mm: remove free_unmap_vmap_area_noflush()
[linux-2.6-block.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02 23#include <linux/list.h>
4da56b99 24#include <linux/notifier.h>
db64fe02
NP
25#include <linux/rbtree.h>
26#include <linux/radix-tree.h>
27#include <linux/rcupdate.h>
f0aa6617 28#include <linux/pfn.h>
89219d37 29#include <linux/kmemleak.h>
60063497 30#include <linux/atomic.h>
3b32123d 31#include <linux/compiler.h>
32fcfd40 32#include <linux/llist.h>
0f616be1 33#include <linux/bitops.h>
3b32123d 34
1da177e4
LT
35#include <asm/uaccess.h>
36#include <asm/tlbflush.h>
2dca6999 37#include <asm/shmparam.h>
1da177e4 38
dd56b046
MG
39#include "internal.h"
40
32fcfd40
AV
41struct vfree_deferred {
42 struct llist_head list;
43 struct work_struct wq;
44};
45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46
47static void __vunmap(const void *, int);
48
49static void free_work(struct work_struct *w)
50{
51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 struct llist_node *llnode = llist_del_all(&p->list);
53 while (llnode) {
54 void *p = llnode;
55 llnode = llist_next(llnode);
56 __vunmap(p, 1);
57 }
58}
59
db64fe02 60/*** Page table manipulation functions ***/
b221385b 61
1da177e4
LT
62static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63{
64 pte_t *pte;
65
66 pte = pte_offset_kernel(pmd, addr);
67 do {
68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 } while (pte++, addr += PAGE_SIZE, addr != end);
71}
72
db64fe02 73static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
74{
75 pmd_t *pmd;
76 unsigned long next;
77
78 pmd = pmd_offset(pud, addr);
79 do {
80 next = pmd_addr_end(addr, end);
b9820d8f
TK
81 if (pmd_clear_huge(pmd))
82 continue;
1da177e4
LT
83 if (pmd_none_or_clear_bad(pmd))
84 continue;
85 vunmap_pte_range(pmd, addr, next);
86 } while (pmd++, addr = next, addr != end);
87}
88
db64fe02 89static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
90{
91 pud_t *pud;
92 unsigned long next;
93
94 pud = pud_offset(pgd, addr);
95 do {
96 next = pud_addr_end(addr, end);
b9820d8f
TK
97 if (pud_clear_huge(pud))
98 continue;
1da177e4
LT
99 if (pud_none_or_clear_bad(pud))
100 continue;
101 vunmap_pmd_range(pud, addr, next);
102 } while (pud++, addr = next, addr != end);
103}
104
db64fe02 105static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
106{
107 pgd_t *pgd;
108 unsigned long next;
1da177e4
LT
109
110 BUG_ON(addr >= end);
111 pgd = pgd_offset_k(addr);
1da177e4
LT
112 do {
113 next = pgd_addr_end(addr, end);
114 if (pgd_none_or_clear_bad(pgd))
115 continue;
116 vunmap_pud_range(pgd, addr, next);
117 } while (pgd++, addr = next, addr != end);
1da177e4
LT
118}
119
120static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 121 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
122{
123 pte_t *pte;
124
db64fe02
NP
125 /*
126 * nr is a running index into the array which helps higher level
127 * callers keep track of where we're up to.
128 */
129
872fec16 130 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
131 if (!pte)
132 return -ENOMEM;
133 do {
db64fe02
NP
134 struct page *page = pages[*nr];
135
136 if (WARN_ON(!pte_none(*pte)))
137 return -EBUSY;
138 if (WARN_ON(!page))
1da177e4
LT
139 return -ENOMEM;
140 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 141 (*nr)++;
1da177e4
LT
142 } while (pte++, addr += PAGE_SIZE, addr != end);
143 return 0;
144}
145
db64fe02
NP
146static int vmap_pmd_range(pud_t *pud, unsigned long addr,
147 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
148{
149 pmd_t *pmd;
150 unsigned long next;
151
152 pmd = pmd_alloc(&init_mm, pud, addr);
153 if (!pmd)
154 return -ENOMEM;
155 do {
156 next = pmd_addr_end(addr, end);
db64fe02 157 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
158 return -ENOMEM;
159 } while (pmd++, addr = next, addr != end);
160 return 0;
161}
162
db64fe02
NP
163static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
164 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
165{
166 pud_t *pud;
167 unsigned long next;
168
169 pud = pud_alloc(&init_mm, pgd, addr);
170 if (!pud)
171 return -ENOMEM;
172 do {
173 next = pud_addr_end(addr, end);
db64fe02 174 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
175 return -ENOMEM;
176 } while (pud++, addr = next, addr != end);
177 return 0;
178}
179
db64fe02
NP
180/*
181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182 * will have pfns corresponding to the "pages" array.
183 *
184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185 */
8fc48985
TH
186static int vmap_page_range_noflush(unsigned long start, unsigned long end,
187 pgprot_t prot, struct page **pages)
1da177e4
LT
188{
189 pgd_t *pgd;
190 unsigned long next;
2e4e27c7 191 unsigned long addr = start;
db64fe02
NP
192 int err = 0;
193 int nr = 0;
1da177e4
LT
194
195 BUG_ON(addr >= end);
196 pgd = pgd_offset_k(addr);
1da177e4
LT
197 do {
198 next = pgd_addr_end(addr, end);
db64fe02 199 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 200 if (err)
bf88c8c8 201 return err;
1da177e4 202 } while (pgd++, addr = next, addr != end);
db64fe02 203
db64fe02 204 return nr;
1da177e4
LT
205}
206
8fc48985
TH
207static int vmap_page_range(unsigned long start, unsigned long end,
208 pgprot_t prot, struct page **pages)
209{
210 int ret;
211
212 ret = vmap_page_range_noflush(start, end, prot, pages);
213 flush_cache_vmap(start, end);
214 return ret;
215}
216
81ac3ad9 217int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
218{
219 /*
ab4f2ee1 220 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
221 * and fall back on vmalloc() if that fails. Others
222 * just put it in the vmalloc space.
223 */
224#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 unsigned long addr = (unsigned long)x;
226 if (addr >= MODULES_VADDR && addr < MODULES_END)
227 return 1;
228#endif
229 return is_vmalloc_addr(x);
230}
231
48667e7a 232/*
add688fb 233 * Walk a vmap address to the struct page it maps.
48667e7a 234 */
add688fb 235struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
236{
237 unsigned long addr = (unsigned long) vmalloc_addr;
add688fb 238 struct page *page = NULL;
48667e7a 239 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 240
7aa413de
IM
241 /*
242 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 * architectures that do not vmalloc module space
244 */
73bdf0a6 245 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 246
48667e7a 247 if (!pgd_none(*pgd)) {
db64fe02 248 pud_t *pud = pud_offset(pgd, addr);
48667e7a 249 if (!pud_none(*pud)) {
db64fe02 250 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 251 if (!pmd_none(*pmd)) {
db64fe02
NP
252 pte_t *ptep, pte;
253
48667e7a
CL
254 ptep = pte_offset_map(pmd, addr);
255 pte = *ptep;
256 if (pte_present(pte))
add688fb 257 page = pte_page(pte);
48667e7a
CL
258 pte_unmap(ptep);
259 }
260 }
261 }
add688fb 262 return page;
48667e7a 263}
add688fb 264EXPORT_SYMBOL(vmalloc_to_page);
48667e7a
CL
265
266/*
add688fb 267 * Map a vmalloc()-space virtual address to the physical page frame number.
48667e7a 268 */
add688fb 269unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a 270{
add688fb 271 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
48667e7a 272}
add688fb 273EXPORT_SYMBOL(vmalloc_to_pfn);
48667e7a 274
db64fe02
NP
275
276/*** Global kva allocator ***/
277
db64fe02
NP
278#define VM_VM_AREA 0x04
279
db64fe02 280static DEFINE_SPINLOCK(vmap_area_lock);
f1c4069e
JK
281/* Export for kexec only */
282LIST_HEAD(vmap_area_list);
80c4bd7a 283static LLIST_HEAD(vmap_purge_list);
89699605
NP
284static struct rb_root vmap_area_root = RB_ROOT;
285
286/* The vmap cache globals are protected by vmap_area_lock */
287static struct rb_node *free_vmap_cache;
288static unsigned long cached_hole_size;
289static unsigned long cached_vstart;
290static unsigned long cached_align;
291
ca23e405 292static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
293
294static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 295{
db64fe02
NP
296 struct rb_node *n = vmap_area_root.rb_node;
297
298 while (n) {
299 struct vmap_area *va;
300
301 va = rb_entry(n, struct vmap_area, rb_node);
302 if (addr < va->va_start)
303 n = n->rb_left;
cef2ac3f 304 else if (addr >= va->va_end)
db64fe02
NP
305 n = n->rb_right;
306 else
307 return va;
308 }
309
310 return NULL;
311}
312
313static void __insert_vmap_area(struct vmap_area *va)
314{
315 struct rb_node **p = &vmap_area_root.rb_node;
316 struct rb_node *parent = NULL;
317 struct rb_node *tmp;
318
319 while (*p) {
170168d0 320 struct vmap_area *tmp_va;
db64fe02
NP
321
322 parent = *p;
170168d0
NK
323 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
324 if (va->va_start < tmp_va->va_end)
db64fe02 325 p = &(*p)->rb_left;
170168d0 326 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
327 p = &(*p)->rb_right;
328 else
329 BUG();
330 }
331
332 rb_link_node(&va->rb_node, parent, p);
333 rb_insert_color(&va->rb_node, &vmap_area_root);
334
4341fa45 335 /* address-sort this list */
db64fe02
NP
336 tmp = rb_prev(&va->rb_node);
337 if (tmp) {
338 struct vmap_area *prev;
339 prev = rb_entry(tmp, struct vmap_area, rb_node);
340 list_add_rcu(&va->list, &prev->list);
341 } else
342 list_add_rcu(&va->list, &vmap_area_list);
343}
344
345static void purge_vmap_area_lazy(void);
346
4da56b99
CW
347static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
348
db64fe02
NP
349/*
350 * Allocate a region of KVA of the specified size and alignment, within the
351 * vstart and vend.
352 */
353static struct vmap_area *alloc_vmap_area(unsigned long size,
354 unsigned long align,
355 unsigned long vstart, unsigned long vend,
356 int node, gfp_t gfp_mask)
357{
358 struct vmap_area *va;
359 struct rb_node *n;
1da177e4 360 unsigned long addr;
db64fe02 361 int purged = 0;
89699605 362 struct vmap_area *first;
db64fe02 363
7766970c 364 BUG_ON(!size);
891c49ab 365 BUG_ON(offset_in_page(size));
89699605 366 BUG_ON(!is_power_of_2(align));
db64fe02 367
4da56b99
CW
368 might_sleep_if(gfpflags_allow_blocking(gfp_mask));
369
db64fe02
NP
370 va = kmalloc_node(sizeof(struct vmap_area),
371 gfp_mask & GFP_RECLAIM_MASK, node);
372 if (unlikely(!va))
373 return ERR_PTR(-ENOMEM);
374
7f88f88f
CM
375 /*
376 * Only scan the relevant parts containing pointers to other objects
377 * to avoid false negatives.
