mm/vmalloc: prevent stale TLBs in fully utilized blocks
[linux-2.6-block.git] / mm / vmalloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
1da177e4
LT
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 7 * Numa awareness, Christoph Lameter, SGI, June 2005
d758ffe6 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
c3edc401 15#include <linux/sched/signal.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
868b104d 21#include <linux/set_memory.h>
3ac7fe5a 22#include <linux/debugobjects.h>
23016969 23#include <linux/kallsyms.h>
db64fe02 24#include <linux/list.h>
4da56b99 25#include <linux/notifier.h>
db64fe02 26#include <linux/rbtree.h>
0f14599c 27#include <linux/xarray.h>
5da96bdd 28#include <linux/io.h>
db64fe02 29#include <linux/rcupdate.h>
f0aa6617 30#include <linux/pfn.h>
89219d37 31#include <linux/kmemleak.h>
60063497 32#include <linux/atomic.h>
3b32123d 33#include <linux/compiler.h>
4e5aa1f4 34#include <linux/memcontrol.h>
32fcfd40 35#include <linux/llist.h>
4c91c07c 36#include <linux/uio.h>
0f616be1 37#include <linux/bitops.h>
68ad4a33 38#include <linux/rbtree_augmented.h>
bdebd6a2 39#include <linux/overflow.h>
c0eb315a 40#include <linux/pgtable.h>
f7ee1f13 41#include <linux/hugetlb.h>
451769eb 42#include <linux/sched/mm.h>
1da177e4 43#include <asm/tlbflush.h>
2dca6999 44#include <asm/shmparam.h>
1da177e4 45
cf243da6
URS
46#define CREATE_TRACE_POINTS
47#include <trace/events/vmalloc.h>
48
dd56b046 49#include "internal.h"
2a681cfa 50#include "pgalloc-track.h"
dd56b046 51
82a70ce0
CH
52#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54
55static int __init set_nohugeiomap(char *str)
56{
57 ioremap_max_page_shift = PAGE_SHIFT;
58 return 0;
59}
60early_param("nohugeiomap", set_nohugeiomap);
61#else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
64
121e6f32
NP
65#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66static bool __ro_after_init vmap_allow_huge = true;
67
68static int __init set_nohugevmalloc(char *str)
69{
70 vmap_allow_huge = false;
71 return 0;
72}
73early_param("nohugevmalloc", set_nohugevmalloc);
74#else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75static const bool vmap_allow_huge = false;
76#endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77
186525bd
IM
78bool is_vmalloc_addr(const void *x)
79{
4aff1dc4 80 unsigned long addr = (unsigned long)kasan_reset_tag(x);
186525bd
IM
81
82 return addr >= VMALLOC_START && addr < VMALLOC_END;
83}
84EXPORT_SYMBOL(is_vmalloc_addr);
85
32fcfd40
AV
86struct vfree_deferred {
87 struct llist_head list;
88 struct work_struct wq;
89};
90static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91
db64fe02 92/*** Page table manipulation functions ***/
5e9e3d77
NP
93static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 phys_addr_t phys_addr, pgprot_t prot,
f7ee1f13 95 unsigned int max_page_shift, pgtbl_mod_mask *mask)
5e9e3d77
NP
96{
97 pte_t *pte;
98 u64 pfn;
f7ee1f13 99 unsigned long size = PAGE_SIZE;
5e9e3d77
NP
100
101 pfn = phys_addr >> PAGE_SHIFT;
102 pte = pte_alloc_kernel_track(pmd, addr, mask);
103 if (!pte)
104 return -ENOMEM;
105 do {
106 BUG_ON(!pte_none(*pte));
f7ee1f13
CL
107
108#ifdef CONFIG_HUGETLB_PAGE
109 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 if (size != PAGE_SIZE) {
111 pte_t entry = pfn_pte(pfn, prot);
112
f7ee1f13
CL
113 entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 set_huge_pte_at(&init_mm, addr, pte, entry);
115 pfn += PFN_DOWN(size);
116 continue;
117 }
118#endif
5e9e3d77
NP
119 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 pfn++;
f7ee1f13 121 } while (pte += PFN_DOWN(size), addr += size, addr != end);
5e9e3d77
NP
122 *mask |= PGTBL_PTE_MODIFIED;
123 return 0;
124}
125
126static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 phys_addr_t phys_addr, pgprot_t prot,
128 unsigned int max_page_shift)
129{
130 if (max_page_shift < PMD_SHIFT)
131 return 0;
132
133 if (!arch_vmap_pmd_supported(prot))
134 return 0;
135
136 if ((end - addr) != PMD_SIZE)
137 return 0;
138
139 if (!IS_ALIGNED(addr, PMD_SIZE))
140 return 0;
141
142 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 return 0;
144
145 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 return 0;
147
148 return pmd_set_huge(pmd, phys_addr, prot);
149}
150
151static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 phys_addr_t phys_addr, pgprot_t prot,
153 unsigned int max_page_shift, pgtbl_mod_mask *mask)
154{
155 pmd_t *pmd;
156 unsigned long next;
157
158 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 if (!pmd)
160 return -ENOMEM;
161 do {
162 next = pmd_addr_end(addr, end);
163
164 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 max_page_shift)) {
166 *mask |= PGTBL_PMD_MODIFIED;
167 continue;
168 }
169
f7ee1f13 170 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
5e9e3d77
NP
171 return -ENOMEM;
172 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 return 0;
174}
175
176static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 phys_addr_t phys_addr, pgprot_t prot,
178 unsigned int max_page_shift)
179{
180 if (max_page_shift < PUD_SHIFT)
181 return 0;
182
183 if (!arch_vmap_pud_supported(prot))
184 return 0;
185
186 if ((end - addr) != PUD_SIZE)
187 return 0;
188
189 if (!IS_ALIGNED(addr, PUD_SIZE))
190 return 0;
191
192 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 return 0;
194
195 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 return 0;
197
198 return pud_set_huge(pud, phys_addr, prot);
199}
200
201static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 phys_addr_t phys_addr, pgprot_t prot,
203 unsigned int max_page_shift, pgtbl_mod_mask *mask)
204{
205 pud_t *pud;
206 unsigned long next;
207
208 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 if (!pud)
210 return -ENOMEM;
211 do {
212 next = pud_addr_end(addr, end);
213
214 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 max_page_shift)) {
216 *mask |= PGTBL_PUD_MODIFIED;
217 continue;
218 }
219
220 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 max_page_shift, mask))
222 return -ENOMEM;
223 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 return 0;
225}
226
227static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 phys_addr_t phys_addr, pgprot_t prot,
229 unsigned int max_page_shift)
230{
231 if (max_page_shift < P4D_SHIFT)
232 return 0;
233
234 if (!arch_vmap_p4d_supported(prot))
235 return 0;
236
237 if ((end - addr) != P4D_SIZE)
238 return 0;
239
240 if (!IS_ALIGNED(addr, P4D_SIZE))
241 return 0;
242
243 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 return 0;
245
246 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 return 0;
248
249 return p4d_set_huge(p4d, phys_addr, prot);
250}
251
252static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 phys_addr_t phys_addr, pgprot_t prot,
254 unsigned int max_page_shift, pgtbl_mod_mask *mask)
255{
256 p4d_t *p4d;
257 unsigned long next;
258
259 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 if (!p4d)
261 return -ENOMEM;
262 do {
263 next = p4d_addr_end(addr, end);
264
265 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 max_page_shift)) {
267 *mask |= PGTBL_P4D_MODIFIED;
268 continue;
269 }
270
271 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 max_page_shift, mask))
273 return -ENOMEM;
274 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 return 0;
276}
277
5d87510d 278static int vmap_range_noflush(unsigned long addr, unsigned long end,
5e9e3d77
NP
279 phys_addr_t phys_addr, pgprot_t prot,
280 unsigned int max_page_shift)
281{
282 pgd_t *pgd;
283 unsigned long start;
284 unsigned long next;
285 int err;
286 pgtbl_mod_mask mask = 0;
287
288 might_sleep();
289 BUG_ON(addr >= end);
290
291 start = addr;
292 pgd = pgd_offset_k(addr);
293 do {
294 next = pgd_addr_end(addr, end);
295 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 max_page_shift, &mask);
297 if (err)
298 break;
299 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300
5e9e3d77
NP
301 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 arch_sync_kernel_mappings(start, end);
303
304 return err;
305}
b221385b 306
82a70ce0
CH
307int ioremap_page_range(unsigned long addr, unsigned long end,
308 phys_addr_t phys_addr, pgprot_t prot)
5d87510d
NP
309{
310 int err;
311
8491502f 312 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
82a70ce0 313 ioremap_max_page_shift);
5d87510d 314 flush_cache_vmap(addr, end);
b073d7f8 315 if (!err)
fdea03e1
AP
316 err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 ioremap_max_page_shift);
5d87510d
NP
318 return err;
319}
320
2ba3e694
JR
321static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
322 pgtbl_mod_mask *mask)
1da177e4
LT
323{
324 pte_t *pte;
325
326 pte = pte_offset_kernel(pmd, addr);
327 do {
328 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
329 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
330 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 331 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
332}
333
2ba3e694
JR
334static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
335 pgtbl_mod_mask *mask)
1da177e4
LT
336{
337 pmd_t *pmd;
338 unsigned long next;
2ba3e694 339 int cleared;
1da177e4
LT
340
341 pmd = pmd_offset(pud, addr);
342 do {
343 next = pmd_addr_end(addr, end);
2ba3e694
JR
344
345 cleared = pmd_clear_huge(pmd);
346 if (cleared || pmd_bad(*pmd))
347 *mask |= PGTBL_PMD_MODIFIED;
348
349 if (cleared)
b9820d8f 350 continue;
1da177e4
LT
351 if (pmd_none_or_clear_bad(pmd))
352 continue;
2ba3e694 353 vunmap_pte_range(pmd, addr, next, mask);
e47110e9
AK
354
355 cond_resched();
1da177e4
LT
356 } while (pmd++, addr = next, addr != end);
357}
358
2ba3e694
JR
359static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
360 pgtbl_mod_mask *mask)
1da177e4
LT
361{
362 pud_t *pud;
363 unsigned long next;
2ba3e694 364 int cleared;
1da177e4 365
c2febafc 366 pud = pud_offset(p4d, addr);
1da177e4
LT
367 do {
368 next = pud_addr_end(addr, end);
2ba3e694
JR
369
370 cleared = pud_clear_huge(pud);
371 if (cleared || pud_bad(*pud))
372 *mask |= PGTBL_PUD_MODIFIED;
373
374 if (cleared)
b9820d8f 375 continue;
1da177e4
LT
376 if (pud_none_or_clear_bad(pud))
377 continue;
2ba3e694 378 vunmap_pmd_range(pud, addr, next, mask);
1da177e4
LT
379 } while (pud++, addr = next, addr != end);
380}
381
2ba3e694
JR
382static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
383 pgtbl_mod_mask *mask)
c2febafc
KS
384{
385 p4d_t *p4d;
386 unsigned long next;
387
388 p4d = p4d_offset(pgd, addr);
389 do {
390 next = p4d_addr_end(addr, end);
2ba3e694 391
c8db8c26
L
392 p4d_clear_huge(p4d);
393 if (p4d_bad(*p4d))
2ba3e694
JR
394 *mask |= PGTBL_P4D_MODIFIED;
395
c2febafc
KS
396 if (p4d_none_or_clear_bad(p4d))
397 continue;
2ba3e694 398 vunmap_pud_range(p4d, addr, next, mask);
c2febafc
KS
399 } while (p4d++, addr = next, addr != end);
400}
401
4ad0ae8c
NP
402/*
403 * vunmap_range_noflush is similar to vunmap_range, but does not
404 * flush caches or TLBs.
b521c43f 405 *
4ad0ae8c
NP
406 * The caller is responsible for calling flush_cache_vmap() before calling
407 * this function, and flush_tlb_kernel_range after it has returned
408 * successfully (and before the addresses are expected to cause a page fault
409 * or be re-mapped for something else, if TLB flushes are being delayed or
410 * coalesced).
b521c43f 411 *
4ad0ae8c 412 * This is an internal function only. Do not use outside mm/.
b521c43f 413 */
b073d7f8 414void __vunmap_range_noflush(unsigned long start, unsigned long end)
1da177e4 415{
1da177e4 416 unsigned long next;
b521c43f 417 pgd_t *pgd;
2ba3e694
JR
418 unsigned long addr = start;
419 pgtbl_mod_mask mask = 0;
1da177e4
LT
420
421 BUG_ON(addr >= end);
422 pgd = pgd_offset_k(addr);
1da177e4
LT
423 do {
424 next = pgd_addr_end(addr, end);
2ba3e694
JR
425 if (pgd_bad(*pgd))
426 mask |= PGTBL_PGD_MODIFIED;
1da177e4
LT
427 if (pgd_none_or_clear_bad(pgd))
428 continue;
2ba3e694 429 vunmap_p4d_range(pgd, addr, next, &mask);
1da177e4 430 } while (pgd++, addr = next, addr != end);
2ba3e694
JR
431
432 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
433 arch_sync_kernel_mappings(start, end);
1da177e4
LT
434}
435
b073d7f8
AP
436void vunmap_range_noflush(unsigned long start, unsigned long end)
437{
438 kmsan_vunmap_range_noflush(start, end);
439 __vunmap_range_noflush(start, end);
440}
441
4ad0ae8c
NP
442/**
443 * vunmap_range - unmap kernel virtual addresses
444 * @addr: start of the VM area to unmap
445 * @end: end of the VM area to unmap (non-inclusive)
446 *
447 * Clears any present PTEs in the virtual address range, flushes TLBs and
448 * caches. Any subsequent access to the address before it has been re-mapped
449 * is a kernel bug.
450 */
451void vunmap_range(unsigned long addr, unsigned long end)
452{
453 flush_cache_vunmap(addr, end);
454 vunmap_range_noflush(addr, end);
455 flush_tlb_kernel_range(addr, end);
456}
457
0a264884 458static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
2ba3e694
JR
459 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
460 pgtbl_mod_mask *mask)
1da177e4
LT
461{
462 pte_t *pte;
463
db64fe02
NP
464 /*
465 * nr is a running index into the array which helps higher level
466 * callers keep track of where we're up to.
467 */
468
2ba3e694 469 pte = pte_alloc_kernel_track(pmd, addr, mask);
1da177e4
LT
470 if (!pte)
471 return -ENOMEM;
472 do {
db64fe02
NP
473 struct page *page = pages[*nr];
474
475 if (WARN_ON(!pte_none(*pte)))
476 return -EBUSY;
477 if (WARN_ON(!page))
1da177e4 478 return -ENOMEM;
4fcdcc12
YN
479 if (WARN_ON(!pfn_valid(page_to_pfn(page))))
480 return -EINVAL;
481
1da177e4 482 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 483 (*nr)++;
1da177e4 484 } while (pte++, addr += PAGE_SIZE, addr != end);
2ba3e694 485 *mask |= PGTBL_PTE_MODIFIED;
1da177e4
LT
486 return 0;
487}
488
0a264884 489static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
2ba3e694
JR
490 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
491 pgtbl_mod_mask *mask)
1da177e4
LT
492{
493 pmd_t *pmd;
494 unsigned long next;
495
2ba3e694 496 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
1da177e4
LT
497 if (!pmd)
498 return -ENOMEM;
499 do {
500 next = pmd_addr_end(addr, end);
0a264884 501 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
1da177e4
LT
502 return -ENOMEM;
503 } while (pmd++, addr = next, addr != end);
504 return 0;
505}
506
0a264884 507static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
2ba3e694
JR
508 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
509 pgtbl_mod_mask *mask)
1da177e4
LT
510{
511 pud_t *pud;
512 unsigned long next;
513
2ba3e694 514 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
1da177e4
LT
515 if (!pud)
516 return -ENOMEM;
517 do {
518 next = pud_addr_end(addr, end);
0a264884 519 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
1da177e4
LT
520 return -ENOMEM;
521 } while (pud++, addr = next, addr != end);
522 return 0;
523}
524
0a264884 525static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
2ba3e694
JR
526 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
527 pgtbl_mod_mask *mask)
c2febafc
KS
528{
529 p4d_t *p4d;
530 unsigned long next;
531
2ba3e694 532 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
c2febafc
KS
533 if (!p4d)
534 return -ENOMEM;
535 do {
536 next = p4d_addr_end(addr, end);
0a264884 537 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
c2febafc
KS
538 return -ENOMEM;
539 } while (p4d++, addr = next, addr != end);
540 return 0;
541}
542
121e6f32
NP
543static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
544 pgprot_t prot, struct page **pages)
1da177e4 545{
2ba3e694 546 unsigned long start = addr;
b521c43f 547 pgd_t *pgd;
121e6f32 548 unsigned long next;
db64fe02
NP
549 int err = 0;
550 int nr = 0;
2ba3e694 551 pgtbl_mod_mask mask = 0;
1da177e4
LT
552
553 BUG_ON(addr >= end);
554 pgd = pgd_offset_k(addr);
1da177e4
LT
555 do {
556 next = pgd_addr_end(addr, end);
2ba3e694
JR
557 if (pgd_bad(*pgd))
558 mask |= PGTBL_PGD_MODIFIED;
0a264884 559 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
1da177e4 560 if (err)
bf88c8c8 561 return err;
1da177e4 562 } while (pgd++, addr = next, addr != end);
db64fe02 563
2ba3e694
JR
564 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
565 arch_sync_kernel_mappings(start, end);
566
60bb4465 567 return 0;
1da177e4
LT
568}
569
b67177ec
NP
570/*
571 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
572 * flush caches.
573 *
574 * The caller is responsible for calling flush_cache_vmap() after this
575 * function returns successfully and before the addresses are accessed.
576 *
577 * This is an internal function only. Do not use outside mm/.
578 */
b073d7f8 579int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
121e6f32
NP
580 pgprot_t prot, struct page **pages, unsigned int page_shift)
581{
582 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
583
584 WARN_ON(page_shift < PAGE_SHIFT);
585
586 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
587 page_shift == PAGE_SHIFT)
588 return vmap_small_pages_range_noflush(addr, end, prot, pages);
589
590 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
591 int err;
592
593 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
08262ac5 594 page_to_phys(pages[i]), prot,
121e6f32
NP
595 page_shift);
596 if (err)
597 return err;
598
599 addr += 1UL << page_shift;
600 }
601
602 return 0;
603}
b073d7f8
AP
604
605int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
606 pgprot_t prot, struct page **pages, unsigned int page_shift)
607{
47ebd031
AP
608 int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
609 page_shift);
610
611 if (ret)
612 return ret;
b073d7f8
AP
613 return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
614}
121e6f32 615
121e6f32 616/**
b67177ec 617 * vmap_pages_range - map pages to a kernel virtual address
121e6f32 618 * @addr: start of the VM area to map
b67177ec 619 * @end: end of the VM area to map (non-inclusive)
121e6f32 620 * @prot: page protection flags to use
b67177ec
NP
621 * @pages: pages to map (always PAGE_SIZE pages)
622 * @page_shift: maximum shift that the pages may be mapped with, @pages must
623 * be aligned and contiguous up to at least this shift.
121e6f32
NP
624 *
625 * RETURNS:
626 * 0 on success, -errno on failure.
