MIPS: Add MIPS R5 config5 register.
[linux-2.6-block.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
51
0f8053a5
NP
52#include "internal.h"
53
33906bc5
MG
54#define CREATE_TRACE_POINTS
55#include <trace/events/vmscan.h>
56
1da177e4 57struct scan_control {
1da177e4
LT
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
a79311c1
RR
61 /* Number of pages freed so far during a call to shrink_zones() */
62 unsigned long nr_reclaimed;
63
22fba335
KM
64 /* How many pages shrink_list() should reclaim */
65 unsigned long nr_to_reclaim;
66
7b51755c
KM
67 unsigned long hibernation_mode;
68
1da177e4 69 /* This context's GFP mask */
6daa0e28 70 gfp_t gfp_mask;
1da177e4
LT
71
72 int may_writepage;
73
a6dc60f8
JW
74 /* Can mapped pages be reclaimed? */
75 int may_unmap;
f1fd1067 76
2e2e4259
KM
77 /* Can pages be swapped as part of reclaim? */
78 int may_swap;
79
5ad333eb 80 int order;
66e1707b 81
9e3b2f8c
KK
82 /* Scan (total_size >> priority) pages at once */
83 int priority;
84
f16015fb
JW
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
66e1707b 90
327c0e96
KH
91 /*
92 * Nodemask of nodes allowed by the caller. If NULL, all nodes
93 * are scanned.
94 */
95 nodemask_t *nodemask;
1da177e4
LT
96};
97
1da177e4
LT
98#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99
100#ifdef ARCH_HAS_PREFETCH
101#define prefetch_prev_lru_page(_page, _base, _field) \
102 do { \
103 if ((_page)->lru.prev != _base) { \
104 struct page *prev; \
105 \
106 prev = lru_to_page(&(_page->lru)); \
107 prefetch(&prev->_field); \
108 } \
109 } while (0)
110#else
111#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112#endif
113
114#ifdef ARCH_HAS_PREFETCHW
115#define prefetchw_prev_lru_page(_page, _base, _field) \
116 do { \
117 if ((_page)->lru.prev != _base) { \
118 struct page *prev; \
119 \
120 prev = lru_to_page(&(_page->lru)); \
121 prefetchw(&prev->_field); \
122 } \
123 } while (0)
124#else
125#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
126#endif
127
128/*
129 * From 0 .. 100. Higher means more swappy.
130 */
131int vm_swappiness = 60;
b21e0b90 132unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
133
134static LIST_HEAD(shrinker_list);
135static DECLARE_RWSEM(shrinker_rwsem);
136
c255a458 137#ifdef CONFIG_MEMCG
89b5fae5
JW
138static bool global_reclaim(struct scan_control *sc)
139{
f16015fb 140 return !sc->target_mem_cgroup;
89b5fae5 141}
3b38722e
MH
142
143static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
144{
e839b6a1
MH
145 struct mem_cgroup *root = sc->target_mem_cgroup;
146 return !mem_cgroup_disabled() &&
147 mem_cgroup_soft_reclaim_eligible(root, root) != SKIP_TREE;
3b38722e 148}
91a45470 149#else
89b5fae5
JW
150static bool global_reclaim(struct scan_control *sc)
151{
152 return true;
153}
3b38722e
MH
154
155static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc)
156{
157 return false;
158}
91a45470
KH
159#endif
160
6e543d57
LD
161unsigned long zone_reclaimable_pages(struct zone *zone)
162{
163 int nr;
164
165 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
166 zone_page_state(zone, NR_INACTIVE_FILE);
167
168 if (get_nr_swap_pages() > 0)
169 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
170 zone_page_state(zone, NR_INACTIVE_ANON);
171
172 return nr;
173}
174
175bool zone_reclaimable(struct zone *zone)
176{
177 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
178}
179
4d7dcca2 180static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 181{
c3c787e8 182 if (!mem_cgroup_disabled())
4d7dcca2 183 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 184
074291fe 185 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
186}
187
1da177e4 188/*
1d3d4437 189 * Add a shrinker callback to be called from the vm.
1da177e4 190 */
1d3d4437 191int register_shrinker(struct shrinker *shrinker)
1da177e4 192{
1d3d4437
GC
193 size_t size = sizeof(*shrinker->nr_deferred);
194
195 /*
196 * If we only have one possible node in the system anyway, save
197 * ourselves the trouble and disable NUMA aware behavior. This way we
198 * will save memory and some small loop time later.
199 */
200 if (nr_node_ids == 1)
201 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
202
203 if (shrinker->flags & SHRINKER_NUMA_AWARE)
204 size *= nr_node_ids;
205
206 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
207 if (!shrinker->nr_deferred)
208 return -ENOMEM;
209
8e1f936b
RR
210 down_write(&shrinker_rwsem);
211 list_add_tail(&shrinker->list, &shrinker_list);
212 up_write(&shrinker_rwsem);
1d3d4437 213 return 0;
1da177e4 214}
8e1f936b 215EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
216
217/*
218 * Remove one
219 */
8e1f936b 220void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
221{
222 down_write(&shrinker_rwsem);
223 list_del(&shrinker->list);
224 up_write(&shrinker_rwsem);
1da177e4 225}
8e1f936b 226EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
227
228#define SHRINK_BATCH 128
1d3d4437
GC
229
230static unsigned long
231shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
232 unsigned long nr_pages_scanned, unsigned long lru_pages)
233{
234 unsigned long freed = 0;
235 unsigned long long delta;
236 long total_scan;
237 long max_pass;
238 long nr;
239 long new_nr;
240 int nid = shrinkctl->nid;
241 long batch_size = shrinker->batch ? shrinker->batch
242 : SHRINK_BATCH;
243
a0b02131 244 max_pass = shrinker->count_objects(shrinker, shrinkctl);
1d3d4437
GC
245 if (max_pass == 0)
246 return 0;
247
248 /*
249 * copy the current shrinker scan count into a local variable
250 * and zero it so that other concurrent shrinker invocations
251 * don't also do this scanning work.
252 */
253 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
254
255 total_scan = nr;
256 delta = (4 * nr_pages_scanned) / shrinker->seeks;
257 delta *= max_pass;
258 do_div(delta, lru_pages + 1);
259 total_scan += delta;
260 if (total_scan < 0) {
261 printk(KERN_ERR
262 "shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 263 shrinker->scan_objects, total_scan);
1d3d4437
GC
264 total_scan = max_pass;
265 }
266
267 /*
268 * We need to avoid excessive windup on filesystem shrinkers
269 * due to large numbers of GFP_NOFS allocations causing the
270 * shrinkers to return -1 all the time. This results in a large
271 * nr being built up so when a shrink that can do some work
272 * comes along it empties the entire cache due to nr >>>
273 * max_pass. This is bad for sustaining a working set in
274 * memory.
275 *
276 * Hence only allow the shrinker to scan the entire cache when
277 * a large delta change is calculated directly.
278 */
279 if (delta < max_pass / 4)
280 total_scan = min(total_scan, max_pass / 2);
281
282 /*
283 * Avoid risking looping forever due to too large nr value:
284 * never try to free more than twice the estimate number of
285 * freeable entries.
286 */
287 if (total_scan > max_pass * 2)
288 total_scan = max_pass * 2;
289
290 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
291 nr_pages_scanned, lru_pages,
292 max_pass, delta, total_scan);
293
294 while (total_scan >= batch_size) {
a0b02131 295 unsigned long ret;
1d3d4437 296
a0b02131
DC
297 shrinkctl->nr_to_scan = batch_size;
298 ret = shrinker->scan_objects(shrinker, shrinkctl);
299 if (ret == SHRINK_STOP)
300 break;
301 freed += ret;
1d3d4437
GC
302
303 count_vm_events(SLABS_SCANNED, batch_size);
304 total_scan -= batch_size;
305
306 cond_resched();
307 }
308
309 /*
310 * move the unused scan count back into the shrinker in a
311 * manner that handles concurrent updates. If we exhausted the
312 * scan, there is no need to do an update.
313 */
314 if (total_scan > 0)
315 new_nr = atomic_long_add_return(total_scan,
316 &shrinker->nr_deferred[nid]);
317 else
318 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
319
320 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
321 return freed;
1495f230
YH
322}
323
1da177e4
LT
324/*
325 * Call the shrink functions to age shrinkable caches
326 *
327 * Here we assume it costs one seek to replace a lru page and that it also
328 * takes a seek to recreate a cache object. With this in mind we age equal
329 * percentages of the lru and ageable caches. This should balance the seeks
330 * generated by these structures.
331 *
183ff22b 332 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
333 * slab to avoid swapping.
334 *
335 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
336 *
337 * `lru_pages' represents the number of on-LRU pages in all the zones which
338 * are eligible for the caller's allocation attempt. It is used for balancing
339 * slab reclaim versus page reclaim.
b15e0905 340 *
341 * Returns the number of slab objects which we shrunk.
1da177e4 342 */
24f7c6b9 343unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 344 unsigned long nr_pages_scanned,
a09ed5e0 345 unsigned long lru_pages)
1da177e4
LT
346{
347 struct shrinker *shrinker;
24f7c6b9 348 unsigned long freed = 0;
1da177e4 349
1495f230
YH
350 if (nr_pages_scanned == 0)
351 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 352
f06590bd 353 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
354 /*
355 * If we would return 0, our callers would understand that we
356 * have nothing else to shrink and give up trying. By returning
357 * 1 we keep it going and assume we'll be able to shrink next
358 * time.
359 */
360 freed = 1;
f06590bd
MK
361 goto out;
362 }
1da177e4
LT
363
364 list_for_each_entry(shrinker, &shrinker_list, list) {
1d3d4437
GC
365 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
366 if (!node_online(shrinkctl->nid))
367 continue;
1da177e4 368
1d3d4437
GC
369 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
370 (shrinkctl->nid != 0))
1da177e4 371 break;
1da177e4 372
1d3d4437
GC
373 freed += shrink_slab_node(shrinkctl, shrinker,
374 nr_pages_scanned, lru_pages);
1da177e4 375
1da177e4 376 }
1da177e4
LT
377 }
378 up_read(&shrinker_rwsem);
f06590bd
MK
379out:
380 cond_resched();
24f7c6b9 381 return freed;
1da177e4
LT
382}
383
1da177e4
LT
384static inline int is_page_cache_freeable(struct page *page)
385{
ceddc3a5
JW
386 /*
387 * A freeable page cache page is referenced only by the caller
388 * that isolated the page, the page cache radix tree and
389 * optional buffer heads at page->private.
390 */
edcf4748 391 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
392}
393
7d3579e8
KM
394static int may_write_to_queue(struct backing_dev_info *bdi,
395 struct scan_control *sc)
1da177e4 396{
930d9152 397 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
398 return 1;
399 if (!bdi_write_congested(bdi))
400 return 1;
401 if (bdi == current->backing_dev_info)
402 return 1;
403 return 0;
404}
405
406/*
407 * We detected a synchronous write error writing a page out. Probably
408 * -ENOSPC. We need to propagate that into the address_space for a subsequent
409 * fsync(), msync() or close().
410 *
411 * The tricky part is that after writepage we cannot touch the mapping: nothing
412 * prevents it from being freed up. But we have a ref on the page and once
413 * that page is locked, the mapping is pinned.
414 *
415 * We're allowed to run sleeping lock_page() here because we know the caller has
416 * __GFP_FS.
417 */
418static void handle_write_error(struct address_space *mapping,
419 struct page *page, int error)
420{
7eaceacc 421 lock_page(page);
3e9f45bd
GC
422 if (page_mapping(page) == mapping)
423 mapping_set_error(mapping, error);
1da177e4
LT
424 unlock_page(page);
425}
426
04e62a29
CL
427/* possible outcome of pageout() */
428typedef enum {
429 /* failed to write page out, page is locked */
430 PAGE_KEEP,
431 /* move page to the active list, page is locked */
432 PAGE_ACTIVATE,
433 /* page has been sent to the disk successfully, page is unlocked */
434 PAGE_SUCCESS,
435 /* page is clean and locked */
436 PAGE_CLEAN,
437} pageout_t;
438
1da177e4 439/*
1742f19f
AM
440 * pageout is called by shrink_page_list() for each dirty page.
441 * Calls ->writepage().
1da177e4 442 */
c661b078 443static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 444 struct scan_control *sc)
1da177e4
LT
445{
446 /*
447 * If the page is dirty, only perform writeback if that write
448 * will be non-blocking. To prevent this allocation from being
449 * stalled by pagecache activity. But note that there may be
450 * stalls if we need to run get_block(). We could test
451 * PagePrivate for that.
452 *
6aceb53b 453 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
454 * this page's queue, we can perform writeback even if that
455 * will block.
456 *
457 * If the page is swapcache, write it back even if that would
458 * block, for some throttling. This happens by accident, because
459 * swap_backing_dev_info is bust: it doesn't reflect the
460 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
461 */
462 if (!is_page_cache_freeable(page))
463 return PAGE_KEEP;
464 if (!mapping) {
465 /*
466 * Some data journaling orphaned pages can have
467 * page->mapping == NULL while being dirty with clean buffers.
468 */
266cf658 469 if (page_has_private(page)) {
1da177e4
LT
470 if (try_to_free_buffers(page)) {
471 ClearPageDirty(page);
d40cee24 472 printk("%s: orphaned page\n", __func__);
1da177e4
LT
473 return PAGE_CLEAN;
474 }
475 }
476 return PAGE_KEEP;
477 }
478 if (mapping->a_ops->writepage == NULL)
479 return PAGE_ACTIVATE;
0e093d99 480 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
481 return PAGE_KEEP;
482
483 if (clear_page_dirty_for_io(page)) {
484 int res;
485 struct writeback_control wbc = {
486 .sync_mode = WB_SYNC_NONE,
487 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
488 .range_start = 0,
489 .range_end = LLONG_MAX,
1da177e4
LT
490 .for_reclaim = 1,
491 };
492
493 SetPageReclaim(page);
494 res = mapping->a_ops->writepage(page, &wbc);
495 if (res < 0)
496 handle_write_error(mapping, page, res);
994fc28c 497 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
498 ClearPageReclaim(page);
499 return PAGE_ACTIVATE;
500 }
c661b078 501
1da177e4
LT
502 if (!PageWriteback(page)) {
503 /* synchronous write or broken a_ops? */
504 ClearPageReclaim(page);
505 }
23b9da55 506 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 507 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
508 return PAGE_SUCCESS;
509 }
510
511 return PAGE_CLEAN;
512}
513
a649fd92 514/*
e286781d
NP
515 * Same as remove_mapping, but if the page is removed from the mapping, it
516 * gets returned with a refcount of 0.
a649fd92 517 */
e286781d 518static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 519{
28e4d965
NP
520 BUG_ON(!PageLocked(page));
521 BUG_ON(mapping != page_mapping(page));
49d2e9cc 522
19fd6231 523 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 524 /*
0fd0e6b0
NP
525 * The non racy check for a busy page.
526 *
527 * Must be careful with the order of the tests. When someone has
528 * a ref to the page, it may be possible that they dirty it then
529 * drop the reference. So if PageDirty is tested before page_count
530 * here, then the following race may occur:
531 *
532 * get_user_pages(&page);
533 * [user mapping goes away]
534 * write_to(page);
535 * !PageDirty(page) [good]
536 * SetPageDirty(page);
537 * put_page(page);
538 * !page_count(page) [good, discard it]
539 *
540 * [oops, our write_to data is lost]
541 *
542 * Reversing the order of the tests ensures such a situation cannot
543 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
544 * load is not satisfied before that of page->_count.
