xprtrdma: Rename rpcrdma_conn_upcall
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
ee814fe2
JW
68 /*
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 * are scanned.
71 */
72 nodemask_t *nodemask;
9e3b2f8c 73
f16015fb
JW
74 /*
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
77 */
78 struct mem_cgroup *target_mem_cgroup;
66e1707b 79
1276ad68 80 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
81 unsigned int may_writepage:1;
82
83 /* Can mapped pages be reclaimed? */
84 unsigned int may_unmap:1;
85
86 /* Can pages be swapped as part of reclaim? */
87 unsigned int may_swap:1;
88
d6622f63
YX
89 /*
90 * Cgroups are not reclaimed below their configured memory.low,
91 * unless we threaten to OOM. If any cgroups are skipped due to
92 * memory.low and nothing was reclaimed, go back for memory.low.
93 */
94 unsigned int memcg_low_reclaim:1;
95 unsigned int memcg_low_skipped:1;
241994ed 96
ee814fe2
JW
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
bb451fdf
GT
102 /* Allocation order */
103 s8 order;
104
105 /* Scan (total_size >> priority) pages at once */
106 s8 priority;
107
108 /* The highest zone to isolate pages for reclaim from */
109 s8 reclaim_idx;
110
111 /* This context's GFP mask */
112 gfp_t gfp_mask;
113
ee814fe2
JW
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
d108c772
AR
119
120 struct {
121 unsigned int dirty;
122 unsigned int unqueued_dirty;
123 unsigned int congested;
124 unsigned int writeback;
125 unsigned int immediate;
126 unsigned int file_taken;
127 unsigned int taken;
128 } nr;
1da177e4
LT
129};
130
1da177e4
LT
131#ifdef ARCH_HAS_PREFETCH
132#define prefetch_prev_lru_page(_page, _base, _field) \
133 do { \
134 if ((_page)->lru.prev != _base) { \
135 struct page *prev; \
136 \
137 prev = lru_to_page(&(_page->lru)); \
138 prefetch(&prev->_field); \
139 } \
140 } while (0)
141#else
142#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143#endif
144
145#ifdef ARCH_HAS_PREFETCHW
146#define prefetchw_prev_lru_page(_page, _base, _field) \
147 do { \
148 if ((_page)->lru.prev != _base) { \
149 struct page *prev; \
150 \
151 prev = lru_to_page(&(_page->lru)); \
152 prefetchw(&prev->_field); \
153 } \
154 } while (0)
155#else
156#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157#endif
158
159/*
160 * From 0 .. 100. Higher means more swappy.
161 */
162int vm_swappiness = 60;
d0480be4
WSH
163/*
164 * The total number of pages which are beyond the high watermark within all
165 * zones.
166 */
167unsigned long vm_total_pages;
1da177e4
LT
168
169static LIST_HEAD(shrinker_list);
170static DECLARE_RWSEM(shrinker_rwsem);
171
b4c2b231 172#ifdef CONFIG_MEMCG_KMEM
7e010df5
KT
173
174/*
175 * We allow subsystems to populate their shrinker-related
176 * LRU lists before register_shrinker_prepared() is called
177 * for the shrinker, since we don't want to impose
178 * restrictions on their internal registration order.
179 * In this case shrink_slab_memcg() may find corresponding
180 * bit is set in the shrinkers map.
181 *
182 * This value is used by the function to detect registering
183 * shrinkers and to skip do_shrink_slab() calls for them.
184 */
185#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
186
b4c2b231
KT
187static DEFINE_IDR(shrinker_idr);
188static int shrinker_nr_max;
189
190static int prealloc_memcg_shrinker(struct shrinker *shrinker)
191{
192 int id, ret = -ENOMEM;
193
194 down_write(&shrinker_rwsem);
195 /* This may call shrinker, so it must use down_read_trylock() */
7e010df5 196 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
b4c2b231
KT
197 if (id < 0)
198 goto unlock;
199
0a4465d3
KT
200 if (id >= shrinker_nr_max) {
201 if (memcg_expand_shrinker_maps(id)) {
202 idr_remove(&shrinker_idr, id);
203 goto unlock;
204 }
205
b4c2b231 206 shrinker_nr_max = id + 1;
0a4465d3 207 }
b4c2b231
KT
208 shrinker->id = id;
209 ret = 0;
210unlock:
211 up_write(&shrinker_rwsem);
212 return ret;
213}
214
215static void unregister_memcg_shrinker(struct shrinker *shrinker)
216{
217 int id = shrinker->id;
218
219 BUG_ON(id < 0);
220
221 down_write(&shrinker_rwsem);
222 idr_remove(&shrinker_idr, id);
223 up_write(&shrinker_rwsem);
224}
225#else /* CONFIG_MEMCG_KMEM */
226static int prealloc_memcg_shrinker(struct shrinker *shrinker)
227{
228 return 0;
229}
230
231static void unregister_memcg_shrinker(struct shrinker *shrinker)
232{
233}
234#endif /* CONFIG_MEMCG_KMEM */
235
c255a458 236#ifdef CONFIG_MEMCG
89b5fae5
JW
237static bool global_reclaim(struct scan_control *sc)
238{
f16015fb 239 return !sc->target_mem_cgroup;
89b5fae5 240}
97c9341f
TH
241
242/**
243 * sane_reclaim - is the usual dirty throttling mechanism operational?
244 * @sc: scan_control in question
245 *
246 * The normal page dirty throttling mechanism in balance_dirty_pages() is
247 * completely broken with the legacy memcg and direct stalling in
248 * shrink_page_list() is used for throttling instead, which lacks all the
249 * niceties such as fairness, adaptive pausing, bandwidth proportional
250 * allocation and configurability.
251 *
252 * This function tests whether the vmscan currently in progress can assume
253 * that the normal dirty throttling mechanism is operational.
254 */
255static bool sane_reclaim(struct scan_control *sc)
256{
257 struct mem_cgroup *memcg = sc->target_mem_cgroup;
258
259 if (!memcg)
260 return true;
261#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 262 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
263 return true;
264#endif
265 return false;
266}
e3c1ac58
AR
267
268static void set_memcg_congestion(pg_data_t *pgdat,
269 struct mem_cgroup *memcg,
270 bool congested)
271{
272 struct mem_cgroup_per_node *mn;
273
274 if (!memcg)
275 return;
276
277 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
278 WRITE_ONCE(mn->congested, congested);
279}
280
281static bool memcg_congested(pg_data_t *pgdat,
282 struct mem_cgroup *memcg)
283{
284 struct mem_cgroup_per_node *mn;
285
286 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
287 return READ_ONCE(mn->congested);
288
289}
91a45470 290#else
89b5fae5
JW
291static bool global_reclaim(struct scan_control *sc)
292{
293 return true;
294}
97c9341f
TH
295
296static bool sane_reclaim(struct scan_control *sc)
297{
298 return true;
299}
e3c1ac58
AR
300
301static inline void set_memcg_congestion(struct pglist_data *pgdat,
302 struct mem_cgroup *memcg, bool congested)
303{
304}
305
306static inline bool memcg_congested(struct pglist_data *pgdat,
307 struct mem_cgroup *memcg)
308{
309 return false;
310
311}
91a45470
KH
312#endif
313
5a1c84b4
MG
314/*
315 * This misses isolated pages which are not accounted for to save counters.
316 * As the data only determines if reclaim or compaction continues, it is
317 * not expected that isolated pages will be a dominating factor.
318 */
319unsigned long zone_reclaimable_pages(struct zone *zone)
320{
321 unsigned long nr;
322
323 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
324 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
325 if (get_nr_swap_pages() > 0)
326 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
327 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
328
329 return nr;
330}
331
fd538803
MH
332/**
333 * lruvec_lru_size - Returns the number of pages on the given LRU list.
334 * @lruvec: lru vector
335 * @lru: lru to use
336 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
337 */
338unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 339{
fd538803
MH
340 unsigned long lru_size;
341 int zid;
342
c3c787e8 343 if (!mem_cgroup_disabled())
fd538803
MH
344 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
345 else
346 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 347
fd538803
MH
348 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
349 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
350 unsigned long size;
c9f299d9 351
fd538803
MH
352 if (!managed_zone(zone))
353 continue;
354
355 if (!mem_cgroup_disabled())
356 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
357 else
358 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
359 NR_ZONE_LRU_BASE + lru);
360 lru_size -= min(size, lru_size);
361 }
362
363 return lru_size;
b4536f0c 364
b4536f0c
MH
365}
366
1da177e4 367/*
1d3d4437 368 * Add a shrinker callback to be called from the vm.
1da177e4 369 */
8e04944f 370int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 371{
1d3d4437
GC
372 size_t size = sizeof(*shrinker->nr_deferred);
373
1d3d4437
GC
374 if (shrinker->flags & SHRINKER_NUMA_AWARE)
375 size *= nr_node_ids;
376
377 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
378 if (!shrinker->nr_deferred)
379 return -ENOMEM;
b4c2b231
KT
380
381 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
382 if (prealloc_memcg_shrinker(shrinker))
383 goto free_deferred;
384 }
385
8e04944f 386 return 0;
b4c2b231
KT
387
388free_deferred:
389 kfree(shrinker->nr_deferred);
390 shrinker->nr_deferred = NULL;
391 return -ENOMEM;
8e04944f
TH
392}
393
394void free_prealloced_shrinker(struct shrinker *shrinker)
395{
b4c2b231
KT
396 if (!shrinker->nr_deferred)
397 return;
398
399 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
400 unregister_memcg_shrinker(shrinker);
401
8e04944f
TH
402 kfree(shrinker->nr_deferred);
403 shrinker->nr_deferred = NULL;
404}
1d3d4437 405
8e04944f
TH
406void register_shrinker_prepared(struct shrinker *shrinker)
407{
8e1f936b
RR
408 down_write(&shrinker_rwsem);
409 list_add_tail(&shrinker->list, &shrinker_list);
7e010df5 410#ifdef CONFIG_MEMCG_KMEM
8df4a44c
KT
411 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
412 idr_replace(&shrinker_idr, shrinker, shrinker->id);
7e010df5 413#endif
8e1f936b 414 up_write(&shrinker_rwsem);
8e04944f
TH
415}
416
417int register_shrinker(struct shrinker *shrinker)
418{
419 int err = prealloc_shrinker(shrinker);
420
421 if (err)
422 return err;
423 register_shrinker_prepared(shrinker);
1d3d4437 424 return 0;
1da177e4 425}
8e1f936b 426EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
427
428/*
429 * Remove one
430 */
8e1f936b 431void unregister_shrinker(struct shrinker *shrinker)
1da177e4 432{
bb422a73
TH
433 if (!shrinker->nr_deferred)
434 return;
b4c2b231
KT
435 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
436 unregister_memcg_shrinker(shrinker);
1da177e4
LT
437 down_write(&shrinker_rwsem);
438 list_del(&shrinker->list);
439 up_write(&shrinker_rwsem);
ae393321 440 kfree(shrinker->nr_deferred);
bb422a73 441 shrinker->nr_deferred = NULL;
1da177e4 442}
8e1f936b 443EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
444
445#define SHRINK_BATCH 128
1d3d4437 446
cb731d6c 447static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 448 struct shrinker *shrinker, int priority)
1d3d4437
GC
449{
450 unsigned long freed = 0;
451 unsigned long long delta;
452 long total_scan;
d5bc5fd3 453 long freeable;
1d3d4437
GC
454 long nr;
455 long new_nr;
456 int nid = shrinkctl->nid;
457 long batch_size = shrinker->batch ? shrinker->batch
458 : SHRINK_BATCH;
5f33a080 459 long scanned = 0, next_deferred;
1d3d4437 460
ac7fb3ad
KT
461 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
462 nid = 0;
463
d5bc5fd3 464 freeable = shrinker->count_objects(shrinker, shrinkctl);
9b996468
KT
465 if (freeable == 0 || freeable == SHRINK_EMPTY)
466 return freeable;
1d3d4437
GC
467
468 /*
469 * copy the current shrinker scan count into a local variable
470 * and zero it so that other concurrent shrinker invocations
471 * don't also do this scanning work.
472 */
473 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
474
475 total_scan = nr;
9092c71b
JB
476 delta = freeable >> priority;
477 delta *= 4;
478 do_div(delta, shrinker->seeks);
172b06c3
RG
479
480 /*
481 * Make sure we apply some minimal pressure on default priority
482 * even on small cgroups. Stale objects are not only consuming memory
483 * by themselves, but can also hold a reference to a dying cgroup,
484 * preventing it from being reclaimed. A dying cgroup with all
485 * corresponding structures like per-cpu stats and kmem caches
486 * can be really big, so it may lead to a significant waste of memory.
487 */
488 delta = max_t(unsigned long long, delta, min(freeable, batch_size));
489
1d3d4437
GC
490 total_scan += delta;
491 if (total_scan < 0) {
8612c663 492 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 493 shrinker->scan_objects, total_scan);
d5bc5fd3 494 total_scan = freeable;
5f33a080
SL
495 next_deferred = nr;
496 } else
497 next_deferred = total_scan;
1d3d4437
GC
498
499 /*
500 * We need to avoid excessive windup on filesystem shrinkers
501 * due to large numbers of GFP_NOFS allocations causing the
502 * shrinkers to return -1 all the time. This results in a large
503 * nr being built up so when a shrink that can do some work
504 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 505 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
506 * memory.
507 *
508 * Hence only allow the shrinker to scan the entire cache when
509 * a large delta change is calculated directly.
510 */
d5bc5fd3
VD
511 if (delta < freeable / 4)
512 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
513
514 /*
515 * Avoid risking looping forever due to too large nr value:
516 * never try to free more than twice the estimate number of
517 * freeable entries.
518 */
d5bc5fd3
VD
519 if (total_scan > freeable * 2)
520 total_scan = freeable * 2;
1d3d4437
GC
521
522 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 523 freeable, delta, total_scan, priority);
1d3d4437 524
0b1fb40a
VD
525 /*
526 * Normally, we should not scan less than batch_size objects in one
527 * pass to avoid too frequent shrinker calls, but if the slab has less
528 * than batch_size objects in total and we are really tight on memory,
529 * we will try to reclaim all available objects, otherwise we can end
530 * up failing allocations although there are plenty of reclaimable
531 * objects spread over several slabs with usage less than the
532 * batch_size.
533 *
534 * We detect the "tight on memory" situations by looking at the total
535 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 536 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
537 * scanning at high prio and therefore should try to reclaim as much as
538 * possible.
539 */
540 while (total_scan >= batch_size ||
d5bc5fd3 541 total_scan >= freeable) {
a0b02131 542 unsigned long ret;
0b1fb40a 543 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 544
0b1fb40a 545 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 546 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
547 ret = shrinker->scan_objects(shrinker, shrinkctl);
548 if (ret == SHRINK_STOP)
549 break;
550 freed += ret;
1d3d4437 551
d460acb5
CW
552 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
553 total_scan -= shrinkctl->nr_scanned;
554 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
555
556 cond_resched();
557 }
558
5f33a080
SL
559 if (next_deferred >= scanned)
560 next_deferred -= scanned;
561 else
562 next_deferred = 0;
1d3d4437
GC
563 /*
564 * move the unused scan count back into the shrinker in a
565 * manner that handles concurrent updates. If we exhausted the
566 * scan, there is no need to do an update.
567 */
5f33a080
SL
568 if (next_deferred > 0)
569 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
570 &shrinker->nr_deferred[nid]);
571 else
572 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
573
df9024a8 574 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 575 return freed;
1495f230
YH
576}
577
b0dedc49
KT
578#ifdef CONFIG_MEMCG_KMEM
579static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
580 struct mem_cgroup *memcg, int priority)
581{
582 struct memcg_shrinker_map *map;
583 unsigned long freed = 0;
584 int ret, i;
585
586 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
587 return 0;
588
589 if (!down_read_trylock(&shrinker_rwsem))
590 return 0;
591
592 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
593 true);
594 if (unlikely(!map))
595 goto unlock;
596
597 for_each_set_bit(i, map->map, shrinker_nr_max) {
598 struct shrink_control sc = {
599 .gfp_mask = gfp_mask,
600 .nid = nid,
601 .memcg = memcg,
602 };
603 struct shrinker *shrinker;
604
605 shrinker = idr_find(&shrinker_idr, i);
7e010df5
KT
606 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
607 if (!shrinker)
608 clear_bit(i, map->map);
b0dedc49
KT
609 continue;
610 }
611
b0dedc49 612 ret = do_shrink_slab(&sc, shrinker, priority);
f90280d6
KT
613 if (ret == SHRINK_EMPTY) {
614 clear_bit(i, map->map);
615 /*
616 * After the shrinker reported that it had no objects to
617 * free, but before we cleared the corresponding bit in
618 * the memcg shrinker map, a new object might have been
619 * added. To make sure, we have the bit set in this
620 * case, we invoke the shrinker one more time and reset
621 * the bit if it reports that it is not empty anymore.
622 * The memory barrier here pairs with the barrier in
623 * memcg_set_shrinker_bit():
624 *
625 * list_lru_add() shrink_slab_memcg()
626 * list_add_tail() clear_bit()
627 * <MB> <MB>
628 * set_bit() do_shrink_slab()
629 */
630 smp_mb__after_atomic();
631 ret = do_shrink_slab(&sc, shrinker, priority);
632 if (ret == SHRINK_EMPTY)
633 ret = 0;
634 else
635 memcg_set_shrinker_bit(memcg, nid, i);
636 }
b0dedc49
KT
637 freed += ret;
638
639 if (rwsem_is_contended(&shrinker_rwsem)) {
640 freed = freed ? : 1;
641 break;
642 }
643 }
644unlock:
645 up_read(&shrinker_rwsem);
646 return freed;
647}
648#else /* CONFIG_MEMCG_KMEM */
649static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
650 struct mem_cgroup *memcg, int priority)
651{
652 return 0;
653}
654#endif /* CONFIG_MEMCG_KMEM */
655
6b4f7799 656/**
cb731d6c 657 * shrink_slab - shrink slab caches
6b4f7799
JW
658 * @gfp_mask: allocation context
659 * @nid: node whose slab caches to target
cb731d6c 660 * @memcg: memory cgroup whose slab caches to target
9092c71b 661 * @priority: the reclaim priority
1da177e4 662 *
6b4f7799 663 * Call the shrink functions to age shrinkable caches.