627 */
b67177ec
NP
628static int vmap_pages_range(unsigned long addr, unsigned long end,
629 pgprot_t prot, struct page **pages, unsigned int page_shift)
8fc48985 630{
b67177ec 631 int err;
8fc48985 632
b67177ec
NP
633 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
634 flush_cache_vmap(addr, end);
635 return err;
8fc48985
TH
636}
637
81ac3ad9 638int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
639{
640 /*
ab4f2ee1 641 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
642 * and fall back on vmalloc() if that fails. Others
643 * just put it in the vmalloc space.
644 */
645#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
4aff1dc4 646 unsigned long addr = (unsigned long)kasan_reset_tag(x);
73bdf0a6
LT
647 if (addr >= MODULES_VADDR && addr < MODULES_END)
648 return 1;
649#endif
650 return is_vmalloc_addr(x);
651}
01858469 652EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
73bdf0a6 653
48667e7a 654/*
c0eb315a
NP
655 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
656 * return the tail page that corresponds to the base page address, which
657 * matches small vmap mappings.
48667e7a 658 */
add688fb 659struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
660{
661 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 662 struct page *page = NULL;
48667e7a 663 pgd_t *pgd = pgd_offset_k(addr);
c2febafc
KS
664 p4d_t *p4d;
665 pud_t *pud;
666 pmd_t *pmd;
667 pte_t *ptep, pte;
48667e7a 668
7aa413de
IM
669 /*
670 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
671 * architectures that do not vmalloc module space
672 */
73bdf0a6 673 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 674
c2febafc
KS
675 if (pgd_none(*pgd))
676 return NULL;
c0eb315a
NP
677 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
678 return NULL; /* XXX: no allowance for huge pgd */
679 if (WARN_ON_ONCE(pgd_bad(*pgd)))
680 return NULL;
681
c2febafc
KS
682 p4d = p4d_offset(pgd, addr);
683 if (p4d_none(*p4d))
684 return NULL;
c0eb315a
NP
685 if (p4d_leaf(*p4d))
686 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
687 if (WARN_ON_ONCE(p4d_bad(*p4d)))
688 return NULL;
029c54b0 689
c0eb315a
NP
690 pud = pud_offset(p4d, addr);
691 if (pud_none(*pud))
692 return NULL;
693 if (pud_leaf(*pud))
694 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
695 if (WARN_ON_ONCE(pud_bad(*pud)))
c2febafc 696 return NULL;
c0eb315a 697
c2febafc 698 pmd = pmd_offset(pud, addr);
c0eb315a
NP
699 if (pmd_none(*pmd))
700 return NULL;
701 if (pmd_leaf(*pmd))
702 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
703 if (WARN_ON_ONCE(pmd_bad(*pmd)))
c2febafc
KS
704 return NULL;
705
706 ptep = pte_offset_map(pmd, addr);
707 pte = *ptep;
708 if (pte_present(pte))
709 page = pte_page(pte);
710 pte_unmap(ptep);
c0eb315a 711
add688fb 712 return page;
48667e7a 713}
add688fb 714EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
715
716/*
add688fb 717 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 718 */
add688fb 719unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 720{
add688fb 721 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 722}
add688fb 723EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 724
db64fe02
NP
725
726/*** Global kva allocator ***/
727
bb850f4d 728#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
a6cf4e0f 729#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
bb850f4d 730
db64fe02 731
db64fe02 732static DEFINE_SPINLOCK(vmap_area_lock);
e36176be 733static DEFINE_SPINLOCK(free_vmap_area_lock);
f1c4069e
JK
734/* Export for kexec only */
735LIST_HEAD(vmap_area_list);
89699605 736static struct rb_root vmap_area_root = RB_ROOT;
68ad4a33 737static bool vmap_initialized __read_mostly;
89699605 738
96e2db45
URS
739static struct rb_root purge_vmap_area_root = RB_ROOT;
740static LIST_HEAD(purge_vmap_area_list);
741static DEFINE_SPINLOCK(purge_vmap_area_lock);
742
68ad4a33
URS
743/*
744 * This kmem_cache is used for vmap_area objects. Instead of
745 * allocating from slab we reuse an object from this cache to
746 * make things faster. Especially in "no edge" splitting of
747 * free block.
748 */
749static struct kmem_cache *vmap_area_cachep;
750
751/*
752 * This linked list is used in pair with free_vmap_area_root.
753 * It gives O(1) access to prev/next to perform fast coalescing.
754 */
755static LIST_HEAD(free_vmap_area_list);
756
757/*
758 * This augment red-black tree represents the free vmap space.
759 * All vmap_area objects in this tree are sorted by va->va_start
760 * address. It is used for allocation and merging when a vmap
761 * object is released.
762 *
763 * Each vmap_area node contains a maximum available free block
764 * of its sub-tree, right or left. Therefore it is possible to
765 * find a lowest match of free area.
766 */
767static struct rb_root free_vmap_area_root = RB_ROOT;
768
82dd23e8
URS
769/*
770 * Preload a CPU with one object for "no edge" split case. The
771 * aim is to get rid of allocations from the atomic context, thus
772 * to use more permissive allocation masks.
773 */
774static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
775
68ad4a33
URS
776static __always_inline unsigned long
777va_size(struct vmap_area *va)
778{
779 return (va->va_end - va->va_start);
780}
781
782static __always_inline unsigned long
783get_subtree_max_size(struct rb_node *node)
784{
785 struct vmap_area *va;
786
787 va = rb_entry_safe(node, struct vmap_area, rb_node);
788 return va ? va->subtree_max_size : 0;
789}
89699605 790
315cc066
ML
791RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
792 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
68ad4a33
URS
793
794static void purge_vmap_area_lazy(void);
795static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
690467c8
URS
796static void drain_vmap_area_work(struct work_struct *work);
797static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
db64fe02 798
97105f0a
RG
799static atomic_long_t nr_vmalloc_pages;
800
801unsigned long vmalloc_nr_pages(void)
802{
803 return atomic_long_read(&nr_vmalloc_pages);
804}
805
153090f2 806/* Look up the first VA which satisfies addr < va_end, NULL if none. */
f181234a
CW
807static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
808{
809 struct vmap_area *va = NULL;
810 struct rb_node *n = vmap_area_root.rb_node;
811
4aff1dc4
AK
812 addr = (unsigned long)kasan_reset_tag((void *)addr);
813
f181234a
CW
814 while (n) {
815 struct vmap_area *tmp;
816
817 tmp = rb_entry(n, struct vmap_area, rb_node);
818 if (tmp->va_end > addr) {
819 va = tmp;
820 if (tmp->va_start <= addr)
821 break;
822
823 n = n->rb_left;
824 } else
825 n = n->rb_right;
826 }
827
828 return va;
829}
830
899c6efe 831static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
1da177e4 832{
899c6efe 833 struct rb_node *n = root->rb_node;
db64fe02 834
4aff1dc4
AK
835 addr = (unsigned long)kasan_reset_tag((void *)addr);
836
db64fe02
NP
837 while (n) {
838 struct vmap_area *va;
839
840 va = rb_entry(n, struct vmap_area, rb_node);
841 if (addr < va->va_start)
842 n = n->rb_left;
cef2ac3f 843 else if (addr >= va->va_end)
db64fe02
NP
844 n = n->rb_right;
845 else
846 return va;
847 }
848
849 return NULL;
850}
851
68ad4a33
URS
852/*
853 * This function returns back addresses of parent node
854 * and its left or right link for further processing.
9c801f61
URS
855 *
856 * Otherwise NULL is returned. In that case all further
857 * steps regarding inserting of conflicting overlap range
858 * have to be declined and actually considered as a bug.
68ad4a33
URS
859 */
860static __always_inline struct rb_node **
861find_va_links(struct vmap_area *va,
862 struct rb_root *root, struct rb_node *from,
863 struct rb_node **parent)
864{
865 struct vmap_area *tmp_va;
866 struct rb_node **link;
867
868 if (root) {
869 link = &root->rb_node;
870 if (unlikely(!*link)) {
871 *parent = NULL;
872 return link;
873 }
874 } else {
875 link = &from;
876 }
db64fe02 877
68ad4a33
URS
878 /*
879 * Go to the bottom of the tree. When we hit the last point
880 * we end up with parent rb_node and correct direction, i name
881 * it link, where the new va->rb_node will be attached to.
882 */
883 do {
884 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
db64fe02 885
68ad4a33
URS
886 /*
887 * During the traversal we also do some sanity check.
888 * Trigger the BUG() if there are sides(left/right)
889 * or full overlaps.
890 */
753df96b 891 if (va->va_end <= tmp_va->va_start)
68ad4a33 892 link = &(*link)->rb_left;
753df96b 893 else if (va->va_start >= tmp_va->va_end)
68ad4a33 894 link = &(*link)->rb_right;
9c801f61
URS
895 else {
896 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
897 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
898
899 return NULL;
900 }
68ad4a33
URS
901 } while (*link);
902
903 *parent = &tmp_va->rb_node;
904 return link;
905}
906
907static __always_inline struct list_head *
908get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
909{
910 struct list_head *list;
911
912 if (unlikely(!parent))
913 /*
914 * The red-black tree where we try to find VA neighbors
915 * before merging or inserting is empty, i.e. it means
916 * there is no free vmap space. Normally it does not
917 * happen but we handle this case anyway.
918 */
919 return NULL;
920
921 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
922 return (&parent->rb_right == link ? list->next : list);
923}
924
925static __always_inline void
8eb510db
URS
926__link_va(struct vmap_area *va, struct rb_root *root,
927 struct rb_node *parent, struct rb_node **link,
928 struct list_head *head, bool augment)
68ad4a33
URS
929{
930 /*
931 * VA is still not in the list, but we can
932 * identify its future previous list_head node.
933 */
934 if (likely(parent)) {
935 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
936 if (&parent->rb_right != link)
937 head = head->prev;
db64fe02
NP
938 }
939
68ad4a33
URS
940 /* Insert to the rb-tree */
941 rb_link_node(&va->rb_node, parent, link);
8eb510db 942 if (augment) {
68ad4a33
URS
943 /*
944 * Some explanation here. Just perform simple insertion
945 * to the tree. We do not set va->subtree_max_size to
946 * its current size before calling rb_insert_augmented().
153090f2 947 * It is because we populate the tree from the bottom
68ad4a33
URS
948 * to parent levels when the node _is_ in the tree.
949 *
950 * Therefore we set subtree_max_size to zero after insertion,
951 * to let __augment_tree_propagate_from() puts everything to
952 * the correct order later on.
953 */
954 rb_insert_augmented(&va->rb_node,
955 root, &free_vmap_area_rb_augment_cb);
956 va->subtree_max_size = 0;
957 } else {
958 rb_insert_color(&va->rb_node, root);
959 }
db64fe02 960
68ad4a33
URS
961 /* Address-sort this list */
962 list_add(&va->list, head);
db64fe02
NP
963}
964
68ad4a33 965static __always_inline void
8eb510db
URS
966link_va(struct vmap_area *va, struct rb_root *root,
967 struct rb_node *parent, struct rb_node **link,
968 struct list_head *head)
969{
970 __link_va(va, root, parent, link, head, false);
971}
972
973static __always_inline void
974link_va_augment(struct vmap_area *va, struct rb_root *root,
975 struct rb_node *parent, struct rb_node **link,
976 struct list_head *head)
977{
978 __link_va(va, root, parent, link, head, true);
979}
980
981static __always_inline void
982__unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
68ad4a33 983{
460e42d1
URS
984 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
985 return;
db64fe02 986
8eb510db 987 if (augment)
460e42d1
URS
988 rb_erase_augmented(&va->rb_node,
989 root, &free_vmap_area_rb_augment_cb);
990 else
991 rb_erase(&va->rb_node, root);
992
5d7a7c54 993 list_del_init(&va->list);
460e42d1 994 RB_CLEAR_NODE(&va->rb_node);
68ad4a33
URS
995}
996
8eb510db
URS
997static __always_inline void
998unlink_va(struct vmap_area *va, struct rb_root *root)
999{
1000 __unlink_va(va, root, false);
1001}
1002
1003static __always_inline void
1004unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1005{
1006 __unlink_va(va, root, true);
1007}
1008
bb850f4d 1009#if DEBUG_AUGMENT_PROPAGATE_CHECK
c3385e84
JC
1010/*
1011 * Gets called when remove the node and rotate.
1012 */
1013static __always_inline unsigned long
1014compute_subtree_max_size(struct vmap_area *va)
1015{
1016 return max3(va_size(va),
1017 get_subtree_max_size(va->rb_node.rb_left),
1018 get_subtree_max_size(va->rb_node.rb_right));
1019}
1020
bb850f4d 1021static void
da27c9ed 1022augment_tree_propagate_check(void)
bb850f4d
URS
1023{
1024 struct vmap_area *va;
da27c9ed 1025 unsigned long computed_size;
bb850f4d 1026
da27c9ed
URS
1027 list_for_each_entry(va, &free_vmap_area_list, list) {
1028 computed_size = compute_subtree_max_size(va);
1029 if (computed_size != va->subtree_max_size)
1030 pr_emerg("tree is corrupted: %lu, %lu\n",
1031 va_size(va), va->subtree_max_size);
bb850f4d 1032 }
bb850f4d
URS
1033}
1034#endif
1035
68ad4a33
URS
1036/*
1037 * This function populates subtree_max_size from bottom to upper
1038 * levels starting from VA point. The propagation must be done
1039 * when VA size is modified by changing its va_start/va_end. Or
1040 * in case of newly inserting of VA to the tree.
1041 *
1042 * It means that __augment_tree_propagate_from() must be called:
1043 * - After VA has been inserted to the tree(free path);
1044 * - After VA has been shrunk(allocation path);
1045 * - After VA has been increased(merging path).
1046 *
1047 * Please note that, it does not mean that upper parent nodes
1048 * and their subtree_max_size are recalculated all the time up
1049 * to the root node.
1050 *
1051 * 4--8
1052 * /\
1053 * / \
1054 * / \
1055 * 2--2 8--8
1056 *
1057 * For example if we modify the node 4, shrinking it to 2, then
1058 * no any modification is required. If we shrink the node 2 to 1
1059 * its subtree_max_size is updated only, and set to 1. If we shrink
1060 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1061 * node becomes 4--6.
1062 */
1063static __always_inline void
1064augment_tree_propagate_from(struct vmap_area *va)
1065{
15ae144f
URS
1066 /*
1067 * Populate the tree from bottom towards the root until
1068 * the calculated maximum available size of checked node
1069 * is equal to its current one.
1070 */
1071 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
bb850f4d
URS
1072
1073#if DEBUG_AUGMENT_PROPAGATE_CHECK
da27c9ed 1074 augment_tree_propagate_check();
bb850f4d 1075#endif
68ad4a33
URS
1076}
1077
1078static void
1079insert_vmap_area(struct vmap_area *va,
1080 struct rb_root *root, struct list_head *head)
1081{
1082 struct rb_node **link;
1083 struct rb_node *parent;
1084
1085 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1086 if (link)
1087 link_va(va, root, parent, link, head);
68ad4a33
URS
1088}
1089
1090static void
1091insert_vmap_area_augment(struct vmap_area *va,
1092 struct rb_node *from, struct rb_root *root,
1093 struct list_head *head)
1094{
1095 struct rb_node **link;
1096 struct rb_node *parent;
1097
1098 if (from)
1099 link = find_va_links(va, NULL, from, &parent);
1100 else
1101 link = find_va_links(va, root, NULL, &parent);
1102
9c801f61 1103 if (link) {
8eb510db 1104 link_va_augment(va, root, parent, link, head);
9c801f61
URS
1105 augment_tree_propagate_from(va);
1106 }
68ad4a33
URS
1107}
1108
1109/*
1110 * Merge de-allocated chunk of VA memory with previous
1111 * and next free blocks. If coalesce is not done a new
1112 * free area is inserted. If VA has been merged, it is
1113 * freed.
9c801f61
URS
1114 *
1115 * Please note, it can return NULL in case of overlap
1116 * ranges, followed by WARN() report. Despite it is a
1117 * buggy behaviour, a system can be alive and keep
1118 * ongoing.
68ad4a33 1119 */
3c5c3cfb 1120static __always_inline struct vmap_area *
8eb510db
URS
1121__merge_or_add_vmap_area(struct vmap_area *va,
1122 struct rb_root *root, struct list_head *head, bool augment)
68ad4a33
URS
1123{
1124 struct vmap_area *sibling;
1125 struct list_head *next;
1126 struct rb_node **link;
1127 struct rb_node *parent;
1128 bool merged = false;
1129
1130 /*
1131 * Find a place in the tree where VA potentially will be
1132 * inserted, unless it is merged with its sibling/siblings.
1133 */
1134 link = find_va_links(va, root, NULL, &parent);
9c801f61
URS
1135 if (!link)
1136 return NULL;
68ad4a33
URS
1137
1138 /*
1139 * Get next node of VA to check if merging can be done.
1140 */
1141 next = get_va_next_sibling(parent, link);
1142 if (unlikely(next == NULL))
1143 goto insert;
1144
1145 /*
1146 * start end
1147 * | |
1148 * |<------VA------>|<-----Next----->|
1149 * | |
1150 * start end
1151 */
1152 if (next != head) {
1153 sibling = list_entry(next, struct vmap_area, list);
1154 if (sibling->va_start == va->va_end) {
1155 sibling->va_start = va->va_start;
1156
68ad4a33
URS
1157 /* Free vmap_area object. */
1158 kmem_cache_free(vmap_area_cachep, va);
1159
1160 /* Point to the new merged area. */
1161 va = sibling;
1162 merged = true;
1163 }
1164 }
1165
1166 /*
1167 * start end
1168 * | |
1169 * |<-----Prev----->|<------VA------>|
1170 * | |
1171 * start end
1172 */
1173 if (next->prev != head) {
1174 sibling = list_entry(next->prev, struct vmap_area, list);
1175 if (sibling->va_end == va->va_start) {
5dd78640
URS
1176 /*
1177 * If both neighbors are coalesced, it is important
1178 * to unlink the "next" node first, followed by merging
1179 * with "previous" one. Otherwise the tree might not be
1180 * fully populated if a sibling's augmented value is
1181 * "normalized" because of rotation operations.
1182 */
54f63d9d 1183 if (merged)
8eb510db 1184 __unlink_va(va, root, augment);
68ad4a33 1185
5dd78640
URS
1186 sibling->va_end = va->va_end;
1187
68ad4a33
URS
1188 /* Free vmap_area object. */
1189 kmem_cache_free(vmap_area_cachep, va);
3c5c3cfb
DA
1190
1191 /* Point to the new merged area. */
1192 va = sibling;
1193 merged = true;
68ad4a33
URS
1194 }
1195 }
1196
1197insert:
5dd78640 1198 if (!merged)
8eb510db 1199 __link_va(va, root, parent, link, head, augment);
3c5c3cfb 1200
96e2db45
URS
1201 return va;
1202}
1203
8eb510db
URS
1204static __always_inline struct vmap_area *
1205merge_or_add_vmap_area(struct vmap_area *va,
1206 struct rb_root *root, struct list_head *head)
1207{
1208 return __merge_or_add_vmap_area(va, root, head, false);
1209}
1210
96e2db45
URS
1211static __always_inline struct vmap_area *
1212merge_or_add_vmap_area_augment(struct vmap_area *va,
1213 struct rb_root *root, struct list_head *head)
1214{
8eb510db 1215 va = __merge_or_add_vmap_area(va, root, head, true);
96e2db45
URS
1216 if (va)
1217 augment_tree_propagate_from(va);
1218
3c5c3cfb 1219 return va;
68ad4a33
URS
1220}
1221
1222static __always_inline bool
1223is_within_this_va(struct vmap_area *va, unsigned long size,
1224 unsigned long align, unsigned long vstart)
1225{
1226 unsigned long nva_start_addr;
1227
1228 if (va->va_start > vstart)
1229 nva_start_addr = ALIGN(va->va_start, align);
1230 else
1231 nva_start_addr = ALIGN(vstart, align);
1232
1233 /* Can be overflowed due to big size or alignment. */
1234 if (nva_start_addr + size < nva_start_addr ||
1235 nva_start_addr < vstart)
1236 return false;
1237
1238 return (nva_start_addr + size <= va->va_end);
1239}
1240
1241/*
1242 * Find the first free block(lowest start address) in the tree,
1243 * that will accomplish the request corresponding to passing
9333fe98
UR
1244 * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1245 * a search length is adjusted to account for worst case alignment
1246 * overhead.