545 *
546 * Note that if SetPageDirty is always performed via set_page_dirty,
547 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 548 */
e286781d 549 if (!page_freeze_refs(page, 2))
49d2e9cc 550 goto cannot_free;
e286781d
NP
551 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
552 if (unlikely(PageDirty(page))) {
553 page_unfreeze_refs(page, 2);
49d2e9cc 554 goto cannot_free;
e286781d 555 }
49d2e9cc
CL
556
557 if (PageSwapCache(page)) {
558 swp_entry_t swap = { .val = page_private(page) };
559 __delete_from_swap_cache(page);
19fd6231 560 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 561 swapcache_free(swap, page);
e286781d 562 } else {
6072d13c
LT
563 void (*freepage)(struct page *);
564
565 freepage = mapping->a_ops->freepage;
566
e64a782f 567 __delete_from_page_cache(page);
19fd6231 568 spin_unlock_irq(&mapping->tree_lock);
e767e056 569 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
570
571 if (freepage != NULL)
572 freepage(page);
49d2e9cc
CL
573 }
574
49d2e9cc
CL
575 return 1;
576
577cannot_free:
19fd6231 578 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
579 return 0;
580}
581
e286781d
NP
582/*
583 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
584 * someone else has a ref on the page, abort and return 0. If it was
585 * successfully detached, return 1. Assumes the caller has a single ref on
586 * this page.
587 */
588int remove_mapping(struct address_space *mapping, struct page *page)
589{
590 if (__remove_mapping(mapping, page)) {
591 /*
592 * Unfreezing the refcount with 1 rather than 2 effectively
593 * drops the pagecache ref for us without requiring another
594 * atomic operation.
595 */
596 page_unfreeze_refs(page, 1);
597 return 1;
598 }
599 return 0;
600}
601
894bc310
LS
602/**
603 * putback_lru_page - put previously isolated page onto appropriate LRU list
604 * @page: page to be put back to appropriate lru list
605 *
606 * Add previously isolated @page to appropriate LRU list.
607 * Page may still be unevictable for other reasons.
608 *
609 * lru_lock must not be held, interrupts must be enabled.
610 */
894bc310
LS
611void putback_lru_page(struct page *page)
612{
0ec3b74c 613 bool is_unevictable;
bbfd28ee 614 int was_unevictable = PageUnevictable(page);
894bc310
LS
615
616 VM_BUG_ON(PageLRU(page));
617
618redo:
619 ClearPageUnevictable(page);
620
39b5f29a 621 if (page_evictable(page)) {
894bc310
LS
622 /*
623 * For evictable pages, we can use the cache.
624 * In event of a race, worst case is we end up with an
625 * unevictable page on [in]active list.
626 * We know how to handle that.
627 */
0ec3b74c 628 is_unevictable = false;
c53954a0 629 lru_cache_add(page);
894bc310
LS
630 } else {
631 /*
632 * Put unevictable pages directly on zone's unevictable
633 * list.
634 */
0ec3b74c 635 is_unevictable = true;
894bc310 636 add_page_to_unevictable_list(page);
6a7b9548 637 /*
21ee9f39
MK
638 * When racing with an mlock or AS_UNEVICTABLE clearing
639 * (page is unlocked) make sure that if the other thread
640 * does not observe our setting of PG_lru and fails
24513264 641 * isolation/check_move_unevictable_pages,
21ee9f39 642 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
643 * the page back to the evictable list.
644 *
21ee9f39 645 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
646 */
647 smp_mb();
894bc310 648 }
894bc310
LS
649
650 /*
651 * page's status can change while we move it among lru. If an evictable
652 * page is on unevictable list, it never be freed. To avoid that,
653 * check after we added it to the list, again.
654 */
0ec3b74c 655 if (is_unevictable && page_evictable(page)) {
894bc310
LS
656 if (!isolate_lru_page(page)) {
657 put_page(page);
658 goto redo;
659 }
660 /* This means someone else dropped this page from LRU
661 * So, it will be freed or putback to LRU again. There is
662 * nothing to do here.
663 */
664 }
665
0ec3b74c 666 if (was_unevictable && !is_unevictable)
bbfd28ee 667 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 668 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
669 count_vm_event(UNEVICTABLE_PGCULLED);
670
894bc310
LS
671 put_page(page); /* drop ref from isolate */
672}
673
dfc8d636
JW
674enum page_references {
675 PAGEREF_RECLAIM,
676 PAGEREF_RECLAIM_CLEAN,
64574746 677 PAGEREF_KEEP,
dfc8d636
JW
678 PAGEREF_ACTIVATE,
679};
680
681static enum page_references page_check_references(struct page *page,
682 struct scan_control *sc)
683{
64574746 684 int referenced_ptes, referenced_page;
dfc8d636 685 unsigned long vm_flags;
dfc8d636 686
c3ac9a8a
JW
687 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
688 &vm_flags);
64574746 689 referenced_page = TestClearPageReferenced(page);
dfc8d636 690
dfc8d636
JW
691 /*
692 * Mlock lost the isolation race with us. Let try_to_unmap()
693 * move the page to the unevictable list.
694 */
695 if (vm_flags & VM_LOCKED)
696 return PAGEREF_RECLAIM;
697
64574746 698 if (referenced_ptes) {
e4898273 699 if (PageSwapBacked(page))
64574746
JW
700 return PAGEREF_ACTIVATE;
701 /*
702 * All mapped pages start out with page table
703 * references from the instantiating fault, so we need
704 * to look twice if a mapped file page is used more
705 * than once.
706 *
707 * Mark it and spare it for another trip around the
708 * inactive list. Another page table reference will
709 * lead to its activation.
710 *
711 * Note: the mark is set for activated pages as well
712 * so that recently deactivated but used pages are
713 * quickly recovered.
714 */
715 SetPageReferenced(page);
716
34dbc67a 717 if (referenced_page || referenced_ptes > 1)
64574746
JW
718 return PAGEREF_ACTIVATE;
719
c909e993
KK
720 /*
721 * Activate file-backed executable pages after first usage.
722 */
723 if (vm_flags & VM_EXEC)
724 return PAGEREF_ACTIVATE;
725
64574746
JW
726 return PAGEREF_KEEP;
727 }
dfc8d636
JW
728
729 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 730 if (referenced_page && !PageSwapBacked(page))
64574746
JW
731 return PAGEREF_RECLAIM_CLEAN;
732
733 return PAGEREF_RECLAIM;
dfc8d636
JW
734}
735
e2be15f6
MG
736/* Check if a page is dirty or under writeback */
737static void page_check_dirty_writeback(struct page *page,
738 bool *dirty, bool *writeback)
739{
b4597226
MG
740 struct address_space *mapping;
741
e2be15f6
MG
742 /*
743 * Anonymous pages are not handled by flushers and must be written
744 * from reclaim context. Do not stall reclaim based on them
745 */
746 if (!page_is_file_cache(page)) {
747 *dirty = false;
748 *writeback = false;
749 return;
750 }
751
752 /* By default assume that the page flags are accurate */
753 *dirty = PageDirty(page);
754 *writeback = PageWriteback(page);
b4597226
MG
755
756 /* Verify dirty/writeback state if the filesystem supports it */
757 if (!page_has_private(page))
758 return;
759
760 mapping = page_mapping(page);
761 if (mapping && mapping->a_ops->is_dirty_writeback)
762 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
763}
764
1da177e4 765/*
1742f19f 766 * shrink_page_list() returns the number of reclaimed pages
1da177e4 767 */
1742f19f 768static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 769 struct zone *zone,
f84f6e2b 770 struct scan_control *sc,
02c6de8d 771 enum ttu_flags ttu_flags,
8e950282 772 unsigned long *ret_nr_dirty,
d43006d5 773 unsigned long *ret_nr_unqueued_dirty,
8e950282 774 unsigned long *ret_nr_congested,
02c6de8d 775 unsigned long *ret_nr_writeback,
b1a6f21e 776 unsigned long *ret_nr_immediate,
02c6de8d 777 bool force_reclaim)
1da177e4
LT
778{
779 LIST_HEAD(ret_pages);
abe4c3b5 780 LIST_HEAD(free_pages);
1da177e4 781 int pgactivate = 0;
d43006d5 782 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
783 unsigned long nr_dirty = 0;
784 unsigned long nr_congested = 0;
05ff5137 785 unsigned long nr_reclaimed = 0;
92df3a72 786 unsigned long nr_writeback = 0;
b1a6f21e 787 unsigned long nr_immediate = 0;
1da177e4
LT
788
789 cond_resched();
790
69980e31 791 mem_cgroup_uncharge_start();
1da177e4
LT
792 while (!list_empty(page_list)) {
793 struct address_space *mapping;
794 struct page *page;
795 int may_enter_fs;
02c6de8d 796 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 797 bool dirty, writeback;
1da177e4
LT
798
799 cond_resched();
800
801 page = lru_to_page(page_list);
802 list_del(&page->lru);
803
529ae9aa 804 if (!trylock_page(page))
1da177e4
LT
805 goto keep;
806
725d704e 807 VM_BUG_ON(PageActive(page));
6a18adb3 808 VM_BUG_ON(page_zone(page) != zone);
1da177e4
LT
809
810 sc->nr_scanned++;
80e43426 811
39b5f29a 812 if (unlikely(!page_evictable(page)))
b291f000 813 goto cull_mlocked;
894bc310 814
a6dc60f8 815 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
816 goto keep_locked;
817
1da177e4
LT
818 /* Double the slab pressure for mapped and swapcache pages */
819 if (page_mapped(page) || PageSwapCache(page))
820 sc->nr_scanned++;
821
c661b078
AW
822 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
823 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
824
e2be15f6
MG
825 /*
826 * The number of dirty pages determines if a zone is marked
827 * reclaim_congested which affects wait_iff_congested. kswapd
828 * will stall and start writing pages if the tail of the LRU
829 * is all dirty unqueued pages.
830 */
831 page_check_dirty_writeback(page, &dirty, &writeback);
832 if (dirty || writeback)
833 nr_dirty++;
834
835 if (dirty && !writeback)
836 nr_unqueued_dirty++;
837
d04e8acd
MG
838 /*
839 * Treat this page as congested if the underlying BDI is or if
840 * pages are cycling through the LRU so quickly that the
841 * pages marked for immediate reclaim are making it to the
842 * end of the LRU a second time.
843 */
e2be15f6 844 mapping = page_mapping(page);
d04e8acd
MG
845 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
846 (writeback && PageReclaim(page)))
e2be15f6
MG
847 nr_congested++;
848
283aba9f
MG
849 /*
850 * If a page at the tail of the LRU is under writeback, there
851 * are three cases to consider.
852 *
853 * 1) If reclaim is encountering an excessive number of pages
854 * under writeback and this page is both under writeback and
855 * PageReclaim then it indicates that pages are being queued
856 * for IO but are being recycled through the LRU before the
857 * IO can complete. Waiting on the page itself risks an
858 * indefinite stall if it is impossible to writeback the
859 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
860 * note that the LRU is being scanned too quickly and the
861 * caller can stall after page list has been processed.
283aba9f
MG
862 *
863 * 2) Global reclaim encounters a page, memcg encounters a
864 * page that is not marked for immediate reclaim or
865 * the caller does not have __GFP_IO. In this case mark
866 * the page for immediate reclaim and continue scanning.
867 *
868 * __GFP_IO is checked because a loop driver thread might
869 * enter reclaim, and deadlock if it waits on a page for
870 * which it is needed to do the write (loop masks off
871 * __GFP_IO|__GFP_FS for this reason); but more thought
872 * would probably show more reasons.
873 *
874 * Don't require __GFP_FS, since we're not going into the
875 * FS, just waiting on its writeback completion. Worryingly,
876 * ext4 gfs2 and xfs allocate pages with
877 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
878 * may_enter_fs here is liable to OOM on them.
879 *
880 * 3) memcg encounters a page that is not already marked
881 * PageReclaim. memcg does not have any dirty pages
882 * throttling so we could easily OOM just because too many
883 * pages are in writeback and there is nothing else to
884 * reclaim. Wait for the writeback to complete.
885 */
c661b078 886 if (PageWriteback(page)) {
283aba9f
MG
887 /* Case 1 above */
888 if (current_is_kswapd() &&
889 PageReclaim(page) &&
890 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
891 nr_immediate++;
892 goto keep_locked;
283aba9f
MG
893
894 /* Case 2 above */
895 } else if (global_reclaim(sc) ||
c3b94f44
HD
896 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
897 /*
898 * This is slightly racy - end_page_writeback()
899 * might have just cleared PageReclaim, then
900 * setting PageReclaim here end up interpreted
901 * as PageReadahead - but that does not matter
902 * enough to care. What we do want is for this
903 * page to have PageReclaim set next time memcg
904 * reclaim reaches the tests above, so it will
905 * then wait_on_page_writeback() to avoid OOM;
906 * and it's also appropriate in global reclaim.
907 */
908 SetPageReclaim(page);
e62e384e 909 nr_writeback++;
283aba9f 910
c3b94f44 911 goto keep_locked;
283aba9f
MG
912
913 /* Case 3 above */
914 } else {
915 wait_on_page_writeback(page);
e62e384e 916 }
c661b078 917 }
1da177e4 918
02c6de8d
MK
919 if (!force_reclaim)
920 references = page_check_references(page, sc);
921
dfc8d636
JW
922 switch (references) {
923 case PAGEREF_ACTIVATE:
1da177e4 924 goto activate_locked;
64574746
JW
925 case PAGEREF_KEEP:
926 goto keep_locked;
dfc8d636
JW
927 case PAGEREF_RECLAIM:
928 case PAGEREF_RECLAIM_CLEAN:
929 ; /* try to reclaim the page below */
930 }
1da177e4 931
1da177e4
LT
932 /*
933 * Anonymous process memory has backing store?
934 * Try to allocate it some swap space here.
935 */
b291f000 936 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
937 if (!(sc->gfp_mask & __GFP_IO))
938 goto keep_locked;
5bc7b8ac 939 if (!add_to_swap(page, page_list))
1da177e4 940 goto activate_locked;
63eb6b93 941 may_enter_fs = 1;
1da177e4 942
e2be15f6
MG
943 /* Adding to swap updated mapping */
944 mapping = page_mapping(page);
945 }
1da177e4
LT
946
947 /*
948 * The page is mapped into the page tables of one or more
949 * processes. Try to unmap it here.
950 */
951 if (page_mapped(page) && mapping) {
02c6de8d 952 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
953 case SWAP_FAIL:
954 goto activate_locked;
955 case SWAP_AGAIN:
956 goto keep_locked;
b291f000
NP
957 case SWAP_MLOCK:
958 goto cull_mlocked;
1da177e4
LT
959 case SWAP_SUCCESS:
960 ; /* try to free the page below */
961 }
962 }
963
964 if (PageDirty(page)) {
ee72886d
MG
965 /*
966 * Only kswapd can writeback filesystem pages to
d43006d5
MG
967 * avoid risk of stack overflow but only writeback
968 * if many dirty pages have been encountered.
ee72886d 969 */
f84f6e2b 970 if (page_is_file_cache(page) &&
9e3b2f8c 971 (!current_is_kswapd() ||
d43006d5 972 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
973 /*
974 * Immediately reclaim when written back.
975 * Similar in principal to deactivate_page()
976 * except we already have the page isolated
977 * and know it's dirty
978 */
979 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
980 SetPageReclaim(page);
981
ee72886d
MG
982 goto keep_locked;
983 }
984
dfc8d636 985 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 986 goto keep_locked;
4dd4b920 987 if (!may_enter_fs)
1da177e4 988 goto keep_locked;
52a8363e 989 if (!sc->may_writepage)
1da177e4
LT
990 goto keep_locked;
991
992 /* Page is dirty, try to write it out here */
7d3579e8 993 switch (pageout(page, mapping, sc)) {
1da177e4
LT
994 case PAGE_KEEP:
995 goto keep_locked;
996 case PAGE_ACTIVATE:
997 goto activate_locked;
998 case PAGE_SUCCESS:
7d3579e8 999 if (PageWriteback(page))
41ac1999 1000 goto keep;
7d3579e8 1001 if (PageDirty(page))
1da177e4 1002 goto keep;
7d3579e8 1003
1da177e4
LT
1004 /*
1005 * A synchronous write - probably a ramdisk. Go
1006 * ahead and try to reclaim the page.