1da177e4 664 *
6b4f7799
JW
665 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
666 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 667 *
aeed1d32
VD
668 * @memcg specifies the memory cgroup to target. Unaware shrinkers
669 * are called only if it is the root cgroup.
cb731d6c 670 *
9092c71b
JB
671 * @priority is sc->priority, we take the number of objects and >> by priority
672 * in order to get the scan target.
b15e0905 673 *
6b4f7799 674 * Returns the number of reclaimed slab objects.
1da177e4 675 */
cb731d6c
VD
676static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
677 struct mem_cgroup *memcg,
9092c71b 678 int priority)
1da177e4
LT
679{
680 struct shrinker *shrinker;
24f7c6b9 681 unsigned long freed = 0;
9b996468 682 int ret;
1da177e4 683
aeed1d32 684 if (!mem_cgroup_is_root(memcg))
b0dedc49 685 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
cb731d6c 686
e830c63a 687 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 688 goto out;
1da177e4
LT
689
690 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
691 struct shrink_control sc = {
692 .gfp_mask = gfp_mask,
693 .nid = nid,
cb731d6c 694 .memcg = memcg,
6b4f7799 695 };
ec97097b 696
9b996468
KT
697 ret = do_shrink_slab(&sc, shrinker, priority);
698 if (ret == SHRINK_EMPTY)
699 ret = 0;
700 freed += ret;
e496612c
MK
701 /*
702 * Bail out if someone want to register a new shrinker to
703 * prevent the regsitration from being stalled for long periods
704 * by parallel ongoing shrinking.
705 */
706 if (rwsem_is_contended(&shrinker_rwsem)) {
707 freed = freed ? : 1;
708 break;
709 }
1da177e4 710 }
6b4f7799 711
1da177e4 712 up_read(&shrinker_rwsem);
f06590bd
MK
713out:
714 cond_resched();
24f7c6b9 715 return freed;
1da177e4
LT
716}
717
cb731d6c
VD
718void drop_slab_node(int nid)
719{
720 unsigned long freed;
721
722 do {
723 struct mem_cgroup *memcg = NULL;
724
725 freed = 0;
aeed1d32 726 memcg = mem_cgroup_iter(NULL, NULL, NULL);
cb731d6c 727 do {
9092c71b 728 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
729 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
730 } while (freed > 10);
731}
732
733void drop_slab(void)
734{
735 int nid;
736
737 for_each_online_node(nid)
738 drop_slab_node(nid);
739}
740
1da177e4
LT
741static inline int is_page_cache_freeable(struct page *page)
742{
ceddc3a5
JW
743 /*
744 * A freeable page cache page is referenced only by the caller
745 * that isolated the page, the page cache radix tree and
746 * optional buffer heads at page->private.
747 */
bd4c82c2
HY
748 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
749 HPAGE_PMD_NR : 1;
750 return page_count(page) - page_has_private(page) == 1 + radix_pins;
1da177e4
LT
751}
752
703c2708 753static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 754{
930d9152 755 if (current->flags & PF_SWAPWRITE)
1da177e4 756 return 1;
703c2708 757 if (!inode_write_congested(inode))
1da177e4 758 return 1;
703c2708 759 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
760 return 1;
761 return 0;
762}
763
764/*
765 * We detected a synchronous write error writing a page out. Probably
766 * -ENOSPC. We need to propagate that into the address_space for a subsequent
767 * fsync(), msync() or close().
768 *
769 * The tricky part is that after writepage we cannot touch the mapping: nothing
770 * prevents it from being freed up. But we have a ref on the page and once
771 * that page is locked, the mapping is pinned.
772 *
773 * We're allowed to run sleeping lock_page() here because we know the caller has
774 * __GFP_FS.
775 */
776static void handle_write_error(struct address_space *mapping,
777 struct page *page, int error)
778{
7eaceacc 779 lock_page(page);
3e9f45bd
GC
780 if (page_mapping(page) == mapping)
781 mapping_set_error(mapping, error);
1da177e4
LT
782 unlock_page(page);
783}
784
04e62a29
CL
785/* possible outcome of pageout() */
786typedef enum {
787 /* failed to write page out, page is locked */
788 PAGE_KEEP,
789 /* move page to the active list, page is locked */
790 PAGE_ACTIVATE,
791 /* page has been sent to the disk successfully, page is unlocked */
792 PAGE_SUCCESS,
793 /* page is clean and locked */
794 PAGE_CLEAN,
795} pageout_t;
796
1da177e4 797/*
1742f19f
AM
798 * pageout is called by shrink_page_list() for each dirty page.
799 * Calls ->writepage().
1da177e4 800 */
c661b078 801static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 802 struct scan_control *sc)
1da177e4
LT
803{
804 /*
805 * If the page is dirty, only perform writeback if that write
806 * will be non-blocking. To prevent this allocation from being
807 * stalled by pagecache activity. But note that there may be
808 * stalls if we need to run get_block(). We could test
809 * PagePrivate for that.
810 *
8174202b 811 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
812 * this page's queue, we can perform writeback even if that
813 * will block.
814 *
815 * If the page is swapcache, write it back even if that would
816 * block, for some throttling. This happens by accident, because
817 * swap_backing_dev_info is bust: it doesn't reflect the
818 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
819 */
820 if (!is_page_cache_freeable(page))
821 return PAGE_KEEP;
822 if (!mapping) {
823 /*
824 * Some data journaling orphaned pages can have
825 * page->mapping == NULL while being dirty with clean buffers.
826 */
266cf658 827 if (page_has_private(page)) {
1da177e4
LT
828 if (try_to_free_buffers(page)) {
829 ClearPageDirty(page);
b1de0d13 830 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
831 return PAGE_CLEAN;
832 }
833 }
834 return PAGE_KEEP;
835 }
836 if (mapping->a_ops->writepage == NULL)
837 return PAGE_ACTIVATE;
703c2708 838 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
839 return PAGE_KEEP;
840
841 if (clear_page_dirty_for_io(page)) {
842 int res;
843 struct writeback_control wbc = {
844 .sync_mode = WB_SYNC_NONE,
845 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
846 .range_start = 0,
847 .range_end = LLONG_MAX,
1da177e4
LT
848 .for_reclaim = 1,
849 };
850
851 SetPageReclaim(page);
852 res = mapping->a_ops->writepage(page, &wbc);
853 if (res < 0)
854 handle_write_error(mapping, page, res);
994fc28c 855 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
856 ClearPageReclaim(page);
857 return PAGE_ACTIVATE;
858 }
c661b078 859
1da177e4
LT
860 if (!PageWriteback(page)) {
861 /* synchronous write or broken a_ops? */
862 ClearPageReclaim(page);
863 }
3aa23851 864 trace_mm_vmscan_writepage(page);
c4a25635 865 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
866 return PAGE_SUCCESS;
867 }
868
869 return PAGE_CLEAN;
870}
871
a649fd92 872/*
e286781d
NP
873 * Same as remove_mapping, but if the page is removed from the mapping, it
874 * gets returned with a refcount of 0.
a649fd92 875 */
a528910e
JW
876static int __remove_mapping(struct address_space *mapping, struct page *page,
877 bool reclaimed)
49d2e9cc 878{
c4843a75 879 unsigned long flags;
bd4c82c2 880 int refcount;
c4843a75 881
28e4d965
NP
882 BUG_ON(!PageLocked(page));
883 BUG_ON(mapping != page_mapping(page));
49d2e9cc 884
b93b0163 885 xa_lock_irqsave(&mapping->i_pages, flags);
49d2e9cc 886 /*
0fd0e6b0
NP
887 * The non racy check for a busy page.
888 *
889 * Must be careful with the order of the tests. When someone has
890 * a ref to the page, it may be possible that they dirty it then
891 * drop the reference. So if PageDirty is tested before page_count
892 * here, then the following race may occur:
893 *
894 * get_user_pages(&page);
895 * [user mapping goes away]
896 * write_to(page);
897 * !PageDirty(page) [good]
898 * SetPageDirty(page);
899 * put_page(page);
900 * !page_count(page) [good, discard it]
901 *
902 * [oops, our write_to data is lost]
903 *
904 * Reversing the order of the tests ensures such a situation cannot
905 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 906 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
907 *
908 * Note that if SetPageDirty is always performed via set_page_dirty,
b93b0163 909 * and thus under the i_pages lock, then this ordering is not required.
49d2e9cc 910 */
bd4c82c2
HY
911 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
912 refcount = 1 + HPAGE_PMD_NR;
913 else
914 refcount = 2;
915 if (!page_ref_freeze(page, refcount))
49d2e9cc 916 goto cannot_free;
1c4c3b99 917 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
e286781d 918 if (unlikely(PageDirty(page))) {
bd4c82c2 919 page_ref_unfreeze(page, refcount);
49d2e9cc 920 goto cannot_free;
e286781d 921 }
49d2e9cc
CL
922
923 if (PageSwapCache(page)) {
924 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 925 mem_cgroup_swapout(page, swap);
49d2e9cc 926 __delete_from_swap_cache(page);
b93b0163 927 xa_unlock_irqrestore(&mapping->i_pages, flags);
75f6d6d2 928 put_swap_page(page, swap);
e286781d 929 } else {
6072d13c 930 void (*freepage)(struct page *);
a528910e 931 void *shadow = NULL;
6072d13c
LT
932
933 freepage = mapping->a_ops->freepage;
a528910e
JW
934 /*
935 * Remember a shadow entry for reclaimed file cache in
936 * order to detect refaults, thus thrashing, later on.
937 *
938 * But don't store shadows in an address space that is
939 * already exiting. This is not just an optizimation,
940 * inode reclaim needs to empty out the radix tree or
941 * the nodes are lost. Don't plant shadows behind its
942 * back.
f9fe48be
RZ
943 *
944 * We also don't store shadows for DAX mappings because the
945 * only page cache pages found in these are zero pages
946 * covering holes, and because we don't want to mix DAX
947 * exceptional entries and shadow exceptional entries in the
b93b0163 948 * same address_space.
a528910e
JW
949 */
950 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 951 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 952 shadow = workingset_eviction(mapping, page);
62cccb8c 953 __delete_from_page_cache(page, shadow);
b93b0163 954 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c
LT
955
956 if (freepage != NULL)
957 freepage(page);
49d2e9cc
CL
958 }
959
49d2e9cc
CL
960 return 1;
961
962cannot_free:
b93b0163 963 xa_unlock_irqrestore(&mapping->i_pages, flags);
49d2e9cc
CL
964 return 0;
965}
966
e286781d
NP
967/*
968 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
969 * someone else has a ref on the page, abort and return 0. If it was
970 * successfully detached, return 1. Assumes the caller has a single ref on
971 * this page.
972 */
973int remove_mapping(struct address_space *mapping, struct page *page)
974{
a528910e 975 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
976 /*
977 * Unfreezing the refcount with 1 rather than 2 effectively
978 * drops the pagecache ref for us without requiring another
979 * atomic operation.
980 */
fe896d18 981 page_ref_unfreeze(page, 1);
e286781d
NP
982 return 1;
983 }
984 return 0;
985}
986
894bc310
LS
987/**
988 * putback_lru_page - put previously isolated page onto appropriate LRU list
989 * @page: page to be put back to appropriate lru list
990 *
991 * Add previously isolated @page to appropriate LRU list.
992 * Page may still be unevictable for other reasons.
993 *
994 * lru_lock must not be held, interrupts must be enabled.
995 */
894bc310
LS
996void putback_lru_page(struct page *page)
997{
9c4e6b1a 998 lru_cache_add(page);
894bc310
LS
999 put_page(page); /* drop ref from isolate */
1000}
1001
dfc8d636
JW
1002enum page_references {
1003 PAGEREF_RECLAIM,
1004 PAGEREF_RECLAIM_CLEAN,
64574746 1005 PAGEREF_KEEP,
dfc8d636
JW
1006 PAGEREF_ACTIVATE,
1007};
1008
1009static enum page_references page_check_references(struct page *page,
1010 struct scan_control *sc)
1011{
64574746 1012 int referenced_ptes, referenced_page;
dfc8d636 1013 unsigned long vm_flags;
dfc8d636 1014
c3ac9a8a
JW
1015 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1016 &vm_flags);
64574746 1017 referenced_page = TestClearPageReferenced(page);
dfc8d636 1018
dfc8d636
JW
1019 /*
1020 * Mlock lost the isolation race with us. Let try_to_unmap()
1021 * move the page to the unevictable list.
1022 */
1023 if (vm_flags & VM_LOCKED)
1024 return PAGEREF_RECLAIM;
1025
64574746 1026 if (referenced_ptes) {
e4898273 1027 if (PageSwapBacked(page))
64574746
JW
1028 return PAGEREF_ACTIVATE;
1029 /*
1030 * All mapped pages start out with page table
1031 * references from the instantiating fault, so we need
1032 * to look twice if a mapped file page is used more
1033 * than once.
1034 *
1035 * Mark it and spare it for another trip around the
1036 * inactive list. Another page table reference will
1037 * lead to its activation.
1038 *
1039 * Note: the mark is set for activated pages as well
1040 * so that recently deactivated but used pages are
1041 * quickly recovered.
1042 */
1043 SetPageReferenced(page);
1044
34dbc67a 1045 if (referenced_page || referenced_ptes > 1)
64574746
JW
1046 return PAGEREF_ACTIVATE;
1047
c909e993
KK
1048 /*
1049 * Activate file-backed executable pages after first usage.
1050 */
1051 if (vm_flags & VM_EXEC)
1052 return PAGEREF_ACTIVATE;
1053
64574746
JW
1054 return PAGEREF_KEEP;
1055 }
dfc8d636
JW
1056
1057 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 1058 if (referenced_page && !PageSwapBacked(page))
64574746
JW
1059 return PAGEREF_RECLAIM_CLEAN;
1060
1061 return PAGEREF_RECLAIM;
dfc8d636
JW
1062}
1063
e2be15f6
MG
1064/* Check if a page is dirty or under writeback */
1065static void page_check_dirty_writeback(struct page *page,
1066 bool *dirty, bool *writeback)
1067{
b4597226
MG
1068 struct address_space *mapping;
1069
e2be15f6
MG
1070 /*
1071 * Anonymous pages are not handled by flushers and must be written
1072 * from reclaim context. Do not stall reclaim based on them
1073 */
802a3a92
SL
1074 if (!page_is_file_cache(page) ||
1075 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
1076 *dirty = false;
1077 *writeback = false;
1078 return;
1079 }
1080
1081 /* By default assume that the page flags are accurate */
1082 *dirty = PageDirty(page);
1083 *writeback = PageWriteback(page);
b4597226
MG
1084
1085 /* Verify dirty/writeback state if the filesystem supports it */
1086 if (!page_has_private(page))
1087 return;
1088
1089 mapping = page_mapping(page);
1090 if (mapping && mapping->a_ops->is_dirty_writeback)
1091 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
1092}
1093
1da177e4 1094/*
1742f19f 1095 * shrink_page_list() returns the number of reclaimed pages
1da177e4 1096 */
1742f19f 1097static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 1098 struct pglist_data *pgdat,
f84f6e2b 1099 struct scan_control *sc,
02c6de8d 1100 enum ttu_flags ttu_flags,
3c710c1a 1101 struct reclaim_stat *stat,
02c6de8d 1102 bool force_reclaim)
1da177e4
LT
1103{
1104 LIST_HEAD(ret_pages);
abe4c3b5 1105 LIST_HEAD(free_pages);
1da177e4 1106 int pgactivate = 0;
3c710c1a
MH
1107 unsigned nr_unqueued_dirty = 0;
1108 unsigned nr_dirty = 0;
1109 unsigned nr_congested = 0;
1110 unsigned nr_reclaimed = 0;
1111 unsigned nr_writeback = 0;
1112 unsigned nr_immediate = 0;
5bccd166
MH
1113 unsigned nr_ref_keep = 0;
1114 unsigned nr_unmap_fail = 0;
1da177e4
LT
1115
1116 cond_resched();
1117
1da177e4
LT
1118 while (!list_empty(page_list)) {
1119 struct address_space *mapping;
1120 struct page *page;
1121 int may_enter_fs;
02c6de8d 1122 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 1123 bool dirty, writeback;
1da177e4
LT
1124
1125 cond_resched();
1126
1127 page = lru_to_page(page_list);
1128 list_del(&page->lru);
1129
529ae9aa 1130 if (!trylock_page(page))
1da177e4
LT
1131 goto keep;
1132
309381fe 1133 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1134
1135 sc->nr_scanned++;
80e43426 1136
39b5f29a 1137 if (unlikely(!page_evictable(page)))
ad6b6704 1138 goto activate_locked;
894bc310 1139
a6dc60f8 1140 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1141 goto keep_locked;
1142
1da177e4 1143 /* Double the slab pressure for mapped and swapcache pages */
802a3a92
SL
1144 if ((page_mapped(page) || PageSwapCache(page)) &&
1145 !(PageAnon(page) && !PageSwapBacked(page)))
1da177e4
LT
1146 sc->nr_scanned++;
1147
c661b078
AW
1148 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1149 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1150
e2be15f6 1151 /*
894befec 1152 * The number of dirty pages determines if a node is marked
e2be15f6
MG
1153 * reclaim_congested which affects wait_iff_congested. kswapd
1154 * will stall and start writing pages if the tail of the LRU
1155 * is all dirty unqueued pages.