68ad4a33
URS
1247 */
1248static __always_inline struct vmap_area *
f9863be4
URS
1249find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1250 unsigned long align, unsigned long vstart, bool adjust_search_size)
68ad4a33
URS
1251{
1252 struct vmap_area *va;
1253 struct rb_node *node;
9333fe98 1254 unsigned long length;
68ad4a33
URS
1255
1256 /* Start from the root. */
f9863be4 1257 node = root->rb_node;
68ad4a33 1258
9333fe98
UR
1259 /* Adjust the search size for alignment overhead. */
1260 length = adjust_search_size ? size + align - 1 : size;
1261
68ad4a33
URS
1262 while (node) {
1263 va = rb_entry(node, struct vmap_area, rb_node);
1264
9333fe98 1265 if (get_subtree_max_size(node->rb_left) >= length &&
68ad4a33
URS
1266 vstart < va->va_start) {
1267 node = node->rb_left;
1268 } else {
1269 if (is_within_this_va(va, size, align, vstart))
1270 return va;
1271
1272 /*
1273 * Does not make sense to go deeper towards the right
1274 * sub-tree if it does not have a free block that is
9333fe98 1275 * equal or bigger to the requested search length.
68ad4a33 1276 */
9333fe98 1277 if (get_subtree_max_size(node->rb_right) >= length) {
68ad4a33
URS
1278 node = node->rb_right;
1279 continue;
1280 }
1281
1282 /*
3806b041 1283 * OK. We roll back and find the first right sub-tree,
68ad4a33 1284 * that will satisfy the search criteria. It can happen
9f531973
URS
1285 * due to "vstart" restriction or an alignment overhead
1286 * that is bigger then PAGE_SIZE.
68ad4a33
URS
1287 */
1288 while ((node = rb_parent(node))) {
1289 va = rb_entry(node, struct vmap_area, rb_node);
1290 if (is_within_this_va(va, size, align, vstart))
1291 return va;
1292
9333fe98 1293 if (get_subtree_max_size(node->rb_right) >= length &&
68ad4a33 1294 vstart <= va->va_start) {
9f531973
URS
1295 /*
1296 * Shift the vstart forward. Please note, we update it with
1297 * parent's start address adding "1" because we do not want
1298 * to enter same sub-tree after it has already been checked
1299 * and no suitable free block found there.
1300 */
1301 vstart = va->va_start + 1;
68ad4a33
URS
1302 node = node->rb_right;
1303 break;
1304 }
1305 }
1306 }
1307 }
1308
1309 return NULL;
1310}
1311
a6cf4e0f
URS
1312#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1313#include <linux/random.h>
1314
1315static struct vmap_area *
bd1264c3 1316find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
a6cf4e0f
URS
1317 unsigned long align, unsigned long vstart)
1318{
1319 struct vmap_area *va;
1320
bd1264c3 1321 list_for_each_entry(va, head, list) {
a6cf4e0f
URS
1322 if (!is_within_this_va(va, size, align, vstart))
1323 continue;
1324
1325 return va;
1326 }
1327
1328 return NULL;
1329}
1330
1331static void
bd1264c3
SL
1332find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1333 unsigned long size, unsigned long align)
a6cf4e0f
URS
1334{
1335 struct vmap_area *va_1, *va_2;
1336 unsigned long vstart;
1337 unsigned int rnd;
1338
1339 get_random_bytes(&rnd, sizeof(rnd));
1340 vstart = VMALLOC_START + rnd;
1341
bd1264c3
SL
1342 va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1343 va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
a6cf4e0f
URS
1344
1345 if (va_1 != va_2)
1346 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1347 va_1, va_2, vstart);
1348}
1349#endif
1350
68ad4a33
URS
1351enum fit_type {
1352 NOTHING_FIT = 0,
1353 FL_FIT_TYPE = 1, /* full fit */
1354 LE_FIT_TYPE = 2, /* left edge fit */
1355 RE_FIT_TYPE = 3, /* right edge fit */
1356 NE_FIT_TYPE = 4 /* no edge fit */
1357};
1358
1359static __always_inline enum fit_type
1360classify_va_fit_type(struct vmap_area *va,
1361 unsigned long nva_start_addr, unsigned long size)
1362{
1363 enum fit_type type;
1364
1365 /* Check if it is within VA. */
1366 if (nva_start_addr < va->va_start ||
1367 nva_start_addr + size > va->va_end)
1368 return NOTHING_FIT;
1369
1370 /* Now classify. */
1371 if (va->va_start == nva_start_addr) {
1372 if (va->va_end == nva_start_addr + size)
1373 type = FL_FIT_TYPE;
1374 else
1375 type = LE_FIT_TYPE;
1376 } else if (va->va_end == nva_start_addr + size) {
1377 type = RE_FIT_TYPE;
1378 } else {
1379 type = NE_FIT_TYPE;
1380 }
1381
1382 return type;
1383}
1384
1385static __always_inline int
f9863be4
URS
1386adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1387 struct vmap_area *va, unsigned long nva_start_addr,
1388 unsigned long size)
68ad4a33 1389{
2c929233 1390 struct vmap_area *lva = NULL;
1b23ff80 1391 enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
68ad4a33
URS
1392
1393 if (type == FL_FIT_TYPE) {
1394 /*
1395 * No need to split VA, it fully fits.
1396 *
1397 * | |
1398 * V NVA V
1399 * |---------------|
1400 */
f9863be4 1401 unlink_va_augment(va, root);
68ad4a33
URS
1402 kmem_cache_free(vmap_area_cachep, va);
1403 } else if (type == LE_FIT_TYPE) {
1404 /*
1405 * Split left edge of fit VA.
1406 *
1407 * | |
1408 * V NVA V R
1409 * |-------|-------|
1410 */
1411 va->va_start += size;
1412 } else if (type == RE_FIT_TYPE) {
1413 /*
1414 * Split right edge of fit VA.
1415 *
1416 * | |
1417 * L V NVA V
1418 * |-------|-------|
1419 */
1420 va->va_end = nva_start_addr;
1421 } else if (type == NE_FIT_TYPE) {
1422 /*
1423 * Split no edge of fit VA.
1424 *
1425 * | |
1426 * L V NVA V R
1427 * |---|-------|---|
1428 */
82dd23e8
URS
1429 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1430 if (unlikely(!lva)) {
1431 /*
1432 * For percpu allocator we do not do any pre-allocation
1433 * and leave it as it is. The reason is it most likely
1434 * never ends up with NE_FIT_TYPE splitting. In case of
1435 * percpu allocations offsets and sizes are aligned to
1436 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1437 * are its main fitting cases.
1438 *
1439 * There are a few exceptions though, as an example it is
1440 * a first allocation (early boot up) when we have "one"
1441 * big free space that has to be split.
060650a2
URS
1442 *
1443 * Also we can hit this path in case of regular "vmap"
1444 * allocations, if "this" current CPU was not preloaded.
1445 * See the comment in alloc_vmap_area() why. If so, then
1446 * GFP_NOWAIT is used instead to get an extra object for
1447 * split purpose. That is rare and most time does not
1448 * occur.
1449 *
1450 * What happens if an allocation gets failed. Basically,
1451 * an "overflow" path is triggered to purge lazily freed
1452 * areas to free some memory, then, the "retry" path is
1453 * triggered to repeat one more time. See more details
1454 * in alloc_vmap_area() function.
82dd23e8
URS
1455 */
1456 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1457 if (!lva)
1458 return -1;
1459 }
68ad4a33
URS
1460
1461 /*
1462 * Build the remainder.
1463 */
1464 lva->va_start = va->va_start;
1465 lva->va_end = nva_start_addr;
1466
1467 /*
1468 * Shrink this VA to remaining size.
1469 */
1470 va->va_start = nva_start_addr + size;
1471 } else {
1472 return -1;
1473 }
1474
1475 if (type != FL_FIT_TYPE) {
1476 augment_tree_propagate_from(va);
1477
2c929233 1478 if (lva) /* type == NE_FIT_TYPE */
f9863be4 1479 insert_vmap_area_augment(lva, &va->rb_node, root, head);
68ad4a33
URS
1480 }
1481
1482 return 0;
1483}
1484
1485/*
1486 * Returns a start address of the newly allocated area, if success.
1487 * Otherwise a vend is returned that indicates failure.
1488 */
1489static __always_inline unsigned long
f9863be4
URS
1490__alloc_vmap_area(struct rb_root *root, struct list_head *head,
1491 unsigned long size, unsigned long align,
cacca6ba 1492 unsigned long vstart, unsigned long vend)
68ad4a33 1493{
9333fe98 1494 bool adjust_search_size = true;
68ad4a33
URS
1495 unsigned long nva_start_addr;
1496 struct vmap_area *va;
68ad4a33
URS
1497 int ret;
1498
9333fe98
UR
1499 /*
1500 * Do not adjust when:
1501 * a) align <= PAGE_SIZE, because it does not make any sense.
1502 * All blocks(their start addresses) are at least PAGE_SIZE
1503 * aligned anyway;
1504 * b) a short range where a requested size corresponds to exactly
1505 * specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1506 * With adjusted search length an allocation would not succeed.
1507 */
1508 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1509 adjust_search_size = false;
1510
f9863be4 1511 va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
68ad4a33
URS
1512 if (unlikely(!va))
1513 return vend;
1514
1515 if (va->va_start > vstart)
1516 nva_start_addr = ALIGN(va->va_start, align);
1517 else
1518 nva_start_addr = ALIGN(vstart, align);
1519
1520 /* Check the "vend" restriction. */
1521 if (nva_start_addr + size > vend)
1522 return vend;
1523
68ad4a33 1524 /* Update the free vmap_area. */
f9863be4 1525 ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1b23ff80 1526 if (WARN_ON_ONCE(ret))
68ad4a33
URS
1527 return vend;
1528
a6cf4e0f 1529#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
bd1264c3 1530 find_vmap_lowest_match_check(root, head, size, align);
a6cf4e0f
URS
1531#endif
1532
68ad4a33
URS
1533 return nva_start_addr;
1534}
4da56b99 1535
d98c9e83
AR
1536/*
1537 * Free a region of KVA allocated by alloc_vmap_area
1538 */
1539static void free_vmap_area(struct vmap_area *va)
1540{
1541 /*
1542 * Remove from the busy tree/list.
1543 */
1544 spin_lock(&vmap_area_lock);
1545 unlink_va(va, &vmap_area_root);
1546 spin_unlock(&vmap_area_lock);
1547
1548 /*
1549 * Insert/Merge it back to the free tree/list.
1550 */
1551 spin_lock(&free_vmap_area_lock);
96e2db45 1552 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
d98c9e83
AR
1553 spin_unlock(&free_vmap_area_lock);
1554}
1555
187f8cc4
URS
1556static inline void
1557preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1558{
1559 struct vmap_area *va = NULL;
1560
1561 /*
1562 * Preload this CPU with one extra vmap_area object. It is used
1563 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1564 * a CPU that does an allocation is preloaded.
1565 *
1566 * We do it in non-atomic context, thus it allows us to use more
1567 * permissive allocation masks to be more stable under low memory
1568 * condition and high memory pressure.
1569 */
1570 if (!this_cpu_read(ne_fit_preload_node))
1571 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1572
1573 spin_lock(lock);
1574
1575 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1576 kmem_cache_free(vmap_area_cachep, va);
1577}
1578
db64fe02
NP
1579/*
1580 * Allocate a region of KVA of the specified size and alignment, within the
1581 * vstart and vend.
1582 */
1583static struct vmap_area *alloc_vmap_area(unsigned long size,
1584 unsigned long align,
1585 unsigned long vstart, unsigned long vend,
869176a0
BH
1586 int node, gfp_t gfp_mask,
1587 unsigned long va_flags)
db64fe02 1588{
187f8cc4 1589 struct vmap_area *va;
12e376a6 1590 unsigned long freed;
1da177e4 1591 unsigned long addr;
db64fe02 1592 int purged = 0;
d98c9e83 1593 int ret;
db64fe02 1594
7e4a32c0
HL
1595 if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1596 return ERR_PTR(-EINVAL);
db64fe02 1597
68ad4a33
URS
1598 if (unlikely(!vmap_initialized))
1599 return ERR_PTR(-EBUSY);
1600
5803ed29 1601 might_sleep();
f07116d7 1602 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
4da56b99 1603
f07116d7 1604 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
db64fe02
NP
1605 if (unlikely(!va))
1606 return ERR_PTR(-ENOMEM);
1607
7f88f88f
CM
1608 /*
1609 * Only scan the relevant parts containing pointers to other objects
1610 * to avoid false negatives.
1611 */
f07116d7 1612 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
7f88f88f 1613
db64fe02 1614retry:
187f8cc4 1615 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
f9863be4
URS
1616 addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1617 size, align, vstart, vend);
187f8cc4 1618 spin_unlock(&free_vmap_area_lock);
89699605 1619
cf243da6
URS
1620 trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1621
afd07389 1622 /*
68ad4a33
URS
1623 * If an allocation fails, the "vend" address is
1624 * returned. Therefore trigger the overflow path.
afd07389 1625 */
68ad4a33 1626 if (unlikely(addr == vend))
89699605 1627 goto overflow;
db64fe02
NP
1628
1629 va->va_start = addr;
1630 va->va_end = addr + size;
688fcbfc 1631 va->vm = NULL;
869176a0 1632 va->flags = va_flags;
68ad4a33 1633
e36176be
URS
1634 spin_lock(&vmap_area_lock);
1635 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
db64fe02
NP
1636 spin_unlock(&vmap_area_lock);
1637
61e16557 1638 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
1639 BUG_ON(va->va_start < vstart);
1640 BUG_ON(va->va_end > vend);
1641
d98c9e83
AR
1642 ret = kasan_populate_vmalloc(addr, size);
1643 if (ret) {
1644 free_vmap_area(va);
1645 return ERR_PTR(ret);
1646 }
1647
db64fe02 1648 return va;
89699605
NP
1649
1650overflow:
89699605
NP
1651 if (!purged) {
1652 purge_vmap_area_lazy();
1653 purged = 1;
1654 goto retry;
1655 }
4da56b99 1656
12e376a6
URS
1657 freed = 0;
1658 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1659
1660 if (freed > 0) {
1661 purged = 0;
1662 goto retry;
4da56b99
CW
1663 }
1664
03497d76 1665 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
756a025f
JP
1666 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1667 size);
68ad4a33
URS
1668
1669 kmem_cache_free(vmap_area_cachep, va);
89699605 1670 return ERR_PTR(-EBUSY);
db64fe02
NP
1671}
1672
4da56b99
CW
1673int register_vmap_purge_notifier(struct notifier_block *nb)
1674{
1675 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1676}
1677EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1678
1679int unregister_vmap_purge_notifier(struct notifier_block *nb)
1680{
1681 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1682}
1683EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1684
db64fe02
NP
1685/*
1686 * lazy_max_pages is the maximum amount of virtual address space we gather up
1687 * before attempting to purge with a TLB flush.
1688 *
1689 * There is a tradeoff here: a larger number will cover more kernel page tables
1690 * and take slightly longer to purge, but it will linearly reduce the number of
1691 * global TLB flushes that must be performed. It would seem natural to scale
1692 * this number up linearly with the number of CPUs (because vmapping activity
1693 * could also scale linearly with the number of CPUs), however it is likely
1694 * that in practice, workloads might be constrained in other ways that mean
1695 * vmap activity will not scale linearly with CPUs. Also, I want to be
1696 * conservative and not introduce a big latency on huge systems, so go with
1697 * a less aggressive log scale. It will still be an improvement over the old
1698 * code, and it will be simple to change the scale factor if we find that it
1699 * becomes a problem on bigger systems.
1700 */
1701static unsigned long lazy_max_pages(void)
1702{
1703 unsigned int log;
1704
1705 log = fls(num_online_cpus());
1706
1707 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1708}
1709
4d36e6f8 1710static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
db64fe02 1711
0574ecd1 1712/*
f0953a1b 1713 * Serialize vmap purging. There is no actual critical section protected
153090f2 1714 * by this lock, but we want to avoid concurrent calls for performance
0574ecd1
CH
1715 * reasons and to make the pcpu_get_vm_areas more deterministic.
1716 */
f9e09977 1717static DEFINE_MUTEX(vmap_purge_lock);
0574ecd1 1718
02b709df
NP
1719/* for per-CPU blocks */
1720static void purge_fragmented_blocks_allcpus(void);
1721
db64fe02
NP
1722/*
1723 * Purges all lazily-freed vmap areas.
db64fe02 1724 */
0574ecd1 1725static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
db64fe02 1726{
4d36e6f8 1727 unsigned long resched_threshold;
6030fd5f 1728 unsigned int num_purged_areas = 0;
baa468a6 1729 struct list_head local_purge_list;
96e2db45 1730 struct vmap_area *va, *n_va;
db64fe02 1731
0574ecd1 1732 lockdep_assert_held(&vmap_purge_lock);
02b709df 1733
96e2db45
URS
1734 spin_lock(&purge_vmap_area_lock);
1735 purge_vmap_area_root = RB_ROOT;
baa468a6 1736 list_replace_init(&purge_vmap_area_list, &local_purge_list);
96e2db45
URS
1737 spin_unlock(&purge_vmap_area_lock);
1738
baa468a6 1739 if (unlikely(list_empty(&local_purge_list)))
6030fd5f 1740 goto out;
68571be9 1741
96e2db45 1742 start = min(start,
baa468a6 1743 list_first_entry(&local_purge_list,
96e2db45
URS
1744 struct vmap_area, list)->va_start);
1745
1746 end = max(end,
baa468a6 1747 list_last_entry(&local_purge_list,
96e2db45 1748 struct vmap_area, list)->va_end);
db64fe02 1749
0574ecd1 1750 flush_tlb_kernel_range(start, end);
4d36e6f8 1751 resched_threshold = lazy_max_pages() << 1;
db64fe02 1752
e36176be 1753 spin_lock(&free_vmap_area_lock);
baa468a6 1754 list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
4d36e6f8 1755 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
3c5c3cfb
DA
1756 unsigned long orig_start = va->va_start;
1757 unsigned long orig_end = va->va_end;
763b218d 1758
dd3b8353
URS
1759 /*
1760 * Finally insert or merge lazily-freed area. It is
1761 * detached and there is no need to "unlink" it from
1762 * anything.