378 */
379 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
380
db64fe02
NP
381retry:
382 spin_lock(&vmap_area_lock);
89699605
NP
383 /*
384 * Invalidate cache if we have more permissive parameters.
385 * cached_hole_size notes the largest hole noticed _below_
386 * the vmap_area cached in free_vmap_cache: if size fits
387 * into that hole, we want to scan from vstart to reuse
388 * the hole instead of allocating above free_vmap_cache.
389 * Note that __free_vmap_area may update free_vmap_cache
390 * without updating cached_hole_size or cached_align.
391 */
392 if (!free_vmap_cache ||
393 size < cached_hole_size ||
394 vstart < cached_vstart ||
395 align < cached_align) {
396nocache:
397 cached_hole_size = 0;
398 free_vmap_cache = NULL;
399 }
400 /* record if we encounter less permissive parameters */
401 cached_vstart = vstart;
402 cached_align = align;
403
404 /* find starting point for our search */
405 if (free_vmap_cache) {
406 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 407 addr = ALIGN(first->va_end, align);
89699605
NP
408 if (addr < vstart)
409 goto nocache;
bcb615a8 410 if (addr + size < addr)
89699605
NP
411 goto overflow;
412
413 } else {
414 addr = ALIGN(vstart, align);
bcb615a8 415 if (addr + size < addr)
89699605
NP
416 goto overflow;
417
418 n = vmap_area_root.rb_node;
419 first = NULL;
420
421 while (n) {
db64fe02
NP
422 struct vmap_area *tmp;
423 tmp = rb_entry(n, struct vmap_area, rb_node);
424 if (tmp->va_end >= addr) {
db64fe02 425 first = tmp;
89699605
NP
426 if (tmp->va_start <= addr)
427 break;
428 n = n->rb_left;
429 } else
db64fe02 430 n = n->rb_right;
89699605 431 }
db64fe02
NP
432
433 if (!first)
434 goto found;
db64fe02 435 }
89699605
NP
436
437 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 438 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
439 if (addr + cached_hole_size < first->va_start)
440 cached_hole_size = first->va_start - addr;
248ac0e1 441 addr = ALIGN(first->va_end, align);
bcb615a8 442 if (addr + size < addr)
89699605
NP
443 goto overflow;
444
92ca922f 445 if (list_is_last(&first->list, &vmap_area_list))
89699605 446 goto found;
92ca922f 447
6219c2a2 448 first = list_next_entry(first, list);
db64fe02
NP
449 }
450
89699605
NP
451found:
452 if (addr + size > vend)
453 goto overflow;
db64fe02
NP
454
455 va->va_start = addr;
456 va->va_end = addr + size;
457 va->flags = 0;
458 __insert_vmap_area(va);
89699605 459 free_vmap_cache = &va->rb_node;
db64fe02
NP
460 spin_unlock(&vmap_area_lock);
461
61e16557 462 BUG_ON(!IS_ALIGNED(va->va_start, align));
89699605
NP
463 BUG_ON(va->va_start < vstart);
464 BUG_ON(va->va_end > vend);
465
db64fe02 466 return va;
89699605
NP
467
468overflow:
469 spin_unlock(&vmap_area_lock);
470 if (!purged) {
471 purge_vmap_area_lazy();
472 purged = 1;
473 goto retry;
474 }
4da56b99
CW
475
476 if (gfpflags_allow_blocking(gfp_mask)) {
477 unsigned long freed = 0;
478 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
479 if (freed > 0) {
480 purged = 0;
481 goto retry;
482 }
483 }
484
89699605 485 if (printk_ratelimit())
756a025f
JP
486 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
487 size);
89699605
NP
488 kfree(va);
489 return ERR_PTR(-EBUSY);
db64fe02
NP
490}
491
4da56b99
CW
492int register_vmap_purge_notifier(struct notifier_block *nb)
493{
494 return blocking_notifier_chain_register(&vmap_notify_list, nb);
495}
496EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
497
498int unregister_vmap_purge_notifier(struct notifier_block *nb)
499{
500 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
501}
502EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
503
db64fe02
NP
504static void __free_vmap_area(struct vmap_area *va)
505{
506 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
507
508 if (free_vmap_cache) {
509 if (va->va_end < cached_vstart) {
510 free_vmap_cache = NULL;
511 } else {
512 struct vmap_area *cache;
513 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
514 if (va->va_start <= cache->va_start) {
515 free_vmap_cache = rb_prev(&va->rb_node);
516 /*
517 * We don't try to update cached_hole_size or
518 * cached_align, but it won't go very wrong.
519 */
520 }
521 }
522 }
db64fe02
NP
523 rb_erase(&va->rb_node, &vmap_area_root);
524 RB_CLEAR_NODE(&va->rb_node);
525 list_del_rcu(&va->list);
526
ca23e405
TH
527 /*
528 * Track the highest possible candidate for pcpu area
529 * allocation. Areas outside of vmalloc area can be returned
530 * here too, consider only end addresses which fall inside
531 * vmalloc area proper.
532 */
533 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
534 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
535
14769de9 536 kfree_rcu(va, rcu_head);
db64fe02
NP
537}
538
539/*
540 * Free a region of KVA allocated by alloc_vmap_area
541 */
542static void free_vmap_area(struct vmap_area *va)
543{
544 spin_lock(&vmap_area_lock);
545 __free_vmap_area(va);
546 spin_unlock(&vmap_area_lock);
547}
548
549/*
550 * Clear the pagetable entries of a given vmap_area
551 */
552static void unmap_vmap_area(struct vmap_area *va)
553{
554 vunmap_page_range(va->va_start, va->va_end);
555}
556
cd52858c
NP
557static void vmap_debug_free_range(unsigned long start, unsigned long end)
558{
559 /*
f48d97f3
JK
560 * Unmap page tables and force a TLB flush immediately if pagealloc
561 * debugging is enabled. This catches use after free bugs similarly to
562 * those in linear kernel virtual address space after a page has been
563 * freed.
cd52858c 564 *
f48d97f3
JK
565 * All the lazy freeing logic is still retained, in order to minimise
566 * intrusiveness of this debugging feature.
cd52858c 567 *
f48d97f3
JK
568 * This is going to be *slow* (linear kernel virtual address debugging
569 * doesn't do a broadcast TLB flush so it is a lot faster).
cd52858c 570 */
f48d97f3
JK
571 if (debug_pagealloc_enabled()) {
572 vunmap_page_range(start, end);
573 flush_tlb_kernel_range(start, end);
574 }
cd52858c
NP
575}
576
db64fe02
NP
577/*
578 * lazy_max_pages is the maximum amount of virtual address space we gather up
579 * before attempting to purge with a TLB flush.
580 *
581 * There is a tradeoff here: a larger number will cover more kernel page tables
582 * and take slightly longer to purge, but it will linearly reduce the number of
583 * global TLB flushes that must be performed. It would seem natural to scale
584 * this number up linearly with the number of CPUs (because vmapping activity
585 * could also scale linearly with the number of CPUs), however it is likely
586 * that in practice, workloads might be constrained in other ways that mean
587 * vmap activity will not scale linearly with CPUs. Also, I want to be
588 * conservative and not introduce a big latency on huge systems, so go with
589 * a less aggressive log scale. It will still be an improvement over the old
590 * code, and it will be simple to change the scale factor if we find that it
591 * becomes a problem on bigger systems.
592 */
593static unsigned long lazy_max_pages(void)
594{
595 unsigned int log;
596
597 log = fls(num_online_cpus());
598
599 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
600}
601
602static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
603
02b709df
NP
604/* for per-CPU blocks */
605static void purge_fragmented_blocks_allcpus(void);
606
3ee48b6a
CW
607/*
608 * called before a call to iounmap() if the caller wants vm_area_struct's
609 * immediately freed.
610 */
611void set_iounmap_nonlazy(void)
612{
613 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
614}
615
db64fe02
NP
616/*
617 * Purges all lazily-freed vmap areas.
618 *
619 * If sync is 0 then don't purge if there is already a purge in progress.
620 * If force_flush is 1, then flush kernel TLBs between *start and *end even
621 * if we found no lazy vmap areas to unmap (callers can use this to optimise
622 * their own TLB flushing).
623 * Returns with *start = min(*start, lowest purged address)
624 * *end = max(*end, highest purged address)
625 */
626static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
627 int sync, int force_flush)
628{
46666d8a 629 static DEFINE_SPINLOCK(purge_lock);
80c4bd7a 630 struct llist_node *valist;
db64fe02 631 struct vmap_area *va;
cbb76676 632 struct vmap_area *n_va;
db64fe02
NP
633 int nr = 0;
634
635 /*
636 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
637 * should not expect such behaviour. This just simplifies locking for
638 * the case that isn't actually used at the moment anyway.
639 */
640 if (!sync && !force_flush) {
46666d8a 641 if (!spin_trylock(&purge_lock))
db64fe02
NP
642 return;
643 } else
46666d8a 644 spin_lock(&purge_lock);
db64fe02 645
02b709df
NP
646 if (sync)
647 purge_fragmented_blocks_allcpus();
648
80c4bd7a
CW
649 valist = llist_del_all(&vmap_purge_list);
650 llist_for_each_entry(va, valist, purge_list) {
651 if (va->va_start < *start)
652 *start = va->va_start;
653 if (va->va_end > *end)
654 *end = va->va_end;
655 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
db64fe02 656 }
db64fe02 657
88f50044 658 if (nr)
db64fe02 659 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
660
661 if (nr || force_flush)
662 flush_tlb_kernel_range(*start, *end);
663
664 if (nr) {
665 spin_lock(&vmap_area_lock);
80c4bd7a 666 llist_for_each_entry_safe(va, n_va, valist, purge_list)
db64fe02
NP
667 __free_vmap_area(va);
668 spin_unlock(&vmap_area_lock);
669 }
46666d8a 670 spin_unlock(&purge_lock);
db64fe02
NP
671}
672
496850e5
NP
673/*
674 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
675 * is already purging.
676 */
677static void try_purge_vmap_area_lazy(void)
678{
679 unsigned long start = ULONG_MAX, end = 0;
680
681 __purge_vmap_area_lazy(&start, &end, 0, 0);
682}
683
db64fe02
NP
684/*
685 * Kick off a purge of the outstanding lazy areas.
