6b 4244 return ret;
179e9639 4245}
9eeff239 4246#endif
894bc310 4247
89e004ea 4248/**
64e3d12f
KHY
4249 * check_move_unevictable_pages - check pages for evictability and move to
4250 * appropriate zone lru list
4251 * @pvec: pagevec with lru pages to check
89e004ea 4252 *
64e3d12f
KHY
4253 * Checks pages for evictability, if an evictable page is in the unevictable
4254 * lru list, moves it to the appropriate evictable lru list. This function
4255 * should be only used for lru pages.
89e004ea 4256 */
64e3d12f 4257void check_move_unevictable_pages(struct pagevec *pvec)
89e004ea 4258{
925b7673 4259 struct lruvec *lruvec;
785b99fe 4260 struct pglist_data *pgdat = NULL;
24513264
HD
4261 int pgscanned = 0;
4262 int pgrescued = 0;
4263 int i;
89e004ea 4264
64e3d12f
KHY
4265 for (i = 0; i < pvec->nr; i++) {
4266 struct page *page = pvec->pages[i];
785b99fe 4267 struct pglist_data *pagepgdat = page_pgdat(page);
8d8869ca
HD
4268 int nr_pages;
4269
4270 if (PageTransTail(page))
4271 continue;
4272
4273 nr_pages = thp_nr_pages(page);
4274 pgscanned += nr_pages;
89e004ea 4275
785b99fe
MG
4276 if (pagepgdat != pgdat) {
4277 if (pgdat)
4278 spin_unlock_irq(&pgdat->lru_lock);
4279 pgdat = pagepgdat;
4280 spin_lock_irq(&pgdat->lru_lock);
24513264 4281 }
785b99fe 4282 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4283
24513264
HD
4284 if (!PageLRU(page) || !PageUnevictable(page))
4285 continue;
89e004ea 4286
39b5f29a 4287 if (page_evictable(page)) {
24513264
HD
4288 enum lru_list lru = page_lru_base_type(page);
4289
309381fe 4290 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4291 ClearPageUnevictable(page);
fa9add64
HD
4292 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4293 add_page_to_lru_list(page, lruvec, lru);
8d8869ca 4294 pgrescued += nr_pages;
89e004ea 4295 }
24513264 4296 }
89e004ea 4297
785b99fe 4298 if (pgdat) {
24513264
HD
4299 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4300 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4301 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4302 }
89e004ea 4303}
64e3d12f 4304EXPORT_SYMBOL_GPL(check_move_unevictable_pages);