1763 */
96e2db45
URS
1764 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1765 &free_vmap_area_list);
3c5c3cfb 1766
9c801f61
URS
1767 if (!va)
1768 continue;
1769
3c5c3cfb
DA
1770 if (is_vmalloc_or_module_addr((void *)orig_start))
1771 kasan_release_vmalloc(orig_start, orig_end,
1772 va->va_start, va->va_end);
dd3b8353 1773
4d36e6f8 1774 atomic_long_sub(nr, &vmap_lazy_nr);
6030fd5f 1775 num_purged_areas++;
68571be9 1776
4d36e6f8 1777 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
e36176be 1778 cond_resched_lock(&free_vmap_area_lock);
763b218d 1779 }
e36176be 1780 spin_unlock(&free_vmap_area_lock);
6030fd5f
URS
1781
1782out:
1783 trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1784 return num_purged_areas > 0;
db64fe02
NP
1785}
1786
1787/*
1788 * Kick off a purge of the outstanding lazy areas.
1789 */
1790static void purge_vmap_area_lazy(void)
1791{
f9e09977 1792 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
1793 purge_fragmented_blocks_allcpus();
1794 __purge_vmap_area_lazy(ULONG_MAX, 0);
f9e09977 1795 mutex_unlock(&vmap_purge_lock);
db64fe02
NP
1796}
1797
690467c8
URS
1798static void drain_vmap_area_work(struct work_struct *work)
1799{
1800 unsigned long nr_lazy;
1801
1802 do {
1803 mutex_lock(&vmap_purge_lock);
1804 __purge_vmap_area_lazy(ULONG_MAX, 0);
1805 mutex_unlock(&vmap_purge_lock);
1806
1807 /* Recheck if further work is required. */
1808 nr_lazy = atomic_long_read(&vmap_lazy_nr);
1809 } while (nr_lazy > lazy_max_pages());
1810}
1811
db64fe02 1812/*
edd89818
URS
1813 * Free a vmap area, caller ensuring that the area has been unmapped,
1814 * unlinked and flush_cache_vunmap had been called for the correct
1815 * range previously.
db64fe02 1816 */
64141da5 1817static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 1818{
8c4196fe
URS
1819 unsigned long nr_lazy_max = lazy_max_pages();
1820 unsigned long va_start = va->va_start;
4d36e6f8 1821 unsigned long nr_lazy;
80c4bd7a 1822
edd89818
URS
1823 if (WARN_ON_ONCE(!list_empty(&va->list)))
1824 return;
dd3b8353 1825
4d36e6f8
URS
1826 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1827 PAGE_SHIFT, &vmap_lazy_nr);
80c4bd7a 1828
96e2db45
URS
1829 /*
1830 * Merge or place it to the purge tree/list.
1831 */
1832 spin_lock(&purge_vmap_area_lock);
1833 merge_or_add_vmap_area(va,
1834 &purge_vmap_area_root, &purge_vmap_area_list);
1835 spin_unlock(&purge_vmap_area_lock);
80c4bd7a 1836
8c4196fe
URS
1837 trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1838
96e2db45 1839 /* After this point, we may free va at any time */
8c4196fe 1840 if (unlikely(nr_lazy > nr_lazy_max))
690467c8 1841 schedule_work(&drain_vmap_work);
db64fe02
NP
1842}
1843
b29acbdc
NP
1844/*
1845 * Free and unmap a vmap area
1846 */
1847static void free_unmap_vmap_area(struct vmap_area *va)
1848{
1849 flush_cache_vunmap(va->va_start, va->va_end);
4ad0ae8c 1850 vunmap_range_noflush(va->va_start, va->va_end);
8e57f8ac 1851 if (debug_pagealloc_enabled_static())
82a2e924
CP
1852 flush_tlb_kernel_range(va->va_start, va->va_end);
1853
c8eef01e 1854 free_vmap_area_noflush(va);
b29acbdc
NP
1855}
1856
993d0b28 1857struct vmap_area *find_vmap_area(unsigned long addr)
db64fe02
NP
1858{
1859 struct vmap_area *va;
1860
1861 spin_lock(&vmap_area_lock);
899c6efe 1862 va = __find_vmap_area(addr, &vmap_area_root);
db64fe02
NP
1863 spin_unlock(&vmap_area_lock);
1864
1865 return va;
1866}
1867
edd89818
URS
1868static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1869{
1870 struct vmap_area *va;
1871
1872 spin_lock(&vmap_area_lock);
1873 va = __find_vmap_area(addr, &vmap_area_root);
1874 if (va)
1875 unlink_va(va, &vmap_area_root);
1876 spin_unlock(&vmap_area_lock);
1877
1878 return va;
1879}
1880
db64fe02
NP
1881/*** Per cpu kva allocator ***/
1882
1883/*
1884 * vmap space is limited especially on 32 bit architectures. Ensure there is
1885 * room for at least 16 percpu vmap blocks per CPU.
1886 */
1887/*
1888 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1889 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1890 * instead (we just need a rough idea)
1891 */
1892#if BITS_PER_LONG == 32
1893#define VMALLOC_SPACE (128UL*1024*1024)
1894#else
1895#define VMALLOC_SPACE (128UL*1024*1024*1024)
1896#endif
1897
1898#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1899#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1900#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1901#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1902#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1903#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
1904#define VMAP_BBMAP_BITS \
1905 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1906 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1907 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
1908
1909#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1910
869176a0
BH
1911#define VMAP_RAM 0x1 /* indicates vm_map_ram area*/
1912#define VMAP_BLOCK 0x2 /* mark out the vmap_block sub-type*/
1913#define VMAP_FLAGS_MASK 0x3
1914
db64fe02
NP
1915struct vmap_block_queue {
1916 spinlock_t lock;
1917 struct list_head free;
062eacf5
URS
1918
1919 /*
1920 * An xarray requires an extra memory dynamically to
1921 * be allocated. If it is an issue, we can use rb-tree
1922 * instead.
1923 */
1924 struct xarray vmap_blocks;
db64fe02
NP
1925};
1926
1927struct vmap_block {
1928 spinlock_t lock;
1929 struct vmap_area *va;
db64fe02 1930 unsigned long free, dirty;
d76f9954 1931 DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
7d61bfe8 1932 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
1933 struct list_head free_list;
1934 struct rcu_head rcu_head;
02b709df 1935 struct list_head purge;
db64fe02
NP
1936};
1937
1938/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1939static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1940
1941/*
062eacf5
URS
1942 * In order to fast access to any "vmap_block" associated with a
1943 * specific address, we use a hash.
1944 *
1945 * A per-cpu vmap_block_queue is used in both ways, to serialize
1946 * an access to free block chains among CPUs(alloc path) and it
1947 * also acts as a vmap_block hash(alloc/free paths). It means we
1948 * overload it, since we already have the per-cpu array which is
1949 * used as a hash table. When used as a hash a 'cpu' passed to
1950 * per_cpu() is not actually a CPU but rather a hash index.
1951 *
fa1c77c1 1952 * A hash function is addr_to_vb_xa() which hashes any address
062eacf5
URS
1953 * to a specific index(in a hash) it belongs to. This then uses a
1954 * per_cpu() macro to access an array with generated index.
1955 *
1956 * An example:
1957 *
1958 * CPU_1 CPU_2 CPU_0
1959 * | | |
1960 * V V V
1961 * 0 10 20 30 40 50 60
1962 * |------|------|------|------|------|------|...<vmap address space>
1963 * CPU0 CPU1 CPU2 CPU0 CPU1 CPU2
1964 *
1965 * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
1966 * it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
1967 *
1968 * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
1969 * it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
1970 *
1971 * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
1972 * it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
1973 *
1974 * This technique almost always avoids lock contention on insert/remove,
1975 * however xarray spinlocks protect against any contention that remains.
db64fe02 1976 */
062eacf5 1977static struct xarray *
fa1c77c1 1978addr_to_vb_xa(unsigned long addr)
062eacf5
URS
1979{
1980 int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
1981
1982 return &per_cpu(vmap_block_queue, index).vmap_blocks;
1983}
db64fe02
NP
1984
1985/*
1986 * We should probably have a fallback mechanism to allocate virtual memory
1987 * out of partially filled vmap blocks. However vmap block sizing should be
1988 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1989 * big problem.
1990 */
1991
1992static unsigned long addr_to_vb_idx(unsigned long addr)
1993{
1994 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1995 addr /= VMAP_BLOCK_SIZE;
1996 return addr;
1997}
1998
cf725ce2
RP
1999static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2000{
2001 unsigned long addr;
2002
2003 addr = va_start + (pages_off << PAGE_SHIFT);
2004 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2005 return (void *)addr;
2006}
2007
2008/**
2009 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2010 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
2011 * @order: how many 2^order pages should be occupied in newly allocated block
2012 * @gfp_mask: flags for the page level allocator
2013 *
a862f68a 2014 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
cf725ce2
RP
2015 */
2016static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
2017{
2018 struct vmap_block_queue *vbq;
2019 struct vmap_block *vb;
2020 struct vmap_area *va;
062eacf5 2021 struct xarray *xa;
db64fe02
NP
2022 unsigned long vb_idx;
2023 int node, err;
cf725ce2 2024 void *vaddr;
db64fe02
NP
2025
2026 node = numa_node_id();
2027
2028 vb = kmalloc_node(sizeof(struct vmap_block),
2029 gfp_mask & GFP_RECLAIM_MASK, node);
2030 if (unlikely(!vb))
2031 return ERR_PTR(-ENOMEM);
2032
2033 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2034 VMALLOC_START, VMALLOC_END,
869176a0
BH
2035 node, gfp_mask,
2036 VMAP_RAM|VMAP_BLOCK);
ddf9c6d4 2037 if (IS_ERR(va)) {
db64fe02 2038 kfree(vb);
e7d86340 2039 return ERR_CAST(va);
db64fe02
NP
2040 }
2041
cf725ce2 2042 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
2043 spin_lock_init(&vb->lock);
2044 vb->va = va;
cf725ce2
RP
2045 /* At least something should be left free */
2046 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
d76f9954 2047 bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
cf725ce2 2048 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 2049 vb->dirty = 0;
7d61bfe8
RP
2050 vb->dirty_min = VMAP_BBMAP_BITS;
2051 vb->dirty_max = 0;
d76f9954 2052 bitmap_set(vb->used_map, 0, (1UL << order));
db64fe02 2053 INIT_LIST_HEAD(&vb->free_list);
db64fe02 2054
fa1c77c1 2055 xa = addr_to_vb_xa(va->va_start);
db64fe02 2056 vb_idx = addr_to_vb_idx(va->va_start);
062eacf5 2057 err = xa_insert(xa, vb_idx, vb, gfp_mask);
0f14599c
MWO
2058 if (err) {
2059 kfree(vb);
2060 free_vmap_area(va);
2061 return ERR_PTR(err);
2062 }
db64fe02 2063
3f804920 2064 vbq = raw_cpu_ptr(&vmap_block_queue);
db64fe02 2065 spin_lock(&vbq->lock);
68ac546f 2066 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 2067 spin_unlock(&vbq->lock);
db64fe02 2068
cf725ce2 2069 return vaddr;
db64fe02
NP
2070}
2071
db64fe02
NP
2072static void free_vmap_block(struct vmap_block *vb)
2073{
2074 struct vmap_block *tmp;
062eacf5 2075 struct xarray *xa;
db64fe02 2076
fa1c77c1 2077 xa = addr_to_vb_xa(vb->va->va_start);
062eacf5 2078 tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
db64fe02
NP
2079 BUG_ON(tmp != vb);
2080
edd89818
URS
2081 spin_lock(&vmap_area_lock);
2082 unlink_va(vb->va, &vmap_area_root);
2083 spin_unlock(&vmap_area_lock);
2084
64141da5 2085 free_vmap_area_noflush(vb->va);
22a3c7d1 2086 kfree_rcu(vb, rcu_head);
db64fe02
NP
2087}
2088
02b709df
NP
2089static void purge_fragmented_blocks(int cpu)
2090{
2091 LIST_HEAD(purge);
2092 struct vmap_block *vb;
2093 struct vmap_block *n_vb;
2094 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2095
2096 rcu_read_lock();
2097 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2098
2099 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2100 continue;
2101
2102 spin_lock(&vb->lock);
2103 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2104 vb->free = 0; /* prevent further allocs after releasing lock */
2105 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
2106 vb->dirty_min = 0;
2107 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
2108 spin_lock(&vbq->lock);
2109 list_del_rcu(&vb->free_list);
2110 spin_unlock(&vbq->lock);
2111 spin_unlock(&vb->lock);
2112 list_add_tail(&vb->purge, &purge);
2113 } else
2114 spin_unlock(&vb->lock);
2115 }
2116 rcu_read_unlock();
2117
2118 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2119 list_del(&vb->purge);
2120 free_vmap_block(vb);
2121 }
2122}
2123
02b709df
NP
2124static void purge_fragmented_blocks_allcpus(void)
2125{
2126 int cpu;
2127
2128 for_each_possible_cpu(cpu)
2129 purge_fragmented_blocks(cpu);
2130}
2131
db64fe02
NP
2132static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2133{
2134 struct vmap_block_queue *vbq;
2135 struct vmap_block *vb;
cf725ce2 2136 void *vaddr = NULL;
db64fe02
NP
2137 unsigned int order;
2138
891c49ab 2139 BUG_ON(offset_in_page(size));
db64fe02 2140 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
2141 if (WARN_ON(size == 0)) {
2142 /*
2143 * Allocating 0 bytes isn't what caller wants since
2144 * get_order(0) returns funny result. Just warn and terminate
2145 * early.
2146 */
2147 return NULL;
2148 }
db64fe02
NP
2149 order = get_order(size);
2150
db64fe02 2151 rcu_read_lock();
3f804920 2152 vbq = raw_cpu_ptr(&vmap_block_queue);
db64fe02 2153 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 2154 unsigned long pages_off;
db64fe02
NP
2155
2156 spin_lock(&vb->lock);
cf725ce2
RP
2157 if (vb->free < (1UL << order)) {
2158 spin_unlock(&vb->lock);
2159 continue;
2160 }
02b709df 2161
cf725ce2
RP
2162 pages_off = VMAP_BBMAP_BITS - vb->free;
2163 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df 2164 vb->free -= 1UL << order;
d76f9954 2165 bitmap_set(vb->used_map, pages_off, (1UL << order));
02b709df
NP
2166 if (vb->free == 0) {
2167 spin_lock(&vbq->lock);
2168 list_del_rcu(&vb->free_list);
2169 spin_unlock(&vbq->lock);
2170 }
cf725ce2 2171
02b709df
NP
2172 spin_unlock(&vb->lock);
2173 break;
db64fe02 2174 }
02b709df 2175
db64fe02
NP
2176 rcu_read_unlock();
2177
cf725ce2
RP
2178 /* Allocate new block if nothing was found */
2179 if (!vaddr)
2180 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 2181
cf725ce2 2182 return vaddr;
db64fe02
NP
2183}
2184
78a0e8c4 2185static void vb_free(unsigned long addr, unsigned long size)
db64fe02
NP
2186{
2187 unsigned long offset;
db64fe02
NP
2188 unsigned int order;
2189 struct vmap_block *vb;
062eacf5 2190 struct xarray *xa;
db64fe02 2191
891c49ab 2192 BUG_ON(offset_in_page(size));
db64fe02 2193 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc 2194
78a0e8c4 2195 flush_cache_vunmap(addr, addr + size);
b29acbdc 2196
db64fe02 2197 order = get_order(size);
78a0e8c4 2198 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
062eacf5 2199
fa1c77c1 2200 xa = addr_to_vb_xa(addr);
062eacf5
URS
2201 vb = xa_load(xa, addr_to_vb_idx(addr));
2202
d76f9954
BH
2203 spin_lock(&vb->lock);
2204 bitmap_clear(vb->used_map, offset, (1UL << order));
2205 spin_unlock(&vb->lock);
db64fe02 2206
4ad0ae8c 2207 vunmap_range_noflush(addr, addr + size);
64141da5 2208
8e57f8ac 2209 if (debug_pagealloc_enabled_static())
78a0e8c4 2210 flush_tlb_kernel_range(addr, addr + size);
82a2e924 2211
db64fe02 2212 spin_lock(&vb->lock);
7d61bfe8
RP
2213
2214 /* Expand dirty range */
2215 vb->dirty_min = min(vb->dirty_min, offset);
2216 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 2217
db64fe02
NP
2218 vb->dirty += 1UL << order;
2219 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 2220 BUG_ON(vb->free);
db64fe02
NP
2221 spin_unlock(&vb->lock);
2222 free_vmap_block(vb);
2223 } else
2224 spin_unlock(&vb->lock);
2225}
2226
868b104d 2227static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
db64fe02 2228{
db64fe02 2229 int cpu;
db64fe02 2230
9b463334
JF
2231 if (unlikely(!vmap_initialized))
2232 return;
2233
5803ed29
CH
2234 might_sleep();
2235
db64fe02
NP
2236 for_each_possible_cpu(cpu) {
2237 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2238 struct vmap_block *vb;
fc1e0d98 2239 unsigned long idx;
db64fe02
NP
2240
2241 rcu_read_lock();
fc1e0d98 2242 xa_for_each(&vbq->vmap_blocks, idx, vb) {
db64fe02 2243 spin_lock(&vb->lock);
ad216c03 2244 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
7d61bfe8 2245 unsigned long va_start = vb->va->va_start;
db64fe02 2246 unsigned long s, e;
b136be5e 2247
7d61bfe8
RP
2248 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2249 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 2250
7d61bfe8
RP
2251 start = min(s, start);
2252 end = max(e, end);
db64fe02 2253
7d61bfe8 2254 flush = 1;
db64fe02
NP
2255 }
2256 spin_unlock(&vb->lock);
2257 }
2258 rcu_read_unlock();
2259 }
2260
f9e09977 2261 mutex_lock(&vmap_purge_lock);
0574ecd1
CH
2262 purge_fragmented_blocks_allcpus();
2263 if (!__purge_vmap_area_lazy(start, end) && flush)
2264 flush_tlb_kernel_range(start, end);
f9e09977 2265 mutex_unlock(&vmap_purge_lock);
db64fe02 2266}
868b104d
RE
2267
2268/**
2269 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2270 *
2271 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2272 * to amortize TLB flushing overheads. What this means is that any page you
2273 * have now, may, in a former life, have been mapped into kernel virtual
2274 * address by the vmap layer and so there might be some CPUs with TLB entries
2275 * still referencing that page (additional to the regular 1:1 kernel mapping).
2276 *
2277 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2278 * be sure that none of the pages we have control over will have any aliases
2279 * from the vmap layer.
2280 */
2281void vm_unmap_aliases(void)
2282{
2283 unsigned long start = ULONG_MAX, end = 0;
2284 int flush = 0;
2285
2286 _vm_unmap_aliases(start, end, flush);
2287}
db64fe02
NP
2288EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2289
2290/**
2291 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2292 * @mem: the pointer returned by vm_map_ram
2293 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2294 */
2295void vm_unmap_ram(const void *mem, unsigned int count)
2296{
65ee03c4 2297 unsigned long size = (unsigned long)count << PAGE_SHIFT;
4aff1dc4 2298 unsigned long addr = (unsigned long)kasan_reset_tag(mem);
9c3acf60 2299 struct vmap_area *va;
db64fe02 2300
5803ed29 2301 might_sleep();
db64fe02
NP
2302 BUG_ON(!addr);
2303 BUG_ON(addr < VMALLOC_START);
2304 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 2305 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02 2306
d98c9e83
AR
2307 kasan_poison_vmalloc(mem, size);
2308
9c3acf60 2309 if (likely(count <= VMAP_MAX_ALLOC)) {
05e3ff95 2310 debug_check_no_locks_freed(mem, size);
78a0e8c4 2311 vb_free(addr, size);
9c3acf60
CH
2312 return;
2313 }
2314
edd89818 2315 va = find_unlink_vmap_area(addr);
14687619
URS
2316 if (WARN_ON_ONCE(!va))
2317 return;
2318
05e3ff95
CP
2319 debug_check_no_locks_freed((void *)va->va_start,
2320 (va->va_end - va->va_start));
9c3acf60 2321 free_unmap_vmap_area(va);
db64fe02
NP
2322}
2323EXPORT_SYMBOL(vm_unmap_ram);
2324
2325/**
2326 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2327 * @pages: an array of pointers to the pages to be mapped
2328 * @count: number of pages
2329 * @node: prefer to allocate data structures on this node
e99c97ad 2330 *
36437638
GK
2331 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2332 * faster than vmap so it's good. But if you mix long-life and short-life
2333 * objects with vm_map_ram(), it could consume lots of address space through
2334 * fragmentation (especially on a 32bit machine). You could see failures in
2335 * the end. Please use this function for short-lived objects.