1156 */
1157 page_check_dirty_writeback(page, &dirty, &writeback);
1158 if (dirty || writeback)
1159 nr_dirty++;
1160
1161 if (dirty && !writeback)
1162 nr_unqueued_dirty++;
1163
d04e8acd
MG
1164 /*
1165 * Treat this page as congested if the underlying BDI is or if
1166 * pages are cycling through the LRU so quickly that the
1167 * pages marked for immediate reclaim are making it to the
1168 * end of the LRU a second time.
1169 */
e2be15f6 1170 mapping = page_mapping(page);
1da58ee2 1171 if (((dirty || writeback) && mapping &&
703c2708 1172 inode_write_congested(mapping->host)) ||
d04e8acd 1173 (writeback && PageReclaim(page)))
e2be15f6
MG
1174 nr_congested++;
1175
283aba9f
MG
1176 /*
1177 * If a page at the tail of the LRU is under writeback, there
1178 * are three cases to consider.
1179 *
1180 * 1) If reclaim is encountering an excessive number of pages
1181 * under writeback and this page is both under writeback and
1182 * PageReclaim then it indicates that pages are being queued
1183 * for IO but are being recycled through the LRU before the
1184 * IO can complete. Waiting on the page itself risks an
1185 * indefinite stall if it is impossible to writeback the
1186 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1187 * note that the LRU is being scanned too quickly and the
1188 * caller can stall after page list has been processed.
283aba9f 1189 *
97c9341f 1190 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1191 * not marked for immediate reclaim, or the caller does not
1192 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1193 * not to fs). In this case mark the page for immediate
97c9341f 1194 * reclaim and continue scanning.
283aba9f 1195 *
ecf5fc6e
MH
1196 * Require may_enter_fs because we would wait on fs, which
1197 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1198 * enter reclaim, and deadlock if it waits on a page for
1199 * which it is needed to do the write (loop masks off
1200 * __GFP_IO|__GFP_FS for this reason); but more thought
1201 * would probably show more reasons.
1202 *
7fadc820 1203 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1204 * PageReclaim. memcg does not have any dirty pages
1205 * throttling so we could easily OOM just because too many
1206 * pages are in writeback and there is nothing else to
1207 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1208 *
1209 * In cases 1) and 2) we activate the pages to get them out of
1210 * the way while we continue scanning for clean pages on the
1211 * inactive list and refilling from the active list. The
1212 * observation here is that waiting for disk writes is more
1213 * expensive than potentially causing reloads down the line.
1214 * Since they're marked for immediate reclaim, they won't put
1215 * memory pressure on the cache working set any longer than it
1216 * takes to write them to disk.
283aba9f 1217 */
c661b078 1218 if (PageWriteback(page)) {
283aba9f
MG
1219 /* Case 1 above */
1220 if (current_is_kswapd() &&
1221 PageReclaim(page) &&
599d0c95 1222 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e 1223 nr_immediate++;
c55e8d03 1224 goto activate_locked;
283aba9f
MG
1225
1226 /* Case 2 above */
97c9341f 1227 } else if (sane_reclaim(sc) ||
ecf5fc6e 1228 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1229 /*
1230 * This is slightly racy - end_page_writeback()
1231 * might have just cleared PageReclaim, then
1232 * setting PageReclaim here end up interpreted
1233 * as PageReadahead - but that does not matter
1234 * enough to care. What we do want is for this
1235 * page to have PageReclaim set next time memcg
1236 * reclaim reaches the tests above, so it will
1237 * then wait_on_page_writeback() to avoid OOM;
1238 * and it's also appropriate in global reclaim.
1239 */
1240 SetPageReclaim(page);
e62e384e 1241 nr_writeback++;
c55e8d03 1242 goto activate_locked;
283aba9f
MG
1243
1244 /* Case 3 above */
1245 } else {
7fadc820 1246 unlock_page(page);
283aba9f 1247 wait_on_page_writeback(page);
7fadc820
HD
1248 /* then go back and try same page again */
1249 list_add_tail(&page->lru, page_list);
1250 continue;
e62e384e 1251 }
c661b078 1252 }
1da177e4 1253
02c6de8d
MK
1254 if (!force_reclaim)
1255 references = page_check_references(page, sc);
1256
dfc8d636
JW
1257 switch (references) {
1258 case PAGEREF_ACTIVATE:
1da177e4 1259 goto activate_locked;
64574746 1260 case PAGEREF_KEEP:
5bccd166 1261 nr_ref_keep++;
64574746 1262 goto keep_locked;
dfc8d636
JW
1263 case PAGEREF_RECLAIM:
1264 case PAGEREF_RECLAIM_CLEAN:
1265 ; /* try to reclaim the page below */
1266 }
1da177e4 1267
1da177e4
LT
1268 /*
1269 * Anonymous process memory has backing store?
1270 * Try to allocate it some swap space here.
802a3a92 1271 * Lazyfree page could be freed directly
1da177e4 1272 */
bd4c82c2
HY
1273 if (PageAnon(page) && PageSwapBacked(page)) {
1274 if (!PageSwapCache(page)) {
1275 if (!(sc->gfp_mask & __GFP_IO))
1276 goto keep_locked;
1277 if (PageTransHuge(page)) {
1278 /* cannot split THP, skip it */
1279 if (!can_split_huge_page(page, NULL))
1280 goto activate_locked;
1281 /*
1282 * Split pages without a PMD map right
1283 * away. Chances are some or all of the
1284 * tail pages can be freed without IO.
1285 */
1286 if (!compound_mapcount(page) &&
1287 split_huge_page_to_list(page,
1288 page_list))
1289 goto activate_locked;
1290 }
1291 if (!add_to_swap(page)) {
1292 if (!PageTransHuge(page))
1293 goto activate_locked;
1294 /* Fallback to swap normal pages */
1295 if (split_huge_page_to_list(page,
1296 page_list))
1297 goto activate_locked;
fe490cc0
HY
1298#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1299 count_vm_event(THP_SWPOUT_FALLBACK);
1300#endif
bd4c82c2
HY
1301 if (!add_to_swap(page))
1302 goto activate_locked;
1303 }
0f074658 1304
bd4c82c2 1305 may_enter_fs = 1;
1da177e4 1306
bd4c82c2
HY
1307 /* Adding to swap updated mapping */
1308 mapping = page_mapping(page);
1309 }
7751b2da
KS
1310 } else if (unlikely(PageTransHuge(page))) {
1311 /* Split file THP */
1312 if (split_huge_page_to_list(page, page_list))
1313 goto keep_locked;
e2be15f6 1314 }
1da177e4
LT
1315
1316 /*
1317 * The page is mapped into the page tables of one or more
1318 * processes. Try to unmap it here.
1319 */
802a3a92 1320 if (page_mapped(page)) {
bd4c82c2
HY
1321 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1322
1323 if (unlikely(PageTransHuge(page)))
1324 flags |= TTU_SPLIT_HUGE_PMD;
1325 if (!try_to_unmap(page, flags)) {
5bccd166 1326 nr_unmap_fail++;
1da177e4 1327 goto activate_locked;
1da177e4
LT
1328 }
1329 }
1330
1331 if (PageDirty(page)) {
ee72886d 1332 /*
4eda4823
JW
1333 * Only kswapd can writeback filesystem pages
1334 * to avoid risk of stack overflow. But avoid
1335 * injecting inefficient single-page IO into
1336 * flusher writeback as much as possible: only
1337 * write pages when we've encountered many
1338 * dirty pages, and when we've already scanned
1339 * the rest of the LRU for clean pages and see
1340 * the same dirty pages again (PageReclaim).
ee72886d 1341 */
f84f6e2b 1342 if (page_is_file_cache(page) &&
4eda4823
JW
1343 (!current_is_kswapd() || !PageReclaim(page) ||
1344 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1345 /*
1346 * Immediately reclaim when written back.
1347 * Similar in principal to deactivate_page()
1348 * except we already have the page isolated
1349 * and know it's dirty
1350 */
c4a25635 1351 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1352 SetPageReclaim(page);
1353
c55e8d03 1354 goto activate_locked;
ee72886d
MG
1355 }
1356
dfc8d636 1357 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1358 goto keep_locked;
4dd4b920 1359 if (!may_enter_fs)
1da177e4 1360 goto keep_locked;
52a8363e 1361 if (!sc->may_writepage)
1da177e4
LT
1362 goto keep_locked;
1363
d950c947
MG
1364 /*
1365 * Page is dirty. Flush the TLB if a writable entry
1366 * potentially exists to avoid CPU writes after IO
1367 * starts and then write it out here.
1368 */
1369 try_to_unmap_flush_dirty();
7d3579e8 1370 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1371 case PAGE_KEEP:
1372 goto keep_locked;
1373 case PAGE_ACTIVATE:
1374 goto activate_locked;
1375 case PAGE_SUCCESS:
7d3579e8 1376 if (PageWriteback(page))
41ac1999 1377 goto keep;
7d3579e8 1378 if (PageDirty(page))
1da177e4 1379 goto keep;
7d3579e8 1380
1da177e4
LT
1381 /*
1382 * A synchronous write - probably a ramdisk. Go
1383 * ahead and try to reclaim the page.
1384 */
529ae9aa 1385 if (!trylock_page(page))
1da177e4
LT
1386 goto keep;
1387 if (PageDirty(page) || PageWriteback(page))
1388 goto keep_locked;
1389 mapping = page_mapping(page);
1390 case PAGE_CLEAN:
1391 ; /* try to free the page below */
1392 }
1393 }
1394
1395 /*
1396 * If the page has buffers, try to free the buffer mappings
1397 * associated with this page. If we succeed we try to free
1398 * the page as well.
1399 *
1400 * We do this even if the page is PageDirty().
1401 * try_to_release_page() does not perform I/O, but it is
1402 * possible for a page to have PageDirty set, but it is actually
1403 * clean (all its buffers are clean). This happens if the
1404 * buffers were written out directly, with submit_bh(). ext3
894bc310 1405 * will do this, as well as the blockdev mapping.
1da177e4
LT
1406 * try_to_release_page() will discover that cleanness and will
1407 * drop the buffers and mark the page clean - it can be freed.
1408 *
1409 * Rarely, pages can have buffers and no ->mapping. These are
1410 * the pages which were not successfully invalidated in
1411 * truncate_complete_page(). We try to drop those buffers here
1412 * and if that worked, and the page is no longer mapped into
1413 * process address space (page_count == 1) it can be freed.
1414 * Otherwise, leave the page on the LRU so it is swappable.
1415 */
266cf658 1416 if (page_has_private(page)) {
1da177e4
LT
1417 if (!try_to_release_page(page, sc->gfp_mask))
1418 goto activate_locked;
e286781d
NP
1419 if (!mapping && page_count(page) == 1) {
1420 unlock_page(page);
1421 if (put_page_testzero(page))
1422 goto free_it;
1423 else {
1424 /*
1425 * rare race with speculative reference.
1426 * the speculative reference will free
1427 * this page shortly, so we may
1428 * increment nr_reclaimed here (and
1429 * leave it off the LRU).
1430 */
1431 nr_reclaimed++;
1432 continue;
1433 }
1434 }
1da177e4
LT
1435 }
1436
802a3a92
SL
1437 if (PageAnon(page) && !PageSwapBacked(page)) {
1438 /* follow __remove_mapping for reference */
1439 if (!page_ref_freeze(page, 1))
1440 goto keep_locked;
1441 if (PageDirty(page)) {
1442 page_ref_unfreeze(page, 1);
1443 goto keep_locked;
1444 }
1da177e4 1445
802a3a92 1446 count_vm_event(PGLAZYFREED);
2262185c 1447 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1448 } else if (!mapping || !__remove_mapping(mapping, page, true))
1449 goto keep_locked;
a978d6f5
NP
1450 /*
1451 * At this point, we have no other references and there is
1452 * no way to pick any more up (removed from LRU, removed
1453 * from pagecache). Can use non-atomic bitops now (and
1454 * we obviously don't have to worry about waking up a process
1455 * waiting on the page lock, because there are no references.
1456 */
48c935ad 1457 __ClearPageLocked(page);
e286781d 1458free_it:
05ff5137 1459 nr_reclaimed++;
abe4c3b5
MG
1460
1461 /*
1462 * Is there need to periodically free_page_list? It would
1463 * appear not as the counts should be low
1464 */
bd4c82c2
HY
1465 if (unlikely(PageTransHuge(page))) {
1466 mem_cgroup_uncharge(page);
1467 (*get_compound_page_dtor(page))(page);
1468 } else
1469 list_add(&page->lru, &free_pages);
1da177e4
LT
1470 continue;
1471
1472activate_locked:
68a22394 1473 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1474 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1475 PageMlocked(page)))
a2c43eed 1476 try_to_free_swap(page);
309381fe 1477 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704
MK
1478 if (!PageMlocked(page)) {
1479 SetPageActive(page);
1480 pgactivate++;
2262185c 1481 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1482 }
1da177e4
LT
1483keep_locked:
1484 unlock_page(page);
1485keep:
1486 list_add(&page->lru, &ret_pages);
309381fe 1487 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1488 }
abe4c3b5 1489
747db954 1490 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1491 try_to_unmap_flush();
2d4894b5 1492 free_unref_page_list(&free_pages);
abe4c3b5 1493
1da177e4 1494 list_splice(&ret_pages, page_list);
f8891e5e 1495 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1496
3c710c1a
MH
1497 if (stat) {
1498 stat->nr_dirty = nr_dirty;
1499 stat->nr_congested = nr_congested;
1500 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1501 stat->nr_writeback = nr_writeback;
1502 stat->nr_immediate = nr_immediate;
5bccd166
MH
1503 stat->nr_activate = pgactivate;
1504 stat->nr_ref_keep = nr_ref_keep;
1505 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1506 }
05ff5137 1507 return nr_reclaimed;
1da177e4
LT
1508}
1509
02c6de8d
MK
1510unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1511 struct list_head *page_list)
1512{
1513 struct scan_control sc = {
1514 .gfp_mask = GFP_KERNEL,
1515 .priority = DEF_PRIORITY,
1516 .may_unmap = 1,
1517 };
3c710c1a 1518 unsigned long ret;
02c6de8d
MK
1519 struct page *page, *next;
1520 LIST_HEAD(clean_pages);
1521
1522 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1523 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1524 !__PageMovable(page)) {
02c6de8d
MK
1525 ClearPageActive(page);
1526 list_move(&page->lru, &clean_pages);
1527 }
1528 }
1529
599d0c95 1530 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
a128ca71 1531 TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1532 list_splice(&clean_pages, page_list);
599d0c95 1533 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1534 return ret;
1535}
1536
5ad333eb
AW
1537/*
1538 * Attempt to remove the specified page from its LRU. Only take this page
1539 * if it is of the appropriate PageActive status. Pages which are being
1540 * freed elsewhere are also ignored.
1541 *
1542 * page: page to consider
1543 * mode: one of the LRU isolation modes defined above
1544 *
1545 * returns 0 on success, -ve errno on failure.
1546 */
f3fd4a61 1547int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1548{
1549 int ret = -EINVAL;
1550
1551 /* Only take pages on the LRU. */
1552 if (!PageLRU(page))
1553 return ret;
1554
e46a2879
MK
1555 /* Compaction should not handle unevictable pages but CMA can do so */
1556 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1557 return ret;
1558
5ad333eb 1559 ret = -EBUSY;
08e552c6 1560
c8244935
MG
1561 /*
1562 * To minimise LRU disruption, the caller can indicate that it only
1563 * wants to isolate pages it will be able to operate on without
1564 * blocking - clean pages for the most part.
1565 *
c8244935
MG
1566 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1567 * that it is possible to migrate without blocking
1568 */
1276ad68 1569 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1570 /* All the caller can do on PageWriteback is block */
1571 if (PageWriteback(page))
1572 return ret;
1573
1574 if (PageDirty(page)) {
1575 struct address_space *mapping;
69d763fc 1576 bool migrate_dirty;
c8244935 1577
c8244935
MG
1578 /*
1579 * Only pages without mappings or that have a
1580 * ->migratepage callback are possible to migrate
69d763fc
MG
1581 * without blocking. However, we can be racing with
1582 * truncation so it's necessary to lock the page
1583 * to stabilise the mapping as truncation holds
1584 * the page lock until after the page is removed
1585 * from the page cache.
c8244935 1586 */
69d763fc
MG
1587 if (!trylock_page(page))
1588 return ret;
1589
c8244935 1590 mapping = page_mapping(page);
145e1a71 1591 migrate_dirty = !mapping || mapping->a_ops->migratepage;
69d763fc
MG
1592 unlock_page(page);
1593 if (!migrate_dirty)
c8244935
MG
1594 return ret;
1595 }
1596 }
39deaf85 1597
f80c0673
MK
1598 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1599 return ret;
1600
5ad333eb
AW
1601 if (likely(get_page_unless_zero(page))) {
1602 /*
1603 * Be careful not to clear PageLRU until after we're
1604 * sure the page is not being freed elsewhere -- the
1605 * page release code relies on it.
1606 */
1607 ClearPageLRU(page);
1608 ret = 0;
1609 }
1610
1611 return ret;
1612}
1613
7ee36a14
MG
1614
1615/*
1616 * Update LRU sizes after isolating pages. The LRU size updates must
1617 * be complete before mem_cgroup_update_lru_size due to a santity check.