686 */
687static void purge_vmap_area_lazy(void)
688{
689 unsigned long start = ULONG_MAX, end = 0;
690
496850e5 691 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
692}
693
694/*
64141da5
JF
695 * Free a vmap area, caller ensuring that the area has been unmapped
696 * and flush_cache_vunmap had been called for the correct range
697 * previously.
db64fe02 698 */
64141da5 699static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02 700{
80c4bd7a
CW
701 int nr_lazy;
702
703 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
704 &vmap_lazy_nr);
705
706 /* After this point, we may free va at any time */
707 llist_add(&va->purge_list, &vmap_purge_list);
708
709 if (unlikely(nr_lazy > lazy_max_pages()))
496850e5 710 try_purge_vmap_area_lazy();
db64fe02
NP
711}
712
b29acbdc
NP
713/*
714 * Free and unmap a vmap area
715 */
716static void free_unmap_vmap_area(struct vmap_area *va)
717{
718 flush_cache_vunmap(va->va_start, va->va_end);
c8eef01e
CH
719 unmap_vmap_area(va);
720 free_vmap_area_noflush(va);
b29acbdc
NP
721}
722
db64fe02
NP
723static struct vmap_area *find_vmap_area(unsigned long addr)
724{
725 struct vmap_area *va;
726
727 spin_lock(&vmap_area_lock);
728 va = __find_vmap_area(addr);
729 spin_unlock(&vmap_area_lock);
730
731 return va;
732}
733
734static void free_unmap_vmap_area_addr(unsigned long addr)
735{
736 struct vmap_area *va;
737
738 va = find_vmap_area(addr);
739 BUG_ON(!va);
740 free_unmap_vmap_area(va);
741}
742
743
744/*** Per cpu kva allocator ***/
745
746/*
747 * vmap space is limited especially on 32 bit architectures. Ensure there is
748 * room for at least 16 percpu vmap blocks per CPU.
749 */
750/*
751 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
752 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
753 * instead (we just need a rough idea)
754 */
755#if BITS_PER_LONG == 32
756#define VMALLOC_SPACE (128UL*1024*1024)
757#else
758#define VMALLOC_SPACE (128UL*1024*1024*1024)
759#endif
760
761#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
762#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
763#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
764#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
765#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
766#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
767#define VMAP_BBMAP_BITS \
768 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
769 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
770 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
771
772#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
773
9b463334
JF
774static bool vmap_initialized __read_mostly = false;
775
db64fe02
NP
776struct vmap_block_queue {
777 spinlock_t lock;
778 struct list_head free;
db64fe02
NP
779};
780
781struct vmap_block {
782 spinlock_t lock;
783 struct vmap_area *va;
db64fe02 784 unsigned long free, dirty;
7d61bfe8 785 unsigned long dirty_min, dirty_max; /*< dirty range */
de560423
NP
786 struct list_head free_list;
787 struct rcu_head rcu_head;
02b709df 788 struct list_head purge;
db64fe02
NP
789};
790
791/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
792static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
793
794/*
795 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
796 * in the free path. Could get rid of this if we change the API to return a
797 * "cookie" from alloc, to be passed to free. But no big deal yet.
798 */
799static DEFINE_SPINLOCK(vmap_block_tree_lock);
800static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
801
802/*
803 * We should probably have a fallback mechanism to allocate virtual memory
804 * out of partially filled vmap blocks. However vmap block sizing should be
805 * fairly reasonable according to the vmalloc size, so it shouldn't be a
806 * big problem.
807 */
808
809static unsigned long addr_to_vb_idx(unsigned long addr)
810{
811 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
812 addr /= VMAP_BLOCK_SIZE;
813 return addr;
814}
815
cf725ce2
RP
816static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
817{
818 unsigned long addr;
819
820 addr = va_start + (pages_off << PAGE_SHIFT);
821 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
822 return (void *)addr;
823}
824
825/**
826 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
827 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
828 * @order: how many 2^order pages should be occupied in newly allocated block
829 * @gfp_mask: flags for the page level allocator
830 *
831 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
832 */
833static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
db64fe02
NP
834{
835 struct vmap_block_queue *vbq;
836 struct vmap_block *vb;
837 struct vmap_area *va;
838 unsigned long vb_idx;
839 int node, err;
cf725ce2 840 void *vaddr;
db64fe02
NP
841
842 node = numa_node_id();
843
844 vb = kmalloc_node(sizeof(struct vmap_block),
845 gfp_mask & GFP_RECLAIM_MASK, node);
846 if (unlikely(!vb))
847 return ERR_PTR(-ENOMEM);
848
849 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
850 VMALLOC_START, VMALLOC_END,
851 node, gfp_mask);
ddf9c6d4 852 if (IS_ERR(va)) {
db64fe02 853 kfree(vb);
e7d86340 854 return ERR_CAST(va);
db64fe02
NP
855 }
856
857 err = radix_tree_preload(gfp_mask);
858 if (unlikely(err)) {
859 kfree(vb);
860 free_vmap_area(va);
861 return ERR_PTR(err);
862 }
863
cf725ce2 864 vaddr = vmap_block_vaddr(va->va_start, 0);
db64fe02
NP
865 spin_lock_init(&vb->lock);
866 vb->va = va;
cf725ce2
RP
867 /* At least something should be left free */
868 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
869 vb->free = VMAP_BBMAP_BITS - (1UL << order);
db64fe02 870 vb->dirty = 0;
7d61bfe8
RP
871 vb->dirty_min = VMAP_BBMAP_BITS;
872 vb->dirty_max = 0;
db64fe02 873 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
874
875 vb_idx = addr_to_vb_idx(va->va_start);
876 spin_lock(&vmap_block_tree_lock);
877 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
878 spin_unlock(&vmap_block_tree_lock);
879 BUG_ON(err);
880 radix_tree_preload_end();
881
882 vbq = &get_cpu_var(vmap_block_queue);
db64fe02 883 spin_lock(&vbq->lock);
68ac546f 884 list_add_tail_rcu(&vb->free_list, &vbq->free);
db64fe02 885 spin_unlock(&vbq->lock);
3f04ba85 886 put_cpu_var(vmap_block_queue);
db64fe02 887
cf725ce2 888 return vaddr;
db64fe02
NP
889}
890
db64fe02
NP
891static void free_vmap_block(struct vmap_block *vb)
892{
893 struct vmap_block *tmp;
894 unsigned long vb_idx;
895
db64fe02
NP
896 vb_idx = addr_to_vb_idx(vb->va->va_start);
897 spin_lock(&vmap_block_tree_lock);
898 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
899 spin_unlock(&vmap_block_tree_lock);
900 BUG_ON(tmp != vb);
901
64141da5 902 free_vmap_area_noflush(vb->va);
22a3c7d1 903 kfree_rcu(vb, rcu_head);
db64fe02
NP
904}
905
02b709df
NP
906static void purge_fragmented_blocks(int cpu)
907{
908 LIST_HEAD(purge);
909 struct vmap_block *vb;
910 struct vmap_block *n_vb;
911 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
912
913 rcu_read_lock();
914 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
915
916 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
917 continue;
918
919 spin_lock(&vb->lock);
920 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
921 vb->free = 0; /* prevent further allocs after releasing lock */
922 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
7d61bfe8
RP
923 vb->dirty_min = 0;
924 vb->dirty_max = VMAP_BBMAP_BITS;
02b709df
NP
925 spin_lock(&vbq->lock);
926 list_del_rcu(&vb->free_list);
927 spin_unlock(&vbq->lock);
928 spin_unlock(&vb->lock);
929 list_add_tail(&vb->purge, &purge);
930 } else
931 spin_unlock(&vb->lock);
932 }
933 rcu_read_unlock();
934
935 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
936 list_del(&vb->purge);
937 free_vmap_block(vb);
938 }
939}
940
02b709df
NP
941static void purge_fragmented_blocks_allcpus(void)
942{
943 int cpu;
944
945 for_each_possible_cpu(cpu)
946 purge_fragmented_blocks(cpu);
947}
948
db64fe02
NP
949static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
950{
951 struct vmap_block_queue *vbq;
952 struct vmap_block *vb;
cf725ce2 953 void *vaddr = NULL;
db64fe02
NP
954 unsigned int order;
955
891c49ab 956 BUG_ON(offset_in_page(size));
db64fe02 957 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
958 if (WARN_ON(size == 0)) {
959 /*
960 * Allocating 0 bytes isn't what caller wants since
961 * get_order(0) returns funny result. Just warn and terminate
962 * early.
963 */
964 return NULL;
965 }
db64fe02
NP
966 order = get_order(size);
967
db64fe02
NP
968 rcu_read_lock();
969 vbq = &get_cpu_var(vmap_block_queue);
970 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
cf725ce2 971 unsigned long pages_off;
db64fe02
NP
972
973 spin_lock(&vb->lock);
cf725ce2
RP
974 if (vb->free < (1UL << order)) {
975 spin_unlock(&vb->lock);
976 continue;
977 }
02b709df 978
cf725ce2
RP
979 pages_off = VMAP_BBMAP_BITS - vb->free;
980 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
02b709df
NP
981 vb->free -= 1UL << order;
982 if (vb->free == 0) {
983 spin_lock(&vbq->lock);
984 list_del_rcu(&vb->free_list);
985 spin_unlock(&vbq->lock);
986 }
cf725ce2 987
02b709df
NP
988 spin_unlock(&vb->lock);
989 break;
db64fe02 990 }
02b709df 991
3f04ba85 992 put_cpu_var(vmap_block_queue);
db64fe02
NP
993 rcu_read_unlock();
994
cf725ce2
RP
995 /* Allocate new block if nothing was found */
996 if (!vaddr)
997 vaddr = new_vmap_block(order, gfp_mask);
db64fe02 998
cf725ce2 999 return vaddr;
db64fe02
NP
1000}
1001
1002static void vb_free(const void *addr, unsigned long size)
1003{
1004 unsigned long offset;
1005 unsigned long vb_idx;
1006 unsigned int order;
1007 struct vmap_block *vb;
1008
891c49ab 1009 BUG_ON(offset_in_page(size));
db64fe02 1010 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
1011
1012 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1013
db64fe02
NP
1014 order = get_order(size);
1015
1016 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
7d61bfe8 1017 offset >>= PAGE_SHIFT;
db64fe02
NP
1018
1019 vb_idx = addr_to_vb_idx((unsigned long)addr);
1020 rcu_read_lock();
1021 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1022 rcu_read_unlock();
1023 BUG_ON(!vb);
1024
64141da5
JF
1025 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1026
db64fe02 1027 spin_lock(&vb->lock);
7d61bfe8
RP
1028
1029 /* Expand dirty range */
1030 vb->dirty_min = min(vb->dirty_min, offset);
1031 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
d086817d 1032
db64fe02
NP
1033 vb->dirty += 1UL << order;
1034 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 1035 BUG_ON(vb->free);
db64fe02
NP
1036 spin_unlock(&vb->lock);
1037 free_vmap_block(vb);
1038 } else
1039 spin_unlock(&vb->lock);
1040}
1041
1042/**
1043 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1044 *
1045 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1046 * to amortize TLB flushing overheads. What this means is that any page you
1047 * have now, may, in a former life, have been mapped into kernel virtual
1048 * address by the vmap layer and so there might be some CPUs with TLB entries
1049 * still referencing that page (additional to the regular 1:1 kernel mapping).
1050 *
1051 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1052 * be sure that none of the pages we have control over will have any aliases
1053 * from the vmap layer.