1007 */
529ae9aa 1008 if (!trylock_page(page))
1da177e4
LT
1009 goto keep;
1010 if (PageDirty(page) || PageWriteback(page))
1011 goto keep_locked;
1012 mapping = page_mapping(page);
1013 case PAGE_CLEAN:
1014 ; /* try to free the page below */
1015 }
1016 }
1017
1018 /*
1019 * If the page has buffers, try to free the buffer mappings
1020 * associated with this page. If we succeed we try to free
1021 * the page as well.
1022 *
1023 * We do this even if the page is PageDirty().
1024 * try_to_release_page() does not perform I/O, but it is
1025 * possible for a page to have PageDirty set, but it is actually
1026 * clean (all its buffers are clean). This happens if the
1027 * buffers were written out directly, with submit_bh(). ext3
894bc310 1028 * will do this, as well as the blockdev mapping.
1da177e4
LT
1029 * try_to_release_page() will discover that cleanness and will
1030 * drop the buffers and mark the page clean - it can be freed.
1031 *
1032 * Rarely, pages can have buffers and no ->mapping. These are
1033 * the pages which were not successfully invalidated in
1034 * truncate_complete_page(). We try to drop those buffers here
1035 * and if that worked, and the page is no longer mapped into
1036 * process address space (page_count == 1) it can be freed.
1037 * Otherwise, leave the page on the LRU so it is swappable.
1038 */
266cf658 1039 if (page_has_private(page)) {
1da177e4
LT
1040 if (!try_to_release_page(page, sc->gfp_mask))
1041 goto activate_locked;
e286781d
NP
1042 if (!mapping && page_count(page) == 1) {
1043 unlock_page(page);
1044 if (put_page_testzero(page))
1045 goto free_it;
1046 else {
1047 /*
1048 * rare race with speculative reference.
1049 * the speculative reference will free
1050 * this page shortly, so we may
1051 * increment nr_reclaimed here (and
1052 * leave it off the LRU).
1053 */
1054 nr_reclaimed++;
1055 continue;
1056 }
1057 }
1da177e4
LT
1058 }
1059
e286781d 1060 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 1061 goto keep_locked;
1da177e4 1062
a978d6f5
NP
1063 /*
1064 * At this point, we have no other references and there is
1065 * no way to pick any more up (removed from LRU, removed
1066 * from pagecache). Can use non-atomic bitops now (and
1067 * we obviously don't have to worry about waking up a process
1068 * waiting on the page lock, because there are no references.
1069 */
1070 __clear_page_locked(page);
e286781d 1071free_it:
05ff5137 1072 nr_reclaimed++;
abe4c3b5
MG
1073
1074 /*
1075 * Is there need to periodically free_page_list? It would
1076 * appear not as the counts should be low
1077 */
1078 list_add(&page->lru, &free_pages);
1da177e4
LT
1079 continue;
1080
b291f000 1081cull_mlocked:
63d6c5ad
HD
1082 if (PageSwapCache(page))
1083 try_to_free_swap(page);
b291f000
NP
1084 unlock_page(page);
1085 putback_lru_page(page);
1086 continue;
1087
1da177e4 1088activate_locked:
68a22394
RR
1089 /* Not a candidate for swapping, so reclaim swap space. */
1090 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1091 try_to_free_swap(page);
894bc310 1092 VM_BUG_ON(PageActive(page));
1da177e4
LT
1093 SetPageActive(page);
1094 pgactivate++;
1095keep_locked:
1096 unlock_page(page);
1097keep:
1098 list_add(&page->lru, &ret_pages);
b291f000 1099 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 1100 }
abe4c3b5 1101
cc59850e 1102 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 1103
1da177e4 1104 list_splice(&ret_pages, page_list);
f8891e5e 1105 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1106 mem_cgroup_uncharge_end();
8e950282
MG
1107 *ret_nr_dirty += nr_dirty;
1108 *ret_nr_congested += nr_congested;
d43006d5 1109 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1110 *ret_nr_writeback += nr_writeback;
b1a6f21e 1111 *ret_nr_immediate += nr_immediate;
05ff5137 1112 return nr_reclaimed;
1da177e4
LT
1113}
1114
02c6de8d
MK
1115unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1116 struct list_head *page_list)
1117{
1118 struct scan_control sc = {
1119 .gfp_mask = GFP_KERNEL,
1120 .priority = DEF_PRIORITY,
1121 .may_unmap = 1,
1122 };
8e950282 1123 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1124 struct page *page, *next;
1125 LIST_HEAD(clean_pages);
1126
1127 list_for_each_entry_safe(page, next, page_list, lru) {
1128 if (page_is_file_cache(page) && !PageDirty(page)) {
1129 ClearPageActive(page);
1130 list_move(&page->lru, &clean_pages);
1131 }
1132 }
1133
1134 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1135 TTU_UNMAP|TTU_IGNORE_ACCESS,
1136 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d
MK
1137 list_splice(&clean_pages, page_list);
1138 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1139 return ret;
1140}
1141
5ad333eb
AW
1142/*
1143 * Attempt to remove the specified page from its LRU. Only take this page
1144 * if it is of the appropriate PageActive status. Pages which are being
1145 * freed elsewhere are also ignored.
1146 *
1147 * page: page to consider
1148 * mode: one of the LRU isolation modes defined above
1149 *
1150 * returns 0 on success, -ve errno on failure.
1151 */
f3fd4a61 1152int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1153{
1154 int ret = -EINVAL;
1155
1156 /* Only take pages on the LRU. */
1157 if (!PageLRU(page))
1158 return ret;
1159
e46a2879
MK
1160 /* Compaction should not handle unevictable pages but CMA can do so */
1161 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1162 return ret;
1163
5ad333eb 1164 ret = -EBUSY;
08e552c6 1165
c8244935
MG
1166 /*
1167 * To minimise LRU disruption, the caller can indicate that it only
1168 * wants to isolate pages it will be able to operate on without
1169 * blocking - clean pages for the most part.
1170 *
1171 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1172 * is used by reclaim when it is cannot write to backing storage
1173 *
1174 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1175 * that it is possible to migrate without blocking
1176 */
1177 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1178 /* All the caller can do on PageWriteback is block */
1179 if (PageWriteback(page))
1180 return ret;
1181
1182 if (PageDirty(page)) {
1183 struct address_space *mapping;
1184
1185 /* ISOLATE_CLEAN means only clean pages */
1186 if (mode & ISOLATE_CLEAN)
1187 return ret;
1188
1189 /*
1190 * Only pages without mappings or that have a
1191 * ->migratepage callback are possible to migrate
1192 * without blocking
1193 */
1194 mapping = page_mapping(page);
1195 if (mapping && !mapping->a_ops->migratepage)
1196 return ret;
1197 }
1198 }
39deaf85 1199
f80c0673
MK
1200 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1201 return ret;
1202
5ad333eb
AW
1203 if (likely(get_page_unless_zero(page))) {
1204 /*
1205 * Be careful not to clear PageLRU until after we're
1206 * sure the page is not being freed elsewhere -- the
1207 * page release code relies on it.
1208 */
1209 ClearPageLRU(page);
1210 ret = 0;
1211 }
1212
1213 return ret;
1214}
1215
1da177e4
LT
1216/*
1217 * zone->lru_lock is heavily contended. Some of the functions that
1218 * shrink the lists perform better by taking out a batch of pages
1219 * and working on them outside the LRU lock.
1220 *
1221 * For pagecache intensive workloads, this function is the hottest
1222 * spot in the kernel (apart from copy_*_user functions).
1223 *
1224 * Appropriate locks must be held before calling this function.
1225 *
1226 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1227 * @lruvec: The LRU vector to pull pages from.
1da177e4 1228 * @dst: The temp list to put pages on to.
f626012d 1229 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1230 * @sc: The scan_control struct for this reclaim session
5ad333eb 1231 * @mode: One of the LRU isolation modes
3cb99451 1232 * @lru: LRU list id for isolating
1da177e4
LT
1233 *
1234 * returns how many pages were moved onto *@dst.
1235 */
69e05944 1236static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1237 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1238 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1239 isolate_mode_t mode, enum lru_list lru)
1da177e4 1240{
75b00af7 1241 struct list_head *src = &lruvec->lists[lru];
69e05944 1242 unsigned long nr_taken = 0;
c9b02d97 1243 unsigned long scan;
1da177e4 1244
c9b02d97 1245 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1246 struct page *page;
fa9add64 1247 int nr_pages;
5ad333eb 1248
1da177e4
LT
1249 page = lru_to_page(src);
1250 prefetchw_prev_lru_page(page, src, flags);
1251
725d704e 1252 VM_BUG_ON(!PageLRU(page));
8d438f96 1253
f3fd4a61 1254 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1255 case 0:
fa9add64
HD
1256 nr_pages = hpage_nr_pages(page);
1257 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1258 list_move(&page->lru, dst);
fa9add64 1259 nr_taken += nr_pages;
5ad333eb
AW
1260 break;
1261
1262 case -EBUSY:
1263 /* else it is being freed elsewhere */
1264 list_move(&page->lru, src);
1265 continue;
46453a6e 1266
5ad333eb
AW
1267 default:
1268 BUG();
1269 }
1da177e4
LT
1270 }
1271
f626012d 1272 *nr_scanned = scan;
75b00af7
HD
1273 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1274 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1275 return nr_taken;
1276}
1277
62695a84
NP
1278/**
1279 * isolate_lru_page - tries to isolate a page from its LRU list
1280 * @page: page to isolate from its LRU list
1281 *
1282 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1283 * vmstat statistic corresponding to whatever LRU list the page was on.
1284 *
1285 * Returns 0 if the page was removed from an LRU list.
1286 * Returns -EBUSY if the page was not on an LRU list.
1287 *
1288 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1289 * the active list, it will have PageActive set. If it was found on
1290 * the unevictable list, it will have the PageUnevictable bit set. That flag
1291 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1292 *
1293 * The vmstat statistic corresponding to the list on which the page was
1294 * found will be decremented.
1295 *
1296 * Restrictions:
1297 * (1) Must be called with an elevated refcount on the page. This is a
1298 * fundamentnal difference from isolate_lru_pages (which is called
1299 * without a stable reference).
1300 * (2) the lru_lock must not be held.
1301 * (3) interrupts must be enabled.
1302 */
1303int isolate_lru_page(struct page *page)
1304{
1305 int ret = -EBUSY;
1306
0c917313
KK
1307 VM_BUG_ON(!page_count(page));
1308
62695a84
NP
1309 if (PageLRU(page)) {
1310 struct zone *zone = page_zone(page);
fa9add64 1311 struct lruvec *lruvec;
62695a84
NP
1312
1313 spin_lock_irq(&zone->lru_lock);
fa9add64 1314 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1315 if (PageLRU(page)) {
894bc310 1316 int lru = page_lru(page);
0c917313 1317 get_page(page);
62695a84 1318 ClearPageLRU(page);
fa9add64
HD
1319 del_page_from_lru_list(page, lruvec, lru);
1320 ret = 0;
62695a84
NP
1321 }
1322 spin_unlock_irq(&zone->lru_lock);
1323 }
1324 return ret;
1325}
1326
35cd7815 1327/*
d37dd5dc
FW
1328 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1329 * then get resheduled. When there are massive number of tasks doing page
1330 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1331 * the LRU list will go small and be scanned faster than necessary, leading to
1332 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1333 */
1334static int too_many_isolated(struct zone *zone, int file,
1335 struct scan_control *sc)
1336{
1337 unsigned long inactive, isolated;
1338
1339 if (current_is_kswapd())
1340 return 0;
1341
89b5fae5 1342 if (!global_reclaim(sc))
35cd7815
RR
1343 return 0;
1344
1345 if (file) {
1346 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1347 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1348 } else {
1349 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1350 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1351 }
1352
3cf23841
FW
1353 /*
1354 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1355 * won't get blocked by normal direct-reclaimers, forming a circular
1356 * deadlock.
1357 */
1358 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1359 inactive >>= 3;
1360
35cd7815
RR
1361 return isolated > inactive;
1362}
1363
66635629 1364static noinline_for_stack void
75b00af7 1365putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1366{
27ac81d8
KK
1367 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1368 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1369 LIST_HEAD(pages_to_free);
66635629 1370
66635629
MG
1371 /*
1372 * Put back any unfreeable pages.
1373 */
66635629 1374 while (!list_empty(page_list)) {
3f79768f 1375 struct page *page = lru_to_page(page_list);
66635629 1376 int lru;
3f79768f 1377
66635629
MG
1378 VM_BUG_ON(PageLRU(page));
1379 list_del(&page->lru);
39b5f29a 1380 if (unlikely(!page_evictable(page))) {
66635629
MG
1381 spin_unlock_irq(&zone->lru_lock);
1382 putback_lru_page(page);
1383 spin_lock_irq(&zone->lru_lock);
1384 continue;
1385 }
fa9add64
HD
1386
1387 lruvec = mem_cgroup_page_lruvec(page, zone);
1388
7a608572 1389 SetPageLRU(page);
66635629 1390 lru = page_lru(page);
fa9add64
HD
1391 add_page_to_lru_list(page, lruvec, lru);
1392
66635629
MG
1393 if (is_active_lru(lru)) {
1394 int file = is_file_lru(lru);
9992af10
RR
1395 int numpages = hpage_nr_pages(page);
1396 reclaim_stat->recent_rotated[file] += numpages;
66635629 1397 }
2bcf8879
HD
1398 if (put_page_testzero(page)) {
1399 __ClearPageLRU(page);
1400 __ClearPageActive(page);
fa9add64 1401 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1402
1403 if (unlikely(PageCompound(page))) {
1404 spin_unlock_irq(&zone->lru_lock);
1405 (*get_compound_page_dtor(page))(page);
1406 spin_lock_irq(&zone->lru_lock);
1407 } else
1408 list_add(&page->lru, &pages_to_free);
66635629
MG
1409 }
1410 }
66635629 1411
3f79768f
HD
1412 /*
1413 * To save our caller's stack, now use input list for pages to free.
1414 */
1415 list_splice(&pages_to_free, page_list);
66635629
MG
1416}
1417
1da177e4 1418/*
1742f19f
AM
1419 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1420 * of reclaimed pages
1da177e4 1421 */
66635629 1422static noinline_for_stack unsigned long
1a93be0e 1423shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1424 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1425{
1426 LIST_HEAD(page_list);
e247dbce 1427 unsigned long nr_scanned;
05ff5137 1428 unsigned long nr_reclaimed = 0;
e247dbce 1429 unsigned long nr_taken;
8e950282
MG
1430 unsigned long nr_dirty = 0;
1431 unsigned long nr_congested = 0;
e2be15f6 1432 unsigned long nr_unqueued_dirty = 0;
92df3a72 1433 unsigned long nr_writeback = 0;
b1a6f21e 1434 unsigned long nr_immediate = 0;
f3fd4a61 1435 isolate_mode_t isolate_mode = 0;
3cb99451 1436 int file = is_file_lru(lru);
1a93be0e
KK
1437 struct zone *zone = lruvec_zone(lruvec);
1438 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1439
35cd7815 1440 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1441 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1442
1443 /* We are about to die and free our memory. Return now. */
1444 if (fatal_signal_pending(current))
1445 return SWAP_CLUSTER_MAX;
1446 }
1447
1da177e4 1448 lru_add_drain();
f80c0673
MK
1449
1450 if (!sc->may_unmap)
61317289 1451 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1452 if (!sc->may_writepage)
61317289 1453 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1454
1da177e4 1455 spin_lock_irq(&zone->lru_lock);
b35ea17b 1456
5dc35979
KK
1457 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1458 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1459
1460 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1461 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1462
89b5fae5 1463 if (global_reclaim(sc)) {
e247dbce
KM
1464 zone->pages_scanned += nr_scanned;
1465 if (current_is_kswapd())
75b00af7 1466 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1467 else
75b00af7 1468 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1469 }
d563c050 1470 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1471
d563c050 1472 if (nr_taken == 0)
66635629 1473 return 0;
5ad333eb 1474
02c6de8d 1475 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1476 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1477 &nr_writeback, &nr_immediate,
1478 false);
c661b078 1479
3f79768f
HD
1480 spin_lock_irq(&zone->lru_lock);
1481
95d918fc 1482 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1483
904249aa
YH
1484 if (global_reclaim(sc)) {
1485 if (current_is_kswapd())
1486 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1487 nr_reclaimed);
1488 else
1489 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1490 nr_reclaimed);
1491 }
a74609fa 1492
27ac81d8 1493 putback_inactive_pages(lruvec, &page_list);
3f79768f 1494
95d918fc 1495 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1496
1497 spin_unlock_irq(&zone->lru_lock);
1498
1499 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1500
92df3a72
MG
1501 /*
1502 * If reclaim is isolating dirty pages under writeback, it implies
1503 * that the long-lived page allocation rate is exceeding the page
1504 * laundering rate. Either the global limits are not being effective
1505 * at throttling processes due to the page distribution throughout
1506 * zones or there is heavy usage of a slow backing device. The
1507 * only option is to throttle from reclaim context which is not ideal
1508 * as there is no guarantee the dirtying process is throttled in the
1509 * same way balance_dirty_pages() manages.
