Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 | 2 | /* |
1da177e4 LT |
3 | * Copyright (C) 1993 Linus Torvalds |
4 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
5 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 | |
6 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
930fc45a | 7 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
d758ffe6 | 8 | * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 |
1da177e4 LT |
9 | */ |
10 | ||
db64fe02 | 11 | #include <linux/vmalloc.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
c3edc401 | 15 | #include <linux/sched/signal.h> |
1da177e4 LT |
16 | #include <linux/slab.h> |
17 | #include <linux/spinlock.h> | |
18 | #include <linux/interrupt.h> | |
5f6a6a9c | 19 | #include <linux/proc_fs.h> |
a10aa579 | 20 | #include <linux/seq_file.h> |
868b104d | 21 | #include <linux/set_memory.h> |
3ac7fe5a | 22 | #include <linux/debugobjects.h> |
23016969 | 23 | #include <linux/kallsyms.h> |
db64fe02 | 24 | #include <linux/list.h> |
4da56b99 | 25 | #include <linux/notifier.h> |
db64fe02 | 26 | #include <linux/rbtree.h> |
0f14599c | 27 | #include <linux/xarray.h> |
5da96bdd | 28 | #include <linux/io.h> |
db64fe02 | 29 | #include <linux/rcupdate.h> |
f0aa6617 | 30 | #include <linux/pfn.h> |
89219d37 | 31 | #include <linux/kmemleak.h> |
60063497 | 32 | #include <linux/atomic.h> |
3b32123d | 33 | #include <linux/compiler.h> |
4e5aa1f4 | 34 | #include <linux/memcontrol.h> |
32fcfd40 | 35 | #include <linux/llist.h> |
4c91c07c | 36 | #include <linux/uio.h> |
0f616be1 | 37 | #include <linux/bitops.h> |
68ad4a33 | 38 | #include <linux/rbtree_augmented.h> |
bdebd6a2 | 39 | #include <linux/overflow.h> |
c0eb315a | 40 | #include <linux/pgtable.h> |
f7ee1f13 | 41 | #include <linux/hugetlb.h> |
451769eb | 42 | #include <linux/sched/mm.h> |
1da177e4 | 43 | #include <asm/tlbflush.h> |
2dca6999 | 44 | #include <asm/shmparam.h> |
21e516b9 | 45 | #include <linux/page_owner.h> |
1da177e4 | 46 | |
cf243da6 URS |
47 | #define CREATE_TRACE_POINTS |
48 | #include <trace/events/vmalloc.h> | |
49 | ||
dd56b046 | 50 | #include "internal.h" |
2a681cfa | 51 | #include "pgalloc-track.h" |
dd56b046 | 52 | |
82a70ce0 CH |
53 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP |
54 | static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; | |
55 | ||
56 | static int __init set_nohugeiomap(char *str) | |
57 | { | |
58 | ioremap_max_page_shift = PAGE_SHIFT; | |
59 | return 0; | |
60 | } | |
61 | early_param("nohugeiomap", set_nohugeiomap); | |
62 | #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ | |
63 | static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; | |
64 | #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ | |
65 | ||
121e6f32 NP |
66 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC |
67 | static bool __ro_after_init vmap_allow_huge = true; | |
68 | ||
69 | static int __init set_nohugevmalloc(char *str) | |
70 | { | |
71 | vmap_allow_huge = false; | |
72 | return 0; | |
73 | } | |
74 | early_param("nohugevmalloc", set_nohugevmalloc); | |
75 | #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ | |
76 | static const bool vmap_allow_huge = false; | |
77 | #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ | |
78 | ||
186525bd IM |
79 | bool is_vmalloc_addr(const void *x) |
80 | { | |
4aff1dc4 | 81 | unsigned long addr = (unsigned long)kasan_reset_tag(x); |
186525bd IM |
82 | |
83 | return addr >= VMALLOC_START && addr < VMALLOC_END; | |
84 | } | |
85 | EXPORT_SYMBOL(is_vmalloc_addr); | |
86 | ||
32fcfd40 AV |
87 | struct vfree_deferred { |
88 | struct llist_head list; | |
89 | struct work_struct wq; | |
90 | }; | |
91 | static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); | |
92 | ||
db64fe02 | 93 | /*** Page table manipulation functions ***/ |
5e9e3d77 NP |
94 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
95 | phys_addr_t phys_addr, pgprot_t prot, | |
f7ee1f13 | 96 | unsigned int max_page_shift, pgtbl_mod_mask *mask) |
5e9e3d77 NP |
97 | { |
98 | pte_t *pte; | |
99 | u64 pfn; | |
21e516b9 | 100 | struct page *page; |
f7ee1f13 | 101 | unsigned long size = PAGE_SIZE; |
5e9e3d77 NP |
102 | |
103 | pfn = phys_addr >> PAGE_SHIFT; | |
104 | pte = pte_alloc_kernel_track(pmd, addr, mask); | |
105 | if (!pte) | |
106 | return -ENOMEM; | |
44562c71 RR |
107 | |
108 | arch_enter_lazy_mmu_mode(); | |
109 | ||
5e9e3d77 | 110 | do { |
6963f008 | 111 | if (unlikely(!pte_none(ptep_get(pte)))) { |
21e516b9 HP |
112 | if (pfn_valid(pfn)) { |
113 | page = pfn_to_page(pfn); | |
114 | dump_page(page, "remapping already mapped page"); | |
115 | } | |
116 | BUG(); | |
117 | } | |
f7ee1f13 CL |
118 | |
119 | #ifdef CONFIG_HUGETLB_PAGE | |
120 | size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); | |
121 | if (size != PAGE_SIZE) { | |
122 | pte_t entry = pfn_pte(pfn, prot); | |
123 | ||
f7ee1f13 | 124 | entry = arch_make_huge_pte(entry, ilog2(size), 0); |
935d4f0c | 125 | set_huge_pte_at(&init_mm, addr, pte, entry, size); |
f7ee1f13 CL |
126 | pfn += PFN_DOWN(size); |
127 | continue; | |
128 | } | |
129 | #endif | |
5e9e3d77 NP |
130 | set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); |
131 | pfn++; | |
f7ee1f13 | 132 | } while (pte += PFN_DOWN(size), addr += size, addr != end); |
44562c71 RR |
133 | |
134 | arch_leave_lazy_mmu_mode(); | |
5e9e3d77 NP |
135 | *mask |= PGTBL_PTE_MODIFIED; |
136 | return 0; | |
137 | } | |
138 | ||
139 | static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, | |
140 | phys_addr_t phys_addr, pgprot_t prot, | |
141 | unsigned int max_page_shift) | |
142 | { | |
143 | if (max_page_shift < PMD_SHIFT) | |
144 | return 0; | |
145 | ||
146 | if (!arch_vmap_pmd_supported(prot)) | |
147 | return 0; | |
148 | ||
149 | if ((end - addr) != PMD_SIZE) | |
150 | return 0; | |
151 | ||
152 | if (!IS_ALIGNED(addr, PMD_SIZE)) | |
153 | return 0; | |
154 | ||
155 | if (!IS_ALIGNED(phys_addr, PMD_SIZE)) | |
156 | return 0; | |
157 | ||
158 | if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) | |
159 | return 0; | |
160 | ||
161 | return pmd_set_huge(pmd, phys_addr, prot); | |
162 | } | |
163 | ||
164 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, | |
165 | phys_addr_t phys_addr, pgprot_t prot, | |
166 | unsigned int max_page_shift, pgtbl_mod_mask *mask) | |
167 | { | |
168 | pmd_t *pmd; | |
169 | unsigned long next; | |
170 | ||
171 | pmd = pmd_alloc_track(&init_mm, pud, addr, mask); | |
172 | if (!pmd) | |
173 | return -ENOMEM; | |
174 | do { | |
175 | next = pmd_addr_end(addr, end); | |
176 | ||
177 | if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, | |
178 | max_page_shift)) { | |
179 | *mask |= PGTBL_PMD_MODIFIED; | |
180 | continue; | |
181 | } | |
182 | ||
f7ee1f13 | 183 | if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) |
5e9e3d77 NP |
184 | return -ENOMEM; |
185 | } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); | |
186 | return 0; | |
187 | } | |
188 | ||
189 | static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, | |
190 | phys_addr_t phys_addr, pgprot_t prot, | |
191 | unsigned int max_page_shift) | |
192 | { | |
193 | if (max_page_shift < PUD_SHIFT) | |
194 | return 0; | |
195 | ||
196 | if (!arch_vmap_pud_supported(prot)) | |
197 | return 0; | |
198 | ||
199 | if ((end - addr) != PUD_SIZE) | |
200 | return 0; | |
201 | ||
202 | if (!IS_ALIGNED(addr, PUD_SIZE)) | |
203 | return 0; | |
204 | ||
205 | if (!IS_ALIGNED(phys_addr, PUD_SIZE)) | |
206 | return 0; | |
207 | ||
208 | if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) | |
209 | return 0; | |
210 | ||
211 | return pud_set_huge(pud, phys_addr, prot); | |
212 | } | |
213 | ||
214 | static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, | |
215 | phys_addr_t phys_addr, pgprot_t prot, | |
216 | unsigned int max_page_shift, pgtbl_mod_mask *mask) | |
217 | { | |
218 | pud_t *pud; | |
219 | unsigned long next; | |
220 | ||
221 | pud = pud_alloc_track(&init_mm, p4d, addr, mask); | |
222 | if (!pud) | |
223 | return -ENOMEM; | |
224 | do { | |
225 | next = pud_addr_end(addr, end); | |
226 | ||
227 | if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, | |
228 | max_page_shift)) { | |
229 | *mask |= PGTBL_PUD_MODIFIED; | |
230 | continue; | |
231 | } | |
232 | ||
233 | if (vmap_pmd_range(pud, addr, next, phys_addr, prot, | |
234 | max_page_shift, mask)) | |
235 | return -ENOMEM; | |
236 | } while (pud++, phys_addr += (next - addr), addr = next, addr != end); | |
237 | return 0; | |
238 | } | |
239 | ||
240 | static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, | |
241 | phys_addr_t phys_addr, pgprot_t prot, | |
242 | unsigned int max_page_shift) | |
243 | { | |
244 | if (max_page_shift < P4D_SHIFT) | |
245 | return 0; | |
246 | ||
247 | if (!arch_vmap_p4d_supported(prot)) | |
248 | return 0; | |
249 | ||
250 | if ((end - addr) != P4D_SIZE) | |
251 | return 0; | |
252 | ||
253 | if (!IS_ALIGNED(addr, P4D_SIZE)) | |
254 | return 0; | |
255 | ||
256 | if (!IS_ALIGNED(phys_addr, P4D_SIZE)) | |
257 | return 0; | |
258 | ||
259 | if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) | |
260 | return 0; | |
261 | ||
262 | return p4d_set_huge(p4d, phys_addr, prot); | |
263 | } | |
264 | ||
265 | static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, | |
266 | phys_addr_t phys_addr, pgprot_t prot, | |
267 | unsigned int max_page_shift, pgtbl_mod_mask *mask) | |
268 | { | |
269 | p4d_t *p4d; | |
270 | unsigned long next; | |
271 | ||
272 | p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); | |
273 | if (!p4d) | |
274 | return -ENOMEM; | |
275 | do { | |
276 | next = p4d_addr_end(addr, end); | |
277 | ||
278 | if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, | |
279 | max_page_shift)) { | |
280 | *mask |= PGTBL_P4D_MODIFIED; | |
281 | continue; | |
282 | } | |
283 | ||
284 | if (vmap_pud_range(p4d, addr, next, phys_addr, prot, | |
285 | max_page_shift, mask)) | |
286 | return -ENOMEM; | |
287 | } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); | |
288 | return 0; | |
289 | } | |
290 | ||
5d87510d | 291 | static int vmap_range_noflush(unsigned long addr, unsigned long end, |
5e9e3d77 NP |
292 | phys_addr_t phys_addr, pgprot_t prot, |
293 | unsigned int max_page_shift) | |
294 | { | |
295 | pgd_t *pgd; | |
296 | unsigned long start; | |
297 | unsigned long next; | |
298 | int err; | |
299 | pgtbl_mod_mask mask = 0; | |
300 | ||
301 | might_sleep(); | |
302 | BUG_ON(addr >= end); | |
303 | ||
304 | start = addr; | |
305 | pgd = pgd_offset_k(addr); | |
306 | do { | |
307 | next = pgd_addr_end(addr, end); | |
308 | err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, | |
309 | max_page_shift, &mask); | |
310 | if (err) | |
311 | break; | |
312 | } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); | |
313 | ||
5e9e3d77 NP |
314 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) |
315 | arch_sync_kernel_mappings(start, end); | |
316 | ||
317 | return err; | |
318 | } | |
b221385b | 319 | |
d7bca919 AS |
320 | int vmap_page_range(unsigned long addr, unsigned long end, |
321 | phys_addr_t phys_addr, pgprot_t prot) | |
322 | { | |
323 | int err; | |
324 | ||
325 | err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), | |
326 | ioremap_max_page_shift); | |
327 | flush_cache_vmap(addr, end); | |
328 | if (!err) | |
329 | err = kmsan_ioremap_page_range(addr, end, phys_addr, prot, | |
330 | ioremap_max_page_shift); | |
331 | return err; | |
332 | } | |
333 | ||
82a70ce0 CH |
334 | int ioremap_page_range(unsigned long addr, unsigned long end, |
335 | phys_addr_t phys_addr, pgprot_t prot) | |
5d87510d | 336 | { |
3e49a866 | 337 | struct vm_struct *area; |
5d87510d | 338 | |
3e49a866 AS |
339 | area = find_vm_area((void *)addr); |
340 | if (!area || !(area->flags & VM_IOREMAP)) { | |
341 | WARN_ONCE(1, "vm_area at addr %lx is not marked as VM_IOREMAP\n", addr); | |
342 | return -EINVAL; | |
343 | } | |
344 | if (addr != (unsigned long)area->addr || | |
345 | (void *)end != area->addr + get_vm_area_size(area)) { | |
346 | WARN_ONCE(1, "ioremap request [%lx,%lx) doesn't match vm_area [%lx, %lx)\n", | |
347 | addr, end, (long)area->addr, | |
348 | (long)area->addr + get_vm_area_size(area)); | |
349 | return -ERANGE; | |
350 | } | |
d7bca919 | 351 | return vmap_page_range(addr, end, phys_addr, prot); |
5d87510d NP |
352 | } |
353 | ||
2ba3e694 JR |
354 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
355 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
356 | { |
357 | pte_t *pte; | |
2fba1337 RR |
358 | pte_t ptent; |
359 | unsigned long size = PAGE_SIZE; | |
1da177e4 LT |
360 | |
361 | pte = pte_offset_kernel(pmd, addr); | |
44562c71 RR |
362 | arch_enter_lazy_mmu_mode(); |
363 | ||
1da177e4 | 364 | do { |
2fba1337 RR |
365 | #ifdef CONFIG_HUGETLB_PAGE |
366 | size = arch_vmap_pte_range_unmap_size(addr, pte); | |
367 | if (size != PAGE_SIZE) { | |
368 | if (WARN_ON(!IS_ALIGNED(addr, size))) { | |
369 | addr = ALIGN_DOWN(addr, size); | |
370 | pte = PTR_ALIGN_DOWN(pte, sizeof(*pte) * (size >> PAGE_SHIFT)); | |
371 | } | |
372 | ptent = huge_ptep_get_and_clear(&init_mm, addr, pte, size); | |
373 | if (WARN_ON(end - addr < size)) | |
374 | size = end - addr; | |
375 | } else | |
376 | #endif | |
377 | ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
1da177e4 | 378 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); |
2fba1337 | 379 | } while (pte += (size >> PAGE_SHIFT), addr += size, addr != end); |
44562c71 RR |
380 | |
381 | arch_leave_lazy_mmu_mode(); | |
2ba3e694 | 382 | *mask |= PGTBL_PTE_MODIFIED; |
1da177e4 LT |
383 | } |
384 | ||
2ba3e694 JR |
385 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, |
386 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
387 | { |
388 | pmd_t *pmd; | |
389 | unsigned long next; | |
2ba3e694 | 390 | int cleared; |
1da177e4 LT |
391 | |
392 | pmd = pmd_offset(pud, addr); | |
393 | do { | |
394 | next = pmd_addr_end(addr, end); | |
2ba3e694 JR |
395 | |
396 | cleared = pmd_clear_huge(pmd); | |
397 | if (cleared || pmd_bad(*pmd)) | |
398 | *mask |= PGTBL_PMD_MODIFIED; | |
399 | ||
61ef8dda RR |
400 | if (cleared) { |
401 | WARN_ON(next - addr < PMD_SIZE); | |
b9820d8f | 402 | continue; |
61ef8dda | 403 | } |
1da177e4 LT |
404 | if (pmd_none_or_clear_bad(pmd)) |
405 | continue; | |
2ba3e694 | 406 | vunmap_pte_range(pmd, addr, next, mask); |
e47110e9 AK |
407 | |
408 | cond_resched(); | |
1da177e4 LT |
409 | } while (pmd++, addr = next, addr != end); |
410 | } | |
411 | ||
2ba3e694 JR |
412 | static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, |
413 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
414 | { |
415 | pud_t *pud; | |
416 | unsigned long next; | |
2ba3e694 | 417 | int cleared; |
1da177e4 | 418 | |
c2febafc | 419 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
420 | do { |
421 | next = pud_addr_end(addr, end); | |
2ba3e694 JR |
422 | |
423 | cleared = pud_clear_huge(pud); | |
424 | if (cleared || pud_bad(*pud)) | |
425 | *mask |= PGTBL_PUD_MODIFIED; | |
426 | ||
61ef8dda RR |
427 | if (cleared) { |
428 | WARN_ON(next - addr < PUD_SIZE); | |
b9820d8f | 429 | continue; |
61ef8dda | 430 | } |
1da177e4 LT |
431 | if (pud_none_or_clear_bad(pud)) |
432 | continue; | |
2ba3e694 | 433 | vunmap_pmd_range(pud, addr, next, mask); |
1da177e4 LT |
434 | } while (pud++, addr = next, addr != end); |
435 | } | |
436 | ||
2ba3e694 JR |
437 | static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, |
438 | pgtbl_mod_mask *mask) | |
c2febafc KS |
439 | { |
440 | p4d_t *p4d; | |
441 | unsigned long next; | |
442 | ||
443 | p4d = p4d_offset(pgd, addr); | |
444 | do { | |
445 | next = p4d_addr_end(addr, end); | |
2ba3e694 | 446 | |
c8db8c26 L |
447 | p4d_clear_huge(p4d); |
448 | if (p4d_bad(*p4d)) | |
2ba3e694 JR |
449 | *mask |= PGTBL_P4D_MODIFIED; |
450 | ||
c2febafc KS |
451 | if (p4d_none_or_clear_bad(p4d)) |
452 | continue; | |
2ba3e694 | 453 | vunmap_pud_range(p4d, addr, next, mask); |
c2febafc KS |
454 | } while (p4d++, addr = next, addr != end); |
455 | } | |
456 | ||
4ad0ae8c NP |
457 | /* |
458 | * vunmap_range_noflush is similar to vunmap_range, but does not | |
459 | * flush caches or TLBs. | |
b521c43f | 460 | * |
4ad0ae8c NP |
461 | * The caller is responsible for calling flush_cache_vmap() before calling |
462 | * this function, and flush_tlb_kernel_range after it has returned | |
463 | * successfully (and before the addresses are expected to cause a page fault | |
464 | * or be re-mapped for something else, if TLB flushes are being delayed or | |
465 | * coalesced). | |
b521c43f | 466 | * |
4ad0ae8c | 467 | * This is an internal function only. Do not use outside mm/. |
b521c43f | 468 | */ |
b073d7f8 | 469 | void __vunmap_range_noflush(unsigned long start, unsigned long end) |
1da177e4 | 470 | { |
1da177e4 | 471 | unsigned long next; |
b521c43f | 472 | pgd_t *pgd; |
2ba3e694 JR |
473 | unsigned long addr = start; |
474 | pgtbl_mod_mask mask = 0; | |
1da177e4 LT |
475 | |
476 | BUG_ON(addr >= end); | |
477 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
478 | do { |
479 | next = pgd_addr_end(addr, end); | |
2ba3e694 JR |
480 | if (pgd_bad(*pgd)) |
481 | mask |= PGTBL_PGD_MODIFIED; | |
1da177e4 LT |
482 | if (pgd_none_or_clear_bad(pgd)) |
483 | continue; | |
2ba3e694 | 484 | vunmap_p4d_range(pgd, addr, next, &mask); |
1da177e4 | 485 | } while (pgd++, addr = next, addr != end); |
2ba3e694 JR |
486 | |
487 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) | |
488 | arch_sync_kernel_mappings(start, end); | |
1da177e4 LT |
489 | } |
490 | ||
b073d7f8 AP |
491 | void vunmap_range_noflush(unsigned long start, unsigned long end) |
492 | { | |
493 | kmsan_vunmap_range_noflush(start, end); | |
494 | __vunmap_range_noflush(start, end); | |
495 | } | |
496 | ||
4ad0ae8c NP |
497 | /** |
498 | * vunmap_range - unmap kernel virtual addresses | |
499 | * @addr: start of the VM area to unmap | |
500 | * @end: end of the VM area to unmap (non-inclusive) | |
501 | * | |
502 | * Clears any present PTEs in the virtual address range, flushes TLBs and | |
503 | * caches. Any subsequent access to the address before it has been re-mapped | |
504 | * is a kernel bug. | |
505 | */ | |
506 | void vunmap_range(unsigned long addr, unsigned long end) | |
507 | { | |
508 | flush_cache_vunmap(addr, end); | |
509 | vunmap_range_noflush(addr, end); | |
510 | flush_tlb_kernel_range(addr, end); | |
511 | } | |
512 | ||
0a264884 | 513 | static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, |
2ba3e694 JR |
514 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
515 | pgtbl_mod_mask *mask) | |
1da177e4 | 516 | { |
fea18c68 | 517 | int err = 0; |
1da177e4 LT |
518 | pte_t *pte; |
519 | ||
db64fe02 NP |
520 | /* |
521 | * nr is a running index into the array which helps higher level | |
522 | * callers keep track of where we're up to. | |
523 | */ | |
524 | ||
2ba3e694 | 525 | pte = pte_alloc_kernel_track(pmd, addr, mask); |
1da177e4 LT |
526 | if (!pte) |
527 | return -ENOMEM; | |
44562c71 RR |
528 | |
529 | arch_enter_lazy_mmu_mode(); | |
530 | ||
1da177e4 | 531 | do { |
db64fe02 NP |
532 | struct page *page = pages[*nr]; |
533 | ||
fea18c68 AG |
534 | if (WARN_ON(!pte_none(ptep_get(pte)))) { |
535 | err = -EBUSY; | |
536 | break; | |
537 | } | |
538 | if (WARN_ON(!page)) { | |
539 | err = -ENOMEM; | |
540 | break; | |
541 | } | |
542 | if (WARN_ON(!pfn_valid(page_to_pfn(page)))) { | |
543 | err = -EINVAL; | |
544 | break; | |
545 | } | |
4fcdcc12 | 546 | |
1da177e4 | 547 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); |
db64fe02 | 548 | (*nr)++; |
1da177e4 | 549 | } while (pte++, addr += PAGE_SIZE, addr != end); |
44562c71 RR |
550 | |
551 | arch_leave_lazy_mmu_mode(); | |
2ba3e694 | 552 | *mask |= PGTBL_PTE_MODIFIED; |
fea18c68 AG |
553 | |
554 | return err; | |
1da177e4 LT |
555 | } |
556 | ||
0a264884 | 557 | static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, |
2ba3e694 JR |
558 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
559 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
560 | { |
561 | pmd_t *pmd; | |
562 | unsigned long next; | |
563 | ||
2ba3e694 | 564 | pmd = pmd_alloc_track(&init_mm, pud, addr, mask); |
1da177e4 LT |
565 | if (!pmd) |
566 | return -ENOMEM; | |
567 | do { | |
568 | next = pmd_addr_end(addr, end); | |
0a264884 | 569 | if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) |
1da177e4 LT |
570 | return -ENOMEM; |
571 | } while (pmd++, addr = next, addr != end); | |
572 | return 0; | |
573 | } | |
574 | ||
0a264884 | 575 | static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, |
2ba3e694 JR |
576 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
577 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
578 | { |
579 | pud_t *pud; | |
580 | unsigned long next; | |
581 | ||
2ba3e694 | 582 | pud = pud_alloc_track(&init_mm, p4d, addr, mask); |
1da177e4 LT |
583 | if (!pud) |
584 | return -ENOMEM; | |
585 | do { | |
586 | next = pud_addr_end(addr, end); | |
0a264884 | 587 | if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) |
1da177e4 LT |
588 | return -ENOMEM; |
589 | } while (pud++, addr = next, addr != end); | |
590 | return 0; | |
591 | } | |
592 | ||
0a264884 | 593 | static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, |
2ba3e694 JR |
594 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
595 | pgtbl_mod_mask *mask) | |
c2febafc KS |
596 | { |
597 | p4d_t *p4d; | |
598 | unsigned long next; | |
599 | ||
2ba3e694 | 600 | p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); |
c2febafc KS |
601 | if (!p4d) |
602 | return -ENOMEM; | |
603 | do { | |
604 | next = p4d_addr_end(addr, end); | |
0a264884 | 605 | if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) |
c2febafc KS |
606 | return -ENOMEM; |
607 | } while (p4d++, addr = next, addr != end); | |
608 | return 0; | |
609 | } | |
610 | ||
121e6f32 NP |
611 | static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, |
612 | pgprot_t prot, struct page **pages) | |
1da177e4 | 613 | { |
2ba3e694 | 614 | unsigned long start = addr; |
b521c43f | 615 | pgd_t *pgd; |
121e6f32 | 616 | unsigned long next; |
db64fe02 NP |
617 | int err = 0; |
618 | int nr = 0; | |
2ba3e694 | 619 | pgtbl_mod_mask mask = 0; |
1da177e4 LT |
620 | |
621 | BUG_ON(addr >= end); | |
622 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
623 | do { |
624 | next = pgd_addr_end(addr, end); | |
2ba3e694 JR |
625 | if (pgd_bad(*pgd)) |
626 | mask |= PGTBL_PGD_MODIFIED; | |
0a264884 | 627 | err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); |
1da177e4 | 628 | if (err) |
3685024e | 629 | break; |
1da177e4 | 630 | } while (pgd++, addr = next, addr != end); |
db64fe02 | 631 | |
2ba3e694 JR |
632 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) |
633 | arch_sync_kernel_mappings(start, end); | |
634 | ||
3685024e | 635 | return err; |
1da177e4 LT |
636 | } |
637 | ||
b67177ec NP |
638 | /* |
639 | * vmap_pages_range_noflush is similar to vmap_pages_range, but does not | |
640 | * flush caches. | |
641 | * | |
642 | * The caller is responsible for calling flush_cache_vmap() after this | |
643 | * function returns successfully and before the addresses are accessed. | |
644 | * | |
645 | * This is an internal function only. Do not use outside mm/. | |
646 | */ | |
b073d7f8 | 647 | int __vmap_pages_range_noflush(unsigned long addr, unsigned long end, |
121e6f32 NP |
648 | pgprot_t prot, struct page **pages, unsigned int page_shift) |
649 | { | |
650 | unsigned int i, nr = (end - addr) >> PAGE_SHIFT; | |
651 | ||
652 | WARN_ON(page_shift < PAGE_SHIFT); | |
653 | ||
654 | if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || | |
655 | page_shift == PAGE_SHIFT) | |
656 | return vmap_small_pages_range_noflush(addr, end, prot, pages); | |
657 | ||
658 | for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { | |
659 | int err; | |
660 | ||
661 | err = vmap_range_noflush(addr, addr + (1UL << page_shift), | |
08262ac5 | 662 | page_to_phys(pages[i]), prot, |
121e6f32 NP |
663 | page_shift); |
664 | if (err) | |
665 | return err; | |
666 | ||
667 | addr += 1UL << page_shift; | |
668 | } | |
669 | ||
670 | return 0; | |
671 | } | |
b073d7f8 AP |
672 | |
673 | int vmap_pages_range_noflush(unsigned long addr, unsigned long end, | |
674 | pgprot_t prot, struct page **pages, unsigned int page_shift) | |
675 | { | |
47ebd031 AP |
676 | int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages, |
677 | page_shift); | |
678 | ||
679 | if (ret) | |
680 | return ret; | |
b073d7f8 AP |
681 | return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift); |
682 | } | |
121e6f32 | 683 | |
121e6f32 | 684 | /** |
b67177ec | 685 | * vmap_pages_range - map pages to a kernel virtual address |
121e6f32 | 686 | * @addr: start of the VM area to map |
b67177ec | 687 | * @end: end of the VM area to map (non-inclusive) |
121e6f32 | 688 | * @prot: page protection flags to use |
b67177ec NP |
689 | * @pages: pages to map (always PAGE_SIZE pages) |
690 | * @page_shift: maximum shift that the pages may be mapped with, @pages must | |
691 | * be aligned and contiguous up to at least this shift. | |
121e6f32 NP |
692 | * |
693 | * RETURNS: | |
694 | * 0 on success, -errno on failure. | |
695 | */ | |
0f9b6856 | 696 | int vmap_pages_range(unsigned long addr, unsigned long end, |
b67177ec | 697 | pgprot_t prot, struct page **pages, unsigned int page_shift) |
8fc48985 | 698 | { |
b67177ec | 699 | int err; |
8fc48985 | 700 | |
b67177ec NP |
701 | err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); |
702 | flush_cache_vmap(addr, end); | |
703 | return err; | |
8fc48985 TH |
704 | } |
705 | ||
e6f79822 AS |
706 | static int check_sparse_vm_area(struct vm_struct *area, unsigned long start, |
707 | unsigned long end) | |
708 | { | |
709 | might_sleep(); | |
710 | if (WARN_ON_ONCE(area->flags & VM_FLUSH_RESET_PERMS)) | |
711 | return -EINVAL; | |
712 | if (WARN_ON_ONCE(area->flags & VM_NO_GUARD)) | |
713 | return -EINVAL; | |