2336 *
e99c97ad 2337 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02 2338 */
d4efd79a 2339void *vm_map_ram(struct page **pages, unsigned int count, int node)
db64fe02 2340{
65ee03c4 2341 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
2342 unsigned long addr;
2343 void *mem;
2344
2345 if (likely(count <= VMAP_MAX_ALLOC)) {
2346 mem = vb_alloc(size, GFP_KERNEL);
2347 if (IS_ERR(mem))
2348 return NULL;
2349 addr = (unsigned long)mem;
2350 } else {
2351 struct vmap_area *va;
2352 va = alloc_vmap_area(size, PAGE_SIZE,
869176a0
BH
2353 VMALLOC_START, VMALLOC_END,
2354 node, GFP_KERNEL, VMAP_RAM);
db64fe02
NP
2355 if (IS_ERR(va))
2356 return NULL;
2357
2358 addr = va->va_start;
2359 mem = (void *)addr;
2360 }
d98c9e83 2361
b67177ec
NP
2362 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2363 pages, PAGE_SHIFT) < 0) {
db64fe02
NP
2364 vm_unmap_ram(mem, count);
2365 return NULL;
2366 }
b67177ec 2367
23689e91
AK
2368 /*
2369 * Mark the pages as accessible, now that they are mapped.
2370 * With hardware tag-based KASAN, marking is skipped for
2371 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2372 */
f6e39794 2373 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
19f1c3ac 2374
db64fe02
NP
2375 return mem;
2376}
2377EXPORT_SYMBOL(vm_map_ram);
2378
4341fa45 2379static struct vm_struct *vmlist __initdata;
92eac168 2380
121e6f32
NP
2381static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2382{
2383#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2384 return vm->page_order;
2385#else
2386 return 0;
2387#endif
2388}
2389
2390static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2391{
2392#ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2393 vm->page_order = order;
2394#else
2395 BUG_ON(order != 0);
2396#endif
2397}
2398
be9b7335
NP
2399/**
2400 * vm_area_add_early - add vmap area early during boot
2401 * @vm: vm_struct to add
2402 *
2403 * This function is used to add fixed kernel vm area to vmlist before
2404 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2405 * should contain proper values and the other fields should be zero.
2406 *
2407 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2408 */
2409void __init vm_area_add_early(struct vm_struct *vm)
2410{
2411 struct vm_struct *tmp, **p;
2412
2413 BUG_ON(vmap_initialized);
2414 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2415 if (tmp->addr >= vm->addr) {
2416 BUG_ON(tmp->addr < vm->addr + vm->size);
2417 break;
2418 } else
2419 BUG_ON(tmp->addr + tmp->size > vm->addr);
2420 }
2421 vm->next = *p;
2422 *p = vm;
2423}
2424
f0aa6617
TH
2425/**
2426 * vm_area_register_early - register vmap area early during boot
2427 * @vm: vm_struct to register
c0c0a293 2428 * @align: requested alignment
f0aa6617
TH
2429 *
2430 * This function is used to register kernel vm area before
2431 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2432 * proper values on entry and other fields should be zero. On return,
2433 * vm->addr contains the allocated address.
2434 *
2435 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2436 */
c0c0a293 2437void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617 2438{
0eb68437
KW
2439 unsigned long addr = ALIGN(VMALLOC_START, align);
2440 struct vm_struct *cur, **p;
c0c0a293 2441
0eb68437 2442 BUG_ON(vmap_initialized);
f0aa6617 2443
0eb68437
KW
2444 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2445 if ((unsigned long)cur->addr - addr >= vm->size)
2446 break;
2447 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2448 }
f0aa6617 2449
0eb68437
KW
2450 BUG_ON(addr > VMALLOC_END - vm->size);
2451 vm->addr = (void *)addr;
2452 vm->next = *p;
2453 *p = vm;
3252b1d8 2454 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
f0aa6617
TH
2455}
2456
68ad4a33
URS
2457static void vmap_init_free_space(void)
2458{
2459 unsigned long vmap_start = 1;
2460 const unsigned long vmap_end = ULONG_MAX;
2461 struct vmap_area *busy, *free;
2462
2463 /*
2464 * B F B B B F
2465 * -|-----|.....|-----|-----|-----|.....|-
2466 * | The KVA space |
2467 * |<--------------------------------->|
2468 */
2469 list_for_each_entry(busy, &vmap_area_list, list) {
2470 if (busy->va_start - vmap_start > 0) {
2471 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2472 if (!WARN_ON_ONCE(!free)) {
2473 free->va_start = vmap_start;
2474 free->va_end = busy->va_start;
2475
2476 insert_vmap_area_augment(free, NULL,
2477 &free_vmap_area_root,
2478 &free_vmap_area_list);
2479 }
2480 }
2481
2482 vmap_start = busy->va_end;
2483 }
2484
2485 if (vmap_end - vmap_start > 0) {
2486 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2487 if (!WARN_ON_ONCE(!free)) {
2488 free->va_start = vmap_start;
2489 free->va_end = vmap_end;
2490
2491 insert_vmap_area_augment(free, NULL,
2492 &free_vmap_area_root,
2493 &free_vmap_area_list);
2494 }
2495 }
2496}
2497
e36176be
URS
2498static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2499 struct vmap_area *va, unsigned long flags, const void *caller)
cf88c790 2500{
cf88c790
TH
2501 vm->flags = flags;
2502 vm->addr = (void *)va->va_start;
2503 vm->size = va->va_end - va->va_start;
2504 vm->caller = caller;
db1aecaf 2505 va->vm = vm;
e36176be
URS
2506}
2507
2508static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2509 unsigned long flags, const void *caller)
2510{
2511 spin_lock(&vmap_area_lock);
2512 setup_vmalloc_vm_locked(vm, va, flags, caller);
c69480ad 2513 spin_unlock(&vmap_area_lock);
f5252e00 2514}
cf88c790 2515
20fc02b4 2516static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 2517{
d4033afd 2518 /*
20fc02b4 2519 * Before removing VM_UNINITIALIZED,
d4033afd
JK
2520 * we should make sure that vm has proper values.
2521 * Pair with smp_rmb() in show_numa_info().
2522 */
2523 smp_wmb();
20fc02b4 2524 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
2525}
2526
db64fe02 2527static struct vm_struct *__get_vm_area_node(unsigned long size,
7ca3027b
DA
2528 unsigned long align, unsigned long shift, unsigned long flags,
2529 unsigned long start, unsigned long end, int node,
2530 gfp_t gfp_mask, const void *caller)
db64fe02 2531{
0006526d 2532 struct vmap_area *va;
db64fe02 2533 struct vm_struct *area;
d98c9e83 2534 unsigned long requested_size = size;
1da177e4 2535
52fd24ca 2536 BUG_ON(in_interrupt());
7ca3027b 2537 size = ALIGN(size, 1ul << shift);
31be8309
OH
2538 if (unlikely(!size))
2539 return NULL;
1da177e4 2540
252e5c6e 2541 if (flags & VM_IOREMAP)
2542 align = 1ul << clamp_t(int, get_count_order_long(size),
2543 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2544
cf88c790 2545 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
2546 if (unlikely(!area))
2547 return NULL;
2548
71394fe5
AR
2549 if (!(flags & VM_NO_GUARD))
2550 size += PAGE_SIZE;
1da177e4 2551
869176a0 2552 va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
db64fe02
NP
2553 if (IS_ERR(va)) {
2554 kfree(area);
2555 return NULL;
1da177e4 2556 }
1da177e4 2557
d98c9e83 2558 setup_vmalloc_vm(area, va, flags, caller);
3c5c3cfb 2559
19f1c3ac
AK
2560 /*
2561 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2562 * best-effort approach, as they can be mapped outside of vmalloc code.
2563 * For VM_ALLOC mappings, the pages are marked as accessible after
2564 * getting mapped in __vmalloc_node_range().
23689e91
AK
2565 * With hardware tag-based KASAN, marking is skipped for
2566 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
19f1c3ac
AK
2567 */
2568 if (!(flags & VM_ALLOC))
23689e91 2569 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
f6e39794 2570 KASAN_VMALLOC_PROT_NORMAL);
1d96320f 2571
1da177e4 2572 return area;
1da177e4
LT
2573}
2574
c2968612
BH
2575struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2576 unsigned long start, unsigned long end,
5e6cafc8 2577 const void *caller)
c2968612 2578{
7ca3027b
DA
2579 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2580 NUMA_NO_NODE, GFP_KERNEL, caller);
c2968612
BH
2581}
2582
1da177e4 2583/**
92eac168
MR
2584 * get_vm_area - reserve a contiguous kernel virtual area
2585 * @size: size of the area
2586 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1da177e4 2587 *
92eac168
MR
2588 * Search an area of @size in the kernel virtual mapping area,
2589 * and reserved it for out purposes. Returns the area descriptor
2590 * on success or %NULL on failure.
a862f68a
MR
2591 *
2592 * Return: the area descriptor on success or %NULL on failure.
1da177e4
LT
2593 */
2594struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2595{
7ca3027b
DA
2596 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2597 VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
2598 NUMA_NO_NODE, GFP_KERNEL,
2599 __builtin_return_address(0));
23016969
CL
2600}
2601
2602struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 2603 const void *caller)
23016969 2604{
7ca3027b
DA
2605 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2606 VMALLOC_START, VMALLOC_END,
00ef2d2f 2607 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
2608}
2609
e9da6e99 2610/**
92eac168
MR
2611 * find_vm_area - find a continuous kernel virtual area
2612 * @addr: base address
e9da6e99 2613 *
92eac168
MR
2614 * Search for the kernel VM area starting at @addr, and return it.
2615 * It is up to the caller to do all required locking to keep the returned
2616 * pointer valid.
a862f68a 2617 *
74640617 2618 * Return: the area descriptor on success or %NULL on failure.
e9da6e99
MS
2619 */
2620struct vm_struct *find_vm_area(const void *addr)
83342314 2621{
db64fe02 2622 struct vmap_area *va;
83342314 2623
db64fe02 2624 va = find_vmap_area((unsigned long)addr);
688fcbfc
PL
2625 if (!va)
2626 return NULL;
1da177e4 2627
688fcbfc 2628 return va->vm;
1da177e4
LT
2629}
2630
7856dfeb 2631/**
92eac168
MR
2632 * remove_vm_area - find and remove a continuous kernel virtual area
2633 * @addr: base address
7856dfeb 2634 *
92eac168
MR
2635 * Search for the kernel VM area starting at @addr, and remove it.
2636 * This function returns the found VM area, but using it is NOT safe
2637 * on SMP machines, except for its size or flags.
a862f68a 2638 *
74640617 2639 * Return: the area descriptor on success or %NULL on failure.
7856dfeb 2640 */
b3bdda02 2641struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 2642{
db64fe02 2643 struct vmap_area *va;
75c59ce7 2644 struct vm_struct *vm;
db64fe02 2645
5803ed29
CH
2646 might_sleep();
2647
17d3ef43
CH
2648 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2649 addr))
2650 return NULL;
c69480ad 2651
75c59ce7
CH
2652 va = find_unlink_vmap_area((unsigned long)addr);
2653 if (!va || !va->vm)
2654 return NULL;
2655 vm = va->vm;
dd32c279 2656
17d3ef43
CH
2657 debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2658 debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
75c59ce7 2659 kasan_free_module_shadow(vm);
17d3ef43 2660 kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
dd3b8353 2661
75c59ce7
CH
2662 free_unmap_vmap_area(va);
2663 return vm;
7856dfeb
AK
2664}
2665
868b104d
RE
2666static inline void set_area_direct_map(const struct vm_struct *area,
2667 int (*set_direct_map)(struct page *page))
2668{
2669 int i;
2670
121e6f32 2671 /* HUGE_VMALLOC passes small pages to set_direct_map */
868b104d
RE
2672 for (i = 0; i < area->nr_pages; i++)
2673 if (page_address(area->pages[i]))
2674 set_direct_map(area->pages[i]);
2675}
2676
9e5fa0ae
CH
2677/*
2678 * Flush the vm mapping and reset the direct map.
2679 */
2680static void vm_reset_perms(struct vm_struct *area)
868b104d 2681{
868b104d 2682 unsigned long start = ULONG_MAX, end = 0;
121e6f32 2683 unsigned int page_order = vm_area_page_order(area);
31e67340 2684 int flush_dmap = 0;
868b104d
RE
2685 int i;
2686
868b104d 2687 /*
9e5fa0ae 2688 * Find the start and end range of the direct mappings to make sure that
868b104d
RE
2689 * the vm_unmap_aliases() flush includes the direct map.
2690 */
121e6f32 2691 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
8e41f872 2692 unsigned long addr = (unsigned long)page_address(area->pages[i]);
9e5fa0ae 2693
8e41f872 2694 if (addr) {
121e6f32
NP
2695 unsigned long page_size;
2696
2697 page_size = PAGE_SIZE << page_order;
868b104d 2698 start = min(addr, start);
121e6f32 2699 end = max(addr + page_size, end);
31e67340 2700 flush_dmap = 1;
868b104d
RE
2701 }
2702 }
2703
2704 /*
2705 * Set direct map to something invalid so that it won't be cached if
2706 * there are any accesses after the TLB flush, then flush the TLB and
2707 * reset the direct map permissions to the default.
2708 */
2709 set_area_direct_map(area, set_direct_map_invalid_noflush);
31e67340 2710 _vm_unmap_aliases(start, end, flush_dmap);
868b104d
RE
2711 set_area_direct_map(area, set_direct_map_default_noflush);
2712}
2713
208162f4 2714static void delayed_vfree_work(struct work_struct *w)
1da177e4 2715{
208162f4
CH
2716 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2717 struct llist_node *t, *llnode;
bf22e37a 2718
208162f4 2719 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
5d3d31d6 2720 vfree(llnode);
bf22e37a
AR
2721}
2722
2723/**
92eac168
MR
2724 * vfree_atomic - release memory allocated by vmalloc()
2725 * @addr: memory base address
bf22e37a 2726 *
92eac168
MR
2727 * This one is just like vfree() but can be called in any atomic context
2728 * except NMIs.
bf22e37a
AR
2729 */
2730void vfree_atomic(const void *addr)
2731{
01e2e839 2732 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
bf22e37a 2733
01e2e839 2734 BUG_ON(in_nmi());
bf22e37a
AR
2735 kmemleak_free(addr);
2736
01e2e839
CH
2737 /*
2738 * Use raw_cpu_ptr() because this can be called from preemptible
2739 * context. Preemption is absolutely fine here, because the llist_add()
2740 * implementation is lockless, so it works even if we are adding to
2741 * another cpu's list. schedule_work() should be fine with this too.
2742 */
2743 if (addr && llist_add((struct llist_node *)addr, &p->list))
2744 schedule_work(&p->wq);
c67dc624
RP
2745}
2746
1da177e4 2747/**
fa307474
MWO
2748 * vfree - Release memory allocated by vmalloc()
2749 * @addr: Memory base address
1da177e4 2750 *
fa307474
MWO
2751 * Free the virtually continuous memory area starting at @addr, as obtained
2752 * from one of the vmalloc() family of APIs. This will usually also free the
2753 * physical memory underlying the virtual allocation, but that memory is
2754 * reference counted, so it will not be freed until the last user goes away.
1da177e4 2755 *
fa307474 2756 * If @addr is NULL, no operation is performed.
c9fcee51 2757 *
fa307474 2758 * Context:
92eac168 2759 * May sleep if called *not* from interrupt context.
fa307474
MWO
2760 * Must not be called in NMI context (strictly speaking, it could be
2761 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
f0953a1b 2762 * conventions for vfree() arch-dependent would be a really bad idea).
1da177e4 2763 */
b3bdda02 2764void vfree(const void *addr)
1da177e4 2765{
79311c1f
CH
2766 struct vm_struct *vm;
2767 int i;
89219d37 2768
01e2e839
CH
2769 if (unlikely(in_interrupt())) {
2770 vfree_atomic(addr);
2771 return;
2772 }
89219d37 2773
01e2e839 2774 BUG_ON(in_nmi());
89219d37 2775 kmemleak_free(addr);
01e2e839 2776 might_sleep();
a8dda165 2777
32fcfd40
AV
2778 if (!addr)
2779 return;
c67dc624 2780
79311c1f
CH
2781 vm = remove_vm_area(addr);
2782 if (unlikely(!vm)) {
2783 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2784 addr);
2785 return;
2786 }
2787
9e5fa0ae
CH
2788 if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2789 vm_reset_perms(vm);
79311c1f
CH
2790 for (i = 0; i < vm->nr_pages; i++) {
2791 struct page *page = vm->pages[i];
2792
2793 BUG_ON(!page);
2794 mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2795 /*
2796 * High-order allocs for huge vmallocs are split, so
2797 * can be freed as an array of order-0 allocations
2798 */
dcc1be11 2799 __free_page(page);
79311c1f
CH
2800 cond_resched();
2801 }
2802 atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2803 kvfree(vm->pages);
2804 kfree(vm);
1da177e4 2805}
1da177e4
LT
2806EXPORT_SYMBOL(vfree);
2807
2808/**
92eac168
MR
2809 * vunmap - release virtual mapping obtained by vmap()
2810 * @addr: memory base address
1da177e4 2811 *
92eac168
MR
2812 * Free the virtually contiguous memory area starting at @addr,
2813 * which was created from the page array passed to vmap().
1da177e4 2814 *
92eac168 2815 * Must not be called in interrupt context.
1da177e4 2816 */
b3bdda02 2817void vunmap(const void *addr)
1da177e4 2818{
79311c1f
CH
2819 struct vm_struct *vm;
2820
1da177e4 2821 BUG_ON(in_interrupt());
34754b69 2822 might_sleep();
79311c1f
CH
2823
2824 if (!addr)
2825 return;
2826 vm = remove_vm_area(addr);
2827 if (unlikely(!vm)) {
2828 WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2829 addr);
2830 return;
2831 }
2832 kfree(vm);
1da177e4 2833}
1da177e4
LT
2834EXPORT_SYMBOL(vunmap);
2835
2836/**
92eac168
MR
2837 * vmap - map an array of pages into virtually contiguous space
2838 * @pages: array of page pointers
2839 * @count: number of pages to map
2840 * @flags: vm_area->flags
2841 * @prot: page protection for the mapping
2842 *
b944afc9
CH
2843 * Maps @count pages from @pages into contiguous kernel virtual space.