1510 *
8e950282
MG
1511 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1512 * of pages under pages flagged for immediate reclaim and stall if any
1513 * are encountered in the nr_immediate check below.
92df3a72 1514 */
918fc718 1515 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1516 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1517
d43006d5 1518 /*
b1a6f21e
MG
1519 * memcg will stall in page writeback so only consider forcibly
1520 * stalling for global reclaim
d43006d5 1521 */
b1a6f21e 1522 if (global_reclaim(sc)) {
8e950282
MG
1523 /*
1524 * Tag a zone as congested if all the dirty pages scanned were
1525 * backed by a congested BDI and wait_iff_congested will stall.
1526 */
1527 if (nr_dirty && nr_dirty == nr_congested)
1528 zone_set_flag(zone, ZONE_CONGESTED);
1529
b1a6f21e
MG
1530 /*
1531 * If dirty pages are scanned that are not queued for IO, it
1532 * implies that flushers are not keeping up. In this case, flag
1533 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1534 * pages from reclaim context. It will forcibly stall in the
1535 * next check.
1536 */
1537 if (nr_unqueued_dirty == nr_taken)
1538 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1539
1540 /*
1541 * In addition, if kswapd scans pages marked marked for
1542 * immediate reclaim and under writeback (nr_immediate), it
1543 * implies that pages are cycling through the LRU faster than
1544 * they are written so also forcibly stall.
1545 */
1546 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1547 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1548 }
d43006d5 1549
8e950282
MG
1550 /*
1551 * Stall direct reclaim for IO completions if underlying BDIs or zone
1552 * is congested. Allow kswapd to continue until it starts encountering
1553 * unqueued dirty pages or cycling through the LRU too quickly.
1554 */
1555 if (!sc->hibernation_mode && !current_is_kswapd())
1556 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1557
e11da5b4
MG
1558 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1559 zone_idx(zone),
1560 nr_scanned, nr_reclaimed,
9e3b2f8c 1561 sc->priority,
23b9da55 1562 trace_shrink_flags(file));
05ff5137 1563 return nr_reclaimed;
1da177e4
LT
1564}
1565
1566/*
1567 * This moves pages from the active list to the inactive list.
1568 *
1569 * We move them the other way if the page is referenced by one or more
1570 * processes, from rmap.
1571 *
1572 * If the pages are mostly unmapped, the processing is fast and it is
1573 * appropriate to hold zone->lru_lock across the whole operation. But if
1574 * the pages are mapped, the processing is slow (page_referenced()) so we
1575 * should drop zone->lru_lock around each page. It's impossible to balance
1576 * this, so instead we remove the pages from the LRU while processing them.
1577 * It is safe to rely on PG_active against the non-LRU pages in here because
1578 * nobody will play with that bit on a non-LRU page.
1579 *
1580 * The downside is that we have to touch page->_count against each page.
1581 * But we had to alter page->flags anyway.
1582 */
1cfb419b 1583
fa9add64 1584static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1585 struct list_head *list,
2bcf8879 1586 struct list_head *pages_to_free,
3eb4140f
WF
1587 enum lru_list lru)
1588{
fa9add64 1589 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1590 unsigned long pgmoved = 0;
3eb4140f 1591 struct page *page;
fa9add64 1592 int nr_pages;
3eb4140f 1593
3eb4140f
WF
1594 while (!list_empty(list)) {
1595 page = lru_to_page(list);
fa9add64 1596 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f
WF
1597
1598 VM_BUG_ON(PageLRU(page));
1599 SetPageLRU(page);
1600
fa9add64
HD
1601 nr_pages = hpage_nr_pages(page);
1602 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1603 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1604 pgmoved += nr_pages;
3eb4140f 1605
2bcf8879
HD
1606 if (put_page_testzero(page)) {
1607 __ClearPageLRU(page);
1608 __ClearPageActive(page);
fa9add64 1609 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1610
1611 if (unlikely(PageCompound(page))) {
1612 spin_unlock_irq(&zone->lru_lock);
1613 (*get_compound_page_dtor(page))(page);
1614 spin_lock_irq(&zone->lru_lock);
1615 } else
1616 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1617 }
1618 }
1619 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1620 if (!is_active_lru(lru))
1621 __count_vm_events(PGDEACTIVATE, pgmoved);
1622}
1cfb419b 1623
f626012d 1624static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1625 struct lruvec *lruvec,
f16015fb 1626 struct scan_control *sc,
9e3b2f8c 1627 enum lru_list lru)
1da177e4 1628{
44c241f1 1629 unsigned long nr_taken;
f626012d 1630 unsigned long nr_scanned;
6fe6b7e3 1631 unsigned long vm_flags;
1da177e4 1632 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1633 LIST_HEAD(l_active);
b69408e8 1634 LIST_HEAD(l_inactive);
1da177e4 1635 struct page *page;
1a93be0e 1636 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1637 unsigned long nr_rotated = 0;
f3fd4a61 1638 isolate_mode_t isolate_mode = 0;
3cb99451 1639 int file = is_file_lru(lru);
1a93be0e 1640 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1641
1642 lru_add_drain();
f80c0673
MK
1643
1644 if (!sc->may_unmap)
61317289 1645 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1646 if (!sc->may_writepage)
61317289 1647 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1648
1da177e4 1649 spin_lock_irq(&zone->lru_lock);
925b7673 1650
5dc35979
KK
1651 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1652 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1653 if (global_reclaim(sc))
f626012d 1654 zone->pages_scanned += nr_scanned;
89b5fae5 1655
b7c46d15 1656 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1657
f626012d 1658 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1659 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1660 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1661 spin_unlock_irq(&zone->lru_lock);
1662
1da177e4
LT
1663 while (!list_empty(&l_hold)) {
1664 cond_resched();
1665 page = lru_to_page(&l_hold);
1666 list_del(&page->lru);
7e9cd484 1667
39b5f29a 1668 if (unlikely(!page_evictable(page))) {
894bc310
LS
1669 putback_lru_page(page);
1670 continue;
1671 }
1672
cc715d99
MG
1673 if (unlikely(buffer_heads_over_limit)) {
1674 if (page_has_private(page) && trylock_page(page)) {
1675 if (page_has_private(page))
1676 try_to_release_page(page, 0);
1677 unlock_page(page);
1678 }
1679 }
1680
c3ac9a8a
JW
1681 if (page_referenced(page, 0, sc->target_mem_cgroup,
1682 &vm_flags)) {
9992af10 1683 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1684 /*
1685 * Identify referenced, file-backed active pages and
1686 * give them one more trip around the active list. So
1687 * that executable code get better chances to stay in
1688 * memory under moderate memory pressure. Anon pages
1689 * are not likely to be evicted by use-once streaming
1690 * IO, plus JVM can create lots of anon VM_EXEC pages,
1691 * so we ignore them here.
1692 */
41e20983 1693 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1694 list_add(&page->lru, &l_active);
1695 continue;
1696 }
1697 }
7e9cd484 1698
5205e56e 1699 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1700 list_add(&page->lru, &l_inactive);
1701 }
1702
b555749a 1703 /*
8cab4754 1704 * Move pages back to the lru list.
b555749a 1705 */
2a1dc509 1706 spin_lock_irq(&zone->lru_lock);
556adecb 1707 /*
8cab4754
WF
1708 * Count referenced pages from currently used mappings as rotated,
1709 * even though only some of them are actually re-activated. This
1710 * helps balance scan pressure between file and anonymous pages in
1711 * get_scan_ratio.
7e9cd484 1712 */
b7c46d15 1713 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1714
fa9add64
HD
1715 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1716 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1717 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1718 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1719
1720 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1721}
1722
74e3f3c3 1723#ifdef CONFIG_SWAP
14797e23 1724static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1725{
1726 unsigned long active, inactive;
1727
1728 active = zone_page_state(zone, NR_ACTIVE_ANON);
1729 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1730
1731 if (inactive * zone->inactive_ratio < active)
1732 return 1;
1733
1734 return 0;
1735}
1736
14797e23
KM
1737/**
1738 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1739 * @lruvec: LRU vector to check
14797e23
KM
1740 *
1741 * Returns true if the zone does not have enough inactive anon pages,
1742 * meaning some active anon pages need to be deactivated.
1743 */
c56d5c7d 1744static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1745{
74e3f3c3
MK
1746 /*
1747 * If we don't have swap space, anonymous page deactivation
1748 * is pointless.
1749 */
1750 if (!total_swap_pages)
1751 return 0;
1752
c3c787e8 1753 if (!mem_cgroup_disabled())
c56d5c7d 1754 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1755
c56d5c7d 1756 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1757}
74e3f3c3 1758#else
c56d5c7d 1759static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1760{
1761 return 0;
1762}
1763#endif
14797e23 1764
56e49d21
RR
1765/**
1766 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1767 * @lruvec: LRU vector to check
56e49d21
RR
1768 *
1769 * When the system is doing streaming IO, memory pressure here
1770 * ensures that active file pages get deactivated, until more
1771 * than half of the file pages are on the inactive list.
1772 *
1773 * Once we get to that situation, protect the system's working
1774 * set from being evicted by disabling active file page aging.
1775 *
1776 * This uses a different ratio than the anonymous pages, because
1777 * the page cache uses a use-once replacement algorithm.
1778 */
c56d5c7d 1779static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1780{
e3790144
JW
1781 unsigned long inactive;
1782 unsigned long active;
1783
1784 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1785 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1786
e3790144 1787 return active > inactive;
56e49d21
RR
1788}
1789
75b00af7 1790static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1791{
75b00af7 1792 if (is_file_lru(lru))
c56d5c7d 1793 return inactive_file_is_low(lruvec);
b39415b2 1794 else
c56d5c7d 1795 return inactive_anon_is_low(lruvec);
b39415b2
RR
1796}
1797
4f98a2fe 1798static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1799 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1800{
b39415b2 1801 if (is_active_lru(lru)) {
75b00af7 1802 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1803 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1804 return 0;
1805 }
1806
1a93be0e 1807 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1808}
1809
3d58ab5c 1810static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1811{
89b5fae5 1812 if (global_reclaim(sc))
1f4c025b 1813 return vm_swappiness;
3d58ab5c 1814 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1815}
1816
9a265114
JW
1817enum scan_balance {
1818 SCAN_EQUAL,
1819 SCAN_FRACT,
1820 SCAN_ANON,
1821 SCAN_FILE,
1822};
1823
4f98a2fe
RR
1824/*
1825 * Determine how aggressively the anon and file LRU lists should be
1826 * scanned. The relative value of each set of LRU lists is determined
1827 * by looking at the fraction of the pages scanned we did rotate back
1828 * onto the active list instead of evict.
1829 *
be7bd59d
WL
1830 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1831 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1832 */
90126375 1833static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1834 unsigned long *nr)
4f98a2fe 1835{
9a265114
JW
1836 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1837 u64 fraction[2];
1838 u64 denominator = 0; /* gcc */
1839 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1840 unsigned long anon_prio, file_prio;
9a265114
JW
1841 enum scan_balance scan_balance;
1842 unsigned long anon, file, free;
1843 bool force_scan = false;
4f98a2fe 1844 unsigned long ap, fp;
4111304d 1845 enum lru_list lru;
246e87a9 1846
f11c0ca5
JW
1847 /*
1848 * If the zone or memcg is small, nr[l] can be 0. This
1849 * results in no scanning on this priority and a potential
1850 * priority drop. Global direct reclaim can go to the next
1851 * zone and tends to have no problems. Global kswapd is for
1852 * zone balancing and it needs to scan a minimum amount. When
1853 * reclaiming for a memcg, a priority drop can cause high
1854 * latencies, so it's better to scan a minimum amount there as
1855 * well.
1856 */
6e543d57 1857 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1858 force_scan = true;
89b5fae5 1859 if (!global_reclaim(sc))
a4d3e9e7 1860 force_scan = true;
76a33fc3
SL
1861
1862 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1863 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1864 scan_balance = SCAN_FILE;
76a33fc3
SL
1865 goto out;
1866 }
4f98a2fe 1867
10316b31
JW
1868 /*
1869 * Global reclaim will swap to prevent OOM even with no
1870 * swappiness, but memcg users want to use this knob to
1871 * disable swapping for individual groups completely when
1872 * using the memory controller's swap limit feature would be
1873 * too expensive.
1874 */
1875 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1876 scan_balance = SCAN_FILE;
10316b31
JW
1877 goto out;
1878 }
1879
1880 /*
1881 * Do not apply any pressure balancing cleverness when the
1882 * system is close to OOM, scan both anon and file equally
1883 * (unless the swappiness setting disagrees with swapping).
1884 */
1885 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1886 scan_balance = SCAN_EQUAL;
10316b31
JW
1887 goto out;
1888 }
1889
4d7dcca2
HD
1890 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1891 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1892 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1893 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1894
11d16c25
JW
1895 /*
1896 * If it's foreseeable that reclaiming the file cache won't be
1897 * enough to get the zone back into a desirable shape, we have
1898 * to swap. Better start now and leave the - probably heavily
1899 * thrashing - remaining file pages alone.
1900 */
89b5fae5 1901 if (global_reclaim(sc)) {
11d16c25 1902 free = zone_page_state(zone, NR_FREE_PAGES);
90126375 1903 if (unlikely(file + free <= high_wmark_pages(zone))) {
9a265114 1904 scan_balance = SCAN_ANON;
76a33fc3 1905 goto out;
eeee9a8c 1906 }
4f98a2fe
RR
1907 }
1908
7c5bd705
JW
1909 /*
1910 * There is enough inactive page cache, do not reclaim
1911 * anything from the anonymous working set right now.
1912 */
1913 if (!inactive_file_is_low(lruvec)) {
9a265114 1914 scan_balance = SCAN_FILE;
7c5bd705
JW
1915 goto out;
1916 }
1917
9a265114
JW
1918 scan_balance = SCAN_FRACT;
1919
58c37f6e
KM
1920 /*
1921 * With swappiness at 100, anonymous and file have the same priority.
1922 * This scanning priority is essentially the inverse of IO cost.
1923 */
3d58ab5c 1924 anon_prio = vmscan_swappiness(sc);
75b00af7 1925 file_prio = 200 - anon_prio;
58c37f6e 1926
4f98a2fe
RR
1927 /*
1928 * OK, so we have swap space and a fair amount of page cache
1929 * pages. We use the recently rotated / recently scanned
1930 * ratios to determine how valuable each cache is.
1931 *
1932 * Because workloads change over time (and to avoid overflow)
1933 * we keep these statistics as a floating average, which ends
1934 * up weighing recent references more than old ones.