714 | if (WARN_ON_ONCE(!(area->flags & VM_SPARSE))) | |
715 | return -EINVAL; | |
716 | if ((end - start) >> PAGE_SHIFT > totalram_pages()) | |
717 | return -E2BIG; | |
718 | if (start < (unsigned long)area->addr || | |
719 | (void *)end > area->addr + get_vm_area_size(area)) | |
720 | return -ERANGE; | |
721 | return 0; | |
722 | } | |
723 | ||
724 | /** | |
725 | * vm_area_map_pages - map pages inside given sparse vm_area | |
726 | * @area: vm_area | |
727 | * @start: start address inside vm_area | |
728 | * @end: end address inside vm_area | |
729 | * @pages: pages to map (always PAGE_SIZE pages) | |
730 | */ | |
731 | int vm_area_map_pages(struct vm_struct *area, unsigned long start, | |
732 | unsigned long end, struct page **pages) | |
733 | { | |
734 | int err; | |
735 | ||
736 | err = check_sparse_vm_area(area, start, end); | |
737 | if (err) | |
738 | return err; | |
739 | ||
740 | return vmap_pages_range(start, end, PAGE_KERNEL, pages, PAGE_SHIFT); | |
741 | } | |
742 | ||
743 | /** | |
744 | * vm_area_unmap_pages - unmap pages inside given sparse vm_area | |
745 | * @area: vm_area | |
746 | * @start: start address inside vm_area | |
747 | * @end: end address inside vm_area | |
748 | */ | |
749 | void vm_area_unmap_pages(struct vm_struct *area, unsigned long start, | |
750 | unsigned long end) | |
751 | { | |
752 | if (check_sparse_vm_area(area, start, end)) | |
753 | return; | |
754 | ||
755 | vunmap_range(start, end); | |
756 | } | |
757 | ||
81ac3ad9 | 758 | int is_vmalloc_or_module_addr(const void *x) |
73bdf0a6 LT |
759 | { |
760 | /* | |
ab4f2ee1 | 761 | * ARM, x86-64 and sparc64 put modules in a special place, |
73bdf0a6 LT |
762 | * and fall back on vmalloc() if that fails. Others |
763 | * just put it in the vmalloc space. | |
764 | */ | |
0105eaab | 765 | #if defined(CONFIG_EXECMEM) && defined(MODULES_VADDR) |
4aff1dc4 | 766 | unsigned long addr = (unsigned long)kasan_reset_tag(x); |
73bdf0a6 LT |
767 | if (addr >= MODULES_VADDR && addr < MODULES_END) |
768 | return 1; | |
769 | #endif | |
770 | return is_vmalloc_addr(x); | |
771 | } | |
01858469 | 772 | EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr); |
73bdf0a6 | 773 | |
48667e7a | 774 | /* |
c0eb315a NP |
775 | * Walk a vmap address to the struct page it maps. Huge vmap mappings will |
776 | * return the tail page that corresponds to the base page address, which | |
777 | * matches small vmap mappings. | |
48667e7a | 778 | */ |
add688fb | 779 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
48667e7a CL |
780 | { |
781 | unsigned long addr = (unsigned long) vmalloc_addr; | |
add688fb | 782 | struct page *page = NULL; |
48667e7a | 783 | pgd_t *pgd = pgd_offset_k(addr); |
c2febafc KS |
784 | p4d_t *p4d; |
785 | pud_t *pud; | |
786 | pmd_t *pmd; | |
787 | pte_t *ptep, pte; | |
48667e7a | 788 | |
7aa413de IM |
789 | /* |
790 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
791 | * architectures that do not vmalloc module space | |
792 | */ | |
73bdf0a6 | 793 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
59ea7463 | 794 | |
c2febafc KS |
795 | if (pgd_none(*pgd)) |
796 | return NULL; | |
c0eb315a NP |
797 | if (WARN_ON_ONCE(pgd_leaf(*pgd))) |
798 | return NULL; /* XXX: no allowance for huge pgd */ | |
799 | if (WARN_ON_ONCE(pgd_bad(*pgd))) | |
800 | return NULL; | |
801 | ||
c2febafc KS |
802 | p4d = p4d_offset(pgd, addr); |
803 | if (p4d_none(*p4d)) | |
804 | return NULL; | |
c0eb315a NP |
805 | if (p4d_leaf(*p4d)) |
806 | return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); | |
807 | if (WARN_ON_ONCE(p4d_bad(*p4d))) | |
808 | return NULL; | |
029c54b0 | 809 | |
c0eb315a NP |
810 | pud = pud_offset(p4d, addr); |
811 | if (pud_none(*pud)) | |
812 | return NULL; | |
813 | if (pud_leaf(*pud)) | |
814 | return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
815 | if (WARN_ON_ONCE(pud_bad(*pud))) | |
c2febafc | 816 | return NULL; |
c0eb315a | 817 | |
c2febafc | 818 | pmd = pmd_offset(pud, addr); |
c0eb315a NP |
819 | if (pmd_none(*pmd)) |
820 | return NULL; | |
821 | if (pmd_leaf(*pmd)) | |
822 | return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
823 | if (WARN_ON_ONCE(pmd_bad(*pmd))) | |
c2febafc KS |
824 | return NULL; |
825 | ||
0d1c81ed | 826 | ptep = pte_offset_kernel(pmd, addr); |
c33c7948 | 827 | pte = ptep_get(ptep); |
c2febafc KS |
828 | if (pte_present(pte)) |
829 | page = pte_page(pte); | |
c0eb315a | 830 | |
add688fb | 831 | return page; |
48667e7a | 832 | } |
add688fb | 833 | EXPORT_SYMBOL(vmalloc_to_page); |
48667e7a CL |
834 | |
835 | /* | |
add688fb | 836 | * Map a vmalloc()-space virtual address to the physical page frame number. |
48667e7a | 837 | */ |
add688fb | 838 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
48667e7a | 839 | { |
add688fb | 840 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); |
48667e7a | 841 | } |
add688fb | 842 | EXPORT_SYMBOL(vmalloc_to_pfn); |
48667e7a | 843 | |
db64fe02 NP |
844 | |
845 | /*** Global kva allocator ***/ | |
846 | ||
bb850f4d | 847 | #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 |
a6cf4e0f | 848 | #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 |
bb850f4d | 849 | |
db64fe02 | 850 | |
e36176be | 851 | static DEFINE_SPINLOCK(free_vmap_area_lock); |
68ad4a33 | 852 | static bool vmap_initialized __read_mostly; |
89699605 | 853 | |
68ad4a33 URS |
854 | /* |
855 | * This kmem_cache is used for vmap_area objects. Instead of | |
856 | * allocating from slab we reuse an object from this cache to | |
857 | * make things faster. Especially in "no edge" splitting of | |
858 | * free block. | |
859 | */ | |
860 | static struct kmem_cache *vmap_area_cachep; | |
861 | ||
862 | /* | |
863 | * This linked list is used in pair with free_vmap_area_root. | |
864 | * It gives O(1) access to prev/next to perform fast coalescing. | |
865 | */ | |
866 | static LIST_HEAD(free_vmap_area_list); | |
867 | ||
868 | /* | |
869 | * This augment red-black tree represents the free vmap space. | |
870 | * All vmap_area objects in this tree are sorted by va->va_start | |
871 | * address. It is used for allocation and merging when a vmap | |
872 | * object is released. | |
873 | * | |
874 | * Each vmap_area node contains a maximum available free block | |
875 | * of its sub-tree, right or left. Therefore it is possible to | |
876 | * find a lowest match of free area. | |
877 | */ | |
878 | static struct rb_root free_vmap_area_root = RB_ROOT; | |
879 | ||
82dd23e8 URS |
880 | /* |
881 | * Preload a CPU with one object for "no edge" split case. The | |
882 | * aim is to get rid of allocations from the atomic context, thus | |
883 | * to use more permissive allocation masks. | |
884 | */ | |
885 | static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); | |
886 | ||
d0936029 | 887 | /* |
15e02a39 URS |
888 | * This structure defines a single, solid model where a list and |
889 | * rb-tree are part of one entity protected by the lock. Nodes are | |
890 | * sorted in ascending order, thus for O(1) access to left/right | |
891 | * neighbors a list is used as well as for sequential traversal. | |
d0936029 URS |
892 | */ |
893 | struct rb_list { | |
894 | struct rb_root root; | |
895 | struct list_head head; | |
896 | spinlock_t lock; | |
897 | }; | |
898 | ||
15e02a39 URS |
899 | /* |
900 | * A fast size storage contains VAs up to 1M size. A pool consists | |
901 | * of linked between each other ready to go VAs of certain sizes. | |
902 | * An index in the pool-array corresponds to number of pages + 1. | |
903 | */ | |
904 | #define MAX_VA_SIZE_PAGES 256 | |
905 | ||
72210662 URS |
906 | struct vmap_pool { |
907 | struct list_head head; | |
908 | unsigned long len; | |
909 | }; | |
910 | ||
911 | /* | |
15e02a39 URS |
912 | * An effective vmap-node logic. Users make use of nodes instead |
913 | * of a global heap. It allows to balance an access and mitigate | |
914 | * contention. | |
72210662 | 915 | */ |
d0936029 | 916 | static struct vmap_node { |
72210662 URS |
917 | /* Simple size segregated storage. */ |
918 | struct vmap_pool pool[MAX_VA_SIZE_PAGES]; | |
919 | spinlock_t pool_lock; | |
920 | bool skip_populate; | |
921 | ||
d0936029 URS |
922 | /* Bookkeeping data of this node. */ |
923 | struct rb_list busy; | |
282631cb URS |
924 | struct rb_list lazy; |
925 | ||
926 | /* | |
927 | * Ready-to-free areas. | |
928 | */ | |
929 | struct list_head purge_list; | |
72210662 URS |
930 | struct work_struct purge_work; |
931 | unsigned long nr_purged; | |
d0936029 URS |
932 | } single; |
933 | ||
15e02a39 URS |
934 | /* |
935 | * Initial setup consists of one single node, i.e. a balancing | |
936 | * is fully disabled. Later on, after vmap is initialized these | |
937 | * parameters are updated based on a system capacity. | |
938 | */ | |
d0936029 URS |
939 | static struct vmap_node *vmap_nodes = &single; |
940 | static __read_mostly unsigned int nr_vmap_nodes = 1; | |
941 | static __read_mostly unsigned int vmap_zone_size = 1; | |
942 | ||
43182550 URS |
943 | /* A simple iterator over all vmap-nodes. */ |
944 | #define for_each_vmap_node(vn) \ | |
945 | for ((vn) = &vmap_nodes[0]; \ | |
946 | (vn) < &vmap_nodes[nr_vmap_nodes]; (vn)++) | |
947 | ||
d0936029 URS |
948 | static inline unsigned int |
949 | addr_to_node_id(unsigned long addr) | |
950 | { | |
951 | return (addr / vmap_zone_size) % nr_vmap_nodes; | |
952 | } | |
953 | ||
954 | static inline struct vmap_node * | |
955 | addr_to_node(unsigned long addr) | |
956 | { | |
957 | return &vmap_nodes[addr_to_node_id(addr)]; | |
958 | } | |
959 | ||
72210662 URS |
960 | static inline struct vmap_node * |
961 | id_to_node(unsigned int id) | |
962 | { | |
963 | return &vmap_nodes[id % nr_vmap_nodes]; | |
964 | } | |
965 | ||
24c76f37 URS |
966 | static inline unsigned int |
967 | node_to_id(struct vmap_node *node) | |
968 | { | |
969 | /* Pointer arithmetic. */ | |
970 | unsigned int id = node - vmap_nodes; | |
971 | ||
972 | if (likely(id < nr_vmap_nodes)) | |
973 | return id; | |
974 | ||
975 | WARN_ONCE(1, "An address 0x%p is out-of-bounds.\n", node); | |
976 | return 0; | |
977 | } | |
978 | ||
72210662 URS |
979 | /* |
980 | * We use the value 0 to represent "no node", that is why | |
981 | * an encoded value will be the node-id incremented by 1. | |
982 | * It is always greater then 0. A valid node_id which can | |
983 | * be encoded is [0:nr_vmap_nodes - 1]. If a passed node_id | |
984 | * is not valid 0 is returned. | |
985 | */ | |
986 | static unsigned int | |
987 | encode_vn_id(unsigned int node_id) | |
988 | { | |
989 | /* Can store U8_MAX [0:254] nodes. */ | |
990 | if (node_id < nr_vmap_nodes) | |
991 | return (node_id + 1) << BITS_PER_BYTE; | |
992 | ||
993 | /* Warn and no node encoded. */ | |
994 | WARN_ONCE(1, "Encode wrong node id (%u)\n", node_id); | |
995 | return 0; | |
996 | } | |
997 | ||
998 | /* | |
999 | * Returns an encoded node-id, the valid range is within | |
1000 | * [0:nr_vmap_nodes-1] values. Otherwise nr_vmap_nodes is | |
1001 | * returned if extracted data is wrong. | |
1002 | */ | |
1003 | static unsigned int | |
1004 | decode_vn_id(unsigned int val) | |
1005 | { | |
1006 | unsigned int node_id = (val >> BITS_PER_BYTE) - 1; | |
1007 | ||
1008 | /* Can store U8_MAX [0:254] nodes. */ | |
1009 | if (node_id < nr_vmap_nodes) | |
1010 | return node_id; | |
1011 | ||
1012 | /* If it was _not_ zero, warn. */ | |
1013 | WARN_ONCE(node_id != UINT_MAX, | |
1014 | "Decode wrong node id (%d)\n", node_id); | |
1015 | ||
1016 | return nr_vmap_nodes; | |
1017 | } | |
1018 | ||
1019 | static bool | |
1020 | is_vn_id_valid(unsigned int node_id) | |
1021 | { | |
1022 | if (node_id < nr_vmap_nodes) | |
1023 | return true; | |
1024 | ||
1025 | return false; | |
1026 | } | |
1027 | ||
68ad4a33 URS |
1028 | static __always_inline unsigned long |
1029 | va_size(struct vmap_area *va) | |
1030 | { | |
1031 | return (va->va_end - va->va_start); | |
1032 | } | |
1033 | ||
1034 | static __always_inline unsigned long | |
1035 | get_subtree_max_size(struct rb_node *node) | |
1036 | { | |
1037 | struct vmap_area *va; | |
1038 | ||
1039 | va = rb_entry_safe(node, struct vmap_area, rb_node); | |
1040 | return va ? va->subtree_max_size : 0; | |
1041 | } | |
89699605 | 1042 | |
315cc066 ML |
1043 | RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, |
1044 | struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) | |
68ad4a33 | 1045 | |
77e50af0 | 1046 | static void reclaim_and_purge_vmap_areas(void); |
68ad4a33 | 1047 | static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); |
690467c8 URS |
1048 | static void drain_vmap_area_work(struct work_struct *work); |
1049 | static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); | |
db64fe02 | 1050 | |
d0966120 URS |
1051 | static __cacheline_aligned_in_smp atomic_long_t nr_vmalloc_pages; |
1052 | static __cacheline_aligned_in_smp atomic_long_t vmap_lazy_nr; | |
97105f0a RG |
1053 | |
1054 | unsigned long vmalloc_nr_pages(void) | |
1055 | { | |
1056 | return atomic_long_read(&nr_vmalloc_pages); | |
1057 | } | |
1058 | ||
fc2c2269 URS |
1059 | static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root) |
1060 | { | |
1061 | struct rb_node *n = root->rb_node; | |
1062 | ||
1063 | addr = (unsigned long)kasan_reset_tag((void *)addr); | |
1064 | ||
1065 | while (n) { | |
1066 | struct vmap_area *va; | |
1067 | ||
1068 | va = rb_entry(n, struct vmap_area, rb_node); | |
1069 | if (addr < va->va_start) | |
1070 | n = n->rb_left; | |
1071 | else if (addr >= va->va_end) | |
1072 | n = n->rb_right; | |
1073 | else | |
1074 | return va; | |
1075 | } | |
1076 | ||
1077 | return NULL; | |
1078 | } | |
1079 | ||
153090f2 | 1080 | /* Look up the first VA which satisfies addr < va_end, NULL if none. */ |
d0936029 | 1081 | static struct vmap_area * |
53becf32 | 1082 | __find_vmap_area_exceed_addr(unsigned long addr, struct rb_root *root) |
f181234a CW |
1083 | { |
1084 | struct vmap_area *va = NULL; | |
d0936029 | 1085 | struct rb_node *n = root->rb_node; |
f181234a | 1086 | |
4aff1dc4 AK |
1087 | addr = (unsigned long)kasan_reset_tag((void *)addr); |
1088 | ||
f181234a CW |
1089 | while (n) { |
1090 | struct vmap_area *tmp; | |
1091 | ||
1092 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
1093 | if (tmp->va_end > addr) { | |
1094 | va = tmp; | |
1095 | if (tmp->va_start <= addr) | |
1096 | break; | |
1097 | ||
1098 | n = n->rb_left; | |
1099 | } else | |
1100 | n = n->rb_right; | |
1101 | } | |
1102 | ||
1103 | return va; | |
1104 | } | |
1105 | ||
53becf32 URS |
1106 | /* |
1107 | * Returns a node where a first VA, that satisfies addr < va_end, resides. | |
1108 | * If success, a node is locked. A user is responsible to unlock it when a | |
1109 | * VA is no longer needed to be accessed. | |
1110 | * | |
1111 | * Returns NULL if nothing found. | |
1112 | */ | |
1113 | static struct vmap_node * | |
1114 | find_vmap_area_exceed_addr_lock(unsigned long addr, struct vmap_area **va) | |
1115 | { | |
fc2c2269 URS |
1116 | unsigned long va_start_lowest; |
1117 | struct vmap_node *vn; | |
53becf32 | 1118 | |
fc2c2269 | 1119 | repeat: |
ce906d76 | 1120 | va_start_lowest = 0; |
53becf32 | 1121 | |
ce906d76 | 1122 | for_each_vmap_node(vn) { |
53becf32 | 1123 | spin_lock(&vn->busy.lock); |
fc2c2269 URS |
1124 | *va = __find_vmap_area_exceed_addr(addr, &vn->busy.root); |
1125 | ||
1126 | if (*va) | |
1127 | if (!va_start_lowest || (*va)->va_start < va_start_lowest) | |
1128 | va_start_lowest = (*va)->va_start; | |
53becf32 URS |
1129 | spin_unlock(&vn->busy.lock); |
1130 | } | |
1131 | ||
fc2c2269 URS |
1132 | /* |
1133 | * Check if found VA exists, it might have gone away. In this case we | |
1134 | * repeat the search because a VA has been removed concurrently and we | |
1135 | * need to proceed to the next one, which is a rare case. | |
1136 | */ | |
1137 | if (va_start_lowest) { | |
1138 | vn = addr_to_node(va_start_lowest); | |
53becf32 | 1139 | |
fc2c2269 URS |
1140 | spin_lock(&vn->busy.lock); |
1141 | *va = __find_vmap_area(va_start_lowest, &vn->busy.root); | |
db64fe02 | 1142 | |
fc2c2269 URS |
1143 | if (*va) |
1144 | return vn; | |
4aff1dc4 | 1145 | |
fc2c2269 URS |
1146 | spin_unlock(&vn->busy.lock); |
1147 | goto repeat; | |
db64fe02 NP |
1148 | } |
1149 | ||
1150 | return NULL; | |
1151 | } | |
1152 | ||
68ad4a33 URS |
1153 | /* |
1154 | * This function returns back addresses of parent node | |
1155 | * and its left or right link for further processing. | |
9c801f61 URS |
1156 | * |
1157 | * Otherwise NULL is returned. In that case all further | |
1158 | * steps regarding inserting of conflicting overlap range | |
1159 | * have to be declined and actually considered as a bug. | |
68ad4a33 URS |
1160 | */ |
1161 | static __always_inline struct rb_node ** | |
1162 | find_va_links(struct vmap_area *va, | |
1163 | struct rb_root *root, struct rb_node *from, | |
1164 | struct rb_node **parent) | |
1165 | { | |
1166 | struct vmap_area *tmp_va; | |
1167 | struct rb_node **link; | |
1168 | ||
1169 | if (root) { | |
1170 | link = &root->rb_node; | |
1171 | if (unlikely(!*link)) { | |
1172 | *parent = NULL; | |
1173 | return link; | |
1174 | } | |
1175 | } else { | |
1176 | link = &from; | |
1177 | } | |
db64fe02 | 1178 | |
68ad4a33 URS |
1179 | /* |
1180 | * Go to the bottom of the tree. When we hit the last point | |
1181 | * we end up with parent rb_node and correct direction, i name | |
1182 | * it link, where the new va->rb_node will be attached to. | |
1183 | */ | |
1184 | do { | |
1185 | tmp_va = rb_entry(*link, struct vmap_area, rb_node); | |
db64fe02 | 1186 | |
68ad4a33 URS |
1187 | /* |
1188 | * During the traversal we also do some sanity check. | |
1189 | * Trigger the BUG() if there are sides(left/right) | |
1190 | * or full overlaps. | |
1191 | */ | |
753df96b | 1192 | if (va->va_end <= tmp_va->va_start) |
68ad4a33 | 1193 | link = &(*link)->rb_left; |
753df96b | 1194 | else if (va->va_start >= tmp_va->va_end) |
68ad4a33 | 1195 | link = &(*link)->rb_right; |
9c801f61 URS |
1196 | else { |
1197 | WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", | |
1198 | va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); | |
1199 | ||
1200 | return NULL; | |
1201 | } | |
68ad4a33 URS |
1202 | } while (*link); |
1203 | ||
1204 | *parent = &tmp_va->rb_node; | |
1205 | return link; | |
1206 | } | |
1207 | ||
1208 | static __always_inline struct list_head * | |
1209 | get_va_next_sibling(struct rb_node *parent, struct rb_node **link) | |
1210 | { | |
1211 | struct list_head *list; | |
1212 | ||
1213 | if (unlikely(!parent)) | |
1214 | /* | |
1215 | * The red-black tree where we try to find VA neighbors | |
1216 | * before merging or inserting is empty, i.e. it means | |
1217 | * there is no free vmap space. Normally it does not | |
1218 | * happen but we handle this case anyway. | |
1219 | */ | |
1220 | return NULL; | |
1221 | ||
1222 | list = &rb_entry(parent, struct vmap_area, rb_node)->list; | |
1223 | return (&parent->rb_right == link ? list->next : list); | |
1224 | } | |
1225 | ||
1226 | static __always_inline void | |
8eb510db URS |
1227 | __link_va(struct vmap_area *va, struct rb_root *root, |
1228 | struct rb_node *parent, struct rb_node **link, | |
1229 | struct list_head *head, bool augment) | |
68ad4a33 URS |
1230 | { |
1231 | /* | |
1232 | * VA is still not in the list, but we can | |
1233 | * identify its future previous list_head node. | |
1234 | */ | |
1235 | if (likely(parent)) { | |
1236 | head = &rb_entry(parent, struct vmap_area, rb_node)->list; | |
1237 | if (&parent->rb_right != link) | |
1238 | head = head->prev; | |
db64fe02 NP |
1239 | } |
1240 | ||
68ad4a33 URS |
1241 | /* Insert to the rb-tree */ |
1242 | rb_link_node(&va->rb_node, parent, link); | |
8eb510db | 1243 | if (augment) { |
68ad4a33 URS |
1244 | /* |
1245 | * Some explanation here. Just perform simple insertion | |
1246 | * to the tree. We do not set va->subtree_max_size to | |
1247 | * its current size before calling rb_insert_augmented(). | |
153090f2 | 1248 | * It is because we populate the tree from the bottom |
68ad4a33 URS |
1249 | * to parent levels when the node _is_ in the tree. |
1250 | * | |
1251 | * Therefore we set subtree_max_size to zero after insertion, | |
1252 | * to let __augment_tree_propagate_from() puts everything to | |
1253 | * the correct order later on. | |
1254 | */ | |
1255 | rb_insert_augmented(&va->rb_node, | |
1256 | root, &free_vmap_area_rb_augment_cb); | |
1257 | va->subtree_max_size = 0; | |
1258 | } else { | |
1259 | rb_insert_color(&va->rb_node, root); | |
1260 | } | |
db64fe02 | 1261 | |
68ad4a33 URS |
1262 | /* Address-sort this list */ |
1263 | list_add(&va->list, head); | |
db64fe02 NP |
1264 | } |
1265 | ||
68ad4a33 | 1266 | static __always_inline void |
8eb510db URS |
1267 | link_va(struct vmap_area *va, struct rb_root *root, |
1268 | struct rb_node *parent, struct rb_node **link, | |
1269 | struct list_head *head) | |
1270 | { | |
1271 | __link_va(va, root, parent, link, head, false); | |
1272 | } | |
1273 | ||
1274 | static __always_inline void | |
1275 | link_va_augment(struct vmap_area *va, struct rb_root *root, | |
1276 | struct rb_node *parent, struct rb_node **link, | |
1277 | struct list_head *head) | |
1278 | { | |
1279 | __link_va(va, root, parent, link, head, true); | |
1280 | } | |
1281 | ||
1282 | static __always_inline void | |
1283 | __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment) | |
68ad4a33 | 1284 | { |
460e42d1 URS |
1285 | if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) |
1286 | return; | |
db64fe02 | 1287 | |
8eb510db | 1288 | if (augment) |
460e42d1 URS |
1289 | rb_erase_augmented(&va->rb_node, |
1290 | root, &free_vmap_area_rb_augment_cb); | |
1291 | else | |
1292 | rb_erase(&va->rb_node, root); | |
1293 | ||
5d7a7c54 | 1294 | list_del_init(&va->list); |
460e42d1 | 1295 | RB_CLEAR_NODE(&va->rb_node); |
68ad4a33 URS |
1296 | } |
1297 | ||
8eb510db URS |
1298 | static __always_inline void |
1299 | unlink_va(struct vmap_area *va, struct rb_root *root) | |
1300 | { | |
1301 | __unlink_va(va, root, false); | |
1302 | } | |
1303 | ||
1304 | static __always_inline void | |
1305 | unlink_va_augment(struct vmap_area *va, struct rb_root *root) | |
1306 | { | |
1307 | __unlink_va(va, root, true); | |
1308 | } | |
1309 | ||
bb850f4d | 1310 | #if DEBUG_AUGMENT_PROPAGATE_CHECK |
c3385e84 JC |
1311 | /* |
1312 | * Gets called when remove the node and rotate. | |
1313 | */ | |
1314 | static __always_inline unsigned long | |
1315 | compute_subtree_max_size(struct vmap_area *va) | |
1316 | { | |
1317 | return max3(va_size(va), | |
1318 | get_subtree_max_size(va->rb_node.rb_left), | |
1319 | get_subtree_max_size(va->rb_node.rb_right)); | |
1320 | } | |
1321 | ||
bb850f4d | 1322 | static void |
da27c9ed | 1323 | augment_tree_propagate_check(void) |
bb850f4d URS |
1324 | { |
1325 | struct vmap_area *va; | |
da27c9ed | 1326 | unsigned long computed_size; |
bb850f4d | 1327 | |
da27c9ed URS |
1328 | list_for_each_entry(va, &free_vmap_area_list, list) { |
1329 | computed_size = compute_subtree_max_size(va); | |
1330 | if (computed_size != va->subtree_max_size) | |
1331 | pr_emerg("tree is corrupted: %lu, %lu\n", | |
1332 | va_size(va), va->subtree_max_size); | |
bb850f4d | 1333 | } |
bb850f4d URS |
1334 | } |
1335 | #endif | |
1336 | ||
68ad4a33 URS |
1337 | /* |
1338 | * This function populates subtree_max_size from bottom to upper | |
1339 | * levels starting from VA point. The propagation must be done | |
1340 | * when VA size is modified by changing its va_start/va_end. Or | |
1341 | * in case of newly inserting of VA to the tree. | |
1342 | * | |
1343 | * It means that __augment_tree_propagate_from() must be called: | |
1344 | * - After VA has been inserted to the tree(free path); | |
1345 | * - After VA has been shrunk(allocation path); | |
1346 | * - After VA has been increased(merging path). | |
1347 | * | |
1348 | * Please note that, it does not mean that upper parent nodes | |
1349 | * and their subtree_max_size are recalculated all the time up | |
1350 | * to the root node. | |
1351 | * | |
1352 | * 4--8 | |
1353 | * /\ | |
1354 | * / \ | |
1355 | * / \ | |
1356 | * 2--2 8--8 | |
1357 | * | |
1358 | * For example if we modify the node 4, shrinking it to 2, then | |
1359 | * no any modification is required. If we shrink the node 2 to 1 | |
1360 | * its subtree_max_size is updated only, and set to 1. If we shrink | |
1361 | * the node 8 to 6, then its subtree_max_size is set to 6 and parent | |
1362 | * node becomes 4--6. | |
1363 | */ | |
1364 | static __always_inline void | |
1365 | augment_tree_propagate_from(struct vmap_area *va) | |
1366 | { | |
15ae144f URS |
1367 | /* |
1368 | * Populate the tree from bottom towards the root until | |
1369 | * the calculated maximum available size of checked node | |
1370 | * is equal to its current one. | |
1371 | */ | |
1372 | free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); | |
bb850f4d URS |
1373 | |
1374 | #if DEBUG_AUGMENT_PROPAGATE_CHECK | |
da27c9ed | 1375 | augment_tree_propagate_check(); |
bb850f4d | 1376 | #endif |
68ad4a33 URS |
1377 | } |
1378 | ||
1379 | static void | |
1380 | insert_vmap_area(struct vmap_area *va, | |
1381 | struct rb_root *root, struct list_head *head) | |
1382 | { | |
1383 | struct rb_node **link; | |
1384 | struct rb_node *parent; | |
1385 | ||
1386 | link = find_va_links(va, root, NULL, &parent); | |
9c801f61 URS |
1387 | if (link) |
1388 | link_va(va, root, parent, link, head); | |
68ad4a33 URS |
1389 | } |
1390 | ||
1391 | static void | |
1392 | insert_vmap_area_augment(struct vmap_area *va, | |
1393 | struct rb_node *from, struct rb_root *root, | |
1394 | struct list_head *head) | |
1395 | { | |
1396 | struct rb_node **link; | |
1397 | struct rb_node *parent; | |
1398 | ||
1399 | if (from) | |
1400 | link = find_va_links(va, NULL, from, &parent); | |
1401 | else | |
1402 | link = find_va_links(va, root, NULL, &parent); | |