1618 */
1619static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1620 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1621{
7ee36a14
MG
1622 int zid;
1623
7ee36a14
MG
1624 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1625 if (!nr_zone_taken[zid])
1626 continue;
1627
1628 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1629#ifdef CONFIG_MEMCG
b4536f0c 1630 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1631#endif
b4536f0c
MH
1632 }
1633
7ee36a14
MG
1634}
1635
1da177e4 1636/*
a52633d8 1637 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1638 * shrink the lists perform better by taking out a batch of pages
1639 * and working on them outside the LRU lock.
1640 *
1641 * For pagecache intensive workloads, this function is the hottest
1642 * spot in the kernel (apart from copy_*_user functions).
1643 *
1644 * Appropriate locks must be held before calling this function.
1645 *
791b48b6 1646 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1647 * @lruvec: The LRU vector to pull pages from.
1da177e4 1648 * @dst: The temp list to put pages on to.
f626012d 1649 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1650 * @sc: The scan_control struct for this reclaim session
5ad333eb 1651 * @mode: One of the LRU isolation modes
3cb99451 1652 * @lru: LRU list id for isolating
1da177e4
LT
1653 *
1654 * returns how many pages were moved onto *@dst.
1655 */
69e05944 1656static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1657 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1658 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1659 isolate_mode_t mode, enum lru_list lru)
1da177e4 1660{
75b00af7 1661 struct list_head *src = &lruvec->lists[lru];
69e05944 1662 unsigned long nr_taken = 0;
599d0c95 1663 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1664 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1665 unsigned long skipped = 0;
791b48b6 1666 unsigned long scan, total_scan, nr_pages;
b2e18757 1667 LIST_HEAD(pages_skipped);
1da177e4 1668
791b48b6
MK
1669 scan = 0;
1670 for (total_scan = 0;
1671 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1672 total_scan++) {
5ad333eb 1673 struct page *page;
5ad333eb 1674
1da177e4
LT
1675 page = lru_to_page(src);
1676 prefetchw_prev_lru_page(page, src, flags);
1677
309381fe 1678 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1679
b2e18757
MG
1680 if (page_zonenum(page) > sc->reclaim_idx) {
1681 list_move(&page->lru, &pages_skipped);
7cc30fcf 1682 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1683 continue;
1684 }
1685
791b48b6
MK
1686 /*
1687 * Do not count skipped pages because that makes the function
1688 * return with no isolated pages if the LRU mostly contains
1689 * ineligible pages. This causes the VM to not reclaim any
1690 * pages, triggering a premature OOM.
1691 */
1692 scan++;
f3fd4a61 1693 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1694 case 0:
599d0c95
MG
1695 nr_pages = hpage_nr_pages(page);
1696 nr_taken += nr_pages;
1697 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1698 list_move(&page->lru, dst);
5ad333eb
AW
1699 break;
1700
1701 case -EBUSY:
1702 /* else it is being freed elsewhere */
1703 list_move(&page->lru, src);
1704 continue;
46453a6e 1705
5ad333eb
AW
1706 default:
1707 BUG();
1708 }
1da177e4
LT
1709 }
1710
b2e18757
MG
1711 /*
1712 * Splice any skipped pages to the start of the LRU list. Note that
1713 * this disrupts the LRU order when reclaiming for lower zones but
1714 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1715 * scanning would soon rescan the same pages to skip and put the
1716 * system at risk of premature OOM.
1717 */
7cc30fcf
MG
1718 if (!list_empty(&pages_skipped)) {
1719 int zid;
1720
3db65812 1721 list_splice(&pages_skipped, src);
7cc30fcf
MG
1722 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1723 if (!nr_skipped[zid])
1724 continue;
1725
1726 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1727 skipped += nr_skipped[zid];
7cc30fcf
MG
1728 }
1729 }
791b48b6 1730 *nr_scanned = total_scan;
1265e3a6 1731 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1732 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1733 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1734 return nr_taken;
1735}
1736
62695a84
NP
1737/**
1738 * isolate_lru_page - tries to isolate a page from its LRU list
1739 * @page: page to isolate from its LRU list
1740 *
1741 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1742 * vmstat statistic corresponding to whatever LRU list the page was on.
1743 *
1744 * Returns 0 if the page was removed from an LRU list.
1745 * Returns -EBUSY if the page was not on an LRU list.
1746 *
1747 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1748 * the active list, it will have PageActive set. If it was found on
1749 * the unevictable list, it will have the PageUnevictable bit set. That flag
1750 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1751 *
1752 * The vmstat statistic corresponding to the list on which the page was
1753 * found will be decremented.
1754 *
1755 * Restrictions:
a5d09bed 1756 *
62695a84
NP
1757 * (1) Must be called with an elevated refcount on the page. This is a
1758 * fundamentnal difference from isolate_lru_pages (which is called
1759 * without a stable reference).
1760 * (2) the lru_lock must not be held.
1761 * (3) interrupts must be enabled.
1762 */
1763int isolate_lru_page(struct page *page)
1764{
1765 int ret = -EBUSY;
1766
309381fe 1767 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1768 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1769
62695a84
NP
1770 if (PageLRU(page)) {
1771 struct zone *zone = page_zone(page);
fa9add64 1772 struct lruvec *lruvec;
62695a84 1773
a52633d8 1774 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1775 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1776 if (PageLRU(page)) {
894bc310 1777 int lru = page_lru(page);
0c917313 1778 get_page(page);
62695a84 1779 ClearPageLRU(page);
fa9add64
HD
1780 del_page_from_lru_list(page, lruvec, lru);
1781 ret = 0;
62695a84 1782 }
a52633d8 1783 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1784 }
1785 return ret;
1786}
1787
35cd7815 1788/*
d37dd5dc
FW
1789 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1790 * then get resheduled. When there are massive number of tasks doing page
1791 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1792 * the LRU list will go small and be scanned faster than necessary, leading to
1793 * unnecessary swapping, thrashing and OOM.
35cd7815 1794 */
599d0c95 1795static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1796 struct scan_control *sc)
1797{
1798 unsigned long inactive, isolated;
1799
1800 if (current_is_kswapd())
1801 return 0;
1802
97c9341f 1803 if (!sane_reclaim(sc))
35cd7815
RR
1804 return 0;
1805
1806 if (file) {
599d0c95
MG
1807 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1808 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1809 } else {
599d0c95
MG
1810 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1811 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1812 }
1813
3cf23841
FW
1814 /*
1815 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1816 * won't get blocked by normal direct-reclaimers, forming a circular
1817 * deadlock.
1818 */
d0164adc 1819 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1820 inactive >>= 3;
1821
35cd7815
RR
1822 return isolated > inactive;
1823}
1824
66635629 1825static noinline_for_stack void
75b00af7 1826putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1827{
27ac81d8 1828 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1829 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1830 LIST_HEAD(pages_to_free);
66635629 1831
66635629
MG
1832 /*
1833 * Put back any unfreeable pages.
1834 */
66635629 1835 while (!list_empty(page_list)) {
3f79768f 1836 struct page *page = lru_to_page(page_list);
66635629 1837 int lru;
3f79768f 1838
309381fe 1839 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1840 list_del(&page->lru);
39b5f29a 1841 if (unlikely(!page_evictable(page))) {
599d0c95 1842 spin_unlock_irq(&pgdat->lru_lock);
66635629 1843 putback_lru_page(page);
599d0c95 1844 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1845 continue;
1846 }
fa9add64 1847
599d0c95 1848 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1849
7a608572 1850 SetPageLRU(page);
66635629 1851 lru = page_lru(page);
fa9add64
HD
1852 add_page_to_lru_list(page, lruvec, lru);
1853
66635629
MG
1854 if (is_active_lru(lru)) {
1855 int file = is_file_lru(lru);
9992af10
RR
1856 int numpages = hpage_nr_pages(page);
1857 reclaim_stat->recent_rotated[file] += numpages;
66635629 1858 }
2bcf8879
HD
1859 if (put_page_testzero(page)) {
1860 __ClearPageLRU(page);
1861 __ClearPageActive(page);
fa9add64 1862 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1863
1864 if (unlikely(PageCompound(page))) {
599d0c95 1865 spin_unlock_irq(&pgdat->lru_lock);
747db954 1866 mem_cgroup_uncharge(page);
2bcf8879 1867 (*get_compound_page_dtor(page))(page);
599d0c95 1868 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1869 } else
1870 list_add(&page->lru, &pages_to_free);
66635629
MG
1871 }
1872 }
66635629 1873
3f79768f
HD
1874 /*
1875 * To save our caller's stack, now use input list for pages to free.
1876 */
1877 list_splice(&pages_to_free, page_list);
66635629
MG
1878}
1879
399ba0b9
N
1880/*
1881 * If a kernel thread (such as nfsd for loop-back mounts) services
1882 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1883 * In that case we should only throttle if the backing device it is
1884 * writing to is congested. In other cases it is safe to throttle.
1885 */
1886static int current_may_throttle(void)
1887{
1888 return !(current->flags & PF_LESS_THROTTLE) ||
1889 current->backing_dev_info == NULL ||
1890 bdi_write_congested(current->backing_dev_info);
1891}
1892
1da177e4 1893/*
b2e18757 1894 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1895 * of reclaimed pages
1da177e4 1896 */
66635629 1897static noinline_for_stack unsigned long
1a93be0e 1898shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1899 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1900{
1901 LIST_HEAD(page_list);
e247dbce 1902 unsigned long nr_scanned;
05ff5137 1903 unsigned long nr_reclaimed = 0;
e247dbce 1904 unsigned long nr_taken;
3c710c1a 1905 struct reclaim_stat stat = {};
f3fd4a61 1906 isolate_mode_t isolate_mode = 0;
3cb99451 1907 int file = is_file_lru(lru);
599d0c95 1908 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1909 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1910 bool stalled = false;
78dc583d 1911
599d0c95 1912 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1913 if (stalled)
1914 return 0;
1915
1916 /* wait a bit for the reclaimer. */
1917 msleep(100);
1918 stalled = true;
35cd7815
RR
1919
1920 /* We are about to die and free our memory. Return now. */
1921 if (fatal_signal_pending(current))
1922 return SWAP_CLUSTER_MAX;
1923 }
1924
1da177e4 1925 lru_add_drain();
f80c0673
MK
1926
1927 if (!sc->may_unmap)
61317289 1928 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1929
599d0c95 1930 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1931
5dc35979
KK
1932 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1933 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1934
599d0c95 1935 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1936 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1937
2262185c
RG
1938 if (current_is_kswapd()) {
1939 if (global_reclaim(sc))
599d0c95 1940 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
2262185c
RG
1941 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1942 nr_scanned);
1943 } else {
1944 if (global_reclaim(sc))
599d0c95 1945 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
2262185c
RG
1946 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1947 nr_scanned);
e247dbce 1948 }
599d0c95 1949 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1950
d563c050 1951 if (nr_taken == 0)
66635629 1952 return 0;
5ad333eb 1953
a128ca71 1954 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1955 &stat, false);
c661b078 1956
599d0c95 1957 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1958
2262185c
RG
1959 if (current_is_kswapd()) {
1960 if (global_reclaim(sc))
599d0c95 1961 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
2262185c
RG
1962 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1963 nr_reclaimed);
1964 } else {
1965 if (global_reclaim(sc))
599d0c95 1966 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
2262185c
RG
1967 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1968 nr_reclaimed);
904249aa 1969 }
a74609fa 1970
27ac81d8 1971 putback_inactive_pages(lruvec, &page_list);
3f79768f 1972
599d0c95 1973 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1974
599d0c95 1975 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1976
747db954 1977 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1978 free_unref_page_list(&page_list);
e11da5b4 1979
1c610d5f
AR
1980 /*
1981 * If dirty pages are scanned that are not queued for IO, it
1982 * implies that flushers are not doing their job. This can
1983 * happen when memory pressure pushes dirty pages to the end of
1984 * the LRU before the dirty limits are breached and the dirty
1985 * data has expired. It can also happen when the proportion of
1986 * dirty pages grows not through writes but through memory
1987 * pressure reclaiming all the clean cache. And in some cases,
1988 * the flushers simply cannot keep up with the allocation
1989 * rate. Nudge the flusher threads in case they are asleep.
1990 */
1991 if (stat.nr_unqueued_dirty == nr_taken)
1992 wakeup_flusher_threads(WB_REASON_VMSCAN);
1993
d108c772
AR
1994 sc->nr.dirty += stat.nr_dirty;
1995 sc->nr.congested += stat.nr_congested;
1996 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1997 sc->nr.writeback += stat.nr_writeback;
1998 sc->nr.immediate += stat.nr_immediate;
1999 sc->nr.taken += nr_taken;
2000 if (file)
2001 sc->nr.file_taken += nr_taken;
8e950282 2002
599d0c95 2003 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
d51d1e64 2004 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
05ff5137 2005 return nr_reclaimed;
1da177e4
LT
2006}
2007
2008/*
2009 * This moves pages from the active list to the inactive list.
2010 *
2011 * We move them the other way if the page is referenced by one or more
2012 * processes, from rmap.
2013 *
2014 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 2015 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 2016 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 2017 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
2018 * this, so instead we remove the pages from the LRU while processing them.
2019 * It is safe to rely on PG_active against the non-LRU pages in here because
2020 * nobody will play with that bit on a non-LRU page.
2021 *
0139aa7b 2022 * The downside is that we have to touch page->_refcount against each page.
1da177e4 2023 * But we had to alter page->flags anyway.
9d998b4f
MH
2024 *
2025 * Returns the number of pages moved to the given lru.
1da177e4 2026 */
1cfb419b 2027
9d998b4f 2028static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 2029 struct list_head *list,
2bcf8879 2030 struct list_head *pages_to_free,
3eb4140f
WF
2031 enum lru_list lru)
2032{
599d0c95 2033 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 2034 struct page *page;
fa9add64 2035 int nr_pages;
9d998b4f 2036 int nr_moved = 0;
3eb4140f 2037
3eb4140f
WF
2038 while (!list_empty(list)) {
2039 page = lru_to_page(list);
599d0c95 2040 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 2041
309381fe 2042 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
2043 SetPageLRU(page);
2044
fa9add64 2045 nr_pages = hpage_nr_pages(page);
599d0c95 2046 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 2047 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 2048
2bcf8879
HD
2049 if (put_page_testzero(page)) {
2050 __ClearPageLRU(page);
2051 __ClearPageActive(page);
fa9add64 2052 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
2053
2054 if (unlikely(PageCompound(page))) {
599d0c95 2055 spin_unlock_irq(&pgdat->lru_lock);
747db954 2056 mem_cgroup_uncharge(page);
2bcf8879 2057 (*get_compound_page_dtor(page))(page);
599d0c95 2058 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
2059 } else
2060 list_add(&page->lru, pages_to_free);
9d998b4f
MH
2061 } else {
2062 nr_moved += nr_pages;
3eb4140f
WF
2063 }
2064 }
9d5e6a9f 2065
2262185c 2066 if (!is_active_lru(lru)) {
f0958906 2067 __count_vm_events(PGDEACTIVATE, nr_moved);
2262185c
RG
2068 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2069 nr_moved);
2070 }
9d998b4f
MH
2071
2072 return nr_moved;
3eb4140f 2073}
1cfb419b 2074
f626012d 2075static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2076 struct lruvec *lruvec,
f16015fb 2077 struct scan_control *sc,
9e3b2f8c 2078 enum lru_list lru)
1da177e4 2079{
44c241f1 2080 unsigned long nr_taken;
f626012d 2081 unsigned long nr_scanned;
6fe6b7e3 2082 unsigned long vm_flags;
1da177e4 2083 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2084 LIST_HEAD(l_active);
b69408e8 2085 LIST_HEAD(l_inactive);
1da177e4 2086 struct page *page;
1a93be0e 2087 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2088 unsigned nr_deactivate, nr_activate;
2089 unsigned nr_rotated = 0;
f3fd4a61 2090 isolate_mode_t isolate_mode = 0;
3cb99451 2091 int file = is_file_lru(lru);
599d0c95 2092 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2093
2094 lru_add_drain();
f80c0673
MK
2095
2096 if (!sc->may_unmap)
61317289 2097 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 2098
599d0c95 2099 spin_lock_irq(&pgdat->lru_lock);
925b7673 2100
5dc35979
KK
2101 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2102 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 2103
599d0c95 2104 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2105 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2106
599d0c95 2107 __count_vm_events(PGREFILL, nr_scanned);
2262185c 2108 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2109
599d0c95 2110 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2111
1da177e4
LT
2112 while (!list_empty(&l_hold)) {
2113 cond_resched();
2114 page = lru_to_page(&l_hold);
2115 list_del(&page->lru);
7e9cd484 2116
39b5f29a 2117 if (unlikely(!page_evictable(page))) {
894bc310
LS
2118 putback_lru_page(page);
2119 continue;
2120 }
2121
cc715d99
MG
2122 if (unlikely(buffer_heads_over_limit)) {
2123 if (page_has_private(page) && trylock_page(page)) {
2124 if (page_has_private(page))
2125 try_to_release_page(page, 0);
2126 unlock_page(page);
2127 }
2128 }
2129
c3ac9a8a
JW
2130 if (page_referenced(page, 0, sc->target_mem_cgroup,
2131 &vm_flags)) {
9992af10 2132 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2133 /*
2134 * Identify referenced, file-backed active pages and
2135 * give them one more trip around the active list. So
2136 * that executable code get better chances to stay in
2137 * memory under moderate memory pressure. Anon pages
2138 * are not likely to be evicted by use-once streaming
2139 * IO, plus JVM can create lots of anon VM_EXEC pages,
2140 * so we ignore them here.