2844 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2845 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2846 * are transferred from the caller to vmap(), and will be freed / dropped when
2847 * vfree() is called on the return value.
a862f68a
MR
2848 *
2849 * Return: the address of the area or %NULL on failure
1da177e4
LT
2850 */
2851void *vmap(struct page **pages, unsigned int count,
92eac168 2852 unsigned long flags, pgprot_t prot)
1da177e4
LT
2853{
2854 struct vm_struct *area;
b67177ec 2855 unsigned long addr;
65ee03c4 2856 unsigned long size; /* In bytes */
1da177e4 2857
34754b69
PZ
2858 might_sleep();
2859
37f3605e
CH
2860 if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2861 return NULL;
2862
bd1a8fb2
PZ
2863 /*
2864 * Your top guard is someone else's bottom guard. Not having a top
2865 * guard compromises someone else's mappings too.
2866 */
2867 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2868 flags &= ~VM_NO_GUARD;
2869
ca79b0c2 2870 if (count > totalram_pages())
1da177e4
LT
2871 return NULL;
2872
65ee03c4
GJM
2873 size = (unsigned long)count << PAGE_SHIFT;
2874 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
2875 if (!area)
2876 return NULL;
23016969 2877
b67177ec
NP
2878 addr = (unsigned long)area->addr;
2879 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2880 pages, PAGE_SHIFT) < 0) {
1da177e4
LT
2881 vunmap(area->addr);
2882 return NULL;
2883 }
2884
c22ee528 2885 if (flags & VM_MAP_PUT_PAGES) {
b944afc9 2886 area->pages = pages;
c22ee528
ML
2887 area->nr_pages = count;
2888 }
1da177e4
LT
2889 return area->addr;
2890}
1da177e4
LT
2891EXPORT_SYMBOL(vmap);
2892
3e9a9e25
CH
2893#ifdef CONFIG_VMAP_PFN
2894struct vmap_pfn_data {
2895 unsigned long *pfns;
2896 pgprot_t prot;
2897 unsigned int idx;
2898};
2899
2900static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2901{
2902 struct vmap_pfn_data *data = private;
2903
2904 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2905 return -EINVAL;
2906 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2907 return 0;
2908}
2909
2910/**
2911 * vmap_pfn - map an array of PFNs into virtually contiguous space
2912 * @pfns: array of PFNs
2913 * @count: number of pages to map
2914 * @prot: page protection for the mapping
2915 *
2916 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2917 * the start address of the mapping.
2918 */
2919void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2920{
2921 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2922 struct vm_struct *area;
2923
2924 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2925 __builtin_return_address(0));
2926 if (!area)
2927 return NULL;
2928 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2929 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2930 free_vm_area(area);
2931 return NULL;
2932 }
2933 return area->addr;
2934}
2935EXPORT_SYMBOL_GPL(vmap_pfn);
2936#endif /* CONFIG_VMAP_PFN */
2937
12b9f873
UR
2938static inline unsigned int
2939vm_area_alloc_pages(gfp_t gfp, int nid,
343ab817 2940 unsigned int order, unsigned int nr_pages, struct page **pages)
12b9f873
UR
2941{
2942 unsigned int nr_allocated = 0;
e9c3cda4
MH
2943 gfp_t alloc_gfp = gfp;
2944 bool nofail = false;
ffb29b1c
CW
2945 struct page *page;
2946 int i;
12b9f873
UR
2947
2948 /*
2949 * For order-0 pages we make use of bulk allocator, if
2950 * the page array is partly or not at all populated due
2951 * to fails, fallback to a single page allocator that is
2952 * more permissive.
2953 */
c00b6b96 2954 if (!order) {
e9c3cda4 2955 /* bulk allocator doesn't support nofail req. officially */
9376130c
MH
2956 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2957
343ab817
URS
2958 while (nr_allocated < nr_pages) {
2959 unsigned int nr, nr_pages_request;
2960
2961 /*
2962 * A maximum allowed request is hard-coded and is 100
2963 * pages per call. That is done in order to prevent a
2964 * long preemption off scenario in the bulk-allocator
2965 * so the range is [1:100].
2966 */
2967 nr_pages_request = min(100U, nr_pages - nr_allocated);
2968
c00b6b96
CW
2969 /* memory allocation should consider mempolicy, we can't
2970 * wrongly use nearest node when nid == NUMA_NO_NODE,
2971 * otherwise memory may be allocated in only one node,
98af39d5 2972 * but mempolicy wants to alloc memory by interleaving.
c00b6b96
CW
2973 */
2974 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
9376130c 2975 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
c00b6b96
CW
2976 nr_pages_request,
2977 pages + nr_allocated);
2978
2979 else
9376130c 2980 nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
c00b6b96
CW
2981 nr_pages_request,
2982 pages + nr_allocated);
343ab817
URS
2983
2984 nr_allocated += nr;
2985 cond_resched();
2986
2987 /*
2988 * If zero or pages were obtained partly,
2989 * fallback to a single page allocator.
2990 */
2991 if (nr != nr_pages_request)
2992 break;
2993 }
e9c3cda4
MH
2994 } else if (gfp & __GFP_NOFAIL) {
2995 /*
2996 * Higher order nofail allocations are really expensive and
2997 * potentially dangerous (pre-mature OOM, disruptive reclaim
2998 * and compaction etc.
2999 */
3000 alloc_gfp &= ~__GFP_NOFAIL;
3001 nofail = true;
3b8000ae 3002 }
12b9f873
UR
3003
3004 /* High-order pages or fallback path if "bulk" fails. */
ffb29b1c 3005 while (nr_allocated < nr_pages) {
dd544141
VA
3006 if (fatal_signal_pending(current))
3007 break;
3008
ffb29b1c 3009 if (nid == NUMA_NO_NODE)
e9c3cda4 3010 page = alloc_pages(alloc_gfp, order);
ffb29b1c 3011 else
e9c3cda4
MH
3012 page = alloc_pages_node(nid, alloc_gfp, order);
3013 if (unlikely(!page)) {
3014 if (!nofail)
3015 break;
3016
3017 /* fall back to the zero order allocations */
3018 alloc_gfp |= __GFP_NOFAIL;
3019 order = 0;
3020 continue;
3021 }
3022
3b8000ae
NP
3023 /*
3024 * Higher order allocations must be able to be treated as
3025 * indepdenent small pages by callers (as they can with
3026 * small-page vmallocs). Some drivers do their own refcounting
3027 * on vmalloc_to_page() pages, some use page->mapping,
3028 * page->lru, etc.
3029 */
3030 if (order)
3031 split_page(page, order);
12b9f873
UR
3032
3033 /*
3034 * Careful, we allocate and map page-order pages, but
3035 * tracking is done per PAGE_SIZE page so as to keep the
3036 * vm_struct APIs independent of the physical/mapped size.
3037 */
3038 for (i = 0; i < (1U << order); i++)
3039 pages[nr_allocated + i] = page + i;
3040
12e376a6 3041 cond_resched();
12b9f873
UR
3042 nr_allocated += 1U << order;
3043 }
3044
3045 return nr_allocated;
3046}
3047
e31d9eb5 3048static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
121e6f32
NP
3049 pgprot_t prot, unsigned int page_shift,
3050 int node)
1da177e4 3051{
930f036b 3052 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
9376130c 3053 bool nofail = gfp_mask & __GFP_NOFAIL;
121e6f32
NP
3054 unsigned long addr = (unsigned long)area->addr;
3055 unsigned long size = get_vm_area_size(area);
34fe6537 3056 unsigned long array_size;
121e6f32
NP
3057 unsigned int nr_small_pages = size >> PAGE_SHIFT;
3058 unsigned int page_order;
451769eb
MH
3059 unsigned int flags;
3060 int ret;
1da177e4 3061
121e6f32 3062 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
80b1d8fd 3063
f255935b
CH
3064 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3065 gfp_mask |= __GFP_HIGHMEM;
1da177e4 3066
1da177e4 3067 /* Please note that the recursion is strictly bounded. */
8757d5fa 3068 if (array_size > PAGE_SIZE) {
5c1f4e69 3069 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
f255935b 3070 area->caller);
286e1ea3 3071 } else {
5c1f4e69 3072 area->pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 3073 }
7ea36242 3074
5c1f4e69 3075 if (!area->pages) {
c3d77172 3076 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3077 "vmalloc error: size %lu, failed to allocated page array size %lu",
3078 nr_small_pages * PAGE_SIZE, array_size);
cd61413b 3079 free_vm_area(area);
1da177e4
LT
3080 return NULL;
3081 }
1da177e4 3082
121e6f32 3083 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
121e6f32 3084 page_order = vm_area_page_order(area);
bf53d6f8 3085
c3d77172
URS
3086 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3087 node, page_order, nr_small_pages, area->pages);
5c1f4e69 3088
97105f0a 3089 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
4e5aa1f4 3090 if (gfp_mask & __GFP_ACCOUNT) {
3b8000ae 3091 int i;
4e5aa1f4 3092
3b8000ae
NP
3093 for (i = 0; i < area->nr_pages; i++)
3094 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
4e5aa1f4 3095 }
1da177e4 3096
5c1f4e69
URS
3097 /*
3098 * If not enough pages were obtained to accomplish an
f41f036b 3099 * allocation request, free them via vfree() if any.
5c1f4e69
URS
3100 */
3101 if (area->nr_pages != nr_small_pages) {
f349b15e
YS
3102 /* vm_area_alloc_pages() can also fail due to a fatal signal */
3103 if (!fatal_signal_pending(current))
3104 warn_alloc(gfp_mask, NULL,
3105 "vmalloc error: size %lu, page order %u, failed to allocate pages",
3106 area->nr_pages * PAGE_SIZE, page_order);
5c1f4e69
URS
3107 goto fail;
3108 }
3109
451769eb
MH
3110 /*
3111 * page tables allocations ignore external gfp mask, enforce it
3112 * by the scope API
3113 */
3114 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3115 flags = memalloc_nofs_save();
3116 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3117 flags = memalloc_noio_save();
3118
9376130c
MH
3119 do {
3120 ret = vmap_pages_range(addr, addr + size, prot, area->pages,
451769eb 3121 page_shift);
9376130c
MH
3122 if (nofail && (ret < 0))
3123 schedule_timeout_uninterruptible(1);
3124 } while (nofail && (ret < 0));
451769eb
MH
3125
3126 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3127 memalloc_nofs_restore(flags);
3128 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3129 memalloc_noio_restore(flags);
3130
3131 if (ret < 0) {
c3d77172 3132 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3133 "vmalloc error: size %lu, failed to map pages",
3134 area->nr_pages * PAGE_SIZE);
1da177e4 3135 goto fail;
d70bec8c 3136 }
ed1f324c 3137
1da177e4
LT
3138 return area->addr;
3139
3140fail:
f41f036b 3141 vfree(area->addr);
1da177e4
LT
3142 return NULL;
3143}
3144
3145/**
92eac168
MR
3146 * __vmalloc_node_range - allocate virtually contiguous memory
3147 * @size: allocation size
3148 * @align: desired alignment
3149 * @start: vm area range start
3150 * @end: vm area range end
3151 * @gfp_mask: flags for the page level allocator
3152 * @prot: protection mask for the allocated pages
3153 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
3154 * @node: node to use for allocation or NUMA_NO_NODE
3155 * @caller: caller's return address
3156 *
3157 * Allocate enough pages to cover @size from the page level
b7d90e7a 3158 * allocator with @gfp_mask flags. Please note that the full set of gfp
30d3f011
MH
3159 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3160 * supported.
3161 * Zone modifiers are not supported. From the reclaim modifiers
3162 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3163 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3164 * __GFP_RETRY_MAYFAIL are not supported).
3165 *
3166 * __GFP_NOWARN can be used to suppress failures messages.
b7d90e7a
MH
3167 *
3168 * Map them into contiguous kernel virtual space, using a pagetable
3169 * protection of @prot.
a862f68a
MR
3170 *
3171 * Return: the address of the area or %NULL on failure
1da177e4 3172 */
d0a21265
DR
3173void *__vmalloc_node_range(unsigned long size, unsigned long align,
3174 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
3175 pgprot_t prot, unsigned long vm_flags, int node,
3176 const void *caller)
1da177e4
LT
3177{
3178 struct vm_struct *area;
19f1c3ac 3179 void *ret;
f6e39794 3180 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
89219d37 3181 unsigned long real_size = size;
121e6f32
NP
3182 unsigned long real_align = align;
3183 unsigned int shift = PAGE_SHIFT;
1da177e4 3184
d70bec8c
NP
3185 if (WARN_ON_ONCE(!size))
3186 return NULL;
3187
3188 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3189 warn_alloc(gfp_mask, NULL,
f4bdfeaf
URS
3190 "vmalloc error: size %lu, exceeds total pages",
3191 real_size);
d70bec8c 3192 return NULL;
121e6f32
NP
3193 }
3194
559089e0 3195 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
121e6f32 3196 unsigned long size_per_node;
1da177e4 3197
121e6f32
NP
3198 /*
3199 * Try huge pages. Only try for PAGE_KERNEL allocations,
3200 * others like modules don't yet expect huge pages in
3201 * their allocations due to apply_to_page_range not
3202 * supporting them.
3203 */
3204
3205 size_per_node = size;
3206 if (node == NUMA_NO_NODE)
3207 size_per_node /= num_online_nodes();
3382bbee 3208 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
121e6f32 3209 shift = PMD_SHIFT;
3382bbee
CL
3210 else
3211 shift = arch_vmap_pte_supported_shift(size_per_node);
3212
3213 align = max(real_align, 1UL << shift);
3214 size = ALIGN(real_size, 1UL << shift);
121e6f32
NP
3215 }
3216
3217again:
7ca3027b
DA
3218 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3219 VM_UNINITIALIZED | vm_flags, start, end, node,
3220 gfp_mask, caller);
d70bec8c 3221 if (!area) {
9376130c 3222 bool nofail = gfp_mask & __GFP_NOFAIL;
d70bec8c 3223 warn_alloc(gfp_mask, NULL,
9376130c
MH
3224 "vmalloc error: size %lu, vm_struct allocation failed%s",
3225 real_size, (nofail) ? ". Retrying." : "");
3226 if (nofail) {
3227 schedule_timeout_uninterruptible(1);
3228 goto again;
3229 }
de7d2b56 3230 goto fail;
d70bec8c 3231 }
1da177e4 3232
f6e39794
AK
3233 /*
3234 * Prepare arguments for __vmalloc_area_node() and
3235 * kasan_unpoison_vmalloc().
3236 */
3237 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3238 if (kasan_hw_tags_enabled()) {
3239 /*
3240 * Modify protection bits to allow tagging.
3241 * This must be done before mapping.
3242 */
3243 prot = arch_vmap_pgprot_tagged(prot);
01d92c7f 3244
f6e39794
AK
3245 /*
3246 * Skip page_alloc poisoning and zeroing for physical
3247 * pages backing VM_ALLOC mapping. Memory is instead
3248 * poisoned and zeroed by kasan_unpoison_vmalloc().
3249 */
0a54864f 3250 gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
f6e39794
AK
3251 }
3252
3253 /* Take note that the mapping is PAGE_KERNEL. */
3254 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
23689e91
AK
3255 }
3256
01d92c7f 3257 /* Allocate physical pages and map them into vmalloc space. */
19f1c3ac
AK
3258 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3259 if (!ret)
121e6f32 3260 goto fail;
89219d37 3261
23689e91
AK
3262 /*
3263 * Mark the pages as accessible, now that they are mapped.
6c2f761d
AK
3264 * The condition for setting KASAN_VMALLOC_INIT should complement the
3265 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3266 * to make sure that memory is initialized under the same conditions.
f6e39794
AK
3267 * Tag-based KASAN modes only assign tags to normal non-executable
3268 * allocations, see __kasan_unpoison_vmalloc().
23689e91 3269 */
f6e39794 3270 kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
6c2f761d
AK
3271 if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3272 (gfp_mask & __GFP_SKIP_ZERO))
23689e91 3273 kasan_flags |= KASAN_VMALLOC_INIT;
f6e39794 3274 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */
23689e91 3275 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
19f1c3ac 3276
f5252e00 3277 /*
20fc02b4
ZY
3278 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3279 * flag. It means that vm_struct is not fully initialized.
4341fa45 3280 * Now, it is fully initialized, so remove this flag here.
f5252e00 3281 */
20fc02b4 3282 clear_vm_uninitialized_flag(area);
f5252e00 3283
7ca3027b 3284 size = PAGE_ALIGN(size);
60115fa5
KW
3285 if (!(vm_flags & VM_DEFER_KMEMLEAK))
3286 kmemleak_vmalloc(area, size, gfp_mask);
89219d37 3287
19f1c3ac 3288 return area->addr;
de7d2b56
JP
3289
3290fail:
121e6f32
NP
3291 if (shift > PAGE_SHIFT) {
3292 shift = PAGE_SHIFT;
3293 align = real_align;
3294 size = real_size;
3295 goto again;
3296 }
3297
de7d2b56 3298 return NULL;
1da177e4
LT
3299}
3300
d0a21265 3301/**
92eac168
MR
3302 * __vmalloc_node - allocate virtually contiguous memory
3303 * @size: allocation size
3304 * @align: desired alignment
3305 * @gfp_mask: flags for the page level allocator
92eac168
MR
3306 * @node: node to use for allocation or NUMA_NO_NODE
3307 * @caller: caller's return address
a7c3e901 3308 *
f38fcb9c
CH
3309 * Allocate enough pages to cover @size from the page level allocator with
3310 * @gfp_mask flags. Map them into contiguous kernel virtual space.
a7c3e901 3311 *
92eac168
MR
3312 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3313 * and __GFP_NOFAIL are not supported
a7c3e901 3314 *
92eac168
MR
3315 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3316 * with mm people.
a862f68a
MR
3317 *
3318 * Return: pointer to the allocated memory or %NULL on error
d0a21265 3319 */
2b905948 3320void *__vmalloc_node(unsigned long size, unsigned long align,
f38fcb9c 3321 gfp_t gfp_mask, int node, const void *caller)
d0a21265
DR
3322{
3323 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
f38fcb9c 3324 gfp_mask, PAGE_KERNEL, 0, node, caller);
d0a21265 3325}
c3f896dc
CH
3326/*
3327 * This is only for performance analysis of vmalloc and stress purpose.
3328 * It is required by vmalloc test module, therefore do not use it other
3329 * than that.
3330 */
3331#ifdef CONFIG_TEST_VMALLOC_MODULE
3332EXPORT_SYMBOL_GPL(__vmalloc_node);
3333#endif
d0a21265 3334
88dca4ca 3335void *__vmalloc(unsigned long size, gfp_t gfp_mask)
930fc45a 3336{
f38fcb9c 3337 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
23016969 3338 __builtin_return_address(0));
930fc45a 3339}
1da177e4
LT
3340EXPORT_SYMBOL(__vmalloc);
3341
3342/**
92eac168
MR
3343 * vmalloc - allocate virtually contiguous memory
3344 * @size: allocation size
3345 *
3346 * Allocate enough pages to cover @size from the page level
3347 * allocator and map them into contiguous kernel virtual space.
1da177e4 3348 *
92eac168
MR
3349 * For tight control over page level allocator and protection flags
3350 * use __vmalloc() instead.
a862f68a
MR
3351 *
3352 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3353 */
3354void *vmalloc(unsigned long size)
3355{
4d39d728
CH
3356 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3357 __builtin_return_address(0));
1da177e4 3358}
1da177e4
LT
3359EXPORT_SYMBOL(vmalloc);
3360
15a64f5a 3361/**
559089e0
SL
3362 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3363 * @size: allocation size
3364 * @gfp_mask: flags for the page level allocator
15a64f5a 3365 *
559089e0 3366 * Allocate enough pages to cover @size from the page level
15a64f5a 3367 * allocator and map them into contiguous kernel virtual space.