1403 | ||
9c801f61 | 1404 | if (link) { |
8eb510db | 1405 | link_va_augment(va, root, parent, link, head); |
9c801f61 URS |
1406 | augment_tree_propagate_from(va); |
1407 | } | |
68ad4a33 URS |
1408 | } |
1409 | ||
1410 | /* | |
1411 | * Merge de-allocated chunk of VA memory with previous | |
1412 | * and next free blocks. If coalesce is not done a new | |
1413 | * free area is inserted. If VA has been merged, it is | |
1414 | * freed. | |
9c801f61 URS |
1415 | * |
1416 | * Please note, it can return NULL in case of overlap | |
1417 | * ranges, followed by WARN() report. Despite it is a | |
1418 | * buggy behaviour, a system can be alive and keep | |
1419 | * ongoing. | |
68ad4a33 | 1420 | */ |
3c5c3cfb | 1421 | static __always_inline struct vmap_area * |
8eb510db URS |
1422 | __merge_or_add_vmap_area(struct vmap_area *va, |
1423 | struct rb_root *root, struct list_head *head, bool augment) | |
68ad4a33 URS |
1424 | { |
1425 | struct vmap_area *sibling; | |
1426 | struct list_head *next; | |
1427 | struct rb_node **link; | |
1428 | struct rb_node *parent; | |
1429 | bool merged = false; | |
1430 | ||
1431 | /* | |
1432 | * Find a place in the tree where VA potentially will be | |
1433 | * inserted, unless it is merged with its sibling/siblings. | |
1434 | */ | |
1435 | link = find_va_links(va, root, NULL, &parent); | |
9c801f61 URS |
1436 | if (!link) |
1437 | return NULL; | |
68ad4a33 URS |
1438 | |
1439 | /* | |
1440 | * Get next node of VA to check if merging can be done. | |
1441 | */ | |
1442 | next = get_va_next_sibling(parent, link); | |
1443 | if (unlikely(next == NULL)) | |
1444 | goto insert; | |
1445 | ||
1446 | /* | |
1447 | * start end | |
1448 | * | | | |
1449 | * |<------VA------>|<-----Next----->| | |
1450 | * | | | |
1451 | * start end | |
1452 | */ | |
1453 | if (next != head) { | |
1454 | sibling = list_entry(next, struct vmap_area, list); | |
1455 | if (sibling->va_start == va->va_end) { | |
1456 | sibling->va_start = va->va_start; | |
1457 | ||
68ad4a33 URS |
1458 | /* Free vmap_area object. */ |
1459 | kmem_cache_free(vmap_area_cachep, va); | |
1460 | ||
1461 | /* Point to the new merged area. */ | |
1462 | va = sibling; | |
1463 | merged = true; | |
1464 | } | |
1465 | } | |
1466 | ||
1467 | /* | |
1468 | * start end | |
1469 | * | | | |
1470 | * |<-----Prev----->|<------VA------>| | |
1471 | * | | | |
1472 | * start end | |
1473 | */ | |
1474 | if (next->prev != head) { | |
1475 | sibling = list_entry(next->prev, struct vmap_area, list); | |
1476 | if (sibling->va_end == va->va_start) { | |
5dd78640 URS |
1477 | /* |
1478 | * If both neighbors are coalesced, it is important | |
1479 | * to unlink the "next" node first, followed by merging | |
1480 | * with "previous" one. Otherwise the tree might not be | |
1481 | * fully populated if a sibling's augmented value is | |
1482 | * "normalized" because of rotation operations. | |
1483 | */ | |
54f63d9d | 1484 | if (merged) |
8eb510db | 1485 | __unlink_va(va, root, augment); |
68ad4a33 | 1486 | |
5dd78640 URS |
1487 | sibling->va_end = va->va_end; |
1488 | ||
68ad4a33 URS |
1489 | /* Free vmap_area object. */ |
1490 | kmem_cache_free(vmap_area_cachep, va); | |
3c5c3cfb DA |
1491 | |
1492 | /* Point to the new merged area. */ | |
1493 | va = sibling; | |
1494 | merged = true; | |
68ad4a33 URS |
1495 | } |
1496 | } | |
1497 | ||
1498 | insert: | |
5dd78640 | 1499 | if (!merged) |
8eb510db | 1500 | __link_va(va, root, parent, link, head, augment); |
3c5c3cfb | 1501 | |
96e2db45 URS |
1502 | return va; |
1503 | } | |
1504 | ||
8eb510db URS |
1505 | static __always_inline struct vmap_area * |
1506 | merge_or_add_vmap_area(struct vmap_area *va, | |
1507 | struct rb_root *root, struct list_head *head) | |
1508 | { | |
1509 | return __merge_or_add_vmap_area(va, root, head, false); | |
1510 | } | |
1511 | ||
96e2db45 URS |
1512 | static __always_inline struct vmap_area * |
1513 | merge_or_add_vmap_area_augment(struct vmap_area *va, | |
1514 | struct rb_root *root, struct list_head *head) | |
1515 | { | |
8eb510db | 1516 | va = __merge_or_add_vmap_area(va, root, head, true); |
96e2db45 URS |
1517 | if (va) |
1518 | augment_tree_propagate_from(va); | |
1519 | ||
3c5c3cfb | 1520 | return va; |
68ad4a33 URS |
1521 | } |
1522 | ||
1523 | static __always_inline bool | |
1524 | is_within_this_va(struct vmap_area *va, unsigned long size, | |
1525 | unsigned long align, unsigned long vstart) | |
1526 | { | |
1527 | unsigned long nva_start_addr; | |
1528 | ||
1529 | if (va->va_start > vstart) | |
1530 | nva_start_addr = ALIGN(va->va_start, align); | |
1531 | else | |
1532 | nva_start_addr = ALIGN(vstart, align); | |
1533 | ||
1534 | /* Can be overflowed due to big size or alignment. */ | |
1535 | if (nva_start_addr + size < nva_start_addr || | |
1536 | nva_start_addr < vstart) | |
1537 | return false; | |
1538 | ||
1539 | return (nva_start_addr + size <= va->va_end); | |
1540 | } | |
1541 | ||
1542 | /* | |
1543 | * Find the first free block(lowest start address) in the tree, | |
1544 | * that will accomplish the request corresponding to passing | |
9333fe98 UR |
1545 | * parameters. Please note, with an alignment bigger than PAGE_SIZE, |
1546 | * a search length is adjusted to account for worst case alignment | |
1547 | * overhead. | |
68ad4a33 URS |
1548 | */ |
1549 | static __always_inline struct vmap_area * | |
f9863be4 URS |
1550 | find_vmap_lowest_match(struct rb_root *root, unsigned long size, |
1551 | unsigned long align, unsigned long vstart, bool adjust_search_size) | |
68ad4a33 URS |
1552 | { |
1553 | struct vmap_area *va; | |
1554 | struct rb_node *node; | |
9333fe98 | 1555 | unsigned long length; |
68ad4a33 URS |
1556 | |
1557 | /* Start from the root. */ | |
f9863be4 | 1558 | node = root->rb_node; |
68ad4a33 | 1559 | |
9333fe98 UR |
1560 | /* Adjust the search size for alignment overhead. */ |
1561 | length = adjust_search_size ? size + align - 1 : size; | |
1562 | ||
68ad4a33 URS |
1563 | while (node) { |
1564 | va = rb_entry(node, struct vmap_area, rb_node); | |
1565 | ||
9333fe98 | 1566 | if (get_subtree_max_size(node->rb_left) >= length && |
68ad4a33 URS |
1567 | vstart < va->va_start) { |
1568 | node = node->rb_left; | |
1569 | } else { | |
1570 | if (is_within_this_va(va, size, align, vstart)) | |
1571 | return va; | |
1572 | ||
1573 | /* | |
1574 | * Does not make sense to go deeper towards the right | |
1575 | * sub-tree if it does not have a free block that is | |
9333fe98 | 1576 | * equal or bigger to the requested search length. |
68ad4a33 | 1577 | */ |
9333fe98 | 1578 | if (get_subtree_max_size(node->rb_right) >= length) { |
68ad4a33 URS |
1579 | node = node->rb_right; |
1580 | continue; | |
1581 | } | |
1582 | ||
1583 | /* | |
3806b041 | 1584 | * OK. We roll back and find the first right sub-tree, |
68ad4a33 | 1585 | * that will satisfy the search criteria. It can happen |
9f531973 URS |
1586 | * due to "vstart" restriction or an alignment overhead |
1587 | * that is bigger then PAGE_SIZE. | |
68ad4a33 URS |
1588 | */ |
1589 | while ((node = rb_parent(node))) { | |
1590 | va = rb_entry(node, struct vmap_area, rb_node); | |
1591 | if (is_within_this_va(va, size, align, vstart)) | |
1592 | return va; | |
1593 | ||
9333fe98 | 1594 | if (get_subtree_max_size(node->rb_right) >= length && |
68ad4a33 | 1595 | vstart <= va->va_start) { |
9f531973 URS |
1596 | /* |
1597 | * Shift the vstart forward. Please note, we update it with | |
1598 | * parent's start address adding "1" because we do not want | |
1599 | * to enter same sub-tree after it has already been checked | |
1600 | * and no suitable free block found there. | |
1601 | */ | |
1602 | vstart = va->va_start + 1; | |
68ad4a33 URS |
1603 | node = node->rb_right; |
1604 | break; | |
1605 | } | |
1606 | } | |
1607 | } | |
1608 | } | |
1609 | ||
1610 | return NULL; | |
1611 | } | |
1612 | ||
a6cf4e0f URS |
1613 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK |
1614 | #include <linux/random.h> | |
1615 | ||
1616 | static struct vmap_area * | |
bd1264c3 | 1617 | find_vmap_lowest_linear_match(struct list_head *head, unsigned long size, |
a6cf4e0f URS |
1618 | unsigned long align, unsigned long vstart) |
1619 | { | |
1620 | struct vmap_area *va; | |
1621 | ||
bd1264c3 | 1622 | list_for_each_entry(va, head, list) { |
a6cf4e0f URS |
1623 | if (!is_within_this_va(va, size, align, vstart)) |
1624 | continue; | |
1625 | ||
1626 | return va; | |
1627 | } | |
1628 | ||
1629 | return NULL; | |
1630 | } | |
1631 | ||
1632 | static void | |
bd1264c3 SL |
1633 | find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head, |
1634 | unsigned long size, unsigned long align) | |
a6cf4e0f URS |
1635 | { |
1636 | struct vmap_area *va_1, *va_2; | |
1637 | unsigned long vstart; | |
1638 | unsigned int rnd; | |
1639 | ||
1640 | get_random_bytes(&rnd, sizeof(rnd)); | |
1641 | vstart = VMALLOC_START + rnd; | |
1642 | ||
bd1264c3 SL |
1643 | va_1 = find_vmap_lowest_match(root, size, align, vstart, false); |
1644 | va_2 = find_vmap_lowest_linear_match(head, size, align, vstart); | |
a6cf4e0f URS |
1645 | |
1646 | if (va_1 != va_2) | |
1647 | pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", | |
1648 | va_1, va_2, vstart); | |
1649 | } | |
1650 | #endif | |
1651 | ||
68ad4a33 URS |
1652 | enum fit_type { |
1653 | NOTHING_FIT = 0, | |
1654 | FL_FIT_TYPE = 1, /* full fit */ | |
1655 | LE_FIT_TYPE = 2, /* left edge fit */ | |
1656 | RE_FIT_TYPE = 3, /* right edge fit */ | |
1657 | NE_FIT_TYPE = 4 /* no edge fit */ | |
1658 | }; | |
1659 | ||
1660 | static __always_inline enum fit_type | |
1661 | classify_va_fit_type(struct vmap_area *va, | |
1662 | unsigned long nva_start_addr, unsigned long size) | |
1663 | { | |
1664 | enum fit_type type; | |
1665 | ||
1666 | /* Check if it is within VA. */ | |
1667 | if (nva_start_addr < va->va_start || | |
1668 | nva_start_addr + size > va->va_end) | |
1669 | return NOTHING_FIT; | |
1670 | ||
1671 | /* Now classify. */ | |
1672 | if (va->va_start == nva_start_addr) { | |
1673 | if (va->va_end == nva_start_addr + size) | |
1674 | type = FL_FIT_TYPE; | |
1675 | else | |
1676 | type = LE_FIT_TYPE; | |
1677 | } else if (va->va_end == nva_start_addr + size) { | |
1678 | type = RE_FIT_TYPE; | |
1679 | } else { | |
1680 | type = NE_FIT_TYPE; | |
1681 | } | |
1682 | ||
1683 | return type; | |
1684 | } | |
1685 | ||
1686 | static __always_inline int | |
5b75b8e1 URS |
1687 | va_clip(struct rb_root *root, struct list_head *head, |
1688 | struct vmap_area *va, unsigned long nva_start_addr, | |
1689 | unsigned long size) | |
68ad4a33 | 1690 | { |
2c929233 | 1691 | struct vmap_area *lva = NULL; |
1b23ff80 | 1692 | enum fit_type type = classify_va_fit_type(va, nva_start_addr, size); |
68ad4a33 URS |
1693 | |
1694 | if (type == FL_FIT_TYPE) { | |
1695 | /* | |
1696 | * No need to split VA, it fully fits. | |
1697 | * | |
1698 | * | | | |
1699 | * V NVA V | |
1700 | * |---------------| | |
1701 | */ | |
f9863be4 | 1702 | unlink_va_augment(va, root); |
68ad4a33 URS |
1703 | kmem_cache_free(vmap_area_cachep, va); |
1704 | } else if (type == LE_FIT_TYPE) { | |
1705 | /* | |
1706 | * Split left edge of fit VA. | |
1707 | * | |
1708 | * | | | |
1709 | * V NVA V R | |
1710 | * |-------|-------| | |
1711 | */ | |
1712 | va->va_start += size; | |
1713 | } else if (type == RE_FIT_TYPE) { | |
1714 | /* | |
1715 | * Split right edge of fit VA. | |
1716 | * | |
1717 | * | | | |
1718 | * L V NVA V | |
1719 | * |-------|-------| | |
1720 | */ | |
1721 | va->va_end = nva_start_addr; | |
1722 | } else if (type == NE_FIT_TYPE) { | |
1723 | /* | |
1724 | * Split no edge of fit VA. | |
1725 | * | |
1726 | * | | | |
1727 | * L V NVA V R | |
1728 | * |---|-------|---| | |
1729 | */ | |
82dd23e8 URS |
1730 | lva = __this_cpu_xchg(ne_fit_preload_node, NULL); |
1731 | if (unlikely(!lva)) { | |
1732 | /* | |
1733 | * For percpu allocator we do not do any pre-allocation | |
1734 | * and leave it as it is. The reason is it most likely | |
1735 | * never ends up with NE_FIT_TYPE splitting. In case of | |
1736 | * percpu allocations offsets and sizes are aligned to | |
1737 | * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE | |
1738 | * are its main fitting cases. | |
1739 | * | |
1740 | * There are a few exceptions though, as an example it is | |
1741 | * a first allocation (early boot up) when we have "one" | |
1742 | * big free space that has to be split. | |
060650a2 URS |
1743 | * |
1744 | * Also we can hit this path in case of regular "vmap" | |
1745 | * allocations, if "this" current CPU was not preloaded. | |
1746 | * See the comment in alloc_vmap_area() why. If so, then | |
1747 | * GFP_NOWAIT is used instead to get an extra object for | |
1748 | * split purpose. That is rare and most time does not | |
1749 | * occur. | |
1750 | * | |
1751 | * What happens if an allocation gets failed. Basically, | |
1752 | * an "overflow" path is triggered to purge lazily freed | |
1753 | * areas to free some memory, then, the "retry" path is | |
1754 | * triggered to repeat one more time. See more details | |
1755 | * in alloc_vmap_area() function. | |
82dd23e8 URS |
1756 | */ |
1757 | lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); | |
1758 | if (!lva) | |
b25f97d0 | 1759 | return -ENOMEM; |
82dd23e8 | 1760 | } |
68ad4a33 URS |
1761 | |
1762 | /* | |
1763 | * Build the remainder. | |
1764 | */ | |
1765 | lva->va_start = va->va_start; | |
1766 | lva->va_end = nva_start_addr; | |
1767 | ||
1768 | /* | |
1769 | * Shrink this VA to remaining size. | |
1770 | */ | |
1771 | va->va_start = nva_start_addr + size; | |
1772 | } else { | |
b25f97d0 | 1773 | return -EINVAL; |
68ad4a33 URS |
1774 | } |
1775 | ||
1776 | if (type != FL_FIT_TYPE) { | |
1777 | augment_tree_propagate_from(va); | |
1778 | ||
2c929233 | 1779 | if (lva) /* type == NE_FIT_TYPE */ |
f9863be4 | 1780 | insert_vmap_area_augment(lva, &va->rb_node, root, head); |
68ad4a33 URS |
1781 | } |
1782 | ||
1783 | return 0; | |
1784 | } | |
1785 | ||
38f6b9af URS |
1786 | static unsigned long |
1787 | va_alloc(struct vmap_area *va, | |
1788 | struct rb_root *root, struct list_head *head, | |
1789 | unsigned long size, unsigned long align, | |
1790 | unsigned long vstart, unsigned long vend) | |
1791 | { | |
1792 | unsigned long nva_start_addr; | |
1793 | int ret; | |
1794 | ||
1795 | if (va->va_start > vstart) | |
1796 | nva_start_addr = ALIGN(va->va_start, align); | |
1797 | else | |
1798 | nva_start_addr = ALIGN(vstart, align); | |
1799 | ||
1800 | /* Check the "vend" restriction. */ | |
1801 | if (nva_start_addr + size > vend) | |
b25f97d0 | 1802 | return -ERANGE; |
38f6b9af URS |
1803 | |
1804 | /* Update the free vmap_area. */ | |
5b75b8e1 | 1805 | ret = va_clip(root, head, va, nva_start_addr, size); |
38f6b9af | 1806 | if (WARN_ON_ONCE(ret)) |
b25f97d0 | 1807 | return ret; |
38f6b9af URS |
1808 | |
1809 | return nva_start_addr; | |
1810 | } | |
1811 | ||
68ad4a33 URS |
1812 | /* |
1813 | * Returns a start address of the newly allocated area, if success. | |
b25f97d0 | 1814 | * Otherwise an error value is returned that indicates failure. |
68ad4a33 URS |
1815 | */ |
1816 | static __always_inline unsigned long | |
f9863be4 URS |
1817 | __alloc_vmap_area(struct rb_root *root, struct list_head *head, |
1818 | unsigned long size, unsigned long align, | |
cacca6ba | 1819 | unsigned long vstart, unsigned long vend) |
68ad4a33 | 1820 | { |
9333fe98 | 1821 | bool adjust_search_size = true; |
68ad4a33 URS |
1822 | unsigned long nva_start_addr; |
1823 | struct vmap_area *va; | |
68ad4a33 | 1824 | |
9333fe98 UR |
1825 | /* |
1826 | * Do not adjust when: | |
1827 | * a) align <= PAGE_SIZE, because it does not make any sense. | |
1828 | * All blocks(their start addresses) are at least PAGE_SIZE | |
1829 | * aligned anyway; | |
1830 | * b) a short range where a requested size corresponds to exactly | |
1831 | * specified [vstart:vend] interval and an alignment > PAGE_SIZE. | |
1832 | * With adjusted search length an allocation would not succeed. | |
1833 | */ | |
1834 | if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) | |
1835 | adjust_search_size = false; | |
1836 | ||
f9863be4 | 1837 | va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size); |
68ad4a33 | 1838 | if (unlikely(!va)) |
b25f97d0 | 1839 | return -ENOENT; |
68ad4a33 | 1840 | |
38f6b9af | 1841 | nva_start_addr = va_alloc(va, root, head, size, align, vstart, vend); |
68ad4a33 | 1842 | |
a6cf4e0f | 1843 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK |
b25f97d0 BH |
1844 | if (!IS_ERR_VALUE(nva_start_addr)) |
1845 | find_vmap_lowest_match_check(root, head, size, align); | |
a6cf4e0f URS |
1846 | #endif |
1847 | ||
68ad4a33 URS |
1848 | return nva_start_addr; |
1849 | } | |
4da56b99 | 1850 | |
d98c9e83 AR |
1851 | /* |
1852 | * Free a region of KVA allocated by alloc_vmap_area | |
1853 | */ | |
1854 | static void free_vmap_area(struct vmap_area *va) | |
1855 | { | |
d0936029 URS |
1856 | struct vmap_node *vn = addr_to_node(va->va_start); |
1857 | ||
d98c9e83 AR |
1858 | /* |
1859 | * Remove from the busy tree/list. | |
1860 | */ | |
d0936029 URS |
1861 | spin_lock(&vn->busy.lock); |
1862 | unlink_va(va, &vn->busy.root); | |
1863 | spin_unlock(&vn->busy.lock); | |
d98c9e83 AR |
1864 | |
1865 | /* | |
1866 | * Insert/Merge it back to the free tree/list. | |
1867 | */ | |
1868 | spin_lock(&free_vmap_area_lock); | |
96e2db45 | 1869 | merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); |
d98c9e83 AR |
1870 | spin_unlock(&free_vmap_area_lock); |
1871 | } | |
1872 | ||
187f8cc4 URS |
1873 | static inline void |
1874 | preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) | |
1875 | { | |
f56810c9 | 1876 | struct vmap_area *va = NULL, *tmp; |
187f8cc4 URS |
1877 | |
1878 | /* | |
1879 | * Preload this CPU with one extra vmap_area object. It is used | |
1880 | * when fit type of free area is NE_FIT_TYPE. It guarantees that | |
1881 | * a CPU that does an allocation is preloaded. | |
1882 | * | |
1883 | * We do it in non-atomic context, thus it allows us to use more | |
1884 | * permissive allocation masks to be more stable under low memory | |
1885 | * condition and high memory pressure. | |
1886 | */ | |
1887 | if (!this_cpu_read(ne_fit_preload_node)) | |
1888 | va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); | |
1889 | ||
1890 | spin_lock(lock); | |
1891 | ||
f56810c9 UB |
1892 | tmp = NULL; |
1893 | if (va && !__this_cpu_try_cmpxchg(ne_fit_preload_node, &tmp, va)) | |
187f8cc4 URS |
1894 | kmem_cache_free(vmap_area_cachep, va); |
1895 | } | |
1896 | ||
72210662 URS |
1897 | static struct vmap_pool * |
1898 | size_to_va_pool(struct vmap_node *vn, unsigned long size) | |
1899 | { | |
1900 | unsigned int idx = (size - 1) / PAGE_SIZE; | |
1901 | ||
1902 | if (idx < MAX_VA_SIZE_PAGES) | |
1903 | return &vn->pool[idx]; | |
1904 | ||
1905 | return NULL; | |
1906 | } | |
1907 | ||
1908 | static bool | |
1909 | node_pool_add_va(struct vmap_node *n, struct vmap_area *va) | |
1910 | { | |
1911 | struct vmap_pool *vp; | |
1912 | ||
1913 | vp = size_to_va_pool(n, va_size(va)); | |
1914 | if (!vp) | |
1915 | return false; | |
1916 | ||
1917 | spin_lock(&n->pool_lock); | |
1918 | list_add(&va->list, &vp->head); | |
1919 | WRITE_ONCE(vp->len, vp->len + 1); | |
1920 | spin_unlock(&n->pool_lock); | |
1921 | ||
1922 | return true; | |
1923 | } | |
1924 | ||
1925 | static struct vmap_area * | |
1926 | node_pool_del_va(struct vmap_node *vn, unsigned long size, | |
1927 | unsigned long align, unsigned long vstart, | |
1928 | unsigned long vend) | |
1929 | { | |
1930 | struct vmap_area *va = NULL; | |
1931 | struct vmap_pool *vp; | |
1932 | int err = 0; | |
1933 | ||
1934 | vp = size_to_va_pool(vn, size); | |
1935 | if (!vp || list_empty(&vp->head)) | |
1936 | return NULL; | |
1937 | ||
1938 | spin_lock(&vn->pool_lock); | |
1939 | if (!list_empty(&vp->head)) { | |
1940 | va = list_first_entry(&vp->head, struct vmap_area, list); | |
1941 | ||
1942 | if (IS_ALIGNED(va->va_start, align)) { | |
1943 | /* | |
1944 | * Do some sanity check and emit a warning | |
1945 | * if one of below checks detects an error. | |
1946 | */ | |
1947 | err |= (va_size(va) != size); | |
1948 | err |= (va->va_start < vstart); | |
1949 | err |= (va->va_end > vend); | |
1950 | ||
1951 | if (!WARN_ON_ONCE(err)) { | |
1952 | list_del_init(&va->list); | |
1953 | WRITE_ONCE(vp->len, vp->len - 1); | |
1954 | } else { | |
1955 | va = NULL; | |
1956 | } | |
1957 | } else { | |
1958 | list_move_tail(&va->list, &vp->head); | |
1959 | va = NULL; | |
1960 | } | |
1961 | } | |
1962 | spin_unlock(&vn->pool_lock); | |
1963 | ||
1964 | return va; | |
1965 | } | |
1966 | ||
1967 | static struct vmap_area * | |
1968 | node_alloc(unsigned long size, unsigned long align, | |
1969 | unsigned long vstart, unsigned long vend, | |
1970 | unsigned long *addr, unsigned int *vn_id) | |
1971 | { | |
1972 | struct vmap_area *va; | |
1973 | ||
1974 | *vn_id = 0; | |
b25f97d0 | 1975 | *addr = -EINVAL; |
72210662 URS |
1976 | |
1977 | /* | |
1978 | * Fallback to a global heap if not vmalloc or there | |
1979 | * is only one node. | |
1980 | */ | |
1981 | if (vstart != VMALLOC_START || vend != VMALLOC_END || | |
1982 | nr_vmap_nodes == 1) | |
1983 | return NULL; | |
1984 | ||
1985 | *vn_id = raw_smp_processor_id() % nr_vmap_nodes; | |
1986 | va = node_pool_del_va(id_to_node(*vn_id), size, align, vstart, vend); | |
1987 | *vn_id = encode_vn_id(*vn_id); | |
1988 | ||
1989 | if (va) | |
1990 | *addr = va->va_start; | |
1991 | ||
1992 | return va; | |
1993 | } | |
1994 | ||
aaab830a | 1995 | static inline void setup_vmalloc_vm(struct vm_struct *vm, |
1996 | struct vmap_area *va, unsigned long flags, const void *caller) | |
1997 | { | |
1998 | vm->flags = flags; | |
1999 | vm->addr = (void *)va->va_start; | |
a0309faf | 2000 | vm->size = vm->requested_size = va_size(va); |
aaab830a | 2001 | vm->caller = caller; |
2002 | va->vm = vm; | |
2003 | } | |
2004 | ||
db64fe02 NP |
2005 | /* |
2006 | * Allocate a region of KVA of the specified size and alignment, within the | |
aaab830a | 2007 | * vstart and vend. If vm is passed in, the two will also be bound. |
db64fe02 NP |
2008 | */ |
2009 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
2010 | unsigned long align, | |
2011 | unsigned long vstart, unsigned long vend, | |
869176a0 | 2012 | int node, gfp_t gfp_mask, |
4b68a773 | 2013 | unsigned long va_flags, struct vm_struct *vm) |
db64fe02 | 2014 | { |
d0936029 | 2015 | struct vmap_node *vn; |
187f8cc4 | 2016 | struct vmap_area *va; |
12e376a6 | 2017 | unsigned long freed; |
1da177e4 | 2018 | unsigned long addr; |
72210662 | 2019 | unsigned int vn_id; |
db64fe02 | 2020 | int purged = 0; |
d98c9e83 | 2021 | int ret; |
db64fe02 | 2022 | |
7e4a32c0 HL |
2023 | if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align))) |
2024 | return ERR_PTR(-EINVAL); | |
db64fe02 | 2025 | |
68ad4a33 URS |
2026 | if (unlikely(!vmap_initialized)) |
2027 | return ERR_PTR(-EBUSY); | |
2028 | ||
5803ed29 | 2029 | might_sleep(); |
db64fe02 | 2030 | |
7f88f88f | 2031 | /* |
72210662 URS |
2032 | * If a VA is obtained from a global heap(if it fails here) |
2033 | * it is anyway marked with this "vn_id" so it is returned | |
2034 | * to this pool's node later. Such way gives a possibility | |
2035 | * to populate pools based on users demand. | |
2036 | * | |
2037 | * On success a ready to go VA is returned. | |
7f88f88f | 2038 | */ |
72210662 URS |
2039 | va = node_alloc(size, align, vstart, vend, &addr, &vn_id); |
2040 | if (!va) { | |
2041 | gfp_mask = gfp_mask & GFP_RECLAIM_MASK; | |
2042 | ||
2043 | va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); | |
2044 | if (unlikely(!va)) | |
2045 | return ERR_PTR(-ENOMEM); | |
db64fe02 | 2046 | |
96aa8437 URS |
2047 | /* |
2048 | * Only scan the relevant parts containing pointers to other objects | |
2049 | * to avoid false negatives. | |
2050 | */ | |
2051 | kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); | |
2052 | } | |
7f88f88f | 2053 | |
db64fe02 | 2054 | retry: |
b25f97d0 | 2055 | if (IS_ERR_VALUE(addr)) { |
72210662 URS |
2056 | preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); |
2057 | addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list, | |
2058 | size, align, vstart, vend); | |
2059 | spin_unlock(&free_vmap_area_lock); | |
2060 | } | |
89699605 | 2061 | |
b25f97d0 | 2062 | trace_alloc_vmap_area(addr, size, align, vstart, vend, IS_ERR_VALUE(addr)); |
cf243da6 | 2063 | |
afd07389 | 2064 | /* |
b25f97d0 | 2065 | * If an allocation fails, the error value is |
68ad4a33 | 2066 | * returned. Therefore trigger the overflow path. |
afd07389 | 2067 | */ |
b25f97d0 | 2068 | if (IS_ERR_VALUE(addr)) |
89699605 | 2069 | goto overflow; |
db64fe02 NP |
2070 | |
2071 | va->va_start = addr; | |
2072 | va->va_end = addr + size; | |
688fcbfc | 2073 | va->vm = NULL; |
72210662 | 2074 | va->flags = (va_flags | vn_id); |
68ad4a33 | 2075 | |
4b68a773 BH |
2076 | if (vm) { |
2077 | vm->addr = (void *)va->va_start; | |
b44f71e3 | 2078 | vm->size = va_size(va); |
4b68a773 BH |
2079 | va->vm = vm; |
2080 | } | |
aaab830a | 2081 | |
d0936029 URS |
2082 | vn = addr_to_node(va->va_start); |
2083 | ||
2084 | spin_lock(&vn->busy.lock); | |
2085 | insert_vmap_area(va, &vn->busy.root, &vn->busy.head); | |
2086 | spin_unlock(&vn->busy.lock); | |
db64fe02 | 2087 | |
61e16557 | 2088 | BUG_ON(!IS_ALIGNED(va->va_start, align)); |
89699605 NP |
2089 | BUG_ON(va->va_start < vstart); |
2090 | BUG_ON(va->va_end > vend); | |
2091 | ||
d98c9e83 AR |
2092 | ret = kasan_populate_vmalloc(addr, size); |
2093 | if (ret) { | |
2094 | free_vmap_area(va); | |
2095 | return ERR_PTR(ret); | |
2096 | } | |
2097 | ||
db64fe02 | 2098 | return va; |
89699605 NP |
2099 | |
2100 | overflow: | |
89699605 | 2101 | if (!purged) { |
77e50af0 | 2102 | reclaim_and_purge_vmap_areas(); |
89699605 NP |
2103 | purged = 1; |
2104 | goto retry; | |
2105 | } | |