1054 */
1055void vm_unmap_aliases(void)
1056{
1057 unsigned long start = ULONG_MAX, end = 0;
1058 int cpu;
1059 int flush = 0;
1060
9b463334
JF
1061 if (unlikely(!vmap_initialized))
1062 return;
1063
db64fe02
NP
1064 for_each_possible_cpu(cpu) {
1065 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1066 struct vmap_block *vb;
1067
1068 rcu_read_lock();
1069 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
db64fe02 1070 spin_lock(&vb->lock);
7d61bfe8
RP
1071 if (vb->dirty) {
1072 unsigned long va_start = vb->va->va_start;
db64fe02 1073 unsigned long s, e;
b136be5e 1074
7d61bfe8
RP
1075 s = va_start + (vb->dirty_min << PAGE_SHIFT);
1076 e = va_start + (vb->dirty_max << PAGE_SHIFT);
db64fe02 1077
7d61bfe8
RP
1078 start = min(s, start);
1079 end = max(e, end);
db64fe02 1080
7d61bfe8 1081 flush = 1;
db64fe02
NP
1082 }
1083 spin_unlock(&vb->lock);
1084 }
1085 rcu_read_unlock();
1086 }
1087
1088 __purge_vmap_area_lazy(&start, &end, 1, flush);
1089}
1090EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1091
1092/**
1093 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1094 * @mem: the pointer returned by vm_map_ram
1095 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1096 */
1097void vm_unmap_ram(const void *mem, unsigned int count)
1098{
65ee03c4 1099 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1100 unsigned long addr = (unsigned long)mem;
1101
1102 BUG_ON(!addr);
1103 BUG_ON(addr < VMALLOC_START);
1104 BUG_ON(addr > VMALLOC_END);
a1c0b1a0 1105 BUG_ON(!PAGE_ALIGNED(addr));
db64fe02
NP
1106
1107 debug_check_no_locks_freed(mem, size);
cd52858c 1108 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
1109
1110 if (likely(count <= VMAP_MAX_ALLOC))
1111 vb_free(mem, size);
1112 else
1113 free_unmap_vmap_area_addr(addr);
1114}
1115EXPORT_SYMBOL(vm_unmap_ram);
1116
1117/**
1118 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1119 * @pages: an array of pointers to the pages to be mapped
1120 * @count: number of pages
1121 * @node: prefer to allocate data structures on this node
1122 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad 1123 *
36437638
GK
1124 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1125 * faster than vmap so it's good. But if you mix long-life and short-life
1126 * objects with vm_map_ram(), it could consume lots of address space through
1127 * fragmentation (especially on a 32bit machine). You could see failures in
1128 * the end. Please use this function for short-lived objects.
1129 *
e99c97ad 1130 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1131 */
1132void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1133{
65ee03c4 1134 unsigned long size = (unsigned long)count << PAGE_SHIFT;
db64fe02
NP
1135 unsigned long addr;
1136 void *mem;
1137
1138 if (likely(count <= VMAP_MAX_ALLOC)) {
1139 mem = vb_alloc(size, GFP_KERNEL);
1140 if (IS_ERR(mem))
1141 return NULL;
1142 addr = (unsigned long)mem;
1143 } else {
1144 struct vmap_area *va;
1145 va = alloc_vmap_area(size, PAGE_SIZE,
1146 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1147 if (IS_ERR(va))
1148 return NULL;
1149
1150 addr = va->va_start;
1151 mem = (void *)addr;
1152 }
1153 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1154 vm_unmap_ram(mem, count);
1155 return NULL;
1156 }
1157 return mem;
1158}
1159EXPORT_SYMBOL(vm_map_ram);
1160
4341fa45 1161static struct vm_struct *vmlist __initdata;
be9b7335
NP
1162/**
1163 * vm_area_add_early - add vmap area early during boot
1164 * @vm: vm_struct to add
1165 *
1166 * This function is used to add fixed kernel vm area to vmlist before
1167 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1168 * should contain proper values and the other fields should be zero.
1169 *
1170 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1171 */
1172void __init vm_area_add_early(struct vm_struct *vm)
1173{
1174 struct vm_struct *tmp, **p;
1175
1176 BUG_ON(vmap_initialized);
1177 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1178 if (tmp->addr >= vm->addr) {
1179 BUG_ON(tmp->addr < vm->addr + vm->size);
1180 break;
1181 } else
1182 BUG_ON(tmp->addr + tmp->size > vm->addr);
1183 }
1184 vm->next = *p;
1185 *p = vm;
1186}
1187
f0aa6617
TH
1188/**
1189 * vm_area_register_early - register vmap area early during boot
1190 * @vm: vm_struct to register
c0c0a293 1191 * @align: requested alignment
f0aa6617
TH
1192 *
1193 * This function is used to register kernel vm area before
1194 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1195 * proper values on entry and other fields should be zero. On return,
1196 * vm->addr contains the allocated address.
1197 *
1198 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1199 */
c0c0a293 1200void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1201{
1202 static size_t vm_init_off __initdata;
c0c0a293
TH
1203 unsigned long addr;
1204
1205 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1206 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1207
c0c0a293 1208 vm->addr = (void *)addr;
f0aa6617 1209
be9b7335 1210 vm_area_add_early(vm);
f0aa6617
TH
1211}
1212
db64fe02
NP
1213void __init vmalloc_init(void)
1214{
822c18f2
IK
1215 struct vmap_area *va;
1216 struct vm_struct *tmp;
db64fe02
NP
1217 int i;
1218
1219 for_each_possible_cpu(i) {
1220 struct vmap_block_queue *vbq;
32fcfd40 1221 struct vfree_deferred *p;
db64fe02
NP
1222
1223 vbq = &per_cpu(vmap_block_queue, i);
1224 spin_lock_init(&vbq->lock);
1225 INIT_LIST_HEAD(&vbq->free);
32fcfd40
AV
1226 p = &per_cpu(vfree_deferred, i);
1227 init_llist_head(&p->list);
1228 INIT_WORK(&p->wq, free_work);
db64fe02 1229 }
9b463334 1230
822c18f2
IK
1231 /* Import existing vmlist entries. */
1232 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1233 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1234 va->flags = VM_VM_AREA;
822c18f2
IK
1235 va->va_start = (unsigned long)tmp->addr;
1236 va->va_end = va->va_start + tmp->size;
dbda591d 1237 va->vm = tmp;
822c18f2
IK
1238 __insert_vmap_area(va);
1239 }
ca23e405
TH
1240
1241 vmap_area_pcpu_hole = VMALLOC_END;
1242
9b463334 1243 vmap_initialized = true;
db64fe02
NP
1244}
1245
8fc48985
TH
1246/**
1247 * map_kernel_range_noflush - map kernel VM area with the specified pages
1248 * @addr: start of the VM area to map
1249 * @size: size of the VM area to map
1250 * @prot: page protection flags to use
1251 * @pages: pages to map
1252 *
1253 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1254 * specify should have been allocated using get_vm_area() and its
1255 * friends.
1256 *
1257 * NOTE:
1258 * This function does NOT do any cache flushing. The caller is
1259 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1260 * before calling this function.
1261 *
1262 * RETURNS:
1263 * The number of pages mapped on success, -errno on failure.
1264 */
1265int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1266 pgprot_t prot, struct page **pages)
1267{
1268 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1269}
1270
1271/**
1272 * unmap_kernel_range_noflush - unmap kernel VM area
1273 * @addr: start of the VM area to unmap
1274 * @size: size of the VM area to unmap
1275 *
1276 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1277 * specify should have been allocated using get_vm_area() and its
1278 * friends.
1279 *
1280 * NOTE:
1281 * This function does NOT do any cache flushing. The caller is
1282 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1283 * before calling this function and flush_tlb_kernel_range() after.
1284 */
1285void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1286{
1287 vunmap_page_range(addr, addr + size);
1288}
81e88fdc 1289EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1290
1291/**
1292 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1293 * @addr: start of the VM area to unmap
1294 * @size: size of the VM area to unmap
1295 *
1296 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1297 * the unmapping and tlb after.
1298 */
db64fe02
NP
1299void unmap_kernel_range(unsigned long addr, unsigned long size)
1300{
1301 unsigned long end = addr + size;
f6fcba70
TH
1302
1303 flush_cache_vunmap(addr, end);
db64fe02
NP
1304 vunmap_page_range(addr, end);
1305 flush_tlb_kernel_range(addr, end);
1306}
93ef6d6c 1307EXPORT_SYMBOL_GPL(unmap_kernel_range);
db64fe02 1308
f6f8ed47 1309int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
db64fe02
NP
1310{
1311 unsigned long addr = (unsigned long)area->addr;
762216ab 1312 unsigned long end = addr + get_vm_area_size(area);
db64fe02
NP
1313 int err;
1314
f6f8ed47 1315 err = vmap_page_range(addr, end, prot, pages);
db64fe02 1316
f6f8ed47 1317 return err > 0 ? 0 : err;
db64fe02
NP
1318}
1319EXPORT_SYMBOL_GPL(map_vm_area);
1320
f5252e00 1321static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1322 unsigned long flags, const void *caller)
cf88c790 1323{
c69480ad 1324 spin_lock(&vmap_area_lock);
cf88c790
TH
1325 vm->flags = flags;
1326 vm->addr = (void *)va->va_start;
1327 vm->size = va->va_end - va->va_start;
1328 vm->caller = caller;
db1aecaf 1329 va->vm = vm;
cf88c790 1330 va->flags |= VM_VM_AREA;
c69480ad 1331 spin_unlock(&vmap_area_lock);
f5252e00 1332}
cf88c790 1333
20fc02b4 1334static void clear_vm_uninitialized_flag(struct vm_struct *vm)
f5252e00 1335{
d4033afd 1336 /*
20fc02b4 1337 * Before removing VM_UNINITIALIZED,
d4033afd
JK
1338 * we should make sure that vm has proper values.
1339 * Pair with smp_rmb() in show_numa_info().
1340 */
1341 smp_wmb();
20fc02b4 1342 vm->flags &= ~VM_UNINITIALIZED;
cf88c790
TH
1343}
1344
db64fe02 1345static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1346 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1347 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1348{
0006526d 1349 struct vmap_area *va;
db64fe02 1350 struct vm_struct *area;
1da177e4 1351
52fd24ca 1352 BUG_ON(in_interrupt());
1da177e4 1353 size = PAGE_ALIGN(size);
31be8309
OH
1354 if (unlikely(!size))
1355 return NULL;
1da177e4 1356
252e5c6e 1357 if (flags & VM_IOREMAP)
1358 align = 1ul << clamp_t(int, get_count_order_long(size),
1359 PAGE_SHIFT, IOREMAP_MAX_ORDER);
1360
cf88c790 1361 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1362 if (unlikely(!area))
1363 return NULL;
1364
71394fe5
AR
1365 if (!(flags & VM_NO_GUARD))
1366 size += PAGE_SIZE;
1da177e4 1367
db64fe02
NP
1368 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1369 if (IS_ERR(va)) {
1370 kfree(area);
1371 return NULL;
1da177e4 1372 }
1da177e4 1373
d82b1d85 1374 setup_vmalloc_vm(area, va, flags, caller);
f5252e00 1375
1da177e4 1376 return area;
1da177e4
LT
1377}
1378
930fc45a
CL
1379struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1380 unsigned long start, unsigned long end)
1381{
00ef2d2f
DR
1382 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1383 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1384}
5992b6da 1385EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1386
c2968612
BH
1387struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1388 unsigned long start, unsigned long end,
5e6cafc8 1389 const void *caller)
c2968612 1390{
00ef2d2f
DR
1391 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1392 GFP_KERNEL, caller);
c2968612
BH
1393}
1394
1da177e4 1395/**
183ff22b 1396 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1397 * @size: size of the area
1398 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1399 *
1400 * Search an area of @size in the kernel virtual mapping area,
1401 * and reserved it for out purposes. Returns the area descriptor
1402 * on success or %NULL on failure.