1935 *
1936 * anon in [0], file in [1]
1937 */
90126375 1938 spin_lock_irq(&zone->lru_lock);
6e901571 1939 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1940 reclaim_stat->recent_scanned[0] /= 2;
1941 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1942 }
1943
6e901571 1944 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1945 reclaim_stat->recent_scanned[1] /= 2;
1946 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1947 }
1948
4f98a2fe 1949 /*
00d8089c
RR
1950 * The amount of pressure on anon vs file pages is inversely
1951 * proportional to the fraction of recently scanned pages on
1952 * each list that were recently referenced and in active use.
4f98a2fe 1953 */
fe35004f 1954 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1955 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1956
fe35004f 1957 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1958 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1959 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1960
76a33fc3
SL
1961 fraction[0] = ap;
1962 fraction[1] = fp;
1963 denominator = ap + fp + 1;
1964out:
4111304d
HD
1965 for_each_evictable_lru(lru) {
1966 int file = is_file_lru(lru);
d778df51 1967 unsigned long size;
76a33fc3 1968 unsigned long scan;
6e08a369 1969
d778df51 1970 size = get_lru_size(lruvec, lru);
10316b31 1971 scan = size >> sc->priority;
9a265114 1972
10316b31
JW
1973 if (!scan && force_scan)
1974 scan = min(size, SWAP_CLUSTER_MAX);
9a265114
JW
1975
1976 switch (scan_balance) {
1977 case SCAN_EQUAL:
1978 /* Scan lists relative to size */
1979 break;
1980 case SCAN_FRACT:
1981 /*
1982 * Scan types proportional to swappiness and
1983 * their relative recent reclaim efficiency.
1984 */
1985 scan = div64_u64(scan * fraction[file], denominator);
1986 break;
1987 case SCAN_FILE:
1988 case SCAN_ANON:
1989 /* Scan one type exclusively */
1990 if ((scan_balance == SCAN_FILE) != file)
1991 scan = 0;
1992 break;
1993 default:
1994 /* Look ma, no brain */
1995 BUG();
1996 }
4111304d 1997 nr[lru] = scan;
76a33fc3 1998 }
6e08a369 1999}
4f98a2fe 2000
9b4f98cd
JW
2001/*
2002 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2003 */
2004static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2005{
2006 unsigned long nr[NR_LRU_LISTS];
e82e0561 2007 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2008 unsigned long nr_to_scan;
2009 enum lru_list lru;
2010 unsigned long nr_reclaimed = 0;
2011 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2012 struct blk_plug plug;
e82e0561 2013 bool scan_adjusted = false;
9b4f98cd
JW
2014
2015 get_scan_count(lruvec, sc, nr);
2016
e82e0561
MG
2017 /* Record the original scan target for proportional adjustments later */
2018 memcpy(targets, nr, sizeof(nr));
2019
9b4f98cd
JW
2020 blk_start_plug(&plug);
2021 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2022 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2023 unsigned long nr_anon, nr_file, percentage;
2024 unsigned long nr_scanned;
2025
9b4f98cd
JW
2026 for_each_evictable_lru(lru) {
2027 if (nr[lru]) {
2028 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2029 nr[lru] -= nr_to_scan;
2030
2031 nr_reclaimed += shrink_list(lru, nr_to_scan,
2032 lruvec, sc);
2033 }
2034 }
e82e0561
MG
2035
2036 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2037 continue;
2038
9b4f98cd 2039 /*
e82e0561
MG
2040 * For global direct reclaim, reclaim only the number of pages
2041 * requested. Less care is taken to scan proportionally as it
2042 * is more important to minimise direct reclaim stall latency
2043 * than it is to properly age the LRU lists.
9b4f98cd 2044 */
e82e0561 2045 if (global_reclaim(sc) && !current_is_kswapd())
9b4f98cd 2046 break;
e82e0561
MG
2047
2048 /*
2049 * For kswapd and memcg, reclaim at least the number of pages
2050 * requested. Ensure that the anon and file LRUs shrink
2051 * proportionally what was requested by get_scan_count(). We
2052 * stop reclaiming one LRU and reduce the amount scanning
2053 * proportional to the original scan target.
2054 */
2055 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2056 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2057
2058 if (nr_file > nr_anon) {
2059 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2060 targets[LRU_ACTIVE_ANON] + 1;
2061 lru = LRU_BASE;
2062 percentage = nr_anon * 100 / scan_target;
2063 } else {
2064 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2065 targets[LRU_ACTIVE_FILE] + 1;
2066 lru = LRU_FILE;
2067 percentage = nr_file * 100 / scan_target;
2068 }
2069
2070 /* Stop scanning the smaller of the LRU */
2071 nr[lru] = 0;
2072 nr[lru + LRU_ACTIVE] = 0;
2073
2074 /*
2075 * Recalculate the other LRU scan count based on its original
2076 * scan target and the percentage scanning already complete
2077 */
2078 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2079 nr_scanned = targets[lru] - nr[lru];
2080 nr[lru] = targets[lru] * (100 - percentage) / 100;
2081 nr[lru] -= min(nr[lru], nr_scanned);
2082
2083 lru += LRU_ACTIVE;
2084 nr_scanned = targets[lru] - nr[lru];
2085 nr[lru] = targets[lru] * (100 - percentage) / 100;
2086 nr[lru] -= min(nr[lru], nr_scanned);
2087
2088 scan_adjusted = true;
9b4f98cd
JW
2089 }
2090 blk_finish_plug(&plug);
2091 sc->nr_reclaimed += nr_reclaimed;
2092
2093 /*
2094 * Even if we did not try to evict anon pages at all, we want to
2095 * rebalance the anon lru active/inactive ratio.
2096 */
2097 if (inactive_anon_is_low(lruvec))
2098 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2099 sc, LRU_ACTIVE_ANON);
2100
2101 throttle_vm_writeout(sc->gfp_mask);
2102}
2103
23b9da55 2104/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2105static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2106{
d84da3f9 2107 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2108 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2109 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2110 return true;
2111
2112 return false;
2113}
2114
3e7d3449 2115/*
23b9da55
MG
2116 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2117 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2118 * true if more pages should be reclaimed such that when the page allocator
2119 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2120 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2121 */
9b4f98cd 2122static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2123 unsigned long nr_reclaimed,
2124 unsigned long nr_scanned,
2125 struct scan_control *sc)
2126{
2127 unsigned long pages_for_compaction;
2128 unsigned long inactive_lru_pages;
2129
2130 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2131 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2132 return false;
2133
2876592f
MG
2134 /* Consider stopping depending on scan and reclaim activity */
2135 if (sc->gfp_mask & __GFP_REPEAT) {
2136 /*
2137 * For __GFP_REPEAT allocations, stop reclaiming if the
2138 * full LRU list has been scanned and we are still failing
2139 * to reclaim pages. This full LRU scan is potentially
2140 * expensive but a __GFP_REPEAT caller really wants to succeed
2141 */
2142 if (!nr_reclaimed && !nr_scanned)
2143 return false;
2144 } else {
2145 /*
2146 * For non-__GFP_REPEAT allocations which can presumably
2147 * fail without consequence, stop if we failed to reclaim
2148 * any pages from the last SWAP_CLUSTER_MAX number of
2149 * pages that were scanned. This will return to the
2150 * caller faster at the risk reclaim/compaction and
2151 * the resulting allocation attempt fails
2152 */
2153 if (!nr_reclaimed)
2154 return false;
2155 }
3e7d3449
MG
2156
2157 /*
2158 * If we have not reclaimed enough pages for compaction and the
2159 * inactive lists are large enough, continue reclaiming
2160 */
2161 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2162 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2163 if (get_nr_swap_pages() > 0)
9b4f98cd 2164 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2165 if (sc->nr_reclaimed < pages_for_compaction &&
2166 inactive_lru_pages > pages_for_compaction)
2167 return true;
2168
2169 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2170 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2171 case COMPACT_PARTIAL:
2172 case COMPACT_CONTINUE:
2173 return false;
2174 default:
2175 return true;
2176 }
2177}
2178
e975de99 2179static int
3b38722e 2180__shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim)
1da177e4 2181{
f0fdc5e8 2182 unsigned long nr_reclaimed, nr_scanned;
e975de99 2183 int groups_scanned = 0;
1da177e4 2184
9b4f98cd
JW
2185 do {
2186 struct mem_cgroup *root = sc->target_mem_cgroup;
2187 struct mem_cgroup_reclaim_cookie reclaim = {
2188 .zone = zone,
2189 .priority = sc->priority,
2190 };
de57780d
MH
2191 struct mem_cgroup *memcg = NULL;
2192 mem_cgroup_iter_filter filter = (soft_reclaim) ?
2193 mem_cgroup_soft_reclaim_eligible : NULL;
3e7d3449 2194
9b4f98cd
JW
2195 nr_reclaimed = sc->nr_reclaimed;
2196 nr_scanned = sc->nr_scanned;
1da177e4 2197
de57780d 2198 while ((memcg = mem_cgroup_iter_cond(root, memcg, &reclaim, filter))) {
9b4f98cd 2199 struct lruvec *lruvec;
5660048c 2200
e975de99 2201 groups_scanned++;
9b4f98cd 2202 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2203
9b4f98cd 2204 shrink_lruvec(lruvec, sc);
f16015fb 2205
9b4f98cd 2206 /*
a394cb8e
MH
2207 * Direct reclaim and kswapd have to scan all memory
2208 * cgroups to fulfill the overall scan target for the
9b4f98cd 2209 * zone.
a394cb8e
MH
2210 *
2211 * Limit reclaim, on the other hand, only cares about
2212 * nr_to_reclaim pages to be reclaimed and it will
2213 * retry with decreasing priority if one round over the
2214 * whole hierarchy is not sufficient.
9b4f98cd 2215 */
a394cb8e
MH
2216 if (!global_reclaim(sc) &&
2217 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2218 mem_cgroup_iter_break(root, memcg);
2219 break;
2220 }
de57780d 2221 }
70ddf637
AV
2222
2223 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2224 sc->nr_scanned - nr_scanned,
2225 sc->nr_reclaimed - nr_reclaimed);
2226
9b4f98cd
JW
2227 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2228 sc->nr_scanned - nr_scanned, sc));
e975de99
MH
2229
2230 return groups_scanned;
f16015fb
JW
2231}
2232
3b38722e
MH
2233
2234static void shrink_zone(struct zone *zone, struct scan_control *sc)
2235{
2236 bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc);
2237 unsigned long nr_scanned = sc->nr_scanned;
e975de99 2238 int scanned_groups;
3b38722e 2239
e975de99
MH
2240 scanned_groups = __shrink_zone(zone, sc, do_soft_reclaim);
2241 /*
f894ffa8
AM
2242 * memcg iterator might race with other reclaimer or start from
2243 * a incomplete tree walk so the tree walk in __shrink_zone
2244 * might have missed groups that are above the soft limit. Try
2245 * another loop to catch up with others. Do it just once to
2246 * prevent from reclaim latencies when other reclaimers always
2247 * preempt this one.
e975de99
MH
2248 */
2249 if (do_soft_reclaim && !scanned_groups)
2250 __shrink_zone(zone, sc, do_soft_reclaim);
3b38722e
MH
2251
2252 /*
2253 * No group is over the soft limit or those that are do not have
2254 * pages in the zone we are reclaiming so we have to reclaim everybody
2255 */
2256 if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) {
2257 __shrink_zone(zone, sc, false);
2258 return;
2259 }
f16015fb
JW
2260}
2261
fe4b1b24
MG
2262/* Returns true if compaction should go ahead for a high-order request */
2263static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2264{
2265 unsigned long balance_gap, watermark;
2266 bool watermark_ok;
2267
2268 /* Do not consider compaction for orders reclaim is meant to satisfy */
2269 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2270 return false;
2271
2272 /*
2273 * Compaction takes time to run and there are potentially other
2274 * callers using the pages just freed. Continue reclaiming until
2275 * there is a buffer of free pages available to give compaction
2276 * a reasonable chance of completing and allocating the page
2277 */
2278 balance_gap = min(low_wmark_pages(zone),
b40da049 2279 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
fe4b1b24
MG
2280 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2281 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2282 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2283
2284 /*
2285 * If compaction is deferred, reclaim up to a point where
2286 * compaction will have a chance of success when re-enabled
2287 */
aff62249 2288 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2289 return watermark_ok;
2290
2291 /* If compaction is not ready to start, keep reclaiming */
2292 if (!compaction_suitable(zone, sc->order))
2293 return false;
2294
2295 return watermark_ok;
2296}
2297
1da177e4
LT
2298/*
2299 * This is the direct reclaim path, for page-allocating processes. We only
2300 * try to reclaim pages from zones which will satisfy the caller's allocation
2301 * request.
2302 *
41858966
MG
2303 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2304 * Because:
1da177e4
LT
2305 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2306 * allocation or
41858966
MG
2307 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2308 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2309 * zone defense algorithm.
1da177e4 2310 *
1da177e4
LT
2311 * If a zone is deemed to be full of pinned pages then just give it a light
2312 * scan then give up on it.
e0c23279
MG
2313 *
2314 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2315 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2316 * the caller that it should consider retrying the allocation instead of
2317 * further reclaim.
1da177e4 2318 */
9e3b2f8c 2319static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2320{
dd1a239f 2321 struct zoneref *z;
54a6eb5c 2322 struct zone *zone;
0cee34fd 2323 bool aborted_reclaim = false;
1cfb419b 2324
cc715d99
MG
2325 /*
2326 * If the number of buffer_heads in the machine exceeds the maximum
2327 * allowed level, force direct reclaim to scan the highmem zone as
2328 * highmem pages could be pinning lowmem pages storing buffer_heads
2329 */
2330 if (buffer_heads_over_limit)
2331 sc->gfp_mask |= __GFP_HIGHMEM;
2332
d4debc66
MG
2333 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2334 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2335 if (!populated_zone(zone))
1da177e4 2336 continue;
1cfb419b
KH
2337 /*
2338 * Take care memory controller reclaiming has small influence
2339 * to global LRU.
2340 */
89b5fae5 2341 if (global_reclaim(sc)) {
1cfb419b
KH
2342 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2343 continue;
6e543d57
LD
2344 if (sc->priority != DEF_PRIORITY &&
2345 !zone_reclaimable(zone))
1cfb419b 2346 continue; /* Let kswapd poll it */
d84da3f9 2347 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2348 /*
e0c23279
MG
2349 * If we already have plenty of memory free for
2350 * compaction in this zone, don't free any more.
2351 * Even though compaction is invoked for any
2352 * non-zero order, only frequent costly order
2353 * reclamation is disruptive enough to become a
c7cfa37b
CA
2354 * noticeable problem, like transparent huge
2355 * page allocations.
e0887c19 2356 */
fe4b1b24 2357 if (compaction_ready(zone, sc)) {
0cee34fd 2358 aborted_reclaim = true;
e0887c19 2359 continue;
e0c23279 2360 }
e0887c19 2361 }
ac34a1a3 2362 /* need some check for avoid more shrink_zone() */
1cfb419b 2363 }
408d8544 2364
9e3b2f8c 2365 shrink_zone(zone, sc);
1da177e4 2366 }
e0c23279 2367
0cee34fd 2368 return aborted_reclaim;
d1908362
MK
2369}
2370
929bea7c 2371/* All zones in zonelist are unreclaimable? */
d1908362
MK
2372static bool all_unreclaimable(struct zonelist *zonelist,
2373 struct scan_control *sc)
2374{
2375 struct zoneref *z;
2376 struct zone *zone;
d1908362
MK
2377
2378 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2379 gfp_zone(sc->gfp_mask), sc->nodemask) {
2380 if (!populated_zone(zone))
2381 continue;
2382 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2383 continue;
6e543d57 2384 if (zone_reclaimable(zone))
929bea7c 2385 return false;
d1908362
MK
2386 }
2387
929bea7c 2388 return true;
1da177e4 2389}
4f98a2fe 2390
1da177e4
LT
2391/*
2392 * This is the main entry point to direct page reclaim.
2393 *
2394 * If a full scan of the inactive list fails to free enough memory then we
2395 * are "out of memory" and something needs to be killed.