4da56b99 | 2106 | |
12e376a6 URS |
2107 | freed = 0; |
2108 | blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); | |
2109 | ||
2110 | if (freed > 0) { | |
2111 | purged = 0; | |
2112 | goto retry; | |
4da56b99 CW |
2113 | } |
2114 | ||
03497d76 | 2115 | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) |
55ccad6f SKO |
2116 | pr_warn("vmalloc_node_range for size %lu failed: Address range restricted to %#lx - %#lx\n", |
2117 | size, vstart, vend); | |
68ad4a33 URS |
2118 | |
2119 | kmem_cache_free(vmap_area_cachep, va); | |
89699605 | 2120 | return ERR_PTR(-EBUSY); |
db64fe02 NP |
2121 | } |
2122 | ||
4da56b99 CW |
2123 | int register_vmap_purge_notifier(struct notifier_block *nb) |
2124 | { | |
2125 | return blocking_notifier_chain_register(&vmap_notify_list, nb); | |
2126 | } | |
2127 | EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); | |
2128 | ||
2129 | int unregister_vmap_purge_notifier(struct notifier_block *nb) | |
2130 | { | |
2131 | return blocking_notifier_chain_unregister(&vmap_notify_list, nb); | |
2132 | } | |
2133 | EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); | |
2134 | ||
db64fe02 NP |
2135 | /* |
2136 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
2137 | * before attempting to purge with a TLB flush. | |
2138 | * | |
2139 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
2140 | * and take slightly longer to purge, but it will linearly reduce the number of | |
2141 | * global TLB flushes that must be performed. It would seem natural to scale | |
2142 | * this number up linearly with the number of CPUs (because vmapping activity | |
2143 | * could also scale linearly with the number of CPUs), however it is likely | |
2144 | * that in practice, workloads might be constrained in other ways that mean | |
2145 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
2146 | * conservative and not introduce a big latency on huge systems, so go with | |
2147 | * a less aggressive log scale. It will still be an improvement over the old | |
2148 | * code, and it will be simple to change the scale factor if we find that it | |
2149 | * becomes a problem on bigger systems. | |
2150 | */ | |
2151 | static unsigned long lazy_max_pages(void) | |
2152 | { | |
2153 | unsigned int log; | |
2154 | ||
2155 | log = fls(num_online_cpus()); | |
2156 | ||
2157 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
2158 | } | |
2159 | ||
0574ecd1 | 2160 | /* |
f0953a1b | 2161 | * Serialize vmap purging. There is no actual critical section protected |
153090f2 | 2162 | * by this lock, but we want to avoid concurrent calls for performance |
0574ecd1 CH |
2163 | * reasons and to make the pcpu_get_vm_areas more deterministic. |
2164 | */ | |
f9e09977 | 2165 | static DEFINE_MUTEX(vmap_purge_lock); |
0574ecd1 | 2166 | |
02b709df NP |
2167 | /* for per-CPU blocks */ |
2168 | static void purge_fragmented_blocks_allcpus(void); | |
2169 | ||
72210662 URS |
2170 | static void |
2171 | reclaim_list_global(struct list_head *head) | |
db64fe02 | 2172 | { |
72210662 | 2173 | struct vmap_area *va, *n; |
db64fe02 | 2174 | |
72210662 URS |
2175 | if (list_empty(head)) |
2176 | return; | |
02b709df | 2177 | |
e36176be | 2178 | spin_lock(&free_vmap_area_lock); |
72210662 URS |
2179 | list_for_each_entry_safe(va, n, head, list) |
2180 | merge_or_add_vmap_area_augment(va, | |
2181 | &free_vmap_area_root, &free_vmap_area_list); | |
2182 | spin_unlock(&free_vmap_area_lock); | |
2183 | } | |
96e2db45 | 2184 | |
72210662 URS |
2185 | static void |
2186 | decay_va_pool_node(struct vmap_node *vn, bool full_decay) | |
2187 | { | |
7ae12a57 HL |
2188 | LIST_HEAD(decay_list); |
2189 | struct rb_root decay_root = RB_ROOT; | |
72210662 | 2190 | struct vmap_area *va, *nva; |
4f05024e | 2191 | unsigned long n_decay, pool_len; |
72210662 | 2192 | int i; |
68571be9 | 2193 | |
72210662 | 2194 | for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { |
7ae12a57 | 2195 | LIST_HEAD(tmp_list); |
db64fe02 | 2196 | |
72210662 URS |
2197 | if (list_empty(&vn->pool[i].head)) |
2198 | continue; | |
db64fe02 | 2199 | |
72210662 URS |
2200 | /* Detach the pool, so no-one can access it. */ |
2201 | spin_lock(&vn->pool_lock); | |
2202 | list_replace_init(&vn->pool[i].head, &tmp_list); | |
2203 | spin_unlock(&vn->pool_lock); | |
2204 | ||
4f05024e BH |
2205 | pool_len = n_decay = vn->pool[i].len; |
2206 | WRITE_ONCE(vn->pool[i].len, 0); | |
72210662 URS |
2207 | |
2208 | /* Decay a pool by ~25% out of left objects. */ | |
4f05024e BH |
2209 | if (!full_decay) |
2210 | n_decay >>= 2; | |
2211 | pool_len -= n_decay; | |
72210662 URS |
2212 | |
2213 | list_for_each_entry_safe(va, nva, &tmp_list, list) { | |
4f05024e BH |
2214 | if (!n_decay--) |
2215 | break; | |
2216 | ||
72210662 URS |
2217 | list_del_init(&va->list); |
2218 | merge_or_add_vmap_area(va, &decay_root, &decay_list); | |
72210662 | 2219 | } |
763b218d | 2220 | |
dd3b8353 | 2221 | /* |
15e02a39 URS |
2222 | * Attach the pool back if it has been partly decayed. |
2223 | * Please note, it is supposed that nobody(other contexts) | |
2224 | * can populate the pool therefore a simple list replace | |
2225 | * operation takes place here. | |
dd3b8353 | 2226 | */ |
4f05024e | 2227 | if (!list_empty(&tmp_list)) { |
72210662 URS |
2228 | spin_lock(&vn->pool_lock); |
2229 | list_replace_init(&tmp_list, &vn->pool[i].head); | |
4f05024e | 2230 | WRITE_ONCE(vn->pool[i].len, pool_len); |
72210662 URS |
2231 | spin_unlock(&vn->pool_lock); |
2232 | } | |
2233 | } | |
3c5c3cfb | 2234 | |
72210662 URS |
2235 | reclaim_list_global(&decay_list); |
2236 | } | |
2237 | ||
9e9e085e AH |
2238 | static void |
2239 | kasan_release_vmalloc_node(struct vmap_node *vn) | |
2240 | { | |
2241 | struct vmap_area *va; | |
2242 | unsigned long start, end; | |
2243 | ||
2244 | start = list_first_entry(&vn->purge_list, struct vmap_area, list)->va_start; | |
2245 | end = list_last_entry(&vn->purge_list, struct vmap_area, list)->va_end; | |
2246 | ||
2247 | list_for_each_entry(va, &vn->purge_list, list) { | |
2248 | if (is_vmalloc_or_module_addr((void *) va->va_start)) | |
2249 | kasan_release_vmalloc(va->va_start, va->va_end, | |
2250 | va->va_start, va->va_end, | |
2251 | KASAN_VMALLOC_PAGE_RANGE); | |
2252 | } | |
2253 | ||
2254 | kasan_release_vmalloc(start, end, start, end, KASAN_VMALLOC_TLB_FLUSH); | |
2255 | } | |
2256 | ||
72210662 URS |
2257 | static void purge_vmap_node(struct work_struct *work) |
2258 | { | |
2259 | struct vmap_node *vn = container_of(work, | |
2260 | struct vmap_node, purge_work); | |
409faf8c | 2261 | unsigned long nr_purged_pages = 0; |
72210662 URS |
2262 | struct vmap_area *va, *n_va; |
2263 | LIST_HEAD(local_list); | |
2264 | ||
9e9e085e AH |
2265 | if (IS_ENABLED(CONFIG_KASAN_VMALLOC)) |
2266 | kasan_release_vmalloc_node(vn); | |
2267 | ||
72210662 URS |
2268 | vn->nr_purged = 0; |
2269 | ||
282631cb | 2270 | list_for_each_entry_safe(va, n_va, &vn->purge_list, list) { |
b44f71e3 | 2271 | unsigned long nr = va_size(va) >> PAGE_SHIFT; |
72210662 | 2272 | unsigned int vn_id = decode_vn_id(va->flags); |
763b218d | 2273 | |
72210662 | 2274 | list_del_init(&va->list); |
9c801f61 | 2275 | |
409faf8c | 2276 | nr_purged_pages += nr; |
72210662 | 2277 | vn->nr_purged++; |
68571be9 | 2278 | |
72210662 URS |
2279 | if (is_vn_id_valid(vn_id) && !vn->skip_populate) |
2280 | if (node_pool_add_va(vn, va)) | |
2281 | continue; | |
2282 | ||
2283 | /* Go back to global. */ | |
2284 | list_add(&va->list, &local_list); | |
763b218d | 2285 | } |
6030fd5f | 2286 | |
409faf8c AH |
2287 | atomic_long_sub(nr_purged_pages, &vmap_lazy_nr); |
2288 | ||
72210662 | 2289 | reclaim_list_global(&local_list); |
282631cb URS |
2290 | } |
2291 | ||
2292 | /* | |
2293 | * Purges all lazily-freed vmap areas. | |
2294 | */ | |
72210662 URS |
2295 | static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end, |
2296 | bool full_pool_decay) | |
282631cb | 2297 | { |
72210662 URS |
2298 | unsigned long nr_purged_areas = 0; |
2299 | unsigned int nr_purge_helpers; | |
f7f68274 | 2300 | static cpumask_t purge_nodes; |
72210662 | 2301 | unsigned int nr_purge_nodes; |
282631cb URS |
2302 | struct vmap_node *vn; |
2303 | int i; | |
2304 | ||
2305 | lockdep_assert_held(&vmap_purge_lock); | |
72210662 URS |
2306 | |
2307 | /* | |
2308 | * Use cpumask to mark which node has to be processed. | |
2309 | */ | |
282631cb URS |
2310 | purge_nodes = CPU_MASK_NONE; |
2311 | ||
24c76f37 | 2312 | for_each_vmap_node(vn) { |
282631cb | 2313 | INIT_LIST_HEAD(&vn->purge_list); |
72210662 URS |
2314 | vn->skip_populate = full_pool_decay; |
2315 | decay_va_pool_node(vn, full_pool_decay); | |
282631cb URS |
2316 | |
2317 | if (RB_EMPTY_ROOT(&vn->lazy.root)) | |
2318 | continue; | |
2319 | ||
2320 | spin_lock(&vn->lazy.lock); | |
2321 | WRITE_ONCE(vn->lazy.root.rb_node, NULL); | |
2322 | list_replace_init(&vn->lazy.head, &vn->purge_list); | |
2323 | spin_unlock(&vn->lazy.lock); | |
2324 | ||
2325 | start = min(start, list_first_entry(&vn->purge_list, | |
2326 | struct vmap_area, list)->va_start); | |
2327 | ||
2328 | end = max(end, list_last_entry(&vn->purge_list, | |
2329 | struct vmap_area, list)->va_end); | |
2330 | ||
24c76f37 | 2331 | cpumask_set_cpu(node_to_id(vn), &purge_nodes); |
282631cb URS |
2332 | } |
2333 | ||
72210662 URS |
2334 | nr_purge_nodes = cpumask_weight(&purge_nodes); |
2335 | if (nr_purge_nodes > 0) { | |
282631cb URS |
2336 | flush_tlb_kernel_range(start, end); |
2337 | ||
72210662 URS |
2338 | /* One extra worker is per a lazy_max_pages() full set minus one. */ |
2339 | nr_purge_helpers = atomic_long_read(&vmap_lazy_nr) / lazy_max_pages(); | |
2340 | nr_purge_helpers = clamp(nr_purge_helpers, 1U, nr_purge_nodes) - 1; | |
2341 | ||
282631cb | 2342 | for_each_cpu(i, &purge_nodes) { |
72210662 URS |
2343 | vn = &vmap_nodes[i]; |
2344 | ||
2345 | if (nr_purge_helpers > 0) { | |
2346 | INIT_WORK(&vn->purge_work, purge_vmap_node); | |
2347 | ||
2348 | if (cpumask_test_cpu(i, cpu_online_mask)) | |
2349 | schedule_work_on(i, &vn->purge_work); | |
2350 | else | |
2351 | schedule_work(&vn->purge_work); | |
2352 | ||
2353 | nr_purge_helpers--; | |
2354 | } else { | |
2355 | vn->purge_work.func = NULL; | |
2356 | purge_vmap_node(&vn->purge_work); | |
2357 | nr_purged_areas += vn->nr_purged; | |
2358 | } | |
2359 | } | |
2360 | ||
2361 | for_each_cpu(i, &purge_nodes) { | |
2362 | vn = &vmap_nodes[i]; | |
2363 | ||
2364 | if (vn->purge_work.func) { | |
2365 | flush_work(&vn->purge_work); | |
2366 | nr_purged_areas += vn->nr_purged; | |
2367 | } | |
282631cb URS |
2368 | } |
2369 | } | |
2370 | ||
72210662 URS |
2371 | trace_purge_vmap_area_lazy(start, end, nr_purged_areas); |
2372 | return nr_purged_areas > 0; | |
db64fe02 NP |
2373 | } |
2374 | ||
2375 | /* | |
77e50af0 | 2376 | * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list. |
db64fe02 | 2377 | */ |
77e50af0 TG |
2378 | static void reclaim_and_purge_vmap_areas(void) |
2379 | ||
db64fe02 | 2380 | { |
f9e09977 | 2381 | mutex_lock(&vmap_purge_lock); |
0574ecd1 | 2382 | purge_fragmented_blocks_allcpus(); |
72210662 | 2383 | __purge_vmap_area_lazy(ULONG_MAX, 0, true); |
f9e09977 | 2384 | mutex_unlock(&vmap_purge_lock); |
db64fe02 NP |
2385 | } |
2386 | ||
690467c8 URS |
2387 | static void drain_vmap_area_work(struct work_struct *work) |
2388 | { | |
282631cb | 2389 | mutex_lock(&vmap_purge_lock); |
72210662 | 2390 | __purge_vmap_area_lazy(ULONG_MAX, 0, false); |
282631cb | 2391 | mutex_unlock(&vmap_purge_lock); |
690467c8 URS |
2392 | } |
2393 | ||
db64fe02 | 2394 | /* |
edd89818 URS |
2395 | * Free a vmap area, caller ensuring that the area has been unmapped, |
2396 | * unlinked and flush_cache_vunmap had been called for the correct | |
2397 | * range previously. | |
db64fe02 | 2398 | */ |
64141da5 | 2399 | static void free_vmap_area_noflush(struct vmap_area *va) |
db64fe02 | 2400 | { |
8c4196fe URS |
2401 | unsigned long nr_lazy_max = lazy_max_pages(); |
2402 | unsigned long va_start = va->va_start; | |
72210662 URS |
2403 | unsigned int vn_id = decode_vn_id(va->flags); |
2404 | struct vmap_node *vn; | |
4d36e6f8 | 2405 | unsigned long nr_lazy; |
80c4bd7a | 2406 | |
edd89818 URS |
2407 | if (WARN_ON_ONCE(!list_empty(&va->list))) |
2408 | return; | |
dd3b8353 | 2409 | |
0272d07e | 2410 | nr_lazy = atomic_long_add_return_relaxed(va_size(va) >> PAGE_SHIFT, |
b44f71e3 | 2411 | &vmap_lazy_nr); |
80c4bd7a | 2412 | |
96e2db45 | 2413 | /* |
72210662 URS |
2414 | * If it was request by a certain node we would like to |
2415 | * return it to that node, i.e. its pool for later reuse. | |
96e2db45 | 2416 | */ |
72210662 URS |
2417 | vn = is_vn_id_valid(vn_id) ? |
2418 | id_to_node(vn_id):addr_to_node(va->va_start); | |
2419 | ||
282631cb | 2420 | spin_lock(&vn->lazy.lock); |
72210662 | 2421 | insert_vmap_area(va, &vn->lazy.root, &vn->lazy.head); |
282631cb | 2422 | spin_unlock(&vn->lazy.lock); |
80c4bd7a | 2423 | |
8c4196fe URS |
2424 | trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max); |
2425 | ||
96e2db45 | 2426 | /* After this point, we may free va at any time */ |
8c4196fe | 2427 | if (unlikely(nr_lazy > nr_lazy_max)) |
690467c8 | 2428 | schedule_work(&drain_vmap_work); |
db64fe02 NP |
2429 | } |
2430 | ||
b29acbdc NP |
2431 | /* |
2432 | * Free and unmap a vmap area | |
2433 | */ | |
2434 | static void free_unmap_vmap_area(struct vmap_area *va) | |
2435 | { | |
2436 | flush_cache_vunmap(va->va_start, va->va_end); | |
4ad0ae8c | 2437 | vunmap_range_noflush(va->va_start, va->va_end); |
8e57f8ac | 2438 | if (debug_pagealloc_enabled_static()) |
82a2e924 CP |
2439 | flush_tlb_kernel_range(va->va_start, va->va_end); |
2440 | ||
c8eef01e | 2441 | free_vmap_area_noflush(va); |
b29acbdc NP |
2442 | } |
2443 | ||
993d0b28 | 2444 | struct vmap_area *find_vmap_area(unsigned long addr) |
db64fe02 | 2445 | { |
d0936029 | 2446 | struct vmap_node *vn; |
db64fe02 | 2447 | struct vmap_area *va; |
d0936029 | 2448 | int i, j; |
db64fe02 | 2449 | |
4ed91fa9 URS |
2450 | if (unlikely(!vmap_initialized)) |
2451 | return NULL; | |
2452 | ||
d0936029 URS |
2453 | /* |
2454 | * An addr_to_node_id(addr) converts an address to a node index | |
2455 | * where a VA is located. If VA spans several zones and passed | |
2456 | * addr is not the same as va->va_start, what is not common, we | |
15e02a39 | 2457 | * may need to scan extra nodes. See an example: |
d0936029 | 2458 | * |
15e02a39 | 2459 | * <----va----> |
d0936029 URS |
2460 | * -|-----|-----|-----|-----|- |
2461 | * 1 2 0 1 | |
2462 | * | |
15e02a39 URS |
2463 | * VA resides in node 1 whereas it spans 1, 2 an 0. If passed |
2464 | * addr is within 2 or 0 nodes we should do extra work. | |
d0936029 URS |
2465 | */ |
2466 | i = j = addr_to_node_id(addr); | |
2467 | do { | |
2468 | vn = &vmap_nodes[i]; | |
db64fe02 | 2469 | |
d0936029 URS |
2470 | spin_lock(&vn->busy.lock); |
2471 | va = __find_vmap_area(addr, &vn->busy.root); | |
2472 | spin_unlock(&vn->busy.lock); | |
2473 | ||
2474 | if (va) | |
2475 | return va; | |
81262d85 | 2476 | } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j); |
d0936029 URS |
2477 | |
2478 | return NULL; | |
db64fe02 NP |
2479 | } |
2480 | ||
edd89818 URS |
2481 | static struct vmap_area *find_unlink_vmap_area(unsigned long addr) |
2482 | { | |
d0936029 | 2483 | struct vmap_node *vn; |
edd89818 | 2484 | struct vmap_area *va; |
d0936029 | 2485 | int i, j; |
edd89818 | 2486 | |
15e02a39 URS |
2487 | /* |
2488 | * Check the comment in the find_vmap_area() about the loop. | |
2489 | */ | |
d0936029 URS |
2490 | i = j = addr_to_node_id(addr); |
2491 | do { | |
2492 | vn = &vmap_nodes[i]; | |
edd89818 | 2493 | |
d0936029 URS |
2494 | spin_lock(&vn->busy.lock); |
2495 | va = __find_vmap_area(addr, &vn->busy.root); | |
2496 | if (va) | |
2497 | unlink_va(va, &vn->busy.root); | |
2498 | spin_unlock(&vn->busy.lock); | |
2499 | ||
2500 | if (va) | |
2501 | return va; | |
81262d85 | 2502 | } while ((i = (i + nr_vmap_nodes - 1) % nr_vmap_nodes) != j); |
d0936029 URS |
2503 | |
2504 | return NULL; | |
edd89818 URS |
2505 | } |
2506 | ||
db64fe02 NP |
2507 | /*** Per cpu kva allocator ***/ |
2508 | ||
2509 | /* | |
2510 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
2511 | * room for at least 16 percpu vmap blocks per CPU. | |
2512 | */ | |
2513 | /* | |
2514 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
2515 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
2516 | * instead (we just need a rough idea) | |
2517 | */ | |
2518 | #if BITS_PER_LONG == 32 | |
2519 | #define VMALLOC_SPACE (128UL*1024*1024) | |
2520 | #else | |
2521 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
2522 | #endif | |
2523 | ||
2524 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
2525 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
2526 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
2527 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
2528 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
2529 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
f982f915 CL |
2530 | #define VMAP_BBMAP_BITS \ |
2531 | VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
2532 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
2533 | VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) | |
db64fe02 NP |
2534 | |
2535 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
2536 | ||
77e50af0 TG |
2537 | /* |
2538 | * Purge threshold to prevent overeager purging of fragmented blocks for | |
2539 | * regular operations: Purge if vb->free is less than 1/4 of the capacity. | |
2540 | */ | |
2541 | #define VMAP_PURGE_THRESHOLD (VMAP_BBMAP_BITS / 4) | |
2542 | ||
869176a0 BH |
2543 | #define VMAP_RAM 0x1 /* indicates vm_map_ram area*/ |
2544 | #define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/ | |
2545 | #define VMAP_FLAGS_MASK 0x3 | |
2546 | ||
db64fe02 NP |
2547 | struct vmap_block_queue { |
2548 | spinlock_t lock; | |
2549 | struct list_head free; | |
062eacf5 URS |
2550 | |
2551 | /* | |
2552 | * An xarray requires an extra memory dynamically to | |
2553 | * be allocated. If it is an issue, we can use rb-tree | |
2554 | * instead. | |
2555 | */ | |
2556 | struct xarray vmap_blocks; | |
db64fe02 NP |
2557 | }; |
2558 | ||
2559 | struct vmap_block { | |
2560 | spinlock_t lock; | |
2561 | struct vmap_area *va; | |
db64fe02 | 2562 | unsigned long free, dirty; |
d76f9954 | 2563 | DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS); |
7d61bfe8 | 2564 | unsigned long dirty_min, dirty_max; /*< dirty range */ |
de560423 NP |
2565 | struct list_head free_list; |
2566 | struct rcu_head rcu_head; | |
02b709df | 2567 | struct list_head purge; |
8c61291f | 2568 | unsigned int cpu; |
db64fe02 NP |
2569 | }; |
2570 | ||
2571 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
2572 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
2573 | ||
2574 | /* | |
062eacf5 URS |
2575 | * In order to fast access to any "vmap_block" associated with a |
2576 | * specific address, we use a hash. | |
2577 | * | |
2578 | * A per-cpu vmap_block_queue is used in both ways, to serialize | |
2579 | * an access to free block chains among CPUs(alloc path) and it | |
2580 | * also acts as a vmap_block hash(alloc/free paths). It means we | |
2581 | * overload it, since we already have the per-cpu array which is | |
2582 | * used as a hash table. When used as a hash a 'cpu' passed to | |
2583 | * per_cpu() is not actually a CPU but rather a hash index. | |
2584 | * | |
fa1c77c1 | 2585 | * A hash function is addr_to_vb_xa() which hashes any address |
062eacf5 URS |
2586 | * to a specific index(in a hash) it belongs to. This then uses a |
2587 | * per_cpu() macro to access an array with generated index. | |
2588 | * | |
2589 | * An example: | |
2590 | * | |
2591 | * CPU_1 CPU_2 CPU_0 | |
2592 | * | | | | |
2593 | * V V V | |
2594 | * 0 10 20 30 40 50 60 | |
2595 | * |------|------|------|------|------|------|...<vmap address space> | |
2596 | * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2 | |
2597 | * | |
2598 | * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus | |
2599 | * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock; | |
2600 | * | |
2601 | * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus | |
2602 | * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock; | |
2603 | * | |
2604 | * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus | |
2605 | * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock. | |
2606 | * | |
2607 | * This technique almost always avoids lock contention on insert/remove, | |
2608 | * however xarray spinlocks protect against any contention that remains. | |
db64fe02 | 2609 | */ |
062eacf5 | 2610 | static struct xarray * |
fa1c77c1 | 2611 | addr_to_vb_xa(unsigned long addr) |
062eacf5 | 2612 | { |
a34acf30 URS |
2613 | int index = (addr / VMAP_BLOCK_SIZE) % nr_cpu_ids; |
2614 | ||
2615 | /* | |
2616 | * Please note, nr_cpu_ids points on a highest set | |
2617 | * possible bit, i.e. we never invoke cpumask_next() | |
2618 | * if an index points on it which is nr_cpu_ids - 1. | |
2619 | */ | |
2620 | if (!cpu_possible(index)) | |
2621 | index = cpumask_next(index, cpu_possible_mask); | |
062eacf5 URS |
2622 | |
2623 | return &per_cpu(vmap_block_queue, index).vmap_blocks; | |
2624 | } | |
db64fe02 NP |
2625 | |
2626 | /* | |
2627 | * We should probably have a fallback mechanism to allocate virtual memory | |
2628 | * out of partially filled vmap blocks. However vmap block sizing should be | |
2629 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
2630 | * big problem. | |
2631 | */ | |
2632 | ||
2633 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
2634 | { | |
2635 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
2636 | addr /= VMAP_BLOCK_SIZE; | |
2637 | return addr; | |
2638 | } | |
2639 | ||
cf725ce2 RP |
2640 | static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) |
2641 | { | |
2642 | unsigned long addr; | |
2643 | ||
2644 | addr = va_start + (pages_off << PAGE_SHIFT); | |
2645 | BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); | |
2646 | return (void *)addr; | |
2647 | } | |
2648 | ||
2649 | /** | |
2650 | * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this | |
2651 | * block. Of course pages number can't exceed VMAP_BBMAP_BITS | |
2652 | * @order: how many 2^order pages should be occupied in newly allocated block | |
2653 | * @gfp_mask: flags for the page level allocator | |
2654 | * | |
a862f68a | 2655 | * Return: virtual address in a newly allocated block or ERR_PTR(-errno) |
cf725ce2 RP |
2656 | */ |
2657 | static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) | |
db64fe02 NP |
2658 | { |
2659 | struct vmap_block_queue *vbq; | |
2660 | struct vmap_block *vb; | |
2661 | struct vmap_area *va; | |
062eacf5 | 2662 | struct xarray *xa; |
db64fe02 NP |
2663 | unsigned long vb_idx; |
2664 | int node, err; | |
cf725ce2 | 2665 | void *vaddr; |
db64fe02 NP |
2666 | |
2667 | node = numa_node_id(); | |
2668 | ||
2669 | vb = kmalloc_node(sizeof(struct vmap_block), | |
2670 | gfp_mask & GFP_RECLAIM_MASK, node); | |
2671 | if (unlikely(!vb)) | |
2672 | return ERR_PTR(-ENOMEM); | |
2673 | ||
2674 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
2675 | VMALLOC_START, VMALLOC_END, | |
869176a0 | 2676 | node, gfp_mask, |
4b68a773 | 2677 | VMAP_RAM|VMAP_BLOCK, NULL); |
ddf9c6d4 | 2678 | if (IS_ERR(va)) { |
db64fe02 | 2679 | kfree(vb); |
e7d86340 | 2680 | return ERR_CAST(va); |
db64fe02 NP |
2681 | } |
2682 | ||
cf725ce2 | 2683 | vaddr = vmap_block_vaddr(va->va_start, 0); |
db64fe02 NP |
2684 | spin_lock_init(&vb->lock); |
2685 | vb->va = va; | |
cf725ce2 RP |
2686 | /* At least something should be left free */ |
2687 | BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); | |
d76f9954 | 2688 | bitmap_zero(vb->used_map, VMAP_BBMAP_BITS); |
cf725ce2 | 2689 | vb->free = VMAP_BBMAP_BITS - (1UL << order); |
db64fe02 | 2690 | vb->dirty = 0; |
7d61bfe8 RP |
2691 | vb->dirty_min = VMAP_BBMAP_BITS; |
2692 | vb->dirty_max = 0; | |
d76f9954 | 2693 | bitmap_set(vb->used_map, 0, (1UL << order)); |
db64fe02 | 2694 | INIT_LIST_HEAD(&vb->free_list); |
3e3de794 | 2695 | vb->cpu = raw_smp_processor_id(); |
db64fe02 | 2696 | |
fa1c77c1 | 2697 | xa = addr_to_vb_xa(va->va_start); |
db64fe02 | 2698 | vb_idx = addr_to_vb_idx(va->va_start); |
062eacf5 | 2699 | err = xa_insert(xa, vb_idx, vb, gfp_mask); |
0f14599c MWO |
2700 | if (err) { |
2701 | kfree(vb); | |
2702 | free_vmap_area(va); | |
2703 | return ERR_PTR(err); | |
2704 | } | |
8c61291f ZH |
2705 | /* |
2706 | * list_add_tail_rcu could happened in another core | |
2707 | * rather than vb->cpu due to task migration, which | |
2708 | * is safe as list_add_tail_rcu will ensure the list's | |
2709 | * integrity together with list_for_each_rcu from read | |
2710 | * side. | |
2711 | */ | |
8c61291f | 2712 | vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu); |
db64fe02 | 2713 | spin_lock(&vbq->lock); |
68ac546f | 2714 | list_add_tail_rcu(&vb->free_list, &vbq->free); |
db64fe02 | 2715 | spin_unlock(&vbq->lock); |
db64fe02 | 2716 | |
cf725ce2 | 2717 | return vaddr; |
db64fe02 NP |
2718 | } |
2719 | ||
db64fe02 NP |
2720 | static void free_vmap_block(struct vmap_block *vb) |
2721 | { | |
d0936029 | 2722 | struct vmap_node *vn; |
db64fe02 | 2723 | struct vmap_block *tmp; |
062eacf5 | 2724 | struct xarray *xa; |
db64fe02 | 2725 | |
fa1c77c1 | 2726 | xa = addr_to_vb_xa(vb->va->va_start); |
062eacf5 | 2727 | tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start)); |
db64fe02 NP |
2728 | BUG_ON(tmp != vb); |
2729 | ||
d0936029 URS |
2730 | vn = addr_to_node(vb->va->va_start); |
2731 | spin_lock(&vn->busy.lock); | |
2732 | unlink_va(vb->va, &vn->busy.root); | |
2733 | spin_unlock(&vn->busy.lock); | |
edd89818 | 2734 | |
64141da5 | 2735 | free_vmap_area_noflush(vb->va); |
22a3c7d1 | 2736 | kfree_rcu(vb, rcu_head); |
db64fe02 NP |
2737 | } |
2738 | ||
ca5e46c3 | 2739 | static bool purge_fragmented_block(struct vmap_block *vb, |