1403 */
1404struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1405{
2dca6999 1406 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1407 NUMA_NO_NODE, GFP_KERNEL,
1408 __builtin_return_address(0));
23016969
CL
1409}
1410
1411struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1412 const void *caller)
23016969 1413{
2dca6999 1414 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1415 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1416}
1417
e9da6e99
MS
1418/**
1419 * find_vm_area - find a continuous kernel virtual area
1420 * @addr: base address
1421 *
1422 * Search for the kernel VM area starting at @addr, and return it.
1423 * It is up to the caller to do all required locking to keep the returned
1424 * pointer valid.
1425 */
1426struct vm_struct *find_vm_area(const void *addr)
83342314 1427{
db64fe02 1428 struct vmap_area *va;
83342314 1429
db64fe02
NP
1430 va = find_vmap_area((unsigned long)addr);
1431 if (va && va->flags & VM_VM_AREA)
db1aecaf 1432 return va->vm;
1da177e4 1433
1da177e4 1434 return NULL;
1da177e4
LT
1435}
1436
7856dfeb 1437/**
183ff22b 1438 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1439 * @addr: base address
1440 *
1441 * Search for the kernel VM area starting at @addr, and remove it.
1442 * This function returns the found VM area, but using it is NOT safe
1443 * on SMP machines, except for its size or flags.
1444 */
b3bdda02 1445struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1446{
db64fe02
NP
1447 struct vmap_area *va;
1448
1449 va = find_vmap_area((unsigned long)addr);
1450 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1451 struct vm_struct *vm = va->vm;
f5252e00 1452
c69480ad
JK
1453 spin_lock(&vmap_area_lock);
1454 va->vm = NULL;
1455 va->flags &= ~VM_VM_AREA;
1456 spin_unlock(&vmap_area_lock);
1457
dd32c279 1458 vmap_debug_free_range(va->va_start, va->va_end);
a5af5aa8 1459 kasan_free_shadow(vm);
dd32c279 1460 free_unmap_vmap_area(va);
dd32c279 1461
db64fe02
NP
1462 return vm;
1463 }
1464 return NULL;
7856dfeb
AK
1465}
1466
b3bdda02 1467static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1468{
1469 struct vm_struct *area;
1470
1471 if (!addr)
1472 return;
1473
e69e9d4a 1474 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
ab15d9b4 1475 addr))
1da177e4 1476 return;
1da177e4
LT
1477
1478 area = remove_vm_area(addr);
1479 if (unlikely(!area)) {
4c8573e2 1480 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1481 addr);
1da177e4
LT
1482 return;
1483 }
1484
7511c3ed
JM
1485 debug_check_no_locks_freed(addr, get_vm_area_size(area));
1486 debug_check_no_obj_freed(addr, get_vm_area_size(area));
9a11b49a 1487
1da177e4
LT
1488 if (deallocate_pages) {
1489 int i;
1490
1491 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1492 struct page *page = area->pages[i];
1493
1494 BUG_ON(!page);
4949148a 1495 __free_pages(page, 0);
1da177e4
LT
1496 }
1497
244d63ee 1498 kvfree(area->pages);
1da177e4
LT
1499 }
1500
1501 kfree(area);
1502 return;
1503}
32fcfd40 1504
1da177e4
LT
1505/**
1506 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1507 * @addr: memory base address
1508 *
183ff22b 1509 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1510 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1511 * NULL, no operation is performed.
1da177e4 1512 *
32fcfd40
AV
1513 * Must not be called in NMI context (strictly speaking, only if we don't
1514 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1515 * conventions for vfree() arch-depenedent would be a really bad idea)
c9fcee51
AM
1516 *
1517 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1da177e4 1518 */
b3bdda02 1519void vfree(const void *addr)
1da177e4 1520{
32fcfd40 1521 BUG_ON(in_nmi());
89219d37
CM
1522
1523 kmemleak_free(addr);
1524
32fcfd40
AV
1525 if (!addr)
1526 return;
1527 if (unlikely(in_interrupt())) {
7c8e0181 1528 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
59d3132f
ON
1529 if (llist_add((struct llist_node *)addr, &p->list))
1530 schedule_work(&p->wq);
32fcfd40
AV
1531 } else
1532 __vunmap(addr, 1);
1da177e4 1533}
1da177e4
LT
1534EXPORT_SYMBOL(vfree);
1535
1536/**
1537 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1538 * @addr: memory base address
1539 *
1540 * Free the virtually contiguous memory area starting at @addr,
1541 * which was created from the page array passed to vmap().
1542 *
80e93eff 1543 * Must not be called in interrupt context.
1da177e4 1544 */
b3bdda02 1545void vunmap(const void *addr)
1da177e4
LT
1546{
1547 BUG_ON(in_interrupt());
34754b69 1548 might_sleep();
32fcfd40
AV
1549 if (addr)
1550 __vunmap(addr, 0);
1da177e4 1551}
1da177e4
LT
1552EXPORT_SYMBOL(vunmap);
1553
1554/**
1555 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1556 * @pages: array of page pointers
1557 * @count: number of pages to map
1558 * @flags: vm_area->flags
1559 * @prot: page protection for the mapping
1560 *
1561 * Maps @count pages from @pages into contiguous kernel virtual
1562 * space.
1563 */
1564void *vmap(struct page **pages, unsigned int count,
1565 unsigned long flags, pgprot_t prot)
1566{
1567 struct vm_struct *area;
65ee03c4 1568 unsigned long size; /* In bytes */
1da177e4 1569
34754b69
PZ
1570 might_sleep();
1571
4481374c 1572 if (count > totalram_pages)
1da177e4
LT
1573 return NULL;
1574
65ee03c4
GJM
1575 size = (unsigned long)count << PAGE_SHIFT;
1576 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1da177e4
LT
1577 if (!area)
1578 return NULL;
23016969 1579
f6f8ed47 1580 if (map_vm_area(area, prot, pages)) {
1da177e4
LT
1581 vunmap(area->addr);
1582 return NULL;
1583 }
1584
1585 return area->addr;
1586}
1da177e4
LT
1587EXPORT_SYMBOL(vmap);
1588
2dca6999
DM
1589static void *__vmalloc_node(unsigned long size, unsigned long align,
1590 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1591 int node, const void *caller);
e31d9eb5 1592static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3722e13c 1593 pgprot_t prot, int node)
1da177e4
LT
1594{
1595 struct page **pages;
1596 unsigned int nr_pages, array_size, i;
930f036b
DR
1597 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1598 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1da177e4 1599
762216ab 1600 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1da177e4
LT
1601 array_size = (nr_pages * sizeof(struct page *));
1602
1603 area->nr_pages = nr_pages;
1604 /* Please note that the recursion is strictly bounded. */
8757d5fa 1605 if (array_size > PAGE_SIZE) {
976d6dfb 1606 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
3722e13c 1607 PAGE_KERNEL, node, area->caller);
286e1ea3 1608 } else {
976d6dfb 1609 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1610 }
1da177e4
LT
1611 area->pages = pages;
1612 if (!area->pages) {
1613 remove_vm_area(area->addr);
1614 kfree(area);
1615 return NULL;
1616 }
1da177e4
LT
1617
1618 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1619 struct page *page;
1620
4b90951c 1621 if (node == NUMA_NO_NODE)
7877cdcc 1622 page = alloc_page(alloc_mask);
930fc45a 1623 else
7877cdcc 1624 page = alloc_pages_node(node, alloc_mask, 0);
bf53d6f8
CL
1625
1626 if (unlikely(!page)) {
1da177e4
LT
1627 /* Successfully allocated i pages, free them in __vunmap() */
1628 area->nr_pages = i;
1629 goto fail;
1630 }
bf53d6f8 1631 area->pages[i] = page;
d0164adc 1632 if (gfpflags_allow_blocking(gfp_mask))
660654f9 1633 cond_resched();
1da177e4
LT
1634 }
1635
f6f8ed47 1636 if (map_vm_area(area, prot, pages))
1da177e4
LT
1637 goto fail;
1638 return area->addr;
1639
1640fail:
7877cdcc
MH
1641 warn_alloc(gfp_mask,
1642 "vmalloc: allocation failure, allocated %ld of %ld bytes",
22943ab1 1643 (area->nr_pages*PAGE_SIZE), area->size);
1da177e4
LT
1644 vfree(area->addr);
1645 return NULL;
1646}
1647
1648/**
d0a21265 1649 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1650 * @size: allocation size
2dca6999 1651 * @align: desired alignment
d0a21265
DR
1652 * @start: vm area range start
1653 * @end: vm area range end
1da177e4
LT
1654 * @gfp_mask: flags for the page level allocator
1655 * @prot: protection mask for the allocated pages
cb9e3c29 1656 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
00ef2d2f 1657 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1658 * @caller: caller's return address
1da177e4
LT
1659 *
1660 * Allocate enough pages to cover @size from the page level
1661 * allocator with @gfp_mask flags. Map them into contiguous
1662 * kernel virtual space, using a pagetable protection of @prot.
1663 */
d0a21265
DR
1664void *__vmalloc_node_range(unsigned long size, unsigned long align,
1665 unsigned long start, unsigned long end, gfp_t gfp_mask,
cb9e3c29
AR
1666 pgprot_t prot, unsigned long vm_flags, int node,
1667 const void *caller)
1da177e4
LT
1668{
1669 struct vm_struct *area;
89219d37
CM
1670 void *addr;
1671 unsigned long real_size = size;
1da177e4
LT
1672
1673 size = PAGE_ALIGN(size);
4481374c 1674 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1675 goto fail;
1da177e4 1676
cb9e3c29
AR
1677 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1678 vm_flags, start, end, node, gfp_mask, caller);
1da177e4 1679 if (!area)
de7d2b56 1680 goto fail;
1da177e4 1681
3722e13c 1682 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1368edf0 1683 if (!addr)
b82225f3 1684 return NULL;
89219d37 1685
f5252e00 1686 /*
20fc02b4
ZY
1687 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1688 * flag. It means that vm_struct is not fully initialized.
4341fa45 1689 * Now, it is fully initialized, so remove this flag here.
f5252e00 1690 */
20fc02b4 1691 clear_vm_uninitialized_flag(area);
f5252e00 1692
89219d37 1693 /*
7f88f88f
CM
1694 * A ref_count = 2 is needed because vm_struct allocated in
1695 * __get_vm_area_node() contains a reference to the virtual address of
1696 * the vmalloc'ed block.