559089e0
SL
3368 * If @size is greater than or equal to PMD_SIZE, allow using
3369 * huge pages for the memory
15a64f5a
CI
3370 *
3371 * Return: pointer to the allocated memory or %NULL on error
3372 */
559089e0 3373void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
15a64f5a
CI
3374{
3375 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
559089e0 3376 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
15a64f5a
CI
3377 NUMA_NO_NODE, __builtin_return_address(0));
3378}
559089e0 3379EXPORT_SYMBOL_GPL(vmalloc_huge);
15a64f5a 3380
e1ca7788 3381/**
92eac168
MR
3382 * vzalloc - allocate virtually contiguous memory with zero fill
3383 * @size: allocation size
3384 *
3385 * Allocate enough pages to cover @size from the page level
3386 * allocator and map them into contiguous kernel virtual space.
3387 * The memory allocated is set to zero.
3388 *
3389 * For tight control over page level allocator and protection flags
3390 * use __vmalloc() instead.
a862f68a
MR
3391 *
3392 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3393 */
3394void *vzalloc(unsigned long size)
3395{
4d39d728
CH
3396 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3397 __builtin_return_address(0));
e1ca7788
DY
3398}
3399EXPORT_SYMBOL(vzalloc);
3400
83342314 3401/**
ead04089
REB
3402 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3403 * @size: allocation size
83342314 3404 *
ead04089
REB
3405 * The resulting memory area is zeroed so it can be mapped to userspace
3406 * without leaking data.
a862f68a
MR
3407 *
3408 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3409 */
3410void *vmalloc_user(unsigned long size)
3411{
bc84c535
RP
3412 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3413 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3414 VM_USERMAP, NUMA_NO_NODE,
3415 __builtin_return_address(0));
83342314
NP
3416}
3417EXPORT_SYMBOL(vmalloc_user);
3418
930fc45a 3419/**
92eac168
MR
3420 * vmalloc_node - allocate memory on a specific node
3421 * @size: allocation size
3422 * @node: numa node
930fc45a 3423 *
92eac168
MR
3424 * Allocate enough pages to cover @size from the page level
3425 * allocator and map them into contiguous kernel virtual space.
930fc45a 3426 *
92eac168
MR
3427 * For tight control over page level allocator and protection flags
3428 * use __vmalloc() instead.
a862f68a
MR
3429 *
3430 * Return: pointer to the allocated memory or %NULL on error
930fc45a
CL
3431 */
3432void *vmalloc_node(unsigned long size, int node)
3433{
f38fcb9c
CH
3434 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3435 __builtin_return_address(0));
930fc45a
CL
3436}
3437EXPORT_SYMBOL(vmalloc_node);
3438
e1ca7788
DY
3439/**
3440 * vzalloc_node - allocate memory on a specific node with zero fill
3441 * @size: allocation size
3442 * @node: numa node
3443 *
3444 * Allocate enough pages to cover @size from the page level
3445 * allocator and map them into contiguous kernel virtual space.
3446 * The memory allocated is set to zero.
3447 *
a862f68a 3448 * Return: pointer to the allocated memory or %NULL on error
e1ca7788
DY
3449 */
3450void *vzalloc_node(unsigned long size, int node)
3451{
4d39d728
CH
3452 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3453 __builtin_return_address(0));
e1ca7788
DY
3454}
3455EXPORT_SYMBOL(vzalloc_node);
3456
0d08e0d3 3457#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
698d0831 3458#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3 3459#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
698d0831 3460#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
0d08e0d3 3461#else
698d0831
MH
3462/*
3463 * 64b systems should always have either DMA or DMA32 zones. For others
3464 * GFP_DMA32 should do the right thing and use the normal zone.
3465 */
68d68ff6 3466#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
0d08e0d3
AK
3467#endif
3468
1da177e4 3469/**
92eac168
MR
3470 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3471 * @size: allocation size
1da177e4 3472 *
92eac168
MR
3473 * Allocate enough 32bit PA addressable pages to cover @size from the
3474 * page level allocator and map them into contiguous kernel virtual space.
a862f68a
MR
3475 *
3476 * Return: pointer to the allocated memory or %NULL on error
1da177e4
LT
3477 */
3478void *vmalloc_32(unsigned long size)
3479{
f38fcb9c
CH
3480 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3481 __builtin_return_address(0));
1da177e4 3482}
1da177e4
LT
3483EXPORT_SYMBOL(vmalloc_32);
3484
83342314 3485/**
ead04089 3486 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
92eac168 3487 * @size: allocation size
ead04089
REB
3488 *
3489 * The resulting memory area is 32bit addressable and zeroed so it can be
3490 * mapped to userspace without leaking data.
a862f68a
MR
3491 *
3492 * Return: pointer to the allocated memory or %NULL on error
83342314
NP
3493 */
3494void *vmalloc_32_user(unsigned long size)
3495{
bc84c535
RP
3496 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3497 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3498 VM_USERMAP, NUMA_NO_NODE,
3499 __builtin_return_address(0));
83342314
NP
3500}
3501EXPORT_SYMBOL(vmalloc_32_user);
3502
d0107eb0 3503/*
4c91c07c
LS
3504 * Atomically zero bytes in the iterator.
3505 *
3506 * Returns the number of zeroed bytes.
d0107eb0 3507 */
4c91c07c
LS
3508static size_t zero_iter(struct iov_iter *iter, size_t count)
3509{
3510 size_t remains = count;
3511
3512 while (remains > 0) {
3513 size_t num, copied;
3514
3515 num = remains < PAGE_SIZE ? remains : PAGE_SIZE;
3516 copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3517 remains -= copied;
3518
3519 if (copied < num)
3520 break;
3521 }
d0107eb0 3522
4c91c07c
LS
3523 return count - remains;
3524}
3525
3526/*
3527 * small helper routine, copy contents to iter from addr.
3528 * If the page is not present, fill zero.
3529 *
3530 * Returns the number of copied bytes.
3531 */
3532static size_t aligned_vread_iter(struct iov_iter *iter,
3533 const char *addr, size_t count)
d0107eb0 3534{
4c91c07c
LS
3535 size_t remains = count;
3536 struct page *page;
d0107eb0 3537
4c91c07c 3538 while (remains > 0) {
d0107eb0 3539 unsigned long offset, length;
4c91c07c 3540 size_t copied = 0;
d0107eb0 3541
891c49ab 3542 offset = offset_in_page(addr);
d0107eb0 3543 length = PAGE_SIZE - offset;
4c91c07c
LS
3544 if (length > remains)
3545 length = remains;
3546 page = vmalloc_to_page(addr);
d0107eb0 3547 /*
4c91c07c
LS
3548 * To do safe access to this _mapped_ area, we need lock. But
3549 * adding lock here means that we need to add overhead of
3550 * vmalloc()/vfree() calls for this _debug_ interface, rarely
3551 * used. Instead of that, we'll use an local mapping via
3552 * copy_page_to_iter_nofault() and accept a small overhead in
3553 * this access function.
d0107eb0 3554 */
4c91c07c
LS
3555 if (page)
3556 copied = copy_page_to_iter_nofault(page, offset,
3557 length, iter);
3558 else
3559 copied = zero_iter(iter, length);
d0107eb0 3560
4c91c07c
LS
3561 addr += copied;
3562 remains -= copied;
3563
3564 if (copied != length)
3565 break;
d0107eb0 3566 }
4c91c07c
LS
3567
3568 return count - remains;
d0107eb0
KH
3569}
3570
4c91c07c
LS
3571/*
3572 * Read from a vm_map_ram region of memory.
3573 *
3574 * Returns the number of copied bytes.
3575 */
3576static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3577 size_t count, unsigned long flags)
06c89946
BH
3578{
3579 char *start;
3580 struct vmap_block *vb;
062eacf5 3581 struct xarray *xa;
06c89946 3582 unsigned long offset;
4c91c07c
LS
3583 unsigned int rs, re;
3584 size_t remains, n;
06c89946
BH
3585
3586 /*
3587 * If it's area created by vm_map_ram() interface directly, but
3588 * not further subdividing and delegating management to vmap_block,
3589 * handle it here.
3590 */
4c91c07c
LS
3591 if (!(flags & VMAP_BLOCK))
3592 return aligned_vread_iter(iter, addr, count);
3593
3594 remains = count;
06c89946
BH
3595
3596 /*
3597 * Area is split into regions and tracked with vmap_block, read out
3598 * each region and zero fill the hole between regions.
3599 */
fa1c77c1 3600 xa = addr_to_vb_xa((unsigned long) addr);
062eacf5 3601 vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
06c89946 3602 if (!vb)
4c91c07c 3603 goto finished_zero;
06c89946
BH
3604
3605 spin_lock(&vb->lock);
3606 if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3607 spin_unlock(&vb->lock);
4c91c07c 3608 goto finished_zero;
06c89946 3609 }
4c91c07c 3610
06c89946 3611 for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
4c91c07c
LS
3612 size_t copied;
3613
3614 if (remains == 0)
3615 goto finished;
3616
06c89946 3617 start = vmap_block_vaddr(vb->va->va_start, rs);
4c91c07c
LS
3618
3619 if (addr < start) {
3620 size_t to_zero = min_t(size_t, start - addr, remains);
3621 size_t zeroed = zero_iter(iter, to_zero);
3622
3623 addr += zeroed;
3624 remains -= zeroed;
3625
3626 if (remains == 0 || zeroed != to_zero)
3627 goto finished;
06c89946 3628 }
4c91c07c 3629
06c89946
BH
3630 /*it could start reading from the middle of used region*/
3631 offset = offset_in_page(addr);
3632 n = ((re - rs + 1) << PAGE_SHIFT) - offset;
4c91c07c
LS
3633 if (n > remains)
3634 n = remains;
3635
3636 copied = aligned_vread_iter(iter, start + offset, n);
06c89946 3637
4c91c07c
LS
3638 addr += copied;
3639 remains -= copied;
3640
3641 if (copied != n)
3642 goto finished;
06c89946 3643 }
4c91c07c 3644
06c89946
BH
3645 spin_unlock(&vb->lock);
3646
4c91c07c 3647finished_zero:
06c89946 3648 /* zero-fill the left dirty or free regions */
4c91c07c
LS
3649 return count - remains + zero_iter(iter, remains);
3650finished:
3651 /* We couldn't copy/zero everything */
3652 spin_unlock(&vb->lock);
3653 return count - remains;
06c89946
BH
3654}
3655
d0107eb0 3656/**
4c91c07c
LS
3657 * vread_iter() - read vmalloc area in a safe way to an iterator.
3658 * @iter: the iterator to which data should be written.
3659 * @addr: vm address.
3660 * @count: number of bytes to be read.
92eac168 3661 *
92eac168
MR
3662 * This function checks that addr is a valid vmalloc'ed area, and
3663 * copy data from that area to a given buffer. If the given memory range
3664 * of [addr...addr+count) includes some valid address, data is copied to
3665 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3666 * IOREMAP area is treated as memory hole and no copy is done.
3667 *
3668 * If [addr...addr+count) doesn't includes any intersects with alive
3669 * vm_struct area, returns 0. @buf should be kernel's buffer.
3670 *
3671 * Note: In usual ops, vread() is never necessary because the caller
3672 * should know vmalloc() area is valid and can use memcpy().
3673 * This is for routines which have to access vmalloc area without
bbcd53c9 3674 * any information, as /proc/kcore.
a862f68a
MR
3675 *
3676 * Return: number of bytes for which addr and buf should be increased
3677 * (same number as @count) or %0 if [addr...addr+count) doesn't
3678 * include any intersection with valid vmalloc area
d0107eb0 3679 */
4c91c07c 3680long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
1da177e4 3681{
e81ce85f
JK
3682 struct vmap_area *va;
3683 struct vm_struct *vm;
4c91c07c
LS
3684 char *vaddr;
3685 size_t n, size, flags, remains;
1da177e4 3686
4aff1dc4
AK
3687 addr = kasan_reset_tag(addr);
3688
1da177e4
LT
3689 /* Don't allow overflow */
3690 if ((unsigned long) addr + count < count)
3691 count = -(unsigned long) addr;
3692
4c91c07c
LS
3693 remains = count;
3694
e81ce85f 3695 spin_lock(&vmap_area_lock);
f181234a 3696 va = find_vmap_area_exceed_addr((unsigned long)addr);
f608788c 3697 if (!va)
4c91c07c 3698 goto finished_zero;
f181234a
CW
3699
3700 /* no intersects with alive vmap_area */
4c91c07c
LS
3701 if ((unsigned long)addr + remains <= va->va_start)
3702 goto finished_zero;
f181234a 3703
f608788c 3704 list_for_each_entry_from(va, &vmap_area_list, list) {
4c91c07c
LS
3705 size_t copied;
3706
3707 if (remains == 0)
3708 goto finished;
e81ce85f 3709
06c89946
BH
3710 vm = va->vm;
3711 flags = va->flags & VMAP_FLAGS_MASK;
3712 /*
3713 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3714 * be set together with VMAP_RAM.
3715 */
3716 WARN_ON(flags == VMAP_BLOCK);
3717
3718 if (!vm && !flags)
e81ce85f
JK
3719 continue;
3720
30a7a9b1
BH
3721 if (vm && (vm->flags & VM_UNINITIALIZED))
3722 continue;
4c91c07c 3723
30a7a9b1
BH
3724 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3725 smp_rmb();
3726
06c89946
BH
3727 vaddr = (char *) va->va_start;
3728 size = vm ? get_vm_area_size(vm) : va_size(va);
3729
3730 if (addr >= vaddr + size)
1da177e4 3731 continue;
4c91c07c
LS
3732
3733 if (addr < vaddr) {
3734 size_t to_zero = min_t(size_t, vaddr - addr, remains);
3735 size_t zeroed = zero_iter(iter, to_zero);
3736
3737 addr += zeroed;
3738 remains -= zeroed;
3739
3740 if (remains == 0 || zeroed != to_zero)
1da177e4 3741 goto finished;
1da177e4 3742 }
4c91c07c 3743
06c89946 3744 n = vaddr + size - addr;
4c91c07c
LS
3745 if (n > remains)
3746 n = remains;
06c89946
BH
3747
3748 if (flags & VMAP_RAM)
4c91c07c 3749 copied = vmap_ram_vread_iter(iter, addr, n, flags);
06c89946 3750 else if (!(vm->flags & VM_IOREMAP))
4c91c07c 3751 copied = aligned_vread_iter(iter, addr, n);
d0107eb0 3752 else /* IOREMAP area is treated as memory hole */
4c91c07c
LS
3753 copied = zero_iter(iter, n);
3754
3755 addr += copied;
3756 remains -= copied;
3757
3758 if (copied != n)
3759 goto finished;
1da177e4 3760 }
d0107eb0 3761
4c91c07c
LS
3762finished_zero:
3763 spin_unlock(&vmap_area_lock);
d0107eb0 3764 /* zero-fill memory holes */
4c91c07c
LS
3765 return count - remains + zero_iter(iter, remains);
3766finished:
3767 /* Nothing remains, or We couldn't copy/zero everything. */
3768 spin_unlock(&vmap_area_lock);
d0107eb0 3769
4c91c07c 3770 return count - remains;
1da177e4
LT
3771}
3772
83342314 3773/**
92eac168
MR
3774 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3775 * @vma: vma to cover
3776 * @uaddr: target user address to start at
3777 * @kaddr: virtual address of vmalloc kernel memory
bdebd6a2 3778 * @pgoff: offset from @kaddr to start at
92eac168 3779 * @size: size of map area
7682486b 3780 *
92eac168 3781 * Returns: 0 for success, -Exxx on failure
83342314 3782 *
92eac168
MR
3783 * This function checks that @kaddr is a valid vmalloc'ed area,
3784 * and that it is big enough to cover the range starting at
3785 * @uaddr in @vma. Will return failure if that criteria isn't
3786 * met.
83342314 3787 *
92eac168 3788 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 3789 */
e69e9d4a 3790int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
bdebd6a2
JH
3791 void *kaddr, unsigned long pgoff,
3792 unsigned long size)
83342314
NP
3793{
3794 struct vm_struct *area;
bdebd6a2
JH
3795 unsigned long off;
3796 unsigned long end_index;
3797
3798 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3799 return -EINVAL;
83342314 3800
e69e9d4a
HD
3801 size = PAGE_ALIGN(size);
3802
3803 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
3804 return -EINVAL;
3805
e69e9d4a 3806 area = find_vm_area(kaddr);
83342314 3807 if (!area)
db64fe02 3808 return -EINVAL;
83342314 3809
fe9041c2 3810 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
db64fe02 3811 return -EINVAL;
83342314 3812
bdebd6a2
JH
3813 if (check_add_overflow(size, off, &end_index) ||
3814 end_index > get_vm_area_size(area))
db64fe02 3815 return -EINVAL;
bdebd6a2 3816 kaddr += off;
83342314 3817
83342314 3818 do {
e69e9d4a 3819 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
3820 int ret;
3821
83342314
NP
3822 ret = vm_insert_page(vma, uaddr, page);
3823 if (ret)
3824 return ret;
3825
3826 uaddr += PAGE_SIZE;
e69e9d4a
HD
3827 kaddr += PAGE_SIZE;
3828 size -= PAGE_SIZE;
3829 } while (size > 0);
83342314 3830
1c71222e 3831 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
83342314 3832
db64fe02 3833 return 0;
83342314 3834}
e69e9d4a
HD
3835
3836/**
92eac168
MR
3837 * remap_vmalloc_range - map vmalloc pages to userspace
3838 * @vma: vma to cover (map full range of vma)
3839 * @addr: vmalloc memory
3840 * @pgoff: number of pages into addr before first page to map
e69e9d4a 3841 *
92eac168 3842 * Returns: 0 for success, -Exxx on failure
e69e9d4a 3843 *
92eac168
MR
3844 * This function checks that addr is a valid vmalloc'ed area, and
3845 * that it is big enough to cover the vma. Will return failure if
3846 * that criteria isn't met.
e69e9d4a 3847 *
92eac168 3848 * Similar to remap_pfn_range() (see mm/memory.c)
e69e9d4a
HD
3849 */
3850int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3851 unsigned long pgoff)
3852{
3853 return remap_vmalloc_range_partial(vma, vma->vm_start,
bdebd6a2 3854 addr, pgoff,
e69e9d4a
HD
3855 vma->vm_end - vma->vm_start);
3856}
83342314
NP
3857EXPORT_SYMBOL(remap_vmalloc_range);
3858
5f4352fb
JF
3859void free_vm_area(struct vm_struct *area)
3860{
3861 struct vm_struct *ret;
3862 ret = remove_vm_area(area->addr);
3863 BUG_ON(ret != area);
3864 kfree(area);
3865}
3866EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 3867
4f8b02b4 3868#ifdef CONFIG_SMP
ca23e405
TH
3869static struct vmap_area *node_to_va(struct rb_node *n)
3870{
4583e773 3871 return rb_entry_safe(n, struct vmap_area, rb_node);
ca23e405
TH
3872}
3873
3874/**
68ad4a33
URS
3875 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3876 * @addr: target address
ca23e405 3877 *
68ad4a33
URS
3878 * Returns: vmap_area if it is found. If there is no such area
3879 * the first highest(reverse order) vmap_area is returned
3880 * i.e. va->va_start < addr && va->va_end < addr or NULL
3881 * if there are no any areas before @addr.
ca23e405 3882 */
68ad4a33
URS
3883static struct vmap_area *
3884pvm_find_va_enclose_addr(unsigned long addr)
ca23e405 3885{
68ad4a33
URS
3886 struct vmap_area *va, *tmp;
3887 struct rb_node *n;
3888
3889 n = free_vmap_area_root.rb_node;
3890 va = NULL;
ca23e405
TH
3891
3892 while (n) {
68ad4a33
URS
3893 tmp = rb_entry(n, struct vmap_area, rb_node);
3894 if (tmp->va_start <= addr) {
3895 va = tmp;
3896 if (tmp->va_end >= addr)
3897 break;
3898
ca23e405 3899 n = n->rb_right;
68ad4a33
URS
3900 } else {
3901 n = n->rb_left;
3902 }
ca23e405
TH
3903 }
3904
68ad4a33 3905 return va;
ca23e405
TH
3906}
3907
3908/**
68ad4a33
URS
3909 * pvm_determine_end_from_reverse - find the highest aligned address
3910 * of free block below VMALLOC_END
3911 * @va:
3912 * in - the VA we start the search(reverse order);
3913 * out - the VA with the highest aligned end address.