2396 *
2397 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2398 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2399 * caller can't do much about. We kick the writeback threads and take explicit
2400 * naps in the hope that some of these pages can be written. But if the
2401 * allocating task holds filesystem locks which prevent writeout this might not
2402 * work, and the allocation attempt will fail.
a41f24ea
NA
2403 *
2404 * returns: 0, if no pages reclaimed
2405 * else, the number of pages reclaimed
1da177e4 2406 */
dac1d27b 2407static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2408 struct scan_control *sc,
2409 struct shrink_control *shrink)
1da177e4 2410{
69e05944 2411 unsigned long total_scanned = 0;
1da177e4 2412 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2413 struct zoneref *z;
54a6eb5c 2414 struct zone *zone;
22fba335 2415 unsigned long writeback_threshold;
0cee34fd 2416 bool aborted_reclaim;
1da177e4 2417
873b4771
KK
2418 delayacct_freepages_start();
2419
89b5fae5 2420 if (global_reclaim(sc))
1cfb419b 2421 count_vm_event(ALLOCSTALL);
1da177e4 2422
9e3b2f8c 2423 do {
70ddf637
AV
2424 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2425 sc->priority);
66e1707b 2426 sc->nr_scanned = 0;
9e3b2f8c 2427 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2428
66e1707b 2429 /*
5a1c9cbc
MG
2430 * Don't shrink slabs when reclaiming memory from over limit
2431 * cgroups but do shrink slab at least once when aborting
2432 * reclaim for compaction to avoid unevenly scanning file/anon
2433 * LRU pages over slab pages.
66e1707b 2434 */
89b5fae5 2435 if (global_reclaim(sc)) {
c6a8a8c5 2436 unsigned long lru_pages = 0;
0ce3d744
DC
2437
2438 nodes_clear(shrink->nodes_to_scan);
d4debc66
MG
2439 for_each_zone_zonelist(zone, z, zonelist,
2440 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2441 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2442 continue;
2443
2444 lru_pages += zone_reclaimable_pages(zone);
0ce3d744
DC
2445 node_set(zone_to_nid(zone),
2446 shrink->nodes_to_scan);
c6a8a8c5
KM
2447 }
2448
1495f230 2449 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2450 if (reclaim_state) {
a79311c1 2451 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2452 reclaim_state->reclaimed_slab = 0;
2453 }
1da177e4 2454 }
66e1707b 2455 total_scanned += sc->nr_scanned;
bb21c7ce 2456 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2457 goto out;
1da177e4 2458
0e50ce3b
MK
2459 /*
2460 * If we're getting trouble reclaiming, start doing
2461 * writepage even in laptop mode.
2462 */
2463 if (sc->priority < DEF_PRIORITY - 2)
2464 sc->may_writepage = 1;
2465
1da177e4
LT
2466 /*
2467 * Try to write back as many pages as we just scanned. This
2468 * tends to cause slow streaming writers to write data to the
2469 * disk smoothly, at the dirtying rate, which is nice. But
2470 * that's undesirable in laptop mode, where we *want* lumpy
2471 * writeout. So in laptop mode, write out the whole world.
2472 */
22fba335
KM
2473 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2474 if (total_scanned > writeback_threshold) {
0e175a18
CW
2475 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2476 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2477 sc->may_writepage = 1;
1da177e4 2478 }
5a1c9cbc 2479 } while (--sc->priority >= 0 && !aborted_reclaim);
bb21c7ce 2480
1da177e4 2481out:
873b4771
KK
2482 delayacct_freepages_end();
2483
bb21c7ce
KM
2484 if (sc->nr_reclaimed)
2485 return sc->nr_reclaimed;
2486
929bea7c
KM
2487 /*
2488 * As hibernation is going on, kswapd is freezed so that it can't mark
2489 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2490 * check.
2491 */
2492 if (oom_killer_disabled)
2493 return 0;
2494
0cee34fd
MG
2495 /* Aborted reclaim to try compaction? don't OOM, then */
2496 if (aborted_reclaim)
7335084d
MG
2497 return 1;
2498
bb21c7ce 2499 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2500 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2501 return 1;
2502
2503 return 0;
1da177e4
LT
2504}
2505
5515061d
MG
2506static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2507{
2508 struct zone *zone;
2509 unsigned long pfmemalloc_reserve = 0;
2510 unsigned long free_pages = 0;
2511 int i;
2512 bool wmark_ok;
2513
2514 for (i = 0; i <= ZONE_NORMAL; i++) {
2515 zone = &pgdat->node_zones[i];
2516 pfmemalloc_reserve += min_wmark_pages(zone);
2517 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2518 }
2519
2520 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2521
2522 /* kswapd must be awake if processes are being throttled */
2523 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2524 pgdat->classzone_idx = min(pgdat->classzone_idx,
2525 (enum zone_type)ZONE_NORMAL);
2526 wake_up_interruptible(&pgdat->kswapd_wait);
2527 }
2528
2529 return wmark_ok;
2530}
2531
2532/*
2533 * Throttle direct reclaimers if backing storage is backed by the network
2534 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2535 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2536 * when the low watermark is reached.
2537 *
2538 * Returns true if a fatal signal was delivered during throttling. If this
2539 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2540 */
50694c28 2541static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2542 nodemask_t *nodemask)
2543{
2544 struct zone *zone;
2545 int high_zoneidx = gfp_zone(gfp_mask);
2546 pg_data_t *pgdat;
2547
2548 /*
2549 * Kernel threads should not be throttled as they may be indirectly
2550 * responsible for cleaning pages necessary for reclaim to make forward
2551 * progress. kjournald for example may enter direct reclaim while
2552 * committing a transaction where throttling it could forcing other
2553 * processes to block on log_wait_commit().
2554 */
2555 if (current->flags & PF_KTHREAD)
50694c28
MG
2556 goto out;
2557
2558 /*
2559 * If a fatal signal is pending, this process should not throttle.
2560 * It should return quickly so it can exit and free its memory
2561 */
2562 if (fatal_signal_pending(current))
2563 goto out;
5515061d
MG
2564
2565 /* Check if the pfmemalloc reserves are ok */
2566 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2567 pgdat = zone->zone_pgdat;
2568 if (pfmemalloc_watermark_ok(pgdat))
50694c28 2569 goto out;
5515061d 2570
68243e76
MG
2571 /* Account for the throttling */
2572 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2573
5515061d
MG
2574 /*
2575 * If the caller cannot enter the filesystem, it's possible that it
2576 * is due to the caller holding an FS lock or performing a journal
2577 * transaction in the case of a filesystem like ext[3|4]. In this case,
2578 * it is not safe to block on pfmemalloc_wait as kswapd could be
2579 * blocked waiting on the same lock. Instead, throttle for up to a
2580 * second before continuing.
2581 */
2582 if (!(gfp_mask & __GFP_FS)) {
2583 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2584 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2585
2586 goto check_pending;
5515061d
MG
2587 }
2588
2589 /* Throttle until kswapd wakes the process */
2590 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2591 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2592
2593check_pending:
2594 if (fatal_signal_pending(current))
2595 return true;
2596
2597out:
2598 return false;
5515061d
MG
2599}
2600
dac1d27b 2601unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2602 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2603{
33906bc5 2604 unsigned long nr_reclaimed;
66e1707b 2605 struct scan_control sc = {
21caf2fc 2606 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2607 .may_writepage = !laptop_mode,
22fba335 2608 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2609 .may_unmap = 1,
2e2e4259 2610 .may_swap = 1,
66e1707b 2611 .order = order,
9e3b2f8c 2612 .priority = DEF_PRIORITY,
f16015fb 2613 .target_mem_cgroup = NULL,
327c0e96 2614 .nodemask = nodemask,
66e1707b 2615 };
a09ed5e0
YH
2616 struct shrink_control shrink = {
2617 .gfp_mask = sc.gfp_mask,
2618 };
66e1707b 2619
5515061d 2620 /*
50694c28
MG
2621 * Do not enter reclaim if fatal signal was delivered while throttled.
2622 * 1 is returned so that the page allocator does not OOM kill at this
2623 * point.
5515061d 2624 */
50694c28 2625 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2626 return 1;
2627
33906bc5
MG
2628 trace_mm_vmscan_direct_reclaim_begin(order,
2629 sc.may_writepage,
2630 gfp_mask);
2631
a09ed5e0 2632 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2633
2634 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2635
2636 return nr_reclaimed;
66e1707b
BS
2637}
2638
c255a458 2639#ifdef CONFIG_MEMCG
66e1707b 2640
72835c86 2641unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2642 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2643 struct zone *zone,
2644 unsigned long *nr_scanned)
4e416953
BS
2645{
2646 struct scan_control sc = {
0ae5e89c 2647 .nr_scanned = 0,
b8f5c566 2648 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2649 .may_writepage = !laptop_mode,
2650 .may_unmap = 1,
2651 .may_swap = !noswap,
4e416953 2652 .order = 0,
9e3b2f8c 2653 .priority = 0,
72835c86 2654 .target_mem_cgroup = memcg,
4e416953 2655 };
f9be23d6 2656 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2657
4e416953
BS
2658 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2659 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2660
9e3b2f8c 2661 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2662 sc.may_writepage,
2663 sc.gfp_mask);
2664
4e416953
BS
2665 /*
2666 * NOTE: Although we can get the priority field, using it
2667 * here is not a good idea, since it limits the pages we can scan.
2668 * if we don't reclaim here, the shrink_zone from balance_pgdat
2669 * will pick up pages from other mem cgroup's as well. We hack
2670 * the priority and make it zero.
2671 */
f9be23d6 2672 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2673
2674 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2675
0ae5e89c 2676 *nr_scanned = sc.nr_scanned;
4e416953
BS
2677 return sc.nr_reclaimed;
2678}
2679
72835c86 2680unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2681 gfp_t gfp_mask,
185efc0f 2682 bool noswap)
66e1707b 2683{
4e416953 2684 struct zonelist *zonelist;
bdce6d9e 2685 unsigned long nr_reclaimed;
889976db 2686 int nid;
66e1707b 2687 struct scan_control sc = {
66e1707b 2688 .may_writepage = !laptop_mode,
a6dc60f8 2689 .may_unmap = 1,
2e2e4259 2690 .may_swap = !noswap,
22fba335 2691 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2692 .order = 0,
9e3b2f8c 2693 .priority = DEF_PRIORITY,
72835c86 2694 .target_mem_cgroup = memcg,
327c0e96 2695 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2696 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2697 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2698 };
2699 struct shrink_control shrink = {
2700 .gfp_mask = sc.gfp_mask,
66e1707b 2701 };
66e1707b 2702
889976db
YH
2703 /*
2704 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2705 * take care of from where we get pages. So the node where we start the
2706 * scan does not need to be the current node.
2707 */
72835c86 2708 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2709
2710 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2711
2712 trace_mm_vmscan_memcg_reclaim_begin(0,
2713 sc.may_writepage,
2714 sc.gfp_mask);
2715
a09ed5e0 2716 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2717
2718 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2719
2720 return nr_reclaimed;
66e1707b
BS
2721}
2722#endif
2723
9e3b2f8c 2724static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2725{
b95a2f2d 2726 struct mem_cgroup *memcg;
f16015fb 2727
b95a2f2d
JW
2728 if (!total_swap_pages)
2729 return;
2730
2731 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2732 do {
c56d5c7d 2733 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2734
c56d5c7d 2735 if (inactive_anon_is_low(lruvec))
1a93be0e 2736 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2737 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2738
2739 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2740 } while (memcg);
f16015fb
JW
2741}
2742
60cefed4
JW
2743static bool zone_balanced(struct zone *zone, int order,
2744 unsigned long balance_gap, int classzone_idx)
2745{
2746 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2747 balance_gap, classzone_idx, 0))
2748 return false;
2749
d84da3f9
KS
2750 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2751 !compaction_suitable(zone, order))
60cefed4
JW
2752 return false;
2753
2754 return true;
2755}
2756
1741c877 2757/*
4ae0a48b
ZC
2758 * pgdat_balanced() is used when checking if a node is balanced.
2759 *
2760 * For order-0, all zones must be balanced!
2761 *
2762 * For high-order allocations only zones that meet watermarks and are in a
2763 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2764 * total of balanced pages must be at least 25% of the zones allowed by
2765 * classzone_idx for the node to be considered balanced. Forcing all zones to
2766 * be balanced for high orders can cause excessive reclaim when there are
2767 * imbalanced zones.
1741c877
MG
2768 * The choice of 25% is due to
2769 * o a 16M DMA zone that is balanced will not balance a zone on any
2770 * reasonable sized machine
2771 * o On all other machines, the top zone must be at least a reasonable
25985edc 2772 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2773 * would need to be at least 256M for it to be balance a whole node.
2774 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2775 * to balance a node on its own. These seemed like reasonable ratios.
2776 */
4ae0a48b 2777static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2778{
b40da049 2779 unsigned long managed_pages = 0;
4ae0a48b 2780 unsigned long balanced_pages = 0;
1741c877
MG
2781 int i;
2782
4ae0a48b
ZC
2783 /* Check the watermark levels */
2784 for (i = 0; i <= classzone_idx; i++) {
2785 struct zone *zone = pgdat->node_zones + i;
1741c877 2786
4ae0a48b
ZC
2787 if (!populated_zone(zone))
2788 continue;
2789
b40da049 2790 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2791
2792 /*
2793 * A special case here:
2794 *
2795 * balance_pgdat() skips over all_unreclaimable after
2796 * DEF_PRIORITY. Effectively, it considers them balanced so
2797 * they must be considered balanced here as well!
2798 */
6e543d57 2799 if (!zone_reclaimable(zone)) {
b40da049 2800 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2801 continue;
2802 }
2803
2804 if (zone_balanced(zone, order, 0, i))
b40da049 2805 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2806 else if (!order)
2807 return false;
2808 }
2809
2810 if (order)
b40da049 2811 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2812 else
2813 return true;
1741c877
MG
2814}
2815
5515061d
MG
2816/*
2817 * Prepare kswapd for sleeping. This verifies that there are no processes
2818 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2819 *
2820 * Returns true if kswapd is ready to sleep
2821 */
2822static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2823 int classzone_idx)
f50de2d3 2824{
f50de2d3
MG
2825 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2826 if (remaining)
5515061d
MG
2827 return false;
2828
2829 /*
2830 * There is a potential race between when kswapd checks its watermarks
2831 * and a process gets throttled. There is also a potential race if
2832 * processes get throttled, kswapd wakes, a large process exits therby
2833 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2834 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2835 * so wake them now if necessary. If necessary, processes will wake
2836 * kswapd and get throttled again
2837 */
2838 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2839 wake_up(&pgdat->pfmemalloc_wait);
2840 return false;
2841 }
f50de2d3 2842
4ae0a48b 2843 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2844}
2845
75485363
MG
2846/*
2847 * kswapd shrinks the zone by the number of pages required to reach
2848 * the high watermark.
b8e83b94
MG
2849 *
2850 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2851 * reclaim or if the lack of progress was due to pages under writeback.
2852 * This is used to determine if the scanning priority needs to be raised.
75485363 2853 */
b8e83b94 2854static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2855 int classzone_idx,
75485363 2856 struct scan_control *sc,
2ab44f43
MG
2857 unsigned long lru_pages,
2858 unsigned long *nr_attempted)
75485363 2859{
7c954f6d
MG
2860 int testorder = sc->order;
2861 unsigned long balance_gap;
75485363
MG
2862 struct reclaim_state *reclaim_state = current->reclaim_state;
2863 struct shrink_control shrink = {
2864 .gfp_mask = sc->gfp_mask,
2865 };
7c954f6d 2866 bool lowmem_pressure;
75485363
MG
2867
2868 /* Reclaim above the high watermark. */
2869 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2870
2871 /*
2872 * Kswapd reclaims only single pages with compaction enabled. Trying
2873 * too hard to reclaim until contiguous free pages have become
2874 * available can hurt performance by evicting too much useful data
2875 * from memory. Do not reclaim more than needed for compaction.