8c61291f | 2740 | struct list_head *purge_list, bool force_purge) |
ca5e46c3 | 2741 | { |
8c61291f ZH |
2742 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu); |
2743 | ||
ca5e46c3 TG |
2744 | if (vb->free + vb->dirty != VMAP_BBMAP_BITS || |
2745 | vb->dirty == VMAP_BBMAP_BITS) | |
2746 | return false; | |
2747 | ||
77e50af0 TG |
2748 | /* Don't overeagerly purge usable blocks unless requested */ |
2749 | if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD)) | |
2750 | return false; | |
2751 | ||
ca5e46c3 | 2752 | /* prevent further allocs after releasing lock */ |
7f48121e | 2753 | WRITE_ONCE(vb->free, 0); |
ca5e46c3 | 2754 | /* prevent purging it again */ |
7f48121e | 2755 | WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS); |
ca5e46c3 TG |
2756 | vb->dirty_min = 0; |
2757 | vb->dirty_max = VMAP_BBMAP_BITS; | |
2758 | spin_lock(&vbq->lock); | |
2759 | list_del_rcu(&vb->free_list); | |
2760 | spin_unlock(&vbq->lock); | |
2761 | list_add_tail(&vb->purge, purge_list); | |
2762 | return true; | |
2763 | } | |
2764 | ||
2765 | static void free_purged_blocks(struct list_head *purge_list) | |
2766 | { | |
2767 | struct vmap_block *vb, *n_vb; | |
2768 | ||
2769 | list_for_each_entry_safe(vb, n_vb, purge_list, purge) { | |
2770 | list_del(&vb->purge); | |
2771 | free_vmap_block(vb); | |
2772 | } | |
2773 | } | |
2774 | ||
02b709df NP |
2775 | static void purge_fragmented_blocks(int cpu) |
2776 | { | |
2777 | LIST_HEAD(purge); | |
2778 | struct vmap_block *vb; | |
02b709df NP |
2779 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); |
2780 | ||
2781 | rcu_read_lock(); | |
2782 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
7f48121e TG |
2783 | unsigned long free = READ_ONCE(vb->free); |
2784 | unsigned long dirty = READ_ONCE(vb->dirty); | |
2785 | ||
2786 | if (free + dirty != VMAP_BBMAP_BITS || | |
2787 | dirty == VMAP_BBMAP_BITS) | |
02b709df NP |
2788 | continue; |
2789 | ||
2790 | spin_lock(&vb->lock); | |
8c61291f | 2791 | purge_fragmented_block(vb, &purge, true); |
ca5e46c3 | 2792 | spin_unlock(&vb->lock); |
02b709df NP |
2793 | } |
2794 | rcu_read_unlock(); | |
ca5e46c3 | 2795 | free_purged_blocks(&purge); |
02b709df NP |
2796 | } |
2797 | ||
02b709df NP |
2798 | static void purge_fragmented_blocks_allcpus(void) |
2799 | { | |
2800 | int cpu; | |
2801 | ||
2802 | for_each_possible_cpu(cpu) | |
2803 | purge_fragmented_blocks(cpu); | |
2804 | } | |
2805 | ||
db64fe02 NP |
2806 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) |
2807 | { | |
2808 | struct vmap_block_queue *vbq; | |
2809 | struct vmap_block *vb; | |
cf725ce2 | 2810 | void *vaddr = NULL; |
db64fe02 NP |
2811 | unsigned int order; |
2812 | ||
891c49ab | 2813 | BUG_ON(offset_in_page(size)); |
db64fe02 | 2814 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); |
aa91c4d8 JK |
2815 | if (WARN_ON(size == 0)) { |
2816 | /* | |
2817 | * Allocating 0 bytes isn't what caller wants since | |
2818 | * get_order(0) returns funny result. Just warn and terminate | |
2819 | * early. | |
2820 | */ | |
ac0476e8 | 2821 | return ERR_PTR(-EINVAL); |
aa91c4d8 | 2822 | } |
db64fe02 NP |
2823 | order = get_order(size); |
2824 | ||
db64fe02 | 2825 | rcu_read_lock(); |
3f804920 | 2826 | vbq = raw_cpu_ptr(&vmap_block_queue); |
db64fe02 | 2827 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { |
cf725ce2 | 2828 | unsigned long pages_off; |
db64fe02 | 2829 | |
43d76502 TG |
2830 | if (READ_ONCE(vb->free) < (1UL << order)) |
2831 | continue; | |
2832 | ||
db64fe02 | 2833 | spin_lock(&vb->lock); |
cf725ce2 RP |
2834 | if (vb->free < (1UL << order)) { |
2835 | spin_unlock(&vb->lock); | |
2836 | continue; | |
2837 | } | |
02b709df | 2838 | |
cf725ce2 RP |
2839 | pages_off = VMAP_BBMAP_BITS - vb->free; |
2840 | vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); | |
43d76502 | 2841 | WRITE_ONCE(vb->free, vb->free - (1UL << order)); |
d76f9954 | 2842 | bitmap_set(vb->used_map, pages_off, (1UL << order)); |
02b709df NP |
2843 | if (vb->free == 0) { |
2844 | spin_lock(&vbq->lock); | |
2845 | list_del_rcu(&vb->free_list); | |
2846 | spin_unlock(&vbq->lock); | |
2847 | } | |
cf725ce2 | 2848 | |
02b709df NP |
2849 | spin_unlock(&vb->lock); |
2850 | break; | |
db64fe02 | 2851 | } |
02b709df | 2852 | |
db64fe02 NP |
2853 | rcu_read_unlock(); |
2854 | ||
cf725ce2 RP |
2855 | /* Allocate new block if nothing was found */ |
2856 | if (!vaddr) | |
2857 | vaddr = new_vmap_block(order, gfp_mask); | |
db64fe02 | 2858 | |
cf725ce2 | 2859 | return vaddr; |
db64fe02 NP |
2860 | } |
2861 | ||
78a0e8c4 | 2862 | static void vb_free(unsigned long addr, unsigned long size) |
db64fe02 NP |
2863 | { |
2864 | unsigned long offset; | |
db64fe02 NP |
2865 | unsigned int order; |
2866 | struct vmap_block *vb; | |
062eacf5 | 2867 | struct xarray *xa; |
db64fe02 | 2868 | |
891c49ab | 2869 | BUG_ON(offset_in_page(size)); |
db64fe02 | 2870 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); |
b29acbdc | 2871 | |
78a0e8c4 | 2872 | flush_cache_vunmap(addr, addr + size); |
b29acbdc | 2873 | |
db64fe02 | 2874 | order = get_order(size); |
78a0e8c4 | 2875 | offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; |
062eacf5 | 2876 | |
fa1c77c1 | 2877 | xa = addr_to_vb_xa(addr); |
062eacf5 URS |
2878 | vb = xa_load(xa, addr_to_vb_idx(addr)); |
2879 | ||
d76f9954 BH |
2880 | spin_lock(&vb->lock); |
2881 | bitmap_clear(vb->used_map, offset, (1UL << order)); | |
2882 | spin_unlock(&vb->lock); | |
db64fe02 | 2883 | |
4ad0ae8c | 2884 | vunmap_range_noflush(addr, addr + size); |
64141da5 | 2885 | |
8e57f8ac | 2886 | if (debug_pagealloc_enabled_static()) |
78a0e8c4 | 2887 | flush_tlb_kernel_range(addr, addr + size); |
82a2e924 | 2888 | |
db64fe02 | 2889 | spin_lock(&vb->lock); |
7d61bfe8 | 2890 | |
a09fad96 | 2891 | /* Expand the not yet TLB flushed dirty range */ |
7d61bfe8 RP |
2892 | vb->dirty_min = min(vb->dirty_min, offset); |
2893 | vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); | |
d086817d | 2894 | |
7f48121e | 2895 | WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order)); |
db64fe02 | 2896 | if (vb->dirty == VMAP_BBMAP_BITS) { |
de560423 | 2897 | BUG_ON(vb->free); |
db64fe02 NP |
2898 | spin_unlock(&vb->lock); |
2899 | free_vmap_block(vb); | |
2900 | } else | |
2901 | spin_unlock(&vb->lock); | |
2902 | } | |
2903 | ||
868b104d | 2904 | static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) |
db64fe02 | 2905 | { |
ca5e46c3 | 2906 | LIST_HEAD(purge_list); |
db64fe02 | 2907 | int cpu; |
db64fe02 | 2908 | |
9b463334 JF |
2909 | if (unlikely(!vmap_initialized)) |
2910 | return; | |
2911 | ||
ca5e46c3 | 2912 | mutex_lock(&vmap_purge_lock); |
5803ed29 | 2913 | |
db64fe02 NP |
2914 | for_each_possible_cpu(cpu) { |
2915 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
2916 | struct vmap_block *vb; | |
fc1e0d98 | 2917 | unsigned long idx; |
db64fe02 NP |
2918 | |
2919 | rcu_read_lock(); | |
fc1e0d98 | 2920 | xa_for_each(&vbq->vmap_blocks, idx, vb) { |
db64fe02 | 2921 | spin_lock(&vb->lock); |
ca5e46c3 TG |
2922 | |
2923 | /* | |
2924 | * Try to purge a fragmented block first. If it's | |
2925 | * not purgeable, check whether there is dirty | |
2926 | * space to be flushed. | |
2927 | */ | |
8c61291f | 2928 | if (!purge_fragmented_block(vb, &purge_list, false) && |
a09fad96 | 2929 | vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) { |
7d61bfe8 | 2930 | unsigned long va_start = vb->va->va_start; |
db64fe02 | 2931 | unsigned long s, e; |
b136be5e | 2932 | |
7d61bfe8 RP |
2933 | s = va_start + (vb->dirty_min << PAGE_SHIFT); |
2934 | e = va_start + (vb->dirty_max << PAGE_SHIFT); | |
db64fe02 | 2935 | |
7d61bfe8 RP |
2936 | start = min(s, start); |
2937 | end = max(e, end); | |
db64fe02 | 2938 | |
a09fad96 TG |
2939 | /* Prevent that this is flushed again */ |
2940 | vb->dirty_min = VMAP_BBMAP_BITS; | |
2941 | vb->dirty_max = 0; | |
2942 | ||
7d61bfe8 | 2943 | flush = 1; |
db64fe02 NP |
2944 | } |
2945 | spin_unlock(&vb->lock); | |
2946 | } | |
2947 | rcu_read_unlock(); | |
2948 | } | |
ca5e46c3 | 2949 | free_purged_blocks(&purge_list); |
db64fe02 | 2950 | |
72210662 | 2951 | if (!__purge_vmap_area_lazy(start, end, false) && flush) |
0574ecd1 | 2952 | flush_tlb_kernel_range(start, end); |
f9e09977 | 2953 | mutex_unlock(&vmap_purge_lock); |
db64fe02 | 2954 | } |
868b104d RE |
2955 | |
2956 | /** | |
2957 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
2958 | * | |
2959 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
2960 | * to amortize TLB flushing overheads. What this means is that any page you | |
2961 | * have now, may, in a former life, have been mapped into kernel virtual | |
2962 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
2963 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
2964 | * | |
2965 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
2966 | * be sure that none of the pages we have control over will have any aliases | |
2967 | * from the vmap layer. | |
2968 | */ | |
2969 | void vm_unmap_aliases(void) | |
2970 | { | |
8ab8442d | 2971 | _vm_unmap_aliases(ULONG_MAX, 0, 0); |
868b104d | 2972 | } |
db64fe02 NP |
2973 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); |
2974 | ||
2975 | /** | |
2976 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
2977 | * @mem: the pointer returned by vm_map_ram | |
2978 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
2979 | */ | |
2980 | void vm_unmap_ram(const void *mem, unsigned int count) | |
2981 | { | |
65ee03c4 | 2982 | unsigned long size = (unsigned long)count << PAGE_SHIFT; |
4aff1dc4 | 2983 | unsigned long addr = (unsigned long)kasan_reset_tag(mem); |
9c3acf60 | 2984 | struct vmap_area *va; |
db64fe02 | 2985 | |
5803ed29 | 2986 | might_sleep(); |
db64fe02 NP |
2987 | BUG_ON(!addr); |
2988 | BUG_ON(addr < VMALLOC_START); | |
2989 | BUG_ON(addr > VMALLOC_END); | |
a1c0b1a0 | 2990 | BUG_ON(!PAGE_ALIGNED(addr)); |
db64fe02 | 2991 | |
d98c9e83 AR |
2992 | kasan_poison_vmalloc(mem, size); |
2993 | ||
9c3acf60 | 2994 | if (likely(count <= VMAP_MAX_ALLOC)) { |
05e3ff95 | 2995 | debug_check_no_locks_freed(mem, size); |
78a0e8c4 | 2996 | vb_free(addr, size); |
9c3acf60 CH |
2997 | return; |
2998 | } | |
2999 | ||
edd89818 | 3000 | va = find_unlink_vmap_area(addr); |
14687619 URS |
3001 | if (WARN_ON_ONCE(!va)) |
3002 | return; | |
3003 | ||
b44f71e3 | 3004 | debug_check_no_locks_freed((void *)va->va_start, va_size(va)); |
9c3acf60 | 3005 | free_unmap_vmap_area(va); |
db64fe02 NP |
3006 | } |
3007 | EXPORT_SYMBOL(vm_unmap_ram); | |
3008 | ||
3009 | /** | |
3010 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
3011 | * @pages: an array of pointers to the pages to be mapped | |
3012 | * @count: number of pages | |
3013 | * @node: prefer to allocate data structures on this node | |
e99c97ad | 3014 | * |
36437638 GK |
3015 | * If you use this function for less than VMAP_MAX_ALLOC pages, it could be |
3016 | * faster than vmap so it's good. But if you mix long-life and short-life | |
3017 | * objects with vm_map_ram(), it could consume lots of address space through | |
3018 | * fragmentation (especially on a 32bit machine). You could see failures in | |
3019 | * the end. Please use this function for short-lived objects. | |
3020 | * | |
e99c97ad | 3021 | * Returns: a pointer to the address that has been mapped, or %NULL on failure |
db64fe02 | 3022 | */ |
d4efd79a | 3023 | void *vm_map_ram(struct page **pages, unsigned int count, int node) |
db64fe02 | 3024 | { |
65ee03c4 | 3025 | unsigned long size = (unsigned long)count << PAGE_SHIFT; |
db64fe02 NP |
3026 | unsigned long addr; |
3027 | void *mem; | |
3028 | ||
3029 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
3030 | mem = vb_alloc(size, GFP_KERNEL); | |
3031 | if (IS_ERR(mem)) | |
3032 | return NULL; | |
3033 | addr = (unsigned long)mem; | |
3034 | } else { | |
3035 | struct vmap_area *va; | |
3036 | va = alloc_vmap_area(size, PAGE_SIZE, | |
869176a0 | 3037 | VMALLOC_START, VMALLOC_END, |
aaab830a | 3038 | node, GFP_KERNEL, VMAP_RAM, |
4b68a773 | 3039 | NULL); |
db64fe02 NP |
3040 | if (IS_ERR(va)) |
3041 | return NULL; | |
3042 | ||
3043 | addr = va->va_start; | |
3044 | mem = (void *)addr; | |
3045 | } | |
d98c9e83 | 3046 | |
b67177ec NP |
3047 | if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, |
3048 | pages, PAGE_SHIFT) < 0) { | |
db64fe02 NP |
3049 | vm_unmap_ram(mem, count); |
3050 | return NULL; | |
3051 | } | |
b67177ec | 3052 | |
23689e91 AK |
3053 | /* |
3054 | * Mark the pages as accessible, now that they are mapped. | |
3055 | * With hardware tag-based KASAN, marking is skipped for | |
3056 | * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). | |
3057 | */ | |
f6e39794 | 3058 | mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); |
19f1c3ac | 3059 | |
db64fe02 NP |
3060 | return mem; |
3061 | } | |
3062 | EXPORT_SYMBOL(vm_map_ram); | |
3063 | ||
4341fa45 | 3064 | static struct vm_struct *vmlist __initdata; |
92eac168 | 3065 | |
121e6f32 NP |
3066 | static inline unsigned int vm_area_page_order(struct vm_struct *vm) |
3067 | { | |
3068 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC | |
3069 | return vm->page_order; | |
3070 | #else | |
3071 | return 0; | |
3072 | #endif | |
3073 | } | |
3074 | ||
2e45474a MRM |
3075 | unsigned int get_vm_area_page_order(struct vm_struct *vm) |
3076 | { | |
3077 | return vm_area_page_order(vm); | |
3078 | } | |
3079 | ||
121e6f32 NP |
3080 | static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) |
3081 | { | |
3082 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC | |
3083 | vm->page_order = order; | |
3084 | #else | |
3085 | BUG_ON(order != 0); | |
3086 | #endif | |
3087 | } | |
3088 | ||
be9b7335 NP |
3089 | /** |
3090 | * vm_area_add_early - add vmap area early during boot | |
3091 | * @vm: vm_struct to add | |
3092 | * | |
3093 | * This function is used to add fixed kernel vm area to vmlist before | |
3094 | * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags | |
3095 | * should contain proper values and the other fields should be zero. | |
3096 | * | |
3097 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
3098 | */ | |
3099 | void __init vm_area_add_early(struct vm_struct *vm) | |
3100 | { | |
3101 | struct vm_struct *tmp, **p; | |
3102 | ||
3103 | BUG_ON(vmap_initialized); | |
3104 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
3105 | if (tmp->addr >= vm->addr) { | |
3106 | BUG_ON(tmp->addr < vm->addr + vm->size); | |
3107 | break; | |
3108 | } else | |
3109 | BUG_ON(tmp->addr + tmp->size > vm->addr); | |
3110 | } | |
3111 | vm->next = *p; | |
3112 | *p = vm; | |
3113 | } | |
3114 | ||
f0aa6617 TH |
3115 | /** |
3116 | * vm_area_register_early - register vmap area early during boot | |
3117 | * @vm: vm_struct to register | |
c0c0a293 | 3118 | * @align: requested alignment |
f0aa6617 TH |
3119 | * |
3120 | * This function is used to register kernel vm area before | |
3121 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | |
3122 | * proper values on entry and other fields should be zero. On return, | |
3123 | * vm->addr contains the allocated address. | |
3124 | * | |
3125 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
3126 | */ | |
c0c0a293 | 3127 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) |
f0aa6617 | 3128 | { |
0eb68437 KW |
3129 | unsigned long addr = ALIGN(VMALLOC_START, align); |
3130 | struct vm_struct *cur, **p; | |
c0c0a293 | 3131 | |
0eb68437 | 3132 | BUG_ON(vmap_initialized); |
f0aa6617 | 3133 | |
0eb68437 KW |
3134 | for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { |
3135 | if ((unsigned long)cur->addr - addr >= vm->size) | |
3136 | break; | |
3137 | addr = ALIGN((unsigned long)cur->addr + cur->size, align); | |
3138 | } | |
f0aa6617 | 3139 | |
0eb68437 KW |
3140 | BUG_ON(addr > VMALLOC_END - vm->size); |
3141 | vm->addr = (void *)addr; | |
3142 | vm->next = *p; | |
3143 | *p = vm; | |
3252b1d8 | 3144 | kasan_populate_early_vm_area_shadow(vm->addr, vm->size); |
f0aa6617 TH |
3145 | } |
3146 | ||
20fc02b4 | 3147 | static void clear_vm_uninitialized_flag(struct vm_struct *vm) |
f5252e00 | 3148 | { |
d4033afd | 3149 | /* |
20fc02b4 | 3150 | * Before removing VM_UNINITIALIZED, |
d4033afd | 3151 | * we should make sure that vm has proper values. |
5c5f0468 | 3152 | * Pair with smp_rmb() in vread_iter() and vmalloc_info_show(). |
d4033afd JK |
3153 | */ |
3154 | smp_wmb(); | |
20fc02b4 | 3155 | vm->flags &= ~VM_UNINITIALIZED; |
cf88c790 TH |
3156 | } |
3157 | ||
0f9b6856 | 3158 | struct vm_struct *__get_vm_area_node(unsigned long size, |
7ca3027b DA |
3159 | unsigned long align, unsigned long shift, unsigned long flags, |
3160 | unsigned long start, unsigned long end, int node, | |
3161 | gfp_t gfp_mask, const void *caller) | |
db64fe02 | 3162 | { |
0006526d | 3163 | struct vmap_area *va; |
db64fe02 | 3164 | struct vm_struct *area; |
d98c9e83 | 3165 | unsigned long requested_size = size; |
1da177e4 | 3166 | |
52fd24ca | 3167 | BUG_ON(in_interrupt()); |
7ca3027b | 3168 | size = ALIGN(size, 1ul << shift); |
31be8309 OH |
3169 | if (unlikely(!size)) |
3170 | return NULL; | |
1da177e4 | 3171 | |
252e5c6e | 3172 | if (flags & VM_IOREMAP) |
3173 | align = 1ul << clamp_t(int, get_count_order_long(size), | |
3174 | PAGE_SHIFT, IOREMAP_MAX_ORDER); | |
3175 | ||
cf88c790 | 3176 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1da177e4 LT |
3177 | if (unlikely(!area)) |
3178 | return NULL; | |
3179 | ||
71394fe5 AR |
3180 | if (!(flags & VM_NO_GUARD)) |
3181 | size += PAGE_SIZE; | |
1da177e4 | 3182 | |
4b68a773 BH |
3183 | area->flags = flags; |
3184 | area->caller = caller; | |
a0309faf | 3185 | area->requested_size = requested_size; |
4b68a773 BH |
3186 | |
3187 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0, area); | |
db64fe02 NP |
3188 | if (IS_ERR(va)) { |
3189 | kfree(area); | |
3190 | return NULL; | |
1da177e4 | 3191 | } |
1da177e4 | 3192 | |
19f1c3ac AK |
3193 | /* |
3194 | * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a | |
3195 | * best-effort approach, as they can be mapped outside of vmalloc code. | |
3196 | * For VM_ALLOC mappings, the pages are marked as accessible after | |
3197 | * getting mapped in __vmalloc_node_range(). | |
23689e91 AK |
3198 | * With hardware tag-based KASAN, marking is skipped for |
3199 | * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). | |
19f1c3ac AK |
3200 | */ |
3201 | if (!(flags & VM_ALLOC)) | |
23689e91 | 3202 | area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, |
f6e39794 | 3203 | KASAN_VMALLOC_PROT_NORMAL); |
1d96320f | 3204 | |
1da177e4 | 3205 | return area; |
1da177e4 LT |
3206 | } |
3207 | ||
c2968612 BH |
3208 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
3209 | unsigned long start, unsigned long end, | |
5e6cafc8 | 3210 | const void *caller) |
c2968612 | 3211 | { |
7ca3027b DA |
3212 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, |
3213 | NUMA_NO_NODE, GFP_KERNEL, caller); | |
c2968612 BH |
3214 | } |
3215 | ||
1da177e4 | 3216 | /** |
92eac168 MR |
3217 | * get_vm_area - reserve a contiguous kernel virtual area |
3218 | * @size: size of the area | |
3219 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
1da177e4 | 3220 | * |
92eac168 MR |
3221 | * Search an area of @size in the kernel virtual mapping area, |
3222 | * and reserved it for out purposes. Returns the area descriptor | |
3223 | * on success or %NULL on failure. | |
a862f68a MR |
3224 | * |
3225 | * Return: the area descriptor on success or %NULL on failure. | |
1da177e4 LT |
3226 | */ |
3227 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
3228 | { | |
7ca3027b DA |
3229 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, |
3230 | VMALLOC_START, VMALLOC_END, | |
00ef2d2f DR |
3231 | NUMA_NO_NODE, GFP_KERNEL, |
3232 | __builtin_return_address(0)); | |
23016969 CL |
3233 | } |
3234 | ||
3235 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
5e6cafc8 | 3236 | const void *caller) |
23016969 | 3237 | { |
7ca3027b DA |
3238 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, |
3239 | VMALLOC_START, VMALLOC_END, | |
00ef2d2f | 3240 | NUMA_NO_NODE, GFP_KERNEL, caller); |
1da177e4 LT |
3241 | } |
3242 | ||
e9da6e99 | 3243 | /** |
92eac168 MR |
3244 | * find_vm_area - find a continuous kernel virtual area |
3245 | * @addr: base address | |
e9da6e99 | 3246 | * |
92eac168 MR |
3247 | * Search for the kernel VM area starting at @addr, and return it. |
3248 | * It is up to the caller to do all required locking to keep the returned | |
3249 | * pointer valid. | |
a862f68a | 3250 | * |
74640617 | 3251 | * Return: the area descriptor on success or %NULL on failure. |
e9da6e99 MS |
3252 | */ |
3253 | struct vm_struct *find_vm_area(const void *addr) | |
83342314 | 3254 | { |
db64fe02 | 3255 | struct vmap_area *va; |
83342314 | 3256 | |
db64fe02 | 3257 | va = find_vmap_area((unsigned long)addr); |
688fcbfc PL |
3258 | if (!va) |
3259 | return NULL; | |
1da177e4 | 3260 | |
688fcbfc | 3261 | return va->vm; |
1da177e4 LT |
3262 | } |
3263 | ||
7856dfeb | 3264 | /** |
92eac168 MR |
3265 | * remove_vm_area - find and remove a continuous kernel virtual area |
3266 | * @addr: base address | |
7856dfeb | 3267 | * |
92eac168 MR |
3268 | * Search for the kernel VM area starting at @addr, and remove it. |
3269 | * This function returns the found VM area, but using it is NOT safe | |
3270 | * on SMP machines, except for its size or flags. | |
a862f68a | 3271 | * |
74640617 | 3272 | * Return: the area descriptor on success or %NULL on failure. |
7856dfeb | 3273 | */ |
b3bdda02 | 3274 | struct vm_struct *remove_vm_area(const void *addr) |
7856dfeb | 3275 | { |
db64fe02 | 3276 | struct vmap_area *va; |
75c59ce7 | 3277 | struct vm_struct *vm; |
db64fe02 | 3278 | |
5803ed29 CH |
3279 | might_sleep(); |
3280 | ||
17d3ef43 CH |
3281 | if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", |
3282 | addr)) | |
3283 | return NULL; | |
c69480ad | 3284 | |
75c59ce7 CH |
3285 | va = find_unlink_vmap_area((unsigned long)addr); |
3286 | if (!va || !va->vm) | |
3287 | return NULL; | |
3288 | vm = va->vm; | |
dd32c279 | 3289 | |
17d3ef43 CH |
3290 | debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm)); |
3291 | debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm)); | |
75c59ce7 | 3292 | kasan_free_module_shadow(vm); |
17d3ef43 | 3293 | kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm)); |
dd3b8353 | 3294 | |
75c59ce7 CH |
3295 | free_unmap_vmap_area(va); |
3296 | return vm; | |
7856dfeb AK |
3297 | } |
3298 | ||
868b104d RE |
3299 | static inline void set_area_direct_map(const struct vm_struct *area, |
3300 | int (*set_direct_map)(struct page *page)) | |
3301 | { | |
3302 | int i; | |
3303 | ||
121e6f32 | 3304 | /* HUGE_VMALLOC passes small pages to set_direct_map */ |
868b104d RE |
3305 | for (i = 0; i < area->nr_pages; i++) |
3306 | if (page_address(area->pages[i])) | |
3307 | set_direct_map(area->pages[i]); | |
3308 | } | |
3309 | ||
9e5fa0ae CH |
3310 | /* |
3311 | * Flush the vm mapping and reset the direct map. | |
3312 | */ | |
3313 | static void vm_reset_perms(struct vm_struct *area) | |
868b104d | 3314 | { |
868b104d | 3315 | unsigned long start = ULONG_MAX, end = 0; |
121e6f32 | 3316 | unsigned int page_order = vm_area_page_order(area); |
31e67340 | 3317 | int flush_dmap = 0; |
868b104d RE |
3318 | int i; |
3319 | ||
868b104d | 3320 | /* |
9e5fa0ae | 3321 | * Find the start and end range of the direct mappings to make sure that |
868b104d RE |
3322 | * the vm_unmap_aliases() flush includes the direct map. |
3323 | */ | |
121e6f32 | 3324 | for (i = 0; i < area->nr_pages; i += 1U << page_order) { |
8e41f872 | 3325 | unsigned long addr = (unsigned long)page_address(area->pages[i]); |
9e5fa0ae | 3326 | |
8e41f872 | 3327 | if (addr) { |
121e6f32 NP |
3328 | unsigned long page_size; |
3329 | ||
3330 | page_size = PAGE_SIZE << page_order; | |
868b104d | 3331 | start = min(addr, start); |
121e6f32 | 3332 | end = max(addr + page_size, end); |
31e67340 | 3333 | flush_dmap = 1; |
868b104d RE |
3334 | } |
3335 | } | |
3336 | ||
3337 | /* | |
3338 | * Set direct map to something invalid so that it won't be cached if | |
3339 | * there are any accesses after the TLB flush, then flush the TLB and | |
3340 | * reset the direct map permissions to the default. | |
3341 | */ | |
3342 | set_area_direct_map(area, set_direct_map_invalid_noflush); | |
31e67340 | 3343 | _vm_unmap_aliases(start, end, flush_dmap); |
868b104d RE |
3344 | set_area_direct_map(area, set_direct_map_default_noflush); |
3345 | } | |
3346 | ||
208162f4 | 3347 | static void delayed_vfree_work(struct work_struct *w) |
1da177e4 | 3348 | { |
208162f4 CH |
3349 | struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); |
3350 | struct llist_node *t, *llnode; | |
bf22e37a | 3351 | |
208162f4 | 3352 | llist_for_each_safe(llnode, t, llist_del_all(&p->list)) |
5d3d31d6 | 3353 | vfree(llnode); |
bf22e37a AR |
3354 | } |
3355 | ||
3356 | /** | |
92eac168 MR |
3357 | * vfree_atomic - release memory allocated by vmalloc() |
3358 | * @addr: memory base address | |
bf22e37a | 3359 | * |
92eac168 MR |
3360 | * This one is just like vfree() but can be called in any atomic context |
3361 | * except NMIs. | |
bf22e37a AR |
3362 | */ |
3363 | void vfree_atomic(const void *addr) | |
3364 | { | |
01e2e839 | 3365 | struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); |
bf22e37a | 3366 | |
01e2e839 | 3367 | BUG_ON(in_nmi()); |
bf22e37a AR |
3368 | kmemleak_free(addr); |
3369 | ||
01e2e839 CH |
3370 | /* |
3371 | * Use raw_cpu_ptr() because this can be called from preemptible | |
3372 | * context. Preemption is absolutely fine here, because the llist_add() | |
3373 | * implementation is lockless, so it works even if we are adding to | |
3374 | * another cpu's list. schedule_work() should be fine with this too. | |
3375 | */ | |
3376 | if (addr && llist_add((struct llist_node *)addr, &p->list)) | |
3377 | schedule_work(&p->wq); | |
c67dc624 RP |
3378 | } |