799fa85d 3914 * @align: alignment for required highest address
ca23e405 3915 *
68ad4a33 3916 * Returns: determined end address within vmap_area
ca23e405 3917 */
68ad4a33
URS
3918static unsigned long
3919pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
ca23e405 3920{
68ad4a33 3921 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
ca23e405
TH
3922 unsigned long addr;
3923
68ad4a33
URS
3924 if (likely(*va)) {
3925 list_for_each_entry_from_reverse((*va),
3926 &free_vmap_area_list, list) {
3927 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3928 if ((*va)->va_start < addr)
3929 return addr;
3930 }
ca23e405
TH
3931 }
3932
68ad4a33 3933 return 0;
ca23e405
TH
3934}
3935
3936/**
3937 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3938 * @offsets: array containing offset of each area
3939 * @sizes: array containing size of each area
3940 * @nr_vms: the number of areas to allocate
3941 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
3942 *
3943 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3944 * vm_structs on success, %NULL on failure
3945 *
3946 * Percpu allocator wants to use congruent vm areas so that it can
3947 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
3948 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3949 * be scattered pretty far, distance between two areas easily going up
3950 * to gigabytes. To avoid interacting with regular vmallocs, these
3951 * areas are allocated from top.
ca23e405 3952 *
68ad4a33
URS
3953 * Despite its complicated look, this allocator is rather simple. It
3954 * does everything top-down and scans free blocks from the end looking
3955 * for matching base. While scanning, if any of the areas do not fit the
3956 * base address is pulled down to fit the area. Scanning is repeated till
3957 * all the areas fit and then all necessary data structures are inserted
3958 * and the result is returned.
ca23e405
TH
3959 */
3960struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3961 const size_t *sizes, int nr_vms,
ec3f64fc 3962 size_t align)
ca23e405
TH
3963{
3964 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3965 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
68ad4a33 3966 struct vmap_area **vas, *va;
ca23e405
TH
3967 struct vm_struct **vms;
3968 int area, area2, last_area, term_area;
253a496d 3969 unsigned long base, start, size, end, last_end, orig_start, orig_end;
ca23e405
TH
3970 bool purged = false;
3971
ca23e405 3972 /* verify parameters and allocate data structures */
891c49ab 3973 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
3974 for (last_area = 0, area = 0; area < nr_vms; area++) {
3975 start = offsets[area];
3976 end = start + sizes[area];
3977
3978 /* is everything aligned properly? */
3979 BUG_ON(!IS_ALIGNED(offsets[area], align));
3980 BUG_ON(!IS_ALIGNED(sizes[area], align));
3981
3982 /* detect the area with the highest address */
3983 if (start > offsets[last_area])
3984 last_area = area;
3985
c568da28 3986 for (area2 = area + 1; area2 < nr_vms; area2++) {
ca23e405
TH
3987 unsigned long start2 = offsets[area2];
3988 unsigned long end2 = start2 + sizes[area2];
3989
c568da28 3990 BUG_ON(start2 < end && start < end2);
ca23e405
TH
3991 }
3992 }
3993 last_end = offsets[last_area] + sizes[last_area];
3994
3995 if (vmalloc_end - vmalloc_start < last_end) {
3996 WARN_ON(true);
3997 return NULL;
3998 }
3999
4d67d860
TM
4000 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4001 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 4002 if (!vas || !vms)
f1db7afd 4003 goto err_free2;
ca23e405
TH
4004
4005 for (area = 0; area < nr_vms; area++) {
68ad4a33 4006 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
ec3f64fc 4007 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
4008 if (!vas[area] || !vms[area])
4009 goto err_free;
4010 }
4011retry:
e36176be 4012 spin_lock(&free_vmap_area_lock);
ca23e405
TH
4013
4014 /* start scanning - we scan from the top, begin with the last area */
4015 area = term_area = last_area;
4016 start = offsets[area];
4017 end = start + sizes[area];
4018
68ad4a33
URS
4019 va = pvm_find_va_enclose_addr(vmalloc_end);
4020 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
4021
4022 while (true) {
ca23e405
TH
4023 /*
4024 * base might have underflowed, add last_end before
4025 * comparing.
4026 */
68ad4a33
URS
4027 if (base + last_end < vmalloc_start + last_end)
4028 goto overflow;
ca23e405
TH
4029
4030 /*
68ad4a33 4031 * Fitting base has not been found.
ca23e405 4032 */
68ad4a33
URS
4033 if (va == NULL)
4034 goto overflow;
ca23e405 4035
5336e52c 4036 /*
d8cc323d 4037 * If required width exceeds current VA block, move
5336e52c
KS
4038 * base downwards and then recheck.
4039 */
4040 if (base + end > va->va_end) {
4041 base = pvm_determine_end_from_reverse(&va, align) - end;
4042 term_area = area;
4043 continue;
4044 }
4045
ca23e405 4046 /*
68ad4a33 4047 * If this VA does not fit, move base downwards and recheck.
ca23e405 4048 */
5336e52c 4049 if (base + start < va->va_start) {
68ad4a33
URS
4050 va = node_to_va(rb_prev(&va->rb_node));
4051 base = pvm_determine_end_from_reverse(&va, align) - end;
ca23e405
TH
4052 term_area = area;
4053 continue;
4054 }
4055
4056 /*
4057 * This area fits, move on to the previous one. If
4058 * the previous one is the terminal one, we're done.
4059 */
4060 area = (area + nr_vms - 1) % nr_vms;
4061 if (area == term_area)
4062 break;
68ad4a33 4063
ca23e405
TH
4064 start = offsets[area];
4065 end = start + sizes[area];
68ad4a33 4066 va = pvm_find_va_enclose_addr(base + end);
ca23e405 4067 }
68ad4a33 4068
ca23e405
TH
4069 /* we've found a fitting base, insert all va's */
4070 for (area = 0; area < nr_vms; area++) {
68ad4a33 4071 int ret;
ca23e405 4072
68ad4a33
URS
4073 start = base + offsets[area];
4074 size = sizes[area];
ca23e405 4075
68ad4a33
URS
4076 va = pvm_find_va_enclose_addr(start);
4077 if (WARN_ON_ONCE(va == NULL))
4078 /* It is a BUG(), but trigger recovery instead. */
4079 goto recovery;
4080
f9863be4
URS
4081 ret = adjust_va_to_fit_type(&free_vmap_area_root,
4082 &free_vmap_area_list,
4083 va, start, size);
1b23ff80 4084 if (WARN_ON_ONCE(unlikely(ret)))
68ad4a33
URS
4085 /* It is a BUG(), but trigger recovery instead. */
4086 goto recovery;
4087
68ad4a33
URS
4088 /* Allocated area. */
4089 va = vas[area];
4090 va->va_start = start;
4091 va->va_end = start + size;
68ad4a33 4092 }
ca23e405 4093
e36176be 4094 spin_unlock(&free_vmap_area_lock);
ca23e405 4095
253a496d
DA
4096 /* populate the kasan shadow space */
4097 for (area = 0; area < nr_vms; area++) {
4098 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4099 goto err_free_shadow;
253a496d
DA
4100 }
4101
ca23e405 4102 /* insert all vm's */
e36176be
URS
4103 spin_lock(&vmap_area_lock);
4104 for (area = 0; area < nr_vms; area++) {
4105 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4106
4107 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3645cb4a 4108 pcpu_get_vm_areas);
e36176be
URS
4109 }
4110 spin_unlock(&vmap_area_lock);
ca23e405 4111
19f1c3ac
AK
4112 /*
4113 * Mark allocated areas as accessible. Do it now as a best-effort
4114 * approach, as they can be mapped outside of vmalloc code.
23689e91
AK
4115 * With hardware tag-based KASAN, marking is skipped for
4116 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
19f1c3ac 4117 */
1d96320f
AK
4118 for (area = 0; area < nr_vms; area++)
4119 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
f6e39794 4120 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
1d96320f 4121
ca23e405
TH
4122 kfree(vas);
4123 return vms;
4124
68ad4a33 4125recovery:
e36176be
URS
4126 /*
4127 * Remove previously allocated areas. There is no
4128 * need in removing these areas from the busy tree,
4129 * because they are inserted only on the final step
4130 * and when pcpu_get_vm_areas() is success.
4131 */
68ad4a33 4132 while (area--) {
253a496d
DA
4133 orig_start = vas[area]->va_start;
4134 orig_end = vas[area]->va_end;
96e2db45
URS
4135 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4136 &free_vmap_area_list);
9c801f61
URS
4137 if (va)
4138 kasan_release_vmalloc(orig_start, orig_end,
4139 va->va_start, va->va_end);
68ad4a33
URS
4140 vas[area] = NULL;
4141 }
4142
4143overflow:
e36176be 4144 spin_unlock(&free_vmap_area_lock);
68ad4a33
URS
4145 if (!purged) {
4146 purge_vmap_area_lazy();
4147 purged = true;
4148
4149 /* Before "retry", check if we recover. */
4150 for (area = 0; area < nr_vms; area++) {
4151 if (vas[area])
4152 continue;
4153
4154 vas[area] = kmem_cache_zalloc(
4155 vmap_area_cachep, GFP_KERNEL);
4156 if (!vas[area])
4157 goto err_free;
4158 }
4159
4160 goto retry;
4161 }
4162
ca23e405
TH
4163err_free:
4164 for (area = 0; area < nr_vms; area++) {
68ad4a33
URS
4165 if (vas[area])
4166 kmem_cache_free(vmap_area_cachep, vas[area]);
4167
f1db7afd 4168 kfree(vms[area]);
ca23e405 4169 }
f1db7afd 4170err_free2:
ca23e405
TH
4171 kfree(vas);
4172 kfree(vms);
4173 return NULL;
253a496d
DA
4174
4175err_free_shadow:
4176 spin_lock(&free_vmap_area_lock);
4177 /*
4178 * We release all the vmalloc shadows, even the ones for regions that
4179 * hadn't been successfully added. This relies on kasan_release_vmalloc
4180 * being able to tolerate this case.
4181 */
4182 for (area = 0; area < nr_vms; area++) {
4183 orig_start = vas[area]->va_start;
4184 orig_end = vas[area]->va_end;
96e2db45
URS
4185 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4186 &free_vmap_area_list);
9c801f61
URS
4187 if (va)
4188 kasan_release_vmalloc(orig_start, orig_end,
4189 va->va_start, va->va_end);
253a496d
DA
4190 vas[area] = NULL;
4191 kfree(vms[area]);
4192 }
4193 spin_unlock(&free_vmap_area_lock);
4194 kfree(vas);
4195 kfree(vms);
4196 return NULL;
ca23e405
TH
4197}
4198
4199/**
4200 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4201 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4202 * @nr_vms: the number of allocated areas
4203 *
4204 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4205 */
4206void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4207{
4208 int i;
4209
4210 for (i = 0; i < nr_vms; i++)
4211 free_vm_area(vms[i]);
4212 kfree(vms);
4213}
4f8b02b4 4214#endif /* CONFIG_SMP */
a10aa579 4215
5bb1bb35 4216#ifdef CONFIG_PRINTK
98f18083
PM
4217bool vmalloc_dump_obj(void *object)
4218{
4219 struct vm_struct *vm;
4220 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4221
4222 vm = find_vm_area(objp);
4223 if (!vm)
4224 return false;
bd34dcd4
PM
4225 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4226 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
98f18083
PM
4227 return true;
4228}
5bb1bb35 4229#endif
98f18083 4230
a10aa579
CL
4231#ifdef CONFIG_PROC_FS
4232static void *s_start(struct seq_file *m, loff_t *pos)
e36176be 4233 __acquires(&vmap_purge_lock)
d4033afd 4234 __acquires(&vmap_area_lock)
a10aa579 4235{
e36176be 4236 mutex_lock(&vmap_purge_lock);
d4033afd 4237 spin_lock(&vmap_area_lock);
e36176be 4238
3f500069 4239 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
4240}
4241
4242static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4243{
3f500069 4244 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
4245}
4246
4247static void s_stop(struct seq_file *m, void *p)
d4033afd 4248 __releases(&vmap_area_lock)
0a7dd4e9 4249 __releases(&vmap_purge_lock)
a10aa579 4250{
d4033afd 4251 spin_unlock(&vmap_area_lock);
0a7dd4e9 4252 mutex_unlock(&vmap_purge_lock);
a10aa579
CL
4253}
4254
a47a126a
ED
4255static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4256{
e5adfffc 4257 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a 4258 unsigned int nr, *counters = m->private;
51e50b3a 4259 unsigned int step = 1U << vm_area_page_order(v);
a47a126a
ED
4260
4261 if (!counters)
4262 return;
4263
af12346c
WL
4264 if (v->flags & VM_UNINITIALIZED)
4265 return;
7e5b528b
DV
4266 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4267 smp_rmb();
af12346c 4268
a47a126a
ED
4269 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4270
51e50b3a
ED
4271 for (nr = 0; nr < v->nr_pages; nr += step)
4272 counters[page_to_nid(v->pages[nr])] += step;
a47a126a
ED
4273 for_each_node_state(nr, N_HIGH_MEMORY)
4274 if (counters[nr])
4275 seq_printf(m, " N%u=%u", nr, counters[nr]);
4276 }
4277}
4278
dd3b8353
URS
4279static void show_purge_info(struct seq_file *m)
4280{
dd3b8353
URS
4281 struct vmap_area *va;
4282
96e2db45
URS
4283 spin_lock(&purge_vmap_area_lock);
4284 list_for_each_entry(va, &purge_vmap_area_list, list) {
dd3b8353
URS
4285 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4286 (void *)va->va_start, (void *)va->va_end,
4287 va->va_end - va->va_start);
4288 }
96e2db45 4289 spin_unlock(&purge_vmap_area_lock);
dd3b8353
URS
4290}
4291
a10aa579
CL
4292static int s_show(struct seq_file *m, void *p)
4293{
3f500069 4294 struct vmap_area *va;
d4033afd
JK
4295 struct vm_struct *v;
4296
3f500069 4297 va = list_entry(p, struct vmap_area, list);
4298
688fcbfc 4299 if (!va->vm) {
bba9697b
BH
4300 if (va->flags & VMAP_RAM)
4301 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4302 (void *)va->va_start, (void *)va->va_end,
4303 va->va_end - va->va_start);
78c72746 4304
7cc7913e 4305 goto final;
78c72746 4306 }
d4033afd
JK
4307
4308 v = va->vm;
a10aa579 4309
45ec1690 4310 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
4311 v->addr, v->addr + v->size, v->size);
4312
62c70bce
JP
4313 if (v->caller)
4314 seq_printf(m, " %pS", v->caller);
23016969 4315
a10aa579
CL
4316 if (v->nr_pages)
4317 seq_printf(m, " pages=%d", v->nr_pages);
4318
4319 if (v->phys_addr)
199eaa05 4320 seq_printf(m, " phys=%pa", &v->phys_addr);
a10aa579
CL
4321
4322 if (v->flags & VM_IOREMAP)
f4527c90 4323 seq_puts(m, " ioremap");
a10aa579
CL
4324
4325 if (v->flags & VM_ALLOC)
f4527c90 4326 seq_puts(m, " vmalloc");
a10aa579
CL
4327
4328 if (v->flags & VM_MAP)
f4527c90 4329 seq_puts(m, " vmap");
a10aa579
CL
4330
4331 if (v->flags & VM_USERMAP)
f4527c90 4332 seq_puts(m, " user");
a10aa579 4333
fe9041c2
CH
4334 if (v->flags & VM_DMA_COHERENT)
4335 seq_puts(m, " dma-coherent");
4336
244d63ee 4337 if (is_vmalloc_addr(v->pages))
f4527c90 4338 seq_puts(m, " vpages");
a10aa579 4339
a47a126a 4340 show_numa_info(m, v);
a10aa579 4341 seq_putc(m, '\n');
dd3b8353
URS
4342
4343 /*
96e2db45 4344 * As a final step, dump "unpurged" areas.
dd3b8353 4345 */
7cc7913e 4346final:
dd3b8353
URS
4347 if (list_is_last(&va->list, &vmap_area_list))
4348 show_purge_info(m);
4349
a10aa579
CL
4350 return 0;
4351}
4352
5f6a6a9c 4353static const struct seq_operations vmalloc_op = {
a10aa579
CL
4354 .start = s_start,
4355 .next = s_next,
4356 .stop = s_stop,
4357 .show = s_show,
4358};
5f6a6a9c 4359
5f6a6a9c
AD
4360static int __init proc_vmalloc_init(void)
4361{
fddda2b7 4362 if (IS_ENABLED(CONFIG_NUMA))
0825a6f9 4363 proc_create_seq_private("vmallocinfo", 0400, NULL,
44414d82
CH
4364 &vmalloc_op,
4365 nr_node_ids * sizeof(unsigned int), NULL);
fddda2b7 4366 else
0825a6f9 4367 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
5f6a6a9c
AD
4368 return 0;
4369}
4370module_init(proc_vmalloc_init);
db3808c1 4371
a10aa579 4372#endif
208162f4
CH
4373
4374void __init vmalloc_init(void)
4375{
4376 struct vmap_area *va;
4377 struct vm_struct *tmp;
4378 int i;
4379
4380 /*
4381 * Create the cache for vmap_area objects.
4382 */
4383 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4384
4385 for_each_possible_cpu(i) {
4386 struct vmap_block_queue *vbq;
4387 struct vfree_deferred *p;
4388
4389 vbq = &per_cpu(vmap_block_queue, i);
4390 spin_lock_init(&vbq->lock);
4391 INIT_LIST_HEAD(&vbq->free);
4392 p = &per_cpu(vfree_deferred, i);
4393 init_llist_head(&p->list);
4394 INIT_WORK(&p->wq, delayed_vfree_work);
062eacf5 4395 xa_init(&vbq->vmap_blocks);
208162f4
CH
4396 }
4397
4398 /* Import existing vmlist entries. */
4399 for (tmp = vmlist; tmp; tmp = tmp->next) {
4400 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4401 if (WARN_ON_ONCE(!va))
4402 continue;
4403
4404 va->va_start = (unsigned long)tmp->addr;
4405 va->va_end = va->va_start + tmp->size;
4406 va->vm = tmp;
4407 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4408 }
4409
4410 /*
4411 * Now we can initialize a free vmap space.
4412 */
4413 vmap_init_free_space();
4414 vmap_initialized = true;
4415}