2141 */
41e20983 2142 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2143 list_add(&page->lru, &l_active);
2144 continue;
2145 }
2146 }
7e9cd484 2147
5205e56e 2148 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
2149 list_add(&page->lru, &l_inactive);
2150 }
2151
b555749a 2152 /*
8cab4754 2153 * Move pages back to the lru list.
b555749a 2154 */
599d0c95 2155 spin_lock_irq(&pgdat->lru_lock);
556adecb 2156 /*
8cab4754
WF
2157 * Count referenced pages from currently used mappings as rotated,
2158 * even though only some of them are actually re-activated. This
2159 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2160 * get_scan_count.
7e9cd484 2161 */
b7c46d15 2162 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2163
9d998b4f
MH
2164 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2165 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
2166 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2167 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2168
747db954 2169 mem_cgroup_uncharge_list(&l_hold);
2d4894b5 2170 free_unref_page_list(&l_hold);
9d998b4f
MH
2171 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2172 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2173}
2174
59dc76b0
RR
2175/*
2176 * The inactive anon list should be small enough that the VM never has
2177 * to do too much work.
14797e23 2178 *
59dc76b0
RR
2179 * The inactive file list should be small enough to leave most memory
2180 * to the established workingset on the scan-resistant active list,
2181 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2182 *
59dc76b0
RR
2183 * Both inactive lists should also be large enough that each inactive
2184 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2185 *
2a2e4885
JW
2186 * If that fails and refaulting is observed, the inactive list grows.
2187 *
59dc76b0 2188 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2189 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2190 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2191 *
59dc76b0
RR
2192 * total target max
2193 * memory ratio inactive
2194 * -------------------------------------
2195 * 10MB 1 5MB
2196 * 100MB 1 50MB
2197 * 1GB 3 250MB
2198 * 10GB 10 0.9GB
2199 * 100GB 31 3GB
2200 * 1TB 101 10GB
2201 * 10TB 320 32GB
56e49d21 2202 */
f8d1a311 2203static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2a2e4885
JW
2204 struct mem_cgroup *memcg,
2205 struct scan_control *sc, bool actual_reclaim)
56e49d21 2206{
fd538803 2207 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2208 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2209 enum lru_list inactive_lru = file * LRU_FILE;
2210 unsigned long inactive, active;
2211 unsigned long inactive_ratio;
2212 unsigned long refaults;
59dc76b0 2213 unsigned long gb;
e3790144 2214
59dc76b0
RR
2215 /*
2216 * If we don't have swap space, anonymous page deactivation
2217 * is pointless.
2218 */
2219 if (!file && !total_swap_pages)
2220 return false;
56e49d21 2221
fd538803
MH
2222 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2223 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2224
2a2e4885 2225 if (memcg)
ccda7f43 2226 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
b39415b2 2227 else
2a2e4885
JW
2228 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2229
2230 /*
2231 * When refaults are being observed, it means a new workingset
2232 * is being established. Disable active list protection to get
2233 * rid of the stale workingset quickly.
2234 */
2235 if (file && actual_reclaim && lruvec->refaults != refaults) {
2236 inactive_ratio = 0;
2237 } else {
2238 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2239 if (gb)
2240 inactive_ratio = int_sqrt(10 * gb);
2241 else
2242 inactive_ratio = 1;
2243 }
59dc76b0 2244
2a2e4885
JW
2245 if (actual_reclaim)
2246 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2247 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2248 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2249 inactive_ratio, file);
fd538803 2250
59dc76b0 2251 return inactive * inactive_ratio < active;
b39415b2
RR
2252}
2253
4f98a2fe 2254static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2a2e4885
JW
2255 struct lruvec *lruvec, struct mem_cgroup *memcg,
2256 struct scan_control *sc)
b69408e8 2257{
b39415b2 2258 if (is_active_lru(lru)) {
2a2e4885
JW
2259 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2260 memcg, sc, true))
1a93be0e 2261 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2262 return 0;
2263 }
2264
1a93be0e 2265 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2266}
2267
9a265114
JW
2268enum scan_balance {
2269 SCAN_EQUAL,
2270 SCAN_FRACT,
2271 SCAN_ANON,
2272 SCAN_FILE,
2273};
2274
4f98a2fe
RR
2275/*
2276 * Determine how aggressively the anon and file LRU lists should be
2277 * scanned. The relative value of each set of LRU lists is determined
2278 * by looking at the fraction of the pages scanned we did rotate back
2279 * onto the active list instead of evict.
2280 *
be7bd59d
WL
2281 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2282 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2283 */
33377678 2284static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2285 struct scan_control *sc, unsigned long *nr,
2286 unsigned long *lru_pages)
4f98a2fe 2287{
33377678 2288 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2289 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2290 u64 fraction[2];
2291 u64 denominator = 0; /* gcc */
599d0c95 2292 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2293 unsigned long anon_prio, file_prio;
9a265114 2294 enum scan_balance scan_balance;
0bf1457f 2295 unsigned long anon, file;
4f98a2fe 2296 unsigned long ap, fp;
4111304d 2297 enum lru_list lru;
76a33fc3
SL
2298
2299 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2300 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2301 scan_balance = SCAN_FILE;
76a33fc3
SL
2302 goto out;
2303 }
4f98a2fe 2304
10316b31
JW
2305 /*
2306 * Global reclaim will swap to prevent OOM even with no
2307 * swappiness, but memcg users want to use this knob to
2308 * disable swapping for individual groups completely when
2309 * using the memory controller's swap limit feature would be
2310 * too expensive.
2311 */
02695175 2312 if (!global_reclaim(sc) && !swappiness) {
9a265114 2313 scan_balance = SCAN_FILE;
10316b31
JW
2314 goto out;
2315 }
2316
2317 /*
2318 * Do not apply any pressure balancing cleverness when the
2319 * system is close to OOM, scan both anon and file equally
2320 * (unless the swappiness setting disagrees with swapping).
2321 */
02695175 2322 if (!sc->priority && swappiness) {
9a265114 2323 scan_balance = SCAN_EQUAL;
10316b31
JW
2324 goto out;
2325 }
2326
62376251
JW
2327 /*
2328 * Prevent the reclaimer from falling into the cache trap: as
2329 * cache pages start out inactive, every cache fault will tip
2330 * the scan balance towards the file LRU. And as the file LRU
2331 * shrinks, so does the window for rotation from references.
2332 * This means we have a runaway feedback loop where a tiny
2333 * thrashing file LRU becomes infinitely more attractive than
2334 * anon pages. Try to detect this based on file LRU size.
2335 */
2336 if (global_reclaim(sc)) {
599d0c95
MG
2337 unsigned long pgdatfile;
2338 unsigned long pgdatfree;
2339 int z;
2340 unsigned long total_high_wmark = 0;
2ab051e1 2341
599d0c95
MG
2342 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2343 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2344 node_page_state(pgdat, NR_INACTIVE_FILE);
2345
2346 for (z = 0; z < MAX_NR_ZONES; z++) {
2347 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2348 if (!managed_zone(zone))
599d0c95
MG
2349 continue;
2350
2351 total_high_wmark += high_wmark_pages(zone);
2352 }
62376251 2353
599d0c95 2354 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2355 /*
2356 * Force SCAN_ANON if there are enough inactive
2357 * anonymous pages on the LRU in eligible zones.
2358 * Otherwise, the small LRU gets thrashed.
2359 */
2360 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2361 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2362 >> sc->priority) {
2363 scan_balance = SCAN_ANON;
2364 goto out;
2365 }
62376251
JW
2366 }
2367 }
2368
7c5bd705 2369 /*
316bda0e
VD
2370 * If there is enough inactive page cache, i.e. if the size of the
2371 * inactive list is greater than that of the active list *and* the
2372 * inactive list actually has some pages to scan on this priority, we
2373 * do not reclaim anything from the anonymous working set right now.
2374 * Without the second condition we could end up never scanning an
2375 * lruvec even if it has plenty of old anonymous pages unless the
2376 * system is under heavy pressure.
7c5bd705 2377 */
2a2e4885 2378 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
71ab6cfe 2379 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2380 scan_balance = SCAN_FILE;
7c5bd705
JW
2381 goto out;
2382 }
2383
9a265114
JW
2384 scan_balance = SCAN_FRACT;
2385
58c37f6e
KM
2386 /*
2387 * With swappiness at 100, anonymous and file have the same priority.
2388 * This scanning priority is essentially the inverse of IO cost.
2389 */
02695175 2390 anon_prio = swappiness;
75b00af7 2391 file_prio = 200 - anon_prio;
58c37f6e 2392
4f98a2fe
RR
2393 /*
2394 * OK, so we have swap space and a fair amount of page cache
2395 * pages. We use the recently rotated / recently scanned
2396 * ratios to determine how valuable each cache is.
2397 *
2398 * Because workloads change over time (and to avoid overflow)
2399 * we keep these statistics as a floating average, which ends
2400 * up weighing recent references more than old ones.
2401 *
2402 * anon in [0], file in [1]
2403 */
2ab051e1 2404
fd538803
MH
2405 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2406 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2407 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2408 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2409
599d0c95 2410 spin_lock_irq(&pgdat->lru_lock);
6e901571 2411 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2412 reclaim_stat->recent_scanned[0] /= 2;
2413 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2414 }
2415
6e901571 2416 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2417 reclaim_stat->recent_scanned[1] /= 2;
2418 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2419 }
2420
4f98a2fe 2421 /*
00d8089c
RR
2422 * The amount of pressure on anon vs file pages is inversely
2423 * proportional to the fraction of recently scanned pages on
2424 * each list that were recently referenced and in active use.
4f98a2fe 2425 */
fe35004f 2426 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2427 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2428
fe35004f 2429 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2430 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2431 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2432
76a33fc3
SL
2433 fraction[0] = ap;
2434 fraction[1] = fp;
2435 denominator = ap + fp + 1;
2436out:
688035f7
JW
2437 *lru_pages = 0;
2438 for_each_evictable_lru(lru) {
2439 int file = is_file_lru(lru);
2440 unsigned long size;
2441 unsigned long scan;
6b4f7799 2442
688035f7
JW
2443 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2444 scan = size >> sc->priority;
2445 /*
2446 * If the cgroup's already been deleted, make sure to
2447 * scrape out the remaining cache.
2448 */
2449 if (!scan && !mem_cgroup_online(memcg))
2450 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2451
688035f7
JW
2452 switch (scan_balance) {
2453 case SCAN_EQUAL:
2454 /* Scan lists relative to size */
2455 break;
2456 case SCAN_FRACT:
9a265114 2457 /*
688035f7
JW
2458 * Scan types proportional to swappiness and
2459 * their relative recent reclaim efficiency.
9a265114 2460 */
688035f7
JW
2461 scan = div64_u64(scan * fraction[file],
2462 denominator);
2463 break;
2464 case SCAN_FILE:
2465 case SCAN_ANON:
2466 /* Scan one type exclusively */
2467 if ((scan_balance == SCAN_FILE) != file) {
2468 size = 0;
2469 scan = 0;
2470 }
2471 break;
2472 default:
2473 /* Look ma, no brain */
2474 BUG();
9a265114 2475 }
688035f7
JW
2476
2477 *lru_pages += size;
2478 nr[lru] = scan;
76a33fc3 2479 }
6e08a369 2480}
4f98a2fe 2481
9b4f98cd 2482/*
a9dd0a83 2483 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2484 */
a9dd0a83 2485static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2486 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2487{
ef8f2327 2488 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2489 unsigned long nr[NR_LRU_LISTS];
e82e0561 2490 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2491 unsigned long nr_to_scan;
2492 enum lru_list lru;
2493 unsigned long nr_reclaimed = 0;
2494 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2495 struct blk_plug plug;
1a501907 2496 bool scan_adjusted;
9b4f98cd 2497
33377678 2498 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2499
e82e0561
MG
2500 /* Record the original scan target for proportional adjustments later */
2501 memcpy(targets, nr, sizeof(nr));
2502
1a501907
MG
2503 /*
2504 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2505 * event that can occur when there is little memory pressure e.g.
2506 * multiple streaming readers/writers. Hence, we do not abort scanning
2507 * when the requested number of pages are reclaimed when scanning at
2508 * DEF_PRIORITY on the assumption that the fact we are direct
2509 * reclaiming implies that kswapd is not keeping up and it is best to
2510 * do a batch of work at once. For memcg reclaim one check is made to
2511 * abort proportional reclaim if either the file or anon lru has already
2512 * dropped to zero at the first pass.
2513 */
2514 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2515 sc->priority == DEF_PRIORITY);
2516
9b4f98cd
JW
2517 blk_start_plug(&plug);
2518 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2519 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2520 unsigned long nr_anon, nr_file, percentage;
2521 unsigned long nr_scanned;
2522
9b4f98cd
JW
2523 for_each_evictable_lru(lru) {
2524 if (nr[lru]) {
2525 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2526 nr[lru] -= nr_to_scan;
2527
2528 nr_reclaimed += shrink_list(lru, nr_to_scan,
2a2e4885 2529 lruvec, memcg, sc);
9b4f98cd
JW
2530 }
2531 }
e82e0561 2532
bd041733
MH
2533 cond_resched();
2534
e82e0561
MG
2535 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2536 continue;
2537
e82e0561
MG
2538 /*
2539 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2540 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2541 * proportionally what was requested by get_scan_count(). We
2542 * stop reclaiming one LRU and reduce the amount scanning
2543 * proportional to the original scan target.
2544 */
2545 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2546 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2547
1a501907
MG
2548 /*
2549 * It's just vindictive to attack the larger once the smaller
2550 * has gone to zero. And given the way we stop scanning the
2551 * smaller below, this makes sure that we only make one nudge
2552 * towards proportionality once we've got nr_to_reclaim.
2553 */
2554 if (!nr_file || !nr_anon)
2555 break;
2556
e82e0561
MG
2557 if (nr_file > nr_anon) {
2558 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2559 targets[LRU_ACTIVE_ANON] + 1;
2560 lru = LRU_BASE;
2561 percentage = nr_anon * 100 / scan_target;
2562 } else {
2563 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2564 targets[LRU_ACTIVE_FILE] + 1;
2565 lru = LRU_FILE;
2566 percentage = nr_file * 100 / scan_target;
2567 }
2568
2569 /* Stop scanning the smaller of the LRU */
2570 nr[lru] = 0;
2571 nr[lru + LRU_ACTIVE] = 0;
2572
2573 /*
2574 * Recalculate the other LRU scan count based on its original
2575 * scan target and the percentage scanning already complete
2576 */
2577 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2578 nr_scanned = targets[lru] - nr[lru];
2579 nr[lru] = targets[lru] * (100 - percentage) / 100;
2580 nr[lru] -= min(nr[lru], nr_scanned);
2581
2582 lru += LRU_ACTIVE;
2583 nr_scanned = targets[lru] - nr[lru];
2584 nr[lru] = targets[lru] * (100 - percentage) / 100;
2585 nr[lru] -= min(nr[lru], nr_scanned);
2586
2587 scan_adjusted = true;
9b4f98cd
JW
2588 }
2589 blk_finish_plug(&plug);
2590 sc->nr_reclaimed += nr_reclaimed;
2591
2592 /*
2593 * Even if we did not try to evict anon pages at all, we want to
2594 * rebalance the anon lru active/inactive ratio.
2595 */
2a2e4885 2596 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
9b4f98cd
JW
2597 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2598 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2599}
2600
23b9da55 2601/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2602static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2603{
d84da3f9 2604 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2605 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2606 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2607 return true;
2608
2609 return false;
2610}
2611
3e7d3449 2612/*
23b9da55
MG
2613 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2614 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2615 * true if more pages should be reclaimed such that when the page allocator
2616 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2617 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2618 */
a9dd0a83 2619static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2620 unsigned long nr_reclaimed,
2621 unsigned long nr_scanned,
2622 struct scan_control *sc)
2623{
2624 unsigned long pages_for_compaction;
2625 unsigned long inactive_lru_pages;
a9dd0a83 2626 int z;
3e7d3449
MG
2627
2628 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2629 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2630 return false;
2631
2876592f 2632 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2633 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2634 /*
dcda9b04 2635 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2636 * full LRU list has been scanned and we are still failing
2637 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2638 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2639 */
2640 if (!nr_reclaimed && !nr_scanned)
2641 return false;
2642 } else {
2643 /*
dcda9b04 2644 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2645 * fail without consequence, stop if we failed to reclaim
2646 * any pages from the last SWAP_CLUSTER_MAX number of
2647 * pages that were scanned. This will return to the
2648 * caller faster at the risk reclaim/compaction and
2649 * the resulting allocation attempt fails
2650 */
2651 if (!nr_reclaimed)
2652 return false;
2653 }
3e7d3449
MG
2654
2655 /*
2656 * If we have not reclaimed enough pages for compaction and the
2657 * inactive lists are large enough, continue reclaiming
2658 */
9861a62c 2659 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2660 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2661 if (get_nr_swap_pages() > 0)
a9dd0a83 2662 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2663 if (sc->nr_reclaimed < pages_for_compaction &&
2664 inactive_lru_pages > pages_for_compaction)
2665 return true;
2666
2667 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2668 for (z = 0; z <= sc->reclaim_idx; z++) {
2669 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2670 if (!managed_zone(zone))
a9dd0a83
MG
2671 continue;
2672
2673 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2674 case COMPACT_SUCCESS:
a9dd0a83
MG
2675 case COMPACT_CONTINUE:
2676 return false;
2677 default:
2678 /* check next zone */
2679 ;
2680 }
3e7d3449 2681 }
a9dd0a83 2682 return true;
3e7d3449
MG
2683}
2684
e3c1ac58
AR
2685static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2686{
2687 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2688 (memcg && memcg_congested(pgdat, memcg));
2689}
2690
970a39a3 2691static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2692{
cb731d6c 2693 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2694 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2695 bool reclaimable = false;
1da177e4 2696
9b4f98cd
JW
2697 do {
2698 struct mem_cgroup *root = sc->target_mem_cgroup;
2699 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2700 .pgdat = pgdat,
9b4f98cd
JW
2701 .priority = sc->priority,
2702 };
a9dd0a83 2703 unsigned long node_lru_pages = 0;
694fbc0f 2704 struct mem_cgroup *memcg;
3e7d3449 2705
d108c772
AR
2706 memset(&sc->nr, 0, sizeof(sc->nr));
2707
9b4f98cd
JW
2708 nr_reclaimed = sc->nr_reclaimed;
2709 nr_scanned = sc->nr_scanned;
1da177e4 2710
694fbc0f
AM
2711 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2712 do {
6b4f7799 2713 unsigned long lru_pages;
8e8ae645 2714 unsigned long reclaimed;
cb731d6c 2715 unsigned long scanned;
5660048c 2716
bf8d5d52
RG
2717 switch (mem_cgroup_protected(root, memcg)) {
2718 case MEMCG_PROT_MIN:
2719 /*
2720 * Hard protection.