89219d37 1697 */
7f88f88f 1698 kmemleak_alloc(addr, real_size, 2, gfp_mask);
89219d37
CM
1699
1700 return addr;
de7d2b56
JP
1701
1702fail:
7877cdcc
MH
1703 warn_alloc(gfp_mask,
1704 "vmalloc: allocation failure: %lu bytes", real_size);
de7d2b56 1705 return NULL;
1da177e4
LT
1706}
1707
d0a21265
DR
1708/**
1709 * __vmalloc_node - allocate virtually contiguous memory
1710 * @size: allocation size
1711 * @align: desired alignment
1712 * @gfp_mask: flags for the page level allocator
1713 * @prot: protection mask for the allocated pages
00ef2d2f 1714 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1715 * @caller: caller's return address
1716 *
1717 * Allocate enough pages to cover @size from the page level
1718 * allocator with @gfp_mask flags. Map them into contiguous
1719 * kernel virtual space, using a pagetable protection of @prot.
1720 */
1721static void *__vmalloc_node(unsigned long size, unsigned long align,
1722 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1723 int node, const void *caller)
d0a21265
DR
1724{
1725 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
cb9e3c29 1726 gfp_mask, prot, 0, node, caller);
d0a21265
DR
1727}
1728
930fc45a
CL
1729void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1730{
00ef2d2f 1731 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1732 __builtin_return_address(0));
930fc45a 1733}
1da177e4
LT
1734EXPORT_SYMBOL(__vmalloc);
1735
e1ca7788
DY
1736static inline void *__vmalloc_node_flags(unsigned long size,
1737 int node, gfp_t flags)
1738{
1739 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1740 node, __builtin_return_address(0));
1741}
1742
1da177e4
LT
1743/**
1744 * vmalloc - allocate virtually contiguous memory
1da177e4 1745 * @size: allocation size
1da177e4
LT
1746 * Allocate enough pages to cover @size from the page level
1747 * allocator and map them into contiguous kernel virtual space.
1748 *
c1c8897f 1749 * For tight control over page level allocator and protection flags
1da177e4
LT
1750 * use __vmalloc() instead.
1751 */
1752void *vmalloc(unsigned long size)
1753{
00ef2d2f
DR
1754 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1755 GFP_KERNEL | __GFP_HIGHMEM);
1da177e4 1756}
1da177e4
LT
1757EXPORT_SYMBOL(vmalloc);
1758
e1ca7788
DY
1759/**
1760 * vzalloc - allocate virtually contiguous memory with zero fill
1761 * @size: allocation size
1762 * Allocate enough pages to cover @size from the page level
1763 * allocator and map them into contiguous kernel virtual space.
1764 * The memory allocated is set to zero.
1765 *
1766 * For tight control over page level allocator and protection flags
1767 * use __vmalloc() instead.
1768 */
1769void *vzalloc(unsigned long size)
1770{
00ef2d2f 1771 return __vmalloc_node_flags(size, NUMA_NO_NODE,
e1ca7788
DY
1772 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1773}
1774EXPORT_SYMBOL(vzalloc);
1775
83342314 1776/**
ead04089
REB
1777 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1778 * @size: allocation size
83342314 1779 *
ead04089
REB
1780 * The resulting memory area is zeroed so it can be mapped to userspace
1781 * without leaking data.
83342314
NP
1782 */
1783void *vmalloc_user(unsigned long size)
1784{
1785 struct vm_struct *area;
1786 void *ret;
1787
2dca6999
DM
1788 ret = __vmalloc_node(size, SHMLBA,
1789 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
00ef2d2f
DR
1790 PAGE_KERNEL, NUMA_NO_NODE,
1791 __builtin_return_address(0));
2b4ac44e 1792 if (ret) {
db64fe02 1793 area = find_vm_area(ret);
2b4ac44e 1794 area->flags |= VM_USERMAP;
2b4ac44e 1795 }
83342314
NP
1796 return ret;
1797}
1798EXPORT_SYMBOL(vmalloc_user);
1799
930fc45a
CL
1800/**
1801 * vmalloc_node - allocate memory on a specific node
930fc45a 1802 * @size: allocation size
d44e0780 1803 * @node: numa node
930fc45a
CL
1804 *
1805 * Allocate enough pages to cover @size from the page level
1806 * allocator and map them into contiguous kernel virtual space.
1807 *
c1c8897f 1808 * For tight control over page level allocator and protection flags
930fc45a
CL
1809 * use __vmalloc() instead.
1810 */
1811void *vmalloc_node(unsigned long size, int node)
1812{
2dca6999 1813 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1814 node, __builtin_return_address(0));
930fc45a
CL
1815}
1816EXPORT_SYMBOL(vmalloc_node);
1817
e1ca7788
DY
1818/**
1819 * vzalloc_node - allocate memory on a specific node with zero fill
1820 * @size: allocation size
1821 * @node: numa node
1822 *
1823 * Allocate enough pages to cover @size from the page level
1824 * allocator and map them into contiguous kernel virtual space.
1825 * The memory allocated is set to zero.
1826 *
1827 * For tight control over page level allocator and protection flags
1828 * use __vmalloc_node() instead.
1829 */
1830void *vzalloc_node(unsigned long size, int node)
1831{
1832 return __vmalloc_node_flags(size, node,
1833 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1834}
1835EXPORT_SYMBOL(vzalloc_node);
1836
4dc3b16b
PP
1837#ifndef PAGE_KERNEL_EXEC
1838# define PAGE_KERNEL_EXEC PAGE_KERNEL
1839#endif
1840
1da177e4
LT
1841/**
1842 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1843 * @size: allocation size
1844 *
1845 * Kernel-internal function to allocate enough pages to cover @size
1846 * the page level allocator and map them into contiguous and
1847 * executable kernel virtual space.
1848 *
c1c8897f 1849 * For tight control over page level allocator and protection flags
1da177e4
LT
1850 * use __vmalloc() instead.
1851 */
1852
1da177e4
LT
1853void *vmalloc_exec(unsigned long size)
1854{
2dca6999 1855 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
00ef2d2f 1856 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1857}
1858
0d08e0d3 1859#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1860#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1861#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1862#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1863#else
1864#define GFP_VMALLOC32 GFP_KERNEL
1865#endif
1866
1da177e4
LT
1867/**
1868 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1869 * @size: allocation size
1870 *
1871 * Allocate enough 32bit PA addressable pages to cover @size from the
1872 * page level allocator and map them into contiguous kernel virtual space.
1873 */
1874void *vmalloc_32(unsigned long size)
1875{
2dca6999 1876 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1877 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1878}
1da177e4
LT
1879EXPORT_SYMBOL(vmalloc_32);
1880
83342314 1881/**
ead04089 1882 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1883 * @size: allocation size
ead04089
REB
1884 *
1885 * The resulting memory area is 32bit addressable and zeroed so it can be
1886 * mapped to userspace without leaking data.
83342314
NP
1887 */
1888void *vmalloc_32_user(unsigned long size)
1889{
1890 struct vm_struct *area;
1891 void *ret;
1892
2dca6999 1893 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 1894 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 1895 if (ret) {
db64fe02 1896 area = find_vm_area(ret);
2b4ac44e 1897 area->flags |= VM_USERMAP;
2b4ac44e 1898 }
83342314
NP
1899 return ret;
1900}
1901EXPORT_SYMBOL(vmalloc_32_user);
1902
d0107eb0
KH
1903/*
1904 * small helper routine , copy contents to buf from addr.
1905 * If the page is not present, fill zero.
1906 */
1907
1908static int aligned_vread(char *buf, char *addr, unsigned long count)
1909{
1910 struct page *p;
1911 int copied = 0;
1912
1913 while (count) {
1914 unsigned long offset, length;
1915
891c49ab 1916 offset = offset_in_page(addr);
d0107eb0
KH
1917 length = PAGE_SIZE - offset;
1918 if (length > count)
1919 length = count;
1920 p = vmalloc_to_page(addr);
1921 /*
1922 * To do safe access to this _mapped_ area, we need
1923 * lock. But adding lock here means that we need to add
1924 * overhead of vmalloc()/vfree() calles for this _debug_
1925 * interface, rarely used. Instead of that, we'll use
1926 * kmap() and get small overhead in this access function.
1927 */
1928 if (p) {
1929 /*
1930 * we can expect USER0 is not used (see vread/vwrite's
1931 * function description)
1932 */
9b04c5fe 1933 void *map = kmap_atomic(p);
d0107eb0 1934 memcpy(buf, map + offset, length);
9b04c5fe 1935 kunmap_atomic(map);
d0107eb0
KH
1936 } else
1937 memset(buf, 0, length);
1938
1939 addr += length;
1940 buf += length;
1941 copied += length;
1942 count -= length;
1943 }
1944 return copied;
1945}
1946
1947static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1948{
1949 struct page *p;
1950 int copied = 0;
1951
1952 while (count) {
1953 unsigned long offset, length;
1954
891c49ab 1955 offset = offset_in_page(addr);
d0107eb0
KH
1956 length = PAGE_SIZE - offset;
1957 if (length > count)
1958 length = count;
1959 p = vmalloc_to_page(addr);
1960 /*
1961 * To do safe access to this _mapped_ area, we need
1962 * lock. But adding lock here means that we need to add
1963 * overhead of vmalloc()/vfree() calles for this _debug_
1964 * interface, rarely used. Instead of that, we'll use
1965 * kmap() and get small overhead in this access function.
1966 */
1967 if (p) {
1968 /*
1969 * we can expect USER0 is not used (see vread/vwrite's
1970 * function description)
1971 */
9b04c5fe 1972 void *map = kmap_atomic(p);
d0107eb0 1973 memcpy(map + offset, buf, length);
9b04c5fe 1974 kunmap_atomic(map);
d0107eb0
KH
1975 }
1976 addr += length;
1977 buf += length;
1978 copied += length;
1979 count -= length;
1980 }
1981 return copied;
1982}
1983
1984/**
1985 * vread() - read vmalloc area in a safe way.
1986 * @buf: buffer for reading data
1987 * @addr: vm address.
1988 * @count: number of bytes to be read.
1989 *
1990 * Returns # of bytes which addr and buf should be increased.
1991 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1992 * includes any intersect with alive vmalloc area.
1993 *
1994 * This function checks that addr is a valid vmalloc'ed area, and
1995 * copy data from that area to a given buffer. If the given memory range
1996 * of [addr...addr+count) includes some valid address, data is copied to
1997 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1998 * IOREMAP area is treated as memory hole and no copy is done.
1999 *
2000 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2001 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2002 *
2003 * Note: In usual ops, vread() is never necessary because the caller
2004 * should know vmalloc() area is valid and can use memcpy().
2005 * This is for routines which have to access vmalloc area without
2006 * any informaion, as /dev/kmem.