2876 */
2877 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2878 compaction_suitable(zone, sc->order) !=
2879 COMPACT_SKIPPED)
2880 testorder = 0;
2881
2882 /*
2883 * We put equal pressure on every zone, unless one zone has way too
2884 * many pages free already. The "too many pages" is defined as the
2885 * high wmark plus a "gap" where the gap is either the low
2886 * watermark or 1% of the zone, whichever is smaller.
2887 */
2888 balance_gap = min(low_wmark_pages(zone),
2889 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2890 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2891
2892 /*
2893 * If there is no low memory pressure or the zone is balanced then no
2894 * reclaim is necessary
2895 */
2896 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2897 if (!lowmem_pressure && zone_balanced(zone, testorder,
2898 balance_gap, classzone_idx))
2899 return true;
2900
75485363 2901 shrink_zone(zone, sc);
0ce3d744
DC
2902 nodes_clear(shrink.nodes_to_scan);
2903 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2904
2905 reclaim_state->reclaimed_slab = 0;
6e543d57 2906 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2907 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2908
2ab44f43
MG
2909 /* Account for the number of pages attempted to reclaim */
2910 *nr_attempted += sc->nr_to_reclaim;
2911
283aba9f
MG
2912 zone_clear_flag(zone, ZONE_WRITEBACK);
2913
7c954f6d
MG
2914 /*
2915 * If a zone reaches its high watermark, consider it to be no longer
2916 * congested. It's possible there are dirty pages backed by congested
2917 * BDIs but as pressure is relieved, speculatively avoid congestion
2918 * waits.
2919 */
6e543d57 2920 if (zone_reclaimable(zone) &&
7c954f6d
MG
2921 zone_balanced(zone, testorder, 0, classzone_idx)) {
2922 zone_clear_flag(zone, ZONE_CONGESTED);
2923 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2924 }
2925
b8e83b94 2926 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2927}
2928
1da177e4
LT
2929/*
2930 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2931 * they are all at high_wmark_pages(zone).
1da177e4 2932 *
0abdee2b 2933 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2934 *
2935 * There is special handling here for zones which are full of pinned pages.
2936 * This can happen if the pages are all mlocked, or if they are all used by
2937 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2938 * What we do is to detect the case where all pages in the zone have been
2939 * scanned twice and there has been zero successful reclaim. Mark the zone as
2940 * dead and from now on, only perform a short scan. Basically we're polling
2941 * the zone for when the problem goes away.
2942 *
2943 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2944 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2945 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2946 * lower zones regardless of the number of free pages in the lower zones. This
2947 * interoperates with the page allocator fallback scheme to ensure that aging
2948 * of pages is balanced across the zones.
1da177e4 2949 */
99504748 2950static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2951 int *classzone_idx)
1da177e4 2952{
1da177e4 2953 int i;
99504748 2954 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
179e9639
AM
2955 struct scan_control sc = {
2956 .gfp_mask = GFP_KERNEL,
b8e83b94 2957 .priority = DEF_PRIORITY,
a6dc60f8 2958 .may_unmap = 1,
2e2e4259 2959 .may_swap = 1,
b8e83b94 2960 .may_writepage = !laptop_mode,
5ad333eb 2961 .order = order,
f16015fb 2962 .target_mem_cgroup = NULL,
179e9639 2963 };
f8891e5e 2964 count_vm_event(PAGEOUTRUN);
1da177e4 2965
9e3b2f8c 2966 do {
1da177e4 2967 unsigned long lru_pages = 0;
2ab44f43 2968 unsigned long nr_attempted = 0;
b8e83b94 2969 bool raise_priority = true;
2ab44f43 2970 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
2971
2972 sc.nr_reclaimed = 0;
1da177e4 2973
d6277db4
RW
2974 /*
2975 * Scan in the highmem->dma direction for the highest
2976 * zone which needs scanning
2977 */
2978 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2979 struct zone *zone = pgdat->node_zones + i;
1da177e4 2980
d6277db4
RW
2981 if (!populated_zone(zone))
2982 continue;
1da177e4 2983
6e543d57
LD
2984 if (sc.priority != DEF_PRIORITY &&
2985 !zone_reclaimable(zone))
d6277db4 2986 continue;
1da177e4 2987
556adecb
RR
2988 /*
2989 * Do some background aging of the anon list, to give
2990 * pages a chance to be referenced before reclaiming.
2991 */
9e3b2f8c 2992 age_active_anon(zone, &sc);
556adecb 2993
cc715d99
MG
2994 /*
2995 * If the number of buffer_heads in the machine
2996 * exceeds the maximum allowed level and this node
2997 * has a highmem zone, force kswapd to reclaim from
2998 * it to relieve lowmem pressure.
2999 */
3000 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3001 end_zone = i;
3002 break;
3003 }
3004
60cefed4 3005 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3006 end_zone = i;
e1dbeda6 3007 break;
439423f6 3008 } else {
d43006d5
MG
3009 /*
3010 * If balanced, clear the dirty and congested
3011 * flags
3012 */
439423f6 3013 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 3014 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 3015 }
1da177e4 3016 }
dafcb73e 3017
b8e83b94 3018 if (i < 0)
e1dbeda6
AM
3019 goto out;
3020
1da177e4
LT
3021 for (i = 0; i <= end_zone; i++) {
3022 struct zone *zone = pgdat->node_zones + i;
3023
2ab44f43
MG
3024 if (!populated_zone(zone))
3025 continue;
3026
adea02a1 3027 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
3028
3029 /*
3030 * If any zone is currently balanced then kswapd will
3031 * not call compaction as it is expected that the
3032 * necessary pages are already available.
3033 */
3034 if (pgdat_needs_compaction &&
3035 zone_watermark_ok(zone, order,
3036 low_wmark_pages(zone),
3037 *classzone_idx, 0))
3038 pgdat_needs_compaction = false;
1da177e4
LT
3039 }
3040
b7ea3c41
MG
3041 /*
3042 * If we're getting trouble reclaiming, start doing writepage
3043 * even in laptop mode.
3044 */
3045 if (sc.priority < DEF_PRIORITY - 2)
3046 sc.may_writepage = 1;
3047
1da177e4
LT
3048 /*
3049 * Now scan the zone in the dma->highmem direction, stopping
3050 * at the last zone which needs scanning.
3051 *
3052 * We do this because the page allocator works in the opposite
3053 * direction. This prevents the page allocator from allocating
3054 * pages behind kswapd's direction of progress, which would
3055 * cause too much scanning of the lower zones.
3056 */
3057 for (i = 0; i <= end_zone; i++) {
3058 struct zone *zone = pgdat->node_zones + i;
3059
f3fe6512 3060 if (!populated_zone(zone))
1da177e4
LT
3061 continue;
3062
6e543d57
LD
3063 if (sc.priority != DEF_PRIORITY &&
3064 !zone_reclaimable(zone))
1da177e4
LT
3065 continue;
3066
1da177e4 3067 sc.nr_scanned = 0;
4e416953 3068
32a4330d 3069 /*
7c954f6d
MG
3070 * There should be no need to raise the scanning
3071 * priority if enough pages are already being scanned
3072 * that that high watermark would be met at 100%
3073 * efficiency.
fe2c2a10 3074 */
7c954f6d
MG
3075 if (kswapd_shrink_zone(zone, end_zone, &sc,
3076 lru_pages, &nr_attempted))
3077 raise_priority = false;
1da177e4 3078 }
5515061d
MG
3079
3080 /*
3081 * If the low watermark is met there is no need for processes
3082 * to be throttled on pfmemalloc_wait as they should not be
3083 * able to safely make forward progress. Wake them
3084 */
3085 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3086 pfmemalloc_watermark_ok(pgdat))
3087 wake_up(&pgdat->pfmemalloc_wait);
3088
1da177e4 3089 /*
b8e83b94
MG
3090 * Fragmentation may mean that the system cannot be rebalanced
3091 * for high-order allocations in all zones. If twice the
3092 * allocation size has been reclaimed and the zones are still
3093 * not balanced then recheck the watermarks at order-0 to
3094 * prevent kswapd reclaiming excessively. Assume that a
3095 * process requested a high-order can direct reclaim/compact.
1da177e4 3096 */
b8e83b94
MG
3097 if (order && sc.nr_reclaimed >= 2UL << order)
3098 order = sc.order = 0;
8357376d 3099
b8e83b94
MG
3100 /* Check if kswapd should be suspending */
3101 if (try_to_freeze() || kthread_should_stop())
3102 break;
8357376d 3103
2ab44f43
MG
3104 /*
3105 * Compact if necessary and kswapd is reclaiming at least the
3106 * high watermark number of pages as requsted
3107 */
3108 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3109 compact_pgdat(pgdat, order);
3110
73ce02e9 3111 /*
b8e83b94
MG
3112 * Raise priority if scanning rate is too low or there was no
3113 * progress in reclaiming pages
73ce02e9 3114 */
b8e83b94
MG
3115 if (raise_priority || !sc.nr_reclaimed)
3116 sc.priority--;
9aa41348 3117 } while (sc.priority >= 1 &&
b8e83b94 3118 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3119
b8e83b94 3120out:
0abdee2b 3121 /*
5515061d 3122 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3123 * makes a decision on the order we were last reclaiming at. However,
3124 * if another caller entered the allocator slow path while kswapd
3125 * was awake, order will remain at the higher level
3126 */
dc83edd9 3127 *classzone_idx = end_zone;
0abdee2b 3128 return order;
1da177e4
LT
3129}
3130
dc83edd9 3131static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3132{
3133 long remaining = 0;
3134 DEFINE_WAIT(wait);
3135
3136 if (freezing(current) || kthread_should_stop())
3137 return;
3138
3139 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3140
3141 /* Try to sleep for a short interval */
5515061d 3142 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3143 remaining = schedule_timeout(HZ/10);
3144 finish_wait(&pgdat->kswapd_wait, &wait);
3145 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3146 }
3147
3148 /*
3149 * After a short sleep, check if it was a premature sleep. If not, then
3150 * go fully to sleep until explicitly woken up.
3151 */
5515061d 3152 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3153 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3154
3155 /*
3156 * vmstat counters are not perfectly accurate and the estimated
3157 * value for counters such as NR_FREE_PAGES can deviate from the
3158 * true value by nr_online_cpus * threshold. To avoid the zone
3159 * watermarks being breached while under pressure, we reduce the
3160 * per-cpu vmstat threshold while kswapd is awake and restore
3161 * them before going back to sleep.
3162 */
3163 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3164
62997027
MG
3165 /*
3166 * Compaction records what page blocks it recently failed to
3167 * isolate pages from and skips them in the future scanning.
3168 * When kswapd is going to sleep, it is reasonable to assume
3169 * that pages and compaction may succeed so reset the cache.
3170 */
3171 reset_isolation_suitable(pgdat);
3172
1c7e7f6c
AK
3173 if (!kthread_should_stop())
3174 schedule();
3175
f0bc0a60
KM
3176 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3177 } else {
3178 if (remaining)
3179 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3180 else
3181 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3182 }
3183 finish_wait(&pgdat->kswapd_wait, &wait);
3184}
3185
1da177e4
LT
3186/*
3187 * The background pageout daemon, started as a kernel thread
4f98a2fe 3188 * from the init process.
1da177e4
LT
3189 *
3190 * This basically trickles out pages so that we have _some_
3191 * free memory available even if there is no other activity
3192 * that frees anything up. This is needed for things like routing
3193 * etc, where we otherwise might have all activity going on in
3194 * asynchronous contexts that cannot page things out.
3195 *
3196 * If there are applications that are active memory-allocators
3197 * (most normal use), this basically shouldn't matter.
3198 */
3199static int kswapd(void *p)
3200{
215ddd66 3201 unsigned long order, new_order;
d2ebd0f6 3202 unsigned balanced_order;
215ddd66 3203 int classzone_idx, new_classzone_idx;
d2ebd0f6 3204 int balanced_classzone_idx;
1da177e4
LT
3205 pg_data_t *pgdat = (pg_data_t*)p;
3206 struct task_struct *tsk = current;
f0bc0a60 3207
1da177e4
LT
3208 struct reclaim_state reclaim_state = {
3209 .reclaimed_slab = 0,
3210 };
a70f7302 3211 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3212
cf40bd16
NP
3213 lockdep_set_current_reclaim_state(GFP_KERNEL);
3214
174596a0 3215 if (!cpumask_empty(cpumask))
c5f59f08 3216 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3217 current->reclaim_state = &reclaim_state;
3218
3219 /*
3220 * Tell the memory management that we're a "memory allocator",
3221 * and that if we need more memory we should get access to it
3222 * regardless (see "__alloc_pages()"). "kswapd" should
3223 * never get caught in the normal page freeing logic.
3224 *
3225 * (Kswapd normally doesn't need memory anyway, but sometimes
3226 * you need a small amount of memory in order to be able to
3227 * page out something else, and this flag essentially protects
3228 * us from recursively trying to free more memory as we're
3229 * trying to free the first piece of memory in the first place).
3230 */
930d9152 3231 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3232 set_freezable();
1da177e4 3233
215ddd66 3234 order = new_order = 0;
d2ebd0f6 3235 balanced_order = 0;
215ddd66 3236 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3237 balanced_classzone_idx = classzone_idx;
1da177e4 3238 for ( ; ; ) {
6f6313d4 3239 bool ret;
3e1d1d28 3240
215ddd66
MG
3241 /*
3242 * If the last balance_pgdat was unsuccessful it's unlikely a
3243 * new request of a similar or harder type will succeed soon
3244 * so consider going to sleep on the basis we reclaimed at
3245 */
d2ebd0f6
AS
3246 if (balanced_classzone_idx >= new_classzone_idx &&
3247 balanced_order == new_order) {
215ddd66
MG
3248 new_order = pgdat->kswapd_max_order;
3249 new_classzone_idx = pgdat->classzone_idx;
3250 pgdat->kswapd_max_order = 0;
3251 pgdat->classzone_idx = pgdat->nr_zones - 1;
3252 }
3253
99504748 3254 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3255 /*
3256 * Don't sleep if someone wants a larger 'order'
99504748 3257 * allocation or has tigher zone constraints
1da177e4
LT
3258 */
3259 order = new_order;
99504748 3260 classzone_idx = new_classzone_idx;
1da177e4 3261 } else {
d2ebd0f6
AS
3262 kswapd_try_to_sleep(pgdat, balanced_order,
3263 balanced_classzone_idx);
1da177e4 3264 order = pgdat->kswapd_max_order;
99504748 3265 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3266 new_order = order;
3267 new_classzone_idx = classzone_idx;
4d40502e 3268 pgdat->kswapd_max_order = 0;
215ddd66 3269 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3270 }
1da177e4 3271
8fe23e05
DR
3272 ret = try_to_freeze();
3273 if (kthread_should_stop())
3274 break;
3275
3276 /*
3277 * We can speed up thawing tasks if we don't call balance_pgdat
3278 * after returning from the refrigerator
3279 */
33906bc5
MG
3280 if (!ret) {
3281 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3282 balanced_classzone_idx = classzone_idx;
3283 balanced_order = balance_pgdat(pgdat, order,
3284 &balanced_classzone_idx);
33906bc5 3285 }
1da177e4 3286 }
b0a8cc58
TY
3287
3288 current->reclaim_state = NULL;
1da177e4
LT
3289 return 0;
3290}
3291
3292/*
3293 * A zone is low on free memory, so wake its kswapd task to service it.
3294 */
99504748 3295void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3296{
3297 pg_data_t *pgdat;
3298
f3fe6512 3299 if (!populated_zone(zone))
1da177e4
LT
3300 return;
3301
88f5acf8 3302 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3303 return;
88f5acf8 3304 pgdat = zone->zone_pgdat;
99504748 3305 if (pgdat->kswapd_max_order < order) {
1da177e4 3306 pgdat->kswapd_max_order = order;
99504748
MG
3307 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3308 }
8d0986e2 3309 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3310 return;
892f795d 3311 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3312 return;
3313
3314 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3315 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3316}
3317
adea02a1
WF
3318/*
3319 * The reclaimable count would be mostly accurate.