2721 * If there is no reclaimable memory, OOM.
2722 */
2723 continue;
2724 case MEMCG_PROT_LOW:
2725 /*
2726 * Soft protection.
2727 * Respect the protection only as long as
2728 * there is an unprotected supply
2729 * of reclaimable memory from other cgroups.
2730 */
d6622f63
YX
2731 if (!sc->memcg_low_reclaim) {
2732 sc->memcg_low_skipped = 1;
241994ed 2733 continue;
d6622f63 2734 }
e27be240 2735 memcg_memory_event(memcg, MEMCG_LOW);
bf8d5d52
RG
2736 break;
2737 case MEMCG_PROT_NONE:
2738 break;
241994ed
JW
2739 }
2740
8e8ae645 2741 reclaimed = sc->nr_reclaimed;
cb731d6c 2742 scanned = sc->nr_scanned;
a9dd0a83
MG
2743 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2744 node_lru_pages += lru_pages;
f16015fb 2745
aeed1d32
VD
2746 shrink_slab(sc->gfp_mask, pgdat->node_id,
2747 memcg, sc->priority);
cb731d6c 2748
8e8ae645
JW
2749 /* Record the group's reclaim efficiency */
2750 vmpressure(sc->gfp_mask, memcg, false,
2751 sc->nr_scanned - scanned,
2752 sc->nr_reclaimed - reclaimed);
2753
9b4f98cd 2754 /*
a394cb8e
MH
2755 * Direct reclaim and kswapd have to scan all memory
2756 * cgroups to fulfill the overall scan target for the
a9dd0a83 2757 * node.
a394cb8e
MH
2758 *
2759 * Limit reclaim, on the other hand, only cares about
2760 * nr_to_reclaim pages to be reclaimed and it will
2761 * retry with decreasing priority if one round over the
2762 * whole hierarchy is not sufficient.
9b4f98cd 2763 */
a394cb8e
MH
2764 if (!global_reclaim(sc) &&
2765 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2766 mem_cgroup_iter_break(root, memcg);
2767 break;
2768 }
241994ed 2769 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2770
cb731d6c
VD
2771 if (reclaim_state) {
2772 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2773 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2774 }
2775
8e8ae645
JW
2776 /* Record the subtree's reclaim efficiency */
2777 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2778 sc->nr_scanned - nr_scanned,
2779 sc->nr_reclaimed - nr_reclaimed);
2780
2344d7e4
JW
2781 if (sc->nr_reclaimed - nr_reclaimed)
2782 reclaimable = true;
2783
e3c1ac58
AR
2784 if (current_is_kswapd()) {
2785 /*
2786 * If reclaim is isolating dirty pages under writeback,
2787 * it implies that the long-lived page allocation rate
2788 * is exceeding the page laundering rate. Either the
2789 * global limits are not being effective at throttling
2790 * processes due to the page distribution throughout
2791 * zones or there is heavy usage of a slow backing
2792 * device. The only option is to throttle from reclaim
2793 * context which is not ideal as there is no guarantee
2794 * the dirtying process is throttled in the same way
2795 * balance_dirty_pages() manages.
2796 *
2797 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2798 * count the number of pages under pages flagged for
2799 * immediate reclaim and stall if any are encountered
2800 * in the nr_immediate check below.
2801 */
2802 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2803 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
d108c772 2804
d108c772
AR
2805 /*
2806 * Tag a node as congested if all the dirty pages
2807 * scanned were backed by a congested BDI and
2808 * wait_iff_congested will stall.
2809 */
2810 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2811 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2812
2813 /* Allow kswapd to start writing pages during reclaim.*/
2814 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2815 set_bit(PGDAT_DIRTY, &pgdat->flags);
2816
2817 /*
2818 * If kswapd scans pages marked marked for immediate
2819 * reclaim and under writeback (nr_immediate), it
2820 * implies that pages are cycling through the LRU
2821 * faster than they are written so also forcibly stall.
2822 */
2823 if (sc->nr.immediate)
2824 congestion_wait(BLK_RW_ASYNC, HZ/10);
2825 }
2826
e3c1ac58
AR
2827 /*
2828 * Legacy memcg will stall in page writeback so avoid forcibly
2829 * stalling in wait_iff_congested().
2830 */
2831 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2832 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2833 set_memcg_congestion(pgdat, root, true);
2834
d108c772
AR
2835 /*
2836 * Stall direct reclaim for IO completions if underlying BDIs
2837 * and node is congested. Allow kswapd to continue until it
2838 * starts encountering unqueued dirty pages or cycling through
2839 * the LRU too quickly.
2840 */
2841 if (!sc->hibernation_mode && !current_is_kswapd() &&
e3c1ac58
AR
2842 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2843 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
d108c772 2844
a9dd0a83 2845 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2846 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2847
c73322d0
JW
2848 /*
2849 * Kswapd gives up on balancing particular nodes after too
2850 * many failures to reclaim anything from them and goes to
2851 * sleep. On reclaim progress, reset the failure counter. A
2852 * successful direct reclaim run will revive a dormant kswapd.
2853 */
2854 if (reclaimable)
2855 pgdat->kswapd_failures = 0;
2856
2344d7e4 2857 return reclaimable;
f16015fb
JW
2858}
2859
53853e2d 2860/*
fdd4c614
VB
2861 * Returns true if compaction should go ahead for a costly-order request, or
2862 * the allocation would already succeed without compaction. Return false if we
2863 * should reclaim first.
53853e2d 2864 */
4f588331 2865static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2866{
31483b6a 2867 unsigned long watermark;
fdd4c614 2868 enum compact_result suitable;
fe4b1b24 2869
fdd4c614
VB
2870 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2871 if (suitable == COMPACT_SUCCESS)
2872 /* Allocation should succeed already. Don't reclaim. */
2873 return true;
2874 if (suitable == COMPACT_SKIPPED)
2875 /* Compaction cannot yet proceed. Do reclaim. */
2876 return false;
fe4b1b24 2877
53853e2d 2878 /*
fdd4c614
VB
2879 * Compaction is already possible, but it takes time to run and there
2880 * are potentially other callers using the pages just freed. So proceed
2881 * with reclaim to make a buffer of free pages available to give
2882 * compaction a reasonable chance of completing and allocating the page.
2883 * Note that we won't actually reclaim the whole buffer in one attempt
2884 * as the target watermark in should_continue_reclaim() is lower. But if
2885 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2886 */
fdd4c614 2887 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2888
fdd4c614 2889 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2890}
2891
1da177e4
LT
2892/*
2893 * This is the direct reclaim path, for page-allocating processes. We only
2894 * try to reclaim pages from zones which will satisfy the caller's allocation
2895 * request.
2896 *
1da177e4
LT
2897 * If a zone is deemed to be full of pinned pages then just give it a light
2898 * scan then give up on it.
2899 */
0a0337e0 2900static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2901{
dd1a239f 2902 struct zoneref *z;
54a6eb5c 2903 struct zone *zone;
0608f43d
AM
2904 unsigned long nr_soft_reclaimed;
2905 unsigned long nr_soft_scanned;
619d0d76 2906 gfp_t orig_mask;
79dafcdc 2907 pg_data_t *last_pgdat = NULL;
1cfb419b 2908
cc715d99
MG
2909 /*
2910 * If the number of buffer_heads in the machine exceeds the maximum
2911 * allowed level, force direct reclaim to scan the highmem zone as
2912 * highmem pages could be pinning lowmem pages storing buffer_heads
2913 */
619d0d76 2914 orig_mask = sc->gfp_mask;
b2e18757 2915 if (buffer_heads_over_limit) {
cc715d99 2916 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2917 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2918 }
cc715d99 2919
d4debc66 2920 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2921 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2922 /*
2923 * Take care memory controller reclaiming has small influence
2924 * to global LRU.
2925 */
89b5fae5 2926 if (global_reclaim(sc)) {
344736f2
VD
2927 if (!cpuset_zone_allowed(zone,
2928 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2929 continue;
65ec02cb 2930
0b06496a
JW
2931 /*
2932 * If we already have plenty of memory free for
2933 * compaction in this zone, don't free any more.
2934 * Even though compaction is invoked for any
2935 * non-zero order, only frequent costly order
2936 * reclamation is disruptive enough to become a
2937 * noticeable problem, like transparent huge
2938 * page allocations.
2939 */
2940 if (IS_ENABLED(CONFIG_COMPACTION) &&
2941 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2942 compaction_ready(zone, sc)) {
0b06496a
JW
2943 sc->compaction_ready = true;
2944 continue;
e0887c19 2945 }
0b06496a 2946
79dafcdc
MG
2947 /*
2948 * Shrink each node in the zonelist once. If the
2949 * zonelist is ordered by zone (not the default) then a
2950 * node may be shrunk multiple times but in that case
2951 * the user prefers lower zones being preserved.
2952 */
2953 if (zone->zone_pgdat == last_pgdat)
2954 continue;
2955
0608f43d
AM
2956 /*
2957 * This steals pages from memory cgroups over softlimit
2958 * and returns the number of reclaimed pages and
2959 * scanned pages. This works for global memory pressure
2960 * and balancing, not for a memcg's limit.
2961 */
2962 nr_soft_scanned = 0;
ef8f2327 2963 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2964 sc->order, sc->gfp_mask,
2965 &nr_soft_scanned);
2966 sc->nr_reclaimed += nr_soft_reclaimed;
2967 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2968 /* need some check for avoid more shrink_zone() */
1cfb419b 2969 }
408d8544 2970
79dafcdc
MG
2971 /* See comment about same check for global reclaim above */
2972 if (zone->zone_pgdat == last_pgdat)
2973 continue;
2974 last_pgdat = zone->zone_pgdat;
970a39a3 2975 shrink_node(zone->zone_pgdat, sc);
1da177e4 2976 }
e0c23279 2977
619d0d76
WY
2978 /*
2979 * Restore to original mask to avoid the impact on the caller if we
2980 * promoted it to __GFP_HIGHMEM.
2981 */
2982 sc->gfp_mask = orig_mask;
1da177e4 2983}
4f98a2fe 2984
2a2e4885
JW
2985static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2986{
2987 struct mem_cgroup *memcg;
2988
2989 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2990 do {
2991 unsigned long refaults;
2992 struct lruvec *lruvec;
2993
2994 if (memcg)
ccda7f43 2995 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2a2e4885
JW
2996 else
2997 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2998
2999 lruvec = mem_cgroup_lruvec(pgdat, memcg);
3000 lruvec->refaults = refaults;
3001 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3002}
3003
1da177e4
LT
3004/*
3005 * This is the main entry point to direct page reclaim.
3006 *
3007 * If a full scan of the inactive list fails to free enough memory then we
3008 * are "out of memory" and something needs to be killed.
3009 *
3010 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3011 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
3012 * caller can't do much about. We kick the writeback threads and take explicit
3013 * naps in the hope that some of these pages can be written. But if the
3014 * allocating task holds filesystem locks which prevent writeout this might not
3015 * work, and the allocation attempt will fail.
a41f24ea
NA
3016 *
3017 * returns: 0, if no pages reclaimed
3018 * else, the number of pages reclaimed
1da177e4 3019 */
dac1d27b 3020static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 3021 struct scan_control *sc)
1da177e4 3022{
241994ed 3023 int initial_priority = sc->priority;
2a2e4885
JW
3024 pg_data_t *last_pgdat;
3025 struct zoneref *z;
3026 struct zone *zone;
241994ed 3027retry:
873b4771
KK
3028 delayacct_freepages_start();
3029
89b5fae5 3030 if (global_reclaim(sc))
7cc30fcf 3031 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 3032
9e3b2f8c 3033 do {
70ddf637
AV
3034 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3035 sc->priority);
66e1707b 3036 sc->nr_scanned = 0;
0a0337e0 3037 shrink_zones(zonelist, sc);
c6a8a8c5 3038
bb21c7ce 3039 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
3040 break;
3041
3042 if (sc->compaction_ready)
3043 break;
1da177e4 3044
0e50ce3b
MK
3045 /*
3046 * If we're getting trouble reclaiming, start doing
3047 * writepage even in laptop mode.
3048 */
3049 if (sc->priority < DEF_PRIORITY - 2)
3050 sc->may_writepage = 1;
0b06496a 3051 } while (--sc->priority >= 0);
bb21c7ce 3052
2a2e4885
JW
3053 last_pgdat = NULL;
3054 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3055 sc->nodemask) {
3056 if (zone->zone_pgdat == last_pgdat)
3057 continue;
3058 last_pgdat = zone->zone_pgdat;
3059 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
e3c1ac58 3060 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2a2e4885
JW
3061 }
3062
873b4771
KK
3063 delayacct_freepages_end();
3064
bb21c7ce
KM
3065 if (sc->nr_reclaimed)
3066 return sc->nr_reclaimed;
3067
0cee34fd 3068 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 3069 if (sc->compaction_ready)
7335084d
MG
3070 return 1;
3071
241994ed 3072 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 3073 if (sc->memcg_low_skipped) {
241994ed 3074 sc->priority = initial_priority;
d6622f63
YX
3075 sc->memcg_low_reclaim = 1;
3076 sc->memcg_low_skipped = 0;
241994ed
JW
3077 goto retry;
3078 }
3079
bb21c7ce 3080 return 0;
1da177e4
LT
3081}
3082
c73322d0 3083static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
3084{
3085 struct zone *zone;
3086 unsigned long pfmemalloc_reserve = 0;
3087 unsigned long free_pages = 0;
3088 int i;
3089 bool wmark_ok;
3090
c73322d0
JW
3091 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3092 return true;
3093
5515061d
MG
3094 for (i = 0; i <= ZONE_NORMAL; i++) {
3095 zone = &pgdat->node_zones[i];
d450abd8
JW
3096 if (!managed_zone(zone))
3097 continue;
3098
3099 if (!zone_reclaimable_pages(zone))
675becce
MG
3100 continue;
3101
5515061d
MG
3102 pfmemalloc_reserve += min_wmark_pages(zone);
3103 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3104 }
3105
675becce
MG
3106 /* If there are no reserves (unexpected config) then do not throttle */
3107 if (!pfmemalloc_reserve)
3108 return true;
3109
5515061d
MG
3110 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3111
3112 /* kswapd must be awake if processes are being throttled */
3113 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 3114 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
3115 (enum zone_type)ZONE_NORMAL);
3116 wake_up_interruptible(&pgdat->kswapd_wait);
3117 }
3118
3119 return wmark_ok;
3120}
3121
3122/*
3123 * Throttle direct reclaimers if backing storage is backed by the network
3124 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3125 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
3126 * when the low watermark is reached.
3127 *
3128 * Returns true if a fatal signal was delivered during throttling. If this
3129 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 3130 */
50694c28 3131static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
3132 nodemask_t *nodemask)
3133{
675becce 3134 struct zoneref *z;
5515061d 3135 struct zone *zone;
675becce 3136 pg_data_t *pgdat = NULL;
5515061d
MG
3137
3138 /*
3139 * Kernel threads should not be throttled as they may be indirectly
3140 * responsible for cleaning pages necessary for reclaim to make forward
3141 * progress. kjournald for example may enter direct reclaim while
3142 * committing a transaction where throttling it could forcing other
3143 * processes to block on log_wait_commit().
3144 */
3145 if (current->flags & PF_KTHREAD)
50694c28
MG
3146 goto out;
3147
3148 /*
3149 * If a fatal signal is pending, this process should not throttle.
3150 * It should return quickly so it can exit and free its memory
3151 */
3152 if (fatal_signal_pending(current))
3153 goto out;
5515061d 3154
675becce
MG
3155 /*
3156 * Check if the pfmemalloc reserves are ok by finding the first node
3157 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3158 * GFP_KERNEL will be required for allocating network buffers when
3159 * swapping over the network so ZONE_HIGHMEM is unusable.
3160 *
3161 * Throttling is based on the first usable node and throttled processes
3162 * wait on a queue until kswapd makes progress and wakes them. There
3163 * is an affinity then between processes waking up and where reclaim
3164 * progress has been made assuming the process wakes on the same node.
3165 * More importantly, processes running on remote nodes will not compete
3166 * for remote pfmemalloc reserves and processes on different nodes
3167 * should make reasonable progress.