3379 | ||
1da177e4 | 3380 | /** |
fa307474 MWO |
3381 | * vfree - Release memory allocated by vmalloc() |
3382 | * @addr: Memory base address | |
1da177e4 | 3383 | * |
fa307474 MWO |
3384 | * Free the virtually continuous memory area starting at @addr, as obtained |
3385 | * from one of the vmalloc() family of APIs. This will usually also free the | |
3386 | * physical memory underlying the virtual allocation, but that memory is | |
3387 | * reference counted, so it will not be freed until the last user goes away. | |
1da177e4 | 3388 | * |
fa307474 | 3389 | * If @addr is NULL, no operation is performed. |
c9fcee51 | 3390 | * |
fa307474 | 3391 | * Context: |
92eac168 | 3392 | * May sleep if called *not* from interrupt context. |
fa307474 MWO |
3393 | * Must not be called in NMI context (strictly speaking, it could be |
3394 | * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling | |
f0953a1b | 3395 | * conventions for vfree() arch-dependent would be a really bad idea). |
1da177e4 | 3396 | */ |
b3bdda02 | 3397 | void vfree(const void *addr) |
1da177e4 | 3398 | { |
79311c1f CH |
3399 | struct vm_struct *vm; |
3400 | int i; | |
89219d37 | 3401 | |
01e2e839 CH |
3402 | if (unlikely(in_interrupt())) { |
3403 | vfree_atomic(addr); | |
3404 | return; | |
3405 | } | |
89219d37 | 3406 | |
01e2e839 | 3407 | BUG_ON(in_nmi()); |
89219d37 | 3408 | kmemleak_free(addr); |
01e2e839 | 3409 | might_sleep(); |
a8dda165 | 3410 | |
32fcfd40 AV |
3411 | if (!addr) |
3412 | return; | |
c67dc624 | 3413 | |
79311c1f CH |
3414 | vm = remove_vm_area(addr); |
3415 | if (unlikely(!vm)) { | |
3416 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", | |
3417 | addr); | |
3418 | return; | |
3419 | } | |
3420 | ||
9e5fa0ae CH |
3421 | if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS)) |
3422 | vm_reset_perms(vm); | |
aa8d89d1 SB |
3423 | /* All pages of vm should be charged to same memcg, so use first one. */ |
3424 | if (vm->nr_pages && !(vm->flags & VM_MAP_PUT_PAGES)) | |
3425 | mod_memcg_page_state(vm->pages[0], MEMCG_VMALLOC, -vm->nr_pages); | |
79311c1f CH |
3426 | for (i = 0; i < vm->nr_pages; i++) { |
3427 | struct page *page = vm->pages[i]; | |
3428 | ||
3429 | BUG_ON(!page); | |
79311c1f CH |
3430 | /* |
3431 | * High-order allocs for huge vmallocs are split, so | |
3432 | * can be freed as an array of order-0 allocations | |
3433 | */ | |
dcc1be11 | 3434 | __free_page(page); |
79311c1f CH |
3435 | cond_resched(); |
3436 | } | |
a2e740e2 MWO |
3437 | if (!(vm->flags & VM_MAP_PUT_PAGES)) |
3438 | atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages); | |
79311c1f CH |
3439 | kvfree(vm->pages); |
3440 | kfree(vm); | |
1da177e4 | 3441 | } |
1da177e4 LT |
3442 | EXPORT_SYMBOL(vfree); |
3443 | ||
3444 | /** | |
92eac168 MR |
3445 | * vunmap - release virtual mapping obtained by vmap() |
3446 | * @addr: memory base address | |
1da177e4 | 3447 | * |
92eac168 MR |
3448 | * Free the virtually contiguous memory area starting at @addr, |
3449 | * which was created from the page array passed to vmap(). | |
1da177e4 | 3450 | * |
92eac168 | 3451 | * Must not be called in interrupt context. |
1da177e4 | 3452 | */ |
b3bdda02 | 3453 | void vunmap(const void *addr) |
1da177e4 | 3454 | { |
79311c1f CH |
3455 | struct vm_struct *vm; |
3456 | ||
1da177e4 | 3457 | BUG_ON(in_interrupt()); |
34754b69 | 3458 | might_sleep(); |
79311c1f CH |
3459 | |
3460 | if (!addr) | |
3461 | return; | |
3462 | vm = remove_vm_area(addr); | |
3463 | if (unlikely(!vm)) { | |
3464 | WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n", | |
3465 | addr); | |
3466 | return; | |
3467 | } | |
3468 | kfree(vm); | |
1da177e4 | 3469 | } |
1da177e4 LT |
3470 | EXPORT_SYMBOL(vunmap); |
3471 | ||
3472 | /** | |
92eac168 MR |
3473 | * vmap - map an array of pages into virtually contiguous space |
3474 | * @pages: array of page pointers | |
3475 | * @count: number of pages to map | |
3476 | * @flags: vm_area->flags | |
3477 | * @prot: page protection for the mapping | |
3478 | * | |
b944afc9 CH |
3479 | * Maps @count pages from @pages into contiguous kernel virtual space. |
3480 | * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself | |
3481 | * (which must be kmalloc or vmalloc memory) and one reference per pages in it | |
3482 | * are transferred from the caller to vmap(), and will be freed / dropped when | |
3483 | * vfree() is called on the return value. | |
a862f68a MR |
3484 | * |
3485 | * Return: the address of the area or %NULL on failure | |
1da177e4 LT |
3486 | */ |
3487 | void *vmap(struct page **pages, unsigned int count, | |
92eac168 | 3488 | unsigned long flags, pgprot_t prot) |
1da177e4 LT |
3489 | { |
3490 | struct vm_struct *area; | |
b67177ec | 3491 | unsigned long addr; |
65ee03c4 | 3492 | unsigned long size; /* In bytes */ |
1da177e4 | 3493 | |
34754b69 PZ |
3494 | might_sleep(); |
3495 | ||
37f3605e CH |
3496 | if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS)) |
3497 | return NULL; | |
3498 | ||
bd1a8fb2 PZ |
3499 | /* |
3500 | * Your top guard is someone else's bottom guard. Not having a top | |
3501 | * guard compromises someone else's mappings too. | |
3502 | */ | |
3503 | if (WARN_ON_ONCE(flags & VM_NO_GUARD)) | |
3504 | flags &= ~VM_NO_GUARD; | |
3505 | ||
ca79b0c2 | 3506 | if (count > totalram_pages()) |
1da177e4 LT |
3507 | return NULL; |
3508 | ||
65ee03c4 GJM |
3509 | size = (unsigned long)count << PAGE_SHIFT; |
3510 | area = get_vm_area_caller(size, flags, __builtin_return_address(0)); | |
1da177e4 LT |
3511 | if (!area) |
3512 | return NULL; | |
23016969 | 3513 | |
b67177ec NP |
3514 | addr = (unsigned long)area->addr; |
3515 | if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), | |
3516 | pages, PAGE_SHIFT) < 0) { | |
1da177e4 LT |
3517 | vunmap(area->addr); |
3518 | return NULL; | |
3519 | } | |
3520 | ||
c22ee528 | 3521 | if (flags & VM_MAP_PUT_PAGES) { |
b944afc9 | 3522 | area->pages = pages; |
c22ee528 ML |
3523 | area->nr_pages = count; |
3524 | } | |
1da177e4 LT |
3525 | return area->addr; |
3526 | } | |
1da177e4 LT |
3527 | EXPORT_SYMBOL(vmap); |
3528 | ||
3e9a9e25 CH |
3529 | #ifdef CONFIG_VMAP_PFN |
3530 | struct vmap_pfn_data { | |
3531 | unsigned long *pfns; | |
3532 | pgprot_t prot; | |
3533 | unsigned int idx; | |
3534 | }; | |
3535 | ||
3536 | static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) | |
3537 | { | |
3538 | struct vmap_pfn_data *data = private; | |
b3f78e74 RR |
3539 | unsigned long pfn = data->pfns[data->idx]; |
3540 | pte_t ptent; | |
3e9a9e25 | 3541 | |
b3f78e74 | 3542 | if (WARN_ON_ONCE(pfn_valid(pfn))) |
3e9a9e25 | 3543 | return -EINVAL; |
b3f78e74 RR |
3544 | |
3545 | ptent = pte_mkspecial(pfn_pte(pfn, data->prot)); | |
3546 | set_pte_at(&init_mm, addr, pte, ptent); | |
3547 | ||
3548 | data->idx++; | |
3e9a9e25 CH |
3549 | return 0; |
3550 | } | |
3551 | ||
3552 | /** | |
3553 | * vmap_pfn - map an array of PFNs into virtually contiguous space | |
3554 | * @pfns: array of PFNs | |
3555 | * @count: number of pages to map | |
3556 | * @prot: page protection for the mapping | |
3557 | * | |
3558 | * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns | |
3559 | * the start address of the mapping. | |
3560 | */ | |
3561 | void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) | |
3562 | { | |
3563 | struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; | |
3564 | struct vm_struct *area; | |
3565 | ||
3566 | area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, | |
3567 | __builtin_return_address(0)); | |
3568 | if (!area) | |
3569 | return NULL; | |
3570 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
3571 | count * PAGE_SIZE, vmap_pfn_apply, &data)) { | |
3572 | free_vm_area(area); | |
3573 | return NULL; | |
3574 | } | |
a50420c7 AG |
3575 | |
3576 | flush_cache_vmap((unsigned long)area->addr, | |
3577 | (unsigned long)area->addr + count * PAGE_SIZE); | |
3578 | ||
3e9a9e25 CH |
3579 | return area->addr; |
3580 | } | |
3581 | EXPORT_SYMBOL_GPL(vmap_pfn); | |
3582 | #endif /* CONFIG_VMAP_PFN */ | |
3583 | ||
12b9f873 UR |
3584 | static inline unsigned int |
3585 | vm_area_alloc_pages(gfp_t gfp, int nid, | |
343ab817 | 3586 | unsigned int order, unsigned int nr_pages, struct page **pages) |
12b9f873 UR |
3587 | { |
3588 | unsigned int nr_allocated = 0; | |
ffb29b1c CW |
3589 | struct page *page; |
3590 | int i; | |
12b9f873 UR |
3591 | |
3592 | /* | |
3593 | * For order-0 pages we make use of bulk allocator, if | |
3594 | * the page array is partly or not at all populated due | |
3595 | * to fails, fallback to a single page allocator that is | |
3596 | * more permissive. | |
3597 | */ | |
c00b6b96 | 3598 | if (!order) { |
343ab817 URS |
3599 | while (nr_allocated < nr_pages) { |
3600 | unsigned int nr, nr_pages_request; | |
3601 | ||
3602 | /* | |
3603 | * A maximum allowed request is hard-coded and is 100 | |
3604 | * pages per call. That is done in order to prevent a | |
3605 | * long preemption off scenario in the bulk-allocator | |
3606 | * so the range is [1:100]. | |
3607 | */ | |
3608 | nr_pages_request = min(100U, nr_pages - nr_allocated); | |
3609 | ||
c00b6b96 CW |
3610 | /* memory allocation should consider mempolicy, we can't |
3611 | * wrongly use nearest node when nid == NUMA_NO_NODE, | |
3612 | * otherwise memory may be allocated in only one node, | |
98af39d5 | 3613 | * but mempolicy wants to alloc memory by interleaving. |
c00b6b96 CW |
3614 | */ |
3615 | if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) | |
6bf9b5b4 | 3616 | nr = alloc_pages_bulk_mempolicy_noprof(gfp, |
c00b6b96 CW |
3617 | nr_pages_request, |
3618 | pages + nr_allocated); | |
c00b6b96 | 3619 | else |
6bf9b5b4 | 3620 | nr = alloc_pages_bulk_node_noprof(gfp, nid, |
c00b6b96 CW |
3621 | nr_pages_request, |
3622 | pages + nr_allocated); | |
343ab817 URS |
3623 | |
3624 | nr_allocated += nr; | |
3625 | cond_resched(); | |
3626 | ||
3627 | /* | |
3628 | * If zero or pages were obtained partly, | |
3629 | * fallback to a single page allocator. | |
3630 | */ | |
3631 | if (nr != nr_pages_request) | |
3632 | break; | |
3633 | } | |
3b8000ae | 3634 | } |
12b9f873 UR |
3635 | |
3636 | /* High-order pages or fallback path if "bulk" fails. */ | |
ffb29b1c | 3637 | while (nr_allocated < nr_pages) { |
7de8728f | 3638 | if (!(gfp & __GFP_NOFAIL) && fatal_signal_pending(current)) |
dd544141 VA |
3639 | break; |
3640 | ||
ffb29b1c | 3641 | if (nid == NUMA_NO_NODE) |
7de8728f | 3642 | page = alloc_pages_noprof(gfp, order); |
ffb29b1c | 3643 | else |
7de8728f URS |
3644 | page = alloc_pages_node_noprof(nid, gfp, order); |
3645 | ||
61ebe5a7 HL |
3646 | if (unlikely(!page)) |
3647 | break; | |
e9c3cda4 | 3648 | |
3b8000ae | 3649 | /* |
6004fe00 | 3650 | * High-order allocations must be able to be treated as |
7de8728f | 3651 | * independent small pages by callers (as they can with |
3b8000ae NP |
3652 | * small-page vmallocs). Some drivers do their own refcounting |
3653 | * on vmalloc_to_page() pages, some use page->mapping, | |
3654 | * page->lru, etc. | |
3655 | */ | |
3656 | if (order) | |
3657 | split_page(page, order); | |
12b9f873 UR |
3658 | |
3659 | /* | |
3660 | * Careful, we allocate and map page-order pages, but | |
3661 | * tracking is done per PAGE_SIZE page so as to keep the | |
3662 | * vm_struct APIs independent of the physical/mapped size. | |
3663 | */ | |
3664 | for (i = 0; i < (1U << order); i++) | |
3665 | pages[nr_allocated + i] = page + i; | |
3666 | ||
12e376a6 | 3667 | cond_resched(); |
12b9f873 UR |
3668 | nr_allocated += 1U << order; |
3669 | } | |
3670 | ||
3671 | return nr_allocated; | |
3672 | } | |
3673 | ||
e31d9eb5 | 3674 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
121e6f32 NP |
3675 | pgprot_t prot, unsigned int page_shift, |
3676 | int node) | |
1da177e4 | 3677 | { |
930f036b | 3678 | const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; |
9376130c | 3679 | bool nofail = gfp_mask & __GFP_NOFAIL; |
121e6f32 NP |
3680 | unsigned long addr = (unsigned long)area->addr; |
3681 | unsigned long size = get_vm_area_size(area); | |
34fe6537 | 3682 | unsigned long array_size; |
121e6f32 NP |
3683 | unsigned int nr_small_pages = size >> PAGE_SHIFT; |
3684 | unsigned int page_order; | |
451769eb MH |
3685 | unsigned int flags; |
3686 | int ret; | |
1da177e4 | 3687 | |
121e6f32 | 3688 | array_size = (unsigned long)nr_small_pages * sizeof(struct page *); |
80b1d8fd | 3689 | |
f255935b CH |
3690 | if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) |
3691 | gfp_mask |= __GFP_HIGHMEM; | |
1da177e4 | 3692 | |
1da177e4 | 3693 | /* Please note that the recursion is strictly bounded. */ |
8757d5fa | 3694 | if (array_size > PAGE_SIZE) { |
88ae5fb7 | 3695 | area->pages = __vmalloc_node_noprof(array_size, 1, nested_gfp, node, |
f255935b | 3696 | area->caller); |
286e1ea3 | 3697 | } else { |
88ae5fb7 | 3698 | area->pages = kmalloc_node_noprof(array_size, nested_gfp, node); |
286e1ea3 | 3699 | } |
7ea36242 | 3700 | |
5c1f4e69 | 3701 | if (!area->pages) { |
c3d77172 | 3702 | warn_alloc(gfp_mask, NULL, |
f4bdfeaf URS |
3703 | "vmalloc error: size %lu, failed to allocated page array size %lu", |
3704 | nr_small_pages * PAGE_SIZE, array_size); | |
cd61413b | 3705 | free_vm_area(area); |
1da177e4 LT |
3706 | return NULL; |
3707 | } | |
1da177e4 | 3708 | |
121e6f32 | 3709 | set_vm_area_page_order(area, page_shift - PAGE_SHIFT); |
121e6f32 | 3710 | page_order = vm_area_page_order(area); |
bf53d6f8 | 3711 | |
7de8728f | 3712 | /* |
6004fe00 | 3713 | * High-order nofail allocations are really expensive and |
7de8728f URS |
3714 | * potentially dangerous (pre-mature OOM, disruptive reclaim |
3715 | * and compaction etc. | |
3716 | * | |
3717 | * Please note, the __vmalloc_node_range_noprof() falls-back | |
3718 | * to order-0 pages if high-order attempt is unsuccessful. | |
3719 | */ | |
3720 | area->nr_pages = vm_area_alloc_pages((page_order ? | |
3721 | gfp_mask & ~__GFP_NOFAIL : gfp_mask) | __GFP_NOWARN, | |
c3d77172 | 3722 | node, page_order, nr_small_pages, area->pages); |
5c1f4e69 | 3723 | |
97105f0a | 3724 | atomic_long_add(area->nr_pages, &nr_vmalloc_pages); |
aa8d89d1 SB |
3725 | /* All pages of vm should be charged to same memcg, so use first one. */ |
3726 | if (gfp_mask & __GFP_ACCOUNT && area->nr_pages) | |
3727 | mod_memcg_page_state(area->pages[0], MEMCG_VMALLOC, | |
3728 | area->nr_pages); | |
1da177e4 | 3729 | |
5c1f4e69 URS |
3730 | /* |
3731 | * If not enough pages were obtained to accomplish an | |
f41f036b | 3732 | * allocation request, free them via vfree() if any. |
5c1f4e69 URS |
3733 | */ |
3734 | if (area->nr_pages != nr_small_pages) { | |
95a301ee LS |
3735 | /* |
3736 | * vm_area_alloc_pages() can fail due to insufficient memory but | |
3737 | * also:- | |
3738 | * | |
3739 | * - a pending fatal signal | |
3740 | * - insufficient huge page-order pages | |
3741 | * | |
3742 | * Since we always retry allocations at order-0 in the huge page | |
3743 | * case a warning for either is spurious. | |
3744 | */ | |
3745 | if (!fatal_signal_pending(current) && page_order == 0) | |
f349b15e | 3746 | warn_alloc(gfp_mask, NULL, |
95a301ee LS |
3747 | "vmalloc error: size %lu, failed to allocate pages", |
3748 | area->nr_pages * PAGE_SIZE); | |
5c1f4e69 URS |
3749 | goto fail; |
3750 | } | |
3751 | ||
451769eb MH |
3752 | /* |
3753 | * page tables allocations ignore external gfp mask, enforce it | |
3754 | * by the scope API | |
3755 | */ | |
3756 | if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) | |
3757 | flags = memalloc_nofs_save(); | |
3758 | else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) | |
3759 | flags = memalloc_noio_save(); | |
3760 | ||
9376130c MH |
3761 | do { |
3762 | ret = vmap_pages_range(addr, addr + size, prot, area->pages, | |
451769eb | 3763 | page_shift); |
9376130c MH |
3764 | if (nofail && (ret < 0)) |
3765 | schedule_timeout_uninterruptible(1); | |
3766 | } while (nofail && (ret < 0)); | |
451769eb MH |
3767 | |
3768 | if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) | |
3769 | memalloc_nofs_restore(flags); | |
3770 | else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) | |
3771 | memalloc_noio_restore(flags); | |
3772 | ||
3773 | if (ret < 0) { | |
c3d77172 | 3774 | warn_alloc(gfp_mask, NULL, |
f4bdfeaf URS |
3775 | "vmalloc error: size %lu, failed to map pages", |
3776 | area->nr_pages * PAGE_SIZE); | |
1da177e4 | 3777 | goto fail; |
d70bec8c | 3778 | } |
ed1f324c | 3779 | |
1da177e4 LT |
3780 | return area->addr; |
3781 | ||
3782 | fail: | |
f41f036b | 3783 | vfree(area->addr); |
1da177e4 LT |
3784 | return NULL; |
3785 | } | |
3786 | ||
3787 | /** | |
92eac168 MR |
3788 | * __vmalloc_node_range - allocate virtually contiguous memory |
3789 | * @size: allocation size | |
3790 | * @align: desired alignment | |
3791 | * @start: vm area range start | |
3792 | * @end: vm area range end | |
3793 | * @gfp_mask: flags for the page level allocator | |
3794 | * @prot: protection mask for the allocated pages | |
3795 | * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) | |
3796 | * @node: node to use for allocation or NUMA_NO_NODE | |
3797 | * @caller: caller's return address | |
3798 | * | |
3799 | * Allocate enough pages to cover @size from the page level | |
b7d90e7a | 3800 | * allocator with @gfp_mask flags. Please note that the full set of gfp |
30d3f011 MH |
3801 | * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all |
3802 | * supported. | |
3803 | * Zone modifiers are not supported. From the reclaim modifiers | |
3804 | * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) | |
3805 | * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and | |
3806 | * __GFP_RETRY_MAYFAIL are not supported). | |
3807 | * | |
3808 | * __GFP_NOWARN can be used to suppress failures messages. | |
b7d90e7a MH |
3809 | * |
3810 | * Map them into contiguous kernel virtual space, using a pagetable | |
3811 | * protection of @prot. | |
a862f68a MR |
3812 | * |
3813 | * Return: the address of the area or %NULL on failure | |
1da177e4 | 3814 | */ |
88ae5fb7 | 3815 | void *__vmalloc_node_range_noprof(unsigned long size, unsigned long align, |
d0a21265 | 3816 | unsigned long start, unsigned long end, gfp_t gfp_mask, |
cb9e3c29 AR |
3817 | pgprot_t prot, unsigned long vm_flags, int node, |
3818 | const void *caller) | |
1da177e4 LT |
3819 | { |
3820 | struct vm_struct *area; | |
19f1c3ac | 3821 | void *ret; |
f6e39794 | 3822 | kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; |
f0e11a99 | 3823 | unsigned long original_align = align; |
121e6f32 | 3824 | unsigned int shift = PAGE_SHIFT; |
1da177e4 | 3825 | |
d70bec8c NP |
3826 | if (WARN_ON_ONCE(!size)) |
3827 | return NULL; | |
3828 | ||
3829 | if ((size >> PAGE_SHIFT) > totalram_pages()) { | |
3830 | warn_alloc(gfp_mask, NULL, | |
f4bdfeaf | 3831 | "vmalloc error: size %lu, exceeds total pages", |
f0e11a99 | 3832 | size); |
d70bec8c | 3833 | return NULL; |
121e6f32 NP |
3834 | } |
3835 | ||
559089e0 | 3836 | if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { |
121e6f32 NP |
3837 | /* |
3838 | * Try huge pages. Only try for PAGE_KERNEL allocations, | |
3839 | * others like modules don't yet expect huge pages in | |
3840 | * their allocations due to apply_to_page_range not | |
3841 | * supporting them. | |
3842 | */ | |
3843 | ||
c82be0be | 3844 | if (arch_vmap_pmd_supported(prot) && size >= PMD_SIZE) |
121e6f32 | 3845 | shift = PMD_SHIFT; |
3382bbee | 3846 | else |
c82be0be | 3847 | shift = arch_vmap_pte_supported_shift(size); |
3382bbee | 3848 | |
f0e11a99 | 3849 | align = max(original_align, 1UL << shift); |
121e6f32 NP |
3850 | } |
3851 | ||
3852 | again: | |
f0e11a99 | 3853 | area = __get_vm_area_node(size, align, shift, VM_ALLOC | |
7ca3027b DA |
3854 | VM_UNINITIALIZED | vm_flags, start, end, node, |
3855 | gfp_mask, caller); | |
d70bec8c | 3856 | if (!area) { |
9376130c | 3857 | bool nofail = gfp_mask & __GFP_NOFAIL; |
d70bec8c | 3858 | warn_alloc(gfp_mask, NULL, |
9376130c | 3859 | "vmalloc error: size %lu, vm_struct allocation failed%s", |
f0e11a99 | 3860 | size, (nofail) ? ". Retrying." : ""); |
9376130c MH |
3861 | if (nofail) { |
3862 | schedule_timeout_uninterruptible(1); | |
3863 | goto again; | |
3864 | } | |
de7d2b56 | 3865 | goto fail; |
d70bec8c | 3866 | } |
1da177e4 | 3867 | |
f6e39794 AK |
3868 | /* |
3869 | * Prepare arguments for __vmalloc_area_node() and | |
3870 | * kasan_unpoison_vmalloc(). | |
3871 | */ | |
3872 | if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { | |
3873 | if (kasan_hw_tags_enabled()) { | |
3874 | /* | |
3875 | * Modify protection bits to allow tagging. | |
3876 | * This must be done before mapping. | |
3877 | */ | |
3878 | prot = arch_vmap_pgprot_tagged(prot); | |
01d92c7f | 3879 | |
f6e39794 AK |
3880 | /* |
3881 | * Skip page_alloc poisoning and zeroing for physical | |
3882 | * pages backing VM_ALLOC mapping. Memory is instead | |
3883 | * poisoned and zeroed by kasan_unpoison_vmalloc(). | |
3884 | */ | |
0a54864f | 3885 | gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO; |
f6e39794 AK |
3886 | } |
3887 | ||
3888 | /* Take note that the mapping is PAGE_KERNEL. */ | |
3889 | kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; | |
23689e91 AK |
3890 | } |
3891 | ||
01d92c7f | 3892 | /* Allocate physical pages and map them into vmalloc space. */ |
19f1c3ac AK |
3893 | ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); |
3894 | if (!ret) | |
121e6f32 | 3895 | goto fail; |
89219d37 | 3896 | |
23689e91 AK |
3897 | /* |
3898 | * Mark the pages as accessible, now that they are mapped. | |
6c2f761d AK |
3899 | * The condition for setting KASAN_VMALLOC_INIT should complement the |
3900 | * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check | |
3901 | * to make sure that memory is initialized under the same conditions. | |
f6e39794 AK |
3902 | * Tag-based KASAN modes only assign tags to normal non-executable |
3903 | * allocations, see __kasan_unpoison_vmalloc(). | |
23689e91 | 3904 | */ |
f6e39794 | 3905 | kasan_flags |= KASAN_VMALLOC_VM_ALLOC; |
6c2f761d AK |
3906 | if (!want_init_on_free() && want_init_on_alloc(gfp_mask) && |
3907 | (gfp_mask & __GFP_SKIP_ZERO)) | |
23689e91 | 3908 | kasan_flags |= KASAN_VMALLOC_INIT; |
f6e39794 | 3909 | /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ |
f0e11a99 | 3910 | area->addr = kasan_unpoison_vmalloc(area->addr, size, kasan_flags); |
19f1c3ac | 3911 | |
f5252e00 | 3912 | /* |
20fc02b4 ZY |
3913 | * In this function, newly allocated vm_struct has VM_UNINITIALIZED |
3914 | * flag. It means that vm_struct is not fully initialized. | |
4341fa45 | 3915 | * Now, it is fully initialized, so remove this flag here. |
f5252e00 | 3916 | */ |
20fc02b4 | 3917 | clear_vm_uninitialized_flag(area); |
f5252e00 | 3918 | |
60115fa5 | 3919 | if (!(vm_flags & VM_DEFER_KMEMLEAK)) |
f0e11a99 | 3920 | kmemleak_vmalloc(area, PAGE_ALIGN(size), gfp_mask); |
89219d37 | 3921 | |
19f1c3ac | 3922 | return area->addr; |
de7d2b56 JP |
3923 | |
3924 | fail: | |
121e6f32 NP |
3925 | if (shift > PAGE_SHIFT) { |
3926 | shift = PAGE_SHIFT; | |
f0e11a99 | 3927 | align = original_align; |
121e6f32 NP |
3928 | goto again; |
3929 | } | |
3930 | ||
de7d2b56 | 3931 | return NULL; |
1da177e4 LT |
3932 | } |
3933 | ||
d0a21265 | 3934 | /** |
92eac168 MR |
3935 | * __vmalloc_node - allocate virtually contiguous memory |
3936 | * @size: allocation size | |
3937 | * @align: desired alignment | |
3938 | * @gfp_mask: flags for the page level allocator | |
92eac168 MR |
3939 | * @node: node to use for allocation or NUMA_NO_NODE |
3940 | * @caller: caller's return address | |
a7c3e901 | 3941 | * |
f38fcb9c CH |
3942 | * Allocate enough pages to cover @size from the page level allocator with |
3943 | * @gfp_mask flags. Map them into contiguous kernel virtual space. | |
a7c3e901 | 3944 | * |
92eac168 MR |
3945 | * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL |
3946 | * and __GFP_NOFAIL are not supported | |
a7c3e901 | 3947 | * |
92eac168 MR |
3948 | * Any use of gfp flags outside of GFP_KERNEL should be consulted |
3949 | * with mm people. | |
a862f68a MR |
3950 | * |
3951 | * Return: pointer to the allocated memory or %NULL on error | |
d0a21265 | 3952 | */ |
88ae5fb7 | 3953 | void *__vmalloc_node_noprof(unsigned long size, unsigned long align, |
f38fcb9c | 3954 | gfp_t gfp_mask, int node, const void *caller) |
d0a21265 | 3955 | { |
88ae5fb7 | 3956 | return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END, |
f38fcb9c | 3957 | gfp_mask, PAGE_KERNEL, 0, node, caller); |
d0a21265 | 3958 | } |
c3f896dc CH |
3959 | /* |
3960 | * This is only for performance analysis of vmalloc and stress purpose. | |
3961 | * It is required by vmalloc test module, therefore do not use it other | |
3962 | * than that. | |
3963 | */ | |
3964 | #ifdef CONFIG_TEST_VMALLOC_MODULE | |
88ae5fb7 | 3965 | EXPORT_SYMBOL_GPL(__vmalloc_node_noprof); |
c3f896dc | 3966 | #endif |
d0a21265 | 3967 | |
88ae5fb7 | 3968 | void *__vmalloc_noprof(unsigned long size, gfp_t gfp_mask) |
930fc45a | 3969 | { |
88ae5fb7 | 3970 | return __vmalloc_node_noprof(size, 1, gfp_mask, NUMA_NO_NODE, |
23016969 | 3971 | __builtin_return_address(0)); |
930fc45a | 3972 | } |
88ae5fb7 | 3973 | EXPORT_SYMBOL(__vmalloc_noprof); |
1da177e4 LT |
3974 | |
3975 | /** | |
92eac168 MR |
3976 | * vmalloc - allocate virtually contiguous memory |
3977 | * @size: allocation size | |
3978 | * | |
3979 | * Allocate enough pages to cover @size from the page level | |
3980 | * allocator and map them into contiguous kernel virtual space. | |
1da177e4 | 3981 | * |
92eac168 MR |
3982 | * For tight control over page level allocator and protection flags |
3983 | * use __vmalloc() instead. | |
a862f68a MR |
3984 | * |
3985 | * Return: pointer to the allocated memory or %NULL on error | |
1da177e4 | 3986 | */ |
88ae5fb7 | 3987 | void *vmalloc_noprof(unsigned long size) |
1da177e4 | 3988 | { |
88ae5fb7 | 3989 | return __vmalloc_node_noprof(size, 1, GFP_KERNEL, NUMA_NO_NODE, |