3320 * The less reclaimable pages may be
3321 * - mlocked pages, which will be moved to unevictable list when encountered
3322 * - mapped pages, which may require several travels to be reclaimed
3323 * - dirty pages, which is not "instantly" reclaimable
3324 */
3325unsigned long global_reclaimable_pages(void)
4f98a2fe 3326{
adea02a1
WF
3327 int nr;
3328
3329 nr = global_page_state(NR_ACTIVE_FILE) +
3330 global_page_state(NR_INACTIVE_FILE);
3331
ec8acf20 3332 if (get_nr_swap_pages() > 0)
adea02a1
WF
3333 nr += global_page_state(NR_ACTIVE_ANON) +
3334 global_page_state(NR_INACTIVE_ANON);
3335
3336 return nr;
3337}
3338
c6f37f12 3339#ifdef CONFIG_HIBERNATION
1da177e4 3340/*
7b51755c 3341 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3342 * freed pages.
3343 *
3344 * Rather than trying to age LRUs the aim is to preserve the overall
3345 * LRU order by reclaiming preferentially
3346 * inactive > active > active referenced > active mapped
1da177e4 3347 */
7b51755c 3348unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3349{
d6277db4 3350 struct reclaim_state reclaim_state;
d6277db4 3351 struct scan_control sc = {
7b51755c
KM
3352 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3353 .may_swap = 1,
3354 .may_unmap = 1,
d6277db4 3355 .may_writepage = 1,
7b51755c
KM
3356 .nr_to_reclaim = nr_to_reclaim,
3357 .hibernation_mode = 1,
7b51755c 3358 .order = 0,
9e3b2f8c 3359 .priority = DEF_PRIORITY,
1da177e4 3360 };
a09ed5e0
YH
3361 struct shrink_control shrink = {
3362 .gfp_mask = sc.gfp_mask,
3363 };
3364 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3365 struct task_struct *p = current;
3366 unsigned long nr_reclaimed;
1da177e4 3367
7b51755c
KM
3368 p->flags |= PF_MEMALLOC;
3369 lockdep_set_current_reclaim_state(sc.gfp_mask);
3370 reclaim_state.reclaimed_slab = 0;
3371 p->reclaim_state = &reclaim_state;
d6277db4 3372
a09ed5e0 3373 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3374
7b51755c
KM
3375 p->reclaim_state = NULL;
3376 lockdep_clear_current_reclaim_state();
3377 p->flags &= ~PF_MEMALLOC;
d6277db4 3378
7b51755c 3379 return nr_reclaimed;
1da177e4 3380}
c6f37f12 3381#endif /* CONFIG_HIBERNATION */
1da177e4 3382
1da177e4
LT
3383/* It's optimal to keep kswapds on the same CPUs as their memory, but
3384 not required for correctness. So if the last cpu in a node goes
3385 away, we get changed to run anywhere: as the first one comes back,
3386 restore their cpu bindings. */
fcb35a9b
GKH
3387static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3388 void *hcpu)
1da177e4 3389{
58c0a4a7 3390 int nid;
1da177e4 3391
8bb78442 3392 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3393 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3394 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3395 const struct cpumask *mask;
3396
3397 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3398
3e597945 3399 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3400 /* One of our CPUs online: restore mask */
c5f59f08 3401 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3402 }
3403 }
3404 return NOTIFY_OK;
3405}
1da177e4 3406
3218ae14
YG
3407/*
3408 * This kswapd start function will be called by init and node-hot-add.
3409 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3410 */
3411int kswapd_run(int nid)
3412{
3413 pg_data_t *pgdat = NODE_DATA(nid);
3414 int ret = 0;
3415
3416 if (pgdat->kswapd)
3417 return 0;
3418
3419 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3420 if (IS_ERR(pgdat->kswapd)) {
3421 /* failure at boot is fatal */
3422 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3423 pr_err("Failed to start kswapd on node %d\n", nid);
3424 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3425 pgdat->kswapd = NULL;
3218ae14
YG
3426 }
3427 return ret;
3428}
3429
8fe23e05 3430/*
d8adde17
JL
3431 * Called by memory hotplug when all memory in a node is offlined. Caller must
3432 * hold lock_memory_hotplug().
8fe23e05
DR
3433 */
3434void kswapd_stop(int nid)
3435{
3436 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3437
d8adde17 3438 if (kswapd) {
8fe23e05 3439 kthread_stop(kswapd);
d8adde17
JL
3440 NODE_DATA(nid)->kswapd = NULL;
3441 }
8fe23e05
DR
3442}
3443
1da177e4
LT
3444static int __init kswapd_init(void)
3445{
3218ae14 3446 int nid;
69e05944 3447
1da177e4 3448 swap_setup();
48fb2e24 3449 for_each_node_state(nid, N_MEMORY)
3218ae14 3450 kswapd_run(nid);
1da177e4
LT
3451 hotcpu_notifier(cpu_callback, 0);
3452 return 0;
3453}
3454
3455module_init(kswapd_init)
9eeff239
CL
3456
3457#ifdef CONFIG_NUMA
3458/*
3459 * Zone reclaim mode
3460 *
3461 * If non-zero call zone_reclaim when the number of free pages falls below
3462 * the watermarks.
9eeff239
CL
3463 */
3464int zone_reclaim_mode __read_mostly;
3465
1b2ffb78 3466#define RECLAIM_OFF 0
7d03431c 3467#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3468#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3469#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3470
a92f7126
CL
3471/*
3472 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3473 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3474 * a zone.
3475 */
3476#define ZONE_RECLAIM_PRIORITY 4
3477
9614634f
CL
3478/*
3479 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3480 * occur.
3481 */
3482int sysctl_min_unmapped_ratio = 1;
3483
0ff38490
CL
3484/*
3485 * If the number of slab pages in a zone grows beyond this percentage then
3486 * slab reclaim needs to occur.
3487 */
3488int sysctl_min_slab_ratio = 5;
3489
90afa5de
MG
3490static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3491{
3492 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3493 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3494 zone_page_state(zone, NR_ACTIVE_FILE);
3495
3496 /*
3497 * It's possible for there to be more file mapped pages than
3498 * accounted for by the pages on the file LRU lists because
3499 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3500 */
3501 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3502}
3503
3504/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3505static long zone_pagecache_reclaimable(struct zone *zone)
3506{
3507 long nr_pagecache_reclaimable;
3508 long delta = 0;
3509
3510 /*
3511 * If RECLAIM_SWAP is set, then all file pages are considered
3512 * potentially reclaimable. Otherwise, we have to worry about
3513 * pages like swapcache and zone_unmapped_file_pages() provides
3514 * a better estimate
3515 */
3516 if (zone_reclaim_mode & RECLAIM_SWAP)
3517 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3518 else
3519 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3520
3521 /* If we can't clean pages, remove dirty pages from consideration */
3522 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3523 delta += zone_page_state(zone, NR_FILE_DIRTY);
3524
3525 /* Watch for any possible underflows due to delta */
3526 if (unlikely(delta > nr_pagecache_reclaimable))
3527 delta = nr_pagecache_reclaimable;
3528
3529 return nr_pagecache_reclaimable - delta;
3530}
3531
9eeff239
CL
3532/*
3533 * Try to free up some pages from this zone through reclaim.
3534 */
179e9639 3535static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3536{
7fb2d46d 3537 /* Minimum pages needed in order to stay on node */
69e05944 3538 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3539 struct task_struct *p = current;
3540 struct reclaim_state reclaim_state;
179e9639
AM
3541 struct scan_control sc = {
3542 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3543 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3544 .may_swap = 1,
62b726c1 3545 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3546 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3547 .order = order,
9e3b2f8c 3548 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3549 };
a09ed5e0
YH
3550 struct shrink_control shrink = {
3551 .gfp_mask = sc.gfp_mask,
3552 };
15748048 3553 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3554
9eeff239 3555 cond_resched();
d4f7796e
CL
3556 /*
3557 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3558 * and we also need to be able to write out pages for RECLAIM_WRITE
3559 * and RECLAIM_SWAP.
3560 */
3561 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3562 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3563 reclaim_state.reclaimed_slab = 0;
3564 p->reclaim_state = &reclaim_state;
c84db23c 3565
90afa5de 3566 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3567 /*
3568 * Free memory by calling shrink zone with increasing
3569 * priorities until we have enough memory freed.
3570 */
0ff38490 3571 do {
9e3b2f8c
KK
3572 shrink_zone(zone, &sc);
3573 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3574 }
c84db23c 3575
15748048
KM
3576 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3577 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3578 /*
7fb2d46d 3579 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3580 * many pages were freed in this zone. So we take the current
3581 * number of slab pages and shake the slab until it is reduced
3582 * by the same nr_pages that we used for reclaiming unmapped
3583 * pages.
2a16e3f4 3584 */
0ce3d744
DC
3585 nodes_clear(shrink.nodes_to_scan);
3586 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3587 for (;;) {
3588 unsigned long lru_pages = zone_reclaimable_pages(zone);
3589
3590 /* No reclaimable slab or very low memory pressure */
1495f230 3591 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3592 break;
3593
3594 /* Freed enough memory */
3595 nr_slab_pages1 = zone_page_state(zone,
3596 NR_SLAB_RECLAIMABLE);
3597 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3598 break;
3599 }
83e33a47
CL
3600
3601 /*
3602 * Update nr_reclaimed by the number of slab pages we
3603 * reclaimed from this zone.
3604 */
15748048
KM
3605 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3606 if (nr_slab_pages1 < nr_slab_pages0)
3607 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3608 }
3609
9eeff239 3610 p->reclaim_state = NULL;
d4f7796e 3611 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3612 lockdep_clear_current_reclaim_state();
a79311c1 3613 return sc.nr_reclaimed >= nr_pages;
9eeff239 3614}
179e9639
AM
3615
3616int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3617{
179e9639 3618 int node_id;
d773ed6b 3619 int ret;
179e9639
AM
3620
3621 /*
0ff38490
CL
3622 * Zone reclaim reclaims unmapped file backed pages and
3623 * slab pages if we are over the defined limits.
34aa1330 3624 *
9614634f
CL
3625 * A small portion of unmapped file backed pages is needed for
3626 * file I/O otherwise pages read by file I/O will be immediately
3627 * thrown out if the zone is overallocated. So we do not reclaim
3628 * if less than a specified percentage of the zone is used by
3629 * unmapped file backed pages.
179e9639 3630 */
90afa5de
MG
3631 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3632 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3633 return ZONE_RECLAIM_FULL;
179e9639 3634
6e543d57 3635 if (!zone_reclaimable(zone))
fa5e084e 3636 return ZONE_RECLAIM_FULL;
d773ed6b 3637
179e9639 3638 /*
d773ed6b 3639 * Do not scan if the allocation should not be delayed.
179e9639 3640 */
d773ed6b 3641 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3642 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3643
3644 /*
3645 * Only run zone reclaim on the local zone or on zones that do not
3646 * have associated processors. This will favor the local processor
3647 * over remote processors and spread off node memory allocations
3648 * as wide as possible.
3649 */
89fa3024 3650 node_id = zone_to_nid(zone);
37c0708d 3651 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3652 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3653
3654 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3655 return ZONE_RECLAIM_NOSCAN;
3656
d773ed6b
DR
3657 ret = __zone_reclaim(zone, gfp_mask, order);
3658 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3659
24cf7251
MG
3660 if (!ret)
3661 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3662
d773ed6b 3663 return ret;
179e9639 3664}
9eeff239 3665#endif
894bc310 3666
894bc310
LS
3667/*
3668 * page_evictable - test whether a page is evictable
3669 * @page: the page to test
894bc310
LS
3670 *
3671 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3672 * lists vs unevictable list.
894bc310
LS
3673 *
3674 * Reasons page might not be evictable:
ba9ddf49 3675 * (1) page's mapping marked unevictable
b291f000 3676 * (2) page is part of an mlocked VMA
ba9ddf49 3677 *
894bc310 3678 */
39b5f29a 3679int page_evictable(struct page *page)
894bc310 3680{
39b5f29a 3681 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3682}
89e004ea 3683
85046579 3684#ifdef CONFIG_SHMEM
89e004ea 3685/**
24513264
HD
3686 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3687 * @pages: array of pages to check
3688 * @nr_pages: number of pages to check
89e004ea 3689 *
24513264 3690 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3691 *
3692 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3693 */
24513264 3694void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3695{
925b7673 3696 struct lruvec *lruvec;
24513264
HD
3697 struct zone *zone = NULL;
3698 int pgscanned = 0;
3699 int pgrescued = 0;
3700 int i;
89e004ea 3701
24513264
HD
3702 for (i = 0; i < nr_pages; i++) {
3703 struct page *page = pages[i];
3704 struct zone *pagezone;
89e004ea 3705
24513264
HD
3706 pgscanned++;
3707 pagezone = page_zone(page);
3708 if (pagezone != zone) {
3709 if (zone)
3710 spin_unlock_irq(&zone->lru_lock);
3711 zone = pagezone;
3712 spin_lock_irq(&zone->lru_lock);
3713 }
fa9add64 3714 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3715
24513264
HD
3716 if (!PageLRU(page) || !PageUnevictable(page))
3717 continue;
89e004ea 3718
39b5f29a 3719 if (page_evictable(page)) {
24513264
HD
3720 enum lru_list lru = page_lru_base_type(page);
3721
3722 VM_BUG_ON(PageActive(page));
3723 ClearPageUnevictable(page);
fa9add64
HD
3724 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3725 add_page_to_lru_list(page, lruvec, lru);
24513264 3726 pgrescued++;
89e004ea 3727 }
24513264 3728 }
89e004ea 3729
24513264
HD
3730 if (zone) {
3731 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3732 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3733 spin_unlock_irq(&zone->lru_lock);
89e004ea 3734 }
89e004ea 3735}
85046579 3736#endif /* CONFIG_SHMEM */
af936a16 3737
264e56d8 3738static void warn_scan_unevictable_pages(void)
af936a16 3739{
264e56d8 3740 printk_once(KERN_WARNING
25bd91bd 3741 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3742 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3743 "one, please send an email to linux-mm@kvack.org.\n",
3744 current->comm);
af936a16
LS
3745}
3746
3747/*
3748 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3749 * all nodes' unevictable lists for evictable pages
3750 */
3751unsigned long scan_unevictable_pages;
3752
3753int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3754 void __user *buffer,
af936a16
LS
3755 size_t *length, loff_t *ppos)
3756{
264e56d8 3757 warn_scan_unevictable_pages();
8d65af78 3758 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3759 scan_unevictable_pages = 0;
3760 return 0;
3761}
3762
e4455abb 3763#ifdef CONFIG_NUMA
af936a16
LS
3764/*
3765 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3766 * a specified node's per zone unevictable lists for evictable pages.
3767 */
3768
10fbcf4c
KS
3769static ssize_t read_scan_unevictable_node(struct device *dev,
3770 struct device_attribute *attr,
af936a16
LS
3771 char *buf)
3772{
264e56d8 3773 warn_scan_unevictable_pages();
af936a16
LS
3774 return sprintf(buf, "0\n"); /* always zero; should fit... */
3775}
3776
10fbcf4c
KS
3777static ssize_t write_scan_unevictable_node(struct device *dev,
3778 struct device_attribute *attr,
af936a16
LS
3779 const char *buf, size_t count)
3780{
264e56d8 3781 warn_scan_unevictable_pages();
af936a16
LS
3782 return 1;
3783}
3784
3785
10fbcf4c 3786static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3787 read_scan_unevictable_node,
3788 write_scan_unevictable_node);
3789
3790int scan_unevictable_register_node(struct node *node)
3791{
10fbcf4c 3792 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3793}
3794
3795void scan_unevictable_unregister_node(struct node *node)
3796{
10fbcf4c 3797 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3798}
e4455abb 3799#endif