3168 */
3169 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3170 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3171 if (zone_idx(zone) > ZONE_NORMAL)
3172 continue;
3173
3174 /* Throttle based on the first usable node */
3175 pgdat = zone->zone_pgdat;
c73322d0 3176 if (allow_direct_reclaim(pgdat))
675becce
MG
3177 goto out;
3178 break;
3179 }
3180
3181 /* If no zone was usable by the allocation flags then do not throttle */
3182 if (!pgdat)
50694c28 3183 goto out;
5515061d 3184
68243e76
MG
3185 /* Account for the throttling */
3186 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3187
5515061d
MG
3188 /*
3189 * If the caller cannot enter the filesystem, it's possible that it
3190 * is due to the caller holding an FS lock or performing a journal
3191 * transaction in the case of a filesystem like ext[3|4]. In this case,
3192 * it is not safe to block on pfmemalloc_wait as kswapd could be
3193 * blocked waiting on the same lock. Instead, throttle for up to a
3194 * second before continuing.
3195 */
3196 if (!(gfp_mask & __GFP_FS)) {
3197 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3198 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3199
3200 goto check_pending;
5515061d
MG
3201 }
3202
3203 /* Throttle until kswapd wakes the process */
3204 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3205 allow_direct_reclaim(pgdat));
50694c28
MG
3206
3207check_pending:
3208 if (fatal_signal_pending(current))
3209 return true;
3210
3211out:
3212 return false;
5515061d
MG
3213}
3214
dac1d27b 3215unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3216 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3217{
33906bc5 3218 unsigned long nr_reclaimed;
66e1707b 3219 struct scan_control sc = {
ee814fe2 3220 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3221 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3222 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3223 .order = order,
3224 .nodemask = nodemask,
3225 .priority = DEF_PRIORITY,
66e1707b 3226 .may_writepage = !laptop_mode,
a6dc60f8 3227 .may_unmap = 1,
2e2e4259 3228 .may_swap = 1,
66e1707b
BS
3229 };
3230
bb451fdf
GT
3231 /*
3232 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3233 * Confirm they are large enough for max values.
3234 */
3235 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3236 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3237 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3238
5515061d 3239 /*
50694c28
MG
3240 * Do not enter reclaim if fatal signal was delivered while throttled.
3241 * 1 is returned so that the page allocator does not OOM kill at this
3242 * point.
5515061d 3243 */
f2f43e56 3244 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3245 return 1;
3246
33906bc5
MG
3247 trace_mm_vmscan_direct_reclaim_begin(order,
3248 sc.may_writepage,
f2f43e56 3249 sc.gfp_mask,
e5146b12 3250 sc.reclaim_idx);
33906bc5 3251
3115cd91 3252 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3253
3254 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3255
3256 return nr_reclaimed;
66e1707b
BS
3257}
3258
c255a458 3259#ifdef CONFIG_MEMCG
66e1707b 3260
a9dd0a83 3261unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3262 gfp_t gfp_mask, bool noswap,
ef8f2327 3263 pg_data_t *pgdat,
0ae5e89c 3264 unsigned long *nr_scanned)
4e416953
BS
3265{
3266 struct scan_control sc = {
b8f5c566 3267 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3268 .target_mem_cgroup = memcg,
4e416953
BS
3269 .may_writepage = !laptop_mode,
3270 .may_unmap = 1,
b2e18757 3271 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3272 .may_swap = !noswap,
4e416953 3273 };
6b4f7799 3274 unsigned long lru_pages;
0ae5e89c 3275
4e416953
BS
3276 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3277 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3278
9e3b2f8c 3279 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 3280 sc.may_writepage,
e5146b12
MG
3281 sc.gfp_mask,
3282 sc.reclaim_idx);
bdce6d9e 3283
4e416953
BS
3284 /*
3285 * NOTE: Although we can get the priority field, using it
3286 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3287 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3288 * will pick up pages from other mem cgroup's as well. We hack
3289 * the priority and make it zero.
3290 */
ef8f2327 3291 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3292
3293 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3294
0ae5e89c 3295 *nr_scanned = sc.nr_scanned;
4e416953
BS
3296 return sc.nr_reclaimed;
3297}
3298
72835c86 3299unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3300 unsigned long nr_pages,
a7885eb8 3301 gfp_t gfp_mask,
b70a2a21 3302 bool may_swap)
66e1707b 3303{
4e416953 3304 struct zonelist *zonelist;
bdce6d9e 3305 unsigned long nr_reclaimed;
889976db 3306 int nid;
499118e9 3307 unsigned int noreclaim_flag;
66e1707b 3308 struct scan_control sc = {
b70a2a21 3309 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3310 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3311 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3312 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3313 .target_mem_cgroup = memcg,
3314 .priority = DEF_PRIORITY,
3315 .may_writepage = !laptop_mode,
3316 .may_unmap = 1,
b70a2a21 3317 .may_swap = may_swap,
a09ed5e0 3318 };
66e1707b 3319
889976db
YH
3320 /*
3321 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3322 * take care of from where we get pages. So the node where we start the
3323 * scan does not need to be the current node.
3324 */
72835c86 3325 nid = mem_cgroup_select_victim_node(memcg);
889976db 3326
c9634cf0 3327 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3328
3329 trace_mm_vmscan_memcg_reclaim_begin(0,
3330 sc.may_writepage,
e5146b12
MG
3331 sc.gfp_mask,
3332 sc.reclaim_idx);
bdce6d9e 3333
499118e9 3334 noreclaim_flag = memalloc_noreclaim_save();
3115cd91 3335 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
499118e9 3336 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e
KM
3337
3338 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3339
3340 return nr_reclaimed;
66e1707b
BS
3341}
3342#endif
3343
1d82de61 3344static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3345 struct scan_control *sc)
f16015fb 3346{
b95a2f2d 3347 struct mem_cgroup *memcg;
f16015fb 3348
b95a2f2d
JW
3349 if (!total_swap_pages)
3350 return;
3351
3352 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3353 do {
ef8f2327 3354 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3355
2a2e4885 3356 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
1a93be0e 3357 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3358 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3359
3360 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3361 } while (memcg);
f16015fb
JW
3362}
3363
e716f2eb
MG
3364/*
3365 * Returns true if there is an eligible zone balanced for the request order
3366 * and classzone_idx
3367 */
3368static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3369{
e716f2eb
MG
3370 int i;
3371 unsigned long mark = -1;
3372 struct zone *zone;
60cefed4 3373
e716f2eb
MG
3374 for (i = 0; i <= classzone_idx; i++) {
3375 zone = pgdat->node_zones + i;
6256c6b4 3376
e716f2eb
MG
3377 if (!managed_zone(zone))
3378 continue;
3379
3380 mark = high_wmark_pages(zone);
3381 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3382 return true;
3383 }
3384
3385 /*
3386 * If a node has no populated zone within classzone_idx, it does not
3387 * need balancing by definition. This can happen if a zone-restricted
3388 * allocation tries to wake a remote kswapd.
3389 */
3390 if (mark == -1)
3391 return true;
3392
3393 return false;
60cefed4
JW
3394}
3395
631b6e08
MG
3396/* Clear pgdat state for congested, dirty or under writeback. */
3397static void clear_pgdat_congested(pg_data_t *pgdat)
3398{
3399 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3400 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3401 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3402}
3403
5515061d
MG
3404/*
3405 * Prepare kswapd for sleeping. This verifies that there are no processes
3406 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3407 *
3408 * Returns true if kswapd is ready to sleep
3409 */
d9f21d42 3410static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3411{
5515061d 3412 /*
9e5e3661 3413 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3414 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3415 * race between when kswapd checks the watermarks and a process gets
3416 * throttled. There is also a potential race if processes get
3417 * throttled, kswapd wakes, a large process exits thereby balancing the
3418 * zones, which causes kswapd to exit balance_pgdat() before reaching
3419 * the wake up checks. If kswapd is going to sleep, no process should
3420 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3421 * the wake up is premature, processes will wake kswapd and get
3422 * throttled again. The difference from wake ups in balance_pgdat() is
3423 * that here we are under prepare_to_wait().
5515061d 3424 */
9e5e3661
VB
3425 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3426 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3427
c73322d0
JW
3428 /* Hopeless node, leave it to direct reclaim */
3429 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3430 return true;
3431
e716f2eb
MG
3432 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3433 clear_pgdat_congested(pgdat);
3434 return true;
1d82de61
MG
3435 }
3436
333b0a45 3437 return false;
f50de2d3
MG
3438}
3439
75485363 3440/*
1d82de61
MG
3441 * kswapd shrinks a node of pages that are at or below the highest usable
3442 * zone that is currently unbalanced.
b8e83b94
MG
3443 *
3444 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3445 * reclaim or if the lack of progress was due to pages under writeback.
3446 * This is used to determine if the scanning priority needs to be raised.
75485363 3447 */
1d82de61 3448static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3449 struct scan_control *sc)
75485363 3450{
1d82de61
MG
3451 struct zone *zone;
3452 int z;
75485363 3453
1d82de61
MG
3454 /* Reclaim a number of pages proportional to the number of zones */
3455 sc->nr_to_reclaim = 0;
970a39a3 3456 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3457 zone = pgdat->node_zones + z;
6aa303de 3458 if (!managed_zone(zone))
1d82de61 3459 continue;
7c954f6d 3460
1d82de61
MG
3461 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3462 }
7c954f6d
MG
3463
3464 /*
1d82de61
MG
3465 * Historically care was taken to put equal pressure on all zones but
3466 * now pressure is applied based on node LRU order.
7c954f6d 3467 */
970a39a3 3468 shrink_node(pgdat, sc);
283aba9f 3469
7c954f6d 3470 /*
1d82de61
MG
3471 * Fragmentation may mean that the system cannot be rebalanced for
3472 * high-order allocations. If twice the allocation size has been
3473 * reclaimed then recheck watermarks only at order-0 to prevent
3474 * excessive reclaim. Assume that a process requested a high-order
3475 * can direct reclaim/compact.
7c954f6d 3476 */
9861a62c 3477 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3478 sc->order = 0;
7c954f6d 3479
b8e83b94 3480 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3481}
3482
1da177e4 3483/*
1d82de61
MG
3484 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3485 * that are eligible for use by the caller until at least one zone is
3486 * balanced.
1da177e4 3487 *
1d82de61 3488 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3489 *
3490 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3491 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3492 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3493 * or lower is eligible for reclaim until at least one usable zone is
3494 * balanced.
1da177e4 3495 */
accf6242 3496static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3497{
1da177e4 3498 int i;
0608f43d
AM
3499 unsigned long nr_soft_reclaimed;
3500 unsigned long nr_soft_scanned;
1d82de61 3501 struct zone *zone;
179e9639
AM
3502 struct scan_control sc = {
3503 .gfp_mask = GFP_KERNEL,
ee814fe2 3504 .order = order,
b8e83b94 3505 .priority = DEF_PRIORITY,
ee814fe2 3506 .may_writepage = !laptop_mode,
a6dc60f8 3507 .may_unmap = 1,
2e2e4259 3508 .may_swap = 1,
179e9639 3509 };
93781325
OS
3510
3511 __fs_reclaim_acquire();
3512
f8891e5e 3513 count_vm_event(PAGEOUTRUN);
1da177e4 3514
9e3b2f8c 3515 do {
c73322d0 3516 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94 3517 bool raise_priority = true;
93781325 3518 bool ret;
b8e83b94 3519
84c7a777 3520 sc.reclaim_idx = classzone_idx;
1da177e4 3521
86c79f6b 3522 /*
84c7a777
MG
3523 * If the number of buffer_heads exceeds the maximum allowed
3524 * then consider reclaiming from all zones. This has a dual
3525 * purpose -- on 64-bit systems it is expected that
3526 * buffer_heads are stripped during active rotation. On 32-bit
3527 * systems, highmem pages can pin lowmem memory and shrinking
3528 * buffers can relieve lowmem pressure. Reclaim may still not
3529 * go ahead if all eligible zones for the original allocation
3530 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3531 */
3532 if (buffer_heads_over_limit) {
3533 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3534 zone = pgdat->node_zones + i;
6aa303de 3535 if (!managed_zone(zone))
86c79f6b 3536 continue;
cc715d99 3537
970a39a3 3538 sc.reclaim_idx = i;
e1dbeda6 3539 break;
1da177e4 3540 }
1da177e4 3541 }
dafcb73e 3542
86c79f6b 3543 /*
e716f2eb
MG
3544 * Only reclaim if there are no eligible zones. Note that
3545 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3546 * have adjusted it.
86c79f6b 3547 */
e716f2eb
MG
3548 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3549 goto out;
e1dbeda6 3550
1d82de61
MG
3551 /*
3552 * Do some background aging of the anon list, to give
3553 * pages a chance to be referenced before reclaiming. All
3554 * pages are rotated regardless of classzone as this is
3555 * about consistent aging.
3556 */
ef8f2327 3557 age_active_anon(pgdat, &sc);
1d82de61 3558
b7ea3c41
MG
3559 /*
3560 * If we're getting trouble reclaiming, start doing writepage
3561 * even in laptop mode.
3562 */
047d72c3 3563 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3564 sc.may_writepage = 1;
3565
1d82de61
MG
3566 /* Call soft limit reclaim before calling shrink_node. */
3567 sc.nr_scanned = 0;
3568 nr_soft_scanned = 0;
ef8f2327 3569 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3570 sc.gfp_mask, &nr_soft_scanned);
3571 sc.nr_reclaimed += nr_soft_reclaimed;
3572
1da177e4 3573 /*
1d82de61
MG
3574 * There should be no need to raise the scanning priority if
3575 * enough pages are already being scanned that that high
3576 * watermark would be met at 100% efficiency.
1da177e4 3577 */
970a39a3 3578 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3579 raise_priority = false;
5515061d
MG
3580
3581 /*
3582 * If the low watermark is met there is no need for processes
3583 * to be throttled on pfmemalloc_wait as they should not be
3584 * able to safely make forward progress. Wake them
3585 */
3586 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3587 allow_direct_reclaim(pgdat))
cfc51155 3588 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3589
b8e83b94 3590 /* Check if kswapd should be suspending */
93781325
OS
3591 __fs_reclaim_release();
3592 ret = try_to_freeze();
3593 __fs_reclaim_acquire();
3594 if (ret || kthread_should_stop())
b8e83b94 3595 break;
8357376d 3596
73ce02e9 3597 /*
b8e83b94
MG
3598 * Raise priority if scanning rate is too low or there was no
3599 * progress in reclaiming pages
73ce02e9 3600 */
c73322d0
JW
3601 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3602 if (raise_priority || !nr_reclaimed)
b8e83b94 3603 sc.priority--;
1d82de61 3604 } while (sc.priority >= 1);
1da177e4 3605
c73322d0
JW
3606 if (!sc.nr_reclaimed)
3607 pgdat->kswapd_failures++;
3608
b8e83b94 3609out:
2a2e4885 3610 snapshot_refaults(NULL, pgdat);
93781325 3611 __fs_reclaim_release();
0abdee2b 3612 /*
1d82de61
MG
3613 * Return the order kswapd stopped reclaiming at as
3614 * prepare_kswapd_sleep() takes it into account. If another caller
3615 * entered the allocator slow path while kswapd was awake, order will
3616 * remain at the higher level.
0abdee2b 3617 */
1d82de61 3618 return sc.order;
1da177e4
LT
3619}
3620
e716f2eb
MG
3621/*
3622 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3623 * allocation request woke kswapd for. When kswapd has not woken recently,
3624 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3625 * given classzone and returns it or the highest classzone index kswapd
3626 * was recently woke for.
3627 */
3628static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3629 enum zone_type classzone_idx)
3630{
3631 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3632 return classzone_idx;
3633
3634 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3635}
3636
38087d9b
MG
3637static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3638 unsigned int classzone_idx)
f0bc0a60
KM
3639{
3640 long remaining = 0;
3641 DEFINE_WAIT(wait);
3642
3643 if (freezing(current) || kthread_should_stop())
3644 return;
3645
3646 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3647
333b0a45
SG
3648 /*
3649 * Try to sleep for a short interval. Note that kcompactd will only be
3650 * woken if it is possible to sleep for a short interval. This is
3651 * deliberate on the assumption that if reclaim cannot keep an
3652 * eligible zone balanced that it's also unlikely that compaction will
3653 * succeed.
3654 */
d9f21d42 3655 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3656 /*
3657 * Compaction records what page blocks it recently failed to
3658 * isolate pages from and skips them in the future scanning.
3659 * When kswapd is going to sleep, it is reasonable to assume
3660 * that pages and compaction may succeed so reset the cache.
3661 */
3662 reset_isolation_suitable(pgdat);
3663
3664 /*
3665 * We have freed the memory, now we should compact it to make
3666 * allocation of the requested order possible.
3667 */
38087d9b 3668 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3669
f0bc0a60 3670 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3671
3672 /*
3673 * If woken prematurely then reset kswapd_classzone_idx and
3674 * order. The values will either be from a wakeup request or
3675 * the previous request that slept prematurely.
3676 */
3677 if (remaining) {
e716f2eb 3678 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3679 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3680 }
3681
f0bc0a60
KM
3682 finish_wait(&pgdat->kswapd_wait, &wait);
3683 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3684 }
3685
3686 /*
3687 * After a short sleep, check if it was a premature sleep. If not, then
3688 * go fully to sleep until explicitly woken up.
3689 */
d9f21d42
MG
3690 if (!remaining &&
3691 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3692 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3693
3694 /*
3695 * vmstat counters are not perfectly accurate and the estimated
3696 * value for counters such as NR_FREE_PAGES can deviate from the
3697 * true value by nr_online_cpus * threshold. To avoid the zone
3698 * watermarks being breached while under pressure, we reduce the
3699 * per-cpu vmstat threshold while kswapd is awake and restore
3700 * them before going back to sleep.