4d39d728 | 3990 | __builtin_return_address(0)); |
1da177e4 | 3991 | } |
88ae5fb7 | 3992 | EXPORT_SYMBOL(vmalloc_noprof); |
1da177e4 | 3993 | |
15a64f5a | 3994 | /** |
55284f70 | 3995 | * vmalloc_huge_node - allocate virtually contiguous memory, allow huge pages |
559089e0 SL |
3996 | * @size: allocation size |
3997 | * @gfp_mask: flags for the page level allocator | |
55284f70 | 3998 | * @node: node to use for allocation or NUMA_NO_NODE |
15a64f5a | 3999 | * |
559089e0 | 4000 | * Allocate enough pages to cover @size from the page level |
15a64f5a | 4001 | * allocator and map them into contiguous kernel virtual space. |
559089e0 SL |
4002 | * If @size is greater than or equal to PMD_SIZE, allow using |
4003 | * huge pages for the memory | |
15a64f5a CI |
4004 | * |
4005 | * Return: pointer to the allocated memory or %NULL on error | |
4006 | */ | |
55284f70 | 4007 | void *vmalloc_huge_node_noprof(unsigned long size, gfp_t gfp_mask, int node) |
15a64f5a | 4008 | { |
88ae5fb7 | 4009 | return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, |
55284f70 PZ |
4010 | gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, |
4011 | node, __builtin_return_address(0)); | |
15a64f5a | 4012 | } |
55284f70 | 4013 | EXPORT_SYMBOL_GPL(vmalloc_huge_node_noprof); |
15a64f5a | 4014 | |
e1ca7788 | 4015 | /** |
92eac168 MR |
4016 | * vzalloc - allocate virtually contiguous memory with zero fill |
4017 | * @size: allocation size | |
4018 | * | |
4019 | * Allocate enough pages to cover @size from the page level | |
4020 | * allocator and map them into contiguous kernel virtual space. | |
4021 | * The memory allocated is set to zero. | |
4022 | * | |
4023 | * For tight control over page level allocator and protection flags | |
4024 | * use __vmalloc() instead. | |
a862f68a MR |
4025 | * |
4026 | * Return: pointer to the allocated memory or %NULL on error | |
e1ca7788 | 4027 | */ |
88ae5fb7 | 4028 | void *vzalloc_noprof(unsigned long size) |
e1ca7788 | 4029 | { |
88ae5fb7 | 4030 | return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, |
4d39d728 | 4031 | __builtin_return_address(0)); |
e1ca7788 | 4032 | } |
88ae5fb7 | 4033 | EXPORT_SYMBOL(vzalloc_noprof); |
e1ca7788 | 4034 | |
83342314 | 4035 | /** |
ead04089 REB |
4036 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
4037 | * @size: allocation size | |
83342314 | 4038 | * |
ead04089 REB |
4039 | * The resulting memory area is zeroed so it can be mapped to userspace |
4040 | * without leaking data. | |
a862f68a MR |
4041 | * |
4042 | * Return: pointer to the allocated memory or %NULL on error | |
83342314 | 4043 | */ |
88ae5fb7 | 4044 | void *vmalloc_user_noprof(unsigned long size) |
83342314 | 4045 | { |
88ae5fb7 | 4046 | return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, |
bc84c535 RP |
4047 | GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, |
4048 | VM_USERMAP, NUMA_NO_NODE, | |
4049 | __builtin_return_address(0)); | |
83342314 | 4050 | } |
88ae5fb7 | 4051 | EXPORT_SYMBOL(vmalloc_user_noprof); |
83342314 | 4052 | |
930fc45a | 4053 | /** |
92eac168 MR |
4054 | * vmalloc_node - allocate memory on a specific node |
4055 | * @size: allocation size | |
4056 | * @node: numa node | |
930fc45a | 4057 | * |
92eac168 MR |
4058 | * Allocate enough pages to cover @size from the page level |
4059 | * allocator and map them into contiguous kernel virtual space. | |
930fc45a | 4060 | * |
92eac168 MR |
4061 | * For tight control over page level allocator and protection flags |
4062 | * use __vmalloc() instead. | |
a862f68a MR |
4063 | * |
4064 | * Return: pointer to the allocated memory or %NULL on error | |
930fc45a | 4065 | */ |
88ae5fb7 | 4066 | void *vmalloc_node_noprof(unsigned long size, int node) |
930fc45a | 4067 | { |
88ae5fb7 | 4068 | return __vmalloc_node_noprof(size, 1, GFP_KERNEL, node, |
f38fcb9c | 4069 | __builtin_return_address(0)); |
930fc45a | 4070 | } |
88ae5fb7 | 4071 | EXPORT_SYMBOL(vmalloc_node_noprof); |
930fc45a | 4072 | |
e1ca7788 DY |
4073 | /** |
4074 | * vzalloc_node - allocate memory on a specific node with zero fill | |
4075 | * @size: allocation size | |
4076 | * @node: numa node | |
4077 | * | |
4078 | * Allocate enough pages to cover @size from the page level | |
4079 | * allocator and map them into contiguous kernel virtual space. | |
4080 | * The memory allocated is set to zero. | |
4081 | * | |
a862f68a | 4082 | * Return: pointer to the allocated memory or %NULL on error |
e1ca7788 | 4083 | */ |
88ae5fb7 | 4084 | void *vzalloc_node_noprof(unsigned long size, int node) |
e1ca7788 | 4085 | { |
88ae5fb7 | 4086 | return __vmalloc_node_noprof(size, 1, GFP_KERNEL | __GFP_ZERO, node, |
4d39d728 | 4087 | __builtin_return_address(0)); |
e1ca7788 | 4088 | } |
88ae5fb7 | 4089 | EXPORT_SYMBOL(vzalloc_node_noprof); |
e1ca7788 | 4090 | |
3ddc2fef DK |
4091 | /** |
4092 | * vrealloc - reallocate virtually contiguous memory; contents remain unchanged | |
4093 | * @p: object to reallocate memory for | |
4094 | * @size: the size to reallocate | |
4095 | * @flags: the flags for the page level allocator | |
4096 | * | |
4097 | * If @p is %NULL, vrealloc() behaves exactly like vmalloc(). If @size is 0 and | |
4098 | * @p is not a %NULL pointer, the object pointed to is freed. | |
4099 | * | |
4100 | * If __GFP_ZERO logic is requested, callers must ensure that, starting with the | |
4101 | * initial memory allocation, every subsequent call to this API for the same | |
4102 | * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that | |
4103 | * __GFP_ZERO is not fully honored by this API. | |
4104 | * | |
4105 | * In any case, the contents of the object pointed to are preserved up to the | |
4106 | * lesser of the new and old sizes. | |
4107 | * | |
4108 | * This function must not be called concurrently with itself or vfree() for the | |
4109 | * same memory allocation. | |
4110 | * | |
4111 | * Return: pointer to the allocated memory; %NULL if @size is zero or in case of | |
4112 | * failure | |
4113 | */ | |
4114 | void *vrealloc_noprof(const void *p, size_t size, gfp_t flags) | |
4115 | { | |
a0309faf KC |
4116 | struct vm_struct *vm = NULL; |
4117 | size_t alloced_size = 0; | |
3ddc2fef DK |
4118 | size_t old_size = 0; |
4119 | void *n; | |
4120 | ||
4121 | if (!size) { | |
4122 | vfree(p); | |
4123 | return NULL; | |
4124 | } | |
4125 | ||
4126 | if (p) { | |
3ddc2fef DK |
4127 | vm = find_vm_area(p); |
4128 | if (unlikely(!vm)) { | |
4129 | WARN(1, "Trying to vrealloc() nonexistent vm area (%p)\n", p); | |
4130 | return NULL; | |
4131 | } | |
4132 | ||
a0309faf KC |
4133 | alloced_size = get_vm_area_size(vm); |
4134 | old_size = vm->requested_size; | |
4135 | if (WARN(alloced_size < old_size, | |
4136 | "vrealloc() has mismatched area vs requested sizes (%p)\n", p)) | |
4137 | return NULL; | |
3ddc2fef DK |
4138 | } |
4139 | ||
4140 | /* | |
4141 | * TODO: Shrink the vm_area, i.e. unmap and free unused pages. What | |
4142 | * would be a good heuristic for when to shrink the vm_area? | |
4143 | */ | |
4144 | if (size <= old_size) { | |
70d1eb03 KC |
4145 | /* Zero out "freed" memory, potentially for future realloc. */ |
4146 | if (want_init_on_free() || want_init_on_alloc(flags)) | |
3ddc2fef | 4147 | memset((void *)p + size, 0, old_size - size); |
a0309faf | 4148 | vm->requested_size = size; |
d699440f | 4149 | kasan_poison_vmalloc(p + size, old_size - size); |
3ddc2fef DK |
4150 | return (void *)p; |
4151 | } | |
4152 | ||
a0309faf KC |
4153 | /* |
4154 | * We already have the bytes available in the allocation; use them. | |
4155 | */ | |
4156 | if (size <= alloced_size) { | |
4157 | kasan_unpoison_vmalloc(p + old_size, size - old_size, | |
4158 | KASAN_VMALLOC_PROT_NORMAL); | |
70d1eb03 KC |
4159 | /* |
4160 | * No need to zero memory here, as unused memory will have | |
4161 | * already been zeroed at initial allocation time or during | |
4162 | * realloc shrink time. | |
4163 | */ | |
a0309faf | 4164 | vm->requested_size = size; |
f7a35a3c | 4165 | return (void *)p; |
a0309faf KC |
4166 | } |
4167 | ||
3ddc2fef DK |
4168 | /* TODO: Grow the vm_area, i.e. allocate and map additional pages. */ |
4169 | n = __vmalloc_noprof(size, flags); | |
4170 | if (!n) | |
4171 | return NULL; | |
4172 | ||
4173 | if (p) { | |
4174 | memcpy(n, p, old_size); | |
4175 | vfree(p); | |
4176 | } | |
4177 | ||
4178 | return n; | |
4179 | } | |
4180 | ||
0d08e0d3 | 4181 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
698d0831 | 4182 | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) |
0d08e0d3 | 4183 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
698d0831 | 4184 | #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) |
0d08e0d3 | 4185 | #else |
698d0831 MH |
4186 | /* |
4187 | * 64b systems should always have either DMA or DMA32 zones. For others | |
4188 | * GFP_DMA32 should do the right thing and use the normal zone. | |
4189 | */ | |
68d68ff6 | 4190 | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) |
0d08e0d3 AK |
4191 | #endif |
4192 | ||
1da177e4 | 4193 | /** |
92eac168 MR |
4194 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) |
4195 | * @size: allocation size | |
1da177e4 | 4196 | * |
92eac168 MR |
4197 | * Allocate enough 32bit PA addressable pages to cover @size from the |
4198 | * page level allocator and map them into contiguous kernel virtual space. | |
a862f68a MR |
4199 | * |
4200 | * Return: pointer to the allocated memory or %NULL on error | |
1da177e4 | 4201 | */ |
88ae5fb7 | 4202 | void *vmalloc_32_noprof(unsigned long size) |
1da177e4 | 4203 | { |
88ae5fb7 | 4204 | return __vmalloc_node_noprof(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, |
f38fcb9c | 4205 | __builtin_return_address(0)); |
1da177e4 | 4206 | } |
88ae5fb7 | 4207 | EXPORT_SYMBOL(vmalloc_32_noprof); |
1da177e4 | 4208 | |
83342314 | 4209 | /** |
ead04089 | 4210 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
92eac168 | 4211 | * @size: allocation size |
ead04089 REB |
4212 | * |
4213 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
4214 | * mapped to userspace without leaking data. | |
a862f68a MR |
4215 | * |
4216 | * Return: pointer to the allocated memory or %NULL on error | |
83342314 | 4217 | */ |
88ae5fb7 | 4218 | void *vmalloc_32_user_noprof(unsigned long size) |
83342314 | 4219 | { |
88ae5fb7 | 4220 | return __vmalloc_node_range_noprof(size, SHMLBA, VMALLOC_START, VMALLOC_END, |
bc84c535 RP |
4221 | GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, |
4222 | VM_USERMAP, NUMA_NO_NODE, | |
4223 | __builtin_return_address(0)); | |
83342314 | 4224 | } |
88ae5fb7 | 4225 | EXPORT_SYMBOL(vmalloc_32_user_noprof); |
83342314 | 4226 | |
d0107eb0 | 4227 | /* |
4c91c07c LS |
4228 | * Atomically zero bytes in the iterator. |
4229 | * | |
4230 | * Returns the number of zeroed bytes. | |
d0107eb0 | 4231 | */ |
4c91c07c LS |
4232 | static size_t zero_iter(struct iov_iter *iter, size_t count) |
4233 | { | |
4234 | size_t remains = count; | |
4235 | ||
4236 | while (remains > 0) { | |
4237 | size_t num, copied; | |
4238 | ||
0e4bc271 | 4239 | num = min_t(size_t, remains, PAGE_SIZE); |
4c91c07c LS |
4240 | copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter); |
4241 | remains -= copied; | |
4242 | ||
4243 | if (copied < num) | |
4244 | break; | |
4245 | } | |
d0107eb0 | 4246 | |
4c91c07c LS |
4247 | return count - remains; |
4248 | } | |
4249 | ||
4250 | /* | |
4251 | * small helper routine, copy contents to iter from addr. | |
4252 | * If the page is not present, fill zero. | |
4253 | * | |
4254 | * Returns the number of copied bytes. | |
4255 | */ | |
4256 | static size_t aligned_vread_iter(struct iov_iter *iter, | |
4257 | const char *addr, size_t count) | |
d0107eb0 | 4258 | { |
4c91c07c LS |
4259 | size_t remains = count; |
4260 | struct page *page; | |
d0107eb0 | 4261 | |
4c91c07c | 4262 | while (remains > 0) { |
d0107eb0 | 4263 | unsigned long offset, length; |
4c91c07c | 4264 | size_t copied = 0; |
d0107eb0 | 4265 | |
891c49ab | 4266 | offset = offset_in_page(addr); |
d0107eb0 | 4267 | length = PAGE_SIZE - offset; |
4c91c07c LS |
4268 | if (length > remains) |
4269 | length = remains; | |
4270 | page = vmalloc_to_page(addr); | |
d0107eb0 | 4271 | /* |
4c91c07c LS |
4272 | * To do safe access to this _mapped_ area, we need lock. But |
4273 | * adding lock here means that we need to add overhead of | |
4274 | * vmalloc()/vfree() calls for this _debug_ interface, rarely | |
4275 | * used. Instead of that, we'll use an local mapping via | |
4276 | * copy_page_to_iter_nofault() and accept a small overhead in | |
4277 | * this access function. | |
d0107eb0 | 4278 | */ |
4c91c07c LS |
4279 | if (page) |
4280 | copied = copy_page_to_iter_nofault(page, offset, | |
4281 | length, iter); | |
4282 | else | |
4283 | copied = zero_iter(iter, length); | |
d0107eb0 | 4284 | |
4c91c07c LS |
4285 | addr += copied; |
4286 | remains -= copied; | |
4287 | ||
4288 | if (copied != length) | |
4289 | break; | |
d0107eb0 | 4290 | } |
4c91c07c LS |
4291 | |
4292 | return count - remains; | |
d0107eb0 KH |
4293 | } |
4294 | ||
4c91c07c LS |
4295 | /* |
4296 | * Read from a vm_map_ram region of memory. | |
4297 | * | |
4298 | * Returns the number of copied bytes. | |
4299 | */ | |
4300 | static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr, | |
4301 | size_t count, unsigned long flags) | |
06c89946 BH |
4302 | { |
4303 | char *start; | |
4304 | struct vmap_block *vb; | |
062eacf5 | 4305 | struct xarray *xa; |
06c89946 | 4306 | unsigned long offset; |
4c91c07c LS |
4307 | unsigned int rs, re; |
4308 | size_t remains, n; | |
06c89946 BH |
4309 | |
4310 | /* | |
4311 | * If it's area created by vm_map_ram() interface directly, but | |
4312 | * not further subdividing and delegating management to vmap_block, | |
4313 | * handle it here. | |
4314 | */ | |
4c91c07c LS |
4315 | if (!(flags & VMAP_BLOCK)) |
4316 | return aligned_vread_iter(iter, addr, count); | |
4317 | ||
4318 | remains = count; | |
06c89946 BH |
4319 | |
4320 | /* | |
4321 | * Area is split into regions and tracked with vmap_block, read out | |
4322 | * each region and zero fill the hole between regions. | |
4323 | */ | |
fa1c77c1 | 4324 | xa = addr_to_vb_xa((unsigned long) addr); |
062eacf5 | 4325 | vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr)); |
06c89946 | 4326 | if (!vb) |
4c91c07c | 4327 | goto finished_zero; |
06c89946 BH |
4328 | |
4329 | spin_lock(&vb->lock); | |
4330 | if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) { | |
4331 | spin_unlock(&vb->lock); | |
4c91c07c | 4332 | goto finished_zero; |
06c89946 | 4333 | } |
4c91c07c | 4334 | |
06c89946 | 4335 | for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) { |
4c91c07c LS |
4336 | size_t copied; |
4337 | ||
4338 | if (remains == 0) | |
4339 | goto finished; | |
4340 | ||
06c89946 | 4341 | start = vmap_block_vaddr(vb->va->va_start, rs); |
4c91c07c LS |
4342 | |
4343 | if (addr < start) { | |
4344 | size_t to_zero = min_t(size_t, start - addr, remains); | |
4345 | size_t zeroed = zero_iter(iter, to_zero); | |
4346 | ||
4347 | addr += zeroed; | |
4348 | remains -= zeroed; | |
4349 | ||
4350 | if (remains == 0 || zeroed != to_zero) | |
4351 | goto finished; | |
06c89946 | 4352 | } |
4c91c07c | 4353 | |
06c89946 BH |
4354 | /*it could start reading from the middle of used region*/ |
4355 | offset = offset_in_page(addr); | |
4356 | n = ((re - rs + 1) << PAGE_SHIFT) - offset; | |
4c91c07c LS |
4357 | if (n > remains) |
4358 | n = remains; | |
4359 | ||
4360 | copied = aligned_vread_iter(iter, start + offset, n); | |
06c89946 | 4361 | |
4c91c07c LS |
4362 | addr += copied; |
4363 | remains -= copied; | |
4364 | ||
4365 | if (copied != n) | |
4366 | goto finished; | |
06c89946 | 4367 | } |
4c91c07c | 4368 | |
06c89946 BH |
4369 | spin_unlock(&vb->lock); |
4370 | ||
4c91c07c | 4371 | finished_zero: |
06c89946 | 4372 | /* zero-fill the left dirty or free regions */ |
4c91c07c LS |
4373 | return count - remains + zero_iter(iter, remains); |
4374 | finished: | |
4375 | /* We couldn't copy/zero everything */ | |
4376 | spin_unlock(&vb->lock); | |
4377 | return count - remains; | |
06c89946 BH |
4378 | } |
4379 | ||
d0107eb0 | 4380 | /** |
4c91c07c LS |
4381 | * vread_iter() - read vmalloc area in a safe way to an iterator. |
4382 | * @iter: the iterator to which data should be written. | |
4383 | * @addr: vm address. | |
4384 | * @count: number of bytes to be read. | |
92eac168 | 4385 | * |
92eac168 MR |
4386 | * This function checks that addr is a valid vmalloc'ed area, and |
4387 | * copy data from that area to a given buffer. If the given memory range | |
4388 | * of [addr...addr+count) includes some valid address, data is copied to | |
4389 | * proper area of @buf. If there are memory holes, they'll be zero-filled. | |
4390 | * IOREMAP area is treated as memory hole and no copy is done. | |
4391 | * | |
4392 | * If [addr...addr+count) doesn't includes any intersects with alive | |
4393 | * vm_struct area, returns 0. @buf should be kernel's buffer. | |
4394 | * | |
4395 | * Note: In usual ops, vread() is never necessary because the caller | |
4396 | * should know vmalloc() area is valid and can use memcpy(). | |
4397 | * This is for routines which have to access vmalloc area without | |
bbcd53c9 | 4398 | * any information, as /proc/kcore. |
a862f68a MR |
4399 | * |
4400 | * Return: number of bytes for which addr and buf should be increased | |
4401 | * (same number as @count) or %0 if [addr...addr+count) doesn't | |
4402 | * include any intersection with valid vmalloc area | |
d0107eb0 | 4403 | */ |
4c91c07c | 4404 | long vread_iter(struct iov_iter *iter, const char *addr, size_t count) |
1da177e4 | 4405 | { |
d0936029 | 4406 | struct vmap_node *vn; |
e81ce85f JK |
4407 | struct vmap_area *va; |
4408 | struct vm_struct *vm; | |
4c91c07c LS |
4409 | char *vaddr; |
4410 | size_t n, size, flags, remains; | |
53becf32 | 4411 | unsigned long next; |
1da177e4 | 4412 | |
4aff1dc4 AK |
4413 | addr = kasan_reset_tag(addr); |
4414 | ||
1da177e4 LT |
4415 | /* Don't allow overflow */ |
4416 | if ((unsigned long) addr + count < count) | |
4417 | count = -(unsigned long) addr; | |
4418 | ||
4c91c07c LS |
4419 | remains = count; |
4420 | ||
53becf32 URS |
4421 | vn = find_vmap_area_exceed_addr_lock((unsigned long) addr, &va); |
4422 | if (!vn) | |
4c91c07c | 4423 | goto finished_zero; |
f181234a CW |
4424 | |
4425 | /* no intersects with alive vmap_area */ | |
4c91c07c LS |
4426 | if ((unsigned long)addr + remains <= va->va_start) |
4427 | goto finished_zero; | |
f181234a | 4428 | |
53becf32 | 4429 | do { |
4c91c07c LS |
4430 | size_t copied; |
4431 | ||
4432 | if (remains == 0) | |
4433 | goto finished; | |
e81ce85f | 4434 | |
06c89946 BH |
4435 | vm = va->vm; |
4436 | flags = va->flags & VMAP_FLAGS_MASK; | |
4437 | /* | |
4438 | * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need | |
4439 | * be set together with VMAP_RAM. | |
4440 | */ | |
4441 | WARN_ON(flags == VMAP_BLOCK); | |
4442 | ||
4443 | if (!vm && !flags) | |
53becf32 | 4444 | goto next_va; |
e81ce85f | 4445 | |
30a7a9b1 | 4446 | if (vm && (vm->flags & VM_UNINITIALIZED)) |
53becf32 | 4447 | goto next_va; |
4c91c07c | 4448 | |
30a7a9b1 BH |
4449 | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ |
4450 | smp_rmb(); | |
4451 | ||
06c89946 BH |
4452 | vaddr = (char *) va->va_start; |
4453 | size = vm ? get_vm_area_size(vm) : va_size(va); | |
4454 | ||
4455 | if (addr >= vaddr + size) | |
53becf32 | 4456 | goto next_va; |
4c91c07c LS |
4457 | |
4458 | if (addr < vaddr) { | |
4459 | size_t to_zero = min_t(size_t, vaddr - addr, remains); | |
4460 | size_t zeroed = zero_iter(iter, to_zero); | |
4461 | ||
4462 | addr += zeroed; | |
4463 | remains -= zeroed; | |
4464 | ||
4465 | if (remains == 0 || zeroed != to_zero) | |
1da177e4 | 4466 | goto finished; |
1da177e4 | 4467 | } |
4c91c07c | 4468 | |
06c89946 | 4469 | n = vaddr + size - addr; |
4c91c07c LS |
4470 | if (n > remains) |
4471 | n = remains; | |
06c89946 BH |
4472 | |
4473 | if (flags & VMAP_RAM) | |
4c91c07c | 4474 | copied = vmap_ram_vread_iter(iter, addr, n, flags); |
e6f79822 | 4475 | else if (!(vm && (vm->flags & (VM_IOREMAP | VM_SPARSE)))) |
4c91c07c | 4476 | copied = aligned_vread_iter(iter, addr, n); |
e6f79822 | 4477 | else /* IOREMAP | SPARSE area is treated as memory hole */ |
4c91c07c LS |
4478 | copied = zero_iter(iter, n); |
4479 | ||
4480 | addr += copied; | |
4481 | remains -= copied; | |
4482 | ||
4483 | if (copied != n) | |
4484 | goto finished; | |
53becf32 URS |
4485 | |
4486 | next_va: | |
4487 | next = va->va_end; | |
4488 | spin_unlock(&vn->busy.lock); | |
4489 | } while ((vn = find_vmap_area_exceed_addr_lock(next, &va))); | |
d0107eb0 | 4490 | |
4c91c07c | 4491 | finished_zero: |
53becf32 URS |
4492 | if (vn) |
4493 | spin_unlock(&vn->busy.lock); | |
4494 | ||
d0107eb0 | 4495 | /* zero-fill memory holes */ |
4c91c07c LS |
4496 | return count - remains + zero_iter(iter, remains); |
4497 | finished: | |
4498 | /* Nothing remains, or We couldn't copy/zero everything. */ | |
53becf32 URS |
4499 | if (vn) |
4500 | spin_unlock(&vn->busy.lock); | |
d0107eb0 | 4501 | |
4c91c07c | 4502 | return count - remains; |
1da177e4 LT |
4503 | } |
4504 | ||
83342314 | 4505 | /** |
92eac168 MR |
4506 | * remap_vmalloc_range_partial - map vmalloc pages to userspace |
4507 | * @vma: vma to cover | |
4508 | * @uaddr: target user address to start at | |
4509 | * @kaddr: virtual address of vmalloc kernel memory | |
bdebd6a2 | 4510 | * @pgoff: offset from @kaddr to start at |
92eac168 | 4511 | * @size: size of map area |
7682486b | 4512 | * |
92eac168 | 4513 | * Returns: 0 for success, -Exxx on failure |
83342314 | 4514 | * |
92eac168 MR |
4515 | * This function checks that @kaddr is a valid vmalloc'ed area, |
4516 | * and that it is big enough to cover the range starting at | |
4517 | * @uaddr in @vma. Will return failure if that criteria isn't | |
4518 | * met. | |
83342314 | 4519 | * |
92eac168 | 4520 | * Similar to remap_pfn_range() (see mm/memory.c) |
83342314 | 4521 | */ |
e69e9d4a | 4522 | int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, |
bdebd6a2 JH |
4523 | void *kaddr, unsigned long pgoff, |
4524 | unsigned long size) | |
83342314 NP |
4525 | { |
4526 | struct vm_struct *area; | |
bdebd6a2 JH |
4527 | unsigned long off; |
4528 | unsigned long end_index; | |
4529 | ||
4530 | if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) | |
4531 | return -EINVAL; | |
83342314 | 4532 | |
e69e9d4a HD |
4533 | size = PAGE_ALIGN(size); |
4534 | ||
4535 | if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) | |
83342314 NP |
4536 | return -EINVAL; |
4537 | ||
e69e9d4a | 4538 | area = find_vm_area(kaddr); |
83342314 | 4539 | if (!area) |
db64fe02 | 4540 | return -EINVAL; |
83342314 | 4541 | |
fe9041c2 | 4542 | if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) |
db64fe02 | 4543 | return -EINVAL; |
83342314 | 4544 | |
bdebd6a2 JH |
4545 | if (check_add_overflow(size, off, &end_index) || |
4546 | end_index > get_vm_area_size(area)) | |
db64fe02 | 4547 | return -EINVAL; |
bdebd6a2 | 4548 | kaddr += off; |
83342314 | 4549 | |
83342314 | 4550 | do { |
e69e9d4a | 4551 | struct page *page = vmalloc_to_page(kaddr); |
db64fe02 NP |
4552 | int ret; |
4553 | ||
83342314 NP |
4554 | ret = vm_insert_page(vma, uaddr, page); |
4555 | if (ret) | |
4556 | return ret; | |
4557 | ||
4558 | uaddr += PAGE_SIZE; | |
e69e9d4a HD |
4559 | kaddr += PAGE_SIZE; |
4560 | size -= PAGE_SIZE; | |
4561 | } while (size > 0); | |
83342314 | 4562 | |
1c71222e | 4563 | vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP); |
83342314 | 4564 | |
db64fe02 | 4565 | return 0; |
83342314 | 4566 | } |
e69e9d4a HD |
4567 | |
4568 | /** | |
92eac168 MR |
4569 | * remap_vmalloc_range - map vmalloc pages to userspace |
4570 | * @vma: vma to cover (map full range of vma) | |
4571 | * @addr: vmalloc memory | |
4572 | * @pgoff: number of pages into addr before first page to map | |
e69e9d4a | 4573 | * |
92eac168 | 4574 | * Returns: 0 for success, -Exxx on failure |
e69e9d4a | 4575 | * |
92eac168 MR |
4576 | * This function checks that addr is a valid vmalloc'ed area, and |
4577 | * that it is big enough to cover the vma. Will return failure if | |
4578 | * that criteria isn't met. | |
e69e9d4a | 4579 | * |
92eac168 | 4580 | * Similar to remap_pfn_range() (see mm/memory.c) |
e69e9d4a HD |
4581 | */ |
4582 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
4583 | unsigned long pgoff) | |
4584 | { | |
4585 | return remap_vmalloc_range_partial(vma, vma->vm_start, | |
bdebd6a2 | 4586 | addr, pgoff, |
e69e9d4a HD |
4587 | vma->vm_end - vma->vm_start); |
4588 | } | |
83342314 NP |
4589 | EXPORT_SYMBOL(remap_vmalloc_range); |
4590 | ||
5f4352fb JF |
4591 | void free_vm_area(struct vm_struct *area) |
4592 | { | |
4593 | struct vm_struct *ret; | |
4594 | ret = remove_vm_area(area->addr); | |
4595 | BUG_ON(ret != area); | |
4596 | kfree(area); | |
4597 | } | |
4598 | EXPORT_SYMBOL_GPL(free_vm_area); | |
a10aa579 | 4599 | |
4f8b02b4 | 4600 | #ifdef CONFIG_SMP |
ca23e405 TH |
4601 | static struct vmap_area *node_to_va(struct rb_node *n) |
4602 | { | |
4583e773 | 4603 | return rb_entry_safe(n, struct vmap_area, rb_node); |
ca23e405 TH |
4604 | } |
4605 | ||
4606 | /** | |
68ad4a33 URS |
4607 | * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to |
4608 | * @addr: target address | |
ca23e405 | 4609 | * |
68ad4a33 URS |
4610 | * Returns: vmap_area if it is found. If there is no such area |
4611 | * the first highest(reverse order) vmap_area is returned | |
4612 | * i.e. va->va_start < addr && va->va_end < addr or NULL | |
4613 | * if there are no any areas before @addr. | |
ca23e405 | 4614 | */ |
68ad4a33 URS |
4615 | static struct vmap_area * |
4616 | pvm_find_va_enclose_addr(unsigned long addr) | |
ca23e405 | 4617 | { |
68ad4a33 URS |
4618 | struct vmap_area *va, *tmp; |
4619 | struct rb_node *n; | |
4620 | ||