2007 *
2008 */
2009
1da177e4
LT
2010long vread(char *buf, char *addr, unsigned long count)
2011{
e81ce85f
JK
2012 struct vmap_area *va;
2013 struct vm_struct *vm;
1da177e4 2014 char *vaddr, *buf_start = buf;
d0107eb0 2015 unsigned long buflen = count;
1da177e4
LT
2016 unsigned long n;
2017
2018 /* Don't allow overflow */
2019 if ((unsigned long) addr + count < count)
2020 count = -(unsigned long) addr;
2021
e81ce85f
JK
2022 spin_lock(&vmap_area_lock);
2023 list_for_each_entry(va, &vmap_area_list, list) {
2024 if (!count)
2025 break;
2026
2027 if (!(va->flags & VM_VM_AREA))
2028 continue;
2029
2030 vm = va->vm;
2031 vaddr = (char *) vm->addr;
762216ab 2032 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2033 continue;
2034 while (addr < vaddr) {
2035 if (count == 0)
2036 goto finished;
2037 *buf = '\0';
2038 buf++;
2039 addr++;
2040 count--;
2041 }
762216ab 2042 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2043 if (n > count)
2044 n = count;
e81ce85f 2045 if (!(vm->flags & VM_IOREMAP))
d0107eb0
KH
2046 aligned_vread(buf, addr, n);
2047 else /* IOREMAP area is treated as memory hole */
2048 memset(buf, 0, n);
2049 buf += n;
2050 addr += n;
2051 count -= n;
1da177e4
LT
2052 }
2053finished:
e81ce85f 2054 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2055
2056 if (buf == buf_start)
2057 return 0;
2058 /* zero-fill memory holes */
2059 if (buf != buf_start + buflen)
2060 memset(buf, 0, buflen - (buf - buf_start));
2061
2062 return buflen;
1da177e4
LT
2063}
2064
d0107eb0
KH
2065/**
2066 * vwrite() - write vmalloc area in a safe way.
2067 * @buf: buffer for source data
2068 * @addr: vm address.
2069 * @count: number of bytes to be read.
2070 *
2071 * Returns # of bytes which addr and buf should be incresed.
2072 * (same number to @count).
2073 * If [addr...addr+count) doesn't includes any intersect with valid
2074 * vmalloc area, returns 0.
2075 *
2076 * This function checks that addr is a valid vmalloc'ed area, and
2077 * copy data from a buffer to the given addr. If specified range of
2078 * [addr...addr+count) includes some valid address, data is copied from
2079 * proper area of @buf. If there are memory holes, no copy to hole.
2080 * IOREMAP area is treated as memory hole and no copy is done.
2081 *
2082 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2083 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2084 *
2085 * Note: In usual ops, vwrite() is never necessary because the caller
2086 * should know vmalloc() area is valid and can use memcpy().
2087 * This is for routines which have to access vmalloc area without
2088 * any informaion, as /dev/kmem.
d0107eb0
KH
2089 */
2090
1da177e4
LT
2091long vwrite(char *buf, char *addr, unsigned long count)
2092{
e81ce85f
JK
2093 struct vmap_area *va;
2094 struct vm_struct *vm;
d0107eb0
KH
2095 char *vaddr;
2096 unsigned long n, buflen;
2097 int copied = 0;
1da177e4
LT
2098
2099 /* Don't allow overflow */
2100 if ((unsigned long) addr + count < count)
2101 count = -(unsigned long) addr;
d0107eb0 2102 buflen = count;
1da177e4 2103
e81ce85f
JK
2104 spin_lock(&vmap_area_lock);
2105 list_for_each_entry(va, &vmap_area_list, list) {
2106 if (!count)
2107 break;
2108
2109 if (!(va->flags & VM_VM_AREA))
2110 continue;
2111
2112 vm = va->vm;
2113 vaddr = (char *) vm->addr;
762216ab 2114 if (addr >= vaddr + get_vm_area_size(vm))
1da177e4
LT
2115 continue;
2116 while (addr < vaddr) {
2117 if (count == 0)
2118 goto finished;
2119 buf++;
2120 addr++;
2121 count--;
2122 }
762216ab 2123 n = vaddr + get_vm_area_size(vm) - addr;
d0107eb0
KH
2124 if (n > count)
2125 n = count;
e81ce85f 2126 if (!(vm->flags & VM_IOREMAP)) {
d0107eb0
KH
2127 aligned_vwrite(buf, addr, n);
2128 copied++;
2129 }
2130 buf += n;
2131 addr += n;
2132 count -= n;
1da177e4
LT
2133 }
2134finished:
e81ce85f 2135 spin_unlock(&vmap_area_lock);
d0107eb0
KH
2136 if (!copied)
2137 return 0;
2138 return buflen;
1da177e4 2139}
83342314
NP
2140
2141/**
e69e9d4a
HD
2142 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2143 * @vma: vma to cover
2144 * @uaddr: target user address to start at
2145 * @kaddr: virtual address of vmalloc kernel memory
2146 * @size: size of map area
7682486b
RD
2147 *
2148 * Returns: 0 for success, -Exxx on failure
83342314 2149 *
e69e9d4a
HD
2150 * This function checks that @kaddr is a valid vmalloc'ed area,
2151 * and that it is big enough to cover the range starting at
2152 * @uaddr in @vma. Will return failure if that criteria isn't
2153 * met.
83342314 2154 *
72fd4a35 2155 * Similar to remap_pfn_range() (see mm/memory.c)
83342314 2156 */
e69e9d4a
HD
2157int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2158 void *kaddr, unsigned long size)
83342314
NP
2159{
2160 struct vm_struct *area;
83342314 2161
e69e9d4a
HD
2162 size = PAGE_ALIGN(size);
2163
2164 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
83342314
NP
2165 return -EINVAL;
2166
e69e9d4a 2167 area = find_vm_area(kaddr);
83342314 2168 if (!area)
db64fe02 2169 return -EINVAL;
83342314
NP
2170
2171 if (!(area->flags & VM_USERMAP))
db64fe02 2172 return -EINVAL;
83342314 2173
e69e9d4a 2174 if (kaddr + size > area->addr + area->size)
db64fe02 2175 return -EINVAL;
83342314 2176
83342314 2177 do {
e69e9d4a 2178 struct page *page = vmalloc_to_page(kaddr);
db64fe02
NP
2179 int ret;
2180
83342314
NP
2181 ret = vm_insert_page(vma, uaddr, page);
2182 if (ret)
2183 return ret;
2184
2185 uaddr += PAGE_SIZE;
e69e9d4a
HD
2186 kaddr += PAGE_SIZE;
2187 size -= PAGE_SIZE;
2188 } while (size > 0);
83342314 2189
314e51b9 2190 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2191
db64fe02 2192 return 0;
83342314 2193}
e69e9d4a
HD
2194EXPORT_SYMBOL(remap_vmalloc_range_partial);
2195
2196/**
2197 * remap_vmalloc_range - map vmalloc pages to userspace
2198 * @vma: vma to cover (map full range of vma)
2199 * @addr: vmalloc memory
2200 * @pgoff: number of pages into addr before first page to map
2201 *
2202 * Returns: 0 for success, -Exxx on failure
2203 *
2204 * This function checks that addr is a valid vmalloc'ed area, and
2205 * that it is big enough to cover the vma. Will return failure if
2206 * that criteria isn't met.
2207 *
2208 * Similar to remap_pfn_range() (see mm/memory.c)
2209 */
2210int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2211 unsigned long pgoff)
2212{
2213 return remap_vmalloc_range_partial(vma, vma->vm_start,
2214 addr + (pgoff << PAGE_SHIFT),
2215 vma->vm_end - vma->vm_start);
2216}
83342314
NP
2217EXPORT_SYMBOL(remap_vmalloc_range);
2218
1eeb66a1
CH
2219/*
2220 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2221 * have one.
2222 */
3b32123d 2223void __weak vmalloc_sync_all(void)
1eeb66a1
CH
2224{
2225}
5f4352fb
JF
2226
2227
2f569afd 2228static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2229{
cd12909c
DV
2230 pte_t ***p = data;
2231
2232 if (p) {
2233 *(*p) = pte;
2234 (*p)++;
2235 }
5f4352fb
JF
2236 return 0;
2237}
2238
2239/**
2240 * alloc_vm_area - allocate a range of kernel address space
2241 * @size: size of the area
cd12909c 2242 * @ptes: returns the PTEs for the address space
7682486b
RD
2243 *
2244 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2245 *
2246 * This function reserves a range of kernel address space, and
2247 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2248 * are created.
2249 *
2250 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2251 * allocated for the VM area are returned.
5f4352fb 2252 */
cd12909c 2253struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2254{
2255 struct vm_struct *area;
2256
23016969
CL
2257 area = get_vm_area_caller(size, VM_IOREMAP,
2258 __builtin_return_address(0));
5f4352fb
JF
2259 if (area == NULL)
2260 return NULL;
2261
2262 /*
2263 * This ensures that page tables are constructed for this region
2264 * of kernel virtual address space and mapped into init_mm.
2265 */
2266 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2267 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2268 free_vm_area(area);
2269 return NULL;
2270 }
2271
5f4352fb
JF
2272 return area;
2273}
2274EXPORT_SYMBOL_GPL(alloc_vm_area);
2275
2276void free_vm_area(struct vm_struct *area)
2277{
2278 struct vm_struct *ret;
2279 ret = remove_vm_area(area->addr);
2280 BUG_ON(ret != area);
2281 kfree(area);
2282}
2283EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2284
4f8b02b4 2285#ifdef CONFIG_SMP
ca23e405
TH
2286static struct vmap_area *node_to_va(struct rb_node *n)
2287{
2288 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2289}
2290
2291/**
2292 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2293 * @end: target address
2294 * @pnext: out arg for the next vmap_area
2295 * @pprev: out arg for the previous vmap_area
2296 *
2297 * Returns: %true if either or both of next and prev are found,
2298 * %false if no vmap_area exists
2299 *
2300 * Find vmap_areas end addresses of which enclose @end. ie. if not
2301 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2302 */
2303static bool pvm_find_next_prev(unsigned long end,
2304 struct vmap_area **pnext,
2305 struct vmap_area **pprev)
2306{
2307 struct rb_node *n = vmap_area_root.rb_node;
2308 struct vmap_area *va = NULL;
2309
2310 while (n) {
2311 va = rb_entry(n, struct vmap_area, rb_node);
2312 if (end < va->va_end)
2313 n = n->rb_left;
2314 else if (end > va->va_end)
2315 n = n->rb_right;
2316 else
2317 break;
2318 }
2319
2320 if (!va)
2321 return false;
2322
2323 if (va->va_end > end) {
2324 *pnext = va;
2325 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2326 } else {
2327 *pprev = va;
2328 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2329 }
2330 return true;
2331}
2332
2333/**
2334 * pvm_determine_end - find the highest aligned address between two vmap_areas
2335 * @pnext: in/out arg for the next vmap_area
2336 * @pprev: in/out arg for the previous vmap_area
2337 * @align: alignment
2338 *
2339 * Returns: determined end address
2340 *
2341 * Find the highest aligned address between *@pnext and *@pprev below
2342 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2343 * down address is between the end addresses of the two vmap_areas.