3701 */
3702 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3703
3704 if (!kthread_should_stop())
3705 schedule();
3706
f0bc0a60
KM
3707 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3708 } else {
3709 if (remaining)
3710 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3711 else
3712 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3713 }
3714 finish_wait(&pgdat->kswapd_wait, &wait);
3715}
3716
1da177e4
LT
3717/*
3718 * The background pageout daemon, started as a kernel thread
4f98a2fe 3719 * from the init process.
1da177e4
LT
3720 *
3721 * This basically trickles out pages so that we have _some_
3722 * free memory available even if there is no other activity
3723 * that frees anything up. This is needed for things like routing
3724 * etc, where we otherwise might have all activity going on in
3725 * asynchronous contexts that cannot page things out.
3726 *
3727 * If there are applications that are active memory-allocators
3728 * (most normal use), this basically shouldn't matter.
3729 */
3730static int kswapd(void *p)
3731{
e716f2eb
MG
3732 unsigned int alloc_order, reclaim_order;
3733 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3734 pg_data_t *pgdat = (pg_data_t*)p;
3735 struct task_struct *tsk = current;
f0bc0a60 3736
1da177e4
LT
3737 struct reclaim_state reclaim_state = {
3738 .reclaimed_slab = 0,
3739 };
a70f7302 3740 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3741
174596a0 3742 if (!cpumask_empty(cpumask))
c5f59f08 3743 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3744 current->reclaim_state = &reclaim_state;
3745
3746 /*
3747 * Tell the memory management that we're a "memory allocator",
3748 * and that if we need more memory we should get access to it
3749 * regardless (see "__alloc_pages()"). "kswapd" should
3750 * never get caught in the normal page freeing logic.
3751 *
3752 * (Kswapd normally doesn't need memory anyway, but sometimes
3753 * you need a small amount of memory in order to be able to
3754 * page out something else, and this flag essentially protects
3755 * us from recursively trying to free more memory as we're
3756 * trying to free the first piece of memory in the first place).
3757 */
930d9152 3758 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3759 set_freezable();
1da177e4 3760
e716f2eb
MG
3761 pgdat->kswapd_order = 0;
3762 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3763 for ( ; ; ) {
6f6313d4 3764 bool ret;
3e1d1d28 3765
e716f2eb
MG
3766 alloc_order = reclaim_order = pgdat->kswapd_order;
3767 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3768
38087d9b
MG
3769kswapd_try_sleep:
3770 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3771 classzone_idx);
215ddd66 3772
38087d9b
MG
3773 /* Read the new order and classzone_idx */
3774 alloc_order = reclaim_order = pgdat->kswapd_order;
e716f2eb 3775 classzone_idx = kswapd_classzone_idx(pgdat, 0);
38087d9b 3776 pgdat->kswapd_order = 0;
e716f2eb 3777 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3778
8fe23e05
DR
3779 ret = try_to_freeze();
3780 if (kthread_should_stop())
3781 break;
3782
3783 /*
3784 * We can speed up thawing tasks if we don't call balance_pgdat
3785 * after returning from the refrigerator
3786 */
38087d9b
MG
3787 if (ret)
3788 continue;
3789
3790 /*
3791 * Reclaim begins at the requested order but if a high-order
3792 * reclaim fails then kswapd falls back to reclaiming for
3793 * order-0. If that happens, kswapd will consider sleeping
3794 * for the order it finished reclaiming at (reclaim_order)
3795 * but kcompactd is woken to compact for the original
3796 * request (alloc_order).
3797 */
e5146b12
MG
3798 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3799 alloc_order);
38087d9b
MG
3800 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3801 if (reclaim_order < alloc_order)
3802 goto kswapd_try_sleep;
1da177e4 3803 }
b0a8cc58 3804
71abdc15 3805 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3806 current->reclaim_state = NULL;
71abdc15 3807
1da177e4
LT
3808 return 0;
3809}
3810
3811/*
5ecd9d40
DR
3812 * A zone is low on free memory or too fragmented for high-order memory. If
3813 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3814 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3815 * has failed or is not needed, still wake up kcompactd if only compaction is
3816 * needed.
1da177e4 3817 */
5ecd9d40
DR
3818void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3819 enum zone_type classzone_idx)
1da177e4
LT
3820{
3821 pg_data_t *pgdat;
3822
6aa303de 3823 if (!managed_zone(zone))
1da177e4
LT
3824 return;
3825
5ecd9d40 3826 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3827 return;
88f5acf8 3828 pgdat = zone->zone_pgdat;
e716f2eb
MG
3829 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3830 classzone_idx);
38087d9b 3831 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3832 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3833 return;
e1a55637 3834
5ecd9d40
DR
3835 /* Hopeless node, leave it to direct reclaim if possible */
3836 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3837 pgdat_balanced(pgdat, order, classzone_idx)) {
3838 /*
3839 * There may be plenty of free memory available, but it's too
3840 * fragmented for high-order allocations. Wake up kcompactd
3841 * and rely on compaction_suitable() to determine if it's
3842 * needed. If it fails, it will defer subsequent attempts to
3843 * ratelimit its work.
3844 */
3845 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3846 wakeup_kcompactd(pgdat, order, classzone_idx);
e716f2eb 3847 return;
5ecd9d40 3848 }
88f5acf8 3849
5ecd9d40
DR
3850 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3851 gfp_flags);
8d0986e2 3852 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3853}
3854
c6f37f12 3855#ifdef CONFIG_HIBERNATION
1da177e4 3856/*
7b51755c 3857 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3858 * freed pages.
3859 *
3860 * Rather than trying to age LRUs the aim is to preserve the overall
3861 * LRU order by reclaiming preferentially
3862 * inactive > active > active referenced > active mapped
1da177e4 3863 */
7b51755c 3864unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3865{
d6277db4 3866 struct reclaim_state reclaim_state;
d6277db4 3867 struct scan_control sc = {
ee814fe2 3868 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3869 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3870 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3871 .priority = DEF_PRIORITY,
d6277db4 3872 .may_writepage = 1,
ee814fe2
JW
3873 .may_unmap = 1,
3874 .may_swap = 1,
7b51755c 3875 .hibernation_mode = 1,
1da177e4 3876 };
a09ed5e0 3877 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3878 struct task_struct *p = current;
3879 unsigned long nr_reclaimed;
499118e9 3880 unsigned int noreclaim_flag;
1da177e4 3881
d92a8cfc 3882 fs_reclaim_acquire(sc.gfp_mask);
93781325 3883 noreclaim_flag = memalloc_noreclaim_save();
7b51755c
KM
3884 reclaim_state.reclaimed_slab = 0;
3885 p->reclaim_state = &reclaim_state;
d6277db4 3886
3115cd91 3887 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3888
7b51755c 3889 p->reclaim_state = NULL;
499118e9 3890 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3891 fs_reclaim_release(sc.gfp_mask);
d6277db4 3892
7b51755c 3893 return nr_reclaimed;
1da177e4 3894}
c6f37f12 3895#endif /* CONFIG_HIBERNATION */
1da177e4 3896
1da177e4
LT
3897/* It's optimal to keep kswapds on the same CPUs as their memory, but
3898 not required for correctness. So if the last cpu in a node goes
3899 away, we get changed to run anywhere: as the first one comes back,
3900 restore their cpu bindings. */
517bbed9 3901static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3902{
58c0a4a7 3903 int nid;
1da177e4 3904
517bbed9
SAS
3905 for_each_node_state(nid, N_MEMORY) {
3906 pg_data_t *pgdat = NODE_DATA(nid);
3907 const struct cpumask *mask;
a70f7302 3908
517bbed9 3909 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3910
517bbed9
SAS
3911 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3912 /* One of our CPUs online: restore mask */
3913 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3914 }
517bbed9 3915 return 0;
1da177e4 3916}
1da177e4 3917
3218ae14
YG
3918/*
3919 * This kswapd start function will be called by init and node-hot-add.
3920 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3921 */
3922int kswapd_run(int nid)
3923{
3924 pg_data_t *pgdat = NODE_DATA(nid);
3925 int ret = 0;
3926
3927 if (pgdat->kswapd)
3928 return 0;
3929
3930 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3931 if (IS_ERR(pgdat->kswapd)) {
3932 /* failure at boot is fatal */
c6202adf 3933 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
3934 pr_err("Failed to start kswapd on node %d\n", nid);
3935 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3936 pgdat->kswapd = NULL;
3218ae14
YG
3937 }
3938 return ret;
3939}
3940
8fe23e05 3941/*
d8adde17 3942 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3943 * hold mem_hotplug_begin/end().
8fe23e05
DR
3944 */
3945void kswapd_stop(int nid)
3946{
3947 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3948
d8adde17 3949 if (kswapd) {
8fe23e05 3950 kthread_stop(kswapd);
d8adde17
JL
3951 NODE_DATA(nid)->kswapd = NULL;
3952 }
8fe23e05
DR
3953}
3954
1da177e4
LT
3955static int __init kswapd_init(void)
3956{
517bbed9 3957 int nid, ret;
69e05944 3958
1da177e4 3959 swap_setup();
48fb2e24 3960 for_each_node_state(nid, N_MEMORY)
3218ae14 3961 kswapd_run(nid);
517bbed9
SAS
3962 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3963 "mm/vmscan:online", kswapd_cpu_online,
3964 NULL);
3965 WARN_ON(ret < 0);
1da177e4
LT
3966 return 0;
3967}
3968
3969module_init(kswapd_init)
9eeff239
CL
3970
3971#ifdef CONFIG_NUMA
3972/*
a5f5f91d 3973 * Node reclaim mode
9eeff239 3974 *
a5f5f91d 3975 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3976 * the watermarks.
9eeff239 3977 */
a5f5f91d 3978int node_reclaim_mode __read_mostly;
9eeff239 3979
1b2ffb78 3980#define RECLAIM_OFF 0
7d03431c 3981#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3982#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3983#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3984
a92f7126 3985/*
a5f5f91d 3986 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3987 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3988 * a zone.
3989 */
a5f5f91d 3990#define NODE_RECLAIM_PRIORITY 4
a92f7126 3991
9614634f 3992/*
a5f5f91d 3993 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3994 * occur.
3995 */
3996int sysctl_min_unmapped_ratio = 1;
3997
0ff38490
CL
3998/*
3999 * If the number of slab pages in a zone grows beyond this percentage then
4000 * slab reclaim needs to occur.
4001 */
4002int sysctl_min_slab_ratio = 5;
4003
11fb9989 4004static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 4005{
11fb9989
MG
4006 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4007 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4008 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
4009
4010 /*
4011 * It's possible for there to be more file mapped pages than
4012 * accounted for by the pages on the file LRU lists because
4013 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4014 */
4015 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4016}
4017
4018/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 4019static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 4020{
d031a157
AM
4021 unsigned long nr_pagecache_reclaimable;
4022 unsigned long delta = 0;
90afa5de
MG
4023
4024 /*
95bbc0c7 4025 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 4026 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 4027 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
4028 * a better estimate
4029 */
a5f5f91d
MG
4030 if (node_reclaim_mode & RECLAIM_UNMAP)
4031 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 4032 else
a5f5f91d 4033 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
4034
4035 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
4036 if (!(node_reclaim_mode & RECLAIM_WRITE))
4037 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
4038
4039 /* Watch for any possible underflows due to delta */
4040 if (unlikely(delta > nr_pagecache_reclaimable))
4041 delta = nr_pagecache_reclaimable;
4042
4043 return nr_pagecache_reclaimable - delta;
4044}
4045
9eeff239 4046/*
a5f5f91d 4047 * Try to free up some pages from this node through reclaim.
9eeff239 4048 */
a5f5f91d 4049static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 4050{
7fb2d46d 4051 /* Minimum pages needed in order to stay on node */
69e05944 4052 const unsigned long nr_pages = 1 << order;
9eeff239
CL
4053 struct task_struct *p = current;
4054 struct reclaim_state reclaim_state;
499118e9 4055 unsigned int noreclaim_flag;
179e9639 4056 struct scan_control sc = {
62b726c1 4057 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 4058 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 4059 .order = order,
a5f5f91d
MG
4060 .priority = NODE_RECLAIM_PRIORITY,
4061 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4062 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 4063 .may_swap = 1,
f2f43e56 4064 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 4065 };
9eeff239 4066
9eeff239 4067 cond_resched();
93781325 4068 fs_reclaim_acquire(sc.gfp_mask);
d4f7796e 4069 /*
95bbc0c7 4070 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 4071 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 4072 * and RECLAIM_UNMAP.
d4f7796e 4073 */
499118e9
VB
4074 noreclaim_flag = memalloc_noreclaim_save();
4075 p->flags |= PF_SWAPWRITE;
9eeff239
CL
4076 reclaim_state.reclaimed_slab = 0;
4077 p->reclaim_state = &reclaim_state;
c84db23c 4078
a5f5f91d 4079 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490 4080 /*
894befec 4081 * Free memory by calling shrink node with increasing
0ff38490
CL
4082 * priorities until we have enough memory freed.
4083 */
0ff38490 4084 do {
970a39a3 4085 shrink_node(pgdat, &sc);
9e3b2f8c 4086 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 4087 }
c84db23c 4088
9eeff239 4089 p->reclaim_state = NULL;
499118e9
VB
4090 current->flags &= ~PF_SWAPWRITE;
4091 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4092 fs_reclaim_release(sc.gfp_mask);
a79311c1 4093 return sc.nr_reclaimed >= nr_pages;
9eeff239 4094}
179e9639 4095
a5f5f91d 4096int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 4097{
d773ed6b 4098 int ret;
179e9639
AM
4099
4100 /*
a5f5f91d 4101 * Node reclaim reclaims unmapped file backed pages and
0ff38490 4102 * slab pages if we are over the defined limits.
34aa1330 4103 *
9614634f
CL
4104 * A small portion of unmapped file backed pages is needed for
4105 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
4106 * thrown out if the node is overallocated. So we do not reclaim
4107 * if less than a specified percentage of the node is used by
9614634f 4108 * unmapped file backed pages.
179e9639 4109 */
a5f5f91d 4110 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 4111 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 4112 return NODE_RECLAIM_FULL;
179e9639
AM
4113
4114 /*
d773ed6b 4115 * Do not scan if the allocation should not be delayed.
179e9639 4116 */
d0164adc 4117 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 4118 return NODE_RECLAIM_NOSCAN;
179e9639
AM
4119
4120 /*
a5f5f91d 4121 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
4122 * have associated processors. This will favor the local processor
4123 * over remote processors and spread off node memory allocations
4124 * as wide as possible.
4125 */
a5f5f91d
MG
4126 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4127 return NODE_RECLAIM_NOSCAN;
d773ed6b 4128
a5f5f91d
MG
4129 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4130 return NODE_RECLAIM_NOSCAN;
fa5e084e 4131
a5f5f91d
MG
4132 ret = __node_reclaim(pgdat, gfp_mask, order);
4133 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 4134
24cf7251
MG
4135 if (!ret)
4136 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4137
d773ed6b 4138 return ret;
179e9639 4139}
9eeff239 4140#endif
894bc310 4141
894bc310
LS
4142/*
4143 * page_evictable - test whether a page is evictable
4144 * @page: the page to test
894bc310
LS
4145 *
4146 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 4147 * lists vs unevictable list.
894bc310
LS
4148 *
4149 * Reasons page might not be evictable:
ba9ddf49 4150 * (1) page's mapping marked unevictable
b291f000 4151 * (2) page is part of an mlocked VMA
ba9ddf49 4152 *
894bc310 4153 */
39b5f29a 4154int page_evictable(struct page *page)
894bc310 4155{
e92bb4dd
HY
4156 int ret;
4157
4158 /* Prevent address_space of inode and swap cache from being freed */
4159 rcu_read_lock();
4160 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4161 rcu_read_unlock();
4162 return ret;
894bc310 4163}
89e004ea 4164
85046579 4165#ifdef CONFIG_SHMEM
89e004ea 4166/**
24513264
HD
4167 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4168 * @pages: array of pages to check
4169 * @nr_pages: number of pages to check
89e004ea 4170 *
24513264 4171 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
4172 *
4173 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 4174 */
24513264 4175void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 4176{
925b7673 4177 struct lruvec *lruvec;
785b99fe 4178 struct pglist_data *pgdat = NULL;
24513264
HD
4179 int pgscanned = 0;
4180 int pgrescued = 0;
4181 int i;
89e004ea 4182
24513264
HD
4183 for (i = 0; i < nr_pages; i++) {
4184 struct page *page = pages[i];
785b99fe 4185 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4186
24513264 4187 pgscanned++;
785b99fe
MG
4188 if (pagepgdat != pgdat) {
4189 if (pgdat)
4190 spin_unlock_irq(&pgdat->lru_lock);
4191 pgdat = pagepgdat;
4192 spin_lock_irq(&pgdat->lru_lock);
24513264 4193 }
785b99fe 4194 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4195
24513264
HD
4196 if (!PageLRU(page) || !PageUnevictable(page))
4197 continue;
89e004ea 4198
39b5f29a 4199 if (page_evictable(page)) {
24513264
HD
4200 enum lru_list lru = page_lru_base_type(page);
4201
309381fe 4202 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4203 ClearPageUnevictable(page);
fa9add64
HD
4204 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4205 add_page_to_lru_list(page, lruvec, lru);
24513264 4206 pgrescued++;
89e004ea 4207 }
24513264 4208 }
89e004ea 4209
785b99fe 4210 if (pgdat) {
24513264
HD
4211 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4212 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4213 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4214 }
89e004ea 4215}
85046579 4216#endif /* CONFIG_SHMEM */