4621 | n = free_vmap_area_root.rb_node; | |
4622 | va = NULL; | |
ca23e405 TH |
4623 | |
4624 | while (n) { | |
68ad4a33 URS |
4625 | tmp = rb_entry(n, struct vmap_area, rb_node); |
4626 | if (tmp->va_start <= addr) { | |
4627 | va = tmp; | |
4628 | if (tmp->va_end >= addr) | |
4629 | break; | |
4630 | ||
ca23e405 | 4631 | n = n->rb_right; |
68ad4a33 URS |
4632 | } else { |
4633 | n = n->rb_left; | |
4634 | } | |
ca23e405 TH |
4635 | } |
4636 | ||
68ad4a33 | 4637 | return va; |
ca23e405 TH |
4638 | } |
4639 | ||
4640 | /** | |
68ad4a33 URS |
4641 | * pvm_determine_end_from_reverse - find the highest aligned address |
4642 | * of free block below VMALLOC_END | |
4643 | * @va: | |
4644 | * in - the VA we start the search(reverse order); | |
4645 | * out - the VA with the highest aligned end address. | |
799fa85d | 4646 | * @align: alignment for required highest address |
ca23e405 | 4647 | * |
68ad4a33 | 4648 | * Returns: determined end address within vmap_area |
ca23e405 | 4649 | */ |
68ad4a33 URS |
4650 | static unsigned long |
4651 | pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) | |
ca23e405 | 4652 | { |
68ad4a33 | 4653 | unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); |
ca23e405 TH |
4654 | unsigned long addr; |
4655 | ||
68ad4a33 URS |
4656 | if (likely(*va)) { |
4657 | list_for_each_entry_from_reverse((*va), | |
4658 | &free_vmap_area_list, list) { | |
4659 | addr = min((*va)->va_end & ~(align - 1), vmalloc_end); | |
4660 | if ((*va)->va_start < addr) | |
4661 | return addr; | |
4662 | } | |
ca23e405 TH |
4663 | } |
4664 | ||
68ad4a33 | 4665 | return 0; |
ca23e405 TH |
4666 | } |
4667 | ||
4668 | /** | |
4669 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | |
4670 | * @offsets: array containing offset of each area | |
4671 | * @sizes: array containing size of each area | |
4672 | * @nr_vms: the number of areas to allocate | |
4673 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | |
ca23e405 TH |
4674 | * |
4675 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | |
4676 | * vm_structs on success, %NULL on failure | |
4677 | * | |
4678 | * Percpu allocator wants to use congruent vm areas so that it can | |
4679 | * maintain the offsets among percpu areas. This function allocates | |
ec3f64fc DR |
4680 | * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to |
4681 | * be scattered pretty far, distance between two areas easily going up | |
4682 | * to gigabytes. To avoid interacting with regular vmallocs, these | |
4683 | * areas are allocated from top. | |
ca23e405 | 4684 | * |
68ad4a33 URS |
4685 | * Despite its complicated look, this allocator is rather simple. It |
4686 | * does everything top-down and scans free blocks from the end looking | |
4687 | * for matching base. While scanning, if any of the areas do not fit the | |
4688 | * base address is pulled down to fit the area. Scanning is repeated till | |
4689 | * all the areas fit and then all necessary data structures are inserted | |
4690 | * and the result is returned. | |
ca23e405 TH |
4691 | */ |
4692 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | |
4693 | const size_t *sizes, int nr_vms, | |
ec3f64fc | 4694 | size_t align) |
ca23e405 TH |
4695 | { |
4696 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | |
4697 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
68ad4a33 | 4698 | struct vmap_area **vas, *va; |
ca23e405 TH |
4699 | struct vm_struct **vms; |
4700 | int area, area2, last_area, term_area; | |
253a496d | 4701 | unsigned long base, start, size, end, last_end, orig_start, orig_end; |
ca23e405 TH |
4702 | bool purged = false; |
4703 | ||
ca23e405 | 4704 | /* verify parameters and allocate data structures */ |
891c49ab | 4705 | BUG_ON(offset_in_page(align) || !is_power_of_2(align)); |
ca23e405 TH |
4706 | for (last_area = 0, area = 0; area < nr_vms; area++) { |
4707 | start = offsets[area]; | |
4708 | end = start + sizes[area]; | |
4709 | ||
4710 | /* is everything aligned properly? */ | |
4711 | BUG_ON(!IS_ALIGNED(offsets[area], align)); | |
4712 | BUG_ON(!IS_ALIGNED(sizes[area], align)); | |
4713 | ||
4714 | /* detect the area with the highest address */ | |
4715 | if (start > offsets[last_area]) | |
4716 | last_area = area; | |
4717 | ||
c568da28 | 4718 | for (area2 = area + 1; area2 < nr_vms; area2++) { |
ca23e405 TH |
4719 | unsigned long start2 = offsets[area2]; |
4720 | unsigned long end2 = start2 + sizes[area2]; | |
4721 | ||
c568da28 | 4722 | BUG_ON(start2 < end && start < end2); |
ca23e405 TH |
4723 | } |
4724 | } | |
4725 | last_end = offsets[last_area] + sizes[last_area]; | |
4726 | ||
4727 | if (vmalloc_end - vmalloc_start < last_end) { | |
4728 | WARN_ON(true); | |
4729 | return NULL; | |
4730 | } | |
4731 | ||
4d67d860 TM |
4732 | vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); |
4733 | vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); | |
ca23e405 | 4734 | if (!vas || !vms) |
f1db7afd | 4735 | goto err_free2; |
ca23e405 TH |
4736 | |
4737 | for (area = 0; area < nr_vms; area++) { | |
68ad4a33 | 4738 | vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); |
ec3f64fc | 4739 | vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); |
ca23e405 TH |
4740 | if (!vas[area] || !vms[area]) |
4741 | goto err_free; | |
4742 | } | |
4743 | retry: | |
e36176be | 4744 | spin_lock(&free_vmap_area_lock); |
ca23e405 TH |
4745 | |
4746 | /* start scanning - we scan from the top, begin with the last area */ | |
4747 | area = term_area = last_area; | |
4748 | start = offsets[area]; | |
4749 | end = start + sizes[area]; | |
4750 | ||
68ad4a33 URS |
4751 | va = pvm_find_va_enclose_addr(vmalloc_end); |
4752 | base = pvm_determine_end_from_reverse(&va, align) - end; | |
ca23e405 TH |
4753 | |
4754 | while (true) { | |
ca23e405 TH |
4755 | /* |
4756 | * base might have underflowed, add last_end before | |
4757 | * comparing. | |
4758 | */ | |
68ad4a33 URS |
4759 | if (base + last_end < vmalloc_start + last_end) |
4760 | goto overflow; | |
ca23e405 TH |
4761 | |
4762 | /* | |
68ad4a33 | 4763 | * Fitting base has not been found. |
ca23e405 | 4764 | */ |
68ad4a33 URS |
4765 | if (va == NULL) |
4766 | goto overflow; | |
ca23e405 | 4767 | |
5336e52c | 4768 | /* |
d8cc323d | 4769 | * If required width exceeds current VA block, move |
5336e52c KS |
4770 | * base downwards and then recheck. |
4771 | */ | |
4772 | if (base + end > va->va_end) { | |
4773 | base = pvm_determine_end_from_reverse(&va, align) - end; | |
4774 | term_area = area; | |
4775 | continue; | |
4776 | } | |
4777 | ||
ca23e405 | 4778 | /* |
68ad4a33 | 4779 | * If this VA does not fit, move base downwards and recheck. |
ca23e405 | 4780 | */ |
5336e52c | 4781 | if (base + start < va->va_start) { |
68ad4a33 URS |
4782 | va = node_to_va(rb_prev(&va->rb_node)); |
4783 | base = pvm_determine_end_from_reverse(&va, align) - end; | |
ca23e405 TH |
4784 | term_area = area; |
4785 | continue; | |
4786 | } | |
4787 | ||
4788 | /* | |
4789 | * This area fits, move on to the previous one. If | |
4790 | * the previous one is the terminal one, we're done. | |
4791 | */ | |
4792 | area = (area + nr_vms - 1) % nr_vms; | |
4793 | if (area == term_area) | |
4794 | break; | |
68ad4a33 | 4795 | |
ca23e405 TH |
4796 | start = offsets[area]; |
4797 | end = start + sizes[area]; | |
68ad4a33 | 4798 | va = pvm_find_va_enclose_addr(base + end); |
ca23e405 | 4799 | } |
68ad4a33 | 4800 | |
ca23e405 TH |
4801 | /* we've found a fitting base, insert all va's */ |
4802 | for (area = 0; area < nr_vms; area++) { | |
68ad4a33 | 4803 | int ret; |
ca23e405 | 4804 | |
68ad4a33 URS |
4805 | start = base + offsets[area]; |
4806 | size = sizes[area]; | |
ca23e405 | 4807 | |
68ad4a33 URS |
4808 | va = pvm_find_va_enclose_addr(start); |
4809 | if (WARN_ON_ONCE(va == NULL)) | |
4810 | /* It is a BUG(), but trigger recovery instead. */ | |
4811 | goto recovery; | |
4812 | ||
5b75b8e1 URS |
4813 | ret = va_clip(&free_vmap_area_root, |
4814 | &free_vmap_area_list, va, start, size); | |
1b23ff80 | 4815 | if (WARN_ON_ONCE(unlikely(ret))) |
68ad4a33 URS |
4816 | /* It is a BUG(), but trigger recovery instead. */ |
4817 | goto recovery; | |
4818 | ||
68ad4a33 URS |
4819 | /* Allocated area. */ |
4820 | va = vas[area]; | |
4821 | va->va_start = start; | |
4822 | va->va_end = start + size; | |
68ad4a33 | 4823 | } |
ca23e405 | 4824 | |
e36176be | 4825 | spin_unlock(&free_vmap_area_lock); |
ca23e405 | 4826 | |
253a496d DA |
4827 | /* populate the kasan shadow space */ |
4828 | for (area = 0; area < nr_vms; area++) { | |
4829 | if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) | |
4830 | goto err_free_shadow; | |
253a496d DA |
4831 | } |
4832 | ||
ca23e405 | 4833 | /* insert all vm's */ |
e36176be | 4834 | for (area = 0; area < nr_vms; area++) { |
d0936029 | 4835 | struct vmap_node *vn = addr_to_node(vas[area]->va_start); |
e36176be | 4836 | |
d0936029 URS |
4837 | spin_lock(&vn->busy.lock); |
4838 | insert_vmap_area(vas[area], &vn->busy.root, &vn->busy.head); | |
aaab830a | 4839 | setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, |
3645cb4a | 4840 | pcpu_get_vm_areas); |
d0936029 | 4841 | spin_unlock(&vn->busy.lock); |
e36176be | 4842 | } |
ca23e405 | 4843 | |
19f1c3ac AK |
4844 | /* |
4845 | * Mark allocated areas as accessible. Do it now as a best-effort | |
4846 | * approach, as they can be mapped outside of vmalloc code. | |
23689e91 AK |
4847 | * With hardware tag-based KASAN, marking is skipped for |
4848 | * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). | |
19f1c3ac | 4849 | */ |
1d96320f AK |
4850 | for (area = 0; area < nr_vms; area++) |
4851 | vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, | |
f6e39794 | 4852 | vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); |
1d96320f | 4853 | |
ca23e405 TH |
4854 | kfree(vas); |
4855 | return vms; | |
4856 | ||
68ad4a33 | 4857 | recovery: |
e36176be URS |
4858 | /* |
4859 | * Remove previously allocated areas. There is no | |
4860 | * need in removing these areas from the busy tree, | |
4861 | * because they are inserted only on the final step | |
4862 | * and when pcpu_get_vm_areas() is success. | |
4863 | */ | |
68ad4a33 | 4864 | while (area--) { |
253a496d DA |
4865 | orig_start = vas[area]->va_start; |
4866 | orig_end = vas[area]->va_end; | |
96e2db45 URS |
4867 | va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, |
4868 | &free_vmap_area_list); | |
9c801f61 URS |
4869 | if (va) |
4870 | kasan_release_vmalloc(orig_start, orig_end, | |
9e9e085e AH |
4871 | va->va_start, va->va_end, |
4872 | KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); | |
68ad4a33 URS |
4873 | vas[area] = NULL; |
4874 | } | |
4875 | ||
4876 | overflow: | |
e36176be | 4877 | spin_unlock(&free_vmap_area_lock); |
68ad4a33 | 4878 | if (!purged) { |
77e50af0 | 4879 | reclaim_and_purge_vmap_areas(); |
68ad4a33 URS |
4880 | purged = true; |
4881 | ||
4882 | /* Before "retry", check if we recover. */ | |
4883 | for (area = 0; area < nr_vms; area++) { | |
4884 | if (vas[area]) | |
4885 | continue; | |
4886 | ||
4887 | vas[area] = kmem_cache_zalloc( | |
4888 | vmap_area_cachep, GFP_KERNEL); | |
4889 | if (!vas[area]) | |
4890 | goto err_free; | |
4891 | } | |
4892 | ||
4893 | goto retry; | |
4894 | } | |
4895 | ||
ca23e405 TH |
4896 | err_free: |
4897 | for (area = 0; area < nr_vms; area++) { | |
68ad4a33 URS |
4898 | if (vas[area]) |
4899 | kmem_cache_free(vmap_area_cachep, vas[area]); | |
4900 | ||
f1db7afd | 4901 | kfree(vms[area]); |
ca23e405 | 4902 | } |
f1db7afd | 4903 | err_free2: |
ca23e405 TH |
4904 | kfree(vas); |
4905 | kfree(vms); | |
4906 | return NULL; | |
253a496d DA |
4907 | |
4908 | err_free_shadow: | |
4909 | spin_lock(&free_vmap_area_lock); | |
4910 | /* | |
4911 | * We release all the vmalloc shadows, even the ones for regions that | |
4912 | * hadn't been successfully added. This relies on kasan_release_vmalloc | |
4913 | * being able to tolerate this case. | |
4914 | */ | |
4915 | for (area = 0; area < nr_vms; area++) { | |
4916 | orig_start = vas[area]->va_start; | |
4917 | orig_end = vas[area]->va_end; | |
96e2db45 URS |
4918 | va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, |
4919 | &free_vmap_area_list); | |
9c801f61 URS |
4920 | if (va) |
4921 | kasan_release_vmalloc(orig_start, orig_end, | |
9e9e085e AH |
4922 | va->va_start, va->va_end, |
4923 | KASAN_VMALLOC_PAGE_RANGE | KASAN_VMALLOC_TLB_FLUSH); | |
253a496d DA |
4924 | vas[area] = NULL; |
4925 | kfree(vms[area]); | |
4926 | } | |
4927 | spin_unlock(&free_vmap_area_lock); | |
4928 | kfree(vas); | |
4929 | kfree(vms); | |
4930 | return NULL; | |
ca23e405 TH |
4931 | } |
4932 | ||
4933 | /** | |
4934 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | |
4935 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | |
4936 | * @nr_vms: the number of allocated areas | |
4937 | * | |
4938 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | |
4939 | */ | |
4940 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | |
4941 | { | |
4942 | int i; | |
4943 | ||
4944 | for (i = 0; i < nr_vms; i++) | |
4945 | free_vm_area(vms[i]); | |
4946 | kfree(vms); | |
4947 | } | |
4f8b02b4 | 4948 | #endif /* CONFIG_SMP */ |
a10aa579 | 4949 | |
5bb1bb35 | 4950 | #ifdef CONFIG_PRINTK |
98f18083 PM |
4951 | bool vmalloc_dump_obj(void *object) |
4952 | { | |
0818e739 JFG |
4953 | const void *caller; |
4954 | struct vm_struct *vm; | |
4955 | struct vmap_area *va; | |
d0936029 | 4956 | struct vmap_node *vn; |
0818e739 JFG |
4957 | unsigned long addr; |
4958 | unsigned int nr_pages; | |
98f18083 | 4959 | |
8be4d46e URS |
4960 | addr = PAGE_ALIGN((unsigned long) object); |
4961 | vn = addr_to_node(addr); | |
d0936029 | 4962 | |
8be4d46e | 4963 | if (!spin_trylock(&vn->busy.lock)) |
0818e739 | 4964 | return false; |
d0936029 | 4965 | |
8be4d46e URS |
4966 | va = __find_vmap_area(addr, &vn->busy.root); |
4967 | if (!va || !va->vm) { | |
d0936029 | 4968 | spin_unlock(&vn->busy.lock); |
98f18083 | 4969 | return false; |
0818e739 JFG |
4970 | } |
4971 | ||
4972 | vm = va->vm; | |
8be4d46e | 4973 | addr = (unsigned long) vm->addr; |
0818e739 JFG |
4974 | caller = vm->caller; |
4975 | nr_pages = vm->nr_pages; | |
8be4d46e | 4976 | spin_unlock(&vn->busy.lock); |
d0936029 | 4977 | |
bd34dcd4 | 4978 | pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", |
0818e739 | 4979 | nr_pages, addr, caller); |
8be4d46e | 4980 | |
98f18083 PM |
4981 | return true; |
4982 | } | |
5bb1bb35 | 4983 | #endif |
98f18083 | 4984 | |
a10aa579 | 4985 | #ifdef CONFIG_PROC_FS |
a47a126a | 4986 | |
5c5f0468 JP |
4987 | /* |
4988 | * Print number of pages allocated on each memory node. | |
4989 | * | |
4990 | * This function can only be called if CONFIG_NUMA is enabled | |
4991 | * and VM_UNINITIALIZED bit in v->flags is disabled. | |
4992 | */ | |
4993 | static void show_numa_info(struct seq_file *m, struct vm_struct *v, | |
4994 | unsigned int *counters) | |
4995 | { | |
4996 | unsigned int nr; | |
4997 | unsigned int step = 1U << vm_area_page_order(v); | |
a47a126a | 4998 | |
5c5f0468 JP |
4999 | if (!counters) |
5000 | return; | |
af12346c | 5001 | |
5c5f0468 | 5002 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); |
a47a126a | 5003 | |
5c5f0468 JP |
5004 | for (nr = 0; nr < v->nr_pages; nr += step) |
5005 | counters[page_to_nid(v->pages[nr])] += step; | |
5006 | for_each_node_state(nr, N_HIGH_MEMORY) | |
5007 | if (counters[nr]) | |
5008 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
a47a126a ED |
5009 | } |
5010 | ||
dd3b8353 URS |
5011 | static void show_purge_info(struct seq_file *m) |
5012 | { | |
282631cb | 5013 | struct vmap_node *vn; |
dd3b8353 URS |
5014 | struct vmap_area *va; |
5015 | ||
ce906d76 | 5016 | for_each_vmap_node(vn) { |
282631cb URS |
5017 | spin_lock(&vn->lazy.lock); |
5018 | list_for_each_entry(va, &vn->lazy.head, list) { | |
5019 | seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", | |
5020 | (void *)va->va_start, (void *)va->va_end, | |
b44f71e3 | 5021 | va_size(va)); |
282631cb URS |
5022 | } |
5023 | spin_unlock(&vn->lazy.lock); | |
dd3b8353 URS |
5024 | } |
5025 | } | |
5026 | ||
8e1d743f | 5027 | static int vmalloc_info_show(struct seq_file *m, void *p) |
a10aa579 | 5028 | { |
d0936029 | 5029 | struct vmap_node *vn; |
3f500069 | 5030 | struct vmap_area *va; |
d4033afd | 5031 | struct vm_struct *v; |
5c5f0468 | 5032 | unsigned int *counters; |
d4033afd | 5033 | |
5c5f0468 JP |
5034 | if (IS_ENABLED(CONFIG_NUMA)) |
5035 | counters = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); | |
3f500069 | 5036 | |
ce906d76 | 5037 | for_each_vmap_node(vn) { |
8e1d743f URS |
5038 | spin_lock(&vn->busy.lock); |
5039 | list_for_each_entry(va, &vn->busy.head, list) { | |
5040 | if (!va->vm) { | |
5041 | if (va->flags & VMAP_RAM) | |
5042 | seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", | |
5043 | (void *)va->va_start, (void *)va->va_end, | |
b44f71e3 | 5044 | va_size(va)); |
78c72746 | 5045 | |
8e1d743f URS |
5046 | continue; |
5047 | } | |
d4033afd | 5048 | |
8e1d743f | 5049 | v = va->vm; |
5c5f0468 JP |
5050 | if (v->flags & VM_UNINITIALIZED) |
5051 | continue; | |
5052 | ||
5053 | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ | |
5054 | smp_rmb(); | |
a10aa579 | 5055 | |
8e1d743f URS |
5056 | seq_printf(m, "0x%pK-0x%pK %7ld", |
5057 | v->addr, v->addr + v->size, v->size); | |
a10aa579 | 5058 | |
8e1d743f URS |
5059 | if (v->caller) |
5060 | seq_printf(m, " %pS", v->caller); | |
23016969 | 5061 | |
8e1d743f URS |
5062 | if (v->nr_pages) |
5063 | seq_printf(m, " pages=%d", v->nr_pages); | |
a10aa579 | 5064 | |
8e1d743f URS |
5065 | if (v->phys_addr) |
5066 | seq_printf(m, " phys=%pa", &v->phys_addr); | |
a10aa579 | 5067 | |
8e1d743f URS |
5068 | if (v->flags & VM_IOREMAP) |
5069 | seq_puts(m, " ioremap"); | |
a10aa579 | 5070 | |
902861e3 LT |
5071 | if (v->flags & VM_SPARSE) |
5072 | seq_puts(m, " sparse"); | |
e6f79822 | 5073 | |
8e1d743f URS |
5074 | if (v->flags & VM_ALLOC) |
5075 | seq_puts(m, " vmalloc"); | |
a10aa579 | 5076 | |
8e1d743f URS |
5077 | if (v->flags & VM_MAP) |
5078 | seq_puts(m, " vmap"); | |
a10aa579 | 5079 | |
8e1d743f URS |
5080 | if (v->flags & VM_USERMAP) |
5081 | seq_puts(m, " user"); | |
a10aa579 | 5082 | |
8e1d743f URS |
5083 | if (v->flags & VM_DMA_COHERENT) |
5084 | seq_puts(m, " dma-coherent"); | |
fe9041c2 | 5085 | |
8e1d743f URS |
5086 | if (is_vmalloc_addr(v->pages)) |
5087 | seq_puts(m, " vpages"); | |
a10aa579 | 5088 | |
5c5f0468 JP |
5089 | if (IS_ENABLED(CONFIG_NUMA)) |
5090 | show_numa_info(m, v, counters); | |
5091 | ||
8e1d743f URS |
5092 | seq_putc(m, '\n'); |
5093 | } | |
5094 | spin_unlock(&vn->busy.lock); | |
5095 | } | |
dd3b8353 URS |
5096 | |
5097 | /* | |
96e2db45 | 5098 | * As a final step, dump "unpurged" areas. |
dd3b8353 | 5099 | */ |
8e1d743f | 5100 | show_purge_info(m); |
5c5f0468 JP |
5101 | if (IS_ENABLED(CONFIG_NUMA)) |
5102 | kfree(counters); | |
a10aa579 CL |
5103 | return 0; |
5104 | } | |
5105 | ||
5f6a6a9c AD |
5106 | static int __init proc_vmalloc_init(void) |
5107 | { | |
5c5f0468 | 5108 | proc_create_single("vmallocinfo", 0400, NULL, vmalloc_info_show); |
5f6a6a9c AD |
5109 | return 0; |
5110 | } | |
5111 | module_init(proc_vmalloc_init); | |
db3808c1 | 5112 | |
a10aa579 | 5113 | #endif |
208162f4 | 5114 | |
d0936029 | 5115 | static void __init vmap_init_free_space(void) |
7fa8cee0 URS |
5116 | { |
5117 | unsigned long vmap_start = 1; | |
5118 | const unsigned long vmap_end = ULONG_MAX; | |
d0936029 URS |
5119 | struct vmap_area *free; |
5120 | struct vm_struct *busy; | |
7fa8cee0 URS |
5121 | |
5122 | /* | |
5123 | * B F B B B F | |
5124 | * -|-----|.....|-----|-----|-----|.....|- | |
5125 | * | The KVA space | | |
5126 | * |<--------------------------------->| | |
5127 | */ | |
d0936029 URS |
5128 | for (busy = vmlist; busy; busy = busy->next) { |
5129 | if ((unsigned long) busy->addr - vmap_start > 0) { | |
7fa8cee0 URS |
5130 | free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); |
5131 | if (!WARN_ON_ONCE(!free)) { | |
5132 | free->va_start = vmap_start; | |
d0936029 | 5133 | free->va_end = (unsigned long) busy->addr; |
7fa8cee0 URS |
5134 | |
5135 | insert_vmap_area_augment(free, NULL, | |
5136 | &free_vmap_area_root, | |
5137 | &free_vmap_area_list); | |
5138 | } | |
5139 | } | |
5140 | ||
d0936029 | 5141 | vmap_start = (unsigned long) busy->addr + busy->size; |
7fa8cee0 URS |
5142 | } |
5143 | ||
5144 | if (vmap_end - vmap_start > 0) { | |
5145 | free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | |
5146 | if (!WARN_ON_ONCE(!free)) { | |
5147 | free->va_start = vmap_start; | |
5148 | free->va_end = vmap_end; | |
5149 | ||
5150 | insert_vmap_area_augment(free, NULL, | |
5151 | &free_vmap_area_root, | |
5152 | &free_vmap_area_list); | |
5153 | } | |
5154 | } | |
5155 | } | |
5156 | ||
d0936029 URS |
5157 | static void vmap_init_nodes(void) |
5158 | { | |
5159 | struct vmap_node *vn; | |
ce906d76 | 5160 | int i; |
8f33a2ff URS |
5161 | |
5162 | #if BITS_PER_LONG == 64 | |
15e02a39 URS |
5163 | /* |
5164 | * A high threshold of max nodes is fixed and bound to 128, | |
5165 | * thus a scale factor is 1 for systems where number of cores | |
5166 | * are less or equal to specified threshold. | |
5167 | * | |
5168 | * As for NUMA-aware notes. For bigger systems, for example | |
5169 | * NUMA with multi-sockets, where we can end-up with thousands | |
5170 | * of cores in total, a "sub-numa-clustering" should be added. | |
5171 | * | |
5172 | * In this case a NUMA domain is considered as a single entity | |
5173 | * with dedicated sub-nodes in it which describe one group or | |
5174 | * set of cores. Therefore a per-domain purging is supposed to | |
5175 | * be added as well as a per-domain balancing. | |
5176 | */ | |
ce906d76 | 5177 | int n = clamp_t(unsigned int, num_possible_cpus(), 1, 128); |
8f33a2ff URS |
5178 | |
5179 | if (n > 1) { | |
5180 | vn = kmalloc_array(n, sizeof(*vn), GFP_NOWAIT | __GFP_NOWARN); | |
5181 | if (vn) { | |
5182 | /* Node partition is 16 pages. */ | |
5183 | vmap_zone_size = (1 << 4) * PAGE_SIZE; | |
5184 | nr_vmap_nodes = n; | |
5185 | vmap_nodes = vn; | |
5186 | } else { | |
5187 | pr_err("Failed to allocate an array. Disable a node layer\n"); | |
5188 | } | |
5189 | } | |
5190 | #endif | |
d0936029 | 5191 | |
ce906d76 | 5192 | for_each_vmap_node(vn) { |
d0936029 URS |
5193 | vn->busy.root = RB_ROOT; |
5194 | INIT_LIST_HEAD(&vn->busy.head); | |
5195 | spin_lock_init(&vn->busy.lock); | |
282631cb URS |
5196 | |
5197 | vn->lazy.root = RB_ROOT; | |
5198 | INIT_LIST_HEAD(&vn->lazy.head); | |
5199 | spin_lock_init(&vn->lazy.lock); | |
72210662 | 5200 | |
8f33a2ff URS |
5201 | for (i = 0; i < MAX_VA_SIZE_PAGES; i++) { |
5202 | INIT_LIST_HEAD(&vn->pool[i].head); | |
5203 | WRITE_ONCE(vn->pool[i].len, 0); | |
72210662 URS |
5204 | } |
5205 | ||
5206 | spin_lock_init(&vn->pool_lock); | |
d0936029 URS |
5207 | } |
5208 | } | |
5209 | ||
7679ba6b URS |
5210 | static unsigned long |
5211 | vmap_node_shrink_count(struct shrinker *shrink, struct shrink_control *sc) | |
5212 | { | |
ce906d76 | 5213 | unsigned long count = 0; |
7679ba6b | 5214 | struct vmap_node *vn; |
ce906d76 | 5215 | int i; |
7679ba6b | 5216 | |
ce906d76 URS |
5217 | for_each_vmap_node(vn) { |
5218 | for (i = 0; i < MAX_VA_SIZE_PAGES; i++) | |
5219 | count += READ_ONCE(vn->pool[i].len); | |
7679ba6b URS |
5220 | } |
5221 | ||
5222 | return count ? count : SHRINK_EMPTY; | |
5223 | } | |
5224 | ||
5225 | static unsigned long | |
5226 | vmap_node_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) | |
5227 | { | |
ce906d76 | 5228 | struct vmap_node *vn; |
7679ba6b | 5229 | |
ce906d76 URS |
5230 | for_each_vmap_node(vn) |
5231 | decay_va_pool_node(vn, true); | |
7679ba6b URS |
5232 | |
5233 | return SHRINK_STOP; | |
5234 | } | |
5235 | ||
208162f4 CH |
5236 | void __init vmalloc_init(void) |
5237 | { | |
7679ba6b | 5238 | struct shrinker *vmap_node_shrinker; |
208162f4 | 5239 | struct vmap_area *va; |
d0936029 | 5240 | struct vmap_node *vn; |
208162f4 CH |
5241 | struct vm_struct *tmp; |
5242 | int i; | |
5243 | ||
5244 | /* | |
5245 | * Create the cache for vmap_area objects. | |
5246 | */ | |
5247 | vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); | |
5248 | ||
5249 | for_each_possible_cpu(i) { | |
5250 | struct vmap_block_queue *vbq; | |
5251 | struct vfree_deferred *p; | |
5252 | ||
5253 | vbq = &per_cpu(vmap_block_queue, i); | |
5254 | spin_lock_init(&vbq->lock); | |
5255 | INIT_LIST_HEAD(&vbq->free); | |
5256 | p = &per_cpu(vfree_deferred, i); | |
5257 | init_llist_head(&p->list); | |
5258 | INIT_WORK(&p->wq, delayed_vfree_work); | |
062eacf5 | 5259 | xa_init(&vbq->vmap_blocks); |
208162f4 CH |
5260 | } |
5261 | ||
d0936029 URS |
5262 | /* |
5263 | * Setup nodes before importing vmlist. | |
5264 | */ | |
5265 | vmap_init_nodes(); | |
5266 | ||
208162f4 CH |
5267 | /* Import existing vmlist entries. */ |
5268 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
5269 | va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | |
5270 | if (WARN_ON_ONCE(!va)) | |
5271 | continue; | |
5272 | ||
5273 | va->va_start = (unsigned long)tmp->addr; | |
5274 | va->va_end = va->va_start + tmp->size; | |
5275 | va->vm = tmp; | |
d0936029 URS |
5276 | |
5277 | vn = addr_to_node(va->va_start); | |
5278 | insert_vmap_area(va, &vn->busy.root, &vn->busy.head); | |
208162f4 CH |
5279 | } |
5280 | ||
5281 | /* | |
5282 | * Now we can initialize a free vmap space. | |
5283 | */ | |
5284 | vmap_init_free_space(); | |
5285 | vmap_initialized = true; | |
7679ba6b URS |
5286 | |
5287 | vmap_node_shrinker = shrinker_alloc(0, "vmap-node"); | |
5288 | if (!vmap_node_shrinker) { | |
5289 | pr_err("Failed to allocate vmap-node shrinker!\n"); | |
5290 | return; | |
5291 | } | |
5292 | ||
5293 | vmap_node_shrinker->count_objects = vmap_node_shrink_count; | |
5294 | vmap_node_shrinker->scan_objects = vmap_node_shrink_scan; | |
5295 | shrinker_register(vmap_node_shrinker); | |
208162f4 | 5296 | } |