2344 *
2345 * Please note that the address returned by this function may fall
2346 * inside *@pnext vmap_area. The caller is responsible for checking
2347 * that.
2348 */
2349static unsigned long pvm_determine_end(struct vmap_area **pnext,
2350 struct vmap_area **pprev,
2351 unsigned long align)
2352{
2353 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2354 unsigned long addr;
2355
2356 if (*pnext)
2357 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2358 else
2359 addr = vmalloc_end;
2360
2361 while (*pprev && (*pprev)->va_end > addr) {
2362 *pnext = *pprev;
2363 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2364 }
2365
2366 return addr;
2367}
2368
2369/**
2370 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2371 * @offsets: array containing offset of each area
2372 * @sizes: array containing size of each area
2373 * @nr_vms: the number of areas to allocate
2374 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2375 *
2376 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2377 * vm_structs on success, %NULL on failure
2378 *
2379 * Percpu allocator wants to use congruent vm areas so that it can
2380 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2381 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2382 * be scattered pretty far, distance between two areas easily going up
2383 * to gigabytes. To avoid interacting with regular vmallocs, these
2384 * areas are allocated from top.
ca23e405
TH
2385 *
2386 * Despite its complicated look, this allocator is rather simple. It
2387 * does everything top-down and scans areas from the end looking for
2388 * matching slot. While scanning, if any of the areas overlaps with
2389 * existing vmap_area, the base address is pulled down to fit the
2390 * area. Scanning is repeated till all the areas fit and then all
2391 * necessary data structres are inserted and the result is returned.
2392 */
2393struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2394 const size_t *sizes, int nr_vms,
ec3f64fc 2395 size_t align)
ca23e405
TH
2396{
2397 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2398 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2399 struct vmap_area **vas, *prev, *next;
2400 struct vm_struct **vms;
2401 int area, area2, last_area, term_area;
2402 unsigned long base, start, end, last_end;
2403 bool purged = false;
2404
ca23e405 2405 /* verify parameters and allocate data structures */
891c49ab 2406 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
ca23e405
TH
2407 for (last_area = 0, area = 0; area < nr_vms; area++) {
2408 start = offsets[area];
2409 end = start + sizes[area];
2410
2411 /* is everything aligned properly? */
2412 BUG_ON(!IS_ALIGNED(offsets[area], align));
2413 BUG_ON(!IS_ALIGNED(sizes[area], align));
2414
2415 /* detect the area with the highest address */
2416 if (start > offsets[last_area])
2417 last_area = area;
2418
2419 for (area2 = 0; area2 < nr_vms; area2++) {
2420 unsigned long start2 = offsets[area2];
2421 unsigned long end2 = start2 + sizes[area2];
2422
2423 if (area2 == area)
2424 continue;
2425
2426 BUG_ON(start2 >= start && start2 < end);
2427 BUG_ON(end2 <= end && end2 > start);
2428 }
2429 }
2430 last_end = offsets[last_area] + sizes[last_area];
2431
2432 if (vmalloc_end - vmalloc_start < last_end) {
2433 WARN_ON(true);
2434 return NULL;
2435 }
2436
4d67d860
TM
2437 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2438 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2439 if (!vas || !vms)
f1db7afd 2440 goto err_free2;
ca23e405
TH
2441
2442 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2443 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2444 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2445 if (!vas[area] || !vms[area])
2446 goto err_free;
2447 }
2448retry:
2449 spin_lock(&vmap_area_lock);
2450
2451 /* start scanning - we scan from the top, begin with the last area */
2452 area = term_area = last_area;
2453 start = offsets[area];
2454 end = start + sizes[area];
2455
2456 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2457 base = vmalloc_end - last_end;
2458 goto found;
2459 }
2460 base = pvm_determine_end(&next, &prev, align) - end;
2461
2462 while (true) {
2463 BUG_ON(next && next->va_end <= base + end);
2464 BUG_ON(prev && prev->va_end > base + end);
2465
2466 /*
2467 * base might have underflowed, add last_end before
2468 * comparing.
2469 */
2470 if (base + last_end < vmalloc_start + last_end) {
2471 spin_unlock(&vmap_area_lock);
2472 if (!purged) {
2473 purge_vmap_area_lazy();
2474 purged = true;
2475 goto retry;
2476 }
2477 goto err_free;
2478 }
2479
2480 /*
2481 * If next overlaps, move base downwards so that it's
2482 * right below next and then recheck.
2483 */
2484 if (next && next->va_start < base + end) {
2485 base = pvm_determine_end(&next, &prev, align) - end;
2486 term_area = area;
2487 continue;
2488 }
2489
2490 /*
2491 * If prev overlaps, shift down next and prev and move
2492 * base so that it's right below new next and then
2493 * recheck.
2494 */
2495 if (prev && prev->va_end > base + start) {
2496 next = prev;
2497 prev = node_to_va(rb_prev(&next->rb_node));
2498 base = pvm_determine_end(&next, &prev, align) - end;
2499 term_area = area;
2500 continue;
2501 }
2502
2503 /*
2504 * This area fits, move on to the previous one. If
2505 * the previous one is the terminal one, we're done.
2506 */
2507 area = (area + nr_vms - 1) % nr_vms;
2508 if (area == term_area)
2509 break;
2510 start = offsets[area];
2511 end = start + sizes[area];
2512 pvm_find_next_prev(base + end, &next, &prev);
2513 }
2514found:
2515 /* we've found a fitting base, insert all va's */
2516 for (area = 0; area < nr_vms; area++) {
2517 struct vmap_area *va = vas[area];
2518
2519 va->va_start = base + offsets[area];
2520 va->va_end = va->va_start + sizes[area];
2521 __insert_vmap_area(va);
2522 }
2523
2524 vmap_area_pcpu_hole = base + offsets[last_area];
2525
2526 spin_unlock(&vmap_area_lock);
2527
2528 /* insert all vm's */
2529 for (area = 0; area < nr_vms; area++)
3645cb4a
ZY
2530 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2531 pcpu_get_vm_areas);
ca23e405
TH
2532
2533 kfree(vas);
2534 return vms;
2535
2536err_free:
2537 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2538 kfree(vas[area]);
2539 kfree(vms[area]);
ca23e405 2540 }
f1db7afd 2541err_free2:
ca23e405
TH
2542 kfree(vas);
2543 kfree(vms);
2544 return NULL;
2545}
2546
2547/**
2548 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2549 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2550 * @nr_vms: the number of allocated areas
2551 *
2552 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2553 */
2554void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2555{
2556 int i;
2557
2558 for (i = 0; i < nr_vms; i++)
2559 free_vm_area(vms[i]);
2560 kfree(vms);
2561}
4f8b02b4 2562#endif /* CONFIG_SMP */
a10aa579
CL
2563
2564#ifdef CONFIG_PROC_FS
2565static void *s_start(struct seq_file *m, loff_t *pos)
d4033afd 2566 __acquires(&vmap_area_lock)
a10aa579 2567{
d4033afd 2568 spin_lock(&vmap_area_lock);
3f500069 2569 return seq_list_start(&vmap_area_list, *pos);
a10aa579
CL
2570}
2571
2572static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2573{
3f500069 2574 return seq_list_next(p, &vmap_area_list, pos);
a10aa579
CL
2575}
2576
2577static void s_stop(struct seq_file *m, void *p)
d4033afd 2578 __releases(&vmap_area_lock)
a10aa579 2579{
d4033afd 2580 spin_unlock(&vmap_area_lock);
a10aa579
CL
2581}
2582
a47a126a
ED
2583static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2584{
e5adfffc 2585 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2586 unsigned int nr, *counters = m->private;
2587
2588 if (!counters)
2589 return;
2590
af12346c
WL
2591 if (v->flags & VM_UNINITIALIZED)
2592 return;
7e5b528b
DV
2593 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2594 smp_rmb();
af12346c 2595
a47a126a
ED
2596 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2597
2598 for (nr = 0; nr < v->nr_pages; nr++)
2599 counters[page_to_nid(v->pages[nr])]++;
2600
2601 for_each_node_state(nr, N_HIGH_MEMORY)
2602 if (counters[nr])
2603 seq_printf(m, " N%u=%u", nr, counters[nr]);
2604 }
2605}
2606
a10aa579
CL
2607static int s_show(struct seq_file *m, void *p)
2608{
3f500069 2609 struct vmap_area *va;
d4033afd
JK
2610 struct vm_struct *v;
2611
3f500069 2612 va = list_entry(p, struct vmap_area, list);
2613
c2ce8c14
WL
2614 /*
2615 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2616 * behalf of vmap area is being tear down or vm_map_ram allocation.
2617 */
2618 if (!(va->flags & VM_VM_AREA))
d4033afd 2619 return 0;
d4033afd
JK
2620
2621 v = va->vm;
a10aa579 2622
45ec1690 2623 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2624 v->addr, v->addr + v->size, v->size);
2625
62c70bce
JP
2626 if (v->caller)
2627 seq_printf(m, " %pS", v->caller);
23016969 2628
a10aa579
CL
2629 if (v->nr_pages)
2630 seq_printf(m, " pages=%d", v->nr_pages);
2631
2632 if (v->phys_addr)
ffa71f33 2633 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
a10aa579
CL
2634
2635 if (v->flags & VM_IOREMAP)
f4527c90 2636 seq_puts(m, " ioremap");
a10aa579
CL
2637
2638 if (v->flags & VM_ALLOC)
f4527c90 2639 seq_puts(m, " vmalloc");
a10aa579
CL
2640
2641 if (v->flags & VM_MAP)
f4527c90 2642 seq_puts(m, " vmap");
a10aa579
CL
2643
2644 if (v->flags & VM_USERMAP)
f4527c90 2645 seq_puts(m, " user");
a10aa579 2646
244d63ee 2647 if (is_vmalloc_addr(v->pages))
f4527c90 2648 seq_puts(m, " vpages");
a10aa579 2649
a47a126a 2650 show_numa_info(m, v);
a10aa579
CL
2651 seq_putc(m, '\n');
2652 return 0;
2653}
2654
5f6a6a9c 2655static const struct seq_operations vmalloc_op = {
a10aa579
CL
2656 .start = s_start,
2657 .next = s_next,
2658 .stop = s_stop,
2659 .show = s_show,
2660};
5f6a6a9c
AD
2661
2662static int vmalloc_open(struct inode *inode, struct file *file)
2663{
703394c1
RJ
2664 if (IS_ENABLED(CONFIG_NUMA))
2665 return seq_open_private(file, &vmalloc_op,
2666 nr_node_ids * sizeof(unsigned int));
2667 else
2668 return seq_open(file, &vmalloc_op);
5f6a6a9c
AD
2669}
2670
2671static const struct file_operations proc_vmalloc_operations = {
2672 .open = vmalloc_open,
2673 .read = seq_read,
2674 .llseek = seq_lseek,
2675 .release = seq_release_private,
2676};
2677
2678static int __init proc_vmalloc_init(void)
2679{
2680 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2681 return 0;
2682}
2683module_init(proc_vmalloc_init);
db3808c1 2684
a10aa579
CL
2685#endif
2686